
Universal Messaging Concepts

Version 9.6

April 2014

This document applies to Universal Messaging Version 9.6 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NUM-CO-96-20140415

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

Universal Messaging Concepts Version 9.6 3

Table of Contents

Universal Messaging Concepts - Overview.. 7

Architecture.. 9
Universal Messaging Concepts - Architecture Overview... 10
Universal Messaging and Open Standards..11
Universal Messaging Concepts : Universal Messaging Realm.. 11
Messaging Paradigms supported by Universal Messaging..12
Universal Messaging Brokerless API... 15
Universal Messaging Communication Protocols and RNAMEs... 19
Universal Messaging Shared Memory (SHM).. 21

Management... 23
Universal Messaging Concepts - Administration and Management...24
Universal Messaging Concepts - JMX Administration and Management.................................25

Performance, Scalability and Resilience...31
Universal Messaging Concepts - Performance, Scalabilty and Resilience.............................. 32
Clustering.. 33

Universal Messaging Clusters: An Overview.. 33
Universal Messaging Clusters: Client Concepts... 37

Clustered Server Concepts.. 38
Universal Messaging Clusters: Server Concepts..38
Universal Messaging Clusters: Masters and Slaves... 39
Universal Messaging Clusters: Quorum..41
Universal Messaging Clusters: Election of a new Master... 42
Universal Messaging Clusters: Message Passing.. 46
Universal Messaging Clusters: Outages and Recovery..47
Universal Messaging Clusters: Creating Clustered Resources...47
Universal Messaging Clusters: Inter-Cluster Connections.. 48
Universal Messaging Clusters with Sites.. 48
Universal Messaging Clusters: Shared Storage Configurations..53

Universal Messaging Clustering : Setting Up a HA Failover Cluster..53
Universal Messaging Multicast: An Overview.. 55
Universal Messaging Shared Memory (SHM).. 57
Scalability.. 57

Universal Messaging Concepts - Performance, Scalability and Resilience...................... 57
Universal Messaging Realm Benchmarks...58
Universal Messaging Concepts - Failover...67
Connections Scalability With Universal Messaging...68

Deployment...69
Universal Messaging Concepts - Deployment... 70

M
Table of Contents

Universal Messaging Concepts Version 9.6 4

Server..71
Performance and Tuning...71
Universal Messaging Deployment Guide - Server Failover / High Availability...................72
Universal Messaging Data Routing...72
Federation Of Universal Messaging Servers.. 73
Universal Messaging, Proxy servers and Firewalls...74
Universal Messaging Deployment Guide - Server Memory.. 74
Universal Messaging Server Parameters..74
Universal Messaging Deployment Guide - Server Security.. 78
Universal Messaging Concepts - Deployment.. 78
Connecting to multiple realms using SSL... 79
Performance and Tuning - The Java Virtual Machine...81
Performance and Tuning - The Network...85
Performance and Tuning - The Operating System... 87
Performance and Tuning - The Universal Messaging Realm Server................................ 88

Client... 90
Universal Messaging Deployment - Connecting Over HTTP/HTTPS................................90
Universal Messaging Deployment Guide - Browser / Applet Deployment.........................90
Universal Messaging and Browser Plugins...91
Universal Messaging Deployment Guide - Client Jars..91
Universal Messaging Deployment Guide - Client Security..92
Universal Messaging Client Parameters... 93
Universal Messaging Deployment - Multiplexing Sessions... 94

Language Deployment Tips..95
Universal Messaging Deployment - Adobe Flex Application Deployment.........................95
Universal Messaging Deployment - Silverlight Application Deployment........................... 96
Universal Messaging Deployment - JavaScript Application Deployment.......................... 97

Security... 99
Overview... 100

Universal Messaging Concepts - Security.. 100
Universal Messaging Concepts - Security Architecture.. 100
Using Universal Messaging over HTTP/HTTPS..115

Authentication... 116
Universal Messaging Concepts - Authentication...116
Universal Messaging Authentication and SASL..131

Overview...131
Client...132
Server... 133

Client Negotiation..133
Directory Backend... 133

Internal User Repository..133

LDAP..134

Converting a .jks Key Store to a .pem Key Store... 134

M
Table of Contents

Universal Messaging Concepts Version 9.6 5

Access Control Lists...135
Universal Messaging Concepts - Security Policies... 135
Universal Messaging Concepts - Access Control Lists (ACLs).......................................135

SSL... 138
Universal Messaging Concepts - SSL Encryption...138
Universal Messaging Concepts - Client SSL Configuration.. 138
SSL Concepts..140

Universal Messaging MQTT: An Overview..143

Commonly Used Features.. 147
Overview of Commonly Used Features... 148
Universal Messaging Sessions...148
Channel Attributes.. 148
Universal Messaging Channel Publish Keys..151
Universal Messaging Queue Attributes.. 153
Universal Messaging Native Communication Protocols... 155
Universal Messaging Comet Communication Protocols...158
Universal Messaging Durable Consumers... 160
Google Protocol Buffers... 160
Universal Messaging Named Objects.. 161
Universal Messaging - Event Filtering Guide...161
Universal Messaging - Advanced Filtering with Selectors... 163
Using Universal Messaging Shared Memory Protocol... 166
Storage Properties..166

M
Even Header

Universal Messaging Concepts Version 9.6 6

M
Odd Header

Universal Messaging Concepts Version 9.6 7

Universal Messaging Concepts - Overview

This guide describes the underlying concepts of the Universal Messaging product, with
the focus on the following areas of design and functionality:

Architecture

Management

Performance, Scalability and Resilience

Deployment

Security

MQTT (MQ Telemetry Transport)

M
Even Header

Universal Messaging Concepts Version 9.6 8

M
Odd Header
Architecture

Universal Messaging Concepts Version 9.6 9

1 Architecture

■ Universal Messaging Concepts - Architecture Overview ... 10

■ Universal Messaging and Open Standards ... 11

■ Universal Messaging Concepts : Universal Messaging Realm .. 11

■ Messaging Paradigms supported by Universal Messaging ... 12

■ Universal Messaging Brokerless API ... 15

■ Universal Messaging Communication Protocols and RNAMEs ... 19

■ Universal Messaging Shared Memory (SHM) ... 21

M
Even Header
Architecture

Universal Messaging Concepts Version 9.6 10

Universal Messaging Concepts - Architecture Overview
Universal Messaging is a Message Orientated Middleware product that guarantees
message delivery across public, private and wireless infrastructures. Universal
Messaging has been built from the ground up to overcome the challenges of delivering
data across different networks. It provides its guaranteed messaging functionality
without the use of a web server or modifications to firewall policy.

Universal Messaging design supports both broker-based and brokerless communication,
and thus comprises client and server components.

Broker-Based Communication

The standard UM "broker-based" client component can be subdivided into messaging
clients, comet clients and management clients. The server component has specific design
features to support each of these classifications of client as well as Scheduling and
Triggers, Plugins, Federation, Clustering and Low Latency IO.

Server Components

The Universal Messaging realm server is a heavily optimized Java process capable of
delivering high throughput of data to large numbers of clients while ensuring latencies
are kept to a minimum. In addition to supporting the client types described below
the Universal Messaging realm server has a number of built in features to ensure its
flexibility and performance remains at the highest levels.

Client Components

Universal Messaging supports 3 client types:

Messaging clients

Comet clients

Management clients

Each client type is been developed using open protocols with specific aention paid to
performance and external deployment. Each client type has been specifically designed to
transparently pass through firewalls and other security infrastructure while providing
its own inherent security features.

Messaging Clients

Universal Messaging messaging clients support synchronous and asynchronous
middleware models. Publish Subscribe, Queues and Peer to Peer functionality is all
supported and can be used independently or in combination with each other. Universal
Messaging messaging clients can be developed in a wide range of languages on a wide
range of platforms. Java, C# and C++ over Win32, Solaris and Linux are all supported.
Mobile devices and Web technologies such as Silverlight all exist as native messaging
clients.

M
Odd Header
Architecture

Universal Messaging Concepts Version 9.6 11

WebSocket, Comet and LongPolling for JavaScript Clients

In addition to our native binary wire protocol Universal Messaging also supports text
based delivery for languages that do not support binary data. Used in conjunction with
Universal Messaging server plug-in technology, Comet and Long Polling clients use
HTTP and persistent connections to deliver asynchronous Publish Subscribe, and Peer
to Peer functionality to clients. JavaScript clients can also use WebSocket as a delivery
approach although this is not yet sufficiently supported in users' browsers to warrant a
reliance on it over Comet/long Polling.

Management Clients

Universal Messaging provides a very extensive and sophisticated management API
wrien in Java. Management clients can construct resources (Channels, ACL's queues
etc.) and query management data (throughput, cluster state, numbers of connections
etc.) directly from Universal Messaging realm servers.

Brokerless Communication

Universal Messaging offers, in addition to its standard full-featured client-server API,
an extremely lightweight client-client communication API known as the Brokerless API
(currently available for Java only).

Universal Messaging and Open Standards
Universal Messaging supports many open standards at different levels from network
protocol support through to data definition standards.

At the network level Universal Messaging will run on an TCP/IP enabled network
supporting normal TCP/IP based sockets, SSL enabled TCP/IP sockets, HTTP and
HTTPS, providing multiple " communications protocols" on page 19

Universal Messaging provides support for the JMS standard.

Universal Messaging Concepts : Universal Messaging Realm
A Universal Messaging Realm is the name given to a single Universal Messaging
server. Universal Messaging realms can support multiple network interfaces, each one
supporting different Universal Messaging protocols.

A Universal Messaging Realm can contain many Channels, Message Queues or Peer to
Peer services.

Universal Messaging provides the ability to create clusters of realms that share
"resources" on page 12 within the namespace. Cluster objects can be created, deleted
and accessed programmatically or through the Universal Messaging Administration
Tool.

M
Even Header
Architecture

Universal Messaging Concepts Version 9.6 12

Objects created within a cluster can be accessed from any of the realms within the cluster
and Universal Messaging ensures that the state of each object is maintained by all realms
within a cluster. The clustering technology used within Universal Messaging ensures an
unsurpassed level of reliability, resilience, scalability.

Realms can also be added to one another within the namespace. This allows the creation
of a "federated namespace" on page 73 where realms may be in different physical
location, but accessible through one physical namespace.

Messaging Paradigms supported by Universal Messaging
Universal Messaging supports three broad messaging paradigms - Publish/Subscribe,
Message Queues and Peer to Peer. Universal Messaging clients can use a mixture of
these paradigms from a single session. In addition to this it is possible for clients to
further control the conversation that takes place with the server by choosing particular
styles of interaction. These styles are available to both readers and writers of messages
and include asynchronous, synchronous, transactional and non-transactional.

Publish/Subscribe (using Channels/Topics)

Publish/Subscribe is an asynchronous messaging model where the sender (publisher)
of a message and the consumer (subscriber) of a message are decoupled. When using
the Channels/Topics, readers and writers of events are both connected to a common
topic or channel. The publisher publishes data to the channel. The channel exists with
the Universal Messaging realm server. As messages arrive on a channel, the server
automatically sends them on to all consumers subscribed to the channel. Universal
Messaging supports multiple publishers and subscribers on a single channel.

Learn more about publish/subscribe with channels in the developer guides for the
following languages:

Java

C++

C# .NET

Python

JavaScript

Flex

Publish/Subscribe (using DataStreams and DataGroups)

Universal Messaging DataGroups provide an alternative to Channels/Topics for Publish/
Subscribe. Using DataGroups it is possible for remote processes to manage subscriptions
on behalf of subscribers. The process of managing subscribers can be carried out by
publishers themselves or by some other process. DataGroups are lightweight in nature
and are designed to support large numbers of users whose subscriptions are fluid in

M
Odd Header
Architecture

Universal Messaging Concepts Version 9.6 13

nature. The addition / removal of users from DataGroups can be entirely transparent
from the user perspective.

Learn more about publish/subscribe with DataGroups in the developer guides for the
following languages:

Java

C++

C# .NET

Python

JavaScript

Flex

Message Queues

Like pub/sub, message queues decouple the publisher or sender of data from the
consumer of data. The Universal Messaging realm server manages the fan out of
messages to consumers. Unlike pub/sub with channels, however, only one consumer can
read a message from a queue. If more than one consumer is subscribed to a queue then
the messages are distributed in a round-robin fashion.

Learn more about queues in the developer guides for the following languages:

Java

C++

C# .NET

Python

JavaScript

Flex

Peer to Peer

Peer to Peer provides a direct communications path between an instance of a service and
the client requiring access to the service. The Universal Messaging realm server brokers
the relationship between the service and the client and in doing so becomes transparent
as messages pass through it.

Learn more about peer to peer services in the developer guides for the following
languages:

Java

C++

C# .NET

Python

M
Even Header
Architecture

Universal Messaging Concepts Version 9.6 14

Flex

Messaging Paradigms Comparison

 DataGroups Channels Queues Peer to Peer

Subscriptions
Managed
Remotely

Nestable

Clusterable

Persistence
(data)

Persistence
(state)

Message
Replay

Synchronous
Consumer

Asynchronous
Consumer

Synchronous
Producer

Asynchronous
Producer

Transactional
Consumer

Non-
Transactional
Consumer

Transactional
Producer

Non-
Transactional
Producer

M
Odd Header
Architecture

Universal Messaging Concepts Version 9.6 15

 DataGroups Channels Queues Peer to Peer

Destructive
Read

Delta
Delivery

Conflation
(Event
Merge)

Conflation
(Event
Overwrite)

Conflation
(Throled
Delivery)

User
Specified
Filters

Addressable
Messages

User Access
Controlled
via ACLs

Microsoft
Reactive
Extensions

Accessible
via JMS

Universal Messaging Brokerless API
Universal Messaging offers, in addition to its standard full-featured client-server API, an
extremely lightweight client-client communication API known as the Brokerless API.

M
Even Header
Architecture

Universal Messaging Concepts Version 9.6 16

Broker-based Model

Historically, messaging architecture has predominantly been based on a 'broker in the
middle' approach. This is often referred to as 'hub and spoke'. The broker acts as the
communications hub, routing messages between logically decoupled peers:

The pub-sub model is a common paradigm for broker based architecture, where one or
more publishers send messages to the broker, which then distributes the messages to
interested consumers.

Brokerless Model

The brokerless model is a peer to peer model that allows peers to be aware of how to
communicate directly with one another rather than through a broker. In effect, each
publisher peer acts like a server, and each consumer can communicate directly with the
publishers:

While this model bypasses broker messaging functionality such as persistence or
transactional semantics, it results in a considerably lower latency delivery of information
from a publisher to a consumer. By halving of the number of "hops" between client and

M
Odd Header
Architecture

Universal Messaging Concepts Version 9.6 17

publisher, latency too is effectively halved. This is especially useful when ultra low
latency message delivery is paramount (in, for example, the links between pricing, quant
and risk engines in FX trading platforms).

The Brokerless API is currently only available for Java clients. It is located in the
com.softwareag.um.io package.

The API is very simple, allowing each client to accept connections from other clients, and
to receive arbitrary binary data from these clients synchronously or asynchronously. In
many ways the API is similar to a standard TCP socket API, but offers the additional
benefit of being able to use not just TCP sockets as a communication transport, but any
of the following Universal Messaging communication technologies:

TCP Sockets: data is transmied directly over TCP Sockets

SSL: data is SSL encrypted then transmied over TCP Sockets

SHM: data is transmied via Shared Memory (for near-instant access by processes
on the same machine)

RDMA: data is transmied via Remote Direct Memory Access (for access by
processes on a remote machine; requires network adapters that support RDMA)

Let's take a quick look at how to use this API. Here is an example "echo" client and
server; the EchoClient will write a string to the EchoServer; the EchoServer will respond
to the EchoClient.

Here's the EchoClient:
package com.softwareag.um.io.samples.echo;
import com.softwareag.um.io.ClientContextBuilderFactory;
import com.softwareag.um.io.ClientTransportContext;
import com.softwareag.um.io.SynchronousTransport;
import com.softwareag.um.io.TransportFactory;
import com.softwareag.um.io.samples.SimpleMessage;
import com.softwareag.um.io.samples.SynchronousClient;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
 * This sample app simply writes a string entered into the console to an EchoServer
 * The EchoServer will respond and this response will be output on the console.
 */
public class EchoClient {
 public EchoClient(String url) throws IOException {
 //Use the factory to generate the required builder based on the protocol in the url string
 ClientTransportContext context = ClientContextBuilderFactory.getBuilder(url).build();
 //We do not pass any handlers to the connect method because we want a synchronous transport
 SynchronousTransport transport = TransportFactory.connect(context);
 //This is just a basic wrapper for the client transport so it is easier to read/write messages
 SynchronousClient<SimpleMessage> client = new SynchronousClient<>(transport);
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 //Start a new thread to read from the client transport because read is a blocking call
 new ReadThread(client);
 //Now continue to write messages to the EchoServer until the user enter 'quit'
 while(true){
 System.out.println("Enter a message or type 'quit' to exit >");
 String line = br.readLine();
 if(line.equalsIgnoreCase("quit")){
 break;

M
Even Header
Architecture

Universal Messaging Concepts Version 9.6 18

 }
 else{
 client.write(new SimpleMessage(line));
 }
 }
 }
 private static class ReadThread extends Thread{
 SynchronousClient<SimpleMessage> client;
 public ReadThread(SynchronousClient<SimpleMessage> _client){
 client = _client;
 start();
 }
 @Override
 public void run(){
 try{
 while(true){
 SimpleMessage mess = client.read(new SimpleMessage());
 System.out.println(mess.toString());
 }
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
 }
 public static void main(String[] args) throws IOException {
 if(args.length == 0){
 usage();
 System.exit(1);
 }
 new EchoClient(args[0]);
 }
 public static void usage(){
 System.out.println("EchoClient <URL>");
 System.out.println("<Required parameters>");
 System.out.println("\tURL - protocol://host:port for the server to connect to e.g. "+TransportFactory.SOCKET+"://localhost:9000");
 }
}

And, the EchoServer:
package com.softwareag.um.io.samples.echo;
import com.softwareag.um.io.ServerContextBuilderFactory;
import com.softwareag.um.io.ServerTransportContext;
import com.softwareag.um.io.SynchronousServerTransport;
import com.softwareag.um.io.SynchronousTransport;
import com.softwareag.um.io.TransportFactory;
import com.softwareag.um.io.samples.SimpleMessage;
import com.softwareag.um.io.samples.SynchronousClient;
import java.io.IOException;
/**
 * This sample will only handle one client connection at a time. When a client connects,
 * the EchoServer will immediately respond to any messages with exactly the same message.
 */
public class EchoServer implements Runnable{
 private volatile SynchronousClient<SimpleMessage> client;
 private final SynchronousServerTransport transport;
 private volatile boolean stopped = false;
 public EchoServer(String url) throws IOException {
 //The factory will create the correct context based on the protocol in the url
 ServerTransportContext context = ServerContextBuilderFactory.getBuilder(url).build();
 //Because we have not passed an AcceptHandler into the bind method, we are returned
 //a SynchronousServerTransport. This means we have to call accept on the transport
 //to accept new client transports.

M
Odd Header
Architecture

Universal Messaging Concepts Version 9.6 19

 transport = TransportFactory.bind(context);
 }
 public static void main(String[] args) throws IOException {
 if(args.length == 0){
 usage();
 System.exit(1);
 }
 EchoServer echoServer = new EchoServer(args[0]);
 Thread t = new Thread(echoServer);
 t.start();
 System.out.println("Press enter to quit.");
 System.in.read();
 echoServer.close();
 }
 public static void usage(){
 System.out.println("EchoServer <URL>");
 System.out.println("<Required parameters>");
 System.out.println("\tURL - protocol://host:port to bind the server transport to e.g. "+TransportFactory.SOCKET+"://localhost:9000");
 }
 protected void close(){
 stopped = true;
 client.close();
 transport.close();
 }
 @Override
 public void run() {
 try{
 while(true){
 System.out.println("Waiting for client");
 //accept() will block until a client makes a connection to our server
 SynchronousTransport clientTransport = transport.accept();
 System.out.println("Client connected. Echo service started.");
 //The SyncronousClient is simply a wrapper to make reading/writing easier
 client = new SynchronousClient<>(clientTransport);
 try{
 while(!stopped){
 client.write(client.read(new SimpleMessage()));
 }
 }
 catch (IOException e){
 System.out.println("Connection closed");
 }
 }
 }
 catch(IOException e){
 e.printStackTrace();
 }
 }
}

Universal Messaging Communication Protocols and RNAMEs
Universal Messaging supports several "Native Communication Protocols" on page
155 and "Comet Communication Protocols" on page 158.

The following table shows the Communication Protocols supported by each Universal
Messaging Client API:

M
Even Header
Architecture

Universal Messaging Concepts Version 9.6 20

 Native Communication Protocols Comet Communication
Protocols

 Socket
(nsp)

SSL (nsps) HTTP (nhp) HTTPS
(nhps)

Shared
Memory
(shm)

HTTPS
(https)

HTTP (http)

Java

C# .NET

C++

Python

Excel VBA

JavaScript
via
WebSocket

via
WebSocket

Adobe Flex

Microsoft
Silverlight

iPhone

Android

RNAMEs

An RNAME is used by Universal Messaging Clients to specify how a connection should
be made to a Universal Messaging Realm Server.

A "Native Communication Protocol" on page 155 RNAME string looks like:

<protocol> :// <hostname> :< port>,<protocol> :// <hostname> :< port>

or

<protocol> :// <hostname> :< port>;<protocol> :// <hostname> :< port>

where:

<protocol> can be one of the 4 available native communications protocol identifiers
nsp (socket), nhp (HTTP), nsps (SSL) and nhps(HTTPS).

<hostname> is the hostname or IP address that the Universal Messaging Realm is
running

M
Odd Header
Architecture

Universal Messaging Concepts Version 9.6 21

<port> is the TCP port on that hostname that the Universal Messaging Realm is
bound to using the same wire protocol.

The RNAME entry can contain a comma or semicolon separated list of values each
one representing the communications protocol, host and port currently running on a
Universal Messaging Realm.

Using a comma-separated list indicates in order traversal of RNAME values while using
a semicolon-separated list indicates random traversal of RNAME values.

If a list of RNAMEs is used and the Universal Messaging session becomes disconnected
and cannot reconnect, the API will cascade through the RNAME list until it manages
to reconnect. This functionality is particularly useful within the contexts of both
"clustering" on page 33 and "failover" on page 67.

Native Communications Protocol Client Extensions

In addition to the supported protocols shown above, Universal Messaging clients
implemented with APIs that support Native Communication Protocols have a number
of extensions available to them:

nhpsc

This mode of hps extracts any configured proxy from within the JVM seings
and issues a PROXY CONNECT command via said proxy to establish a connection
with the required Universal Messaging realm. The established connection then
becomes an SSL encrypted socket connection mode and no longer uses hp/
hps connections for each server request. If the proxy uses authentication then
authentication parameters are also extracted from the JVM seings.

nhpm and nhpsm

Up to and including Universal Messaging 6.x, nhpm and nhpsm were multiplexed
versions of the standard hp and hps protocols. The key difference is that any
sessions established using a multiplexed RNAME only ever establish one connection
to the Universal Messaging realm server. This is very useful for circumventing
browser connection limits while supporting multiple sessions.

Note: Please note that since Universal Messaging 7, nhpm and nhpsm protocols
are no longer used since multiplexed sessions are supported using any
protocol.

Universal Messaging Shared Memory (SHM)
Shared Memory (SHM) is our lowest latency communications driver, designed for inter-
process communication (IPC). SHM can be used for client and inter-realm (cluster and
join) communication. It is operating system independent as it does not depend on any
OS specific libraries, making it simple to set up and use.

As the name suggests, shared memory allocates blocks of memory that other processes
can access - allowing the same physical computer to make connections without network

M
Even Header
Architecture

Universal Messaging Concepts Version 9.6 22

overhead. This has many advantages, one of which is that when the realm and the
data source (publisher) are located on the same physical computer, there is no network
latency added between them. This results in less latency for delivery to clients.

Advantages

Lowest latency

No network stack involved

Efficient use of resources with no network IO required

Disadvantages

Same physical machine only

Only currently supported by certain JVMs such as Oracle JDK1.6.0_32, JDK 7 and
Azul Zing

M
Odd Header

Management

Universal Messaging Concepts Version 9.6 23

2 Management

■ Universal Messaging Concepts - Administration and Management .. 24

■ Universal Messaging Concepts - JMX Administration and Management 25

M
Even Header
Management

Universal Messaging Concepts Version 9.6 24

Universal Messaging Concepts - Administration and
Management
In addition to its communications APIs and features Universal Messaging provides
a sophisticated collection of management tools and APIs. These tools and APIs are
designed exclusively for:

"Collection of Statistical Data from Universal Messaging" on page 24

"Monitoring of Events" on page 24

"Creation of Universal Messaging Resources, ACLs and Clusters" on page 24

"Management of Configuration Parameters" on page 25

"Seamless Integration with Third Party Enterprise Systems Management Tools" on
page 25

Universal Messaging's management client, the Enterprise Manager is wrien using the
same management APIs thus demonstrating the powerful features of these features.

