
webMethods Mobile Development Help

Version 9.6

April 2014

Title Page

This document applies to webMethods Mobile Development Version 9.6 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or its
affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third Party Products”. This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: MDEV-OLH-96-20140415

Copyright

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

webMethods Mobile Development Help Version 9.6 3

Table of Contents

About this Guide . 7
Document Conventions . 7
Documentation Installation . 7
Online Information . 7

1. Introduction to Mobile Development . 9
About Mobile Development . 10
Other Resources for Mobile Development . 10

2. Introduction to the Mobile Development User Interface . 13
Mobile Development Perspective . 14
Opening the Mobile Development Perspective . 15
Displaying a Mobile Project in the Outline Editor . 15
Displaying a Window, View, or Dialog in the Outline Editor . 16
Changing How Information is Displayed in the Outline Editor . 17
Adding Objects to a Mobile Project . 17
Removing Objects from a Mobile Project . 18
Setting Properties in the Outline Editor . 18
Using Mobile Designer Ant Targets . 19

3. Creating and Building a Mobile Application . 21
Creating a New Mobile Project . 22
Using Mobile Administrator to Manage and Distribute Mobile Applications 24
Building the User Interface . 25
Generating Sources for a Mobile Project . 25

Java Sources that Mobile Development Generates . 26
Text Resources that Mobile Development Creates for a Project . 30
Adding the Mobile Application Logic . 31
Defining Resources for the Mobile Project . 31

Using the Default Resource Handler . 32
Storing Resource Files for the Mobile Project . 32
Storing Image Files for the UniversalResHandler . 33
Extending the UniversalResHandler to Allow Storing Image Files in Custom Subfolders 35
Coding a Custom Resource Handler . 38

Adding Devices to the Mobile Project . 39
Removing Devices from the Mobile Project . 39
Compiling Resources for a Device . 40
Configuring the Orientations Setting for the Application . 40
Managing Languages the Application Supports . 41
Setting the Default Language for the Project . 42
Specifying Values for Non-Default Language Text Resources . 43

4 webMethods Mobile Development Help Version 9.6

Adding Services to a Mobile Project . 43
Generating and Building a Mobile Project . 45

4. Building the User Interface for a Mobile Application . 47
Basic Structure of the Application User Interface . 48
Defining Panes for the Application Window . 49
Adding Views to the Application’s User Interface . 53
Renaming a View . 54
Adding Content to a View . 55
Programmatically Populating a ListView . 57
Using a Content Provider to Populate a ListView . 60
About User-Initiated Events and Listeners . 64
Adding Listeners for User-Initiated Events . 65
Defining Dialogs . 67
Using Templates to Define Custom Objects for a Mobile Project . 68

Creating a Template for a Custom Object . 68
Using a Template in the Mobile Application User Interface . 70

5. User Interface Object Reference . 71
User Interface Objects . 72
Application Node Properties . 72
Objects to Use for Windows . 73

Window Properties . 74
Objects to Use for Panes . 74

HorizontalSplitter Properties . 75
PaneConfiguration Properties . 75
PaneDefinition Properties . 76
VerticalSplitter Properties . 76

Objects to Use for Views . 76
ListView Properties . 77
NavView Properties . 79
View Properties . 79
WebView Properties . 80

Objects to Use for the Layout of the User Interface . 81
Group Properties . 81
Separator Properties . 82
Spacer Properties . 82

Objects to Use for Dialogs . 82
AlertDialog Properties . 83
AlertDialogButton Properties . 83

Objects to Use for Tables . 84
DynamicTablecell Properties . 85
DynamicTablerow Properties . 85
Table Properties . 85
TableButton Properties . 86

webMethods Mobile Development Help Version 9.6 5

Tablecell Properties . 86
Tablerow Properties . 87

Objects to Use for User Interface Controls . 87
Button Properties . 90
ButtonGroup Properties . 91
CheckBox Properties . 91
Container Properties . 92
DateEntry Properties . 93
DropDownListEntry Properties . 93
DynamicDisplayObject Properties . 94
DynamicDisplayObjectArray Properties . 94
DynamicDropdownlistEntryItems Properties . 94
Entry Properties . 95
Image Properties . 95
NavButton Properties . 96
Pagination Properties . 97
ProgressAnim Properties . 97
RadioButton Properties . 98
SearchEntry Properties . 99
StringDropdownlistEntry Properties . 99
Textfield Properties . 99
WebViewElement Properties . 100

Objects to Use for Content Providers . 101
DataBinding Properties . 102
DynamicDataSource Properties . 102
ContentProvider Properties . 102
JSONDataSource Properties . 103

Objects to Use for Event Listeners . 103
Objects to Use for Event Actions . 104

Back Properties . 106
ChangePaneConfiguration Properties . 106
Delegate Properties . 107
OpenDialog Properties . 107
ToggleVisibility Properties . 107
Transition Properties . 108

Objects to Use for Templates . 108
ListViewElement Properties . 109
Template Properties . 109
TemplateReference Properties . 110

6. Services Object Reference . 111
Objects to Use for Services . 112

Resources Properties . 112
Resource Properties . 113
Method Properties . 113

6 webMethods Mobile Development Help Version 9.6

Request Properties . 114
Parameter Properties . 114
Response Properties . 115

7. Creating Application Logic . 117
About Adding Application Logic . 118
About the TransitionStackController . 119
Logic for a View . 120
Logic for a Dialog . 121
Logic to Display and Close a Dialog . 122
Logic for a Method Name Property . 122
Logic to Programmatically Set a Property Value at Run Time . 123
Logic to Respond to a Listener Event . 124
Logic to Transition to Another View . 125
Common Methods to Override in Generated Code for the Application 126
Common Methods to Override in the Generated Code for a View . 127

8. Managing a Project . 129
Renaming a Mobile Project . 130
Renaming the Application . 130
Changing the Package Name . 131

webMethods Mobile Development Help Version 9.6 7

About this Guide

This document contains information about using the Mobile Development plug-in
available within Software AG Designer.

Document Conventions

Documentation Installation

You can download the product documentation using the Software AG Installer. The
documentation is downloaded to a central directory named _documentation in the main
installation directory (SoftwareAG by default).

Online Information

You can find additional information about Software AG products at the locations listed
below.

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods Integration
Server, using the convention folder.subfolder:service.

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously are
joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace font Identifies text you must type or messages displayed by the system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type one
of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside the
square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type. Type
only the information. Do not type the ellipsis (...).

About this Guide

8 webMethods Mobile Development Help Version 9.6

If you want to... Go to...

Access the latest version of product
documentation.

Software AG Documentation website

http://documentation.softwareag.com

Find information about product releases and
tools that you can use to resolve problems.

See the Knowledge Center to:

 Read technical articles and papers.

 Download fixes and service packs (9.0
SP1 and earlier).

 Learn about critical alerts.

See the Products area to:

 Download products.

 Download certified samples.

 Get information about product
availability.

 Access older versions of product
documentation.

 Submit feature/enhancement requests.

Empower Product Support website

https://empower.softwareag.com

 Access additional articles, demos, and
tutorials.

 Obtain technical information, useful
resources, and online discussion forums,
moderated by Software AG professionals,
to help you do more with Software AG
technology.

 Use the online discussion forums to
exchange best practices and chat with
other experts.

 Expand your knowledge about product
documentation, code samples, articles,
online seminars, and tutorials.

 Link to external websites that discuss
open standards and many web
technology topics.

 See how other customers are streamlining
their operations with technology from
Software AG.

Software AG Developer Community for
webMethods

http://communities.softwareag.com/

http://documentation.softwareag.com
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com
http://communities.softwareag.com/

webMethods Mobile Development Help Version 9.6 9

1 Introduction to Mobile Development

 About Mobile Development . 10

 Other Resources for Mobile Development . 10

 1 Introduction to Mobile Development

10 webMethods Mobile Development Help Version 9.6

About Mobile Development

Software AG Designer provides a set of Mobile Development features that you can use to
develop mobile applications. Use the Mobile Development perspective to display the
views and editors needed to work with mobile applications.

Mobile Development uses the principles of model view controller (MVC) architecture,
which separates the user interface from the business logic and data.

When using Mobile Development, you define the user interface in the Outline Editor that
Mobile Development provides. In the Outline Editor you can also define additional
information for the mobile project, such as the languages the application supports or to
identify services that your application uses to obtain data.

Mobile Development generates Java code for the application. The generated code is based
on the project you define in the Outline Editor. When generating the code, Mobile
Development maintains code that it generates separate from the business logic code that
you provide. Mobile Development generates code, for example, that displays the user
interface you design and that can respond to user-initiated events, such as when a user
presses a button.

Mobile Development also creates Java classes where you put your business logic. These
Java classes are placed in a location known as the user space. After initially creating the
Java classes, in the user space, Mobile Development does not make any further changes
to the classes so that any code you add is not overwritten or changed.

Other Resources for Mobile Development

In addition to the information contained in the Mobile Development online help topics,
you can also find information about working with mobile applications in the following
locations:

 Using webMethods Mobile Designer. This publication describes how to:

 Set up your environment for various mobile platforms (for example, Android,
iOS, and Windows Phone) so that you can develop mobile applications for a
platform.

 Code resource handlers and mobile applications.

 Build mobile applications.

 Install applications on various platforms.

 webMethods Mobile Designer Native User Interface Reference. This publication provides
general information about how to build the user interface for a mobile application.
Additionally, it provides details about the Mobile Designer native user interface that
you can use to create user interfaces for mobile applications. The native user interface
objects described in this publications correlate to the user interface elements you can
add to a mobile application using the Outline Editor in the Mobile Development
perspective.

webMethods Mobile Development Help Version 9.6 11

 1 Introduction to Mobile Development

 webMethods Mobile Designer Java API Reference. This publication describes the Java
classes that Mobile Designer provides and that you can use when coding mobile
applications.

 webMethods Mobile Administrator API Reference. This reference provides information
about how you can access webMethods Mobile Administrator through the REST API.

These resources are available in the _documentation directory of your Software AG
installation. The _documentation directory is installed as a separate component in the
Software AG Installer and might not be present. You can install the directory using the
Installer or you can download these files from the from the public Software AG
Documentation website, http://documentation.softwareag.com, or the Empower Product
Support Website at https://empower.softwareag.com (login required).

http://documentation.softwareag.com
https://empower.softwareag.com

 1 Introduction to Mobile Development

12 webMethods Mobile Development Help Version 9.6

webMethods Mobile Development Help Version 9.6 13

2 Introduction to the Mobile Development User Interface

 Mobile Development Perspective . 14

 Opening the Mobile Development Perspective . 15

 Displaying a Mobile Project in the Outline Editor . 15

 Displaying a Window, View, or Dialog in the Outline Editor . 16

 Changing How Information is Displayed in the Outline Editor . 17

 Adding Objects to a Mobile Project . 17

 Removing Objects from a Mobile Project . 18

 Setting Properties in the Outline Editor . 18

 Using Mobile Designer Ant Targets . 19

 2 Introduction to the Mobile Development User Interface

14 webMethods Mobile Development Help Version 9.6

Mobile Development Perspective

The Mobile Development perspective contains the views and editors needed to work
with mobile applications.

Package Explorer The Package Explorer is a standard Eclipse view. It shows a
Java-specific view of your projects, including mobile projects.

The Package Explorer tree structure contains a top-level node
for each mobile project. The name of the top-level node
matches the name of the mobile project.

The Package Explorer allows access to all information in a
project, including the application code, resource handler code,
application resources, properties files, and information about
the devices a project supports.

Mobile Explorer view The Mobile Explorer view is a Mobile Development-specific
view. It contains a subset of the information in the Package
Explorer. Mobile Explorer view displays information only for
mobile projects. For each mobile project, the Mobile Explorer
view displays:

 Root application
 Single, main window for the project
 Each view defined for the project
 Each dialog defined for the project

Use the Mobile Explorer view to navigate to the project
information you want to view and work with in the Outline
Editor. For example, if you want to work on one of the views in
the project, you can navigate to that view in the Mobile
Explorer view and display it in the Outline Editor so that you
can edit the view.

Outline Editor The Outline Editor is a Mobile Development-specific editor
that shows an outline of a mobile project. The Outline Editor
has two sections:

 Model section, which displays the tree structure, or outline,
of the mobile project. It lists, for example, the window,
views, and dialogs in the project. Child nodes of a window,
view, or dialog lists the user interface elements, such as
buttons or text entry fields, that the window, view, or
dialog contains. Additionally, the outline of the project lists
the languages that the project supports.

 Properties section, which displays the properties for the
node that is selected in the Model section of the Outline
Editor. Use the Properties section to view and edit
properties.

webMethods Mobile Development Help Version 9.6 15

 2 Introduction to the Mobile Development User Interface

Opening the Mobile Development Perspective

Software AG Designer provides a Mobile Development perspective that contains the
views and editors needed to work with mobile applications.

To open the Mobile Development perspective

1 In Software AG Designer, select Window > Open Perspective > Other.

2 In the Open Perspective dialog box, select Mobile Development.

3 Click OK.

Software AG Designer switches to the Mobile Development perspective.

Displaying a Mobile Project in the Outline Editor

You can use the Outline Editor to view an outline structure of your mobile project, update
the user interface for the application, and specify languages that your application
supports.

You can open a mobile project from the Mobile Explorer view or the Package Explorer.

To display a mobile project in the Outline Editor

 To display a mobile project from the Mobile Explorer view:

a Expand the project in the Mobile Explorer view.

The top-level child node of the project represents the root application for the
project.

b Either double-click the root application node or select the root application node
and press ENTER.

 To open a mobile project from the Package Explorer.

Ant view The Ant view is a standard Eclipse view. It shows Ant scripts
that you can use for a mobile project.

Mobile Designer provides several Ant scripts that you use to
perform various tasks for a mobile project. For example, you
use an Ant task to build a project. The build Ant tasks compile
your application code and package the application so that you
can install it on a mobile device.

 2 Introduction to the Mobile Development User Interface

16 webMethods Mobile Development Help Version 9.6

a Locate the project in the Package Explorer.

b Expand the project to locate the root application node in the model folder, for
example, model > application_name.aml, where applicationt_name.aml is the node that
represents the root application for the project.

c Do one of the following to open the project in the Outline Editor:

 Double-click the root application node.

 Select the root application node and press ENTER.

 Right-click the root application node and select Open With > Mobile Application
Editor.

Displaying a Window, View, or Dialog in the Outline Editor

If you want to work on a mobile project’s main window or work on a specific view or
dialog in a mobile project, you can display information for that window, view, or dialog
in the Outline Editor. By doing so, you can concentrate on just the single item on which
you want to work rather than displaying the entire mobile project in the Outline Editor.

You can open a mobile project from the Outline Editor or the Mobile Explorer view.

To display a single window, view, or dialog in the Outline Editor

 From the Outline Editor:

a Expand the outline to locate the window, view, or dialog with which you want to
work.

Note: If you cannot locate the element (window, view, dialog) in the outline, the
Outline Editor might be displaying only a portion of the project that does not
include the element you want. In this case, use the instructions below to display
the window, view, or dialog from the Mobile Explorer view.

b Double-click the node for the window, view, or dialog.

 From the Mobile Explorer view:

a Expand the project and locate the window, view, or dialog with which you want
to work.

b Either double-click the node for the window, view, or dialog or select the node
and press ENTER.

webMethods Mobile Development Help Version 9.6 17

 2 Introduction to the Mobile Development User Interface

Changing How Information is Displayed in the Outline Editor

The Outline Editor contains the Model section that displays the tree structure (or outline)
of the project, and the Properties section that displays the properties for the node that is
selected in the project’s outline. You can display the Model and Properties sections in the
following orientations:

 Horizontally, one on top of the other

 Vertically, side-by-side

To change how the sections are displayed in the Outline Editor

 To display the Model and Properties sections horizontally, one on top of the other, click

 Horizontal orientation. This tool is located in the upper, right of the Outline Editor.

 To display the Model and Properties sections vertically, side-by-side, click Vertical
orientation. This tool is located in the upper, right of the Outline Editor.

Adding Objects to a Mobile Project

In the Outline Editor, you add the following types of objects to a mobile project.

 User interface objects, for example:

 Views and dialogs
 User interface controls, such as, buttons, check boxes, tables, search fields, and

text entry fields,

 Languages that the application supports

 Services that you want to use in your mobile application. For example, you might to
add a service that you use to obtain data that your application displays.

To add objects to a mobile project

1 Ensure the mobile project or specific window, view, or dialog to which you want to
add an item is open in the Outline Editor. For instructions, see “Displaying a Mobile
Project in the Outline Editor” on page 15 or “Displaying a Window, View, or Dialog
in the Outline Editor” on page 16.

2 In the Model section of the Outline Editor, expand the outline so that you view the
parent node where you want to add a child object.

3 To add a child object, right-click the parent node and select New Child > child_object,
where child_object is the name of the child object you want to add.

The New Child list contains only objects that are valid children of the selected parent
node.

 2 Introduction to the Mobile Development User Interface

18 webMethods Mobile Development Help Version 9.6

Tip! After adding a new node, you can edit the properties for the new node. For more
information, see “Setting Properties in the Outline Editor” on page 18.

To update the Java classes that Mobile Development generates for the project so that your
changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

Removing Objects from a Mobile Project

In the Outline Editor, you can remove objects from a mobile project.

To remove objects from a mobile project

1 Ensure the mobile project or specific window, view, or dialog from which you want to
remove an item is open in the Outline Editor. For instructions, see “Displaying a
Mobile Project in the Outline Editor” on page 15 or “Displaying a Window, View, or
Dialog in the Outline Editor” on page 16.

2 In the Model section of the Outline Editor, expand the outline so that you can view the
node you want to remove.

3 To remove a node, right-click the node and select Delete.

Alternatively, you can select the node and press the DELETE key.

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

Setting Properties in the Outline Editor

After you add a new node to the outline, you should set properties for the new node.
Additionally, you can update the properties later if you need to change the settings.

To set the properties for a node

1 Ensure the mobile project or specific window, view, or dialog for which you want to
work with properties is open in the Outline Editor. For instructions, see “Displaying a
Mobile Project in the Outline Editor” on page 15 or “Displaying a Window, View, or
Dialog in the Outline Editor” on page 16.

2 In the Model section of the Outline Editor, expand the outline so that you view the
node for which you want to set properties.

3 Select the node for which you want to set properties.

webMethods Mobile Development Help Version 9.6 19

 2 Introduction to the Mobile Development User Interface

4 In the Properties section of the Outline Editor, fill in the properties for the selected
node.

For more information about the properties, see “User Interface Objects” on page 72.

Note: If the Content Assist Available icon is displayed next to a field, click into the field
and press CTRL+SPACE to view the types of information you can specify for a
property. The content assist shows valid values and/or syntax you can use to specify a
valid value. If the content assist lists @{myMethodName} or
@{my.package.class.static.method}, you can specify the name of a method to execute at
run time to supply the value for the property. For more information, see “Logic to
Programmatically Set a Property Value at Run Time” on page 123.

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

Using Mobile Designer Ant Targets

Mobile Designer provides several Ant targets that you use to build and run your project
in the Mobile Designer utility, Phoney, which is a phone simulator that is not platform-
specific that you can use to test your applications.

For more information about the Ant targets that are available and the actions the Ant
targets perform, see Using webMethods Mobile Designer.

To run an Ant target for a mobile project

1 In the Project Explorer, locate the project for which you want to execute an Ant target.

2 Expand the project and drag its build.xml file to the Ant view.

3 In the Ant view, double-click the Ant target that you want to run.

 2 Introduction to the Mobile Development User Interface

20 webMethods Mobile Development Help Version 9.6

webMethods Mobile Development Help Version 9.6 21

3 Creating and Building a Mobile Application

 Creating a New Mobile Project . 22

 Using Mobile Administrator to Manage and Distribute Mobile Applications 24

 Building the User Interface . 25

 Generating Sources for a Mobile Project . 25

 Text Resources that Mobile Development Creates for a Project . 30

 Adding the Mobile Application Logic . 31

 Defining Resources for the Mobile Project . 31

 Adding Devices to the Mobile Project . 39

 Removing Devices from the Mobile Project . 39

 Compiling Resources for a Device . 40

 Configuring the Orientations Setting for the Application . 40

 Managing Languages the Application Supports . 41

 Setting the Default Language for the Project . 42

 Specifying Values for Non-Default Language Text Resources . 43

 Adding Services to a Mobile Project . 43

 Generating and Building a Mobile Project . 45

 3 Creating and Building a Mobile Application

22 webMethods Mobile Development Help Version 9.6

Creating a New Mobile Project

Mobile Development provides the New Mobile Development Project wizard that you can
use to create a new mobile project. When you create a mobile project, Mobile
Development automatically adds the following to your mobile project:

 Adds your system language as a language that your application supports. You can
add additional languages and/or remove languages after the project is created. For
more information, see “Managing Languages the Application Supports” on page 41.

