
Implementing Event-Driven Architecture
with Software AG Products

Version 9.7

October 2014

This document applies to Software AG Product Suite Version 9.7 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third Party Products”. This document is part of the product documentation, located at
hp://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: SAG-EDA-97-20141015

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

Implementing Event-Driven Architecture with Software AG Products Version 9.7 3

Table of Contents

About this Guide..5
Document Conventions.. 5
Documentation Installation... 6
Online Information.. 6

What is Event Driven Architecture?.. 7
Concepts... 8
Components of the EDA Environment... 9

How is EDA Implemented by Software AG?...11
Software AG EDA Components... 12
NERV.. 13
Event Types.. 14

Event Type Store...15
Event Type Governance..16

Event Bus... 16
Event Bus Channels and Topics.. 16
Event Structure... 17
Heartbeats...19

How EDA Components Connect to the Event Bus.. 21
Mechanisms for Connecting to the Event Bus...22
Connecting to the Event Bus Using NERV.. 22
Connecting to the Event Bus Using the EDA-Related Integration Server Built-In Service........23

Configuring NERV..25
Configuring the Transport Layer for NERV.. 26

Modifying the Transport Layer for NERV.. 26
Before You Begin... 27
Modifying the Transport Layer Configuration... 27

Modifying NERV Error Handling...27
Guaranteed Delivery of Events with Terracotta Ehcache...28

Setting up NERV Guaranteed Delivery Level with Terracotta Ehcache............................ 29
Locating your Disk Store Location with Terracotta Ehcache...30

Creating Custom NERV Component Bundles..30
Using the Default NERV Emit Logic.. 33

Switching Between Default and Custom NERV Logic.. 33
Creating Custom NERV Emit Bundles... 33
Creating Custom NERV Consume Bundles... 35
Creating Custom NERV Java Archive Bundles..37

Using NERV Outside the Software AG Common Platform.. 39

M
Table of Contents

Implementing Event-Driven Architecture with Software AG Products Version 9.7 4

Deploying and Testing EDA Solutions.. 41
Deploying EDA Assets... 42

Specifics of Deploying NERV Bundles to the Software AG Common Platform................. 44
Example of a Deployment Project Structure...45

Visualizing Events..47
Visualizing Events with Software AG Dashboarding Products... 48
Visualizing Event Streams on the Eclipse Console... 48

Troubleshooting NERV.. 49
Starting the OSGi Console for a Single OSGi Profile.. 50
OSGi Commands Provided by NERV.. 51
NERV Troubleshooting Information.. 52

Troubleshooting NERV Component Configuration Bundles..52
Troubleshooting NERV Emit Configuration Bundles... 56
Troubleshooting NERV Consume Configuration Bundles... 57

Developing Applications with NERV..61
Referencing NERV Services in the Software AG Common Platform....................................... 62

Retrieving a ServiceReference Object for the NERV EventEmitter Service......................62
Retrieving a ServiceReference Object for the NERV MessageCreator Service................63
Retrieving a ServiceReference Object for the NERV EventConsumer Service.................63

Referencing NERV Object Instances Outside the Software AG Common Platform................. 64
Loading NERV Libraries Outside the Common Platform.. 64
Loading NERV Assets Using Configuration Properties File Outside the Common
Platform..64
Retrieving an EventTypeStore Instance Outside the Common Platform...........................65
Retrieving an EventEmitter Instance Outside the Common Platform................................66
Retrieving an EventConsumer Instance Outside the Common Platform...........................66
Retrieving a MessageCreator Instance Outside the Common Platform............................66

Emitting Events Using NERV EventEmitter..66
Consuming Events Using NERV EventConsumer... 67
Securing Passwords Held in NERV Route Bundles...69

Overview.. 69
Working with the NERV Ciphering Utility.. 70
Modifying the NERV Secret Key... 70
Providing the NERV Security File Location in NERV Applications Running in the Common
Platform..71
Providing the NERV Security File Location in NERV Standalone Applications................. 71

NERV Configuration Properties..73

M
Odd Header

Implementing Event-Driven Architecture with Software AG Products Version 9.7 5

About this Guide

This document gives you an overview of Software AG Business Events, which is
Software AG's infrastructure for managing simple event-based interactions and more
complex event analysis for paern matching in real-time.

Software AG Business Events offers the following key features and functionality:

It is a solution for creating, processing, and monitoring events.

It provides the infrastructure to rapidly build and adapt event-driven applications.

It improves an organization’s ability to comprehend the current state of the physical
world and business environment and react rapidly to changes.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

M
Even Header

Implementing Event-Driven Architecture with Software AG Products Version 9.7 6

Convention Description

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Documentation Installation
You can download the product documentation using the Software AG Installer. The
documentation is downloaded to a central directory named _documentation in the main
installation directory (SoftwareAG by default).

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products and certified samples, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

What is Event Driven Architecture?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 7

1 What is Event Driven Architecture?

■ Concepts .. 8

■ Components of the EDA Environment ... 9

M
Even Header

What is Event Driven Architecture?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 8

Concepts
Software AG Event-Driven Architecture (EDA) is a methodology that allows you to
process the events that shape your everyday business environment. An event can be
something as simple as an electrical component being switched on or off, or more
complicated, such as a bid being made in an auction house for the painting of a great
master. An event represents something that has happened, and it may or may not
require some follow-up action to be taken. An event can also represent something that
was expected to happen but has failed to happen.

We all experience an event driven world every day. We walk through an airport
and hear announcements of planes arriving and departing (these are events). The
announcements (events) are emied even if nobody is listening. If, however, the
announcement is for my plane, then I will accept it, and start taking an action. My action
may be to run to the gate, while someone else's activity might be to walk and get a
snack. This is the basis of EDA: events are emied and listeners can either take action on
them or ignore them. The action I take is totally self-contained and does not rely on the
activity of another person.

The term event-driven indicates that when an event happens, it can have a significance
which requires some follow-up action to be taken. An event can be noticed by several
observers or listeners, and each observer can react to the event differently. For one
observer, an event might represent some critical status which requires immediate action.
For another observer the same event might not be relevant at all.

The significance of a single event is sometimes only visible when viewed in the context
of other events that together form a paern. For example, if cash is withdrawn at a cash
machine in the city center, this is not unusual, but if cash is withdrawn at many different
cash machines on the same day throughout the city using the same card, this might raise
the suspicion that the card is stolen.

If we change the focus from everyday events that we observe in the world around us to
events that can have an influence on the way a company does its business, we can see
that events such as the following could trigger a component in a predefined workflow:

A trade order has been issued.

A reading of sensor data (e.g. GPS, temperature or RFID reader) has occurred.

A business process has reached completion.

A software component has started successfully.

The existence of an event can be the trigger for processes, such as the invocation of a
service, the initiation of a business process, or the publication of relevant information.
Software AG Event-Driven Architecture picks up on these ideas and provides a set of
concepts for dealing with events at all stages throughout the processing chain.

M
Odd Header

What is Event Driven Architecture?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 9

Components of the EDA Environment
An EDA system typically contains the following components:

An event bus that routes the events. The event bus is the central nervous system of an
EDA system. The event bus supports multiple channels simultaneously, with each
channel being used to transport logically related events.

A service bus that connects applications to the event bus.

One or more event publishers to create events and publish them in channels on the
event bus.

One or more event subscribers that read the events from the event bus and perform a
preset action on the basis of the information contained in the event.

A Complex Event Processing engine that executes queries that process incoming
events, and publishes simple and complex events for post-processing actions. It
must be able to handle a high throughput of events with extremely low latency and
evaluate paerns in event data.

Logging, monitoring, and performance tools for administration purposes.

A dashboarding tool to create interactive, analytical, real-time dashboards.

A Business Rules engine to capture, automate, and flexibly change business policies.

Tools for governing event types and event channels.

Tools for creating event-driven applications.

A central store for persisting event data at rest.

A Business Activity Monitoring solution to define and monitor events and event
paerns that occur throughout an organization.

An integrated data grid technology to support scale to enterprise-class event
processing use cases for data in use.

M
Even Header

Implementing Event-Driven Architecture with Software AG Products Version 9.7 10

M
Odd Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 11

2 How is EDA Implemented by Software AG?

■ Software AG EDA Components ... 12

■ NERV .. 13

■ Event Types ... 14

■ Event Bus ... 16

■ Event Bus Channels and Topics .. 16

■ Event Structure .. 17

■ Heartbeats .. 19

M
Even Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 12

Software AG EDA Components
The Software AG EDA portfolio consists of the following components:

EDA Component Software AG Component Additional Information

Event Bus webMethods Universal
Messaging or
webMethods Broker

webMethods NERV NERV is Software AG’s
solution for event
routing and
transformation in the
Software AG Common
Platform.

Service Bus

webMethods
Integration Server

Integration Server
provides built-in
services for EDA.

Event Type Store (run-
time component)

The Event Type Store
is a run-time repository
that contains schemas of
the events on the event
bus. The event types
are required in order to
interpret the payload of
events on the event bus.

Event Type Repository

CentraSite Registry
Repository (design-time
component)

CentraSite enables you
to archive, categorize
and govern event type
definitions.

Event Type
development tool

Software AG Designer,
Events Development
perspective

An Eclipse-based
tool for creating and
maintaining event
types.

CEP Engine Apama Correlator

M
Odd Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 13

EDA Component Software AG Component Additional Information

CEP application design
tool

Apama Studio

Software AG MashZone Dashboarding tool

Software AG Presto

Business Rules tool webMethods Business
Rules

A tool for monitoring
events and event
paerns

webMethods Optimize
Analytic Engine

The webMethods
Business Activity
Monitoring solution
enables you to define
and monitor events
and event paerns
throughout an
organization.

Monitoring tool Event Bus Console A text-based output
console for monitoring
traffic on event streams.

Sample event
publishing tool

Event Generator A tool for creating
sample events and
publishing them to
the Event Bus. You
can download it from
Software AG Tech
Community.

NERV
webMethods NERV (Network for Event Routing and Variation) is an integration
framework for event routing and transformation. It plays a pivotal role in ensuring
the communication between event-enabled applications in the Software AG Common
Platform.

NERV offers the following capabilities:

Simple management through common integration paerns.

Easy data exchange between Software AG components.

http://communities.softwareag.com/web/guest/home
http://communities.softwareag.com/web/guest/home

M
Even Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 14

Support of heterogeneous data landscape.

Event Types
An event type is a schema definition that describes how events in an event stream are
structured. Event types are first-class objects that are declared at a high level in the
environment and can be processed by webMethods and non-webMethods products.

Events in the same stream always have the same payload structure. The schema defines
which data fields are present in each event, the data type of each field, and the order in
which the fields appear. Each event stream has exactly one event type associated with
it. One event type can be used as the schema for more than one event stream. All event
publishers on a given stream must ensure that their published events comply with the
stream's schema, and all subscribers must be aware of the schema that describes the
events received. In this respect, the schema represents a contract between publishers and
consumers of events of a specific type.

Event types are implemented as schemas that conform to the W3C XML Schema (XSD)
specification. Within the Event Type Editor, they are displayed as a hierarchy of nodes
representing the content of the event. The nodes can be field nodes, composite nodes,
or references to structures in other schemas. Field nodes are leaves within the node
hierarchy enabling users to specify typed text strings in the XML event. Composite
nodes are containers for field nodes, composite nodes, and reference nodes. At the
underlying XSD level:

The root node is invisible and is represented as a top-level element declaration with
the substitutionGroup=”eda:Payload” aribute

Composite nodes correspond to element declarations with a complex content model

Field nodes are element declarations with a simple type

References refer to top-level element or type definitions in other component
schemas.

You can specify a cardinality for all visible nodes, whereas the hidden root node has a
fixed cardinality of 1, denoting that a valid XML document has exactly one root element.

The XSD, as generated by the Event Type Editor, is only a subset of the full XML Schema
specification. However, you can use an almost arbitrary XSD as event schema, as long as
you do the following:

Add the following import statement:
<xsd:import namespace=”http://namespaces.softwareag.com/EDA/Event”
schemaLocation=”Event/Envelope.xsd”/>

Note: Depending on the location of the event type schema within the Event Types
directory, the schemaLocation aribute may contain additional leading ../ steps
for moving up in the directory hierarchy.

M
Odd Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 15

Add the substitutionGroup=”eda:Payload” aribute to the declaration of the
element to be the root of the event XML.

Here is a section of a sample event type schema:
<xsd:complexType name="PartInventoryLowType">
 <xsd:annotation>
 <xsd:documentation>Report inventory low for a part</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Part">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ItemID" type="xsd:string" minOccurs="1"/>
 <xsd:element name="ItemName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Model" type="xsd:string" minOccurs="0" />
 <xsd:element name="Color" type="xsd:string" minOccurs="0" />
 <xsd:element name="Shape" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="InventoryLevel" type="xsd:integer"/>
 <xsd:element name="DesiredInventoryLevel" type="xsd:integer"/>
 </xsd:sequence>
</xsd:complexType>

Here is a sample event instance:
<PartInventoryLow>
 <Part>
 <ItemID>ABC123</ItemID>
 <ItemName>Widget </ItemName>
 <Model>XYZ</Model>
 <Color>Silver</Color>
 <Shape>Oval</Shape>
 </Part>
 <InventoryLevel>58</InventoryLevel>
 <DesiredInventoryLevel>1000<DesiredInventoryLevel>
</PartInventoryLow>

Event Type Store
The Event Type Store provides a central location per installation where predefined and
user-defined event types are stored. This shared location is used by all EDA participants
within the respective installation to retrieve deployed custom event types at run time.

