
General Application Customization
Customizing the Default Template

Creating a New Template

Activating an Application Map from a Menu

Using ApplinX Repository Folders’ Structure to Organize Web Pages

Controlling the Connection Properties from the Code

Handling Flickering of Screens

Waiting for Screens, using Wait Conditions

Customizing the Host Keys

Activating the Screen Locker

Natural UNIX: Integrating a Login Page in the Web Application

Implementing & Controlling JavaScript Events using the gx_event Object

Retrieving Data from Fields Outside the Modal Window Currently Displayed

ApplinX Server Load Balancing

Retrieving a Unique Device Name per User Name / IP Address from a Database and Applying it to
the Current User Session

Retrieving the Host Printer Device Name from a Database and Setting the ApplinX Printlet to Work
with that Device

Customize ApplinX Framework Session Error Handling

Customize the Web Application’s Error Page

Customizing the Default Template
Every ApplinX Web application contains a template file which is used by all the pages. It is possible to
override parts of the default template by using placeholders. These placeholders are defined in the
template and can be overridden with customized content on generated pages and generate screen groups.
Using placeholders in the template provides flexibility on the overall look and feel of individual pages.
For example, if the template supplies the users with links on the left side of the page and on a specific
page, it is required that these links be removed, the template’s default content can be overridden for that
page section, with customized content for that particular page. Refer to the Composite demo,
template.jsp/template.master and login.jsp/aspx.

1

General Application CustomizationGeneral Application Customization

 To create a custom template for a screen/screen group (JSP):

1. Generate a Web page for the screen/screen group (refer to Generating a Framework Page for a
Screen/Screen Group).

2. For each template part that you would like to design for this screen/screen group, ensure that the area
that is to be overridden is enclosed by a gx:placeholder tag. For example, if you would like to
change the page header, implement the following in the template.jsp file.

<gx:placeholder id="<TemplatePlaceHolderID>">
 .
 .
 <your page header JSP code>
 .
 .
</gx:placeholder>

3. Server side functions referred by the template.jsp file will have to be placed in the
GXBasicContext.java file.

4. In the jsp file that was generated for the screen/screen group (generatedpage.jsp), override a template
placeholder by adding your content and enclosing it within a gx:content tag, setting the attribute
ContentPlaceHolderID with the ID of the template place holder previously defined.

<gx:content ContentPlaceHolderID="<TemplatePlaceHolderID>">
 .
 .
 <YOUR CONTENT HERE>
 .
 .
</gx:content>

 To create a custom template for a screen/screen group (.NET):

1. Generate a Web page for the screen/screen group (refer to Generating a Framework Page for a
Screen/Screen Group).

2. For each template part that you would like to design for this screen/screen group, ensure that the area
that is to be overridden is enclosed by a asp:contentplaceholder tag. For example, if you
would like to change the page header, implement the following in the template.master file.

<asp:contentplaceholder id="<TemplatePlaceHolderID>" runat="server" >
 .
 .
 Links section
 .
 .
</asp:contentplaceholder>

3. Server side functions referred by the template.master file will have to be placed in the
template.master.cs/vb file.

4. In the aspx file that was generated for the screen/screen group (generatedpage.aspx), override a
template placeholder by adding your content and enclosing it within a asp:Content tag, setting the
attribute ContentPlaceHolderID with the ID of the template place holder previously defined.

2

Customizing the Default TemplateGeneral Application Customization

<asp:Content ID="<tagID>" ContentPlaceHolderID="<TemplatePlaceHolderID>" runat="server">
 .
 .
 <YOUR CONTENT HERE>
 .
 .
</asp:Content>

Creating a New Template
During the process of creating a new Web application, you are requested to select a template. By default,
these templates are ready to use Web site designs. You can create a template and add it to the list of
available templates.

Design Tips

Before making changes in the css files, it is highly recommended to backup these files.

Changing colors in the css files can effect the entire look and feel of the application, therefore it is
recommended to test the changes on a few different screens.