 Adds several universal devices that your application supports. You can add
additional devices and/or remove devices after the project is created. For more
information, see “Adding Devices to the Mobile Project” on page 39 and “Removing
Devices from the Mobile Project” on page 39.

Additionally, when you create a project, in the New Mobile Development Project wizard,
you can provide settings to use Mobile Administrator with your project. Before you can
use Mobile Administrator, you must perform required setup. For more information, see
“Using Mobile Administrator to Manage and Distribute Mobile Applications” on
page 24.

To create a new mobile project

1 Open the New Mobile Development Project wizard by selecting one of the following:

 File > New > Mobile Project

 File > New > Project > Software AG > Mobile Development > Mobile Project

2 Click Next.

3 Specify the following settings for the mobile project:

a In the Project Name field, type a name for the new project.

b In the Application Name field, type the name you want to assign the application you
are creating.

Mobile Development uses the name you specify internally, for example, as part of
the name of the application_nameAppControllerImpl.java Java class that it creates.

Note: You can rename the application at a later time. However, if you have added
custom code to application_nameAppControllerImpl.java you need to take further
actions. For more information, see “Renaming the Application” on page 130.

c In the Package Name field, type a package name. When specifying the name, be
sure to only use characters valid in a Java package name.

Mobile Development uses the name you supply as part of package names for Java
classes in the gen/src and src folders of your project. For example, if you specify
com.mycompany.myproject, the gen/src folder contains the com.mycompany.myproject
package.

webMethods Mobile Development Help Version 9.6 23

 3 Creating and Building a Mobile Application

d Indicate whether you want to save the project in the default location:

 To use the default location, select the Use default location check box.

 To specify an alternate location, clear the Use the default location check box, click
Browse, and browse to and select the location where you want to save the
project.

e Click Next.

4 If you want to manage and distribute your application via webMethods Mobile
Administrator, continue with the next step. Otherwise, click Finish.

5 If you want to use Mobile Administrator to manage and distribute your application,
do the following.

Important! To use Mobile Administrator for a mobile project, you must perform setup
in Mobile Administrator. For more information, see “Using Mobile Administrator to
Manage and Distribute Mobile Applications” on page 24.

a Select the Use Mobile Administrator check box.

b In the URL field, type the Mobile Administrator instance you want to use to
manage and distribute the application.

c In the Access Token field, specify the access token that you want Mobile Designer
to use for authentication when it accesses Mobile Administrator during the
process of uploading or remotely building the project.

d Click Login.

e For Application do one of the following:

 If you want to use an existing Mobile Administrator application, select
Existing.

 If the Mobile Administrator application you want to use does not yet exist and
you plan to create a new Mobile Administrator application, select New.

6 Complete the Mobile Administrator information based on whether you are using an
existing application or will be creating a new application:

 If you are using an existing Mobile Administrator application, select the identifier
of the application you want to use.

 If you will be creating a new Mobile Administrator application, perform the
following steps:

 3 Creating and Building a Mobile Application

24 webMethods Mobile Development Help Version 9.6

i In the Identifier field, type the name of the identifier you want to use for a new
project.

ii For an Android project, select the Android check box and in the Bundle ID field
specify the bundle ID you want to use for the final binary.

iii For an iOS project, select the iOS check box and in the Bundle ID field specify
the bundle ID you want to use for the final binary.

7 Click Finish.

Using Mobile Administrator to Manage and Distribute Mobile
Applications

Mobile Administrator allows you to manage and distribute your mobile applications.
Mobile Administrator provides an App Store where users can browse the App catalog to
select applications to install. Mobile Administrator can send push notifications to users
when updates are available for their installed applications.

Mobile Designer provides a Mobile Administrator plug-in that allows you to use Mobile
Administrator for applications you create using Mobile Development.

Before You Can Configure a Mobile Project to Use Mobile Administrator

Before you can configure a mobile project to use the Mobile Administrator, perform the
following required setup in Mobile Administrator.

 Create a Mobile Administrator project that you will associate with your mobile
project. You need one Mobile Administrator project for each mobile project.

 Use an existing Mobile Administrator user account or define a new one, and assign
the user account to the Mobile Administrator project.

 Ensure the Mobile Administrator user account, at a minimum, has the following
permissions for the Mobile Administrator project:

 View and Download Stable Versions
 Manage Build Jobs

 Ensure the Mobile Administrator user account has the global Can Manage Site
permission.

You can set this permission in Mobile Administrator on the Details tab for a user.

 Determine whether you want to use an access token or basic authentication with the
Mobile Administrator user account.

Note: It is recommended that you use an access token for authentication.

 Generate an access token for the Mobile Administrator user account if you want to
use an access token for authentication.

webMethods Mobile Development Help Version 9.6 25

 3 Creating and Building a Mobile Application

 Set up Mobile Designer build nodes if you want to remotely build your project.

Configuring a Mobile Project to Use Mobile Administrator

You can configure a mobile project to use Mobile Administrator when you initially create
the project using the New Mobile Development Project wizard. When you specify
information for Mobile Administrator in the wizard, Mobile Development performs all
the necessary configuration tasks for your mobile project.

If you do not specify information for Mobile Administrator in the New Mobile
Development Project wizard and later decide you want to use Mobile Administrator for
your project, you must configure the mobile project manually. For information about how
to manually set up your mobile project to use the Mobile Administrator plug-in, see
information about using Mobile Administrator to distribute mobile applications in Using
webMethods Mobile Designer.

Building the User Interface

The following lists the tasks to perform to build the user interface for a mobile
application.

 Understand the basic structure of the user interface, for information, see “Basic
Structure of the Application User Interface” on page 48.

 Define the configuration of panes to use for the application’s window. For more
information, see “Defining Panes for the Application Window” on page 49.

 Define the different screens that the application displays. The screens are referred to
as views. For more information, see “Adding Views to the Application’s User
Interface” on page 53 and “Adding Content to a View” on page 55.

 Add listeners that wait for user-initiated events when a user interacts with controls
you add to the view and take an action based on the user-initiated event. For more
information, see “About User-Initiated Events and Listeners” on page 64 and “Adding
Listeners for User-Initiated Events” on page 65.

 Define templates if you want to customize and reuse user interface structures. For
more information, see “Using Templates to Define Custom Objects for a Mobile
Project” on page 68.

Generating Sources for a Mobile Project

To incorporate the changes you make to the mobile project’s model you need to generate
the sources. When you generate sources, Mobile Development generates Java classes for
the mobile application. For a description of the Java classes that Mobile Development
generates, see “Java Sources that Mobile Development Generates” on page 26.

 3 Creating and Building a Mobile Application

26 webMethods Mobile Development Help Version 9.6

You should generate sources after you update a project, for example, by adding
additional user interface objects to the project. You can generate sources from the Outline
Editor or the Package Explorer.

Note: Mobile Development also create .txt files for each language that the mobile project
supports. For more information, see “Text Resources that Mobile Development Creates
for a Project” on page 30.

To generate sources

 From the Outline Editor:

a Display your project in the Outline Editor. For more information, see “Displaying
a Mobile Project in the Outline Editor” on page 15.

b In the Outline Editor, right click anywhere and select Generate Source Code >
Application Model.

 From the Package Explorer.

a Locate the project in the Package Explorer.

b Right-click the project node or any file in the project and select Generate Source
Code > Application Model.

Note: Selecting Generate Source Code > Application Model generates the source code for the
mobile project based on the model you define in the Outline Editor. If you select Generate
Source Code > Application Model and API, Mobile Development also generates the Mobile
Development API in the gen/api-src folder.

Java Sources that Mobile Development Generates

When you generate sources for your mobile project by using Generate Source Code >
Application Model in the Outline Editor, Mobile Development generates Java classes in the
following folders:

 gen/src folder contains Java classes that are specific to your mobile project and are
based on the model you develop in the Outline Editor.

All the Java in the gen/src folder is generated. Mobile Development regenerates the
Java classes in this folder each time you generate sources for your mobile project. As a
result, the Java classes reflect the changes you make to your model, for example, if
you add or remove user interface objects.

 src folder, also known as the user space, contains Java classes that you update to
provide the business logic for your application.

Mobile Development generates each Java class in the src folder only one time. If the
class already exists when you generate sources, Mobile Development does not
overwrite it. Additionally, to preserve logic you might have added to generated logic,

webMethods Mobile Development Help Version 9.6 27

 3 Creating and Building a Mobile Application

Mobile Development also does not delete the Java classes, for example, if you rename
or delete a corresponding item in the model. You must delete unneeded Java classes
manually for the project to compile.

Note: If you use Generate Source Code > Application Model and API, Mobile Development also
creates Java classes in the gen/api-src folder. The names of the Java packages in this folder
start with com.software.mobile.runtime.toolkit. These packages contain Java classes for the
Mobile Development API.

Caution! Do not make changes to the Java classes in the gen/src or gen/api-src folders.
These folders contain classes that Mobile Development automatically generates and
changes you make will be lost.

Model-Specific Java Code in the gen/src Folder

When you generate sources for your mobile project, Mobile Development generates the
following packages based on the model that you defined in the Outline Editor. In the
names of the following packages, package_name is the package name that you specified for
your mobile project.

Package Name in the gen/src
folder Description

package_name This package contains general model-based Java classes.

package_name.i18n This package contains Java classes for language support
to load languages that you indicated your mobile
application supports. You specify languages your
application supports by adding the languages to the
model. For more information, see “Managing
Languages the Application Supports” on page 41.

package_name.services.rest This package contains Java classes that correspond to
the services that you add to your mobile project in the
Outline Editor. For more information, see “Adding
Services to a Mobile Project” on page 43.

package_name.ui This package contains Java classes that correspond to
the user interface that you designed in the Outline
Editor. This includes Java classes for each view in your
user interface along with its associated abstract
controller.

package_name.ui.dialog This package contains Java classes that correspond to
the dialogs that you designed in the Outline Editor.

 3 Creating and Building a Mobile Application

28 webMethods Mobile Development Help Version 9.6

Model-Specific Java Code in the src Folder

When you generate sources for your project, Mobile Development generates the
following packages based on the model that you defined in the Outline Editor. In the
names of the following packages, package_name is the package name that you specified for
your mobile project.

package_name.ui.templates This package contains Java classes that correspond to
the templates you defined in the Outline Editor, if any.
For more information about using templates, see “Using
Templates to Define Custom Objects for a Mobile
Project” on page 68.

package_name.utils This package contains a helper class that provides
services, such as, determining whether the application is
running on a tablet or the orientation of the device,
whether portrait or landscape.

Package Name in the gen/src
folder Description

webMethods Mobile Development Help Version 9.6 29

 3 Creating and Building a Mobile Application

Package Name in the src folder Description

package_name.ui.controller.impl This package contains Java classes that correspond to
the user interface that you designed in the Outline
Editor. Mobile Development generates the classes a
single time. You add your application logic to these
Java classes. The Java classes in this package are:

 application_nameAppControllerImpl.java

In the name of the Java class, application_name is the
name you assigned to the application. Mobile
Development generates one
application_nameAppControllerImpl.java class for your
mobile project.

Add the logic to this Java class that you want the
application to execute when the application starts
and when the user rotates the device, changing its
orientation. This is also a good location for code
that is not related to a specific view.

 view_nameControllerImpl.java

In the name of the Java class, view_name is the name
of a view you defined in the Outline Editor. Mobile
Development generates one
view_nameControllerImpl.java class for each view in
your model.

Add logic specific to a view to this Java class. You
can add custom code here that extends the
generated abstract view controller methods that
Mobile Development generates in the
Abstractview_nameController.java files, which reside in
the gen/src folder in the package_name.ui package.

For more information about the types of logic to add
these Java classes, see “About Adding Application
Logic” on page 118

 3 Creating and Building a Mobile Application

30 webMethods Mobile Development Help Version 9.6

Text Resources that Mobile Development Creates for a
Project

In addition to generated Java source, Mobile Development generates .txt files for each
language that the mobile project supports.

When you create the project using the New Mobile Development Project wizard, as
described in “Creating a New Mobile Project” on page 22, Mobile Development
generates .txt files in the project’s resources/text folder. Mobile Development updates the
.txt files each time you save the project. Mobile Development generates one .txt file for
each language that the mobile project supports. The following shows the naming
convention for the .txt files:

core.language_code.txt

The language_code in the file name corresponds to the language code you specified for the
Short Name property when you added the language to the mobile project.

package_name.ui.dialog This package contains Java classes that correspond to
the dialogs that you added to the user interface in the
Outline Editor. Mobile Development generates the
classes a single time.

For each dialog you define in the Outline Editor,
Mobile Development generates a dialog_name.java class,
where dialog_name is the name you assigned the dialog
in the Outline Editor.

Mobile Development generates the Java classes for
dialogs a single time. You add logic to customize the
user interface object to the generated Java classes.

package_name.ui.templates This package contains Java classes that correspond to
the templates you defined in the Outline Editor. You
use templates to customize user interface objects that
Mobile Development provides. For more information,
see “Using Templates to Define Custom Objects for a
Mobile Project” on page 68.

For each template you define in the Outline Editor,
Mobile Development generates a template_name.java
class, where template_name is the name you assigned
the template in the Outline Editor.

Mobile Development generates the Java classes for
templates a single time. You can add your logic for the
dialogs to these Java classes. For more information, see
“Creating a Template for a Custom Object” on page 68.

Package Name in the src folder Description

webMethods Mobile Development Help Version 9.6 31

 3 Creating and Building a Mobile Application

Each core.language_code.txt files contains lines for the text strings that you use in a mobile
project’s views. For example, the files contains a line for the view’s Header Text property. If
you add a Textfield object to a view, the file contains a line for the Textfield object ‘s Text
property.

Note: Mobile Development only creates text resource entries for properties that take a text
string for a value when you provide a value for the property. Additionally, you must name
the element to which the property belongs. You name a property using the element’s
Name property. If you specify a value for a property, but do not name the element, Mobile
Development generates the plain String value instead of creating a reference to the text
resource.

When generating the core.language_code.txt files, Mobile Development only includes the
values in the .txt file that is associated with the project’s default language. For example, if
the default language uses the language code “en”, the core.en.txt file might have the
following line:

MASTERVIEW_HEADER_TEXT=Master View

If a mobile project also includes a language with the language code “de”, but “de” is not
the default language, the corresponding line in the core.de.txt file is:

MASTERVIEW_HEADER_TEXT=

It is your responsibility to provide the appropriate translations for the strings for the
core.language_code.txt files of the languages that are not the default language.

Adding the Mobile Application Logic

To add the business logic for your application, add your custom code to the user space,
that is, the Java classes that Mobile Development generates in the mobile project’s src
folder.

Caution! Do not add logic to the Java classes in the gen/src or gen/api-src folders. When
you generate sources or when you generate sources and API for a mobile project, Mobile
Development regenerates all the Java classes in those folders. Changes you make will be
lost.

For more information, see “About Adding Application Logic” on page 118.

Defining Resources for the Mobile Project

Each project requires its own resource handler. The resource handler defines all the
resources to include with your mobile application, such as graphics, text, icons, and
sounds. You can use either the default resource handler that Mobile Development
provides or code your own resource handler.

 3 Creating and Building a Mobile Application

32 webMethods Mobile Development Help Version 9.6

Using the Default Resource Handler

Mobile Development provides a default resource handler named
package_name.UniversalResHandler.java, which is in the project’s reshandler folder.

If you want to use the resource handler, you do not need to add any code to
UniversalResHandler.

To use the default resource handler

1 Ensure the settings for your mobile project are set to use the default resource handler.

a Ensure the mobile project is open in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

b Select the top-level child node of the project, which is the root application node.

c Ensure the Res Handler property is set to UniversalResHandler.

2 Save the resources for your mobile application, for example, audio files and icons. For
instructions, see “Storing Resource Files for the Mobile Project” on page 32 and
“Storing Image Files for the UniversalResHandler” on page 33.

Storing Resource Files for the Mobile Project

Whether you use the default resource handler that Mobile Development provides or a
custom resource handler you code, you need to save the files that contain the resources
that your application uses in your project.

Store your resource files within the subfolders of the mobile project’s resources folder.
The resources folder has subfolders for the different types of resources.

The following shows an example for a project named "MyProject":

MyProject
 resources
 graphics
 icons
 text
 www

If you want to use a different subfolder than the ones provided, for example, if you want
to use a subfolder named audio to save sound files, add the custom subfolders to the
resource folder and code a custom resource handler for your application. For more
information about using custom resource handlers, see “Coding a Custom Resource
Handler” on page 38.

If you are using the default, UniversalResHandler resource handler, the following table
describes the types of assets you should save in each of the resources subfolders.

webMethods Mobile Development Help Version 9.6 33

 3 Creating and Building a Mobile Application

Storing Image Files for the UniversalResHandler

When using the UniversalResHandler resource handler, you need to store image files in a
specific folder structure. The required folder structure is automatically created for a
project when you create the project using the Mobile Development New Mobile
Development Project wizard, as described in “Creating a New Mobile Project” on
page 22.

The structure allows you to supply different image files for different platforms. For
example, if a mobile application uses an image file named myimage.png, you might need
one version of the image file for an Android device and a different version for an iOS
device. The folder structure allows you to save both, and at run time the application
selects the correct image file based on the device on which the mobile application is
running.

The folder structure has four platform-specific folders and a single general-purpose
folder. Use the general-purpose folder to save image files that can be used for devices
running on any platform. The following shows an example for a project named
"MyProject":

MyProject
 resources
 graphics
 Android
 BlackBerry
 general
 iOS
 WinPhone
 icons
 text
 www

Additionally, each of the main image folders (Android, BlackBerry, iOS, WinPhone, and
general) contain subfolders themselves. This allows you to supply different image files
for different devices within a platform. For example, if a mobile application uses an

resources subfolder Store this type of assets in the subfolder

graphics Image files that the mobile application uses. These are image files
that are larger than an icon.

The UniversalResHandler resource handler requires a specific folder
structure under the resources/graphics folder. For more
information, see “Storing Image Files for the
UniversalResHandler” on page 33.

icons Small image files that the mobile application uses as icons.

text Text files that contain Strings that the mobile application uses.

www HTML files that contain web content that the mobile application
uses.

 3 Creating and Building a Mobile Application

34 webMethods Mobile Development Help Version 9.6

image file named myimage.png, you might need one version of the image file for an iOS
non-retina device and a different version for an iOS retina device. The following table
describes the subfolder structure for each main image folder:

Main image folder Description of its subfolder structure

Android The subfolders are based on screen density of Android device on
which the mobile application runs. The following shows the
subfolder structure:

Android
 drawable-hdpi
 drawable-ldpi
 drawable-mdpi
 drawable-xhdpi
 drawable-xxhdpi

BlackBerry The subfolders are based on the screen width (in pixels) of the
BlackBerry device on which the mobile application runs. The
following shows the subfolder structure:

BlackBerry
 w160
 w240
 w320
 w360
 w480

iOS The subfolders are based on the display property of the iOS device,
either non-retina or retina. The following shows the subfolder
structure:

iOS
 NonRetina
 Retina

WinPhone The subfolders are based on the screen resolution of the Windows
Phone device and whether background color of the view in which
the image is displayed is dark or light. The following shows the
subfolder structure:

WinPhone
 Dark
 1080p
 720p
 WVGA
 WXGA
 Light
 1080p
 720p
 WVGA
 WXGA

webMethods Mobile Development Help Version 9.6 35

 3 Creating and Building a Mobile Application

At run time, the application searches the folders in the following order to locate the
version of the image to use:

1 Platform-specific subfolder. For example, if the application is running on an iOS retina
device, the application first attempts to locate the image in the
resources/graphics/iOS/Retina/ folder.

2 Platform-specific root folder. Continuing with the example, if the image was not found in
the platform-specific subfolder, the application next looks for the image in the
platform-specific root folder, which is resources/graphics/iOS/ folder.

3 General subfolder. Continuing with the example, if the image was not found in the
platform-specific root folder, the application next looks for the image in the
appropriate general subfolder. For example, if the image is to be displayed in a table
cell that is 150 pixels, the application looks for the image file in the
resources/graphics/general/w200/ folder.

4 General folder. Continuing with the example, if the image was not found in the general
subfolder, the application next looks for the image in the general root folder, which is
resources/graphics/general/ folder.

After searching for the image file, if the application does not locate an image file to use, it
returns a placeholder image file. The placeholder image file is a point with size 1x1 pixel.

