
Transaction Objects in Broker ActiveX
Control
Transaction Object (TOs) in Broker ActiveX Control are selections of logical methods that are stored in a
transaction object repository (TOR). These logical methods contain all the connection and interface details
necessary to communicate with EntireX Broker.

This chapter covers the following topics:

Advantages of Transaction Objects

Calling the Transaction Object Editor

Managing TOR Files

Defining Methods

Specifying Connection Information

Defining Custom Data Types

TOR Files in IDL Format

TOR Files in XML Format

Storing TOR Files in a Tamino Database

Advantages of Transaction Objects
The advantages of using transaction objects are:

Services are defined once, in one place, and distributed as needed. They can then be used by anyone
from many different applications to access back-end applications.

Transaction objects can encapsulate all connection and conversational information from the
developer, which simplifies the implementation and administration of distributed applications.

The SEND-BUFFER of a message is broken down into parameters, and the RECEIVE-BUFFER is
mapped to the return object. This means you do not have to worry about offsets, data types, repeating
fields (arrays), or structures.

Calling the Transaction Object Editor
The Transaction Object Editor is a tool within Broker ActiveX Control with which you can define and
maintain transaction objects. It is invoked by calling the method DefineTOMethods from a form that
includes an ActiveX control.

1

Transaction Objects in Broker ActiveX ControlTransaction Objects in Broker ActiveX Control

The Transaction Object Editor can be called directly using the TORedit executable. The extension ".tor"
is registered as a file type, so you can call the Transaction Object Editor with a double click from the
Windows Explorer.

When the Transaction Object Editor is started, a license check is performed. If there is no license file or if
the license has expired, the editor will be closed.

Note:
Before you start the TOR Editor for the first time, you need to register the required DLL ebx.dll to your
Windows system manually. Simply open a DOS prompt in folder <drive>:\SoftwareAG\EntireX\bin and
run the command regsvr32 ebx.dll . If you later want to use a TOR Editor from a different
installation directory, register the corresponding ebx.dll as above.

When a transaction object is loaded, the corresponding file name will be displayed in the title bar. If
loading or saving fails, an error message will be displayed in the title bar.

2

Calling the Transaction Object EditorTransaction Objects in Broker ActiveX Control

Managing TOR Files
The following functions are available for managing TOR files.

File Menu

Edit Menu

Options Menu

Help Menu

File Menu

3

Transaction Objects in Broker ActiveX ControlManaging TOR Files

Menu Item Description

New Resets the TOR Editor.

Open TOR Loads an existing TOR file. A standard Open File dialog will be displayed. This
function is needed to modify an existing TOR file.

Open XML Loads an existing XML file. A standard Open File dialog will be displayed. This
function is needed to modify an existing XML file (see Loading an XML File).

Open Tamino
Object

Loads an existing Tamino Object. The Open Tamino Object dialog will be
displayed. This function is needed to modify an existing Tamino object (see Loading
Tamino Objects).

Save Saves a TOR file.

Save as TOR Saves a new or modified TOR file. A standard Save File dialog will be displayed.

Save as IDL Saves a file in IDL format. If you have made any changes to the TOR file, you must
first save it in TOR file format.

Save as XML Saves a file in XML format. A standard Save File dialog will be displayed.

Save as
Tamino
Object

This function saves a file in Tamino. The Save Tamino Object dialog will be
displayed.

EXIT Closes the TOR Editor.

Edit Menu

Menu Item Description

Custom
Types

Calls the Custom Data Types dialog.

Connection Calls the Connection dialog.

XML File Calls a standard Open File dialog. When a file is selected, a text editor will be
opened.

4

Edit MenuTransaction Objects in Broker ActiveX Control

Options Menu

Menu Item Description

XML options Calls an XML Options dialog.

Help Menu

Menu Item Description

Contents Displays the Broker ActiveX Control online help.

About Displays the About box.

Defining Methods
The following buttons are available in the transaction method definition model:

The New button causes the method name within the dialog box to be added to the store.

The Copy button copies the currently selected method to a new method.