Rather than changing existing classes to meet the template requirements, try adding new classes of
your own.

Instant pages rely on absolute positioning defined in the styles_Instant.css. Do not change position
style attributes in the css files.

Pages generated with absolute positioning: changing position attributes in the style_generated.css file
may cause them not to display properly (this can be overcome in design time).

Remember that changes made to one css file will usually need to be implemented to all three css
files, if both generated pages and instant pages are to have the same look and feel.

 To create a new template:

1. Create a new Web application using one of the built-in templates.

2. Design the template.jsp/template.master file as desired.

Ensure that the template includes:

JSP: <gx:placeholder id="PagePlaceHolder"/> tag.

.NET: <asp:ContentPlaceHolder ID="GXPagePlaceHolder" runat="server"/> tag.

This tag’s position on the screen can vary and can be placed wherever you wish. Removing this tag
means that screen content for generated and instant pages will not be displayed.

3. Package the template and place it in the installation directory, so that it will be displayed when using
the Create new Web Application wizard:

1. Create a new directory in the Templates directory in the ApplinX installation folder. The name
of the directory will be the name of the template displayed in the New Web Application wizard.

3

General Application CustomizationCreating a New Template

2. Within this directory create a common directory and a java/dotnet (according to the template
you created) directory. Within the common directory, create a css and images directory:

3. In the css folder place all the css files that you modified/created.

4. In the images folder place all the image files that you modified/created in the template file or in
the css files.

5. In the common folder place the image that the wizard will display as a preview of this template.
The image size should be 630x400pixels and the name of the image file must be thumbnail.jpg.

6. Place the template file in the relevant java/dotnet folder.

Activating an Application Map from a Menu
Navigation menus, are very common in Web applications. They provide a direct, quick navigation to any
page in the application. In ApplinX Web applications, navigation menus can be used to directly access any
available screen in the host application, thus eliminating the need of using the original menu screens in the
host while fully preserving their functionality. This is achieved using the application map. Each menu
option will be an accessible host screen, and clicking it will invoke the ApplinX application’s map with
the screen’s name as its parameter.

Refer to the Composite demo, template.jsp/template.master.cs in which the proposals/customers links set a
hidden field with the desired screen name and invoke a server side function
(beforePaneMenuBtn_Click) that performs the navigation to the desired screen (refer to
/GXBasicContext.jsp/template.master.cs).

Using ApplinX Repository Folders’ Structure to Organize
Web Pages
ApplinX Web application’s Web pages can be hierarchically organized according to the folder structure of
the screens they represent. For example, if the screen MainMenu resides in the folder
general\menu_screens in the ApplinX repository, it can reside under the directory \root
folder\general\menu_screens in the Web application.

 To use ApplinX repository folder structure to organize Web pages:

1. Refer to Configuring your Framework and access the Framework Configuration Editor.

2. Ensure that the Use Folders check box in the General node is selected. The field Virtual directory
is displayed.

4

Activating an Application Map from a MenuGeneral Application Customization

3. Enter the name of the virtual directory of the Web application. For example: CompositeDemo.

4. To generate a Web page into a specific folder:

1. Create a directory structure under the root folder of the Web application that corresponds to the
folder structure of the ApplinX repository.

2. You can either select the directory within the generation wizard (JSP only), or you can move the
generated pages to the relevant directory (JSP and .Net).

Controlling the Connection Properties from the Code
ApplinX allows passing various connection parameters from the code in order to control the configuration
of the application.

For example: Controlling from the code if the application will work against a trace file.

Refer to the Composite demo (with/without a trace file).

.NET:

gx_appConfig.SessionConfig.addVariable(GXBaseObjectConstants.GX_VAR_REPLAY_FILE,null);
 // to cancel the replay file configured

JSP:

 getGXAppConfig().getSessionConfig().addVariable(GXBaseObjectConstants.GX_VAR_REPLAY_FILE,null);
 // to cancel the replay file configured

For a list of possible connection variables, see GXBaseObjectConstant class.