Extending the UniversalResHandler to Allow Storing Image Files in
Custom Subfolders

If you want to use the basic functionality of the UniversalResHandler resource handler, but
want to use additional subfolders for the image files, you can create a custom resource
handler that extends the UniversalResHandler resource handler. For example, suppose in
addition to the standard iOS platform subfolders, which are NonRetina and Retina, you
also want to use RetinaIPhone4 and RetinaIPhone5. In this case, you can create a custom
resource handler the extends the UniversalResHandler resource handler and includes the
logic to handle the new subfolders.

general The subfolders are based on the width (in pixels) of the container in
which the image is displayed at run time. For example, the container
might a view or table cell. The following shows the subfolder
structure:

general
 w200
 w400
 w600
 w800

Main image folder Description of its subfolder structure

 3 Creating and Building a Mobile Application

36 webMethods Mobile Development Help Version 9.6

To extend the UniversalResHandler to support additional image subfolders

1 Create a new java class, for example, MyUniversalResHandler, in the same folder where
UniversalResHandler resides.

2 In the new java class for the custom resource handler, add your custom logic.

The custom logic should:

 Extend UniversalResHandler.java.

 Perform a super call to provide the behavior of the UniversalResHandler resource
handler.

 Determine the type device and if the device is one for which you have a custom
folder, provide logic for that custom folder.

The following shows an example resource handler named MyUniversalResHandler that
extends the UniversalResHandler resource handler. This custom resource handler
accommodates storing image files in the following graphic subfolders. These
subfolders are in addition to the subfolders that the UniversalResHandler resource
handler supports.

 resources/graphics/iOS/RetinaIPhone4/
 resources/graphics/iOS/RetinaIPhone5/
 resources/graphics/general/w1000/

// Use the UniversalResHandler's package
package my_application_package;

public class MyUniversalResHandler extends UniversalResHandler {

 @Override
 public void projectResourceScript() {

 // This call provides the UniversalResHandler behavior as
 // the default behavior.
 super.projectResourceScript();

 rh.setResourceReadSubdirectory("graphics");
 // get current handset name
 String selectedHandset = rh.getProperty("selected.handset");

 if (selectedHandset.startsWith("IOS")) {
 // Logic for IOS devices only

 // Processes the "iOS/RetinaIPhone4" folder to
 // make all images in the "RetinaIPhone4" folder
 // available at the run time.
 addResourceFolder("iOS", "RetinaIPhone4");

 // Processes the "iOS/RetinaIPhone5" folder to
 // make all images in the "RetinaIPhone5" folder
 // available at the run time.
 addResourceFolder("iOS", "RetinaIPhone5");
 }

webMethods Mobile Development Help Version 9.6 37

 3 Creating and Building a Mobile Application

 // Processes "general/w1000" folder to make all
 // images in the "general/w1000" folder available
 // at the runtime.
 addResourceFolder("general", "w1000", false);
 }
}

3 Update the mobile project’s properties so that the mobile project uses your custom
resource handler.

a Ensure the mobile project is open in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

b Select the top-level child node of the project, which is the root application node.

c Set the Res Handler property to the name of your custom resource handler,
package_name.custom_resource_handler_name.java, for example
com.softwareag.mobile.myproject.MyUniversalResHandler.java.

4 In the application_nameAppControllerImpl.java, override the methods the application
uses to obtain image files.

The method you override depends on where you add the new subfolders that need to
be searched for image files. The following tables lists the methods to override:

Continuing with the example started in step 1 of this procedure, the following code
sample shows how to override the getIOSGraphicsFolder method so that at run time the
application searches following additional folders for image files:

 resources/graphics/iOS/RetinaIPhone4/
 resources/graphics/iOS/RetinaIPhone5/

protected String getIOSGraphicsFolders(int currentScreenPPI,
 int viewBackGroundcolor) {
 int height = Math.max(CanvasController.CURRENT_SCREEN_WIDTH,
 CanvasController.CURRENT_SCREEN_HEIGHT);
 if (currentScreenPPI >= 200) {
 if (height == 960) {
 return "RetinaIPhone4/"; // !!! Slash at the end is important!!!
 } else if (height == 1136) {
 return "RetinaIPhone5/"; // !!! Slash at the end is important!!!

If you add a subfolder to this
resources/graphics folder... Override this method(s)

Android getAndroidGraphicsFolder

BlackBerry getBlackBerryGraphicsFolder

iOS getIOSGraphicsFolder

WinPhone getWinPhoneGraphicFolder and
getWinPhoneThemeFolder

general getGeneralGraphicsFolder

 3 Creating and Building a Mobile Application

38 webMethods Mobile Development Help Version 9.6

 }
 }
 // otherwise, return default folder
 return super.getIOSGraphicsFolders(currentScreenPPI, viewBackGroundcolor);
}

Again, continuing with the example started in step 1 of this procedure, the following
code sample shows how to override the getGeneralGraphicsFolder method so that at run
time the application searches the resources/graphics/general/w1000/ folder for image
files:

protected String getGeneralGraphicsFolder(int viewBackGroundcolor,
 int containerWidth) {
 if (containerWidth >= 1000) {
 return "w1000/"; // !!! Slash at the end is important!!!
 }
 // otherwise, return default folder
 return super.getGeneralGraphicsFolder(viewBackGroundcolor,
 containerWidth);
}

Coding a Custom Resource Handler

To use a custom resource handler for your mobile application

1 Code your resource handler. For information, see information about defining
resources for mobile applications in the Using webMethods Mobile Designer.

Note: It is recommended that you save your custom resource handler in your mobile
project’s reshandler folder.

2 Ensure the mobile project is open in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

3 Select the top-level child node of the project, which is the root application node.

4 Set the Res Handler property to identify the fully-qualified name of the custom
resource handler you coded.

5 Save the resources for your mobile application, for example, audio files and icons. For
instructions, see “Storing Resource Files for the Mobile Project” on page 32.

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

webMethods Mobile Development Help Version 9.6 39

 3 Creating and Building a Mobile Application

Adding Devices to the Mobile Project

When you create a project, Mobile Development adds several universal devices to your
project. If needed, you can add additional devices to the mobile project later using the
Mobile Designer Add-Handset Ant target. The following describes how to add a device
using the Add-Handset Ant target.

Note: If you need to remove devices from your project, see “Removing Devices from the
Mobile Project” on page 39.

To add devices to a mobile project using the Add-Handset Ant target

1 Open the mobile project in the Outline Editor if it is not already open. For
instructions, see “Displaying a Mobile Project in the Outline Editor” on page 15.

2 In the Project Explorer, expand the project, and drag the build.xml file to the Ant
view.

3 In the Ant view, double-click the Add-Handset Ant target and fill in the required
information.

For more information about adding devices to project how to use the Add-Handset Ant
target, see Using webMethods Mobile Designer.

Removing Devices from the Mobile Project

When you create a project, Mobile Development adds several universal devices to your
project. You can add additional devices using the procedure described in “Adding
Devices to the Mobile Project” on page 39.

If you later decide you no longer want your application to support a device, you can
remove it.

To remove a device from a mobile project

1 In the Project Explorer, expand the project so that you can view the project’s targets
folder, and expand the targets folder.

The targets folder contains one .xml file for each device the application supports.

2 Delete the .xml file that corresponds to the device you want to remove from the
mobile project.

Important! Do not remove the _defaults_.xml file.

 3 Creating and Building a Mobile Application

40 webMethods Mobile Development Help Version 9.6

Compiling Resources for a Device

Use the +Run-Reshandler Ant target to compile the resources for the current device.

You should compile resources for a device:

 After you change or add language resources, such as text or header text.
 After you change or add new image resources.
 After you add parameters to the _defaults_.xml file.

Alternatively, you can use the ++Activate-Handset Ant target, which allows you to select the
device that you want to activate. For information about using the ++Activate-Handset Ant
target, see Using webMethods Mobile Designer.

To compile resources for a device

1 In the Project Explorer view, expand the mobile project, and drag the build.xml file to
the Ant view.

2 In the Ant view, double-click Run-Reshandler.

The Ant target compiles the resources for the current device.

Configuring the Orientations Setting for the Application

An application’s orientation setting indicates whether the user interface for the
application displays in portrait mode, landscape mode, or rotates from portrait mode to
landscape or vice versa as the user rotates the device.

To configure the orientation setting for a mobile application

1 Ensure the mobile project is displayed in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

2 In the Model section of the Outline Editor, expand the project so that you can view the
top-level child node that represents the root application for the project.

3 Select the root application node.

4 In the Properties section of the screen, select the orientation you want to use in the
Orientation property.

Select PerHandset you want to set the orientation settings for each device a project
supports rather than use a single global orientation setting for all devices. When you
use PerHandset, the orientation setting for a device is made in the XML file for the
device in the project’s targets folder. In this case, you are responsible for setting the
correct orientation property for each device. For more information about project
properties, see Using webMethods Mobile Designer.

webMethods Mobile Development Help Version 9.6 41

 3 Creating and Building a Mobile Application

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

Managing Languages the Application Supports

When you create your project, Mobile Development adds your system language to your
mobile project as a language your application supports. If needed, you can add or remove
languages your application supports.

Note: If you want to change the default language, see “Setting the Default Language for
the Project” on page 42

To add or remove languages that your application supports

1 Ensure the mobile project for which you want to manage languages is open in the
Outline Editor. For instructions, see “Displaying a Mobile Project in the Outline
Editor” on page 15.

2 In the Model section of the Outline Editor, expand your mobile project’s Languages
container node.

3 To add a language, do the following:

a Right-click the Languages container node and select New Child > Language.

b Select the Language node you just added.

c In the Properties section of the Outline Editor, specify the following properties:

4 To remove a language, in the Model section of the Outline Editor, right-click the
language you want to remove and select Delete.

Alternatively, you can select the language and press the DELETE key.

For this property... Specify...

Directionality Direction to use for the language. Select one of the
following:

 L2R for left-to-right

 R2L for right-to-left

Short Name Abbreviation for the language, for example, “en”. Use the
two-character language code defined by the ISO-639
standard.

 3 Creating and Building a Mobile Application

42 webMethods Mobile Development Help Version 9.6

Tip! To update the information that Mobile Development generates for the project so that
your changes are represented in the generated text resources, save the project and
regenerate sources. For instructions, see “Generating Sources for a Mobile Project” on
page 25.

Setting the Default Language for the Project

Mobile Development can create localized mobile applications. You designate one
language that your project supports as the default. Your application uses the default
language when no specific language is selected.

When you generate sources for a mobile project, Mobile Development generates text
resource files for the text fields in the mobile project. Although Mobile Development
maintains a text resource file for each language in the mobile project, it only includes text
values in the text resource file for the default language. For more information, see “Text
Resources that Mobile Development Creates for a Project” on page 30. For information
about working with languages that are not the default, see “Specifying Values for Non-
Default Language Text Resources” on page 43.

Note: When you switch the default language to another language and then generate
sources for the project, Mobile Development does not clear or update values in the text
resource file of the former default language. Mobile Development only updates and/or
adds values to the text resource file associated with the default language.

To set the default language for the project

1 Ensure the mobile project is displayed in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

2 In the Model section of the Outline Editor, expand the project so that you can view the
top-level child node that represents the root application for the project.

3 Select the root application node.

4 In the Properties section of the screen, select the language you want to use from the list
in the Default Language property.

This list is populated with all the languages that your application supports. In other
words, languages you have added to the Languages container node in the model.

Tip! To update the information that Mobile Development generates for the project so that
your changes are represented in the generated text resources, save the project and
regenerate sources. For instructions, see “Generating Sources for a Mobile Project” on
page 25.

webMethods Mobile Development Help Version 9.6 43

 3 Creating and Building a Mobile Application

Specifying Values for Non-Default Language Text Resources

When generating text resource files for a mobile project, Mobile Development only
includes the values for the text strings in the text resource file that is associated with the
default language. It is your responsibility to translate the values for other languages and
specify the values in the text resource files for those languages. For more information
about the text resource files, see “Text Resources that Mobile Development Creates for a
Project” on page 30.

To specify values for non-default language text resources

1 Locate the project in the Package Explorer.

2 Expand the project to locate the resources/text folder.

3 Expand the text folder.

4 Open a core.language_code.txt file for a non-default language, where language_code is
the language code you specified for the Short Name property when you added the
language to the mobile project.

Tip! You might find it helpful to also open the core.language_code.txt file for the default
language so that you can see the values you need to translate.

5 For each line in the file, fill in the translated value for each text field.

Caution! Do not edit values for the default language in this manner because when you
save the mobile project, Mobile Development regenerates the core.language_code.txt
file for the default languages, and your changes will be lost. To change values for the
default language, edit the associated values in the Outline Editor.

6 Save the file.

Repeat this procedure for each non-default language that the mobile project supports.

Adding Services to a Mobile Project

You can use REST services as data sources for a mobile application. An application can
execute REST services to obtain data to display in the application’s user interface. Because
REST services typically return multiple data elements, it is common to use a ListView
object to display the data you obtain from a REST service. For more information, see
“Using a Content Provider to Populate a ListView” on page 60.

 3 Creating and Building a Mobile Application

44 webMethods Mobile Development Help Version 9.6

To add REST services to a mobile project

1 Ensure the mobile project is open in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

2 In the Model section of the Outline Editor, expand the project so that you view the
Services container node.

If the model does not have a Services container node, add one by right-clicking the
root application and selecting New Child > Services.

3 Right-click the Services node and select New Child > Resources.

4 Select the Resources node, and in the Properties section of the Outline Editor set the
properties for the Resources node. For more information, see “Resources Properties”
on page 112.

5 Right-click the Resources node and select New Child > Resource.

6 Select the Resource node, and in the Properties section of the Outline Editor set the
properties for the Resource node. For more information, see “Resource Properties” on
page 113

7 Right-click the Resource node and select one of the following:

 New Child > Method to specify the service you want to use. The mobile application
queries the REST service by calling the method you specify.

 New Child > Resource if you want to add additional Resource objects to specify
subpaths. If you add another Resource node, repeat the previous step to specify
the properties for the Resource node and this step to add a child node.

8 When you add a Method child node, select the node, and in the Properties section of the
Outline Editor set the properties for the Method node. For more information, see
“Method Properties” on page 113.

Note: Mobile Development automatically adds two child nodes for the Method node.
The child nodes are Request and Response.

9 Select the Request node, and in the Properties section of the Outline Editor set the
properties for the Request node. For more information, see “Request Properties” on
page 114.

10 If the REST service requires input parameters, perform the following steps for each
input parameter:

a Right-click the Request node and select New Child > Parameter.

b Select the Parameter node, and in the Properties section of the Outline Editor set the
properties for the Parameter node. For more information, see “Parameter
Properties” on page 114.

webMethods Mobile Development Help Version 9.6 45

 3 Creating and Building a Mobile Application

11 Select the Response node, and in the Properties section of the Outline Editor set the
properties for the Response node. For more information, see “Response Properties” on
page 115.

12 If this is the first service you added to the model, add the json library to the project.
The json library is required to avoid compile errors. You can obtain the json library in
one of the following:

 Download the source code from https://github.com/upictec/org.json.me/.

 Copy the source code from the _LibraryJSON_ sample project that is installed
with Mobile Designer. You can find the _LibraryJSON_ sample project in the
following location:

Mobile Designer_directory/Samples

Adding the json library is required because when you add a service to a model and
generate the source for the application model and API, Mobile Development adds
com.software.mobile.runtime.rest package in the src-api folder. The classes in this package
depend on the json library.

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25. If this
is the first service you added, use Generate Source Code > Application Model and API to
generate the com.software.mobile.runtime.rest package in the src-api folder.

Generating and Building a Mobile Project

To create a build of a mobile project, you can generate project source files and build these
source files to create one or more final binaries that are installable on devices.

To generate and build a mobile project

1 Open the mobile project in the Outline Editor if it is not already open. For
instructions, see “Displaying a Mobile Project in the Outline Editor” on page 15.

2 If you unsaved changes, select File > Save to save your project.

3 In the Outline Editor, right-click and select Generate Source Code > Application Model.

Generating the project transforms the model into Java source code in the mobile
project.

4 To build the project:

a In the Project Explorer view, expand the project, and drag the build.xml file to the
Ant view.

b In the Ant view, double-click one of the following Ant targets to build the project.

 +Multi-Build

https://github.com/upictec/org.json.me/

 3 Creating and Building a Mobile Application

46 webMethods Mobile Development Help Version 9.6

 +Multi-Build-Last

 +Target-Build

For more information about how to use these Ant targets, see Using webMethods
Mobile Designer.

webMethods Mobile Development Help Version 9.6 47

4 Building the User Interface for a Mobile Application

 Basic Structure of the Application User Interface . 48

 Defining Panes for the Application Window . 49

 Adding Views to the Application’s User Interface . 53

 Renaming a View . 54

 Adding Content to a View . 55

 Programmatically Populating a ListView . 57

 Using a Content Provider to Populate a ListView . 60

 About User-Initiated Events and Listeners . 64

 Adding Listeners for User-Initiated Events . 65

 Defining Dialogs . 67

 Using Templates to Define Custom Objects for a Mobile Project . 68

 4 Building the User Interface for a Mobile Application

48 webMethods Mobile Development Help Version 9.6

Basic Structure of the Application User Interface

The user interface is made up of a window, panes, views, and content within the views.
Additionally, you can define dialogs.

Main Window for the Application

When using Mobile Development to design the user interface, your application contains
a single main window for your application. The window defines the visible bounds of the
display to use for an application.

When you create a mobile project, Mobile Development defines the application’s main
window for you.

Panes for the Window

You divide the main window into one or more panes. When creating an application for a
small hand-held device, such as a mobile phone, you might want to use a single pane or
maybe two, one for a navigation area and the other for a main area. When creating an
application for a larger device, such as a tablet, you might want to use more panes. For
more information, see “Defining Panes for the Application Window” on page 49

Views to Place in Panes

You define views that the application displays in the panes of the application’s window.
For information about how to define a view, see “Adding Views to the Application’s User
Interface” on page 53. For information about the types of views you can add, see “Objects
to Use for Views” on page 76.

Contents of Views

Inside a view, you place the content you want the application to display. For example,
you can add text fields, buttons, check boxes, etc. For more information, see “Adding
Content to a View” on page 55.

Dialogs

Define alert dialogs if you need small pop-ups that display over a view. Use dialogs to:

 Present information to the user.

 Interact with the user by presenting a simple question, for example, a question
requiring a “yes” or “no” answer.

An application can display one dialog at a time. For more information, see “Defining
Dialogs” on page 67.

webMethods Mobile Development Help Version 9.6 49

 4 Building the User Interface for a Mobile Application

Defining Panes for the Application Window

You need to define panes and pane configurations for the user interface of a mobile
application. Panes are subsections of an application’s window. The application displays
views within panes. A pane configuration indicates how to lay out the panes within the
window.

You define panes using the PaneDefinition object. You define a pane configuration using
the PaneConfiguration object.

The simplest layout is a single pane. To have a single pane, add a single PaneDefinition
child object to the PaneConfiguration object. The PaneDefinition object indicates the pane to
display and the view that you initially want the application to display in the pane.

Another simple layout is to use two panes, either vertically (side-by-side) or horizontally
(one on top of the other). To define this type of configuration, rather than adding the
PaneDefinition child object directly to the PaneConfiguration object, you first add either a
VeritcalSplitter object or a HorizontalSplitter object to the PaneConfiguration object. You can
then add two PaneDefinition child objects to the splitter object. The order you list the
PaneDefinition objects is the order the panes display in the window. For example, if you list
pane A followed by pane B, in a vertical arrangement pane A is on the left and in a
horizontal arrangement pane A is on the top.

 4 Building the User Interface for a Mobile Application

50 webMethods Mobile Development Help Version 9.6

If you need a more complex arrangement of panes for an application’s user interface, you
can nest VerticalSplitter and HorizontalSplitter objects under parent splitter objects. For
example, the following shows a layout with four panes arranged horizontally.

webMethods Mobile Development Help Version 9.6 51

 4 Building the User Interface for a Mobile Application

The following shows another example that has three panes, with two panes displayed
horizontally on the left and a single pane on the right.

 4 Building the User Interface for a Mobile Application

52 webMethods Mobile Development Help Version 9.6

Keep the following usage notes in mind when working with panes:

 When you create a new project, by default, the application’s window is named
“MainWindow” and has a pane configuration made up of two panes named
“MasterPane” and “DetailPane”. The pane configuration is defined to arrange the
panes vertical, with the MasterPane on the left and the DetailPane on the right.

If you do not want to use the default panes and configuration, you can delete them.