The Delete button removes the selected method from the store.

Methods are logically grouped in a transaction object. Each method specified in the transaction object
relates directly to a specific Broker service. To define a new method, therefore, you need to know which
services are available. Each method requires the following information:

Connection

Call Type

Parameters

Return Object

5

Transaction Objects in Broker ActiveX ControlDefining Methods

Connection

Connection information is specified using the Broker Connection Information dialog. Each TOR file
has default connection information, and each method has its individual connection information. If a
parameter is not defined in the connection information of a method, the default is taken. For a description
of the parameters, see Defining Connection Information.

Call Type

The Call Type tab represents the call types that can be used for this method.

Call Type Description

Send Data Used to define a method that accepts parameters but does not return data from the
service. This could be used to notify a back-end application of some event without
waiting for a response.

Send and
Receive Data

Used to define a method that accepts parameters and returns data from that service.

Receive Data Can be used to get information from a back-end application that requires no input,
for example MOTD (message of the day) information. It is also used to wait for
incoming requests if you are using Broker ActiveX Control to write Broker Server
applications.

Logon Logon to EntireX Broker.

Logoff Logoff from EntireX Broker.

End of
Conversation

Used to end a conversation.

Syncpoint Used to commit, backout, or cancel a unit of work, obtain the status of a unit of
work, or delete the persistent status of a unit of work.

Register Informs EntireX Broker that a service is available.

Deregister Removes previously registered services from EntireX Broker’s active list.

Subscribe UserUsed to subscribe a user to a topic.

Unsubscribe
User

Used to unsubscribe a user from a topic.

Send
Publication

Used to send a publication message to a topic.

Receive
Publication

Used to receive a publication message from a topic to which the user was previously
subscribed.

Control
Publication

Used to commit or backout a publication message.

The Call Type tab is shown in the screen above.

6

ConnectionTransaction Objects in Broker ActiveX Control

Parameters

The Parameter tab exposes a multiline box containing individual parameter variables.

These parameters are placed into the SEND-BUFFER of the EntireX Broker call. Each parameter has a
data type (Integer, Real, String etc.) and a length.

Defining a Parameter List

If data is sent, it is necessary to define a parameter list for this method. The TO method parameter list
serves as a "map" between the types passed as parameters, and the data types and locations within the
method’s send buffer. Items within the TO method parameter list are ordered sequentially as they will be
passed when the method is invoked.

List Control

A list control is used for defining, removing and ordering parameters of the current method. The list
control supports in-place editing of items names, and works together with the item configuration controls
positioned below. When a particular item is selected, it can be moved up and down the list sequentially.
The order of the list defines the order in which parameters are passed when the method is invoked. Note

7

Transaction Objects in Broker ActiveX ControlParameters

that offsets are automatically generated for each list item, relative to the start of the list, and the items (and
their sizes) that precede it.

The Add function adds the field after the selected position.

Data Conversion

Data conversion is also supported between a type provided by the client and the type expected by the
Broker service. For parameters, the user can specify the data type that will be provided, and the type that
will be sent to the Broker service. For return objects, the data received by the Broker service can be set to
the data type retrieved by the user. The important data types are those sent to and received from a Broker
service. Broker ActiveX Control automatically converts between the data type received from the Broker
and a data type specified by the user (see the Data is received as and Data is retrieved as fields in the
screen below).

Implemented Data Types

The scalar data types supported by the Broker ActiveX are a subset of the standard Automation
VARIANT types and are listed below. In cases where the selected data type is of fixed length, the data
length edit control is set to the appropriate length and grayed.

Transaction Object Method Data Types Description

1-byte Integer 1-byte Integer used for signed and unsigned.

2-byte Integer 2-byte Integer used for signed and unsigned.

4-byte Integer 4-byte Integer used for signed and unsigned.

4-byte Real 4-byte Real compatible with "C" float.

8-byte Real 8-byte Real compatible with "C" double.

Bool Boolean variable.

String String of specified length.

Blob Generic byte block.

Padding Used to separate types in the buffer.

