
Universal Messaging Developer Guide

Version 9.6

April 2014

This document applies to Universal Messaging Version 9.6 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NUM-DG-96-20140415

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 3

Table of Contents

Universal Messaging Client Development.. 15

The Enterprise Client APIs... 17
The Universal Messaging Java Enterprise Developer's Guide.. 18

General Features...19
Universal Messaging Java Developers Guide - Create Session................................19
Universal Messaging Java - Universal Messaging Events...19
Universal Messaging Java - Channel Joins...20
Universal Messaging Java - Universal Messaging Event Dictionaries.......................20
Google Protocol Buffers... 21

Universal Messaging Java - Publish / Subscribe Using Channels/Topics......................... 22
Universal Messaging Java - Creating a Universal Messaging Channel.....................23
Universal Messaging Java - Finding a Universal Messaging Channel.......................24
Universal Messaging Java - How to publish events to a Universal Messaging
Channel.. 24
Universal Messaging Java - Sending XML Dom Objects over Universal
Messaging.. 26
Universal Messaging Java - Asynchronous Subscriber... 27
Universal Messaging Java - Channel Iterator..27
Universal Messaging Java - Batched Subscribe..28
Universal Messaging Java - Batched Find.. 29
Universal Messaging Java - Durable channel consumers and named objects.......... 29
Universal Messaging Java - Event Fragmentation on Universal Messaging
Channels...31
Universal Messaging Java - The Merge Engine and Event Deltas............................32
Universal Messaging Java - Priority Messaging.. 33

Universal Messaging Java - Publish / Subscribe Using DataStreams and
DataGroups..34

Universal Messaging Java - DataStreamListener.. 34
Universal Messaging Java - Creating and Deleting DataGroups...............................35
Universal Messaging Java - Managing DataGroup Membership...............................36
Universal Messaging Java - DataGroup Conflation Attributes................................... 38
Universal Messaging Java - DataGroups Event Publishing.......................................40
Universal Messaging Java - DataStream Event Publishing....................................... 40
Universal Messaging Java - Priority Messaging.. 40

Universal Messaging Java - Message Queues...41
Universal Messaging Java - Creating a Queue... 41
Universal Messaging Java - Finding a Queue...42
Universal Messaging Java - Queue Publish.. 42
Universal Messaging Java - Asynchronous Queue Consuming................................ 44
Universal Messaging Java - Synchronously Queue Consuming................................44

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 4

Universal Messaging Java - Asynchronous Transactional Queue Consuming.......... 45
Universal Messaging Java - Synchronous Transactional Queue Consuming............ 46
Universal Messaging Java - Queue Browsing / Peeking... 48
Universal Messaging Java - Request Response... 49
Universal Messaging Java - Event Fragmentation on Universal Messaging
Queues... 49

Universal Messaging Java: Peer to Peer Services...52
Universal Messaging Java: Peer to Peer Event-based Clients..................................54
Universal Messaging Java: Peer to Peer Event-based Server Services....................55
Universal Messaging Java: Peer to Peer Stream-based Clients............................... 56
Universal Messaging Java: Peer to Peer Stream-based Server Services................. 56

Universal Messaging Provider for JMS...57
Universal Messaging Provider for JMS - JMSAdmin... 58
Universal Messaging Provider for JMS - Client SSL Configuration........................... 59
Universal Messaging Provider for JMS - Application Server Integration (Jboss)........60
Universal Messaging Provider for JMS - JMS Message / Universal Messaging Event
Mapping.. 62
Universal Messaging Provider for JMS - Fanout Engine... 63

Universal Messaging Java Client: Code for Sample Applications.....................................66
Pub/Sub Channels..69

Universal Messaging Java Client: Channel Publisher.. 69
Universal Messaging Java Client: Transactional Channel Publisher.................. 70
Universal Messaging Java Client: Asynchronous Channel Consumer................70
Universal Messaging Java Client: Synchronous Channel Consumer................. 70
Universal Messaging Java Client: Asynchronous Named Channel
Consumer.. 71
Universal Messaging Java Client: Synchronous Named Channel Consumer..... 71
Universal Messaging Java Client: XML Channel Publisher................................ 72
Universal Messaging Java Client: Asynchronous XML Channel Consumer....... 72
Universal Messaging Java Client: Event Delta Delivery..................................... 72
Universal Messaging Java Client: Batching Server Calls................................... 73
Universal Messaging Java Client: Batching Subscribe Calls.............................. 73

Pub/Sub Datagroups.. 73
Universal Messaging Java Client: DataStream Listener.....................................73
Universal Messaging Java Client: DataGroup Publishing with Conflation...........74
Universal Messaging Java Client: DataGroup Manager..................................... 74
Universal Messaging Java Client: Delete DataGroup...74
Universal Messaging Java Client: DataGroup Delta Delivery............................. 75

Message Queues... 75
Universal Messaging Java Client: Queue Publisher... 75
Universal Messaging Java Client: Transactional Queue Publisher.....................75
Universal Messaging Java Client: Asynchronous Queue Consumer.................. 76
Universal Messaging Java Client: Asynchronous Transactional Queue
Consumer.. 76
Universal Messaging Java Client: Synchronous Queue Consumer....................76

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 5

Universal Messaging Java Client: Synchronous Transactional Queue
Consumer.. 77
Universal Messaging Java Client: Peek events on a Queue.............................. 77
Universal Messaging Java Client: Requester - Request/Response....................77
Universal Messaging Java Client: Responder - Request/Response...................78

Peer to Peer...78
Universal Messaging Java Client: An Event-based Peer to Peer Client............. 78
Universal Messaging Java Client: An Event-based Peer to Peer Server
Service...78
Universal Messaging Java Client: A Stream-based Peer to Peer Client.............79
Universal Messaging Java Client: A Stream-based Peer to Peer Service.......... 79

Administration API..79
Universal Messaging Java Client: Add a Queue ACL Entry............................... 79
Universal Messaging Java Client: Modify a Channel ACL Entry.........................80
Universal Messaging Java Client: Delete a Realm ACL Entry............................80
Universal Messaging Java Client: Add a Schedule to a Universal Messaging
Realm.. 81
Universal Messaging Java Client: Simple authentication server.........................81
Universal Messaging Java Client: Monitor realms for cluster creation, and cluster
events.. 81
Universal Messaging Java Client: Monitor realms for client connections coming
and going.. 81
Universal Messaging Java Client: Copy a channel and its events......................81
Universal Messaging Java Client: Monitor the remote realm log and audit
file.. 82
Universal Messaging Java Client: Export a realm to XML..................................82
Universal Messaging Java Client: Import a realm's configuration information.... 82
Universal Messaging Java Client: Console-based Realm Monitor......................83
Universal Messaging Java Client: Delete Service ACL...................................... 83
Universal Messaging Java Client: Realm Monitor.. 83

Provider for JMS.. 84
Universal Messaging Java Client: JMS BytesMessage Publisher...................... 84
Universal Messaging Java Client: JMS BytesMessage Subscriber.................... 84
Universal Messaging Java Client: JMS MapMessage Publisher........................ 84
Universal Messaging Java Client: JMS MapMessage Subscriber...................... 85
Universal Messaging Java Client: JMS ObjectMessage Publisher..................... 85
Universal Messaging Client for Java: JMS ObjectMessage Subscriber..............85
Universal Messaging Java Client: JMS StreamMessage Publisher....................86
Universal Messaging Java Client: JMS StreamMessage Subscriber..................86
Universal Messaging Java Client: JMS BytesMessage Queue Publisher...........86
Universal Messaging Java Client: JMS BytesMessage Queue Subscriber.........87
Universal Messaging Java Client: JMS Queue Browser.....................................87

Channel / Queue / Realm Management...87
Universal Messaging Java Client: Creating a Channel.......................................87
Universal Messaging Java Client: Deleting a Channel....................................... 88
Universal Messaging Java Client: Creating a Queue... 88

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 6

Universal Messaging Java Client: Deleting a Queue..89
Universal Messaging Java Client: Create a Channel Join..................................89
Universal Messaging Java Client: Delete a Channel Join.................................. 89
Universal Messaging Java Client: Purge events from a channel........................89
Universal Messaging Java Client: Find the event id of the last event................. 90
Universal Messaging Java Client: Add a realm to another realm....................... 90
Universal Messaging Java Client: Multiplex a Session.......................................90

The Enterprise Developer Guide for C++.. 91
General Features...91

Universal Messaging C++ : Creating a Session.. 91
Universal Messaging C++ - Universal Messaging Events... 92
Universal Messaging C++ - Channel Joins..92
Universal Messaging C++ - Universal Messaging Event Dictionaries........................93
Google Protocol Buffers... 93

Publish/Subscribe using Channels/Topics...94
Universal Messaging C++ : Publish / Subscribe Using Channels/Topics................... 94
Universal Messaging C++ - Creating a Universal Messaging Channel......................95
Universal Messaging C++ : Finding a Channel..96
Universal Messaging C++ - How to publish events to a Universal Messaging
Channel.. 96
Universal Messaging C++ - Asynchronous Subscriber..97
Universal Messaging C++ - Channel Iterator...98
Universal Messaging C++ - Batched Subscribe.. 99
Universal Messaging C++ - Batched Find... 100
Universal Messaging C++ - Durable channel consumers and named objects......... 101
Universal Messaging C++: The Merge Engine and Event Deltas............................ 102
Universal Messaging C++: Priority Messaging.. 103

Publish/Subscribe using DataStreams and DataGroups...104
Universal Messaging C++ - Publish / Subscribe Using DataStreams and
DataGroups.. 104
Universal Messaging C++ - DataStreamListener...105
Universal Messaging C++: Creating and Deleting DataGroups...............................105
Universal Messaging C++: Managing DataGroup Membership............................... 106
Universal Messaging C++ - DataGroup Conflation Attributes..................................108
Universal Messaging C++ - DataGroups Event Publishing......................................109
Universal Messaging C++: DataStream Event Publishing....................................... 110
Universal Messaging Java - Priority Messaging.. 110

Message Queues.. 111
Universal Messaging C++: Message Queues..111
Universal Messaging C++: Creating a Queue... 111
Universal Messaging C++: Finding a Queue... 112
Universal Messaging C++: Queue Publish.. 112
Universal Messaging C++: Asynchronous Queue Consuming................................ 113
Universal Messaging C++ - Synchronously Queue Consuming.............................. 114
Universal Messaging C++: Asynchronous Transactional Queue Consuming.......... 115

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 7

Universal Messaging C++ - Synchronous Transactional Queue Consuming...........117
Universal Messaging C++: Queue Browsing / Peeking... 118

Peer to Peer.. 119
Universal Messaging C++: Peer to Peer Services...119
Universal Messaging C++: Peer to Peer Event-based Clients.................................121
Universal Messaging C++: Peer to Peer Event-based Server Services...................122
Universal Messaging C++: Peer to Peer Stream-based Clients.............................. 123
Universal Messaging C++: Peer to Peer Stream-based Server Services................ 125

Google Protocol Buffers.. 126
Examples... 127

Universal Messaging C++.. 127
Publish/Subscribe using Channels/Topics..127

Universal Messaging C++ Client: Channel Publisher....................................... 127
Universal Messaging C++ Client: Transactional Channel Publisher................. 127
Universal Messaging C++ Client: Asynchronous Channel Consumer.............. 128
Universal Messaging C++ Client: Synchronous Channel Consumer................ 128
Universal Messaging C++ Client: Asynchronous Named Channel
Consumer.. 129
Universal Messaging C++ Client: Synchronous Named Channel Consumer....129
Universal Messaging C++ Client: Event Delta Delivery.................................... 129
Universal Messaging C++ Client: Batching Server Calls.................................. 130
Universal Messaging C++ Client: Batching Subscribe Calls.............................130

Publish/Subscribe using DataStreams and DataGroups..130
Universal Messaging C++ Client: DataStream Listener....................................130
Universal Messaging C++ Client: DataGroup Publishing with Conflation......... 131
Universal Messaging C++ Client: DataGroup Manager....................................131
Universal Messaging C++ Client: Delete DataGroup..131
Universal Messaging C++ Client: DataGroup Delta Delivery............................132

Message Queues... 132
Universal Messaging C++ Client: Queue Publisher..132
Universal Messaging C++ Client: Transactional Queue Publisher....................132
Universal Messaging C++ Client: Asynchronous Queue Consumer.................133
Universal Messaging C++ Client: Synchronous Queue Consumer...................133
Universal Messaging C++ Client: Peek Events on a Queue.............................133

Peer to Peer...134
Universal Messaging C++ Client: An Event-based Peer to Peer Client and Server
Service...134
Universal Messaging C++ Client: A Stream-based Peer to Peer Client and
Server Service...134

Administration API..134
Universal Messaging C++ Client: Add a Queue ACL Entry..............................134
Universal Messaging C++ Client: Modify a Channel ACL Entry....................... 135
Universal Messaging C++ Client: Delete a Realm ACL Entry.......................... 135
Universal Messaging C++ Client: Monitor realms for client connections coming
and going.. 136

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 8

Universal Messaging C++ Client: Console-based Realm Monitor.................... 136
Universal Messaging C++ Client: Remove Node ACL......................................136
Universal Messaging C++ Client: Authserver... 136

Channel / Queue / Realm Management...137
Universal Messaging C++ Client: Creating a Channel......................................137
Universal Messaging C++ Client: Deleting a Channel......................................137
Universal Messaging C++ Client: Creating a Queue.. 137
Universal Messaging C++ Client: Deleting a Queue.. 138
Universal Messaging C++ Client: Create Channel Join....................................138
Universal Messaging C++ Client: Delete a Channel Join................................. 138
Universal Messaging C++ Client: Purge Events From a Channel.................... 139
Universal Messaging C++ Client: Create Queue Join...................................... 139
Universal Messaging C++ Client: Delete Queue Join.......................................139

Prerequisites.. 140
Universal Messaging C++ Prerequisites.. 140
Universal Messaging C++ Client SSL Configuration..140
Universal Messaging C++ Environment Setup : Windows.......................................142
Universal Messaging C++ Environment Setup : Linux...143

Overview of Enterprise Developer Guide for C#..144
Publish / Subscribe using Channel Topics.. 144

Universal Messaging C# .NET - Creating a Universal Messaging Channel.............144
Universal Messaging C# .NET: Finding a Universal Messaging Channel................ 145
Universal Messaging C# .NET: How to publish events to a Universal Messaging
Channel.. 145
Universal Messaging C# .NET: Subscribe Asynchronously to a Channel................ 147
Universal Messaging C# .NET: Synchronous Consumers....................................... 148
Universal Messaging C# .Net - Batched Subscribe... 148
Universal Messaging C# .Net - Batched Find..149
C# .NET: Durable Channel Consumers and Named Objects...................................150
Universal Messaging C# .NET: The Merge Engine and Event Deltas......................151
Universal Messaging C# .NET: Event Fragmentation on Universal Messaging
Channels...153
Universal Messaging C# .NET: Consuming a JMS Map Message...........................153
Universal Messaging Java - Priority Messaging.. 154

Publish / Subscribe using Datastreams and Datagroups..154
Universal Messaging C# - Publish / Subscribe Using DataStreams and
DataGroups.. 154
Enabling DataGroups and Receiving Event Callbacks.. 155

Universal Messaging C# - DataStreamListener..155
Managing Datagroups.. 156

Universal Messaging C# - Creating and Deleting DataGroups.........................156
Universal Messaging C# - Managing DataGroup Membership.........................157
Universal Messaging C# - DataGroup Conflation Attributes............................. 158

Publishing to Datagroups... 161
Universal Messaging C# - DataGroups Event Publishing.................................161

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 9

Universal Messaging C# - DataStream Event Publishing.................................161
Universal Messaging Java - Priority Messaging... 161

Message Queues.. 162
Universal Messaging C# .NET Universal Messaging Message Queues..................162
Universal Messaging C# .NET: Creating a Universal Messaging Queue................. 162
Universal Messaging C# .NET: Finding a Universal Messaging Queue...................163
How to publish events to a Universal Messaging Queue.. 163
Universal Messaging C# .NET: Asynchronously Consume a Universal Messaging
Queue... 165
Universal Messaging C# .NET: Synchronously Consume a Universal Messaging
Queue... 166
C# .NET: Asynchronous Transactional Queue Consumption...................................166
C# .NET: Synchronous Transactional Queue Consumption.....................................168
Universal Messaging C# .NET: Browse (Peek) a Universal Messaging Queue....... 169
Universal Messaging C# .NET: Event Fragmentation on Universal Messaging
Queues... 170

Peer to Peer.. 172
Universal Messaging C# .NET: Peer to Peer Services.. 172
Universal Messaging C# .NET: Peer to Peer Event-based Clients.......................... 174
Universal Messaging C# .NET: Peer to Peer Event-based Server Services............ 175
Universal Messaging C# .NET: Peer to Peer Stream-based Clients........................176
Universal Messaging C# .NET: Peer to Peer Stream-based Server Services..........177

Google Protocol Buffers.. 178
Google Protocol Buffers... 178

Examples... 179
Universal Messaging C# .NET... 179
Publish / Subscribe using Channel Topics... 179

Universal Messaging C# .NET - Publish / Subscribe..179
Universal Messaging C# .NET: Channel Publisher...179
Universal Messaging C# .NET: Transactional Channel Publisher.....................180
Universal Messaging C# .NET: Asynchronous Channel Consumer..................180
Universal Messaging C# .NET: Synchronous Channel Consumer....................180
Universal Messaging C# .NET: Asynchronous Named Channel Consumer......181
Universal Messaging C# .NET: Synchronous Named Channel Consumer....... 181
Universal Messaging C# .NET: Event Delta Delivery..182
Universal Messaging C# .NET: Batching Server Calls......................................182
Universal Messaging C# .NET: Batching Subscribe Calls................................ 182

Publish / Subscribe using Datastreams and Datagroups...183
Universal Messaging C# .NET: DataStream Listener....................................... 183
Universal Messaging C# .NET: DataGroup Publishing with Conflation............. 183
Universal Messaging C# .NET: DataGroup Manager..183
Universal Messaging C# .NET: Delete DataGroup... 184
Universal Messaging C# .NET: DataGroup Delta Delivery............................... 184

Message Queues... 184
Universal Messaging C# .NET: Queue Publisher... 184

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 10

Universal Messaging C# .NET: Transactional Queue Publisher....................... 185
Universal Messaging C# .NET: Asynchronous Queue Consumer.................... 185
Universal Messaging C# .NET: Synchronous Queue Consumer...................... 185
Universal Messaging C# .NET: Peek Events on a Queue................................ 186
Universal Messaging C# .NET: Requester - Request/Response...................... 186
Universal Messaging C# .NET: Responder - Request/Response..................... 186

MyChannels.Universal Messaging API.. 187
Universal Messaging C# .NET: MyChannels.Universal Messaging DataGroup
Publisher..187
Universal Messaging C# .NET: MyChannels.Universal Messaging Queue
Publisher..187
Universal Messaging C# .NET: MyChannels.Universal Messaging Topic
Publisher..187
Universal Messaging C# .NET: MyChannels.Universal Messaging DataGroup
Listener..187
Universal Messaging C# .NET: MyChannels.Universal Messaging Queue
Consumer.. 188
Universal Messaging C# .NET: MyChannels.Universal Messaging Topic
Subscriber..188
Universal Messaging C# .NET: RX Topic Subscriber..188
Universal Messaging C# .NET: RX Queue Consumer......................................188
Universal Messaging C# .NET: RX DataGroup Listener................................... 188

Peer to Peer...188
Universal Messaging C# .NET: An Event-based Peer to Peer Client and Server
Service...188
Universal Messaging C# .NET: A Stream-based Peer to Peer Client and Server
Service...189

Administration API..189
Universal Messaging C# .NET: Add a Queue ACL Entry..................................189
Universal Messaging C# .NET: Modify a Channel ACL Entry...........................190
Universal Messaging C# .NET: Delete a Realm ACL Entry.............................. 190
Universal Messaging C# .NET: Monitor realms for client connections coming and
going..190
Universal Messaging C# .NET: Export a realm to XML.................................... 191
Universal Messaging C# .NET: Import a realm's configuration information.......191
Universal Messaging C# .NET: Console-based Realm Monitor........................ 191
Universal Messaging C# .NET: Remove Service ACL......................................192
Universal Messaging C# .NET: Authserver... 192
Universal Messaging C# .NET: Set Container ACL.. 192
Universal Messaging C# .NET: Difference between 2 realms...........................196

Channel / Queue / Realm Management...197
Universal Messaging C# .NET: Creating a Channel... 197
Universal Messaging C# .NET: Deleting a Channel..197
Universal Messaging C# .NET: Creating a Queue..197
Universal Messaging C# .NET: Deleting a Queue.. 198
Universal Messaging C# .NET: Create Channel Join....................................... 198

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 11

Universal Messaging C# .NET: Delete a Channel Join.....................................198
Universal Messaging C# .NET: Multiplex a Session... 199
Universal Messaging C# .NET: Purge Events From a Channel........................ 199
Universal Messaging C# .NET: Create Queue Join.. 199
Universal Messaging C# .NET: Delete Queue Join.. 200

Prerequisites.. 200
Universal Messaging C# Prerequisites.. 200
Universal Messaging C# Client SSL Configuration..201
Globally Accessible DLLs...203

Messaging API.. 204
Universal Messaging C# .NET MyChannels.Universal Messaging API: Creating and
Disposing of a Session.. 204
Universal Messaging C# .NET MyChannels.Universal Messaging API:
Producers... 204
Universal Messaging C# .NET MyChannels.Universal Messaging API:
Consumers... 205
Universal Messaging C# .NET MyChannels.Universal Messaging API: Reactive
Extensions.. 205

Overview of Developer's Guide for VBA.. 206
Publish / Subscribe..206

Universal Messaging VBA - Publish/Subscribe..206
Subscribing Tasks...207

Universal Messaging VBA : Subscribing to a Channel..................................... 207
Publishing Tasks...208

Universal Messaging VBA : Creating a Session...208
Universal Messaging VBA : Finding a Channel.. 209
Universal Messaging VBA : Universal Messaging Events................................ 209
Universal Messaging VBA : Publishing Events to a Channel............................209

Learn More... 210
Universal Messaging VBA : Event Properties...210
Universal Messaging VBA : How the RTD Server Works................................. 210
Universal Messaging VBA : Setting the RTD Throttle Interval.......................... 211
Universal Messaging VBA : Internal Event Processing.....................................211
Universal Messaging VBA : Universal Messaging RTD Server Internal
Queues.. 212
Universal Messaging VBA : OnChange() Event Using RTD............................. 213

Universal Messaging VBA - Prerequisites.. 213
Overview of Enterprise Developer's Guide for Python...214

Enterprise Client Development..214
Universal Messaging Python : Environment Configuration...................................... 214
Universal Messaging Python : Creating a Session.. 215
Universal Messaging Python : Subscribing to a Universal Messaging Channel/Topic
or Queue.. 216
Universal Messaging Python : DataStream - Receiving DataGroup Events............ 217
Universal Messaging Python : Publishing Events to a Universal Messaging Channel
or Queue.. 217

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 12

Universal Messaging Python : Writing an Event to a Universal Messaging
DataGroup.. 218
Universal Messaging Python : Asynchronous Exception Listener............................218
Universal Messaging Python : Synchronously Requesting Events.......................... 219

Sample Applications.. 220
Publish / Subscribe Channels.. 220

Universal Messaging Python Client: Channel Publisher...................................220
Universal Messaging Python Client: Asynchronous Channel Subscriber......... 220
Universal Messaging Python Client: Channel Iterator...................................... 220

Pub / Sub Datagroups..220
Universal Messaging Python Client: DataGroup Publisher...............................220
Universal Messaging Python Client: DataStream Listener............................... 220

Message Queues... 221
Universal Messaging Python Client: Queue Publisher..................................... 221
Universal Messaging Python Client: Asynchronous Queue Consumer.............221
Universal Messaging Python Client: Synchronous Queue Reader................... 221

Python Objects.. 221
Universal Messaging Python : Universal Messaging Events................................... 221
Universal Messaging Python : Event Dictionaries..222

Universal Messaging Language API Comparisons.. 222

Universal Messaging Mobile Client APIs.. 225
Client API for iPhone..226

Universal Messaging iPhone Developer's Guide.. 226
Client API for Android...227

Universal Messaging Android Developer's Guide... 227

Universal Messaging Web Client APIs.. 229
Javascript.. 230

Universal Messaging JavaScript Developer's Guide...230
Universal Messaging Server Configuration for JavaScript.. 232

Universal Messaging JavaScript: Server Configuration for HTTP Delivery.............. 232
Universal Messaging JavaScript: Server Configuration for HTTPS Delivery............233
Universal Messaging Javascript : Serving From Another Webserver...................... 233

Universal Messaging Web Client Development in JavaScript...236
Universal Messaging Channel Publish / Subscribe..236

Universal Messaging JavaScript : Publish / Subscribe..................................... 236
Publish/Subscribe Tasks... 237

Universal Messaging JavaScript : Using a Universal Messaging Channel........237

Universal Messaging JavaScript : Subscribing to a Universal Messaging
Channel..237

Universal Messaging JavaScript : Publishing Events to a Universal Messaging
Channel..238

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 13

Universal Messaging JavaScript : DataStream - Receiving DataGroup
Events.. 239

Optimizing Throughput.. 240

Universal Messaging JavaScript : The Merge Engine and Event Deltas...........240

Universal Messaging Message Queues...243
Universal Messaging JavaScript : Message Queues..243
Queue Tasks... 244

Universal Messaging JavaScript : Using a Universal Messaging Queue.......... 244

Universal Messaging JavaScript : Subscribing to a Universal Messaging
Queue.. 244

Universal Messaging JavaScript : Publishing Events to a Universal Messaging
Queue.. 245

Universal Messaging JavaScript : Asynchronous Transactional Queue
Consuming...245

Adobe Flex..247
Universal Messaging Flex Developer's Guide...247
Publish / Subscribe using Channels / Topics.. 247

Universal Messaging Flex : Publish / Subscribe.. 247
Universal Messaging Flex : Publishing Events to a Channel...................................247
Universal Messaging Flex : Subscribing to a Channel...248
Universal Messaging Flex - Durable channel consumers and named objects......... 249
Universal Messaging Flex - The Merge Engine and Event Deltas...........................251

Publish / Subscribe using DataStreams and DataGroups...252
Universal Messaging Flex : Publish / Subscribe.. 252
Universal Messaging Flex - DataGroup Conflation Attributes..................................252
Universal Messaging Flex - DataStreamListener...254

Message Queues.. 255
Universal Messaging Flex - Message Queues.. 255
Universal Messaging Flex : Publishing Events to a Queue..................................... 255
Universal Messaging Flex - Asynchronous Queue Consuming............................... 256
Universal Messaging Flex - Asynchronous Transactional Queue Consuming......... 257

Peer to Peer.. 258
Universal Messaging Flex: Peer to Peer Services...258
Universal Messaging Flex: Peer to Peer Event-based Client.................................. 259

Flex Socket SSL..260
Universal Messaging Flex socket SSL...260

Examples... 261
Universal Messaging Flex Client..261
Universal Messaging Flex : Sample Socket Cross Domain Policy...........................261
Universal Messaging Flex : Sample Flash Cross Domain Policy.............................262
Flex Example : Peer to Peer Echo Application.. 262

M
Table of Contents

Universal Messaging Developer Guide Version 9.6 14

Flex Example : Chat Application.. 263
Silverlight...267

Universal Messaging Silverlight Developer's Guide..267
Universal Messaging Silverlight Deployment.. 267
Examples... 269

Universal Messaging Silverlight (C#): Live Stock Chart...269
Universal Messaging Silverlight (C#): Live Stock Indices.. 271
Universal Messaging Silverlight (C#): Simple Chat Room....................................... 273

Java...276
Universal Messaging Java Web Developer's Guide... 276
Universal Messaging Java Web Start... 276

Commonly Used Features.. 277
Universal Messaging Sessions...278
Universal Messaging Channel Attributes..278
Universal Messaging Channel Publish Keys..281
Universal Messaging Queue Attributes.. 283
Universal Messaging Native Communication Protocols... 285
Universal Messaging Comet Communication Protocols...288
Universal Messaging Durable Consumers... 290
Google Protocol Buffers... 290
Universal Messaging Named Objects.. 291
Universal Messaging - Event Filtering Guide...291
Universal Messaging - Advanced Filtering with Selectors... 293
Using Universal Messaging Shared Memory Protocol... 296
Storage Properties..296

M
Odd Header

Universal Messaging Developer Guide Version 9.6 15

Universal Messaging Client Development

Client APIs are available for a wide range of languages at the enterprise level. APIs are
also available for building applications for Web-based and mobile device scenarios.

We provide the client API documentation under the following main headings:

"Enterprise Client APIs" on page 17

"Web Client APIs" on page 229

"Mobile Client APIs" on page 225

M
Even Header

Universal Messaging Developer Guide Version 9.6 16

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 17

1 The Enterprise Client APIs

■ The Universal Messaging Java Enterprise Developer's Guide .. 18

■ The Enterprise Developer Guide for C++ .. 91

■ Overview of Enterprise Developer Guide for C# ... 144

■ Overview of Developer's Guide for VBA .. 206

■ Overview of Enterprise Developer's Guide for Python .. 214

■ Universal Messaging Language API Comparisons .. 222

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 18

Our Universal Messaging Enterprise APIs allow developers to implement real-time
publish/subscribe functionality into enterprise-class applications using a range of
languages:

Java

The Universal Messaging Java Client API is our fully-featured enterprise-class client
API:

"Java Developer's Guide" on page 18: developing Java applications/systems
that will use Universal Messaging

Java Client API : the entire Universal Messaging Java client API

C++

The Universal Messaging C++ Client API is our fully-featured enterprise-class client
API for C++ developers:

"C++ Developer's Guide" on page 91: developing C++ applications/systems
that will use Universal Messaging

C++ Client API : the entire Universal Messaging C++ client API

C# .NET

The Universal Messaging C# Client API is our fully-featured enterprise-class client API
for C# developers:

"C# Developer's Guide" on page 144

C# Client API : the entire Universal Messaging C# .NET client API

Excel VBA

Our VBA API allows Microsoft Office applications such as Microsoft Excel to publish
and subscribe to Universal Messaging channels, and to asynchronously receive
events in realtime:

"VBA Developer's Guide" on page 206

Python

The Universal Messaging Python Client API utilises the C++ API to provide an
enterprise-class API for Python developers:

"Python Developer's Guide" on page 214

See Universal Messaging's "Language API Comparison Grid" on page 222 for an
overview of basic differences between each API.

The Universal Messaging Java Enterprise Developer's Guide
This guide describes how to develop and deploy Enterprise-class Java applications using
Universal Messaging, and assumes you already have Universal Messaging installed.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 19

General Features

Universal Messaging Java Developers Guide - Create Session
To interact with a Universal Messaging Server, the first thing to do is create a Universal
Messaging Session nSession object, which is effectively your logical and physical
connection to a Universal Messaging Realm. The steps below describe session creation.

1. Create a nSessionAributes object with the RNAME value of your choice
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa=new nSessionAttributes(RNAME);

2. Call the create method on nSessionFactory to create your session
Session mySession=nSessionFactory.create(nsa)

Alternatively, if you require the use of a session reconnect handler
(nReconnectHandler) to intercept the automatic reconnection aempts, pass an
instance of that class too in the create method:
public class myReconnectHandler implements nReconnectHandler{
 //implement tasks associated with reconnection
}
myReconnectHandler rhandler=new myReconnectHandler();
nSession mySession=nSessionFactory.create(nsa, rhandler);

3. Initialise the session object to open the connection to the Universal Messaging Realm
 mySession.init();

To enable the use of DataGroups and to create an nDataStream , you should pass an
instance of nDataStreamListener to the init call.
public void SimpleStreamListener implements nDataStreamListener{
 //implement onMessage callback for nDataStreamListener callbacks
}
nDataStreamListener myListener = new SimpleStreamListener();
nDataStream myStream = mySession.init(myListener);

After initialising your Universal Messaging session, you will be connected to the
Universal Messaging Realm. From that point, all functionality is subject to a Realm ACL
check. If you call a method that requires a permission your credential does not have, you
will receive an nSecurityException.

Universal Messaging Java - Universal Messaging Events
Each nConsumeEvent object has an nEventAtrributes object associated with it which
contains all available meta data associated with the event

Constructing an Event

In this Javacode snippet, we construct our Universal Messaging Event object
(nConsumeEvent), and, in this example, passa byte array data into the constructor:
nConsumeEvent evt = new nConsumeEvent("String", "Hello World".getBytes());

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 20

Universal Messaging Java - Channel Joins

Creating Channel Joins

Channel joins can be created using the nmakechanjoin join sample application which
is provided in the bin directory of the Universal Messaging installation. For further
information on using this example please see the Make Channel Join example page.

Universal Messaging joins are created as follows:
//Obtain a reference to the source channel
nChannel mySrcChannel = mySession.findChannel(nca);
//Obtain a reference to the destination channel
nChannel myDstChannel = mySession.findChannel(dest);
//create the join
mySrcChannel.joinChannel(myDstChannel, true, jhc, SELECTOR);

Channel joins can also be deleted. Please see the Delete Channel Join example for more
information.

Archive Joins

It is possible to archive messages from a given channel by using an archive join. To
perform an archive join, the destination must be a queue in which the archived messages
will be stored. An example of this can be seen below:

Since this is an archive join, all events matching the optional selector parameter(all
events if no selector is specified) will be put into the archive queue, by design this
includes all duplicate events published to the source.
nChannelAttributes archiveAtr = new nChannelAttributes();
archiveAtr.setName(rchanName);
nQueue archiveQueue = mySession.findQueue(archiveAtr);
mySrcChannel.joinChannelToArchive(archiveQueue);

Inter-Cluster Joins

Inter-cluster joins are added and deleted in almost exactly the same way as normal joins.
The only differences are that the two clusters must have an inter-cluster connection
in place, and that since the clusters do not share a namespace, ech channel must be
retrieved from nodes in their respective clusters, rather than through the same node. For
example :
nChannel cluster1chan1 = realmNode1.findChannel(channelattributes1);
nChannel cluster2chan1 = realmNode4.findChannel(channelattributes2);
cluster1chan1.joinChannel(cluster2chan1);

Inter-Cluster joins can also be created through the Enterprise Manager.

Universal Messaging Java - Universal Messaging Event Dictionaries

Constructing an Event

In this code snippet, we assume we want to publish an event containing the definition of
a bond, say, with a name of "bond1":

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 21

nEventProperties props = new nEventProperties();
props.put("bondname", "bond1");
props.put("price", 100.00);
nConsumeEvent evt = new nConsumeEvent("atag", props);
channel.publish(evt);

Note that in this example code, we also create a new "Universal Messaging Event"
on page 19 object (nConsumeEvent) to make use of our Event Dictionary
(nEventProperties).

Google Protocol Buffers

Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and
this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffer in Java, C++ and Python, and third party
libraries provide support for many other languages including Flex, .NET, Perl, PHP
etc. Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer event through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in nirvana, allowing for server-side
filtering of Google Protocol Buffer events, which can be sent on resources just like a
normal nirvana Events. The server side filtering of messages is achieved by providing
the server with a description of the data structures(constructed at the .proto compile
time, using the standard protobuf compiler and the --descriptor_set_out option). The
default location the sever looks in for descriptor files is /plugins/ProtobufDescriptors
and this can be configured through the enterprise manager. The server will monitor
this folder for changes, and the frequency of these updates can be configured through
the enterprise manager. The server can then use to extract the key value pairs from the
binary Protobuf message and filter message delivery based on user requirements.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 22

To create a nProtobuf event, simply build your protocol buffer as normal and pass it into
the nProtobuf constructor along with the message type used.
Example.Builder example = Example.newBuilder();
example.setEmail("example@email.com");
example.setName("Name");
example.setAddress1("Norton Foldgate");
example.setHouseNumber(1);
byte[] buffer = example.build().toByteArray();
nProtobufEvent evt = new nProtobufEvent(buffer,"example");
myChannel.publish(evt);

nProtobuf events are received by subscribers in the normal way.
public void go(nConsumeEvent evt) {
 if (evt instanceof nProtobufEvent) {
 totalMsgs++;
 // Get the data of the message
 byte[] buffer = evt.getEventData();
 if(((nProtobufEvent) evt).getTypeName().equals("BidOffer")){
 BidOffer bid = null;
 bid = BidOffer.parseFrom(buffer);
 //......//
 }
 }
}

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the EM is no running on the same machine as the server. To enable this, the
server outputs a descriptor set to a configurable directory (by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Universal Messaging Java - Publish / Subscribe Using Channels/
Topics
Publish / Subscribe is one of several messaging paradigms available in Universal
Messaging. Universal Messaging Channels are a logical rendezvous point for publishers
(producers) and subscribers (consumers) or data (events).

Universal Messaging "DataStreams and DataGroups provide an alternative style of
Publish/Subscribe" on page 34 where user subscriptions can be managed remotely
on behalf of clients.

Universal Messaging Channels equate to Topics if you are using the Universal
Messaging Provider for JMS.

Under the publish / subscribe paradigm, each event is delivered to each subscriber once
and only once per subscription, and is not typically removed from the channel as a result
of the message being consumed by an individual client.

This section demonstrates how Universal Messaging pub / sub works in Java, and
provides example code snippets for all relevant concepts:

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 23

"Universal Messaging Java - Creating a Universal Messaging Channel" on page
23

"Universal Messaging Java - Finding a Universal Messaging Channel" on page 24

"Universal Messaging Java - How to publish events to a Universal Messaging
Channel" on page 24

"Universal Messaging Java - Sending XML Dom Objects over Universal Messaging"
on page 26

"Universal Messaging Java - Asynchronous Subscriber" on page 27

"Universal Messaging Java - Channel Iterator" on page 27

"Universal Messaging Java - Batched Subscribe" on page 28

"Universal Messaging Java - Batched Find" on page 29

"Universal Messaging Java - Durable channel consumers and named objects" on page
29

"Universal Messaging Java - Event Fragmentation on Universal Messaging Channels"
on page 31

"Universal Messaging Java - The Merge Engine and Event Deltas" on page 32

"Universal Messaging Java - Priority Messaging" on page 33

Example source:

"Universal Messaging Java Client: Code for Sample Applications" on page 66

Universal Messaging Java - Creating a Universal Messaging Channel
Channels can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

In order to create a channel, first of all you must create an nSession object, which is your
effectively the logical and physical connection to a Universal Messaging Realm. This is
achieved by using an RNAME for your Universal Messaging Realm when constructing
the nSessionAributes object, as shown below:
String[] RNAME=({“nsp://127.0.0.1:9000”});
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nSession mySession=nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession' we can then begin creating the channel
object. Channels have an associated set of aributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the channel, the aributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 24

To create a channel, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setName(“mychannel”);
nChannel myChannel=mySession.createChannel(cattrib);

Now we have a reference to a Universal Messaging channel within the realm.

Universal Messaging Java - Finding a Universal Messaging Channel
In order to find a channel programmatically you must create your nSession object, which
is effectively your logical and physical connection to a Universal Messaging Realm. This
is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAributes object, as shown below:
String[] RNAME=({“nsp://127.0.0.1:9000”});
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nSession mySession=nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then try to find the channel object.
Channels have an associated set of aributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the channel, the aributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To find a channel previously created, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setName(“mychannel”);
nChannel myChannel=mySession.findChannel(cattrib);

This returns a reference to a Universal Messaging channel within the realm.

Universal Messaging Java - How to publish events to a Universal Messaging
Channel
There are 2 types of publish available in Universal Messaging for channels:

"Reliable Publish" on page 25

"Transactional Publish" on page 25

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then commiing the transaction. The server responds to the transaction commit call

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 25

indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the channel has been located, an event must be constructed prior to a publish call being
made to the channel.

For reliable publish, there are a number of method prototypes on a channel that allow us
to publish different types of events onto a channel. Here are examples of some of them.
Further examples can be found in the API documentation.
// Publishing a simple byte array message
myChannel.publish(new nConsumeEvent("TAG", message.getBytes()));
//Publishing a dictionary (nEventProperties)
nEventProperties props = new nEventProperties();
props.put("bondname", "bond1");
props.put("price", 100.00);
nConsumeEvent evt = new nConsumeEvent("atag", props);
myChannel.publish(evt);
// publishing an XML document
InputStream is = new FileInputStream(aFile);
DOMParser p = new DOMParser();
p.parse(new InputSource(is));
Document doc = p.getDocument();
myChannel.publish("XML", doc);

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the channel located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been commied will the events become available to subscribers on the
channel.

Below are some code snippets for transactional publishing:
//Publishing a single event in a transaction
nTransactionAttributes tattrib=new nTransasctionAttributes(myChannel);
nTransaction myTransaction=nTransactionFactory.create(tattrib);
myTransaction.publish(new nConsumeEvent("TAG", message.getBytes()));
myTransaction.commit();
//Publising multiple events in a transaction
Vector messages=new Vector();
messages.addElement(message1);
nTransactionAttributes tattrib=new nTransasctionAttributes(myChannel);
nTransaction myTransaction=nTransactionFactory.create(tattrib);
myTransaction.publish(messages);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 26

myTransaction.commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been commied or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was commied:
boolean committed = myTransaction.isCommitted(true);

Universal Messaging Java - Sending XML Dom Objects over Universal
Messaging
Universal Messaging provides inbuilt support for XML based messaging.

XML can be published as either a String or a DOM Document object.

A summary of the code needed to publish and consume XML data is provided below.
For more information please see the Universal Messaging publish XML and consume
XML examples.

Publishing

The code to read an XML file and publish it as DOM Document is as follows:
//Create an input stream
InputStream is = new FileInputStream(aFile);
//Create a DOM Parser object
DOMParser p = new DOMParser();
//Parse from the input stream
p.parse(new InputSource(is));
//Get the XML Document
doc = p.getDocument();
//Publish the Dom Document
myChannel.publish(tag, doc)

Subscribing

The code to consume XML is as follows:
//The nConsumEventListener Callback
void go(nConsumeEvent evt) {
 //get the DOM Document from the Universal Messaging event
 Document doc = evt.getDocument()>
 //pass it to the Universal Messaging xmlHelper class
 xmlHelper xh = new xmlHelper(doc);
 //output the XML to standard out
 xh.dumpDoc();
}

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 27

Universal Messaging Java - Asynchronous Subscriber
Asynchronous channel subscribers consume events from a callback on an interface that
all asynchronous subscribers must implement. We call this interface an nEventListener.

The listener interface defines one method called 'go' which when called will pass events
to the consumer as they are delivered from the Universal Messaging Realm Server.

An example of such a simple listener is shown below:
public class mySubscriber implements nEventListener {
 public mySubscriber() throws Exception {
 // construct your session
 // and channel objects here
 // begin consuming events from the channel at event id 0
 // i.e. the beginning of the channel
 myChannel.addSubscriber(this , 0);
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 new mySubscriber();
 }
}

Asynchronous consumers can also be created using a selector, which defines a set of
event properties and their values that a subscriber is interested in. For example if events
are being published with the following event properties:
nEventProperteis props =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'";

And pass this string into the addSubscriber method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Universal Messaging Java - Channel Iterator
Events can be synchronously consumed from a channel using a channel iterator object.
The iterator will sequentially move through the channel and return events as and when
the iterator getNext() method is called.

If you are using iterators so that you know when all events have been consumed from a
channel please note that this can also be achieved using an asynchronous subscriber by
calling the nConsumeEvents isEndOfChannel() method.

An example of how to use a channel iterator is shown below:
public class myIterator {
 nChannelIterator iterator = null;
 public myIterator() throws Excepetion {
 // construct your session and channel objects
 // start the iterator at the beginning of the channel (event id 0)
 iterator = myChannel.createIterator(0);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 28

 }
 public void start() {
 while (true) {
 nConsumeEvent event = iterator.getNext();
 go(event);
 }
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 myIterator itr = new myIterator();
 itr.start();
 }
}

Synchronous consumers can also be created using a selector, which defines a set of event
properties and their values that a consumer is interested in. For example if events are
being published with the following event properties:
nEventProperties props =new nEventProperties();
props.put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'"

And pass this string into the createIterator method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Universal Messaging Java - Batched Subscribe
If a client application needs to subscribe to multiple channels it is more efficient to batch
these subscriptions into a single server call. This is achieved using the subscribe method
of nSession rather than first finding the nChannel object and then calling the subscribe
method of nChannel.

The following code snippet demonstrates how to subscribe to two Universal Messaging
channels in one server call:
public class myEventListener implements nEventListener {
 public void go(nConsumeEvent evt) {
 System.out.println("Received an event!");
 }
}
public void demo(){
 nSubscriptionAttributes[] arr = new nSubscriptionAttributes[2];
 arr[0] = new nSubscriptionAttributes("myChan1", "", 0, myLis1);
 arr[1] = new nSubscriptionAttributes("myChan2", "", 0, myLis2);
 arr = mySession.subscribe(arr);
 for (int i = 0; i < arr.length; i++) {
 if (!arr[i].wasSuccessful()) {
 handleSubscriptionFailure(arr[i]);
 }
 //subscription successful
 }
}
public void handleSubscriptionFailure(nSubscriptionAttributes subAtts){
 subAtts.getException().printStackTrace();
}

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 29

The nSubscriptionAributes class is used to specify which channels to subscribe to.
The second two parameters of the constructor represent the selector to use for the
subscription and the event ID to subscribe from.

It is possible that the subscription may fail; for example, the channel may not exist or
the user may not have the required privileges. In this situation, calling wasSuccessful()
on the nSubscriptionAributes will return false and getException() will return the
exception that was thrown.

If the subscription is successful then the nChannel object can be obtained from the
nSubscriptionAributes as shown in the following code snippet:
 nChannel chan = subAtts.getChannel();

Universal Messaging Java - Batched Find
In client applications, it is quite common to have multiple Channels or Queues that one
is trying to find. In these scenarios, the batched find call built into nSession is extremely
useful.

The following code snippet demonstrates how to find 2 Universal Messaging Channels
in one server call:
public void demo(){
 nChannelAttributes[] arr = new nChannelAttributes[2];
 nChannel[] channels = new nChannels[2];
 arr[0] = new nChannelAttributes("myChan1");
 arr[1] = new nChannelAttributes("myChan2");
 nFindResult[] results = mySession.find(arr);
 for (int i = 0; i < results.length; i++) {
 if (!results[i].wasSuccessful()) {
 handleSubscriptionFailure(results[i]);
 } else if (results[i].isChannel) {
 channels[i] = results[i].getChannel();
 }
 }
}
public void handleSubscriptionFailure(nFindResult result){
 result.getException().printStackTrace();
}

To perform the same operation for Queues, simply use the example above and exchange
nChannel for nQueue, and check each result returned to see if the isQueue() flag is set.

Universal Messaging Java - Durable channel consumers and named objects
Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Universal Messaging supports durable consumers through use of Universal Messaging
named objects as shown by the following example code.

Names objects can also be managed via the enterprise manager.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 30

Asynchronous Durable Consumer

An example of how to create a named object that begins from event id 0, persistent and
is used in conjunction with an asynchronous event consumer:
public class mySubscriber implements nEventListener {
 public mySubscriber() throws Exception {
 // construct your session
 // and channel objects here
 // create the named object and begin consuming events from the channel at event id 0
 // i.e. the beginning of the channel
 nNamedObject nobj = myChannel.createNamedObject("unique1", 0, true);
 myChannel.addSubscriber(this , nobj);
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 new mySubscriber();
 }
}

Synchronous Durable Consumer

An example of how to create a named object that begins from event id 0, persistent and
is used in conjunction with a synchronous event consumer:
public class myIterator {
 nChannelIterator iterator = null;
 public myIterator() throws Exception {
 // construct your session
 // and channel objects here
 // start the iterator at the beginning of the channel (event id 0)
 nNamedObject nobj = myChannel.createNamedObject("unique2", 0, true);
 iterator = myChannel.createIterator(0);
 }
 public void start() {
 while (true) {
 nConsumeEvent event = iterator.getNext();
 go(event);
 }
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 myIterator itr = new myIterator();
 itr.start();
 }
}

Both synchronous and asynchronous channel consumers allow message selectors to be
used in conjunction with named objects. Please see the API documentation for more
information.

There are also different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 31

consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method:
public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 event.ack();
}

Priority

Two subscribers can hold a subscription to the same named object. One is given priority
and will process events during normal operation. If, however, the subscriber with
priority is disconnected for whatever reason, and is unable to process events, the second
subscriber to that named object will take over and continue to process events as they
come in. This allows failover, with backup subscribers handling events if the subscriber
with priority goes down.

To do this, we simply create the subscriber with a boolean specifying if this subscriber
priority. Only one subscriber is allowed priority at any given time. An example of a
named object specifying priority is shown below:
nNamedObject named = myChannel.createNamedObject(subname, startEid, persistent, cluster, priority);

Universal Messaging Java - Event Fragmentation on Universal Messaging
Channels
By default, Universal Messaging will only allow events to be published if the size of the
event is less than 1Mb. Although this limit can be changed in the Enterprise Manager
(see Config tab, FanoutValues/MaxBufferSize), this is not generally recommended; it is
usually far more efficient to fragment large events into smaller chunks for publishing.

Universal Messaging can transparently fragment and reconstruct events. Thus, a
developer need only invoke one method call to fragment and publish an event. In the
same way, the resulting event will be transparently reconstructed when received by the
consumer. Under the hood, however, Universal Messaging will publish several smaller
messages representing the large event.

A summary of the code needed to publish and consume fragmented events is provided
below.

Publishing

The code to publish a large event using fragmentation is as follows:
 // The chunk_size is the max size (bytes) for each event. Multiple events will
 // be published of size chunk_size until the entire event has been sent.
 int chunk_size = 50000;
 fw = new nConsumeEventFragmentWriter(myChannel,chunk_size);
 // Rather than myChannel.publish(evt), we let the fragment writer handle the publish
 fw.publish(evt)

Subscribing

The code to consume a large event using fragmentation is as follows:
 // In this example the enclosing class implements nEventListener
 fr = new nConsumeEventFragmentReader(this);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 32

 // Rather than directly add 'this' as the nEventListener, add the new fragment reader
 myChannel.addSubscriber(fr);

Universal Messaging Java - The Merge Engine and Event Deltas
In order to streamline publish/subscribe applications it is possible to deliver only the
portion of an event's data that has changed rather than the entire event. These event
deltas minimise the amount of data sent from the publisher and ultimately delivered to
the subscribers.

The publisher simply registers an event and can then publish changes to individual keys
within the event. The subscriber will receive a full event on initial subscription, which
contains the most up to date state of the event. After the initial message, only the key/
value pairs which have changed since the last message will be sent to the client.

Publisher - Registered Events

In order to publish event deltas the publisher uses the Registered Event facility available
on a Universal Messaging Channel. Please note that the channel must have been
created with the Merge Engine and it must have a single Publish Key. The publish key
represents the primary key for the channel and the registered events. So for example if
you are publishing currency rates you would setup a channel as such:
 nChannelAttributes cattr
 = new nChannelAttributes("RatesChannel", 0, 0, nChannelAttributes.SIMPLE_TYPE);
//
// This next line tells the server to Merge incoming events based on the publish
// key name and the name of the registered event
//
 cattr.useMergeEngine(true);
//
// Now create the Publish Key (See publish Keys for a full description
//
 nChannelPublishKeys[] pks = new nChannelPublishKeys[1];
 pks[0] = new nChannelPublishKeys("ccy", 1);
 cattr.setPublishKeys(pks);
//
// Now create the channel
//
 myChannel = mySession.createChannel(cattr);

At this point the server will have a channel created with the ability to merge incoming
events from Registered Events. The next step is to create the Registered events at the
publisher.
 nRegisteredEvent audEvent = myChannel.createRegisteredEvent("AUD");
 nEventProperties props = audEvent.getProperties();
 props.put("bid", 0.8999);
 props.put("offer", 0.9999);
 props.put("close", "0.8990");
 audEvent.commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to a ccy value
of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:
 props.put("bid", 0.9999);
 audEvent.commitChanges();

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 33

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Subscriber - nEventListener

The subscriber implements nEventListener in the usual way and does not need to do
anything different in order to receive either event deltas or snapshots containing the
result of one or more merge operations. The standard nEventListener will receive a
full event when the subscriptions is initiated. Thereafter it will receive only deltas. If at
any time the user is disconnected then it will receive a fresh update of the full event on
reconnection - followed by a resumption of delta delivery.

If you wish to differentiate between snapshot events and delta events then the
nConsumeEvent aributes can be used as follows:
event.getAttributes().isDelta();

Universal Messaging Java - Priority Messaging
In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same channel or queue. Universal Messaging provides the ability to
expedite messages based on a priority level. Messages with higher levels of priority are
able to be delivered to clients ahead of lower priority messages.

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:
nConsumeEvent evt;
 ...
evt.getAttributes().setPriority((byte) 9);

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis and the effects
become more noticeable as load increases.

It is possible to specify multiple levels of priority for events on the same channel. This
behaviour will cause the events to be delivered highest priority first. When doing this it
is important to realise that events on a channel will no longer be delivered on a first in
first out basis.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 34

Universal Messaging Java - Publish / Subscribe Using DataStreams
and DataGroups
Publish / Subscribe is one of several messaging paradigms supported by Universal
Messaging. Universal Messaging DataGroups are lightweight structures designed to
facilitate Publish/Subscribe . When using DataGroups, user subscriptions are managed
remotely in a way that is transparent to subscribers. Universal Messaging Channels
provide an alternative style of Publish/Subscribe where the subscribers manage their
subscriptions directly.

There are two resources that are used when interacting with DataGroups: DataStreams
and DataGroups.

DataStreams

A Data Stream is a destination for published events. Publishers with appropriate
permissions can write events directly to Data Streams. A Universal Messaging client
session can optionally have a Data Stream, and receive events through it.

A Data Stream can be a member of one or more Data Groups.

DataGroups

Any event wrien to a Data Group will be propagated to all Data Streams that are
members of that Data Group.

Data Groups may also contain other Data Groups. Any event wrien to an upper level
Data Group will be wrien to all contained Data Groups, and thus to all contained Data
Streams.

Note that all Data Streams are automatically added to the realm server's Default Data
Group. Writing an event to the Default Data Group, therefore, will ensure it is delivered
to any client with a session configured to use a Data Stream.

This section demonstrates Universal Messaging pub / sub using DataGroups in Java, and
provides example code snippets for all relevant concepts:

Universal Messaging Java - DataStreamListener
If a nSession is created with a nDataStreamListener then it will receive asynchronous
callbacks via the onMessage implementation of the nDataStreamListener interface. The
nDataStreamListener will receive events when:

An event is published directly to this particular nDataStream

An event is published to any nDataGroup which contains this nDataStream

An event is published to an nDataGroup which contains a nested nDataGroup
containing this nDataStream

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 35

An example of how to create a session with an nDataStreamListener interface is
shown below:
public class DataGroupClient implements nDataStreamListener{
 nSession mySession;
 public DataGroupClient(String realmURLs){
 nSessionAttributes nsa = new nSessionAttributes(realmURLs);
 mySession = nSessionFactory.create(nsa, this);
 mySession.init(this);
 }
 ////
 // nDataStreamListener Implementation
 ////
 //Callback received when event is available
 public void onMessage(nConsumeEvent event){
 //some code to process the message
 }
}

Universal Messaging Java - Creating and Deleting DataGroups

Creating Universal Messaging DataGroups

nDataGroups can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

In order to create a nDataGroup, first of all you must create an nSession object, which is
effectively your logical and physical connection to a Universal Messaging Realm. This is
achieved by using an RNAME for your Universal Messaging Realm when constructing
the nSessionAributes object, as shown below:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nSession mySession=nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession object instance 'mySession', you can then create DataGroups. The
create DataGroup methods will return the nDataGroup if it already exists.

The code snippets below demonstrate the creation of nDataGroups:

Create a Single nDataGroup
nDataGroup myGroup = mySession.createDataGroups("myGroup");

Create Multiple nDataGroups
String[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession.createDataGroups(groups);

Creating DataGroups with DataGroupListeners and ConflationAttributes

It is also possible to specify additional properties when creating DataGroups:

nDataGroupListener - To specify a listener for DataGroup membership changes

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 36

nConflationAributes - To specify aributes which control event merging and
delivery throling for the DataGroup

Now we have a reference to a Universal Messaging DataGroup it is possible to publish
events

Deleting Universal Messaging DataGroups

There are various deleteDataGroup methods available on nSession which will delete
DataGroups. It is possible to specify single nDataGroups or arrays of nDataGroups.

Universal Messaging Java - Managing DataGroup Membership
DataGroups are extremely lightweight from both client and server perspectives; a back-
end process, such as a Complex Event Processing engine, can simply create DataGroups
and then add or remove users (or even entire nested DataGroups) based on bespoke
business logic. A user who is removed from one DataGroup and added to another
will continue to receive events without any interruption to service, or indeed explicit
awareness that any DataGroup change has occurred.

This page details some of the typical operations that DataGroup management process
would carry out. Please see our Java sample apps for more detailed examples of
DataGroup management.