 You can add as many panes as you want.

 You can define multiple pane configurations and have the application switch pane
configurations, as needed.

For example, you might only want a single pane for an application’s login panels, but
switch to a multi-pane setup after the user logs in.

 You can use the same named panes in multiple pane configurations.

 A pane configuration can include one or more panes.

For smaller devices, such as phones, you might only use a single pane or maybe two,
one for the navigation and one for the main view. For larger devices, such as tablets,
you might want to use additional panes.

 The order you list the PaneDefinition child objects within a PaneConfiguration parent
object is the order the panes display in the window.

webMethods Mobile Development Help Version 9.6 53

 4 Building the User Interface for a Mobile Application

 By default, when you use a HorizontalSplitter, the split creates two equal sections, one
on top of the other. However, you can define the size for one of the sections, and the
other section uses the remaining space. To set the absolute size of a pane, set the
HorizontalSplitter object’s Height property. For more information, see “HorizontalSplitter
Properties” on page 75.

Note: An exception to the default behavior is when you use a HorizontalSplitter with a
NavView in the bottom pane. In this case, the size of the bottom pane is set to the
height required for the NavView. The top pane uses the remaining space.

 By default, when you use a VerticalSplitter, the split creates two equal side-by-side
sections. However, you can define the size for one of the sections, and the other
section uses the remaining space. To set the absolute size of a pane, set the
VerticalSplitter object’s Width property. For more information, see “VerticalSplitter
Properties” on page 76.

Adding Views to the Application’s User Interface

To add a view to the user interface, you add a ListView, NavView, View, or WebView object to
the model. You can then reference the view in your model to display it in a pane or
transition to it when a user-initiated event occurs.

To add a view to the user interface

1 Ensure the mobile project is open in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

2 In the Model section of the Outline Editor, expand the outline so that you view the
Views node.

3 Right-click the Views node and select New Child > child_object, where child_object is the
name of the type of view you want to add.

For a description of the types of views you can add, see “Objects to Use for Views” on
page 76.

4 Set the properties for the view.

For more information, see “Setting Properties in the Outline Editor” on page 18. For
descriptions of the projects, see:

 “ListView Properties” on page 77
 “NavView Properties” on page 79
 “View Properties” on page 79
 “WebView Properties” on page 80

 4 Building the User Interface for a Mobile Application

54 webMethods Mobile Development Help Version 9.6

5 To use the view in the user interface, you can do one or more of the following:

 To display the view when using a pane configuration, specify the view in the Start
View property of the PaneDefinition object.

 To transition to the view when a user-initiated event occurs, set the View property
of the specific Transition event action object. For more information, see “Objects to
Use for Event Actions” on page 104 and “Transition Properties” on page 108.

You can also add code to your application logic to programmatically transition to the
view. For more information, see “Logic to Transition to Another View” on page 125.

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

Renaming a View

You specify a name for a view by setting the view’s Name property. When you generate
sources for the mobile project, the view_nameControllerImpl.java Java class that Mobile
Development generates in the src folder includes the view name in the name of the Java
class. After generating sources, if you want to change the name of the view, use the
following procedure.

To rename a view

1 Ensure the view is displayed in the Outline Editor. For instructions, see “Displaying a
Mobile Project in the Outline Editor” on page 15 or “Displaying a Window, View, or
Dialog in the Outline Editor” on page 16.

2 In the Model section of the Outline Editor, select the view node that you want to
rename.

3 Type the new name for the view in the Name property, which is displayed in the
Properties section of the Outline Editor.

4 Save the mobile project and generate sources for the mobile project. For more
information, see “Generating Sources for a Mobile Project” on page 25.

Mobile Development generates a new new_view_nameControllerImpl.java Java class for
the view where new_view_name is the new name you assigned to the view.

Mobile Development does not remove the old_view_nameControllerImpl.java Java class,
where old_view_name is the previous name of the view. Mobile Development retains
this file in the event that you previously added custom code to the
old_view_nameControllerImpl.java Java class.

5 Update the new_view_nameControllerImpl.java class with any custom code that you
added to the old_view_nameControllerImpl.java Java class.

webMethods Mobile Development Help Version 9.6 55

 4 Building the User Interface for a Mobile Application

a In the Package Explorer or Navigator view, locate the src > package > ui > controller >
impl folder, which contains both the new_view_nameControllerImpl.java and
old_view_nameControllerImpl.java Java classes.

b Open both Java classes and copy all custom code from the
old_view_nameControllerImpl.java to new_view_nameControllerImpl.java.

c Save both files.

d Delete the old_view_nameControllerImpl.java Java class.

Adding Content to a View

What You Can Add to a View

To define a view’s user interface, in the Outline Editor you add user interface objects to
the model as child objects of the view object. For descriptions of the objects you can add
to views, see the following:

 “Objects to Use for the Layout of the User Interface” on page 81

 “Objects to Use for Tables” on page 84

 “Objects to Use for User Interface Controls” on page 87

 “Objects to Use for Content Providers” on page 101

 “Objects to Use for Event Listeners” on page 103

 “Objects to Use for Event Actions” on page 104

The user interface objects that are valid in a view is based on the specific type of view,
that is, whether you are adding the object to a ListView, NavView, View, or WebView. For
example, the only valid object that you can add to a NavView is a NavButton object. When
using the Outline Editor to build a view’s user interface, the Outline Editor only lists
objects that are valid for each type of view.

The following sections provide general information about adding content to views. For
information specifically about adding content to a ListView, see “Programmatically
Populating a ListView” on page 57 and “Using a Content Provider to Populate a
ListView” on page 60.

Order of Objects You Add to the View

The order of the child objects under a view object dictates the order the objects will
display in a view. For example, assume the following is defined for a view:

 4 Building the User Interface for a Mobile Application

56 webMethods Mobile Development Help Version 9.6

The following shows what the user interface might look like when the application
executes:

Nesting Objects in a View

Some objects allow you to nest child objects under them. When the view is displayed, the
child objects are displayed inside their parent object. If you nest multiple objects, they
display in the parent object in the order you list them in the model in the Outline Editor.

For example, if you use a Container object, you can nest child objects under the Container
object.

The result is that in the view’s user interface, the child objects you place under the
Container object display within the container in the user interface. The order of the child
objects are the order in which the child objects are displayed within the Container object.

webMethods Mobile Development Help Version 9.6 57

 4 Building the User Interface for a Mobile Application

Programmatically Populating a ListView

Use a ListView object to display a list of items. You can populate a ListView by adding logic
to the view’s controller.

Note: Rather than adding logic to the view’s controller to populate the ListView object, you
can use a content provider to populate a ListView. For example, you might populate the
ListView with the response from a REST service. For more information, see “Using a
Content Provider to Populate a ListView” on page 60.

Objects to Add to the Project Model

This section describes the objects you add to the model if you want to add logic to the
view’s controller to populate the ListView object.

 In the UserInterface > Views section of the model, you need to add the following objects.

 In the UserInterface > Templates section of the model, you add templates that indicate
how to display the data within the ListView.

Object Description

ListView Required. Defines the ListView.

Pagination Optional. Specifies how many list items to display per page
and identifies templates for objects that the user selects to
view the next or previous page of results.

 4 Building the User Interface for a Mobile Application

58 webMethods Mobile Development Help Version 9.6

Template for... Description

List item Required. You must create a template that defines how to
display a single item from the data source.

Typically, you create a template for a Table or TableButton
object.

When you add logic to the controller for the view, you invoke
the Java class for this template to display an item in the view.

List header Optional. You can create a template to provide a header for
the ListView. For example, you might create a template for an
object like a Textfield or an Image.

If you want to provide a header for the ListView, specify the
template in the ListView object’s List View Header property.

List separator Optional. You can create a template for an object that you
want to display between each list item in the ListView. For
example, you might create a template for an object like a
Separator, Spacer, or Image object.

If you want to provide a separator for the list of data, specify
the template in the ListView object’s Separator property.

Control to show
when reloading
data

Optional. You can create a template for an object that the
application will display when the application is accessing the
data source to refresh the data. For example, you might create
a template for an object like a ProgressAnim, Image, or Textfield
object.

If you want the application to display an object when
refreshing the data, specify the template in the ListView object’s
Show On Reload property.

webMethods Mobile Development Help Version 9.6 59

 4 Building the User Interface for a Mobile Application

Logic in the Controller for the View

When you generate sources for a mobile project, Mobile Development generates a Java
class named view_nameControllerImpl.java in the src.package_name.ui.controller.impl package. For
example, if you assigned the view the name “MyListView” and the package name
“my.company.com”, Mobile Development generates MyListViewControllerImpl.java in the
src.my.company.com.ui.controller.impl package.

To provide logic to populate the ListView, you override the following methods:

 getNumber OfRows(). At run time, the application invokes this method to determine the
total number of list items to display.

Add logic to this method to determine the number of list item results to display, for
example:

public int getNumberOfRows(ListView listView) {
 Vector my_items = getMyData();
 return my_items.size();
}

 getCell. At run time, the application invokes this method to obtain a list item to display
in the ListView.

Add logic to this method that returns a single list item to display, for example:

public nUIDisplayObject getCell(ListView listView, int rowIndex){
 Vector myItems = getData();
 final ListItemTemplate item = new ListItemTemplate();
 item.initializeWithData(myItems[rowIndex]);
 item.setIndex(rowIndex + 1);
 return item;
}

Control to display
the next page of
results

Conditionally required. Create a template for an object, for
example, a Button object, that a user selects at run time to
display the next page of results.

This template is required if you are using the Pagination object.
You specify this template in the Pagination object’s Next Page
Template property.

Control to display
the previous page
of results

Conditionally required. Create a template for an object, for
example, a Button object, that a user selects at run time to
display the previous page of results.

This template is required if you are using the Pagination object.
You specify this template in the Pagination object’s Previous
Page Template property.

Template for... Description

 4 Building the User Interface for a Mobile Application

60 webMethods Mobile Development Help Version 9.6

 onRowSelect(). At run time, the application invokes this method when a user selects a
row in the list of results. Optionally add logic to this method if you want to take some
action when a list item is selected. For example, you might want to transition to
another view or open a dialog.

public void onRowSelect(ListView listView, int rowIndex) {
 Vector myItems = getData();
 getTransitionStackController().pushViewController(new
 ItemDetailViewImpl(myItems[rowIndex]));
}

Using a Content Provider to Populate a ListView

Use a ListView object to display a list of items. You can populate a ListView object using a
ContentProvider object to retrieve data from a data source. Mobile Development supports
the following types of data sources:

 Use a DynamicDataSource object if you want to specify a method that the application
executes to obtain the data to display in the ListView object. You are responsible for
providing the logic for the method. The method you code must return an instance of
IListViewDatasource, which is in the gen/api-src folder in the
com.softwareag.mobile.runtime.toolkit.delegates package.

 Use a JSONDataSource object to execute a REST service to obtain JSON-format data to
display in the ListView object.

Note: Instead of using a content provider, you can add logic to the view’s controller to
populate the ListView object. For more information, see “Programmatically Populating a
ListView” on page 57.

Objects to Add to the Project Model

To obtain data from a data source to populate a ListView object, you need to add several
objects to the project’s model.

 In the UserInterface > Views section of the model, you need to add the following objects.

Object Description

ListView Required. Defines the view that you want to populate with
data from a data source.

webMethods Mobile Development Help Version 9.6 61

 4 Building the User Interface for a Mobile Application

 In the UserInterface > Templates section of the model, you add templates that indicate
how to display the data within the ListView.

ContentProvider Required. Identifies the data source that indicates from where
to obtain the data and the template to use to present the data.

DynamicDataSource
or JSONDataSource

Required. Provides details about the specific method to
invoke to obtain the data.

If you use a JSONDataSource object, you must define the
service you want to use in the Services section of the model.

DataBinding Required. Identifies an element in the data you obtained from
the data source and binds it to a specific control defined
within the template you are using to display the returned
data. Use one DataBinding object for each element you want to
bind to a control.

Pagination Optional. Specifies how many list items to display per page
and identifies templates for objects that the user selects to
view the next or previous page of results.

Template for... Description

List item Required. You must create a template that defines how to
display a single item from the data source.

Typically, you create a template for a Table or TableButton
object.

You reference this template in the ContentProvider object’s
Template property.

Object Description

 4 Building the User Interface for a Mobile Application

62 webMethods Mobile Development Help Version 9.6

 In the Services section of the model, if you want to display data from a REST service in
the ListView object, define the service. For more information, “Adding Services to a
Mobile Project” on page 43.

Example

Consider you have a REST service that has a getEmployeeInfo method that returns
information about employees. The following illustrates the type of information that the
REST service returns.

List header Optional. You can create a template to provide a header for
the ListView. For example, you might create a template for an
object like a Textfield or an Image.

If you want to provide a header for the ListView, specify the
template in the ListView object’s List View Header property.

List separator Optional. You can create a template for an object that you
want to display between each list item in the ListView. For
example, you might create a template for an object like a
Separator, Spacer, or Image object.

If you want to provide a separator for the list of data, specify
the template in the ListView object’s Separator property.

Control to show
when reloading
data

Optional. You can create a template for an object that the
application will display when the application is accessing the
data source to refresh the data. For example, you might create
a template for an object like a ProgressAnim, Image, or Textfield
object.

If you want the application to display an object when
refreshing the data, specify the template in the ListView object’s
Show On Reload property.

Control to display
the next page of
results

Conditionally required. Create a template for an object, for
example, a Button object, that a user selects at run time to
display the next page of results.

This template is required if you are using the Pagination object.
You specify this template in the Pagination object’s Next Page
Template property.

Control to display
the previous page
of results

Conditionally required. Create a template for an object, for
example, a Button object, that a user selects at run time to
display the previous page of results.

This template is required if you are using the Pagination object.
You specify this template in the Pagination object’s Previous
Page Template property.

Template for... Description

webMethods Mobile Development Help Version 9.6 63

 4 Building the User Interface for a Mobile Application

Set up a template to define how to display the response data in the ListView. In this
example, the ListView will display an employees name and title. Define a template for a
Table object that defines a row with two table cells. Each table cell contains a Textfield
object. One cell is to display an employee name and the other to display an employee
title.

Add a ListView object to the model and a child ContentProvider object. Then add a child
JSONDataSource object to the ContentProvider object. Set the properties for the
JSONDataSource object to indicate that the data source is the getEmployeeInfo method of a
REST service that is defined in the Services section of the model.

Set the properties for the ContentProvider object to indicate that the data source is the
“EmployeeJSONDataSource” that is defined with the JSONDataSource object and that the
data to display is within the “Employees” part of the response. Additionally, set the
template to use to format the output to the “ListEmployeeItem” template defined in the
Templates section of the model.

Employees EmployeeID 19

name Leanna Jones

startDate 1995-01-04

department Research

title Manager

EmployeeID 30

name Zane Smith

startDate 1997-06-20

department Research

title Engineer

 4 Building the User Interface for a Mobile Application

64 webMethods Mobile Development Help Version 9.6

Add a DataBinding object to bind the employee name from the response,
Employees.EmployeeInfo.name, to the “EmployeeName” Textfield object in a table cell in
the “ListEmployeeItem” template. Then add a second DataBinding object to bind the
employee title from the response, Employees.EmployeeInfo.title, to the “EmployeeTitle”
Textfield object in a table cell in the “ListEmployeeItem” template.

About User-Initiated Events and Listeners

A user-initiated event is when a user interacts with a control in the application’s user
interface, for example, when a user presses a button, types text in a text field, selects a
check box, etc.

You can add listeners to your model so that when a user-initiated event occurs for a
control, your application can respond by taking an appropriate action. For more
information about how to add listeners, see “Adding Listeners for User-Initiated Events”
on page 65.

Types of Listeners

Mobile Development supports the following types of listeners:

 GainFocusListener that listens for when a user selects an object so that the user interface
object gains focus.

 LoseFocusListener that listens for when a user interface object loses focus because the
user stops selecting an object when the user selects another user interface control.

webMethods Mobile Development Help Version 9.6 65

 4 Building the User Interface for a Mobile Application

 PostEditListener that listens for when a user edits an object, for example an entry field,
and generates an event after the object is edited.

 PreEditListener that listens for when a user edits an object, for example an entry field,
and generates an event when the user first selects the object for editing.

 TriggerListener that listens for when a user uses an object, for example, presses a
button.

When you add the objects for event listeners to your application, Mobile Development
generates the code to listen for the user-initiated events. You do not need to add custom
logic to listen for the events.

How the Application Responds to a User-Initiated Event

When you add listeners to your model, at run time if the listener detects the associated
user-initiated event, the application fires an event. For example, if you add a
TriggerListener object to a Button object, at run time when the user presses the button, the
application fires an event.

In addition to specifying listeners in the model, you can also define how the application
responds to the event, in other words, the action the application takes when the event
occurs. Mobile Development provides user interface objects for the following actions:

 Back action to transition to the previous view.

 ChangePaneConfiguration action to change the configuration of panes in the
application’s window.

 Delegate action to execute a method that you code.

 OpenDialog action to open an alert dialog that you have defined in your model.

 ToggleVisibility action to make a user interface object that you have defined in your
model either visible or hidden. If the object is currently visible, the action hides the
object. If the object is currently hidden, the action makes the object visible.

 Transition action to transition to another view that you have defined in your model.

For more information about these objects, see “Objects to Use for Event Actions” on
page 104.

Adding Listeners for User-Initiated Events

To add a listener for user-initiated events, add a listener object as a child of the user
interface control for which you want to listen. For example, if you want to listen for when
a user presses a button, add the listener object as a child of the Button object.

After adding the listener object, add an event action object as a child of the listener. For
example, if you want to transition back to the previous view when a user presses the
Button object, you add a TriggerListener event listener object as a child of the Button object
and the Back event action object as a child of the TriggerListener object.

 4 Building the User Interface for a Mobile Application

66 webMethods Mobile Development Help Version 9.6

To add event listeners and associated actions

1 Ensure the view to which you want to add event listeners is displayed in the Outline
Editor. For instructions, see “Displaying a Mobile Project in the Outline Editor” on
page 15 or “Displaying a Window, View, or Dialog in the Outline Editor” on page 16.

2 In the Model section of the Outline Editor, right-click the user interface control for
which you want to add a listener and select New Child > event_listener_object, where
event_listener_object is one of the following event listener objects:

 GainFocusListener

 LoseFocusListener

 PostEditListener

 PreEditListener

 TriggerListener

For more information about these objects, see “About User-Initiated Events and
Listeners” on page 64 and “Objects to Use for Event Listeners” on page 103.

Note: The event listener objects have no properties that you need to set.

3 Right-click the event listener object you added and select New Child >
event_action_object, where event_action_object is one of the following event action
objects:

 Back

 ChangePaneConfiguration

 Delegate

 OpenDialog

 ToggleVisibility

 Transition

For more information about these objects, see “About User-Initiated Events and
Listeners” on page 64 and “Objects to Use for Event Actions” on page 104.

4 Select the event action object that you added.

5 In the Properties section of the screen, set properties for the event action object.

For more information about these objects, see “Setting Properties in the Outline
Editor” on page 18 and “Objects to Use for Event Actions” on page 104.

Note: Based on the event action you are using, you might also need to add application
logic for the action. For more information, see “Logic to Respond to a Listener Event” on
page 124.

webMethods Mobile Development Help Version 9.6 67

 4 Building the User Interface for a Mobile Application

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

Defining Dialogs

You can define alert dialogs for a mobile application. A dialog is a pop-up window that
displays over a view. An application can only have dialog open at a time.

To add a dialog, you add an AlertDialog object to the Dialogs container in the Outline
Editor. When you add an AlertDialog object to the user interface, Mobile Development
automatically adds an AlertDialogButton as a child object. An AlertDialog object requires at
least one child AlertDialogButton object.

To define a dialog for a mobile application

1 Ensure the mobile project is open in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

2 In the Model section of the Outline Editor, expand the outline so that you view the
Dialogs node.

3 Right-click the Dialogs node and select New Child > AlertDialog.

Mobile Development adds an AlertDialogButton child object as well.

4 Select the AlertDialog object, and in the Properties section of the Outline Editor set the
properties for the dialog. For more information, see “AlertDialog Properties” on
page 83.

Use the Text property to specify the text you want displayed in the dialog.

5 Select the AlertDialogButton object that Mobile Development added for you, and in the
Properties section of the Outline Editor set the properties for the button. For more
information, see “AlertDialogButton Properties” on page 83.

6 If you want the dialog to contain an additional button, right-click the AlertDialog object
and select New Child > AlertDialogButton to add the button. Then select the button and
set the properties. Repeat this step for each additional button you want in the dialog.