Return Object

If the transaction object method is invoked with call type ’Send and Receive’ or ’Receive’, a Return
Object is created. This is a logical object that enables you to retrieve multiple scalar values or records by
referencing its properties.

The Return Object tab exposes the individual properties that are mapped onto the RECEIVE-BUFFER of
the Broker call. When the data is returned from the Broker service, Broker ActiveX Control uses the types
and lengths of the defined properties to populate the values of the properties. You can now access the
contents of the receive buffer as ActiveX properties of the method that is created by loading the
transaction object.

8

Return ObjectTransaction Objects in Broker ActiveX Control

As with the parameters, Broker ActiveX Control calculates the offset in the RECEIVE-BUFFER for each
property. For information on list control, data conversion and implemented data types, see Defining a
Parameter List.

Custom Data Types are used for non-scalar data types such as arrays and structures. They are also used to
assign aliases to parameters for consistent naming purposes.

The Manually set data offset check box allows the transaction object designer to override automatic
offset calculation and specify offsets manually. This feature is powerful, but also potentially dangerous,
because no base type checking can be performed.

Specifying Connection Information
Connection information relates directly to the Broker service that you want to communicate with when
using this method.

Transaction methods are defined using the Transaction Object Editor. Connection information is specified
using the Broker Connection Information dialog. Each TOR file has default connection information,
and each method has its individual connection information. If a parameter is not specified in the

9

Transaction Objects in Broker ActiveX ControlSpecifying Connection Information

connection information of a method, the default is taken. The Broker parameters are part of this
connection information (with the exception of Function , which depends on the Call Type).

The Broker Connection Information dialog box accepts all the parameters required for establishing the
necessary Broker connection to execute the defined method/call type.

Connection Information Parameters

10

Connection Information ParametersTransaction Objects in Broker ActiveX Control

Parameter Description

BrokerID The unique name of the Broker node that the services are attached to. Information
in this dialog can be changed without affecting the application code. For example,
if the BrokerID changed, you would change the connection information in the
methods (services) affected and distribute the new transaction object file. The next
time the application code loads the transaction object file and calls a method, the
new connection information will be used.

CompressLevel Compression level. Valid values: N|Y|0-9. See also Data Compression in EntireX
Broker.

ServerClass,
ServerName,
Service

These three parameters represent the unique "signature" of this method call.

Wait The following values are set for this parameter, depending on the operation:

Operation Wait Value (in seconds)

Send 0

Send and Receive30 (*)

Receive 59 (*)

(*) if no value is specified in the Connection info.

See Properties of Broker ActiveX Control for a description of the other parameters.

Setting the Broker Call Parameters

Calling a method of a transaction object results in a Broker call. The parameters for the Broker call are
taken either

from the Broker Connection Information dialog, see above, or

from the properties (see Properties of Broker ActiveX Control).

If a value is specified in the Connection Information dialog, this value is taken and overrides any value
specified in the properties.

If no value is specified in the Connection Information dialog, the current setting of the properties is
taken. Leaving these parameters blank in the Connection Information dialog enables you to change these
parameters dynamically, and also enables Broker communication in conversational mode. See example
below:

Visual Basic Example

This example shows a possible usage of dynamic parameter assignment:

Set TransObject=BOCX.CreateTransObject ("...calc.tor")
BOCX.UserID = "USER1"
BOCX.BrokerID = "ETB121"
Set ReturnOb = TransObject.calc("+", "000000000001", "000000000002")

11

Transaction Objects in Broker ActiveX ControlConnection Information Parameters

Defining Custom Data Types
The Custom Data Types dialog allows you to define new data types that will appear in the Return
Object tag. With the Apply button you can embed a custom type within another custom type as long as
this does not result in a recursive inclusion.

The following four classes of custom data types are supported:

Custom Data Type ’Alias’

Custom Data Type ’Array ’

Custom Data Type ’Record’

Custom Data Type ’Structure’

Any custom data type can be used in transaction objects return objects. Custom data types are not
supported as method parameters.