Statistical Data

Through the use of the Universal Messaging management API clients can access a very
detailed range of performance related data. Performance metrics can be gathered at
many levels ranging from the realm throughput statistics to individual client connection
round trip latency details. An example can be found in the realm log and audit listener.

Management Event Monitoring

Most client and server induced actions in Universal Messaging result in a management
event being created. Asynchronous listeners can be created using the management API
that enables management clients to capture these events. As an example consider a
client connection to a Universal Messaging realm server. This creates a client connection
event. A management client at this point might dynamically create channel resources for
said client and programmatically set ACLs. An example can be found in the connection
watch sample.

Resource Creation

"Resources" on page 12 can all be created programmatically using the Universal
Messaging Administration API. Coupled with statistical data and event monitoring
resources can be created on the fly to support users in specific operational
configurations. For example, create channel x when user x logs in OR change channel
ACL when realm throughput exceeds a specific value. An ACL creation example can be
found in the add queue acl sample.

M
Odd Header

Management

Universal Messaging Concepts Version 9.6 25

Configuration Management

Every Universal Messaging Server has a number of configurable parameters. In addition
specific interfaces supporting specific protocols and plugins can be added to Universal
Messaging realms. Universal Messaging's configuration management feature allow
clients to snapshot configurations and generate configuration XML files. New realms can
be very quickly configured with the XML files enabling the very fast bootstrapping of
new environments. The Enterprise Manager documentation has an XML sample.

3rd Party Integration

While Universal Messaging's Administration API can be using directly to integrate with
3rd party products Universal Messaging servers also support "JMX" on page 25 and
(security permiing) can be queried by any JMX management tool.

Universal Messaging Concepts - JMX Administration and
Management
In addition to Universal Messaging's Administration API, a series of JMX beans enable
monitoring and management via any JMX container. The following image illustrates a
JConsole view running on Mac OSX:

In order to connect to Universal Messaging over the network using JConsole or another
tool that supports JMX, the following JVM System properties need to be added to the
nserver.lax file:

-Dcom.sun.management.jmxremote

M
Even Header
Management

Universal Messaging Concepts Version 9.6 26

-Dcom.sun.management.jmxremote.port=9999

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

If you wish to enable authentication or SSL, please contact consult the JMX
documentation or contact our support team

Universal Messaging offers the following JMX beans:

" Universal Messaging Realm Status JMX bean" on page 26

" Universal Messaging Realm Cluster JMX bean" on page 26

" Universal Messaging Realm Configuration JMX bean" on page 27

" Universal Messaging Realm Interfaces JMX bean" on page 28

" Universal Messaging Channel JMX bean" on page 28

" Universal Messaging Queue JMX bean" on page 29

Universal Messaging Realm Status JMX bean

The Universal Messaging Realm Status JMX bean enables access to data
visible in the Enterprise Manager Realm Status view. The following image
illustrates how the JMX bean looks when accessed via JConsole on Mac OSX:

Universal Messaging Realm Cluster JMX bean

The Universal Messaging Realm Cluster JMX bean enables access to data
visible in the Enterprise Manager Cluster Status view. The following image

M
Odd Header

Management

Universal Messaging Concepts Version 9.6 27

illustrates how the JMX bean looks when accessed via JConsole on Mac OSX:

Universal Messaging Realm Configuration JMX bean

The Universal Messaging Realm Configuration JMX bean enables access to data
visible in the Enterprise Manager Realm Configuration view. The following image
illustrates how the JMX bean looks when accessed via JConsole on Mac OSX:

M
Even Header
Management

Universal Messaging Concepts Version 9.6 28

Universal Messaging Realm Interfaces JMX bean

The Universal Messaging Realm Interfaces JMX bean enables access to data
visible in the Enterprise Manager Realm Interfaces view. The following image
illustrates how the JMX bean looks when accessed via JConsole on Mac OSX:

Universal Messaging Channel JMX bean

The Universal Messaging Channel JMX bean enables access to data visible
in the Enterprise Manager Channel Statu view. The following image

M
Odd Header

Management

Universal Messaging Concepts Version 9.6 29

illustrates how the JMX bean looks when accessed via JConsole on Mac OSX:

Universal Messaging Queue JMX bean

The Universal Messaging Queue JMX bean enables access to data visible
in the Enterprise Manager Queue Status view. The following image
illustrates how the JMX bean looks when accessed via JConsole on Mac OSX:

M
Even Header

Universal Messaging Concepts Version 9.6 30

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 31

3 Performance, Scalability and Resilience

■ Universal Messaging Concepts - Performance, Scalabilty and Resilience 32

■ Clustering ... 33

■ Clustered Server Concepts .. 38

■ Universal Messaging Clustering : Setting Up a HA Failover Cluster ... 53

■ Universal Messaging Multicast: An Overview .. 55

■ Universal Messaging Shared Memory (SHM) ... 57

■ Scalability ... 57

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 32

Universal Messaging Concepts - Performance, Scalabilty and
Resilience
Performance, Scalability and Resilience are design themes that are followed in all areas
of Universal Messaging's design and architecture. Specific implementation features have
been introduced into server and client components to ensure that these themes remain
constantly adhered to.

Performance

Universal Messaging is capable of meeting the toughest of Low Latency and
High Throughput demands. Universal Messaging's server design, sophisticated
threading models and heavily optimized IO subsystem ensures peak performance.
Multicast and shared memory communication modes allow Universal Messaging to
consistently achieve low microsecond latencies. Universal Messaging is constantly being
benchmarked by clients and other 3rd parties and continues to come out on top.

The benchmarking section provides detailed information on performance in a variety of
scenarios. Information on performance tuning is also available on the website, helping
clients achieve optimal performance in their deployments.

Scalability

Scalability in terms of messaging Middleware typically means supporting large
numbers of concurrent connections, something Universal Messaging does out of the box.
However in defining truly global enterprise applications a single system often needs to
scale across more than one processing core, often in more than one geographic location.

Universal Messaging servers can be configured in a variety of ways to suit scalability
(and resilience) requirements. Multiple Universal Messaging servers can exist in a single
federated name space. This means that although specific resources can be put onto
specific Universal Messaging realm servers any number of resources can be managed
and access centrally from a single entry point into Universal Messaging's federated
namespace. In addition to high availability and resilience features Universal Messaging
Clusters also offer a convenient way to replicate data and resources among a number of
realm servers thus supporting higher rates of concurrent connections.

Resilience

Business contingency and disaster recovery planning demand maximum availability
from messaging Middleware systems. Universal Messaging provides a number of server
and client features to ensure data always remains readily accessible and that outages are
transparent to clients.

Universal Messaging Clusters replicate all resources between realms. Channels, Topics,
Queues and the data held within each one is always accessible from any realm server in
the cluster.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 33

Universal Messaging clients are given a list of Universal Messaging realms in the cluster
and automatically move from one to another if a problem or outage occurs.

Clustering

Universal Messaging Clusters: An Overview
Universal Messaging provides built-in support for clustering in the form of "Universal
Messaging Clusters" on page 38 and "Universal Messaging Clusters with Sites" on
page 48.

Universal Messaging clusters provide support for business contingency and disaster
recovery natively or in conjunction with existing BCP enterprise solutions.

From a client perspective a cluster offers resilience and high availability. Universal
Messaging clients automatically move from realm to realm in a cluster as required or
when specific realms within the cluster become unavailable to the client for any reason.
The state of all client operations is maintained so a client moving will resume whatever
operation they were previously carrying out.

Three Approaches to Clustering

As mentioned above, Universal Messaging provides built-in support for clustering
in the form of Universal Messaging Clusters and Universal Messaging Clusters with
Sites. Universal Messaging clients can also use the same clustering functionality to
communicate with individual, non-clustered Universal Messaging Realms in "Shared
Storage" on page 53 server configurations:

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 34

Universal Messaging Clusters

• Acve/Acve

• Transparent Client Failover

• Transparent Realm Failover

• Provides Load Balancing and Scalability

Universal Messaging Clusters are our recommended solution for high availability and
redundancy. State is replicated across all active realms.

With 51% of realms required to form a functioning cluster, this is an ideal configuration
for fully automatic failover across a minimum of three realms.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 35

Universal Messaging Clusters with Sites

• Acve/Acve

• Transparent Client Failover

• Semi-Transparent Realm Failover

• Provides Load Balancing and Scalability

Universal Messaging Clusters with Sites provide most of the benefits of Universal
Messaging Clusters but with less hardware and occasional manual intervention.

This configuration is designed for an even number of realms across two Sites (such as
Production and DR). Failover is automatic should the "Non-Prime" Site fail, and requires
manual intervention only if the Prime Site fails.

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 36

Shared Storage Configurations

• Acve/Passive

• Transparent Client Failover

• Manual Realm Failover

• No Load Balancing Features

As an alternative to native Universal Messaging Clusters, "Shared Storage" on page
53 configurations can be deployed to provide disaster recovery options.

This approach does not make use of Universal Messaging's built-in Cluster features, but
instead allows storage to be shared between multiple realms - of which only one is active
at any one time.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 37

In general, we recommend the use of Universal Messaging Clusters or Universal
Messaging Clusters with Sites.

Universal Messaging Clusters: Client Concepts
A Universal Messaging client, whether using the Universal Messaging API or JMS,
accesses Universal Messaging realms and their resources through a custom URL called
an RNAME. When accessing resources in a cluster, clients use a comma separated
array of RNAMES. This comma separated array can be given to the client dynamically
when the client connects to any member of a cluster. If a connection is terminated
unexpectedly the Universal Messaging client automatically uses the next RNAME in its
array to carry on.

For example, if we have a cluster consisting of 3 realms, your nirvana nSession can be
constructed using the 3 RNAME URLs associated with each of the realms in the cluster.

Once connected to a realm in a cluster, you can then obtain references to nChannel and
nQueue objects (or in JMS, create a Session followed by a topic or queue).

Each event/message within Universal Messaging is uniquely identified by an event id
regardless of whether it is stored on a channel, topic or queue. A clustered channel, topic
or queue guarantees that every event published to it via any realm within the cluster
will be propagated to every other realm in the cluster and will be identified with the
same unique event id. This enables clients to seamlessly move from realm to realm after
disconnection and ensure that they begin from the last event consumed based on this
unique event id.

For scenarios where failover is handled at the network level, Universal Messaging
sessions can be moved to alternate servers transparently without the use of multiple
RNAMES.

Client Failover Using Multiple RNAMES

Using an array of RNAME URLs allows client applications to seamlessly failover to
different cluster nodes without the use of any third party failover software.

For example, in a three realm clustered scenario, a client's RNAME string may contain
the following RNAME URLs.:
nsp://host1:9000,nsp://host2:9000,nsp://host3:9000

When we first connect, the rnames[0] will be used by the session, and the client
application will connect to this realm. However, should we disconnect from this realm,
for example if host1 crashes, the client API will automatically reconnect the client
application to the cluster member found at rnames[1].

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 38

Clustered Server Concepts

Universal Messaging Clusters: Server Concepts
A Universal Messaging Cluster is a collection of Universal Messaging Realms (servers)
that contain common messaging resources such as channels/topics or queues. Each
clustered resource exists in every Realm within the cluster. Whenever the state of a
clustered resource changes, the state change is updated on all realms in the cluster.

Clustering also offers a convenient way to replicate content between servers and
ultimately offers a way to split large numbers of clients over different servers in different
physical locations.

The following diagram represents a typical three-realm cluster distributed across three
physical locations:

Three-realm cluster over three locations.

Clustered Resources

A Universal Messaging Realm server is a container for a number of messaging resources
that can be clustered:

Universal Messaging Channels

JMS Topics

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 39

Universal Messaging Queues

JMS Queues

DataGroups

Access Control Lists

Resource Atrributes including Type, Capacity, TTL

Client Transactions on Universal Messaging Resources

Within the context of a cluster a single instance of a channel, topic or queue can exist
on every node within the cluster. When this is the case all aributes associated with the
resource are also propagated amongst every realm within the cluster. The resource in
question can be wrien to or read from any realm within the cluster.

The basic premise for a Universal Messaging Cluster is that it provides a transparent
entry point to a collection of realms that share the same resources and are, in effect, a
mirror image of each other.

A Universal Messaging cluster achieves this by the implementation of some basic
concepts described below:

" Masters & Slaves" on page 39

"Quorum" on page 41

"Master Election" on page 42

"Message Passing" on page 46

" Outages & Recovery" on page 47

" Clustered Resources" on page 47

Universal Messaging Clusters: Masters and Slaves
As explained in the "Clustering Overview" on page 33, a cluster is a collection of
Universal Messaging Realm Servers (realms).

Each cluster has one realm which is elected as master, and all other realms are deemed slaves. The
master is the authoritative source of state for all resources within the cluster.

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 40

Three-realm cluster over three locations: one master and two slaves.

Should a realm or location become unavailable for any reason, the cluster's remaining
realms should be able to carry on servicing clients:

Three-realm cluster over three locations: cluster continuation with one missing slave.

Note: Doed lines represent interrupted communication owing to server or network
outages.

For publish/subscribe "resources" on page 12, each published event will be allocated a
unique event id by the master, which is then propagated to each slave.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 41

Universal Messaging Clusters: Quorum
Quorum is the term used to describe the state of a fully formed cluster with an
elected master. In order to achieve quorum, certain conditions need to be met. Most
importantly, 51% or more of the cluster nodes must be online and intercommunicating in
order for quorum to be achieved.

Example: Quorum in a Three-Realm Cluster

In this example, we examine a three-realm cluster, distributed across three physical
locations (such as a primary location and two disaster recovery locations). The 51%
quorum requirement means there must always be a minimum of two realms active for
the cluster to be online and operational:

Three-realm cluster over three locations: a 67% quorum is maintained if one location/realm fails.

Note: Doed lines represent interrupted communication owing to server or network
outages.

Split-Brain Prevention

Quorum, in conjunction with our deployment guidelines, prevents split brain (the
existence of multiple masters) scenarios from occurring. By requiring at least 51% of
realms to be online and intercommunicating before an election of a new master realm

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 42

can take place, it is impossible for two sets of online but not intercommunicating realms
to both elect a new master.

To simplify the reliable achievement of quorum, we always recommend a cluster
be created with an odd number of member realms, preferably in at least three separate
locations. In the above three-realm/three-location example, should any one location
become unavailable, sufficient realms remain available to achieve quorum and, if
necessary, "elect a new master" on page 42.

Universal Messaging Clusters: Election of a new Master
A master realm may unexpectedly exit or go offline owing to power or network failure.
In this event, if the remaining cluster nodes "achieve 51% or greater quorum" on page
41, they will elect a new master realm between them and continue to function as a
cluster.

The process of the master election involves all remaining realms in the cluster. Each
remaining realm submits a vote across the cluster that results in the new master once all
votes are received and the number of votes is greater than or equal to 51% of the total
cluster members.

Example: Master Election in a Three-Realm Cluster

In this example, we examine a three-realm cluster, distributed across three physical
locations (such as a primary location and two disaster recovery locations). The Master
Realm has failed, but the reaming two realms achieve a quorum of 67% (which satisfies
the 51% quorum minimum requirement), so will elect a new Master and continue
operating as a cluster:

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 43

Three-realm cluster over three locations: quorum permits election of a new Master and cluster
continuation.

Note: Doed lines represent interrupted communication owing to server or network
outages.

Examples: Insufficient Quorum for Master Election

In this example, we again examine a three-realm cluster, distributed across three
physical locations. In this case, both the Master realm and one slave realm has failed, so
the reaming realm represents only 33% of the cluster members (which does not satisfy
the 51% quorum minimum requirement). As a result, it cannot elect a new Master, but

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 44

will instead disconnect its clients and aempt to re-establish communications with the
other realms with the aim of reforming the cluster:

Three-realm cluster over three locations: insufficient quorum prevents election of a new Master or
cluster continuation.

Note: Doed lines represent interrupted communication owing to server or network
outages.

A second example highlights both a realm's perspective of quorum, and prevention
of split-brain (multiple masters) configurations. In this example, one realm server has
failed, while two realms are still active. Also, in this particular example, we assume
network connectivity between all realms has failed. As far as each active realm is
concerned, therefore, it is the only functioning realm, representing only 33% of the

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 45

cluster members. As you might expect, this is insufficient for the 51% required quorum,
and is thus also insufficient for the continued operation of the cluster. Both "active"
realms will disconnect their clients and aempt to re-establish communications with the
other realms, with the aim of achieving quorum and reforming the cluster:

Three-realm cluster over three locations: lack of network interconnectivity prevents cluster
continuation.

Note: Doed lines represent interrupted communication owing to server or network
outages.

Note that in the above example, although the two active realms were unable to
communicate with each other, it is possible that they were able to communicate with
clients. Here, the importance of the 51% quorum rule can be clearly seen: without it,

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 46

both realms would have elected themselves master, which could have led to logically
unresolvable conflicts once the cluster was reformed. It is therefore essential that the
cluster was disabled until such time as a 51% quorum could be achieved.

Clearly, for the situation where we have a total cluster failure, i.e. all realms or locations
are offline, the cluster is also deemed inaccessible.

Universal Messaging Clusters: Message Passing
Message passing between cluster realms enables state to be maintained across the
member realms. The complexity of the message passing differs somewhat depending on
the scenario.

Message Passing in Topics

It is possible to publish to topics on either master or slave realm nodes.

When we publish to the master and subscribe from both master and slave nodes, the
master will simply pass the event onto each slave for delivery with the correct event id,
and each slave will maintain the same event id as set by the master.

When publishing to a topic on a slave node, the slave has to contact the master for the
correct event id assignment before the event is then propagated to each slave.

Message Passing in Queues

When using queues, the message passing is much more complex, since each read
is destructive (i.e. it is immediately removed from the queue after it is delivered
successfully).

Consider a situation where we have a cluster of 5 realms, and each realm has a consumer
connected to a queue, somequeue . Assume we publish 2 events directly to the master
realm's somequeue object.

If the first event happens to be consumed by a consumer on the master realm, each slave
realm will be notified of the consumption of the event from somequeue and thus remove
the event from its own local copy of somequeue .

If the next event is consumed by a consumer on some slave realm, then the slave realm
will notify the master of the event being consumed. The master will update its local
somequeue , and then propagate this change to all other slave realms (to update their own
local copies of somequeue).

Both the Universal Messaging API and the JMS standard define transactional semantics
for queue consumers which add to the complexity of the message passing. For example,
a consumer may effectively roll back any number of events it has consumed but not
acknowledged. When an event is rolled back, it must then be re-added to the queue
for re-delivery to the next available queue consumer (which may exist on any of the
slave realms). Each event that is rolled back requires each slave realm to maintain a
cache of the events delivered to transactional consumers in order for the event to be
effectively restored should it be required. The state of this cache must also be maintained
identically by all cluster members. Once an event is acknowledged by the consumer (or

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 47

the session is commied), these events are no longer available to any consumer, and no
longer exist in any of the cluster member's queues.

By now it should be clear that certain scenarios will require more message passing
between cluster members than others. Nevertheless, there are a huge number of benefits
associated with using clusters in terms of scalability.

Universal Messaging Clusters: Outages and Recovery
Should any cluster member realm exit unexpectedly or become disconnected from the
remaining cluster realms, it needs to fully recover the current cluster state as soon as it
restarts or aempts to rejoin the cluster.

When a cluster member rejoins the cluster, they automatically move into the recovery
state until all local stores are recovered and its state is fully validated against the current
master realm.

In order to achieve this, each clustered resource must recover the state from the master.
This involves a complex evaluation of its own local stores against the master realm's
stores to ensure that they contain the correct events, and that any events that no longer
exist in any queues or topics are removed from its local stores. With queues for example,
events are physically stored in sequence, but may be consumed non-sequentially (for
example using message selectors that would consume and remove, say, every fifth
event). Such an example would result in a fairly sparse and fragmented store, and adds
to the complexity of recovering the correct state. Universal Messaging clusters will,
however, automatically perform this state recovery upon restart of any cluster member.

Universal Messaging Clusters: Creating Clustered Resources
Channels, topics and queues can be created cluster wide , which ensures state is
maintained across the cluster as described in the "Clustering Overview" on page 33.
Once a channel, topic or queue is created as cluster wide, any operations upon that
resource are also propagated to all cluster members.

There are a number of ways to create cluster resources once you have created your
cluster. The Enterprise Manager application is a tool that provides access to all resources
on any realm within a cluster or on stand alone realms. This graphical tool is wrien
using the Universal Messaging Client and nAdmin APIs and allows resources to be
created, managed and monitored from one central point.

Because the Enterprise Manager tool is wrien using our own APIs, all operations you
can perform using the tool are also available programmatically using the Universal
Messaging APIs, allowing you to write customized applications for specific areas of
interest within a realm or a cluster.

Once a realm is part of a cluster, you can centrally manage its resources and
configuration. For example, realm access control lists (ACLs) can be updated on any
member realm and the change will be propagated to all other member realms. Clustered
channels and queue ACLs can also be changed on any cluster member and the change is
then propagated to the other cluster members. Configuration changes, (in the Enterprise

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 48

Manager tool) can also be made on one realm and propagated to all other realms in the
cluster.

This provides a powerful way of administering your entire Universal Messaging
environment and its resources.

Universal Messaging Clusters: Inter-Cluster Connections
Inter-cluster connections can be formed between clusters in order to allow joins to
be created between stores on these separate clusters. Inter-cluster connections are bi-
directional, allowing joins to be formed between clusters in either direction once the
inter-cluster connection has been set up.

In this way, these connections can facilitate inter-cluster routing of messages. Inter-
cluster connections do not, however, provide full namespace federation across remote
clusters. They are designed to support inter-cluster message propagation on explicitly
joined stores, rather than mounting clusters in the namespace of remote clusters, as in
realm federation.

It is important to note that the use of inter-cluster connections is exclusive of the use of
realm federation, and they cannot be used together in any combination.

Inter-Cluster connections can be added either using the Enterprise Manager or
programmatically.

Universal Messaging Clusters with Sites
Sites - an exception to the Universal Messaging Cluster "Quorum Rule" on page 41.

Although our recommended approach to deploying a cluster is a minimum of three
locations and an odd number of nodes across the cluster, not all organizations have three
physical locations with the required hardware. In terms of BCP (Business Continuity
Planning), or DR (Disaster Recovery), organizations may follow a standard approach
with just two locations: a primary and backup:

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 49

Two-realm cluster over two sites, using Universal Messaging Clusters with Sites.

With only two physical sites available, the Quorum rule of 51% or more of cluster nodes
being available is not reliably achievable, either with an odd or even number of realms
split across these sites. For example, if you deploy a two-realm cluster, and locate one
realm in each available location, then as soon as either location is lost, the entire cluster
cannot function because of the 51% quorum rule:

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 50

Two-realm cluster over two locations: a 51% quorum is unachievable if one location/realm fails.

Note: Doed lines represent interrupted communication owing to server or network
outages.

Similarly, if you deployed a three-node cluster with one realm in Location 1 and two
in Location 2, and then lost access to Location 1, the cluster would still be available; if,
however, you lost Location 2, the cluster would not be available since only 33% of the
cluster's realms would be available.

This problem has been addressed through the introduction of Universal Messaging
Clusters with Sites. The basic concept of Sites is that if only two physical locations are
available, and Universal Messaging Clustering is used to provide High Availability
and DR, it should be possible for one of those sites to function with less than 51% of the

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 51

cluster available. This is achieved by allowing an additional vote to be allocated to either
of the physical locations in order to achieve cluster quorum.

Example: Achieving Quorum using Universal Messaging Clusters with Sites

Consider an example scenario where there are two physical locations: the default
production site, and a disaster recovery site.

We can deploy a cluster of two realms: one in the production site and one in the DR site.
Normally this configuration wouldn't be able to satisfy the 51% quorum rule in the event
of the loss of one location/realm.. However, within the Universal Messaging Admin API,
and specifically within a cluster node, it is now possible to define individual Site objects
and allocate each realm within the cluster to one of these physical sites. Each defined site
contains a list of its members, and a flag to indicate whether the site as a whole can cast
an additional vote. This flag is known as the isPrime flag.

We can thus define two sites in our cluster:

production site

disaster recovery site with isPrime flag set

In a disaster recovery situation, where the production site is lost, the DR site will achieve
quorum with only one of the two nodes available because the isPrime flag provides an
additional vote for the DR site:

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 52

Two-realm cluster over two sites: Sites make a 51% quorum achievable if one location/realm fails.