 4 Building the User Interface for a Mobile Application

68 webMethods Mobile Development Help Version 9.6

7 To use the dialog in the user interface, you can do one or more of the following:

 To display the view in response to a user-initiated event, for example, when a user
selects a check box, specify the dialog for a OpenDialog event action object. For
more information, see “Objects to Use for Event Actions” on page 104, “Adding
Listeners for User-Initiated Events” on page 65, and “OpenDialog Properties” on
page 107.

 For information about how to add code to open a dialog, see “Logic to Display
and Close a Dialog” on page 122.

 For information about the code you can add to a dialog, see “Logic for a Dialog”
on page 121.

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

Using Templates to Define Custom Objects for a Mobile
Project

You can add templates to your mobile project to add customizations to the following user
interface objects that Mobile Development provides.

 Button
 ColumnLayout
 DateEntry
 Entry
 GridLayout
 Image
 ListViewElement
 ProgressAnim
 SearchEntry
 Separator
 Spacer
 Table
 TableButton
 TextField
 WebViewElement

For more information about creating a template, see “Creating a Template for a Custom
Object” on page 68.

After you create a template for a user interface object, you can use it in your mobile
application user interface. For more information, see “Using a Template in the Mobile
Application User Interface” on page 70.

webMethods Mobile Development Help Version 9.6 69

 4 Building the User Interface for a Mobile Application

Creating a Template for a Custom Object

Create a template if you want to customize a user interface object for your mobile project.

To create a template

1 Ensure the mobile project to which you want to add a template is open in the Outline
Editor. For instructions, see “Displaying a Mobile Project in the Outline Editor” on
page 15.

2 In the Model section of the Outline Editor, expand the outline so that you view the
UserInterface > Templates node.

3 Right-click the Templates node and select New Child > Template.

Mobile Development adds a Template child node.

4 Select the new Template node.

5 In the Properties section of the Outline Editor, specify a Java class name in the Class
Name property.

For example, if you want to customize the Button user interface object, you might
specify MyButtonTemplate.

Mobile Development renames the Template node to the name you specified in the
Class Name property.

6 Right-click the template node you just added and select New Child > object, where object
is the type of object you want to customize.

For example, if you want to customize the Button object, select New Child > Button.

7 Select the new node you added and in the Properties section of the Outline Editor, fill
in the properties. For more information about properties, see “Template Properties”
on page 109.

8 Save the mobile project and generate sources for the mobile project. For more
information, see “Generating Sources for a Mobile Project” on page 25.

Mobile Development generates the following Java classes for the template:

 Abstracttemplate_name.java in the gen/src folder in thepackage_name.ui.templates
package

This class contains the standard logic to handle the user interface object you are
customizing with the template.

Important! Do not update this Java class. Mobile Development regenerates it each
time you generate sources and any changes you make will be overwritten.

 template_name.java in the src folder in the package_name.ui.templates package

You update the templat_name.java class to customize the user interface object.

 4 Building the User Interface for a Mobile Application

70 webMethods Mobile Development Help Version 9.6

For the generated Java classes:

 template_name is the Java class name you specified for the Class Name property of
the template node.

 package_name is the package name you specified for your mobile project.

9 Add the logic to customize the user interface object to thetemplate_name.java class.

Using a Template in the Mobile Application User Interface

After you create a template to customize a user interface object, you can use the object in
the user interface of your mobile application.

The following procedure describe how to use a template by using the TemplateReference
object. You can also use templates to customize a ListView. For more information, see
“Programmatically Populating a ListView” on page 57 and “Using a Content Provider to
Populate a ListView” on page 60.

To use a template in a mobile application user interface

1 Ensure the mobile project or specific window, view, or dialog to which you want to
add the template is open in the Outline Editor. For instructions, see “Displaying a
Mobile Project in the Outline Editor” on page 15 or “Displaying a Mobile Project in
the Outline Editor” on page 15.

2 In the Model section of the Outline Editor, expand the UserInterface part of the outline
so that you view the location where you want to add the template.

3 Right-click the node in which you want to use the template and select New Child >
TemplateReference.

Note: If TemplateReference is not listed in the right-click menu, it is not valid where you
want to use the template.

4 Select the TemplateReference node.

5 In the Properties section of the Outline Editor, specify the following properties:

For this property... Specify...

Name Name for your own reference purpose. This name does not
appear in the application’s user interface.

Template Template that you want to use.

The list includes the templates that you have added to your
project.

webMethods Mobile Development Help Version 9.6 71

 4 Building the User Interface for a Mobile Application

Tip! To update the Java classes that Mobile Development generates for the project so that
your changes are represented in the generated sources, save the project and regenerate
sources. For instructions, see “Generating Sources for a Mobile Project” on page 25.

webMethods Mobile Development Help Version 9.6 71

5 User Interface Object Reference

 User Interface Objects . 72

 Application Node Properties . 72

 Objects to Use for Windows . 73

 Objects to Use for Panes . 74

 Objects to Use for Views . 76

 Objects to Use for the Layout of the User Interface . 81

 Objects to Use for Dialogs . 82

 Objects to Use for Tables . 84

 Objects to Use for User Interface Controls . 87

 Objects to Use for Content Providers . 101

 Objects to Use for Event Listeners . 103

 Objects to Use for Event Actions . 104

 Objects to Use for Templates . 108

 5 User Interface Object Reference

72 webMethods Mobile Development Help Version 9.6

User Interface Objects

The following table lists the objects you can define for your application and where you
can find a description of the user interface objects and a description of the properties to
set for each object.

Application Node Properties

The following table provides descriptions of the properties you can set for the mobile
project’s root application node.

For information about... See...

Application node “Application Node Properties” on page 72

Windows “Objects to Use for Windows” on page 73

Panes “Objects to Use for Panes” on page 74

Views “Objects to Use for Views” on page 76

Layout “Objects to Use for the Layout of the User Interface” on
page 81

Dialogs “Objects to Use for Dialogs” on page 82

Tables “Objects to Use for Tables” on page 84

Controls “Objects to Use for User Interface Controls” on page 87

Content Providers “Objects to Use for Content Providers” on page 101

Event Listeners “Objects to Use for Event Listeners” on page 103

Event Actions “Objects to Use for Event Actions” on page 104

Templates “Objects to Use for Templates” on page 108

Property Description

Bundle Id Package name for your mobile project.

You initially define the package name for a mobile project
when you create the project using the New Mobile
Development Project wizard. You can use this property to
change the package name. For more information, see
“Changing the Package Name” on page 131.

Default Language Default language for the application. For more information,
see “Setting the Default Language for the Project” on
page 42.

webMethods Mobile Development Help Version 9.6 73

 5 User Interface Object Reference

Objects to Use for Windows

The following table provides a description of the user interface object you use for the
application’s window.

Name Name of the mobile application. This is an internal
application name that Mobile Development uses.

You initially define the application name when you create
the project using the New Mobile Development Project
wizard. You can use this property to change the name. For
more information, see “Renaming the Application” on
page 130.

Orientation Whether you want the application to display in portrait
mode, landscape mode, or rotate as a user turns the device.

You initially define the orientation setting when you create
the project using the New Mobile Development Project
wizard. You can use this property to reconfigure the setting.
For more information, see “Configuring the Orientations
Setting for the Application” on page 40.

Res Handler Name of the resource handler for the mobile application
project. By default, the mobile application uses the default
application that Mobile Development provides, which is
UniversalResHandler.

If you want to use a custom resource handler, use this
property to specify its fully-qualified name.

For more information, see “Defining Resources for the
Mobile Project” on page 31.

Use Mobile Administrator Whether you want to use Mobile Administrator to distribute
the final binary for the application. For more information
about how to set up your mobile project to use Mobile
Administrator, see “Using Mobile Administrator to Manage
and Distribute Mobile Applications” on page 24.

Object Description

Window Defines the application’s window.

For information about setting properties for the Window
object, see “Window Properties” on page 74.

Property Description

 5 User Interface Object Reference

74 webMethods Mobile Development Help Version 9.6

Window Properties

Objects to Use for Panes

The following table provides descriptions of the user interface objects you use to define
panes for an application’s window. For more about using panes, see “Defining Panes for
the Application Window” on page 49.

Property Description

Name Name you assign the application’s window. This name does not
appear in the application’s user interface.

Start Pane
Configuration

Name of the pane configuration that you want to use when the
window is initially displayed. Specify the name of a
PaneConfiguration object that you previously defined for the
mobile project.

Object Description

HorizontalSplitter Indicates that you want to display two panes horizontally,
one on top of the other.

For information about setting properties for the
HorizontalSplitter object, see “HorizontalSplitter Properties”
on page 75.

PaneConfiguration Specifies the name of a configuration of panes.

Add HorizontalSplitter, VerticalSplitter, and/or PaneDefinition
child objects to define how to place panes in the application’s
Window object when using this pane configuration.

For information about setting properties for the
PaneConfiguration object, see “PaneConfiguration Properties”
on page 75.

PaneDefinition Specifies the following for a single pane in a pane
configuration:

 Name of the pane.

 Name of a view that you want initially displayed in the
pane.

 Flag indicating whether the view is visible or not.

For information about setting properties for the
PaneDefinition object, see “PaneDefinition Properties” on
page 76.

webMethods Mobile Development Help Version 9.6 75

 5 User Interface Object Reference

HorizontalSplitter Properties

PaneConfiguration Properties

VerticalSplitter Indicates that you want to display two panes vertically, side
by side.

For information about setting properties for the
VerticalSplitter object, see “VerticalSplitter Properties” on
page 76.

Property Description

Height Absolute size to use for the height of one of panes, either the top or
bottom pane. The other pane uses the remaining space available.
You can specify the height using either a percentage value or the
number of pixels.

 To set the absolute size to use for the top pane, type the value.
For example:

 To use 320 pixels for the top pane, specify: 320

 To use 38 percent for the top pane, specify: 38%

 To set the absolute size for the bottom pane, type a comma
followed by the value. For example:

 To use 320 pixels for the bottom pane, specify: , 320

 To use 38 percent for the bottom pane, specify: , 38%

If you do not specify a value, the split creates two equal sections.

Note: An exception to the default behavior is when you use a
HorizontalSplitter with a NavView in the bottom pane. In this case,
the size of the bottom pane is set to the height required for the
NavView. The top pane uses the remaining space.

Property Description

Name Name you assign to the pane configuration.

Object Description

 5 User Interface Object Reference

76 webMethods Mobile Development Help Version 9.6

PaneDefinition Properties

VerticalSplitter Properties

Objects to Use for Views

The following table provides descriptions of the types of views that you can use in an
application’s user interface.

Property Description

Name Name of the pane.

Start View Name of a view that you want initially displayed in the
pane. This can be a name that you previously defined for a
View, ListView, NavView, or WebView object.

Visible Whether the pane is visible or hidden.

Property Description

Width Absolute size to use for the width of one of panes, either the left or
right pane. The other pane uses the remaining space available. You
can specify the width using either a percentage value or the
number of pixels.

 To set the absolute size to use for the left pane, type the value.
For example:

 To use 320 pixels for the left pane, specify: 320

 To use 38 percent for the left pane, specify: 38%

 To set the absolute size for the right pane, type a comma
followed by the value. For example:

 To use 320 pixels for the right pane, specify: , 320

 To use 38 percent for the right pane, specify: , 38%

If you do not specify a value, the split creates two equal sections.

webMethods Mobile Development Help Version 9.6 77

 5 User Interface Object Reference

ListView Properties

Object Description

ListView Defines a view that displays a list of data obtained from a
specified data source.

Add a ContentProvider child object to the ListView object to
define the content you want to list in the view.

For information about setting properties for a ListView, see
“ListView Properties” on page 77.

NavView Defines a view that you want to use for navigation in your
application.

The navigation view has different formats based on the
platform. For example, for some platforms the navigation
view might display as a menu bar that is always visible and
uses both icons and text. For other platforms, the navigation
view might have hidden menu items that are displayed only
when a user presses a button.

For information about setting properties for a NavView object,
see “NavView Properties” on page 79.

View Defines a general purpose view for your application.

For information about setting properties for a View object, see
“View Properties” on page 79.

WebView Defines a view in which you want to display Web content.

For information about setting properties for a WebView
object, see “WebView Properties” on page 80.

Property Description

Back Button Text Text to display on the Back button.

If you do not set this property, the default is to display the
Header Text property value of the previous view, which will
be displayed if the user presses the Back button.

Background Color Background color of the view.

Background Image Image to display as the background for the view.

Header Background Color Background color of the header area of the view.

Header Image Image to display as the header of the view.

 5 User Interface Object Reference

78 webMethods Mobile Development Help Version 9.6

Header Text Text you want displayed in the header area of the view.

Leave this property blank if you do not want text in the
header.

Hide Back Button Whether you want the Back button in the view to be
displayed or hidden.

HScrollable Whether you want to allow horizontal scrolling in the view.

Inner Height Usable height of the view in which you can insert child
objects.

Inner Width Usable width of the view in which you can insert child
objects.

Inner X Distance from the view’s left edge to where child elements
are drawn.

Inner Y Distance from the view’s top edge to where child elements
are drawn.

Inner YSpacing Vertical distance between each element in the view.

List View Header Template that defines an object to display as the header for
the list of data displayed in the ListView.

Specify a template that you previously defined. The template
should customize an object like a Textfield or Image object.

Name Name that you assign the view. This name does not appear
in the application’s user interface.

Popup Dismiss Text For the iOS platform, the text to use on a label that closes an
open keyboard or drop-down list.

Separator Template that defines an object to display between the each
list item displayed in the ListView.

Specify a template that you previous defined. The template
should customize an object like a Separator object.

Show On Reload Template that defines an object to display while the
application is obtaining data to refresh the list of items in the
view.

Specify a template that you previous defined. The template
should customize an object like a ProgressAnim, Image or
Textfield object.

VScrollable Whether you want to allow vertical scrolling in the view.

Property Description

webMethods Mobile Development Help Version 9.6 79

 5 User Interface Object Reference

NavView Properties

View Properties

Property Description

Name Name you assign the view. This name does not appear in the
application’s user interface.

Property Description

Back Button Text Text to display on the Back button.

If you do not set this property, the default is to display the
Header Text property value of the previous view, which will
be displayed if the user presses the Back button.

Background Color Background color of the view.

Background Image Image to display as the background for the view.

Header Background Color Background color of the header area of the view.

Header Image Image to display as the header of the view.

Header Text Text you want displayed in the header area of the view.

Leave this property blank if you do not want text in the
header.

Hide Back Button Whether you want the Back button in the view to be
displayed or hidden.

HScrollable Whether you want to allow horizontal scrolling in the view.

Inner Height Usable height of the view in which you can insert child
objects.

Inner Width Usable width of the view in which you can insert child
objects.

Inner X Distance from the view’s left edge to where child elements
are drawn.

Inner Y Distance from the view’s top edge to where child elements
are drawn.

Name Name you assign the view. This name does not appear in the
application’s user interface.

Popup Dismiss Text For the iOS platform, the text to use on a label that closes an
open keyboard or drop-down list.

VScrollable Whether you want to allow vertical scrolling in the view.

 5 User Interface Object Reference

80 webMethods Mobile Development Help Version 9.6

WebView Properties

Property Description

Back Button Text Text to display on the Back button.

If you do not set this property, the default is to display the
Header Text property value of the previous view, which will
be displayed if the user presses the Back button.

Background Color Background color of the view.

Background Image Image to display as the background for the view.

File File that contains the Web content to display. The file should
be in the project’s resources\www folder.

Header Background Color Background color of the header area of the view.

Header Image Image to display as the header of the view.

Header Text Text you want displayed in the header area of the view.

Leave this property blank if you do not want text in the
header.

Hide Back Button Whether you want the Back button in the view to be
displayed or hidden.

HScrollable Whether you want to allow horizontal scrolling in the view.

Inner Height Usable height of the view in which you can insert child
objects.

Inner Width Usable width of the view in which you can insert child
objects.

Inner X Distance from the view’s left edge to where child elements
are drawn.

Inner Y Distance from the view’s top edge to where child elements
are drawn.

Name Name you assign the view. This name does not appear in the
application’s user interface.

Popup Dismiss Text For the iOS platform, the text to use on a label that closes an
open keyboard or drop-down list.

Url URL to the web page to load into the view.

VScrollable Whether you want to allow vertical scrolling in the view.

webMethods Mobile Development Help Version 9.6 81

 5 User Interface Object Reference

Objects to Use for the Layout of the User Interface

The following table provides descriptions of user interface objects that you can use to
define the layout of user interface objects within a view.

Group Properties

Object Description

Group Creates a container that holds a group of user interface
objects.

To specify user interface objects to include in the group, add
the objects as children of the Group object.

Use the Group object’s Visible property to indicate whether
you want the group of user interface objects visible or
hidden.

For information about setting properties for the Group object,
see “Group Properties” on page 81.

RadioButtonGroup Creates a container that holds a group of radio buttons.

To specify the radio buttons to include in the group, add
RadioButton objects as children of the RadioButtonGroup object.

The RadioButtonGroup object does not have any properties.

Separator Displays a horizontal line that you can use to separate blocks
of content.

For information about setting properties for the Separator
object, see “Separator Properties” on page 82.

Spacer Displays blank space that you can use to create extra
padding between user interface objects.

For information about setting properties for the Spacer
object, see “Spacer Properties” on page 82.

Property Description

Name Name you assign the group in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Visible Whether you want the user interface objects in the group to
be visible.

 5 User Interface Object Reference

82 webMethods Mobile Development Help Version 9.6

Separator Properties

Spacer Properties

Objects to Use for Dialogs

The following table provides descriptions of the user interface object that you can use to
create alert dialogs.

Property Description

Color Color of the separator line.

Height Height of the separator line.

Name Name you assign the separator in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Position X Distance from the separator line’s left edge to its parent
object’s inner X position.

Position Y Distance from the separator line’s top edge to its parent
object’s inner Y position.

Visible Whether you want the separator line to be visible.

Width Width of the separator line.

Property Description

Height Height of the spacer object.

Name Name you assign the spacer object in the Outline Editor for
your own reference purpose. This name does not appear in
the application’s user interface.

Position X Distance from the spacer object’s left edge to its parent
object’s inner X position.

Position Y Distance from the spacer object’s top edge to its parent
object’s inner Y position.

Visible Whether you want the spacer object to be visible.

Width Width of the spacer object.

webMethods Mobile Development Help Version 9.6 83

 5 User Interface Object Reference

AlertDialog Properties

AlertDialogButton Properties

Object Description

AlertDialog Displays a small pop-up that you can use to:

 Present information to the user.

 Interact with the user by presenting a simple question,
for example, a question requiring a “yes” or “no”
answer.

You must add at least one AlertDialogButton child object for
the AlertDialog object.

For information about setting properties for the AlertDialog
object, see “AlertDialog Properties” on page 83.

AlertDialogButton Displays a button to include in an AlertDialog.

For information about setting properties for the
AlertDialogButton object, see “AlertDialogButton Properties”
on page 83.

Property Description

Class Name Name of the class to generate for the alert dialog and to
which you can add logic for the alert dialog. You must
specify this property.

The generated class extends the NativeUI class for the
element, which is com.softwareag.mobile.runtime.nui.nUIAlertDialog.

You can specify the same value for Class Name for AlertDialog
objects. Mobile Development generates only one class.

For more information, see “Logic for a Dialog” on page 121.

Header Text Text you want displayed in the header area of the dialog.

Leave this property blank if you do not want text in the
header.

Text Text to display in the dialog. You must specify this property.

Property Description

Id Identifier you assign to the button. You must specify this
property.

 5 User Interface Object Reference

84 webMethods Mobile Development Help Version 9.6

Objects to Use for Tables

The following table provides descriptions of user interface objects that you can use to
define tables that you want to display in an application’s view.

Text Text you want displayed on the button.

Object Description

DynamicTablecell Specifies a method that executes at run time to populate a
table cell. A DynamicTablecell object is the child of a TableRow
object.

For information about setting properties for the
DynamicTablecell object, see “DynamicTablecell Properties”
on page 85.

DynamicTablerow Specifies a method that executes at run time to dynamically
define the layout for the table and populate the table. A
DynamicTablerow object is the child of a Table object.

For information about setting properties for the
DynamicTablerow object, see “DynamicTablerow Properties”
on page 85.

Table Displays a table.

To specify the rows in the table, add one or more TableRow
objects or a single DynamicTablerow object as children of the
Table object.

For information about setting properties for the Table object,
see “Table Properties” on page 85.

TableButton Displays a table that contains other objects and that acts as a
button.

For information about setting properties for the TableButton
object, see “TableButton Properties” on page 86.