For code sample, see Composite Demo Application: "Login" path procedure - ApplinX repository
Login.aspx / Login.aspx.cs - .NET Login.jsp / WEB-INF/classes/contexts/Login.java – JSP

Handling Flickering of Screens
It is necessary to use the Flickering of Host Sessions feature when one of the following happens:

In the browser, a blank screen (empty screen) is displayed when navigating between two host
screens.

In the browser you are required to submit the [ENTER] key (or any other key) twice in order to
navigate to the next host screen.

The initial need for Flicker arises when specific host screens are received ’split’ between several buffers
of data. Thus ApplinX Server needs to be informed to wait an additional amount of time for the complete
screen to arrive. This additional amount of time is defined (in milliseconds) in the Flicker parameter in the
Application Configuration dialog box.

The flicker setting applies to the entire ApplinX application, meaning that if the flicker is set to 500ms,
after each host transaction the flicker time will be added to the communication time. In other words, the
entire application will be ’slowed down’ by the flicker time. Therefore this value should only be set for

5

General Application CustomizationControlling the Connection Properties from the Code

the entire application according to the guidelines detailed in Handling Flickering of Screens. Also refer to
Waiting for Screens using Wait Conditions and to the Perform background check for host screen
changes parameter in the Configuration Editor for further details.

Waiting for Screens, using Wait Conditions
Wait conditions are used to handle specific ‘problematic’ screens that require waiting an additional
amount of time for the complete screen to arrive. Refer to Handling Flickering of Screens for further
details regarding using the wait conditions.

To add a wait condition that waits for a specific screen in the application:

JSP

In GXBasicContext.java, in the method gx_postSendKey , add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
//An example of adding a wait condition in a page that waits for specific screens according to the key sent.
if(gx_context.getGXForm().get_HostKeys().equalsIgnoreCase("[PF3]")
&& gx_context.getGXSession().getScreen().getName().equalsIgnoreCase("CustomerDetails"))
{
 sr.addWaitCondition(new GXWaitForScreen("MainMenu",50000,0));
 gx_context.getGXSession().getScreen(sr);
}

.NET

In GXBasicWebForm.cs, in the method user_postSendKeys , add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
//An example of adding a wait condition in a page that waits for specific screens according to the key sent.
if(gx_form.HostKeys.Equals("[PF3]")
&& gx_session.getScreen().getName()=="CustomerDetails")
{
 sr.addWaitCondition(new GXWaitForScreen("MainMenu",50000,0));
 gx_session.getScreen(sr);
}

To apply a flicker setting to a certain action:

JSP

In GXBasicContext.java, in the method gx_postSendKey , add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
if(gx_context.getGXForm().get_HostKeys().equalsIgnoreCase("[enter]")
&& gx_context.getGXSession().getScreen().getName().equalsIgnoreCase("CustomerDetails"))
{
 long lTimeout = 50000;//millisecond
 long lFlicker = 750;//millisecond
 sr.addWaitCondition(new GXWaitHostQuiet(lTimeout,lFlicker));
 gx_context.getGXSession().getScreen(sr);
}

6

Waiting for Screens, using Wait ConditionsGeneral Application Customization

.NET

In GXBasicWebForm.cs, in the method user_postSendKeys , add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
if(gx_form.HostKeys.Equals("[enter]")
&& gx_session.getScreen().getName()=="CustomerDetails1")
{
 long lTimeout = 50000;//millisecond
 long lFlicker = 750;//millisecond
 sr.addWaitCondition(new GXWaitHostQuiet(lTimeout,lFlicker));
 gx_session.getScreen(sr);
}

Customizing the Host Keys
It is possible to display the host keys for the current host screen (analyzed by ApplinX Server according to
the defined host keys patterns) as Web buttons, hyperlinks or in other advanced formats (images, etc.). In
addition, it is possible to fully customize the host keys using the GXIHostKeysTagUserExit interface
(adding buttons, removing links, changing captions and more). To make complex changes to the control,
such as adding a row/column, implement the interface GXIHostKeysTagUserExit as necessary.