Note: Doed lines represent interrupted communication owing to server or network
outages.

If, on the other hand, the disaster recovery site (which has the isPrime flag set) is lost,
then manual intervention would be required to set the isPrime flag on the production
site instead, so that the production site alone can achieve quorum and the cluster can
still operate.

Note that this example uses only one realm per site for simplicity. The same technique
can be used for sites with as many realms as required.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 53

Seing the isPrime flag can be achieved programmatically using the Universal
Messaging Admin API or using the Enterprise Manager tool. In these situations it is
always advisable to discover the cause of the outage so any changes to configuration are
made with the relevant facts at hand.

Universal Messaging Clusters: Shared Storage Configurations
Universal Messaging Realms may be set up to share a single virtual or physical disk, in
Shared Storage configurations. While not technically a "Cluster" on page 38, Shared
Storage configurations do provide a basic mechanism for rapid failover between Realms:

Single active realm with two inactive backup realms in a Shared Storage configuration.

Note that simple Shared Storage configurations do not provide any form of load
balancing or scalability, and rely on administrators to perform manual or scripted
failover processes. We therefore strongly recommend the use of native "Universal
Messaging Clusters" on page 38 over Shared Storage configurations.

Universal Messaging Clustering : Setting Up a HA Failover
Cluster
Universal Messaging servers can be clustered together to form part of a single logical
High Availability (HA) server.

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 54

Server Configuration

As an example, let us look at the steps involved in creating a simple 2-node cluster:

Realm1 running on host1.mycompany.com

Realm2 running on host2.mycompany.com

Firstly, use the Enterprise Manager tool to "create a cluster" on page 33 with Realm1
and Realm2.

Next, create cluster channels and cluster queues, which ensures these objects exist in
both realm servers.

Client Configuration

The next step is to setup your clients so that they are configured to swap between
Realm1 and Realm2 in case of failures.

When you initialise a client session with a Universal Messaging server, you provide an
array of " RNAME URLs" on page 19 as the argument to the nSessionAributes object.
This ensures that if you lose the connection to a particular Universal Messaging Realm,
the session will be automatically reconnected to the next realm in the RNAME array.

Using the configuration above where cluster channels exists on each Realm,
disconnected clients will automatically continue publishing/subscribing to the channel
or queue on the newly connected realm.

For example, to use the two Realms described above for failover you could use the
following as your RNAME value using a comma separated list of individual RNAMEs:
RNAME=nhp://host1.mycompany.com:80,nsp://host2.mycompany.com:9000

In this example, note the optional use of different protocols and ports in the specified
RNAMEs.

Failover/HA Scenarios

If all subscribers and publishers are configured in this way, then failover is provided in
each of the following scenarios:

Scenario I: Subscriber loses connection to a Realm

if a subscriber is consuming data from the sales channel on Realm1 and loses its
connection it will automatically aempt to connect to its additional RNAMES (in this
case nsp://host2.mycompany:9000) and resume consuming from where it left off.

Scenario II: Publisher loses connection to a Realm

If a publisher loses a connection to its Realm, it will automatically reconnect to the
alternative realm and continue publishing there.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 55

Scenario III: Publisher and Subscriber are connected to different Realms

As the above channels on Realm1 and Realm2 are cluster channels, events published to
a channels named, say, /sales on either Realm will be passed to the /sales channel on the
other realm. As long as subscribers are consuming from the /sales channel on one of the
realms they will receive all events. Thus full guaranteed delivery is provided even if the
publisher is publishing to Realm1 and subscribers are consuming from Realm2.

For more information on HA configuration options please contact the support team who will be
happy to outline the pros and cons of the various HA configurations available.

Universal Messaging Multicast: An Overview
Universal Messaging's ability to provide 'ultra-low latency' messaging has been further
developed with the introduction of multicast options in addition to unicast to distribute
messages to client applications.

With unicast, the server must physically write the message once for each destination
client:

Figure 1: Universal Messaging in Unicast Mode

With multicast, a message is wrien to the network once where it is then routed to all
connections in that multicast group:

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 56

Figure 2: Universal Messaging in Multicast Mode

Multicast has clear performance improvements in terms of scalability. Where the
performance of unicast gradually degrades as the number of destinations increases,
multicast performance does not as the server still only has to write a message once per
destination.

Universal Messaging supports multicast for cluster communication and can be enabled
on individual DataGroups. Universal Messaging will then transparently operate in a
multicast delivery mode for clients on networks capable of supporting the multicast
protocol else continue to use unicast.

When you create a DataGroup you can pass a flag to enable multicast delivery. The
Universal Messaging realm will automatically begin delivering events published to that
group via multicast. When a client DataStream is added to a multicast enabled Data
Group, it will transparently receive the information it needs to begin consuming via
multicast. Multicast delivery may not be possible for all clients so initially the client will
be sent events via both unicast and multicast. The user will only be delivered the data
once however.

The Universal Messaging server will quickly detect whether or not the multicast packets
are reaching the client as it does or does not receive acknowledgements. If the client
does not support multicast, the server will simply continue to send events to that client
via unicast. If the multicast packets do reach the client then after a period of time when
both unicast and multicast are in sync, the Universal Messaging Server will stop sending
unicast events to that DataStream.

Multicast addresses packets using the User Datagram Protocol (UDP) as opposed to
TCP which is used in unicast. UDP is a connectionless protocol and does therefore
not guarantee delivery or packet ordering in way that TCP does. However Universal
Messaging still provides these guarantees by implementing the required checks at
the application layer. These checks happen completely transparently to the user and
any packet retransmissions can be monitored using the nAdminAPI or the Enterprise
Manager.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 57

Universal Messaging Shared Memory (SHM)
Shared Memory (SHM) is our lowest latency communications driver, designed for inter-
process communication (IPC). SHM can be used for client and inter-realm (cluster and
join) communication. It is operating system independent as it does not depend on any
OS specific libraries, making it simple to setup and use.

As the name suggests, shared memory allocates blocks of memory that other processes
can access - allowing the same physical computer to make connections without network
overhead. This has many advantages, one of which is that when the realm and the
data source (publisher) are located on the same physical computer, there is no network
latency added between them. This results in less latency for delivery to clients.

Advantages

Lowest latency

No network stack involved

Efficient use of resources with no Network IO required

Disadvantages

Same physical machine only

Only currently supported by certain JVMs such as Oracle JDK1.6.0_32, JDK 7 and
Azul Zing

Scalability

Universal Messaging Concepts - Performance, Scalability and
Resilience
Performance, Scalability and Resilience are design themes that are followed in all areas
of Universal Messaging's design and architecture. Specific implementation features have
been introduced into server and client components to ensure that these themes remain
constantly adhered to.

Performance

Universal Messaging is capable of meeting the toughest of Low Latency and
High Throughput demands. Universal Messaging's server design, sophisticated
threading models and heavily optimized IO subsystem ensures peak performance.
Multicast and shared memory communication modes allow Universal Messaging to
consistently achieve low microsecond latencies. Universal Messaging is constantly being
benchmarked by clients and other 3rd parties and continues to come out on top.

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 58

The benchmarking section provides detailed information on performance in a variety of
scenarios. Information on performance tuning is also available on the website, helping
clients achieve optimal performance in their deployments.

Scalability

Scalability in terms of messaging Middleware typically means supporting large
numbers of concurrent connections, something Universal Messaging does out of the box.
However in defining truly global enterprise applications a single system often needs to
scale across more than one processing core, often in more than one geographic location.

Universal Messaging servers can be configured in a variety of ways to suit scalability
(and resilience) requirements. Multiple Universal Messaging servers can exist in a single
federated name space. This means that although specific resources can be put onto
specific Universal Messaging realm servers any number of resources can be managed
and access centrally from a single entry point into Universal Messaging's federated
namespace. In addition to high availability and resilience features Universal Messaging
Clusters also offer a convenient way to replicate data and resources among a number of
realm servers thus supporting higher rates of concurrent connections.

Resilience

Business contingency and disaster recovery planning demand maximum availability
from messaging Middleware systems. Universal Messaging provides a number of server
and client features to ensure data always remains readily accessible and that outages are
transparent to clients.

Universal Messaging Clusters replicate all resources between realms. Channels, Topics,
Queues and the data held within each one is always accessible from any realm server in
the cluster.

Universal Messaging clients are given a list of Universal Messaging realms in the cluster
and automatically move from one to another if a problem or outage occurs.

Universal Messaging Realm Benchmarks
The benchmarks detailed in this section of the website are designed to give indications
of the performance levels achievable with Universal Messaging.

These benchmarks and their accompanying results are presented as a guide only. They
provide indications of the levels of performance for the given context in which they have
been run. Performance in contexts or environments different to one we present are likely
to give different results.

The performance of these benchmarks is limited primarily by the available network
infrastructure and machine which the Universal Messaging Realm Server resides on.
The results were produced by running the benchmark using commercially available
machines which may typically be used to host services in an enterprise environment.

If you would like access to the benchmarking tools to run these tests yourselves, please
email our support team.

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 59

Test Scenarios

Descriptions of several tests are detailed below, with each test running with a different
configuration to provide indications of performance in varying types of context. These
tests include:

Low Update Rates

Medium Update Rates

High Update Rates

High Update Rates with Multi-cast delivery

The low and medium rate tests are designed to model traffic which may be typical
of non-time critical applications which may instead focus the number of concurrent
connections a server can handle.

The high rate tests are designed to model latency critical applications which use small,
frequent messages. This kind of traffic is more typical of trading systems which some of
our customers deploy.

High Update Rate (Using Multi-Cast Delivery)

Multi-cast delivery is a new feature in Universal Messaging 7. This allows for ultra low
latency delivery of streaming data to clients. The characteristics of the test are the same
as the high update rate test, leveraging the benefits of multi-cast delivery to cope with
the most demanding performance requirements.

DataGroups 500

Clients 5,000

Increment Rate 100 every 60 seconds

Subscriptions per Client 50

Messages per second per Client 50

Peak Message Rate 250,000

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 60

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 61

High Update Rate

The high update rate test is designed to model applications which require low latency
delivery times for data which is streamed in small intervals to a small set of clients.
These characteristics are often found in trading systems.

DataGroups 500

Clients 5,000

Increment Rate 100 every 60 seconds

Subscriptions per Client 50

Messages per second per Client 50

Peak Message Rate 250,000

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 62

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 63

Medium Update Rate

The medium update rate test is designed to model applications which require low
latency delivery times to data which is streamed to clients at a moderate rate.

DataGroups 500

Clients 30,000

Increment Rate 100 every 60 seconds

Subscriptions per Client 10

Messages per second per Client 10

Peak Message Rate 300,000

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 64

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 65

Low Update Rate

The low update rate test is designed to model services which update infrequently with
the focus on scaling delivery to large numbers of clients in a reasonable time frame.

DataGroups 500

Clients 100,000

Increment Rate 1,000 every 60 seconds

Subscriptions per Client 1

Messages per second per Client 1

Peak Message Rate 100,000

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 66

M
Odd Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 67

JavaScript High Update Rate

The JavaScript High Update Rate test uses headless simulation clients which
communicate with the server using the WebSocket protocol. This provides an indication
of the ability of the Universal Messaging Realm Server to scale to serve large numbers of
web clients.

DataGroups 500

Clients 5,000

Increment Rate 100 every 60 seconds

Subscriptions per Client 50

Messages per second per Client 50

Peak Message Rate 250,000

Universal Messaging Concepts - Failover
Universal Messaging clients, whether server to client or server to server, automatically
handle disconnect and reconnection to any number of alternative Universal Messaging
Realm servers.

If a Universal Messaging server becomes unreachable the Universal Messaging session
will automatically try to connect to the next defined Universal Messaging server in
the list of RNAME values provided when the nSession object was created. Universal
Messaging clients can get this list of RNAMES from the server during the session
handshake or programmatically at any time. The ability to pass RNAME values from
server to client dynamically makes it very easy to manage client failover centrally.

Single Universal Messaging Realm

In a single server scenario upon receipt of an abnormal disconnection a Universal
Messaging client will automatically try to reconnect. The back-off period and interfaces
handling reconnection are all fully exposed in a public API. They can be used to trigger
off any number of specific events.

Multiple Universal Messaging Realms

In a multiple server scenario "Universal Messaging clustering" on page 33 allows for
multiple Realms to act as live replicas of each other. This has huge benefits both in terms
of load balancing and high availability.

Universal Messaging is also fully compatible with high availability and business
contingency products implemented within the underlying operating system. This
means that Universal Messaging is compatible with existing HA/BCP policies as well as
providing its own in built fail over functionality.

M
Even Header

Performance, Scalability and Resilience

Universal Messaging Concepts Version 9.6 68

Connections Scalability With Universal Messaging
Single server

A single Universal Messaging server has no hard limit set on the number of client
connections that can be made to the server. Universal Messaging servers are
implemented using Java's NIO (non-blocking IO) for all client communications
including SSL. This means that there are no additional threads created and dedicated to
each new client connection.

Multiple Servers

Universal Messaging messaging can be achieved across multiple server instances
either by the use of a "federated name space" on page 73 or by using a "Universal
Messaging Cluster" on page 33.

Universal Messaging servers are aware of each other within a name space. Universal
Messaging channels can appear in multiple places in a single name space allowing
Universal Messaging to be infinitely scalable. In addition, Universal Messaging's
licensing model places no constraints on the number of message servers run. Instead
it is based on the number of channels used, thus allowing your client numbers to scale
massively without additional cost.

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 69

4 Deployment

■ Universal Messaging Concepts - Deployment ... 70

■ Server ... 71

■ Client .. 90

■ Language Deployment Tips ... 95

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 70

Universal Messaging Concepts - Deployment
The structure and target audience for any Enterprise Application determines the
deployment topology for the underlying infrastructure that supports it. Universal
Messaging provides a wide degree of flexibility when faced with stringent deployment
requirements. Key features are discussed below

Persistence and Configuration

Universal Messaging uses its own persistent stores that remain relative to its installation
location on your file system. Multiple realms can be configured from a single
installation, each with their own configuration files and persistent stores for event
storage.

Configuration Snapshots

All aspects of a Universal Messaging realms configuration can be stored in an XML file.
Channels, ACL's, Interface configuration, Plugins etc. can all be included. New realms
can quickly be bootstrapped from existing configuration files making the deployment to
new environments quick and simple.

Interfaces

Universal Messaging Realms can support multiple communications interfaces, each
one defined by a protocol a port. Universal Messaging Realms can be configured to
bind to all network interfaces on a machine or specific ones depending on configuration
requirements. Specific SSL certificate chains can be bound to specific interfaces thus
insuring clients always authenticate and connect to specific interfaces

Web Deployment

As well as providing a wide range of client web technology support Universal
Messaging's realm server provides useful features to aid web deployment. In addition
to providing a messaging backbone for external clients Universal Messaging can also act
as a web server delivering static and server-generated content to clients. This resolves
security sandbox problems and port use.

Forward and reverse proxy server functionality is available for those that wish to host
web content on a different server but stream real time data from Universal Messaging.

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 71

Server

Performance and Tuning
This section will provide some initial information and guidance on how to get the
best out of Universal Messaging, as well as provide an explanation to understand the
significance of certain steps when tuning applications for low latency.

General Advice

Much of the information given in this section of the Website is related to tuning a
specific element of your system. In the list below are more general pieces of advice
which may help improve performance. Links to more in depth tuning articles can be
found further down the page.

Ensure you are running the latest Universal Messaging release. We strive to enhance
performance between releases, upgrading will ensure you are able to leverage the
newest improvements

Use the latest version of the Java Virtual Machine. JVM vendors often improve the
performance of the virtual machine, or its garbage collector between releases.

Collect monitoring information which will allow you to make informed decisions
based on the origin of performance bolenecks. Operating System provide statistics
on memory consumption, processor and network utilization. Java Virtual Machines
can output Garbage Collection statistics which can be a key part of diagnosing why
an application may not be performing.

Detailed Topics

The links below provide additional information on tuning important aspects of a
deployed application.

"Realm Configuration" on page 88

"JVM Tuning" on page 81

"OS Tuning" on page 87

"Network Tuning" on page 85

Validating Results

Much of the advice given here is based on our own observation by running our internal
benchmarking suite. Your environment and needs may differ from those we model, so
we would encourage that you validate any changes you make to your environment.

Many parameters, usually kernel parameters, are specific to an individual machine.
Furthermore, it can be dangerous to change them without proper knowledge. It is
encouraged to exercise caution when changing such seings.

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 72

Universal Messaging Deployment Guide - Server Failover / High
Availability
In order to provide your clients with a service that is highly available, clustering is
recommended. Clusters enable transparency across your clients. If one server becomes
unavailable, the client will automatically reconnect to another realm within the cluster.
All cluster objects within the realm are replicated among all cluster realms and their
state is maintained exactly the same across all realm members. Therefore whenever a
client disconnects from one realm and reconnects to another, they will resume from the
same position on the newly connected realm.

When a client provides a list of RNAMES as a comma separated list, if each entry in the
list corresponds to realm that is a member of the cluster, then the client will reconnect to
the next realm in the cluster list.

For more information on clustering, please see the clustering section in the
Administrators Guide.

Universal Messaging Data Routing
Joining a channel to another channel or queue allows you to set up content routing so
that events published to the source channel will be passed on to the destination channel/
queue automatically. Joins also support the use of filters, thus enabling dynamic content
routing.

Please note that while channels can be joined to both channels and queues, queues
cannot be used as the source of a join.

Channels can be joined using the Universal Messaging Enterprise Manager GUI or
programmatically.

When creating a join there is one compulsory option and two optional ones. The
compulsory option is the destination channel. The optional parameters are the
maximum join hops and a filter to be applied to the join.

Hop Count

Joins have an associated hop-count, which can optionally be defined when the join is
created. The hop count allows a limit to be put on the number of subsequent joins an
event can pass through if published over this join. If a hopcount is not defined for a join,
it will default to 10.

The hop count is the number of intermediate stores between the source channel and the
final destination. As an example, imagine we have 10 channels named "channel0" to
"channel9" and all these channels are joined sequentially. When we publish to channel 0,
if the join from channel0 to channel1 has a hopcount of 5 then the event will be found on
channel0 (the source channel), channels 1 to 5 (the intermediate channels) and channel6
(the endpoint).

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 73

Loop Detection

Joins allow the possibility of defining a loop of joined channels. To prevent channels
receiving multiple copies of the same event, Universal Messaging implements loop
detection on incoming events. To illustrate this, imagine a simple example with two
channels (channel0 and channel1) and we create a loop by joining channel0 to channel1
and channel1 to channel0. If we publish to channel0 the event will also be published to
channel1 over the join. But channel1 is joined to channel0 too, so now the event would
get published to channel0 again. Without Universal Messaging's loop detection, this
cycle would repeat until the maximum hopcount has been reached.

To prevent this, Universal Messaging detects when a message which has already been
published to a channel or queue and will not publish it a second time.

Multiple Path Delivery

Universal Messaging users can define multiple paths over different network protocols
between the same places in Universal Messaging. Universal Messaging guarantees that
the data always gets delivered once and once only.

Federation Of Universal Messaging Servers
Universal Messaging supports the concept of a federated namespace, where realm
servers may be located in different geographical locations but form part of the same
logical namespace. A Universal Messaging name space can contain one or more
Universal Messaging message servers, each one containing many topics, queues or Peer
2 Peer services.

Each Universal Messaging server is aware of others that have been added to the
namespace and each one can redirect clients automatically to the required resource
thus providing alternative routes when network outages occur. There is no single point
of entry to a federated Universal Messaging namespace and it can be traversed in any
direction from any point.

The entry into a Universal Messaging name space or server is via a custom URL called
an " RNAME" on page 19. The RNAME provides the protocol, host and port required
to access the Universal Messaging server. Universal Messaging clients can be passed
an array of RNAME's. Should a connection fail to one of the realms the Universal
Messaging client automatically moves onto the next.

The remote management of either clustered or federated realm servers is enabled via the
Universal Messaging administration tool or administration API. There is no limit placed
on the number of Universal Messaging Realms that can be managed from the Universal
Messaging Enterprise Manager or using the Universal Messaging Administration API.

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 74

Universal Messaging, Proxy servers and Firewalls
Universal Messaging transparently traverses modern proxy servers and firewall
technology. Universal Messaging's "HTTP and HTTPS" on page 90 drivers support
straight proxy servers as well as user authenticated proxy servers.

Universal Messaging self contained HTTP/HTTPS implementation ensures that if a
remote client can access your web site the same client can access a Universal Messaging
realm.

Universal Messaging Deployment Guide - Server Memory
Universal Messaging servers provide 3 different memory modes. Typically, the
Universal Messaging Realm server will be deployed using the large memory mode.
When deploying a Universal Messaging server, one of the considerations for memory
consumption concerns the volatility of your data, and specifically the types of channels
and queues you are using.

The channels that consume the most memory are those channels that keep the events in
memory and do not write events to persistent store. These channels are known as Simple
and Reliable.

If you have a simple channel with a TTL of say 1 day (86400000 milliseconds), and you
expect to publish a 1k event per second, this channel alone will consume approximately
86.4MB of memory. However if your data has a very short lifespan defined by seing a
low TTL, then the memory consumption would be much less than it would be with a 1
day TTL.

This kind of calculation will indicate to you how much maximum memory the Realm
Server JVM needs to be allocated to avoid running out of memory.

If you follow these simple guidelines, you should be able to estimate the memory
required for your channels.

Universal Messaging Server Parameters
Introduction

When a Universal Messaging Realm Server is started, there are a number of parameters
used in its initial startup sequence. These parameters are in the form of -D options that
form part of the nserver.lax command line.

The Universal Messaging client API also supports a variety of different parameters that
can be specified in the command line of any Universal Messaging Client application.

This section describes those -D parameters, what they are used for and their typical
values.

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 75

Name Required Default Description

javax.net.ssl.keyStore N Used to set the
default KeyStore
the server will use.
If not supplied
the client MUST
set one when
configuring an SSL
interface

javax.net.ssl.keyStorePasswordN Used to set the
default password
for the keystore. If
not supplied the
client must set one
when configuring
an SSL interface

javax.net.ssl.trustStoreN Used to set the
default trust store
the server will use.
If not supplied
the client MUST
set one when
configuring an SSL
interface

javax.net.ssl.trustStorePasswordN Used to set the
default Truststore
password the
server will use.
If not supplied
the client MUST
set one when
configuring an SSL
interface

LOGLEVEL N 4 Specifies the
current log level to
use

LOGFILE N System.out Used to specify a
log file to write the
log entries to

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 76

Name Required Default Description

LOGSIZE N 100000 Specified in bytes
before the log file is
rolled

MaxMemory N Uses -Ms value Used to specify the
maximum amount
of memory to use

SECURITYFILE N Used to specify the
Super Users for
this realm. Format
is user@host (one
per line). Note
that this is only a
bootstrap method
on startup of
a realm. If you
had previously
started the realm
before specifying
a SECURITYFILE,
you will need
to remove the
files realms.nst
and realms.nst
_old from the
RealmSpecific
directory, then
restart the
realm with the -
DSECURITYFILE
seing in the lax
file for the super
user entries in the
file to be added to
the realm ACL.

DATADIR Y What directory to
use to store files
within

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 77

Name Required Default Description

CKEYSTORE N Short hand for
javax.net.ssl.keyStore

CKEYSTOREPASSWDN Short hand for
javax.net.ssl.keyStorePassword

CAKEYSTORE N Short hand for
javax.net.ssl.trustStore

CAKEYSTOREPASSWDN Short hand for
javax.net.ssl.trustStorePassword

REALM Y Specifies the name
of the Realm Server

CHANNELUMASK N Specifies the
default channel
protection mask

ADAPTER N Specifies an
interface to use, eg
nsp://0.0.0.0:9000/

ADAPTER_x N Specifies an
interface to use, eg
nsp://0.0.0.0:9000/
where x = 0 -> 9

mode N If set to IPAQ
forces a small
memory mode for
the server

javax.net.ssl.debug N Useful to debug
SSL issues, see
www.javasoft.com
for more
information

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 78

Universal Messaging Deployment Guide - Server Security
Universal Messaging provides configurable security for authentication and entitlements.
When a user connects using SSL, the server must have an SSL enabled interface
configured. Once the interface is configured correctly, clients can connect to a realm
using an SSL encrypted session.

Before clients can use the realm correctly, the correct permissions must be granted to
each user within the ACLs for the realm, " resources" on page 12 and services. For more
information on this please see the security section.

Universal Messaging Concepts - Deployment
The structure and target audience for any Enterprise Application determines the
deployment topology for the underlying infrastructure that supports it. Universal
Messaging provides a wide degree of flexibility when faced with stringent deployment
requirements. Key features are discussed below

Persistence and Configuration

Universal Messaging uses its own persistent stores that remain relative to its installation
location on your file system. Multiple realms can be configured from a single
installation, each with their own configuration files and persistent stores for event
storage.

