
Appendix F: Syntax and Format Reference
Regular Expression Syntax

Date and Time Patterns

Number Format

Regular Expression Syntax
Several transformation patterns allow using Regular Expressions to define the textual pattern we want to
find in the host screen.

General Examples

Expression Search for

Just some text Specific text, find only “Just some text”

.*\.txt Text files, like “Readme.txt”

Gr[ae]y Only “Gray” or “Grey”

Colou?r Only “Color” or “Colour”

\b[1-9][0-9]{2,4}\b A number between 100 and 99999

\b[A-Z0-9._%-]+@ [A-Z0-9.-]+\.[A-Z]{2,4}\b Email address, like “help@softwareag.com”

Host Specific Examples

Search for Use… Expression

"1 more >" or "2 more >" To convert the text "1 more >" or "2 more >" etc. to a
button that sends PF11

[1-9] more
>

"(x-y)", "(January-march)",
etc.

To erase any text with this pattern \(.*-.*\)

General Rules

[|] separates alternatives.

Expressions within parentheses are matched as subpattern groups and saved for further use.

By default, a quantified subpattern matches as many times as possible without causing the rest of the
pattern not to match. To change the quantifiers to match the minimum number of times possible,
without causing the rest of the pattern not to match, use a [?] right after the quantifier.

1

Appendix F: Syntax and Format ReferenceAppendix F: Syntax and Format Reference

Regular Expression Matching

Expression Matches

{n,m} At least n but not more than m times

{n,} At least n times

{n} Exactly n times

* 0 or more times

+ 1 or more times

? 0 or 1 time

. Everything except \n in a regular expression within parentheses

^ A null token matching the beginning of a string or line (i.e., the position right
after a new line or right before the beginning of a string) in a regular expression
within parentheses

$ A null token matching the end of a string or line (that is, the position right before
a new line or right after the end of a string) in a regular expression within
parentheses

\b Backspace inside a character class ([abcd])

\b Null token matching a word boundary (\w on one side and \W on the other)

\B Null token matching a boundary that isn’t a word boundary

\A Only at the beginning of a string

\Z Only at the end of a string (or before a new line at the end)

\ New line

\r Carriage return

\t Tab

\f Form feed

\d Digit [0-9]

\D Non-digit [^0-9]

\w Word character [0-9a-z_A-Z]

\W Non-word character [^0-9a-z_A-Z]

\s A white space character [\t\n\r\f]

\S A non-white space character [^ \t\n\r\f]

\xnn The hexadecimal representation of character nn

\cD The corresponding control character

\nn or \nnn The octal representation of character nn unless a back reference.

2

Regular Expression MatchingAppendix F: Syntax and Format Reference

Expression Matches

\1, \2, \3 ... Whatever the first, second, third, and so on, parenthesized group matched. This is
called a back reference. If there is no corresponding group, the number is
interpreted as an octal representation of a character.

\0 The null character. Any other back-slashed character matches itself.

*? 0 or more times

+? 1 or more times

?? 0 or 1 time

{n}? Exactly n times

{n,}? At least n times

{n,m}? At least n but not more than m times

Date and Time Patterns
Date and time formats are specified by date and time pattern strings. Within date and time pattern strings,
unquoted letters from ’A’ to ’Z’ and from ’a’ to ’z’ are interpreted as pattern letters representing the
components of a date or time string. Text can be quoted using single quotes (’) to avoid interpretation.
Quotation marks ("’’") represent a single quote. All other characters are not interpreted; they’re simply
copied into the output string during formatting or matched against the input string during parsing.

The following pattern letters are defined (all other characters from ’A’ to ’Z’ and from ’a’ to ’z’ are
reserved):

3

Appendix F: Syntax and Format ReferenceDate and Time Patterns

Letter Date or Time Component Examples

G Era designator AD

y Year 1996; 96

M Month in year July; Jul; 07

w Week in year 27

W Week in month 2

D Day in year 189

d Day in month 10

F Day of week in month 2

E Day in week Tuesday; Tue

a Am/pm marker PM

H Hour in day (0-23) 0

k Hour in day (1-24) 24

K Hour in am/pm (0-11) 0

h Hour in am/pm (1-12) 12

m Minute in hour 30

s Second in minute 55

S Millisecond 978

Pattern letters are usually repeated, as their number determines the exact presentation:

Text: For formatting, if the number of pattern letters is 4 or more, the full form is used; otherwise a
short or abbreviated form is used if available. For parsing, both forms are accepted, independent of
the number of pattern letters.

