Transaction Objects in Broker ActiveX Control Transaction Objects in Broker ActiveX Control

Transaction Objectsin Broker ActiveX
Control

Transaction Object (TOs) in Broker ActiveX Control are selections of logical methods that are stored in a
transaction object repository (TOR). These logical methods contain all the connection and interface details
necessary to communicate with EntireX Broker.

This chapter covers the following topics:
® Advantages of Transaction Objects
® Calling the Transaction Object Editor
® Managing TOR Files
® Defining Methods
e Specifying Connection Information
e Defining Custom Data Types
® TOR Files in IDL Format
® TOR Files in XML Format

® Storing TOR Files in a Tamino Database

Advantages of Transaction Objects

The advantages of using transaction objects are:

® Services are defined once, in one place, and distributed as needed. They can then be used by anyone
from many different applications to access back-end applications.

® Transaction objects can encapsulate all connection and conversational information from the
developer, which simplifies the implementation and administration of distributed applications.

® The SEND-BUFFER of a message is broken down into parameters, and the RECEIVE-BUFFER is
mapped to the return object. This means you do not have to worry about offsets, data types, repeating
fields (arrays), or structures.

Calling the Transaction Object Editor

The Transaction Object Editor is a tool within Broker ActiveX Control with which you can define and
maintain transaction objects. It is invoked by calling the mebBeftheTOMethods from a form that
includes an ActiveX control.

Transaction Objects in Broker ActiveX Control Calling the Transaction Object Editor

The Transaction Object Editor can be called directly usind @Redit executable. The extension ".tor"
is registered as a file type, so you can call the Transaction Object Editor with a double click from the
Windows Explorer.

When the Transaction Object Editor is started, a license check is performed. If there is no license file or if
the license has expired, the editor will be closed.

Note:

Before you start the TOR Editor for the first time, you need to register the requiredtildllto your
Windows system manually. Simply open a DOS prompt in fotdeive>:\Software AG\EntireX\birand
run the commandegsvr32 ebx.dll . If you later want to use a TOR Editor from a different
installation directory, register the correspondity.dllas above.

% Transaction Object Editor

File Edit ©Options Help
Drefinitinn of thiz methad:
Method: || ﬂ Mew Copy... | Delete
Call Type l Farameters | Return Object] Method Lonnection...
Call types supported by thiz method:

Call Type Action D escription s
Send Data b ethod pazses data to a Broker Service [

’ Send and Receive Data Method passes data to a Broker Service,
Receive Data Method receives data from a Broker Servi
Logan Logan ko the Broker
Logoff Logaff from Broker
End of Corwversation Terminate one or more converzations
Syncpaint Syncpoint
Reqister Reqgister a Server
Dereqgizter Dereqgizter a Server
Subszcribe Lser Subszcribes a uzer ta a topic
Unzubscribe uzer Unzubscribe a user fram a topic
Send publication Send a publication mezzage to a topic
Feceive publication Receive publication from a topic b

£ ¥

Connection... Cugtom Types... Exit

When a transaction object is loaded, the corresponding file name will be displayed in the title bar. If
loading or saving fails, an error message will be displayed in the title bar.

Managing TOR Files

Managing TOR Files

Transaction Objects in Broker ActiveX Control

The following functions are available for managing TOR files.

File Menu

Edit Menu

Options Menu

Help Menu

FileMenu

*. Transaction Object Editor

File Edit ©Options Help

Mew

Dpen TOR., ..

Dpen =ML,

Cpen Tamino Object., .,

S ave Lrn Ohije

Save as TOR... i

Sawve as IDL.., Ak

Sawve as XML.., bt

Save as Tamino Ohject. .. 5 Met

Exit Met
T Log
Logoff Log
Foed ot P T

Transaction Objects in Broker ActiveX Control

Edit Menu

Menu Item Description

New Resets the TOR Editor.

Open TOR Loads an existing TOR file. A standabgben File dialog will be displayed. This
function is needed to modify an existing TOR file.

Open XML Loads an existing XML file. A standafpen File dialog will be displayed. This

function is needed to modify an existing XML file (desading an XML Filg.

Open Tamino
Object

Loads an existing Tamino Object. TB@en Tamino Object dialog will be
displayed. This function is needed to modify an existing Tamino objeck ¢seking
Tamino Objectk

must

Save Saves a TOR file.