Configuration Snapshots

All aspects of a Universal Messaging realms configuration can be stored in an XML file.
Channels, ACL's, Interface configuration, Plugins etc. can all be included. New realms
can quickly be bootstrapped from existing configuration files making the deployment to
new environments quick and simple.

Interfaces

Universal Messaging Realms can support multiple communications interfaces, each
one defined by a protocol a port. Universal Messaging Realms can be configured to
bind to all network interfaces on a machine or specific ones depending on configuration
requirements. Specific SSL certificate chains can be bound to specific interfaces thus
insuring clients always authenticate and connect to specific interfaces

Web Deployment

As well as providing a wide range of client web technology support Universal
Messaging's realm server provides useful features to aid web deployment. In addition
to providing a messaging backbone for external clients Universal Messaging can also act
as a web server delivering static and server-generated content to clients. This resolves
security sandbox problems and port use.

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 79

Forward and reverse proxy server functionality is available for those that wish to host
web content on a different server but stream real time data from Universal Messaging.

Connecting to multiple realms using SSL
This Section describes how to connect to multiple Universal Messaging realms using
SSL when different certificate hierarchies are used on each respective realm. The
information below applies to any of the various " wire protocols" on page 19 that
Universal Messaging supports, such as SSL enabled sockets (nsps) and HTTPS (nhps).
Please note that the example programs contained in the Universal Messaging package
will all work with SSL enabled on the realm server.

The certificate requirements differ depending on whether the realms require client
certificate authentication or not. Let us assume that we want to connect to 2 realms over
nsps, realmA and realmB. RealmA has interface nsps0 which uses a certificate signed
by CA1, while RealmB has interface nsps0 which uses a certificate signed by CA2. . The
next few paragraphs describe what needs to be done for each possible configuration.

Common requirements

The Universal Messaging client API uses JSSE so only 1 keystore file/keystore password
and 1 truststore file/truststore password can be used. In order to achieve our goal then
we will have to create a combined keystore and / or a combined truststore depending on
our configuration.

Client certificate authentication NOT required

In the case where client certificate authentication is not required by both realms, your
application needs to use a combined truststore / truststore password only using the -
DCAKEYSTORE and -DCAKEYSTOREPASSWD parameters.

1. Both CA1 and CA2 are well known Root Certificate Authorities

All well known Root CAs are already included in the JRE cacerts file which can
be found in jre\lib\security\cacerts . Unless you have manually changed that
keystore's password the default password is changeit. You have to use these values
for your -DCAKEYSTORE and -DCAKEYSTOREPASSWD parameters.

2. CA1 is a well known Root Certificate Authority but CA2 is not (or vice versa)

Two choices are available for this configuration. Either you add CA2's certificate
to the JRE cacerts file or you create a combined keystore with CA2's certificate and
CA1's certificate.You have to use these values for your -DCAKEYSTORE and -
DCAKEYSTOREPASSWD parameters.

3. CA1 and CA2 are not well known Root Certificate Authorities

In this instance you have to create a combined truststore file that contains both the
CA1 and CA2 certificates. In order to do this export your CA certificates from their
current JKS store files then create a new JKS file and import them. You can do this
using the JDK keytool command line utility. Finally you have to use these values for
your -DCAKEYSTORE and -DCAKEYSTOREPASSWD parameters.

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 80

Client certificate authentication required

In the case where client certificate authentication is not required by both realms, your
application needs to use a combined keystore / keystore password and a combined
truststore / truststore password using the -DCKEYSTORE, -DCKEYSTOREPASSWD, -
DCAKEYSTORE and -DCAKEYSTOREPASSWD parameters respectively.

1. Both CA1 and CA2 are well known Root Certificate Authorities

With regards to the truststore, all well known Root CAs are already included in the
JRE cacerts file which can be found in jre\lib\security\cacerts . Unless you have
manually changed that keystore's password the default password is changeit. You
have to use these values for your -DCAKEYSTORE and -DCAKEYSTOREPASSWD
parameters.

With regards to the keystore, you need to create a combined keystore that contains
both client certificates and then point the -DCKEYSTORE parameter to its path as
well as set the -DCKEYSTOREPASSWD to the password of that combined keystore.
In order to create a combined keystore, export the certificates and private keys in
PKCS#12 format and then import them as trusted certificates in the same keystore
file. You can do this using the JDK keytool command line utility.

2. CA1 is a well known Root Certificate Authority but CA2 is not (or vice versa)

The easiest way for this configuration option is to create a single JKS file that
contains the CA1 certificate, the CA1 signed client certificate, the CA2 certificate and
the CA2 client certificate. You then have to use the same values for CKEYSTORE,
CAKEYSTORE and CKEYSTOREPASSWD, CAKEYSTOREPASSWD respectively.

3. CA1 and CA2 are not well known Root Certificate Authorities

Again the easiest way for this configuration option is to create a single JKS file that
contains the CA1 certificate, the CA1 signed client certificate, the CA2 certificate and
the CA2 client certificate. You then have to use the same values for CKEYSTORE,
CAKEYSTORE and CKEYSTOREPASSWD, CAKEYSTOREPASSWD respectively.

Environment Settings

The CKEYSTORE, CKEYSTOREPASSWD, CAKEYSTORE and CAKEYSTOREPASSWD
system properties are used by the Universal Messaging sample apps, but are
mapped to system properties required by a jsse enabled JVM by the utility program
'com.pcbsys.foundation.utils.fEnvironment', which all sample applications use. If you
do not wish to use this program to perform the mapping between Universal Messaging
system properties and those required by the JVM, you can specify the SSL properties
directly. To do this in your own applications, the following system properties must be
set:
-Djavax.net.ssl.keyStore=%INSTALLDIR%\client\Universal Messaging\bin\client.jks
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=%INSTALLDIR%\client\Universal Messaging\bin\nirvanacacerts.jks
-Djavax.net.ssl.trustStorePassword=password

where :

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 81

javax.net.ssl.keyStore is the client keystore location

javax.net.ssl.keyStorePassword is the password for the client keystore

javax.net.ssl.trustStore is the CA keystore file location

javax.net.ssl.trustStorePassword is password for the CA keystore

As well as the above system properties, if you are intending to use hps, both the
Universal Messaging sample apps and your own applications will require the following
system property to be passed in the command line:

-Djava.protocol.handler.pkgs="com.sun.net.ssl.internal.www.protocol"

As well as the above, the " RNAME" on page 19 used by your client application must
correspond to the correct type of SSL interface, and the correct hostname and port that
was configured earlier.

Performance and Tuning - The Java Virtual Machine
Selecting and Tuning a JVM is an important part in running any Java application
smoothly. Applications with low latency requirements often require more aention paid
to the JVM, as the JVM is often a big factor in performance.

This section outlines JVM selection, and advice on tuning for low latency applications
on these JVMs. There are many different JVM vendors available and each JVM has
slightly different configurable parameters. This section outlines a few key vendors and
important configuration parameters.

Selecting a Java Virtual Machine

As mentioned above, there are a variety of JVMs to choose from that come from different
vendors. Some of these are free, some require a license to use. This section will outline
the standard Oracle HotSpot VM, the Oracle JRockit VM and the Azul Zing VM.

Oracle HotSpot VM

The Oracle HotSpot VM is offered by Oracle, the JDK and JRE freely available from the
Oracle Website. This JVM is suitable to fulfil most users needs for Universal Messaging.

Oracle JRockit VM

The Oracle JRockit VM is another offering from Oracle. This JVM was made free and
publicly available in May 2011. It contains many of the same assets from the Oracle
HotSpot VM. The performance capabilities of this VM are often advertised as greater
than that of the HotSpot VM, however this varies depending on the usage scenario.

Oracle plan to eventually merge the code for the HotSpot and JRockit VMs in the future.
This is not expected to happen until JDK8 at the earliest however.

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 82

Azul Zing VM

The Azul Zing VM is a commercial offering from Azul. Its primary feature is a 'Pauseless
Garbage Collection'. This VM is well suited to applications which require the absolute
lowest latency requirements. Applications which experience higher garbage collection
pause times may also benefit from using this VM.

Configuring the Java Virtual Machine - Oracle HotSpot

This section covers parameters for the Oracle HotSpot VM which may help improve
application performance. These seings can be applied to a Universal Messaging Realm
Server by editing the nserver.lax file found under the server/realm/bin directory of your
installation.

General Tuning Parameters

Below are some suggestions of general tuning parameters which can be applied to the
HotSpot VM.

-Xmx The maximum heap size of the JVM.

-Xms The minimum heap size of the JVM. Set
this as equal to the maximum heap size

-XX:+UseLargePages Allows the JVM to use large pages.
This may improve memory access
performance. The system must be
configured to use large pages.

-XX:+UseNUMA Allows the JVM to use non uniform
memory access. This may improve
memory performance

Monitoring Garbage Collection Pause Times

It is important to collect proper monitoring information when tuning an application.
This will allow you to quantify the results of changes made to the environment.
Monitoring information about the Garbage collection can be collected from a JVM
without any significant performance penalty.

We recommend using the most verbose monitoring seings. These can be activated by
adding the following commands to the nserver.lax file.
 -verbose:gc
 -XX:+PrintGCDetails
 -XX:+PrintGCDateStamps
 -XX:+PrintGCApplicationStoppedTime

This will produce output similar to the following:
2012-07-06T11:42:37.439+0100:
 [GC
 [ParNew: 17024K->1416K(19136K), 0.0090341 secs]

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 83

 17024K->1416K(260032K), 0.0090968 secs]
 [Times: user=0.02 sys=0.01, real=0.01 secs]

The line starts by printing the time of the garbage collection. If Date Stamps are enabled,
this will be the absolute time, otherwise it will be the uptime of the process. Printing
the full date is useful for correlating information taken from the nirvana logs or other
application logs.

The next line shows if this is a full collection. If the log prints GC, then this is a young
generation collection. Full garbage collections are denoted by the output Full GC
(System). Full garbage collections are often orders of magnitude longer than young
garbage collections, hence for low latency systems they should be avoided. Applications
which produce lots of full garbage collections may need to undergo analysis to reduce
the stress placed on the JVMs memory management.

The next line displays the garbage collectors type. In this example ParNew is the Parallel
Scavenge collector. Detailed explanation of garbage collectors are provided elsewhere on
this page. Next to the type, it displays the amount of memory this collector reclaimed, as
well as the amount of time it took to do so. Young garbage collections will only produce
one line like this, full garbage collections will produce one line for the young generation
collection and another for the old generation collection.

The last line in this example shows the total garbage collection time in milliseconds.
The user time is the total amount of processor time taken by the garbage collector in
user mode. The system time is the total amount of processor time taken by the garbage
collector running in privileged mode. The real time is the wall clock time that the
garbage collection has taken, in single core systems this will be the user + system time.
In multiprocessor systems this time is often less as the garbage collector utilizes multiple
cores.

The last flag will also cause the explicit application pause time to be printed out to the
console. This output will usually look like the following:
Total time for which application threads were stopped: 0.0001163 seconds

If you observe high client latencies as well as long application pause times, it is likely
that the garbage collection mechanism is having an adverse affect on the performance of
your application.

Tuning Garbage Collection

The Garbage Collector can be one of the most important aspects of Java Virtual Machine
tuning. Large pause times have the capability to negatively impact an applications
performance by a noticeable degree. Below are some suggestions of ways to combat
specific problems observed by monitoring garbage collection pause times.

Frequent Full Garbage Collections

Full garbage collections are expensive, and often take an order of magnitude longer than
a young generation garbage collection to complete. This kind of collection occurs when
the old generation is full, and the JVM aempts to promote objects from the younger
generation to the older generation. There are two scenarios where this can happen on a
regular basis:

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 84

1. There are many live objects on the heap, which are unable to be cleaned up by the
JVM.

2. The allocation rate of objects with medium-long lifespans is exceptionally high

If the information from garbage collection monitoring shows that full garbage collections
are removing very few objects from the old generation, and that the old generation
remains nearly full after a old generation collection, it is the case that there are many
objects on the heap that cannot be cleaned up.

In the case of a Universal Messaging Realm Server exhibiting this symptom, it would
be prudent to do an audit of data stored on the server. Stored Events, ACL Entries,
DataGroups, Channels and Queues all contribute to the memory footprint of Universal
Messaging. Reducing this footprint by removing unused or unnecessary objects will
reduce the frequency of full collections.

If the information from garbage collection monitoring shows that young garbage
collection results in many promotions on a consistent basis, then the JVM is likely to
have to perform full garbage collections frequently to free space for further promotions.

This kind of heap behaviour is caused by objects which remain live for more than a
short amount of time. After this short amount of time they are promoted from the young
generation into the old generation. These objects pollute the old generation, increasing
the frequency of old generation collections. As promotion is an expensive operation, this
behaviour often also causes longer young generation pause times.

Universal Messaging will mitigate this kind of problem by employing a caching
mechanism on objects. To further decrease the amount of objects with this lifespan
it is important that the administrator perform an audit of creation of resources, such
as events, acl entries, channels, datagroups or queues. Heavy dynamic creation and
removal of ACL Entries, Channels, DataGroups and Queues may induce this kind of
behaviour.

If an administrator has done everything possible to reduce the static application memory
footprint, as well as the allocation rate of objects in the realm server then changing some
JVM seings may help achieve beer results.

Increasing the maximum heap size will reduce the frequency of garbage collections.
In general however larger heap sizes will increase the average pause time for garbage
collections. Therefore it is important that pause times are measured to ensure they stay
within an acceptable limit.

Long Young Generation Collection Pause Times

As mentioned above the primary cause of long young generation pauses is large
amounts of object promotion. These objects often take the form of events, ACL entries,
channels, datagroups and queues being created.

To minimise the amount of object creation during normal operating hours it is suggested
to employ static creation of many channels, datagroups and queues at start up time.
This will result in these objects being promoted once at the beginning of operation,
remaining in the old generation. Analysing where possible events can be given short
lifespans (possibly even made transient) will also reduce the amount of promotion, as

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 85

these objects will become dereferenced before they are eligible to be moved to the old
generation.

It is important to remember that the Java Virtual Machine's memory subsystem performs
best when long living objects are created in the initialisation stage, while objects created
afterwards die young. Therefore designing your system to create long lived objects like
channels at startup and objects like events to be short lived allows Universal Messaging
to harmoniously work with the underlying JVM.

Long Full Collection Pause Times

Full Garbage collections which take long periods of time can often be remedied by
proper tuning of the underlying JVM. The two recommended approaches to reducing
the amount of time spent in full garbage collections is detailed below.

The first approach would be to reduce the overall heap size of the application. Larger
heaps often increase the amount of time for a garbage collection cycle to finish. Reducing
the heap will lower the average time that a garbage collection cycle takes to complete.
Smaller heap sizes will require garbage collecting more often however, so it is important
to ensure that you balance the need for lower collection times with collection frequency.

If you are not able to reduce the heap size any further, because garbage collection
frequency is increasing, it may be beneficial to change the type of garbage collector used.
If you are experiencing high maximum latencies correlated with long GC times it may be
beneficial to switch to using the CMS collector.

The Concurrent Mark Sweep (CMS) collector aims to minimize the amount of time an
application is paused by doing many of its operations in parallel with the application.
This collector can be enabled by adding the following parameter to nserver.lax
-XX:+UseConcMarkSweepGC

CMS Collections will usually take more time overall than those done with the Parallel
Collector. Only a small fraction of the work done by the CMS collector requires the
application to pause however, which will generally result in improved response times.

Performance and Tuning - The Network
This page details important network seings that may improve network performance
when using Universal Messaging. Many of the commands detailed on this page are
specific to Red Hat Linux, though many of the concepts apply globally to all operating
systems.

Stop the iptables Service

The iptables service is used to control packet filtering and NAT. In many cases it is not
necessary to run this service and a minor performance gain can be seen by disabling this
service. To disable this service use the following command:
 service iptables stop
 service ip6tables stop

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 86

Disable Adaptive Interrupts on Network Interfaces

Interrupts on a network interface notify the system that some network task is required
to be run, for example reading some data from the network. Adaptive Interrupts control
the rate at which interrupts are generated for these tasks. The delay in processing
subsequent interrupts from interrupt coalescing may degrade performance.
 ethtool -C eth0 adaptive-rx off

Disabling adaptive interrupts on an interface will make that interface use the set
interrupt rate. This rate will delay interrupts by a set number of microseconds. The
minimum value that this delay can be is 0 (immediate). To set this value on an interface
use the command:
 ethttool -C eth0 rx-usecs-irq 0

Kernel Settings

The Kernel has many network seings for TCP which can provide performance
improvements when correctly tweaked. This section will outline a few suggestions,
however care should be taken when changing these parameters. It is also important
to validate results as your mileage may vary. These seings should be added to the
sysctl.conf file.

Increase Socket Memory

The seings below will increase the amount of memory allocated by the kernel to tcp
sockets.

Important: It is important to set these limits to a reasonable level for the amount of
memory available on your machine.

 net.core.rmem_max = 16777216
 net.core.wmem_max = 16777216
 net.ipv4.tcp_rmem = 4096 87380 16777216
 net.ipv4.tcp_wmem = 4096 65536 16777216
 net.ipv4.tcp_mem = 50576 64768 98152

Increase Backlog Queue Size

The command below will increase the queue size in packets waiting to be processed by
the kernel. This queue fills up when the interface receives packets faster than the kernel
can process them.
 net.core.netdev_max_backlog = 2500

Increase the local Port Range

Applications which have to manage large numbers of current connections may find that
they will run out of ports under the default seings. This default can be increased by
using the following command:
 net.ipv4.ip_local_port_range = 1024 65535

The maximum number of allocated ports are 65535, 1024 of these are reserved.
Applications which manage extremely high numbers of connections will require more

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 87

ports than this. One way to get around these limits would be to create multiple virtual
network interfaces.

Performance and Tuning - The Operating System
This page details important operating system and kernel seings that should be
considered when optimising the server. The focus of this page is geared towards Red
Hat Linux. Many of the suggestions here have synonymous commands under Solaris or
Windows, which can be applied to have a similar effect.

Configuring User Limits

Unix has a configurable limit on the number of processes, file descriptors and threads
available per user. This functionality is aimed to prevent a user from consuming all of
the resources on a machine. These limits are often set to a reasonably low level, as a
general purpose user will not consume many of these objects at any one time.

Application Servers like Universal Messaging may, if under considerable load, wish
to consume a large number of these resources. Each open connection to a client for
example consumes a file descriptor, and application servers which can support tens
of thousands of concurrent connections will thus require as many file descriptors. It is
therefore important to increase these limits for Universal Messaging.

Temporarily Increasing limits using the ulimit command

ulimit is a unix command which can be used to alter user limits. To increase the
user limits which Universal Messaging consumes the following commands are
recommended:
 ulimit -n 250000
 ulimit -u 10000

This will increase the number of file descriptors and the number of user processes
allowed. Any processes spawned from the terminal this was entered on will inherit these
limits.

Permanently Increasing User Limits

It is also possible to permanently increase the user limits by editing the relevant
configuration file. This configuration file can usually be found in /etc/security/
limits.conf.
 user soft nofile 250000
 user hard nofile 250000
 user soft nproc 10000
 user hard nproc 10000

Disabling Processor Power Saving States

Many new processors have mechanisms which allow them to dynamically turn
individual cores on and off to save power. These mechanisms may sometimes degrade
processor and memory performance. In applications that require consistent low latency
performance it is recommended to disable this feature.

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 88

Many processors manage this by using the cpuspeed service. This service can be disabled,
which on many machines and architectures will turn this functionality off.
 service cpuspeed stop

Some processors however will require further work to disable power saving states.
Whether or not your processor will require extra configuration and what those
configuration steps are vary from processor to processor. Many Intel processors for
example may require the following command to be appended to the boot options of
your operating system
 intel_idle.max_cstate=0

As mentioned above however, this will not be necessary for all processors. Consult with
your processor specific documentation for information on disabling power saving states.

Stop the Interrupt Request Balance Service

Interrupts are signals generated, generally by devices, to notify a CPU that there is
processing which needs to be done. Interrupt Request (IRQ) Balancing is the act of
dividing these processes up between cores on a CPU. In some situations this may harm
performance of applications running on the CPU, as these interrupts consume processor
cycles and loads information into memory.

Disabling IRQ balancing will assign all interrupts to a single core by default. It is
possible to assign interrupts to certain cores, but that is beyond the scope of this section.
To disable IRQ balance, use the following command.
 service irqbalance stop

Performance and Tuning - The Universal Messaging Realm Server
This page will detail important configuration options that can be changed on the server
to improve performance. Important monitoring information that can be collected using
the Admin API is also mentioned here. This monitoring information can be used to
diagnose common problems.

Lowering the Log Level

Logging information can be useful for debugging a variety of problems that may occur.
However particularly high logging levels can negatively effect the performance of your
application. Logging creates extra objects which increases memory usage, as well as
promotes contention between threads which wish to print to the logger.

The log level can be lowered by using the enterprise manager. The highest log level is
0 and produces the most output. The lowest log level is 7, which produces very lile
output. Unless aempting to gather logging information related to a particular issue it
is recommended to keep the log level no lower than 4 (Quiet). Particularly demanding
applications may wish to increase this up to 7 if necessary.

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 89

Increasing the Peak Watermark

The server is configured to enter a peak operating mode when a certain number of
messages are being delivered through the server per second. Peak mode will batch
messages in an effort to keep server load at an optimal level. This batching may increase
average latencies for clients.

It is possible to raise the peak mode threshold so that the server does not utilise peak
mode until a much higher load is reached. It is important to stress that beyond a certain
point the non batching performance will suffer as machine limitations are reached.

Machines with good hardware will benefit from having this threshold raised, but slower
machines may function beer in batching mode after a certain message rate is reached.

Enable Low Latency Fanout Mechanism

By default, the most aggressive fanout mechanism Universal Messaging provides is
disabled. This particular mechanism is capable of meeting extremely demanding latency
and message rate requirements, however is very demanding on the resources of a
system. It is disabled to prevent it consuming resources on machines with less resources
(for example development machines).

If the hardware which the Universal Messaging server runs has greater than 8 cores it
is recommended that you enable this fanout mechanism to produce the best latencies.
This fanout mechanism will consume multiple cores entirely, so will therefore increase
the load average of the machine. It is important that you have sufficient free cores free,
as otherwise it is possible that this mode will cause Universal Messaging to starve other
threads/processes running on the system.

The mechanism can be enabled by adding the following flag to the nserver.lax file under
the server installation directory:
-DCORE_SPIN=true

There are further flags that can be applied to the lax file to customize the behaviour of
this fanout seing. The first of these flags can be used to adjust the number of times that
this fanout mode will spin on a core aempting to do work before switching to a less
aggressive fanout mechanism.
-DSPIN_COUNT=1000000000

The default value for this spin count is one billion. Reducing this value will generally
encourage the server to switch to a CPU intensive fanout mechanism, if the server is not
busy. Reducing this value may result in a performance penalty which occurs as a result
of using the less intensive fanout mechanism. The maximum value of this parameter is
the same as Long.MAX_VALUE.

The less aggressive fanout mechanism employs a wait as opposed to spinning
mechanism, the second flag can be used to specify the wait time between checking if
work is available.
-DSPIN_WAIT=1

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 90

This parameter will alter the number of nanoseconds which the fanout mechanism
will wait for between checking if it has tasks to complete. Increasing this number will
decrease the CPU consumption of Universal Messaging, but at a cost to latency.

Client

Universal Messaging Deployment - Connecting Over HTTP/HTTPS
The Universal Messaging messaging APIs provides a rich set of functionality that can
be used over sockets, SSL, HTTP and HTTPS. The code used to connect to the Universal
Messaging server is the same regardless of which network protocol you are using to
connect.

Under the Universal Messaging programming model there are a number of logical steps
that need to be followed in order to establish a connection to a Universal Messaging
sever (Realm). These involve establishing a session, obtaining a reference to a channel or
a transaction, or registering an object as a subscriber.

Universal Messaging fully supports HTTP and HTTPS. Rather than tunnel an existing
protocol through HTTP Universal Messaging has a pluggable set of communications
drivers supporting TCP/IP Sockets, SSL enabled TCP/IP sockets, HTTP and HTTPS. Both
the client and server make use of these pluggable drivers. From the server perspective
different driver types can be assigned to specific Universal Messaging interfaces. From a
client perspective a Universal Messaging session can be built on any one of the available
drivers dynamically.

Please note that before making an HTTP/HTTPS connection to a Universal Messaging
realm server you will first need to add a HTTP/HTTPS interface to the realm. See the
Enterprise manager documentation for details.