Note:
All custom data types can be used recursively. That is, any custom data type can be used as a member or
base type for any other custom type. This allows for nested structures, as well as arrays within structures
and records.

Custom Data Type ’Alias’

An alias is a custom data type that allows an administrator to specify an alias for any defined data type -
custom or not. Aliasing also allows the definition of data types with specific in and out data types (type
translation).

Custom Data Type ’Array ’

12

Defining Custom Data TypesTransaction Objects in Broker ActiveX Control

An array consists of multiple serial elements of the same data types. Arrays can be made up of either
scalar or custom data types. The number of elements in an array must be specified.

Array custom data types accept the same basic information as alias data types, with the addition of the
number of elements in the array. Arrays allow elements of the specified base type to be accessed in a
subscripted fashion.

Note:
Multidimensional arrays and arrays of structures can be implemented by specifying a custom array or
record data type as the base type of this array.

Custom Data Type ’Record’

A record is a repeating collection of data types - scalar or custom.

This custom data type allows you to define a collection of data types that can be accessed in a subscripted
fashion. The order of defined types in the Record can be changed. Also, the number of records within the
receive buffer can be specified if known.

13

Transaction Objects in Broker ActiveX ControlCustom Data Type ’Record’

Custom Data Type ’Structure’

A structure is a named collection of data types.

The controls for this custom data type are identical to those of the data type ’record’, with the exception of
a repetitive count, which is not applicable.

TOR Files in IDL Format
When a TOR file is saved in IDL format, a file with extension .idl is generated. (The file must have been
saved as a TOR file before).

14

TOR Files in IDL FormatTransaction Objects in Broker ActiveX Control

This IDL file can be used by other EntireX tools such as DCOM Wrapper or Java Wrapper. It can be
modified with any editor like a regular IDL file.

Conversion Rules

List of the performed conversions:

15

Transaction Objects in Broker ActiveX ControlConversion Rules

In TOR file Converted to ... in IDL file

TOR file name Library name

Methodname Program name

Connection Info "Server address" as comment

DataItems in Parameter
Map

"In" Parameters

DataItems in Return
Map

"Out" Parameters

Manual Offsets in
Return Map

Will not be converted. If "manual offsets" is marked in a method, a
comment is generated for this program.

Custom Data Types The names of the CDTs used are displayed in a comment.

- Alias Nothing

- Array A dimension specification

- Record A dimension specification and a group

- Structure A group

Format Conversion The IN-Type of the Parameter Map and the OUT-Type of the Return Map
are used.

- I1 I1

- I2 I2

- I4 I4

- Real 4 F4

- Real 8 F8

- Bool L

- String A<size>

- Blob B<size>

- Padding B<size>

16

Conversion RulesTransaction Objects in Broker ActiveX Control

TOR Files in XML Format
To use TOR files in XML format, Internet Explorer 5 or above is required.

Loading an XML File

When you load an XML file, the XML file is checked against the defined DTD (see The DTD File list
below). When you use the XML file, it is not necessary to store the transaction object in TOR file format.

Saving an XML File

When a TOR file is saved in XML format, a file with the extension .xml is generated.

This XML file can be viewed with a browser that supports XML. It can also be viewed and edited with
any XML notepad or any text editor.

The DTD File

The structure of the XML file is defined in the DTD file. When you use a tool that validates XML files,
the XML file is checked against these definitions.

Entry in the DTD file Explanation

<!ELEMENT EntireXTorFile (DefaultConnection? , Method*, CDT*)> The root must always be
defined. It contains:

0-1 default connections

0-n methods

0-n CDT (= custom data
types)

<!ATTLIST EntireXTorFile Name CDATA #IMPLIED
 Version CDATA #IMPLIED>

Name The name of
the TOR file.

Version The EntireX
version with
which the
XML file was
generated

<!ELEMENT DefaultConnection EMPTY> The global connection
information is stored here.

<!ATTLIST DefaultConnection %Connection;> All parameters in the default
connection are stored as
attributes. See the detailed
description of the
%Connection at the end of this
table.