Saveas TOR |Saves a new or modified TOR file. A stand&ede File dialog will be displayed.

Saveas|IDL |Saves afile in IDL format. If you have made any changes to the TOR file, you
first save it in TOR file format.

Saveas XML |Saves a file in XML format. A standaBhve File dialog will be displayed.

Save as This function saves a file in Tamino. TBave Tamino Object dialog will be

Tamino displayed.

Object

EXIT Closes the TOR Editor.

Edit Menu

* Transaction Object Editor

e

File | Edit Options

Cusktom Data Types
Canneckion
=ML File

Help

El

Call Type l Parameters | Feturn I:Il:-iec:t]

Call Type

Send Data
h Carnd snd Paraiua Mk

Action Description

Method pazses data to a Broker Se
kdathad Rzocas Azbz ba o Pralar S

Menu Item Description

Custom Calls theCustom Data Types dialog.

Types

Connection | Calls theConnection dialog.

XML File Calls a standar@pen File dialog. When a file is selected, a text editor will be

opened.

Defining Methods Transaction Objects in Broker ActiveX Control

OptionsMenu

* Transaction Object Editor

File Edit | Options Help

Definitipr ML options i

Method: ||

Call Type] F"arameters] Fieturn Object

Menu Item Description

XML options Calls anXML Options dialog.

Help Menu

Menu Item Description

Contents Displays the Broker ActiveX Control online help.
About Displays the About box.

Defining M ethods

The following buttons are available in the transaction method definition model:
® TheNew button causes the method name within the dialog box to be added to the store.
e TheCopy button copies the currently selected method to a new method.
® TheDelete button removes the selected method from the store.

Methods are logically grouped in a transaction object. Each method specified in the transaction object
relates directly to a specific Broker service. To define a new method, therefore, you need to know which
services are available. Each method requires the following information:

Connection

Call Type

Parameters

Return Object

Transaction Objects in Broker ActiveX Control

Connection

Connection

Connection information is specified using Bieoker Connection I nformation dialog. Each TOR file
has default connection information, and each method has its individual connection information. If a

parameter is not defined in the connection information of a method, the default is taken. For a description

of the parameters, s@=fining Connection Information

Call Type

TheCall Typetab represents the call types that can be used for this method.

Call Type Description

Send Data Used to define a method that accepts parameters but does not return data from the
service. This could be used to notify a back-end application of some event without
waiting for a response.

Send and Used to define a method that accepts parameters and returns data from that gervice.

Receive Data

Receive Data |Can be used to get information from a back-end application that requires no input,
for example MOTD (message of the day) information. It is also used to wait for
incoming requests if you are using Broker ActiveX Control to write Broker Seryer
applications.

Logon Logon to EntireX Broker.

Logoff Logoff from EntireX Broker.

End of Used to end a conversation.

Conversation

Syncpoint Used to commit, backout, or cancel a unit of work, obtain the status of a unit gf
work, or delete the persistent status of a unit of work.

Register Informs EntireX Broker that a service is available.

Deregister Removes previously registered services from EntireX Broker’s active list.

Subscribe Use| Used to subscribe a user to a topic.

Unsubscribe | Used to unsubscribe a user from a topic.

User

Send Used to send a publication message to a topic.

Publication

Receive Used to receive a publication message from a topic to which the user was preyiously

Publication subscribed.

Control Used to commit or backout a publication message.

Publication

TheCall Type tab is shown in thecreen above

Parameters Transaction Objects in Broker ActiveX Control

Parameters
TheParameter tab exposes a multiline box containing individual parameter variables.

These parameters are placed into the SEND-BUFFER of the EntireX Broker call. Each parameter has a
data type (Integer, Real, String etc.) and a length.

% Transaction Object Editor
File Edit ©Options Help

Definitian of this method:

Methad: IE ﬂ Mew I:-:g,l...| Delete

Call Type Parameters | Retun Object | gtvad Liovnzdlior...

kethod data items:

M arme In Type Ot Type Offzet Lenath

’ operand String String 1] 1
operator] String String 1 12
operators String String 13 12
Add... Remove | | Maove Down |

Data is provided az: |String j Data affzet
Data is zent as: |String j Data length: |1 _I;I

Connection... | Cugtom Types... | Exit |

Defining a Parameter List

If data is sent, it is necessary to define a parameter list for this methodOhethod parameter list

serves as a "map" between the types passed as parameters, and the data types and locations within the
method’s send buffer. Items within tli© method parameter list are ordered sequentially as they will be
passed when the method is invoked.