At design time, a local copy of the predefined event types of the Event Type Store is
available for reference. By default, it is located in the Software AG_directory/common/
PredefinedEventTypes directory. You can import this directory as an existing project
in Software AG Designer to inspect the event types. User-defined event types can be
created using the Event Type Editor and stored in the local copy.

Event types in the local copy must be deployed to the runtime store, so that EDA
participants that process an event stream can retrieve the schema definition of the event.
For more information about deploying Event Types, see Deploying EDA Assets.

M
Even Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 16

Event Type Governance
Use CentraSite to register, categorize, and govern event definitions. The Events
Development perspective in Software AG Designer offers publish and unpublish
functionality for the transfer of event types to and from CentraSite. You can also use
CentraSite to inspect the dependencies between event type schemas and imported
component schemas.

Event Bus
The event bus functionality for EDA components is implemented by webMethods
Universal Messaging or webMethods Broker by using the JMS protocol.

webMethods Universal Messaging is a Message Oriented Middleware product that
guarantees message delivery across public, private and wireless infrastructures.

webMethods Broker is a high-performance message server that provides organizations
with the foundation for state-of-the-art integrated electronic business applications.
Broker provides communication among distributed application components in the
event-driven architecture.

Note: In addition to webMethods Universal Messaging and webMethods Broker,
Software AG EDA supports the use of several third party JMS providers, such as
WebSphere MQ, WebLogic, Sonic MQ, Oracle Streams Advanced Queuing (AQ) and
JBoss Messaging.

Event Bus Channels and Topics
webMethods Universal Messaging and webMethods Broker are JMS (Java Message
Service) providers that support point-to-point and publish and subscribe messaging.
This enables JMS applications to profit from the reliability and performance of Universal
Messaging or Broker. The message protocol used for webMethods Business Events is
JMS.

For webMethods Business Events, EDA participants publish their events to JMS topics
and subscribe to JMS topics. Software AG EDA uses the JNDI mechanism for directory
and naming services.

The default JNDI destination and JMS topic name has the format:
Event::Namespace::EventTypeName

The namespace is the path within the Event Type Store where the event type is located.
Backslash characters in the path are replaced by the channel name delimiter (by default,
two colons "::").

For example:

M
Odd Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 17

For the CableboxHealth event type, which is located in the WebM/Sample/
CableboxMonitoring folder in the Event Type Store, the default channel name is:
Event::WebM::Sample::CableboxMonitoring::CableboxHealth

For the noTns event type, which does not have a namespace and is located in the
WebM/External folder in the Event Type Store, the default channel name is:
Event::WebM::External::noTns

Event Structure
Each event on the event bus is composed of the following parts:

Header

The header contains system-defined event aributes:

Event Attribute Description

Start Start date and time of the event.

End Optional. End date and time of the event. The use of this field
depends on how the event is being used. If the value is absent,
the consumer application may set a default one, such as start
time plus one millisecond.

Kind Optional. Indicates whether the event is a new event (Event)
or a heartbeat (Heartbeat). A heartbeat event indicates the
temporal progress of the stream. If a value is not specified, the
default is Event.

Type Optional. The unique identifier of the event type. Event types
use qualified names (QNames) as the mechanism for concisely
identifying the particular type. The event type combines
the URI and local name as a string. For example: {http://
namespaces.softwareag.com/EDA/WebM/Process/1.0}
ProcessInstanceChange is the event type identifier that
reports changes to a process instance.

Note: Event types without a namespace use only their local name
as event identifier. For example, the noTns.xsd event type’s
identifier is noTns.

Version Optional. The version of the event type with which the event
instance is compatible. Users specify this value if they have
chosen to support event type versioning. An event should not
specify a version if the event type supports versioning.

M
Even Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 18

Event Attribute Description

CorrelationID Optional. A unique identifier used to associate the event
instance with other event instances.

EventID Optional. A unique identifier of the event. EDA clients can
distinguish between different event instances.

Priority Optional. The priority of the event. Possible values are:

Normal (default value)

High

ProducerID Optional. A unique identifier of the event producer.

UserID Optional. A unique identifier of the user who emied the
event.

FormatVersion Optional. The version of the event format. NERV creates
automatically a value for this aribute. Check the value in the
received event to see if the event body contains headers and
payload.

If this aribute is not present in the event headers, the event
body contains both headers and payload.

If this aribute is present in the event headers, and its value
is 9.0, the event body contains only payload.

CustomHeaders Optional. A parent header element for any user-defined
headers included as sub-elements.

All messages support the same set of header fields. Header fields contain predefined
values that allow clients and providers to identify and route messages. Each of the
fields supports its own set and get methods for managing data; some fields are set
automatically by the send and publish methods, whereas others must be set by the
client. The header contains the start and end timestamp of the event.

Filterable Properties (optional)

webMethods Events support JMS message selector properties, also known as
filterable properties. If you mark a field node in the event type as filterable, its value
is added to the filterable properties. For example, for the BoothDemo event shown
below, if the Producer and the Presenter fields are marked as filterable, the following
key-value pairs are added:
PulseCommon$Producer=”Event Generator”
Presenter=”dada”

M
Odd Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 19

At run time, when events are transmied over the event bus, event consumers
subscribing to the event bus to receive events may apply a message selection filter, so
that only events that match certain selection criteria are consumed. These criteria can
be, for example, whether the event type is a normal event or a heartbeat, or whether
the value of an element from the body of the event exceeds a certain value.

Event header elements are always added to the filterable properties with an
additional prefix $Event$ in the key. If a node in the event schema is marked
as filterable, the element is added to the filterable properties when the event is
published. This allows event receivers to use filterable properties based on element
values.

Body

The body contains the payload of the event. The body contains the data fields of the
event, as specified in the event's schema.

Here is a sample event:
<evt:Event xmlns:evt="http://namespaces.softwareag.com/EDA/Event>
 <evt:Header>
 <evt:Type>{http://namespaces.softwareag.com/EDA/WebM/Sample/Pulse}Pulse
 </evt:Type>
 <evt:Start>2012-05-20T16:53:46.918-06:00</evt:Start>
 <evt:End>2012-05-20T16:53:47.918-06:00</evt:End>
 <evt:Kind>Event</evt:Kind>
 <evt:EventId>0f375801-dbd4-4a46-9f70-7015deca6c80</evt:EventID>
 </evt:Header>
 <evt:Body>
 <p1:BoothDemo
 xmlns:p1="http://namespaces.softwareag.com/EDA/WebM/Sample/Pulse">
 <p1:PulseCommon>
 <p1:Producer>Event Generator</p1:Producer>
 <p1:Subject>Pulse Test Event</p1:Subject>
 <p1:Coordinates>
 <p1:Longitude>87.44988659217529</p1:Longitude>
 <p1:Latitude>83.11056319477842</p1:Latitude>
 </p1:Coordinates>
 </p1:PulseCommon>
 <p1:Presenter>dada</p1:Presenter>
 <p1:DemoTopic>Demo2</p1:DemoTopic>
 <p1:Date>2012-04-05T17:09:33.112+03:00</p1:Date>
 </p1:BoothDemo>
 </evt:Body>
</evt:Event>

Heartbeats
A heartbeat is a special kind of event without a payload. It indicates that the event bus
channel on which it is being sent is active but that no payload events are currently being
sent on the same channel.

The header of a heartbeat event specifies event type corresponding to the channel the
heartbeat is being sent on, the start date and time of the heartbeat, and the Kind header
field is set to Heartbeat.

M
Even Header

How is EDA Implemented by Software AG?

Implementing Event-Driven Architecture with Software AG Products Version 9.7 20

An example of the use of heartbeats is for CEP applications, in which heartbeats can be
used within a non-event detection query to determine whether the timespan in which a
certain paern did not occur has expired.

Some EDA participants may not support heartbeats. Event receivers can suppress
receiving heartbeat events by using message selection filtering on the value of the Kind
aribute. The following message selector can be used for this purpose:
$Event$Kind <>’Heartbeat’ or $Event$Kind is null

Here is a sample heartbeat event:
<evt:Event xmlns:evt="http://namespaces.softwareag.com/EDA/Event">
 <evt:Header>
 <evt:Type>{http://namespaces.softwareag.com/EDA/WebM/Sample/
 InventoryMgmt/1.0}PartInventoryLow</evt:Type>
 <evt:Start>2010-05-20T16:53:46.918-06:00</evt:Start>
 <evt:Kind>Heartbeat</evt:Kind>
 <evt:EventId>0f375801-dbd4-4a46-9f70-7015deca6c80</evt:EventId>
 </evt:Header>
</evt:Event>

M
Odd Header

How EDA Components Connect to the Event Bus

Implementing Event-Driven Architecture with Software AG Products Version 9.7 21

3 How EDA Components Connect to the Event Bus

■ Mechanisms for Connecting to the Event Bus .. 22

■ Connecting to the Event Bus Using NERV .. 22

■ Connecting to the Event Bus Using the EDA-Related Integration Server Built-In Service 23

M
Even Header

How EDA Components Connect to the Event Bus

Implementing Event-Driven Architecture with Software AG Products Version 9.7 22

Mechanisms for Connecting to the Event Bus
Software AG Event-Driven Architecture (EDA) supports the following ways of
connecting to the Event bus:

NERV

Network for Event Routing and Variation (NERV) is a solution that enables
Software AG products to communicate using events. It uses the Apache Camel
integration framework for event routing, filtering, and variation. NERV uses a Camel
component configured for webMethods Universal Messaging or webMethods Broker
as a transport layer and JMS topics as destination endpoints.

For more information about using NERV, see "Connecting to the Event Bus Using
NERV " on page 22.

Integration Server

The Integration Server interacts with many Software AG products, and provides
pre-configured public services for use in the EDA environment. It supports JMS
connections to webMethods Universal Messaging and webMethods Broker, and
it can act as an event publisher or subscriber. As a publisher, Integration Server
can convert IS document types into events and publish them to the event bus. As a
subscriber it can transform received events into IS document types.

In addition, the Integration Server:

Receives events from the event bus using JMS triggers.

Includes built-in services for EDA to send EDA events via NERV.

The Integration Server offers a variety of bus connectivity and data transformation
features, and it contains functionality that enables you to transform
non-Software AG EDA event data into Software AG EDA event data. If a third party
product generates events that do not conform to the webMethods events schema,
they can be converted to the webMethods event schema by using the document
transformation capabilities of Integration Server. Also, Integration Server supports
sending non-Software AG EDA events to the event bus.

For more information about using the EDA-related Integration Server built-in
services, see the PDF publication webMethods Integration Server Built-In Services
Reference.

Connecting to the Event Bus Using NERV
NERV is included by default in all Software AG Common Platform profiles. This
documentation assumes you are familiar with and have a working knowledge of OSGi
implementation and architecture.

To interact with NERV, you should:

M
Odd Header

How EDA Components Connect to the Event Bus

Implementing Event-Driven Architecture with Software AG Products Version 9.7 23

Verify your transport layer configuration, and modify it if necessary, as described in
"Configuring the Transport Layer for NERV " on page 26.

Emit events.

Create a custom NERV emit logic (optional), as described in "Creating Custom
NERV Emit Bundles" on page 33.

Subscribe to an event type from your own application, as described in "Creating
Custom NERV Consume Bundles" on page 35.

Connecting to the Event Bus Using the EDA-Related
Integration Server Built-In Service
Integration Server enables you to transform non-Software AG EDA event data into
Software AG EDA event data using the pub.event.nerv:send built-in service.
Integration Server constructs an EDA event using the parameters defined in the service
and sends the event to the event bus using NERV.

Important: The procedure below explains how to use the pub.event.nerv:send service
to send events. It assumes that you are familiar with working with built-in services
and flow services in Software AG Designer. For more information about IS built-in
services, see the PDF publication webMethods Integration Server Built-In Services Reference.
For more information about working with flow services, see the PDF publication
webMethods Service Development Help.

To send EDA events using the pub.event.nerv:send IS built-in service

1. In the Service Development perspective in Designer, create a new document type from an
existing event type, for example the PartInventoryLow event.

a. Use the PartInventoryLow event name as a name for the new document type and click
Next.

b. Select XML Schema as source type and click Next.

c. Browse to the PartInventoryLow event type in the Event Type Store and click Next.

By default, the PartInventoryLow event type is located in the
Software AG_directory\common\EventTypeStore\WebM\Sample
\InventoryMngt\1.0 directory.

d. Select the PartInventoryLow element as the payload root node and click Next.

e. On the next page of the wizard you can configure the namespace prefixes to be used for
representing namespaces found in the schema. Leave the entries unmodified, and click
Finish.