17

Transaction Objects in Broker ActiveX ControlTOR Files in XML Format

Entry in the DTD file Explanation

<!ELEMENT Method (MethodConnection? , Parameter*)> Each method contains:

0-1 method connections

0-n parameter

<!ATTLIST Method Name CDATA #REQUIRED
 CallType (SEND | RECEIVE | SEND-RECEIVE |
 LOGON | LOGOFF |EOC | SYNCPOINT |
 REGISTER | DEREGISTER | SUBSCRIBE |
 UNSUBSCRIBE | SEND_PUB | RECEIVE_PUB |
 CONTROL_PUB) #REQUIRED
 ManualOffset (YES | NO) #IMPLIED>

A name and a call type must
be defined for each method.
The manual offset contains the
manual offset switch of the
return map.

<!ELEMENT MethodConnection EMPTY> The connection information of
each method is stored here.

<!ATTLIST MethodConnection %Connection;> All parameters belonging to
the method connection are
stored as attributes. See the
detailed description of the
%Connection at the end of this
table.

<!ELEMENT Parameter (InFormat, OutFormat, Length?)> Each parameter contains:

1 in format

1 out format

0-1 length

<!ATTLIST Parameter Name CDATA #IMPLIED
 Direction (IN | OUT | INOUT) #IMPLIED
 Offset CDATA #IMPLIED>

Name Name of the
parameter

Direction IN: if
parameter is
from the
parameter
map
OUT: if it is
from the
return map

Offset Offset value
of the return
map, if
ManualOffset
= YES

<!ELEMENT CDT (Alias | Array | Record | Structure) > A custom data type (CDT) is
an alias, an array, a record or a
structure.

18

The DTD FileTransaction Objects in Broker ActiveX Control

Entry in the DTD file Explanation

<!ATTLIST CDT Name ID #REQUIRED> The name of the CDT is
required.

<!ELEMENT Alias (InFormat, OutFormat, Length?)> An alias contains:

1 in format

1 out format

0-1 length

<!ELEMENT Array (InFormat, OutFormat, Length?)> An array contains:

1 in format

1 out format

0-1 length

<!ATTLIST Array NumberEle CDATA #IMPLIED> The numbers of elements for
an array are stored here.

<!ELEMENT Record (Parameter*)> The record contains:

0-n parameter

<!ATTLIST Record NumberEle CDATA #IMPLIED> The numbers of elements for a
record are stored here.

<!ELEMENT Structure (Parameter*) > The structure contains:

0-n parameter

<!ELEMENT InFormat (Scalar | UsedCDT)> An InFormat is a scalar value
or a reference to a CDT.

<!ELEMENT Scalar EMPTY>

<!ATTLIST Scalar Format (I1 | I2 | I4 | F4 | F8 |
 Bool | String | Blob | Padding) #REQUIRED>

A scalar must be in one of the
listed formats.

<!ELEMENT UsedCDT EMPTY>

<!ATTLIST UsedCDT Target IDREF #REQUIRED> A UsedCDT must reference
the name of a defined CDT.

<!ELEMENT OutFormat (Scalar | UsedCDT)> An OutFormat is a scalar value
or a reference to a CDT.

<!ELEMENT Length EMPTY>

<!ATTLIST Length Value CDATA #IMPLIED> A length must be defined for
scalars with the values: string,
BLOB and padding or
UsedCDTs.