Number: For formatting, the number of pattern letters is the minimum number of digits, and shorter
numbers are zero-padded to this amount. For parsing, the number of pattern letters is ignored unless
it’s needed to separate two adjacent fields.

Year: For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits; otherwise
it is interpreted as a number. For parsing, if the number of pattern letters is more than 2, the year is
interpreted literally, regardless of the number of digits. So using the pattern "MM/dd/yyyy",
"01/11/12" parses to Jan 11, 12 A.D.

For parsing with the abbreviated year pattern ("y" or "yy"), SimpleDateFormat must interpret the
abbreviated year relative to a century. It does this by adjusting dates to be within 80 years before and
20 years after the time the SimpleDateFormat instance is created. For example, using a pattern of
"MM/dd/yy" and a SimpleDateFormat instance created on Jan 1, 1997, the string "01/11/12" would
be interpreted as Jan 11, 2012 while the string "05/04/64" would be interpreted as May 4, 1964.
During parsing, only strings consisting of exactly two digits will be parsed into the default century.
Any other numeric string, such as a one digit string, a three or more digit string, or a two digit string
that isn’t all digits (for example, "-1"), is interpreted literally. So "01/02/3" or "01/02/003" are parsed,
using the same pattern, as Jan 2, 3 AD. Likewise, "01/02/-3" is parsed as Jan 2, 4 BC.

4

Date and Time PatternsAppendix F: Syntax and Format Reference

Month: If the number of pattern letters is 3 or more, the month is interpreted as text; otherwise, it is
interpreted as a number.

Examples

The following examples show how date and time patterns are interpreted in the U.S. locale. The given
date and time are 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone.

Date and Time Pattern Result

yyyy-MM-dd 2006-12-31

dd/MMM/yy 31/Dec/06

mmddyy 123106

d.M.yy 31.12.06

"yyyy.MM.dd G ’at’ HH:mm:ss " 2001.07.04 AD at 12:08:56

"EEE, MMM d, ’’yy" Wed, Jul 4, ’01

"h:mm a" 12:08 PM

"hh ’o’’clock’ a," 12 o’clock PM,

"K:mm a," 0:08 PM,

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss" Wed, 4 Jul 2001 12:08:56

"yyMMddHHmmss" 010704120856

Number Format
The number format expression is used for customizing the string representation of numbers. It can be used
for adding grouping and decimal symbols, scientific notation, special prefixes and suffixes (such as
currency signs or ‘%’) and much more. The Format Number Expression allows the user to do so by
defining a formatting pattern, a string written in a special syntax explained below, according to which the
string representation of the number will be generated.

Several usage examples:

5

Appendix F: Syntax and Format ReferenceNumber Format

Input Pattern Resulting string

56 00000 00056

-56 #; (#) (56)

234.34556 #0.00 234.35

4238476349587 #,##0 4,238,476,349,587

4238476349587 #,###0 4,2384,7634,9587

0.00000034545 0.#E0 3.5E-7

2347 #$ 2347$

The format pattern contains a positive and negative subpattern, for example, "#,##0.00;(#,##0.00)". Each
subpattern has a prefix, numeric part, and suffix. The negative subpattern is optional; if absent, then the
positive subpattern prefixed with the localized minus sign (code>’-’ for most languages) is used as the
negative subpattern. That is, "0.00" alone is equivalent to "0.00;-0.00". If there is an explicit negative
subpattern, it serves only to specify the negative prefix and suffix; the number of digits, minimal digits,
and other characteristics are all the same as the positive pattern. That means that "#,##0.0#;(#)" produces
precisely the same behavior as "#,##0.0#;(#,##0.0#)".

The prefixes, suffixes, and various symbols used for infinity, digits, thousands separators, decimal
separators, etc. may be set to arbitrary values, and they will appear properly during formatting. However,
care must be taken that the symbols and strings do not conflict, or parsing will be unreliable. For example:
the decimal separator and thousands separator should be distinct characters, or parsing will be impossible.

The grouping separator is commonly used for thousands, but in some countries it separates ten-thousands.
The grouping size is a constant number of digits between the grouping characters, such as 3 for
100,000,000 or 4 for 1,0000,0000. If you supply a pattern with multiple grouping characters, the interval
between the last one and the end of the integer is the one that is used. So "#,##,###,####" ==
"######,####" == "##,####,####".

Special Pattern Characters

Many characters in a pattern are taken literally; they are matched during parsing and output unchanged
during formatting. Special characters, on the other hand, stand for other characters, strings, or classes of
characters. They must be quoted, unless noted otherwise, if they are to appear in the prefix or suffix as
literals.