2. Create a new empty flow service.

M
Even Header

How EDA Components Connect to the Event Bus

Implementing Event-Driven Architecture with Software AG Products Version 9.7 24

3. In the Input/Output tab of the Flow service editor, in the Input Parameters panel, insert a
document reference to the new document type you created in step 1.

4. In the Tree tab of the Flow service editor, insert an INVOKE pub.event.nerv:send step.

5. In the Pipeline view, link the document reference from the Pipeline Input area to the event/
body node of the pub.event.nerv:send service in the Service Input area.

6. In the Service Input area, set the value of the Kind variable to Event.

7. In the Service Input area, set the value of the Type variable to the full event type name,
in this example {http://namespaces.softwareag.com/EDA/WebM/Sample/
InventoryMgmt/1.0}PartInventoryLow.

8. In the Service Input area, set the value of the documentTypeName variable to refer to the
document type you created in step 1.

This is required in order to assert that the namespace declarations are added to the
XML document emied as an EDA event.

9. Right click and select Run As > Run Flow Service to send events using the flow service. You
can use the following input:

<?xml version="1.0" encoding="UTF-8"?>
<IDataXMLCoder version="1.0">
<record javaclass="com.wm.data.ISMemDataImpl">
<record name="PartInventoryLow" javaclass="com.wm.data.ISMemDataImpl">
<record name="ns:PartInventoryLow" javaclass="com.wm.data.ISMemDataImpl">
<record name="ns:Part" javaclass="com.wm.data.ISMemDataImpl">
 <value name="ns:ItemID">154</value>
 <value name="ns:ItemName">Car</value>
 <value name="ns:Model">Audi A4</value>
 <value name="ns:Color">Grey</value>
 <value name="ns:Shape">Standard</value>
</record>
 <value name="ns:InventoryLevel">1</value>
 <value name="ns:DesiredInventoryLevel">2</value>
</record>
</record>
</record>
</IDataXMLCoder>

Note: The name aribute of the second <record> element must match the name of
the document reference configured as the input of the flow service.

M
Odd Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 25

4 Configuring NERV

■ Configuring the Transport Layer for NERV .. 26

■ Modifying NERV Error Handling .. 27

■ Guaranteed Delivery of Events with Terracotta Ehcache .. 28

■ Creating Custom NERV Component Bundles ... 30

■ Using the Default NERV Emit Logic .. 33

■ Creating Custom NERV Emit Bundles ... 33

■ Creating Custom NERV Consume Bundles .. 35

■ Creating Custom NERV Java Archive Bundles ... 37

M
Even Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 26

Configuring the Transport Layer for NERV
When you install NERV, the default transport layer for NERV is defined as
nsp://<host_name> :9000.

You can configure the NERV transport layer in two ways:

By modifying the Default JMS Provider configuration property in Command Central.

When NERV starts, it instantiates the transport layer, as defined by the value of the
Default JMS Provider property. If no such property exists, or if it has an empty value
or contains an invalid configuration, NERV displays a warning message. Every
time your EDA applications try to emit events using the default emit logic or to
subscribe to event types, NERV produces a warning message in the log file of the
corresponding Common Platform profile and any existing subscriptions to default
endpoints are deleted. You must provide a valid property for the NERV transport
layer and subscribe again to the endpoints.

For more information about modifying the NERV transport layer configuration
property, see "Modifying the Transport Layer for NERV " on page 26.

By deploying a user-defined NERV component bundle, which defines a Camel
JmsComponent, called nervDefaultJMS. When activated in the Common Platform,
this bundle takes precedence over the default behavior.

If a user-defined NERV component bundle is activated in the Common Platform,
it takes precedence over the default transport layer defined by the value of the
Default JMS Provider configuration property in Command Central. This means that all
modifications to the Default JMS Provider configuration property will be ignored. If the
user-defined component bundle is stopped or uninstalled, NERV re-instantiates the
default component configured using the Default JMS Provider configuration property
in Command Central.

For more information about creating custom NERV component bundles, see
"Creating Custom NERV Component Bundles" on page 30.

Modifying the Transport Layer for NERV
Using the Software AG Command Central user interface, you can modify the initial
transport layer definition and specify a different transport layer to be used by NERV
for each profile in a given installation. The default NERV behavior supports the use of
webMethods Universal Messaging or webMethods Broker as JMS providers.

Note: Before you define a custom transport layer, you must make sure that it has been
properly configured and is running in the Common Platform.

M
Odd Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 27

Before You Begin
Before you modify the NERV configuration using the Command Central user interface,
make sure that NERV nodes have previously been added to the Command Central
landscape. Note that:

The NERV component ID has the following format:
OSGI-profile_name -NERV

where profile_name is the name of the Common Platform profile in which a NERV
instance is running. For example, in the case of a NERV instance installed and
running in the IS_default profile, the NERV component ID in the Command Central
landscape is:
OSGI-IS_default-NERV

A single NERV configuration called COMMON-SYSPROPS-
com.softwareag.eda.nerv.properties exists per every webMethods product suite
installation profile.

For more information about using the Command Central user interface, see Software AG
Command Central Help.

Modifying the Transport Layer Configuration

To modify the default transport layer definition used by NERV

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >NERV>
Configuration tab, click the COMMON-SYSPROPS-com.softwareag.eda.nerv.properties file,
and then click Edit.

2. Change the default transport layer used by NERV by modifying the value for the Default JMS
Provider property.

Note: This property supports only the use of webMethods Universal Messaging or
webMethods Broker as JMS providers.

3. Save your changes.

NERV detects that the configuration has been updated, and starts to use the new seings
automatically. If you have modified the transport layer definition, all emit and consume
routes that are created using the NERV API are automatically restarted and begin to use
the new transport layer definition. However, any routes that are defined inside custom
emit or consume bundles need to be updated manually.

Modifying NERV Error Handling
NERV provides some error handling properties to ensure the successful delivery of
events. You can modify these properties using the Command Central user interface.

M
Even Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 28

To modify NERV error handling properties

1. In Command Central, navigate to Environments > Instances > ALL > <profile_name> >NERV>
Configuration tab, click the COMMON-SYSPROPS-com.softwareag.eda.nerv.properties file,
and then click Edit.

2. Modify the values for the following properties:

Property Description

Redelivery
Attempts

The maximum number of aempts that NERV makes to
redeliver events, in case the initial delivery aempt fails. The
default value is 100. Set to -1 for infinite redelivery aempts.

Note: When you set up the guaranteed delivery level to
MAXIMUM_STRONG or MAXIMUM_EVENTUAL, the value for this
property is disregarded. Instead, NERV aempts to redeliver
events infinitely.

Redelivery
Delay

The interval (in milliseconds) at which NERV makes the
redelivery aempts. The default value is 3000.

Dead Letter
Channel

The location where NERV sends any undelivered events
after the maximum number of redelivery aempts has been
reached. The default value is @url:sag.install.area/
common/nerv/dlc.

Note: When NERV runs in the Common Platform, the
@url:sag.install.area token is dynamically resolved to point
to your Software AG installation directory.

3. Save your changes.

Guaranteed Delivery of Events with Terracotta Ehcache
When a NERV emit application sends events, the events first go through Ehcache, where
they can be persisted temporarily. After that, the events are sent to an internal channel,
where they are processed and sent asynchronously to the Event Bus. To ensure that
no events are lost before reaching the Event Bus, NERV enables you to use Ehcache
by seing a level of guaranteed delivery for your events. After an event is successfully
delivered to the event bus, it is deleted from the cache.

Note: The Guaranteed delivery feature in NERV ensures that all events are successfully
sent to the event bus. However, in order to guarantee the successful delivery of all
events to the subscribers, it is recommended that you use durable subscriptions.
Otherwise, events might be lost on the consumer side. For more information about

M
Odd Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 29

how to configure durable subscriptions, see the “Subscription Examples” section in
"Consuming Events Using NERV EventConsumer" on page 67.

By default, NERV reads the Terracoa Ehcache persistence configuration seings
from the Software AG_directory\common\conf\nerv\cache directory. It contains
preconfigured MAXIMUM_STRONG.xml and MAXIMUM_EVENTUAL.xml files
with seings used by Terracoa Ehcache to guarantee the delivery of events. For
more information about the available seings and their values, see Ehcache product
documentation for 2.8 at hp://ehcache.org/documentation.

Note: Persisting events with Ehcache in a disk store has a substantial impact on the
maximum achievable event throughput.

You can modify the Ehcache configuration seings location that NERV uses by
modifying the value of the Cache Configuration Location configuration property for
your NERV installation node using the Command Central user interface. For more
information about the Cache Configuration Location property, see " NERV Configuration
Properties" on page 73.

Setting up NERV Guaranteed Delivery Level with Terracotta Ehcache
To persist events with Ehcache, you must set a level of guaranteed delivery in the NERV
configuration file.

To set up a guaranteed delivery level with Ehcache

1. In Command Central, navigate to Environments > Instances > ALL > <profile_name> >NERV>
Configuration tab, click the COMMON-SYSPROPS-com.softwareag.eda.nerv.properties file,
and then click Edit.

2. Modify the value of the Guaranteed Delivery Level property.

Set to... To...

NONE Not persist any events.

MAXIMUM_STRONG (Default) Persist events synchronously whenever a
cache update occurs.

MAXIMUM_EVENTUAL Persist events asynchronously whenever a cache
update occurs.

3. Save your changes.

4. Restart the JVM instance where NERV is running for the changes to take effect.

When you set up the guaranteed delivery level to MAXIMUM_STRONG or
MAXIMUM_EVENTUAL, the value you have defined for the Redelivery Attempts property is
disregarded. Instead, NERV aempts to redeliver events infinitely.

http://ehcache.org/documentation

M
Even Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 30

Important: When you set up the guaranteed delivery level to MAXIMUM_STRONG
or MAXIMUM_EVENTUAL and then start NERV, it creates a JMS connection which
performs synchronous emits to Universal Messaging. However, in case the
JMS connection is created before NERV initializes, you must add an additional
JVM property. To do this, in the Software AG_directory/profiles/profile_name /
configuration directory, open the wrapper.conf file, add the following
JVM property: wrapper.java.additional.<new custom integer>=-
Dnirvana.syncSendPersistent=true, then save your changes and restart the
Common Platform profile.

Locating your Disk Store Location with Terracotta Ehcache
Each NERV node running on your system creates a different store location for persisted
events. The store location for your events is set within the Ehcache configuration XML
files using the diskStore property. This property has a path aribute with a default value
of ${nerv.cache.disk.store.dir}/cachedata/nerv.caches.
<diskStore path="${nerv.cache.disk.store.dir}/cachedata/nerv.caches"/>

If the diskStore property is not already configured as a JVM system property
(nerv.cache.disk.store.dir), then at runtime it is set by NERV.

For products running in the Software AG Common Platform, NERV sets the value
to match the value of the osgi.install.area property. For example, when NERV
runs in the SPM profile, the store location is set to:
<diskStore path=”C:/SoftwareAG/profiles/SPM/cachedata/nerv.caches”/>

For products running outside the Software AG Common Platform, NERV sets the
value to ./cachedata/nerv.caches. For example:
<diskStore path=”C:/SoftwareAG/cachedata/nerv.caches”/>

For more information about the diskStore property, see Ehcache product documentation
for 2.8 at hp://ehcache.org/documentation.

Creating Custom NERV Component Bundles
You can create and initialize a custom NERV component bundle that will override the
default NERV component defined using the Default JMS Provider configuration property
in Command Central.

For more information about switching between the default and the custom NERV
component definitions, see Switching Between Default and Custom NERV Logic.

To create a custom NERV component bundle

1. In Designer, create a plug-in project.

2. Remove all automatically generated files, except for the MANIFEST.MF file.

http://ehcache.org/documentation

M
Odd Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 31

3. Add a MyBlueprint .xml file and a MyNERVComponent .xml file in the OSGI-INF/
blueprint directory.

The resulting structure is as follows:
<project_root>\META-INF\MANIFEST.MF
<project_root>\OSGI-INF\blueprint\
 MyBlueprint .xml
<project_root>\OSGI-INF\blueprint\
 MyNERVComponent .xml

Note: You can also use the NERV Default Component Example wizard in Designer to
create the project structure automatically.

4. Edit the MyBlueprint .xml file in the OSGI-INF/blueprint directory and reference the
nervDefaultJMS component.

The result should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">
 <service id="nervDefaultJMSService"
 interface="org.apache.camel.Component"
 ref="nervDefaultJMS" depends-on="nervDefaultJMS">
 <service-properties>
 <entry key="componentId" value="nervDefaultJMS"/>
 </service-properties>
 </service>
</blueprint>

5. Edit the MyNERVComponent .xml file in the OSGI-INF/blueprint directory containing the
beans necessary for creating your Camel component.