After initialising your Universal Messaging session, you will be connected to the
Universal Messaging Realm using HTTPS. From that point, all functionality is subject to
a Realm ACL check. If you call a method that requires a permission your credential does
not have, you will receive an nSecurityException.

For detailed information including code samples for connecting to Universal Messaging
over HTTP/HTTPS please see our developer guides for the language you require.

Universal Messaging Deployment Guide - Browser / Applet
Deployment
Introduction

Universal Messaging client applications can run within stand alone applications as well
as within Java applets loaded via a web browser such as Chrome, Firefox, MS Internet
Explorer, Netscape, etc.

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 91

The Universal Messaging client APIs can be used with most Java Plugin versions.

Applet Sandbox / Host Machine Limitation

Applets run within a client's browser, and are subject to strict security limitations as
defined by the Applet Model. These limitations need to be considered when deploying
applets. One such limitation is that the applet is only allowed to communicate with the
host machine from which the applet was downloaded. This restricts the applet to only
being permied to make connections to the applet host machine. This has a number of
implications for an applet that uses Universal Messaging's APIs.

Universal Messaging's APIs communicate with a Realm Server (or potentially multiple
servers in a cluster). This limitation means that the applet source host must be the
same hostname as each Universal Messaging Realm in use by the applet. If the applet
is served from a web server, such as Apache, and it is assumed the communication
protocol required for Universal Messaging communication is nhp/nhps (hp/hps).
The usual ports used by web servers running hp and hps are 80 and 443 respectively.
Since the web server uses these ports and the realm servers need to run on the same
machine with these ports there is obviously a problem since these ports are in use.

However, Universal Messaging provides 2 different methods for ensuring this is not a
problem. The first is Universal Messaging's ability to act as a web server through its file
plugin. Running a file plugin on an nhp or nhps interface enables the realm server to
deliver the applet to the client browser, this removing the need for the web server and of
course freeing up the ports for use by the realm server interfaces.

The second method can be used when the web server is apache. We can provide an
apache module that acts similarly to mod.proxy for apache. This apache module called
mod.Universal Messaging allows the web server to proxy all requests for a specific URL
to another host. This host can be the realm server running on any other port on the same
machine or any other machine, and hence once again fixes this issue.

Another way to circumvent this restriction is to digitally sign the applet and thus
allowing the applet to communicate with any host.

Universal Messaging and Browser Plugins
Universal Messaging can either run within a 4.0 browsers own Java Virtual Machine or
run within a Java Virtual machine started using the Java plugin.

Universal Messaging does not require installation of the Java Plugin.

Universal Messaging Deployment Guide - Client Jars
Depending on the functionality used by your Universal Messaging application, different
jar files are required. This following table illustrates the deployment dependencies
between the jar libraries installed by the Universal Messaging installer.

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 92

JAR File Description Dependency

nClient.jar Provides Universal
Messaging Client
functionality (Pub/Sub &
Queues)

None

nP2P.jar Provides Universal
Messaging Peer-to-Peer
functionality

nClient.jar

nJMS.jar Provides Universal
Messaging Provider to
support JMS functionality

nClient.jar

nJ2EE.jar Provides Universal
Messaging support
for interacting with
Application servers that
support J2EE

nClient.jar & nJMS.jar

nAdminAPI.jar Provides Universal
Messaging Administration
& Monitoring
functionality

nClient.jar, nP2P.jar

nAdminXMLAPI.jar Provides Universal
Messaging Configuration
XML Import / Export
functionality

nClient.jar, nP2P.jar,
nAdminAPI.jar

nEnterpriseManager.jar Contains the Enterprise
Manager tool

nClient.jar, nP2P.jar,
nAdminAPI.jar,
nAdminXMLAPI.jar
(Optional)

nServer.jar Contains the Universal
Messaging Realm Server

None

nPlugin.jar Contains the Universal
Messaging Server plugins

nServer.jar

Universal Messaging Deployment Guide - Client Security
Universal Messaging makes use of JSSE for SSL enabled communication. Clients are
able to connect using standard sockets (nsp), hp (nhp), SSL enabled sockets (nsps) or

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 93

hps (nhps). Universal Messaging's client SSL communication uses the JVM's own SSL
implementation.

"Clients connecting using SSL" on page 138 will connect to a realm server that has an
SSL enabled interface with either client authentication on or off.

Once authenticated using SSL, the client must have the desired permissions on the realm
and its objects in order to perform the operations required. The entitlements are defined
within the ACLs for the realm, channels, queues and services. The ACLs must contain
the correct level of permissions for clients connecting to the realm.

Please also see the description of managing realm security ACLs in the documentation of
the Enterprise Manager.

Universal Messaging Client Parameters
The Universal Messaging client API supports a variety of different parameters that can
be specified in the command line of any Universal Messaging Client application.

This section describes those -D parameters, what they are used for and their typical
values.

Name Required Default Description

LOGLEVEL N 4 Specifies the
current log level to
use

LOGFILE N System.out Used to specify a
log file to write the
log entries to

LOGSIZE N 100000 Specified in bytes
before the log file is
rolled

user.name N Signed on name Used to override
the current
username without
coding it.

HPROXY N Used as a short
hand to set
hp.proxyHost
and hp.proxyPort

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 94

Name Required Default Description

hp.proxySet N Set to true if the url
handler is to use a
proxy

hp.proxyHost N Sets the Proxy host
name to use

hp.proxyPort N The proxy port to
use

CKEYSTORE N Short hand for
javax.net.ssl.keyStore

CKEYSTOREPASSWDN Short hand for
javax.net.ssl.keyStorePassword

CAKEYSTORE N Short hand for
javax.net.ssl.trustStore

CAKEYSTOREPASSWDN Short hand for
javax.net.ssl.trustStorePassword

javax.net.ssl.debug N Useful to debug
SSL issues, see
www.javasoft.com
for more
information

Universal Messaging Deployment - Multiplexing Sessions
Universal Messaging supports the multiplexing of sessions to a specific host in Java, Flex
and C#. This allows the circumvention of connection limit issues by packing multiple
Universal Messaging sessions into one connection, and can be used to allow the same
client to set up multiple subscriptions to a given channel or queue if required.

Multiplexing Sessions

To multiplex two sessions, first construct one session, and then create a new session by
multiplexing the original session. These two sessions will now appear to act as normal
sessions, but will, in fact, share a single connection.

This can be accomplished either by using the nSession object associated with the original
session, or by using the nSessionAributes used to create this original session. Below are
examples of how to multiplex sessions via both methods:

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 95

//Construct first session
nsa = new nSessionAttributes(realmDetails, 2);
mySession = nSessionFactory.create(nsa, this);
mySession.init();
//Construct second session by multiplexing the first session.
otherSession = nSessionFactory.createMultiplexed(mySession);
otherSession.init();
//Construct a third session by multiplexing the first session's nSessionAttributes.
thirdSession = nSessionFactory.createMultiplexed(nsa);
thirdSession.init();

Examples of multiplexing a session are available for Java and C# .NET. The Tradespace
demo application also provides an example of how to implement multiplexed sessions
in Adobe Flex.

Language Deployment Tips

Universal Messaging Deployment - Adobe Flex Application
Deployment
Adobe Flex and the Universal Messaging Policy File Server

Universal Messaging has a built in socket policy server for Flex applications that require
tcp socket or ssl socket (NSP or NSPS) protocol.

The Universal Messaging Flex API also supports tcp sockets (nsp). In the same way that
the Silverlight plugin will make a client access policy file request, so too will the Adobe
Flash Player make a cross domain request when a socket connection is aempted by
the Universal Messaging Flex API. This means that when a Flex application is loaded
and tries to make a socket request, Flash will first of all aempt to make a cross domain
file request on port 843 to the host the original socket request was being made to.
For example, if i specify an RNAME of nsp://myhost.mydomain.com:9000, when the
Universal Messaging Flex API aempts to construct a socket on port 9000, it will first
of all make a socket connect request to myhost.mydomain.com:843, and issue a cross
domain file request.

So to enable successful deployment of socket based Flex Applications you need to run
a policy file server on a socket interface that will automatically handle cross domain
file requests. You would first need to create a socket interface on port 843, and select
the "Enable Policy Server" check box under the Basic tab for an nsp interface. Once
this is setup, you will also need a crossdomain.xml file in the /install/server/name/
plugins/htdocs directory of the server. An example crossdomain.xml file might contain
something like the following:
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="all"/>
 <allow-access-from domain="*" to-ports="80,443,9000" secure="false"/>
 <allow-http-request-headers-from domain="*" headers="*"/>
</cross-domain-policy>

M
Even Header
Deployment

Universal Messaging Concepts Version 9.6 96

For further information on socket policies see Adobe's documentation on
Flex Cross Domain Policy Files at hp://www.adobe.com/devnet/articles/
crossdomain_policy_file_spec.html.

Universal Messaging Deployment - Silverlight Application
Deployment
Silverlight and the Universal Messaging Policy File Server

Universal Messaging has a built in socket policy server for Silverlight applications that
require tcp socket or ssl socket (NSP or NSPS) protocol.

Universal Messaging's Silverlight API enables clients to specify the communication
protocol as nsp (ie tcp sockets). This means that when a Silverlight application is loaded
and tries to make a socket request, Silverlight will first of all aempt to make a policy
file request on port 943 to the host the original socket request was being made to.
For example, if i specify an RNAME of nsp://myhost.mydomain.com:4502, when the
Universal Messaging Silverlight API aempts to construct a socket on port 4502, it will
first of all make a socket connect request to myhost.mydomain.com:943, and issue a
policy file request.

With this in mind, Universal Messaging enables you to run a policy file server on a
socket interface that will automatically handle these requests. You would first need
to create a socket interface on port 943, and select the "Enable Policy Server" check
box under the Basic tab for an nsp interface. Once this is setup, you will also need a
clientaccesspolicy.xml file in the /install/server/name/plugins/htdocs directory of the
server. This policy file might contain something like the following:
 <?xml version="1.0" encoding="utf-8"?>
 <access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 <socket-resource port='4502-4534' protocol='tcp' />
 </grant-to>
 </policy>
 </cross-domain-access>
 </access-policy>

For further information on socket policies see Microsoft's Silverlight
Policy Documentation at hp://msdn.microsoft.com/en-us/library/
cc645032%28v=vs.95%29.aspx.

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://msdn.microsoft.com/en-us/library/cc645032%28v=vs.95%29.aspx
http://msdn.microsoft.com/en-us/library/cc645032%28v=vs.95%29.aspx

M
Odd Header
Deployment

Universal Messaging Concepts Version 9.6 97

Universal Messaging Deployment - JavaScript Application
Deployment
JavaScript applications can be served directly from a Universal Messaging realm server,
using a file plugin, or via a third party web server of your choice.

Serving Applications via a Universal Messaging File Plugin

For performance and security, we strongly recommend that applications are served from
an SSL-encrypted file plugin. You may however choose to serve applications from a non-
encrypted file plugin. See the description of using JavaScript for HTTP/HTTPS delivery
in the Developer Guide.

Serving Applications via a third party Web Server

Most components of your JavaScript application can be served from any web server. A
Universal Messaging File plugin is still required however, to serve certain parts of the
JavaScript libraries. This is necessary to permit secure cross domain communication.

M
Even Header

Universal Messaging Concepts Version 9.6 98

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 99

5 Security

■ Overview ... 100

■ Authentication ... 116

■ Access Control Lists .. 135

■ SSL ... 138

M
Even Header

Security

Universal Messaging Concepts Version 9.6 100

Overview

Universal Messaging Concepts - Security
Universal Messaging provides a wide range of features to ensure that user access and
data transmission is handled in a secure manner.

Universal Messaging includes built in authentication and entitlements functionality.
Additionally Universal Messaging can drive 3rd party authentication and entitlements
systems or be driven by organizations existing authentication and entitlements systems.

Universal Messaging makes use of standards based cryptography to provide encryption
and the signing of events with digital signatures if required. Further information on
Universal Messaging's security features can be found below.

Universal Messaging Concepts - Security Architecture
While distributed applications offer many benefits to their users the development of
such applications can be a complex process. The ability to correctly authenticate users
has been a complex issue and has lead to the emergence of standard Authentication and
Authorisation frameworks, frameworks such as JAAS.

JAAS authentication is performed in a pluggable fashion. This permits applications to
remain independent from underlying authentication technologies. New or updated
authentication technologies can be plugged under an application without requiring
modifications to the application itself.

Universal Messaging provides a wide variety of client APIs to develop enterprise, web
and mobile applications. On the enterprise application front, Universal Messaging offers
a transport protocol dependent authentication scheme while on the web and mobile
application front a pluggable authentication framework is offered. The end result is that
all applications can share the same Universal Messaging authorization scheme which
requires a token@host based subject that access control lists can be defined upon.

Enterprise Application Authentication

Universal Messaging enterprise applications can be wrien in a variety of programming
languages. Each one of these client APIs offers connectivity using one of the 4 available
transport protocols, namely nsp (TCP Sockets), nhp (HTTP), nsps (SSL Sockets) and
nhps (HTTPS). The authentication scheme is transport protocol dependent therefore
providing a basic authentication scheme for TCP based transport protocols (nsp, nhp)
and an SSL authentication scheme for SSL based transport protocols (nsps, nhps).

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 101

Basic Authentication Scheme

Under this mode of authentication the client passes the username to the server as part
of the initial connection handshake. The server then extracts the remote host name and
creates the subject to be used by this connection.

The client API can set the username component, however, the remote host is always
set on the server. This stops clients from impersonating users from other hosts. The
following diagram illustrates the basic authentication scheme's operation:

SSL Authentication Scheme

The Universal Messaging Realm server can be configured to perform Client Certificate
authorisation or to allow anonymous SSL clients to connect. When the server is
configured to allow anonymous clients to connect the subject is built up based on the
previous authentication method. That is the username portion is passed to it from the
client.

When the server is configured for client certificate processing the subject is constructed
with the Common Name (CN) of the certificate and the remote host name. This allows
the ACLs to be configured such that not only is the certificate valid but it can only
access the Realm Server from a specific host. The following diagram illustrates the SSL
authentication scheme's operation when using client certificates:

M
Even Header

Security

Universal Messaging Concepts Version 9.6 102

Web Application Authentication

Universal Messaging web applications can use a pluggable authentication framework
that presents its self as basic hp authentication as defined by RFC 1945. Basic
authentication is supported by all popular web browsers and users have to enter a
username and password in a browser provided login dialog before proceeding. The web
browser then automatically includes the token in the Authorization HTTP header for all
subsequent requests to the server's authentication realm, for the lifetime of the browser
process. Please note that although Universal Messaging supports basic authentication on
both nhp (HTTP) and nhps (HTTPS) interfaces, it is only advised to use it over HTTPS
connections to secure your web application against man in the middle aacks and
network sniffing tools.

In order to host your web application on Universal Messaging, a number of server side
plugins are provided that you can configure and mount on the various URLs that your
application expects connections on. These are the XML plugin, the Web Express plugin,
the Servlet plugin, the Change Password plugin, the Realm Status plugin, the SOAP
plugin, the File plugin and the Proxy Pass Through plugin.

Plugin Authentication Parameters

Each one of these plugins contains an identical set of configuration parameters that
control its behavior towards authentication. These are described below:

Security Realm: Name of the authentication realm

AddUserAsCookie: Specifies if the authenticated username should be added as a
cookie.

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 103

Authenticator: Fully qualified class name of authenticator to use, or blank to use
the default implementation provided.

AuthParameters: A space delimited list of key=value definitions which are passed
to the authenticator instance to initialize and configure it. These are passed to the
Authenticator's init method.

GroupNames: An optional comma separated list of groups. The user must be
a member of at least one group to be granted access even if a valid username/
password is provided. The groups are dependent on the authenticator
implementation.

RoleNames: An optional comma separated list of roles. The user must have at least
one role to be granted access even if a valid username/password is provided. The
roles are dependent on the authenticator implementation and are effectively the
permissions defined.

ReloadUserFileDynamically: If set to true, the reload method of the authenticator
implementation will be called prior to serving each hp request. If set to false, the
reload will only be called once when the Universal Messaging interface starts.

Common AuthParameters

Irrespective of the authenticator implementation you use in your Universal Messaging
server plugins, there are some AuthParameters that are also used by the server. These
are:

NamedInstance: This parameter requests that this authenticator configuration
is bound to the specified named instance which will be shared across all plugins
on this server that are configured to do so. Please note that the first plugin that
accepts a connection will bind the name to the server together with the remaining
configuration parameters. For this reason please make sure that configuration is
always the same on all plugins that share the same instance.

Default Authenticator Implementation

Universal Messaging comes with a default authenticator implementation that uses a
properties file to define users, groups and permissions (roles). In order to enable it on a
Universal Messaging plugin, the Authenticator parameter needs to be left empty (this
implies using the Default), the Authentication Realm set and one parameter needs to be
set in AuthParameters.

The necessary parameter is called UserFile and should point to the full path of a java
properties file, e.g. c:\users.txt. In order to get the Universal Messaging realm server
to encrypt your user passwords, you need to add a property called initialise as shown
below. This notifies the default authenticator that passwords are not encrypted so on the
first load it will encrypt them, remove the initialise property and save your user file.

An example of a UserFile defining 3 permissions (roles), 3 groups and 3 users is shown
below:
 #Request password initialisation
 initialise=true
 #Permissions (Roles) Definition

M
Even Header

Security

Universal Messaging Concepts Version 9.6 104

 perm_name_1=Guest
 perm_name_2=User
 perm_name_3=Admin
 #Guests Group Definition
 group_ID_Guests=1
 group_desc_Guests=Guests Group
 group_perm_Guests={1}
 #Users Group Definition
 group_ID_Users=2
 group_desc_Users=Users Group
 group_perm_Users={2}
 #Admins Group Definition
 group_ID_Admins=3
 group_desc_Admins=Admins Group
 group_perm_Admins={3}
 #Example Guest User Definition
 user_desc_someguest=Some Guest User
 user_pass_someguest=password
 user_perm_someguest={1}
 user_home_id_someguest=Guests
 user_group_someguest=Guests
 #Example Regular User Definition
 user_desc_someuser=Some User
 user_pass_someuser=password
 user_perm_someuser={1,2}
 user_home_id_someuser=Users
 user_group_someuser=Users
 user_group_0_someuser=Guests
 #Example Admin User Definition
 user_desc_someadmin=Some Admin User
 user_pass_someadmin=password
 user_perm_someadmin={1,2,3}
 user_home_id_someadmin=Admins
 user_group_someadmin=Admins
 user_group_0_someadmin=Guests
 user_group_1_someadmin=Users

Custom Authenticator Implementations

The interface for creation of custom authenticator implementations is defined in the
following 3 classes of the com.pcbsys.foundation.authentication package:
 fAuthenticator: Represents the Authenticator Implementation and has the following methods
 public void init(Hashtable initParams);
 public String getName();
 public synchronized void close();
 public void reload();
 public fPermission addPermission(int permNo, String name) ;
 public fUser addUser(String username, String description, String plainPassword, String groupName);
 public fUser copyUser(fUser user) ;
 public fUser getUser(String username);
 public void delUser(fUser user);
 public fGroup addGroup(int id, String name, String description);
 public fPermission getPermission(int id);
 public fPermission getPermission(String name);
 public fGroup getGroup(String name);
 public void delPermission(int id);
 public void delGroup(fGroup group);
 public void saveState() throws IOException
 fGroup: Represents the user groups and contains the following methods:
 public void reload(int id, String name, String description);
 public boolean isModified();
 public void setModified(boolean flag);

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 105

 public String getName();
 public int getId();
 public String getDescription();
 public BitSet getPermissions();
 public void addUser(fUser aUser);
 public Enumeration getUsers();
 public Hashtable getUserHash();
 public void setUserHash(Hashtable newhash);
 public void delUser(fUser aUser);
 public int getNoUsers();
 public void setPermission(fPermission perm);
 public void clearPermission(fPermission perm);
 public void resetPermission();
 public BitSet getPermissionBitSet();
 public boolean can(fPermission perm);
 fUser : Represents the authentication users and has the following methods:
 public void reload(String name, String description, String password, fGroup group);
 public void createUser(String name, String description, String password, fGroup group) ;
 public void setPassword(String pass);
 public BitSet getPermissions();
 public BitSet getTotalPermissions();
 public boolean can(fPermission perm);
 public String login(byte[] password, boolean requestToken, Hashtable params);
 public String login(String password, boolean requestToken, Hashtable params);
 public String getHomeId();
 public void setHomeId(String myHomeId);
 public void setGroup(fGroup group);
 public void delGroup(fGroup group);
 public String getName();
 public String getDescription();
 public String getPassword();
 public fGroup getGroup();
 public Enumeration getGroups();
 public Hashtable getGroupHash();
 public void setGroupHash(Hashtable newhash);
 public int getNumGroups();
 public void setPermission(fPermission perm);
 public void setDescription(String desc);
 public void clearPermission(fPermission perm);
 public void setPermissionBitSet(BitSet newperms);
 public BitSet getPermissionBitSet();
 public void resetPermission();
 public boolean isModified();
 public void setModified(boolean flag);

Example Database Authenticator

As discussed in the previous section the default implementation is based on an
optionally encrypted text file, with passwords being MD5 digested. It is however
possible to use different storage mechanisms for users, groups and permissions such
as a relational database. There are no restrictions on the design of the database schema
as Universal Messaging simply needs a set of classes that comply to the fAuthenticator,
fGroup and fUser interfaces. Please note that not all classes need to be subclassed but
only the ones that you need to modify the default behaviour.