Tracking Changes to DataGroup Membership (DataGroupListener)

The nDataGroupListener interface is used to provide asynchronous notifications
when nDataGroup membership changes occur. Each time a user (nDataStream) or
nDataGroup is added or removed from a nDataGroup a callback will be received.
public class datagroupListener implements nDataGroupListener {
 nSession mySession;
 public datagroupListener(nSession session){
 mySession = session;
 //add this class as a listener for all nDataGroups on this Universal Messaging realm
 mySession.getDataGroups(this);
 }
 ////
 //DataGroupListener Implementation
 ///
 public void addedGroup (nDataGroup to, nDataGroup group, int count){
 //Called when a group has been added to the 'to' data group.
 //count is the number of nDataStreams that will receive any events published to this nDataGroup
 }
 public void addedStream (nDataGroup group, nDataStream stream, int count){
 //Called when a new stream has been added to the data group.
 }
 public void createdGroup (nDataGroup group){
 //Called when a group has been created.
 }
 public void deletedGroup (nDataGroup group){
 //Called when a group has been deleted.
 }
 public void deletedStream (nDataGroup group, nDataStream stream, int count, boolean serverRemoved){
 //Called when a stream has been deleted from the data group.
 //serverRemoved is true if the nDataStream was removed because of flow control
 }

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 37

 public void removedGroup (nDataGroup from, nDataGroup group, int count){
 //Called when a group has been removed from the 'from' data group.
 }
}

There are three ways in which the nDataGroupListener can be used:

Listening to an individual DataGroup

Listeners can be added to individual DataGroups when they are created or at any time
after creation. The code snippets illustrate both approaches:
mySession.createDataGroup(dataGroupName, datagroupListener);
myDataGroup.addListener(datagroupListener);

Listening to the Default DataGroup

The Default nDataGroup is a DataGroup to which all nDataStreams are added by
default. If you add a DataGroupListener to the default DataGroup then callbacks will be
received when:

a nDataStream is connected/disconnected

a nDataGroup is created or deleted

Listening to all DataGroups on a Universal Messaging Realm

The code snippet below will listen on all nDataGroups (including the default
DataGroup).
mySession.getDataGroups(datagroupListener);

Adding and Removing DataGroup Members

The nDataGroup class provides various methods for adding and removing
nDataStreams and nDataGroups. Please see the nDataGroup API documentation for a
full list of methods. Examples of some of these are provided below:
 //Add a nDataStream (user) to a nDataGroup
 public void addStreamToDataGroup(nDataGroup group, nDataStream user){
 group.add(user);
 }
 //Remove a nDataStream (user) from a nDataGroup
 public void removeStreamFromDataGroup(nDataGroup group, nDataStream user){
 group.remove(user);
 }
 //Add a nDataGroup to a nDataGroup
 public void addNestedDataGroup(nDataGroup parent, nDataGroup child){
 parent.add(child);
 }
 //Remove a nDataGroup from a nDataGroup
 public void removeNestedDataGroup(nDataGroup parent, nDataGroup child){
 parent.remove(child);
 }

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 38

Universal Messaging Java - DataGroup Conflation Attributes

Enabling Conflation on DataGroups

Universal Messaging DataGroups can be configured so that conflation (merging and
throling of events) occurs when messages are published. Conflation can be carried
out in several ways and these are specified using a nConflationAributes object. The
ConflationAributes object is passed in to the DataGroup when it is created initially.

The nConflationAributes object has two properties action and interval. Both of these are
passed into the constructor.

The action property specifies whether published events should replace previous events in
the DataGroup or be merged with them. These properties are defined by static fields:
nConflationAttributes.sMergeEvents
nConflationAttributes.sDropEvents

The interval property specifies the interval in milliseconds between event fanout to
subscribers. An interval of zero implies events will be fanned out immediately.

Creating a Conflation Attributes Object
//ConflationAttributes specifying merge events and no throttled delivery
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sMergeEvent, 0);
//ConflationAttributes specifying merge events and throttled delivery at 1 second intervals
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sMergeEvent, 1000);
//ConflationAttributes specifying drop events and throttled delivery at 1 second intervals
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sDropEvent, 1000);

Create a Single nDataGroup with Conflation Attributes
public class datagroupListener implements nDataGroupListener {
 nSession mySession;
 nDataGroup myDataGroup;
 public datagroupListener(nSession session, nConflationAttributes confattribs, String dataGroupName){
 mySession = session;
 //create a DataGroup passing in this class as a nDataGroupListener and a ConflationAttributes
 myDataGroup = mySession.createDataGroup(dataGroupName, this, confattribs)
 }
}

Create Multiple nDataGroups with Conflation Attributes
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sMergeEvent, 1000);
String[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession.createDataGroups(groups, confattribs);

Publishing Events to Conflated DataGroups With A Merge Policy

At this point the server will have a nDataGroup created with the ability to merge
incoming events from Registered Events. The next step is to create the Registered events
at the publisher.
 nRegisteredEvent audEvent = myDataGroup.createRegisteredEvent();
 nEventProperties props = audEvent.getProperties();
 props.put("bid", 0.8999);
 props.put("offer", 0.9999);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 39

 props.put("close", "0.8990");
 audEvent.commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to the data group
that could be called 'aud'. We then set the properties relevant to the application, finally
we call commitChanges(), this will send the event, as is, to the server. At this point if the
bid was to change then that individual field can be published to the server as follows:
 props.put("bid", 0.9999);
 audEvent.commitChanges();

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

When a data group has been created with Merge conflation, all registered events
published to that data group will have their nEventProperties merged into the snapshot
event, before the delta event is delivered to the consumers.

When using Merge conflation with an interval (ie throling), all updates will be merged
into a conflated event (as well as the snapshot event) that will be delivered within the
chosen interval. For example, consider the following with a merge conflated group and
an interval set to 100ms (ie maximum of 10 events a second):
 Scenario 1
 t0 - Publish Message1, Bid=1.234 (This message will be immediately
 delivered, and merged into the snapshot)
 t10 - Publish Message2, Offer=1.234 (This message will be held as a
 conflation event, and merged into the snapshot)
 t20 - Publish Message3, Bid=1.345 (This message will be merged with the
 conflated event, and with the snapshot)
 t100 - Interval hit (Conflated event containing Offer=1.234,Bid=1.345
 is delivered to consumers)
 Interval timer reset to +100ms, ie t200
 t101 - Publish Message4, Offer=1.345 (This message will be held as a conflation event,
 and merged into the snapshot)
 Where t0...tn is the time frame in milliseconds from now.
 Scenario 2
 t0 - Publish Message1, Bid=1.234 (This message will be immediately
 delivered, and merged into the snapshot)
 t100 - Interval hit (Nothing is sent as there has been no update
 since t0)
 t101 - Publish Message2, Offer=1.234 (This message will be immediately
 delivered, and merged into the snapshot)
 Interval timer reset to +100ms, ie t201

Meanwhile, if any new consumers are added to the Data Group, they will always
consume the most up to date snapshot and then begin consuming any conflated updates
after that.

Publishing Events to Conflated DataGroups With A Drop Policy

If you have specified a "Drop" policy in your ConflationAributes then events are
published in the normal way rather than using nRegisteredEvent.

Consuming Conflated Events from a DataGroup

The subscriber doesn't need to do anything different to receive events from a DataGroup
with conflation enabled. If nRegisteredEvents are being delivered then the events will

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 40

contain only the fields that have changed will be delivered. In all other circumstances an
entire event is delivered to all consumers.

Universal Messaging Java - DataGroups Event Publishing
You can get references to any DataGroup from the nSession object. There are various
writeDataGroup methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataGroups.
myDataGroup = mySession.getDataGroup("myGroup");
nEventProperties props = new nEventProperties();
//You can add other types in a dictionary object
props.put("key0string"+x, "1"+x);
props.put("key1int", (int) 1);
props.put("key2long", (long) -11);
nConsumeEvent evt1 = new nConsumeEvent(props, buffer);
//Publish the event
mySession.writeDataGroup(evt1, myDataGroup);

Universal Messaging Java - DataStream Event Publishing
You can get references to any nDataStream (user) from the nSession object if you
call getDefaultDataGroup(). You can also access nDataStreams by implementing the
nDataGroupListener interface. Please see DataGroup management for more information.
This will deliver callbacks as users are connected/disconnected. There are various
writeDataStream methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataStreams.
nEventProperties props = new nEventProperties();
//You can add other types in a dictionary object
props.put("key0string"+x, "1"+x);
props.put("key1int", (int) 1);
props.put("key2long", (long) -11);
nConsumeEvent evt1 = new nConsumeEvent(props, buffer);
//Publish the event
mySession.writeDataStream(evt1, myDataStream)

Universal Messaging Java - Priority Messaging
In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same datagroup. Universal Messaging provides the ability to expedite
messages based on a priority level. Messages with higher levels of priority are able to be
delivered to clients ahead of lower priority messages.

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:
nConsumeEvent evt;
 ...
evt.getAttributes().setPriority(9);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 41

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis and the effects
become more noticeable as load increases.

It is possible to specify multiple levels of priority for events on the same datagroup. This
behaviour will cause the events to be delivered highest priority first. When doing this it
is important to realise that events on a datagroup will no longer be delivered on a first in
first out basis.

Universal Messaging Java - Message Queues
Message queues are one of several messaging paradigms supported by Universal
Messaging.

Universal Messaging provides message queue functionality through the use of queue
objects. Queues are the logical rendezvous point for publishers (producers) and
subscribers (consumers) or data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

Universal Messaging also supports non destructive reads (peeks) from queues which
enable consumers to see what events are on a queue without removing it from the
queue. Any event which has been peeked will still be queued for popping in the normal
way. The Universal Messaging enterprise manager also supports the ability to visually
peek a queue using it s snoop capability.

This section demonstrates how Universal Messaging message queues work in Java, and
provide examples code snippets for all relevant concepts:

Universal Messaging Java - Creating a Queue
In order to create a queue, first of all you must create your nSession object, which is your
effectively your logical and physical connection to a Universal Messaging Realm. This
is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAributes object, as shown below:
String[] RNAME=({“nsp://127.0.0.1:9000”});
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nSession mySession=nSessionFactory.create(nsa);
mySession.init();

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 42

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then begin creating the queue
object. Queues have an associated set of aributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the queue, the aributes
determine the availability of the events published to a queue to any consumers wishing
to consume them,

To create a queue, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setChannelMode(nChannelAttributes.QUEUE_MODE);
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setName(“myqueue”);
nQueue myQueue=mySession.createQueue(cattrib);

Now we have a reference to a Universal Messaging queue within the realm.

Universal Messaging Java - Finding a Queue
In order to find a queue, first of all the queue must be created. This can be achieved
through the Universal Messaging Administration Tool, or programmatically. First of all
you must create your nSession object, which is your effectively your logical and physical
connection to a Universal Messaging Realm. This is achieved by using the correct
RNAME for your Universal Messaging Realm when constructing the nSessionAributes
object, as shown below:
String[] RNAME=({“nsp://127.0.0.1:9000”});
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nSession mySession=nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then try to find the queue object.
Queues have an associated set of aributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the queue, the aributes
determine the availability of the events published to a queue to any consumers wishing
to consume them,

To find a queue previously created, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setName(“myqueue”);
nQueue myQueue=mySession.findQueue(cattrib);

Now we have a reference to a Universal Messaging queue within the realm.

Universal Messaging Java - Queue Publish
There are 2 types of publish available in Universal Messaging for queues:

"Reliable Publish" on page 43

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 43

"Transactional Publish" on page 43

Reliable publish is simply a one way push to the Universal Messaging Server. This
means that the server does not send a response to the client to indicate whether the
event was successfully received by the server from the publish call.

Transactional publish involves creating a transaction object to which events are
published, and then commiing the transaction. The server responds to the transaction
commit call indicating if it was successful. There are also means for transactions to be
checked for status after application crashes or disconnects.

Reliable Publish

Once you have established a session and find a queue, you then need to construct an
event and publish the event onto the queue.

For reliable publish, here is the example code for how to publish events to a queue.
Further examples can be found in the API documentation.
// Publishing a simple byte array message
myQueue.push(new nConsumeEvent("TAG", message.getBytes()));
// publishiing an XML document
InputStream is = new FileInputStream(aFile);
DOMParser p = new DOMParser();
p.parse(new InputSource(is));
Document doc = p.getDocument();
myQueue.push("XML", doc);

Transactional Publish

Transactional publishing provides us with a method of verifying that the server receives
the events from the publisher, and provides guaranteed delivery.

There are similar prototypes available to the developer for transaction publishing. Once
we have established our session and our queue, we then need to construct our events
and our transaction and publish these events to the transaction. Then the transaction will
be commied and the events available to consumers to the queue.

Below is a code snippet of how transactional publishing is achieved:
Vector messages=new Vector();
Messages.addElement(message1);
nTransactionAttributes tattrib=new nTransasctionAttributes(myQueue);
nTransaction myTransaction=nTransactionFactory.create(tattrib);
myTransaction.publish(messages);
myTransaction.commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been commied or aborted, an call can be
made on the transaction that will determine if the events within the transactional were
successfully received by the Universal Messaging Realm Server.
boolean committed = myTransaction.isCommitted(true);

Which will query the Universal Messaging Realm Server to see if the transaction was
commied.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 44

Universal Messaging Java - Asynchronous Queue Consuming
Asynchronous queue consumers consume events from a callback on an interface that all
asynchronous consumers must implement. We call this interface an nEventListener. The
listener interface defines one method called 'go' which when called will pass events to the
consumer as they are delivered from the Universal Messaging Realm Server.

An example of an asynchronous queue reader is shown below:
public class myAsyncQueueReader implements nEventListener {
 nQueue myQueue = null;
 public myAsyncQueueReader() throws Exception {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nQueueReaderContext ctx = new nQueueReaderContext(this, 10);
 nQueueAsyncReader reader = myQueue.createAsyncReader(ctx);
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 try {
 new myAsyncQueueReader();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Asynchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a subscriber is interested in. For example if
events are being published with the following event properties:
nEventProperteis props =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Universal Messaging Java - Synchronously Queue Consuming
Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

An example of a synchronous queue reader is shown below:
public class mySyncQueueReader {
 nQueueSyncReader reader = null;
 nQueue myQueue = null;
 public mySyncQueueReader() throws Exception {
 // construct your session and queue objects here
 // construct the queue reader
 nQueueReaderContext ctx = new

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 45

 nQueueReaderContext(this, 10);
 reader = myQueue.createReader(ctx);
 }
 public void start() throws Exception {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();
 go(event);
 }
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 try {
 mySyncQueueReader sqr = new mySyncQueueReader();
 sqr.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Synchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a consumer is interested in. For example if
events are being published with the following event properties:
nEventProperteis props =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Universal Messaging Java - Asynchronous Transactional Queue Consuming
Asynchronous transactional queue consumers consume events from a callback on an
interface that all asynchronous consumers must implement. We call this interface an
nEventListener. The listener interface defines one method called 'go' which when called will
pass events to the consumer as they are delivered from the Universal Messaging Realm
Server.

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional asynchronous queue reader is shown below:
public class myAsyncTxQueueReader implements nEventListener {
 nQueueAsyncTransactionalReader reader = null;
 nQueue myQueue = null;
 public myAsyncTxQueueReader() throws Exception {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nQueueReaderContext ctx = new

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 46

 nQueueReaderContext(this, 10);
 reader = myQueue.createAsyncTransactionalReader(ctx);
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 reader.commit();
 }
 public static void main(String[] args) {
 try {
 new myAsyncTxQueueReader();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

As previously mentioned, the big difference between a transactional asynchronous
reader and a standard asynchronous queue reader is that once events are consumed
by the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been commied, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Asynchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a subscriber is interested in. For example if
events are being published with the following event properties:
nEventProperteis props =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Universal Messaging Java - Synchronous Transactional Queue Consuming
Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional synchronous queue reader is shown below:
public class mySyncTxQueueReader {

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 47

 nQueueSyncTransactionReader reader = null;
 nQueue myQueue = null;
 public mySyncTxQueueReader() throws Exception {
 // construct your session and queue objects here
 // construct the transactional queue reader
 nQueueReaderContext ctx = new
 nQueueReaderContext(this, 10);
 reader = myQueue.createTransactionalReader(ctx);
 }
 public void start() throws Exception {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();
 go(event);
 // commit each event consumed
 reader.commit(event.getEventID());
 }
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 try {
 mySyncTxQueueReadersqr = new mySyncTxQueueReader();
 sqr.start();
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

As previously mentioned, the big difference between a transactional synchronous
reader and a standard synchronous queue reader is that once events are consumed by
the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been commied, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Synchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a consumer is interested in. For example if
events are being published with the following event properties:
nEventProperteis props =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 48

Universal Messaging Java - Queue Browsing / Peeking
Universal Messaging provides a mechanism for browsing (peeking) queues. Queue
browsing is a non-destructive read of events from a queue. The queue reader used
by the peek will return an array of events, the size of the array being dependent on
how many events are in the queue, and the window size defined when your reader
context is created. For more information, please see the Universal Messaging Client API
documentation.

An example of a queue browser is shown below:
public class myQueueBrowser {
 nQueueReader reader = null;
 nQueuePeekContext ctx = null;
 nQueue myQueue = null;
 public myQueueBrowser() throws Exception {
 // construct your session and queue objects here
 // create the queue reader
 reader = myQueue.createReader(new
 nQueueReaderContext());
 ctx = nQueueReader.createContext(10);
 }
 public void start() throws Exception {
 boolean more = true;
 long eid =0;
 while (more) {
 // browse (peek) the queue
 nConsumeEvent[] evts = reader.peek(ctx);
 for (int x=0; x < evts.length; x++) {
 go(evts[x]);
 }
 more = ctx.hasMore();
 }
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 try {
 myQueueBrowser qbrowse = new myQueueBrowser();
 qbrowse.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Queue browsers can also be created using a selector, which defines a set of event
properties and their values that a browser is interested in. For example if events are
being published with the following event properties:
nEventProperteis props =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'";

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 49

And pass this string into the constructor for the nQueuePeekContext object shown in the
example code, then your browser will only receive messages that contain the correct
value for the event property BONDNAME.

Universal Messaging Java - Request Response

Subscriber Based Publish

Universal Messaging can easily be used to issue request/response message exchanges.
To accomplish this, the requester simply publishes an event to a request queue and then
listens for a response to be issued on a response queue. The responder tags this response
with the username of the requester, and this ensures that only the requester will see the
response event.

Requester

The requester publishes an event to a request queue and then listens for a response to be
issued on a response queue. The response will be tagged with the tag of the requester.
This tag is specified during the initial configuration of the session, as shown below:
mySession = nSessionFactory.create(nsa, this,"subscriber tag");

After seing this, the requester simply publishes an event to the request queue and
listens for a reply on the response queue.

An example Java requester is available in the examples section.

Responder

The responder listens to the request channel and responds to each request event. To
ensure the message is only delivered to the correct recipient, the Subscriber Name
must be set on the response event. The response event's data can contain the relevant
information the user needs.
//Having recieved a request event req, and established a connection to a response queue respQueue.
System.out.println("Recieved request");
//Retrieve username of request sender.
String requester = req.getPublishUser();
//Construct reply message.
String text = "Response: " + new String(req.getEventData());
//Construct reply event
nEventProperties atr = new nEventProperties();
nConsumeEvent resp = new nConsumeEvent(atr, text.getBytes());
//Set recipient of the event to the requester's tag to reply.
resp.setSubscriberName(requester.getBytes());
respQueue.push(resp);

An example Java responder is available in the examples section.

Universal Messaging Java - Event Fragmentation on Universal Messaging
Queues
By default, Universal Messaging will only allow events to be published if the size of the
event is less than 1Mb. Although this limit can be changed in the Enterprise Manager

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 50

(see Config tab, FanoutValues/MaxBufferSize), this is not generally recommended; it is
usually far more efficient to fragment large events into smaller chunks for publishing.

Universal Messaging can transparently fragment and reconstruct events. Thus, a
developer need only invoke one method call to fragment and publish an event. In the
same way, the resulting event will be transparently reconstructed when received by the
consumer. Under the hood, however, Universal Messaging will publish several smaller
messages representing the large event.

A summary of the code needed to publish and consume fragmented events is provided
below.

Publishing

The code to publish a large event using fragmentation is as follows:
 // The chunk_size is the max size (bytes) for each event. Multiple events will
 // be published of size chunk_size until the entire event has been sent.
 int chunk_size = 50000;
 fw = new nConsumeEventFragmentWriter(myQueue,chunk_size);
 // Rather than myQueue.publish(evt), we let the fragment writer handle the publish
 fw.publish(evt)

Subscribing

There are various approaches to consuming fragmented events from queues:

Asynchronous Queue Consumer
 public class myAsyncQueueReader implements nEventListener {
 nQueue myQueue = null;
 public myAsyncQueueReader() throws Exception {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);
 nQueueAsyncReader reader = myQueue.createAsyncReader(ctx);
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 try {
 new myAsyncQueueReader();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Asynchronous Transactional Queue Consumer
public class myAsyncTxQueueReader implements nEventListener {
 nQueueAsyncTransactionalReader reader = null;
 nQueue myQueue = null;
 public myAsyncTxQueueReader() throws Exception {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 51

 reader = myQueue.createAsyncTransactionalReader(ctx);
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 reader.commit();
 }
 public static void main(String[] args) {
 try {
 new myAsyncTxQueueReader();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Synchronous Queue Consumer
public class mySyncQueueReader {
 nQueueSyncReader reader = null;
 nQueue myQueue = null;
 public mySyncQueueReader() throws Exception {
 // construct your session and queue objects here
 // construct the queue reader
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);
 reader = myQueue.createFragmentReader(ctx);
 }
 public void start() throws Exception {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();
 go(event);
 }
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 try {
 mySyncQueueReader sqr = new mySyncQueueReader();
 sqr.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Synchronous Transactional Queue Consumer
public class mySyncTxQueueReader {
 nQueueSyncTransactionReader reader = null;
 nQueue myQueue = null;
 public mySyncTxQueueReader() throws Exception {
 // construct your session and queue objects here
 // construct the transactional queue reader
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);
 reader = myQueue.createTransactionalFragmentReader(ctx);
 }
 public void start() throws Exception {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 52

 go(event);
 // commit each event consumed
 reader.commit(event.getEventID());
 }
 }
 public void go(nConsumeEvent event) {
 System.out.println("Consumed event "+event.getEventID());
 }
 public static void main(String[] args) {
 try {
 mySyncTxQueueReadersqr = new mySyncTxQueueReader();
 sqr.start();
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Universal Messaging Java: Peer to Peer Services
Peer to peer is one of several messaging paradigms supported by Universal Messaging.

Universal Messaging provides a rich set of APIs that provide developers with the ability
to create Peer to Peer (P2P) applications. We call these Peer to Peer applications Services.
This guide will demonstrate how Universal Messaging Peer to Peer Services work, and
provides examples code snippets for all relevant concepts.

P2P Service Components

There are two parts to a Peer to Peer Service in Universal Messaging: a Server Service and
a Client.

When a Server Service is running, it is visible within the Universal Messaging
Namespace and is available to any Client wishing to connect. The Universal Messaging
Realm Server acts as the bridge that connects Clients to Server Services. Each Server
Service can support multiple Clients.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 53

Universal Messaging Peer to Peer Client and Server Services

The Server Service is a process that registers itself with a Universal Messaging Realm so it
is visible to Clients wishing to connect.

A Universal Messaging Peer to Peer Service Client is a process that connects to a
Universal Messaging Realm, obtains a reference to a Server Service and begins
communicating with it.

When a Client connects to the Server Service, all communication between the Client
and server service takes place through the Universal Messaging Realm, using Universal
Messaging's standard communication protocols.

P2P Service Types

There are two types of Universal Messaging Peer to Peer Services:

Event-based Services

Universal Messaging Peer to Peer Event-based Services communicate via events
which are published by the Event-based Client, and received and responded to by
the Event-based Server Service.

Stream-based Services

Universal Messaging Peer to Peer Stream-based Services communicate via input
and output streams on both the Client and Server Service. Anything wrien to the
output stream of the Stream-based Service Client is received via the input stream of
the Stream-based Server Service and vice versa.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 54

Universal Messaging Java: Peer to Peer Event-based Clients
Universal Messaging Peer to Peer Event-based Services communicate via events which are
published by a Client, and received and responded to by an Event-based Server Service.

The Universal Messaging P2P API is simple to use. There are only a very small number
of objects and calls that need to be made in order for you to construct a P2P Service
Client, connect to a Realm, and find or list available Services.

Creating an Event-based Service Client

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can find our Service, or obtain a list of
available Services:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);
nServiceInfo info = factory.findService("example");
nEventService serv = (nEventService)factory.connectToService(info);

Once the Client has connected to an instance of a Server Service, the developer's custom
business logic can then be applied.

Sending Events to Server Services

Once you have connected to the Service, and you have an instance of the Service, you
can then begin publishing your Universal Messaging events to the Service, by using the
following command:
serv.write(new nConsumeEvent("TAG", message.getBytes()));

The Client Service can receive events from the Server Service either synchronously, or
asynchronously via a callback interface.

Synchronously Receiving Events from the Server Service

Clients can synchronously read incoming events. The following code will return an
event once one is received from the Server Service:
nConsumeEvent event = serv.read();

Asynchronously Receiving Events from the Server Service

A Client may alternatively asynchronously receive events from the Event-based Server
Service by implementing the nEventServiceListener interface and its receivedEvent
method:
public void receivedEvent(nConsumeEvent evt) {
 System.out.println("Consumed event " + evt.getEventID());
}

You will also need to call registerListener(your_listener_class) on the
nEventService object.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 55

Universal Messaging Java: Peer to Peer Event-based Server Services
Universal Messaging Peer to Peer Event-based Services communicate via events which are
published by an Event-based Client, and received and responded to by an Event-based
Server Service.

Creating an Event-based Server Service

Firstly, in the same way that Publish/Subscribe and Message Queues use an RNAME,
the P2P API also requires one to connect to the Realm. The code snippet below shows
how this is achieved:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can construct our Event-based Server
Service:
nServerService Server = factory.createEventService("example", "Example Event-based Service");
while (true) {
 nEventService serv = (nEventService) server.accept();
 // your logic goes here....
 // e.g. query a database, make a connection, send an email, etc.
 System.out.println("Got connection " + serv.getServiceInfo().getName());
}

The code snippet above shows how to create an Event-based Server Service and wait for
Client connections. Developers are free to decide how the Server Service should respond
once a Client connects to the Server Service.

When connections are made to the Event-based Server Service, the Service can receive
events from Clients either synchronously or asynchronously via a callback interface.

Synchronously Receiving Events from the Client

The Server Service can synchronously read incoming events. The following code will
return an event once one is received from the Client:
nConsumeEvent event = serv.read();

Asynchronously Receiving Events from the Client

The Server Service may alternatively asynchronously receive events by implementing
the nEventServiceListener interface and its receivedEvent method:
public void receivedEvent(nConsumeEvent evt) {
 Console.WriteLine("Consumed event " + event.getEventID());
}

You will also need to call registerListener(your_listener_class) on the
nEventService object.

Sending Events to Clients

You can send events back to the Client as follows:

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 56

serv.write(new nConsumeEvent("TAG", message.getBytes()));

Universal Messaging Java: Peer to Peer Stream-based Clients
Universal Messaging Peer to Peer Stream-based Services communicate via input and
output streams on both the Stream-based Client and the Stream-based Server Service.

Anything wrien to the output stream of the Stream-based Service Client is received via
the input stream of the Stream-based Server Service and vice versa.

Creating a Stream-based Client

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can find our Service, or obtain a list of
available Services:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);
nServiceInfo info = factory.findService("example");
nEventService serv = (nEventService)factory.connectToService(info);

Once the Client has connected to an instance of a Server Service, the developer's custom
business logic can then be applied.

Writing Client Data to a Stream-based Server Service

Once a client has connected to a Service, the client can write data to the Service. The
client can obtain a reference to the Service's Output Stream object and then write to it as
follows:
OutputStream oStream = serv.getOutputStream();
oStream.write((new UTF8Encoding()).GetBytes("Hello World"));
oStream.flush();

Receiving Responses from a Stream-based Server Service

To receive responses from the Service, the client must first obtain a reference to the
Service's Input Stream object, and then read from it as follows:
InputStream iStream = serv.getInputStream();
byte[] buff = new byte[100];
try {
 InputStream is = serv.getInputStream();
 while (true) {
 is.read(buff);
 System.out.println("Read "+new String(buff));
 }
} catch (Exception ex) {
}

Universal Messaging Java: Peer to Peer Stream-based Server Services
Universal Messaging Peer to Peer Stream-based Services communicate via input and
output streams on both the Stream-based Client and the Stream-based Server Service.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 57

Anything wrien to the output stream of the Stream-based Service Client is received via
the input stream of the Stream-based Server Service and vice versa.

Creating an Stream-based Server Service

Firstly, in the same way that Publish/Subscribe and Message Queues use an RNAME,
the P2P API also requires one to connect to the Realm. The code snippet below shows
how this is achieved:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can construct our Stream-based Server
Service:
nServerService Server = factory.createStreamService("example", "Example Stream-based Service");
while (true) {
 nStreamService serv = (nStreamService) server.accept();
 InputStream Stream inputstream = serv.getInputStream();
 OutputStream Stream outputstream = serv.getOutputStream();
 // your logic goes here....
 // e.g. query a database, make a connection, send an email, etc.
 System.out.println("Got connection " + serv.getServiceInfo().getName());
}

The code snippet above shows how to create an Stream-based Server Service and wait
for Client connections. Developers are free to decide how the Server Service should
respond once a Client connects to the Server Service.

When a connection is made to the Stream-based Server Service, the Service has an Input
Stream (which can be read from), and an Output Stream (which can be wrien to).

Receiving Data from a Stream-based Client

The Server Service's Input Stream represents data coming from the client. The following
code snippet shows how to obtain this Input Stream:
InputStream iStream = serv.getInputStream();

Sending Data to a Stream-based Client

The Server Service's Output Stream represents data going to the client. The following
code snippet shows how to obtain this Output Stream:
OutputStream oStream = serv.getOutputStream();

Universal Messaging Provider for JMS
Universal Messaging Enterprise Server includes support for JMS functionality such as
topics and queues.

The pluggable communications drivers enable JMS to be used on public, private and
wireless networks transparently. JMS functionality can be delivered over normal TCP/
IP based sockets, SSL enabled sockets, HTTP and HTTPS. When supporting JMS using

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 58

HTTP or HTTPS, Universal Messaging can traverse proxy servers, network address
translation devices and it does not require either any additional web server to perform.

JMS message selector support is offered via Universal Messaging's high performance
server side message filtering engine. This ensures that only messages with content
that your clients register an interest in are delivered over the network thus conserving
network bandwidth.

JMS Topics correspond to channels in Universal Messaging publish / subscribe, and JMS
Queues correspond to queues in Universal Messaging message queues.

This guide describes the programmatic steps you can take in order to use Universal
Messaging Provider for JMS. There is also a section that will help you discover how to
perform administration of JMS objects in the Universal Messaging Administration Tool
section.

Universal Messaging Provider for JMS - JMSAdmin
Universal Messaging's Enterprise Manager tool supports JNDI using the same Universal
Messaging Channel based context used by the JMSAdmin example.

The example (jmsdmin.Java) source code demonstrates how to store Universal
Messaging Provider for JMS components into a JNDI service provider. The default
service provider for the example Universal Messaging's own Universal Messaging
Context to store JMS objects references, however any JNDI context provider can be used,
from LDAP through to NIS. The Universal Messaging context is discussed in more detail
here. The Universal Messaging Context stores references in a channel called /naming/
defaultContext.

JMSAdmin creates all required resources on a Universal Messaging realm. Example
usage is as follows:
Java -DRNAME [-DPRINCIPAL] [-DPASSWORD] -DCONTEXT_FACTORY
 -DPROVIDER_URL JMSAdmin bind | unbind | list | queueFactory |
 topicFactory |connectionFactory | queue | topic name / alias

where:

RNAME is the realm name of the Universal Messaging server you wish to connect to. If
no RNAME is provided the default RNAME of nsp://localhost:9000 is used.

PRINCIPAL is the subject (if any) you JNDI service provider requires

PASSWORD is the PRINCIPAL's password for the JNDI service provider used

CONTEXT_FACTORY is the fully qualified class name of the providers
context factory implementation. The default CONTEXT FACTORY is
com.pcbsys.nirvana.nSpace.Universal MessagingContextFactory and is set automatically
if no CONTEXT_FACTORY parameter is provided.

PROVIDER_URL is the custom url required by the context factory and provider
implementation. If no PROVIDER_URL parameter is passed the default used is nsp://
localhost:9000/.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 59

As an example assume we want to create a TOPIC called rates on a Universal Messaging
realm running on our local machine. Typing:

Java com.pcbsys.nirvana.nSpace.JMSAdmin bind topic rates

Will create an event in the /naming/defaultContext channel with the following
information in the event properties of the event:
rates/RefAddr/0/Content=rates
rates/RefAddr/0/Type=Topic
rates/ClassName=javax.JMS.Topic
rates/FactoryName=com.pcbsys.nirvana.nJMS.TopicFactory
rates/RefAddr/0/Encoding=String

The topic rates will automatically be created on the Universal Messaging realm running
on the PROVIDER_URL value. Assuming you wish to reference your local realm as
a TopicConnectionFactory named TopicConnectionFactory in JMS use the following
command:
Java com.pcbsys.nirvana.nSpace.JMSAdmin bind topicFactory TopicConnectionFactory

This will publish an event to the naming/defaultContext channel with the following
information in the event dictionary:
TopicConnectionFactory/RefAddr/0/Type=TopicConnectionFactory
TopicConnectionFactory /FactoryName=com.pcbsys.nirvana.nJMS.TopicConnectionFactoryFactory
TopicConnectionFactory/RefAddr/0/Encoding=String
TopicConnectionFactory/ClassName=javax.JMS.TopicConnectionFactory
TopicConnectionFactory/RefAddr/0/Content=nsp\://127.0.0.1\:9000
TopicConnectionFactory/RefAddr/0/Encoding=String

Creating a queue can be achieved using the following command:
Java com.pcbsys.nirvana.nSpace.JMSAdmin bind queue movie

Likewise a JMS Queue connection factory called QueueConnectionFactory can be bound
into a name space using the following command
Java com.pcbsys.nirvana.nSpace.JMSAdmin bind queueFactory QueueConnectionFactory

Having run both queue related commands the naming/defaultContext channel
will contain 4 events, each one pertaining to the 4 objects that have been bound,
TopicConnectionFactory, QueueConnectionFactory, rates and movie. The Universal
MessagingContext used with your JMS application will now be able to lookup these
objects and use them within your application.

Universal Messaging Provider for JMS - Client SSL Configuration
This Section describes how to use SSL in your Universal Messaging Provider for JMS
applications. Universal Messaging supports various wire protocols including SSL
enabled sockets and HTTPS.

Once you have created an SSL enabled interface for your realm you need to ensure that
your JMS application passes the required System properties used by your jsse enabled
JVM. The Universal Messaging download contains some example Java key store files
that will be used in this example.

The first such keystore is the client keystore, called client.jks, which can be found in
your installation directory, under the /server/Universal Messaging/bin directory. The

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 60

second is the CA keystore called nirvanacacerts.jks, which is again located in the /server/
Universal Messaging/bin directory

The following system properties are used by the jsse implementation in your JVM. You
can specify the SSL properties by passing the following as part of the command line for
your JMS application:
 -Djavax.net.ssl.keyStore=%INSTALLDIR%\client\Universal Messaging\bin\client.jks
 -Djavax.net.ssl.keyStorePassword=password
 -Djavax.net.ssl.trustStore=%INSTALLDIR%\client\Universal Messaging\bin\nirvanacacerts.jks
 -Djavax.net.ssl.trustStorePassword=password

where :

javax.net.ssl.keyStore is the client keystore location

javax.net.ssl.keyStorePassword is the password for the client keystore

javax.net.ssl.trustStore is the CA keystore file location

javax.net.ssl.trustStorePassword is password for the CA keystore

As well as the above system properties, if you are intending to use hps, your JMS
applications will require the following system property to be passed in the command
line:
 -Djava.protocol.handler.pkgs="com.sun.net.ssl.internal.www.protocol"

As well as the above, the RNAME used by the JMS application must correspond to the
correct type of SSL interface, and the correct hostname and port that was configured
earlier.

In JMS, the RNAME corresponds to a JNDI reference. The example JMSADmin
application can be used to create a sample file based JNDI context, where the RNAME
is specified as the content of the TopicConnectionFactoryFactory reference. Once your
SSL interface is created you can simply change this value in your JNDI context to be the
RNAME you require your JMS applications to use.

Universal Messaging Provider for JMS - Application Server Integration (Jboss)
JMS provides extensions that allows JMS providers to be integrated into Application
Servers. This section describes the steps involved in integrating Universal Messaging
Provider for JMS with jboss. All references to jboss assume jboss version 3.2.x or 4.0.x are
being used.

This guide will provide the following information:

"Message Queue Configuration" on page 61

"Server Session Pool Configuration" on page 61

"Jboss Configuration & Service Deployment" on page 61

"Universal Messaging Server Configuration" on page 62

"Running Message Driven Beans" on page 62

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 61

Configuration Terms

Firstly, for the following sections, we will be referencing certain directories for the
install. These are described below:

<jboss_home> - the jboss installation directory

<jboss_bin> - the jboss bin directory located under <jboss_home>/bin

<jboss_default> - default server, under <jboss_home>/server/default

<jboss_default_lib> - default server lib directory, under <jboss_default>/lib

<jboss_default_deploy> - default server deploy directory, under <jboss_default>/deploy

<jboss_default_conf> - default server configuration directory, usually <jboss_default>/
conf

Message Queue Configuration

Jboss provides its own JMS Message Queue service that we need to replace with
Universal Messaging's own message queue service. This section will describe the steps
needed to integrate Universal Messaging's Message service into Jboss.

To do this we need to change the references in the jboss xml configuration files so that
the Universal Messaging Message Queue service is used:

In the <jboss_default_conf>/standardjboss.xml file and replace the tags that say
DefaultJMSProvider with Universal MessagingJMSProvider.

Server Session Pool Configuration

Jboss provides its own server session pool objects that allow multiple JMS sessions to be
pooled within the Message Queue Service. Universal Messaging also provides its own
session pool objects. This section describes the steps necessary to integrate Universal
Messaging's Server Session Pool into jboss.

To do this we need to change the references in the jboss xml configuration files so that
Universal Messaging's Server Session Pools are used by the Message Queue Service:

In the <jboss_default_conf>/standardjboss.xml file and replace the tags that say
StdJMSPool with Universal MessagingJMSPool.

Jboss Configuration

This section describes the steps necessary to ensure the jboss server is ready to begin
using Universal Messaging as the Message Queue Service provider. Please complete the
following steps:

1. Remove the <jboss_default_deploy>/JMS directory completely

2. Put the Universal Messaging-service.xml file into the <jboss_default_deploy>
directory (found in the src/xml/jboss directory of your install)

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 62

3. Put the Universal Messaging nJMS.jar, nClient.jar and nJ2EE.jar files into the
<jboss_default_lib> directory from your /lib directory of the install

4. Modify the run script for jboss to include the following -D parameter when the jboss
server is started:

-Dnirvana.provider.url=<your.Universal Messaging.rname (e.g.) nsp://
localhost:9000 which is the default RNAME

Universal Messaging Realm Server Configuration

In order to configure the Universal Messaging Realm Server, please ensure you have
either read the Universal Messaging Enterprise Manager JNDI integration section or
are familiar with the jmsadmin sample programs. These tools enable you to create the
Universal Messaging JNDI objects necessary for the jboss server to successfully use
Universal Messaging as the JMS message queue provider. In this example, we will use
the jmsadmin example program, however should you choose to, you can also use the
Universal Messaging Enterprise Manager by following the steps found in the guide.

Please follow the steps below:

1. Start the Universal Messaging 3.0 server

2. Open a Universal Messaging Client environment prompt

3. Type : jmsadmin bind topicFactory TopicConnectionFactory (followed by return)

4. Type : jmsadmin bind queueFactory QueueConnectionFactory (followed by return)

5. Type : jmsadmin bind queue queue/DLQ (followed by return)

This will set up the queue and topic factories used by the Universal Messaging Provider
for JMS message service, as well as seing up the jboss DLQ used for internal message
processing.

Once these steps have been completed, you can then start the jboss server which will
now be using Universal Messaging Provider for JMS as the message queue provider

Running Message Driven Beans

Message driven beans can be deployed within application servers to provide a run-
frame for JMS services. Once you have created your message driven beans and they are
deployed into the jboss server, you must ensure that all topics and queues used by the
MDBs have been created using the jmsadmin tool, so that they can be referenced within
the Universal Messaging JNDI context used by the Universal Messaging messaging
service.

Universal Messaging Provider for JMS - JMS Message / Universal Messaging
Event Mapping
Universal Messaging provides interoperability between JMS and Non-JMS client APIs.
The API for the Universal Messaging Provider for JMS shares the same event structures
sent over the wire as other Universal Messaging Client APIs. The nConsumeEvent in

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 63

the Universal Messaging client APIs is the basic structure of all events published and
subscribed whether JMS or Non-JMS, Java or C#.

The JMS Message has a distinct structure: the header, the message properties and the
body. In the Universal Messaging client API, the nConsumeEvent is the container for
the JMS message structure. Any JMS message consumer on a topic or queue expects
the nConsumeEvent to be in a predefined format with specific JMS header values,
message properties and a message body. The JMS Header values are stored in the
nEventAributes of the nConsumeEvent and any message properties are stored in the
nEventProperties objects for the same event. The message body is different for each of
the JMS message types (bytes, map, stream, object, text) but it is always stored in the
byte[] payload of the nConsumeEvent.

Usability

Publishing a JMS Message using the API for the Universal Messaging Provider for
JMS sends an nConsumeEvent to the server with the message body stored in the event
payload, i.e. the event byte[]. Each JMS Header exists in the nEventAributes, and any
JMS message properties are stored in the nEventProperties. The Java, C++ and C# Client
APIs use the same structure for nConsumeEvent and can therefore all consume JMS
Message objects. As there is no equivalent JMS C# or C++ specification, these APIs will
treat these messages as normal nConsumeEvent objects.

JMS provides a Map Message type, within Universal Messaging the map object
is represented by an nEventProperties. When the message is published this map
is serialised and stored in the event payload. In order to consume this message
from C# you can convert the payload back to an nEventProperties using the
getPayloadAsDictionary() method.

Publishing a non-JMS Message for consumption by JMS-based API clients also provides
a level of interoperability. The API for JMS will interpret any nConsumeEvent objects
published by any other non-JMS client API (Java, C#, Javascript, Mobile etc.) as
BytesMessage objects and deliver them to the JMS consumers as such.

Universal Messaging Provider for JMS - Fanout Engine
The Universal Messaging Queue and Channel Fanout Engines are used to store and
forward events based on the channel type. JMS uses topics and messages which
are equivalent to Universal Messaging channels and events respectively. Universal
Messaging has five different channel types each of which have different requirements
when storing data:

The Persistent channel always writes data to disk regardless of the number of
subscribers.

The Simple and Reliable channels both store all events in memory. The difference
being that Reliable channels increment and store the Event ID on disk rather than in
memory so that in the event of failure, event IDs are not reset to 0.

The Mixed channel stores the Event ID in the same way as the Reliable channel but
the storage of events is specified in the nConsumeEvent by calling setPersistent(). (in
JMS the persistence is set by the DeliveryMode).

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 64

With a Transient channel all events are fanned out to subscribers and then dropped
so no events are stored in memory or on disk.

The Fanout Engine for Universal Messaging Provider for JMS uses different criteria to
determine storage of events. No replay of messages means that it is not necessary to store
events if there is no interest on the channel or once they have been consumed regardless
of the channel type. Durable Subscribers require the engine to store the events until the
subscriber becomes active and consumes the events. For more information, see "Engine
Differences" on page 64.

Interest

The Fanout Engine for Universal Messaging Provider for JMS deals with events
published to channels based on 'interest'. If there is no interest present on the channel
then any events published can be immediately discarded due to no replay of messages. The
channel is said to have no interest if there are no durable or active subscribers.

Durable Subscribers

It is often the case that a subscriber needs to receive all events published to a channel
including the events published when the subscriber is inactive. With a durable
subscriber, any events published while the subscriber is inactive are stored until the
subscriber reconnects and consumes the events missed.

No replay of messages

When a JMS subscription is made to a channel, the subscription always begins from the
last issued event ID. As no events can be consumed more than once, there is no need to
store events once they are consumed. This improves the efficiency of the system because
all events can be fanned out to subscribers and then dropped straight away (as long as
there are no synchronous consumers or inactive durable subscriptions). This greatly
reduces the overhead caused by I/O.

Only in the case of inactive durable subscribers or synchronous consumers are events
stored. Once all durable subscribers or synchronous consumers have consumed an
event, it is removed from storage as there is no need for it to be kept. Synchronous
consumers require the events to be stored because they do not receive events fanned out
to all consumers, instead they iterate through the events requesting each event in turn.

Recovery

In the case that a subscriber loses connection to the server, the JMS engine will register
a need to temporarilly store events for a configurable period of time or until the client
reconnects. The time period is defined by the TTL value of the event (if this is non zero)
or the EventTimeout value stored in the realm configuration/ClientTimeoutValues under
the config tab in the Enterprise Manager which is 60 seconds by default.

Engine Differences

The table below shows the storage differences between the JMS Engine and the
Universal Messaging Queue and Channel Engines. The Universal Messaging engines

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 65

store events based on the channel type whereas the JMS Engine only stores events when
there are synchronous consumers or inactive durable subscribers. The channel type does
however determine where the data is stored.

 - Events to be stored on disk prior to delivery

 - Events to be stored in memory prior to delivery

 - Events are not stored prior to delivery

On a Mixed channel, persistent storage to disk or to memory can be individually set
on a per-event basis. When appropriate, events on Persistent channels will be stored to
disk, and events on Reliable and Simple channels will be stored in memory. Transient
channels do not store events prior to delivery.

JMS Engine

Channel
Type

Mixed Persistent Reliable Simple Transient

Active
Durable
Subscribers

One or
more
Synchronous
Consumers
or Inactive
Durable
Subscribers

No Durable
Subscribers

No
Subscribers

Universal Messaging Channel Engine

Channel
Type

Mixed Persistent Reliable Simple Transient

Active
Durable
Subscribers

One or
more
Synchronous
Consumers

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 66

Universal Messaging Channel Engine

Channel
Type

Mixed Persistent Reliable Simple Transient

or Inactive
Durable
Subscribers

No Durable
Subscribers

No
Subscribers

Universal Messaging Queue Engine

Channel
Type

Mixed Persistent Reliable Simple Transient

Active
Consumers

No
Subscribers

Universal Messaging Java Client: Code for Sample Applications
Pub / Sub - Channels

The following are self-contained pub / sub examples which include full application
source code:

"Universal Messaging Java Client: Channel Publisher" on page 69

"Universal Messaging Java Client: Transactional Channel Publisher" on page 70

"Universal Messaging Java Client: Asynchronous Channel Consumer" on page
70

"Universal Messaging Java Client: Synchronous Channel Consumer" on page 70

"Universal Messaging Java Client: Asynchronous Named Channel Consumer" on
page 71

"Universal Messaging Java Client: Synchronous Named Channel Consumer" on page
71

"Universal Messaging Java Client: XML Channel Publisher" on page 72

"Universal Messaging Java Client: Asynchronous XML Channel Consumer" on page
72

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 67

"Universal Messaging Java Client: Event Delta Delivery" on page 72

"Universal Messaging Java Client: Batching Server Calls" on page 73

"Universal Messaging Java Client: Batching Subscribe Calls" on page 73

Pub / Sub - DataGroups

The following are self-contained nirvana DataGroup examples which include full
application source code:

"Universal Messaging Java Client: DataStream Listener" on page 73

"Universal Messaging Java Client: DataGroup Publishing with Conflation" on page
74

"Universal Messaging Java Client: DataGroup Manager" on page 74

"Universal Messaging Java Client: Delete DataGroup" on page 74

"Universal Messaging Java Client: DataGroup Delta Delivery" on page 75

Message Queues

The following are self-contained message queue examples which include full application
source code:

"Universal Messaging Java Client: Queue Publisher" on page 75

"Universal Messaging Java Client: Transactional Queue Publisher" on page 75

"Universal Messaging Java Client: Asynchronous Queue Consumer" on page 76

"Universal Messaging Java Client: Asynchronous Transactional Queue Consumer"
on page 76

"Universal Messaging Java Client: Synchronous Queue Consumer" on page 76

"Universal Messaging Java Client: Synchronous Transactional Queue Consumer" on
page 77

"Universal Messaging Java Client: Peek events on a Queue" on page 77

"Universal Messaging Java Client: Requester - Request/Response" on page 77

"Universal Messaging Java Client: Responder - Request/Response" on page 78

Peer to Peer (P2P)

The following are self-contained P2P examples which include full application source
code:

"Universal Messaging Java Client: An Event-based Peer to Peer Client" on page
78

"Universal Messaging Java Client: An Event-based Peer to Peer Server Service" on
page 78

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 68

"Universal Messaging Java Client: A Stream-based Peer to Peer Client" on page
79

"Universal Messaging Java Client: A Stream-based Peer to Peer Service" on page
79

Universal Messaging Administration API

The following are self-contained examples of Universal Messaging's Administration API
which include full application source code:

"Universal Messaging Java Client: Add a Queue ACL Entry" on page 79

"Universal Messaging Java Client: Modify a Channel ACL Entry" on page 80

"Universal Messaging Java Client: Delete a Realm ACL Entry" on page 80

"Universal Messaging Java Client: Add a Schedule to a Universal Messaging Realm"
on page 81

"Universal Messaging Java Client: Simple authentication server" on page 81

"Universal Messaging Java Client: Monitor realms for cluster creation, and cluster
events" on page 81

"Universal Messaging Java Client: Monitor realms for client connections coming and
going" on page 81

"Universal Messaging Java Client: Copy a channel and its events" on page 81

"Universal Messaging Java Client: Monitor the remote realm log and audit file" on
page 82

"Universal Messaging Java Client: Export a realm to XML" on page 82

"Universal Messaging Java Client: Import a realm's configuration information" on
page 82

"Universal Messaging Java Client: Console-based Realm Monitor" on page 83

"Universal Messaging Java Client: Delete Service ACL" on page 83

"Universal Messaging Java Client: Realm Monitor" on page 83

Universal Messaging Provider for JMS

The following are self-contained JMS examples which include full application source
code:

"Universal Messaging Java Client: JMS BytesMessage Publisher" on page 84

"Universal Messaging Java Client: JMS BytesMessage Subscriber" on page 84

"Universal Messaging Java Client: JMS MapMessage Publisher" on page 84

"Universal Messaging Java Client: JMS MapMessage Subscriber" on page 85

"Universal Messaging Java Client: JMS ObjectMessage Publisher" on page 85

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 69

"Universal Messaging Client for Java: JMS ObjectMessage Subscriber" on page 85

"Universal Messaging Java Client: JMS StreamMessage Publisher" on page 86

"Universal Messaging Java Client: JMS StreamMessage Subscriber" on page 86

"Universal Messaging Java Client: JMS BytesMessage Queue Publisher" on page
86

"Universal Messaging Java Client: JMS BytesMessage Queue Subscriber" on page
87

"Universal Messaging Java Client: JMS Queue Browser" on page 87

Universal Messaging Channel / Queue / Realm Management

The following are self-contained nirvana client examples which include full application
source code:

"Universal Messaging Java Client: Creating a Channel" on page 87

"Universal Messaging Java Client: Deleting a Channel" on page 88

"Universal Messaging Java Client: Creating a Queue" on page 88

"Universal Messaging Java Client: Deleting a Queue" on page 89

"Universal Messaging Java Client: Create a Channel Join" on page 89

"Universal Messaging Java Client: Delete a Channel Join" on page 89

"Universal Messaging Java Client: Purge events from a channel" on page 89

"Universal Messaging Java Client: Find the event id of the last event" on page 90

"Universal Messaging Java Client: Add a realm to another realm" on page 90

"Universal Messaging Java Client: Multiplex a Session" on page 90

Pub/Sub Channels

Universal Messaging Java Client: Channel Publisher

This example publishes events onto a Universal Messaging Channel.

Usage
npubchan <channel name> [count] [size]
<Required Arguments>
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 70

Universal Messaging Java Client: Transactional Channel Publisher

This example publishes events transactionally to a Universal Messaging Channel. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commied successfully.

Usage
npubtxchan <channel name> [count] [size] [tx size]
<Required Arguments>
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[tx size] - The number of events per transaction (default: 1)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Asynchronous Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel. See also: " Synchronous Subscription" on page 70

Usage
nsubchan <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Synchronous Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel. See also: " Asynchronous Subscription" on page 70.

Usage
channeliterator <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 71

[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Asynchronous Named Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel using a named object.

Usage
nnamedsubchan <channel name> [name] [start eid] [debug] [count] [auto ack] [cluster wide] [persistent] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[name] - Specifies the unique name to be used for a named subscription (default: OS username)
[start eid] - The Event ID to start subscribing from if the named subscriber needs to be created (doesn't exist)
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information (default: 1000)
[auto ack] - Specifies whether each event will be automatically acknowledged by the api (default: true)
[cluster wide] - Specifies whether the named object is to be used across a cluster (default: false)
[persistent] - Specifies whether the named object state is to be stored to disk or held in server memory (default: false)
[priority] - The priority of the subscriber.
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Synchronous Named Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel using a named object and a channel iterator.

Usage
nnamediterator <channel name> [name] [start eid] [debug] [count] [cluster wide] [persistent] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[name] - Specifies the unique name to be used for a named subscription (default: OS username)
[start eid] - The Event ID to start subscribing from if name subscriber is to be created (doesn't already exist)
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait for before printing out summary information (default: 1000)
[cluster wide] - Specifies whether the named object is to be used across a cluster (default: false)
[persistent] - Specifies whether the named object state is to be stored to disk or held in server memory (default: false)
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 72

Universal Messaging Java Client: XML Channel Publisher

This example publishes XML events onto a Universal Messaging Channel

Usage
nxmlpub <channel name> <xml file> [count] [size]
<Required Arguments>
<channel name> - Channel name parameter for the channel to publish to
<xml file> - The full path of the xml file to publish
[Optional Arguments]
[count] -The number of events to publish (default: 10)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Asynchronous XML Channel Consumer

This example shows how to asynchronously subscribe to XML events on a Universal
Messaging Channel.

Usage
nxmlsub <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Event Delta Delivery

This example shows how to publish and receive registered events.

Usage
RegisteredEvent <rname> <channel name> [count] [size]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)

Application Source Code

See the online documentation for a code example.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 73

Universal Messaging Java Client: Batching Server Calls

This example shows how to find multiple channels and queues in one call to the server.

Usage
findChannelsAndQueues <name> <name> <name>.....
<Arguments>
<name> - The name(s) of the channels to find
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Batching Subscribe Calls

This example of batching shows how to subscribe to multiple Universal Messaging
Channels in one server call.

Usage
sessionsubscriber <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<channel names> - Comma separated list of channels to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Pub/Sub Datagroups

Universal Messaging Java Client: DataStream Listener

This example shows how to initialise a session with a DataStream listener and start
receiving data.

Usage
DataStreamListener [debug] [count]
<Required Arguments>
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 74

Universal Messaging Java Client: DataGroup Publishing with Conflation

This example shows how to publish to DataGroups, with optional conflation.

Usage
DataGroupPublish <group name> [count] [size] [enable multicast] [conflate] [conflation merge or drop] [conflation interval
<Required Arguments>
<group name> - Data group name parameter to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[enable multicast] - enable the data group for multicast delivery
[conflate] - enable conflation true or false
[conflation merge or drop] - merge to enable merge or drop to enable drop (default: merge)
[conflation interval] - the interval for conflation to publish(default: 500

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: DataGroup Manager

This is an example of how to run a DataGroup manager application

Usage
dataGroupsManager <Properties File Location>
<Required Arguments>
<Properties File Location Data Groups> - The location of the property file to use for mapping data groups to data groups
<Properties File Location Data Streams> - The location of the property file to use for mapping data streams to data groups
<Auto Recreate Data Groups> - True or False to auto recreate data groups takes the data group property file and creates channels
 a group for every name mentioned on the left of equals sign
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Delete DataGroup

This is a simple example of how to delete a DataGroup

Usage
deleteDataGroups <data group name> <delete type>
<Required Arguments>
<data group name> - Data group name parameter to delete
<Delete Type> - Data group delete by string(1) or object(2)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 75

Universal Messaging Java Client: DataGroup Delta Delivery

This example shows how to use delta delivery with DataGroups.

Usage
DataGroupDeltaDelivery [count]
[Optional Arguments]
[count] - the number of times to commit the registered events

Application Source Code

See the online documentation for a code example.

Message Queues

Universal Messaging Java Client: Queue Publisher

This example publishes events onto a Universal Messaging Queue.

Usage
npushq <queue name> [count] [size]
<Required Arguments>
<queue name> - Queue name parameter for the queue to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Transactional Queue Publisher

This example publishes events transactionally to a Universal Messaging Queue. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commied successfully.

Usage
npushtxq <queue name> [count] [size] [txsize]
<Required Arguments>
<queue name> - Queue name parameter for the queue to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[txsize] - The number of events to publish per transaction (default: 1)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 76

Universal Messaging Java Client: Asynchronous Queue Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Queue. See also: " Synchronous Queue Subscription" on page 76.