The result should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">
 <bean id="nervDefaultJMS"
 class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory"
 ref="defaultCachedConnectionFactory" />
 <property name="destinationResolver"
 ref="defaultDestinationResolver" />
 </bean>
 <bean id="defaultCachedConnectionFactory"
 class="org.springframework.jms.connection.CachingConnectionFactory">
 <property name="targetConnectionFactory"
 ref="defaultConnectionFactory" />
 <property name="sessionCacheSize" value="2000" />
 <property name="cacheProducers" value="false" />
 </bean>
 <bean id="defaultConnectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean"
 depends-on="defaultDestinationResolver">

M
Even Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 32

 <property name="jndiTemplate" ref="jndiTemplate" />
 <property name="jndiName" ref="eventFactory" />
 </bean>
 <bean id="eventFactory" class="java.lang.String">
 <constructor-arg value="EventFactory" />
 </bean>
 <bean id="defaultDestinationResolver"
 class="com.softwareag.eda.jndi.NervResolver"
 depends-on="jndiTemplate" init-method="init">
 <property name="jndiTemplate" ref="jndiTemplate" />
 <property name="classLoader">
 <null />
 </property>
 </bean>
 <bean id="jndiTemplate"
 class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <map>
 <entry key="java.naming.factory.initial"
 value="com.pcbsys.nirvana.nSpace.NirvanaContextFactory" />
 <entry key="java.naming.provider.url" value=
 "nsp://localhost:9000" />
 <entry key="com.webmethods.jms.naming.clientgroup"
 value="admin" />
 <entry key="connectionFactory" value-ref="eventFactory" />
 </map>
 </property>
 </bean>
</beans>

6. Edit the MANIFEST.MF file in the META-INF directory. You must also add some import-
package clauses to get the bundle to work properly in the Common Platform.

Below you can find an example of the edited MANIFEST.MF file:
Manifest-Version: 1.0
Bundle-Name: component.nervDefaultJMS
Bundle-Vendor: Software AG
Bundle-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Description: Software AG NERV Components Default Bundle
Import-Package: com.pcbsys.nirvana.nSpace;version=0,
 com.softwareag.eda.jndi;version=0,
 com.webmethods.jms.impl;version=0,
 com.webmethods.jms.naming;version=0,
 org.apache.camel;version=0,
 org.apache.camel.component.jms;version=0,
 org.springframework.jms.connection;version=0,
 org.springframework.jms.support.destination;version=0,
 org.springframework.jndi;version=0
 Bundle-DocURL: http://www.softwareag.com
 Bundle-SymbolicName: component.nervDefaultJMS
 Implementation-Version: 1.0

7. Build your project using webMethods Asset Build Environment, and deploy it using
webMethods Deployer.

For more information, see the PDF publication webMethods Deployer User’s Guide.

M
Odd Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 33

Using the Default NERV Emit Logic
As installed, NERV provides default emit logic which you can use to emit events of
a specified event type. The com.softwareag.eda.nerv.core bundle contains the
EventEmier service interface that you can reference when you create your application.

The default NERV emit logic uses the transport layer specified by the Default JMS
Provider configuration property in Command Central, or by the nervDefaultJMS
component defined in a deployed NERV component bundle. You can modify the default
transport layer definition, as described in "Modifying the Transport Layer for NERV "
on page 26, or by deploying a custom NERV component bundle which contains a
nervDefaultJMS component definition.

The default NERV emit logic uses the error handling mechanism defined via specific
configuration properties.

The name of the JMS topic where NERV publishes the events by default is derived from
the Event Type of each event. For example, events of type
{http://namespaces.softwareag.com/EDA/WebM/Sample/CableboxMonitoring}
CableboxHealth

are sent to a JMS topic named
Event::WebM::Sample::CableboxMonitoring::CableboxHealth

You can also define your customized event routing logic by creating a NERV emit
bundle for each event type you emit. This will override the default NERV emit logic.
For more information about creating custom NERV emit bundles, see "Creating Custom
NERV Emit Bundles" on page 33.

Switching Between Default and Custom NERV Logic
You can switch from the default NERV component definition and emit logic to your
custom NERV component and emit bundles by deploying and activating a user-defined
bundle within the Common Platform.

To switch back to the default NERV logic, you must stop the custom bundle within the
Common Platform. This automatically activates the default logic again.

Creating Custom NERV Emit Bundles
You can create and initialize a custom NERV emit bundle that will override the default
emit logic described in Using the Default NERV Emit Logic.

To create a custom NERV emit bundle

1. In Designer, create a plug-in project.

M
Even Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 34

2. Remove all automatically generated files, except for the MANIFEST.MF file.

3. Add a MyBlueprint .xml and a MyNERVEmit .xml file in the OSGI-INF/blueprint
directory.

The resulting structure is as follows:
<project_root>\META-INF\MANIFEST.MF
<project_root>\OSGI-INF\blueprint\
 MyBlueprint .xml
<project_root>\OSGI-INF\blueprint\
 MyNERVEmit .xml

Note: You can also use the NERV Emit Example wizard in Designer to create the
project structure automatically.

4. Edit the MyBlueprint .xml file in the OSGI-INF/blueprint directory to reference the
nervDefaultJMS component and the default error handler preconfigured and exposed by
NERV.

The result should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">
 <reference id="nervDefaultJMS" interface="org.apache.camel.Component"
 filter="(componentId=nervDefaultJMS)"/>
 <reference id="nervDefaultErrorHandler"
 interface="org.apache.camel.builder.ErrorHandlerBuilder"
 filter="(errorHandlerId=nervDefaultErrorHandler)"/>
</blueprint>

5. Edit the MyNERVEmit .xml file in the OSGI-INF/blueprint directory containing your
custom Camel context and a route for your event type.

By convention, NERV derives the name of the in-memory channel used as a starting
point for event routing from the fully qualified event type name by substituting “{”
and “}” with “_”. For example, for events of type:

{http://namespaces.softwareag.com/EDA/WebM/Sample
 /CableboxMonitoring}CableboxHealth

the endpoint URI of the in-memory channel is:
vm://_http://namespaces.softwareag.com/EDA/WebM/Sample/
CableboxMonitoring_CableboxHealth?size=1000&blockWhenFull=true

The in-memory channel is created as an internal queue with a default size of 1000
maximum number of messages, and the calling thread is set to block and wait if the
channel is full.

Below you can find an example containing the default routing configuration:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring

M
Odd Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 35

 http://camel.apache.org/schema/spring/camel-spring.xsd">
 <camelContext id="emitContext" autoStartup="true"
 xmlns="http://camel.apache.org/schema/spring">
 <route errorHandlerRef="nervDefaultErrorHandler">
 <from uri="vm://_http://namespaces.softwareag.com/EDA/WebM/Sample/
 CableboxMonitoring_CableboxHealth?size=1000&blockWhenFull=true" />
 <!-- Please edit the following URI in order to change the default
 routing logic -->
 <to uri="nervDefaultJMS:topic:Event::WebM::Sample::CableboxMonitoring
 ::CableboxHealth" />
 </route>
 </camelContext>
</beans>

6. Edit the MANIFEST.MF file in the META-INF directory. You must also add some import-
package clauses to get the bundle to work properly in the Common Platform.

Below you can find an example of the edited MANIFEST.MF file:
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: emit.NERVEmitExample
Bundle-SymbolicName: emit.NERVEmitExample
Bundle-Version: 1.0.0.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: com.softwareag.eda.nerv,
 com.softwareag.eda.store.api,
 org.apache.camel,
 org.apache.camel.builder,
org.osgi.framework

7. Build your project using webMethods Asset Build Environment, and deploy it using
webMethods Deployer.

For more information, see the PDF publication webMethods Deployer User’s Guide.

Note: When you deploy your custom NERV emit bundle, it overrides the default
NERV emit logic. For more information about how to switch back to the default emit
logic, see "Switching Between Default and Custom NERV Logic" on page 33.

Creating Custom NERV Consume Bundles

Important: Please note that the example provided below shows how to subscribe to a
specific JMS topic, rather than to a specific event type. For an example on how to use
NERV API to subscribe to a specific Event Type, see "Developing Applications with
NERV" on page 61.

To create a custom NERV consume bundle

1. In Designer, create a plug-in project.

2. Remove all automatically generated files, except for the MANIFEST.MF file.

3. Add a MyBlueprint .xml and a MyNERVConsume .xml file in the OSGI-INF/blueprint
directory.

M
Even Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 36

4. Create your application-specific Camel processor implementation. In this example, it is the
com.softwareag.eda.consumer.ConsoleConsumer class.

The resulting structure is as follows:
C:\<project_name> \cableboxhealth_transformer_bean\src\com\softwareag\eda\
 consumer\ConsoleConsumer.java
C:\<project_name> \cableboxhealth_transformer_bean\
 META-INF\MANIFEST.MF
C:\<project_name> \cableboxhealth_transformer_bean\
 OSGI-INF\blueprint\MyBlueprint .xml
C:\<project_name> \cableboxhealth_transformer_bean\
 OSGI-INF\blueprint\
 MyNERVConsume .xml

5. Create an implementation of the org.apache.camel.Processor interface, which consumes the
received events.

In the example below, the implementation prints out the content of the event body
into the System Output stream.
package com.softwareag.eda.consume;
import org.apache.camel.*;
public class ConsoleConsumer implements Processor {
 @Override
 public void process(Exchange exchange) throws Exception {
 Message message = exchange.getIn();
 String body = message.getBody(String.class);
 System.out.println(body);
 }
}

6. Edit the MyBlueprint .xml file in the OSGI-INF/blueprint directory and reference the
nervDefaultJMS component.

The result should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">
 <reference id="nervDefaultJMS" interface="org.apache.camel.Component"
 filter="(componentId=nervDefaultJMS)"/>
</blueprint>

7. Edit the MyNERVConsume .xml file in the OSGI-INF/blueprint directory and reference the
nervDefaultJMS component. You must declare your processor class as a bean and include it
in a Camel route.

The result should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">
 <camelContext id="consumeContext" autoStartup="true"
 xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="nervDefaultJMS:topic:Event::WebM::

M
Odd Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 37

 Sample::CableboxMonitoring::CableboxHealth" />
 <to uri="consoleConsumer" />
 </route>
 </camelContext>
 <bean id="consoleConsumer"
 class="com.softwareag.eda.consumer.ConsoleConsumer" />
</beans>

8. Edit the MANIFEST.MF file in the META-INF directory. You must also add some import-
package clauses to get the bundle to work properly in the Common Platform.

Below you can find an example of the edited MANIFEST.MF file:
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: consume.cableboxhealth
Bundle-SymbolicName: consume.cableboxhealth
Bundle-Version: 1.0.0.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: com.softwareag.eda.nerv,
 com.softwareag.eda.store.api,
 org.apache.camel,
 org.osgi.framework

9. Build your project using webMethods Asset Build Environment, and deploy it using
webMethods Deployer.

For more information, see the PDF publication webMethods Deployer User’s Guide.

Creating Custom NERV Java Archive Bundles
You can create your custom applications which use NERV’s capabilities to send and
consume events. These applications can contain custom component configuration
definitions, as well as emit or consume configurations. They must be built as Java
Archive projects using Designer, and then deployed and activated within the Common
Platform.

Important: You must ensure that the contents of your Java Archive projects are correctly
defined and built. The procedure below only focuses on how to create valid NERV Java
Archive bundles.

To create a NERV Java Archive bundle

1. In Designer, create a valid plug-in Java project.

2. Build your plug-in Java project and make sure that the resulting .jar file is located directly
under the project directory.

3. Optionally, add other dependent .jar files under your Java project directory.

The resulting structure is as follows:
<project_root>\<plugin_jar_file>
<project_root>\<additional_plugin_jar_file_1>
...
<project_root>\<additional_plugin_jar_file_n>

M
Even Header

Configuring NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 38

4. Build your project using webMethods Asset Build Environment, and deploy it using
webMethods Deployer.

For more information, see the PDF publication webMethods Deployer User’s Guide.

M
Odd Header

Using NERV Outside the Software AG Common Platform

Implementing Event-Driven Architecture with Software AG Products Version 9.7 39

5 Using NERV Outside the Software AG Common
Platform

By default, NERV is installed as part of the Software AG Common Platform. However,
standalone applications can also use the NERV functionality outside the Common
Platform.

To use the NERV functionality with applications that do not run on the Common
Platform, you must:

In the classpath of your applications, include the nerv-classpath-basic.jar file
available in the Software AG_directory/common/lib directory.

Provide a folder where NERV configuration bundles are previously deployed.

You can access the complete NERV functionality by using the NERVSingleton class. For
more information about these methods, see the NERV Java docs.

If your application uses the default nervDefaultJMS component, you can benefit from the
default NERV emit logic, as described in "Using the Default NERV Emit Logic" on page
33. If you want to define custom NERV emit logic that will override the default logic, see
"Creating Custom NERV Emit Bundles" on page 33.

To ensure the successful delivery of events, NERV provides an error handling
mechanism. For more information about configuring NERV error handling options, see
"Modifying the Transport Layer Configuration" on page 27.

M
Even Header

Implementing Event-Driven Architecture with Software AG Products Version 9.7 40

M
Odd Header

Deploying and Testing EDA Solutions

Implementing Event-Driven Architecture with Software AG Products Version 9.7 41

6 Deploying and Testing EDA Solutions

■ Deploying EDA Assets ... 42

M
Even Header

Deploying and Testing EDA Solutions

Implementing Event-Driven Architecture with Software AG Products Version 9.7 42

Deploying EDA Assets
Deployment is the process of moving EDA assets from the design environment into the
run-time or production environment.