6

Number FormatAppendix F: Syntax and Format Reference

Symbol Location Localized? Meaning

0 Number Yes Digit

Number Yes Digit, zero shows as absent

. Number Yes Decimal separator or monetary
decimal separator

- Number Yes Minus sign

, Number Yes Grouping separator

E Number Yes Separates mantissa and exponent in
scientific notation. Need not be quoted
in prefix or suffix.

; Subpattern boundary Yes Separates positive and negative
subpatterns

% Prefix or suffix Yes Multiply by 100 and show as
percentage

\u2030 Prefix or suffix Yes Multiply by 1000 and show as per
mille

¤ (\u00A4) Prefix or suffix No Currency sign, replaced by currency
symbol. If doubled, replaced by
international currency symbol. If
present in a pattern, the monetary
decimal separator is used instead of
the decimal separator.

’ Prefix or suffix No Used to quote special characters in a
prefix or suffix, for example, "’#’#"
formats 123 to "#123". To create a
single quote itself, use two in a row: "#
o’’clock".

Number Format in Different Languages

Although the decimal and the grouping separators used in patterns must be ‘.’ and ‘,’ respectively, they
might be replaced with different separators during the formatting process, depending on the application
language. For example: using the pattern “#,##0.00” to format the number 18734573.07 will yield the
string “18,734,573.07” if the application language is English, and “18.734.573,07” in case the application
language is Italian. The default minus sign (normally ‘-‘) is also determined according to the application
language.

Scientific Notation

Numbers in scientific notation are expressed as the product of a mantissa and a power of ten, for example,
1234 can be expressed as 1.234 x 10^3. The mantissa is often in the range 1.0 <= x < 10.0, but it need not
be. In a pattern, the exponent character immediately followed by one or more digit characters indicates
scientific notation. Example: "0.###E0" formats the number 1234 as "1.234E3".

7

Appendix F: Syntax and Format ReferenceNumber Format

The number of digit characters after the exponent character gives the minimum exponent digit count.
There is no maximum. Negative exponents are formatted using the localized minus sign, not the
prefix and suffix from the pattern. This allows patterns such as "0.###E0 m/s".

• The minimum and maximum number of integer digits are interpreted together:

o If the maximum number of integer digits is greater than their minimum number and greater than 1,
it forces the exponent to be a multiple of the maximum number of integer digits, and the minimum
number of integer digits to be interpreted as 1. The most common use of this is to generate
engineering notation, in which the exponent is a multiple of three, e.g., "##0.#####E0". Using this
pattern, the number 12345 formats to "12.345E3", and 123456 formats to "123.456E3".

o Otherwise, the minimum number of integer digits is achieved by adjusting the exponent. Example:
0.00123 formatted with "00.###E0" yields "12.3E-4".

The number of significant digits in the mantissa is the sum of the minimum integer and maximum
fraction digits, and is unaffected by the maximum integer digits. For example, 12345 formatted with
"##0.##E0" is "12.3E3". To show all digits, set the significant digits count to zero. The number of
significant digits does not affect parsing.

Exponential patterns may not contain grouping separators.

Rounding

The number format uses half-even rounding for formatting (round towards the "nearest neighbor" unless
both neighbors are equidistant, in which case, round towards the even neighbor).

Format Number Formal Syntax

Pattern

PositivePattern

PositivePattern ; NegativePattern

PositivePattern

Prefixopt Number Suffixopt

NegativePattern

Prefixopt Number Suffixopt

Prefix

any Unicode characters except \uFFFE, \uFFFF, and special characters

Suffix

Unicode characters except \uFFFE, \uFFFF, and special characters

Number

8

Number FormatAppendix F: Syntax and Format Reference

Integer Exponentopt

Integer . Fraction Exponentopt

Integer

MinimumInteger

Integer

, Integer

MinimumInteger

0 MinimumInteger

0 , MinimumInteger

Fraction

MinimumFractionopt OptionalFractionopt

OptionalFraction

OptionalFractionopt

Exponent

E MinimumExponent

MinimumExponent

0 MinimumExponentopt

9

Appendix F: Syntax and Format ReferenceNumber Format

	Appendix F: Syntax and Format Reference
	Regular Expression Syntax
	General Examples
	Host Specific Examples
	General Rules
	Regular Expression Matching

	Date and Time Patterns
	
	Examples

	Number Format
	
	Special Pattern Characters
	Number Format in Different Languages
	Scientific Notation
	Rounding
	Format Number Formal Syntax

