
Publish and Subscribe with Broker ActiveX
Control
Broker ActiveX Control provides five Broker functions to enable publishing and subscription. Publish and
subscribe enables an application to send a message (publication) to multiple receivers (subscribers).

This functionality is supported by the native COM interface as well as by the Transaction Object
Repository interface (TOR file).

Some examples of publish and subscribe for the native interface are given below.

This chapter covers the following topics:

Writing Subscriber Applications

Writing Publisher Applications

Writing Subscriber Applications
A subscriber receives the publications that are sent by the publisher. Subscribers will only receive
publications that are sent after they have subscribed to a topic. Similarly, publishers can only send a
publication if at least one subscriber has already subscribed to a topic.

To learn more about a particular topic, see Writing Applications: Publish and Subscribe.

The methods, functions, properties and steps required to operate as subscriber are described here.

Methods

Method Description

InvokeBrokerFunction Invoke the Broker function call.

GetReceiveData Return the most recently received publication as string.

Functions

These will be set in the function property. For all function calls, the UserID , Password (if security
Broker), Token and Topic properties must be set.

1

Publish and Subscribe with Broker ActiveX ControlPublish and Subscribe with Broker ActiveX Control

Function Option

Logon

Subscribe Option = None

Receive Publication Option = None, Publication ID = NEW

Control Publication Option = Commit

Unsubscribe Option = None

Logoff

Properties

Property Description

APIVersion Must be set to 8 or above

Function See the Functions table.

Option Needed to receive and control publications.

UserID Your user ID.

Password Your password.

Wait Set an adequate amount of time to wait for a publication. The length of
time depends on your application and can be set to Yes to wait until a
publication has been received.

UOWstatus Broker returns the current status of the publication.

ReceiveBufferLength Set to the maximum possible publication length.

Token Additional caller identifier. The combination of the user ID and the
token must be unique.

Topic The topic of the publication that is to be received. Use a topic that has
been registered with the EntireX Broker. Ask your broker administrator
to get a valid topic.

Publication ID Always NEW for the first call to receive a publication. For subsequent
messages, reuse the received publication ID. See the step Check UOW
status to find out whether it is a multi-message publication.

Important:
Please check the Error Status regularly; at least after every InvokeBrokerFunction .

 To operate as subscriber

1. Set the APIVersion property to 8, the functionality Publish and Subscribe is only available with
API version 8 and above.

2. Set the BrokerID property for your EntireX Broker.

2

PropertiesPublish and Subscribe with Broker ActiveX Control

3. Set the UserID , Password (if required), Token and Topic properties.

4. Set the Option property to 0 (None).

5. Set the Function property to 9 (Logon). You must be logged on to use the publish-and-subscribe
functionality.

6. Call the method InvokeBrokerFunction to perform the logon function. The application has
now been logged on to the EntireX Broker.

7. After successful logon to the Broker, set the function property to 19 (subscribe).

8. Call the method InvokeBrokerFunction to subscribe. The application has now been subscribed
as a non-durable subscriber for this topic. If you want to be a durable subscriber, set the Option
property to Durable when calling the method InvokeBrokerFunction . To learn more about the
difference between durable and non-durable subscribers, see Concepts of Persistent Messaging.

9. Set the Wait property to the required value, for example 60s (s = seconds).

10. Set the Option property to 0 (None).

11. Set the PublicationID property to NEW.

12. Set the Function property to 18 (Receive Publication).

13. Set the ReceiveBufferLength property to your maximum expected publication length (can be
up to 2048).

14. Call the method InvokeBrokerFunction to receive publications. The application will now wait
to receive a publication. With the current settings the application would receive a publication within 60
seconds or time out after 60 seconds. If the publication is larger than 2048 characters, Broker ActiveX
Control will return an error. Assuming that an application has received a publication, that publication now
has a publication ID, assigned to it by the EntireX Broker.

15. Get the received data with the method GetReceiveData .

16. The current status of the publication is stored in the UOWstatus property. Check this UOWstatus
now. A UOWstatus of 12 (Received Only), means that the received publication has only one message. A
UOWstatus of 9 (Received First) means that you have received the first message of a multi-message
publication. In this case you should request the other messages of this publication, until a UOWstatus of
11 (Received Last) is returned. See Concepts of Persistent Messaging for more information. To
inform the EntireX Broker that the subscriber has received and retrieved the publication the subscriber
must commit this.