List Control

A list control is used for defining, removing and ordering parameters of the current method. The list
control supports in-place editing of items names, and works together with the item configuration controls
positioned below. When a particular item is selected, it can be moved up and down the list sequentially.
The order of the list defines the order in which parameters are passed when the method is invoked. Note

Transaction Objects in Broker ActiveX Control Return Object

that offsets are automatically generated for each list item, relative to the start of the list, and the items (and
their sizes) that precede it.

The Add function adds the field after the selected position.

Data Conversion

Data conversion is also supported between a type provided by the client and the type expected by the
Broker service. For parameters, the user can specify the data type that will be provided, and the type that
will be sent to the Broker service. For return objects, the data received by the Broker service can be set to
the data type retrieved by the user. The important data types are those sent to and received from a Broker
service. Broker ActiveX Control automatically converts between the data type received from the Broker
and a data type specified by the user (se®#ta isreceived as andDataisretrieved asfields in the

screen below).

Implemented Data Types

The scalar data types supported by the Broker ActiveX are a subset of the standard Automation
VARIANT types and are listed below. In cases where the selected data type is of fixed length, the data
length edit control is set to the appropriate length and grayed.

Transaction Object Method Data Types Description

1-byte Integer 1-byte Integer used for signed and unsigned.
2-byte Integer 2-byte Integer used for signed and unsigned.
4-byte Integer 4-byte Integer used for signed and unsigned.
4-pyte Real 4-byte Real compatible with "C" float.

8-byte Real 8-byte Real compatible with "C" double.

Bool Boolean variable.

String String of specified length.

Blob Generic byte block.

Padding Used to separate types in the buffer.

Return Object

If the transaction object method is invoked with call type 'Send and Receive’ or 'Receive’, a Return
Object is created. This is a logical object that enables you to retrieve multiple scalar values or records by
referencing its properties.

TheReturn Object tab exposes the individual properties that are mapped onto the RECEIVE-BUFFER of
the Broker call. When the data is returned from the Broker service, Broker ActiveX Control uses the types
and lengths of the defined properties to populate the values of the properties. You can now access the
contents of the receive buffer as ActiveX properties of the method that is created by loading the
transaction object.

Specifying Connection Information Transaction Objects in Broker ActiveX Control

*_ Transaction Object Editor
File Edit ©Options Help

Drefinition of this method:

Method: [calc] j Mew Cop... | Delete
Cal T_I,Ipe] Parameters Feturn Object l Method Connectian...

bethod data iters: [Manually set data offset

M ame In Type Ot Type Offzet Lenath

’ rezult String String 1] 12

Add. . Remove

Data is recejved as: |String j Data offset:
Data is retrieved as: |String j Data length: |12 _%I

Connection... | Custom Types. . | E st |

As with the parameters, Broker ActiveX Control calculates the offset in the RECEIVE-BUFFER for each
property. For information on list control, data conversion and implemented data typesfisgey a
Parameter List

Custom Data Types are used for non-scalar data types such as arrays and structures. They are also used tc
assign aliases to parameters for consistent naming purposes.

TheManually set data offset check box allows the transaction object designer to override automatic
offset calculation and specify offsets manually. This feature is powerful, but also potentially dangerous,
because no base type checking can be performed.

Specifying Connection | nfor mation

Connection information relates directly to the Broker service that you want to communicate with when
using this method.

Transaction methods are defined using the Transaction Object Editor. Connection information is specified
using theBroker Connection Information dialog. Each TOR file has default connection information,
and each method has its individual connection information. If a parameter is not specified in the

Transaction Objects in Broker ActiveX Control Connection Information Parameters

connection information of a method, the default is taken. The Broker parameters are part of this
connection information (with the exceptionFainction , which depends on the Call Type).