EDA assets can be deployed to one or more target runtimes using the webMethods
Deployer’s repository-based deployment. To use this deployment method, you must
have the Asset Build Environment (ABE) installed.

The EDA assets you create prior to deployment must have a specific structure in order to
be deployable using webMethods Deployer.

Event Types Deployment composites

Event Types Deployment composites are valid Event Types projects - a parent
project directory with an Event Types subdirectory containing event type schemata.
The event type schemata are considered individual assets and are packed by the
Asset Build Environment into zip archives. Multiple event type schemata can be
packed in a single zip file.

Note: Event type schemata with namespaces that do not start with the http://
namespaces.softwareag.com/EDA string are deployed to the WebM/External
directory of the Event Type Store.

NERV Deployment composites

NERV Deployment composites are directories containing one or more NERV
bundles (.jar files). The Asset Build Environment packs each NERV bundle into a
single .zip archive.

Three types of NERV configuration bundles exist:

NERV Component bundles

The NERV component configuration bundles are valid OSGi bundles that declare
a single Camel component. The bundle directory must have the following
structure:

A MyNERVComponent .xml file and a MyBlueprint .xml file under the OSGI-
INF\blueprint directory.

A MANIFEST.MF file under the META-INF directory.

A component declared as an OSGi service in a
blueprint configuration file using a specific syntax, for
example: <service id="nervDefaultJMSService"
 interface="org.apache.camel.Component"
 ref="nervDefaultJMS" depends-on="nervDefaultJMS"> <service-
properties> <entry key="componentId" value="nervDefaultJMS"/>
</service-properties> </service>

NERV Emit bundles

M
Odd Header

Deploying and Testing EDA Solutions

Implementing Event-Driven Architecture with Software AG Products Version 9.7 43

The NERV emit bundles are valid OSGi bundles that declare Camel endpoints.
The bundle directory must have the following structure:

An MyNERVEmit .xml file and a MyBlueprint .xml file under the OSGI-INF
\blueprint directory.

A MANIFEST.MF file under the META-INF directory.

When the Asset Build Environment creates ACDL files, the NERV emit route
bundles are parsed and all ComponentIDs are extracted and declared as
dependencies. The dependencies are declared in the blueprint.xml file as follows:
<reference id="nervDefaultJMS"
 interface="org.apache.camel.Component"
 filter="(componentId=nervDefaultJMS)"/>

NERV Consume bundles

The NERV consume bundles are valid OSGi bundles that declare Camel
endpoints. The bundle directory must have the following structure:

A MyNERVConsume .xml file and a MyBlueprint .xml file under the OSGI-INF
\blueprint directory.

A MANIFEST.MF file under the META-INF directory.

When the Asset Build Environment creates ACDL files, the NERV consume
bundles are parsed and all ComponentIDs are extracted and declared as
dependencies. The dependencies are declared in the MyBlueprint .xml file as
follows:
<reference id="nervDefaultJMS"
 interface="org.apache.camel.Component"
 filter="(componentId=nervDefaultJMS)"/>

NERV Java Archive bundles

The NERV Java archive bundles are valid OSGi bundles that contain any
executable Java code as one or several .jar files. The bundle directory must have
the following structure:

One or several .jar files must be present under the project directory.

When the Asset Build Environment creates ACDL files, only the .jar files are
taken into consideration.

When you enable the creation of EDA composites and run the ABE build script, the
script searches the specified source directories and creates a composite for each project
directory that contains EDA assets.

For more information about installing the Asset Build Environment feature, see Installing
webMethods and Intelligent Business Operations Products. For more information about
building composites for repository-based deployment, see webMethods Deployer User’s
Guide.

M
Even Header

Deploying and Testing EDA Solutions

Implementing Event-Driven Architecture with Software AG Products Version 9.7 44

Specifics of Deploying NERV Bundles to the Software AG Common
Platform
When you use webMethods Deployer to deploy NERV bundles to the Software AG
Common Platform, the bundles are deployed to the Software AG_directory/common/
nerv/bundles directory, from which they are loaded by all profiles in your Software AG
installation.

If you want to deploy and activate NERV bundles only to a specific Common Platform
profile, you must modify the default deployment location and make the Common
Platform profile aware of the new location where your NERV bundles will be deployed.

To deploy and activate NERV bundles only for a specific Software AG Common Platform profile

1. In Command Central, navigate to Environments > Instances > ALL > SPM >NERV>
Configuration tab, click the COMMON-SYSPROPS-com.softwareag.eda.nerv.properties file,
and then click Edit.

2. Note the initial value for the Configuration Bundles Location property. You will need this
value for a later step in the procedure.

3. To specify a user-defined location for deployment of NERV bundles, modify the value for the
Configuration Bundles Location property to point to a user-defined location. For example:

C:/SoftwareAG/MyNERVLocation/bundles

4. Save the modifications and restart the SPM profile for your changes to take effect.

5. Deploy your NERV bundles using webMethods Deployer.

This will deploy the NERV bundles to the user-defined location.

6. In Command Central, navigate to Environments > Instances > ALL > SPM >NERV>
Configuration tab, click the COMMON-SYSPROPS-com.softwareag.eda.nerv.properties file,
and then click Edit.

7. Set the value for the Configuration Bundles Location property to the initial value, as noted at
the beginning of the procedure, then save the changes and restart the SPM profile.

8. To make a specific Common Platform profile aware of the user-defined locations
where bundles reside, in Command Central, navigate to Environments > Instances >
ALL > <profile_name> >NERV> Configuration tab, click the COMMON-SYSPROPS-
com.softwareag.eda.nerv.properties file, and then click Edit.

For example, for the IS_default profile, the location would be Environments > Instances
> ALL > IS_default >NERV> Configuration tab.

9. Modify the value for the Configuration Bundles Location property to point to the default
deployment location, as well as the user-defined deployment location. For example:

C\:/SoftwareAG/common/nerv/bundles,
C\:/SoftwareAG/MyNERVLocation/bundles

Note: The delimiter must be a comma.

M
Odd Header

Deploying and Testing EDA Solutions

Implementing Event-Driven Architecture with Software AG Products Version 9.7 45

10. Save the modifications and restart the specific Common Platform profile for the changes to
take effect.

Now the respective Common Platform profile loads all bundles from the default
location, as well as the NERV bundles from the user-defined location.

Example of a Deployment Project Structure
You can use webMethods Asset Build Environment to build deployable composites
from EDA event types and configuration projects. Here is an example of an EDA source
repository directory and the deployable assets which are produced by the Asset Build
Environment build script. In the example below the build.source.dir property is set to /
source as a prerequisite.

For Event Types with the following source repository structure:
/source/MyNewEvents/Event Types/MyCompany/Account.xsd
/source/MyNewEvents/Event Types/MyCompany/Receipt.xsd

the Asset Build Environment build script creates the MyNewEvents.zip deployable
composite, which contains the two Account and Receipt event types.

For NERV configuration components with the following source repository structure:
/source/NERVComposite/component.myComponent/
 META-INF/MANIFEST.MF
/source/NERVComposite/component.myComponent/
 OSGI-INF/blueprint/blueprint.xml
/source/NERVComposite/component.myComponent/
 OSGI-INF/blueprint/component.xml
/source/NERVComposite/component.nervDefaultJMS/
 META-INF/MANIFEST.MF
/source/NERVComposite/component.nervDefaultJMS/
 OSGI-INF/blueprint/blueprint.xml
/source/NERVComposite/component.nervDefaultJMS/
 OSGI-INF/blueprint/component.xml
/source/NERVComposite/emit.BoothDemo/META-INF/MANIFEST.MF
/source/NERVComposite/emit.BoothDemo/OSGI-INF/blueprint/blueprint.xml
/source/NERVComposite/emit.BoothDemo/OSGI-INF/blueprint/emit.xml

the Asset Build Environment build script creates the NERVComposite.zip
deployable composite, which contains the two configuration bundles
(component.myComponent.jar and component.nervDefaultJMS.jar), and the emit
configuration bundle emit.BoothDemo.jar.

For NERV Java archive bundles with the following source repository structure:
/source/MyNewJavaArchiveBundleProject/
 src/mynewjavaarchivebundleproject/Activator.java
/source/MyNewJavaArchiveBundleProject/META-INF/MANIFEST.MF
/source/MyNewJavaArchiveBundleProject/build.properties
/source/MyNewJavaArchiveBundleProject/build.xml
/source/MyNewJavaArchiveBundleProject/additional.jar

the Asset Build Environment build script creates the
MyNewJavaArchiveBundleProject.zip deployable composite, which contains the two
Java archives (MyNewJavaArchiveBundleProject.jar and additional.jar.

M
Even Header

Implementing Event-Driven Architecture with Software AG Products Version 9.7 46

M
Odd Header

Visualizing Events

Implementing Event-Driven Architecture with Software AG Products Version 9.7 47

7 Visualizing Events

■ Visualizing Events with Software AG Dashboarding Products .. 48

■ Visualizing Event Streams on the Eclipse Console ... 48

M
Even Header

Visualizing Events

Implementing Event-Driven Architecture with Software AG Products Version 9.7 48

Visualizing Events with Software AG Dashboarding Products
You can use one of Software AG’s dashboarding products to visualize the event streams
flowing through your system.

Software AG Presto

Software AG Presto delivers real-time operational insight dashboards direct from
live information sources. You can combine data from any original source - data
warehouses, news feeds, social media, Business Intelligence (BI) systems, streaming
big data and even Microsoft® Excel® spreadsheets - to create real-time mashups for
right-time decision-making.

Presto combines data from any source for data visualizations in real-time. Accessing
the original data lets business users respond to changing conditions as they happen.
One of Presto’s strengths is the ability to accept unstructured data, like a social
media feed, and keep it updated in real-time.

Software AG MashZone

Software AG MashZone is a component of the IBO portfolio of products. MashZone
provides a drag-and-drop interface that you use to create analytical dashboards for
combining product-generated and third party data sources in real time. MashZone
dashboards allow you to implement real-time monitoring and analysis of process
performance.

The data feeds are combined in one simple code-free step using graphical
visualization so that you can create a dashboard that shows you all relevant
information for your decision-making process.

A MashZone application can combine product-generated data (from Software AG
Process Performance Manager, spreadsheet data, ERP systems, CRM systems,
or data warehouse systems, for example) with web data (such as Google Maps,
statistical databases, and financial tickers). To do this, it extracts data from various
data sources and converts the data into feeds. Software AG MashZone offers a
host of visualization components for this purpose, such as bar graphs, pie charts,
pyramid charts, funnel charts, and maps.

Visualizing Event Streams on the Eclipse Console
The Event Bus Console utility enables you to subscribe to topics on the event bus and
view the traces for each event stream on the Eclipse console. The trace displays the traffic
on the event bus, such as what kind of events occur and how often they occur.

The Event Bus Console runs as a console view in the Events Development perspective
of Software AG Designer. For more information on using the Event Bus Console, see
webMethods Event Processing Help.

M
Odd Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 49

A Troubleshooting NERV

■ Starting the OSGi Console for a Single OSGi Profile .. 50

■ OSGi Commands Provided by NERV .. 51

■ NERV Troubleshooting Information .. 52

M
Even Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 50

NERV is Software AG’s solution for routing and transformation of events within an
event-enabled environment. This chapter provides information about troubleshooting
your applications which use NERV’s capabilities to send and consume events.

Starting the OSGi Console for a Single OSGi Profile
NERV is a framework which enables you to use events within the Software AG Common
Platform. Below you will find explanations about how to start an OSGi console for a
single OSGi profile in your installation.

To start the OSGi console for a single OSGi profile

1. In your Software AG installation, navigate to the configuration directory of the profile
to which you want to connect, for example Software AG_directory/profiles/SPM/
configuration.

2. Using a text editor, open for editing the config.ini file.

3. Enable the OSGi console.

To connect remotely to the OSGi console using telnet, add the following line to
the config.ini file:

osgi_console=<user-defined_portnumber>

To connect directly to the OSGi console, leave the osgi.console property
empty:

osgi.console=

4. Restart the profile.

If you chose to connect to the console remotely using telnet, use the restart or
shutdown/startup sripts.

If you chose to connect directly to the console, use the shutdown script to shut
down the profile, and then use the console startup script to restart it.

5. Connect to the OSGi console.

If you chose to use a remote connection to the OSGi console, open a telnet session
and type the commands.

If you chose to connect directly to the OSGi console, type the commands in the
runtime console.

When you are connected to the OSGi console, you can use the following commands:

ss - to list all available bundles. Use a filter to narrow down the list, for example:
ss <user_filter>

The command returns a list of bundles with their id, bundle name, and current state
(ACTIVE, INSTALLED, or RESOLVED).

M
Odd Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 51

bundle <bundle_id> - to obtain information about a specific bundle. The command
returns a list of services used and exposed by the bundle, imported and exported
packages, and other information.

diag <bundle_id> - to diagnose a specific bundle in the Common Platform. The
command returns a list of any unresolved dependencies for the bundle.

help - to obtain the list of all available console commands.

OSGi Commands Provided by NERV
NERV runs within the Software AG Common Platform. Below you can find a list of
NERV-related OSGi commands.