In the context of this example we are going to use a mysql database running on localhost
and containing a users table with the following columns:

Name: varchar

M
Even Header

Security

Universal Messaging Concepts Version 9.6 106

Password: varchar

Rights: int

Home: varchar

In order to keep the example simple we are going to statically define the groups and
permissions within the authenticator source code. We will use the group functionality
on the base fGroup class and therefore will only subclass fAuthenticator and fUser as
shown below:

DBAuthenticator
package com.myapp;
import com.pcbsys.foundation.authentication.*;
import com.pcbsys.nirvana.client.*;
import com.mysql.jdbc.Driver;
import java.io.*;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.DriverManager;
import java.util.Date;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;
public class DBAuthenticator extends fAuthenticator {
 private static fGroup MYAPP_GROUP =null;
 private static fGroup MYCOMPANY_GROUP =null;
 protected static fPermission CLIENT_PERMISSION=null;
 protected static fPermission ADMIN_PERMISSION=null;
 private static fPermission GUEST_PERMISSION=null;
 private boolean initialised=false;
 private String myName="DBAuthenticator";
 private static int myUniqueID=0;
 private static Connection myConnection;
 private static String jdbcurl = "jdbc:mysql://localhost:3306/test";
 private static String myDBUser="root";
 private static String myDBPassword="";
 //Lets statically define the groups and permissions
 static {
 //Company Group
 MYCOMPANY_GROUP =new fGroup();
 MYCOMPANY_GROUP.reload(2,"mycompany", "MyCompany Group");
 //Application Group
 MYAPP_GROUP =new fGroup();
 MYAPP_GROUP.reload(0,"mycompany/myapp", "MyApp Group");
 GUEST_PERMISSION=new fPermission();
 GUEST_PERMISSION.reload(0,"Guest");
 CLIENT_PERMISSION=new fPermission();
 CLIENT_PERMISSION.reload(1,"Client");
 ADMIN_PERMISSION=new fPermission();
 ADMIN_PERMISSION.reload(4,"Admin");
 }
 public void close(){
 super.close();
 if(getUsageCount() == 0){
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Closing Authenticator ["+getUsageCount()+"]");
 //release connection pool
 if (myConnection!=null){
 try {
 myConnection.close();

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 107

 } catch (SQLException e) {}
 myConnection=null;
 }
 initialised=false;
 }
 else {
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Closing Authenticator ["+getUsageCount()+"]");
 }
 }
 public DBAuthenticator() {
 super();
 addGroup(MYCOMPANY_GROUP);
 addGroup(MYAPP_GROUP);
 getPermissionsCollection().put("Client", CLIENT_PERMISSION);
 getPermissionsCollection().put("Admin", ADMIN_PERMISSION);
 getPermissionsCollection().put("Guest", GUEST_PERMISSION);
 }
 protected static Connection getDBConnection() throws SQLException{
 if (myConnection==null){
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 myConnection = DriverManager.getConnection(jdbcurl,myDBUser, myDBPassword);
 } catch (InstantiationException e) {
 e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
 } catch (IllegalAccessException e) {
 e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
 } catch (ClassNotFoundException e) {
 e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
 }
 }
 return myConnection;
 }
 public String getName() {
 return myName;
 }
 private static String getNextId() {
 return ""+myUniqueID++;
 }
 public void init(Hashtable initParams) throws IOException {
 if (!initialised){
 if (initParams.containsKey("NamedInstance")){
 myName=(String)initParams.get("NamedInstance");
 }
 else {
 myName=myName+"_"+getNextId();
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Default Instance Requested ");
 }
 if (initParams.get("DBUser")!=null){
 myDBUser=(String)initParams.get("DBUser");
 }
 if (initParams.get("DBPassword")!=null){
 myDBPassword=(String)initParams.get("DBPassword");
 }
 if (initParams.get("JDBCURL")!=null){
 jdbcurl=(String)initParams.get("JDBCURL");
 }
 initialised=true;
 }
 }
 private DBUser createDBUserInstance(String username, String description, String password, int permissions, int home){
 DBUser someuser=new DBUser();
 someuser.setAuthenticator(this);
 if (home==1){ //MyCompany/MyApp Users

M
Even Header

Security

Universal Messaging Concepts Version 9.6 108

 someuser.reload(username,description,password, MYAPP_GROUP);
 //Set home
 someuser.setHomeId(MYAPP_GROUP.getName());
 //Group association logic
 someuser.setGroup(MYAPP_GROUP);
 //Set outer group
 someuser.setGroup(MYCOMPANY_GROUP);
 MYCOMPANY_GROUP.addUser(someuser);
 //Set inner group
 MYAPP_GROUP.addUser(someuser);
 //Permissions association logic
 switch (permissions){
 case 1:
 someuser.setPermission(CLIENT_PERMISSION);
 break;
 case 10:
 someuser.setPermission(ADMIN_PERMISSION);
 break;
 default:{
 someuser.setPermission(GUEST_PERMISSION);
 break;
 }
 }
 }
 else {
 fAuthenticator.logAuthenticatorMessage("WARNING: User "+username+" has a home value of "+home+". User will be ignored!");
 return null;
 }
 return someuser;
 }
 private DBUser LoadUserFromDatabase(String username){
 DBUser someuser=null;
 Connection conn =null;
 java.sql.Statement stmt = null;
 java.sql.ResultSet rset=null;
 String name=null;
 try{
 conn=getDBConnection();
 stmt = conn.createStatement();
 rset = stmt.executeQuery("select name,password, rights,home from USERS where name='"+username.toLowerCase()+"'");
 while(rset.next())
 {
 int permissions= rset.getInt("RIGHTS");
 int home = rset.getInt("HOME"); // home desk association
 name=rset.getString("name").toLowerCase();
 String password=rset.getString("password");
 if (password==null || password.trim().length()==0 ||password.equals("null")) password="nopassword";
 String description="A "+name+" user"; //safeguard for users without a description!
 someuser=createDBUserInstance(name,description,password,permissions,home);
 if (someuser==null) continue; //In case we have invalid data to create this user object
 //Cache instance
 getUsersCollection().put(someuser.getName(),someuser);
 }
 rset.close();
 rset=null;
 stmt.close();
 stmt=null;
 }
 catch (Throwable t){
 logAuthenticatorException("DBAuthenticator: Error obtaining details for user "+name);
 logAuthenticatorException(t);
 t.printStackTrace();
 }

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 109

 finally {
 if (rset!=null){
 try {
 rset.close();
 } catch (SQLException e) {
 }
 rset=null;
 }
 if (stmt!=null){
 try {
 stmt.close();
 } catch (SQLException e) {
 }
 stmt=null;
 }
 }
 return someuser;
 }
 private void LoadUsersFromDatabase(){
 Connection conn =null;
 java.sql.Statement stmt=null;
 java.sql.ResultSet rset=null;
 String name=null;
 try{
 conn=getDBConnection();
 stmt = conn.createStatement();
 rset = stmt.executeQuery("select name,password, rights,home from USERS order by name");
 while(rset.next())
 {
 int rights= rset.getInt("RIGHTS");
 int home = rset.getInt("HOME"); // home desk association
 name=rset.getString("name").toLowerCase();
 String password=rset.getString("password");
 if (password==null || password.trim().length()==0 ||password.equals("null")) password="nopassword";
 String description="A "+name+" user";
 DBUser someuser=createDBUserInstance(name,description,password,rights,home);
 if (someuser==null) continue;
 getUsersCollection().put(someuser.getName(),someuser);
 }
 rset.close();
 rset=null;
 stmt.close();
 stmt=null;
 }
 catch (Throwable t){
 logAuthenticatorException("Error obtaining details for user "+name);
 logAuthenticatorException(t);
 t.printStackTrace();
 }
 finally {
 if (rset!=null){
 try {
 rset.close();
 } catch (SQLException e) {
 }
 rset=null;
 }
 if (stmt!=null){
 try {
 stmt.close();
 } catch (SQLException e) {
 }
 stmt=null;

M
Even Header

Security

Universal Messaging Concepts Version 9.6 110

 }
 }
 }
 public void reload() throws IOException {
 LoadUsersFromDatabase();
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Reload called");
 }
 /**
 * Creates a new fPermission with the unique ID and name supplied.
 *
 * The implementation should save the new permission to the relevant technology used.
 *
 * @param permNo Unique ID from 0 to 63.
 * @param name Name describing this new permission.
 * @return the new fPermission.
 * @throws java.io.IOException If unable to create the new fPermission.
 */
 public fPermission addPermission(int permNo, String name) throws IOException {
 if(getPermissionsCollection().get(""+permNo) == null){
 fPermission perm = new fPermission();
 perm.reload(permNo,name);
 getPermissionsCollection().put(""+permNo, perm);
 return perm;
 }
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Added Permission "+name+"("+permNo+")");
 return (fPermission) super.getPermissionsCollection().get(""+permNo);
 }
 public fUser addUser(String username, String description, String plainPassword, String groupName) throws IOException {
 fGroup group = null;
 if (groupName != null) {
 group = (fGroup) getGroupsCollection().get(groupName);
 if (group == null) throw new IOException("No known group " + groupName);
 }
 fUser user = createUser(username, description, plainPassword, group);
 getUsersCollection().put(user.getName(), user);
 if(group != null) group.addUser(user);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Added User "+username+" NOTE: This is not currently persisted in the database!");
 return user;
 }
 /**
 * Creates a new fUser with the supplied values.
 * The password field is passed as plain text but it is up to the implementation to ensure the password
 * is secure.
 *
 * The implementation should save the new user to the relevant technology used.
 *
 * @param user The user to copy.
 * @return The new fUser created.
 * @throws java.io.IOException If there where any errors during the construction of the user.
 */
 public fUser copyUser(fUser user) throws IOException {
 fGroup group = null;
 group = (fGroup) getGroupsCollection().get(user.getGroup().getName());
 fUser aUser = createUser(user.getName(),user.getDescription(),user.getPassword(),user.getGroup());
 getUsersCollection().put(aUser.getName(), aUser);
 if(group != null) group.addUser(aUser);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Copied User "+user.getName());
 return aUser;
 }
 /**
 * Adds a new group with the supplied values.
 *
 * The implementation should save the new group to the relevant technology used.

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 111

 *
 * @param id Unique ID for the group.
 * @param name Name of the new group.
 * @param description Description of the new group.
 * @return The new fGroup object.
 * @throws java.io.IOException If unable to create the new fGroup object.
 */
 public fGroup addGroup(int id, String name, String description) throws IOException {
 fGroup group = new fGroup();
 group.reload(id, name, description);
 addGroup(group);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Added Group "+group.getName());
 return group;
 }
 /**
 * Returns the permission with the ID supplied or null if not found.
 *
 * @param id fPermission Id to search for.
 * @return the fPermission or null if not found.
 */
 public fPermission getPermission(int id) {
 Enumeration perms = getPermissionsCollection().elements();
 while (perms.hasMoreElements()) {
 fPermission fPermission = (fPermission) perms.nextElement();
 if (fPermission.getId() == id) return fPermission;
 }
 return null;
 }
 /**
 * Returns the permission with the name supplied or null if not found.
 *
 * @param name fPermission name to search for.
 * @return the fPermission or null if not found.
 */
 public fPermission getPermission(String name) {
 return (fPermission)getPermissionsCollection().get(name);
 }
 public Enumeration getUsers(){
 return getUsersCollection().elements();
 }
 public fUser getUser(String username) {
 return (fUser) LoadUserFromDatabase(username.toLowerCase());
 }
 public fGroup getGroup(String name) {
 return (fGroup)getGroupsCollection().get(name);
 }
 /**
 * Removes the permission with the ID supplied.
 *
 * The implementation should remove the permission from the relevant technology used.
 *
 * @param id of the permission to delete.
 * @throws java.io.IOException if unable to delete the permission.
 */
 public void delPermission(int id) throws IOException {
 getPermissionsCollection().remove(""+id);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Deleted permission ("+id+")");
 }
 /**
 * Removes the user supplied.
 *
 * The implementation should remove the user from the relevant technology used.
 *

M
Even Header

Security

Universal Messaging Concepts Version 9.6 112

 * @param user fUser object to remove.
 * @throws java.io.IOException If unable to remove the user.
 */
 public void delUser(fUser user) throws IOException {
 if (user.getGroup() != null) {
 user.getGroup().delUser(user);
 }
 getUsersCollection().remove(user.getName());
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Deleted User "+user.getName());
 }
 /**
 * Removes the supplied fGroup object.
 *
 * Any user currently a member of this group will have the group reset to null meaning no group membership.
 *
 * The implementation should remove the group from the relevant technology used.
 *
 * @param group Group to remove.
 * @throws java.io.IOException If unable to remove the group.
 */
 public void delGroup(fGroup group) throws IOException {
 Enumeration enm = group.getUsers();
 while (enm.hasMoreElements()) {
 fUser user = (fUser) enm.nextElement();
 user.delGroup(group);
 }
 getGroupsCollection().remove(group.getName());
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Deleted Group "+group.getName());
 }
 /**
 * Requests that the implementation save the current state.
 *
 * This should include all users, groups and permissions.
 *
 * @throws java.io.IOException if the save failed.
 */
 public void saveState() throws IOException {
 //TODO: Implement saving of data to the database
 }
 public void roll() throws IOException {
 //TODO: Implement any log file rolling
 }
 protected fUser createUser(String name, String desc, String password, fGroup group){
 // System.out.println("CreateUSer being called");
 DBUser usr = new DBUser();
 usr.reload(name, desc, password, group);
 usr.setHomeId(group.getName());
 usr.setAuthenticator(this);
 return usr;
 }
}

DBUser
package com.myapp;
import com.pcbsys.foundation.authentication.fUser;
import com.pcbsys.foundation.authentication.fGroup;
import com.pcbsys.foundation.authentication.fAuthenticator;
import java.util.Hashtable;
import java.sql.SQLException;
public class DBUser extends fUser {
 private static fAuthenticator myAuthenticator;
 protected DBUser(){

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 113

 super();
 super.setGroupHash(new Hashtable());
 }
 //Allow setting a reference to the authenticator instance so that we can obtain its DB connection for
 //user authentication purposes
 public static void setAuthenticator (fAuthenticator authenticator){
 myAuthenticator=authenticator;
 }
 protected DBUser(String name, String desc, String password){
 this(name, desc, password, null);
 }
 protected DBUser(String name, String desc, String password, fGroup group){
 super(name,desc,password,group);
 }
 public String login(byte[] password, boolean requestToken){
 return login(password,requestToken,null);
 }
public String login(String password, boolean requestToken){
 return login(password,requestToken,null);
}
 public String login(byte[] password, boolean requestToken, Hashtable params){
 return login(new String(password), requestToken, params);
 }
 public String login(String password, boolean requestToken, Hashtable params){
 java.sql.Connection conn =null;
 java.sql.Statement stmt=null;
 java.sql.ResultSet rset=null;
 String name=null;
 try{
 conn=((DBAuthenticator)myAuthenticator).getDBConnection();
 stmt = conn.createStatement();
 rset = stmt.executeQuery("select password, rights from USERS where name ='"+this.getName()+"'");
 while(rset.next())
 {
 int rights= rset.getInt("RIGHTS");
 String thepassword=rset.getString("password");
 if (thepassword.equals(password)){
 if (rights > 0) return "true";
 }
 }
 rset.close();
 rset=null;
 stmt.close();
 stmt=null;
 }
 catch (Throwable t){
 myAuthenticator.logAuthenticatorException("DBAuthenticator: Error obtaining details for user "+name);
 myAuthenticator.logAuthenticatorException(t);
 }
 finally {
 if (rset!=null){
 try {
 rset.close();
 } catch (SQLException e) {
 }
 rset=null;
 }
 if (stmt!=null){
 try {
 stmt.close();
 } catch (SQLException e) {
 }
 stmt=null;

M
Even Header

Security

Universal Messaging Concepts Version 9.6 114

 }
 }
 return null;
 }
}

Web Application Single Sign On

Single sign-on (SSO) is a method of access control that enables a user to log in once
and gain access to the required application and its resources without being prompted
to log in again.When developing multi node Universal Messaging web applications,
you have to take into consideration that incidents such a network failure, could cause
the user's browser to fail over to a different node than the one initially authenticated
with. In order to prevent the application user from authenticating again, or to integrate
your Universal Messaging web application to a 3d party authentication mechanism
and provide alternative authentication user interfaces, you can use Single Sign On
Interceptors (SSI).

A Single Sign On Interceptor (SSI) is a class that conforms to a specific interface and gets
invoked by the Universal Messaging realm prior to authentication in order to decide
which of the following 3 outcomes should occur:

If the user meets the criteria required, allow access to the plugin content as if they
where normally authenticated, optionally generating a unique session id.

If the user does not meet the criteria required, but a redirection is configured,
redirect their browsers to the specified URL in order to authenticate.

If the user does not meet the criteria required, and no redirection is configured, then
fall back to the regular authenticator configured.

The interface for creation of a nirvana SSI implementations is defined in the following 2
classes of the com.pcbsys.foundation.authentication package:

fSSInterceptor
 //Return an fSSUser with a null username to fall back to authenticator (or redirect if a URL is set)
 public abstract fSSUser getSSUser(Hashtable httpHeaders, Hashtable urlParameters);
 public abstract void setParameters(Hashtable params);
 public abstract void clear();
 public abstract String getName();

fSSUser
 public fSSUser(String username, String redirectURL);
 public fSSUser(String username, String redirectURL, String token);
 public String getUsername();
 public String getRedirectURL();
 public String getToken()

Plugin Single Sign On Interceptor Parameters

SSInterceptor: Fully qualified class name of SSI to use. If not specified, no interceptor
will be used

SSOAppendToken: Seing this parameter to true instructs the SSI object to generate
and return a unique session ID when an affirmative single sign on decision is

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 115

reached. Please note that the absence of a session ID is irrelevant to the single sign on
decision.

Common Single Sign On AuthParameters

Irrespective of the Single Sign On implementation you use in your Universal Messaging
server plugins, there are some AuthParameters that are also used by the server. These
are:

SSONamedInstance: This optional parameter requests that this SSI object is
bound to the specified named instance which will be shared across all plugins
on this server that are configured to do so. Please note that the first plugin that
accepts a connection will bind the name to the server together with the remaining
configuration parameters. For this reason please make sure that configuration is
always the same on all plugins that share the same SSI instance.

REDIRECT_URL: This optional parameter specifies the URL that a web client should
be redirected to should the interceptor's criteria are not met. This allows the creation
of alternative authentication methods such as form based authentication or others.

Mobile Application Authentication

When developing Universal Messaging based mobile applications, authentication
is dependent on your mobile technology of choice. This is because the Universal
Messaging Blackberry API authentication works exactly like any Universal Messaging
enterprise application (with the exception of SSL client certificates) while the Universal
Messaging IPhone application works exactly like any Universal Messaging web
application.

Using Universal Messaging over HTTP/HTTPS
The Universal Messaging messaging APIs provides a rich set of functionality that can
be used over sockets, SSL, HTTP and HTTPS. The code used to connect to the Universal
Messaging server is the same regardless of which network protocol you are using to
connect.

Under the Universal Messaging programming model there are a number of logical steps
that need to be followed in order to establish a connection to a Universal Messaging
sever (Realm). These involve establishing a session, obtaining a reference to a channel or
a transaction, or registering an object as a subscriber.

Universal Messaging fully supports HTTP and HTTPS. Rather than tunnel an existing
protocol through HTTP Universal Messaging has a pluggable set of communications
drivers supporting TCP/IP Sockets, SSL enabled TCP/IP sockets, HTTP and HTTPS. Both
the client and server make use of these pluggable drivers. From the server perspective
different driver types can be assigned to specific Universal Messaging interfaces. From a
client perspective a Universal Messaging session can be built on any one of the available
drivers dynamically.

Please note that before making an HTTP/HTTPS connection to a Universal Messaging
realm server you will first need to add a HTTP/HTTPS interface to the realm.

M
Even Header

Security

Universal Messaging Concepts Version 9.6 116

To create a connect to a Universal Messaging Realm over HTTPS you would use an "
RNAME" on page 19 that specific the Universal Messaging HTTPS protocol (nhps) as
follows:

1. Create a nSessionArib object with the RNAME value of your choice
//use an RNAME indicating the wire protocol you are using (HTTPS in this case)
//you can pass an array of up to four values for RNAME for added robustness
String[] RNAME=({"nhps://remoteHost:443" });
nSessionAttrib nsa = new nSessionAttrib(RNAME);

2. Call the create method on nSessionFactory to create your session
nSession mySession = nSessionFactory.create(nsa);

Alternatively, if you require the use of a session reconnect handler to intercept the
automatic reconnection aempts, pass an instance of that class too in the create method:
Public class myReconnectHandler implements nReconnectHandler {
myReconnectHandler rhandler = new myReconnectHandler();
nSession mySession = nSessionFactory.create(nsa, rhandler);

3. Initialise the session object to open the connection to the Universal Messaging Realm
mySession.init();

After initialising your Universal Messaging session, you will be connected to the
Universal Messaging Realm using HTTPS. From that point, all functionality is subject to
a Realm ACL check. If you call a method that requires a permission your credential does
not have, you will receive an nSecurityException.

Authentication

Universal Messaging Concepts - Authentication
While distributed applications offer many benefits to their users the development of
such applications can be a complex process. The ability to correctly authenticate users
has been a complex issue and has lead to the emergence of standard Authentication and
Authorisation frameworks, frameworks such as JAAS.

JAAS authentication is performed in a pluggable fashion. This permits applications to
remain independent from underlying authentication technologies. New or updated
authentication technologies can be plugged under an application without requiring
modifications to the application itself.

Universal Messaging provides a wide variety of client APIs to develop enterprise, web
and mobile applications. On the enterprise application front, Universal Messaging offers
a transport protocol dependent authentication scheme while on the web and mobile
application front a pluggable authentication framework is offered. The end result is that
all applications can share the same Universal Messaging authorization scheme which
requires a token@host based subject that access control lists can be defined upon.

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 117

Enterprise Application Authentication

Universal Messaging enterprise applications can be wrien in a variety of programming
languages. Each one of these client APIs offers connectivity using one of the 4 available
transport protocols, namely nsp (TCP Sockets), nhp (HTTP), nsps (SSL Sockets) and
nhps (HTTPS). The authentication scheme is transport protocol dependent therefore
providing a basic authentication scheme for TCP based transport protocols (nsp, nhp)
and an SSL authentication scheme for SSL based transport protocols (nsps, nhps).

Basic Authentication Scheme

Under this mode of authentication the client passes the username to the server as part
of the initial connection handshake. The server then extracts the remote host name and
creates the subject to be used by this connection.

The client API can set the username component, however, the remote host is always
set on the server. This stops clients from impersonating users from other hosts. The
following diagram illustrates the basic authentication scheme's operation:

SSL Authentication Scheme

The Universal Messaging Realm server can be configured to perform Client Certificate
authorisation or to allow anonymous SSL clients to connect. When the server is
configured to allow anonymous clients to connect the subject is built up based on the
previous authentication method. That is the username portion is passed to it from the
client.

When the server is configured for client certificate processing the subject is constructed
with the Common Name (CN) of the certificate and the remote host name. This allows
the ACLs to be configured such that not only is the certificate valid but it can only

M
Even Header

Security

Universal Messaging Concepts Version 9.6 118

access the Realm Server from a specific host. The following diagram illustrates the SSL
authentication scheme's operation when using client certificates:

Web Application Authentication

Universal Messaging web applications can use a pluggable authentication framework
that presents its self as basic hp authentication as defined by RFC 1945. Basic
authentication is supported by all popular web browsers and users have to enter a
username and password in a browser provided login dialog before proceeding. The web
browser then automatically includes the token in the Authorization HTTP header for all
subsequent requests to the server's authentication realm, for the lifetime of the browser
process. Please note that although Universal Messaging supports basic authentication on
both nhp (HTTP) and nhps (HTTPS) interfaces, it is only advised to use it over HTTPS
connections to secure your web application against man in the middle aacks and
network sniffing tools.

In order to host your web application on Universal Messaging, a number of server side
plugins are provided that you can configure and mount on the various URLs that your
application expects connections on. These are the XML plugin, the Servlet plugin, the
Change Password plugin, the Realm Status plugin, the SOAP plugin, the File plugin and
the Proxy Pass Through plugin.

Plugin Authentication Parameters

Each one of these plugins contains an identical set of configuration parameters that
control its behavior towards authentication. These are described below:

Security Realm: Name of the authentication realm

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 119

AddUserAsCookie: Specifies if the authenticated username should be added as a
cookie.

Authenticator: Fully qualified class name of authenticator to use, or blank to use
the default implementation provided.

AuthParameters: A space delimited list of key=value definitions which are passed
to the authenticator instance to initialize and configure it. These are passed to the
Authenticator's init method.

GroupNames: An optional comma separated list of groups. The user must be
a member of at least one group to be granted access even if a valid username/
password is provided. The groups are dependent on the authenticator
implementation.

RoleNames: An optional comma separated list of roles. The user must have at least
one role to be granted access even if a valid username/password is provided. The
roles are dependent on the authenticator implementation and are effectively the
permissions defined.

ReloadUserFileDynamically: If set to true, the reload method of the authenticator
implementation will be called prior to serving each hp request. If set to false, the
reload will only be called once when the Universal Messaging interface starts.

Common AuthParameters

Irrespective of the authenticator implementation you use in your Universal Messaging
server plugins, there are some AuthParameters that are also used by the server. These
are:

NamedInstance: This parameter requests that this authenticator configuration
is bound to the specified named instance which will be shared across all plugins
on this server that are configured to do so. Please note that the first plugin that
accepts a connection will bind the name to the server together with the remaining
configuration parameters. For this reason please make sure that configuration is
always the same on all plugins that share the same instance.

Default Authenticator Implementation

Universal Messaging comes with a default authenticator implementation that uses a
properties file to define users, groups and permissions (roles). In order to enable it on a
Universal Messaging plugin, the Authenticator parameter needs to be left empty (this
implies using the Default), the Authentication Realm set and one parameter needs to be
set in AuthParameters.

The necessary parameter is called UserFile and should point to the full path of a java
properties file, e.g. c:\users.txt. In order to get the Universal Messaging realm server
to encrypt your user passwords, you need to add a property called initialise as shown
below. This notifies the default authenticator that passwords are not encrypted so on the
first load it will encrypt them, remove the initialise property and save your user file.