Broker Connection Information for method: calc [z|
Server Clazs:]
Server Mame: Cancel
Semvice:

Logical Brokerl D

Logical Service:

|
|
|
Braker ID: |
|
|
|

Logical Set Mame:

Compreszion Level: |

Leflefle

W ait: | Broker S ecurity: I—L|
Coreersation 1D: | O ption: |NL|LL j
0 Tirne: | LD StatuzPersist: IEIi
Encmyption Level: |H ONE j Force Logon: MO -
zer |D: |

Pazsword: |

Environment: |

Taoken: |

Topic: |

Publication ID: | | UDW Status Life: |

TheBroker Connection Information dialog box accepts all the parameters required for establishing the
necessary Broker connection to execute the defined method/call type.

Connection Information Parameters

10

Connection Information Parameters Transaction Objects in Broker ActiveX Control

Parameter Description

BrokerID The unique name of the Broker node that the services are attached to. Information
in this dialog can be changed without affecting the application code. For exdmple,
if the BrokerID changed, you would change the connection information in :I‘he
methods (services) affected and distribute the new transaction object file. The next
time the application code loads the transaction object file and calls a method, the

new connection information will be used.

CompressLevel | Compression level. Valid values: N|Y|0-9. See &lata Compression in EntireX
Broker.

ServerClass, These three parameters represent the unique "signature" of this method call.
ServerName,

Service

Wait The following values are set for this parameter, depending on the operation
Operation Wait Value (in seconds)
Send 0

Send and Receiv30

Receive 59 ()

) if no value is specified in th@onnection info.

SeeProperties of Broker ActiveX Contrfir a description of the other parameters.

Setting the Broker Call Parameters

Calling a method of a transaction object results in a Broker call. The parameters for the Broker call are
taken either

e from theBroker Connection Information dialog, see above, or
e from the properties (sderoperties of Broker ActiveX Contjol

If a value is specified in th€onnection Information dialog, this value is taken and overrides any value
specified in the properties.

If no value is specified in theonnection Information dialog, the current setting of the properties is

taken. Leaving these parameters blank inGbenection I nfor mation dialog enables you to change these
parameters dynamically, and also enables Broker communication in conversational mode. See example
below:

Visual Basic Example

This example shows a possible usage of dynamic parameter assignment:

Set TransObject=BOCX.CreateTransObject ("...calc.tor")

BOCX.UserID = "USER1"

BOCX.BrokerID ="ETB121"

Set ReturnOb = TransObject.calc("+", "000000000001", "000000000002")

11

Transaction Objects in Broker ActiveX Control Defining Custom Data Types

Defining Custom Data Types

The Custom Data Types dialog allows you to define new data types that will appear iRébern
Object tag. With theApply button you can embed a custom type within another custom type as long as
this does not result in a recursive inclusion.

The following four classes of custom data types are supported:
® Custom Data Type 'Alias’
® Custom Data Type 'Array’
® Custom Data Type 'Record’
® Custom Data Type 'Structure’

Any custom data type can be used in transaction objects return objects. Custom data types are not
supported as method parameters.

Note:

All custom data types can be used recursively. That is, any custom data type can be used as a member or
base type for any other custom type. This allows for nested structures, as well as arrays within structures
and records.

Custom Data Type'Alias

An aliasis a custom data type that allows an administrator to specify an alias for any defined data type -
custom or not. Aliasing also allows the definition of data types with specific in and out data types (type
translation).

Custom Data Type'Array’

12

Custom Data Type 'Record’ Transaction Objects in Broker ActiveX Control

Custom Data types E|

Custorm: |-3"-3_'r"EHal'l'l j Hew Copy | De_lete|

Custorm Data bwpe definition;

Aliaz Record | Structure |
D ata iz recejved as:lString ﬂ Data Igngth:|34 _I;I
D ata iz retrieved as: |String j

i azimum elements in the aray: |4 _%I

Ok Apply

An array consists of multiple serial elements of the same data types. Arrays can be made up of either
scalar or custom data types. The number of elements in an array must be specified.

Array custom data types accept the same basic information as alias data types, with the addition of the
number of elements in the array. Arrays allow elements of the specified base type to be accessed in a
subscripted fashion.

Note:
Multidimensional arrays and arrays of structures can be implemented by specifying a custom array or
record data type as the base type of this array.

Custom Data Type’Record’
A recordis a repeating collection of data types - scalar or custom.