TableCell Adds a cell to a table row. A TableCell object is the child of a
TableRow object.

To specify user interface objects that you want to display in
the table cell, add the objects as children of the TableCell
object.

For information about setting properties for the TableCell
object, see “Tablecell Properties” on page 86.

Property Description

webMethods Mobile Development Help Version 9.6 85

 5 User Interface Object Reference

DynamicTablecell Properties

DynamicTablerow Properties

Table Properties

TableRow Adds a single row to a table. A TableRow object is the child of
a Table object.

A child of a Table object. Use to add a single row to the table.

To specify the contents of the table row, add one or more
TableCell objects or a single DynamicTableCell object as children
of the TableRow object.

For information about setting properties for the TableRow
object, see “Tablerow Properties” on page 87.

Property Description

Method Name Name of a method you code to populate the table cell. For
information about the Java sources that Mobile
Development generates for the method and how to provide
logic for the method, see “Logic for a Method Name
Property” on page 122.

Property Description

Method Name Name of a method you code to populate the table. For
information about the Java sources that Mobile
Development generates for the method and how to provide
logic for the method, see “Logic for a Method Name
Property” on page 122.

Property Description

Border Color Color of the table’s border.

Border Thickness Thickness of the table’s border.

Inner Height Usable height of the table in which you can insert child
objects.

Inner Width Usable width of the table in which you can insert child
objects.

Object Description

 5 User Interface Object Reference

86 webMethods Mobile Development Help Version 9.6

TableButton Properties

Tablecell Properties

Inner X Distance from the table’s left edge to where child elements
are drawn.

Inner Y Distance from the table’s top edge to where child elements
are drawn.

Name Name you assign the table in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Position X Distance from the table’s left edge to its parent object’s inner
X position.

Position Y Distance from the table’s top edge to its parent object’s inner
Y position.

Rel Widths Relative widths of the columns in the table. For example, if
you specify 25, 25, 50, the table has three columns where
the first two each use 25% of the width and remaining
column uses 50% of the width.

Spacing Height Distance between the table rows.

Spacing Width Distance between the table columns.

Visible Whether the table is visible or hidden.

Width Width of the table.

Property Description

Background Color
Highlight

Color of the table button when the table button has focus.

Name Name you assign the table button in the Outline Editor for
your own reference purpose. This name does not appear in
the application’s user interface.

Visible Whether the table button is visible or hidden.

Property Description

Background Color Color of the table cell.

HAlign Horizontal alignment of the contents in the cell.

Property Description

webMethods Mobile Development Help Version 9.6 87

 5 User Interface Object Reference

Tablerow Properties

Objects to Use for User Interface Controls

The following table provides descriptions of user interface controls that you can display
in an application’s view.

HSpan Number of columns you want the cell to span. For example,
when HSpan is set to 2, the cell spans two columns.

Inner Height Usable height of the cell in which you can insert child
objects.

Inner Width Usable width of the cell in which you can insert child objects.

Inner X Distance from the cell’s left edge to where child elements are
drawn.

Inner Y Distance from the cell’s top edge to where child elements are
drawn.

VAlign Vertical alignment of the contents in the cell.

VSpan Number of rows you want a cell to span. For example, when
VSpan is set to 2, the cell spans two rows.

Property Description

Background Color Color of the table row.

Height Height of the table row.

Object Description

Button Displays a single button that contains a text label.

For information about setting properties for the Button
object, see “Button Properties” on page 90.

Button Group Creates a container that holds a group of buttons.

To specify the buttons to include in the group, add
Button objects as children of the ButtonGroup object.

For information about setting properties for the Button
Group object, see “ButtonGroup Properties” on
page 91.

Property Description

 5 User Interface Object Reference

88 webMethods Mobile Development Help Version 9.6

Checkbox Displays a check box.

For information about setting properties for the
Checkbox object, see “CheckBox Properties” on
page 91.

Container Creates a container that holds other user interface
objects.

To specify user interface objects that you want to
display in the container, add the objects as children of
the Container object.

You can set the Container object’s properties to allow
scrolling. For example, you might use a container to
hold long pieces of text that exceed the viewable area,
allowing the user to scroll through the text.

For information about setting properties for the
Container object, see “Container Properties” on page 92.

DateEntry Displays a date or time selector control.

For information about setting properties for the
DateEntry object, see “DateEntry Properties” on
page 93.

DropDownListEntry Displays a drop-down list that contains selection
items.

To define the items in the drop-down, add one or more
StringDropDownListEntryItem objects or a single
DynamicDropDownListEntryItem object as children of the
DropDownListEntry object.

For information about setting properties for the
DropDownListEntry object, see “DropDownListEntry
Properties” on page 93.

DynamicDisplayObject Name of a method you code to display a user interface
object. For information about setting properties for the
DynamicDisplayObject object, see
“DynamicDisplayObject Properties” on page 94.

DynamicDisplayObjectArray Name of a method you code to display an array of user
interface objects. For information about setting
properties for the DynamicDisplayObject object, see
“DynamicDisplayObject Properties” on page 94.

For information about setting properties for the
DynamicDisplayObjectArray object, see
“DynamicDisplayObjectArray Properties” on page 94.

Object Description

webMethods Mobile Development Help Version 9.6 89

 5 User Interface Object Reference

DynamicDropDownListEntryItem Specifies a method that executes at run time to provide
the list of entries to display in the drop-down list. A
DynamicDropDownListEntryItem object is the child of a
DropDownListEntry object.

For information about setting properties for the
DynamicDropDownListEntryItem object, see
“DynamicDropdownlistEntryItems Properties” on
page 94.

Entry Displays a text entry box.

You can set the Entry object’s Input Type property to:

 Restrict the user input to alphanumeric characters
or only numbers.

 Mask the field’s contents, making the field suitable
for a user to enter passwords or personal identifier
numbers (PINs).

For information about setting properties for the Entry
object, see “Entry Properties” on page 95.

Image Displays an image.

To specify the image that you want to display, set the
Image object’s Image property.

You can use an Image object as a button if you add a
TriggerListener object as a child object.

For information about setting properties for the Image
object, see “Image Properties” on page 95.

NavButton Displays a button that an application uses for
navigation.

For information about setting properties for the
NavButton object, see “NavButton Properties” on
page 96.

Pagination Adds objects that a user selects to display the next or
previous page of list items in a ListView.

For information about setting properties for the
Pagination object, see “Pagination Properties” on
page 97.

Object Description

 5 User Interface Object Reference

90 webMethods Mobile Development Help Version 9.6

Button Properties

ProgressAnim Displays an animated status indicator that indicates
background activity is in progress.

For information about setting properties for the
ProgressAnim object, see “ProgressAnim Properties” on
page 97.

RadioButton Displays a single radio button that uses two states,
selected or cleared.

For information about setting properties for the
RadioButton object, see “RadioButton Properties” on
page 98.

SearchEntry Displays a search entry field.

For information about setting properties for the
SearchEntry object, see “SearchEntry Properties” on
page 99.

StringDropDownListEntryItem Adds a single entry to a drop-down list. A
StringDropDownListEntryItem object is the child of a
DropDownListEntry object.

For information about setting properties for the
StringDropDownListEntryItem object, see
“StringDropdownlistEntry Properties” on page 99.

Textfield Displays plain text in a label or for a block of text.

For information about setting properties for the
Textfield object, see “Textfield Properties” on page 99.

WebViewElement Use to display rich Web content from a local file or by
specifying the URL of the content to display.

For information about setting properties for the
WebViewElement object, see “WebViewElement
Properties” on page 100.

Property Description

Create On Condition Whether to create the button at run time.

Font Color Color of the text on the button.

Font Size Size of the font to use for the text on the button.

Object Description

webMethods Mobile Development Help Version 9.6 91

 5 User Interface Object Reference

ButtonGroup Properties

CheckBox Properties

Font Style How the text should be formatted, for example, bold, italic,
or underlined.

HAlign Horizontal alignment of the text on the button.

Name Name you assign the button in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Position X Distance from the button’s left edge to its parent object’s
inner X position.

Position Y Distance from the button’s top edge to its parent object’s
inner Y position.

Text Text to display on the button.

Visible Whether the button is visible or hidden.

Width Width of the button.

Property Description

Name Name you assign the button group in the Outline Editor for
your own reference purpose. This name does not appear in
the application’s user interface.

Property Description

Create On Condition Whether to create the check box at run time.

Font Color Color of the text for the check box.

Font Size Size of the font to use for the check box text.

Font Style How the text should be formatted, for example, bold, italic,
or underlined.

HAlign Horizontal alignment of the text.

Name Name you assign the check box in the Outline Editor for
your own reference purpose. This name does not appear in
the application’s user interface.

Position X Distance from the check box’s left edge to its parent object’s
inner X position.

Property Description

 5 User Interface Object Reference

92 webMethods Mobile Development Help Version 9.6

Container Properties

Position Y Distance from the check box’s top edge to its parent object’s
inner Y position.

Text Text to display for the check box.

Visible Whether the check box is visible or hidden.

Width Width of the check box.

Property Description

Create On Condition Whether to create the container at run time.

Height Height of the container.

HScrollable Whether you want to allow horizontal scrolling in the
container.

Inner Height Usable height of the container in which you can insert child
objects.

Inner Width Usable width of the container in which you can insert child
objects.

Inner X Distance from the container’s left edge to where child
elements are drawn.

Inner Y Distance from the container’s top edge to where child
elements are drawn.

Name Name you assign the container in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Position X Distance from the container’s left edge to its parent object’s
inner X position.

Position Y Distance from the container’s top edge to its parent object’s
inner Y position.

Visible Whether the container is visible or hidden.

VScrollable Whether you want to allow vertical scrolling in the
container.

Width Width of the container.

Property Description

webMethods Mobile Development Help Version 9.6 93

 5 User Interface Object Reference

DateEntry Properties

DropDownListEntry Properties

Property Description

Create On Condition Whether to create the date or time selector control at run
time.

Date Format Format in which to display the date or time.

Name Name you assign the date or time selector control in the
Outline Editor for your own reference purpose. This name
does not appear in the application’s user interface.

Position X Distance from the date or time selector control’s left edge to
its parent object’s inner X position.

Position Y Distance from the date or time selector control’s top edge to
its parent object’s inner Y position.

Visible Whether the date or time selector control is visible or
hidden.

Width Width of the date or time selector control.

Property Description

Create On Condition Whether to create the drop-down list at run time.

Font Size Size of the font to use for the text for the drop-down list.

Font Style How the text should be formatted, for example, bold, italic,
or underlined.

Name Name you assign the drop-down list in the Outline Editor
for your own reference purpose. This name does not appear
in the application’s user interface.

Position X Distance from the drop-down list’s left edge to its parent
object’s inner X position.

Position Y Distance from the drop-down list’s top edge to its parent
object’s inner Y position.

Visible Whether the drop-down list is visible or hidden.

Width Width of the drop-down list.

 5 User Interface Object Reference

94 webMethods Mobile Development Help Version 9.6

DynamicDisplayObject Properties

DynamicDisplayObjectArray Properties

DynamicDropdownlistEntryItems Properties

Property Description

Create On Condition Whether to create the user interface object at run time.

Method Name Name of a method you code to display a user interface object
For information about the Java sources that Mobile
Development generates for the method and how to provide
logic for the method, see “Logic for a Method Name
Property” on page 122.

Name Name you assign the user interface object in the Outline
Editor for your own reference purpose. This name does not
appear in the application’s user interface.

Visible Whether the user interface object is visible or hidden.

Property Description

Create On Condition Whether to create the array of user interface objects at run
time.

Method Name Name of a method you code to display an array of user
interface objects. For information about the Java sources that
Mobile Development generates for the method and how to
provide logic for the method, see “Logic for a Method Name
Property” on page 122.

Name Name you assign the array of user interface objects in the
Outline Editor for your own reference purpose. This name
does not appear in the application’s user interface.

Visible Whether the array of user interface objects is visible or
hidden.

Property Description

Method Name Name of a method you code to populate the entries in the
drop-down list. For more information about the Java sources
that Mobile Development generates for the method and how
to provide logic for the method, see “Logic for a Method
Name Property” on page 122.

webMethods Mobile Development Help Version 9.6 95

 5 User Interface Object Reference

Entry Properties

Image Properties

Property Description

Context Key Name of a context key you want to reference using syntax
such as ${CONTEXT_key}.

By default, Mobile Development saves the value you enter in
the control to a context that is available within the lifetime of
the application for the key you specify.

Create On Condition Whether to create the text entry box at run time.

Font Size Size of the font to use for the text for the text entry box.

Font Style How the text should be formatted, for example, bold, italic,
or underlined.

Hint Text you want displayed when a user hovers over text entry
box to provide information about what a user can specify in
the entry field.

Leave this property blank if you do not want to provide hint
text.

Input Type Type of input a user can supply in the text entry box. For
example, you might specify text, textPassword, or number.

Lines Number of lines to display in the text entry box. This is the
number of lines into which a user can type information.

Name Name you assign the text entry box in the Outline Editor for
your own reference purpose. This name does not appear in
the application’s user interface.

Position X Distance from the text entry box’s left edge to its parent
object’s inner X position.

Position Y Distance from the text entry box’s top edge to its parent
object’s inner Y position.

Text Text to display in the text entry box.

Visible Whether the text entry box is visible or hidden.

Width Width of the text entry box.

Property Description

Create On Condition Whether to display the image at run time.

HAlign Horizontal alignment of the image.

 5 User Interface Object Reference

96 webMethods Mobile Development Help Version 9.6

NavButton Properties

Image Image to display.

Note: The image must be one of your application resources.
For more information about resources, see “Defining
Resources for the Mobile Project” on page 31.

Name Name you assign the image in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Position X Distance from the image’s left edge to its parent object’s
inner X position.

Position Y Distance from the image’s top edge to its parent object’s
inner Y position.

Scale to Parent Height Whether you want the image to be scaled vertically to match
the height of its parent object. Select the Select to Parent Height
check box if you want the image scaled to the parent object’s
height.

Scale to Parent Width Whether you want the image to be scaled horizontally to
match the width of its parent object. Select the Select to Parent
Width check box if you want the image scaled to the parent
object’s width.

Visible Whether the image is visible or hidden.

Property Description

Create On Condition Whether to create the button at run time.

Icon Icon image to display on the button.

Note: The icon must be one of your application resources. For
more information about resources, see “Defining Resources
for the Mobile Project” on page 31.

Name Name you assign the button in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Text Text to display on the button.

Property Description

webMethods Mobile Development Help Version 9.6 97

 5 User Interface Object Reference

Pagination Properties

Important! The templates that you specify for the Next Page Template and Previous Page
Template properties must be for an object that a user can trigger. Do not use a template for
an object like a Textfield, which a user use to trigger an action.

ProgressAnim Properties

Type Type of button. The types are:

 BACK

This type is placed on the left of the view header.

 DEFAULT

This type is placed on the right of the view header.

Visible Whether the button is visible or hidden.

Property Description

Max Number Per Page Maximum number of list items to display on a single page of
a ListView.

Next Page Template Template that defines an object to display at the bottom of
the list of items in a ListView if more list items are available
on subsequent pages. A user selects the object to display the
next set of results in a ListView.

Specify a template that you previously defined. The
template should customize an object like a Button object.

Previous Page Template Template that defines an object to display at the top of the
list of items in a ListView if more list items are available on
previous pages. A user selects the object to display the
previous set of results in a ListView.

Specify a template that you previously defined. The
template should customize an object like a Button object.

Property Description

Create On Condition Whether to create the object at run time.

Property Description

 5 User Interface Object Reference

98 webMethods Mobile Development Help Version 9.6

RadioButton Properties

Name Name you assign the object in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Position X Distance from the object’s left edge to its parent object’s inner
X position.

Position Y Distance from the object’s top edge to its parent object’s inner
Y position.

Visible Whether the object is visible or hidden.

Property Description

Create On Condition Whether to create the radio button at run time.

Font Color Color of the text displayed for the radio button.

Font Size Size of the font to use for the text displayed for the radio
button.

Font Style How the text should be formatted, for example, bold, italic,
or underlined.

HAlign Horizontal alignment of the radio button.

Name Name you assign the radio button in the Outline Editor for
your own reference purpose. This name does not appear in
the application’s user interface.

Position X Distance from the radio button’s left edge to its parent
object’s inner X position.

Position Y Distance from the radio button’s top edge to its parent
object’s inner Y position.

Text Text to display for the radio button.

Visible Whether the radio button is visible or hidden.

Width Width of the radio button.

Property Description

webMethods Mobile Development Help Version 9.6 99

 5 User Interface Object Reference

SearchEntry Properties

StringDropdownlistEntry Properties

Textfield Properties

Property Description

Context Key Name of a context key you want to reference using syntax
such as ${CONTEXT_key}.

By default, Mobile Development saves the value you enter in
the control to a context that is available within the lifetime of
the application for the key you specify.

Create On Condition Whether to create the search entry box at run time.

Hint Text you want displayed when a user hovers over search
entry box to provide information about what a user can
specify in the entry field.

Leave this property blank if you do not want to provide hint
text.

Name Name you assign the search entry box in the Outline Editor
for your own reference purpose. This name does not appear
in the application’s user interface.

Position X Distance from the search entry box’s left edge to its parent
object’s inner X position.

Position Y Distance from the search entry box’s top edge to its parent
object’s inner Y position.

Visible Whether the search entry box is visible or hidden.

Width Width of the search entry box.

Property Description

Item Single item to display in the parent drop-down list object.

Property Description

Create On Condition Whether to display the text field at run time.

Font Color Color of the text.

Font Size Size of the font to use for the text.

 5 User Interface Object Reference

100 webMethods Mobile Development Help Version 9.6

WebViewElement Properties

Font Style How the text should be formatted, for example, bold, italic,
or underlined.

HAlign Horizontal alignment of the text.

Max Lines Maximum number of lines of text to display in the text field
when line-wrapped.

The value you specify for Max Lines must to be greater than
or equal to the value you specify for Min Lines.

Min Lines Minimum number of lines of text to display in the text field
when line-wrapped.

The value you specify for Min Lines must be less than or equal
to the value you specify for Max Lines.

Name Name you assign the text field in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Position X Distance from the text field’s left edge to its parent object’s
inner X position.

Position Y Distance from the text field’s top edge to its parent object’s
inner Y position.

Render Type Whether to display the text as plain text or hyperlinked.

Text Text to display.

Visible Whether the text field is visible or hidden.

Width Width of the text field.

Property Description

Create On Condition Whether to display the Web content at run time.

File File that contains the Web content to display.

Height Height to use for the object containing the Web content.

HScrollable Whether you want to allow horizontal scrolling of the Web
content.

Name Name you assign the object in the Outline Editor for your
own reference purpose. This name does not appear in the
application’s user interface.

Property Description

webMethods Mobile Development Help Version 9.6 101

 5 User Interface Object Reference

Objects to Use for Content Providers

The following table provides descriptions of the user interface objects that you use to
specify the content to display in a ListView object.

Position X Distance from the object’s left edge to its parent object’s inner
X position.

Position Y Distance from the object’s top edge to its parent object’s inner
Y position.

Url URL to the Web content to display.

Visible Whether the object containing the Web content is visible or
hidden.

VScrollable Whether you want to allow vertical scrolling of the Web
content

Width Width to use for the object containing the Web content.

Object Description

DataBinding Defines how to bind data from the data source to an object in
the user interface. A DataBinding object is the child of a
ContentProvider object.

For information about setting properties for the DataBinding
object, see “DataBinding Properties” on page 102.

DynamicDataSource Identifies a method that the application executes to obtain
the data to display in the ListView object. You are responsible
for providing the logic for the method.

For information about setting properties for the
DynamicDataSource object, see “DynamicDataSource
Properties” on page 102.

ContentProvider Specifies the content you want listed in a ListView object.

For information about setting properties for the
ContentProvider object, see “ContentProvider Properties” on
page 102.

JSONDataSource Specifies a service to invoke to provide the data to display in
a ListView object. A JSONDataSource object is the child of a
ContentProvider object.

For information about setting properties for the
JSONDataSource object, see “JSONDataSource Properties” on
page 103.

Property Description

 5 User Interface Object Reference

102 webMethods Mobile Development Help Version 9.6

DataBinding Properties

DynamicDataSource Properties

ContentProvider Properties

Property Description

Control Name of the user interface object to which to bind data from the
data source.

Data Source Name of the DynamicDataSource or JSONDataSource object to use to
obtain the data to bind to the control.

Expression Expression that identifies the data to bind to the control specified by
the Control property.