M
Even Header

Security

Universal Messaging Concepts Version 9.6 120

An example of a UserFile defining 3 permissions (roles), 3 groups and 3 users is shown
below:
 #Request password initialisation
 initialise=true
 #Permissions (Roles) Definition
 perm_name_1=Guest
 perm_name_2=User
 perm_name_3=Admin
 #Guests Group Definition
 group_ID_Guests=1
 group_desc_Guests=Guests Group
 group_perm_Guests={1}
 #Users Group Definition
 group_ID_Users=2
 group_desc_Users=Users Group
 group_perm_Users={2}
 #Admins Group Definition
 group_ID_Admins=3
 group_desc_Admins=Admins Group
 group_perm_Admins={3}
 #Example Guest User Definition
 user_desc_someguest=Some Guest User
 user_pass_someguest=password
 user_perm_someguest={1}
 user_home_id_someguest=Guests
 user_group_someguest=Guests
 #Example Regular User Definition
 user_desc_someuser=Some User
 user_pass_someuser=password
 user_perm_someuser={1,2}
 user_home_id_someuser=Users
 user_group_someuser=Users
 user_group_0_someuser=Guests
 #Example Admin User Definition
 user_desc_someadmin=Some Admin User
 user_pass_someadmin=password
 user_perm_someadmin={1,2,3}
 user_home_id_someadmin=Admins
 user_group_someadmin=Admins
 user_group_0_someadmin=Guests
 user_group_1_someadmin=Users

Custom Authenticator Implementations

The interface for creation of custom authenticator implementations is defined in the
following 3 classes of the com.pcbsys.foundation.authentication package:
 fAuthenticator: Represents the Authenticator Implementation and has the following methods
 public void init(Hashtable initParams);
 public String getName();
 public synchronized void close();
 public void reload();
 public fPermission addPermission(int permNo, String name) ;
 public fUser addUser(String username, String description, String plainPassword, String groupName);
 public fUser copyUser(fUser user) ;
 public fUser getUser(String username);
 public void delUser(fUser user);
 public fGroup addGroup(int id, String name, String description);
 public fPermission getPermission(int id);
 public fPermission getPermission(String name);
 public fGroup getGroup(String name);

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 121

 public void delPermission(int id);
 public void delGroup(fGroup group);
 public void saveState() throws IOException
 fGroup: Represents the user groups and contains the following methods:
 public void reload(int id, String name, String description);
 public boolean isModified();
 public void setModified(boolean flag);
 public String getName();
 public int getId();
 public String getDescription();
 public BitSet getPermissions();
 public void addUser(fUser aUser);
 public Enumeration getUsers();
 public Hashtable getUserHash();
 public void setUserHash(Hashtable newhash);
 public void delUser(fUser aUser);
 public int getNoUsers();
 public void setPermission(fPermission perm);
 public void clearPermission(fPermission perm);
 public void resetPermission();
 public BitSet getPermissionBitSet();
 public boolean can(fPermission perm);
 fUser : Represents the authentication users and has the following methods:
 public void reload(String name, String description, String password, fGroup group);
 public void createUser(String name, String description, String password, fGroup group) ;
 public void setPassword(String pass);
 public BitSet getPermissions();
 public BitSet getTotalPermissions();
 public boolean can(fPermission perm);
 public String login(byte[] password, boolean requestToken, Hashtable params);
 public String login(String password, boolean requestToken, Hashtable params);
 public String getHomeId();
 public void setHomeId(String myHomeId);
 public void setGroup(fGroup group);
 public void delGroup(fGroup group);
 public String getName();
 public String getDescription();
 public String getPassword();
 public fGroup getGroup();
 public Enumeration getGroups();
 public Hashtable getGroupHash();
 public void setGroupHash(Hashtable newhash);
 public int getNumGroups();
 public void setPermission(fPermission perm);
 public void setDescription(String desc);
 public void clearPermission(fPermission perm);
 public void setPermissionBitSet(BitSet newperms);
 public BitSet getPermissionBitSet();
 public void resetPermission();
 public boolean isModified();
 public void setModified(boolean flag);

Example Database Authenticator

As discussed in the previous section the default implementation is based on an
optionally encrypted text file, with passwords being MD5 digested. It is however
possible to use different storage mechanisms for users, groups and permissions such
as a relational database. There are no restrictions on the design of the database schema
as Universal Messaging simply needs a set of classes that comply to the fAuthenticator,

M
Even Header

Security

Universal Messaging Concepts Version 9.6 122

fGroup and fUser interfaces. Please note that not all classes need to be subclassed but
only the ones that you need to modify the default behaviour.

In the context of this example we are going to use a mysql database running on localhost
and containing a users table with the following columns:

Name: varchar

Password: varchar

Rights: int

Home: varchar

In order to keep the example simple we are going to statically define the groups and
permissions within the authenticator source code. We will use the group functionality
on the base fGroup class and therefore will only subclass fAuthenticator and fUser as
shown below:

DBAuthenticator
package com.myapp;
import com.pcbsys.foundation.authentication.*;
import com.pcbsys.nirvana.client.*;
import com.mysql.jdbc.Driver;
import java.io.*;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.DriverManager;
import java.util.Date;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;
public class DBAuthenticator extends fAuthenticator {
 private static fGroup MYAPP_GROUP =null;
 private static fGroup MYCOMPANY_GROUP =null;
 protected static fPermission CLIENT_PERMISSION=null;
 protected static fPermission ADMIN_PERMISSION=null;
 private static fPermission GUEST_PERMISSION=null;
 private boolean initialised=false;
 private String myName="DBAuthenticator";
 private static int myUniqueID=0;
 private static Connection myConnection;
 private static String jdbcurl = "jdbc:mysql://localhost:3306/test";
 private static String myDBUser="root";
 private static String myDBPassword="";
 //Lets statically define the groups and permissions
 static {
 //Company Group
 MYCOMPANY_GROUP =new fGroup();
 MYCOMPANY_GROUP.reload(2,"mycompany", "MyCompany Group");
 //Application Group
 MYAPP_GROUP =new fGroup();
 MYAPP_GROUP.reload(0,"mycompany/myapp", "MyApp Group");
 GUEST_PERMISSION=new fPermission();
 GUEST_PERMISSION.reload(0,"Guest");
 CLIENT_PERMISSION=new fPermission();
 CLIENT_PERMISSION.reload(1,"Client");
 ADMIN_PERMISSION=new fPermission();
 ADMIN_PERMISSION.reload(4,"Admin");
 }

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 123

 public void close(){
 super.close();
 if(getUsageCount() == 0){
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Closing Authenticator ["+getUsageCount()+"]");
 //release connection pool
 if (myConnection!=null){
 try {
 myConnection.close();
 } catch (SQLException e) {}
 myConnection=null;
 }
 initialised=false;
 }
 else {
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Closing Authenticator ["+getUsageCount()+"]");
 }
 }
 public DBAuthenticator() {
 super();
 addGroup(MYCOMPANY_GROUP);
 addGroup(MYAPP_GROUP);
 getPermissionsCollection().put("Client", CLIENT_PERMISSION);
 getPermissionsCollection().put("Admin", ADMIN_PERMISSION);
 getPermissionsCollection().put("Guest", GUEST_PERMISSION);
 }
 protected static Connection getDBConnection() throws SQLException{
 if (myConnection==null){
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 myConnection = DriverManager.getConnection(jdbcurl,myDBUser, myDBPassword);
 } catch (InstantiationException e) {
 e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
 } catch (IllegalAccessException e) {
 e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
 } catch (ClassNotFoundException e) {
 e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
 }
 }
 return myConnection;
 }
 public String getName() {
 return myName;
 }
 private static String getNextId() {
 return ""+myUniqueID++;
 }
 public void init(Hashtable initParams) throws IOException {
 if (!initialised){
 if (initParams.containsKey("NamedInstance")){
 myName=(String)initParams.get("NamedInstance");
 }
 else {
 myName=myName+"_"+getNextId();
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Default Instance Requested ");
 }
 if (initParams.get("DBUser")!=null){
 myDBUser=(String)initParams.get("DBUser");
 }
 if (initParams.get("DBPassword")!=null){
 myDBPassword=(String)initParams.get("DBPassword");
 }
 if (initParams.get("JDBCURL")!=null){
 jdbcurl=(String)initParams.get("JDBCURL");

M
Even Header

Security

Universal Messaging Concepts Version 9.6 124

 }
 initialised=true;
 }
 }
 private DBUser createDBUserInstance(String username, String description, String password, int permissions, int home){
 DBUser someuser=new DBUser();
 someuser.setAuthenticator(this);
 if (home==1){ //MyCompany/MyApp Users
 someuser.reload(username,description,password, MYAPP_GROUP);
 //Set home
 someuser.setHomeId(MYAPP_GROUP.getName());
 //Group association logic
 someuser.setGroup(MYAPP_GROUP);
 //Set outer group
 someuser.setGroup(MYCOMPANY_GROUP);
 MYCOMPANY_GROUP.addUser(someuser);
 //Set inner group
 MYAPP_GROUP.addUser(someuser);
 //Permissions association logic
 switch (permissions){
 case 1:
 someuser.setPermission(CLIENT_PERMISSION);
 break;
 case 10:
 someuser.setPermission(ADMIN_PERMISSION);
 break;
 default:{
 someuser.setPermission(GUEST_PERMISSION);
 break;
 }
 }
 }
 else {
 fAuthenticator.logAuthenticatorMessage("WARNING: User "+username+" has a home value of "+home+". User will be ignored!");
 return null;
 }
 return someuser;
 }
 private DBUser LoadUserFromDatabase(String username){
 DBUser someuser=null;
 Connection conn =null;
 java.sql.Statement stmt = null;
 java.sql.ResultSet rset=null;
 String name=null;
 try{
 conn=getDBConnection();
 stmt = conn.createStatement();
 rset = stmt.executeQuery("select name,password, rights,home from USERS where name='"+username.toLowerCase()+"'");
 while(rset.next())
 {
 int permissions= rset.getInt("RIGHTS");
 int home = rset.getInt("HOME"); // home desk association
 name=rset.getString("name").toLowerCase();
 String password=rset.getString("password");
 if (password==null || password.trim().length()==0 ||password.equals("null")) password="nopassword";
 String description="A "+name+" user"; //safeguard for users without a description!
 someuser=createDBUserInstance(name,description,password,permissions,home);
 if (someuser==null) continue; //In case we have invalid data to create this user object
 //Cache instance
 getUsersCollection().put(someuser.getName(),someuser);
 }
 rset.close();
 rset=null;

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 125

 stmt.close();
 stmt=null;
 }
 catch (Throwable t){
 logAuthenticatorException("DBAuthenticator: Error obtaining details for user "+name);
 logAuthenticatorException(t);
 t.printStackTrace();
 }
 finally {
 if (rset!=null){
 try {
 rset.close();
 } catch (SQLException e) {
 }
 rset=null;
 }
 if (stmt!=null){
 try {
 stmt.close();
 } catch (SQLException e) {
 }
 stmt=null;
 }
 }
 return someuser;
 }
 private void LoadUsersFromDatabase(){
 Connection conn =null;
 java.sql.Statement stmt=null;
 java.sql.ResultSet rset=null;
 String name=null;
 try{
 conn=getDBConnection();
 stmt = conn.createStatement();
 rset = stmt.executeQuery("select name,password, rights,home from USERS order by name");
 while(rset.next())
 {
 int rights= rset.getInt("RIGHTS");
 int home = rset.getInt("HOME"); // home desk association
 name=rset.getString("name").toLowerCase();
 String password=rset.getString("password");
 if (password==null || password.trim().length()==0 ||password.equals("null")) password="nopassword";
 String description="A "+name+" user";
 DBUser someuser=createDBUserInstance(name,description,password,rights,home);
 if (someuser==null) continue;
 getUsersCollection().put(someuser.getName(),someuser);
 }
 rset.close();
 rset=null;
 stmt.close();
 stmt=null;
 }
 catch (Throwable t){
 logAuthenticatorException("Error obtaining details for user "+name);
 logAuthenticatorException(t);
 t.printStackTrace();
 }
 finally {
 if (rset!=null){
 try {
 rset.close();
 } catch (SQLException e) {
 }

M
Even Header

Security

Universal Messaging Concepts Version 9.6 126

 rset=null;
 }
 if (stmt!=null){
 try {
 stmt.close();
 } catch (SQLException e) {
 }
 stmt=null;
 }
 }
 }
 public void reload() throws IOException {
 LoadUsersFromDatabase();
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Reload called");
 }
 /**
 * Creates a new fPermission with the unique ID and name supplied.
 *
 * The implementation should save the new permission to the relevant technology used.
 *
 * @param permNo Unique ID from 0 to 63.
 * @param name Name describing this new permission.
 * @return the new fPermission.
 * @throws java.io.IOException If unable to create the new fPermission.
 */
 public fPermission addPermission(int permNo, String name) throws IOException {
 if(getPermissionsCollection().get(""+permNo) == null){
 fPermission perm = new fPermission();
 perm.reload(permNo,name);
 getPermissionsCollection().put(""+permNo, perm);
 return perm;
 }
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Added Permission "+name+"("+permNo+")");
 return (fPermission) super.getPermissionsCollection().get(""+permNo);
 }
 public fUser addUser(String username, String description, String plainPassword, String groupName) throws IOException {
 fGroup group = null;
 if (groupName != null) {
 group = (fGroup) getGroupsCollection().get(groupName);
 if (group == null) throw new IOException("No known group " + groupName);
 }
 fUser user = createUser(username, description, plainPassword, group);
 getUsersCollection().put(user.getName(), user);
 if(group != null) group.addUser(user);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Added User "+username+" NOTE: This is not currently persisted in the database!");
 return user;
 }
 /**
 * Creates a new fUser with the supplied values.
 * The password field is passed as plain text but it is up to the implementation to ensure the password
 * is secure.
 *
 * The implementation should save the new user to the relevant technology used.
 *
 * @param user The user to copy.
 * @return The new fUser created.
 * @throws java.io.IOException If there where any errors during the construction of the user.
 */
 public fUser copyUser(fUser user) throws IOException {
 fGroup group = null;
 group = (fGroup) getGroupsCollection().get(user.getGroup().getName());
 fUser aUser = createUser(user.getName(),user.getDescription(),user.getPassword(),user.getGroup());
 getUsersCollection().put(aUser.getName(), aUser);

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 127

 if(group != null) group.addUser(aUser);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Copied User "+user.getName());
 return aUser;
 }
 /**
 * Adds a new group with the supplied values.
 *
 * The implementation should save the new group to the relevant technology used.
 *
 * @param id Unique ID for the group.
 * @param name Name of the new group.
 * @param description Description of the new group.
 * @return The new fGroup object.
 * @throws java.io.IOException If unable to create the new fGroup object.
 */
 public fGroup addGroup(int id, String name, String description) throws IOException {
 fGroup group = new fGroup();
 group.reload(id, name, description);
 addGroup(group);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Added Group "+group.getName());
 return group;
 }
 /**
 * Returns the permission with the ID supplied or null if not found.
 *
 * @param id fPermission Id to search for.
 * @return the fPermission or null if not found.
 */
 public fPermission getPermission(int id) {
 Enumeration perms = getPermissionsCollection().elements();
 while (perms.hasMoreElements()) {
 fPermission fPermission = (fPermission) perms.nextElement();
 if (fPermission.getId() == id) return fPermission;
 }
 return null;
 }
 /**
 * Returns the permission with the name supplied or null if not found.
 *
 * @param name fPermission name to search for.
 * @return the fPermission or null if not found.
 */
 public fPermission getPermission(String name) {
 return (fPermission)getPermissionsCollection().get(name);
 }
 public Enumeration getUsers(){
 return getUsersCollection().elements();
 }
 public fUser getUser(String username) {
 return (fUser) LoadUserFromDatabase(username.toLowerCase());
 }
 public fGroup getGroup(String name) {
 return (fGroup)getGroupsCollection().get(name);
 }
 /**
 * Removes the permission with the ID supplied.
 *
 * The implementation should remove the permission from the relevant technology used.
 *
 * @param id of the permission to delete.
 * @throws java.io.IOException if unable to delete the permission.
 */
 public void delPermission(int id) throws IOException {

M
Even Header

Security

Universal Messaging Concepts Version 9.6 128

 getPermissionsCollection().remove(""+id);
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Deleted permission ("+id+")");
 }
 /**
 * Removes the user supplied.
 *
 * The implementation should remove the user from the relevant technology used.
 *
 * @param user fUser object to remove.
 * @throws java.io.IOException If unable to remove the user.
 */
 public void delUser(fUser user) throws IOException {
 if (user.getGroup() != null) {
 user.getGroup().delUser(user);
 }
 getUsersCollection().remove(user.getName());
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Deleted User "+user.getName());
 }
 /**
 * Removes the supplied fGroup object.
 *
 * Any user currently a member of this group will have the group reset to null meaning no group membership.
 *
 * The implementation should remove the group from the relevant technology used.
 *
 * @param group Group to remove.
 * @throws java.io.IOException If unable to remove the group.
 */
 public void delGroup(fGroup group) throws IOException {
 Enumeration enm = group.getUsers();
 while (enm.hasMoreElements()) {
 fUser user = (fUser) enm.nextElement();
 user.delGroup(group);
 }
 getGroupsCollection().remove(group.getName());
 fAuthenticator.logAuthenticatorMessage("{"+getName()+"} "+"Deleted Group "+group.getName());
 }
 /**
 * Requests that the implementation save the current state.
 *
 * This should include all users, groups and permissions.
 *
 * @throws java.io.IOException if the save failed.
 */
 public void saveState() throws IOException {
 //TODO: Implement saving of data to the database
 }
 public void roll() throws IOException {
 //TODO: Implement any log file rolling
 }
 protected fUser createUser(String name, String desc, String password, fGroup group){
 // System.out.println("CreateUSer being called");
 DBUser usr = new DBUser();
 usr.reload(name, desc, password, group);
 usr.setHomeId(group.getName());
 usr.setAuthenticator(this);
 return usr;
 }
}

DBUser
package com.myapp;

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 129

import com.pcbsys.foundation.authentication.fUser;
import com.pcbsys.foundation.authentication.fGroup;
import com.pcbsys.foundation.authentication.fAuthenticator;
import java.util.Hashtable;
import java.sql.SQLException;
public class DBUser extends fUser {
 private static fAuthenticator myAuthenticator;
 protected DBUser(){
 super();
 super.setGroupHash(new Hashtable());
 }
 //Allow setting a reference to the authenticator instance so that we can obtain its DB connection for
 //user authentication purposes
 public static void setAuthenticator (fAuthenticator authenticator){
 myAuthenticator=authenticator;
 }
 protected DBUser(String name, String desc, String password){
 this(name, desc, password, null);
 }
 protected DBUser(String name, String desc, String password, fGroup group){
 super(name,desc,password,group);
 }
 public String login(byte[] password, boolean requestToken){
 return login(password,requestToken,null);
 }
public String login(String password, boolean requestToken){
 return login(password,requestToken,null);
}
 public String login(byte[] password, boolean requestToken, Hashtable params){
 return login(new String(password), requestToken, params);
 }
 public String login(String password, boolean requestToken, Hashtable params){
 java.sql.Connection conn =null;
 java.sql.Statement stmt=null;
 java.sql.ResultSet rset=null;
 String name=null;
 try{
 conn=((DBAuthenticator)myAuthenticator).getDBConnection();
 stmt = conn.createStatement();
 rset = stmt.executeQuery("select password, rights from USERS where name ='"+this.getName()+"'");
 while(rset.next())
 {
 int rights= rset.getInt("RIGHTS");
 String thepassword=rset.getString("password");
 if (thepassword.equals(password)){
 if (rights > 0) return "true";
 }
 }
 rset.close();
 rset=null;
 stmt.close();
 stmt=null;
 }
 catch (Throwable t){
 myAuthenticator.logAuthenticatorException("DBAuthenticator: Error obtaining details for user "+name);
 myAuthenticator.logAuthenticatorException(t);
 }
 finally {
 if (rset!=null){
 try {
 rset.close();
 } catch (SQLException e) {
 }

M
Even Header

Security

Universal Messaging Concepts Version 9.6 130

 rset=null;
 }
 if (stmt!=null){
 try {
 stmt.close();
 } catch (SQLException e) {
 }
 stmt=null;
 }
 }
 return null;
 }
}

Web Application Single Sign On

Single sign-on (SSO) is a method of access control that enables a user to log in once
and gain access to the required application and its resources without being prompted
to log in again.When developing multi node Universal Messaging web applications,
you have to take into consideration that incidents such a network failure, could cause
the user's browser to fail over to a different node than the one initially authenticated
with. In order to prevent the application user from authenticating again, or to integrate
your Universal Messaging web application to a 3d party authentication mechanism
and provide alternative authentication user interfaces, you can use Single Sign On
Interceptors (SSI).

A Single Sign On Interceptor (SSI) is a class that conforms to a specific interface and gets
invoked by the Universal Messaging realm prior to authentication in order to decide
which of the following 3 outcomes should occur:

If the user meets the criteria required, allow access to the plugin content as if they
where normally authenticated, optionally generating a unique session id.

If the user does not meet the criteria required, but a redirection is configured,
redirect their browsers to the specified URL in order to authenticate.

If the user does not meet the criteria required, and no redirection is configured, then
fall back to the regular authenticator configured.

The interface for creation of a nirvana SSI implementations is defined in the following 2
classes of the com.pcbsys.foundation.authentication package:

fSSInterceptor
 //Return an fSSUser with a null username to fall back to authenticator (or redirect if a URL is set)
 public abstract fSSUser getSSUser(Hashtable httpHeaders, Hashtable urlParameters);
 public abstract void setParameters(Hashtable params);
 public abstract void clear();
 public abstract String getName();

fSSUser
 public fSSUser(String username, String redirectURL);
 public fSSUser(String username, String redirectURL, String token);
 public String getUsername();
 public String getRedirectURL();
 public String getToken()

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 131

Plugin Single Sign On Interceptor Parameters

SSInterceptor: Fully qualified class name of SSI to use. If not specified, no interceptor
will be used

SSOAppendToken: Seing this parameter to true instructs the SSI object to generate
and return a unique session ID when an affirmative single sign on decision is
reached. Please note that the absence of a session ID is irrelevant to the single sign on
decision.

Common Single Sign On AuthParameters

Irrespective of the Single Sign On implementation you use in your Universal Messaging
server plugins, there are some AuthParameters that are also used by the server. These
are:

SSONamedInstance: This optional parameter requests that this SSI object is
bound to the specified named instance which will be shared across all plugins
on this server that are configured to do so. Please note that the first plugin that
accepts a connection will bind the name to the server together with the remaining
configuration parameters. For this reason please make sure that configuration is
always the same on all plugins that share the same SSI instance.

REDIRECT_URL: This optional parameter specifies the URL that a web client should
be redirected to should the interceptor's criteria are not met. This allows the creation
of alternative authentication methods such as form based authentication or others.

Mobile Application Authentication

When developing Universal Messaging based mobile applications, authentication
is dependent on your mobile technology of choice. This is because the Universal
Messaging Mobile APIs work exactly like any Universal Messaging enterprise or web
API (with the exception of SSL client certificates).

Universal Messaging Authentication and SASL

Overview
The entire set of session creation methods of the Universal Messaging client API for Java
(nsp/ nsps/ nhp/ nhps, native and JMS) have been extended in Universal Messaging
9.6 with overloaded variants that accept username/password credentials which are
then supplied to the UM server, and the UM server has been enhanced to enable those
credentials to be authenticated against pluggable Directory backends, ranging from
LDAP to flat files.

The exchange of user credentials can be performed by means of either SASL (embedded
within the Universal Messaging SDK) or JAAS (controlled by user-configurable
pluggable modules).

M
Even Header

Security

Universal Messaging Concepts Version 9.6 132

The configuration is determined by a set of Java system properties on both the client and
server side, the laer typically centralized in the nserver.conf configuration file.

Note that authentication does not supplant the traditional Universal Messaging ACLs
and is merely an additional security step performed before the relevant ACLs are
evaluated and applied.

Client
If the pre-existing session connection methods with no username/password parameters
are used, then the client will continue to use unauthenticated sessions as before
(assuming the server is configured to allow that), i.e. by defaulting the user identity to
the username under whose identity the client process is running (as reflected in the Java
"user.name" system property). The client API is controlled by two main Java system
properties.

Nirvana.auth.client.jaaskey

If set, this means that any authentication should be performed via JAAS and
its value specifies the name of the entry to use in the JAAS login configuration
file. JAAS is an established Java standard which is beyond the scope of the UM
documentation and the login configuration file's pathname is specified by the usual
JAAS system property, java.security.auth.login.config. The Nirvana client SDK
supplies the username and password to the JDK's built-in JAAS subsystem, and
the JAAS login config file specifies one or more pluggable JAAS modules that will
perform the authentication. The precise modules to use are a maer of site-specific
policies determined by the Nirvana admins, and the JAAS modules configured
into a client should obviously be aligned with those configured on the server. If
Nirvana.auth.client.jaaskey is not set, then the authentication mechanism defaults to
SASL.

nirvana.sasl.client.mech

This specifies which SASL mechanism to use, and the supported options are Plain
or CRAM-MD5. The mechanism defaults to Plain if this system property is not set,
and the usual SASL trade-offs apply. SASL-Plain transmits the user password in
cleartext, so it is advisable to only use it over an SSL connection, while Cram-MD5
does not transmit it in cleartext, but does require it to be stored in plaintext on the
server (whereas Plain can work with stored passwords in either plain or encrypted
format).

One of the JAAS modules available is the Nirvana class,
com.pcbsys.foundation.security.sasl.fSaslClientLoginModule, which will result in the authentication
being performed via SASL after all, despite initially being routed via JAAS. From the
server's perspective, the authentication negotiation is conducted entirely in SASL.
The fSaslClientLoginModule class is integrated with the Software AG family of JAAS
modules, and one reason you might opt for this JAAS-SASL hybrid is to chain it with
other SAG modules.

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 133

Server
There is a much broader range of configuration options on the server, controlling every
aspect of authentication from whether it's enabled in the first place, to how to look up
user credentials.