Usage
npopqasync <queue name> [debug] [count] [selector]
<Required Arguments>
<queue name> - Queue name parameter for the queue to pop from
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Asynchronous Transactional Queue Consumer

This example shows how to transactionally asynchronously subscribe to events on a
Universal Messaging Queue. See also: " Synchronous Queue Subscription." on page
77

Usage
npoptxqasync <queue name> [debug] [count] [selector]
<Required Arguments>
<queue name> - Queue name parameter for the queue to pop from
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Synchronous Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription" on page 76.

Usage
npopq <queue name> [timeout] [debug] [count] [selector]
<Required Arguments>
<queue name> - Queue name parameter for the queue to pop from
[Optional Arguments]
[timeout] - The timeout for the dequeue operation
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 77

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Synchronous Transactional Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription" on page 76.

Usage
npoptxq <queue name> [timeout] [debug] [count] [selector]
<Required Arguments>
<queue name> - Queue name parameter for the queue to pop from
[Optional Arguments]
[timeout] - The timeout for the dequeue operation
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Peek events on a Queue

This example shows how to peek events on a Universal Messaging Queue. See also: "
Asynchronous Queue Subscription" on page 76.

Usage
npeekq <queue name> [debug] [count] [selector]
<Required Arguments>
<queue name> - Queue name parameter for the queue to peek
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Requester - Request/Response

This example shows how to request a response in a request/response fashion.

Usage
requester <request queue> <request queue>
<Required Arguments>
<request queue> - Queue onto which request are published
<response queue> - Queue onto which responses are published
[Optional Arguments]
[asynchronous] - Whether to use asynchronous producing and consuming - true/false, default false.
[transactional] - Whether to use transactional production and consumption of events - true/false, default false.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 78

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Responder - Request/Response

This example shows how to respond to a request in performed in a request/response
fashion.

Usage
responder <request queue> <response queue>
<Required Arguments>
<request queue> - Queue onto which request are published
<response queue> - Queue onto which responses are published
[Optional Arguments]
[asynchronous] - Whether to use asynchronous producing and consuming - true/false, default false.
[transactional] - Whether to use transactional production and consumption of events - true/false, default false.
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Peer to Peer

Universal Messaging Java Client: An Event-based Peer to Peer Client

This example shows how to build a simple Event-based P2P Client.

The example consists of a server and a client; the server will echo anything typed by the
client.

Usage
np2pecho
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: An Event-based Peer to Peer Server Service

This example shows how to build a simple Event-based P2P Server Service.

The example consists of a server and a client; the server will echo anything typed by the
client.

Usage
np2pechoserver
Note: -? provides help on environment variables

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 79

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: A Stream-based Peer to Peer Client

This example shows how to build a simple Stream-based P2P service.

The example consists of a server and a client; the server essentially exposes a shell to the
client.

Usage
np2pshell
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: A Stream-based Peer to Peer Service

This is a class that implements the Server Service component of the ShellServer example
application.

Usage
np2pshellserver <shell>
<Required Arguments>
<shell> - The type of shell yoou want to offer. For example cmd for win32 or bash for unix
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Administration API

Universal Messaging Java Client: Add a Queue ACL Entry

This example demonstrates how to add an ACL entry to a Universal Messaging Queue.

Usage
naddqueueacl <queue name> <user> <host> [list_acl] [modify_acl] [full] [peek] [push] [purge] [pop]
<Required Arguments>
<queue name> - Queue name parameter for the queue to add the ACL entry to
<user> - User name parameter for the queue to add the ACL entry to
<host> - Host name parameter for the queue to add the ACL entry to
[Optional Arguments]
[list_acl] - Specifies that the list acl permission should be added
[modify_acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added
[peak] - Specifies that the peak permission should be added
[push] - Specifies that the push permission should be added
[purge] - Specifies that the purge permission should be added

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 80

[pop] - Specifies that the pop permission should be added
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Modify a Channel ACL Entry

This example demonstrates how to modify the permissions of an ACL entry on a
Universal Messaging Channel.

Usage
nchangechanacl <channel name> <user> <host> [+/-list_acl] [+/-modify_acl] [+/-full] [+/-last_eid] [+/-read] [+/-write] [+/-purge] [+/-named] [+/-all_perms]
<Required Arguments>
<channel name> - Channel name parameter for the channel to change the ACL entry for
<user> - User name parameter for the channel to change the ACL entry for
<host> - Host name parameter for the channel to change the ACL entry for
[Optional Arguments]
[+/-] - Prepending + or - specifies whether to add or remove a permission
[list_acl] - Specifies that the list acl permission should be added/removed
[modify_acl] - Specifies that the modify acl permission should be added/removed
[full] - Specifies that the full permission should be added/removed
[last_eid] - Specifies that the get last EID permission should be added/removed
[read] - Specifies that the read permission should be added/removed
[write] - Specifies that the write permission should be added/removed
[purge] - Specifies that the purge permission should be added/removed
[named] - Specifies that the used named subscriber permission should be added/removed
[all_perms] - Specifies that all permissions should be added/removed
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Delete a Realm ACL Entry

This example demonstrates how to delete an ACL entry from a realm on a Universal
Messaging Channel.

Usage
ndelrealmacl <user> <host> [-r]
<Required Arguments>
<user> - User name parameter to delete the realm ACL entry from
<host> - Host name parameter to delete the realm ACL entry from
[Optional Arguments]
[-r] - Specifies whether recursive traversal of the namespace should be done
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 81

Universal Messaging Java Client: Add a Schedule to a Universal Messaging Realm

This example demonstrates how to read a schedule from a file and add the schedule to a
realm.

Usage
naddschedule <source> [subject] [clusterwide]
<Required Arguments>
<source> - location of the schedule script file
[Optional Arguments]
[subject] - The subject of the schedule (default : os username)
[clusterwide] - Whether or not the schedule is cluster wide (default : false)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Simple authentication server

This demonstrates how to set security permissions when connection aempts are made
on the realm.

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Monitor realms for cluster creation, and cluster events

This example demonstrates how to monitor a realm or realms for cluster events.

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Monitor realms for client connections coming and going

This example demonstrates how to monitor for connections to the realm and its
channels.

Usage
nconnectionwatch
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Copy a channel and its events

This example demonstrates how to copy a channel and its events from one location to
another.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 82

Usage
nadmincopychan <channel> [-r toRealm] [-n toChannelName] [-a channel ttl] [-c channel capacity] [-t channel type]
<Required Arguments>
<channel> - Channel name parameter for the channel to copy
[Optional Arguments]
<-r toRealm> - The RNAME of a remote realm to copy the channel to
<-n toChannelName> - The name you wish to give the copied channel
<-a channel ttl> - The ttl you wish to give the copied channel
<-c channel capacity> - The capacity you wish to give the copied channel
<-t channel type> - The channel you wish the copied channel to be any of (P | R | M | S | T)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Monitor the remote realm log and audit file

This example demonstrates how to monitor a realm's log and audit files.

Usage
nauditandloglistener <-l logfile> <-a auditfile> <-replay>
[Optional Arguments]
<-l logfile> - A file name to store the log messages to (without this it will go to system.out
<-a auditfile> - A file name to store the audit messages to (without this it will go to system.out
<-replay> - Specifies if the entire audit file will be replayed
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Export a realm to XML

This example demonstrates how to export a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins and configuration information to an XML file so
that it can be imported into any other realm.

Usage
nexportrealmxml [export_file_location]
<Optional Arguments> -all -realms -cluster -realmacl -realmcfg -channels -channeacls -joins -queues -queueacls -interfaces -plugins -via
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Import a realm's configuration information

This example demonstrates how to import a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins and configuration information from an XML file.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 83

Usage
nimportrealmxml file_name
<Optional Arguments> -all -realmacl -realmcfg -channels -channeacls -queues -queueacls -interfaces
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Console-based Realm Monitor

This example demonstrates how to import a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins and configuration information from an XML file.

Usage
nTop [refreshRate]
[Optional Arguments]
[refreshRate] - the rate at which the information is reloaded on screen (milliseconds)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Delete Service ACL

This shows how the ACL for a P2P service can be removed.

Usage
ndelp2pacl <service name> <user> <host> [-r]
<Required Arguments>
<service name> - Service name parameter to delete the service ACL entry from
<user> - User name parameter to delete the service ACL entry from
<host> - Host name parameter to delete the service ACL entry from
[Optional Arguments]
[-r] - Specifies whether recursive traversal of the namespace should be done
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Realm Monitor

Monitors a Universal Messaging Realm and output results to CSV files

Usage
java RealmMonitor <rnames> [config file]
<Required Parameters>
<rname> : comma separated list of rnames to monitor.
[Optional Parameters]
[config file] : configuration file location e.g. c:\\config.txt
All other parameters can be specified in the config file.
If realm is clustered then other realms in cluster will

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 84

be found automatically.

Application Source Code

See the online documentation for a code example.

Provider for JMS

Universal Messaging Java Client: JMS BytesMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Bytes Messages to a
JMS Topic.

Usage
jmsbytespub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<topicName> - JMS Topic to publish on
<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS BytesMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Bytes Messages
from a JMS Topic.

Usage
jmsbytessub <factoryname> <destinationName> <transacted> <durablename> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<destinationName> - JMS Destination to subscribe to
<transacted> - Whether the session is transacted
<durablename> - The name of a durable subscriber
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS MapMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Map Messages to a
JMS Topic.

Usage
jmsmappub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 85

<topicName> - JMS Topic to publish on
<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS MapMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Map Messages
from a JMS Topic.

Usage
jmsmapsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<destinationName> - JMS Destination to subscribe to
<transacted> - Whether the session is transacted
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS ObjectMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Object Messages to
a JMS Topic.

Usage
jmsobjectpub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<topicName> - JMS Topic to publish on
<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Client for Java: JMS ObjectMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Object Messages
from a JMS Topic.

Usage
jmsobjectsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<destinationName> - JMS Destination to subscribe to

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 86

<transacted> - Whether the session is transacted
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS StreamMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Stream Messages to
a JMS Topic.

Usage
jmsstreampub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<topicName> - JMS Topic to publish on
<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS StreamMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Stream Messages
from a JMS Topic.

Usage
jmsstreamsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<destinationName> - JMS Destination to subscribe to
<transacted> - Whether the session is transacted
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS BytesMessage Queue Publisher

This example uses Universal Messaging Provider for JMS to publish Bytes Messages to a
JMS Queue.

Usage
jmsbytesqpub <factoryname> <queueName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<queueName> - JMS Queue to publish on
<count> - Number of events to publish

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 87

<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS BytesMessage Queue Subscriber

This example uses Universal Messaging Provider for JMS to consume Bytes Messages
from a JMS Queue.

Usage
jmsbytesqsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<destinationName> - JMS Destination to subscribe to
<transacted> - Whether the session is transacted
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: JMS Queue Browser

This example shows how to browse a Universal Messaging Provider for JMS Queue in
JMS.

Usage
jmsqbrowse <factoryname> <destinationName> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
<destinationName> - JMS Destination to subscribe to
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Channel / Queue / Realm Management

Universal Messaging Java Client: Creating a Channel

This example demonstrates how to create a Universal Messaging channel
programmatically.

Usage
nmakechan <channel name> [time to live] [capacity] [type] [cluster wide] [start eid]
<Required Arguments>
<channel name> - Channel name parameter for the channel to be created
[Optional Arguments]

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 88

[time to live] - The Time To Live parameter for the new channel (default: 0)
[capacity] - The Capacity parameter for the new channel (default: 0)
[type] - The type parameter for the new channel (default: S)
R - For a reliable (stored in memory) channel with persistent eids
P - For a persistent (stored on disk) channel
S - For a simple (stored in memory) channel with non-persistent eids
T - For a transient (no server based storage)
M - For a Mixed (allows both memory and persistent events) channel
[cluster wide] - Whether the channel is cluster wide. Will only work if the realm is part of a cluster
[start eid] - The initial start event id for the new channel (default: 0)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Deleting a Channel

This example demonstrates how to delete a Universal Messaging channel
programmatically.

Usage
ndelchan <channel name>
<Required Arguments>
<channel name> - Channel name parameter for the channel to delete
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Creating a Queue

This example demonstrates how to create a Universal Messaging queue
programmatically.

Usage
nmakeq <queue name> [time to live] [capacity] [type] [cluster wide]
<Required Arguments>
<queue name> - Queue name parameter for the queue to be created
[Optional Arguments]
[time to live] - The Time To Live parameter for the new queue (default: 0)
[capacity] - The Capacity parameter for the new queue (default: 0)
[type] - The type parameter for the new queue (default: S)
R - For a reliable (stored in memory) queue with persistent eids
P - For a persistent (stored on disk) queue
S - For a simple (stored in memory) queue with non-persistent eids
T - For a transient (no server based storage)
M - For a Mixed (allows both memory and persistent events) queue
[cluster wide] - Whether the queue is cluster wide. Will only work if the realm is part of a cluster
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 89

Universal Messaging Java Client: Deleting a Queue

This example demonstrates how to delete a Universal Messaging queue
programmatically.

Usage
ndelq <queue name>
<Required Arguments>
<queue name> - Queue name parameter for the channel to delete
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Create a Channel Join

This is a class that demonstrates how to create a channel join.

Usage
nmakechanjoin <source channel name> <destination channel name> [max hops] [selector]
<Required Arguments>
<source channel name> - Channel name parameter of the local channel name to join
<destination channel name> - Channel name parameter of the remote channel name to join
[Optional Arguments]
[max hops] - The maximum number of join hops a message can travel through
[selector] - The event filter string to use on messages travelling through this join
[Allow Purge] - If allow purge is true then when the source channel is purged events will also be purged
[archive] - true/false, defaults to false, set if you wish to perform an archive join to a queue
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Delete a Channel Join

This is a class that demonstrates how to delete a channel join.

Usage
ndelchanjoin <source channel name> <destination channel name>
<Required Arguments>
<source channel name> - Source Channel name parameter of the join to be deleted
<destination channel name> - Destination Channel name parameter of the join to be deleted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Purge events from a channel

This class demonstrates how to purge events from a channel.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 90

Usage
npurgechan <channel name> <start eid> <end eid> <filter>
<Required Arguments>
<channel name> - Channel name parameter for the channel to be purged
<start eid> - The start eid of the range of events to be purged
<end eid> - The end eid of the range of events to be purged
<filter> - An optional filter string for events to be purged
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Find the event id of the last event

This class demonstrates how to find the last event id published on a specific channel.

Usage
ngetlasteid <channel name>
<Required Arguments>
<channel name> - Channel name parameter to get the last EID for
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Add a realm to another realm

This is a class that demonstrates how to add a realm to another realm, either mounted
into the namespace or not.

Usage
naddrealm <realm name> <realm details> [mount point]
<Required Arguments>
<realm name> - Realm name parameter for the realm to add
<realm details> - Realm details parameter for the realm to add. Same form as RNAME
[Optional Arguments]
[mount point] - Where you would like to mount the realm within the namespace, for example /eur/uk
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Java Client: Multiplex a Session

Multiplex two Universal Messaging sessions over one channel.

Usage
nsubchan <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 91

[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

The Enterprise Developer Guide for C++
This guide describes how to develop and deploy C++ applications using Universal
Messaging, and assumes you already have Universal Messaging installed.

Universal Messaging Enterprise Client Development in C++

"Universal Messaging Publish / Subscribe using Channels/Topics" on page 94

"Universal Messaging Publish / Subscribe using DataStreams and DataGroups" on
page 104

"Universal Messaging Message Queues" on page 111

"Universal Messaging Peer To Peer" on page 119

"Sample Applications" on page 127

General Features

Universal Messaging C++ : Creating a Session
To interact with a Universal Messaging Server, the first thing to do is create a Universal
Messaging Session (nSession) object, which is effectively your logical and physical
connection to a Universal Messaging Realm.

Creating a Universal Messaging Session Object

1. Create a nSessionAributes object with the RNAME value of your choice
std::string[] RNAME=({"nsp://127.0.0.1:9000"});
int length = 1;
nSessionAttributes *nsa=new nSessionAttributes(RNAME,length)

2. Call the create method on nSessionFactory to create your session
Session *mySession = nSessionFactory::create(nsa);

Alternatively, if you require the use of a session reconnect handler to intercept the
automatic reconnection aempts, pass an instance of that class too in the create
method:

class myReconnectHandler :

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 92

 public nReconnectHandler
 {
 //implement tasks associated with reconnection
 }
 myReconnectHandler rhandler=new myReconnectHandler();
 nSession *mySession=nSessionFactory::create(nsa, rhandler);

Initializing a Universal Messaging Session

1. Initialise the session object to open the connection to the Universal Messaging Realm
mySession->init();

Universal Messaging C++ - Universal Messaging Events
Each nConsumeEvent object has an nEventAtrributes object associated with it which
contains all available meta data associated with the event.

Constructing an Event

In this C++ code snippet, we construct our Universal Messaging Event object
(nConsumeEvent), and, in this example, pass a byte array data into the constructor:
std::string strLine = "Hello World";
int length = 0;
unsigned char *pLine = nConstants::encode(strLine, length);
nEventProperties *pProps = new nEventProperties();
nConsumeEvent *evt = new nConsumeEvent(pProps, pLine, length);

Universal Messaging C++ - Channel Joins
Joining a channel to another channel or queue allows you to set up content routing such
that events published to the source channel will be passed on to the destination channel/
queue automatically. Joins also support the use of filters thus enabling dynamic content
routing.

Please note that while channels can be joined to both resources, queues cannot be used
as the source of a join.

Channels can be joined using the Universal Messaging Enterprise Manager GUI or
programmatically.

In joining two Universal Messaging channels there is one compulsory option and
two optional ones. The compulsory option is the destination channel. The optional
parameters are the maximum join hops and a message selector to be applied to the join.

Multiple Path Delivery

Universal Messaging users can define multiple paths over different network protocols
between the same places in Universal Messaging. Universal Messaging guarantees that
the data always gets delivered once and once only.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 93

Channel joins can be created using the Make Channel Join sample application which
is provided in the bin directory of the Universal Messaging installation. For further
information on using this example please see the make channel join example page.

Universal Messaging joins are created as follows:
//Obtain a reference to the source channel
nChannel *mySrcChannel = mySession->findChannel(nca);
//Obtain a reference to the destination channel
nChannel *myDstChannel = mySession->findChannel(dest);
//Obtain a reference to the destination channel's realm
nRealm *realm = myDstChannel->getChannelAttributes()->getRealm();
//create the join
mySrcChannel->joinChannel(myDstChannel, true, jhc, SELECTOR);

Channel joins can also be deleted. Please see the delete channel join example for more
information.

Universal Messaging C++ - Universal Messaging Event Dictionaries

Constructing an Event

In this code snippet, we assume we want to publish an event containing the definition of
a bond, say, with a name of "bond1":
nEventProperties *props = new nEventProperties();
props->put("bondname", "bond1");
props->put("price", 100.00);
nConsumeEvent *evt = new nConsumeEvent(props, "atag");
channel->publish(evt);

Note that in this example code, we also create a new "Universal Messaging Event"
on page 92 object (nConsumeEvent) to make use of our Event Dictionary
(nEventProperties).

Google Protocol Buffers

Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and
this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 94

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffer in Java, C++ and Python, and third party
libraries provide support for many other languages including Flex, .NET, Perl, PHP
etc. Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer event through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in nirvana, allowing for server-side
filtering of Google Protocol Buffer events, which can be sent on resources just like a
normal nirvana Events. The server side filtering of messages is achieved by providing
the server with a description of the data structures(constructed at the .proto compile
time, using the standard protobuf compiler and the --descriptor_set_out option). The
default location the sever looks in for descriptor files is /plugins/ProtobufDescriptors
and this can be configured through the enterprise manager. The server will monitor
this folder for changes, and the frequency of these updates can be configured through
the enterprise manager. The server can then use to extract the key value pairs from the
binary Protobuf message and filter message delivery based on user requirements.

To create a nProtobuf event, simply build your protocol buffer as normal and pass it into
the nProtobuf constructor along with the message type used.

nProtobuf events are received by subscribers in the normal way.

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the EM is no running on the same machine as the server. To enable this, the
server outputs a descriptor set to a configurable directory (by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Publish/Subscribe using Channels/Topics

Universal Messaging C++ : Publish / Subscribe Using Channels/Topics
The Universal Messaging C++ API provides publish subscribe functionality through
the use of channel objects. Channels are the logical rendezvous point for publishers
(producers) and subscribers (consumers) of data (events).

Universal Messaging DataStreams and DataGroups provide an alternative style of
Publish/Subscribe where user subscriptions can be managed remotely on behalf of
clients.

Under the publish / subscribe paradigm, each event is delivered to each subscriber
once and only once per subscription, and is not removed from the channel after being
consumed.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 95

This section demonstrates how Universal Messaging pub / sub works, and provides
example code snippets for all relevant concepts.

"Universal Messaging C++ - Creating a Universal Messaging Channel" on page
95

"Universal Messaging C++ : Finding a Channel" on page 96

"Universal Messaging C++ - How to publish events to a Universal Messaging
Channel" on page 96

"Universal Messaging C++ - Asynchronous Subscriber" on page 97

"Universal Messaging C++ - Channel Iterator" on page 98

"Universal Messaging C++ - Batched Subscribe" on page 99

"Universal Messaging C++ - Batched Find" on page 100

"Universal Messaging C++ - Durable channel consumers and named objects" on page
101

"Universal Messaging C++: The Merge Engine and Event Deltas" on page 102

"Universal Messaging C++: Priority Messaging" on page 103

Universal Messaging C++ - Creating a Universal Messaging Channel
Channels can be created programmatically as detailed below, or they can be created
using the Universal Messaging Enterprise Manager.

In order to create a channel, first of all you must create an nSession object, which is your
effectively the logical and physical connection to a Universal Messaging Realm. This is
achieved by using an RNAME for your Universal Messaging Realm when constructing
the nSessionAributes object, as shown below:
std::string[] RNAME=({“nsp://127.0.0.1:9000”});
nSessionAttributes *nsa = new nSessionAttributes(RNAME);
nSession *mySession = nSessionFactory::create(nsa);
mySession->init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then begin creating the channel
object. Channels have an associated set of aributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the channel, the aributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To create a channel, we do the following:
nChannelAttributes *cattrib = new nChannelAttributes();
cattrib->setMaxEvents(0);
cattrib->setTTL(0);
cattrib->setType(nChannelAttributes::PERSISTENT_TYPE);
cattrib->setName(“mychannel”);
nChannel *myChannel = mySession->createChannel(cattrib);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 96

Now we have a reference to a Universal Messaging channel within the realm.

Universal Messaging C++ : Finding a Channel
In order to find a channel programmatically you must create your nSession object, which
is effectively your logical and physical connection to a Universal Messaging Realm. This
is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAributes object, as shown below:
std::string* RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes *nsa = new nSessionAttributes(RNAME);
nSession *mySession = nSessionFactory::create(nsa);
mySession->init();

Once the nSession->init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then try to find the channel object.
Channels have an associated set of aributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the channel, the aributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To find a channel previously created, we do the following:
nChannelAttributes *cattrib = new nChannelAttributes();
cattrib->setName("mychannel");
nChannel *myChannel = mySession->findChannel(cattrib);

This returns a reference to a Universal Messaging channel within the realm.

Universal Messaging C++ - How to publish events to a Universal Messaging
Channel
There are 2 types of publish available in Universal Messaging for channels:

"Reliable Publish" on page 97

"Transactional Publish" on page 97

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then commiing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 97

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the channel has been located, an event must be constructed prior to a publish call being
made to the channel.

For reliable publish, there are a number of method prototypes on a channel that allow us
to publish different types of events onto a channel. Here are examples of some of them.
Further examples can be found in the API documentation.
// Publishing a simple byte array message
myChannel->publish(new nConsumeEvent("TAG", message->getBytes()));

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the channel located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been commied will the events become available to subscribers on the
channel.

Below is a code snippet for transactional publishing:
std::list<nConsumeEvent*> messages;
messages->push_back(message1);
nTransactionAttributes *tattrib=new nTransasctionAttributes(myChannel);
nTransaction *myTransaction=nTransactionFactory::create(tattrib);
myTransaction->publish(messages);
myTransaction->commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been commied or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was commied:
bool committed = myTransaction->isCommitted(true);

Universal Messaging C++ - Asynchronous Subscriber
Asynchronous channel subscribers consume events from a callback on an interface that
all asynchronous subscribers must implement. We call this interface an nEventListener.

The listener interface defines one method called 'go' which when called will pass events
to the consumer as they are delivered from the Universal Messaging Realm Server.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 98

An example of such a simple listener is shown below:
class subscriber : public nEventListener{
 public:
 mySubscriber(){
 // construct your session
 // and channel objects here
 // begin consuming events from the channel at event id 0
 // i.e. the beginning of the channel
 myChannel->addSubscriber(this , 0);
 }
 void go(nConsumeEvent *pEvt) {
 printf("Consumed event %d",pEvt->getEventID());
 }
 int main(int argc, char** argv) {
 new mySubscriber();
 return 0;
 }
}

Asynchronous consumers can also be created using a selector, which defines a set of
event properties and their values that a subscriber is interested in. For example if events
are being published with the following event properties:
nEventProperties *props =new nEventProperties();
props->put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
std::string selector = "BONDNAME='bond1'";

And pass this string into the addSubscriber method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Universal Messaging C++ - Channel Iterator
Events can be synchronously consumed from a channel using a channel iterator object.
The iterator will sequentially move through the channel and return events as and when
the iterator getNext() method is called.

If you are using iterators so that you know when all events have been consumed from a
channel please note that this can also be achieved using an asynchronous subscriber by
calling the nConsumeEvents isEndOfChannel() method.

An example of how to use a channel iterator is shown below:
class myIterator {
 private:
 nChannelIterator *iterator = null;
 public:
 myIterator(){

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 99

 // construct your session and channel objects
 // start the iterator at the beginning of the channel (event id 0)
 iterator = myChannel->createIterator(0);
 }
 void start() {
 while (true) {
 nConsumeEvent *event = iterator->getNext();
 go(event);
 }
 }
 void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 }
 int main(int argc, char** argv) {
 myIterator *itr = new myIterator();
 itr->start();
 return 0;
 }
}

Synchronous consumers can also be created using a selector, which defines a set of event
properties and their values that a consumer is interested in. For example if events are
being published with the following event properties:
nEventProperties *props = new nEventProperties();
props->put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
std::string selector = "BONDNAME='bond1'"

And pass this string into the createIterator method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Universal Messaging C++ - Batched Subscribe
If a client application needs to subscribe to multiple channels it is more efficient to batch
these subscriptions into a single server call. This is achieved using the subscribe method
of nSession rather than first finding the nChannel object and then calling the subscribe
method of nChannel.

The following code snippet demonstrates how to subscribe to two Universal Messaging
channels in one server call:
public class myEventListener : public nEventListener {
 public void go(nConsumeEvent* evt) {
 cout<<"Received an event!";
 }
}
public void demo(){
 int numChans = 2;
 nSubscriptionAttributes **arr = new nSubscriptionAttributes*[numChans];
 arr[0] = new nSubscriptionAttributes("myChan1", "", 0, myLis1);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 100

 arr[1] = new nSubscriptionAttributes("myChan2", "", 0, myLis2);
 mySession->subscribe(arr,numChans);
 for (int i = 0; i < arr.length; i++) {
 if (!arr[i]->wasSuccessful()) {
 handleSubscriptionFailure(arr[i]);
 }
 //subscription successful
 }
}
public void handleSubscriptionFailure(nSubscriptionAttributes* subAtts){
 cout<< subAtts.getException().StackTrace;
}

The nSubscriptionAributes class is used to specify which channels to subscribe to.
The second two parameters of the constructor represent the selector to use for the
subscription and the event ID to subscribe from.

It is possible that the subscription may fail; for example, the channel may not exist or
the user may not have the required privileges. In this situation, calling wasSuccessful()
on the nSubscriptionAributes will return false and getException() will return the
exception that was thrown.

If the subscription is successful then the nChannel object can be obtained from the
nSubscriptionAributes as shown in the following code snippet:
 nChannel* chan = subAtts->getChannel();

Universal Messaging C++ - Batched Find
In client applications, it is quite common to have multiple Channels or Queues that one
is trying to find. In these scenarios, the batched find call built into nSession is extremely
useful.

The following code snippet demonstrates how to find 2 Universal Messaging Channels
in one server call:
void demo(){
 int numchans = 2;
 nChannelAttributes** arr = new nChannelAttributes*[numchans];
 nChannel** channels = new nChannels*[numchans];
 arr[0] = new nChannelAttributes("myChan1");
 arr[1] = new nChannelAttributes("myChan2");
 fSortedList<std::string, nFindResult*> *pArr = mySession->find(arr, numchans);
 int i =0;
 for (fSortedList<std::string, nFindResult*>::iterator iterator = pArr->begin();
 iterator != pArr->end(); iterator++)
 {
 if (!iterator->second->wasSuccessful())
 {
 handleSubscriptionFailure(iterator->second);
 }
 else if (iterator->second->isChannel())
 {
 channels[i] = iterator->second->getChannel();
 }
 i++;
 }
 public void handleSubscriptionFailure(nFindResult* result){
 // do something
 }
}

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 101

To perform the same operation for Queues, simply use the example above and exchange
nChannel for nQueue, and check each result returned to see if the isQueue() flag is set.

Universal Messaging C++ - Durable channel consumers and named objects
Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Universal Messaging supports durable consumers through use of Universal Messaging
named objects as shown by the following example code.

Names objects can also be managed via the enterprise manager.

Asynchronous Durable Consumer

An example of how to create a named object that begins from event id 0, is persistent
and is used in conjunction with an asynchronous event consumer:
class mySubscriber : public nEventListener {
 public:
 mySubscriber(){
 // construct your session
 // and channel objects here
 // create the named object and begin consuming events from the channel at event id 0
 // i.e. the beginning of the channel
 nNamedObject *nobj = myChannel->createNamedObject("unique1", 0, true);
 myChannel->addSubscriber(this , nobj);
 }
 void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 }
 int main(int argc, char** argv) {
 new mySubscriber();
 return 0;
 }
}

Synchronous Durable Consumer

An example of how to create a named object that begins from event id 0, persistent and
is used in conjunction with a synchronous event consumer:
class myIterator {
 private:
 nChannelIterator *iterator = null;
 public:
 myIterator(){
 // construct your session
 // and channel objects here
 // start the iterator at the beginning of the channel (event id 0)
 nNamedObject *nobj = myChannel->createNamedObject("unique2", 0, true);
 iterator = myChannel->createIterator(0);
 }
 void start() {
 while (true) {
 nConsumeEvent *event = iterator->getNext();
 go(event);
 }

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 102

 }
 void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 }
 int main(int argc, char** argv) {
 myIterator *itr = new myIterator();
 itr->start();
 return 0;
 }
}

Both synchronous and asynchronous channel consumers allow message selectors to be
used in conjunction with named objects. Please see the API documentation for more
information.

There are also different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as
consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method:
void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 event->ack();
}

Universal Messaging C++: The Merge Engine and Event Deltas
In order to streamline publish/subscribe applications it is possible to deliver only the
portion of an event's data that has changed rather than the entire event. These event
deltas minimise the amount of data sent from the publisher and ultimately delivered to
the subscribers.

The publisher simply registers an event and can then publish changes to individual keys
within the event. The subscriber will receive a full event on initial subscription, which
contains the most up to date state of the event. After the initial message, only the key/
value pairs which have changed since the last message will be sent to the client.

Publisher - Registered Events

In order to publish event deltas the publisher uses the Registered Event facility available
on a Universal Messaging Channel. Please note that the channel must have been
created with the Merge Engine and it must have a single Publish Key. The publish key
represents the primary key for the channel and the registered events. So for example if
you are publishing currency rates you would setup a channel as such
 nChannelAttributes* cattr
 = new nChannelAttributes("RatesChannel", 0, 0, nChannelAttributes.SIMPLE_TYPE);
//
// This next line tells the server to Merge incoming events based on the publish
// key name and the name of the registered event
//
 cattr->useMergeEngine(true);
//
// Now create the Publish Key (See publish Keys for a full description
//
 nChannelPublishKeys** pks = new nChannelPublishKeys[1];
 pks[0] = new nChannelPublishKeys("ccy", 1);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 103

 cattr->setPublishKeys(pks);
//
// Now create the channel
//
 myChannel = mySession->createChannel(cattr);

At this point the server will have a channel created with the ability to merge incoming
events from Registered Events. The next step is to create the Registered events at the
publisher.
 nRegisteredEvent* audEvent = myChannel->createRegisteredEvent("AUD");
 nEventProperties* props = audEvent->getProperties();
 props->put("bid", 0.8999);
 props->put("offer", 0.9999);
 props->put("close", "0.8990");
 audEvent->commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to a ccy value
of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:
 props->put("bid", 0.9999);
 audEvent->commitChanges();

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Subscriber - nEventListener v nRegisteredEventListener

The subscriber doesn't need to do anything different to receive these events. The
standard nEventListener will appear to receive full events with all keys and data even
though only the changed keys were transmied. The events are reassembled on the
client and are updated locally such that the subscriber receives the usual callback from
the server.

If the client only wants to process the changes then they can choose to implement
the nRegisteredEventListener interface rather than the nEventListener interface. The
nRegisteredEventListener, has an update() method in addition to the usual go() method.
The update method will be called whenever an update has been published.

Universal Messaging C++: Priority Messaging
In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same channel or queue. Universal Messaging provides the ability to
expedite messages based on a priority level. Messages with higher levels of priority are
able to be delivered to clients ahead of lower priority messages.

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 104

nConsumeEvent* evt;
 ...
evt->getAttributes()->setPriority(9);

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis and the effects
become more noticeable as load increases.

It is possible to specify multiple levels of priority for events on the same channel. This
behaviour will cause the events to be delivered highest priority first. When doing this it
is important to realise that events on a channel will no longer be delivered on a first in
first out basis.

Publish/Subscribe using DataStreams and DataGroups

Universal Messaging C++ - Publish / Subscribe Using DataStreams and
DataGroups
Publish / Subscribe is one of several messaging paradigms supported by Universal
Messaging. Universal Messaging DataGroups are lightweight structures designed to
facilitate Publish/Subscribe . When using DataGroups, user subscriptions are managed
remotely in a way that is transparent to subscribers. Universal Messaging Channels
provide an alternative style of Publish/Subscribe where the subscribers manage their
subscriptions directly.

There are two resources that are used when interacting with DataGroups: DataStreams
and DataGroups.

DataStreams

A Data Stream is a destination for published events. Publishers with appropriate
permissions can write events directly to Data Streams. A Universal Messaging client
session can optionally have a Data Stream, and receive events through it.

A Data Stream can be a member of one or more Data Groups.

DataGroups

Any event wrien to a Data Group will be propagated to all Data Streams that are
members of that Data Group.

Data Groups may also contain other Data Groups. Any event wrien to an upper level
Data Group will be wrien to all contained Data Groups, and thus to all contained Data
Streams.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 105

Note that all Data Streams are automatically added to the realm server's Default Data
Group. Writing an event to the Default Data Group, therefore, will ensure it is delivered
to any client with a session configured to use a Data Stream.

This section demonstrates Universal Messaging pub / sub using DataGroups in C++, and
provides example code snippets for all relevant concepts.

Universal Messaging C++ - DataStreamListener
If a nSession is created with a nDataStreamListener then it will receive asynchronous
callbacks via the onMessage implementation of the nDataStreamListener interface. The
nDataStreamListener will receive events when:

An event is published directly to this particular nDataStream

An event is published to any nDataGroup which contains this nDataStream

An event is published to an nDataGroup which contains a nested nDataGroup
containing this nDataStream

An example of how to create a session with an nDataStreamListener interface is
shown below:
public class DataGroupClient : public nDataStreamListener{
 nSession* mySession;
 public DataGroupClient(std::string& realmURLs){
 nSessionAttributes* nsa = new nSessionAttributes(realmURLs);
 mySession = nSessionFactory::create(nsa, this);
 mySession->init(this);
 }
 ////
 // nDataStreamListener Implementation
 ////
 //Callback received when event is available
 public void onMessage(nConsumeEvent* event){
 //some code to process the message
 }
}

Universal Messaging C++: Creating and Deleting DataGroups

Creating Universal Messaging DataGroups

nDataGroups can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

In order to create a nDataGroup, first of all you must create an nSession object, which
is effectively your the logical and physical connection to a Universal Messaging Realm.
This is achieved by using an RNAME for your Universal Messaging Realm when
constructing the nSessionAributes object, as shown below:
std::string* RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes* nsa=new nSessionAttributes(RNAME);
nSession* mySession=nSessionFactory::create(nsa);
mySession->init();

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 106

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession object instance 'mySession', you can then create DataGroups. The create
DataGroup methods will return the nDataGroup if it already exists.

The code snippets below demonstrate the creation of nDataGroups:

Create a Single nDataGroup
nDataGroup* myGroup = mySession->createDataGroups("myGroup");

Create Multiple nDataGroups
std::string* groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup* myGroups = mySession->createDataGroups(groups);

Creating DataGroups with DataGroupListeners and ConflationAttributes

It is also possible to specify additional properties when creating DataGroups:

nDataGroupListener - To specify a listener for DataGroup membership changes

nConflationAributes - To specify aributes which control event merging and
delivery throling for the DataGroup

Now we have a reference to a Universal Messaging DataGroup it is possible to publish
events

Deleting Universal Messaging DataGroups

There are various deleteDataGroup methods available on nSession which will delete
DataGroups. It is possible to specify single nDataGroups or arrays of nDataGroups.

Universal Messaging C++: Managing DataGroup Membership
DataGroups are extremely lightweight from both client and server perspectives; a back-
end process, such as a Complex Event Processing engine, can simply create DataGroups
and then add or remove users (or even entire nested DataGroups) based on bespoke
business logic. A user who is removed from one DataGroup and added to another
will continue to receive events without any interruption to service, or indeed explicit
awareness that any DataGroup change has occurred.

This page details some of the typical operations that DataGroup management process
would carry out.

Please see our C++ sample apps for more detailed examples of DataGroup management.

Tracking Changes to DataGroup Membership (DataGroupListener)

The nDataGroupListener interface is used to provide asynchronous notifications
when nDataGroup membership changes occur. Each time a user (nDataStream) or
nDataGroup is added or removed from a nDataGroup a callback will be received.
public class datagroupListener : public nDataGroupListener {
 nSession* mySession;

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 107

 public datagroupListener(nSession session){
 mySession = session;
 //add this class as a listener for all nDataGroups on this Universal Messaging realm
 mySession->getDataGroups(this);
 }
 ////
 //DataGroupListener Implementation
 ///
 public void addedGroup (nDataGroup* to, nDataGroup* group, int count){
 //Called when a group has been added to the 'to' data group.
 //count is the number of nDataStreams that will receive any events published to this nDataGroup
 }
 public void addedStream (nDataGroup* group, nDataStream* stream, int count){
 //Called when a new stream has been added to the data group.
 }
 public void createdGroup (nDataGroup* group){
 //Called when a group has been created.
 }
 public void deletedGroup (nDataGroup* group){
 //Called when a group has been deleted.
 }
 public void deletedStream (nDataGroup* group, nDataStream* stream, int count, bool serverRemoved){
 //Called when a stream has been deleted from the data group.
 //serverRemoved is true if the nDataStream was removed because of flow control
 }
 public void removedGroup (nDataGroup* from, nDataGroup* group, int count){
 //Called when a group has been removed from the 'from' data group.
 }
}

There are three ways in which the nDataGroupListener can be used:

Listening to an individual DataGroup

Listeners can be added to individual DataGroups when they are created or at any time
after creation. The code snippets illustrate both approaches:
mySession->createDataGroup(dataGroupName, datagroupListener);
myDataGroup->addListener(datagroupListener);

Listening to the Default DataGroup

The Default nDataGroup is a DataGroup to which all nDataStreams are added by
default. If you add a DataGroupListener to the default DataGroup then callbacks will be
received when:

a nDataStream is connected/disconnected

a nDataGroup is created or deleted

Listening to all DataGroups on a Universal Messaging Realm

The code snippet below will listen on all nDataGroups (including the default
DataGroup).
mySession->getDataGroups(datagroupListener);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 108

Adding and Removing DataGroup Members

The nDataGroup class provides various methods for adding and removing
nDataStreams and nDataGroups. Please see the nDataGroup API documentation for a
full list of methods. Examples of some of these are provided below:
 //Add a nDataStream (user) to a nDataGroup
 public void addStreamToDataGroup(nDataGroup* group, nDataStream* user){
 group->add(user);
 }
 //Remove a nDataStream (user) from a nDataGroup
 public void removeStreamFromDataGroup(nDataGroup* group, nDataStream* user){
 group->remove(user);
 }
 //Add a nDataGroup to a nDataGroup
 public void addNestedDataGroup(nDataGroup* parent, nDataGroup* child){
 parent->add(child);
 }
 //Remove a nDataGroup from a nDataGroup
 public void removeNestedDataGroup(nDataGroup* parent, nDataGroup* child){
 parent->remove(child);
 }

Universal Messaging C++ - DataGroup Conflation Attributes

Enabling Conflation on DataGroups

Universal Messaging DataGroups can be configured so that conflation (merging and
throling of events) occurs when messages are published. Conflation can be carried
out in several ways and these are specified using a nConflationAributes object. The
ConflationAributes object is passed in to the DataGroup when it is created initially.

The nConflationAributes object has two properties action and interval. Both of these are
passed into the constructor.

The action property specifies whether published events should replace previous events in
the DataGroup or be merged with them. These properties are defined by static fields:
nConflationAttributes::sMergeEvents
nConflationAttributes::sDropEvents

The interval property specifies the interval in milliseconds between event fanout to
subscribers. An interval of zero implies events will be fanned out immediately.

Creating a Conflation Attributes Object
//ConflationAttributes specifying merge events and no throttled delivery
nConflationAttributes* confattribs = new nConflationAttributes(nConflationAttributes::sMergeEvent, 0);
//ConflationAttributes specifying merge events and throttled delivery at 1 second intervals
nConflationAttributes* confattribs = new nConflationAttributes(nConflationAttributes::sMergeEvent, 1000);
//ConflationAttributes specifying drop events and throttled delivery at 1 second intervals
nConflationAttributes* confattribs = new nConflationAttributes(nConflationAttributes::sDropEvent, 1000);

Create a Single nDataGroup with Conflation Attributes
public class datagroupListener implements nDataGroupListener {
 nSession* mySession;
 nDataGroup* myDataGroup;

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 109

 public datagroupListener(nSession* session, nConflationAttributes* confattribs, std::string dataGroupName){
 mySession = session;
 //create a DataGroup passing in this class as a nDataGroupListener and a ConflationAttributes
 myDataGroup = mySession->createDataGroup(dataGroupName, this, confattribs);
 }
}

Create Multiple nDataGroups with Conflation Attributes
nConflationAttributes* confattribs = new nConflationAttributes(nConflationAttributes::sMergeEvent, 1000);
std::string[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession->createDataGroups(groups, confattribs);

Publishing Events to Conflated DataGroups With A Merge Policy

At this point the server will have a nDataGroup created with the ability to merge
incoming events from Registered Events. The next step is to create the Registered events
at the publisher.
 nRegisteredEvent* audEvent = myDataGroup->createRegisteredEvent();
 nEventProperties* props = audEvent->getProperties();
 props->put("bid", 0.8999);
 props->put("offer", 0.9999);
 props->put("close", "0.8990");
 audEvent->commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to a ccy value
of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:
 props->put("bid", 0.9999);
 audEvent->commitChanges();

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Publishing Events to Conflated DataGroups With A Drop Policy

If you have specified a "Drop" policy in your ConflationAributes then events are
published in the normal way rather than using nRegisteredEvent.

Consuming Conflated Events from a DataGroup

The subscriber doesn't need to do anything different to receive events from a DataGroup
with conflation enabled. If nRegisteredEvents are being delivered then the events will
contain only the fields that have changed will be delivered. In all other circumstances an
entire event is delivered to all consumers.

Universal Messaging C++ - DataGroups Event Publishing
You can get references to any DataGroup from the nSession object. There are various
writeDataGroup methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataGroups.
myDataGroup* = mySession->getDataGroup("myGroup");
nEventProperties* props = new nEventProperties();

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 110

//You can add other types in a dictionary object
props->put("key0string"+x, "1"+x);
props->put("key1int", (int) 1);
props->put("key2long", (long) -11);
nConsumeEvent* evt1 = new nConsumeEvent(props, buffer);
//Publish the event
mySession->writeDataGroup(evt1, myDataGroup);

Universal Messaging C++: DataStream Event Publishing
You can get references to any nDataStream (user) from the nSession object if you
call getDefaultDataGroup(). You can also access nDataStreams by implementing
the nDataGroupListener interface. Please see DataGroup management" DataGroup
management" on page 106 for more information. This will deliver callbacks as users
are connected/disconnected. There are various writeDataStream methods available.
These methods also support batching of multiple events to a single group or batching of
writes to multiple DataStreams.
nEventProperties* props = new nEventProperties();
//You can add other types in a dictionary object
props->put("key0string"+x, "1"+x);
props->put("key1int", (int) 1);
props->put("key2long", (long) -11);
nConsumeEvent* evt1 = new nConsumeEvent(props, buffer);
//Publish the event
mySession->writeDataStream(evt1, myDataStream)

Universal Messaging Java - Priority Messaging
In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same datagroup. Univerisal Messaging provides the ability to expedite
messages based on a priority level. Messages with higher levels of priority are able to be
delivered to clients ahead of lower priority messages.

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:
nConsumeEvent evt;
 ...
evt->getAttributes()->setPriority(9);

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis and the effects
become more noticeable as load increases.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 111

It is possible to specify multiple levels of priority for events on the same datagroup. This
behaviour will cause the events to be delivered highest priority first. When doing this it
is important to realise that events on a datagroup will no longer be delivered on a first in
first out basis.

Message Queues

Universal Messaging C++: Message Queues
Universal Messaging provides message queue functionality through the use of queue
objects. Queues are the logical rendezvous point for publishers (producers) and
subscribers (consumers) of data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

Universal Messaging also supports non destructive reads (peeks) from queues which
enable consumers to see what events are on a queue without removing it from the
queue. Any event which has been peeked will still be queued for popping in the normal
way. The Universal Messaging enterprise manager also supports the ability to visually
peek a queue using its snoop capability.

This section demonstrates how Universal Messaging message queues work in C++, and
provide examples code snippets for all relevant concepts.

Universal Messaging C++: Creating a Queue
In order to create a queue, first of all you must create your nSession object, which is
effectively your logical and physical connection to a Universal Messaging Realm. This
is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAributes object, as shown below:
std::string[] RNAME=({“nsp://127.0.0.1:9000”});
nSessionAttributes *nsa = new nSessionAttributes(RNAME);
nSession *mySession = nSessionFactory::create(nsa);
mySession->init();

Once the mySession->init() method is successfully called, your connection to the realm
will be established.

Using the nSession objects instance 'mySession', we can then begin creating the queue
object. Queues have an associated set of aributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the queue, the aributes
determine the availability of the events published to a queue to any consumers wishing
to consume them,

To create a queue, we do the following:
nChannelAttributes *cattrib = new nChannelAttributes();
cattrib->setChannelMode(nChannelAttributes::QUEUE_MODE);
cattrib->setMaxEvents(0);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 112

cattrib->setTTL(0);
cattrib->setType(nChannelAttributes::PERSISTENT_TYPE);
cattrib->setName(“myqueue”);
nQueue *myQueue=mySession->createQueue(cattrib);

Now we have a reference to a Universal Messaging queue within the realm.

Universal Messaging C++: Finding a Queue
In order to find a queue, first of all the queue must be created. This can be achieved
through the Universal Messaging Administration Tool, or "programmatically" on page
111. First of all you must create your nSession object, which is your effectively your
logical and physical connection to a Universal Messaging Realm. This is achieved by
using the correct RNAME for your Universal Messaging Realm when constructing the
nSessionAributes object, as shown below:
std::string[] RNAME=({“nsp://127.0.0.1:9000”});
nSessionAttributes *nsa=new nSessionAttributes(RNAME);
nSession *mySession = nSessionFactory->create(nsa);
mySession->init();

Once the nSession->init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then try to find the queue object.
Queues have an associated set of aributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the queue, the aributes
determine the availability of the events published to a queue to any consumers wishing
to consume them.

To find a queue previously created, we do the following:
nChannelAttributes *cattrib = new nChannelAttributes();
cattrib->setName(“myqueue”);
nQueue *myQueue = mySession->findQueue(cattrib);

Now we have a reference to a Universal Messaging queue within the realm.

Universal Messaging C++: Queue Publish
There are 2 types of publish available in Universal Messaging for queues:

"Reliable Publish" on page 113

"Transactional Publish" on page 113

Reliable publish is simply a one way push to the Universal Messaging Server. This
means that the server does not send a response to the client to indicate whether the
event was successfully received by the server from the publish call.

Transactional publish involves creating a transaction object to which events are
published, and then commiing the transaction. The server responds to the transaction
commit call indicating if it was successful. There are also means for transactions to be
checked for status after application crashes or disconnects.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 113

Reliable Publish

Once you have established a session and found a queue, you then need to "construct an
event" on page 92 and publish the event onto the queue.

For reliable publish, here is the example code for how to publish events to a queue.
Further examples can be found in the API documentation.
// Publishing a simple byte array message
 myQueue->push(new nConsumeEvent("TAG", message->getBytes(), size);

Transactional Publish

Transactional publishing provides us with a method of verifying that the server receives
the events from the publisher, and provides guaranteed delivery.

There are similar prototypes available to the developer for transaction publishing. Once
we have established our "session" on page 91 and our "queue" on page 112, we
then need to"construct our events" on page 92 and our transaction and publish
these events to the transaction. Then the transaction will be commied and the events
available to consumers to the queue.

Below is a code snippet of how transactional publishing is achieved:
std::list<nConsumeEvent*> messages;
messages->push_back(message1);
nTransactionAttributes *tattrib=new nTransasctionAttributes(myQueue);
nTransaction *myTransaction=nTransactionFactory::create(tattrib);
myTransaction->publish(messages);
myTransaction->commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been commied or aborted, a call can be
made on the transaction that will determine if the events within the transactional were
successfully received by the Universal Messaging Realm Server.
bool committed = myTransaction->isCommitted(true);

Which will query the Universal Messaging Realm Server to see if the transaction was
commied.

An example of publishing events onto a queue can be found on the examples page
under "Push Queue". An example of how to transactionally publish events to a queue
can be found on the examples page under "TX Push Queue".

Universal Messaging C++: Asynchronous Queue Consuming
Asynchronous queue consumers consume events from a callback on an interface that all
asynchronous consumers must implement. We call this interface an nEventListener. The
listener interface defines one method called 'go' which when called will pass events to the
consumer as they are delivered from the Universal Messaging Realm Server.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 114

An example of an asynchronous queue reader is shown below:
class myAsyncQueueReader : public nEventListener {
 private:
 nQueue *myQueue = null;
 myAsyncQueueReader(){
 // construct your session and queue objects here
 // begin consuming events from the queue
 nQueueReaderContext *ctx = new
 nQueueReaderContext(this, 10);
 nQueueAsyncReader *reader = myQueue->createAsyncReader(ctx);
 }
 void go(nConsumeEvent event) {
 printf("Consumed event %d",event.getEventID());
 }
 int main(int argc, char** argv) {
 new myAsyncQueueReader();
 return 0;
 }
 }

Asynchronous queue consumers can also be created using a selector, which defines a set
of "event properties" on page 93 and their values that a subscriber is interested in.
For example if events are being published with the following event properties:
nEventProperties *props =new nEventProperties();
props->put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
std::string selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

An example of an asynchronous queue reader can be found on the examples page under
"Queue Subscriber".

Universal Messaging C++ - Synchronously Queue Consuming
Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

An example of a synchronous queue reader is shown below:
class mySyncQueueReader {
 private:
 nQueueSyncReader *reader = null;
 nQueue *myQueue = null;
 public:

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 115

 mySyncQueueReader(){
 // construct your session and queue objects here
 // construct the queue reader
 nQueueReaderContext *ctx = new
 nQueueReaderContext(this, 10);
 reader = myQueue->createReader(ctx);
 }
 void start(){
 while (true) {
 // pop events from the queue
 nConsumeEvent *event = reader->pop();
 go(event);
 }
 }
 void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 }
 int main(int argc, char** argv) {
 mySyncQueueReader *sqr = new mySyncQueueReader();
 sqr->start();
 return 0;
 }
 }

Synchronous queue consumers can also be created using a selector, which defines a set
of "event properties" on page 93 and their values that a consumer is interested in.
For example if events are being published with the following event properties:
nEventProperties props =new nEventProperties();
props->put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
std:string selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

An example of a synchronous queue consumer can be found on the examples page
under "Queue Reader".

Universal Messaging C++: Asynchronous Transactional Queue Consuming
Asynchronous transactional queue consumers consume events from a callback on an
interface that all asynchronous consumers must implement. We call this interface an
nEventListener. The listener interface defines one method called 'go' which when called will
pass events to the consumer as they are delivered from the Universal Messaging Realm
Server.

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 116

ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional asynchronous queue reader is shown below:
class myAsyncTxQueueReader : public nEventListener {
 private:
 nQueueAsyncTransactionalReader *reader = null;
 nQueue *myQueue = null;
 public:
 myAsyncTxQueueReader(){
 // construct your session and queue objects here
 // begin consuming events from the queue
 nQueueReaderContext *ctx = new
 nQueueReaderContext(this, 10);
 reader = myQueue->createAsyncTransactionalReader(ctx);
 }
 void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 reader->commit();
 }
 int main(int argc, char** argv) {
 new myAsyncTxQueueReader();
 return 0;
 }
 }

As previously mentioned, the big difference between a transactional asynchronous
reader and a standard asynchronous queue reader is that once events are consumed
by the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been commied, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Asynchronous queue consumers can also be created using a selector, which defines a set
of "event properties" on page 93 and their values that a subscriber is interested in.
For example if events are being published with the following event properties:
nEventProperties *props =new nEventProperties();
props->put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
std::string selector = "BONDNAME='bond1'";

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 117

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Universal Messaging C++ - Synchronous Transactional Queue Consuming
Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional synchronous queue reader is shown below:
class mySyncTxQueueReader{
 nQueueSyncTransactionReader *reader = null;
 nQueue *myQueue = null;
 public:
 mySyncTxQueueReader(){
 // construct your session and queue objects here
 // construct the transactional queue reader
 nQueueReaderContext *ctx = new
 nQueueReaderContext(this, 10);
 reader = myQueue->createTransactionalReader(ctx);
 }
 void start(){
 while (true) {
 // pop events from the queue
 nConsumeEvent *event = reader->pop();
 go(event);
 // commit each event consumed
 reader->commit(event->getEventID());
 }
 }
 void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 }
 int main(int argc, char** argv) {
 new mySyncTxQueueReader();
 sqr->start();
 return 0;
 }
 }

As previously mentioned, the big difference between a transactional synchronous
reader and a standard synchronous queue reader is that once events are consumed by

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 118

the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been commied, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Synchronous queue consumers can also be created using a selector, which defines a set
of "event properties" on page 93 and their values that a consumer is interested in.
For example if events are being published with the following event properties:
nEventProperties props =new nEventProperties();
props->put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
std::string selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

An example of a synchronous queue consumer can be found on the examples page
under "Queue Reader".

Universal Messaging C++: Queue Browsing / Peeking
Universal Messaging provides a mechanism for browsing (peeking) queues. Queue
browsing is a non-destructive read of events from a queue. The queue reader used
by the peek will return an array of events, the size of the array being dependent on
how many events are in the queue, and the window size defined when your reader
context is created. For more information, please see the Universal Messaging Client API
documentation.

An example of a queue browser is shown below:
public class myQueueBrowser {
 private:
 nQueueSyncReader *reader;
 nQueuePeekContext *ctx;
 nQueue *myQueue;
 public:
 myQueueBrowser(){
 // construct your session and queue objects here
 // create the queue reader
 reader = myQueue->createReader(new
 nQueueReaderContext());
 ctx = nQueueReader::createContext(10);
 }

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 119

 void start(){
 bool more = true;
 long eid =0;
 while (more) {
 // browse (peek) the queue
 int size;
 nConsumeEvent **evts = reader->peek(ctx,size);
 for (int x=0; x < size; x++) {
 go(evts[x]);
 }
 more = ctx->hasMore();
 }
 }
 void go(nConsumeEvent *event) {
 printf("Consumed event %d",event->getEventID());
 }
 int main(int argc, char** argv) {
 myQueueBrowser *qbrowse = new myQueueBrowser();
 qbrowse->start();
 return 0;
 }
}

Queue browsers can also be created using a selector, which defines a set of "event
properties" on page 93 and their values that a browser is interested in. For example
if events are being published with the following event properties:
nEventProperties props =new nEventProperties();
props->put("BONDNAME","bond1");

If you then provide a message selector string in the form of:
std::string selector = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueuePeekContext object shown in the
example code, then your browser will only receive messages that contain the correct
value for the event property BONDNAME.

An example of an queue browser can be found on the examples page under "Queue
Peek".