OSGi Command Description

nerv Displays all NERV commands.

nervDiag Displays diagnostics information about NERV, such as
the process D of the current Common Platform instance,
the location of the Event Type Store and the NERV assets
directory. This command also lists all OSGi services
exposed by NERV.

nervDefaultJms Displays the URL of the default JMS provider, as well as
information whether it was configured using the properties
file or by deploying a configuration bundle.

nervDefinedComponentsDisplays information about bundles that contain a
component.xml file - the location of the bundles on
the file system, and the beans that are defined in the
component.xml files.

Note: This command only lists the component definitions but
does not provide information about whether the components
are active or not. For information about active NERV
components, use the nervActiveComponents command.

nervDefinedEmit Displays information about bundles that contain an
emit.xml file - the location of the bundles on the file system
and the routes defined in the emit.xml files.

Note: This command only lists the route definitions but does
not provide information about whether the routes are active
or not. For information about active NERV routes, use the
nervRouteInfo command.

M
Even Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 52

OSGi Command Description

nervDefinedConsume Displays information about bundles that contain a
consume.xml file - the location of the bundles on the file
system and the beans defined in the consume.xml files.

Note: This command only lists the route definitions but does
not provide information about whether the routes are active
or not. For information about active NERV routes, use the
nervRouteInfo command.

nervActiveComponents Displays a list of the currently active components with
their names, types, and information about the bundle that
declared them.

nervRouteInfo Displays information about the currently active routes
- the route id, the context where they are defined, the
current state of the route, and information about the
number of exchanges (events) that passed through the
route. The command returns information about the
full configuration of the route - the start endpoint, the
intermediate processors, and the endpoint.

nervContextInfo Displays diagnostics information about the currently active
Camel contexts in the system.

NERV Troubleshooting Information

Troubleshooting NERV Component Configuration Bundles
Problem: I have deployed a NERV Component bundle which overrides the default NERV component,
but my messages are still not sent to the specified JMS provider

Solution:

1. Connect to the OSGi console where you expect the configuration bundle to be active.

For more information about how to connect to the OSGi console for a single profile,
see "Starting the OSGi Console for a Single OSGi Profile" on page 50.

2. Use the nervDefaultJms command to check which is the currently active JMS
provider.

If the command output indicates that the default JMS provider is the one specified
in your user-defined configuration bundle, then events should be sent to that JMS

M
Odd Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 53

provider by default, and you should check whether events are actually being sent
and if the receiving side is configured correctly.

If the command output indicates that the default JMS provider is different than the
one that you specified in your user-defined configuration bundle, then either the
component did not get activated, or was not configured correctly.

3. Locate your configuration bundle in the Common Platform profile and make a note
of its ID.

Use the nervDefinedComponents command to list bundles that define a
component in a component.xml file following the convention for NERV
configuration bundles.

Use the ss command to list bundles that declare components not following the
convention for NERV configuration bundles (for example, programmatically or
using declarative services).

4. Depending on the state of your configuration bundle, do the following:

If your bundle is not in an active state, use the diag <bundle_id> command to
diagnose why it was not started, resolve any dependency issues, then use the
start <bundle_id> command to start your bundle.

If your bundle is in an active state, use the bundle <bundle_id> command to
list all services that the bundle uses and exposes.

To successfully expose a component for usage by NERV, your bundle
must expose at least one service of type org.apache.camel.Component with a
componentId=nervDefaultJMS property (properties for the services are listed right
after the service type).

If the bundle <bundle_id> command output lists an org.apache.camel.Component
service type with a correct componentId=nervDefaultJMS property, then a race
condition might exist inside the OSGi registry which prevented NERV from
picking up the service registration. Use the stop <bundle_id> and start
<bundle_id> commands to restart your bundle. Alternatively, you can also
restart the whole Common Platform instance. If this resolves the problem, you
should decrease the bundle start level, so it starts later than NERV.

If the bundle <bundle_id> command output does not list a component service,
diagnose why the service was not started.

i. Check the content of your log file, located by default in the log directory
under Software AG_directory/profiles/<profile_name>.

ii. In the OSGi console, restart your bundle using the stop <bundle_id> and
start <bundle_id> commands, then check the content of the log file again.
It should contain information about the start-up of your bundle and some
indications why the bundle was not instantiated and exposed correctly.

Some of the most common reasons are:

M
Even Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 54

Common reasons Possible solutions

An XML parsing error or
exception indicates that the
component configuration file is
not grammatically correct.

The parser usually prints out the
number of the line which causes the
error or exception. Locate it in the
component configuration file and fix it.

A ClassNotFoundException or a
NoClassDefFoundError indicate
that the bundle imports are not
correct, and that the Common
Platform cannot locate a certain
class while instantiating your
bundle.

Make sure that the Import-Package
statement of your MANIFEST file
includes the org.apache.camel and
org.apache.camel.component.jms classes
from the Apache Camel package,
the org.springframework.jndi and
org.springframework.jms.connection
Spring classes, as well as the specific
JMS provider classes.

A Blueprint-related or a Spring-
related exception or warning
message indicates that the
framework instantiating and
exposing the component service
encountered an exception.

Examine the stack trace and try to
fix the issue. Check whether another
service with the same componentId
is not already declared in the same
Common Platform instance.

Problem: I have deployed a NERV Component bundle, which declares a component, but when I try to
use it, it doesn’t work

Solution:

1. Connect to the OSGi console where you expect the configuration bundle to be active.

For more information about how to connect to the OSGi console for a single profile,
see "Starting the OSGi Console for a Single OSGi Profile" on page 50.

2. Use the nervActiveComponents command to list the currently active component
bundles on the system.

If the command output lists your component bundle, then it is currently active and
available for usage. Double check the configuration for using the component to make
sure it is set correctly.

If the command output does not list your component bundle, then it is not currently
active, it was not properly instantiated, or it has not been defined correctly.

3. Locate your configuration bundle in the Common Platform and mark its ID.

Use the nervDefinedComponents command to list bundles that define a
component in a component.xml file following the convention for NERV
configuration bundles.

M
Odd Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 55

Use the ss command to list bundles that declare components not following the
convention for NERV configuration bundles (for example, programmatically or
using declarative services).

4. Depending on the state of your configuration bundle, do the following:

If your bundle is not in an active state, use the diag <bundle_id> command to
diagnose why it was not started, resolve any dependency issues, then use the
start <bundle_id> command to start your bundle.

If your bundle is in an active state, use the bundle <bundle_id> command to
list all services that the bundle uses and exposes.

To successfully expose a component for usage by NERV, your bundle must
expose at least one service of type org.apache.camel.Component.

If the bundle <bundle_id> command output does not list a component service,
diagnose why the service was not started.

i. Check the content of your log file, located by default in the log directory
under Software AG_directory/profiles/<profile_name>.

ii. In the OSGi console, restart your bundle using the stop <bundle_id> and
start <bundle_id> commands, then check the content of the log file again.
It should contain information about the start-up of your bundle and some
indications why the bundle was not instantiated and exposed correctly.

Some of the most common reasons are:

Common reasons Possible solutions

An XML parsing error or
exception indicates that the
component configuration file is
not grammatically correct.

The parser usually prints out the
number of the line which causes the
error or exception. Locate it in the
component configuration file and fix it.

A ClassNotFoundException or a
NoClassDefFoundError indicate
that the bundle imports are not
correct, and that the Common
Platform cannot locate a certain
class while instantiating your
bundle.

Make sure that the Import-Package
statement of your MANIFEST file
includes the org.apache.camel and
org.apache.camel.component.jms classes
from the Apache Camel package,
the org.springframework.jndi and
org.springframework.jms.connection
Spring classes, as well as the specific
JMS provider classes.

A Blueprint-related or a Spring-
related exception or warning
message indicates that the
framework instantiating and

Examine the stack trace and try to
fix the issue. Check whether another
service with the same componentId

M
Even Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 56

Common reasons Possible solutions
exposing the component service
encountered an exception.

is not already declared in the same
Common Platform instance.

Troubleshooting NERV Emit Configuration Bundles
Problem: I have a bundle, which overrides the default NERV emit configuration, but it does not work

Solution:

1. Connect to the OSGi console where you expect your emit configuration bundle to be
active.

For more information about how to connect to the OSGi console for a single profile,
see "Starting the OSGi Console for a Single OSGi Profile" on page 50.

2. Locate your emit configuration bundle in the Common Platform and mark its ID.

Use the nervDefinedEmit command to list bundles that declare an emit
configuration using an emit.xml configuration file.

Use the ss command to list bundles where the emit logic is defined not
following the convention for NERV emit configuration bundles (for example,
programmatically or using declarative services).

3. Depending on the state of your bundle, do the following:

If your bundle is not in an active state, use the diag <bundle_id> command to
diagnose why it was not started, resolve any dependency issues, then use the
start <bundle_id> command to start your bundle.

If your bundle is in an active state, use the bundle <bundle_id> command to
list all services that the bundle uses and exposes.

To successfully emit events with NERV, your bundle must:

Use services from other bundles - either an instance of the
org.apache.camel.Component service, or some of the other NERV services.

Expose some services - either an Apache Camel-related class, or an instance
of a container or a class (for example, an instance of the BlueprintContainer or
the DelegatedExecutionOsgiBundleApplicationContext classes).

Note: If your emit configuration bundle also defines a component, you might not
need to use any other services.

If the bundle <bundle_id> command output does not list any exposed services,
diagnose why they are not used.

i. Check the content of your log file, located by default in the log directory
under Software AG_directory/profiles/<profile_name>.

M
Odd Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 57

ii. In the OSGi console, restart your bundle using the stop <bundle_id> and
start <bundle_id> commands, then check the content of the log file again.
It should contain information about the start-up of your bundle and some
indications why the bundle was not instantiated and exposed correctly.

Some of the most common reasons are:

Common reasons Possible solutions

An XML parsing error or
exception indicates that the
component configuration file is
not grammatically correct.

The parser usually prints out the
number of the line which causes the
error or exception. Locate it in the
component configuration file and fix it.

A ClassNotFoundException or a
NoClassDefFoundError indicate
that the bundle imports are not
correct, and that the Common
Platform cannot locate a certain
class while instantiating your
bundle.

Make sure that the Import-Package
statement of your MANIFEST file
includes the classes from the Apache
Camel package, the Spring classes, as
well as any other classes you might
need.

A Blueprint-related or a Spring-
related exception or warning
message indicates that the
framework instantiating and
exposing the component service
encountered an exception.

Examine the stack trace and try to
fix the issue. Check whether another
service with the same componentId
is not already declared in the same
Common Platform instance.

Troubleshooting NERV Consume Configuration Bundles
Problem: I have a bundle, which consumes events, but it does not work

Solution:

1. Connect to the OSGi console where you expect your consume bundle to be active.

For more information about how to connect to the OSGi console for a single profile,
see "Starting the OSGi Console for a Single OSGi Profile" on page 50.

2. Locate your consume bundle in the Common Platform and mark its ID.

Use the nervDefinedConsume command to list bundles that consume events
using an consume.xml configuration file.

Use the ss command to list bundles where the consume logic is defined not
following the convention for NERV consume configuration bundles (for example,
programmatically or using declarative services).

M
Even Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 58

3. Depending on the state of your bundle, do the following:

If your bundle is not in an active state, use the diag <bundle_id> command to
diagnose why it was not started, resolve any dependency issues, then use the
start <bundle_id> command to start your bundle.

If your bundle is in an active state, use the bundle <bundle_id> command to
list all services that the bundle uses and exposes.

To successfully consume events with NERV, your bundle must use services from
other bundles - either an instance of the org.apache.camel.Component service, or
some of the other NERV services.

Note: If your consume configuration bundle also defines a component, you might
not need to use any other services.

If the bundle <bundle_id> command output does not list any exposed services,
diagnose why they are not used.

i. Check the content of your log file, located by default in the log directory
under Software AG_directory/profiles/<profile_name>.

ii. In the OSGi console, restart your bundle using the stop <bundle_id> and
start <bundle_id> commands, then check the content of the log file again.
It should contain information about the start-up of your bundle and some
indications why the bundle was not instantiated and exposed correctly.

Some of the most common reasons are:

Common reasons Possible solutions

An XML parsing error or
exception indicates that the
component configuration file is
not grammatically correct.

The parser usually prints out the
number of the line which causes the
error or exception. Locate it in the
component configuration file and fix it.

A ClassNotFoundException or a
NoClassDefFoundError indicate
that the bundle imports are not
correct, and that the Common
Platform cannot locate a certain
class while instantiating your
bundle.

Make sure that the Import-Package
statement of your MANIFEST file
includes the classes from the Apache
Camel package, the Spring classes, as
well as any other classes you might
need.

A Blueprint-related or a Spring-
related exception or warning
message indicates that the
framework instantiating and

Examine the stack trace and try to
fix the issue. Check whether another
service with the same componentId
is not already declared in the same
Common Platform instance.

M
Odd Header

Troubleshooting NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 59

Common reasons Possible solutions
exposing the component service
encountered an exception.