Refer to Host Keys for configuring a host key pattern.

 To display and customize the host keys:

1. By default, after defining a host key pattern, the analyzed keys are displayed as hyperlinks in the
Web application.

2. To display the keys as buttons, refer to Configuring your Framework and access the Framework
Configuration Editor. Select Buttons in the Host keys field in the Instant node.

3. Customization of the host keys’ appearance (colors, fonts etc.) is done in the style sheets
(css\styles_instant.css and css\styles_generated.css), in the gx_hky class.

4. For advanced customization, it is possible to use the Host Keys’ control. By using the template
option of the control, it is possible to write a custom template for displaying the host keys. The
following code is usually placed in one of the template jsp/aspx files and displays a different image
for each host key; the image name is determined according to its caption. In addition, the keys are
positioned vertically:

JSP

<gx:hostKeys vertical="true" border="0" keyType="template">

</gx:hostKeys>

.NET

<gx:GXHostKeysControl runat="server" vertical="true" border="0" KeyType="Template">

</gx:GXHostKeysControl>

7

General Application CustomizationCustomizing the Host Keys

In addition, add the following import statement to the file containing the control: <%@ Register
TagPrefix="gx" Namespace="com.sabratec.dotnet.framework.web.controls"
Assembly="GXDotnet" %>

 To fully customize the host keys control:

1. JSP

. In the GXBasicContent.java file, the gx_onInit method, add the following line:

getGXAppConfig().setHostKeysTagUserExit(new transforms.UserHostKeysTagTransform());

.NET

: In the GXBasicWebForm file, the OnInit method, add the following line:

gx_appConfig.setHostKeysTagUserExit(new transforms.UserHostKeysTagTransform());

2. In your Web application, transforms directory, open the userHostKeysTagTransform file (when
upgrading your application, copy the file from the relevant framework type new application) and
implement the onHostKeysComplete interface.

For example JSP:

public void onHostKeysComplete(GXITableTag hostKeysTableTag, GXIScreen screen) {

 super.onHostKeysComplete(hostKeysTableTag, screen);

 /*
 // add link
 addLink("Host help","gx_SubmitKey(’[pf1]’)");

 //get all tags
 GXITag[] tags = getHostKeysTags();

 for (int index=0; index<tags.length; index++){
 //get tag
 GXITag tag = tags[index];

 if (tag instanceof GXILinkTag){ // or GXIButtonTag or GXHtmlString (for type="template")
 GXILinkTag link = (GXILinkTag) tag;

 // change tag text
 if (link.getText().indexOf("Prev") >= 0){
 link.setText("Previous");
 }

 //remove tag
 if (link.getText().indexOf("Pagedn") >= 0){
 removeTag(link);
 }
 }
 }
 */

 }

For example .NET

public override void onHostKeysComplete(GXITableTag hostKeysTableTag, GXIScreen screen)
 {
 /*
 base.onHostKeysComplete(hostKeysTableTag, screen);

 //add link

8

Customizing the Host KeysGeneral Application Customization

 addLink("Host help", "gx_SubmitKey(’[pf1]’)");

 //get all tags
 GXITag[] tags = getHostKeysTags();

 //loop on controls in hostKeys array
 foreach (GXITag tag in tags)
 {
 if (tag is GXILinkTag) // or GXIButtonTag or GXHtmlString (for type="template")
 {
 //get link
 GXILinkTag link = (GXILinkTag)tag;

 // change control text
 if (link.getText().IndexOf("Prev") >= 0)
 {
 link.setText("Previous");
 }

 //remove control
 if (link.getText().IndexOf("Pagedn") >= 0)
 {
 removeTag(link);
 }
 }
 }
 */
 }

For complete description of the Host Keys control properties, see Host Keys Component.

Sample code can be found in the Instant Demo application. Template.jsp , template.master (.NET) –
contains an example for using the Host Keys control.