Peer to Peer

Universal Messaging C++: Peer to Peer Services
Universal Messaging provides a rich set of APIs that provide developers with the ability
to create Peer to Peer (P2P) applications. We call these Peer to Peer applications Services.
This guide will demonstrate how Universal Messaging Peer to Peer Services work, and
provides examples code snippets for all relevant concepts.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 120

P2P Service Components

There are two parts to a Peer to Peer Service in Universal Messaging: a Server Service and
a Client.

When a Server Service is running, it is visible within the Universal Messaging
Namespace and is available to any Client wishing to connect. The Universal Messaging
Realm Server acts as the bridge that connects Clients to Server Services. Each Server
Service can support multiple Clients.

Universal Messaging Peer to Peer Client and Server Services

The Server Service is a process that registers itself with a Universal Messaging Realm so it
is visible to Clients wishing to connect.

A Universal Messaging Peer to Peer Service Client is a process that connects to a
Universal Messaging Realm, obtains a reference to a Server Service and begins
communicating with it.

When a Client connects to the Server Service, all communication between the Client
and server service takes place through the Universal Messaging Realm, using Universal
Messaging's standard communication protocols.

P2P Service Types

There are two types of Universal Messaging Peer to Peer Services:

Event-based Services

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 121

Universal Messaging Peer to Peer Event-based Services communicate via events
which are published by the "Event-based Client" on page 121, and received and
responded to by the Event-based Server Service.

Stream-based Services

Universal Messaging Peer to Peer Stream-based Services communicate via input and
output streams on both the Client and Server Service. Anything wrien to the output
stream of the "Stream-based Service Client" on page 123 is received via the input
stream of the "Stream-based Server Service" on page 125 and vice versa.

Examples

The code examples "P2P Echo" and "P2P Shell" give full application source code to
implement Server Services and Clients:

Universal Messaging C++: Peer to Peer Event-based Clients
Universal Messaging Peer to Peer Event-based Services communicate via events which are
published by a Client, and received and responded to by an Event-based Server Service.

The Universal Messaging P2P API is simple to use. There are only a very small number
of objects and calls that need to be made in order for you to construct a P2P Service
Client, connect to a Realm, and find or list available Services.

Creating an Event-based Service Client

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can find our Service, or obtain a list of
available Services:
std::string[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes *nsa = new nSessionAttributes(RNAME);
nServiceFactory *factory = new nServiceFactory(nsa);
nServiceInfo *info = factory->findService("example");
nEventService *serv = (nEventService)factory->connectToService(info);

Once the Client has connected to an instance of a Server Service, the developer's custom
business logic can then be applied.

Sending Events to Server Services

Once you have connected to the Service, and you have an instance of the Service, you
can then begin publishing your Universal Messaging events to the Service, by using the
following command:
std::string strLine = "Hello World";
int length = 0;
unsigned char *pLine = nConstants::encode(strLine, length);
nEventProperties *pProps = new nEventProperties();
serv->write(new nConsumeEvent(pProps, pLine, length));

To receive responses from the Server Service, the client Service can receive events either
synchronously or asynchronously via a callback interface.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 122

Synchronously Receiving Events from the Server Service

Clients can synchronously read incoming events. The following code will return an
event once one is received from the Server Service:
nConsumeEvent *event = serv->read();

Asynchronously Receiving Events from the Server Service

A Client may alternatively asynchronously receive events from the Event-based Server
Service by implementing the nEventServiceListener interface and its receivedEvent
method:
void receivedEvent(nConsumeEvent *evt) {
 printf("Consumed event %d",event->getEventID());
}

You will also need to call registerListener(your_listener_class) on the
nEventService object.

Universal Messaging C++: Peer to Peer Event-based Server Services
Universal Messaging Peer to Peer Event-based Services communicate via events which are
published by an "Event-based Client" on page 121, and received and responded to by
an Event-based Server Service.

Creating an Event-based Server Service

Firstly, in the same way that Publish/Subscribe and Message Queues use an RNAME,
the P2P API also requires one to connect to the Realm. The code snippet below shows
how this is achieved:
std::string[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes *nsa = new nSessionAttributes(RNAME);
nServiceFactory *factory = new nServiceFactory(nsa);

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can construct our Event-based Server
Service:
nServerService *Server = factory->createEventService("example", "Example Event-based Service");
while (true) {
 nEventService *serv = (nEventService) server->accept();
 Stream *inputstream = serv->getInputStream();
 Stream *outputstream = serv->getOutputStream();
 // your logic goes here....
 // e.g. query a database, make a connection, send an email, etc.
 printf("Got connection %d",(serv->getServiceInfo())->getName());
}

The code snippet above shows how to create an Event-based Server Service and wait for
Client connections. Developers are free to decide how the Server Service should respond
once a Client connects to the Server Service.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 123

When connections are made to the Event-based Server Service, the Service can receive
events from Clients either synchronously or asynchronously via a callback interface.

Synchronously Receiving Events from the Client

The Server Service can synchronously read incoming events. The following code will
return an event once one is received from the Client:
nConsumeEvent *event = serv->read();

Asynchronously Receiving Events from the Client

The Server Service may alternatively asynchronously receive events by implementing
the nEventServiceListener interface and its receivedEvent method:
void receivedEvent(nConsumeEvent *evt) {
 printf("Consumed event %d",event->getEventID());
}

You will also need to call registerListener(your_listener_class) on the
nEventService object.

Sending Events to Clients

You can send events back to the Client as follows:
std::string strLine = "Hello World";
int length = 0;
unsigned char *pLine = nConstants::encode(strLine, length);
nEventProperties *pProps = new nEventProperties();
serv->write(new nConsumeEvent(pProps, pLine, length));

Examples

The code example "P2P Echo" source code shows how to implement an Event-based
Server Service and Client.

Universal Messaging C++: Peer to Peer Stream-based Clients
Universal Messaging Peer to Peer Stream-based Services communicate via input and
output streams on both the Stream-based Client and the Stream-based Server Service.

Anything wrien to the output stream of the Stream-based Service Client is received via
the input stream of the Stream-based Server Service and vice versa.

Creating a Stream-based Client

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can find our Service, or obtain a list of
available Services:
std::string[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes *nsa = new nSessionAttributes(RNAME);
nServiceFactory *factory = new nServiceFactory(nsa);
nServiceInfo *info = factory->findService("example");
nStreamService *serv = (nStreamService *)factory->connectToService(info);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 124

Once the Client has connected to an instance of a Server Service, the developer's custom
business logic can then be applied.

Writing Client Data to a Stream-based Server Service

Once a client has connected to a Service, the client can write data to the Service. The
client can obtain a reference to the Service's Output Stream object and then write to it as
follows:
Stream *os = serv->getOutputStream();
//Read a character from the standard input until a \n is reached which indicates
// the end of a command.
int pos = 0;
char command[256];
try
{
 bool run = true;
 while (run)
 {
 command[pos] = getchar();
 if (command[pos] == '\n')
 {
 if (pos > 0)
 {
 pos++;
 unsigned char *temp = new unsigned char[pos];
 memcpy (temp, command, pos);
 os->write(temp, 0, pos);
 os->flush();
 pos = 0;
 }
 else
 {
 run = false;
 }
 }
 else
 {
 pos++;
 }
 }
}

Receiving Responses from a Stream-based Server Service

To receive responses from the Service, the client must first obtain a reference to the
Service's Input Stream object, and then read from it as follows:
Stream *is = serv->getInputStream();
unsigned char *pBuf = new unsigned char[bufferSize];
try
{
 int size = 0;
 while (true)
 {
 is->wait();
 is->lock();
 is->setPosition (0);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 125

 int i = 0;
 while ((i = is->readByte()) != -1)
 {
 putchar((char)i);
 size++;
 }
 is->unlock();
 }
}

Universal Messaging C++: Peer to Peer Stream-based Server Services
Universal Messaging Peer to Peer Stream-based Services communicate via input and
output streams on both the Stream-based Client and the Stream-based Server Service.

Anything wrien to the output stream of the Stream-based Service Client is received via
the input stream of the Stream-based Server Service and vice versa.

Creating an Stream-based Server Service

Firstly, in the same way that Publish/Subscribe and Message Queues use an RNAME,
the P2P API also requires one to connect to the Realm. The code snippet below shows
how this is achieved:
std::string[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes *nsa = new nSessionAttributes(RNAME);
nServiceFactory *factory = new nServiceFactory(nsa);

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can construct our Stream-based Server
Service:
nServerService *Server = factory->createStreamService("example", "Example Stream-based Service");
while (true) {
 nEventService *serv = (nEventService) server->accept();
 Stream *inputstream = serv->getInputStream();
 Stream *outputstream = serv->getOutputStream();
 // your logic goes here....
 // e.g. query a database, make a connection, send an email, etc.
 printf("Got connection %s",(serv->getServiceInfo())->getName());
}

The code snippet above shows how to create an Stream-based Server Service and wait
for Client connections. Developers are free to decide how the Server Service should
respond once a Client connects to the Server Service.

When a connection is made to the Stream-based Server Service, the Service has an Input
Stream (which can be read from), and an Output Stream (which can be wrien to).

Receiving Data from a Stream-based Client

The Server Service's Input Stream represents data coming from the client. The following
code snippet shows how to obtain this Input Stream:
Stream *iStream = serv->getInputStream();

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 126

Sending Data to a Stream-based Client

The Server Service's Output Stream represents data going to the client. The following
code snippet shows how to obtain this Output Stream:
Stream *oStream = serv->getOutputStream();

Examples

The code example "P2P Shell" shows how to implement a Stream-based Server Service
and Client:

For more information on Universal Messaging Peer to Peer Services please see the API
documentation.

Google Protocol Buffers
Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and
this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffer in Java, C++ and Python, and third party
libraries provide support for many other languages including Flex, .NET, Perl, PHP
etc. Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer event through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in nirvana, allowing for server-side
filtering of Google Protocol Buffer events, which can be sent on resources just like a
normal nirvana Events. The server side filtering of messages is achieved by providing
the server with a description of the data structures(constructed at the .proto compile
time, using the standard protobuf compiler and the --descriptor_set_out option). The
default location the sever looks in for descriptor files is /plugins/ProtobufDescriptors
and this can be configured through the enterprise manager. The server will monitor

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 127

this folder for changes, and the frequency of these updates can be configured through
the enterprise manager. The server can then use to extract the key value pairs from the
binary Protobuf message and filter message delivery based on user requirements.

To create a nProtobuf event, simply build your protocol buffer as normal and pass it into
the nProtobuf constructor along with the message type used.

nProtobuf events are received by subscribers in the normal way.

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the EM is no running on the same machine as the server. To enable this, the
server outputs a descriptor set to a configurable directory (by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Examples

Universal Messaging C++

Usage

Application Source Code

Publish/Subscribe using Channels/Topics

Universal Messaging C++ Client: Channel Publisher

This example publishes events onto a Universal Messaging Channel.

Usage
publish <rname> <channel name> [count] [size]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Transactional Channel Publisher

This example publishes events transactionally to a Universal Messaging Channel. A
Universal Messaging transaction can contain one or more events. The events which

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 128

make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commited succesfully.

Usage
txpublish <rname> <channel name> [count] [size] [tx size]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[tx size] - The number of events per transaction (default: 1)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Asynchronous Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel. See also: " Synchronous Subscription" on page 128

Usage
subscriber <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<rname> - URL of realm to connect to
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Synchronous Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel. See also: " Asynchronous Subscription" on page 128

Usage
channeliterator <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 129

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Asynchronous Named Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel using a named object.

Usage
namedsubscriber <rname> <channel name> <named object> [persist] [auto] [start eid] [debug] [count] [selector]
<Required Arguments>
<rname> - the rname of server to connect to
<channel name> - Channel name parameter for the channel to subscribe to
<named object> - Unique id of the named object
[Optional Arguments]
[persist] - If the named object will be stored persistently
[auto] - If messages are acknowledged auomatically or manually
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Synchronous Named Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel using a named object and a channel iterator.

Usage
namedchanneliterator <rname> <channel name> [name] [start eid] [debug] [count] [clusterwide] [persistent] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[name] - specifies the unique name to be used for a named subscription
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[clusterwide] - specifies whether the named object is to be used across a cluster (default : false)
[persistent] - specifies whether the named object state is to be stored on disk or held in server memory (default : false)
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Event Delta Delivery

This example shows how to publish and receive registered events.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 130

Usage
RegisteredEvent <rname> <channel name> [count]
<Required Arguments>
<rname> - Rname of the server to connect to
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Batching Server Calls

This example shows how to find multiple channels and queues in one call to the server.

Usage
findChannelsAndQueues <RNAME> <name> <name> <name>.....
<Required Arguments>
<RNAME> - The RNAME of the realm you wish to connect to
<name> - The name(s) of the channels to find
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Batching Subscribe Calls

This example of batching shows how to subscribe to multiple Universal Messaging
Channels in one server call.

Usage
sessionSubscriber <RNAME> <channelnames>
<Required Arguments>
<RNAME> - The RNAME of the realm you wish to connect to
<channelnames> - Comma separated list of channels to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Publish/Subscribe using DataStreams and DataGroups

Universal Messaging C++ Client: DataStream Listener

This example shows how to initialise a session with a DataStream listener and start
receiving data.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 131

Usage
DataStreamListener <rname> [debug] [count]
<Required Arguments>
<rname> - the rname of the server to connect to
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: DataGroup Publishing with Conflation

This example shows how to publish to DataGroups, with optional conflation.

Usage
DataGroupPublish <rname> <group name> [count] [size]
<Required Arguments>
<rname> - the rname of the server to connect to
<group name> - Data group name parameter to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: DataGroup Manager

This is an example of how to run a DataGroup manager application

Usage
dataGroupsManager <rname> <Properties File Location>
<Required Arguments>
<rname> - the rname of the server to connect to
<Properties File Location Data Groups> - The location of the property file to use for mapping data groups to data groups
<Properties File Location Data Streams> - The location of the property file to use for mapping data streams to data groups
<Auto Recreate Data Groups> - True or False to auto recreate data groups takes the data group property file and creates channels
 a group for every name mentioned on the left of equals sign
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Delete DataGroup

This is a simple example of how to delete a DataGroup

Usage
deleteDataGroup <rname> <group name>
<Required Arguments>

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 132

<rname> - the rname of the server to connect to
<group name> - Data group name parameter to delete

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: DataGroup Delta Delivery

This example shows how to use delta delivery with DataGroups.

Usage
DataGroupDeltaDelivery <rname>
<Required Arguments>
<rname> - the rname of the server to connect to
[Optional Arguments]
[count] - the number of times to commit the registered events (default : 10)

Application Source Code

See the online documentation for a code example.

Message Queues

Universal Messaging C++ Client: Queue Publisher

This example publishes events onto a Universal Messaging Queue.

Usage
pushq <rname> <queue name> [count] [size]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name parameter for the queue to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Transactional Queue Publisher

This example publishes events transactionally to a Universal Messaging Queue. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commited succesfully.

Usage
txpushq <rname> <queue name> [count] [size] [tx size]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name parameter for the queue to publish to
[Optional Arguments]

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 133

[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[tx size] - The number of events per transaction (default: 1)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Asynchronous Queue Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Queue. See also: " Synchronous Queue Subscription" on page 133

Usage
qsubscriber <rname> <queue name> [debug] [transactional] [selecter] [count]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name to pop from
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[transactional] - true / false whether the subscriber is transactional, if true, each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Synchronous Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription" on page 133

Usage
qreader <rname> <queue name> [debug] [timeout] [transactional] [selecter] [count]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name to pop from
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[timeout] - The timeout for the synchronous pop call
[transactional] - true / false whether the subscriber is transactional, if true, each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Peek Events on a Queue

Consume events from a Universal Messaging Queue in a non-destructive manner

Usage
qpeek <rname> <queue name> [debug] [selecter] [count]
<Required Arguments>

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 134

<rname> - the rname of the server to connect to
<queue name> - Queue name to pop from
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Peer to Peer

Universal Messaging C++ Client: An Event-based Peer to Peer Client and Server Service

This example shows how to build a simple Event-based P2P Service.

The example consists of a server and a client; the server will echo anything typed by the
client.

Usage
nP2PEcho <rname> [server]
<Required Arguments>
<rname> - the rname of the server to connect to
[Optional Arguments]
[server] - write 'server' to run echo server, or leave out to run echo client

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: A Stream-based Peer to Peer Client and Server Service

This example shows how to build a simple Stream-based P2P service.

The example consists of a server and a client; the server essentially exposes a shell to the
client.

Usage
nP2PShell <rname> [shell]
<Required Arguments>
<rname> - the rname of the server to connect to
[Optional Arguments]
[shell] - The type of shell you want to offer. For example cmd for win32 or bash for unix, leave out for client

Application Source Code

See the online documentation for a code example.

Administration API

Universal Messaging C++ Client: Add a Queue ACL Entry

This example demonstrates how to add an ACL entry to a Universal Messaging Queue.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 135

Usage
naddqueueacl <rname> <user> <host> <queue name> [list_acl] [modify_acl] [full] [peek] [write] [purge] [pop]
<Required Arguments>
<rname> - the rname of the server to connect to
<user> - User name parameter for the new ACL entry
<host> - Host name parameter for the new ACL entry
<queue name> - Queue name parameter for the new ACL entry
[Optional Arguments]
[list_acl] - Specifies that the list acl permission should be added
[modify_acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added
[peek] - Specifies that the read permission should be added
[write] - Specifies that the write permission should be added
[purge] - Specifies that the purge permission should be added
[pop] - Specifies that the pop permission should be added

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Modify a Channel ACL Entry

This example demonstrates how to modify the permissions of an ACL entry on a
Universal Messaging Channel..

Usage
nmodchanacl <rname> <user> <host> <channel name> [list_acl] [modify_acl] [full] [last_eid] [read] [write] [purge] [named]
<Required Arguments>
<rname> - the rname of the server to connect to
<user> - User name parameter for the new ACL entry
<host> - Host name parameter for the new ACL entry
<channel name> - Channel name parameter for the new ACL entry
[Optional Arguments]
[+/-] - Prepending + or - specifies whether to add or remove a permission
[list_acl] - Specifies that the list acl permission should be added
[modify_acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added
[last_eid] - Specifies that the get last EID permission should be added
[read] - Specifies that the read permission should be added
[write] - Specifies that the write permission should be added
[purge] - Specifies that the purge permission should be added
[named] - Specifies that the used named subscriber permission should be added
[all_perms] - Specifies that the pop permission should be added/removed

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Delete a Realm ACL Entry

This example demonstrates how to delete an ACL entry from a realm on a Universal
Messaging Channel.

Usage
delrealmacl <rname> <user> <host>
<Required Arguments>

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 136

<rname> - the rname of the server to connect to
<user> - User name parameter for the ACL entry to delete
<host> - Host name parameter for the ACL entry to delete

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Monitor realms for client connections coming and going

This example demonstrates how to monitor for connections to the realm and its
channels.

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Console-based Realm Monitor

This example demonstrates how to monitor live realm status.

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Remove Node ACL

This shows how the ACL for an nNode can be removed.

Usage
ndelnodeacl <rname> <user> <host> <channel name>
<Required Arguments>
<rname> - the rname of the server to connect to
<user> - User name
<host> - Host name
<node> - Channel / Queue name to remove the entry from

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Authserver

This demonstrates how to set security permissions when connection aempts are made
on the realm.

Application Source Code

See the online documentation for a code example.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 137

Channel / Queue / Realm Management

Universal Messaging C++ Client: Creating a Channel

This example demonstrates how to create a Universal Messaging channel
programmatically

Usage
makechan <rname> <channel name> [time to live] [capacity] [type] [cluster wide] [start eid]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to be created
[Optional Arguments]
[time to live] - The Time To Live parameter for the new channel (default: 0)
[capacity] - The Capacity parameter for the new channel (default: 0)
[type] - The type parameter for the new channel (default: S)
R - For a reliable (stored in memory) channel with persistent eids
P - For a persistent (stored on disk) channel
S - For a simple (stored in memory) channel with non-persistent eids
T - For a transient (no server based storage)
M - For a Mixed (allows both memory and persistent events) channel
[cluster wide] - Whether the channel is cluster wide. Will only work if the realm is part of a cluster
[start eid] - The initial start event id for the new channel (default: 0)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Deleting a Channel

This example demonstrates how to delete a Universal Messaging channel
programmatically.

Usage
deletechan <rname> <channel name>
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to be deleted

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Creating a Queue

This example demonstrates how to create a Universal Messaging queue
programmatically.

Usage
makequeue <rname> <queue name> [time to live] [capacity] [type] [cluster wide] [start eid]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - queue name parameter for the queue to be created
[Optional Arguments]

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 138

[time to live] - The Time To Live parameter for the new queue (default: 0)
[capacity] - The Capacity parameter for the new queue (default: 0)
[type] - The type parameter for the new queue (default: S)
R - For a reliable (stored in memory) queue with persistent eids
P - For a persistent (stored on disk) queue
S - For a simple (stored in memory) queue with non-persistent eids
T - For a transient (no server based storage)
M - For a Mixed (allows both memory and persistent events) queue
[cluster wide] - Whether the queue is cluster wide. Will only work if the realm is part of a cluster
[start eid] - The initial start event id for the new queue (default: 0)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Deleting a Queue

This example demonstrates how to delete a Universal Messaging queue
programmatically.

Usage
deletequeue <rname> <queue name>
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name parameter for the queue to be deleted

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Create Channel Join

Create a join between two Universal Messaging Channels

Usage
makechanneljoin <rname> <source channel name> <destination channel name> [max hops] [selector] [allow purge]
<Required Arguments>
<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join
<destination channel name> - Channel name parameter of the remote channel name to join
[Optional Arguments]
[max hops] - The maximum number of join hops a message can travel through
[selector] - The event filter std::string to use on messages travelling through this join
[allow purge] - boolean to specify whether purging is allowed (default : true)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Delete a Channel Join

Delete a join between two Universal Messaging Channels

Usage
deletechanneljoin <rname> <source channel name> <destination channel name>
<Required Arguments>

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 139

<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join
<destination channel name> - Channel name parameter of the remote channel name to join

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Purge Events From a Channel

Purge events from a Universal Messaging channel

Usage
purgechan <rname> <channel name> [start eid] [end eid] [selector] [wait]
<Required Arguments>
<rname> - URL of realm to connect to
<channel name> - Channel name parameter for the channel to purge to
[Optional Arguments]
[start eid] - The Event ID to start purging from
[end eid] - The Event ID to purge to
[selector] - The purge event filter string to use
[wait] - whether to wait for a response (synchronous) or not (asynchronous)

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Create Queue Join

Create a join between a Universal Messaging Queue and a Universal Messaging Channel

Usage
makequeuejoin <rname> <source channel name> <destination queue name> [max hops] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join
<destination queue name> - Queue name parameter of the remote queue name to join
[Optional Arguments]
[max hops] - The maximum number of join hops a message can travel through
[selector] - The event filter std::string to use on messages travelling through this join

Application Source Code

See the online documentation for a code example.

Universal Messaging C++ Client: Delete Queue Join

Delete a join between a Universal Messaging Queue and a Universal Messaging Channel

Usage
deletequeuejoin <rname> <source channel name> <destination queue name>
<Required Arguments>
<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join
<destination queue name> - Queue name parameter of the remote queue name to join

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 140

Application Source Code

See the online documentation for a code example.

Prerequisites

Universal Messaging C++ Prerequisites
Universal Messaging C++ makes use of certain non-standard C++ libraries. Before using
Universal Messaging C++, these libraries must be installed and the environment setup
accordingly.

POCO

Universal Messaging C++ uses the POCO C++ class libraries. The required POCO
libraries are distributed with Universal Messaging so no installation is required,
however please see the Environment Setup section below for further details on how to
compile and run Universal Messaging C++ applications using these libraries.

For more information, please visit the POCO website at hp://pocoproject.org/.

OpenSSL

OpenSSL is also required on the system running Universal Messaging C++. OpenSSL
is installed by default on most Unix based operating systems, however if you require
OpenSSL please refer to the OpenSSL website at hp://www.openSSL.org.

To subscribe to a channel using an SSL interface, extra requirements must be met. SSL
requires certificates to be set up on the client and server. The location of these certificates
must be known to the applications. For instructions on how to run Universal Messaging
C++ applications using an SSL enabled interface, please see "Client SSL" on page 140.

To learn more about SSL please see the SSL Concepts section.

Environment Setup

In order to compile and run applications using Universal Messaging C++, the
environment must be set up correctly. For example, to compile the applications the
compiler needs to know where the POCO libraries and headers are.

Environment setup is different for different operating systems:

"Environment Setup: Windows" on page 142

"Environment Setup: Linux" on page 143

Universal Messaging C++ Client SSL Configuration
Universal Messaging fully supports SSL Encryption. This section describes how to use
SSL in your Universal Messaging C++ client applications.

http://pocoproject.org/
http://www.openSSL.org

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 141

Once you have created an SSL enabled interface you will need to create certificates for
the server and the client. The Universal Messaging download contains a generator to
create some example Java key store files to be used by the Universal Messaging server
but may also be converted to Privacy Enhanced Mail Certificates (.pem) for use with a
Universal Messaging C++ client.

Please refer to the Enterprise Manager guide to create your own client certificates.
However please remember that in order to run a Universal Messaging C++ client, the
certificate provided must be in .pem format.

Running a Universal Messaging C++ Client

A client can be run anonymously which means that any client can subscribe to a channel
securely. The server can also be run with client validation such that only trusted clients
can connect. To enable or disable client certificate validation you can use the Universal
Messaging Enterprise Manager. Highlight the SSL enabled interface in the "Interface"
tab for your realm then open the "Certificates" tab and check or uncheck the box labelled
"Enable Client Cert Validation".

In order to run a client using SSL, the location of the key stores and the relevant
passwords need to be specified in nConstants. This can be done by seing up the
relevant environment variables (as necessary to run the sample applications), or by
calling the relevant set methods (defined in nConstants) from the application code.

Different environment variables need to be set depending on whether client certificate
validation is enabled:

With Client Certificate Validation

In this case, the client must hold a certificate to validate that it can be trusted. It must
also have a trust store such that it can validate that the server is trusted. The key store
located at CERTPATH also contains the client's private key and therefore must have a
password associated with it. Therefore the following environment variables must be set:

CERTPATH - The path where the client certificate is located

CERTPASS - The password for the client certificate

CAPATH - The path where the trust store is located

Without Client Certificate Validation

If client certificate validation has been disabled on the server then clients connect to
the server anonymously. This means that clients do not need to have a certificate and
therefore CERTPATH and CERTPASS do not need to be set. With Universal Messaging
C++ server-side validation is also set to be non-strict. This means that the client does
not need to have a trust store because it will not try to validate the server certificate,
therefore it is not necessary to set the CAPATH.

See the SSL Concepts section for more detailed information.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 142

Universal Messaging C++ Environment Setup : Windows
Once Universal Messaging has been installed, the sample applications can be run from
the "C++ Examples Command Prompt". The guide below explains how the Universal
Messaging C++ environment can be set up for compiling and running the applications
on a Windows 32-bit operating system.

The Universal Messaging C++ and POCO libraries can be found in the cplus\windows
\lib directory. In order to run Universal Messaging C++ applications, the location of
these libraries must be known to the system. There are several methods which can be
used to achieve this:

1. By updating the PATH environment variable in the command prompt used to
compile or run code:

C:\> set PATH=C:\Universal Messaging 5.0.xxxx\cplus\windows\lib;%PATH%

This will allow you to run applications in the current command prompt.

2. In order to update the PATH globally, you need to:

Open System in the Control Panel.

Expand the "Advanced" tab and click the buon labelled "Environment
Variables"

In the new window, the Path variable is found in the "System Variables" section.
Highlighting the variable and clicking "edit" will open another window.

In this new window you should append the location of the libraries to the
beginning of the "variable value" section. The default location of the libraries is:

C:\Universal Messaging 5.0.xxxx\cplus\windows\lib;

where xxxx is the build number and 5.0 is the version number.

3. Another way to make the libraries globally available is to copy them into the
Windows System32 folder located at:

C:\WINDOWS\System32

This directory is looked in by default for Runtime libraries.

To compile applications, the compiler will need to know the location of the POCO
lib files, Universal Messaging.lib and certain C++ header files. The libs are located in
cplus\windows\lib and the headers are located in cplus\include. The cplus\examples
directory contains the source code for several sample applications as well as project files
(.vcproj) which can be opened with Microsoft Visual Studio. Each application comes
pre-compiled, the executable (.exe) can be found in the application's directory (cplus
\examples\applicationName).

Compiling the Sample Applications

Once the environment has been set up as described above, the sample applications
can be built by either opening the application's project file in Microsoft Visual Studio

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 143

or by running vcbuild. In order to use vcbuild, either run the Microsoft Visual Studio
command prompt and ensure that the Universal Messaging environment is set up, or
run vsvars32.bat in a command prompt:
C:\> "C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\vsvars32.bat"

The environment will now be set up for running vcbuild. In order to compile an
application, navigate to the application's directory and run:
C:\Universal Messaging 5.0.xxxx\cplus\examples\channeliterator> vcbuild

This will compile the application in a new folder called Release. To clean this directory
so that the application can be recompiled, run:
C:\Universal Messaging 5.0.xxxx\cplus\examples\channeliterator> vcbuild /clean

After compilation the executable (.exe) will be present in a folder called Release found in
the same directory as the source code for the application.

Universal Messaging C++ Environment Setup : Linux
The guide below explains how the Universal Messaging C++ environment can be set up
for compiling and running the applications on Linux 64-bit operating system.

Running a Universal Messaging C++ application requires the system to know the
location of certain runtime libraries. OpenSSL is assumed to be installed and the location
known to the system. The POCO libraries and Universal Messaging.so are found in
cplus/linux64/lib. To make these libraries known to the system, several methods can be
used:

1. By seing the LD_LIBRARY_PATH environment variable:
export LD_LIBRARY_PATH=/home/username/Universal Messaging_5.0.xxxx/cplus/linux/lib:$LD_LIBRARY_PATH

This will allow programs to be compiled and run in the current shell.

2. In order to make the libraries globally available you can copy the libraries into /usr/
local/lib.

3. Another method to make the libraries globally available is by using ldconfig. This
requires root access to the system:

[root@host ~]$ cd /etc/ld.so.conf.d
[root@host ld.so.conf.d]$ echo /home/username/Universal Messaging_5.0.xxxx/cplus/linux/lib>nirvana.conf
[root@host ld.so.conf.d]$ ldconfig

The above code first navigates the the required directory. It then creates a new file
called nirvana.conf (this can be any file name with extension ".conf") containing the
location of the libraries. Once this file is created, ldconfig is run (must be run as root)
which creates the necessary links.

To compile a Universal Messaging C++ application, the location of the shared libraries
must be known by the system as described above. The compiler must also know the
location of certain C++ headers. These headers are found in cplus/include. The cplus/
example directory contains sample applications wrien using the Universal Messaging
C++ API as well as the make files which can be used to compile them. In order to

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 144

compile your own applications, please refer to these makefiles as a template. Each
application comes pre-compiled, the executable (no file extension) can be found in the
application's directory (cplus/examples/applicationName).

Compiling the Sample Applications

Once the environment has been set up as described above, the sample applications
can be compiled by navigating to the application's directory (cplus/examples/
applicationName) and running:
[user@host channeliterator]$ make

To clean this directory so that the application can be recompiled, run:
[user@host channeliterator]$ make clean

The executable (no file extension) will now be present in the same directory as the source
code after compilation.

Overview of Enterprise Developer Guide for C#
This guide describes how to develop and deploy C# .NET applications using Universal
Messaging, and assumes you already have Universal Messaging installed.

Universal Messaging Enterprise Client Development in C# .NET

"Universal Messaging Publish / Subscribe using Channels/Topics" on page 179

"Universal Messaging Publish / Subscribe using DataStreams and DataGroups" on
page 154

"Universal Messaging Message Queues" on page 162

"Universal Messaging Peer To Peer" on page 172

"Sample Applications" on page 179

"Prerequisites" on page 200

Publish / Subscribe using Channel Topics

Universal Messaging C# .NET - Creating a Universal Messaging Channel
Channels can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

In order to create a channel, first of all you must create an nSession object, which is your
effectively the logical and physical connection to a Universal Messaging Realm. This is
achieved by using an RNAME for your Universal Messaging Realm when constructing
the nSessionAributes object, as shown below:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa=new nSessionAttributes(RNAME);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 145

nSession mySession=nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then begin creating the channel
object. Channels have an associated set of aributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the channel, the aributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To create a channel, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setName("mychannel");
nChannel myChannel=mySession.createChannel(cattrib);

Now we have a reference to a Universal Messaging channel within the realm.

Universal Messaging C# .NET: Finding a Universal Messaging Channel
Finding a Universal Messaging Channel using the Universal Messaging C# .NET Client API

In order to find a channel programmatically you must create your nSession object, which
is effectively your logical and physical connection to a Universal Messaging Realm. This
is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAributes object, as shown below:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nSession mySession=nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then try to find the channel object.
Channels have an associated set of aributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the channel, the aributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To find a channel previously created, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setName("mychannel");
nChannel myChannel=mySession.findChannel(cattrib);

Universal Messaging C# .NET: How to publish events to a Universal Messaging
Channel
There are 2 types of publish available in Universal Messaging for channels:

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 146

"Reliable Publish" on page 146

"Transactional Publish" on page 146

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then commiing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the channel has been located, an event must be constructed prior to a publish call being
made to the channel.

For reliable publish, there are a number of method prototypes on a channel that allow us
to publish different types of events onto a channel. Here are examples of some of them.
Further examples can be found in the API documentation.
// Publishing a simple byte array message
myChannel.publish(new nConsumeEvent("TAG", (new UTF8Encoding()).GetBytes(message)));
//Publishing a dictionary (nEventProperties)
nEventProperties props = new nEventProperties();
props.put("bondname", "bond1");
props.put("price", 100.00);
nConsumeEvent evt = new nConsumeEvent("atag", props);
myChannel.publish(evt);
// Publishing multiple messages in one publish call
List<nConsumeEvent> Messages = new List<nConsumeEvent>();
Messages.Add(message1);
Messages.Add(message2);
Messages.Add(message3);
myChannel.publish(Messages);

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the channel located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been commied will the events become available to subscribers on the
channel.

Below is a code snippet for transactional publishing:
//Publishing a single event in a transaction
nTransactionAttributes attrib=new nTransasctionAttributes(myChannel);
nTransaction myTransaction=nTransactionFactory.create(attrib);
myTransaction.publish(new nConsumeEvent("TAG", new UTF8Encoding()).GetBytes(message)));
myTransaction.commit();
//Publising multiple events in a transaction
List<nConsumeEvent> Messages = new List<nConsumeEvent>();

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 147

Messages.Add(message1);
nTransactionAttributes tattrib = new nTransasctionAttributes(myChannel);
nTransaction myTransaction = nTransactionFactory.create(tattrib);
myTransaction.publish(Messages);
myTransaction.commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been commied or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was commied:
bool committed = myTransaction.isCommitted(true);

Universal Messaging C# .NET: Subscribe Asynchronously to a Channel
Asynchronous channel subscribers consume events from a callback on an interface that
all asynchronous subscribers must implement. We call this interface an nEventListener.

The listener interface defines one method called 'go' which when called will pass events
to the consumer as they are delivered from the Universal Messaging Realm Server.

A simple example of such a listener is shown below:
public class mySubscriber : nEventListener {
 public mySubscriber() {
 // construct your session and channel objects here
 // begin consuming events from the beginning of the channel (event id 0)
 myChannel.addSubscriber(this, 0);
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event " + event.getEventID());
 }
 public static void Main(String[] args) {
 new mySubscriber();
 }
}

Subscription with a Filtering Selector

Asynchronous consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:
nEventProperteis props = new nEventProperties();
props.put("BONDNAME", "bond1");

A developer can create a message selector string such as:
String selector = "BONDNAME='bond1'";

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 148

Passing this string into the addSubscriber method shown in the example code, will ensure
that the subscriber will only consume messages that contain the correct value for the
event property BONDNAME.

Universal Messaging C# .NET: Synchronous Consumers
Events can be synchronously consumed from a channel using a channel iterator object.
The iterator will sequentially move through the channel and return events as and when
the iterator getNext() method is called.

If you are using iterators so that you know when all events have been consumed from a
channel please note that this can also be achieved using an asynchronous subscriber by
calling the nConsumeEvent's isEndOfChannel() method.

An example of how to use a channel iterator is shown below:
public class myIterator {
 nChannelIterator iterator = null;
 public myIterator() {
 // construct your session and channel objects here
 // start the iterator at the beginning of the channel (event id 0)
 iterator = myChannel.createIterator(0);
 }
 public void start() {
 while (true) {
 nConsumeEvent event = iterator.getNext();
 go(event);
 }
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 myIterator itr = new myIterator();
 itr.start();
 }
}

Synchronous consumers can also be created using a selector, which defines a set of event
properties and their values that a consumer is interested in. For example if events are
being published with the following event properties:
nEventProperteis props =new nEventProperties();
props.put("BONDNAME", "bond1");

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bond1'";

And pass this string into the createIterator method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Universal Messaging C# .Net - Batched Subscribe
If a client application needs to subscribe to multiple channels it is more efficient to batch
these subscriptions into a single server call. This is achieved using the subscribe method

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 149

of nSession rather than first finding the nChannel object and then calling the subscribe
method of nChannel.

The following code snippet demonstrates how to subscribe to two Universal Messaging
channels in one server call:
public class myEventListener implements nEventListener {
 public void go(nConsumeEvent evt) {
 Console.WriteLine("Received an event!");
 }
}
public void demo(){
 nSubscriptionAttributes[] arr = new nSubscriptionAttributes[2];
 arr[0] = new nSubscriptionAttributes("myChan1", "", 0, myLis1);
 arr[1] = new nSubscriptionAttributes("myChan2", "", 0, myLis2);
 arr = mySession.subscribe(arr);
 for (int i = 0; i < arr.length; i++) {
 if (!arr[i].wasSuccessful()) {
 handleSubscriptionFailure(arr[i]);
 }
 //subscription successful
 }
}
public void handleSubscriptionFailure(nSubscriptionAttributes subAtts){
 Console.WriteLine(subAtts.getException().StackTrace);
}

The nSubscriptionAributes class is used to specify which channels to subscribe to.
The second two parameters of the constructor represent the selector to use for the
subscription and the event ID to subscribe from.

It is possible that the subscription may fail; for example, the channel may not exist or
the user may not have the required privileges. In this situation, calling wasSuccessful()
on the nSubscriptionAributes will return false and getException() will return the
exception that was thrown.

If the subscription is successful then the nChannel object can be obtained from the
nSubscriptionAributes as shown in the following code snippet:
 nChannel chan = subAtts.getChannel();

Universal Messaging C# .Net - Batched Find
In client applications, it is quite common to have multiple Channels or Queues that one
is trying to find. In these scenarios, the batched find call built into nSession is extremely
useful.

The following code snippet demonstrates how to find 2 Universal Messaging Channels
in one server call:
public void demo(){
 nChannelAttributes[] arr = new nChannelAttributes[2];
 nChannel[] channels = new nChannels[2];
 arr[0] = new nChannelAttributes("myChan1");
 arr[1] = new nChannelAttributes("myChan2");
 nFindResult[] results = mySession.find(arr);
 for (int i = 0; i < results.length; i++) {
 if (!results[i].wasSuccessful()) {
 handleSubscriptionFailure(results[i]);
 } else if (results[i].isChannel) {

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 150

 channels[i] = results[i].getChannel();
 }
 }
}
public void handleSubscriptionFailure(nFindResult result){
 Console.WriteLine(result.getException().StackTrace);
}

To perform the same operation for Queues, simply use the example above and exchange
nChannel for nQueue, and check each result returned to see if the isQueue() flag is set.

C# .NET: Durable Channel Consumers and Named Objects
Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Universal Messaging supports durable consumers through use of Universal Messaging
named objects as shown by the following example code.

Named objects can also be managed via the enterprise manager.

Asynchronous

An example of how to create a named object that begins from event id 0, persistent and
is used in conjunction with an asynchronous event consumer:
public class mySubscriber : nEventListener {
 public mySubscriber() {
 // construct your session and channel objects here
 // create the named object and begin consuming events
 // from the beginning of the channel (event id 0)
 nNamedObject nobj = myChannel.createNamedObject("unique1", 0, true);
 myChannel.addSubscriber(this , nobj);
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 new mySubscriber();
 }
}

Synchronous

An example of how to create a named object that begins from event id 0, persistent and
is used in conjunction with a synchronous event consumer:
public class myIterator {
 nChannelIterator iterator = null;
 public myIterator() {
 // construct your session and channel objects here
 // start the iterator
 nNamedObject nobj = myChannel.createNamedObject("unique2", 0, true);
 iterator = myChannel.createIterator(0);
 }
 public void start() {
 while (true) {
 nConsumeEvent event = iterator.getNext();
 go(event);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 151

 }
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 myIterator itr = new myIterator();
 itr.start();
 }
}

Both synchronous and asynchronous channel consumers allow message selectors to be
used in conjunction with named objects. Please see the API documentation for more
information.

There are also different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as
consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method:
public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event " + event.getEventID());
 event.ack();
}

Priority

Two subscribers can hold a subscription to the same named object. One is given priority
and will process events during normal operation. If, however, the subscriber with
priority is disconnected for whatever reason, and is unable to process events, the second
subscriber to that named object will take over and continue to process events as they
come in. This allows failover, with backup subscribers handling events if the subscriber
with priority goes down.

To do this, we simply create the subscriber with a boolean specifying if this subscriber
priority. Only one subscriber is allowed priority at any given time. An example of a
named object specifying priority is shown below:
nNamedObject named = myChannel.createNamedObject(subname, startEid, persistent, cluster, priority);

Universal Messaging C# .NET: The Merge Engine and Event Deltas
In order to streamline publish/subscribe applications it is possible to deliver only the
portion of an event's data that has changed rather than the entire event. These event
deltas minimise the amount of data sent from the publisher and ultimately delivered to
the subscribers.

The publisher simply registers an event and can then publish changes to individual keys
within the event. Subscribers can be configured to get callbacks which contain either the
entire event or just the changed key(s). Either way, only the key(s) that have changed are
delivered to the subscribing client.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 152

Publisher - Registered Events

In order to publish event deltas the publisher uses the Registered Event facility available
on a Universal Messaging Channel. Please note that the channel must have been
created with the Merge Engine and it must have a single Publish Key. The publish key
represents the primary key for the channel and the registered events. So for example if
you are publishing currency rates you would setup a channel as such
 nChannelAttributes cattr
 = new nChannelAttributes("RatesChannel", 0, 0, nChannelAttributes.SIMPLE_TYPE);
//
// This next line tells the server to Merge incoming events based on the publish
// key name and the name of the registered event
//
 cattr.useMergeEngine(true);
//
// Now create the Publish Key (See publish Keys for a full description
//
 nChannelPublishKeys[] pks = new nChannelPublishKeys[1];
 pks[0] = new nChannelPublishKeys("ccy", 1);
 cattr.setPublishKeys(pks);
//
// Now create the channel
//
 myChannel = mySession.createChannel(cattr);

At this point the server will have a channel created with the ability to merge incoming
events from Registered Events. The next step is to create the Registered events at the
publisher.
 nRegisteredEvent audEvent = myChannel.createRegisteredEvent("AUD");
 nEventProperties props = audEvent.getProperties();
 props.put("bid", 0.8999);
 props.put("offer", 0.9999);
 props.put("close", "0.8990");
 audEvent.commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to a ccy value
of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:
 props.put("bid", 0.9999);
 audEvent.commitChanges();

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Subscriber - nEventListener

The subscriber implements nEventListener in the usual way and does not need to do
anything different in order to receive either event deltas or snapshots containing the
result of one or more merge operations. The standard nEventListener will receive a
full event when the subscription is initiated. Thereafter it will receive only deltas. If at
any time the user is disconnected then it will receive a fresh update of the full event on
reconnection - followed by a resumption of delta delivery.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 153

If you wish to differentiate between snapshot events and delta events then the
nConsumeEvent aributes can be used as follows:
event.getAttributes().isDelta();

For more information on Universal Messaging publish / subscribe, please see the API
documentation.

Universal Messaging C# .NET: Event Fragmentation on Universal Messaging
Channels
By default, Universal Messaging will only allow events to be published if the size of the
event is less than 1Mb. Although this limit can be changed in the Enterprise Manager
(see Config tab, FanoutValues/MaxBufferSize), this is not generally recommended; it is
usually far more efficient to fragment large events into smaller chunks for publishing.

Universal Messaging can transparently fragment and reconstruct events. Thus, a
developer need only invoke one method call to fragment and publish an event. In the
same way, the resulting event will be transparently reconstructed when received by the
consumer. Under the hood, however, Universal Messaging will publish several smaller
messages representing the large event.

A summary of the code needed to publish and consume fragmented events is provided
below.

Publishing

The code to publish a large event using fragmentation is as follows:
 // The chunk_size is the max size (bytes) for each event. Multiple events will
 // be published of size chunk_size until the entire event has been sent.
 int chunk_size = 50000;
 fw = new nConsumeEventFragmentWriter(myChannel,chunk_size);
 // Rather than myChannel.publish(evt), we let the fragment writer handle the publish
 fw.publish(evt)

Subscribing

The code to consume a large event using fragmentation is as follows:
 // In this example the enclosing class implements nEventListener
 fr = new nConsumeEventFragmentReader(this);
 // Rather than directly add 'this' as the nEventListener, add the new fragment reader
 myChannel.addSubscriber(fr);

Universal Messaging C# .NET: Consuming a JMS Map Message
In order to enable Universal Messaging to support JMS, message types for JMS are
stored in a slightly different way from the normal nConsumeEvent.

When a Java client publishes a JMS Map Message, the map is serialised and
stored in the payload of the message. For a C# subscriber to consume a JMS Map
Message, this payload must be reconstructed as an nEventProperties using the
getPayloadAsDictionary method.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 154

Consuming a Map Message

A JMS map message will be received in the go callback in the same way as a normal
nConsumeEvent. Once received, the Map Message can be handled as follows:
 go(nConsumeEvent evt){
 if(evt.getAttributes().getType()==nEventAttributes.MapMessageType){
 nEventProperties map = evt.getPayloadAsDictionary();
 }
 }

Universal Messaging Java - Priority Messaging
In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same channel or queue. Universal Messaging provides the ability to
expedite messages based on a priority level. Messages with higher levels of priority are
able to be delivered to clients ahead of lower priority messages.

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:
nConsumeEvent evt;
 ...
evt.getAttributes().setPriority(9);

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis and the effects
become more noticeable as load increases.

It is possible to specify multiple levels of priority for events on the same channel. This
behaviour will cause the events to be delivered highest priority first. When doing this it
is important to realise that events on a channel will no longer be delivered on a first in
first out basis.

Publish / Subscribe using Datastreams and Datagroups

Universal Messaging C# - Publish / Subscribe Using DataStreams and
DataGroups
Publish / Subscribe is one of several messaging paradigms supported by Universal
Messaging. Universal Messaging DataGroups are lightweight structures designed to

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 155

facilitate Publish/Subscribe . When using DataGroups, user subscriptions are managed
remotely in a way that is transparent to subscribers. Universal Messaging Channels
provide an alternative style of Publish/Subscribe where the subscribers manage their
subscriptions directly.

There are two resources that are used when interacting with DataGroups: DataStreams
and DataGroups.

DataStreams

A Data Stream is a destination for published events. Publishers with appropriate
permissions can write events directly to Data Streams. A Universal Messaging client
session can optionally have a Data Stream, and receive events through it.

A Data Stream can be a member of one or more Data Groups.

DataGroups

Any event wrien to a Data Group will be propagated to all Data Streams that are
members of that Data Group.

Data Groups may also contain other Data Groups. Any event wrien to an upper level
Data Group will be wrien to all contained Data Groups, and thus to all contained Data
Streams.

Note that all Data Streams are automatically added to the realm server's Default Data
Group. Writing an event to the Default Data Group, therefore, will ensure it is delivered
to any client with a session configured to use a Data Stream.

This section demonstrates Universal Messaging pub / sub using DataGroups in C#, and
provides example code snippets for all relevant concepts.

Enabling DataGroups and Receiving Event Callbacks

Universal Messaging C# - DataStreamListener

If an nSession is created with an nDataStreamListener then it will receive asynchronous
callbacks via the onMessage implementation of the nDataStreamListener interface. The
nDataStreamListener will receive events when:

An event is published directly to this particular nDataStream

An event is published to any nDataGroup which contains this nDataStream

An event is published to an nDataGroup which contains a nested nDataGroup
containing this nDataStream

An example of how to create a session with an nDataStreamListener interface is
shown below:
public class DataGroupClient : nDataStreamListener{
 nSession mySession;
 public DataGroupClient(string realmURLs){
 nSessionAttributes nsa = new nSessionAttributes(realmURLs);
 mySession = nSessionFactory.create(nsa, this);
 mySession.init(this);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 156

 }
 ////
 // nDataStreamListener Implementation
 ////
 //Callback received when event is available
 public void onMessage(nConsumeEvent event){
 //some code to process the message
 }
}

Managing Datagroups

Universal Messaging C# - Creating and Deleting DataGroups

Creating Universal Messaging DataGroups

nDataGroups can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

In order to create a nDataGroup, first of all you must create an nSession object with
an nDataStreamListener. This is effectively your logical and physical connection to a
Universal Messaging Realm. This is achieved by using an RNAME for your Universal
Messaging Realm when constructing the nSessionAributes object, as shown below:
string[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nSession mySession=nSessionFactory.create(nsa);
mySession.init(this); // where this is an nDataStreamListener

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession object instance 'mySession', you can then create DataGroups. The
create DataGroup methods will return the nDataGroup if it already exists.

The code snippets below demonstrate the creation of nDataGroups:

Create a Single nDataGroup
nDataGroup myGroup = mySession.createDataGroups("myGroup");

Create Multiple nDataGroups
string[] groups = {"myFirstGroup", "mySecondGroup"};
IEnumerable<nDataGroup> myGroups = mySession.createDataGroups(groups);

Creating DataGroups with DataGroupListeners and ConflationAttributes

It is also possible to specify additional properties when creating DataGroups:

nDataGroupListener - To specify a listener for DataGroup membership changes

nConflationAributes - To specify aributes which control event merging and
delivery throling for the DataGroup

Now we have a reference to a Universal Messaging DataGroup it is possible to publish
events

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 157

Deleting Universal Messaging DataGroups

There are various deleteDataGroup methods available on nSession which will delete
DataGroups. It is possible to specify single nDataGroups or arrays of nDataGroups.

Universal Messaging C# - Managing DataGroup Membership

DataGroups are extremely lightweight from both client and server perspectives; a back-
end process, such as a Complex Event Processing engine, can simply create DataGroups
and then add or remove users (or even entire nested DataGroups) based on bespoke
business logic. A user who is removed from one DataGroup and added to another
will continue to receive events without any interruption to service, or indeed explicit
awareness that any DataGroup change has occurred.

This page details some of the typical operations that DataGroup management process
would carry out. Please see our "C# sample apps" on page 179 for more detailed
examples of DataGroup management.

Tracking Changes to DataGroup Membership (DataGroupListener)

The nDataGroupListener interface is used to provide asynchronous notifications
when nDataGroup membership changes occur. Each time a user (nDataStream) or
nDataGroup is added or removed from a nDataGroup a callback will be received.
public class datagroupListener : nDataGroupListener {
 nSession mySession;
 public datagroupListener(nSession session){
 mySession = session;
 //add this class as a listener for all nDataGroups on this Universal Messaging realm
 mySession.getDataGroups(this);
 }
 ////
 //DataGroupListener Implementation
 ///
 public void addedGroup (nDataGroup to, nDataGroup group, int count){
 //Called when a group has been added to the 'to' data group.
 //count is the number of nDataStreams that will receive any events published to this nDataGroup
 }
 public void addedStream (nDataGroup group, nDataStream stream, int count){
 //Called when a new stream has been added to the data group.
 }
 public void createdGroup (nDataGroup group){
 //Called when a group has been created.
 }
 public void deletedGroup (nDataGroup group){
 //Called when a group has been deleted.
 }
 public void deletedStream (nDataGroup group, nDataStream stream, int count, boolean serverRemoved){
 //Called when a stream has been deleted from the data group.
 //serverRemoved is true if the nDataStream was removed because of flow control
 }
 public void removedGroup (nDataGroup from, nDataGroup group, int count){
 //Called when a group has been removed from the 'from' data group.
 }
}

There are three ways in which the nDataGroupListener can be used:

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 158

Listening to an individual DataGroup

Listeners can be added to individual DataGroups when they are created or at any time
after creation. The code snippets illustrate both approaches:
mySession.createDataGroup(dataGroupName, datagroupListener);
myDataGroup.addListener(datagroupListener);

Listening to the Default DataGroup

The Default nDataGroup is a DataGroup to which all nDataStreams are added by
default. If you add a DataGroupListener to the defaiult DataGroup then callbacks will be
received when:

a nDataStream is connected/disconnected

a nDataGroup is created or deleted

Listening to all DataGroups on a Universal Messaging Realm

The code snippet below will listen on all nDataGroups (including the default
DataGroup).
mySession.getDataGroups(datagroupListener);

Adding and Removing DataGroup Members

The nDataGroup class provides various methods for adding and removing
nDataStreams and nDataGroups. Please see the nDataGroup API documentation for a
full list of methods. Examples of some of these are provided below:
 //Add a nDataStream (user) to a nDataGroup
 public void addStreamToDataGroup(nDataGroup group, nDataStream user){
 group.add(user);
 }
 //Remove a nDataStream (user) from a nDataGroup
 public void removeStreamFromDataGroup(nDataGroup group, nDataStream user){
 group.remove(user);
 }
 //Add a nDataGroup to a nDataGroup
 public void addNestedDataGroup(nDataGroup parent, nDataGroup child){
 parent.add(child);
 }
 //Remove a nDataGroup from a nDataGroup
 public void removeNestedDataGroup(nDataGroup parent, nDataGroup child){
 parent.remove(child);
 }

Universal Messaging C# - DataGroup Conflation Attributes

Enabling Conflation on DataGroups

Universal Messaging DataGroups can be configured so that conflation (merging and
throling of events) occurs when messages are published. Conflation can be carried
out in several ways and these are specified using an nConflationAributes object. The
ConflationAributes object is passed in to the DataGroup when it is created initially.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 159

The nConflationAributes object has two properties action and interval. Both of these are
passed into the constructor.

The action property specifies whether published events should replace previous events in
the DataGroup or be merged with them. These properties are defined by static fields:
nConflationAttributes.sMergeEvents
nConflationAttributes.sDropEvents

The interval property specifies the interval in milliseconds between event fanout to
subscribers. An interval of zero implies events will be fanned out immediately.

Creating a Conflation Attributes Object
//ConflationAttributes specifying merge events and no throttled delivery
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sMergeEvent, 0);
//ConflationAttributes specifying merge events and throttled delivery at 1 second intervals
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sMergeEvent, 1000);
//ConflationAttributes specifying drop events and throttled delivery at 1 second intervals
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sDropEvent, 1000);

Create a Single nDataGroup with Conflation Attributes
public class datagroupListener : nDataGroupListener {
 nSession mySession;
 nDataGroup myDataGroup;
 public datagroupListener(nSession session, nConflationAttributes confattribs, string dataGroupName){
 mySession = session;
 //create a DataGroup passing in this class as a nDataGroupListener and a ConflationAttributes
 myDataGroup = mySession.createDataGroup(dataGroupName, this, confattribs);
 }
}

Create Multiple nDataGroups with Conflation Attributes
nConflationAttributes confattribs = new nConflationAttributes(nConflationAttributes.sMergeEvent, 1000);
string[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession.createDataGroups(groups, confattribs);

Publishing Events to Conflated DataGroups With A Merge Policy

At this point the server will have a nDataGroup created with the ability to merge
incoming events from Registered Events. The next step is to create the Registered events
at the publisher.
 nRegisteredEvent audEvent = myDataGroup.createRegisteredEvent();
 nEventProperties props = audEvent.getProperties();
 props.put("bid", 0.8999);
 props.put("offer", 0.9999);
 props.put("close", "0.8990");
 audEvent.commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to a data group that
could be called 'aud'. We then set the properties relevant to the application, finally we
call commitChanges(), this will send the event, as is, to the server. At this point if the bid
was to change then that individual field can be published to the server as follows:
 props.put("bid", 0.9999);
 audEvent.commitChanges();

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 160

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

When a data group has been created with Merge conflation, all registered events
published to that data group will have their nEventProperties merged into the snapshot
event, before the delta event is delivered to the consumers.

When using Merge conflation with an interval (ie throling), all updates will be merged
into a conflated event (as well as the snapshot event) that will be delivered within the
chosen interval. For example, consider the following with a merge conflated group and
an interval set to 100ms (ie maximum of 10 events a second):
 Scenario 1
 t0 - Publish Message1, Bid=1.234 (This message will be immediately
 delivered, and merged into the snapshot)
 t10 - Publish Message2, Offer=1.234 (This message will be held as a
 conflation event, and merged into the snapshot)
 t20 - Publish Message3, Bid=1.345 (This message will be merged with the
 conflated event, and with the snapshot)
 t100 - Interval hit (Conflated event containing Offer=1.234,Bid=1.345
 is delivered to consumers)
 Interval timer reset to +100ms, ie t200
 t101 - Publish Message4, Offer=1.345 (This message will be held as a conflation event,
 and merged into the snapshot)
 Where t0...tn is the time frame in milliseconds from now.
 Scenario 2
 t0 - Publish Message1, Bid=1.234 (This message will be immediately
 delivered, and merged into the snapshot)
 t100 - Interval hit (Nothing is sent as there has been no update
 since t0)
 t101 - Publish Message2, Offer=1.234 (This message will be immediately
 delivered, and merged into the snapshot)
 Interval timer reset to +100ms, ie t201

Meanwhile, if any new consumers are added to the Data Group, they will always
consume the most up to date snapshot and then begin consuming any conflated updates
after that.