17. Do not change the PublicationID property. This is required to refer to the received publication.

18. Set the Option property to 10 (Commit).

19. Set the Function property to 21 (Control Publication).

20. Call the method InvokeBrokerFunction to control the publication.

3

Publish and Subscribe with Broker ActiveX ControlProperties

21. Get the UOWstatus property and check the status. The value of the UOWstatus should now be 5
(Processed). Your application may now run in a loop between steps 9 and 21 to receive several
publications.

22. Set the Option property to 0 (None).

23. Set the Function property to 20 (Unsubscribe).

24. Call the method InvokeBrokerFunction to unsubscribe. The application has now been
unsubscribed from the topic.

25. Set the Function property to 10 (Log off).

26. Call the method InvokeBrokerFunction to log off. The application has now been logged off
from the EntireX Broker.

C# Example with a simple Subscriber who has Received only one Publication
using System;
// add the "EntireX Broker ActiveX Control" in COM references
using BrokerLib;

namespace Pubsub
{
 class Class1
 {
 static BrokerClass ebx;
 // EntireX Broker ACI definitions.
 const int function_logon = 9;
 const int function_logoff = 10;
 const int function_subscribe = 19;
 const int function_unsubscribe = 20;
 const int function_receive_publication = 18;
 const int function_control_publication = 21;
 const int option_none = 0;
 const int option_commit = 10;
 const int uowstatus_receive_only = 12;
 const int uowstatus_receive_last = 11;

 // procedure to invoke an entirex broker function call.
 static bool invokeEBX(short function, short option)
 {
 bool rc = true;
 ebx.Option = option;
 ebx.Function = function;
 ebx.InvokeBrokerFunction();
 // check the error status after the broker call.
 if (ebx.ErrorCode != "00000000")
 {
 Console.WriteLine(ebx.ErrorMsg);
 rc = false;
 }
 return rc;
 }

 [STAThread]
 static void Main(string[] args)
 {
 bool receive_error = false;
 bool subscribe_error = false;

4

C# Example with a simple Subscriber who has Received only one PublicationPublish and Subscribe with Broker ActiveX Control

 ebx = new BrokerClass();

 ebx.APIVersion = 8;
 ebx.BrokerID = "localhost";
 ebx.UserID = "EBXUSER";
 ebx.Token = "EBXTOKEN";
 ebx.Topic = "NYSE";

 Console.WriteLine("Log on");
 if (!invokeEBX(function_logon, option_none))
 return; // logon failed

 Console.WriteLine("Subscribe");
 if (!invokeEBX(function_subscribe, option_none))
 subscribe_error = true; // subscribe failed

 if (!subscribe_error)
 {
 ebx.PublicationID = "NEW";
 ebx.ReceiveBufferLength = 2048;
 ebx.Wait = "60s";
 // loop until all messages of the publication have been received.
 do
 {
 Console.WriteLine("Receive Publication");
 if (!invokeEBX(function_receive_publication, option_none))
 {
 receive_error = true; // receive failed
 break; // cancel the while loop
 }
 else
 {
 // work with the received publication.
 Console.WriteLine(ebx.GetReceiveData());
 }
 } while ((ebx.UOWStatus != uowstatus_receive_only) &&
 (ebx.UOWStatus != uowstatus_receive_last));

 if (!receive_error)
 {
 Console.WriteLine("Control Publication");
 invokeEBX(function_control_publication, option_commit);
 // the publication status should be 5 (= processed)
 Console.WriteLine("Publication status = " + ebx.UOWStatus);
 }
 Console.WriteLine("Unsubscribe");
 invokeEBX(function_unsubscribe, option_none);
 }
 Console.WriteLine("Log off");
 invokeEBX(function_logoff, option_none);
 }
 }
}

Writing Publisher Applications
The publisher sends publications to subscribers. Publications will fail if there is no subscriber for this
topic. See Writing Applications: Publish and Subscribe for a list of the valid topics.

5

Publish and Subscribe with Broker ActiveX ControlWriting Publisher Applications

The methods, functions, properties and steps required to operate as Publisher are described below.

Methods

Method Description

InvokeBrokerFunction Invoke the broker function call.

SetSendData or SetSendDataLong Set the publication to be sent.

Functions

These will be set in the Function property. For all function calls, the UserID , Password (if secure
Broker), Token and Topic properties must be set.

Function Option

Logon

Send PublicationOption = Sync, Publication ID = NEW.

Control
Publication

Option = Commit. A publication can also be committed with
function=send_publication option=commit.