Activating the Screen Locker
The ApplinX Framework contains a built-in feature of a screen locker. The purpose of a screen locker is
to indicate to the user by means of a message, that the application is processing his request, and blocks
him from interfering with the current process by repressing a button/link or keyboard PF/ENTER.

 To activate the screen locker:

1. Refer to Configuring your Web Application and access the Framework Configuration Editor. In the
General node, select Use screen locker.

2. Use the width/height percentages in the file template/screenLocker.htm to control the location of the
message.

3. Replace the text "Please wait" with an alternative text/image as required.

Note:
When adding a link in the page that performs a JavaScript action it is highly recommended to use
onclick event and not the href attribute. Using the href attribute will cause the screen locker to be
activated.

It is also possible to control the screen locker on the Web page level (refer to Handling the Screen Locker
on the Page Level).

9

General Application CustomizationActivating the Screen Locker

Natural UNIX: Integrating a Login Page in the Web
Application
When the Natural UNIX host requires separate connection for each individual user together with support
of password changing/expiring, the ApplinX Framework provides a suitable Login Page to be used in your
Web application. The Login page should be displayed before attempting to connect to the host. In this
page the user is required to enter the user name and password. Only after the user name and password are
authenticated by the host, the connection to the host is made. The look and feel of the Login page can be
edited and changed to suit your Web application. The login page logic is implemented within the ApplinX
Framework.

Note:
The hostLogin page is provided with your Web application but can also be created using the Base Object.
Refer to the Start>Programs>Software AG ApplinX>Documentation>ApplinX Development API for
further information.

 To use the Login page:

Edit the index.jsp/index.aspx file and instead of
gxfirstpage.jsp/gxfirstpage.aspx, enter hostLogin.jsp/hostLogin.aspx , or
refer your end users to this page.

Implementing & Controlling JavaScript Events using the
gx_event Object
The ApplinX JavaScript engine provides a cross browser event object that enables creating dynamic web
pages. The gx_event object is created within the Javascript engine. Whenever an event is triggered it is
passed to the user Exit functions (/js/userExits.js) and from there to the page-level function (if one exists).

gx_event enables handling browser events such as OnKeyDown. The following example will cancel the
OnKeyDown event whenever the [Enter] key is pressed on a certain text area ("myTextArea"), prevent the
page from being submitted and manually add a newline character to the text area value:

Assume your JSP/ASPX page has the following input:

<textarea row="5" id="myTextArea" ></textarea>

Add the following pageOnKeyDown function to your generated page

function pageOnKeyDown(gx_event){
 ...
 var win = gx_event.window;
 if (gx_event.keyCode==13 && gx_event.element.id=="myTextArea"){
 gx_event.cancel();
 GXBrowserUtil.getElement("myTextArea").value += "\r\n"
 }
...
}

10

Natural UNIX: Integrating a Login Page in the Web ApplicationGeneral Application Customization

Refer to the API:

GXEvent_Object

GXEvent.keyCode

GXEvent.additionalKey

GXEvent.element

Retrieving Data from Fields Outside the Modal Window
Currently Displayed
Relevant data, such as host messages or errors, may sometimes appear in the area outside the currently
displayed modal window frame. To retrieve these messages/errors it is necessary to retrieve the entire
screen content rather than just the modal window content. This can be achieved by writing the following
method:

Java

private String getMessgeOutsideWindow(int MessageRow, int MessageCol){
 try {
 // Create a Screen Request the would ignore modal window definition
 GXGetScreenRequest gsr = new GXGetScreenRequest();
 gsr.addVariable(GXBaseObjectConstants.GX_VAR_HOST_WINDOW_ENABLED,"false");

 // Get the current screen from ApplinX server using the Screen request
 GXIScreen screen = getGXSession().getScreen(gsr);

 // Return Field content according to the specified position
 GXPosition pos = new GXPosition(MessageRow, MessageCol);
 return screen.getFields().getFieldByPosition(pos).getContent();