This custom data type allows you to define a collection of data types that can be accessed in a subscripted
fashion. The order of defined types in fRecord can be changed. Also, the number of records within the
receive buffer can be specified if known.

13

Transaction Objects in Broker ActiveX Control TOR Files in IDL Format

Custom Data types g|

Custorm: |-3"-3_'r"EHal'l'l j Hew Copy | De_lete|

Custorm Data bwpe definition;

Aliaz | Array |Hecurd Structure

D ata tppes in recard:

M ame In Type Qut Type Length
FerzonallD String String a
Firsthame String String B4
’ Laztname String String G4
Add... | Remaowe | Move Up | |
Drata iz received as: |String ﬂ D'ata length: ||34 _I;I
Data is retrieved as: |String j

bl aximum records in the buffer; |9 _%l

Custom Data Type’ Structure
A structureis a named collection of data types.

The controls for this custom data type are identical to those of the data type 'record’, with the exception of
a repetitive count, which is not applicable.

TOR Filesin IDL Format

When a TOR file is saved in IDL format, a file with extension .idl is generated. (The file must have been
saved as a TOR file before).

14

Conversion Rules Transaction Objects in Broker ActiveX Control

Save IDL file [?]X)
Sanve it |',';"i Cale _T_j "= £ EF-

ty Recent
Documents

o

Dezktop

iy Documents

Py Computer
.
My Metwaork File name: |n:aI|: :__| Save

Flacez

Save as type: |IDL File [*.idI] LJ Cancel

This IDL file can be used by other EntireX tools such as DCOM Wrapper or Java Wrapper. It can be
modified with any editor like a regular IDL file.

Conversion Rules

List of the performed conversions:

15

Transaction Objects in Broker ActiveX Control Conversion Rules

In TOR file Converted to ... in IDL file
TOR file name Library name

Methodname Program name

Connection Info "Server address" as comment

Dataltems in Paramete "In" Parameters

Map

Dataltems in Return |"Out" Parameters

Map

Manual Offsets in Will not be converted. If "manual offsets" is marked in a method, a
Return Map comment is generated for this program.

Custom Data Types | The names of the CDTs used are displayed in a comment.

- Alias Nothing

- Array A dimension specification

- Record A dimension specification and a group

- Structure A group

Format Conversion The IN-Type of the Parameter Map and the OUT-Type of the Return Map
are used.

-11 11

-12 12

-14 14

-Real 4 F4

- Real 8 F8

- Bool L

- String A<size>

- Blob B<size>

- Padding B<size>

16

TOR Files in XML Format Transaction Objects in Broker ActiveX Control

TOR Filesin XML Format

To use TOR files in XML format, Internet Explorer 5 or above is required.

Loading an XML File

When you load an XML file, the XML file is checked against the defined DTDTBeeDTD Filelist
below). When you use the XML file, it is not necessary to store the transaction object in TOR file format.

Saving an XML File
When a TOR file is saved in XML format, a file with the extension .xml is generated.

This XML file can be viewed with a browser that supports XML. It can also be viewed and edited with
any XML notepad or any text editor.

TheDTD File

The structure of the XML file is defined in the DTD file. When you use a tool that validates XML files,
the XML file is checked against these definitions.

Entry in theDTD file Explanation

<IELEMENT EntireXTorFile (DefaultConnection? , Method*, CDT*)> The root must always be
defined. It contains:

® (-1 default connections
® 0-n methods

® 0-n CDT (= custom data|
types)

<IATTLIST EntireXTorFile Name CDATA #IMPLIED Name The name of
Version CDATA #IMPLIED> the TOR file

Version The EntireX
version with
which the
XML file was
generated

<IELEMENT DefaultConnection EMPTY> The global connection
information is stored here.

<IATTLIST DefaultConnection %Connection;> All parameters in the default
connection are stored as
attributes. See the detailed
description of the
%Connection at the end of th
table.

S

17

Transaction Objects in Broker ActiveX Control

The DTD File

Entry intheDTD file

Explanation

<IELEMENT Method (MethodConnection? , Parameter*)>

Each method contains:
® 0-1 method connections

® (-n parameter

<IATTLIST Method Name CDATA #REQUIRED
CallType (SEND | RECEIVE | SEND-RECEIVE |
LOGON | LOGOFF |[EOC | SYNCPOINT |
REGISTER | DEREGISTER | SUBSCRIBE |
UNSUBSCRIBE | SEND_PUB | RECEIVE_PUB |
CONTROL_PUB) #REQUIRED
ManualOffset (YES | NO) #IMPLIED>

A name and a call type must
be defined for each method.
The manual offset contains t
manual offset switch of the
return map.