Publishing Events to Conflated DataGroups With A Drop Policy

If you have specified a "Drop" policy in your ConflationAributes then events are
published in the normal way rather than using nRegisteredEvent.

Consuming Conflated Events from a DataGroup

The subscriber doesn't need to do anything different to receive events from a DataGroup
with conflation enabled. If nRegisteredEvents are being delivered then the events will
contain only the fields that have changed will be delivered. In all other circumstances an
entire event is delivered to all consumers.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 161

Publishing to Datagroups

Universal Messaging C# - DataGroups Event Publishing

You can get references to any DataGroup from the nSession object. There are various
writeDataGroup methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataGroups.
myDataGroup = mySession.getDataGroup("myGroup");
nEventProperties props = new nEventProperties();
//You can add other types in a dictionary object
props.put("key0string"+x, "1"+x);
props.put("key1int", (int) 1);
props.put("key2long", (long) -11);
nConsumeEvent evt1 = new nConsumeEvent(props, buffer);
//Publish the event
mySession.writeDataGroup(evt1, myDataGroup);

Universal Messaging C# - DataStream Event Publishing

You can get references to any nDataStream (user) from the nSession object if you
call getDefaultDataGroup(). You can also access nDataStreams by implementing the
nDataGroupListener interface. Please see DataGroup management for more information.
This will deliver callbacks as users are connected/disconnected. There are various
writeDataStream methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataStreams.
nEventProperties props = new nEventProperties();
//You can add other types in a dictionary object
props.put("key0string"+x, "1"+x);
props.put("key1int", (int) 1);
props.put("key2long", (long) -11);
nConsumeEvent evt1 = new nConsumeEvent(props, buffer);
//Publish the event
mySession.writeDataStream(evt1, myDataStream)

Universal Messaging Java - Priority Messaging

In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same datagroup. Universal Messaging provides the ability to expedite
messages based on a priority level. Messages with higher levels of priority are able to be
delivered to clients ahead of lower priority messages.

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:
nConsumeEvent evt;
 ...
evt.getAttributes().setPriority(9);

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 162

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis and the effects
become more noticeable as load increases.

It is possible to specify multiple levels of priority for events on the same datagroup. This
behaviour will cause the events to be delivered highest priority first. When doing this it
is important to realise that events on a datagroup will no longer be delivered on a first in
first out basis.

Message Queues

Universal Messaging C# .NET Universal Messaging Message Queues
Universal Messaging provides message queue functionality through the use of queue
objects. Queues are the logical rendezvous point for publishers (producers) and
subscribers (consumers) of data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

Universal Messaging also supports non destructive reads (peeks) from queues, which
enable consumers to see what events are on a queue without removing them from the
queue. Any event which has been peeked will still be queued for popping in the normal
way. The Universal Messaging Enterprise Manager also supports the ability to visually
peek a queue using its snoop capability.

This section demonstrates how Universal Messaging message queues work, and provide
example code snippets for all relevant concepts.

Universal Messaging C# .NET: Creating a Universal Messaging Queue
In order to create a queue, first of all you must create your nSession object, which is your
effectively your logical and physical connection to a Universal Messaging Realm. This
is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAributes object, as shown below:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nSession mySession = nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 163

We can use the nSession object instance mySession to create the queue object. Queues
have an associated set of aributes that define their behaviour within the Universal
Messaging Realm Server. As well as the name of the queue, the aributes determine the
availability of the events published to a queue to any consumers wishing to consume
them,

To create a queue, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setChannelMode(nChannelAttributes.QUEUE_MODE);
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setName("myqueue");
nQueue myQueue = mySession.createQueue(cattrib);

Now we have a reference to a Universal Messaging queue within the realm.

Universal Messaging C# .NET: Finding a Universal Messaging Queue
In order to find a queue, first of all the queue must be created. This can be achieved
through the Universal Messaging Administration Tool, or programmatically. First of
all you must create your nSession object, which is effectively your logical and physical
connection to a Universal Messaging Realm. This is achieved by using the correct
RNAME for your Universal Messaging Realm when constructing the nSessionAributes
object, as shown below:
String[] RNAME = ({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nSession mySession = nSessionFactory.create(nsa);
mySession.init();

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then try to find the queue object.
Queues have an associated set of aributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the queue, the aributes
determine the availability of the events published to a queue to any consumers wishing
to consume them,

To find a queue previously created, we do the following:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setName("myqueue");
nQueue myQueue = mySession.findQueue(cattrib);

Now we have a reference to a Universal Messaging queue within the realm.

How to publish events to a Universal Messaging Queue
There are 2 types of publish available in Universal Messaging for queues:

"Reliable Publish" on page 164

"Transactional Publish" on page 164

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 164

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then commiing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the queue has been located, an event must be constructed prior to a publish call being
made to the queue.

The following code snippet shows how to reliably publish events to a queue. Further
examples can be found in the API documentation.
// Publishing a simple byte array message
myChannel.publish(new nConsumeEvent("TAG", (new UTF8Encoding()).GetBytes(message)));
// Publishing multiple messages in one publish call
List Messages = new List();
Messages.Add(message1);
Messages.Add(message2);
Messages.Add(message3);
myChannel.publish(Messages);

Transactional Publish

Transactional publishing provides us with a method of verifying that the server receives
the events from the publisher, and provides guaranteed delivery.

There are similar prototypes available to the developer for transaction publishing. Once
we have established our session and our queue, we then need to construct our events
and our transaction, then publish these events to the transaction. The transaction will
then be commied and the events available to consumers to the queue.

Below is a code snippet demonstrating transactional publishing:
List Messages = new List();
Messages.Add(message1);
nTransactionAttributes tattrib = new nTransasctionAttributes(myChannel);
nTransaction myTransaction = nTransactionFactory.create(tattrib);
myTransaction.publish(Messages);
myTransaction.commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction
may be unclear. To verify whether a transaction has been commied or aborted, the
transaction can be queried to determine whether the events within the transactional
were successfully received by the Universal Messaging Realm Server:
bool committed = myTransaction.isCommitted(true);

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 165

Examples

For more information on Universal Messaging Message Queues, please see the API
documentation.

Universal Messaging C# .NET: Asynchronously Consume a Universal
Messaging Queue
Asynchronous queue consumers consume events from a callback on an interface that all
asynchronous consumers must implement. We call this interface an nEventListener. The
listener interface defines one method called go which when called will pass events to the
consumer as they are delivered from the Universal Messaging Realm Server.

An example of an asynchronous queue reader is shown below:
public class myAsyncQueueReader : nEventListener {
 nQueue myQueue = null;
 public myAsyncQueueReader() {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nQueueReaderContext ctx = new nQueueReaderContext(this, 10);
 nQueueAsyncReader reader = myQueue.createAsyncReader(ctx);
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 new myAsyncQueueReader();
 }
}

Subscription with a Filtering Selector

Asynchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:
nEventProperteis props = new nEventProperties();
props.put("BONDNAME", "bond1");

A developer can create a message selector string such as:
String selector = "BONDNAME='bond1'";

Passing this string into the constructor for the nQueueReaderContext object shown in the
example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 166

Universal Messaging C# .NET: Synchronously Consume a Universal
Messaging Queue
Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

An example of a synchronous queue reader is shown below:
public class mySyncQueueReader {
 nQueueSyncReader reader = null;
 nQueue myQueue = null;
 public mySyncQueueReader() {
 // construct your session and queue objects here
 // construct the queue reader
 nQueueReaderContext ctx = new nQueueReaderContext(this, 10);
 reader = myQueue.createReader(ctx);
 }
 public void start() {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();
 go(event);
 }
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 mySyncQueueReader sqr = new mySyncQueueReader();
 sqr.start();
 }
}

Subscription with a Filtering Selector

Synchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:
nEventProperteis props = new nEventProperties();
props.put("BONDNAME", "bond1");

A developer can create a message selector string such as:
String selector = "BONDNAME='bond1'";

Passing this string into the constructor for the nQueueReaderContext object shown in the
example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

C# .NET: Asynchronous Transactional Queue Consumption
Asynchronous transactional queue consumers consume events from a callback on an
interface that all asynchronous consumers must implement. We call this interface an
nEventListener. The listener interface defines one method called go which when called will

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 167

pass events to the consumer as they are delivered from the Universal Messaging Realm
Server.

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional asynchronous queue reader is shown below:
public class myAsyncTxQueueReader : nEventListener {
 nQueueAsyncTransactionalReader reader = null;
 nQueue myQueue = null;
 public myAsyncTxQueueReader() {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nQueueReaderContext ctx = new nQueueReaderContext(this, 10);
 reader = myQueue.createAsyncTransactionalReader(ctx);
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 reader.commit();
 }
 public static void Main(String[] args) {
 new myAsyncTxQueueReader();
 }
}

As previously mentioned, the big difference between a transactional asynchronous
reader and a standard asynchronous queue reader is that once events are consumed
by the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been commied, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with Event IDs 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Subscription with a Filtering Selector

Asynchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:
nEventProperteis props = new nEventProperties();
props.put("BONDNAME", "bond1");

A developer can create a message selector string such as:
String selector = "BONDNAME='bond1'";

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 168

Passing this string into the constructor for the nQueueReaderContext object shown in the
example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

C# .NET: Synchronous Transactional Queue Consumption
Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional synchronous queue reader is shown below:
public class mySyncTxQueueReader {
 nQueueSyncTransactionReader reader = null;
 nQueue myQueue = null;
 public mySyncTxQueueReader() {
 // construct your session and queue objects here
 // construct the transactional queue reader
 nQueueReaderContext ctx = new nQueueReaderContext(this, 10);
 reader = myQueue.createTransactionalReader(ctx);
 }
 public void start() {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();
 go(event);
 // commit each event consumed
 reader.commit(event.getEventID());
 }
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 mySyncTxQueueReadersqr = new mySyncTxQueueReader();
 sqr.start();
 }
}

As previously mentioned, the big difference between a transactional synchronous
reader and a standard synchronous queue reader is that once events are consumed by
the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been commied, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with Event IDs 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 169

Subscription with a Filtering Selector

Synchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:
nEventProperteis props = new nEventProperties();
props.put("BONDNAME", "bond1");

A developer can create a message selector string such as:
String selector = "BONDNAME='bond1'";

Passing this string into the constructor for the nQueueReaderContext object shown in the
example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

Universal Messaging C# .NET: Browse (Peek) a Universal Messaging Queue
Universal Messaging provides a mechanism for browsing (peeking) queues. Queue
browsing is a non-destructive read of events from a queue. The queue reader used
by the peek will return an array of events, the size of the array being dependent on
how many events are in the queue, and the window size defined when your reader
context is created. For more information, please see the Universal Messaging Client API
documentation.

An example of a queue browser is shown below:
public class myQueueBrowser {
 nQueueReader reader = null;
 nQueuePeekContext ctx = null;
 nQueue myQueue = null;
 public myQueueBrowser() {
 // construct your session and queue objects here
 // create the queue reader
 reader = myQueue.createReader(new nQueueReaderContext());
 ctx = nQueueReader.createContext(10);
 }
 public void start() {
 bool more = true;
 long eid =0;
 while (more) {
 // browse (peek) the queue
 nConsumeEvent[] evts = reader.peek(ctx);
 for (int x=0; x < evts.Length; x++) {
 go(evts[x]);
 }
 more = ctx.hasMore();
 }
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 myQueueBrowser qbrowse = new myQueueBrowser();
 qbrowse.start();
 }

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 170

}

Subscription with a Filtering Selector

Queue browsers can also be created using a selector, which allows the peek to be filtered
based on event properties and their values.

For example, assume some events are being published with the following event
properties:
nEventProperteis props = new nEventProperties();
props.put("BONDNAME", "bond1");

A developer can create a message selector string such as:
String selector = "BONDNAME='bond1'";

Passing this string into the constructor for the nQueuePeekContext object shown in the
example code will ensure that the browser will only receive messages that contain the
correct value for the event property BONDNAME.

For more information on Universal Messaging Message Queues, please see the API
documentation.

Universal Messaging C# .NET: Event Fragmentation on Universal Messaging
Queues
By default, Universal Messaging will only allow events to be published if the size of the
event is less than 1Mb. Although this limit can be changed in the Enterprise Manager
(see Config tab, FanoutValues/MaxBufferSize), this is not generally recommended; it is
usually far more efficient to fragment large events into smaller chunks for publishing.

Universal Messaging can transparently fragment and reconstruct events. Thus, a
developer need only invoke one method call to fragment and publish an event. In the
same way, the resulting event will be transparently reconstructed when received by the
consumer. Under the hood, however, Universal Messaging will publish several smaller
messages representing the large event.

A summary of the code needed to publish and consume fragmented events is provided
below.

Publishing

The code to publish a large event using fragmentation is as follows:
 // The chunk_size is the max size (bytes) for each event. Multiple events will
 // be published of size chunk_size until the entire event has been sent.
 int chunk_size = 50000;
 fw = new nConsumeEventFragmentWriter(myQueue,chunk_size);
 // Rather than myQueue.publish(evt), we let the fragment writer handle the publish
 fw.publish(evt)

Subscribing

There are various approachs to consuming fragmented events from queues:

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 171

Asynchronous Queue Consumer
public class myAsyncQueueReader : nEventListener {
 nQueue myQueue = null;
 public myAsyncQueueReader() {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 new myAsyncQueueReader();
 }
}

Asynchronous Transactional Queue Consumer
public class myAsyncTxQueueReader : nEventListener {
 nQueueAsyncTransactionalReader reader = null;
 nQueue myQueue = null;
 public myAsyncTxQueueReader() {
 // construct your session and queue objects here
 // begin consuming events from the queue
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);
 reader = myQueue.createAsyncTransactionalReader(ctx);
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 reader.commit();
 }
 public static void Main(String[] args) {
 new myAsyncTxQueueReader();
 }
}

Synchronous Queue Consumer
public class mySyncQueueReader {
 nQueueSyncReader reader = null;
 nQueue myQueue = null;
 public mySyncQueueReader() {
 // construct your session and queue objects here
 // construct the queue reader
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);
 reader = myQueue.createFragmentReader(ctx);
 }
 public void start() {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();
 go(event);
 }
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 172

 mySyncQueueReader sqr = new mySyncQueueReader();
 sqr.start();
 }
}

Synchronous Transactional Queue Consumer
public class mySyncTxQueueReader {
 nQueueSyncTransactionReader reader = null;
 nQueue myQueue = null;
 public mySyncTxQueueReader() {
 // construct your session and queue objects here
 // construct the transactional queue reader
 nConsumeEventFragmentReader cefr = new nConsumeEventFragmentReader(this);
 nQueueReaderContext ctx = new nQueueReaderContext(cefr, 10);
 reader = myQueue.createTransactionalFragmentReader(ctx);
 }
 public void start() {
 while (true) {
 // pop events from the queue
 nConsumeEvent event = reader.pop();
 go(event);
 // commit each event consumed
 reader.commit(event.getEventID());
 }
 }
 public void go(nConsumeEvent event) {
 Console.WriteLine("Consumed event "+event.getEventID());
 }
 public static void Main(String[] args) {
 mySyncTxQueueReadersqr = new mySyncTxQueueReader();
 sqr.start();
 }
}

Peer to Peer

Universal Messaging C# .NET: Peer to Peer Services
Universal Messaging provides a rich set of APIs that provide developers with the ability
to create Peer to Peer (P2P) applications. We call these Peer to Peer applications Services.
This guide will demonstrate how Universal Messaging Peer to Peer Services work, and
provides examples code snippets for all relevant concepts.

P2P Service Components

There are two parts to a Peer to Peer Service in Universal Messaging: a Server Service and
a Client.

When a Server Service is running, it is visible within the Universal Messaging
Namespace and is available to any Client wishing to connect. The Universal Messaging
Realm Server acts as the bridge that connects Clients to Server Services. Each Server
Service can support multiple Clients.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 173

Universal Messaging Peer to Peer Client and Server Services

The Server Service is a process that registers itself with a Universal Messaging Realm so it
is visible to Clients wishing to connect.

A Universal Messaging Peer to Peer Service Client is a process that connects to a
Universal Messaging Realm, obtains a reference to a Server Service and begins
communicating with it.

When a Client connects to the Server Service, all communication between the Client
and server service takes place through the Universal Messaging Realm, using Universal
Messaging's standard communication protocols.

P2P Service Types

There are two types of Universal Messaging Peer to Peer Services:

Event-based Services

Universal Messaging Peer to Peer Event-based Services communicate via events
which are published by the Event-based Client, and received and responded to by
the Event-based Server Service.

Stream-based Services

Universal Messaging Peer to Peer Stream-based Services communicate via input
and output streams on both the Client and Server Service. Anything wrien to the
output stream of the Stream-based Service Client is received via the input stream of
the Stream-based Server Service and vice versa.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 174

Universal Messaging C# .NET: Peer to Peer Event-based Clients
Universal Messaging Peer to Peer Event-based Services communicate via events which are
published by a Client, and received and responded to by an Event-based Server Service.

The Universal Messaging P2P API is simple to use. There are only a very small number
of objects and calls that need to be made in order for you to construct a P2P Service
Client, connect to a Realm, and find or list available Services.

Creating an Event-based Service Client

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can find our Service, or obtain a list of
available Services:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);
nServiceInfo info = factory.findService("example");
nEventService serv = (nEventService)factory.connectToService(info);

Once the Client has connected to an instance of a Server Service, the developer's custom
business logic can then be applied.

Sending Events to Server Services

Once you have connected to the Service, and you have an instance of the Service, you
can then begin publishing your Universal Messaging events to the Service, by using the
following command:
serv.write(new nConsumeEvent("TAG", (new UTF8Encoding()).GetBytes("Hello World")));

To receive responses from the Server Service, the client Service can receive events either
synchronously or asynchronously via a callback interface.

Synchronously Receiving Events from the Server Service

Clients can synchronously read incoming events. The following code will return an
event once one is received from the Server Service:
nConsumeEvent event = serv.read();

Asynchronously Receiving Events from the Server Service

A Client may alternatively asynchronously receive events from the Event-based Server
Service by implementing the nEventServiceListener interface and its receivedEvent
method:
public void receivedEvent(nConsumeEvent evt) {
 Console.WriteLine("Consumed event " + event.getEventID());
}

You will also need to call registerListener(your_listener_class) on the
nEventService object.

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 175

Universal Messaging C# .NET: Peer to Peer Event-based Server Services
Universal Messaging Peer to Peer Event-based Services communicate via events which are
published by an Event-based Client, and received and responded to by an Event-based
Server Service.

Creating an Event-based Server Service

Firstly, in the same way that Publish/Subscribe and Message Queues use an RNAME,
the P2P API also requires one to connect to the Realm. The code snippet below shows
how this is achieved:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can construct our Event-based Server
Service:
nServerService Server = factory.createEventService("example", "Example Event-based Service");
while (true) {
 nEventService serv = (nEventService) server.accept();
 Stream inputstream = serv.getInputStream();
 Stream outputstream = serv.getOutputStream();
 // your logic goes here....
 // e.g. query a database, make a connection, send an email, etc.
 Console.WriteLine("Got connection " + serv.getServiceInfo().getName());
}

The code snippet above shows how to create an Event-based Server Service and wait for
Client connections. Developers are free to decide how the Server Service should respond
once a Client connects to the Server Service.

When connections are made to the Event-based Server Service, the Service can receive
events from Clients either synchronously or asynchronously via a callback interface.

Synchronously Receiving Events from the Client

The Server Service can synchronously read incoming events. The following code will
return an event once one is received from the Client:
nConsumeEvent event = serv.read();

Asynchronously Receiving Events from the Client

The Server Service may alternatively asynchronously receive events by implementing
the nEventServiceListener interface and its receivedEvent method:
public void receivedEvent(nConsumeEvent evt) {
 Console.WriteLine("Consumed event " + event.getEventID());
}

You will also need to call registerListener(your_listener_class) on the
nEventService object.

M
Even Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 176

Sending Events to Clients

You can send events back to the Client as follows:
serv.write(new nConsumeEvent("TAG", (new UTF8Encoding()).GetBytes("Hello World")));

Universal Messaging C# .NET: Peer to Peer Stream-based Clients
Universal Messaging Peer to Peer Stream-based Services communicate via input and
output streams on both the Stream-based Client and the Stream-based Server Service.

Anything wrien to the output stream of the Stream-based Service Client is received via
the input stream of the Stream-based Server Service and vice versa.

Creating a Stream-based Client

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can find our Service, or obtain a list of
available Services:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);
nServiceInfo info = factory.findService("example");
nEventService serv = (nEventService)factory.connectToService(info);

Once the Client has connected to an instance of a Server Service, the developer's custom
business logic can then be applied.

Writing Client Data to a Stream-based Server Service

Once a client has connected to a Service, the client can write data to the Service. The
client can obtain a reference to the Service's Output Stream object and then write to it as
follows:
Stream oStream = serv.getOutputStream();
oStream.write((new UTF8Encoding()).GetBytes("Hello World"));
oStream.flush();

Receiving Responses from a Stream-based Server Service

To receive responses from the Service, the client must first obtain a reference to the
Service's Input Stream object, and then read from it as follows:
Stream iStream = serv.getInputStream();
byte[] buff = new byte[100];
try {
 int i = 0;
 while ((i = iStream.ReadByte()) != -1)
 {
 Console.Write((char)i);
 }
} catch (Exception ex) {
}

M
Odd Header

The Enterprise Client APIs

Universal Messaging Developer Guide Version 9.6 177

Universal Messaging C# .NET: Peer to Peer Stream-based Server Services
Universal Messaging Peer to Peer Stream-based Services communicate via input and
output streams on both the Stream-based Client and the Stream-based Server Service.

Anything wrien to the output stream of the Stream-based Service Client is received via
the input stream of the Stream-based Server Service and vice versa.

Creating an Stream-based Server Service

Firstly, in the same way that Publish/Subscribe and Message Queues use an RNAME,
the P2P API also requires one to connect to the Realm. The code snippet below shows
how this is achieved:
String[] RNAME=({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes(RNAME);
nServiceFactory factory = new nServiceFactory(nsa);

The nServiceFactory object establishes a connection with the Universal Messaging
Realm, and is the factory object from which we can construct our Stream-based Server
Service:
nServerService Server = factory.createStreamService("example", "Example Stream-based Service");
while (true) {
 nEventService serv = (nEventService) server.accept();
 Stream inputstream = serv.getInputStream();
 Stream outputstream = serv.getOutputStream();
 // your logic goes here....
 // e.g. query a database, make a connection, send an email, etc.
 Console.WriteLine("Got connection " + serv.getServiceInfo().getName());
}

The code snippet above shows how to create an Stream-based Server Service and wait
for Client connections. Developers are free to decide how the Server Service should
respond once a Client connects to the Server Service.

When a connection is made to the Stream-based Server Service, the Service has an Input
Stream (which can be read from), and an Output Stream (which can be wrien to).

Receiving Data from a Stream-based Client

The Server Service's Input Stream represents data coming from the client. The following
code snippet shows how to obtain this Input Stream:
Stream iStream = serv.getInputStream();

Sending Data to a Stream-based Client

The Server Service's Output Stream represents data going to the client. The following
code snippet shows how to obtain this Output Stream:
Stream oStream = serv.getOutputStream();

M
Even Header

Universal Messaging Developer Guide Version 9.6 178

Google Protocol Buffers

Google Protocol Buffers

Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and
this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffer in Java, C++ and Python, and third party
libraries provide support for many other languages including Flex, .NET, Perl, PHP
etc. Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer event through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in nirvana, allowing for server-side
filtering of Google Protocol Buffer events, which can be sent on resources just like a
normal nirvana Events. The server side filtering of messages is achieved by providing
the server with a description of the data structures(constructed at the .proto compile
time, using the standard protobuf compiler and the --descriptor_set_out option). The
default location the sever looks in for descriptor files is /plugins/ProtobufDescriptors
and this can be configured through the enterprise manager. The server will monitor
this folder for changes, and the frequency of these updates can be configured through
the enterprise manager. The server can then use to extract the key value pairs from the
binary Protobuf message and filter message delivery based on user requirements.

To create a nProtobuf event, simply build your protocol buffer as normal and pass it into
the nProtobuf constructor along with the message type used.
nProtobufEvent evt = new nProtobufEvent(buffer,"example");
myChannel.publish(evt);

nProtobuf events are received by subscribers in the normal way.

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the EM is no running on the same machine as the server. To enable this, the

M
Odd Header

Universal Messaging Developer Guide Version 9.6 179

server outputs a descriptor set to a configurable directory (by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Examples

Universal Messaging C# .NET

Usage

Application Source Code

Publish / Subscribe using Channel Topics

Universal Messaging C# .NET - Publish / Subscribe

Publish / Subscribe is one of several messaging paradigms available in Universal
Messaging. Universal Messaging Channels are a logical rendezvous point for publishers
(producers) and subscribers (consumers) or data (events).

Universal Messaging DataStreams and DataGroups provide an alternative style of
Publish/Subscribe where user subscriptions can be managed remotely on behalf of
clients.

Universal Messaging Channels equate to Topics if you are using the Universal
Messaging Provider for JMS.

Under the publish / subscribe paradigm, each event is delivered to each subscriber once
and only once per subscription, and is not typically removed from the channel as a result
of the message being consumed by an individual client.

This section demonstrates how Universal Messaging pub / sub works in C#, and
provides example code snippets for all relevant concepts:

Universal Messaging C# .NET: Channel Publisher

This example publishes events onto a Universal Messaging Channel.

Usage
publish <rname> <channel name> [count] [size]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

M
Even Header

Universal Messaging Developer Guide Version 9.6 180

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Transactional Channel Publisher

This example publishes events transactionally to a Universal Messaging Channel. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commied successfully.

Usage
txpublish <rname> <channel name> [count] [size] [tx size]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[tx size] - The number of events per transaction (default: 1)

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Asynchronous Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel. See also: " Synchronous Subscription" on page 180

Usage
subscriber <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Synchronous Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel. See also: " Asynchronous Subscription" on page 180

Usage
channeliterator <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to

M
Odd Header

Universal Messaging Developer Guide Version 9.6 181

<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Asynchronous Named Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel using a named object.

Usage
namedsubscriber <rname> <channel name> [name] [start eid] [debug] [count] [auto ack] [cluster wide] [persistent] [selector] [priority]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[name] - Specifies the unique name to be used for a named subscription (default: OS username)
[start eid] - The Event ID to start subscribing from if the named subscriber needs to be created (doesn't exist)
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information (default: 1000)
[auto ack] - Specifies whether each event will be automatically acknowledged by the api (default: true)
[cluster wide] - Specifies whether the named object is to be used across a cluster (default: false)
[persistent] - Specifies whether the named object state is to be stored to disk or held in server memory (default: false)
[selector] - The event filter string to use
[priority] - Whether priority is enabled for this named subscriber (default: false)

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Synchronous Named Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel using a named object and a channel iterator.

Usage
namedchanneliterator <rname> <channel name> [name] [start eid] [debug] [count] [cluster wide] [persistent] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[name] - Specifies the unique name to be used for a named subscription (default: OS username)
[start eid] - The Event ID to start subscribing from if name subscriber is to be created (doesn't already exist)
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait for before printing out summary information (default: 1000)
[cluster wide] - Specifies whether the named object is to be used across a cluster (default: false)
[persistent] - Specifies whether the named object state is to be stored to disk or held in server memory (default: false)
[selector] - The event filter string to use

M
Even Header

Universal Messaging Developer Guide Version 9.6 182

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Event Delta Delivery

This example shows how to deliver only changed keys within events, as opposed to
entire events.

Usage
RegisteredEvent <rname> <channel name> [count] [size]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Batching Server Calls

This example shows how to find multiple channels and queues in one call to the server.

Usage
findChannelsAndQueues <RNAME> <name> <name> <name>.....
<Required Arguments>
<RNAME> - The RNAME of the realm you wish to connect to
<name> - The name(s) of the channels to find
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Batching Subscribe Calls

This example of batching shows how to subscribe to multiple Universal Messaging
Channels in one server call.

Usage
sessionsubscriber <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Folder name parameter for the location of the channels to subscribe to
[Optional Arguments]
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

M
Odd Header

Universal Messaging Developer Guide Version 9.6 183

Application Source Code

See the online documentation for a code example.

Publish / Subscribe using Datastreams and Datagroups

Universal Messaging C# .NET: DataStream Listener

This example shows how to initialise a session with a DataStream listener and start
receiving data.

Usage
DataGroupListener <rname> [debug] [count]
<Required Arguments>
<rname> - the rname of the server to connect to
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: DataGroup Publishing with Conflation

This example shows how to publish to DataGroups, with optional conflation.

Usage
DataGroupPublish <rname> <group name> <conflate> [count] [size] [conflation merge or drop] [conflation interval
<Required Arguments>
<rname> - the rname of the server to connect to
<group name> - Data group name parameter to publish to
<conflate> - enable conflation true or false
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[conflation merge or drop] - merge to enable merge or drop to enable drop (default: merge)
[conflation interval] - the interval for conflation to publish(default: 500

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: DataGroup Manager

This is an example of how to run a DataGroup manager application

Usage
dataGroupsManager <rname> <Properties File Location>
<Required Arguments>
<rname> - the rname of the server to connect to
<Properties File Location Data Groups> - The location of the property file to use for mapping data groups to data groups
<Properties File Location Data Streams> - The location of the property file to use for mapping data streams to data groups
<Auto Recreate Data Groups> - True or False to auto recreate data groups takes the data group property file and creates channels

M
Even Header

Universal Messaging Developer Guide Version 9.6 184

 a group for every name mentioned on the left of equals sign
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Delete DataGroup

This is a simple example of how to delete a DataGroup

Usage
deleteDataGroups <RNAME> <data group name> [delete type]
<Required Arguments>
<RNAME> - RNAME for the realm to connect to
<data group name> - Data group name parameter to delete
<Optional Arguments>
[Delete Type] - Data group delete by string(1) or object(2) default:1
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: DataGroup Delta Delivery

This example shows how to use delta delivery with DataGroups.

Usage
DataGroupDeltaDelivery <rname> [count]
<Required Arguments>
<rname> - the rname of the server to connect to
<Optional Arguments>
<count> - the number of times to commit the registered events - default : 10

Application Source Code

See the online documentation for a code example.

Message Queues

Universal Messaging C# .NET: Queue Publisher

This example publishes events onto a Universal Messaging Queue.

Usage
pushq <rname> <queue name> [count] [size]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name parameter for the queue to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

M
Odd Header

Universal Messaging Developer Guide Version 9.6 185

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Transactional Queue Publisher

This example publishes events transactionally to a Universal Messaging Queue. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commied successfully.

Usage
txpushq <rname> <queue name> [count] [size] [tx size]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name parameter for the queue to publish to
[Optional Arguments]
[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[tx size] - The number of events per transaction (default: 1)

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Asynchronous Queue Consumer

T his example shows how to asynchronously subscribe to events on a Universal
Messaging Queue. See also: " Synchronous Queue Subscription" on page 185

Usage
qsubscriber <rname> <queue name> [debug] [transactional] [selecter] [count]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name parameter for the queue to pop from
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[transactional] - true / false whether the subscriber is transactional, if true, each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Synchronous Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription" on page 185

Usage
qreader <rname> <queue name> [debug] [timeout] [transactional] [selecter] [count]
<Required Arguments>
<rname> - the rname of the server to connect to

M
Even Header

Universal Messaging Developer Guide Version 9.6 186

<queue name> - Queue name to pop from
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[timeout] - The timeout for the synchronous pop call
[transactional] - true / false whether the subscriber is transactional, if true, each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Peek Events on a Queue

Consume events from a Universal Messaging Queue in a non-destructive manner

Usage
qpeek <rname> <queue name> [debug] [selecter] [count]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - Queue name on which to peek
[Optional Arguments]
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Requester - Request/Response

This example shows how to request a response in a request/response fashion.

Usage
request <channel name>
<Required Arguments>
<request queue> - Queue onto which request are published
<response queue> - Queue onto which responses are published
<channel name> - Channel name parameter for the channel to subscribe to
<tag> - the tag to identify this requester by.
[Optional Arguments]
[asynchronous] - Whether to use asynchronous producing and consuming - true/false, default false.
[transactional] - Whether to use transactional production and consumption of events - true/false, default false.
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Responder - Request/Response

This example shows how to respond to a request in performed in a request/response
fashion.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 187

Usage
response <channel name>
<Required Arguments>
<request queue> - Queue onto which request are published
<response queue> - Queue onto which responses are published
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]
[asynchronous] - Whether to use asynchronous producing and consuming - true/false, default false.
[transactional] - Whether to use transactional production and consumption of events - true/false, default false.
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

MyChannels.Universal Messaging API

Universal Messaging C# .NET: MyChannels.Universal Messaging DataGroup Publisher

This example shows how to create a DataGroup Publisher using the
MyChannels.Universal Messaging API.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: MyChannels.Universal Messaging Queue Publisher

This example shows how to create a Queue Publisher using the MyChannels.Universal
Messaging API.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: MyChannels.Universal Messaging Topic Publisher

This example shows how to create a Topic Subscriber using the MyChannels.Universal
Messaging API.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: MyChannels.Universal Messaging DataGroup Listener

This example shows how to create a DataGroup Listener using the
MyChannels.Universal Messaging API.

Application Source Code

See the online documentation for a code example.

M
Even Header

Universal Messaging Developer Guide Version 9.6 188

Universal Messaging C# .NET: MyChannels.Universal Messaging Queue Consumer

This example shows how to create a Queue Consumer using the MyChannels.Universal
Messaging API.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: MyChannels.Universal Messaging Topic Subscriber

This example shows how to create a Topic Subscriber using the MyChannels.Universal
Messaging API.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: RX Topic Subscriber

This example shows how to create a Topic Subscriber using the Universal Messaging
Reactive library.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: RX Queue Consumer

This example shows how to create a Queue Consumer using the Universal Messaging
Reactive library.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: RX DataGroup Listener

This example shows how to create a DataGroup Listener using the Universal Messaging
Reactive library.

Application Source Code

See the online documentation for a code example.

Peer to Peer

Universal Messaging C# .NET: An Event-based Peer to Peer Client and Server Service

This example shows how to build a simple Event-based P2P Service.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 189

The example consists of a server and a client; the server will echo anything typed by the
client.

Usage
nP2PEcho <rname> [server]
<Required Arguments>
<rname> - the rname of the server to connect to
[Optional Arguments]
[server] - write 'server' to run echo server, or leave out to run echo client

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: A Stream-based Peer to Peer Client and Server Service

This example shows how to build a simple Stream-based P2P service.

The example consists of a server and a client; the server essentially exposes a shell to the
client.

Usage
nP2PShell <rname> [shell]
<Required Arguments>
<rname> - the rname of the server to connect to
<Optional Arguments>
[shell] - The type of shell you want to offer. For example cmd for win32 or bash for unix, leave out for client

Application Source Code

See the online documentation for a code example.

Administration API

Universal Messaging C# .NET: Add a Queue ACL Entry

This example demonstrates how to add an ACL entry to a Universal Messaging Queue.

Usage
naddqueueacl <rname> <user> <host> <queue name> [list_acl] [modify_acl] [full] [peek] [push] [purge] [pop]
<Required Arguments>
<rname> - the rname of the server to connect to
<user> - User name parameter for the queue to add the ACL entry to
<host> - Host name parameter for the queue to add the ACL entry to
<queue name> - Queue name parameter for the queue to add the ACL entry to
[Optional Arguments]
[list_acl] - Specifies that the list acl permission should be added
[modify_acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added
[peak] - Specifies that the peak permission should be added
[push] - Specifies that the push permission should be added
[purge] - Specifies that the purge permission should be added
[pop] - Specifies that the pop permission should be added

M
Even Header

Universal Messaging Developer Guide Version 9.6 190

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Modify a Channel ACL Entry

This example demonstrates how to modify the permissions of an ACL entry on a
Universal Messaging Channel.

Usage
nchangechanacl <rname> <user> <host> <channel name> [+/-list_acl] [+/-modify_acl] [+/-full] [+/-last_eid] [+/-read] [+/-write] [+/-purge] [+/-named] [+/-all_perms]
<Required Arguments>
<rname> - the rname of the server to connect to
<user> - User name parameter for the channel to change the ACL entry for
<host> - Host name parameter for the channel to change the ACL entry for
<channel name> - Channel name parameter for the channel to change the ACL entry for
[Optional Arguments]
[+/-] - Prepending + or - specifies whether to add or remove a permission
[list_acl] - Specifies that the list acl permission should be added/removed
[modify_acl] - Specifies that the modify acl permission should be added/removed
[full] - Specifies that the full permission should be added/removed
[last_eid] - Specifies that the get last EID permission should be added/removed
[read] - Specifies that the read permission should be added/removed
[write] - Specifies that the write permission should be added/removed
[purge] - Specifies that the purge permission should be added/removed
[named] - Specifies that the used named subscriber permission should be added/removed
[all_perms] - Specifies that all permissions should be added/removed

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Delete a Realm ACL Entry

This example demonstrates how to delete an ACL entry from a realm on a Universal
Messaging Channel.

Usage
ndelrealmacl <rname> <user> <host> [-r]
<Required Arguments>
<rname> - the rname of the server to connect to
<user> - User name parameter to delete the realm ACL entry from
<host> - Host name parameter to delete the realm ACL entry from
[Optional Arguments]
[-r] - Specifies whether recursive traversal of the namespace should be done

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Monitor realms for client connections coming and going

This example demonstrates how to monitor for connections to the realm and its
channels.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 191

Usage
nconnectionwatch <rname>
<rname> - the rname of the server to connect to

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Export a realm to XML

This example demonstrates how to export a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins and configuration information to an XML file so
that it can be imported into any other realm.

Usage
nexportrealmxml <rname> <export_file_location>
<Optional Arguments> -all -realms -cluster -realmacl -realmcfg -channels -channeacls -joins -queues -queueacls -interfaces -plugins -via

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Import a realm's configuration information

This example demonstrates how to import a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins and configuration information from an XML file.

Usage
nimportrealmxml <rname> <file_name>
<Optional Arguments> -all -realmacl -realmcfg -channels -channeacls -queues -queueacls -interfaces

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Console-based Realm Monitor

This example demonstrates how to monitor live realm status.

Usage
nTop <rname> [refreshRate]
<rname> - the rname of the server to connect to
[Optional Arguments]
[refreshRate] - the rate at which the information is reloaded on screen (milliseconds)

Application Source Code

See the online documentation for a code example.

M
Even Header

Universal Messaging Developer Guide Version 9.6 192

Universal Messaging C# .NET: Remove Service ACL

This shows how the ACL for a P2P service can be removed.

Usage
nremoveserviceacl <rname> <service name>
<Required Arguments>
<rname> - the rname of the server to connect to
<service name> - Service name parameter for the service to remove the ACL from
[Optional Arguments]

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Authserver

This demonstrates how to set security permissions when connection aempts are made
on the realm.

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Set Container ACL

Set the ACL of a container to that currently applied to a specified channel.

Usage
nsetcontaineracl <channel name> <container name>
<Required Arguments>
<rname> - name of the realm to connect to.
<channel name> - channel name parameter used to obtaine the ACL to set the container nodes to");
<container name> - Container name parameter for the container to set the ACL to");
Note: -? provides help on environment variables

Application Source Code
/**
 *
 * --
 *
 * PCB Systems Limited License Version 1.1
 * Copyright PCB Systems Limited. All rights reserved
 *
 * In the event that you should download or otherwise use this software
 * (the "Software") you hereby acknowledge and agree that:
 *
 * 1. The Software is the property of PCB Systems Limited: Title, Copyright and all
 * other proprietary rights, interest and benefit in and to the Software is and
 * shall be owned by PCB Systems Limited;
 *
 * 2. You will not make copies of the Software whatsoever other than, if you should
 * so wish, a single copy for archival purposes only;
 *
 * 3. You will not modify, reverse assemble, decompile, reverse engineer or otherwise

M
Odd Header

Universal Messaging Developer Guide Version 9.6 193

 * translate the Software;
 *
 * 4. You will not redistribute, copy, forward electronically or circulate the Software
 * to any person for any purpose whatsoever without the prior written consent of
 * PCB Systems Limited;
 *
 * 5. You will not charge for, market or provide any managed service or product that
 * is based upon or includes the Software or any variant of it; and
 *
 * 6. You will not use the Software for any purpose apart from your own personal,
 * noncommercial and lawful use;
 *
 * You hereby agree that the software is used by you on an "as is" basis, without
 * warranty of any kind. PCB Systems Limited hereby expressly disclaim all warranties
 * and conditions, either expressed or implied, including but not limited to any
 * implied warranties or conditions or merchantability and fitness for a particular
 * purpose.
 *
 * You agree that you are solely responsible for determining the appropriateness of
 * using the Software and assume all risks associated with it including but not
 * limited to the risks of program errors, damage to or loss of of data, programs or
 * equipment and unavailability or interruption of operations.
 *
 * PCB Systems Limited will not be liable for any direct damages or for any, special,
 * incidental or indirect damages or for any economic consequential damages (including
 * lost profits or savings), or any damage howsoever arising.
 */
namespace com.pcbsys.nirvana.nAdminAPI
{
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Threading;
 using System.Collections;
 using com.pcbsys.nirvana.client;
 class setContainerACL
 {
 /**
 * Private variables used in this application
 */
 private String name = null;
 private String host = null;
 private nSessionAttributes attr = null;
 private String containerName = null;
 private String channelName = null;
 private nRealmNode node = null;
 private nLeafNode leaf = null;
 private nACL acl = null;
 private String rname = null;
 /**
 * Consruct and instance of this class using the command line arguments passed
 * when it is executed.
 */
 public setContainerACL(String[] args) {
 //Process command line arguments
 processArgs(args);
 try {
 Console.WriteLine("Connecting to " + rname);
 // construct the session attributes from the realm
 attr = new nSessionAttributes(rname);
 // get the root realm node from the realm admin
 node = new nRealmNode(attr);

M
Even Header

Universal Messaging Developer Guide Version 9.6 194

 if(!node.isAuthorised()){
 Console.WriteLine("User not authorised on this node "+attr);
 return;
 }
 // wait for the entire node namespace to be constructed
 Console.WriteLine("waiting for namepsace construction..... ");
 node.waitForEntireNameSpace();
 Console.WriteLine("finished");
 leaf = (nLeafNode)node.findNode(channelName);
 if (leaf != null) {
 acl = leaf.getACLs();
 searchNode(node);
 } else {
 Console.WriteLine("Cannot find leaf node "+channelName);
 }
 node.close();
 } catch (Exception e) {
 Console.WriteLine(e.StackTrace);
 }
 }
 /**
 * recursively search through the realm node looking for channel nodes
 */
 public void setContainer(nContainer p_node) {
 try {
 // set the acl for the container nodes
 Console.WriteLine("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
 Console.WriteLine("Applying acl to container node " + p_node.getAbsolutePath());
 // set the acl on the container
 p_node.setACL(acl);
 Console.WriteLine("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
 } catch (Exception e) {
 Console.WriteLine(e.StackTrace);
 }
 }
 /**
 * search the enumeration of child nodes for other realms and containers
 */
 private void searchNodes(nContainer p_node, System.Collections.IEnumerator enum1) {
 while (enum1.MoveNext()) {
 Object obj = enum1.Current;
 if (obj is nRealmNode) {
 searchNode((nRealmNode)obj);
 } else if (obj is nContainer) {
 nContainer cont = (nContainer)obj;
 String fullyQualifiedName = cont.getAbsolutePath();
 if (fullyQualifiedName.Equals(containerName)) {
 Console.WriteLine("Found container "+fullyQualifiedName);
 setContainer(cont);
 } else {
 searchNodes(cont, cont.getNodes());
 }
 }
 }
 }
 /**
 * Search the children of the realm passed as a paremeter
 */
 private void searchNode(nRealmNode p_node) {
 try {
 searchNodes(p_node, p_node.getNodes());
 }
 catch (Exception ex) {

M
Odd Header

Universal Messaging Developer Guide Version 9.6 195

 Console.WriteLine(ex.StackTrace);
 }
 }
 /**
 * If you construct an instance of this class from another class, you can set the name
 * and host for the subject.
 */
 public void setSubject(String p_name, String p_host) {
 name = p_name;
 host = p_host;
 }
 /**
 * Set the program variables and permissions flags based on command line args
 */
 private void processArgs(String[] args){
 if (args.Length != 3) {
 Usage();
 Environment.Exit(1);
 }
 switch (args.Length){
 case 3:
 channelName = args[2];
 goto case 2;
 case 2:
 containerName = args[1];
 goto case 1;
 case 1:
 rname = args[0];
 break;
 }
 }
 /**
 * Run this as a command line program passing the command line args.
 *
 * Or construct one of these classes from another class ensuring you have added :
 *
 * RNAME
 * CHANNEL
 * CONTAINER
 *
 * as system properties, and pass in a list of permissions in the constructor
 *
 */
 public static void Main(String[] args) {
 setContainerACL setAcl = new setContainerACL(args);
 Environment.Exit(0);
 }
 /**
 * Prints the usage message for this class
 */
 private static void Usage() {
 Console.WriteLine("Usage ...\n");
 Console.WriteLine("nsetcontaineracl <channel name> <container name> \n");
 Console.WriteLine(
 "<Required Arguments> \n");
 Console.WriteLine(
 "<rname> - name of the realm to connect to.");
 Console.WriteLine(
 "<channel name> - channel name parameter used to obtaine the ACL to set the container nodes to");
 Console.WriteLine(
 "<container name> - Container name parameter for the container to set the ACL to");
 Console.WriteLine(
 "\n\nNote: -? provides help on environment variables \n");

M
Even Header

Universal Messaging Developer Guide Version 9.6 196

 }
 private static void UsageEnv() {
 Console.WriteLine(
 "\n\n(Environment Variables) \n");
 Console.WriteLine(
 "(RNAME) - One or more RNAME entries in the form protocol://host:port");
 Console.WriteLine(
 " protocol - Can be one of nsp, nhp, nsps, or nhps, where:");
 Console.WriteLine(
 " nsp - Specifies Universal Messaging Socket Protocol (nsp)");
 Console.WriteLine(
 " nhp - Specifies Universal Messaging HTTP Protocol (nhp)");
 Console.WriteLine(
 " nsps - Specifies Universal Messaging Socket Protocol Secure (nsps), i.e. using SSL/TLS");
 Console.WriteLine(
 " nhps - Specifies Universal Messaging HTTP Protocol Secure (nhps), i.e. using SSL/TLS");
 Console.WriteLine(
 " port - The port number of the server");
 Console.WriteLine(
 "\nHint: - For multiple RNAME entries, use comma separated values which will be attempted in connection weight order\n");
 Console.WriteLine(
 "(LOGLEVEL) - This determines how much information the nirvana api will output 0 = verbose 7 = quiet\n");
 Console.WriteLine(
 "(CKEYSTORE) - If using SSL, the location of the keystore containing the client cert\n");
 Console.WriteLine(
 "(CKEYSTOREPASSWD) - If using SSL, the password for the keystore containing the client cert\n");
 Console.WriteLine(
 "(CAKEYSTORE) - If using SSL, the location of the ca truststore\n");
 Console.WriteLine(
 "(CAKEYSTOREPASSWD) - If using SSL, the password for the ca truststore\n");
 Console.WriteLine(
 "(HPROXY) - HTTP Proxy details in the form proxyhost:proxyport, where:");
 Console.WriteLine(
 " proxyhost - The HTTP proxy host");
 Console.WriteLine(
 " proxyport - The HTTP proxy port\n");
 Console.WriteLine(
 "(HAUTH) - HTTP Proxy authentication details in the form user:pass, where:");
 Console.WriteLine(
 " user - The HTTP proxy authentication username");
 Console.WriteLine(
 " pass - The HTTP proxy authentication password\n");
 Environment.Exit(1);
 }
 }
}

Universal Messaging C# .NET: Difference between 2 realms

Output all the differences between two realms.

Usage
nDiff <realm1> <realm2>
[Required Arguments]
<realm1> - the RNAME of a the first realm to compare
<realm2> - the RNAME of a the second realm to compare

Application Source Code

See the online documentation for a code example.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 197

Channel / Queue / Realm Management

Universal Messaging C# .NET: Creating a Channel

Output all the differences between two realms.

Usage
makechan <rname> <channel name> [time to live] [capacity] [type] [cluster wide] [start eid]
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to be created
[Optional Arguments]
[time to live] - The Time To Live parameter for the new channel (default: 0)
[capacity] - The Capacity parameter for the new channel (default: 0)
[type] - The type parameter for the new channel (default: S)
R - For a reliable (stored in memory) channel with persistent eids
P - For a persistent (stored on disk) channel
S - For a simple (stored in memory) channel with non-persistent eids
T - For a transient (no server based storage)
M - For a Mixed (allows both memory and persistent events) channel
[cluster wide] - Whether the channel is cluster wide. Will only work if the realm is part of a cluster (default: false)
[start eid] - The initial start event id for the new channel (default: 0)

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Deleting a Channel

Output all the differences between two realms.

Usage
deletechan <rname> <channel name>
<Required Arguments>
<rname> - the rname of the server to connect to
<channel name> - Channel name parameter for the channel to delete

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Creating a Queue

This example demonstrates how to create a Universal Messaging queue
programmatically.

Usage
makequeue <rname> <queue name> [time to live] [capacity] [type] [cluster wide] [start eid]
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - queue name parameter for the queue to be created
[Optional Arguments]
[time to live] - The Time To Live parameter for the new queue (default: 0)
[capacity] - The Capacity parameter for the new queue (default: 0)

M
Even Header

Universal Messaging Developer Guide Version 9.6 198

[type] - The type parameter for the new queue (default: S)
R - For a reliable (stored in memory) queue with persistent eids
P - For a persistent (stored on disk) queue
S - For a simple (stored in memory) queue with non-persistent eids
T - For a transient (no server based storage)
M - For a Mixed (allows both memory and persistent events) queue
[cluster wide] - Whether the queue is cluster wide. Will only work if the realm is part of a cluster (default: false)
[start eid] - The initial start event id for the new queue (default: 0)

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Deleting a Queue

This example demonstrates how to delete a Universal Messaging queue
programmatically.

Usage
deletequeue <rname> <queue name>
<Required Arguments>
<rname> - the rname of the server to connect to
<queue name> - queue name parameter for the queue to delete

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Create Channel Join

Create a join between two Universal Messaging Channels

Usage
makechanneljoin <rname> <source channel name> <destination channel name> [max hops] [selector] [allow purge]
<Required Arguments>
<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join
<destination channel name> - Channel name parameter of the remote channel name to join
[Optional Arguments]
[max hops] - The maximum number of join hops a message can travel through
[selector] - The event filter string to use on messages travelling through this join
[allow purge] - boolean to specify whether purging is allowed (default : true)

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Delete a Channel Join

Create a join between two Universal Messaging Channels

Usage
deletechanneljoin <rname> <source channel name> <destination channel name>
<Required Arguments>
<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join

M
Odd Header

Universal Messaging Developer Guide Version 9.6 199

<destination channel name> - Channel name parameter of the remote channel name to join

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Multiplex a Session

Multiplex two Universal Messaging sessions over one channel.

Usage
multiplex <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to");
[Optional Arguments]
[start eid] - The Event ID to start subscribing from");
[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All");
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Purge Events From a Channel

Delete all events from a Universal Messaging Channel

Usage
purgeevents <rname> <channel name> <start eid> <end eid> [filter]
<Required Arguments>
<rname> - The realm to retrieve channels from
<channel name> - Channel name parameter for the channel to be purged
<start eid> - The start eid of the range of events to be purged
<end eid> - The end eid of the range of events to be purged
[Optional Arguments]
[filter] - The filter string to use for the purge

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Create Queue Join

Create a join between a Universal Messaging Queue and a Universal Messaging Channel

Usage
makequeuejoin <rname> <source channel name> <destination queue name> [max hops] [selector]
<Required Arguments>
<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join
<destination queue name> - Queue name parameter of the remote queue name to join
[Optional Arguments]
[max hops] - The maximum number of join hops a message can travel through
[selector] - The event filter string to use on messages travelling through this join

M
Even Header

Universal Messaging Developer Guide Version 9.6 200

Application Source Code

See the online documentation for a code example.

Universal Messaging C# .NET: Delete Queue Join

Delete a join between a Universal Messaging Queue and a Universal Messaging Channel

Usage
deletequeuejoin <rname> <source channel name> <destination queue name>
<Required Arguments>
<rname> - the rname of the server to connect to
<source channel name> - Channel name parameter of the local channel name to join
<destination queue name> - Queue name parameter of the remote queue name to join

Application Source Code

See the online documentation for a code example.

Prerequisites

Universal Messaging C# Prerequisites
This section gives information on what is required to get started using the Universal
Messaging Enterprise C# API. The Universal Messaging C# API is available in 2 different
DLL distributions. The first is for developing Native Windows Applications (Universal
Messaging DotNet.dll), and the second is compatible with Microsoft Silverlight
applications (Universal Messaging Silverlight.dll). In both cases, the Client API is exactly
the same.

Universal Messaging .NET

Universal Messaging .Net requires .Net version 3.5 or above. You can download .NET
from the Microsoft Download website. The .NET installer will automatically set up the
environment such that C# applications can be compiled and run natively on Microsoft
Windows. Please see the Environment Setup section below for information on how to
compile and run applications using the Universal Messaging C#.NET API.

Universal Messaging Silverlight

For a client to run a Universal Messaging Silverlight application, Microsoft Silverlight
version 2.0 or above must be installed.

SSL

To subscribe to a channel using an SSL interface, extra requirements must be met.
Universal Messaging C# supports client certificate authentication as well as anonymous
SSL. For client certificate authentication, the location of the client certificate and
private key password, as well as the trust store must be known to the application. For

http://www.microsoft.com/downloads/
http://www.microsoft.com/silverlight/get-started/install/

M
Odd Header

Universal Messaging Developer Guide Version 9.6 201

instructions on how to run Universal Messaging C# applications using an SSL enabled
interface, please see Client SSL.

Environment Setup

Compilation

It is recommended that you use Microsoft Visual Studio to compile Universal Messaging
C# applications. Visual Studio will set up the required environment for compiling C#
applications. However to make use of the Universal Messaging APIs, the location of the
Universal Messaging libraries will need to be referenced such that they can be found by
the compiler.

The libraries can be found in the dotnet\bin directory. For native Windows applications
the "Universal Messaging DotNet.dll" library is required and for Silverlight applications
the "Universal Messaging Silverlight.dll" is required.

Runtime

The Universal Messaging DLLs used to compile C# applications are unlike C++ in
that these libraries are used both at compile time and at runtime. At compile time,
the location of the library is specified as a reference such that it can be used by the
compiler. At runtime this library is looked for in the same directory as the executable.
For information on how to run an application without the DLL in the same directory, see
Globally Accessible DLLs.

Sample Applications

The dotnet\bin directory of the Universal Messaging download contains precompiled
sample applications for Universal Messaging C#.Net. These applications can be run on a
PC running Microsoft Windows which has .NET installed as described above.

The source code for each application can be found in dotnet\examples along with a
batch file which can be used to compile the application:
C:\Universal Messaging 5.0.xxxx\dotnet\examples\channeliterator> builddotnetsampleapp.bat channeliterator

This will compile the channeliterator sample application and place the executable in the
dotnet\bin directory.

Universal Messaging C# Client SSL Configuration
Universal Messaging fully supports SSL Encryption. This section describes how to use
SSL in your Universal Messaging C# client applications.

Once you have created an SSL enabled interface you will need to create certificates
for the server and client (if using client certificate authentication). The Universal
Messaging download contains a generator to create some example Java key store files
to be used by the Universal Messaging server but may also be converted to Public-Key
Cryptography Standards (PKCS) files for use with a Universal Messaging C# client. To
convert from .jks to .p12 you can use keytool.exe (supplied with java). The command to
do so is shown below:

M
Even Header

Universal Messaging Developer Guide Version 9.6 202

keytool -importkeystore -srckeystore client.jks -destkeystore client.p12 -srcstoretype JKS
 -deststoretype PKCS12

Please refer to this guide to create your own client certificates. However please
remember that in order to run a Universal Messaging C# client, the certificate provided
must be in PKCS format.

Running a Universal Messaging C# Client

A client can use anonymous SSL, but when the Universal Messaging SSL interface is
configured for client validation, only trusted clients can connect with a valid certificate.
To enable or disable client certificate validation at the realm server, you can use the
Universal Messaging Enterprise Manager. Highlight the SSL enabled interface in the
"Interface" tab for your realm then open the "Certificates" tab and check or uncheck
the box labelled "Enable Client Cert Validation". Hit the Apply buon, and restart the
interface.