 } catch (GXGeneralException e) {
 return null;
 }
}

.NET

private string getMessgeOutsideWindow(int MessageRow, int MessageCol)
{

 // Create a Screen Request the would ignore modal window definition
 GXGetScreenRequest gsr = new GXGetScreenRequest();
 gsr.addVariable(GXBaseObjectConstants.GX_VAR_HOST_WINDOW_ENABLED, "false");

 // Get the current screen from ApplinX server using the Screen request
 GXIScreen screen = gx_session.getScreen(gsr);

 // Return Field content according to the specified position
 GXPosition pos = new GXPosition(MessageRow, MessageCol);
 return screen.getFields().getFieldByPosition(pos).getContent();
}

11

General Application CustomizationRetrieving Data from Fields Outside the Modal Window Currently Displayed

Note:
This method can be added to GXBasicContext or to a generated page’s code class.

ApplinX Server Load Balancing
When you have several ApplinX servers and want new sessions to always be created on the least busiest
server, determine this using the GXLoadBalancer class.

1. From within the relevant application in the new JSP directory, open
WEB-INF\classes\contexts\GXBasicContext.

2. Add the necessary statements:

JSP

import com.sabratec.ci.GXLoadBalancer

.NET

using com.sabratec.dotnet.ci;

3. Within the file, locate the gx_initSessionConfig method and place the following code:

/// ApplinX Server Load Balancing ////////////////////////////////
 GXWebAppConfig gx_appConfig = getGXAppConfig();

 GXLoadBalancer lb = new GXLoadBalancer();
 // Add server URLs. Example:
 // lb.addServerURL("applinx://localhost:2323");
 lb.addServerURL("applinx://<ApplinXServer1>:<portNumber>");
 lb.addServerURL("applinx://<ApplinXServer2>:<portNumber>");
 lb.addServerURL("applinx://<ApplinXServer3>:<portNumber>");
 lb.addServerURL("applinx://<ApplinXServer4>:<portNumber>");

// Replace ApplinXServerX with the server name
// Replace portNumber with the appropriate ApplinX server port number.

 String availableServer = lb.getAvailableServer();
 gx_appConfig.getSessionConfig().setServerURL(availableServer);

Retrieving a Unique Device Name per User Name / IP
Address from a Database and Applying it to the Current
User Session
Some hosts require that every user connection must supply a device name in order to establish a
connection. These device names may be unique per user or per IP address. In such cases, you will need to
retrieve the device name from the place where your organization stores it (database, LDAP, XML etc.).

The following example will demonstrate how to retrieve the device name from the database (MDB) using
the user’s IP address and how to set the retrieved value to the ApplinX session, prior to connecting to the
host.

12

ApplinX Server Load BalancingGeneral Application Customization

JSP

Add the following method to GXBasicContext.java:

// This method retrieves the device name from an MDB database.
// You can change this code to match your type of database.
public String getDevice(String userIP) {
 String Result = "";
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 // set this to a MS Access DB you have on your machine
 String filename = "C:\\users.mdb";
 String database = "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=";

 database+= filename.trim() + ";DriverID=22;READONLY=true}"; // add on to the end
 // now we can get the connection from the DriverManager
 System.out.println(database);
 Connection con = DriverManager.getConnection(database , "", "");
 Statement stmt = con.createStatement();
 ResultSet rs;

 // Retrive Device name according to user’s IP address
 rs = stmt.executeQuery("Select Device from userDevices where userIPAddr=’" + userIP + "’");

 while (rs.next()) {
 Result = rs.getString("Device");
 }
 con.close();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 }
 return Result;
}

In the this file, edit the gx_initSessionConfig method as follows:

public void gx_initSessionConfig(){
 // for device name
 GXWebAppConfig gx_appConfig = getGXAppConfig();
 String ipAddr = getRequest().getRemoteAddr();
 gx_appConfig.getSessionConfig().addVariable(
 GXBaseObjectConstants.GX_VAR_DEVICE_NAME, getDevice(ipAddr));
}