Property Description

Method Name Name of a method you code to populate a ListView. For
information about the Java sources that Mobile
Development generates for the method and how to provide
logic for the method, see “Logic for a Method Name
Property” on page 122.

The method you code must return an instance of
IListViewDatasource, which is in the gen/api-src folder in the
com.softwareag.mobile.runtime.toolkit.delegates package.

Name Name you assign the data source in the Outline Editor for
your own reference purpose.

Property Description

Expression Expression that identifies the data to obtain from the data
source defined by the List Data Source property.

List Data Source Name of a DynamicDataSource or JSONDataSource object that
you defined as a child of the ContentProvider object.

webMethods Mobile Development Help Version 9.6 103

 5 User Interface Object Reference

JSONDataSource Properties

Objects to Use for Event Listeners

The following table provides descriptions of user interface objects that you can include in
the model to add listeners to an application. The objects generate a user-initiated event
when the user performs the action, such as when a user presses a button.

Template Name of a Template object that you previously defined.

At run time, the data obtained from the data source is
formatted and displayed in this user interface object. Specify
a Template object that is based on a user interface object that
can display the list of information, such as a Table object.

For more information about templates, see “Using
Templates to Define Custom Objects for a Mobile Project” on
page 68 and “Using a Content Provider to Populate a
ListView” on page 60.

Property Description

Name Name you assign the object in the Outline Editor for your own
reference purpose. This name does not appear in the application’s
user interface.

Rest Method Method to invoke to provide the data for the ListView object.

Select a method that you have defined in the model. You define the
method using a Method object that is a child of the Resource object in
the Services part of the model.

Object Description

GainFocusListener Generates a user-initiated event when a user interface object
gains focus.

For example, if you want to generate a user-initiated event
when an entry field gains focus because the user selects the
entry field, add a GainFocusListener object as a child of the
Entry object.

The GainFocusListener object does not have any properties.

Property Description

 5 User Interface Object Reference

104 webMethods Mobile Development Help Version 9.6

Objects to Use for Event Actions

The following table provides descriptions of user interface objects that you include in the
model to specify the action you want an application to take when a user-initiated event
occurs.

LoseFocusListener Generates a user-initiated event when a user interface object
loses focus.

For example, if you want to generate a user-initiated event
when an entry field loses focus because the user stops
selecting the entry field by selecting another user interface
control, add a LoseFocusListener object as a child of the Entry
object.

The LoseFocusListener object does not have any properties.

PostEditListener Generates a user-initiated event after a user edits an object.

Note: In the case of keyboard entry, a new event is generated
for each character typed or deleted.

For example, if you want to generate a user-initiated event
after a user types an entry in a SearchEntry object, add a
PostEditListener object as a child of the SearchEntry object.

The PostEditListener object does not have any properties.

PreEditListener Generates a user-initiated event when a user is about to edit
an object.

For example, if you want to generate a user-initiated event
when a user is about to type text in a SearchEntry object, add
a PreEditListener object as a child of the SearchEntry object.

The PreEditListener object does not have any properties.

TriggerListener Generates a user-initiated event after a user uses an object.

For example, if you want to generate a user-initiated event
after a user presses a Button object, add a TriggerListener object
as a child of the Button object.

Note: If you add a TriggerListener as the child of an Image
object, the image acts as a button.

The TriggerListener object does not have any properties.

Object Description

webMethods Mobile Development Help Version 9.6 105

 5 User Interface Object Reference

Object Description

Back The application displays the previous view when the
associated user-initiated event occurs.

For information about setting properties for the Back object,
see “Back Properties” on page 106.

Note: This action is only supported if the application uses the
Mobile Development TransitionStackController. If the application
override the TransitionStackController, this event action will not
work properly. For more information about the
TransitionStackController, see “About the
TransitionStackController” on page 119.

ChangePaneConfiguration The application switches to a pane configuration you specify
when the associated user-initiated event occurs.

For information about setting properties for the
ChangePaneConfiguration object, see
“ChangePaneConfiguration Properties” on page 106.

Delegate The application executes a method you specify when the
associated user-initiated event occurs.

For information about setting properties for the Delegate
object, see “Delegate Properties” on page 107.

OpenDialog The application displays the AlertDialog you specify when the
associated user-initiated event occurs.

For information about setting properties for the OpenDialog
object, see “OpenDialog Properties” on page 107.

ToggleVisibility The application switches between making a user interface
object that you specify either visible or hidden.

 If the object is currently visible, the application hides it.

 If the object is currently hidden, the application makes it
visible.

An example of using the ToggleVisibility action might be to
show a button if a user enters text in a text entry field.

For information about setting properties for the
ToggleVisibility object, see “ToggleVisibility Properties” on
page 107.

 5 User Interface Object Reference

106 webMethods Mobile Development Help Version 9.6

Back Properties

ChangePaneConfiguration Properties

Transition The application transitions to the new view you specify
when the associated user-initiated event occurs.

For information about setting properties for the Transition
object, see “Transition Properties” on page 108.

Property Description

Back To Root Back behavior that you want the application to take when
the user-initiated event occurs.

 Clear the check box if you want the application to return
to the previous view.

 Select the check box if you want the application to
display the first view.

When you select the check box, the TransitionStackController
opens the first pushed view. For more information about
the TransitionStackController, see “About the
TransitionStackController” on page 119.

Property Description

Method Name Name of a method that performs the change to the new pane
configuration. Specifying the Method Name property is
optional.

When you specify Method Name, Mobile Development
generates a method and places code to change the pane
configuration in the method you specify. You can then add
additional code to the method. For more information, see
“Logic for a Method Name Property” on page 122.

On Condition Whether to perform the change pane configuration action at
run time.

Pane Configuration Pane configuration to which the application switches when
the user-initiated event occurs. Specify the name of a
PaneConfiguration object you previously defined in the model.

Object Description

webMethods Mobile Development Help Version 9.6 107

 5 User Interface Object Reference

Delegate Properties

OpenDialog Properties

ToggleVisibility Properties

Property Description

Method Name Name of a method you code and that the application
executes when the user-initiated event occurs.

For information about the Java sources that Mobile
Development generates for the method and how to provide
logic for the method, see “Logic for a Method Name
Property” on page 122.

Property Description

Dialog Dialog to display when the user-initiated event occurs.
Specify the name of a AlertDialog object you previously
defined in the model.

Property Description

Control The user interface object that you want to make visible or
hide in response to the user-initiated event.

Note: If you identify a control that is within a template, the
control within the template is made visible or hidden. If the
template is instantiated multiple times, the control in all
instantiated templates are made visible or hidden at the
same time.

If you nest templates inside templates, only identify controls
in the top-level template.

 5 User Interface Object Reference

108 webMethods Mobile Development Help Version 9.6

Transition Properties

Objects to Use for Templates

Use templates to define custom user interface objects. For more information about
templates, see “Using Templates to Define Custom Objects for a Mobile Project” on
page 68.

The following table provides descriptions of the user interface objects for using
templates.

Property Description

Method Name Name of a method that performs the transition to the new
view. Specifying the Method Name property is optional.

When you specify Method Name, Mobile Development
generates a method and places code to transition to the view
in the method you specify. You can then add additional code
to the method. For more information, see “Logic for a
Method Name Property” on page 122.

On Condition Whether to perform the transition action at run time.

Pane Pane in which to display the view.

Style How to perform the transition to the new view, for example,
fade in the new view or have the new view appear.

View View to transition to when the user-initiated event occurs.
Specify the name of a ListView, NavView, View, or WebView
object you previously defined in the model.

Object Description

ListViewElement Defines a custom object that works like a ListView. When you
create templates for ListViewElement objects, you can then
reference the templates in a normal view, allowing you to
include more than one object in a regular view, each
behaving like a ListView object.

Add a ListViewElement child object to the Template object if you
want to

For information about setting properties for the
ListViewElement object, see “ListViewElement Properties” on
page 109.

webMethods Mobile Development Help Version 9.6 109

 5 User Interface Object Reference

ListViewElement Properties

Template Properties

Template Defines a custom user interface object.

For information about setting properties for the Template
object, see “Template Properties” on page 109.

TemplateReference Adds the custom user interface object to the user interface.

For information about setting properties for the
TemplateReference object, see “TemplateReference Properties”
on page 110.

Property Description

Height Height you want to use for the object.

List View Header Template that defines an object to display as the header for
the list of data displayed in the ListView.

Specify a template that you previously defined. The
template should customize an object like a Textfield or Image
object.

Separator Template that defines an object to display between the each
list item displayed in the ListView.

Specify a template that you previous defined. The template
should customize an object like a Separator object.

Width Width you want to use for the object.

Property Description

Class Name Name of the Java class that Mobile Development generates
for this template. For more information about the sources
that Mobile Development generates for the template and
where to add your logic to create a custom user interface
object, see “Creating a Template for a Custom Object” on
page 68.

Object Description

 5 User Interface Object Reference

110 webMethods Mobile Development Help Version 9.6

TemplateReference Properties

Property Description

Name Name you assign the template reference object in the Outline
Editor for your own reference purpose. This name does not
appear in the application’s user interface.

Template Name of the template for the custom user interface that you
want to add to the user interface.

webMethods Mobile Development Help Version 9.6 111

6 Services Object Reference

 Objects to Use for Services . 112

 6 Services Object Reference

112 webMethods Mobile Development Help Version 9.6

Objects to Use for Services

The following table provides a description of the objects you use for services.

Resources Properties

Object Description

Resources Identifies the server on which the services reside.

For information about setting properties for the Resources
object, see “Resources Properties” on page 112.

Resource Identifies the path to the service you want to use.

For information about setting properties for the Resource
object, see “Resource Properties” on page 113.

Method Identifies the method to execute.

For information about setting properties for the Method
object, see “Method Properties” on page 113.

Request Specifies the content type for the request sent to the REST
service.

For information about setting properties for the Request
object, see “Request Properties” on page 114.

Parameter Specifies an input parameter for the service. Use one
Parameter object for each input parameter.

For information about setting properties for the Parameter
object, see “Parameter Properties” on page 114.

Response Specifies the format of the response from the REST service.

For information about setting properties for the Response
object, see “Response Properties” on page 115.

Property Description

Base Base URI for the REST services you want to use. This part of the
URI identifies the server on which the services reside, for
example, https://mycompany.com.

You can include dynamic URI elements, for example,
https://{company}.apps.com/networking, where {company} is a
dynamic URI element.

webMethods Mobile Development Help Version 9.6 113

 6 Services Object Reference

Resource Properties

Method Properties

Property Description

Path Path to the service you want to use.

You can include dynamic URI elements, for example,
record/{objectName}, where {objectName} is a dynamic URI
element.

You can nest Resource objects under a parent Resource object to
provide subpath values.

The value you specify for the Path properties of the Resource
objects you add to the model are combined with the Base
property of the Resources parent object to form the URI to the
services you want to use.

Property Description

Class Name Name of a Java class that Mobile Development generates in the
gen/src folder in the package_name.services.rest package, where
package_name is the package name that you specified for your
mobile project.

The generated Java class contains a constructor that sets the
URI and contains the dynamic URI elements as parameters.
The dynamic URI elements, if any, are the ones that you specify
in the Resources object’s Base property and Resource objects’
Path properties.

The Java class includes an execute method that the mobile
application invokes to execute the REST service.

Name How the request is sent over the network. Select one of the
following:

 GET to send the request with the data attached to the
request address (URI).

 POST to send the request with the data sent as a separate
data block.

 6 Services Object Reference

114 webMethods Mobile Development Help Version 9.6

Request Properties

Parameter Properties

Property Description

Content Type Content type for the request sent to the REST service. The
application sends the input parameters, which you define using
child Parameter objects, in the format you specify. Specify one of
the following:

 NONE if the REST services requires the parameters to be sent
in plain text format.

 application/xml if the REST service requires the parameters to
be sent in XML format.

 application/json if the REST service requires the parameters
to be sent in JSON format.

Property Description

Default Value Default value for the parameter.

If you specify a value, Mobile Development does not create a
method parameter for the Parameter object.

If you specify a value for Default Value, the Repeating property
must be cleared.

Name Name of the parameter. The value you specify must be unique
among all parameters you specify for a specific Request object.

Note: Do not use postData as a value. The value postData is
reserved.

Repeating Whether the parameter contains multiple values. Select the
Repeating check box if the parameter contains multiple values.

If you select the Repeating check box, you cannot specify a value
for the Default Value property.

Style Whether the parameter is to be added to the header or query
string.

 HEADER if the parameter is to be added to the header.

 QUERY if the parameter is to be added to the query string.

webMethods Mobile Development Help Version 9.6 115

 6 Services Object Reference

Response Properties

Property Description

Accept Format of the response from the REST service. Specify one of
the following:

 NONE if the REST service response is in plain text format.

 application/xml if the REST service response is in XML
format.

 application/json if the REST service response is in JSON
format.

 6 Services Object Reference

116 webMethods Mobile Development Help Version 9.6

webMethods Mobile Development Help Version 9.6 117

7 Creating Application Logic

 About Adding Application Logic . 118

 About the TransitionStackController . 119

 Logic for a View . 120

 Logic for a Dialog . 121

 Logic to Display and Close a Dialog . 122

 Logic for a Method Name Property . 122

 Logic to Programmatically Set a Property Value at Run Time . 123

 Logic to Respond to a Listener Event . 124

 Logic to Transition to Another View . 125

 Common Methods to Override in Generated Code for the Application . 126

 Common Methods to Override in the Generated Code for a View . 127

 7 Creating Application Logic

118 webMethods Mobile Development Help Version 9.6

About Adding Application Logic

When you generate sources for a mobile project, Mobile Development generates logic to
handle the display of the views and dialogs in the mobile application. The generated code
is based on the model you define in the Outline Editor. For example, for a view you
design in the Outline Editor, Mobile Development generates logic to operate the user
interface based on the user interface objects you add to a view and the property settings
for each object. As a result, you do not need to add code for this type of logic for a mobile
project. Instead, you can concentrate on the business logic for your application.

When coding the business logic for your application, add your custom code to the user
space, that is, the Java classes that Mobile Development generates in the mobile project’s
src folder.

Caution! Do not add logic to the Java classes in the gen/src or gen/api-src folders. When
you generate sources or when you generate sources and API for a mobile project, Mobile
Development regenerates all the Java classes in those folders. Changes you make will be
lost.

The following tables lists the types of business logic you might want to add to a mobile
application.

Type of Logic Description

Genera Logic that applies to the entire application.

For example, you might want to add logic to respond when a user
rotates a device from portrait mode to landscape or vice versa.

View Business logic for a view.

For more information, see “Logic for a View” on page 120.

Dialog Business logic for a dialog.

For more information, see “Logic to Display and Close a Dialog”
on page 122.

Method Name
property

Logic for a Method Name property.

Several user interface objects have a Method Name property where
you can specify a method to invoke at run time. For example, you
specify a method name for the DynamicDropDownListEntryItem object
to identify the method the application executes at run time to
populate the parent DropDownListEntry object. For information, see
“Logic for a Method Name Property” on page 122.

webMethods Mobile Development Help Version 9.6 119

 7 Creating Application Logic

About the TransitionStackController

Mobile Development provides a Java class named TransitionStackController.java in the gen.api-
src/com.softwareag.mobile.runtime.toolkit.ui.controller package. Unless you override the use of
TransitionStackController.java, applications you create using Mobile Development use the
logic in TransitionStackController.java at run time to:

 Add Back buttons to views when the application creates a view.

 Set the text that displays on Back buttons to display the header text from the previous
view.

 Transition to the previous view when a user presses the Back button.

A TransitionStackController keeps track of the view displayed in each pane of the application’s
window and each NavButton object in a NavView object. It keeps track by pushing view
controllers on to a controller stack. For example, as an application transitions the views in
a pane from one view to the next, the TransitionStackController pushes the new controller
onto the controller stack. As a result, when the user presses the Back button, it pops the
controller for a view from the controller stack and transitions to that view.

In the Java sources that Mobile Development generates, TransitionStackController.java is
imported into the abstract controller for each view. For example, if you have a view
named DetailView, TransitionStackController.java is imported into

Property value Logic to programmatically set a property.

Many properties allow you to specify a method name as the
property value. At run time, the application executes the method to
determine the property value. For example, you might want to
programmatically determine the color to use for the Background
Color property for a Tablerow object. To do so, specify the name of
the method that sets the color as the value of the Background Color
property. For information, see “Logic to Programmatically Set a
Property Value at Run Time” on page 123.

Event handling Logic to respond to a user-initiated event.

For more information, see “Logic to Respond to a Listener Event”
on page 124.

View transitions Logic to transition to another view.

For more information, see “Logic to Transition to Another View”
on page 125

Templates Logic for templates to define custom user interface objects.

For more information, see “Creating a Template for a Custom
Object” on page 68.

Type of Logic Description

 7 Creating Application Logic

120 webMethods Mobile Development Help Version 9.6

AbstractDetailViewController.java. As a result, you can use the methods of
TransitionStackController.java to customize the use of the TransitionStackController in the logic that
you code for a view. For example you can push new controllers on to the controller stack,
remove the last controller from the controller stack, or force the controller stack to go to
the first controller pushed on the stack. For more information about Java sources
generated for your mobile project, see “Java Sources that Mobile Development
Generates” on page 26.

If you do not want to use the TransitionStackController for a mobile application, you can
disable it. However, if you disable the TransitionStackController you will need to add
application logic to handle transitions back to previous views. To prevent the use of the
TransitionStackController, override the createTransitionStackController() method, which is in
AbstractApplicationController.java in the gen.api-src.com.softwareag.mobile.runtime.toolkit package. To
override this method, add the createTransitionStackController() method to the
application_nameControllerImpl.java file that Mobile Development generates in the
src.package_name.ui.controller.impl package. For example, for a mobile project if you assigned
the application the name “MyApp” and the package name “com.mycompany”, you add
the createTransitionStackController() method to MyAppControllerImpl.java in the
src.com.mycompany.ui.controller.impl package. The following shows sample code. Note that
this code sample assumes a view named “MyView” exists.

public boolean createTransitionStackController(nUIObject sender,
 PaneConfiguration pc,
 PaneDefinition pane,
 AbstractViewController assignedAVC) {
 if (assignedAVC instanceof MyViewControllerImpl) {
 return false;
 }
 return true;
 }

Logic for a View

When you generate sources for a mobile project, Mobile Development generates a Java
class named view_nameControllerImpl.java in the src.package_name.ui.controller.impl package. For
example, if you assigned the view the name “MyView” and the package name
“com.mycompany”, Mobile Development generates MyViewControllerImpl.java in the
src.com.mycompany.ui.controller.impl package.

Add business logic for a view to the view_nameControllerImpl.java file.

When initially generated, the view_nameControllerImpl.java file contains several methods that
are commented out that you might want to uncomment and implement. For more
information, see “Common Methods to Override in the Generated Code for a View” on
page 127.

webMethods Mobile Development Help Version 9.6 121

 7 Creating Application Logic

Logic for a Dialog

When you add an AlertDialog object to the user interface, Mobile Development
automatically adds an AlertDialogButton as a child object. When you generate sources for
the mobile project, Mobile Development generates code to:

 Display the alert dialog with the text you specify in the AlertDialog object’s Text
property.

 Close the dialog when the user selects the close AlertDialogButton object.

If you want a dialog that simply displays text with a single close button, you do not need
to add any further custom code.

If you want to perform additional logic in the dialog or add additional AlertDialogButton
child objects, you can customize the logic for the dialog.

When you generate sources for a mobile project, Mobile Development generates a Java
class for the dialog where you can add your custom logic. The name of the Java class is
the name you specify for the AlertDialog object’s Class Name property. Mobile Development
generates the class in the src folder in the package_name.ui.dialog package. For example, if
you specify “MyAlertDialog” for the Class Name property and assign the mobile project
the package name “com.mycompany”, Mobile Development generates MyAlertDialog.java in
the com.mycompany.ui.dialog package.

When a user presses a button in the dialog, the onAlertDialogButtonPressed(final
AbstractAlertDialog dialog, final int buttonID) method in the iDialogDelegate Java class is invoked.
The buttonID is the value of the Id property that you specified for the AlertDialogButton
object in the model. If a dialog contains multiple buttons, your logic can identify the
button a user selected and take action based on the specific button the user pressed. The
following shows sample logic:

public void onAlertDialogButtonPressed(AbstractAlertDialog dialog,
 int buttonId) {
 switch (buttonId) {
 case YMNDialog.YESBUTTON:
 getView().getDialogResult().setText("YES !!!");
 break;
 case YMNDialog.MAYBEBUTTON:
 getView().getDialogResult().setText("MAYBE !!!");
 break;
 case YMNDialog.NOBUTTON:
 getView().getDialogResult().setText("NO !!!");
 break;

 default:
 break;
 }
 dialog.close();
}

 7 Creating Application Logic

122 webMethods Mobile Development Help Version 9.6

Logic to Display and Close a Dialog

You can open a dialog in the following ways:

 Open a dialog in response to a listener event.