19

Transaction Objects in Broker ActiveX ControlThe DTD File

Entry in the DTD file Explanation

<!ENTITY % Connection
 ’ServerClass CDATA #IMPLIED
 ServerName CDATA #IMPLIED
 Service CDATA #IMPLIED
 ConversationID (NONE | NEW | OLD | ANY)
 #IMPLIED
 UOWTime CDATA #IMPLIED
 BrokerID CDATA #IMPLIED
 UserID CDATA #IMPLIED
 Password CDATA #IMPLIED
 Environment CDATA #IMPLIED
 Wait CDATA #IMPLIED
 UOWStatusPersist CDATA #IMPLIED
 Option (NULL | MSG | HOLD | IMMED | QUIESCE
 | EOC | CANCEL | LAST |
 NEXT | PREVIEW | COMMIT | BACKOUT |
 SYNC | ATTACH | DELETE |
 EOCCANCEL | QUERY | SETUSTATUS | ANY |
 TERMINATE |DURABLE |CHECKSERVICE)
 #IMPLIED
 Encryption (NONE | TO-BROKER | TO-TARGET)
 #IMPLIED
 ForceLogon (NO | YES) #IMPLIED
 CompressLevel CDATA #IMPLIED
 Token CDATA #IMPLIED
 Topic CDATA #IMPLIED
 PublicationID CDATA #IMPLIED
 UOWStatusLife CDATA #IMPLIED
 BrokerSecurity CDATA #IMPLIED" >

All connection parameters are
defined as attributes.

Defining the Location of the DTD and XSL File

A DTD file is used to check the XML file. An XSL file is used to view the XML file. To locate these files,
enter a reference in the XML Options:

This reference can be a URL (like above) or a regular path (e.g., the default: the EntireX etc directory).

20

Defining the Location of the DTD and XSL FileTransaction Objects in Broker ActiveX Control

Using the XML Objects During Runtime

The XML file can also be used during runtime. It must be defined in the same way as the TOR file.

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("...\\calc.xml")

Storing TOR Files in a Tamino Database
To store and use TOR files in a Tamino database, Tamino 4.2.1 or higher and Internet Explorer 5 or
higher are required.

Creating a Tamino Database for the TOR Files

In the EntireX etc directory an EntireXTorIno vrs.xml is provided. This file can be used to define the
schema in Tamino (_define function). It is very close to the DTD file. The XML files generated can be
directly stored in Tamino. The database prefix defined in Tamino must be defined in the XML Options
screen as well as the server name of the Tamino database.

Loading Tamino Objects using the TOR Editor

When loading a Tamino object, the following dialog will be displayed:

21

Transaction Objects in Broker ActiveX ControlStoring TOR Files in a Tamino Database

If necessary, the Tamino server name and the Tamino database prefix can be changed here. The name of
the desired object can be entered directly or selected from the drop-down menu Select by Object Name.

Storing Tamino Objects using the TOR Editor

When saving a Tamino object, the following dialog will be displayed:

If necessary, the Tamino server name and the Tamino DB prefix can be changed here. The name of the
object must be entered in the Tamino Object Name field. If a Tamino object with this name already
exists, you can overwrite the existing file or cancel the save operation.

Using Tamino Objects During Runtime

The Tamino object can also be used during runtime. It must be defined like the XML file:

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("Calc")

Note:
The name of the Tamino object is case-sensitive.

The Tamino server name and the Tamino DB prefix from the General XML Options screen are used.

22

Storing Tamino Objects using the TOR EditorTransaction Objects in Broker ActiveX Control

	Transaction Objects in Broker ActiveX Control
	Advantages of Transaction Objects
	Calling the Transaction Object Editor
	Managing TOR Files
	File Menu
	Edit Menu
	Options Menu
	Help Menu

	Defining Methods
	Connection
	Call Type
	Parameters
	Defining a Parameter List
	List Control
	Data Conversion
	Implemented Data Types

	Return Object

	Specifying Connection Information
	Connection Information Parameters
	Setting the Broker Call Parameters
	Visual Basic Example

	Defining Custom Data Types
	Custom Data Type 'Alias'
	Custom Data Type 'Array '
	Custom Data Type 'Record'
	Custom Data Type 'Structure'

	TOR Files in IDL Format
	Conversion Rules

	TOR Files in XML Format
	Loading an XML File
	Saving an XML File
	The DTD File
	Defining the Location of the DTD and XSL File
	Using the XML Objects During Runtime
	Visual Basic Example

	Storing TOR Files in a Tamino Database
	Creating a Tamino Database for the TOR Files
	Loading Tamino Objects using the TOR Editor
	Storing Tamino Objects using the TOR Editor
	Using Tamino Objects During Runtime
	Visual Basic Example