.NET

Add the following method to GXBasicWebForm.cs:

private string getDevice(string userIP)
{
 OdbcConnection con = new OdbcConnection();
 con.ConnectionString = "Driver={Microsoft Access Driver (*.mdb)};Dbq=c:\\users.mdb;Uid=sa;Pwd=sa;";
 con.Open();
 string result="";
 try
 {
 // Retrive Device name according to user’s IP address
 OdbcCommand cmd = new OdbcCommand("Select Device from userDevices where IP=’" + userIP + "’", con); // creating query command
 OdbcDataReader reader = cmd.ExecuteReader(); // executes query
 while (reader.Read()) // if can read row from database
 {
 result = reader["Device"].ToString();
 }
 }
 catch (Exception ex)
 {
 // shows exception message in console if any errors occured
 Console.WriteLine("Ex: " + ex.Message);
 }
 finally

13

General Application CustomizationRetrieving a Unique Device Name per User Name / IP Address from a Database and Applying it to the Current User Session

 {
 con.Close(); // finally closes connection
 }
 return result;
}

In the this file, edit the gx_initSessionConfig method as follows:

public void gx_initSessionConfig(){
 // for device name
 String ipAddr = Request.UserHostName;
 gx_appConfig.getSessionConfig().addVariable(
 GXBaseObjectConstants.GX_VAR_DEVICE_NAME, getDevice(ipAddr));
}

Retrieving the Host Printer Device Name from a Database
and Setting the ApplinX Printlet to Work with that Device
Connecting to a host printer queue requires users to supply a device name. The device provides the host
information as to which printer queue to associate each user. Usually, each user or IP address has a
pre-defined device name. This data can be stored in a database and retrieved before creating the printer
session in the ApplinX web application.

The following example will demonstrate how to retrieve the device name from the database and set it to
the appropriate printlet parameter.

JSP

Replace the getDevice method in RunPrintlet.java:

// This method retrieves the device name from an MDB database.
// You can change this code to match your type of database.
public String getDevice(String userIP) {
 String Result = "";
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 // set this to a MS Access DB you have on your machine
 String filename = "C:\\users.mdb";
 String database = "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=";

 database+= filename.trim() + ";DriverID=22;READONLY=true}"; // add on to the end
 // now we can get the connection from the DriverManager
 System.out.println(database);
 Connection con = DriverManager.getConnection(database , "", "");
 // String url = "jdbc:odbc:users.mdb";
 // Connection conn = DriverManager.getConnection(url,"","");
 Statement stmt = con.createStatement();
 ResultSet rs;

 rs = stmt.executeQuery("Select Device from userDevices where userIPAddr=’" + userIP + "’");

 while (rs.next()) {
 Result = rs.getString("Device");
 System.err.println(Result);
 }
 con.close();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 }
 return Result;
}

14

Retrieving the Host Printer Device Name from a Database and Setting the ApplinX Printlet to Work with that DeviceGeneral Application Customization

In run_Printlet.jsp set the device name parameter as follows:

<param name="device_name" value="<%=new RunPrintlet().getDevice(request.getRemoteAddr()) %>">

.NET

Replace the getDevice method in run_printlet.aspx.cs:

private string getDevice(string userIP)
{
 OdbcConnection con = new OdbcConnection();
 con.ConnectionString = "Driver={Microsoft Access Driver (*.mdb)};Dbq=c:\\users.mdb;Uid=sa;Pwd=sa;";
 con.Open();
 string result="";
 try
 {
 // Retrive Device name according to user’s IP address
 OdbcCommand cmd = new OdbcCommand("Select Device from userDevices where IP=’" + userIP + "’", con); // creating query command
 OdbcDataReader reader = cmd.ExecuteReader(); // executes query
 while (reader.Read()) // if can read row from database
 {
 result = reader["Device"].ToString();
 }
 }
 catch (Exception ex)
 {
 // shows exception message in console if any errors occured
 Console.WriteLine("Ex: " + ex.Message);
 }
 finally
 {
 con.Close(); // finally closes connection
 }
 return result;
}

In run_printlet.apx.cs edit the Page_Load method and add the following assignment:

// Retrieve Device name By User’s IP
GXPrinterControl1.deviceName = getDevice(Request.UserHostName);

Notes:

1. You can implement the same methodology for of the printlet parameters.
2. If ApplinX server and the web application’s server do not reside on the same machine, refer to

Configuring the Printlet Redirector

Customize ApplinX Framework Session Error Handling
The default behavior of the ApplinX Framework when it encounters an ApplinX session error is to
redirect the user to the error.jsp page. This page will specify the error code and will also provide a
description of the error. For example: If, for some reason, the ApplinX session has been disconnected,
pressing a PF key in the web application will result in the following error:

15

General Application CustomizationCustomize ApplinX Framework Session Error Handling

However, in some cases you may want to capture these errors and perform a different action. The
following example will demonstrate how the default ApplinX method can be overridden with new
functionality.

For example, upon receiving a 5001 error, you may want the web application to automatically try to
re-establish a connection to the host.

JSP

To do this, add the following code to the GXBasicContext class:

// Override the gx_handleSessionError with additional functionality
public void gx_handleSessionError(GXGeneralException ex){
 try{
 // Is the error code 5001?
 if (ex.getErrorCode()== 5001){
 // Try to re-establish a connection to the host
 getResponse().sendRedirect("gxfirstpage.jsp");
 }
 else{ // Otherwise, perform the default behavior
 super.gx_handleSessionError(ex);
 }
 }
 catch (IOException e){
 // TODO : Handle Failed page redirection
 }
}

.NET

To do this, add the following code to the GXBasicContext class:

16

Customize ApplinX Framework Session Error HandlingGeneral Application Customization

public override void gx_handleSessionError(com.sabratec.applinx.baseobject.GXGeneralException err)
{
 if (err.getErrorCode() == 5001)
 {
 // Try to re-establish a connection to the host
 Response.Redirect("gxfirstpage.aspx");
 }
 else
 { // Otherwise, perform the default behavior
 base.gx_handleSessionError(err);
 }
}

Customize the Web Application’s Error Page
One may want to customize the Web application’s error page for any number of reasons. These reasons
may include providing the error page in non-English languages, or to change the look and feel of the page
or add additional messages.

The look and feel of the page can easily be customized by changing the layout of the error.jsp page.
Changing the page’s dynamic content can be achieved by editing the error.java file.

The error.java/Error.apsx.cs/vb file contains an example for translating a specific error message to
another language, according to the user’s locale setting. In order to activate this functionality un-comment
the CustomizeErrorHandling method and un-comment the call to CustomizeErrorHandling in
gx_onLoad in the error.java file (JSP) or Page_Load in the error.aspx.cs file (.Net).

17

General Application CustomizationCustomize the Web Application’s Error Page

	General Application Customization
	Customizing the Default Template
	Creating a New Template
	
	Design Tips

	Activating an Application Map from a Menu
	Using ApplinX Repository Folders' Structure to Organize Web Pages
	Controlling the Connection Properties from the Code
	Handling Flickering of Screens
	Waiting for Screens, using Wait Conditions
	
	To add a wait condition that waits for a specific screen in the application:
	JSP
	.NET
	To apply a flicker setting to a certain action:
	JSP
	.NET

	Customizing the Host Keys
	
	For example JSP:
	For example .NET

	Activating the Screen Locker
	Natural UNIX: Integrating a Login Page in the Web Application
	Implementing & Controlling JavaScript Events using the gx_event Object
	
	Refer to the API:

	Retrieving Data from Fields Outside the Modal Window Currently Displayed
	
	Java
	.NET

	ApplinX Server Load Balancing
	Retrieving a Unique Device Name per User Name / IP Address from a Database and Applying it to the Current User Session
	
	JSP
	.NET

	Retrieving the Host Printer Device Name from a Database and Setting the ApplinX Printlet to Work with that Device
	
	JSP
	.NET

	Customize ApplinX Framework Session Error Handling
	
	JSP
	.NET

	Customize the Web Application's Error Page