If you want to open a dialog in response to a listener event, add an OpenDialog object
to the model and select the name of the dialog you want to open for the OpenDialog
object’s Dialog property. For more information, see “About User-Initiated Events and
Listeners” on page 64, “Adding Listeners for User-Initiated Events” on page 65, and
“OpenDialog Properties” on page 107.

 Open a dialog by creating the dialog class.

To create the dialog class, invoke the class that Mobile Development generates for the
dialog, for example, MyAlertDialog.java, where “MyAlertDialog” is the value you
specified for the AlertDialog object’s Class Name property. For example:

call new MyAlertDialog(delegate).open();

In the code line to create the dialog, delegate is an instance of iDialogDelegate. By
default, all abstract controllers implement iDialogDelegate.

 Open a dialog by invoking the openDialog method, which is in the
AbstractApplicationController.java in the gen/api-src folder in the
com.softwareag.mobile.runtime.toolkit package. In this case, pass a generated instance of an
AbstractAlertDialog to the openDialog() method.

For example, you have an application named MyApplication and a dialog named
MyAlertDialog, you might use the following:

MyApplicationControllerImpl.openDialog(new MyAlertDialog(dialogDelegate));

Note: Only one dialog can be opened at the same time.

A dialog closes when a user presses any button in the dialog.

You can also programmatically close a dialog by invoking the closeDialog() method, which
is in the AbstractApplicationController.java in the gen.api-src.com.softwareag.mobile.runtime.toolkit
package.

Logic for a Method Name Property

Several user interface objects have a Method Name property where you can specify a
method to invoke at run time. For example, you specify a method name for the
DynamicDropDownListEntryItem object to identify the method the application executes at run
time to populate the parent DropDownListEntry object.

If you specify a method in a Method Name property, when you generate sources, Mobile
Development generates the method in the abstract controller for the associated view.
Mobile Development generates the abstract controller, which is named
Abstractview_nameController.java, in the gen/src folder in the package_name.ui package. For

webMethods Mobile Development Help Version 9.6 123

 7 Creating Application Logic

example, if you specify the Method Name property for a user interface object in the view
named “MyView” and you assign the mobile project the package name
“com.mycompany”, Mobile Development generates the method in
AbstractMyViewController.java in the com.mycompany.ui package, which is in the gen/src folder.

To add the logic to the method, first you must add the method to the user space, that is,
into the view_nameControllerImpl.java file in the package_name.ui.controller.impl package in the
src folder. For example, continuing with the previous example, you add the method to
MyViewControllerImpl.java in the com.mycompany.ui.controller.impl package, which is in the src
folder. After adding the view to the user space, you can add your custom logic.

Caution! Do not add your logic to Abstractview_nameController.java. When you generate
sources, Mobile Development regenerates this class and your changes will be lost.

Logic to Programmatically Set a Property Value at Run Time

Many properties allow you to specify a method name as the property value. At run time,
the application executes the method to determine the property value. For example, you
might want to programmatically determine the color to use for the Background Color
property for a Tablerow object. To do so, specify the name of the method that sets the color
as the value of the Background Color property.

At run time, no input parameters will be passed to the method. The output from the
method must be a suitable value for the property. For example, if you are using a method
for a color, the output must be a value that specifies a color in a suitable format.

Where you place the code for the method depends on whether you specified a relative
method name or a fully-qualified method name for the property value.

 Relative method name

When you specify a relative method name, Mobile Development generates the
method in the abstract controller for the associated view. The actions you take to add
logic to the method are the same as when you use a Method Name property. For more
information, see “Logic for a Method Name Property” on page 122.

 Fully-qualified name

When you specify a fully-qualified method name, the method you specify must exist
in a Java class you create. It is recommended that you save the Java class in a location
within the project’s src folder so that all the code you maintain is in one folder.

Ensure the methods that you create are static so that no instance of the class needs to
be in existence.

 7 Creating Application Logic

124 webMethods Mobile Development Help Version 9.6

Logic to Respond to a Listener Event

When you add an event listener object to the model, for example, a GainFocusListener
object, you are required to add a child event action object that indicates how the
application responds when the user-initiated event occurs. For more information, see
“About User-Initiated Events and Listeners” on page 64 and “Objects to Use for Event
Actions” on page 104.

The table below lists the event action objects and more information about the logic to
perform for each action.

Event Action Object Description

Back Mobile Development generates the logic to perform this
action.

ChangePaneConfiguration Mobile Development generates logic for this action.
However, you can customize the logic.

If you specify a value for the ChangePaneConfiguration
object’s Method Name property, Mobile Development
generates the method you specify and places the logic to
change pane configurations in the method. If you want to
customize the logic, the method into the user space and
make your customizations. For more information about
how to provide code for the method, see “Logic for a
Method Name Property” on page 122.

Delegate Mobile Development generates a method you specify in
the user space. However, this method does not perform
any useful task. You must add the logic you want
performed when the user-initiated event occurs. For more
information about how to provide code for the method,
see “Logic for a Method Name Property” on page 122.

OpenDialog Mobile Development generates the logic to perform this
action.

ToggleVisibility Mobile Development generates the logic to perform this
action.

webMethods Mobile Development Help Version 9.6 125

 7 Creating Application Logic

Logic to Transition to Another View

Where you add logic to transition from one view to another depends on when you want
the application to transition:

 If you want to transition based on a user-initiated event, for example, when a user presses a
button in the user interface, you can use the Transition event action object.

When you use the Transition event action object, you do not need to add any code if
you simply want to transition to another view. However, if you want to perform
actions before or after the transition, you can add custom code. For more information,
see “Logic to Respond to a Listener Event” on page 124.

 If you want to transition back to the previous view when the user presses the Back button,
typically you do not need to add logic. The Mobile Development
TransitionStackController provides logic for transitioning to previous views. For more
information, see “About the TransitionStackController” on page 119.

The following lists circumstances when you need to add logic to transition back to
previous views:

 You disabled the TransitionStackController.

When you disable the TransitionStackController, your application logic must keep
track of the views that the application displays and how to transition back.

 You set the Hide Back Button property for the view to true.

When you hide the view’s back button, but have the TransitionStackController
enabled, you can use the following code to transition back to a previous view:

getTransitionStackController().popViewController();

 If you want to transition to another view for any other reason, you need to add code to your
view to perform the transition.

Transition Mobile Development generates logic for this action.
However, you can customize the logic.

If you specify a value for the Transition object’s Method Name
property, Mobile Development generates the method you
specify and places the logic to transition to the new view
in the method. If you want to customize the logic, copy the
method into the user space and make your
customizations. For more information about how to
provide code for the method, see “Logic for a Method
Name Property” on page 122.

Event Action Object Description

 7 Creating Application Logic

126 webMethods Mobile Development Help Version 9.6

Unless you take steps to disable the Mobile Development TransitionStackController, it is
enabled and you can use the methods in TransitionStackController.java to transition to the
new view. To perform the transition you need to:

 Push the controller for the view to which you are transitioning on the controller
stack.

 Transition to the new view.

The following shows sample code to transition to a new view named
“MySecondView”.

getTransitionStackController().pushViewController(new
MySecondViewControllerImpl());

The following shows a sample method you can you use to transition from a view
named “MasterView” to a view named “DetailsView”. You would place this code in
the MasterViewControllerImpl in the src folder.

public void doTransition()
 final AbstractViewController target = new DetailsViewController();
 getTransitionStackController.pushViewController(target);
}

If you disabled the TransitionStackController, add the logic that you provide to keep track
of the view to which you are transitioning and to perform the transition to the new
view.

Common Methods to Override in Generated Code for the
Application

When you generate sources for a mobile project, Mobile Development generates a Java
class named application_nameAppControllerImpl.java, where application_name is the name you
assigned the application. The application_nameAppControllerImpl.java file resides in the
src.package_name.ui.controller.impl package, where package_name is the package name you
specified for your mobile project.

When initially generated, the application_nameAppControllerImpl.java file contains no
executable code. However, Mobile Development does include the set up for methods for
which you might want to add code. These methods are commented out. If you want to
use them, uncomment the methods and add your custom code. The table below describes
these methods.

Note: Besides using the commented out methods that Mobile Development adds to the
Java class, you can add other logic for your application to the
application_nameAppControllerImpl.java.

webMethods Mobile Development Help Version 9.6 127

 7 Creating Application Logic

Common Methods to Override in the Generated Code for a
View

When you generate sources for a mobile project, Mobile Development generates a Java
class named view_nameControllerImpl.java, where view_name is the name you assigned the
view. The view_nameControllerImpl.java file resides in the src.package_name.ui.controller.impl
package, where package_name is the package name you specified for your mobile project.

When initially generated, the view_nameControllerImpl.java file contains no executable code.
However, Mobile Development does include the set up for methods for which you might
want to add code. These methods are commented out. If you want to use them,
uncomment the methods and add your custom code. The table below describes these
methods.

Note: Besides using the commented out methods that Mobile Development adds to the
Java class, you can add other logic for your application to the view_nameControllerImpl.java.

Method Description

onCreateWindow() At run time, this method is executed after the main
window for the application is created. Add logic to this
method if you want to customize the main window of the
application.

OnOrientationChange() At run time, this method is executed when the user rotates
the device and changes the device’s orientation from
portrait to landscape or vice versa. Add logic to this
method that you want performed when a device is rotated,
for example, redisplay the user interface for the new
orientation.

By default, this method updates the dimensions of the
panes in the window. If you need to take further action,
you can uncomment the OnOrientationChange() method and
add your custom logic.

Method Description

onTransitionTo() At run time, this method is executed after the view is
created, but before the application transitions to the view.
Add logic to this method if you want to customize the view,
for example to add or remove controls.

onTransitionFrom() At run time, this method is executed before transitioning
from the current view to another view. Add logic to this
method if you want to take action before the view is
removed, for example, to save data.

 7 Creating Application Logic

128 webMethods Mobile Development Help Version 9.6

onAlertDialogButtonPressed() At run time, this method is executed when a user presses a
button, (an AlertDialogButton object) in an alert dialog (an
AlertDialog) object. The method is passed the identifier that
you specify in the AlertDialogButton object’s Id property so
that your logic can determine the button the user selected.
Add logic to this method to perform the actions you want
to take when a user presses a button.

onBackButtonEvent() At run time, this method is executed when a user presses
the view’s Back button. By default, applications you create
using Mobile Development use the provided
TransitionStackController, and as a result, the default behavior
is to transition back to the previous view, if any. Add logic
to this method if you want to override this default Back
button behavior. For more information about the
TransitionStackController, see “About the
TransitionStackController” on page 119.

hidesBackButton() At run time, this method is executed when the view is
about to be displayed for all views except the first view,
which does not have a Back button. By default, applications
you create using Mobile Development use the provided
TransitionStackController, and as a result, the default behavior
is that the view is created with a Back button. Use this
method to hide the Back button if you do not want the view
to have a Back button.

Note: If your application does not use the
TransitionStackController, views do not automatically have a
Back button. You manually add a Back button to the view
using the addBackButton() method.

For more information about the TransitionStackController, see
“About the TransitionStackController” on page 119.

getBackButtonTitle() At run time, this method is executed when adding the Back
button to the view. By default, applications you create
using Mobile Development use the provided
TransitionStackController, and as a result, the default behavior
is to use the header text of the previous view on the Back
button. Use this method to override the text used on the
Back button, for example, to change the text to simply
“Back”.

nUIEventCallback() At run time, this methods receives control when a user-
initiated event occurs for any control in the view. Add logic
to this method if you want to override event handling.

Method Description

webMethods Mobile Development Help Version 9.6 129

8 Managing a Project

 Renaming a Mobile Project . 130

 Renaming the Application . 130

 Changing the Package Name . 131

 8 Managing a Project

130 webMethods Mobile Development Help Version 9.6

Renaming a Mobile Project

You initially set the name of the mobile project when you create the project using the
New Mobile Development Project wizard. If needed, you can change the mobile project
name.

Note: If you want to change the name of the application, see “Renaming the Application”
on page 130.

To rename the mobile project

1 In the Package Explorer, right-click the top-level node for the project and select
Refactor > Rename.

2 In the New name field, type the new name you want to assign to the mobile project.

3 Leave the Update references check box as is. This check box will not affect mobile
projects.

4 Click OK.

Renaming the Application

You initially set the application when you create the project using the New Mobile
Development Project wizard. If you want to change the application name you specified in
the wizard, you can do so by updating the Name property for the root application node.

Note: If you want to change the name of the mobile project, see “Renaming a Mobile
Project” on page 130.

To rename the application

1 Ensure the mobile project is displayed in the Outline Editor. For instructions, see
“Opening the Mobile Development Perspective” on page 15.

2 In the Model section of the Outline Editor, expand the project so that you can view the
top-level child node that represents the root application for the project.

3 Select the root application node.

4 Type the new name for the application in the Name property, which is displayed in the
Properties section of the Outline Editor.

5 Save the mobile project.

webMethods Mobile Development Help Version 9.6 131

 8 Managing a Project

6 Generate sources for the updated mobile project. For instructions, see “Generating
Sources for a Mobile Project” on page 25.

Mobile Development generates a new new_app_nameAppControllerImpl.java Java
class for the application where new_app_name is the new name you assigned to the
application.

Mobile Development does not remove the old_app_nameAppControllerImpl.java Java
class, where old_app_name is the previous name of the application. Mobile
Development retains this file in the event that you previously added custom code to
the old_app_nameAppControllerImpl.java Java class.

7 Update the new_app_nameAppControllerImpl.java Java class with any custom code
that you added to the old_app_nameAppControllerImpl.java Java class.

a In the Package Explorer or Navigator view, locate the src > package > ui > controller >
impl folder, which contains both the new_app_nameAppControllerImpl.java and
old_app_nameAppControllerImpl.java Java classes.

b Open both Java classes and copy all custom code from the
old_app_nameAppControllerImpl.java to new_app_nameAppControllerImpl.java.

c Save both files.

d Delete the old_app_nameAppControllerImpl.java Java class.

Changing the Package Name

You initially define the package name for a mobile project when you create the project
using the New Mobile Development Project wizard. If you want to change the setting you
specified in the wizard, you can do so by updating the Bundle Id property for the root
application node.

To change the package name for a mobile project

1 Ensure the mobile project is displayed in the Outline Editor. For instructions, see
“Displaying a Mobile Project in the Outline Editor” on page 15.

2 In the Model section of the Outline Editor, expand the project so that you can view the
top-level child node that represents the root application for the project.

3 Select the root application node.

4 In the Properties section of the screen, type the new package name in the Bundle Id
property.

5 Save the mobile project.

6 In the Outline Editor, right-click and select Generate Mobile Designer Sources to
regenerate the sources for your project so that your changes are incorporated.

Mobile Development generates new Java classes for the project that use the new
package name.

 8 Managing a Project

132 webMethods Mobile Development Help Version 9.6

In the project’s gen/src folder, Mobile Development removes the Java classes that use
the old package name, replacing them with Java classes that use the new name.

In the src folder, Mobile Development creates new Java classes that use the new
package name, but retains all existing Java classes that use the old package name.
Mobile Development retains the files with the old package name in the event that you
previously added custom code to them.

7 For each Java class in the src folder that contains custom code that you need added,
copy the code from the old Java class files into the corresponding new Java class files.

Look for custom code that you might have added in Java classes that reside in the
following, where old_package is the old package name:

 src.old_package.ui.controller.impl

 src.old_package.ui.templates

8 Delete the following folders, where old_package is the old package name:

 src.old_package.ui.controller/impl

 src.old_package.ui.templates

Note: Mobile Development does not automatically delete these files because you
might have added custom code that you need to copy, as described in the previous
step.

webMethods Mobile Development Help Version 9.6 133

134 webMethods Mobile Development Help Version 9.6

	Title Page
	Copyright
	Table of Contents
	About this Guide
	Document Conventions
	Documentation Installation
	Online Information

	1 Introduction to Mobile Development
	About Mobile Development
	Other Resources for Mobile Development

	2 Introduction to the Mobile Development User Interface
	Mobile Development Perspective
	Opening the Mobile Development Perspective
	Displaying a Mobile Project in the Outline Editor
	Displaying a Window, View, or Dialog in the Outline Editor
	Changing How Information is Displayed in the Outline Editor
	Adding Objects to a Mobile Project
	Removing Objects from a Mobile Project
	Setting Properties in the Outline Editor
	Using Mobile Designer Ant Targets

	3 Creating and Building a Mobile Application
	Creating a New Mobile Project
	Using Mobile Administrator to Manage and Distribute Mobile Applications
	Building the User Interface
	Generating Sources for a Mobile Project
	Java Sources that Mobile Development Generates

	Text Resources that Mobile Development Creates for a Project
	Adding the Mobile Application Logic
	Defining Resources for the Mobile Project
	Using the Default Resource Handler
	Storing Resource Files for the Mobile Project
	Storing Image Files for the UniversalResHandler
	Extending the UniversalResHandler to Allow Storing Image Files in Custom Subfolders
	Coding a Custom Resource Handler

	Adding Devices to the Mobile Project
	Removing Devices from the Mobile Project
	Compiling Resources for a Device
	Configuring the Orientations Setting for the Application
	Managing Languages the Application Supports
	Setting the Default Language for the Project
	Specifying Values for Non-Default Language Text Resources
	Adding Services to a Mobile Project
	Generating and Building a Mobile Project

	4 Building the User Interface for a Mobile Application
	Basic Structure of the Application User Interface
	Defining Panes for the Application Window
	Adding Views to the Application’s User Interface
	Renaming a View
	Adding Content to a View
	Programmatically Populating a ListView
	Using a Content Provider to Populate a ListView
	About User-Initiated Events and Listeners
	Adding Listeners for User-Initiated Events
	Defining Dialogs
	Using Templates to Define Custom Objects for a Mobile Project
	Creating a Template for a Custom Object
	Using a Template in the Mobile Application User Interface

	5 User Interface Object Reference
	User Interface Objects
	Application Node Properties
	Objects to Use for Windows
	Window Properties

	Objects to Use for Panes
	HorizontalSplitter Properties
	PaneConfiguration Properties
	PaneDefinition Properties
	VerticalSplitter Properties

	Objects to Use for Views
	ListView Properties
	NavView Properties
	View Properties
	WebView Properties

	Objects to Use for the Layout of the User Interface
	Group Properties
	Separator Properties
	Spacer Properties

	Objects to Use for Dialogs
	AlertDialog Properties
	AlertDialogButton Properties

	Objects to Use for Tables
	DynamicTablecell Properties
	DynamicTablerow Properties
	Table Properties
	TableButton Properties
	Tablecell Properties
	Tablerow Properties

	Objects to Use for User Interface Controls
	Button Properties
	ButtonGroup Properties
	CheckBox Properties
	Container Properties
	DateEntry Properties
	DropDownListEntry Properties
	DynamicDisplayObject Properties
	DynamicDisplayObjectArray Properties
	DynamicDropdownlistEntryItems Properties
	Entry Properties
	Image Properties
	NavButton Properties
	Pagination Properties
	ProgressAnim Properties
	RadioButton Properties
	SearchEntry Properties
	StringDropdownlistEntry Properties
	Textfield Properties
	WebViewElement Properties

	Objects to Use for Content Providers
	DataBinding Properties
	DynamicDataSource Properties
	ContentProvider Properties
	JSONDataSource Properties

	Objects to Use for Event Listeners
	Objects to Use for Event Actions
	Back Properties
	ChangePaneConfiguration Properties
	Delegate Properties
	OpenDialog Properties
	ToggleVisibility Properties
	Transition Properties

	Objects to Use for Templates
	ListViewElement Properties
	Template Properties
	TemplateReference Properties

	6 Services Object Reference
	Objects to Use for Services
	Resources Properties
	Resource Properties
	Method Properties
	Request Properties
	Parameter Properties
	Response Properties

	7 Creating Application Logic
	About Adding Application Logic
	About the TransitionStackController
	Logic for a View
	Logic for a Dialog
	Logic to Display and Close a Dialog
	Logic for a Method Name Property
	Logic to Programmatically Set a Property Value at Run Time
	Logic to Respond to a Listener Event
	Logic to Transition to Another View
	Common Methods to Override in Generated Code for the Application
	Common Methods to Override in the Generated Code for a View

	8 Managing a Project
	Renaming a Mobile Project
	Renaming the Application
	Changing the Package Name