Logoff

Properties

Property Description

APIVersion Must be set to 8 or above.

Function See the function table.

Option Needed to send and control publication.

UserID Your user ID.

Password Your password.

Wait Must be set to NO.

UOWstatus Broker returns the current status of the publication.

Token Additional identifier of the caller. The combination of the user ID and the token
must be unique.

Topic The topic of the publication that is to be received. Use a topic that has been
registered with the EntireX Broker. Ask your Broker administrator to get a valid
topic.

PublicationID Always NEW for the first call to send a publication. If you want to send a
multi-message publication, reuse the received publication ID to send the other
messages.

6

MethodsPublish and Subscribe with Broker ActiveX Control

Important:
Please check the Error Status regularly; at least after every InvokeBrokerFunction .

 To operate as publisher

1. Set the APIVersion property to 8, the publish-and-subscribe functionality is only available with
API version 8 or above.

2. Set the BrokerID property for your EntireX Broker.

3. Set the UserID , Password (if required), Token and Topic properties.

4. Set the Option property to 0 (None).

5. Set the Function property to 9 (Logon). You must log on to use the publish-and-subscribe
functionality.

6. Call the method InvokeBrokerFunction to perform the Logon function.

The application has now been logged on to the EntireX Broker.

7. Set the Option property to 10 (Commit).

8. Set the Function property to 17 (Send Publication).

9. Set the Wait property to NO.

10. Set the PublicationID property to NEW.

11. Call the method SetSendData or SetSendDataLong to set the publication data.

12. Call the method InvokeBrokerFunction to send the publication.

13. Get the UOWstatus property and check this. It should be 2 (Accepted).

A publication has now been sent. Please note that the publication will fail if there are no subscribers
to this topic. If your publication has more than one message, the steps beginning with Set the
Option property to 10 (Commit) will change. See Concepts of Persistent Messaging.

14. Set the Option property to 0 (None).

15. Set the Function property to 10 (Logoff).

16. Call the method InvokeBrokerFunction to log off.

The application has now been logged off from the EntireX Broker.

C# Example with a simple Publisher who Sends only one (single-message)
Publication
using System;
// add the "EntireX Broker ActiveX Control" in COM references
using BrokerLib;

namespace Pubsub

7

Publish and Subscribe with Broker ActiveX ControlC# Example with a simple Publisher who Sends only one (single-message) Publication

{
 class Class1
 {
 static BrokerClass ebx;
 // EntireX Broker ACI definitions
 const int function_logon = 9;
 const int function_logoff = 10;
 const int function_send_publication = 17;
 const int function_control_publication = 21;
 const int option_none = 0;
 const int option_commit = 10;

 // procedure to invoke an entirex broker function call
 static bool invokeEBX(short function, short option)
 {
 bool rc = true;
 ebx.Option = option;
 ebx.Function = function;
 ebx.InvokeBrokerFunction();
 if (ebx.ErrorCode != "00000000")
 {
 Console.WriteLine(ebx.ErrorMsg);
 rc = false;
 }
 return rc;
 }

 [STAThread]
 static void Main(string[] args)
 {
 ebx = new BrokerClass();
 String s = "A small c# publisher example with EntireX Broker ActiveX Control.";

 ebx.APIVersion = 8;
 ebx.BrokerID = "localhost";
 ebx.UserID = "EBXUSER";
 ebx.Token = "EBXTOKEN";
 ebx.Topic = "NYSE";

 Console.WriteLine("Log on");
 if (!invokeEBX(function_logon, option_none))
 return; // logon failed

 ebx.Wait = "NO"; // set to NO because we cannot receive data
 ebx.PublicationID = "NEW";
 ebx.SetSendDataLong(s, s.Length); // set the sent data

 Console.WriteLine("Send Publication");
 invokeEBX(function_send_publication, option_commit);
 // Check the status of the UOW. It should be 2 (= Accepted).
 Console.WriteLine("Publication status = " + ebx.UOWStatus);

 Console.WriteLine("Log off");
 invokeEBX(function_logoff, option_none);
 }
 }
}

8

C# Example with a simple Publisher who Sends only one (single-message) PublicationPublish and Subscribe with Broker ActiveX Control

	Publish and Subscribe with Broker ActiveX Control
	Writing Subscriber Applications
	Methods
	Functions
	Properties
	C# Example with a simple Subscriber who has Received only one Publication

	Writing Publisher Applications
	Methods
	Functions
	Properties
	C# Example with a simple Publisher who Sends only one (single-message) Publication