<IELEMENT MethodConnection EMPTY>

The connection information d
each method is stored here.

<IATTLIST MethodConnection %Connection;>

All parameters belonging to
the method connection are
stored as attributes. See the
detailed description of the
%Connectiorat the end of thi
table.

1"2)

<IELEMENT Parameter (InFormat, OutFormat, Length?)>

Each parameter contains:
e 1 informat

e 1 out format

Offset CDATA #IMPLIED>

e (-1 length
<IATTLIST Parameter Name CDATA #IMPLIED Name Name of the
Direction (IN | OUT | INOUT) #IMPLIED parameter

Direction IN: if
parameter is
from the
parameter
map
OUT: ifitis
from the
return map

Offset Offset value
of the return
map, if
ManualOffset
=YES

<IELEMENT CDT (Alias | Array | Record | Structure) >

A custom data type (CDT) is
an alias, an array, a record 0
structure.

Q

18

The DTD File

Transaction Objects in Broker ActiveX Control

Entry intheDTD file Explanation
<IATTLIST CDT Name ID #REQUIRED> The name of the CDT is
required.

<IELEMENT Alias (InFormat, OutFormat, Length?)>

An alias contains:
e 1 informat
e 1 out format

® (-1 length

<I[ELEMENT Array (InFormat, OutFormat, Length?)>

An array contains:
e 1 informat
e 1 out format

e (-1 length

<IATTLIST Array NumberEle CDATA #IMPLIED>

The numbers of elements for
an array are stored here.

<IELEMENT Record (Parameter*)>

The record contains:

® (-n parameter

<IATTLIST Record NumberEle CDATA #IMPLIED>

The numbers of elements for a
record are stored here.

<IELEMENT Structure (Parameter*) >

The structure contains:

® (-n parameter

<IELEMENT InFormat (Scalar | UsedCDT)>

An InFormat is a scalar valus
or a reference to a CDT.

<IELEMENT Scalar EMPTY>

<IATTLIST Scalar Format (11 |12 | 14 | F4 | F8 |
Bool | String | Blob | Padding) #REQUIRED>

A scalar must be in one of th
listed formats.

D

<IELEMENT UsedCDT EMPTY>

<IATTLIST UsedCDT Target IDREF #REQUIRED>

A UsedCDT must reference
the name of a defined CDT.

<IELEMENT OutFormat (Scalar | UsedCDT)>

An OutFormat is a scalar valpie
or a reference to a CDT.

<I[ELEMENT Length EMPTY>

<IATTLIST Length Value CDATA #IMPLIED>

A length must be defined for
scalars with the values: string,
BLOB and padding or
UsedCDTs.

19

Transaction Objects in Broker ActiveX Control Defining the Location of the DTD and XSL File

Entry intheDTD file Explanation
<IENTITY % Connection All connection parameters arge
'ServerClass CDATA #IMPLIED defined as attributes.

ServerName CDATA #IMPLIED

Service CDATA #IMPLIED

ConversationID (NONE | NEW | OLD | ANY)
#IMPLIED

UOWTime CDATA #IMPLIED

BrokerID CDATA #IMPLIED

UserlD CDATA #IMPLIED

Password CDATA #IMPLIED

Environment CDATA #IMPLIED

Wait CDATA #IMPLIED

UOWStatusPersist CDATA #IMPLIED

Option (NULL | MSG | HOLD | IMMED | QUIESCE
| EOC | CANCEL | LAST |

NEXT | PREVIEW | COMMIT | BACKOUT |
SYNC | ATTACH | DELETE |

EOCCANCEL | QUERY | SETUSTATUS | ANY |
TERMINATE |DURABLE |CHECKSERVICE)
#IMPLIED

Encryption (NONE | TO-BROKER | TO-TARGET)
#IMPLIED

ForceLogon (NO | YES) #IMPLIED
CompressLevel CDATA #IMPLIED

Token CDATA #IMPLIED

Topic CDATA #IMPLIED

PublicationID CDATA #IMPLIED
UOWStatusLife CDATA #IMPLIED
BrokerSecurity CDATA #IMPLIED" >