When client certificate validation is enabled, the client is required to have a certificate
so that the server can validate the client. If the server certificate is self signed (as the
certificates created using the generator are), the client must also have a trust store to
validate the server certificate.

The location of the key stores and the relevant passwords need to be specified in
nConstants. This can be done by adding the client certificate and trust store to the
windows certificate store. The location of the client certificate can also be set by seing
the certificate property (defined in nConstants) in the application code or by seing
CERTPATH (the location of the certificate) and CERTPASS (the private key password) as
environment variables. For more information, see SSL Concepts.

Adding Certificates to the Windows Certificate Store

The default password for the certificates created using the generator is "nirvana".

To add the client certificate:

Open the Start menu, click on Run and enter "certmgr.msc".

In the new window, expand the "Personal" folder and right click on the "Certificates"
folder.

Select "All Tasks->Import..."

Follow the Instructions and import the client certificate (client.p12)

To add the trust store:

Open the Start menu, click on Run and enter "certmgr.msc".

In the new window, expand the "Trusted Root Certification Authorities" folder and
right click on the "Certificates" folder.

Select "All Tasks->Import..."

Follow the Instructions and import the trust store (nirvanacacerts.p12)

You will now be able to connect to a realm using nsps and nhps.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 203

Globally Accessible DLLs
By default, C# applications require any user created DLLs to be present in the same
directory as the application. As DLLs are typically shared by multiple applications, it
may be necessary for the DLL to be placed in a globally accessible location. To do this in
C# you need to add the DLL file to the Global Assembly Cache (GAC).

Strong-Named Assemblies

Before a DLL can be added to the GAC, it must be given a strong-same. This procedure
aims to protect the user from corrupted DLLs. As DLLs are linked at runtime, it would
be possible for someone to build a new version of the DLL but add malicious code. The
user application would have no way of telling that this is not the correct DLL and would
run the malicious code. GAC and strong-named assemblies protect against this, for more
information see Strong-Named Assemblies on the Microsoft website.

Creating a Strong-Named Assembly

The C# DLLs in the Universal Messaging download have already been given strong-
names so this section is not required to make the Universal Messaging DLLs globally
accessible.

1. Either open a .NET command prompt or open a standard command prompt and
run vsvars32.bat which is located in "C:\Program Files\Microsoft Visual Studio
9.0\Common7\Tools". Which will set up the required environment.

2. Navigate to a directory where you want to store the keyfile and run the following
command:

C:\myarea\folder\> sn -k keyfile.snk

This will create a keyfile which contains a pair of private and public keys which can
be used to protect your DLLs.

3. Now you need to edit the AssemblyInfo.cs file for the project used to create the DLL
by adding the following code:

[assembly:AssemblyKeyFile(@"C:\myarea\folder\keyfile.snk")]

4. Now when you build the DLL as usual it will be given a strong-name but will not be
globally accessible until added to GAC.

Adding Strong-Named Assembly to GAC

1. Either open a .NET command prompt or open a standard command prompt and
run vsvars32.bat which is located in "C:\Program Files\Microsoft Visual Studio
9.0\Common7\Tools". Which will set up the required environment.

2. In this prompt execute gacutil as shown below:
C:\myarea\folder\> gacutil /i mylib.DLL

The DLL will now be globally accessible on the system. The C#.NET sample
applications in the download use the "Universal Messaging Dotnet.DLL" library and

http://msdn.microsoft.com/en-us/library/wd40t7ad.aspx

M
Even Header

Universal Messaging Developer Guide Version 9.6 204

"nSampleApp.DLL", both have been given strong-names so can be added to GAC using
gacutil as described above.

NOTE: to remove an assembly from the cache execute "gacutil /u mylib", the file
extention is not required.

Messaging API

Universal Messaging C# .NET MyChannels.Universal Messaging API: Creating
and Disposing of a Session
Creating a session is extremely simple with the C# .NET MyChannels.Universal
Messaging API. Simply create a new Session object with the desired RNAME, then call
the Session.Initialize() method.
String RNAME = "nsp://127.0.0.1:9000";
Session session = new Session(RNAME);
session.Initialize();

DataGroups can be enabled on a session by seing the DataGroups.Enable flag, as
shown below, before the call to Initialize() is made.
session.DataGroups.Enable = true;

To end a session, call the Session.Dispose() method.
session.Dispose();

Session Events

AsynchronousExceptionRaised - fired when an asynchronous exception is thrown by the
session

ConnectionStatusChanged - fired when the connection status changes, for example when
the connection is lost.

Universal Messaging C# .NET MyChannels.Universal Messaging API:
Producers
The sending of messages is exposed via the Producers feature, simplifying the message
sending process across Topics, Queues and DataGroups by using an identical procedure
for each.

Firstly, a Producer is created of the appropriate type, passing in the name of the
DataGroup, Topic or Queue. Examples are included below for each of the three
mechanisms. Obviously, in order to use DataGroups, they must first be enabled by
seing the Session.DataGroups.Enable flag to true before initializing the session.
IProducer producer = session.DataGroups.CreateProducer("Group1");
IProducer producer = session.Queues.CreateProducer("Queue1");
IProducer producer = session.Topics.CreateProducer("Topic1");

M
Odd Header

Universal Messaging Developer Guide Version 9.6 205

In order to send a message, a Message object is first created, as shown below, then
is passed into the Producer's Send() method. The Message constructor has various
overloads to allow the specification of properties, tags and data.
// Creating a Message
string msgContents = "Hello World!";
Message msg = new Message(msgContents, new byte[] { }));
producer.Send(msg);

Universal Messaging C# .NET MyChannels.Universal Messaging API:
Consumers
Consumers are the main means of consuming messages when using the
MyChannels.Universal Messaging API. They allow simple consumption of messages
from both Topics and Queues. A Consumer is created using the CreateConsumer()
method in either Session.Queues or Session.Topics, depending upon which type of
Consumer is desired.

The Consumer's MessageReceived event is fired whenever a message is received by the
Topic or Queue being consumed. By aaching an appropriate handler, the message can
be dealt with in whatever way is desired.
IConsumer consumer = session.Queues.CreateConsumer("Queue1");
consumer.MessageReceived += (s, e) => ProcessMessage(e.Message);
IConsumer consumer = session.Topics.CreateConsumer("Topic1");
consumer.MessageReceived += (s, e) => ProcessMessage(e.Message);

DataGroups

Consuming messages when using DataGroups is even simpler than when using Topics
or Queues. The Session.DataGroups object itself has a MessageReceived event, which
can be used in the same manner as above to handle incoming messages.
session.DataGroups += (s, e) => ProcessMessage(e.Message);

Universal Messaging C# .NET MyChannels.Universal Messaging API: Reactive
Extensions
Reactive Extensions for .NET (commonly referred to as "Rx") is a new library currently
under development by Microsoft that aims to allow the development of so-called
"reactive" applications, by exposing the Observer paern (as seen in C# Multicast
delegates and Events), but in a simpler, more intuitive manner.

Universal Messaging.Reactive

The Universal Messaging Reactive library for .NET aims to make use of the capabilities
offered by Rx, by allowing the conversion from Universal Messaging objects to
Observable sequences and vice versa.

Currently, the library only supports the conversion from Universal Messaging objects
to Observable sequences, and is designed to work with the MyChannels.Universal
Messaging API. One main method is included: ToObservable(), which converts the
messages from either a IConsumer (Topics and Queues) or a IDataGroupSession. This

http://msdn.microsoft.com/en-us/devlabs/ee794896

M
Even Header

Universal Messaging Developer Guide Version 9.6 206

means that consuming messages on a Topic or Queue looks distinctly different from the
more conventional Consumer method.
var consumer = session.Topics.CreateConsumer("Topic1");
var query = from e in consumer.ToObservable()
 select e.Message;
 // Subscribe
query.Subscribe(ProcessMessage);
//...
public void ProcessMessage(object m)
{
 Console.WriteLine("Message: {0}", ((Message)m).Id);
}

This looks somewhat confusing at first glance, but is simple enough when broken
down. The ToObservable() call on the Topic Consumer returns an Observable sequence
of MessageEventArgs, as returned when the MessageReceived event is fired in the
MyChannels.Universal Messaging API on the Consumer. The query simply filters that
sequence to obtain the Messages from each MessageEventArgs. The Subscribe() method
allows a handling method to be aached to the Observable sequence, just as one would
aach an event handler to an typical event. In this case, the ProcessMessage() method
simply writes the Id of the message received to the console.

DataGroups work in a similar fashion. As DataGroups do not have Consumers in the
manner of Topics and Queues, the ToObservable() method is instead called on the
IDataGroupSession object, returning an Observable sequence which can be manipulated
in an identical fashion.
var query = from e in session.DataGroups.ToObservable()
 select e.Message;
 // Subscribe
query.Subscribe(ProcessMessage);

Overview of Developer's Guide for VBA
This guide describes how to develop Microsoft Excel spreadsheets which receive data
in real time and publish events to Universal Messaging Channels using Visual Basic for
Applications (VBA).

Universal Messaging Enterprise Client Development in VBA

"Universal Messaging Publish/Subscribe" on page 206

"Prerequisites" on page 213

Publish / Subscribe

Universal Messaging VBA - Publish/Subscribe
The Universal Messaging VBA API allows you to publish and subscribe to Universal
Messaging channels using Microsoft Office products such as Excel. Channels are the

M
Odd Header

Universal Messaging Developer Guide Version 9.6 207

logical rendezvous point for publishers (producers) and subscribers (consumers) of data
(events).

Subscribing Tasks

Universal Messaging VBA : Subscribing to a Channel

Once you have installed the Universal Messaging RTD server, the server will be
available for use in any Excel spreadsheet on the system. To start subscribing you need
to use the RTD function in Excel. The RTD function is used in the same way as any other
Excel function. By entering the function with the correct parameters into a cell, you will
immediately subscribe to the specified channel and receive the value associated with the
specified property contained in the event.

RTD Function

The RTD function is a built in Excel function but the parameters are specific to the
Universal Messaging RTD server. To subscribe to a Universal Messaging channel you
need to use the following structure:
=RTD("Universal MessagingRTD",,RNAME,Channel,Property,Key,Value,Key2,Value2 ...)

The parameters are explained below:

"Universal MessagingRTD"

This is the CLSID which has been registered for the Universal Messaging RTD server.
By specifying this ID, Excel will lookup the Universal Messaging RTD server in the
Windows Registry.

Second Parameter

The second parameter is left blank because the Universal Messaging RTD server
is installed on the local machine. If it were installed remotely, the server would be
specified here.

RNAME

The RNAME of the realm which the cell should connect to. You may also specify certain
configurations for the session in this field. The RNAME is of the form:
protocol://host:port?property=value&property2=value2...

The following properties are available:

user - this is the username that will be used to connect to the realm

Channel

The name of the Universal Messaging Channel which you wish to connect to. You may
also specify channel specific configuration properties in this field. The Channel field has
the form:
/folder/channelname?property=value&property2=value2...

M
Even Header

Universal Messaging Developer Guide Version 9.6 208

The following properties are available:

eid - the eid for which to start subscribing. This value is -1 by default which means
subscription starts from the last eid of the channel (will not receive any events
currently on the channel). -2 will mean the last event published on the channel is
consumed as well as any further events published and hence -3 will mean the last 2
are consumed etc. A positive value will cause mean events from that eid onward are
consumed so 0 means all events on the channel will be consumed.

hwmark - the high water mark for the event queue of the channel. This ensures that
the event queues do not grow too large without dropping any events. For more
information see "Queue watermarks" on page 212.

lwmark - once the event queue has reached high watermark, no more events will be
added to the event queue. Once the queue length reaches lwmark (low watermark)
the listener is notified to continue receiving events.

Key, Value

The Universal Messaging RTD server allows you to filter events based on key-value
pairs. Here the value of Property is only shown if the event properties contains each key
and the value associated with that key.

A Universal Messaging Event can contain nEventProperties which themselves can
contain nested nEventProperties. These nested properties are accessed by a key in the
same way as the values are accessed. In order to access the key-value pairs contained
within the inner properties using the RTD server, you should use the syntax shown
below:
...,propsA.Key,value,propsA.propsB.key,value,...

Here propsA is found inside the main nEventProperties for the nConsumeEvent. Inside
propsA is a set of key-value pairs but also another nEventProperties object called propsB
which itself contains key-value pairs and possibly further nEventProperties.

Publishing Tasks

Universal Messaging VBA : Creating a Session

To interact with a Universal Messaging Server, the first thing to do is create a Universal
Messaging Session object, which is effectively your logical and physical connection to a
Universal Messaging Realm.

Creating a Universal Messaging Session Object

The VBA code snippet below demonstrates the creation and initialisation of an nSession
object:
Dim nsa As New nSessionAttributes
Call nsa.init("nsp://127.0.0.1:9000")
Dim fact As New nSessionFactory
Set sess = fact.Create(nsa)

M
Odd Header

Universal Messaging Developer Guide Version 9.6 209

Call sess.init

Universal Messaging VBA : Finding a Channel

Once the session has been established with the Universal Messaging realm server,
the session object can be used to locate an existing Universal Messaging Channel by
specifying the channel's name.

Note that you can use the Enterprise Manager GUI to create a Universal Messaging
Channel.

This VBA code snippet demonstrates how to find a channel (for example /eur/rates):
Dim nca As New nChannelAttributes
Call nca.setName("/eur/rates")
Set chan = sess.findChannel(nca)

Universal Messaging VBA : Universal Messaging Events

A Universal Messaging Event (nConsumeEvent) is the object that is published to a
Universal Messaging channel, queue or P2P service. It is stored by the server and then
passed to consumers as and when required.

Events can contain simple byte array data, or more complex data structures such as an
Universal Messaging Event Dictionary (nEventProperties).

Constructing an Event

In this VBA code snippet, we construct our Universal Messaging Event object, as well
as a Universal Messaging Event Dictionary object (nEventProperties) for our Universal
Messaging Event:
Dim props As New nEventProperties
Call props.put("examplekey", "hello world")
Dim evt As New nConsumeEvent
Call evt.init_2(props)

Here the function evt.init_2() is used. The nConsumeEvent class currently has 3 initialise
methods but Excel does not support overloading so renames these methods to init_1
init_2 etc.

Universal Messaging VBA : Publishing Events to a Channel

Once the session has been established with the Universal Messaging realm server, and
the channel has been located, the channel's publish function can be invoked.
Call chan.publish(evt)

M
Even Header

Universal Messaging Developer Guide Version 9.6 210

Learn More

Universal Messaging VBA : Event Properties

A Universal Messaging Event (nConsumeEvent) can contain nEventProperties. This object
contains key-value pairs in a similar way to a hash table and can also support nested
nEventProperties.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's properties.

In this code snippet, we assume we want to publish an event containing a key called
"myKey" with value "myValue"
Dim props As New nEventProperties
Call props.put("myKey", "myValue")
Dim evt As New nConsumeEvent
Call evt.init_2(props)
Call myChannel.Publish(evt)

The highlighted code shows the creation of the event properties.

Now say we want to add another set of properties within the properties we have
just created. The code below highlight the extra code required to add a nested
nEventProperties.
Dim props As New nEventProperties
Call props.put("myKey", "myValue")
Dim innerProps As New nEventProperties
Call innerProps.put("myInnerKey", "myInnerValue")
Call props.put_4("myDictName", innerProps)
Dim evt As New nConsumeEvent
Call evt.init_2(props)
Call myChannel.Publish(evt)

Here you see that the inner nEventProperties is created in exactly the same way and is
then added to the outer nEventProperties in the same way that you would add a key-
value pair with the value being the nEventProperties.

Universal Messaging VBA : How the RTD Server Works

Excel is a single threaded application which means that asynchronous behavior is
limited. Most asynchronous systems make use of either push or pull methods of receiving
data.

Both of these methods have limitations. Pushing data to Excel when Excel is busy*
wil mean that any events pushed will be dropped as Excel cannot deal with them. If
Excel is required to pull from the server, then because it does not know when the data is
available it will have to continually send requests to the server.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 211

For this reason Excel uses a hybrid of both mechanisms. Once events are received, the
Universal Messaging RTD server will send a notification to Excel to say that data is
available. Excel will then respond to this notification by requesting the RTD server to
send the data. This does however mean that if Excel is busy, although no events will be
dropped, the notification sent to Excel may be ignored. The Universal Messaging RTD
Server deals with this by queueing events internally.

*Excel is said to be busy whenever it is recalculating but also when the user responds to
dialog prompts or enters data into a cell.

Universal Messaging VBA : Setting the RTD Throttle Interval

Excel Throttle Interval

When Excel receives a notification that new data is available it will only respond if it is
not busy* and if the throle interval has passed. By default Excel sets a throle interval
of 2 seconds which means that updates cannot be received faster than every 2 seconds. A
high throle value does not mean that events will be missed. The Universal Messaging
RTD server queues events and will process the entire queue internally before returning
data to Excel.

*Excel is said to be busy whenever it is recalculating but also when the user responds to
dialog prompts or enters data into a cell.

Changing the Excel Throttle Interval

The throle interval is stored in the Windows registry but you may wish to set a
different throle interval for different spreadsheets. In order to do this you need to use
VBA.

Open Excel and switch to the VBA window

In the Project Explorer panel double click on "ThisWorkbook"

This will bring up a new code window. In this window enter the following code
Private Sub Workbook_Open()
Application.RTD.ThrottleInterval = 0
End Sub

By seing a throle interval of 0, Excel will try to respond to update notifications
whenever it is not busy. A value of -1 will set the RTD server to manual mode which
means Excel will not respond to any update notifications. Instead the user must
manually call the RTD server to request new data.

Universal Messaging VBA : Internal Event Processing

Excel is a single threaded application, therefore it cannot process events when it is
in a busy state. Every time an event is received by the RTD server, a notification that
new data is available is sent to Excel. As soon as Excel receives this notification it will
request data from the RTD server. During this request, Excel enters a busy state and will
therefore drop any further notifications that more data is available. If Excel responded to
every notification it would be appropriate to simply allow excel to pop an event off the

M
Even Header

Universal Messaging Developer Guide Version 9.6 212

internal event queue and return this data (then deal with the next request) but as this is
not the case, a different solution needs to be approached.

The Universal Messaging RTD server approaches this scenario in two different ways:

Processing Historical Data

If a user specifies an eid previous to that of the last published event (0 or less than -1) it
is assumed that every event up to the last published event is required by Excel. In this
case, the Universal Messaging RTD server will continue to notify Excel that new data
is available until the internal event queue is empty and the last published event on the
channel has been consumed. Every time Excel requests data it will pop one event off the
internal event queue for that channel and update its cells. This ensures that every value
is returned to Excel however quickly the events are received.

Once the last published event has been consumed, the RTD server returns to its normal
state as described below.

Normal Processing State

Every time Excel requests data, the entire internal event queue is consumed internally
and the most recent value required for each cell is returned to Excel.

Every event is processed internally, however only the most recent value that a cell
requires is returned. For example if a cell is subscribed to a channel and requests events
with property "name". If 50 events are queued internally, each event will be processed
but only the most recent value of name would be returned to Excel. This saves Excel
from making 50 separate requests for data when it may be that only one of the 50 events
contains the property "name". If all 50 events contained the property "name" then
returning the value 50 times would cause the value of the cell to rapidly change which is
not generally required for an Excel application.

Universal Messaging VBA : Universal Messaging RTD Server Internal Queues

High/Low Watermark

As mentioned in "How RTD Works" on page 210, if Excel is in a busy state it will not
request any data from the Universal Messaging RTD Server. Rather than drop events,
the Universal Messaging RTD server will continue to push all events onto internal event
queues.

If events are rapidly published onto a channel or Excel remains in a busy state
indefinitely (if a dialog box is not responded to), without the high/low watermark
mechanism, the queues would continue to grow and use system resources.

The watermarks refer to the queue length and can be set per channel using the "RTD
function" on page 207. Once the event queue length for a particular channel reaches
the high watermark, any incoming events will be caused to wait which will trigger flow
control handled by Universal Messaging. Once events are popped off the queue and
the queue length reaches the low watermark, the incoming events will be notified to
continue and then event queue will begin to refill.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 213

Universal Messaging VBA : OnChange() Event Using RTD

When cells are updated using the RTD function, the onChange() event for that cell is
not triggered. It is not possible to fully recreate this functionality but there are several
methods to produce a similar result.

Alternative Solutions

User Defined Function (UDF)

Excel functions are recalculated whenever the value of that functions parameters change.
This means that a function can be created in cell A1 with a parameter reference of cell
A2. When the value of cell A2 changes, the function in cell A1 will recalculate and give a
similar functionality to that of the onChange() event.

There are several limitations to what actions can be performed using this method. For
example Excel 2003 will not allow any formaing of cells inside a function and Excel
2007 also places certain restrictions. For more information please see limitations with
user defined functions on the Microsoft website.

onCalculate()

The onCalculate() event is called whenever a calculation takes place on the worksheet.
When an RTD Server is used, this event is triggered whenever new data is sent to Excel.
This means the event is potentially triggered very often if a low "throle interval" on
page 211 is used so it is advised to keep any code in this section to a minimum. This
event does not have any parameters so it is up to the user to determine which cells have
changed during the calculation.

Universal Messaging VBA - Prerequisites
Pub/Sub in VBA uses libraries wrien using the C# API. Please refer to the C#
Prerequisites for C# specific requirements.

.NET Framework

Because Universal Messaging VBA makes use of Universal Messaging C# libraries
it requires .Net version 3.5 or above. You can download .NET from the Microsoft
Download website at hp://www.microsoft.com/downloads/.

Subscribing

To access the Universal Messaging RTD server installer please contact support. The
installer will register the RTD server in the windows registry so that it can be found by
the RTD function in Excel.

Microsoft Excel Versions

Universal Messaging VBA has been tested on Excel version 2003 and 2007. The Universal
Messaging RTD Server has been compiled using Excel 2003 Primary Interop Assemblies

http://support.microsoft.com/kb/170787
http://support.microsoft.com/kb/170787
http://www.microsoft.com/downloads/

M
Even Header

Universal Messaging Developer Guide Version 9.6 214

(PIA). Due to backwards compatibility, Excel 2007 is able to run with this version of PIA
which means that the same version of the Universal Messaging RTD server can be run
on both versions of Microsoft Excel.

Publishing

To publish from Excel, you must set a reference to the Universal MessagingExcel.tlb type
library. To access this library please contact support. This library will allow you to create
and publish events from within VBA.

The type library is essentially a wrapper for the Universal Messaging C# API to make it
visible from Excel.

Macro Security

Publishing events requires code to be wrien in VBA. If macros are not enabled you will
not see any events published as the VBA code is not allowed to run.

Overview of Enterprise Developer's Guide for Python
This guide describes how to develop and deploy Enterprise-class Python applications
using Universal Messaging, and assumes you already have Universal Messaging
installed.

Enterprise Client Development

Universal Messaging Python : Environment Configuration
The Universal Messaging Python API uses a C++ wrapper library to expose functionality
from Universal Messaging C++ in python. Therefore the Python API has the same
dependencies as the C++ API, some of which do not ship with the product.

OpenSSL

The Universal Messaging C++ Client uses OpenSSL for secure connections. This product
does not ship with Universal Messaging because some of the encryption used is
restricted in certain countries.

OpenSSL comes pre-installed on most unix based systems. On Windows you can either
download and build the source from www.openssl.org. Or you can download pre-
compiled binaries. The required binaries for Windows are "Win32 OpenSSL v0.9.8r".

Microsoft Visual C++ 2008 Runtime Libraries

These libraries are requires to run any C++ application. Because the Universal Messaging
Python Client uses Universal Messaging C++, these libraries are required. They are
available to download from the Microsoft website.

http://www.openssl.org
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

M
Odd Header

Universal Messaging Developer Guide Version 9.6 215

Running the Sample Applications

Once you have installed Universal Messaging, the sample applications can be found in
[Universal Messaging Install]/python/examples. To run the applications you first need to
setup the required paths by running the Python Examples Command Prompt.

On Windows this can be found in: Start -> All Programs -> Universal
Messaging_6.0.XXXXX -> Client -> [RealmName] -> Python Examples Command
Prompt.

On Linux this can be found in: [Universal Messaging Install] / links / Client /
[RealmName] / Python Examples Command Prompt.

Running this script will set up the environment and change to the directory containing
the python samples so now to run the DataStreamListener sample you can simply enter:

c:\Python26\python.exe DataStreamListener.py

Running with a Different Python Version

The C++ wrapper which the Python API uses has to be compiled against a specific
python version. In the Universal Messaging installer we currently release the wrapper
compiled against Python 2.6 and 2.7. By default the sample applications will reference
the library built against 2.6. To change this you can alter the file named Universal
MessagingModule.py which is found in the same directory as the sample applications.

ImportError: DLL load failed

If any libraries cannot be found then you will get an error like this. Please ensure you
have installed OpenSSL, Visual C++ 2008 runtime libraries and have run the Python
Examples Command Prompt.

Universal Messaging Python : Creating a Session
To interact with a Universal Messaging Server, the first thing to do is initialize a
Universal Messaging Session object, which is effectively your logical and physical
connection to one or more Universal Messaging Realms.

Creating a Universal Messaging Session Object

A Universal Messaging Session object (called Universal MessagingSession) is contained
within the Universal MessagingPython library so you must first include the library
and then initiate a new Universal MessagingSession.
 from Universal MessagingPython import *
 Universal MessagingModule = Universal MessagingSession()

If the Universal MessagingPython library is not in the same directory as the application
you are writing then you will need to make sure the directory containing the library is in
the Python sys path:
 import sys
 sys.path.append('..\\bin\\Win32\\Python26\\')

M
Even Header

Universal Messaging Developer Guide Version 9.6 216

If you have problems importing the Universal MessagingPython library then it may be
that one of the other dependencies are missing. Please make sure you have dealt with
the "prerequisites" on page 214

Connecting to a Universal Messaging Realm

Once the Universal MessagingSession object has been initialised, you can connect to a
Universal Messaging Realm as follows:
 rname="nsp://localhost:9000"
 Universal MessagingModule.connect(rname)

For information of the parameters you can pass to the connect() function e.g a user
name, you can enter:
 help(Universal MessagingModule.connect)

Universal Messaging Python : Subscribing to a Universal Messaging Channel/
Topic or Queue
In the Universal MessagingPython API there is no object which represents a Universal
Messaging Channel or Queue. In order to subcribe you simply pass the name of the
destination to the Universal MessagingSession.subscribe method along with the Universal
MessagingCallback object which will receive the asynchronous events.

Creating a Universal MessagingCallback Object

Asynchronously receiving events requires an object which implements the Universal
MessagingPython.Universal MessagingCallback interface. The interface has one method,
onMessage which is passed a "nConsumeEvent" on page 221 object.
class Universal MessagingCallback(Universal MessagingPython.Universal MessagingCallback):
 def onMessage(self,message):
 print "received an event"
listener = Universal MessagingCallback()

Registering the Universal MessagingCallback Object to Receive Events

Once the Universal MessagingCallback object is created you need to register that object
as a listener on the Universal Messaging Channel or Queue. First of all you need to
construct a Universal MessagingSession (see "Creating a Session" on page 215). Then
you can call the Universal MessagingSession.subscribe method where the first parameter
is the name of the Universal Messaging Channel or Queue that you wish to subscribe to
and the second parameter is the Universal Messaging Callback object.
mySession = Universal MessagingSession()
mySession.connect("nsp://localhost:9000")
chanName="demochannel"
mySession.subscribe(chanName,listener)

M
Odd Header

Universal Messaging Developer Guide Version 9.6 217

Once the subscription has been registered, the onMessage method of the Universal
MessagingCallback object will be invoked whenever a message is published onto the
channel named "demochannel".

Universal Messaging Python : DataStream - Receiving DataGroup Events
Python clients can (optionally) act as a DataStream, which allows them to receive events
from DataGroups of which they are made members.

The Universal MessagingSession can be initialised to receive DataGroup events by
passing a Universal MessagingCallback object into the connect method.

Creating a Universal MessagingCallback Object

Asynchronously receiving events requires an object which implements the Universal
MessagingPython.Universal MessagingCallback interface. The interface has one method,
onMessage which is passed a "nConsumeEvent" on page 221 object.
class Universal MessagingCallback(Universal MessagingPython.Universal MessagingCallback):
 def onMessage(self,message):
 print "received an event"
listener = Universal MessagingCallback()

Registering as a DataStream

In order to register the Universal MessagingSession as a DataStream, you simply need
to pass the Universal MessagingCallback object into the connect method of Universal
MessagingSession along with the RNAME (see "Creating a Session" on page 215).
mySession = Universal MessagingSession()
mySession.connect("nsp://localhost:9000",listener)

Universal Messaging Python : Publishing Events to a Universal Messaging
Channel or Queue
Once the Universal MessagingSession has been established with the Universal
Messaging realm server, a new Universal Messaging Event object (nConsumeEvent) must
be constructed prior to use in the publish call being made to the channel.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object (nEventDictionary) for our Universal Messaging Event before publishing it:
chanName = "demoChannel"
props = nEventProperties()
props.put("exampleKey", "Hello World")
event = nConsumeEvent(props,"aTag")
mySession.publish(chanName,event)

Note that there is no Universal Messaging Channel or Queue object, you simply pass the
name of the destination (channel or queue) to the publish method.

M
Even Header

Universal Messaging Developer Guide Version 9.6 218

The underlying library (wrien using the Universal Messaging C++ API) will find the
Channel or Queue object the first time the destination is accessed. So if you pass the
name of a Channel which does not exist then you will receive an exception.

Other than initially finding the channel, publish calls are asynchronous so the publish
call will immediately return allowing the client to continue. This means that if there
is an exception on the server e.g. the client does not have permission to publish to the
destination, there will be no client side exception unless you use an asynchronous
exception listener.

Universal Messaging Python : Writing an Event to a Universal Messaging
DataGroup
Once the Universal MessagingSession has been established with the Universal
Messaging realm server, a new Universal Messaging Event object (nConsumeEvent) must
be constructed.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object (nEventDictionary) for our Universal Messaging Event before publishing it:
datagroupname = "myDataGroup"
props = nEventProperties()
props.put("exampleKey", "Hello World")
event = nConsumeEvent(props,"aTag")
mySession.writeDataGroup(datagroupname,event)

Note that there is no Universal Messaging DataGroup object, you simply pass the name
of the DataGroup you wish to publish to.

The underlying library (wrien using the Universal Messaging C++ API) will create the
DataGroup if it does not exist on the Universal Messaging Realm Server.

Universal Messaging Python : Asynchronous Exception Listener
Certain methods within the Universal Messaging Python Client API require
synchronous calls to the server. For example the Universal MessagingSession.getLastEID
method will request the most recent event ID that was published onto a Universal
Messaging Channel. This method is required to be synchronous i.e. must block until a
response is received. Other methods such as Universal MessagingSession.publish do not
require a response so to make these methods as fast as possible, they are asynchronous.

With synchronous calls, if an exception is thrown on the server e.g. the user does
not have permission to get the last event ID then the exception is passed back in the
response and thrown on the client.

With asynchronous calls, the client does not wait for a response so if an exception is
thrown on the server e.g. the user does not have permission to publish, the client will not
know that the event was not successfully published. This is where it is useful to have an
Asynchronous Exception Listener.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 219

The Asynchronous Exception Listener will receive notification of exceptions that
occurred on the server for asynchronous calls. So if the user was not allowed to publish,
the listener will be notified with a message indicating this.

Creating a Asynchronous Exception Listener

Asynchronously receiving exceptions requires an object which implements the Universal
MessagingPython.AsyncExceptionListener interface. The interface has one method,
onException which is passed a string describing the exception.
class AsyncExceptionListener(Universal MessagingPython.AsyncExceptionListener):
 def onException(self,message):
 print "Received an exception -> "+message
exceptionListener = AsyncExceptionListener()

Registering the listener for events

In order to register the Universal MessagingPython.AsyncExceptionListener to receive
notification of exceptions, you can call the addAsyncExceptionListener method of
Universal MessagingSession (see "Creating a Session" on page 215).
mySession = Universal MessagingSession()
mySession.connect("nsp://localhost:9000")
mySession.addAsyncExceptionListener(exceptionListener)

Universal Messaging Python : Synchronously Requesting Events
Although in most circumstances it is more efficient to consume events asynchronously.
The Universal Messaging Python API also provides the ability to request events one by
one from the server.

Once you have created a session you can create an iterator for the channel or queue that
you wish to consume from.
iter = Universal MessagingModule.getIterator(channame,startEid, selector, timeout)
for evt in iter:
 doSomething(evt)

On each iteration the Python client will request an event from the server and receive the
event back as a response. Once the client has consumed all of the events on the channel/
queue, it will wait for timeout milliseconds for another event to be received. When the
client times out it will stop iterating.

Alternatively you can manually request events from the server:
evt = iter.next()

Once all events are consumed the next() method will time out and return None.

M
Even Header

Universal Messaging Developer Guide Version 9.6 220

Sample Applications

Publish / Subscribe Channels

Universal Messaging Python Client: Channel Publisher

This example shows how publish events onto a Universal Messaging Channel

Application Source Code

See the online documentation for a code example.

Universal Messaging Python Client: Asynchronous Channel Subscriber

This examples show how to connect to a Universal Messaging Channel and
asynchronously receive messages.

Application Source Code

See the online documentation for a code example.

Universal Messaging Python Client: Channel Iterator

This example shows how to iterate over events stored on a Universal Messaging
Channel

Application Source Code

See the online documentation for a code example.

Pub / Sub Datagroups

Universal Messaging Python Client: DataGroup Publisher

This is a simple example of how to delete a DataGroup

Application Source Code

See the online documentation for a code example.

Universal Messaging Python Client: DataStream Listener

This example shows how to initialise a session ready to asynchronously receive events
via DataGroups.

Application Source Code

See the online documentation for a code example.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 221

Message Queues

Universal Messaging Python Client: Queue Publisher

This example shows how publish events onto a Universal Messaging Queue

Application Source Code

See the online documentation for a code example.

Universal Messaging Python Client: Asynchronous Queue Consumer

This examples show how to connect to a Universal Messaging Queue and
asynchronously receive messages.

Application Source Code

See the online documentation for a code example.

Universal Messaging Python Client: Synchronous Queue Reader

This example shows how to synchronously pop messages off a Universal Messaging
Queue.

Application Source Code

See the online documentation for a code example.

Python Objects

Universal Messaging Python : Universal Messaging Events
A Universal Messaging Event (nConsumeEvent) is the object that is published to a
Universal Messaging Channel, Queue, DataGroup or P2P service. It is stored by the
server and then passed to consumers as and when required.

Events can contain simple byte array data, or more complex data structures such as an
Universal Messaging Event Dictionary (nEventProperties).

Constructing an Event

In this Python code snippet, we construct our Universal Messaging Event
object (nConsumeEvent), as well as a Universal Messaging Event Dictionary object
(nEventProperties) for our Universal Messaging Event:
props = nEventProperties()
props.put("bondname", "bond1")
props.put("price", 100.00)
event = nConsumeEvent(props,"Tag")

M
Even Header

Universal Messaging Developer Guide Version 9.6 222

Handling a Received Event

When a client subscribes to a channel and specifies a callback function to handle
received events, the callback function will be invoked with the event as its parameter
whenever an event is received.

In this Python code snippet, we demonstrate a simple implementation of such a callback
function. In this example, we assume that the event contains an Event Dictionary with
two keys: bondname and price .
class myCallback(Universal MessagingPython.Universal MessagingCallback):
 def onMessage(self,event):
 props = event.getProperties()
 name = props.get("bondname")
 price = props.get("price")
 //do something with name and price

Universal Messaging Python : Event Dictionaries
Event Dictionaries (nEventProperties) provide an accessible and flexible way to store any
number of message properties for delivery within a Universal Messaging Event.

Event Dictionaries are quite similar to a hash table, supporting primitive types, arrays,
and nested dictionaries.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's dictionary.

In this code snippet, we assume we want to publish an event containing the definition of
a bond, say, with a name of "bond1":
props = nEventProperties()
props.put("bondname", "bond1")
props.put("price", 100.00)
event = nConsumeEvent(props,"Tag")
Universal MessagingModule.publish("Channelname",evt);

Note that in this example code, we also create a new Universal Messaging Event object
(nConsumeEvent) to make use of our Event Dictionary (nEventProperties).

Universal Messaging Language API Comparisons
Universal Messaging APIs for Enterprise, Web and Mobile applications are available in
a range of programming languages. The following table provides an overview of each
language's support for Universal Messaging features and communication protocols:

M
Odd Header

Universal Messaging Developer Guide Version 9.6 223

Target Environments Communication
Protocols

Messaging Paradigms Extended APIs

Enterprise Web Mobile Native or
Comet

Pub/Sub Message
Queues

Peer to Peer Admin JMS

Java Native

C# .NET Native

C++ Native

Python Native

Excel VBA Native

JavaScript Native (via
WebSocket)
or Comet

Adobe Flex Native

Microsoft
Silverlight

Native

iPhone Native

Android Native

M
Even Header

Universal Messaging Developer Guide Version 9.6 224

M
Odd Header

Universal Messaging Mobile Client APIs

Universal Messaging Developer Guide Version 9.6 225

2 Universal Messaging Mobile Client APIs

■ Client API for iPhone ... 226

■ Client API for Android .. 227

M
Even Header

Universal Messaging Mobile Client APIs

Universal Messaging Developer Guide Version 9.6 226

Our mobile messaging solution allows developers to implement real-time publish/
subscribe functionality within mobile phone applications on a range of devices including
Apple iPhone and Android:

Apple iPhone

Our Universal Messaging iPhone API is implemented natively in C++, and through
Objective-C and C++ code offers a core subset of Universal Messaging client
functionality which allows iPhone to publish and subscribe to Universal Messaging
channels, and to asynchronously receive events in realtime:

"Universal Messaging iPhone Developer's Guide" on page 226

Please contact us for a live demonstration, or for access to our Universal Messaging
for Apple iPhone API.

Android

Android devices are able to make use of our Universal Messaging Enterprise API for
Java to subscribe to Universal Messaging channels, utilize message queues, and
communicate with peer to peer services.

Our "Android Developer's Guide" on page 227 provides further information,
online demonstrations and sample source code.

See Universal Messaging's Language API Comparison Grid for an overview of basic
differences between each API.

Client API for iPhone

Universal Messaging iPhone Developer's Guide
This guide describes how to develop and deploy Apple iPhone applications using
Universal Messaging, and assumes you already have Universal Messaging installed.

Universal Messaging iPhone Client Development

Universal Messaging for the iPhone is provided through a port of our Universal
Messaging C++ library. The iPhone development environment supports both Objective-
C and C++ and allows resources from either environment to coexist and be accessible
from the other.

Universal Messaging for the iPhone is delivered as a suite of static libraries built for the
platform along with their associated header files. Dragging the libraries into XCODE
automatically includes them in your project. The Universal Messaging iPhone download
available above includes all the required libraries, header files and full source for our
TradeSpace implementation on the iPhone.

M
Odd Header

Universal Messaging Mobile Client APIs

Universal Messaging Developer Guide Version 9.6 227

Client API for Android

Universal Messaging Android Developer's Guide
Universal Messaging for Android is supported through our Universal Messaging
Enterprise API for Java.

Using the Enterprise Client API

To use Universal Messaging within your Android project, you must reference the
JAR file nClient.jar for the Enterprise Client API for Java, found in your Universal
Messaging installation. References may typically be made by simply dragging the JAR
into your IDE.

We have provided a sample Android application, TradeSpace, along with full source
code to get you started writing your own Android applications with Universal
Messaging.

Documentation

The Universal Messaging Enterprise Developer's Guide for Java provides full
information on how to use pub/sub, message queues and peer to peer services in your
Android application.

Portions of this page are modifications based on work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Aribution License.

http://creativecommons.org/licenses/by/3.0/

M
Even Header

Universal Messaging Developer Guide Version 9.6 228

M
Odd Header

Universal Messaging Web Client APIs

Universal Messaging Developer Guide Version 9.6 229

3 Universal Messaging Web Client APIs

■ Javascript ... 230

■ Adobe Flex ... 247

■ Silverlight .. 267

■ Java .. 276

M
Even Header

Universal Messaging Web Client APIs

Universal Messaging Developer Guide Version 9.6 230

Our web-based messaging solution allows developers to implement real-time publish/
subscribe functionality into browser applications or RIAs (Rich Internet Applications)
using JavaScript, Java or Adobe Flex:

JavaScript

The Universal Messaging JavaScript API is a pure JavaScript solution. This allows
developers to use JavaScript and HTML to build Ajax/Comet clients which can
publish and subscribe to Universal Messaging channels, and asynchronously receive
events in realtime:

"JavaScript Developer's Guide" on page 230

Our JavaScript API is popular because it works without plugins or infrastructure
workarounds, using only the browser's built-in JavaScript engine.

Adobe Flex

The Universal Messaging Adobe Flex API is an Adobe ActionScript API allowing the
rapid development of publish/subscribe RIA clients. These clients can be run within
a browser, or as standalone Adobe AIR applications:

"Flex Developer's Guide" on page 247

Microsoft Silverlight

The Universal Messaging Silverlight API is an C# .NET API allowing the rapid
development of publish/subscribe RIA clients. These clients can be run within a
browser:

"Silverlight Developer's Guide" on page 267

Java

The Universal Messaging Java client APIs can be used for standalone Java applications,
but can also be used in the browser as either Applets or Java Webstart applications.

"Java Developers Guide for Web Developers" on page 276

Note that the above Universal Messaging Java links are for web-based applications.
Universal Messaging Java APIs can also be used for enterprise clients and servers, as
well as mobile applications.

See Universal Messaging's Language API Comparison Grid for an overview of basic
differences between each API.

Javascript

Universal Messaging JavaScript Developer's Guide
This guide describes how to develop and deploy JavaScript applications using Universal
Messaging, and assumes you already have Universal Messaging installed.

M
Odd Header

Universal Messaging Web Client APIs

Universal Messaging Developer Guide Version 9.6 231

Universal Messaging supports both WebSocket and Ajax / Comet streaming through
our Javascript API. Universal Messaging streams events to web clients asynchronously,
without the requirement for any additional technology components at clients' browsers.
The API will automatically detect client capabilities and make use of the optimum
underlying transport in each case.

M
Even Header

Universal Messaging Developer Guide Version 9.6 232

Universal Messaging Server Coniguration for JavaScript

Universal Messaging JavaScript: Server Configuration for HTTP Delivery
Universal Messaging can serve web content over both HTTP and HTTPS communication
modes. This section discusses the steps necessary to configure a realm server to deliver
web content over HTTP.

Creating a Universal Messaging HTTP (nhp) Interface

Note: Note that since version 7, Universal Messaging ships with an HTTP Interface
enabled by default.

Universal Messaging provides its own protocol, the Universal Messaging HTTP Protocol
(nhp) for the delivery of web content over HTTP. For web communication to take place
an interface using this protocol must be created. Creating an interface can be done
through the enterprise manager.

Serving Content through File Plugins

A Universal Messaging nhps interface delivers content to connected browsers through
file plugins. Generally at least two file plugins will need to be configured to serve a page
using the Universal Messaging JavaScript API. The first will be a pointer to the Universal
Messaging JavaScript client libraries. The second will be a plugin pointing to the base
directory of the web pages which use these libraries.

The Universal Messaging JavaScript client libraries are located in /lib/javascript in
the nirvana base installation directory. To use these libraries in any content served from
an interface a file plugin with a BasePath which points to this directory is necessary.
The URL Path of the file plugin may be anything you wish, though it must be referenced
the same in the include in your javascript code. For example, if you set the URL Path to /
lib/js then the following code must be included in your pages:
 <script language="JavaScript" src="/lib/js/nirvana.js"></script>

Note: Note that since version 7, Universal Messaging ships with a file plugin with
the base path /lib/js and the above configuration.

The file plugin which points to your web content is configured in a similar way. The
BasePath should point to the fully qualified path of your web directory. The URL Path
is the resource location relative to your address. For example, serving content from the
root of the website can be done by seing a URL Path of /

If you prefer, you can host your web application on a different web server entirely. In
addition, nirvana.js could be served from such a web server. The Universal Messaging
realm server's interface's file plugin (/lib/js in this case) will only be required if
you opt to use any of the JavaScript drivers that use postMessage for cross domain
communication (see JavaScript driver details for more information).

M
Odd Header

Universal Messaging Developer Guide Version 9.6 233

JavaScript Interface Properties

The behaviour of nhp interfaces when serving web content can be changed through the
enterprise manager. These seings can be changed by editing configuration properties
available in the JavaScript panel accessed through the interface tab.

Comet Configuration Properties

The Universal Messaging enterprise manager also provides realm wide configuration
seings for Comet. These are available in the enterprise manager from the Comet Config
panel.

Universal Messaging JavaScript: Server Configuration for HTTPS Delivery
Universal Messaging can serve web content over both HTTP and HTTPS communication
modes. This section discusses the steps necessary to configure a realm server to deliver
web content over HTTPS.

Creating a Universal Messaging HTTPS (nhps) Interface

Universal Messaging provides its own protocol, the Universal Messaging HTTPS
Protocol (nhps) for the secure delivery of web content over HTTPS. For web
communication to take place an interface using this protocol must be created. Creating
an interface can be done through the enterprise manager.

Enabling SSL on the Interface

When the interface is created using the enterprise manager default values are placed
into the Certificates tab in the interface panel. To communicate using HTTPS over the
interface additional configuration in this panel is required.

Other Configuration Options

Once the interface is created and SSL is enabled and correctly set up on the interface
configuration can be completed by using the same steps which apply to configuring a
HTTP interface.

Universal Messaging Javascript : Serving From Another Webserver
The Universal Messaging JavaScript API consists of two files:

nirvana.js (which can be served from any webserver)

crossDomainProxy.html (needed only if using one of the postMessage drivers, and
which must be served from a file plugin on the Universal Messaging realm server)

Universal Messaging Realm Servers provide the option of exposing an HTTP web server
interface for serving files to clients, removing the need to install a third party web server
for hosting applications. Of course, it is possible to use a third party web server to host
applications too.

Here we will explain how to deploy applications in both scenarios.

M
Even Header

Universal Messaging Developer Guide Version 9.6 234

Web Applications on a Realm File Plugin

Your application source code, and the Universal Messaging library files shown above,
need to be deployed to one or more directories on the Realm Server, and File Plugins
configured to provide access to these directories.

Note: Note that since version 7, Universal Messaging ships with an HTTP Interface
enabled by default. This HTTP Interface is pre-configured with a file plugin
with the base path /lib/js which points to the directory containing the
above library files.

As a result, both files are accessible via a browser at the following paths on the realm:

/lib/js/nirvana.js

/lib/js/crossDomainProxy.html

To use Universal Messaging, applications then simply need to include nirvana.js as
follows:
<script src="/lib/js/nirvana.js"></script>

There is no need to reference the crossDomainProxy.html file directly (the nirvana.js
library will load it automatically if it is required).

Your Universal Messaging session can be started with a relatively simple configuration,
as follows:
var mySession = Nirvana.createSession({
 applicationName : "myExampleApplication",
 sessionName : "myExampleSession",
 username : "testuser"
});
mySession.start();

Web Applications on a Third Party Web Server

Your application source code and HTML files, and optionally the nirvana.js library
(which may in fact be served from any server, including a CDN), are deployed to a third
party web server, such as Apache.

If there is any chance that your client will use a postMessage drivers, then you must
ensure that the crossDomainProxy.html file is accessible on the realm via a file plugin.

If you use the default file plugin configuration mentioned above, then no further
configuration is required. If instead you decide to make the crossDomainProxy.html
file available at a different path by using a different file plugin, then you will need to
specify this path as a crossDomainPath key in the session configuration object passed to
Nirvana.createSession().

For any driver other than WEBSOCKET, the third party web server must be using the
same protocol (i.e. hp or hps) as the Universal Messaging Realm interface file plugin,
and running on the same port. The WEBSOCKET driver does not have this restriction.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 235

To use Universal Messaging:

1. Applications need to include nirvana.js as follows:
<script src="/front/end/server/lib/nirvana.js"></script>

2. The Nirvana.createSession() call must use a configuration object that includes
the following key/value pair:

realms : An array of URLs of the realm servers in use, e.g.

["http://node1.um.softwareag.com:80", "http://
node2.um.softwareag.com:80"]

3. Your Universal Messaging session can then be started with a configuration such as:
var mySession = Nirvana.createSession({
 realms : ["http://node1.um.softwareag.com:80", "http://node2.um.softwareag.com:80"],
 applicationName : "myExampleApplication",
 sessionName : "myExampleSession",
 username : "testuser"
});
mySession.start();

For more information, please see Universal Messaging Sessions in JavaScript, which
describes in more detail the options that can be set using the Universal Messaging
session configuration object.

M
Even Header

Universal Messaging Developer Guide Version 9.6 236

Universal Messaging Web Client Development in JavaScript

Universal Messaging Channel Publish / Subscribe

Universal Messaging JavaScript : Publish / Subscribe

The Universal Messaging JavaScript API provides publish subscribe functionality
through the use of channel objects. Channels are the logical rendezvous point for
publishers (producers) and subscribers (consumers) of data (events).

Under the publish / subscribe paradigm, each event is delivered to each subscriber
once and only once per subscription, and is not removed from the channel after being
consumed.

This section demonstrates how Universal Messaging pub / sub works, and provides
example code snippets for all relevant concepts.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 237

Publish/Subscribe Tasks

Universal Messaging JavaScript : Using a Universal Messaging Channel

This JavaScript code snippet demonstrates how to create a channel object, which allows
you to publish or subscribe to a Universal Messaging channel:
var myChannel = mySession.getChannel("/fxdemo/prices");

Note that unlike the Enterprise APIs, the JavaScript API does not support programmatic
creation of channels; instead, you can use the Enterprise Manager GUI to create a
Universal Messaging Channel.

A channel object offers several methods. Three of the more important ones are:

myChannel.subscribe()

myChannel.unsubscribe()

myChannel.publish(Event event)

Please see JavaScript API Documentation for Channels for information on all available
methods on a channel.

Each of the above methods can invoke one or more optional user-specified callback
functions which you can (and probably should) implement and assign as follows:
var myChannel = mySession.getChannel("/fxdemo/prices");
// Assign a handler function for Universal Messaging Events received on the Channel, then subscribe:
function myEventHandler(event) {
 var dictionary = event.getDictionary();
 console.log(dictionary.get("name") + " " + dictionary.get("bid"));
}
myChannel.on(Nirvana.Observe.DATA, myEventHandler);
myChannel.subscribe();

See "Subscribing to a channel" on page 237 and "Publishing Events to a channel" on
page 238.

Universal Messaging JavaScript : Subscribing to a Universal Messaging Channel

Once a Universal Messaging Channel object has been created, you can subscribe to the
channel, and receive Universal Messaging Events published on the channel.

Simple Subscription

This JavaScript code snippet demonstrates how to subscribe to a channel:
var myChannel = mySession.getChannel("/fxdemo/prices");
function myEventHandler(event) {
 var dictionary = event.getDictionary();
 console.log(dictionary.get("name") + " " + dictionary.get("bid"));
}
myChannel.on(Nirvana.Observe.DATA, myEventHandler);
myChannel.subscribe();

Note that the subscribe() call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing. Whenever an event is received on

M
Even Header

Universal Messaging Developer Guide Version 9.6 238

the channel, however, any user function assigned as a callback for the observable event
Nirvana.Observe.DATA will be invoked, with the appropriate Event as its parameter.

Subscription with a Filtering Selector

It is also possible to subscribe to a channel with a user-specified selector (a type of filter),
ensuring that your client receives only events that match the selector. Selectors are SQL-
like statements such as:

name LIKE '%bank%' AND description IS NOT NULL

(vol > 0.5 OR price = 0) AND delta < 1

This JavaScript code snippet demonstrates how to subscribe to a channel and receive
only events which have a key named "volatility" and a value greater than 0.5:
var myChannel = mySession.getChannel("/fxdemo/prices");
function myEventHandler(event) {
 var dictionary = event.getDictionary();
 console.log(dictionary.get("name") + " " + dictionary.get("bid"));
}
myChannel.on(Nirvana.Observe.DATA, myEventHandler);
myChannel.setFilter("name like '%EUR%'");
myChannel.subscribe();

Handling Errors

You may optionally specify an error handler to be notified of subscription or publishing
errors:
function myErrorHandler(error) {
 console.log(error.message);
}
myChannel.on(Nirvana.Observe.ERROR, myErrorHandler);

If you do not implement an error handler in this way, errors will be silently ignored.

Universal Messaging JavaScript : Publishing Events to a Universal Messaging Channel

Once the session has been established with the Universal Messaging realm server, and a
Universal Messaging Channel object has been created, a new Universal Messaging Event
object must be constructed to use in the publish call being made on the channel.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object for our Universal Messaging Event before publishing it:
var mySession = Nirvana.createSession();
var myChannel = mySession.getChannel("/tutorial/sandbox");
var myEvent = Nirvana.createEvent();
var myDict = myEvent.getDictionary();
myDict.putString("demoMessage", "Hello World");
myChannel.publish(myEvent);

M
Odd Header

Universal Messaging Developer Guide Version 9.6 239

Note that the publish call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing.

To enable the developer to know when a publish call has completed, any user function
assigned as a callback for the channel's observable event Nirvana.Observe.PUBLISH
will be invoked, with the a string value of "OK" (which indicates the publish was
successful):
function publishCB(responseString) {
 console.log("Publish attempt: " + responseString);
}
myChannel.on(Nirvana.PUBLISH, publishCB);
myChannel.publish(myEvent);

Universal Messaging JavaScript : DataStream - Receiving DataGroup Events

JavaScript clients can (optionally) act as a DataStream, which allows them to receive
events from DataGroups of which they are made members.

The process for enabling DataStream functionality is quite simple:

1. Pass a configuration object to the Nirvana.createSession() call with a suitable
configuration parameter (enableDataStreams).

2. Implement the Session.on() callback function.

Processing events received as a DataStream is also very simple:
var mySession = Nirvana.createSession({ enableDataStreams : true });
function myDGEventHandler(event) {
 console.log("Received a DataGroup Event");
}
mySession.on(Nirvana.Observe.DATA, myDGEventHandler);
mySession.start();

Note that JavaScript clients can only act as DataStreams (consumers of DataGroup
events). The JavaScript API does not currently support publishing to DataGroups
or remote management of DataGroup members; DataGroup management is instead
supported by Universal Messaging's Enterprise APIs.

M
Even Header

Universal Messaging Developer Guide Version 9.6 240

Optimizing Throughput

Universal Messaging JavaScript : The Merge Engine and Event Deltas

In order to streamline web-based Publish/Subscribe applications, it is possible to deliver
only the differences between consecutive events, as opposed to the entire event each
time. These event deltas minimize the amount of data that needs to be sent from the
publisher, as well as the amount of data ultimately delivered to subscribers.

Event Deltas and Publishers

Imagine a channel that is used to deliver foreign-exchange currency prices. Let us
assume that the channel has a publish-key named pair , of depth 1, representing the
currency pair. This means that a maximum of one event for each currency pair will exist
on the channel at any time.

An event representing a foreign-exchange currency price might therefore be published
as follows:
var event = Nirvana.createEvent();
var priceDictionary = myEvent.getDictionary();
priceDictionary.putString("pair", "EURUSD");
priceDictionary.putFloat("bid", 1.2261);
priceDictionary.putFloat("offer", 1.2263);
priceDictionary.putFloat("close", 1.2317);
priceDictionary.putFloat("open", 1.2342);
demoChannel.publish(event);

Let us now imagine that the spread on this price has tightened: while the bid value
remains the same, the offer is lowered from 1.2263 to 1.2262.

Under normal circumstances, an entire new event would be created and published:
var event = Nirvana.createEvent();
var priceDictionary = myEvent.getDictionary();
priceDictionary.putString("pair", "EURUSD");
priceDictionary.putFloat("bid", 1.2261);
priceDictionary.putFloat("offer", 1.2262);
priceDictionary.putFloat("close", 1.2317);
priceDictionary.putFloat("open", 1.2342);
demoChannel.publish(event);

Notice that the majority of the information in this new event is no different to that in the
previously sent event.

Event deltas allow us to publish only the information that has changed :
var event = Nirvana.createEvent();
var priceDictionary = myEvent.getDictionary();
priceDictionary.putString("pair", "EURUSD"); // we need to specify the publish-key too, of course
priceDictionary.putFloat("offer", 1.2262);
event.getAttributes().setAllowMerge(true);
demoChannel.publish(event);

It is clear from the above example that using event delta functionality through
setAllowMerge(true) in the Event Aributes object is especially useful when
publishing events with many dictionary keys that have unchanged values.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 241

Event Deltas and Subscribers

In the above example, where the channel had a publish-key named pair with a depth of
1, only one event for each currency will exist on the channel at any one time. Given that
the last published event was a mere delta, how can we guarantee that a new subscriber
will receive an event with a fully populated dictionary containing all expected keys?

Universal Messaging's Merge Engine will process and merge events with all event
deltas, maintaining internal representations of merged event snapshots, keyed on the
channel's publish-key. A merged event snapshot for each unique publish-key value is
delivered to subscribers when they initially subscribe, or when they reconnect after a
period of disconnection.

Web clients built using the Universal Messaging JavaScript API can receive any
combination of standard events, event deltas and merged event snapshots.