M
Even Header

Implementing Event-Driven Architecture with Software AG Products Version 9.7 60

M
Odd Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 61

B Developing Applications with NERV

■ Referencing NERV Services in the Software AG Common Platform ... 62

■ Referencing NERV Object Instances Outside the Software AG Common Platform 64

■ Emitting Events Using NERV EventEmitter ... 66

■ Consuming Events Using NERV EventConsumer ... 67

■ Securing Passwords Held in NERV Route Bundles .. 69

M
Even Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 62

NERV is Software AG’s solution for routing and transformation of events within
an event-enabled environment. This chapter provides information about creating
applications which use NERV’s capabilities to send and consume events.

Referencing NERV Services in the Software AG Common
Platform

Retrieving a ServiceReference Object for the NERV EventEmitter
Service
You must retrieve a ServiceReference object for the NERV EventEmier service and use
it when creating user-defined NERV emit applications.

1. Reference the EventEmier service.
ServiceReference emitterServiceRef =
 bundleContext.getServiceReference(EventEmitter.class.getCanonical
Name());

2. Check if an EventEmier service is registered. If this is not the case, then most
probably the com.softwareag.eda.nerv.core.impl bundle was not started in the
Common Platform. If the bundle is in an ACTIVE state, but the EventEmier service
is still not available, check the log file for exceptions.
if (emitterServiceRef != null) {

3. Retrieve an EventEmier service object.
EventEmitter emitter = (EventEmitter)
bundleContext.getService(emitterServiceRef);

4. Check if the service has not been unregistered.
if (emitter != null) {

5. Append your EventEmier code section at the end. For more information, see
"Emiing Events Using NERV EventEmier" on page 66.

Finally, your code should look like the following sample:
ServiceReference emitterServiceRef =
 bundleContext.getServiceReference(EventEmitter.class.getCanonicalName());
if (emitterServiceRef != null) {
 EventEmitter emitter = (EventEmitter)
 bundleContext.getService(emitterServiceRef);
 if (emitter != null) {
 }
}

M
Odd Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 63

Retrieving a ServiceReference Object for the NERV MessageCreator
Service
You must retrieve a ServiceReference object for the NERV MessageCreator service and
use it when creating user-defined NERV emit applications.

1. Reference the MessageCreator service.
ServiceReference messageCreatorServiceRef =
 bundleContext.getServiceReference(MessageCreator.class.getCanonical
Name());

2. Check if a MessageCreator service is registered. If this is not the case, then most
probably the com.softwareag.eda.nerv.core.impl bundle was not started in the
Common Platform. If the bundle is in an ACTIVE state, but the MessageCreator
service is still not available, check the log file for exceptions.
if (messageCreatorServiceRef != null) {

3. Retrieve a MessageCreator service object.
MessageCreator creator = (MessageCreator)
bundleContext.getService(messageCreatorServiceRef);

4. Check if the service has not been unregistered.
if (creator != null) {

5. Append your MessageCreator code section at the end. For more information, see
"Emiing Events Using NERV EventEmier" on page 66.

Finally, your code should look like the following sample:
ServiceReference messageCreatorServiceRef =
 bundleContext.getServiceReference(MessageCreator.class.getCanonical
Name());
if (messageCreatorServiceRef != null) {
 MessageCreator creator = (MessageCreator)
 bundleContext.getService(messageCreatorServiceRef);
 if (creator != null) {
 }
}

Retrieving a ServiceReference Object for the NERV EventConsumer
Service
You must retrieve a ServiceReference object for the NERV EventConsumer service and
use it when creating user-defined NERV consume applications.

1. Reference the EventConsumer service.
ServiceReference consumerServiceRef =
 bundleContext.getServiceReference(EventConsumer.class.getCanonical
Name());

2. Check if an EventConsumer service is registered. If this is not the case, then most
probably the com.softwareag.eda.nerv.core.impl bundle was not started in the

M
Even Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 64

Common Platform. If the bundle is in an ACTIVE state, but the EventEmier service
is still not available, check the log file for exceptions.
if (consumerServiceRef != null) {

3. Retrieve an EventConsumer service object.
EventConsumer consumer = (EventConsumer)
bundleContext.getService(consumerServiceRef);

4. Check if the service has not been unregistered.
if (consumer != null) {

5. Append your EventConsumer code section at the end. For more information, see
"Consuming Events Using NERV EventConsumer" on page 67.

Your code should look like the following sample:
ServiceReference consumerServiceRef =
 bundleContext.getServiceReference(EventConsumer.class.getCanonicalName());
if (consumerServiceRef != null) {
 EventConsumer consumer = (EventConsumer)
 bundleContext.getService(consumerServiceRef);
 if (consumer != null) {
 }
}

Referencing NERV Object Instances Outside the Software AG
Common Platform

Loading NERV Libraries Outside the Common Platform
If you want your applications to use the NERV routing and transformation capabilities
outside of the Common Platform, you must include the Software AG_directory/common/
lib/nerv-classpath-basic.jar file in their classpath. Once this is done, you can proceed to
load the NERV assets and retrieve EventTypeStore, EventEmier, EventConsumer, and
MessageCreator instances.

Loading NERV Assets Using Configuration Properties File Outside
the Common Platform
If you want your applications to use the NERV routing and transformation capabilities
outside of the Common Platform, you must provide a NERV properties file and the path
to it.

By default, when you install NERV using Software AG Installer, a NERV properties
file called com.softwareag.eda.nerv.properties is available in the Software AG_directory/
profiles/<profile_name> /configuration/com.softwareag.platform.config.propsloader
directory. You can either modify this properties file or create a new one. For more
information about the NERV properties file, see " NERV Configuration Properties" on
page 73.

M
Odd Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 65

If you use the default com.softwareag.eda.nerv.properties file, it is mandatory that you
set an additional com.softwareag.eda.nerv.sag.home property which must point to
your Software AG installation directory, for example:
com.softwareag.eda.nerv.sag.home=C:/SoftwareAG

This property makes it possible to resolve the location tokens used in the other
properties available in the com.softwareag.eda.nerv.properties file. You can provide this
seing by:

Adding it to the default com.softwareag.eda.nerv.properties file before loading it

Passing it as a Java system property

Adding it to the properties object after loading the file (see the code sample below)
File nervConfigPropsFile =
new File(
 "C:/SoftwareAG/profiles/SPM/configuration/"
 +"com.softwareag.platform.config.propsloader/"
 +"com.softwareag.eda.nerv.properties");
Properties nervConfigProperties = new Properties();
nervConfigProperties.load(new FileInputStream(nervConfigPropsFile));
nervConfigProperties.setProperty
(DefaultConstants.PROP_SAG_HOME,
 "C:/SoftwareAG");
NERVSingleton.getInstance().loadAssets(nervConfigProperties);

To load a different set of NERV configuration assets, you can use the same code sample.
Each time the loadAssets() method is called, any previously loaded assets are destroyed
and the new ones are loaded.

You can provide configuration properties to NERV outside the Common Platform in
three ways:

Using Java system properties

Using a Properties object

Using internally calculated default property values (if a propery is not provided
either as a system property or as part of the Properties object).

Note: NERV configuration properties provided as a Properties object take precedence
over the default properties, whereas NERV configuration properties provided as Java
system properties take precedence over the properties provided as a Properties object.

Retrieving an EventTypeStore Instance Outside the Common
Platform
You can retrieve an EventTypeStore instance using the code sample below:
EDAEventTypeStore eventTypeStore =
NERVSingleton.getInstance().getEventTypeStore();

M
Even Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 66

Retrieving an EventEmitter Instance Outside the Common Platform
You can retrieve an EventEmier instance using the code sample below:
EventEmitter emitter = NERVSingleton.getInstance().getEventEmitter();

Note: In case neither Java system properties, nor a properties object are
provided beforehand, NERV uses the same values as the default ones from the
com.softwareag.eda.nerv.properties configuration file.

Retrieving an EventConsumer Instance Outside the Common
Platform
You can retrieve an EventConsumer instance using the code sample below:
EventConsumer consumer = NERVSingleton.getInstance().getEventConsumer();

Note: In case neither Java system properties, nor a properties object are
provided beforehand, NERV uses the same values as the default ones from the
com.softwareag.eda.nerv.properties configuration file.

Retrieving a MessageCreator Instance Outside the Common Platform
You can retrieve a MessageCreator instance using the code sample below:
MessageCreator creator = NERVSingleton.getInstance().getMessageCreator();

Note: In case neither Java system properties, nor a properties object are
provided beforehand, NERV uses the same values as the default ones from the
com.softwareag.eda.nerv.properties configuration file.

Emitting Events Using NERV EventEmitter
The following section contains information about how to construct your event emier
application to be able to emit events using NERV. The provided code samples use the
CableboxHealth event type as an example.

To emit events using NERV EventEmitter

1. Put an event type header field in the Camel message that will be emitted. The event type
header field must contain the event type qualified name.

String eventTypeHeader =
"{http://namespaces.softwareag.com/EDA/
+"WebM/Sample/CableboxMonitoring}CableboxHealth";

2. Include additional headers, such as the event ID.

Map<String, Object> headers = new HashMap<String, Object>();

M
Odd Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 67

headers.put(EventTypeXSDConstants.STANDARD_HEADER_TYPE, eventTypeHeader);
headers.put(EventTypeXSDConstants.STANDARD_HEADER_KIND,
EventTypeXSDConstants.EDA_KIND_EVENT);

3. Create an EDA event wrapped in a Camel Message object.

Message message = creator.createMessage(bodyAsXMLString, headers);

For more information, see the NERV Javadoc.

4. Emit your events.

To the default endpoint using the default emit logic - in the current example the event
type is CableboxHealth and the JMS topic corresponding to the default endpoint
is Event::WebM::Sample::CableboxMonitoring::CableboxHealth. For more
information, see the NERV Javadoc regarding the eventEmier#emit (Message
message) method.

To a user-defined endpoint - specify your endpoint which will override the
default emit logic. For more information, see the NERV Javadoc regarding the
eventEmier#(Message message, String...endpoints) method.

5. Include additional headers, such as the event ID.

Map<String, Object> headers = new HashMap<String, Object>();
headers.put(EventTypeXSDConstants.STANDARD_HEADER_TYPE, eventTypeHeader);
headers.put(EventTypeXSDConstants.STANDARD_HEADER_KIND,
EventTypeXSDConstants.EDA_KIND_EVENT);

6. Create an EDA event wrapped in a Camel Message object.

Message message = creator.createMessage(bodyAsXMLString, headers);

For more information, see the NERV Javadoc.

7. Emit your events.

To the default endpoint using the default emit logic - in the current example the event
type is CableboxHealth and the JMS topic corresponding to the default endpoint
is
Event::WebM::Sample::CableboxMonitoring::CableboxHealth

For more information, see the NERV Javadoc regarding the eventEmier#emit
(Message message) method.

To a user-defined endpoint - specify your endpoint which will override the
default emit logic. For more information, see the NERV Javadoc regarding the
eventEmier#(Message message, String...endpoints) method.

Consuming Events Using NERV EventConsumer
The following section contains information about how to construct your event consumer
application to be able to consume events using NERV. The provided code samples use
the CableboxHealth event type as an example.

M
Even Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 68

To consume events using NERV EventConsumer

1. Provide an org.apache.camel.Processor implementation that contains your business logic
for handling events you want to consume. The logic placed inside the process (Exchange
exchange) method is executed on each received event.

Processor processor = new Processor() {
 @Override
 public void process(Exchange exchange) throws Exception {
 Map<String, Object> eventHeaders = exchange.getIn().getHeaders();
 String eventBody = exchange.getIn().getBody().toString();
 }
};

The eventHeaders object contains the headers of the EDA events as key-value pairs,
whereas the eventBody object contains only the payload of the EDA event.

2. Subscribe to events. You can do this in the following ways:

By selecting a specific event type to subscribe to. To use this subscription
method, first you must create an EDAEventTypeID instance for the event type
that we want to subscribe to, and then create the subscription object.
EDAEventTypeID cableboxHealth = new EDAEventTypeID(
 "http://namespaces.softwareag.com/EDA/WebM/Sample/CableboxMonitoring",
 "CableboxHealth");
DefaultEventTypeSubscription subscription
 = new DefaultEventTypeSubscription(cableboxHealth,
 processor);

Note: This subscription method corresponds to the method for emiing events of
a specific event type. For more information, see "Emiing Events Using NERV
EventEmier" on page 66.

By selecting a specific endpoint to subscribe to. To use this subscription method,
you must first define the endpoints to which you want to subscribe, and then
create the subscription object.
String[] endpoints = new String[] {
 "nervDefaultJMS://topic:Event::WebM::Sample::InventoryMgmt::1.0::
 PartInventoryLow",
 "hdfs://localhost:9000/temp?splitStrategy=IDLE:100,BYTES:839" };
DefaultEndpointSubscription subscription2
 = new DefaultEndpointSubscription(processor, endpoints);

Note: This subscription method corresponds to the method for emiing events
to a specific endpoint. For more information, see "Emiing Events Using NERV
EventEmier" on page 66.

Both subscriptions implement the
com.softwareag.eda.nerv.subscription.Subscription interface.