Defining the L ocation of the DTD and XSL File

A DTD file is used to check the XML file. An XSL file is used to view the XML file. To locate these files,
enter a reference in th&IL Options:

Generate XML Options @

URL of DTD and =5L file:
|htt|:u: A poand/E ntire

T amino Server Mame: ||.;..:a|h.;.3t

Tamino DB Prefic —tamina/myDE /E ntirei<T orFile

] Cancel |

This reference can be a URL (like above) or a regular path (e.g., the default: the Ertad&ctory).

20

Storing TOR Files in a Tamino Database Transaction Objects in Broker ActiveX Control

Using the XML Objects During Runtime

The XML file can also be used during runtime. It must be defined in the same way as the TOR file.

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("...\\calc.xml")

Storing TOR Filesin a Tamino Database

To store and use TOR files in a Tamino database, Tamino 4.2.1 or higher and Internet Explorer 5 or
higher are required.

Creating a Tamino Database for the TOR Files

In the EntireXetcdirectory arEntireXTorlno vrs.xmis provided. This file can be used to define the
schema in Tamino (_define function). It is very close to the DTD file. The XML files generated can be
directly stored in Tamino. The database prefix defined in Tamino must be defineXim th©ptions
screen as well as the server name of the Tamino database.

Generate XML Options @

URL of DTD and #5L file:
|http: A fpoe B nhirg

T amino Server Marme: ||.:..33|h|:|3t

Tamina DB Prefic | paming AmyDE /E ntirei<T orFile

] Cancel |

L oading Tamino Objectsusing the TOR Editor

When loading a Tamino object, the following dialog will be displayed:

Select Tamino Object E“E|E|
T amino Server Mame: ||.;..;a|h.;.3t
Taming DB Prefis: (ki /myDB AE ritire< T orFile
Select by Object Mame | j
ak. Cancel |

21

Transaction Objects in Broker ActiveX Control Storing Tamino Objects using the TOR Editor

If necessary, the Tamino server name and the Tamino database prefix can be changed here. The name of
the desired object can be entered directly or selected from the drop-dowisareehby Object Name.

Storing Tamino Objectsusing the TOR Editor

When saving a Tamino object, the following dialog will be displayed:

Save Tamino Object §|

T amino Server Marme: localhosd
Taming DB Prefix: |tamino/myD B/E ntire<T orFile

T amino Object Marme: |

k. Cancel

If necessary, the Tamino server name and the Tamino DB prefix can be changed here. The name of the
object must be entered in thamino Object Name field. If a Tamino object with this name already
exists, you can overwrite the existing file or cancel the save operation.

Using Tamino Objects During Runtime

The Tamino object can also be used during runtime. It must be defined like the XML file:

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("Calc")

Note:
The name of the Tamino object is case-sensitive.

The Tamino server name and the Tamino DB prefix fronGieeral XML Options screen are used.

22

	Transaction Objects in Broker ActiveX Control
	Advantages of Transaction Objects
	Calling the Transaction Object Editor
	Managing TOR Files
	File Menu
	Edit Menu
	Options Menu
	Help Menu

	Defining Methods
	Connection
	Call Type
	Parameters
	Defining a Parameter List
	List Control
	Data Conversion
	Implemented Data Types

	Return Object

	Specifying Connection Information
	Connection Information Parameters
	Setting the Broker Call Parameters
	Visual Basic Example

	Defining Custom Data Types
	Custom Data Type 'Alias'
	Custom Data Type 'Array '
	Custom Data Type 'Record'
	Custom Data Type 'Structure'

	TOR Files in IDL Format
	Conversion Rules

	TOR Files in XML Format
	Loading an XML File
	Saving an XML File
	The DTD File
	Defining the Location of the DTD and XSL File
	Using the XML Objects During Runtime
	Visual Basic Example

	Storing TOR Files in a Tamino Database
	Creating a Tamino Database for the TOR Files
	Loading Tamino Objects using the TOR Editor
	Storing Tamino Objects using the TOR Editor
	Using Tamino Objects During Runtime
	Visual Basic Example