New Subscribers: Merged Events

A client that subscribed to the channel some time after the above example's event delta
was published would receive a server-generated merged event snapshot with a dictionary
containing the following key/value pairs:

pair : "EURUSD"

bid : 1.2261

offer : 1.2262

close : 1.2317

open : 1.2342

Note how the offer value of 1.2262 has been merged into the older event's dictionary.

Existing Subscribers: Events and Event Deltas

A client that was subscribed before the initial example event was published would
receive two events. The first event would have a dictionary containing the following
key/value pairs:

pair : "EURUSD"

bid : 1.2261

offer : 1.2263

close : 1.2317

open : 1.2342

The second event received by the client (the delta) would be marked as a delta, and have
a dictionary containing only the following key/value pairs:

pair : "EURUSD"

offer : 1.2262

M
Even Header

Universal Messaging Developer Guide Version 9.6 242

In summary, therefore, any new client subscribing will receive all of the fields in the
merged event for EURUSD, while any existing subscribers will only receive the offer
change for EURUSD.

Important: Note that only the event delta is passed to the developer-implemented
Channel.on() callback; it is the developers' responsibility to make use of the
deltas in this case.

Further Notes

In order for a channel to be capable of delivering deltas and merging events it must
be created with the Merge Engine enabled, and it must have a single publish-key.
The publish-key represents the primary key for the channel.

If a publisher of an event does not make a call to setAllowMerge(true) then the
merged event snapshot for that publish-key value would be replaced in its entirety
by the newly published event.

If a subscriber disconnects and then reconnects it will again receive the latest
snapshot before receiving only the deltas that are subsequently published.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 243

Universal Messaging Message Queues

Universal Messaging JavaScript : Message Queues

The Universal Messaging JavaScript API provides message queue functionality through
the use of queue objects. Queues are the logical rendezvous point for publishers
(producers) and subscribers (consumers) of data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

This section demonstrates how Universal Messaging message queues work in JavaScript,
and provides example code snippets for all relevant concepts.

M
Even Header

Universal Messaging Developer Guide Version 9.6 244

Queue Tasks

Universal Messaging JavaScript : Using a Universal Messaging Queue

This JavaScript code snippet demonstrates how to create a queue object, which allows
you to publish or subscribe to a Universal Messaging queue:
var myQueue = mySession.getQueue("/demo/prices");

Note that unlike the Enterprise APIs, the JavaScript API does not support programmatic
creation of queues; instead, you can use the Enterprise Manager GUI to create a
Universal Messaging Queue.

A queue object offers several methods. Three of the more important ones are:

myQueue.subscribe()

myQueue.unsubscribe()

myQueue.publish(Event event)

Please see JavaScript API Documentation for Queues for information on all available
methods on a queue.

Each of the above methods can invoke one or more optional user-specified callback
functions which you can (and probably should) implement and assign as follows:
var myQueue = mySession.getQueue("/demo/prices");
// Assign a handler function for Universal Messaging Events received on the Queue, then subscribe:
function myEventHandler(event) {
 var dictionary = event.getDictionary();
 console.log(dictionary.get("name") + " " + dictionary.get("bid"));
}
myQueue.on(Nirvana.Observe.DATA, myEventHandler);
myQueue.subscribe();

See "Subscribing to a queue" on page 244 and "Publishing Events to a queue" on page
245.

Universal Messaging JavaScript : Subscribing to a Universal Messaging Queue

Once a Universal Messaging Queue object has been created, you can subscribe to the
queue, and receive Universal Messaging Events published on the queue. JavaScript
supports two kinds of queue subscribers. An asynchronous non-transactional consumer
and a asynchronous transactional consumer.

Simple Subscription

Once a Universal Messaging Queue object has been created, you can subscribe to the
channel, and receive Universal Messaging Events published on the queue.

This JavaScript code snippet demonstrates how to subscribe to a queue:
var myQueue = mySession.getQueue("/demo/prices");
function myEventHandler(event) {
 var dictionary = event.getDictionary();
 console.log(dictionary.get("name") + " " + dictionary.get("bid"));
}
myQueue.on(Nirvana.Observe.DATA, myEventHandler);
myQueue.subscribe();

M
Odd Header

Universal Messaging Developer Guide Version 9.6 245

Note that the subscribe() call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing. Whenever an event is received on
the queue, however, any user function assigned as a callback for the observable event
Nirvana.Observe.DATA will be invoked, with the appropriate Event as its parameter.

Handling Errors

You may optionally specify an error handler to be notified of subscription or publishing
errors:
function myErrorHandler(error) {
 console.log(error.message);
}
myQueue.on(Nirvana.Observe.ERROR, myErrorHandler);

If you do not implement an error handler in this way, errors will be silently ignored.

Universal Messaging JavaScript : Publishing Events to a Universal Messaging Queue

Once the session has been established with the Universal Messaging realm server, and a
Universal Messaging Queue object has been created, a new Universal Messaging Event
object must be constructed to use in the publish call being made on the queue.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object for our Universal Messaging Event before publishing it:
var mySession = Nirvana.createSession();
var myQueue = mySession.getQueue("/tutorial/somequeue");
var myEvent = Nirvana.createEvent();
var myDict = myEvent.getDictionary();
myDict.putString("demoMessage", "Hello World");
myQueue.publish(myEvent);

Note that the publish call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing.

To enable the developer to know when a publish call has completed, any user function
assigned as a callback for the queue's observable event Nirvana.Observe.PUBLISH
will be invoked, with the a string value of "OK" (which indicates the publish was
successful):
function publishCB(responseString) {
 console.log("Publish attempt: " + responseString);
}
myQueue.on(Nirvana.PUBLISH, publishCB);
myQueue.publish(myEvent);

Universal Messaging JavaScript : Asynchronous Transactional Queue Consuming

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

M
Even Header

Universal Messaging Developer Guide Version 9.6 246

Subscribing as a Transactional Reader

This JavaScript code snippet demonstrates how to subscribe to a queue as a transactional
queue reader:
var demoSession = Nirvana.createSession();
var demoQueue = demoSession.getQueue ("/some/demo/queue");
demoQueue.on(Nirvana.Observe.DATA,
 function(event) {
 // define what to do when we receive an event
 });

You can specify the transaction flag and the window size as follows:
var demoQueue = mySession.getQueue ("/some/demo/queue", true);
// The true flag specifies that we are a transactional reader
demoQueue.setWindowSize(10); // 10 is the windowSize
demoQueue.subscribe();

Performing a Commit

As previously mentioned, the big difference between a transactional reader and a
standard queue reader is that once events are consumed by the reader, the consumers
need to commit the events consumed. Events will only be removed from the queue once
the commit has been called.

The server will only deliver up to the specified windowSize number of events. After this
the server will not deliver any more events to the client until commit has been called.
The default windowSize is 5.

The JavaScript libraries provide two methods for commiing events which have been
consumed. demoQueue.commitAll() will commit every event which this consumer
has received thus far, but has not previously commied. When the server receives this
message, all these events will be removed. demoQueue.commit(event) will commit the
given event and any uncommied events occurring before.
demoQueue.on(Nirvana.Observe.DATA,
 function(event) {
 // process the event
 demoQueue.commit(event); // Commit the event
 });

Performing a Rollback

Developers can also rollback events received by the transactional reader. Uncommied
events will be redelivered by the server (possibly to other queue consumers if they exist).

The JavaScript libraries provide two methods for performing a rollback.
demoQueue.rollbackAll() will roll back all previously uncommied events which the
consumer has received. demoQueue.rollback(event) will perform a rollback on all
events starting from the given event.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 247

Adobe Flex

Universal Messaging Flex Developer's Guide
This guide describes how to develop and deploy Adobe Flex applications using
Universal Messaging, and assumes you already have Universal Messaging installed.

Publish / Subscribe using Channels / Topics

Universal Messaging Flex : Publish / Subscribe
The Universal Messaging Flex API provides publish subscribe functionality through
the use of channel objects. Channels are the logical rendezvous point for publishers
(producers) and subscribers (consumers) of data (events).

Under the publish / subscribe paradigm, each event is delivered to each subscriber
once and only once per subscription, and is not removed from the channel after being
consumed.

This section demonstrates how Universal Messaging pub / sub works, and provides
example code snippets for all relevant concepts.

Universal Messaging Flex : Publishing Events to a Channel
There are 2 types of publish available in Universal Messaging for channels:

"Reliable Publish" on page 247

"Transactional Publish" on page 248

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then commiing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server, and
the channel has been located, a new Universal Messaging Event object (nConsumeEvent)
must be constructed prior to use in the publish call being made to the channel.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object (nEventProperties) for our Universal Messaging Event before publishing it:
var event : nConsumeEvent = new nConsumeEvent();

M
Even Header

Universal Messaging Developer Guide Version 9.6 248

var dictionary : nEventProperties = new nEventProperties();
dictionary.put("exampleKey", "Hello World");
event.properties=dictionary;
channel.publish(evt);

The final item to note is that the publish call is asynchronous; it returns immediately,
allowing single-threaded Flex clients to continue processing.

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the channel located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been commied will the events become available to subscribers on the
channel.

Below is a code snippet for transactional publishing:
var event : nConsumeEvent = new nConsumeEvent();
var dictionary : nEventProperties = new nEventProperties();
dictionary.put("exampleKey", "Hello World");
event.properties=dictionary;
var tattrib:nTransactionAttributes = new nTransasctionAttributes(myChannel);
var myTransaction:nTransaction = nTransactionFactory.create(tattrib, transactionCallBack);
myTransaction.publish(event);
myTransaction.commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been commied or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was commied:
var committed:Boolean = myTransaction.isCommitted(isCommittedCallBack);

Universal Messaging Flex : Subscribing to a Channel
Once a Universal Messaging channel (nChannel) has been found, you can subscribe to the
channel, and receive Universal Messaging Events published on the channel.

Simple Subscription

This Flex code snippet demonstrates how to subscribe to a channel:
var startEventID : Long = Long.ZERO;
channel.addSubscriber(nEventListener, startEID, subscriptionCompleteCallbackFunc);

M
Odd Header

Universal Messaging Developer Guide Version 9.6 249

Note that the addSubscriberFromEID call is asynchronous; it returns immediately,
allowing single-threaded Flex clients to continue processing.

To let the developer know when the subscription request has actually completed, the
addSubscriber function takes three parameters:

1. nEventListener : the implemented listener that will be called whenever a Universal
Messaging Event is received on the channel. The event (nConsumeEvent) object will be
passed to this callback function as a parameter.

2. startEID : the ID of the event from which the subscription should start. We use 0 in
this example to ensure we receive all available events.

3. postSubCB : the name of a developer-defined Flex function that will be called
immediately after the subscription request actually completes.

Subscription with a Filtering Selector

It is also possible to subscribe to a channel with a user-specified selector (a type of filter),
ensuring that your client receives only events that match the selector. Selectors are SQL-
like statements such as:

name LIKE '%bank%' AND description IS NOT NULL

(vol > 0.5 OR price = 0) AND delta < 1

This Flex code snippet demonstrates how to subscribe to a channel and receive only
events which have a key named "volatility" and a value greater than 0.5:
var startEventID : int = 0;
var selector : String = "volatility > 0.5"
channel.addSubscriber(nEventListener, startEID, subscriptionCompleteCallbackFunc,selector);

Handling Received Events

As discussed above, you must implement a nEventListener to handle any received
events. Below is an example of an implemented function from the listener.
public function go(event:nConsumeEvent){
 var dictionary:nEventProperties = event.properties;
 var sender:String = dictionary.get("sender").toString();
 var message:String = dictionary.get("message").toString()
}

Universal Messaging Flex - Durable channel consumers and named objects
Universal Messaging provides the ability for asynchronous consumers to be durable.
Durable consumers allow state to be kept at the server with regard to what events have
been consumed by a specific consumer of data.

Universal Messaging supports durable consumers through use of Universal Messaging
named objects as shown by the following example code.

Names objects can also be managed via the enterprise manager.

M
Even Header

Universal Messaging Developer Guide Version 9.6 250

Durable Consumer

An example of how to create a named object that begins from event id 0, persistent and
is used in conjunction with an asynchronous event consumer:
public class mySubscriber implements nEventListener {
// construct your session
// and channel objects here
 private var nobj:nNamedObject;
 public function mySubscriber(channelIn:*):void {
 if(channelIn is nChannel){
 myChannel.createNamedObject(namedObjectCreatedCB, "unique1", Long.ZERO, true);
 }
 }
 public function namedObjectCreatedCB(named:*):void {
 if(named is nNamedObject){
 nobj= nNamedObject(named)
 myChannel.addSubscriber(this , subscribedCB, nobj,true);
 }
 }
 public function go(event:*):void {
 if(event is nConsumeEvent){
 //process event
 }
 }
}

Channel consumers allow message selectors to be used in conjunction with named
objects. Please see the API documentation for more information.

There are also different ways in which events consumed by named consumers can
be acknowledged. By specifying that 'auto acknowledge' is true when constructing
consumers, then each event is acknowledged as consumed automatically. If 'auto
acknowledge' is set to false, then each event consumed has to be acknowledged by
calling the ack() method:
 public function go(event:*):void {
 if(event is nConsumeEvent){
 //process event
 nConsumeEvent(event).ack();
 }
 }

Priority

Two subscribers can hold a subscription to the same named object. One is given priority
and will process events during normal operation. If, however, the subscriber with
priority is disconnected for whatever reason, and is unable to process events, the second
subscriber to that named object will take over and continue to process events as they
come in. This allows failover, with backup subscribers handling events if the subscriber
with priority goes down.

To do this, we simply create the subscriber with a boolean specifying if this subscriber
priority. Only one subscriber is allowed priority at any given time. An example of a
named object specifying priority is shown below:
myChannel.createNamedObject(namedObjectCreatedCB, subname, startEid, persistent, cluster, priority);

M
Odd Header

Universal Messaging Developer Guide Version 9.6 251

Universal Messaging Flex - The Merge Engine and Event Deltas
In order to streamline publish/subscribe applications it is possible to deliver only the
portion of an event's data that has changed rather than the entire event. These event
deltas minimise the amount of data sent from the publisher and ultimately delivered to
the subscribers.

The publisher simply registers an event and can then publish changes to individual keys
within the event. Subscribers can be configured to get callbacks which contain either the
entire event or just the changed key(s). Either way, only the key(s) that have changed are
delivered over the wire to the subscribing client.

Publisher - Registered Events

In order to publish event deltas the publisher uses the Registered Event facility available
on a Universal Messaging Channel. Please note that the channel must have been
created with the Merge Engine and it must have a single Publish Key. The publish key
represents the primary key for the channel and the registered events. So for example if
you are publishing currency rates you would setup a channel as such:
 //
 //Firstly, create the ChannelAttributes for a simple channel with unlimited capacity and no TTL.
 //
 var cattr:nChannelAttributes = new nChannelAttributes();
 cattr.name = "RatesChannel";
 cattr.maxEvents=0;
 cattr.TTL=Long.ZERO;
 cattr.type = nChannelAttributes.SIMPLE_TYPE;
 //
 // This next line tells the server to Merge incoming events based on the publish
 // key name and the name of the registered event
 //
 cattr.useMergeEngine = true;
 //
 // Now create the Publish Key (See publish Keys for a full description
 //
 var keys:Array = new Array();
 keys.push(new nChannelPublishKeys("ccy",1));
 cattr.publishKeys = keys;
 //
 // Now create the channel
 //
 _session.createStore(cattr,callbackWithChannel, Long.ZERO);

At this point the server will have a channel created with the ability to merge incoming
events from Registered Events. The next step is to create the Registered events at the
publisher.
 var audEvent:nRegisteredEvent = (e as nChannel).createRegisteredEvent("AUD");
 var props:nEventProperties = audEvent.properties;
 props.put("bid", 0.8999);
 props.put("offer", 0.9999);
 props.put("close", "0.8990");
 audEvent.commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to a ccy value
of "AUD". We then set the properties relevant to the application, finally we call

M
Even Header

Universal Messaging Developer Guide Version 9.6 252

commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:
 props.put("bid", 0.8999);
 audEvent.commitChanges();

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Subscriber - nEventListener

The subscriber implements nEventListener in the usual way and does not need to do
anything different in order to receive either event deltas or snapshots containing the
result of one or more merge operations. The standard nEventListener will receive a
full event when the subscriptions is initiated. Thereafter it will receive only deltas. If at
any time the user is disconnected then it will receive a fresh update of the full event on
reconnection - followed by a resumption of delta delivery.

If you wish to differentiate between snapshot events and delta events then the
nConsumeEvent aributes can be used as follows:
event.getEventAttributes("isDelta")

For more information on Universal Messaging publish / subscribe, please see the API
documentation.

Publish / Subscribe using DataStreams and DataGroups

Universal Messaging Flex : Publish / Subscribe
The Universal Messaging Flex API provides publish subscribe functionality through
the use of channel objects. Channels are the logical rendezvous point for publishers
(producers) and subscribers (consumers) of data (events).

Under the publish / subscribe paradigm, each event is delivered to each subscriber
once and only once per subscription, and is not removed from the channel after being
consumed.

This section demonstrates how Universal Messaging pub / sub works, and provides
example code snippets for all relevant concepts.

Universal Messaging Flex - DataGroup Conflation Attributes

Enabling Conflation on DataGroups

Universal Messaging DataGroups can be configured so that conflation (merging and
throling of events) occurs when messages are published. Conflation can be carried
out in several ways and these are specified using an nConflationAributes object. The
ConflationAributes object is passed in to the DataGroup when it is created initially.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 253

The nConflationAributes object has two properties: action; and interval. Both of these are
passed into the constructor.

The action property specifies whether published events should replace previous events in
the DataGroup or be merged with them. These properties are defined by static fields:
nConflationAttributes.sDropEvents
nConflationAttributes.sMergeEvents

The interval property specifies the interval in milliseconds between event fanout to
subscribers. An interval of zero implies events will be fanned out immediately.

Creating a Conflation Attributes Object
//ConflationAttributes specifying merge events and no throttled delivery
var conflattribs : nConflationAttributes =
 new nConflationAttributes(Long.ZERO, nConflationAttributes.sMergeEvent);
//ConflationAttributes specifying merge events and throttled delivery at 1 second intervals
var conflattribs : nConflationAttributes =
 new nConflationAttributes(new Long(0,1000), nConflationAttributes.sMergeEvent);
//ConflationAttributes specifying drop events and throttled delivery at 1 second intervals
var conflattribs : nConflationAttributes =
 new nConflationAttributes(new Long(0,1000), nConflationAttributes.sDropEvent);

Create a Single nDataGroup with Conflation Attributes
var conflattribs : nConflationAttributes =
 new nConflationAttributes(Long.ZERO, nConflationAttributes.sMergeEvent);
// Create a Datagroup, passing in a Listener of type nDataGroupListener and a nConflationAttributes
mySession.createDataGroup("myGroup", dataGroupCallback, dataGroupListener, conflattribs);

Create Multiple nDataGroups with Conflation Attributes
var conflattribs : nConflationAttributes =
 new nConflationAttributes(0, nConflationAttributes.sMergeEvent);
var groups : Array = {"myFirstGroup", "mySecondGroup"};
mySession.createDataGroups(groups, dataGroupCallback, conflattribs);

Now we will get a call back to dataGroupsCallback and have a reference to the
Universal Messaging datagroup(s) within the realm or an error.

Publishing Events to Conflated DataGroups With A Merge Policy

At this point the server will have an nDataGroup created with the ability to merge
incoming events from Registered Events. The next step is to create the Registered events
at the publisher.
 var audEvent : nRegisteredEvent = dataGroupCallback.createRegisteredEvent();
 var props : nEventProperties = audEvent.properties;
 props.put("bid", 0.8999);
 props.put("offer", 0.9999);
 props.put("close", "0.8990");
 audEvent.commitChanges();

You now have a nRegisteredEvent called audEvent which is bound to a ccy value
of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:
 props.put("bid", 0.9999);

M
Even Header

Universal Messaging Developer Guide Version 9.6 254

 audEvent.commitChanges();

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Publishing Events to Conflated DataGroups With A Drop Policy

If you have specified a "Drop" policy in your ConflationAributes then events are
published in the normal way rather than using nRegisteredEvent.

Consuming Conflated Events from a DataGroup

The subscriber doesn't need to do anything different to receive events from a DataGroup
with conflation enabled. If nRegisteredEvents are being delivered then the events will
contain only the fields that have changed will be delivered. In all other circumstances an
entire event is delivered to all consumers.

Universal Messaging Flex - DataStreamListener
If a nSession is created with a nDataStreamListener then it will receive asynchronous
callbacks via the onMessage implementation of the nDataStreamListener interface. The
nDataStreamListener will receive events when:

An event is published directly to this particular nDataStream

An event is published to any nDataGroup which contains this nDataStream

An event is published to an nDataGroup which contains a nested nDataGroup
containing this nDataStream

An example of how to create a session with an nDataStreamListener interface is
shown below:
public class DataGroupClient implements nDataStreamListener
{
 var mySession:nSession;
 public function DataGroupClient(realmURLs:String, retryAttempts:int)
 {
 var nsa:nSessionAttributes = new nSessionAttributes(realmURLs, retryAttempts);
 mySession = nSessionFactory.create(nsa, username, appName, errorCB);
 mySession.init(sessionInitCallback, null, false, this);
 }
 ////
 // nDataStreamListener Implementation
 ////
 //Callback received when event is available
 public function onMessage(event:nConsumeEvent):void
 {
 //some code to process the message
 }
 public function sessionInitCallback(e:*){
 // do something with the session if needed
 }
 public function errorCB(e:*}{
 //Error handling function
 }
}

M
Odd Header

Universal Messaging Developer Guide Version 9.6 255

Message Queues

Universal Messaging Flex - Message Queues
Universal Messaging provides message queue functionality through the use of queue
objects. Queues are the logical rendezvous point for publishers (producers) and
subscribers (consumers) or data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

This section demonstrates how Universal Messaging message queues work in Flex, and
provide examples code snippets for all relevant concepts.

Universal Messaging Flex : Publishing Events to a Queue
There are 2 types of publish available in Universal Messaging for queues:

"Reliable Publish" on page 255

"Transactional Publish" on page 256

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then commiing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server, and
the queue has been located, a new Universal Messaging Event object (nConsumeEvent)
must be constructed prior to use in the publish call being made to the queue.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object (nEventProperties) for our Universal Messaging Event before publishing it:
var event : nConsumeEvent = new nConsumeEvent();
var dictionary : nEventProperties = new nEventProperties();
dictionary.put("exampleKey", "Hello World");
event.properties=dictionary;
myQueue.push(evt);

The final item to note is that the publish call is asynchronous; it returns immediately,
allowing single-threaded Flex clients to continue processing.

M
Even Header

Universal Messaging Developer Guide Version 9.6 256

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the queue located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been commied will the events become available to subscribers on the
queue.

Below is a code snippet for transactional publishing:
var event : nConsumeEvent = new nConsumeEvent();
var dictionary : nEventProperties = new nEventProperties();
dictionary.put("exampleKey", "Hello World");
event.properties=dictionary;
var tattrib:nTransactionAttributes = new nTransasctionAttributes(myQueue,0);
var myTransaction:nTransaction = nTransactionFactory.create(tattrib, transactionCallBack);
myTransaction.push(event);
myTransaction.commit();

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been commied or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was commied:
var committed:Boolean = myTransaction.isCommitted(isCommittedCallBack);

Universal Messaging Flex - Asynchronous Queue Consuming
Asynchronous queue consumers consume events from a callback on an interface that all
asynchronous consumers must implement. We call this interface an nEventListener. The
listener interface defines one method called 'go' which when called will pass events to the
consumer as they are delivered from the Universal Messaging Realm Server.

An example of an asynchronous queue reader is shown below:
public class myAsyncQueueReader implements nEventListener {
 var myQueue:nQueue = null;
 var reader:nQueueAsynchronousReader = null;
 // construct your session and queue objects here
 public function myAsyncQueueReader(queueIn:*):void{
 if(queueIn is nQueue){
 myQueue = nQueue(myQueue);
 }else{
 return;
 }
 // begin consuming events from the queue
 var ctx:nQueueReaderContext = new nQueueReaderContext(this);

M
Odd Header

Universal Messaging Developer Guide Version 9.6 257

 myQueue.createAsynchronousReader(ctx, readerCB);
 }
 public function readerCB(readerIn:*):void {
 if(reader is nQueueAsynchronousReader){
 reader = readerIn
 }
 }
 public function go(event:*):void {
 if(event is nConsumeEvent){
 //Process events
 }else{
 //deal with error
 }
 }
 }

Asynchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a subscriber is interested in. For example if
events are being published with the following event properties:
var props:nEventProperteis =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
 var selector:String = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Universal Messaging Flex - Asynchronous Transactional Queue Consuming
Asynchronous transactional queue consumers consume events from a callback on an
interface that all asynchronous consumers must implement. We call this interface an
nEventListener. The listener interface defines one method called 'go' which when called
will pass events to the consumer as they are delivered from the Universal Messaging
Realm Server.

Transactional queue consumers have the ability to notify the server when events have
been consumed (commied) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional asynchronous queue reader is shown below:
public class myAsyncTxQueueReader implements nEventListener {
 var myQueue:nQueue = null;
 var reader:nQueueAsynchronousTransactionalReader = null;
 // construct your session and queue objects here
 public function myAsyncQueueReader(queueIn:*):void{
 if(queueIn is nQueue){
 myQueue = nQueue(myQueue);
 }else{
 return;
 }
 // begin consuming events from the queue
 var ctx:nQueueReaderContext = new nQueueReaderContext(this);
 myQueue.createAsynchronousTransactionalReader(ctx, readerCB);
 }

M
Even Header

Universal Messaging Developer Guide Version 9.6 258

 public function readerCB(readerIn:*):void {
 if(reader is nQueueAsynchronousTransactionalReader){
 reader = readerIn
 }
 }
 public function go(event:*):void {
 if(event is nConsumeEvent){
 //Process events
 reader.commit(nConsumeEvent(event).eventID)
 }else{
 //deal with error
 }
 }
 }

As previously mentioned, the big difference between a transactional asynchronous
reader and a standard asynchronous queue reader is that once events are consumed
by the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been commied, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Asychronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a subscriber is interested in. For example if
events are being published with the following event properties:
var props:nEventProperteis =new nEventProperties();
props.put(“BONDNAME”,”bond1”);

If you then provide a message selector string in the form of:
 var selector:String = "BONDNAME='bond1'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Peer to Peer

Universal Messaging Flex: Peer to Peer Services
Universal Messaging provides a rich set of APIs that provide developers with the ability
to create Peer to Peer (P2P) applications. We call these Peer to Peer applications Services.
This guide will demonstrate how Universal Messaging Peer to Peer Services work, and
provides examples code snippets for all relevant concepts.

M
Odd Header

Universal Messaging Developer Guide Version 9.6 259

P2P Service Components

There are two parts to a Peer to Peer Service in Universal Messaging: a Server Service and
a Client, in Flex only the client portion is available. To see more information about the
Server service see either the Java , C# or C++.

A Universal Messaging Peer to Peer Client is a process that connects to a Universal
Messaging Realm, obtains a reference to a Server Service and begins communicating
with it.

When a Client connects to the Server Service, all communication between the Client
and server service takes place through the Universal Messaging Realm, using Universal
Messaging's standard communication protocols.

P2P Service Types

There are two types of Universal Messaging Peer to Peer Services, Flex only supports
Event Based Services:

Event-based Services

Universal Messaging Peer to Peer Event-based Services communicate via events
which are published by the Event-based Client, and received and responded to by
the Event-based Server Service.

Examples

The following examples give methods needed to implement a client to work with Java,
C# or C++ Server Service:

"An Event-based Peer to Peer Client" on page 262

For more information on Universal Messaging Peer to Peer Services please see the API
documentation.

Universal Messaging Flex: Peer to Peer Event-based Client
Universal Messaging Peer to Peer Event-based Services communicate via events which are
published by a Client, and received and responded to by an Event-based Server Service.

The Universal Messaging P2P API is simple to use. There are only a very small number
of objects and calls that need to be made in order for you to construct a P2P Service
Client, connect to a Realm, and find or list available Services.

Creating an Event-based Service Client

The nServiceFactory object takes a connected nirvana session and a callback for when
the service is connected:
private var factory:nServiceFactory
private function createP2P():void{
 factory = new nServiceFactory(mySession, serviceFactoryCB);
}

M
Even Header

Universal Messaging Developer Guide Version 9.6 260

When the nServiceFactory calls the callback then we can use factory to findServices and
then connect to a Service. findServices takes a name of a service and connectToService
takes the nServiceInfo, a nEventListener and a connected callback. The following
snippets shows how this would be done:
private function serviceFactoryCB():void{
 var info:nServiceInfo = factory.findService("example");
 factory.connectToService(info,this,connectServiceCB);
}

Once the Client has connected to an instance of a Server Service, the developer's custom
business logic can then be applied.

Sending Events to Server Services

Once you have connected to the Service, and you have an instance of the Service, you
can then begin publishing your Universal Messaging events to the Service, by using the
following command:
serv.write(new nConsumeEvent("TAG",null, byteArray));

The Client Service can receive events from the Server Service asynchronously via a
callback interface.

Asynchronously Receiving Events from the Server Service

A Client MUST asynchronously receive events from the Event-based Server Service by
implementing the nEventServiceListener interface and its go method:
public void go(event:nConsumeEvent) {
 trace("Event ID: "+event.eventID);
}

Examples

The following full example source code shows how to implement an Event-based Client:

"An Event-based Peer to Peer Client" on page 262

For more information on Universal Messaging Peer to Peer Services please see the API
documentation.

Flex Socket SSL

Universal Messaging Flex socket SSL
Universal Messaging Flex has a custom SSL implementation for sockets, it does not
support self signed certificates and only trusts the certificates included in the Mozilla
project Root CA store list.

If you wish for client certificate verification then the Universal Messaging Flex
implementation requires the private certificate and the signed key in pem format.
The following snippet shows how you can pass a client certificate into the Universal
Messaging API

M
Odd Header

Universal Messaging Developer Guide Version 9.6 261

var cert:String; //Either read in or embed the certificate string into cert
var key:String; //Either read in or embed the key string into key
var attributes:nSessionAttributes = new nSessionAttributes(completeString, 5);
attributes.sslCertificate = cert;
attributes.sslKey = key;
mySession = nSessionFactory.create(attributes, "subject", appName, errorCB);

SSL Realm Configuration

The Universal Messaging Flex API is able to use all 4 of Universal Messaging's protocol's
natively. To enable SSL protocols, a number of steps must be followed to ensure the
Universal Messaging realm, and your Flex application, are configured correctly.

An NHP interface on port 80 should be setup, with a file plug-in at root level which
points to a directory containing the crossdomain.xml for the server.

A similar NHPS interface should be set up on port 443, again which a root level file
plug-in pointing to a directory containing the crossdomain.xml.

An nsp interface should be setup on port 843, this should have "Enable Policy
File" Enabled through the "Basic" tab in the interface configuration. The policy
file(clientaccesspolicy.xml) should be placed in the htdocs directory of the realm.
Then add the certificates that you wish to use. These cannot be self signed, but can be
from CAcert.

Client certificate validation can be enforced through the configuration on the
interface through which you will be serving your flex application.

Pass the certificates into flex as shown above, or copy them straight in as strings, a
private certificate and a signed key are required.

Examples

Universal Messaging Flex Client

Usage

Application Source Code

Universal Messaging Flex : Sample Socket Cross Domain Policy
Adobe Flash requires a clientaccesspolicy.xml file to be avaliable on port 843 if it is
providing information via a socket stream to a flash application.

Note this is an example cross domain policy only it is not secure, use for testing
purposes only.
<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>

M
Even Header

Universal Messaging Developer Guide Version 9.6 262

 <site-control permitted-cross-domain-policies="all"/>
 <allow-access-from domain="*" to-ports="80,443" />
</cross-domain-policy>

Universal Messaging Flex : Sample Flash Cross Domain Policy
Adobe Flash requires a crossdomaim.xml file to be in the root directory of a web server
that is providing information via a hp stream to a flash application.

Note this is an example cross domain policy only it is not secure, use for testing
purposes only.
<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="all"/>
 <allow-access-from domain="*" to-ports="80,443" />
 <allow-http-request-headers-from domain="*" headers="*" />
</cross-domain-policy>

Flex Example : Peer to Peer Echo Application

A Sample Adobe Flex Peer to Peer Echo Client

The code shown below is a exert of the echo client, it is the Universal Messaging portion
of a echo application.
 import com.pcbsys.nirvana.client.*;
 import com.pcbsys.nirvana.client.p2p.*;
 private var mySession:nSession;
 private var factory:nServiceFactory;
 private var myNick:String = "";
 private var myService:nEventService;
 private function startTest():void
 {
 var completeString:String = "nhp://127.0.0.1:80";
 var appName:String = "Universal MessagingFlexP2PEchoClient";
 try {
 var attributes:nSessionAttributes = new nSessionAttributes(completeString, 5);
 mySession = nSessionFactory.create(attributes, "subject", appName, errorCB);
 mySession.init(sessionInitCB, this);
 }
 catch(e:SecurityError) {
 }
 }
 public function errorCB(error:Error, brokenFunction:Function):void
 {
 trace(error.message);
 }
 public function sessionInitCB():void {

M
Odd Header

Universal Messaging Developer Guide Version 9.6 263

 var tmpId:String = mySession.getSessionId().toString(10);
 tmpId = tmpId.substr(tmpId.length - 5);
 myNick = "Flex-Native" + tmpId;
 factory = new nServiceFactory(mySession,serviceFactoryCB);
 }
 public function serviceFactoryCB():void
 {
 var info:nServiceInfo = factory.findService("echo");
 factory.connectToService(info,this,connectServiceCB)
 }
 public function connectServiceCB(service:nEventService):void
 {
 myService= service;
 var props:nEventProperties = new nEventProperties();
 var byteArray:ByteArray = new ByteArray();
 byteArray.writeUTF("This is a test");
 byteArray.position=0;
 myService.write(new nConsumeEvent("",null,byteArray));
 }
 public function retry(failureCount:int, realmName:String):Boolean {
 return false;
 }
 public function disconnected():void {
 }
 public function reconnected():void {
 }
 public function go(event:nConsumeEvent):void {
 trace("Event ID: "+event.eventID);
 }

Flex Example : Chat Application

A Sample Adobe Flex Chat Client

The code shown below is a exert of the chat client, containing Flex connection,
publishing and subscription logic.
 /*
 Copyright 2012 Software AG, Darmstadt, Germany and/or Software AG USA
 Inc., Reston, United States of America, and/or their licensors.
 In the event that you should download or otherwise use this software
 you hereby acknowledge and agree to the terms at
 http://um.terracotta.org/company/terms.html#legalnotices
 */
 import com.pcbsys.nirvana.client.*;
 import com.pcbsys.foundation.util.Long;
 var mySession:nSession;
 var chatChannel:nChannel = null;
 private var myNick:String = "";

M
Even Header

Universal Messaging Developer Guide Version 9.6 264

 /* ***
 * About this demonstration Universal Messaging Client Application:
 *
 * When this application component is created, Flex will invoke the
 * startDemo() function. startDemo() calls createUniversal MessagingSession() which
 * in turn calls mySession.init(). One of the parameters passed to
 * mySession.init() is the name of the callback function to be invoked
 * after a successful session initialization (in this case, we have
 * named this callback function "sessionInitCB").
 *
 * In turn, sessionInitCB calls mySession.findStore(), again passing
 * the name of a callback function to be invoked after findStore
 * completes (in this case, "chatChannelFoundCB").
 *
 * Similarly, chatChannelFoundCB() calls channel.addSubscriber()
 * passing in the two callback functions - one to be invoked
 * when subscription to the channel is successful ("postPubCB"), and
 * the other to be invoked every time an event is received on the
 * channel ("evtCB"). Note that although the developer is free to name
 * these callback functions, the functions themselves must accept the
 * parameters shown here; for example, the callback function we have
 * named evtCB will always receive an nConsumeEvent object as a
 * parameter.
 * **/
 private function startDemo():void {
 showUIMessage("Initializing Session...");
 createUniversal MessagingSession();
 }
 private function createUniversal MessagingSession():void {
 var RNAME:String = "nhp://localhost:80";
 var appName:String = "Universal MessagingFlexSimpleChatRoomDemo";
 var tmpId:String = mySession.getSessionId().toString(10);
 tmpId = tmpId.substr(tmpId.length - 5);
 myNick = "Flex-Native" + tmpId;
 try {
 // Create a Universal Messaging session attribute to be passed to the nSession
 var attributes:nSessionAttributes = new nSessionAttributes(RNAME, 5);
 // Create a Universal Messaging Session Object (nSession):
 mySession = nSessionFactory.create(attributes, "username", appName, errorCB);
 // Now, start our session. Here we specify the callback for
 // when initiation has completed, we also specify a nConnectionListener
 // in this case it has been implemented in this class thus "this".
 mySession.init(sessionInitCB, this);
 }
 catch(e:SecurityError) {
 }
 }
 /* ***

M
Odd Header

Universal Messaging Developer Guide Version 9.6 265

 * Error callback
 *
 * This function is called if a error is thrown from the server
 *
 * **/
 private function errorCB(error:Error, failedFunction:Function):void {
 //trace(error.message);
 }
 /* ***
 * Session Init callback
 *
 * This function is called once the session has initialised, it looks
 * for the channel that the chat is on
 *
 * **/
 public function sessionInitCB():void {
 mySession.findStore("flex", chatChannelFoundCB);
 }
 /* ***
 * Session Callback Functions
 *
 * These are the implementations of nConnectionListener.
 *
 * **/
 public function disconnected():void {
 showUIMessage("Disconnected. Reconnecting");
 }
 public function reconnected():void {
 hideUIMessage();
 }
 public function retry(failureCount:int, realmName:String):Boolean {
 return false;
 }
 /* ***
 * Chat Channel Callback Functions:
 *
 * These three callback functions are kicked off sequentially, starting
 * as a response to the mySession.findStore call above.
 *
 * chatChannelFoundCB is the function called in response to a findChannel
 * request will receive a parameters - an nChannel object.
 *
 * postSubCB is the function called in response to a successful subscription
 * to a channel.
 *
 * go the nEventListener implementation, this function is called when an
 * event is received will receive an nConsumeEvent object as its parameter.
 *

M
Even Header

Universal Messaging Developer Guide Version 9.6 266

 * **/
 public function chatChannelFoundCB(channel:nChannel):void {
 chatChannel = channel;
 channel.addSubscriber(this, Long.ZERO, postSubCB);
 }
 public function postSubCB():void {
 hideUIMessage();
 }
 public function go(evt:nConsumeEvent):void {
 var dictionary:nEventProperties = evt.properties;
 var sender:String = dictionary.get("sender").toString();
 var message:String = dictionary.get("message").toString();
 var stime:String = evt.attributes.timestamp.toString();
 var num:Number = new Number(stime);
 var dt:Date = new Date();
 dt.setTime(num);
 var when:String = dt.toLocaleTimeString();
 messages.htmlText += "[" + when + "] " + sender + " : " + message + "\n";
 messages.validateNow();
 messages.verticalScrollPosition = messages.maxVerticalScrollPosition;
 }
 /* ***
 * This function publishes a message to the channel that we are
 * connected to.
 *
 * In this instance it is a chatChannel so the message has been packed
 * accordingly.
 * **/
 public function publishMessage():void {
 var dict:nEventProperties = new nEventProperties();
 dict.put("message", messageInput.text);
 dict.put("sender", myNick);
 var evt:nConsumeEvent = new nConsumeEvent();
 evt.properties = dict;
 chatChannel.publish(evt);
 }
 /* ***
 * UI & Utility Functions:
 * **/
 public function showUIMessage(msg:String):void {
 progressbar.x = (this.width / 2) - (progressbar.width / 2);
 progressbar.y = (this.height / 2) - (progressbar.height / 2);
 progressbar.label = msg;
 progressbar.visible = true;
 uioverlay.alpha = .7;
 uioverlay.visible = true;
 }
 public function hideUIMessage():void {

M
Odd Header

Universal Messaging Developer Guide Version 9.6 267

 progressbar.visible = false;
 uioverlay.alpha = 0;
 uioverlay.visible = false;
 }

Silverlight

Universal Messaging Silverlight Developer's Guide
This guide describes how to develop and deploy Microsoft Silverlight applications using
Universal Messaging, and assumes you already have Universal Messaging installed.

Universal Messaging Web Client Development in Microsoft Silverlight

Please refer to the Universal Messaging C# Developer's Guide for more information on
developing Silverlight clients.

Universal Messaging Silverlight Deployment
We provide a separate 'Tradespace Demos' download that contains a fully working
Silverlight application called Tradespace. When you follow the instructions, you are able
to load the Silverlight Tradespace demo application from your Universal Messaging
realm.

The setup of the demos performs the following actions:

Adds an hp interface on port 8080

Adds a file plugin to your this interface (this enables the Universal Messaging server
to act as a web server and serve content to browsers)

Creates the required channels in the realm used by the Tradespace demos.

Running through the demos setup is the simplest way to get started with Universal
Messaging and deployment of a Silverlight application - in this case the Tradespace
Silverlight demo. You can of course go through the individual steps described above
yourself and deploy your own Silverlight application.

Channel ACLs

When creating a Silverlight application, it is worth remembering to correctly set the
ACLs for both the realm(s) and channel(s) used, to ensure that the application is able to
access the Universal Messaging server. This can easily be performed using the Enterprise
Manager.

M
Even Header

Universal Messaging Developer Guide Version 9.6 268

Silverlight's Client Access Policy File

When deploying a Silverlight application on a different host to the Universal Messaging
server, Silverlight requires the use of a client access policy file to validate that the
connection is permied. For example :

you deploy your Silverlight application from webhost1.yourdomain.com:80

your Universal Messaging server is located on nirvanahost1.yourdomain.com:80

When Silverlight detects a connect aempt outside of the host from which the
application was downloaded, it makes a request for the policy file from the host you
are making the connection to. When using an nhp (HTTP) or nhps (HTTPS) RNAME
to connect to the Universal Messaging realm, Silverlight makes a GET request for
a clientaccesspolicy.xml file from the root of the web server (in this case, the file
plugin running on the Universal Messaging server HTTP or HTTPS interface). If no
clientaccesspolicy.xml is found, it then makes a second GET for a crossdomain.xml
file, again from the root of the file plugin. The crossdomain.xml file is also used by flex
clients for the same reason.

An example of a clientaccesspolicy.xml file for Silverlight clients is shown below. This
example should not be used for anything other than testing purposes, as it essentially
allows open access to and from all domains. For more information on cross domain
access with Silverlight, and configuring the clientaccesspolicy.xml file, see the Microsoft
MSDN guide.
<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

http://msdn.microsoft.com/en-us/library/cc197955%28v=vs.95%29.aspx
http://msdn.microsoft.com/en-us/library/cc197955%28v=vs.95%29.aspx

M
Odd Header

Universal Messaging Developer Guide Version 9.6 269

Examples

Universal Messaging Silverlight (C#): Live Stock Chart
This example demonstrates how to subscribe to a Universal Messaging channel and
chart prices received in real-time events.

Application Source Code
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using com.pcbsys.nirvana.client;
using Visifire.Charts;
namespace Silverlight_LiveStockChart
{
 public partial class Page : UserControl,nEventListener,nReconnectHandler
 {
 private bool started;
 public nSession mySession;
 public Thread sessionThread;
 private long myEventCount=0;
 private const string RNAME = "nhps://showcase.um.softwareag.com:443";
 private const string RATES_CHANNEL = "/showcase/stockhistory";
 public Page()
 {
 InitializeComponent();
 CreateChart();
 StartupProgressDialog.IsOpen = true;
 sessionThread = new Thread(new ThreadStart(startSubscribers));
 sessionThread.IsBackground = true;
 sessionThread.Start();
 App.Current.Host.Content.Resized += (s, e) =>
 {
 theBack.Width = App.Current.Host.Content.ActualWidth;
 theBack.Height = App.Current.Host.Content.ActualHeight;
 };
 }
 public void disconnected(nSession anSession)
 {
 StartupProgressDialog.Dispatcher.BeginInvoke(new setProgressBarMessage(updateStatusMessage), "Disconnected...");
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), true);
 Console.WriteLine("Disconnected");
 }
 public void reconnected(nSession anSession)
 {
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), false);
 Console.WriteLine("Reconnected");
 }
 public bool tryAgain(nSession anSession)
 {
 return true;

M
Even Header

Universal Messaging Developer Guide Version 9.6 270

 }
 public void go(nConsumeEvent evt)
 {
 if (evt.getChannelName().Equals(RATES_CHANNEL))
 {
 myEventCount++;
 if (myEventCount>=100)
 {
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), false);
 }
 nEventProperties nep = evt.getProperties();
 nEventAttributes nea = evt.getAttributes();
 long tval = nea.getTimestamp();
 DateTime ttime = ConvertJavaMiliSecondToDateTime(tval);
 myChart.Dispatcher.BeginInvoke(new RatesDataDelegate(updateRatesGrid), ttime.ToShortTimeString(), nep.get("value").ToString());
 return;
 }
 }
 public DateTime ConvertJavaMiliSecondToDateTime(long javaMS)
 {
 DateTime UTCBaseTime = new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);
 DateTime dt = UTCBaseTime.Add(new TimeSpan(javaMS *
 TimeSpan.TicksPerMillisecond)).ToLocalTime();
 return dt;
 }
 public delegate void RatesDataDelegate(String index, String ival);
 private void updateRatesGrid(String time, String ival)
 {
 DataPoint dataPoint = new DataPoint();
 // Set YValue for a DataPoint
 dataPoint.YValue = Double.Parse(ival);
 dataPoint.AxisXLabel = time;
 // Add dataPoint to DataPoints collection.
 myChart.Series[0].DataPoints.Add(dataPoint);
 }
 public delegate void setProgressBarMessage(String message);
 public void updateStatusMessage(String message)
 {
 myStatusMessage.Text = message;
 }
 public delegate void setOverlayPanelVisibleDelegate(Boolean flag);
 public void setOverlayPanelVisible(Boolean flag)
 {
 StartupProgressDialog.IsOpen = flag;
 }
 public void startSubscribers()
 {
 if (!started)
 {
 try
 {
 nSessionAttributes nsa = new nSessionAttributes(RNAME, 5);
 mySession = nSessionFactory.create(nsa, this, "SilverDemoUser");
 mySession.init();
 StartupProgressDialog.Dispatcher.BeginInvoke(new setProgressBarMessage(updateStatusMessage), "Subscribing to Rates...");
 nChannelAttributes ncaindices = new nChannelAttributes();
 ncaindices.setName(RATES_CHANNEL);
 nChannel myRatesChannel = mySession.findChannel(ncaindices);
 myRatesChannel.addSubscriber(this, 0);
 StartupProgressDialog.Dispatcher.BeginInvoke(new setProgressBarMessage(updateStatusMessage), "Waiting for 100 events to create chart...");
 }
 catch (Exception e)
 {

M
Odd Header

Universal Messaging Developer Guide Version 9.6 271

 Console.WriteLine("Error starting subscribers: " + e.Message);
 Console.WriteLine(e.StackTrace);
 }
 started = true;
 }
 }
 /// <summary>
 /// Function to create a Visifire Chart
 /// </summary>
 public void CreateChart()
 {
 // Create a new instance of Title
 Title title = new Title();
 // Set title property
 title.Text = "NSL PLC.";
 // Add title to Titles collection
 myChart.Titles.Add(title);
 }
 }
}

Universal Messaging Silverlight (C#): Live Stock Indices
This example demonstrates how to subscribe to a Universal Messaging channel and
render prices received in real-time events.

Application Source Code
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Net;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using com.pcbsys.nirvana.client;
namespace Silverlight_LiveStockIndices
{
 public partial class Page : UserControl,nReconnectHandler,nEventListener
 {
 private bool started;
 public nSession mySession;
 private ObservableCollection<RatesData> myRatesDataListSource = new ObservableCollection<RatesData>();
 public Thread sessionThread;
 private const string RNAME = "nhps://showcase.um.softwareag.com:443";
 private const string RATES_CHANNEL = "/showcase/stockindices";
 public Page()
 {
 InitializeComponent();
 StartupProgressDialog.IsOpen = true;
 myIndexGrid.ItemsSource = this.myRatesDataListSource;
 myIndexGrid.IsReadOnly = true;
 App.Current.Host.Content.Resized += (s, e) =>
 {
 theBack.Width = App.Current.Host.Content.ActualWidth;
 theBack.Height = App.Current.Host.Content.ActualHeight;

M
Even Header

Universal Messaging Developer Guide Version 9.6 272

 };
 sessionThread = new Thread(new ThreadStart(startSubscribers));
 sessionThread.IsBackground = true;
 sessionThread.Start();
 }
 public void startSubscribers()
 {
 if (!started)
 {
 try
 {
 nSessionAttributes nsa = new nSessionAttributes(RNAME, 5);
 mySession = nSessionFactory.create(nsa, this, "SilverDemoUser");
 mySession.init();
 StartupProgressDialog.Dispatcher.BeginInvoke(new setProgressBarMessage(updateStatusMessage), "Subscribing to Rates...");
 nChannelAttributes ncaindices = new nChannelAttributes();
 ncaindices.setName(RATES_CHANNEL);
 nChannel myRatesChannel = mySession.findChannel(ncaindices);
 myRatesChannel.addSubscriber(this, 0);
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), false);
 }
 catch (Exception e)
 {
 Console.WriteLine("Error starting subscribers: " + e.Message);
 Console.WriteLine(e.StackTrace);
 }
 started = true;
 }
 }
 public delegate void setProgressBarMessage(String message);
 public void updateStatusMessage(String message)
 {
 myStatusMessage.Text = message;
 }
 public delegate void setOverlayPanelVisibleDelegate(Boolean flag);
 public void setOverlayPanelVisible(Boolean flag)
 {
 StartupProgressDialog.IsOpen = flag;
 }
 public void disconnected(nSession anSession)
 {
 StartupProgressDialog.Dispatcher.BeginInvoke(new setProgressBarMessage(updateStatusMessage), "Disconnected...");
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), true);
 Console.WriteLine("Disconnected");
 }
 public void reconnected(nSession anSession)
 {
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), false);
 Console.WriteLine("Reconnected");
 }
 public bool tryAgain(nSession anSession)
 {
 return true;
 }
 public void go(nConsumeEvent evt)
 {
 if (evt.getChannelName().Equals(RATES_CHANNEL))
 {
 nEventProperties nep = evt.getProperties();
 myIndexGrid.Dispatcher.BeginInvoke(new RatesDataDelegate(updateRatesGrid), nep.getString("name"), nep.get("value").ToString());
 return;
 }
 }

M
Odd Header

Universal Messaging Developer Guide Version 9.6 273

 public delegate void RatesDataDelegate(String index, String ival);
 private void updateRatesGrid(String index, String ival)
 {
 try
 {
 Boolean found = false;
 foreach (RatesData item in myRatesDataListSource)
 {
 if (item.Index.Equals(index))
 {
 if (item.Price != ival)
 {
 item.Price = ival;
 int currentidx = myRatesDataListSource.IndexOf(item);
 myRatesDataListSource.Remove(item);
 myRatesDataListSource.Insert(currentidx, new RatesData() {Index = index, Price = ival});
 myIndexGrid.SelectedIndex = currentidx;
 }
 found = true;
 }
 }
 if (!found)
 {
 RatesData newratesd = new RatesData() { Index = index, Price = ival };
 myRatesDataListSource.Insert(0, newratesd);
 myIndexGrid.SelectedIndex = 0;
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error updateing index grid");
 Console.WriteLine(ex.Message);
 }
 }
 }
}

Universal Messaging Silverlight (C#): Simple Chat Room
This example demonstrates how to subscribe and publish to a Universal Messaging
channel.

Application Source Code
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Net;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using com.pcbsys.nirvana.client;
namespace Silverlight_SimpleChatRoom
{
 public partial class Page : UserControl,nEventListener,nReconnectHandler
 {

M
Even Header

Universal Messaging Developer Guide Version 9.6 274

 private bool started;
 public nSession mySession;
 private ObservableCollection<ChatData> myChatDataListSource = new ObservableCollection<ChatData>();
 public Thread sessionThread;
 private nChannel myChatChannel;
 private const string RNAME = "nhps://showcase.um.softwareag.com:443";
 private const string CHAT_CHANNEL = "/showcase/simplechatroom";
 public Page()
 {
 InitializeComponent();
 StartupProgressDialog.IsOpen = true;
 lstChat.ItemsSource = this.myChatDataListSource;
 sessionThread = new Thread(new ThreadStart(startSubscribers));
 sessionThread.IsBackground = true;
 sessionThread.Start();
 App.Current.Host.Content.Resized += (s, e) =>
 {
 theBack.Width = App.Current.Host.Content.ActualWidth;
 theBack.Height = App.Current.Host.Content.ActualHeight;
 };
 }
 public void startSubscribers()
 {
 if (!started)
 {
 try
 {
 nSessionAttributes nsa = new nSessionAttributes(RNAME, 5);
 mySession = nSessionFactory.create(nsa, this, "SilverDemoUser");
 mySession.init();
 StartupProgressDialog.Dispatcher.BeginInvoke(new setProgressBarMessage(updateStatusMessage), "Subscribing to Chat...");
 nChannelAttributes ncachat = new nChannelAttributes();
 ncachat.setName(CHAT_CHANNEL);
 myChatChannel = mySession.findChannel(ncachat);
 myChatChannel.addSubscriber(this, 0);
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), false);
 }
 catch (Exception e)
 {
 Console.WriteLine("Error starting subscribers: " + e.Message);
 Console.WriteLine(e.StackTrace);
 }
 started = true;
 }
 }
 public void go(nConsumeEvent evt)
 {
 if (evt.getChannelName().Equals(CHAT_CHANNEL))
 {
 nEventProperties nep = evt.getProperties();
 String msg = nep.getString("message");
 String sender = nep.getString("sender");
 nEventAttributes nea = evt.getAttributes();
 long tval = nea.getTimestamp();
 DateTime ttime = ConvertJavaMiliSecondToDateTime(tval);
 lstChat.Dispatcher.BeginInvoke(new ChatDataDelegate(updateChatList), sender, msg, ttime.ToString());
 return;
 }
 }
 private void Send_Button_Click(object sender, RoutedEventArgs e)
 {
 if (txtMessage.Text == null) return; //to handle enter key pressed in general
 String senderuser = "SilverUser" + ("" + mySession.getSessionConnectionId()).Substring(13);

M
Odd Header

Universal Messaging Developer Guide Version 9.6 275

 String message = txtMessage.Text;
 nEventProperties props = new nEventProperties();
 props.put("sender", senderuser);
 props.put("message", message);
 nConsumeEvent evt = new nConsumeEvent(props, "chatmsg");
 myChatChannel.publish(evt);
 txtMessage.Text = "";
 }
 public DateTime ConvertJavaMiliSecondToDateTime(long javaMS)
 {
 DateTime UTCBaseTime = new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc);
 DateTime dt = UTCBaseTime.Add(new TimeSpan(javaMS *
 TimeSpan.TicksPerMillisecond)).ToLocalTime();
 return dt;
 }
 public delegate void ChatDataDelegate(String sender, String message, String timestamp);
 public void updateChatList(String sender, String message, String timestamp)
 {
 ChatData somechatmessage = new ChatData() { Message = message, Sender = sender, TimeStamp = timestamp };
 myChatDataListSource.Insert(0, somechatmessage);
 }
 public delegate void setProgressBarMessage(String message);
 public void updateStatusMessage(String message)
 {
 myStatusMessage.Text = message;
 }
 public delegate void setOverlayPanelVisibleDelegate(Boolean flag);
 public void setOverlayPanelVisible(Boolean flag)
 {
 StartupProgressDialog.IsOpen = flag;
 }
 public void disconnected(nSession anSession)
 {
 StartupProgressDialog.Dispatcher.BeginInvoke(new setProgressBarMessage(updateStatusMessage), "Disconnected...");
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), true);
 Console.WriteLine("Disconnected");
 }
 public void reconnected(nSession anSession)
 {
 StartupProgressDialog.Dispatcher.BeginInvoke(new setOverlayPanelVisibleDelegate(setOverlayPanelVisible), false);
 Console.WriteLine("Reconnected");
 }
 public bool tryAgain(nSession anSession)
 {
 return true;
 }
 private void txtMessage_KeyDown(object sender, KeyEventArgs e)
 {
 if (e.Key == Key.Enter && txtMessage.Text != null && txtMessage.Text.Trim().Length>0)
 {
 //Handle Enter Here.
 e.Handled = true;
 Send_Button_Click(sender, e);
 }
 else
 {
 e.Handled = false;
 }
 }
 }
}

M
Even Header

Universal Messaging Developer Guide Version 9.6 276

Java

Universal Messaging Java Web Developer's Guide
This guide describes how to develop and deploy Java Web applications using Universal
Messaging, and assumes you already have Universal Messaging installed.

Universal Messaging Web Client Development in Java

Universal Messaging Web Clients have access to the Universal Messaging Enterprise API
for Java, which has been streamlined to provide our full messaging capability via a very
small client library which is easily deployed as an applet or a Java Web Start application.

Please refer to the Universal Messaging Enterprise Java Development Guide for more
information on Java Client Development.