Subscription Examples

Consider the following subscription configurations:
subscription.suppressDuplicateEvents()
 .filterEventsOnServerSide("$Event$Kind = 'Event'")

M
Odd Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 69

 .filterEvents("${header.$Event$Version} == '1.0'")
 .orderEvents().addPreprocessor(preprocessor)
 .useDurableSubscription("MyId", "MySub");
 consumer.subscribe(subscription);

The resulting subscription behavior is as follows:

Duplicate events are suppressed. By default, events with the
same $Event$EventID are suppressed and memory-based
repository is used for the duplication check. You can use the
suppressDuplicateEvents(DuplicateEventsConfiguration config) method to provide a
configuration for a non default behavior.

Events are filtered on the server side using the $Event$Kind = ‘Event’ filter.

Note: The filtering on the server side works only if you subscribe to a JMS
component.

Events are filtered on the client side using the $Event$Version = ‘1.0’ filter.

Events are ordered. By default, the $Event$Start header is used for event
ordering. You can use the orderEvents(OrderEventsConfiguration config) method to
provide a configuration for a non default behavior.

A preprocessor is applied before the events reach the EDA client.

A durable subsciption is ensured with cliend ID MyId and subsciption name
MySub.

Note: The durable subscription works only if you are using a JMS component.

The configured Subscription object is passed to the consume() method of the
EventConsumer instance.

Securing Passwords Held in NERV Route Bundles

Overview
In specific cases when you create advanced NERV route bundles making connections
which require password authentications, you must provide authentication credentials as
values within the route definitions. The passwords are encrypted in all route definition
files using a secret key, which is also encrypted.

The secret key is used by NERV to encrypt and decrypt passwords specified in the route
bundles making connections which require password authentications. The secret key
can be found in the nerv-security.xml file available in the Software AG_directory/common/
conf/nerv directory.

Software AG recommends that you modify the value of the secret key on each
Software AG installation containing a NERV node before you start developing your

M
Even Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 70

NERV custom route bundles. You can use the NERV ciphering utility to encrypt a given
value and use it as a secret key.

For more information about using the NERV ciphering utility, see "Working with the
NERV Ciphering Utility" on page 70.

For more information about modifying the secret key, see "Modifying the NERV Secret
Key" on page 70.

Working with the NERV Ciphering Utility
The NERV ciphering utility enables you to encrypt a given value and use it as a secret
key. You can then use the new encrypted value to replace the secret key used by NERV
to encrypt and decrypt passwords specified in your route bundles. The NERV ciphering
utility is delivered as part of your Software AG installation and can be found as a .jar file
in the Software AG_directory/common/lib directory.

To use the NERV ciphering utility

1. In a command prompt, navigate to Software AG_directory/common/lib.

2. Execute the java -jar command and specify the nerv-cipher-util.jar, as well as a value to
be encrypted, for example:

java -jar
Software AG_directory
/common/lib/
nerv-cipher-util.jar <value_to_be_encrypted>

The encrypted value is displayed in the command prompt and can be used as a secret
key for encrypting and decrypting user credentials provided to NERV by custom route
bundles making connections which require password authentications.

Modifying the NERV Secret Key
By default, NERV is delivered with an encrypted secret key which is used for encrypting
and decrypting user credentials provided by custom route bundles making connections
which require password authentications. Software AG recommends that you modify the
value of the secret key on each Software AG installation containing a NERV node before
you start developing your NERV custom route bundles.

To modify the NERV secret key

1. In your file system, navigate to the nerv-security.xml file available in the
Software AG_directory/common/conf/nerv directory.

The file contains the default encrypted secret key value:
<nervSecurity>
 <key>{AES}9bexKOp6S06Y8IJL53b4P8wCXf3pKWBrI8/vbOqlnhA=</key>
</nervSecurity>

2. Using the NERV ciphering utility, generate a new encrypted value for the secret key.

M
Odd Header

Developing Applications with NERV

Implementing Event-Driven Architecture with Software AG Products Version 9.7 71

For more information about the NERV ciphering utility, see "Working with the
NERV Ciphering Utility" on page 70.

3. For each Software AG installation containing a NERV node, use the newly generated
value to replace the default secret key in the in the nerv-security.xml file available in the
Software AG_directory/common/conf/nerv directory.

4. Redeploy any active advanced NERV route bundles to make them use the new secret key for
all passwords specified in their route definitions.

NERV uses the new secret key to encrypt and decrypt passwords specified in the route
bundles making connections which require password authentications.

Providing the NERV Security File Location in NERV Applications
Running in the Common Platform
In the Software AG Common Platform the NERV security file location is
determined by the com.softwareag.eda.nerv.security.file.location
property in com.softwareag.eda.nerv.properties file. This file is available for
each Common Platform profile in the Software AG_directory/profiles/profile_name /
configuration/com.softwareag.platform.config.propsloader directory.
To specify a new NERV security file location, modify the value of the
com.softwareag.eda.nerv.security.file.location property for your Common
Platform profile.

Providing the NERV Security File Location in NERV Standalone
Applications
In NERV standalone applications making connections which require password
authentications, the NERV security file location is part of the properties that
are set when calling the loadAssets() method of the NERVSingleton class. The
com.softwareag.eda.nerv.security.file.location property has to be set before
calling the loadAssets() method.

To provide the NERV security file location in standalone NERV applications

1. In your NERV application, include the following code snippet:

props.setProperty(DefaultConstants.PROP_SECURITY_FILE_LOCATION,
 "<absolute_path_to_the_NERV_security_xml> ");
 nervSingleton.loadAssets(props);

Where <absolute_path_to_the_NERV_security_xml> is the absolute path to the NERV
security file, for example: C://SoftwareAG/common/nerv/nerv-security.xml .

M
Even Header

Implementing Event-Driven Architecture with Software AG Products Version 9.7 72

M
Odd Header

NERV Configuration Properties

Implementing Event-Driven Architecture with Software AG Products Version 9.7 73

C NERV Configuration Properties

You can configure the default transport layer, the guaranteed delivery for EDA events
with Terracoa Ehcache, as well as the error handling options that NERV uses during
runtime.

When NERV is used by emit applications in the Software AG Common Platform,
modify the configuration properties as described in Modifying the Transport Layer
Configuration.

When NERV is used by the Event Bus Console, modify the properties
available in the com.softwareag.eda.nerv.properties file, located in the
Software AG_directory\common\conf directory.

You can modify the values for the following NERV configuration properties:

com.softwareag.eda.nerv.dead.letter.channel.uri - specifies the location where NERV
sends any undelivered events after the maximum number of redelivery aempts has
been reached. The default value is @url:sag.install.area/common/nerv/dlc.
When NERV runs in the Common Platform, the @url:sag.install.area token is
dynamically resolved to point to your Software AG installation directory.

com.softwareag.eda.nerv.in.memory.channel.size - specifies the maximum number of
messages contained in the in-memory channel used by NERV. This property is
global and applies to all event types. The default value is 1000.

com.softwareag.eda.nerv.maximum.redelivery.attempts - defines the maximum number of
aempts that NERV makes to redeliver events, in case the initial delivery aempt
fails. The default value is 100. Set to -1 for infinite redelivery aempts.

Note: When you set up the guaranteed delivery level to MAXIMUM_STRONG
or MAXIMUM_EVENTUAL, the value you have defined for the
com.softwareag.eda.nerv.maximum.redelivery.attempts property is
disregarded. Instead, NERV aempts to redeliver events infinitely to prevent the
loss of events, as well as to ensure that their order is kept.

com.softwareag.eda.nerv.cache.configuration.location - specifies the
location of the Ehcache configuration files. It is used together with the
com.softwareag.eda.nerv.guaranteed.delivery.level property.

com.softwareag.eda.nerv.default.jms.provider - defines the default transport layer which
NERV uses to connect to the Event Bus. The value of this parameter is populated
during installation. The default value is nsp://<host_name> :9000.

Note: This property supports only the use of webMethods Universal Messaging or
webMethods Broker as JMS providers. If you want to use another JMS provider, you
must deploy a custom NERV component configuration bundle for the respective
provider.

M
Even Header

NERV Configuration Properties

Implementing Event-Driven Architecture with Software AG Products Version 9.7 74

com.softwareag.eda.nerv.jms.asynch.subscription - defines the way NERV subscribers
consume events. The default value is false. If set to true, NERV subscribers
consume events asynchronously.

com.softwareag.eda.nerv.jms.auto.generate.topics - enables NERV to create topics
automatically on the specified JMS provider. The default value is true. If set to
false, users must create topics manually on the JMS provider.

Note: This property supports only the use of webMethods Universal Messaging
or webMethods Broker as JMS providers. When NERV is used in a Universal
Messaging cluster environment, this property must be set to false.

com.softwareag.eda.nerv.guaranteed.delivery.level - specifies the guaranteed delivery
level for storing events. Possible values are NONE, MAXIMUM_STRONG (default), and
MAXIMUM_EVENTUAL.

com.softwareag.eda.nerv.configbundles.location - contains the path to the location where
NERV expects to find its component configuration bundles. The default value
is @path:sag.install.area/common/nerv/bundles. When NERV runs in the
Common Platform, the @path:sag.install.area token is dynamically resolved to
point to your Software AG installation directory.

com.softwareag.eda.nerv.eventtypestore.location - contains the path to the Event Type
Store location. The value of this parameter is populated during installation. The
default value is:@path:sag.install.area/common/EventTypeStore. When NERV
runs in the Common Platform, the @path:sag.install.area token is dynamically
resolved at runtime to point to your Software AG installation directory.

com.softwareag.eda.nerv.redelivery.delay.ms - defines the interval (in milliseconds) at
which NERV makes the redelivery aempts. The default value is 3000.

com.softwareag.eda.nerv.security.file.location - contains the path to the NERV security
file. This file contains the encrypted secret key used by NERV for encrypting and
decrypting passwords specified in the route bundles making connections which
require password authentications. The default value is: @path\:sag.install.area/
common/conf/nerv/nerv-security.xml. When NERV runs in the Common
Platform, the @path:sag.install.area token is dynamically resolved at runtime to
point to your Software AG installation directory.

Note: When NERV runs outside the Common Platform, the default value is not taken
into account. For more information, see "Providing the NERV Security File Location
in NERV Applications Running in the Common Platform " on page 71.

	Table of Contents
	About this Guide
	Document Conventions
	Documentation Installation
	Online Information

	What is Event Driven Architecture?
	Concepts
	Components of the EDA Environment

	How is EDA Implemented by Software AG?
	Software AG EDA Components
	NERV
	Event Types
	Event Type Store
	Event Type Governance

	Event Bus
	Event Bus Channels and Topics
	Event Structure
	Heartbeats

	How EDA Components Connect to the Event Bus
	Mechanisms for Connecting to the Event Bus
	Connecting to the Event Bus Using NERV
	Connecting to the Event Bus Using the EDA-Related Integration Server Built-In Service

	Configuring NERV
	Configuring the Transport Layer for NERV
	Modifying the Transport Layer for NERV
	Before You Begin
	Modifying the Transport Layer Configuration

	Modifying NERV Error Handling
	Guaranteed Delivery of Events with Terracotta Ehcache
	Setting up NERV Guaranteed Delivery Level with Terracotta Ehcache
	Locating your Disk Store Location with Terracotta Ehcache

	Creating Custom NERV Component Bundles
	Using the Default NERV Emit Logic
	Switching Between Default and Custom NERV Logic

	Creating Custom NERV Emit Bundles
	Creating Custom NERV Consume Bundles
	Creating Custom NERV Java Archive Bundles

	Using NERV Outside the Software AG Common Platform
	Deploying and Testing EDA Solutions
	Deploying EDA Assets
	Specifics of Deploying NERV Bundles to the Software AG Common Platform
	Example of a Deployment Project Structure

	Visualizing Events
	Visualizing Events with Software AG Dashboarding Products
	Visualizing Event Streams on the Eclipse Console

	Troubleshooting NERV
	Starting the OSGi Console for a Single OSGi Profile
	OSGi Commands Provided by NERV
	NERV Troubleshooting Information
	Troubleshooting NERV Component Configuration Bundles
	Troubleshooting NERV Emit Configuration Bundles
	Troubleshooting NERV Consume Configuration Bundles

	Developing Applications with NERV
	Referencing NERV Services in the Software AG Common Platform
	Retrieving a ServiceReference Object for the NERV EventEmitter Service
	Retrieving a ServiceReference Object for the NERV MessageCreator Service
	Retrieving a ServiceReference Object for the NERV EventConsumer Service

	Referencing NERV Object Instances Outside the Software AG Common Platform
	Loading NERV Libraries Outside the Common Platform
	Loading NERV Assets Using Configuration Properties File Outside the Common Platform
	Retrieving an EventTypeStore Instance Outside the Common Platform
	Retrieving an EventEmitter Instance Outside the Common Platform
	Retrieving an EventConsumer Instance Outside the Common Platform
	Retrieving a MessageCreator Instance Outside the Common Platform

	Emitting Events Using NERV EventEmitter
	Consuming Events Using NERV EventConsumer
	Securing Passwords Held in NERV Route Bundles
	Overview
	Working with the NERV Ciphering Utility
	Modifying the NERV Secret Key
	Providing the NERV Security File Location in NERV Applications Running in the Common Platform
	Providing the NERV Security File Location in NERV Standalone Applications

	NERV Configuration Properties