Universal Messaging Java Web Start
This guide describes the basic concepts for deploying feature rich Java applications
using Java Web Start.

Java Web Start

Java Web Start enables applications to be deployed quickly and easily launched from a
web server. Once launched using Web Start, an application can subsequently be directly
launched using a desktop link on the client machine.

Basics

Typically, an application wrien in Java can be deployed quickly with a few simple
steps. Java Web Start applications require all resources to be located within one or more
jar files. Once you have packaged up your resources (classes, images etc.) into your jar
file(s), you need to create a Java Network Launching Protocol (JNLP) file to be placed
onto your web server. This file specifies all the properties required by your application,
as well as any Web Start instructions required in order to launch the application.

Example JNLP (Tradespace)

Our sample Tradespace application is a good example of a Web Start application that
uses the Universal Messaging Client API to consume simulated stock index prices,
trades as well as news and chat. Below shows the contents of the JNLP file used to
launch this application.

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 277

4 Commonly Used Features

■ Universal Messaging Sessions .. 278

■ Universal Messaging Channel Attributes ... 278

■ Universal Messaging Channel Publish Keys ... 281

■ Universal Messaging Queue Attributes .. 283

■ Universal Messaging Native Communication Protocols .. 285

■ Universal Messaging Comet Communication Protocols .. 288

■ Universal Messaging Durable Consumers ... 290

■ Google Protocol Buffers ... 290

■ Universal Messaging Named Objects .. 291

■ Universal Messaging - Event Filtering Guide .. 291

■ Universal Messaging - Advanced Filtering with Selectors ... 293

■ Using Universal Messaging Shared Memory Protocol .. 296

■ Storage Properties ... 296

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 278

This section summarizes commonly used features of Universal Messaging. The features
are available using a variety of methods, such as in the Enterprise Manager or in the
Server or Client APIs.

Universal Messaging Sessions
A session in Universal Messaging represents a logical connection to a Universal
Messaging Realm. It consists of a set of session aributes, such as the protocol and
authentication mechanism to be used, the host and port the message server is running
on and a reconnect handler object.

Most of the session parameters are defined in a string that is called RNAME and
resembles a URL. All the sample applications provided use an RNAME Java system
property to obtain the necessary session aributes. The following section discusses this
in further detail. The RNAME takes the following format.

The RNAME entry can contain an unlimited number of comma-separated values each
one representing an interface on a Universal Messaging Realm. Click here for more
information on RNAME.

The current version of the Universal Messaging Realm and the Universal Messaging
client API supports 4 TCP wire protocols. These are the Universal Messaging Socket
Protocol (nsp), the Universal Messaging HTTP Protocol (nhp), the Universal Messaging
SSL Protocol (nsps) and the Universal Messaging HTTPS protocol (nhps). These wire
protocols are available wherever a connection is required, i.e. client to Realm and Realm
to Realm. Click here for more information on communication protocols supported.

Universal Messaging Channel Attributes
Universal Messaging channels provide a set of aributes. Depending on the options
chosen, these define the behaviour of the events published and stored by the Universal
Messaging Realm Server. Each event published onto a channel has a unique id
within the channel called Event Id. Using this event id, it is possible for subscribers
to re-subscribe to events on a channel from any given point. The availability of the
events on a channel is defined by the chosen aributes of the channel upon creation.
Channels can be created either using the Universal Messaging Enterprise Manager or
programmatically using any of the Universal Messaging Enterprise APIs.

There are a number of important channel aributes which are discussed below

Channel TTL

The TTL for a channel defines how long (in milliseconds) each event published to
the channel will remain available for subscribers to consume. Specifying a TTL of 0
will mean that events will remain on the channel indefinitely. If you specify a TTL of
10000, then after each event has been on the channel for 10000 milliseconds, it will be
automatically removed by the server.

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 279

Channel Capacity

The capacity of a channel defines the maximum number of events may remain on a
channel once published. Specifying a capacity of 0 will mean that there is no limit to the
number of events on a channel. If you specify a capacity of 10000, then if there are 10000
events on a channel, and another event is published to the channel, the 1st event will be
automatically removed by the server.

Channel Type

Universal Messaging channels can be of the following types:

persistent

mixed

reliable

simple

transient

off-heap

The difference lies in the type of physical storage used for each type and the
performance overhead associated with each type.

Persistent Channels

Persistent channels have their messages stored in the Universal Messaging Realm's
persistent channel disk based store. The persistent channel store is a high performance
file based store that uses a separate file for each channel on that Realm facilitating
migrating whole channels to different Realms. All messages published to a persistent
channel will be stored to disk, hence it is guaranteed that they will be kept and delivered
to subscribers until it is purged or removed as a result of a TTL or capacity policy.
Messages purged from a persistent channel are marked as deleted however the store size
will not be reduced until maintenance is performed on the channel using the Universal
Messaging Enterprise Manager or an Administration AIP call. This augments the high
performance of the Universal Messaging Realm.

Mixed Channels

Mixed channels allow the users to specify whether the event is stored persistently or in
memory as well as the Time To Live (TTL) of the individual event. On construction of a
Mixed channel the TTL and Capacity can be set, if the user supplies a TTL for an event
this is used instead of the channel TTL

Reliable Channels

Reliable channels have their messages stored in the Universal Messaging Realm's own
memory space. The first fact that is implied is that the maximum number of bytes that
all messages across all reliable channels within a Universal Messaging Realm is limited
by the maximum heap size available to the Java Virtual Machine hosting that Realm.

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 280

The second fact implied is that if the Universal Messaging Realm is restarted for any
reason, all messages stored on reliable channels will be removed from the channel as a
maer of policy. However, as Universal Messaging guarantees not to ever reuse event
ids within a channel, new messages published in those channels will get assigned event
ids incremented from the event id of the last message prior to the previous instance
stopping.

Simple Channels

Simple channels have their messages stored in the Universal Messaging Realm's own
memory space supplying a high-speed channel type. The difference between a Simple
and Reliable is the fact that the event ids are reset to 0 in a Simple channel whenever the
Universal Messaging Server is restarted.

Transient Channels

A transient channel is like a simple channel in that no event characteristics are stored
persistently. In addition to this, data is only ever wrien to a transient channel when 1 or
more consumers are connected to the channel and are able to consume said data. Unlike
the simple channel which stores event data in memory transient channels do not store
anything, not even in memory. Transient channels can be thought of as a relay between 1
or more publishers and 1 or more subscribers.

Off-heap Channels

Off-heap channels, similar to reliable channels, store the events in memory, but this
channel type uses off-heap memory. This allows the normal JVM heap memory to be
left free for short lived events, while longer living events can be stored off the JVM heap.
This reduces the work the garbage collector needs to do to manage these events since
they are out of range of the garbage collector.

Additional Channel Attributes

In addition to the 3 aributes above which define storage behavior for events, there are a
number of other important aributes that can be set for a channel.

Dead Event Store

When events are removed automatically, either by the capacity policy of the channel or
the age (TTL) policy of the events itself and they have not been consumed, it may be a
requirement for those events to be processed separately. If so, channels or queues can
be created with a dead event store so any events that are purged automatically from
that have not been consumed will be moved into the dead event store. Dead event stores
themselves can be a channel or a queue and can be created with any aributes you wish.

ChannelKeys

Channels can also be created with a set of channel keys which define how channel
events can be managed based on the content of the events. For more information, please
see the Channel Publish Keys section

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 281

Cluster Wide

The cluster wide flag indicates that a channel is created on all cluster realm nodes. For
more information on clustering please see our clustering section.

Engine

There are 2 types of optional engine which a channel can use:

Merge Engine: The Merge Engine is used for Registered Events, and allows delivery
of just the portion of an event's data that has changed, rather than of the entire event.

JMS Engine: The JMS Engine deals with JMS topics within nirvana.

Universal Messaging Channel Publish Keys
Channels can be created with a set of Channel Publish Key objects, as well as the default
aributes that define behaviour of a channel and the events on a channel.

Channel Keys allow a channel or queue to automatically purge old events when new
events of the same "type" are received. Two events are of the same "type" if the value in
their dictionary (nEnventAributes) for the key defined as the Channel Key are identical.
The channel will store the specified number of most recent events whose values match
for the Channel Key.

Channel Publish Keys enable the implementation of Last Value Caches. In a last value
cache, only the most recent value for a given type of event is kept on the channel. In
high-update situations, where only the most recent values are of interest, Channel
Publish Keys can greatly improve efficiency in this way. By altering the depth associated
with the channel publish key, a recent values cache (where a set number of the most
recent events of the same type are stored) can also easily be implemented.

Using Channel Keys to Automatically Purge Redundant Data

For example, if you have a channel called BondDefinitions which should only contain
the most recent event published for each Bond, you can enforce this automatically by
using a channel key. This functionality vastly simplifies data publication, since the
publisher will not have to check the value of data currently on the channel.

In the above example you would create a BondDefinition channel as shown in the
following Enterprise Manager screen shot:

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 282

Note that in addition to creating a channel with the Name "BondDefinitions" and a type
of "Reliable", the channel also has a Channel Key called BONDNAME with a depth of 1.
The channel key defines the key in the nEventProperties which identifies events as being
of the same type if their value for this key match. In order to add a ChannelKey, type the
name of the key into the Channel Key box on the dialog and click add. If you want the
key to have a depth of greater than 1 then click the up arrow adjacent to the Key Depth
field or enter the number manually.

If this is configured, as soon as an event is published to the BondDefinitions channel
with a Dictionary entry called BONDNAME, the server checks to see if there is another
event with the same value for that key. For example, if an event is published with a
dictionary containing a key of BONDNAME and value of bondnameA and there is
already an event with BONDNAME=bondnameA, then the old event will be removed,
and the new one will take its place as the latest definition for bondnameA.

Another example would be if you wanted to keep the latest definition and the 2 before it
you would create the channel key with depth 3 as in the following screen shot (implying
that maximum 3 events with the same value for key name BONDNAME can exist on the
channel).

If you wanted to keep an archive of all bondname values that were published to the
channel, you could add a join from the BondDefinitions channel to, for example, a
BondDefinitionsArchive channel. On this channel the absence of a Channel Key called

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 283

BONDNAME will mean that it will store all events that have been published to the
BondDefinitions channel.

Universal Messaging Queue Attributes
Universal Messaging channels provide 3 main aributes. Depending on the options
chosen, these define the behaviour of the events published and stored by the Universal
Messaging Realm Server. The availability of the events on a queue is defined by the
chosen aributes of the queue upon creation.

Each of these aributes are described in the following sections.

Queue TTL

The TTL for a queue defines how long (in milliseconds) each event published to the
queue will remain available to consumers. Specifying a TTL of 0 will mean that events
will remain on the queue indefinitely. If you specify a TTL of 10000, then after each
event has been on the queue for 10000 milliseconds, it will be automatically removed by
the server.

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 284

Queue Capacity

The capacity of a queue defines the maximum number of events may remain on a queue
once published. Specifying a capacity of 0 will mean that there is no limit to the number
of events on a queue. If you specify a capacity of 10000, then if there are 10000 events on
a queue, and another event is published to the queue, the 1st event will be automatically
removed by the server.

Queue Type

Universal Messaging queues can be of 4 different types, simple, reliable, persistent and
mixed. The difference lies in the type of physical storage used for each type and the
performance overhead associated with each type.

Simple Queues

Simple queues have their messages stored in the Universal Messaging Realm's own
memory space supplying a high-speed queue type. The difference between a Simple
and Reliable is the fact that the event ids are reset to 0 in a Simple queue whenever the
Universal Messaging Server is restarted.

Reliable Queues

Reliable queues have their messages stored in the Universal Messaging Realm's own
memory space. The first fact that is implied is that the maximum number of bytes that
all messages across all reliable queues within a Universal Messaging Realm is limited by
the maximum heap size available to the Java Virtual Machine hosting that Realm. The
second fact implied is that if the Universal Messaging Realm is restarted for any reason,
all messages stored on reliable queues will be removed from the queue as a maer of
policy. However, as Universal Messaging guarantees not to ever reuse event ids within a
queue, new messages published in those queues will get assigned event ids incremented
from the event id of the last message prior to the previous instance stopping.

Persistent Queues

Persistent queues have their messages stored in the Universal Messaging Realm's
persistent queue disk based store. The persistent queue store is a high performance file
based store that uses a separate file for each queue on that Realm facilitating migrating
whole queues to different Realms. All messages published to a persistent queue will be
stored to disk, hence it is guaranteed that they will be kept and delivered to subscribers
until it is purged or removed as a result of a TTL or capacity policy. Messages purged
from a persistent queue are marked as deleted however the store size will not be
reduced until maintenance is performed on the queue using the Universal Messaging
AdminTool. This augments the high performance of the Universal Messaging Realm.

Mixed Queues

Mixed queues allow the users to specify whether the event is stored persistently or in
memory as well as that the Time To Live (TTL) of the individual event. On construction

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 285

of a Mixed queue the TTL and Capacity can be set, if the user supplies a TTL for an
event this is used instead of the queue

Universal Messaging Native Communication Protocols
Universal Messaging supports four Native Communication Protocols. These TCP protocols
are:

Universal Messaging Socket Protocol (nsp)

Universal Messaging SSL Protocol (nsps)

Universal Messaging HTTP Protocol (nhp)

Universal Messaging HTTPS Protocol (nhps)

These wire protocols are available for client-to-realm and realm-to-realm connections.

Universal Messaging Socket Protocol (nsp)

The Universal Messaging Socket Protocol (NSP) is a plain TCP socket protocol
optimized for high throughput, low latency and minimal overhead.

Universal Messaging Socket Protocol (nsp)

Universal Messaging SSL Protocol (nsps)

The Universal Messaging SSL (NSPS) Protocol uses SSL sockets to provide the benefits
of the Universal Messaging Socket Protocol combined with encrypted communications
and strong authentication.

We strongly recommend use of the NSPS protocol in production environments, where
data security is paramount.

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 286

Universal Messaging SSL Protocol (nsps)

Universal Messaging HTTP Protocol (nhp)

The Universal Messaging HTTP (NHP) Protocol uses a native HTTP stack running over
plain TCP sockets, to transparently provide access to Universal Messaging applications
running behind single or multiple firewall layers.

This protocol was designed to simplify communication with Realms on private address
range (NAT) networks, the Internet, or within another organization's DMZ.

There is no requirement for a web server, proxy, or port redirector on your firewall to
take advantage of the flexibility that the Universal Messaging HTTP Protocol offers.
The protocol also supports the use of HTTP proxy servers, with or without proxy user
authentication.

An nhp interface will also support connections using the nsp protocol. For this reason it
is suggested that you use this protocol initially when evaluating Universal Messaging.

Universal Messaging HTTP Protocol (nhp)

Universal Messaging HTTPS Protocol (nhps)

The Universal Messaging HTTPS (NHPS) Protocol offers all the benefits of the
Universal Messaging HTTP Protocol described above, combined with SSL-encrypted
communications and strong authentication.

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 287

We strongly recommend use of the Universal Messaging HTTPS Protocol for
production-level applications which communicate over the Internet or mobile networks.

Universal Messaging HTTPS Protocol (nhps)

Recommendation

We generally recommend that you initially use the Universal Messaging HTTP Protocol
(nhp) for Universal Messaging Native clients, as this is the easiest to use and will support
both nhp and nsp connections.

When deploying Internet-applications, we recommend the Universal Messaging HTTPS
Protocol (nhps) for its firewall traversal and security features.

RNAMEs

The RNAME used by a Native Universal Messaging Client to connect to a Universal
Messaging Realm server using a Native Communication Protocol is a non-web-based
URL with the following structure:
<protocol>://<hostname>:<port>

where <protocol> can be one of the 4 available wire protocol identifiers:

nsp (Universal Messaging Socket Protocol),

nsps (Universal Messaging SSL Protocol),

nhp (Universal Messaging HTTP Protocol) or

nhps (Universal Messaging HTTPS Protocol)

An RNAME string consists of a comma-separated list of RNAMEs.

A Universal Messaging realm can have multiple network interfaces, each supporting
any combination of Native and Comet communication protocols.

User@Realm Identification

When a Universal Messaging Native Client connects to a Universal Messaging Realm,
it supplies the username of the currently-logged-on user on the client host machine.

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 288

This username is used in conjunction with the hostname of the realm to create a session
credential of the form user@realm.

For example if you are logged on to your client machine as user fred, and you specify
an RNAME string of nsp://realmserver.mycompany.com:9000, then your session will
be identified as fred@realmserver.mycompany.com.

Note, however, that if you were running the client application on the same machine as
the Universal Messaging Realm and decided to use the localhost interface in your
RNAME string, you would be identified as fred@localhost - which is a different
credential.

The Realm and channel Access Control Lists (ACL) checks will be performed against this
credential, so be careful when specifying an RNAME value.

Universal Messaging Comet Communication Protocols
Universal Messaging supports Comet and WebSocket over two Comet Communication
Protocols.

Streaming Comet, Long Polling or WebSocket

The Universal Messaging Comet API supports several both streaming and long polling
Comet or WebSocket communications. A developer can select which method to use
when starting a session with the JavaScript API.

Communication Protocols

HTTPS Protocol (https)

The Universal Messaging Comet HTTPS (SSL-encrypted HTTP) Protocol is a lightweight
web-based protocol, optimized for communication over web infrastructure such as client
or server-side firewalls and proxy servers.

This protocol simplifies communication between Universal Messaging Clients and
Realms running behind single or multiple firewall layers or on private address range
(NAT) networks. There is no requirement for an additional web server, proxy, or
port redirector on your firewall to take advantage of the flexibility that the Universal
Messaging HTTPS Protocol offers.

The protocol is fully SSL-encrypted and also supports the use of HTTP proxy servers,
with or without proxy user authentication.

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 289

HTTPS Protocol (hps)

HTTP Protocol (http)

The Universal Messaging Comet HTTP Protocol is a lightweight web-based protocol,
supporting communication through proxies and firewalls at the client or server end of
the network.

This protocol provides the same functionality as the Universal Messaging Comet HTTPS
protocol, but without SSL encrypted communications.

HTTP Protocol (hp)

Recommendation

We generally recommend the HTTPS Protocol (hps) for Universal Messaging Comet
clients, as this is both securely encrypted and easy to use.

RNAMEs

The RNAME used by a Universal Messaging Comet Client to connect to a Universal
Messaging Realm server will automatically default to the same protocol/host/port as
the web server from which an application is served, unless overridden by the developer
when starting a session.

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 290

Note that a Universal Messaging realm can have multiple network interfaces, each
supporting any combination of Native and Comet communication protocols.

Universal Messaging Durable Consumers
Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Universal Messaging supports durable consumers through use of Universal Messaging
named objects. When a subscription is created using a named object, the server
will ensure that the named object current position is maintained. As named object
subscriptions are restarted, say after application restart, the server will begin delivering
events from the last event which was successfully acknowledged by the client.

There are different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as
consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method on the nConsumeEvent

Google Protocol Buffers
Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and
this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffer in Java, C++ and Python, and third party
libraries provide support for many other languages including Flex, .NET, Perl, PHP

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 291

etc. Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer event through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly seamlessly in nirvana, allowing for
server-side filtering of Google Protocol Buffer events, which can be sent on resources
just like a normal nirvana Events. The server side filtering of messages is achieved by
providing the server with a description of the data structures(constructed at the .proto
compile time, using the standard protobuf compiler and the --descriptor_set_out
option). The default location the sever looks in for descriptor files is /plugins/
ProtobufDescriptors and this can be configured through the enterprise manager. The
server will monitor this folder for changes, and the frequency of these updates can be
configured through the enterprise manager. The server can then use to extract the key
value pairs from the binary Protobuf message and filter message delivery based on user
requirements.

To create a nProtobuf event, simply build your protocol buffer as normal and pass it into
the nProtobuf constructor along with the message type used.

The Enterprise Manager can be used to view, edit and republish protocol buffer
events, even if the EM is no running on the same machine as the server. To enable this,
the server outputs a descriptor set to a configurable directory(by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Universal Messaging Named Objects
Universal Messaging provides the ability for the server to maintain state for the last
event that was consumed by a consumer on a channel. By providing a unique name, you
can create a named object on a channel and even when your application is stopped, the
next time you start your application, you will only consume available events from the
last event id that the server stored as successfully consumed by that named object.

Named objects can be persistent, i.e. the last event id is wrien to disk, so that if the
Universal Messaging Realm Server is restarted, the last event id consumed is retrievable
for each named object on a channel.

Universal Messaging - Event Filtering Guide
Universal Messaging's provides a server side filtering engine that allows events to be
delivered to the client based on the content of values within the event dictionary.

This section introduces filtering and describes the basic syntax of the filtering engine,
and provides examples to assist developers with designing the content of the events
within Universal Messaging. The filtering capabilities described in this page are what is
defined by the JMS filtering standard.

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 292

Universal Messaging filtering can be applied at two levels. The first is between client and
server and the second is between server and server.

All Universal Messaging filtering is handled by the Universal Messaging server and
therefore significantly reduces client overhead and network bandwidth consumption.

For documentation on filtering functionality which above and beyond that available
through the JMS standard please see the advanced filtering guide.

Basic Filtering

Each Universal Messaging event can contain an event dictionary as well as a byte array
of data. Standard filtering, as defined by JMS, allows dictionary entries to be evaluated
based on the value of the dictionary keys prior to delivering the data to the consumer.

The basic syntax of the filter strings is defined in the following notation :
EXPRESSION

where:
EXPRESSION ::=
<EXPRESSION> |
<EXPRESSION> <LOGICAL_OPERATOR> <EXPRESSION> |
<ARITHMETIC_EXPRESSION> |
<CONDITIONAL_EXPRESSION>
ARITHMETIC_EXPRESSION ::=
<ARITHMETIC_EXPRESSION> <ARITHMETIC_OPERATOR> <ARITHMETIC_EXPRESSION> |
<ELEMENT> <ARITHMETIC_OPERATOR> <ARITHMETIC_EXPRESSION> |
<ARITHMETIC_EXPRESSION> <ARITHMETIC_OPERATOR> <ELEMENT>
CONDITIONAL_EXPRESSION ::=
<ELEMENT> <COMPARISON_OPERATOR> <ELEMENT> |
<ELEMENT> <LOGICAL_OPERATOR> <COMPARISON_OPERATOR> <ELEMENT>
ELEMENT ::=
<DICTIONARY_KEY> |
<NUMERIC_LITERAL> |
<LOGICAL_LITERAL> |
<STRING_LITERAL> |
<FUNCTION>
LOGICAL_OPERATOR ::= NOT | AND | OR
COMPARISON_OPERATOR ::= <> | > | < | = | LIKE | BETWEEN | IN
ARITHMETIC_OPERATOR ::= + | - | / | *
DICTIONARY_KEY ::= The value of the dictionary entry with the specified key
LOGICAL_LITERAL ::= TRUE | FALSE
STRING_LITERAL ::= <STRING_LITERAL> <SEPARATOR> <STRING_LITERAL> |
 Any string value, or if using LIKE, use the '_' character to denote wildcard
NUMERIC_LITERAL ::= Any valid numeric value
SEPARATOR ::= ,
FUNCTION ::= <NOW> | <EVENTDATA> | DISTANCE

The above notation thus gives rise to the creation of any of the following valid example
selector expressions :
size BETWEEN 10.0 AND 12.0
country IN ('uk', 'us', 'de', 'fr', 'es') AND size BETWEEN 14 AND 16
country LIKE 'u_' OR country LIKE '_e_'
size + 2 = 10 AND country NOT IN ('us', 'de', 'fr', 'es')
size / 2 = 10 OR size * 2 = 20
size - 2 = 8
 size * 2 = 20
price - discount < 10.0 AND ((discount / price) * price) < 0.4

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 293

For help more information on the available functions, please see the advanced filtering
guide.

Additional references for event filtering may be found within the JMS message selector
section of the JMS standard.

Universal Messaging - Advanced Filtering with Selectors
Universal Messaging supports standard selector based filtering and some advanced filtering
concepts which will be described here .

Content Sensitive Filtering

Each Universal Messaging event can contain an event dictionary and a tag, as well as a
byte array of data. Standard filtering, as defined by JMS, allows dictionary entries to be
evaluated based on the value of the dictionary keys prior to delivering the data to the
consumer.

Universal Messaging also supports a more advanced form of filtering based on the
content of the event data (byte array) itself as well as time and location sensitive filtering.
Universal Messaging also supports filtering based on arrays and dictionaries contained
within event dictionaries. There is no limit to the dept of nested properties that can be
filtered.

Filtering based on nested arrays and dictionaries

An event dictionary can contain primitive types as well as dictionaries. They can also
contain arrays of primitive types and arrays of dictionaries. Universal Messaging
supports the ability to filter based on these nested arrays and dictionaries.

if an nEventProperties object contains a key called NAMES which stores a String[] then
it is possible to specify a filter that will only deliver events that match based on values
within the array.

NAMES[] = 'myname'

- Returns events where any element in the NAMES array = 'myname'
NAMES[1] = 'myname'

- Returns events where the second element in the array = 'myname'

Similarly, if the array was an nEventProperties[] it would be possible to filter based on
the values within the individual nEventProperties objects contained within the array.

For example if the event's nEventProperties contains a key called CONTACTS which
stores an nEventProperties[] then the following selectors will be available.

CONTACTS[].name = 'aname'

- Return events where the CONTACTS array contains an nEventProperties which
contains a key called name with the value 'aname'
CONTACTS[1].name = 'aname'

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 294

- Return events where the second element in the CONTACTS array of
nEventProperties contains a key called name with the value 'aname'
CONTACTS[].NAMES[] = 'myname'

- Return events where the CONTACTS array contains a NAMES arrays with a value
'myname' somewhere in the NAMES array.

EventData Byte[] Filtering

Universal Messaging's filtering syntax supports a keyword called 'EVENTDATA' that
corresponds to the actual byte array of data within the Universal Messaging event. There
are a number of operations that can be performed on the event data using this keyword.

This enables a reduction in the amount of data you wish to send to clients, since rather
than querying pre-determined dictionary values, you can now query the actual data
portion of the event itself without having to provide dictionary entries. If you have a
message structure and part of this structure includes the length of each value within
the structure, then you can refer to each portion of data. Alternatively if you know the
location of data within you byte array these can be used for filtering quite easily.

Below is a list of the available operations that can be performed on the EVENTDATA.
EVENTDATA.LENGTH()

- Returns the length of the byte[] of the data in the event.
EVENTDATA.AS-BYTE(offset)

- Returns the byte value found within the data at the specified offset.
EVENTDATA.AS-SHORT(offset)

- Returns a short value found within the data at the specified offset. Length of the
data is 2 bytes.
EVENTDATA.AS-INT(offset)

- Returns a int value found within the data at the specified offset. Length of the data
is 4 bytes.
EVENTDATA.AS-LONG(offset)

- Returns a long value found within the data at the specified offset. Length of the
data is 8bytes.
EVENTDATA.AS-FLOAT(offset)

- Returns a float value found within the data at the specified offset. Length of the
data is 4 bytes.
EVENTDATA.AS-DOUBLE(offset)

- Returns a double value found within the data at the specified offset. Length of the
data is 8 bytes.
EVENTDATA.AS-STRING(offset, len)

- Returns a String value found within the data at the specified offset for the length
specified.
EVENTDATA.TAG()

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 295

- Returns the String TAG of the event if it has one.

For example, we could then provide a filter string in the form of :
EVENTDATA.AS-STRING(0, 2) = 'UK'

If we knew that at position 0, the first 2 bytes would be a string that represents a value
you wish to filter on.

If we had data with 5 string values of varying length, and each length was prepended to
each string in 2 bytes, then we could evaluate any portion of the string as follows:
EVENTDATA.AS-STRING(0, EVENTDATA.AS-INT(0)) LIKE 'LON'

and the second string value after that would be calculated as follows:
 EVENTDATA.AS-STRING(EVENTDATA.AS-SHORT(0)+4, EVENTDATA-AS-SHORT(EVENTDATA.AS-SHORT(0)+2))

The offset is calculated based on the length of the first string + the 2 bytes of the first
strings size and 2 bytes for the size of the second string (Hence +4). This offset gives you
the size of the second string. Then you just need to get size of the second string, which is
found by EVENTDATA-AS-SHORT(EVENTDATA.AS-SHORT(0)+2).

This provides a powerful way of embedding functions within functions in order to
evaluate the data within an event.

Time Sensitive Filtering

Universal Messaging's filtering syntax also supports a function called 'NOW()' that
is evaluated at the server as the current time in milliseconds using the standard Java
time epoch. This function enables you to filter events from the server using a time
sensitive approach. For example, if your data contained a dictionary key element called
'DATE_SOLD' that contained a millisecond value representing the data when an item
was sold, one could provide a filter string on a subscription in the form of:
DATA_SOLD < (NOW() - 86400000)

Which would deliver events corresponding to items sold in the last 24 hours. This is a
powerful addition to the filtering engine within Universal Messaging.

Location Sensitive Filtering

Universal Messaging's filtering engine supports a keyword called DISTANCE. This
keyword is used to provide geographically sensitive filtering. This allows the calculation
of the distance between two points on the earths surface as defined by the latitude and
longitude.

For example, if you were designing a system that tracked the location of a tornado,
as the tornado moved position, the latitude and longitude would correspond to the
geographical location on the earth's surface. As the position of a tornado changed, an
event would be published containing the new latitude and longitude values as keys
within the dictionary ('latitude' and 'longitude' respectively). Using this premise, you
could provide a filter in the form of:
DISTANCE(Lat, Long, Units)

where :

M
Even Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 296

Latitude : the floating point value representing the latitude

Longitude : the floating point value representing the longitude

Units : Optional string indicating the return value to be

K: Kilometers < Default >

M : Miles

N : Nautical Miles

For example :
DISTANCE (51.50, 0.16, M) < 100

Which would deliver events that corresponded to tornadoes that were less than 100
miles away for the latitude and longitude values provided in the filter string.

The DISTANCE keyword provides a valuable and powerful extension to Universal
Messaging's filtering capabilities. If you require information that is sensitive to
geographical locations

Using Universal Messaging Shared Memory Protocol
Universal Messaging supports a special kind of communication protocol called
shm (Shared Memory). This communication protocol can only be used for intra host
connectivity and uses physical memory to pass data rather than the network stack.
Using shared memory as the communication protocol behaves just as any other nirvana
communication protocol and therefore can be used within any Universal Messaging
client or admin api application.

Once you have configured shared memory on your realm, it is ready to use by any
Universal Messaging application you wish to run on the same host. All you need to do
is set your RNAME to a the correct shared memory RNAME. For example, if you have
configured shared memory to use /tmp, then your RNAME would be:

shm://localhost/tmp

To test this out, you could run any one of the example applications that are provided
in the Universal Messaging download, by seing the RNAME from a Universal
Messaging Java client examples prompt as described above. For example, a subscriber
that subscribes to a channel called /test can be executed as follows:

nsubchan /test 0 1

Storage Properties
This storage properties panel allows for configuration of advanced storage properties, a
summary of these properties can be seen below:

M
Odd Header

Commonly Used Features

Universal Messaging Developer Guide Version 9.6 297

Auto Maintenance: Controls whether persistent store is maintained automatically (i.e.
events reaching their TTL, or events which have been purged are cleared from the
channel storage file.

Honour Capacity: Whether the channel / queue capacity seing will prevent
publishing of any more data once full. If true, the client will get an exception on
further publishes (a transactional publish will receive an exception on the commit
call, a non transactional publish will receive an asynchronous exception through the
nAsyncExceptionHandler). If false the oldest event will be purged to make room for
the newest.

Enable Caching: Control the caching algorithm within the server, if you set caching
to false, all events will be read from the file store. If true then if server has room in
memory, they will be stored in memory and reused.

Cache on Reload: When a server restarts it will scan all file based stores and check for
corruption. During this test the default behaviour is to disable caching to conserve
memory, however, in some instances it would be beer if the server had actually
cached the events in memory for fast replay.

Enable Read Buffering: Control the read buffering logic for the store on the server.

Read Buffer Size: If ReadBuffering is enabled then this function sets the size in bytes of
the buffer to use.

Sync Each Write: Control whether each write to the store will also call sync on the file
system to ensure all data is wrien to the Disk

Sync Batch Size: Control how often in terms of number of events to sync on the file
system to ensure all data is wrien to the Disk

Sync Batch Time: Control how often in terms of time elapsed to sync on the file
system to ensure all data is wrien to the Disk

Fanout Archive Target: Control whether all events fanned out are wrien to an archive
q

	Table of Contents
	Universal Messaging Client Development
	The Enterprise Client APIs
	The Universal Messaging Java Enterprise Developer's Guide
	General Features
	Universal Messaging Java Developers Guide - Create Session
	Universal Messaging Java - Universal Messaging Events
	Universal Messaging Java - Channel Joins
	Universal Messaging Java - Universal Messaging Event Dictionaries
	Google Protocol Buffers

	Universal Messaging Java - Publish / Subscribe Using Channels/Topics
	Universal Messaging Java - Creating a Universal Messaging Channel
	Universal Messaging Java - Finding a Universal Messaging Channel
	Universal Messaging Java - How to publish events to a Universal Messaging Channel
	Universal Messaging Java - Sending XML Dom Objects over Universal Messaging
	Universal Messaging Java - Asynchronous Subscriber
	Universal Messaging Java - Channel Iterator
	Universal Messaging Java - Batched Subscribe
	Universal Messaging Java - Batched Find
	Universal Messaging Java - Durable channel consumers and named objects
	Universal Messaging Java - Event Fragmentation on Universal Messaging Channels
	Universal Messaging Java - The Merge Engine and Event Deltas
	Universal Messaging Java - Priority Messaging

	Universal Messaging Java - Publish / Subscribe Using DataStreams and DataGroups
	Universal Messaging Java - DataStreamListener
	Universal Messaging Java - Creating and Deleting DataGroups
	Universal Messaging Java - Managing DataGroup Membership
	Universal Messaging Java - DataGroup Conflation Attributes
	Universal Messaging Java - DataGroups Event Publishing
	Universal Messaging Java - DataStream Event Publishing
	Universal Messaging Java - Priority Messaging

	Universal Messaging Java - Message Queues
	Universal Messaging Java - Creating a Queue
	Universal Messaging Java - Finding a Queue
	Universal Messaging Java - Queue Publish
	Universal Messaging Java - Asynchronous Queue Consuming
	Universal Messaging Java - Synchronously Queue Consuming
	Universal Messaging Java - Asynchronous Transactional Queue Consuming
	Universal Messaging Java - Synchronous Transactional Queue Consuming
	Universal Messaging Java - Queue Browsing / Peeking
	Universal Messaging Java - Request Response
	Universal Messaging Java - Event Fragmentation on Universal Messaging Queues

	Universal Messaging Java: Peer to Peer Services
	Universal Messaging Java: Peer to Peer Event-based Clients
	Universal Messaging Java: Peer to Peer Event-based Server Services
	Universal Messaging Java: Peer to Peer Stream-based Clients
	Universal Messaging Java: Peer to Peer Stream-based Server Services

	Universal Messaging Provider for JMS
	Universal Messaging Provider for JMS - JMSAdmin
	Universal Messaging Provider for JMS - Client SSL Configuration
	Universal Messaging Provider for JMS - Application Server Integration (Jboss)
	Universal Messaging Provider for JMS - JMS Message / Universal Messaging Event Mapping
	Universal Messaging Provider for JMS - Fanout Engine

	Universal Messaging Java Client: Code for Sample Applications
	Pub/Sub Channels
	Universal Messaging Java Client: Channel Publisher
	Universal Messaging Java Client: Transactional Channel Publisher
	Universal Messaging Java Client: Asynchronous Channel Consumer
	Universal Messaging Java Client: Synchronous Channel Consumer
	Universal Messaging Java Client: Asynchronous Named Channel Consumer
	Universal Messaging Java Client: Synchronous Named Channel Consumer
	Universal Messaging Java Client: XML Channel Publisher
	Universal Messaging Java Client: Asynchronous XML Channel Consumer
	Universal Messaging Java Client: Event Delta Delivery
	Universal Messaging Java Client: Batching Server Calls
	Universal Messaging Java Client: Batching Subscribe Calls

	Pub/Sub Datagroups
	Universal Messaging Java Client: DataStream Listener
	Universal Messaging Java Client: DataGroup Publishing with Conflation
	Universal Messaging Java Client: DataGroup Manager
	Universal Messaging Java Client: Delete DataGroup
	Universal Messaging Java Client: DataGroup Delta Delivery

	Message Queues
	Universal Messaging Java Client: Queue Publisher
	Universal Messaging Java Client: Transactional Queue Publisher
	Universal Messaging Java Client: Asynchronous Queue Consumer
	Universal Messaging Java Client: Asynchronous Transactional Queue Consumer
	Universal Messaging Java Client: Synchronous Queue Consumer
	Universal Messaging Java Client: Synchronous Transactional Queue Consumer
	Universal Messaging Java Client: Peek events on a Queue
	Universal Messaging Java Client: Requester - Request/Response
	Universal Messaging Java Client: Responder - Request/Response

	Peer to Peer
	Universal Messaging Java Client: An Event-based Peer to Peer Client
	Universal Messaging Java Client: An Event-based Peer to Peer Server Service
	Universal Messaging Java Client: A Stream-based Peer to Peer Client
	Universal Messaging Java Client: A Stream-based Peer to Peer Service

	Administration API
	Universal Messaging Java Client: Add a Queue ACL Entry
	Universal Messaging Java Client: Modify a Channel ACL Entry
	Universal Messaging Java Client: Delete a Realm ACL Entry
	Universal Messaging Java Client: Add a Schedule to a Universal Messaging Realm
	Universal Messaging Java Client: Simple authentication server
	Universal Messaging Java Client: Monitor realms for cluster creation, and cluster events
	Universal Messaging Java Client: Monitor realms for client connections coming and going
	Universal Messaging Java Client: Copy a channel and its events
	Universal Messaging Java Client: Monitor the remote realm log and audit file
	Universal Messaging Java Client: Export a realm to XML
	Universal Messaging Java Client: Import a realm's configuration information
	Universal Messaging Java Client: Console-based Realm Monitor
	Universal Messaging Java Client: Delete Service ACL
	Universal Messaging Java Client: Realm Monitor

	Provider for JMS
	Universal Messaging Java Client: JMS BytesMessage Publisher
	Universal Messaging Java Client: JMS BytesMessage Subscriber
	Universal Messaging Java Client: JMS MapMessage Publisher
	Universal Messaging Java Client: JMS MapMessage Subscriber
	Universal Messaging Java Client: JMS ObjectMessage Publisher
	Universal Messaging Client for Java: JMS ObjectMessage Subscriber
	Universal Messaging Java Client: JMS StreamMessage Publisher
	Universal Messaging Java Client: JMS StreamMessage Subscriber
	Universal Messaging Java Client: JMS BytesMessage Queue Publisher
	Universal Messaging Java Client: JMS BytesMessage Queue Subscriber
	Universal Messaging Java Client: JMS Queue Browser

	Channel / Queue / Realm Management
	Universal Messaging Java Client: Creating a Channel
	Universal Messaging Java Client: Deleting a Channel
	Universal Messaging Java Client: Creating a Queue
	Universal Messaging Java Client: Deleting a Queue
	Universal Messaging Java Client: Create a Channel Join
	Universal Messaging Java Client: Delete a Channel Join
	Universal Messaging Java Client: Purge events from a channel
	Universal Messaging Java Client: Find the event id of the last event
	Universal Messaging Java Client: Add a realm to another realm
	Universal Messaging Java Client: Multiplex a Session

	The Enterprise Developer Guide for C++
	General Features
	Universal Messaging C++ : Creating a Session
	Universal Messaging C++ - Universal Messaging Events
	Universal Messaging C++ - Channel Joins
	Universal Messaging C++ - Universal Messaging Event Dictionaries
	Google Protocol Buffers

	Publish/Subscribe using Channels/Topics
	Universal Messaging C++ : Publish / Subscribe Using Channels/Topics
	Universal Messaging C++ - Creating a Universal Messaging Channel
	Universal Messaging C++ : Finding a Channel
	Universal Messaging C++ - How to publish events to a Universal Messaging Channel
	Universal Messaging C++ - Asynchronous Subscriber
	Universal Messaging C++ - Channel Iterator
	Universal Messaging C++ - Batched Subscribe
	Universal Messaging C++ - Batched Find
	Universal Messaging C++ - Durable channel consumers and named objects
	Universal Messaging C++: The Merge Engine and Event Deltas
	Universal Messaging C++: Priority Messaging

	Publish/Subscribe using DataStreams and DataGroups
	Universal Messaging C++ - Publish / Subscribe Using DataStreams and DataGroups
	Universal Messaging C++ - DataStreamListener
	Universal Messaging C++: Creating and Deleting DataGroups
	Universal Messaging C++: Managing DataGroup Membership
	Universal Messaging C++ - DataGroup Conflation Attributes
	Universal Messaging C++ - DataGroups Event Publishing
	Universal Messaging C++: DataStream Event Publishing
	Universal Messaging Java - Priority Messaging

	Message Queues
	Universal Messaging C++: Message Queues
	Universal Messaging C++: Creating a Queue
	Universal Messaging C++: Finding a Queue
	Universal Messaging C++: Queue Publish
	Universal Messaging C++: Asynchronous Queue Consuming
	Universal Messaging C++ - Synchronously Queue Consuming
	Universal Messaging C++: Asynchronous Transactional Queue Consuming
	Universal Messaging C++ - Synchronous Transactional Queue Consuming
	Universal Messaging C++: Queue Browsing / Peeking

	Peer to Peer
	Universal Messaging C++: Peer to Peer Services
	Universal Messaging C++: Peer to Peer Event-based Clients
	Universal Messaging C++: Peer to Peer Event-based Server Services
	Universal Messaging C++: Peer to Peer Stream-based Clients
	Universal Messaging C++: Peer to Peer Stream-based Server Services

	Google Protocol Buffers
	Examples
	Universal Messaging C++
	Publish/Subscribe using Channels/Topics
	Universal Messaging C++ Client: Channel Publisher
	Universal Messaging C++ Client: Transactional Channel Publisher
	Universal Messaging C++ Client: Asynchronous Channel Consumer
	Universal Messaging C++ Client: Synchronous Channel Consumer
	Universal Messaging C++ Client: Asynchronous Named Channel Consumer
	Universal Messaging C++ Client: Synchronous Named Channel Consumer
	Universal Messaging C++ Client: Event Delta Delivery
	Universal Messaging C++ Client: Batching Server Calls
	Universal Messaging C++ Client: Batching Subscribe Calls

	Publish/Subscribe using DataStreams and DataGroups
	Universal Messaging C++ Client: DataStream Listener
	Universal Messaging C++ Client: DataGroup Publishing with Conflation
	Universal Messaging C++ Client: DataGroup Manager
	Universal Messaging C++ Client: Delete DataGroup
	Universal Messaging C++ Client: DataGroup Delta Delivery

	Message Queues
	Universal Messaging C++ Client: Queue Publisher
	Universal Messaging C++ Client: Transactional Queue Publisher
	Universal Messaging C++ Client: Asynchronous Queue Consumer
	Universal Messaging C++ Client: Synchronous Queue Consumer
	Universal Messaging C++ Client: Peek Events on a Queue

	Peer to Peer
	Universal Messaging C++ Client: An Event-based Peer to Peer Client and Server Service
	Universal Messaging C++ Client: A Stream-based Peer to Peer Client and Server Service

	Administration API
	Universal Messaging C++ Client: Add a Queue ACL Entry
	Universal Messaging C++ Client: Modify a Channel ACL Entry
	Universal Messaging C++ Client: Delete a Realm ACL Entry
	Universal Messaging C++ Client: Monitor realms for client connections coming and going
	Universal Messaging C++ Client: Console-based Realm Monitor
	Universal Messaging C++ Client: Remove Node ACL
	Universal Messaging C++ Client: Authserver

	Channel / Queue / Realm Management
	Universal Messaging C++ Client: Creating a Channel
	Universal Messaging C++ Client: Deleting a Channel
	Universal Messaging C++ Client: Creating a Queue
	Universal Messaging C++ Client: Deleting a Queue
	Universal Messaging C++ Client: Create Channel Join
	Universal Messaging C++ Client: Delete a Channel Join
	Universal Messaging C++ Client: Purge Events From a Channel
	Universal Messaging C++ Client: Create Queue Join
	Universal Messaging C++ Client: Delete Queue Join

	Prerequisites
	Universal Messaging C++ Prerequisites
	Universal Messaging C++ Client SSL Configuration
	Universal Messaging C++ Environment Setup : Windows
	Universal Messaging C++ Environment Setup : Linux

	Overview of Enterprise Developer Guide for C#
	Publish / Subscribe using Channel Topics
	Universal Messaging C# .NET - Creating a Universal Messaging Channel
	Universal Messaging C# .NET: Finding a Universal Messaging Channel
	Universal Messaging C# .NET: How to publish events to a Universal Messaging Channel
	Universal Messaging C# .NET: Subscribe Asynchronously to a Channel
	Universal Messaging C# .NET: Synchronous Consumers
	Universal Messaging C# .Net - Batched Subscribe
	Universal Messaging C# .Net - Batched Find
	C# .NET: Durable Channel Consumers and Named Objects
	Universal Messaging C# .NET: The Merge Engine and Event Deltas
	Universal Messaging C# .NET: Event Fragmentation on Universal Messaging Channels
	Universal Messaging C# .NET: Consuming a JMS Map Message
	Universal Messaging Java - Priority Messaging

	Publish / Subscribe using Datastreams and Datagroups
	Universal Messaging C# - Publish / Subscribe Using DataStreams and DataGroups
	Enabling DataGroups and Receiving Event Callbacks
	Universal Messaging C# - DataStreamListener

	Managing Datagroups
	Universal Messaging C# - Creating and Deleting DataGroups
	Universal Messaging C# - Managing DataGroup Membership
	Universal Messaging C# - DataGroup Conflation Attributes

	Publishing to Datagroups
	Universal Messaging C# - DataGroups Event Publishing
	Universal Messaging C# - DataStream Event Publishing
	Universal Messaging Java - Priority Messaging

	Message Queues
	Universal Messaging C# .NET Universal Messaging Message Queues
	Universal Messaging C# .NET: Creating a Universal Messaging Queue
	Universal Messaging C# .NET: Finding a Universal Messaging Queue
	How to publish events to a Universal Messaging Queue
	Universal Messaging C# .NET: Asynchronously Consume a Universal Messaging Queue
	Universal Messaging C# .NET: Synchronously Consume a Universal Messaging Queue
	C# .NET: Asynchronous Transactional Queue Consumption
	C# .NET: Synchronous Transactional Queue Consumption
	Universal Messaging C# .NET: Browse (Peek) a Universal Messaging Queue
	Universal Messaging C# .NET: Event Fragmentation on Universal Messaging Queues

	Peer to Peer
	Universal Messaging C# .NET: Peer to Peer Services
	Universal Messaging C# .NET: Peer to Peer Event-based Clients
	Universal Messaging C# .NET: Peer to Peer Event-based Server Services
	Universal Messaging C# .NET: Peer to Peer Stream-based Clients
	Universal Messaging C# .NET: Peer to Peer Stream-based Server Services

	Google Protocol Buffers
	Google Protocol Buffers

	Examples
	Universal Messaging C# .NET
	Publish / Subscribe using Channel Topics
	Universal Messaging C# .NET - Publish / Subscribe
	Universal Messaging C# .NET: Channel Publisher
	Universal Messaging C# .NET: Transactional Channel Publisher
	Universal Messaging C# .NET: Asynchronous Channel Consumer
	Universal Messaging C# .NET: Synchronous Channel Consumer
	Universal Messaging C# .NET: Asynchronous Named Channel Consumer
	Universal Messaging C# .NET: Synchronous Named Channel Consumer
	Universal Messaging C# .NET: Event Delta Delivery
	Universal Messaging C# .NET: Batching Server Calls
	Universal Messaging C# .NET: Batching Subscribe Calls

	Publish / Subscribe using Datastreams and Datagroups
	Universal Messaging C# .NET: DataStream Listener
	Universal Messaging C# .NET: DataGroup Publishing with Conflation
	Universal Messaging C# .NET: DataGroup Manager
	Universal Messaging C# .NET: Delete DataGroup
	Universal Messaging C# .NET: DataGroup Delta Delivery

	Message Queues
	Universal Messaging C# .NET: Queue Publisher
	Universal Messaging C# .NET: Transactional Queue Publisher
	Universal Messaging C# .NET: Asynchronous Queue Consumer
	Universal Messaging C# .NET: Synchronous Queue Consumer
	Universal Messaging C# .NET: Peek Events on a Queue
	Universal Messaging C# .NET: Requester - Request/Response
	Universal Messaging C# .NET: Responder - Request/Response

	MyChannels.Universal Messaging API
	Universal Messaging C# .NET: MyChannels.Universal Messaging DataGroup Publisher
	Universal Messaging C# .NET: MyChannels.Universal Messaging Queue Publisher
	Universal Messaging C# .NET: MyChannels.Universal Messaging Topic Publisher
	Universal Messaging C# .NET: MyChannels.Universal Messaging DataGroup Listener
	Universal Messaging C# .NET: MyChannels.Universal Messaging Queue Consumer
	Universal Messaging C# .NET: MyChannels.Universal Messaging Topic Subscriber
	Universal Messaging C# .NET: RX Topic Subscriber
	Universal Messaging C# .NET: RX Queue Consumer
	Universal Messaging C# .NET: RX DataGroup Listener

	Peer to Peer
	Universal Messaging C# .NET: An Event-based Peer to Peer Client and Server Service
	Universal Messaging C# .NET: A Stream-based Peer to Peer Client and Server Service

	Administration API
	Universal Messaging C# .NET: Add a Queue ACL Entry
	Universal Messaging C# .NET: Modify a Channel ACL Entry
	Universal Messaging C# .NET: Delete a Realm ACL Entry
	Universal Messaging C# .NET: Monitor realms for client connections coming and going
	Universal Messaging C# .NET: Export a realm to XML
	Universal Messaging C# .NET: Import a realm's configuration information
	Universal Messaging C# .NET: Console-based Realm Monitor
	Universal Messaging C# .NET: Remove Service ACL
	Universal Messaging C# .NET: Authserver
	Universal Messaging C# .NET: Set Container ACL
	Universal Messaging C# .NET: Difference between 2 realms

	Channel / Queue / Realm Management
	Universal Messaging C# .NET: Creating a Channel
	Universal Messaging C# .NET: Deleting a Channel
	Universal Messaging C# .NET: Creating a Queue
	Universal Messaging C# .NET: Deleting a Queue
	Universal Messaging C# .NET: Create Channel Join
	Universal Messaging C# .NET: Delete a Channel Join
	Universal Messaging C# .NET: Multiplex a Session
	Universal Messaging C# .NET: Purge Events From a Channel
	Universal Messaging C# .NET: Create Queue Join
	Universal Messaging C# .NET: Delete Queue Join

	Prerequisites
	Universal Messaging C# Prerequisites
	Universal Messaging C# Client SSL Configuration
	Globally Accessible DLLs

	Messaging API
	Universal Messaging C# .NET MyChannels.Universal Messaging API: Creating and Disposing of a Session
	Universal Messaging C# .NET MyChannels.Universal Messaging API: Producers
	Universal Messaging C# .NET MyChannels.Universal Messaging API: Consumers
	Universal Messaging C# .NET MyChannels.Universal Messaging API: Reactive Extensions

	Overview of Developer's Guide for VBA
	Publish / Subscribe
	Universal Messaging VBA - Publish/Subscribe
	Subscribing Tasks
	Universal Messaging VBA : Subscribing to a Channel

	Publishing Tasks
	Universal Messaging VBA : Creating a Session
	Universal Messaging VBA : Finding a Channel
	Universal Messaging VBA : Universal Messaging Events
	Universal Messaging VBA : Publishing Events to a Channel

	Learn More
	Universal Messaging VBA : Event Properties
	Universal Messaging VBA : How the RTD Server Works
	Universal Messaging VBA : Setting the RTD Throttle Interval
	Universal Messaging VBA : Internal Event Processing
	Universal Messaging VBA : Universal Messaging RTD Server Internal Queues
	Universal Messaging VBA : OnChange() Event Using RTD

	Universal Messaging VBA - Prerequisites

	Overview of Enterprise Developer's Guide for Python
	Enterprise Client Development
	Universal Messaging Python : Environment Configuration
	Universal Messaging Python : Creating a Session
	Universal Messaging Python : Subscribing to a Universal Messaging Channel/Topic or Queue
	Universal Messaging Python : DataStream - Receiving DataGroup Events
	Universal Messaging Python : Publishing Events to a Universal Messaging Channel or Queue
	Universal Messaging Python : Writing an Event to a Universal Messaging DataGroup
	Universal Messaging Python : Asynchronous Exception Listener
	Universal Messaging Python : Synchronously Requesting Events

	Sample Applications
	Publish / Subscribe Channels
	Universal Messaging Python Client: Channel Publisher
	Universal Messaging Python Client: Asynchronous Channel Subscriber
	Universal Messaging Python Client: Channel Iterator

	Pub / Sub Datagroups
	Universal Messaging Python Client: DataGroup Publisher
	Universal Messaging Python Client: DataStream Listener

	Message Queues
	Universal Messaging Python Client: Queue Publisher
	Universal Messaging Python Client: Asynchronous Queue Consumer
	Universal Messaging Python Client: Synchronous Queue Reader

	Python Objects
	Universal Messaging Python : Universal Messaging Events
	Universal Messaging Python : Event Dictionaries

	Universal Messaging Language API Comparisons

	Universal Messaging Mobile Client APIs
	Client API for iPhone
	Universal Messaging iPhone Developer's Guide

	Client API for Android
	Universal Messaging Android Developer's Guide

	Universal Messaging Web Client APIs
	Javascript
	Universal Messaging JavaScript Developer's Guide
	Universal Messaging Server Configuration for JavaScript
	Universal Messaging JavaScript: Server Configuration for HTTP Delivery
	Universal Messaging JavaScript: Server Configuration for HTTPS Delivery
	Universal Messaging Javascript : Serving From Another Webserver

	Universal Messaging Web Client Development in JavaScript
	Universal Messaging Channel Publish / Subscribe
	Universal Messaging JavaScript : Publish / Subscribe
	Publish/Subscribe Tasks
	Universal Messaging JavaScript : Using a Universal Messaging Channel
	Universal Messaging JavaScript : Subscribing to a Universal Messaging Channel
	Universal Messaging JavaScript : Publishing Events to a Universal Messaging Channel
	Universal Messaging JavaScript : DataStream - Receiving DataGroup Events

	Optimizing Throughput
	Universal Messaging JavaScript : The Merge Engine and Event Deltas

	Universal Messaging Message Queues
	Universal Messaging JavaScript : Message Queues
	Queue Tasks
	Universal Messaging JavaScript : Using a Universal Messaging Queue
	Universal Messaging JavaScript : Subscribing to a Universal Messaging Queue
	Universal Messaging JavaScript : Publishing Events to a Universal Messaging Queue
	Universal Messaging JavaScript : Asynchronous Transactional Queue Consuming

	Adobe Flex
	Universal Messaging Flex Developer's Guide
	Publish / Subscribe using Channels / Topics
	Universal Messaging Flex : Publish / Subscribe
	Universal Messaging Flex : Publishing Events to a Channel
	Universal Messaging Flex : Subscribing to a Channel
	Universal Messaging Flex - Durable channel consumers and named objects
	Universal Messaging Flex - The Merge Engine and Event Deltas

	Publish / Subscribe using DataStreams and DataGroups
	Universal Messaging Flex : Publish / Subscribe
	Universal Messaging Flex - DataGroup Conflation Attributes
	Universal Messaging Flex - DataStreamListener

	Message Queues
	Universal Messaging Flex - Message Queues
	Universal Messaging Flex : Publishing Events to a Queue
	Universal Messaging Flex - Asynchronous Queue Consuming
	Universal Messaging Flex - Asynchronous Transactional Queue Consuming

	Peer to Peer
	Universal Messaging Flex: Peer to Peer Services
	Universal Messaging Flex: Peer to Peer Event-based Client

	Flex Socket SSL
	Universal Messaging Flex socket SSL

	Examples
	Universal Messaging Flex Client
	Universal Messaging Flex : Sample Socket Cross Domain Policy
	Universal Messaging Flex : Sample Flash Cross Domain Policy
	Flex Example : Peer to Peer Echo Application
	Flex Example : Chat Application

	Silverlight
	Universal Messaging Silverlight Developer's Guide
	Universal Messaging Silverlight Deployment
	Examples
	Universal Messaging Silverlight (C#): Live Stock Chart
	Universal Messaging Silverlight (C#): Live Stock Indices
	Universal Messaging Silverlight (C#): Simple Chat Room

	Java
	Universal Messaging Java Web Developer's Guide
	Universal Messaging Java Web Start

	Commonly Used Features
	Universal Messaging Sessions
	Universal Messaging Channel Attributes
	Universal Messaging Channel Publish Keys
	Universal Messaging Queue Attributes
	Universal Messaging Native Communication Protocols
	Universal Messaging Comet Communication Protocols
	Universal Messaging Durable Consumers
	Google Protocol Buffers
	Universal Messaging Named Objects
	Universal Messaging - Event Filtering Guide
	Universal Messaging - Advanced Filtering with Selectors
	Using Universal Messaging Shared Memory Protocol
	Storage Properties