Client Negotiation

Authentication is disabled by default on the server for backward compatibility,
meaning that even if clients do supply user credentials, they will be accepted without
verification. This is controlled by the Nirvana.auth.enabled system property,
which must be explicitly set to "Y" or "y" to enable authentication. System admins
have to set up various other config options when enabling authentication, so they
would set Nirvana.auth.enabled as part of that effort. Even when authentication
is enabled, authenticating clients can exist side-by-side with non-authenticating
ones, meaning it is entirely optional for clients to supply any user credentials, and if
they don't they will be handled in the traditional Universal Messaging manner. The
Nirvana.auth.mandatory system property controls this behaviour, and should be
explicitly set to "Y" or "y" to make authentication mandatory, meaning clients that don't
supply a username and password will be rejected (with the exception of the super-user
on localhost, so that Enterprise Manager doesn't get locked out). When a client does
authenticate, the UM client-server protocol automatically signals the server whether
they're using SASL or JAAS and if JAAS, then the Nirvana.auth.server.jaaskey
system property must be set on the server, and it specifies the name of the entry to use
in the JAAS login configuration file. As in the client case, the pathname of this file is
specified by the standard JAAS java.security.auth.login.config property. If
the Nirvana.auth.server.jaaskey system property is not set, then all aempts to
authenticate via JAAS will be rejected.

Directory Backend

The UM server can make use of a variety of backend Directory servers or mechanisms,
as controlled by the Nirvana.directory.provider system property, which specifies
the pluggable Java class representing the Directory.

Usernames are case-sensitive and are used in the form supplied to do the Directory
lookup. This is the authentication step, and is followed by an authorization step in
which the username is normalized to lowercase to match against Nirvana ACLs.
Nirvana ACLs are case-insensitive but expressed in lower-case and any ACLs created
via the Enterprise Manager will be forced to lower case.

Internal User Repository

If the Nirvana.directory.provider system property is set to
com.pcbsys.foundation.security.auth.fSAGInternalUserRepositoryAdapter,
then usernames will be looked up in a standard Software AG store called the 'Internal
User Repository', which is a flat file maintained by the SAG command-line utility
internaluserrepo.sh (found in INSTALLROOT/common/bin).

M
Even Header

Security

Universal Messaging Concepts Version 9.6 134

This mechanism is the default Directory, if the Nirvana.directory.provider property is
not set.

The location of the file is given by the system property, Nirvana.auth.sagrepo.path,
and would default to ./users.txt (relative to runtime directory of UM server), but
the nserver.conf shipped with UM overrides this as ../users.txt, locating it in the
same INSTALLROOT/nirvana/server/umserver directory as the licence.xml file. The
nserver.conf file may of course be edited as usual to move the users.txt file into a
location that is shared by all the realms of an installed UM instance.

LDAP

If the Nirvana.directory.provider system property is set to
com.pcbsys.foundation.security.auth.fLDAPAdapter, then LDAP will be used as
the source of user information.

Interaction with the LDAP server is configured via the following Java system properties:

Nirvana.ldap.provider: The LDAP client class - defaults to the JDK's built-in
provider, com.sun.jndi.ldap.LdapCtxFactory

Nirvana.ldap.url : The address of the LDAP server. This has no default and must
be specified, using syntax such as ldap://localhost:389/dc=sag,dc=com

Nirvana.ldap.suffix : The suffix to apply to LDAP queries. This has
no default and may be null, but if non-null it qualifies the URL above. Eg.
Nirvana.ldap.url=ldap://localhost:389/dc=sag and Nirvana.ldap.suffix=dc=com will
result in the same effective query root as Nirvana.ldap.suffix=ldap://localhost:389/
dc=sag,dc=com when the Nirvana.ldap.suffix property is not set.

Nirvana.ldap.rootcreds: The privileged-admin login credentials to use on the
LDAP server, in order to perform user queries. There is no default and if not set it
means there is no need to specify any such credentials, but if present the format must
be username:password.

The remaining system properties relate to the LDAP schema and default to the standard
COSINE schema:

Nirvana.ldap.attribute.username: This specifies the LDAP aribute which
represents the username, and defaults to the standard schema convention of "cn".

Nirvana.ldap.attribute.password: This specifies the LDAP aribute which
represents the password, and defaults to the standard schema convention of
"userPassword".

Nirvana.ldap.search.username: This specifies the search expression to use for
a given username, and defaults to cn=%U%, where %U% gets substituted by the
username.

Converting a .jks Key Store to a .pem Key Store
In order to convert a Java key store into a Privacy Enhanced Mail Certificate, you will
need to use two tools :

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 135

1. keytool.exe - to import the keystore from JKS to PKCS12 (supplied with Java)

2. openssl.exe - to convert the PCKS12 to PEM (supplied with OpenSSL)

Neither keytool or openssl can be used to convert a jks directly into a pem. First we must
use keytool to convert the JKS into PKCS:
keytool -importkeystore -srckeystore client.jks -destkeystore client.pkcs -srcstoretype JKS
 -deststoretype PKCS12

You will be prompted to enter passwords for the key stores when each of these
programs are run. The password used for the keystores created using the generator is
"nirvana". Next you need to use openssl.exe to convert the PKCS into PEM.
openssl pkcs12 -in client.pkcs -out client.pem

Repeat the above code for the any other jks key stores. After this you will have the
required key stores in pem format.

Access Control Lists

Universal Messaging Concepts - Security Policies
Universal Messaging offers complete control over security policies. Universal Messaging
can either store security policies locally or be driven by an external entitlements service.

Universal Messaging's rich set of entitlements ensure that everything from a network
connection through to topic and queue creation can be controlled on a per user basis.

Every component of a Universal Messaging server has a set of entitlements associated
with it. These entitlements can be set programmatically or through the Universal
Messaging Enterprise Manager.

For more information on the components that entitlements can be set against please see
the Universal Messaging "ACL Guide" on page 135

Universal Messaging Concepts - Access Control Lists (ACLs)
Universal Messaging's Access Control List (ACL) controls client connection requests
and subsequent Universal Messaging operations. By default access control checks are
performed within a realm.

The Universal Messaging Administration API exposes the complete security model of
the Universal Messaging Realm Server, remotely allowing customer specific security
models to be created. This means that it is easy to integrate Universal Messaging into an
existing authentication and entitlement service.

It is also possible to manage Universal Messaging ACLs using the enterprise manager
GUI.

M
Even Header

Security

Universal Messaging Concepts Version 9.6 136

The Universal Messaging realm has an ACL associated with it. The acl contains a list of
subjects and the operations that each subject can perform on the realm.

Users are given entitlements based on their subject. A subject is made up of a username
and a host.

The username part of the subject is the name of the user taken from either the operating
system of the machine they are connecting from or the certificate name if they are using
an ssl protocol.

The host part of the subject is either the ip address or the hostname of the machine they
are connecting from.

The subject takes the form of :
username@host

For example:
johnsmith@192.168.1.2

Each channel, queue and service also has an associated acl that defines subjects and the
operations the subjects can perform.

A subject corresponds to the user information for a realm connection

Each type of acl entry has a number of flags that can be set to true or false in order to
specify whether the subject can or can't perform the operation.

General ACL permissions

The following flags apply to every ACL.

Modify - Allows the subject to add/remove ACL entries

List - Allows the subject to get a list of ACL entries

Full Privileges - Has complete access to the secured object

Universal Messaging Realm Server ACL permissions

The Realm Access Control Entry has the following controllable flags

Use Admin API - Can use the nAdminAPI package

Manage Realm - Can add / remove realms from this realm

Manage Joins - Can add/delete channel joins

Manage P2P Services - Can create/destroy P2P services

Manage Channels - Can add/delete channels on this realm

Access The Realm - Can actually connect to this realm

Override Connection Count - Can bypass the connection count on the realm

Configure Realm - Can set run time parameters on the realm

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 137

Cluster - perform cluster operations, such as create, delete or modify cluster
information

Manage DataGroups - Can add, delete and manage any DataGroup on the realm

Publish to DataGroups - Can publish to any DataGroup on the realm

Own DataGroups - Can take ownership of any DataGroup on the realm

Channel ACL permissions

The Channel Access Control Entry has the following controllable flags

Write - Can publish events to this channel

Read - Can subscribe for events on this channel

Purge - Can delete events on this channel

Get Last EID - Can get the last event Id on this channel

Named - Can the user connect using a named (durable) subscriber

Queue ACL permissions

The Queue Access Control Entry has the following controllable flags

Write - Can push events to this queue

Read - Can peek the events on this queue

Purge - Can delete events on this queue

Pop - Can pop events from the queue

P2P Service permissions

The Service Access Control Entry has the following controllable flags

Connect - Can access this service

Wildcard Support

As well as being able to specify an access control entry for a specific subject the subject
itself can contain wildcards. In this way you can specify access control based on
hostname or on username.

The subject *@* is provided in all ACL objects by default, and corresponds to the default
permission that all subjects inherit who connect but do not individually appear within
the ACL. If a subject is listed in the ACL, then the entitlements given to that subject
overrides that of any wildcarded entry, including the *@* default subject.

Example Wildcard ACLs :

ACL Entry Description

@ Represents all users from all nodes

M
Even Header

Security

Universal Messaging Concepts Version 9.6 138

ACL Entry Description

*@client1.com Represents all users from the node
client1.com

username@nodename Represents the user "username" on the
node "nodename"

username@* Represents the user "username" on all
nodes

SSL

Universal Messaging Concepts - SSL Encryption
Universal Messaging fully supports SSL and offers support for SSL enabled TCP/IP
sockets as well as HTTPS. When SSL is used the subject used for entitlements can be
extracted from the clients certificate CN aribute.

Universal Messaging's SSL implementation supports both client side and anonymous
(Server side) SSL. Different SSL certificate chains can be assigned to different Universal
Messaging interfaces, each one supporting its own set of cryptographic algorithms.
There is no limit to the number of interfaces and therefore different SSL certificate chains
that can be supported on a single Universal Messaging Realm server.

For more information on configuring Universal Messaging interfaces to use SSL
encryption with Universal Messaging please see the Enterprise Manager guide.

To learn more about SSL please see the "SSL Concepts" on page 140 section.

Universal Messaging Concepts - Client SSL Configuration
This Section describes how to use SSL in your Universal Messaging client applications.
Universal Messaging supports various " wire protocols" on page 19 including SSL
enabled sockets and HTTPS. The example programs contained in the Universal
Messaging package will all work with SSL enabled on the realm server.

This guide explains client SSL configuration on Java. Guides for C++ and C# are also
available.

Once you have created an SSL enabled interface for your realm you need to ensure that
your client application passes the required System properties used by your jsse enabled
JVM. The Universal Messaging download contains some example Java key store files
that will be used in this example.

If you would like to add your own client certificates please see our developers guide.

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 139

The first such keystore is the client keystore, called client.jks, which can be found in
your installation directory, under the /server/Universal Messaging/bin directory. The
second is the CA keystore called nirvanacacerts.jks, which is again located in the /server/
Universal Messaging/bin directory

Using the example keystores, the following system properties are required by the
Universal Messaging sample apps and must be specified in the command line as follows:
-DCKEYSTORE=%INSTALLDIR%\client\Universal Messaging\bin\client.jks
-DCKEYSTOREPASSWD=password
-DCAKEYSTORE=%INSTALLDIR%\client\Universal Messaging\bin\nirvanacacerts.jks
-DCAKEYSTOREPASSWD=password

where:

CKEYSTORE is the client keystore location

CKEYSTOREPASSWD is the password for the client keystore

CAKEYSTORE is the CA keystore file location

CAKEYSTOREPASSWD is password for the CA keystore

The above system properties are used by the Universal Messaging sample apps, but
are mapped to system properties required by a jsse enabled JVM by the utility program
'com.pcbsys.foundation.utils.fEnvironment', which all sample applications use. If you
do not wish to use this program to perform the mapping between Universal Messaging
system properties and those required by the JVM, you can specify the SSL properties
directly. To do this in your own applications, the following system properties must be
set:
-Djavax.net.ssl.keyStore=%INSTALLDIR%\client\Universal Messaging\bin\client.jks
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=%INSTALLDIR%\client\Universal Messaging\bin\nirvanacacerts.jks
-Djavax.net.ssl.trustStorePassword=password

where :

javax.net.ssl.keyStore is the client keystore location

javax.net.ssl.keyStorePassword is the password for the client keystore

javax.net.ssl.trustStore is the CA keystore file location

javax.net.ssl.trustStorePassword is password for the CA keystore

As well as the above system properties, if you are intending to use hps, both the
Universal Messaging sample apps and your own applications will require the following
system property to be passed in the command line:
-Djava.protocol.handler.pkgs="com.sun.net.ssl.internal.www.protocol"

As well as the above, the " RNAME" on page 19 used by your client application must
correspond to the correct type of SSL interface, and the correct hostname and port that
was configured earlier.

M
Even Header

Security

Universal Messaging Concepts Version 9.6 140

JMS Clients

In JMS, the RNAME corresponds to a JNDI reference. The example JMSAdmin
application can be used to create a sample file based JNDI context, where the RNAME
is specified as the content of the TopicConnectionFactoryFactory reference. Once your
SSL interface is created you can simply change this value in your JNDI context to be the
RNAME you require your JMS applications to use.

SSL Concepts
SSL With Client Certificate Validation

When a client requests a secure connection to a server, both the client and the server
must verify each other's certificate to ensure that the source is trusted. A certificate will
generally contain the source's name, the certificate authority that signed it and the public
key for that source. The certificate can be authenticated by validating the signature.

Certificate signed by well known certification authority

Several certification authorities exist (such as Verisign) that will review applications
for certificates and digitally sign them if they have sufficient proof that the company
is what it claims to be. These authorities are trusted as default by web browsers and
applications supporting SSL.

When a connection aempt is made, the certificate is checked with these well known
authorities. The signature is created using the private key of the certificate authority,
therefore it is known to have been encrypted by that authority only if it can be
decrypted by it's public key. If this is the case then it is known that the certificate is
valid.

Self signed certificates

To acquire a certificate from a well known certification authority is expensive and
time consuming as the company will have to prove itself by providing certain
documentation. It is possible however to create and sign your own certificates. This
essentially makes the company that created the certificate also act as the certification
authority for that certificate. This means that the certificate will not be validated by
checking with the well known authorities.

If the certificate is not validated by the well known authorities then it is checked
against the user created trust store. This store contains certificates for companies that
are not registered with the well known authorities but the user has chosen to trust.

Because the sample certificates created are self signed, it is important that the trust
store of the client/server contains the certificates of the server/client respectively
otherwise an exception will be thrown as the system cannot verify the source.

Once the certificates have been validated, the client and server will have each others
public keys. When the client communicates with the server, it will encrypt the data
with the server's public key. Public keys are asymmetric which means that it cannot be
decrypted using the same key, instead it requires the server's private key which only

M
Odd Header

Security

Universal Messaging Concepts Version 9.6 141

the server holds. This means that only the server can read the data sent. Similarly, any
response from the server will be encrypted with the client's public key.

Anonymous SSL

Universal Messaging also supports anonymous (server-side) SSL. Anonymous SSL does
not validate the client. This means that the client does not need to have a certificate
as it is never checked by the server. Instead, the client sends a request for the server's
certificate as usual but instead of the server encrypting data sent to the client with the
client's public key, a session is created. To create a session, the client generates a random
number and sends this number to the server encrypted with the server's public key.
Only the server can decrypt the random number. So only the server and the client know
this number. The random number is used along with the server's public key to create the
session.

M
Even Header

Universal Messaging Concepts Version 9.6 142

M
Odd Header

Universal Messaging MQTT: An Overview

Universal Messaging Concepts Version 9.6 143

6 Universal Messaging MQTT: An Overview

MQTT (MQ Telemetry Transport), is a publish/subscribe, simple and lightweight
messaging protocol, designed for constrained devices and low-bandwidth by IBM /
Eurotech on 1999. The simplicity and low overhead of the protocol make it ideal for
the emerging "machine-to-machine" (M2M) or "Internet of Things" world of connected
devices, and for mobile applications where bandwidth and baery power are at a
premium. The protocol is openly published with a royalty-free license and a variety
of client libraries have been developed especially on popular embedded hardware
platforms such as arduino/netduino, mbed and Nanode.

In addition to Universal Messaging's own protocol, NSP interfaces are capable of also
accepting MQTT connections over TCP sockets, while NSPS interfaces can accept MQTT
connections over SSL/TLS for client implementations that support it.

Connecting

In order to connect to a Universal Messaging server using MQTT, you application needs
to use a tcp://host:port URL (NSP Interfaces) or ssl://host:port URL (NSPS Interfaces).
MQTT connections are treated the same way as any other connections by the Universal
Messaging realm. The MQTT client ID value is combined with the optional username (or
anonymous if no username is specified) in order to define a nirvana subject as follows:

Client ID_Username@hostname

Figure 1: Connection List with an MQTT connection

This way you can define realm and channel / queue ACLs as you would for any
Universal Messaging connection. For example using the IBM WMQTT sample
application with a client identifier of MQTT_Utility and no username/password to
connect to tcp://localhost:1883 will result in a mq_utility_anonymous@localhost
Universal Messaging subject.

Publishing

MQTT applications can publish events to channels or queues that have already been
created in the Universal Messaging realm. These are regular Universal Messaging
channels / queues that can utilise different reliability types (transient, simple, reliable,
persistent, mixed) to enforce a persistence policy on all events. Events published via
MQTT only contain a byte[] payload and are tagged MQTT. They are fully interoperable
with any Universal Messaging subscriber on any client platform supported and can be
snooped using the Universal Messaging Enterprise Manager:

M
Even Header

Universal Messaging MQTT: An Overview

Universal Messaging Concepts Version 9.6 144

Figure 2: Snooping an MQTT message

Subscribing

MQTT applications can subscribe to channels or queues that have already been created
in the Universal Messaging realm. These are regular Universal Messaging channels /
queues of any reliability type offered and can contain messages published by either
MQTT or Universal Messaging applications. Please note that if subscribed to a queue,
the pop operation is destructive so each subscriber will get a single event in round robin
while channels offer regular pub/sub behavior.

Quality of Service

Universal Messaging supports all three QOS levels defined by the MQTT standard. This
is driven by the MQTT client connection and describes the effort the server and client
will make to ensure that a message is received as follows:

1. QOS 0: The Universal Messaging realm will deliver the message once with no
confirmation

2. QOS 1: The Universal Messaging realm will deliver the message at least once, with
confirmation required.

3. QOS 2: The Universal Messaging realm will deliver the message exactly once, using
a 4 phase approach as defined by the standard.

Will

Universal Messaging fully supports connections with Will seings, which indicate
messages that need to be published automatically if the MQTT application disconnects
unexpectedly.

M
Odd Header

Universal Messaging MQTT: An Overview

Universal Messaging Concepts Version 9.6 145

Virtual Payload Types

Universal Messaging now provides MQTT users with the ability to define namespace
roots where advanced namespace semantics can be applied. Specifically, the last part of
the full topic namespace address can be used to indicate your preferred virtual payload
type when publishing or subscribing to a topic. The currently supported types are:
-1: UnspecifiedType (default), binary, equivalent to no type indicator
 0: BaseMessageType, Unsupported
 1: MapMessageType, UTF-8 JSON on MQTT, JMS MapMessage on native UM
 2: BytesMessageType, binary, but identified as JMS BytesMessage
 3: ObjectMessageType, java serialized bytes identified as JMS ObjectMessage
 4: StreamMessageType, binary on MQTT, JMS StreamMessage on native UM
 5: TextMessageType, UTF-8 string on MQTT, JMS TextMessage on native UM

M
Even Header

Universal Messaging Concepts Version 9.6 146

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 147

7 Commonly Used Features

■ Overview of Commonly Used Features ... 148

■ Universal Messaging Sessions .. 148

■ Channel Attributes .. 148

■ Universal Messaging Channel Publish Keys ... 151

■ Universal Messaging Queue Attributes .. 153

■ Universal Messaging Native Communication Protocols .. 155

■ Universal Messaging Comet Communication Protocols .. 158

■ Universal Messaging Durable Consumers ... 160

■ Google Protocol Buffers ... 160

■ Universal Messaging Named Objects .. 161

■ Universal Messaging - Event Filtering Guide .. 161

■ Universal Messaging - Advanced Filtering with Selectors ... 163

■ Using Universal Messaging Shared Memory Protocol .. 166

■ Storage Properties ... 166

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 148

Overview of Commonly Used Features
This section summarizes commonly used features of Universal Messaging. The features
are available using a variety of methods, such as in the Enterprise Manager or in the
Server or Client APIs.

Universal Messaging Sessions
A session in Universal Messaging represents a logical connection to a Universal
Messaging Realm. It consists of a set of session aributes, such as the protocol and
authentication mechanism to be used, the host and port the message server is running
on and a reconnect handler object.

Most of the session parameters are defined in a string that is called RNAME and
resembles a URL. All the sample applications provided use an RNAME Java system
property to obtain the necessary session aributes. The following section discusses this
in further detail. The RNAME takes the following format.

The RNAME entry can contain an unlimited number of comma-separated values each
one representing an interface on a Universal Messaging Realm. Click here for more
information on RNAME.

The current version of the Universal Messaging Realm and the Universal Messaging
client API supports 4 TCP wire protocols. These are the Universal Messaging Socket
Protocol (nsp), the Universal Messaging HTTP Protocol (nhp), the Universal Messaging
SSL Protocol (nsps) and the Universal Messaging HTTPS protocol (nhps). These wire
protocols are available wherever a connection is required, i.e. client to Realm and Realm
to Realm. Click here for more information on communication protocols supported.

Channel Attributes
Universal Messaging channels provide a set of aributes. Depending on the options
chosen, these define the behaviour of the events published and stored by the Universal
Messaging Realm Server. Each event published onto a channel has a unique id
within the channel called Event Id. Using this event id, it is possible for subscribers
to re-subscribe to events on a channel from any given point. The availability of the
events on a channel is defined by the chosen aributes of the channel upon creation.
Channels can be created either using the Universal Messaging Enterprise Manager or
programmatically using any of the Universal Messaging Enterprise APIs.

There are a number of important channel aributes which are discussed below.

Channel TTL

The TTL for a channel defines how long (in milliseconds) each event published to
the channel will remain available for subscribers to consume. Specifying a TTL of 0

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 149

will mean that events will remain on the channel indefinitely. If you specify a TTL of
10000, then after each event has been on the channel for 10000 milliseconds, it will be
automatically removed by the server.

Channel Capacity

The capacity of a channel defines the maximum number of events may remain on a
channel once published. Specifying a capacity of 0 will mean that there is no limit to the
number of events on a channel. If you specify a capacity of 10000, then if there are 10000
events on a channel, and another event is published to the channel, the 1st event will be
automatically removed by the server.

Channel Type

Universal Messaging channels can be of the following types:

persistent

mixed

reliable

simple

transient

off-heap

The difference lies in the type of physical storage used for each type and the
performance overhead associated with each type.

Persistent Channels

Persistent channels have their messages stored in the Universal Messaging Realm's
persistent channel disk based store. The persistent channel store is a high performance
file based store that uses a separate file for each channel on that Realm facilitating
migrating whole channels to different Realms. All messages published to a persistent
channel will be stored to disk, hence it is guaranteed that they will be kept and delivered
to subscribers until it is purged or removed as a result of a TTL or capacity policy.
Messages purged from a persistent channel are marked as deleted however the store size
will not be reduced until maintenance is performed on the channel using the Universal
Messaging Enterprise Manager or an Administration API call. This augments the high
performance of the Universal Messaging Realm.

Mixed Channels

Mixed channels allow the users to specify whether the event is stored persistently or in
memory as well as the Time To Live (TTL) of the individual event. On construction of a
Mixed channel the TTL and Capacity can be set, if the user supplies a TTL for an event
this is used instead of the channel TTL.

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 150

Reliable Channels

Reliable channels have their messages stored in the Universal Messaging Realm's own
memory space. The first fact that is implied is that the maximum number of bytes that
all messages across all reliable channels within a Universal Messaging Realm is limited
by the maximum heap size available to the Java Virtual Machine hosting that Realm.
The second fact implied is that if the Universal Messaging Realm is restarted for any
reason, all messages stored on reliable channels will be removed from the channel as a
maer of policy. However, as Universal Messaging guarantees not to ever reuse event
ids within a channel, new messages published in those channels will get assigned event
ids incremented from the event id of the last message prior to the previous instance
stopping.

Simple Channels

Simple channels have their messages stored in the Universal Messaging Realm's own
memory space supplying a high-speed channel type. The difference between a Simple
and Reliable is the fact that the event ids are reset to 0 in a Simple channel whenever the
Universal Messaging Server is restarted.

Transient Channels

A transient channel is like a simple channel in that no event characteristics are stored
persistently. In addition to this, data is only ever wrien to a transient channel when 1 or
more consumers are connected to the channel and are able to consume said data. Unlike
the simple channel which stores event data in memory transient channels do not store
anything, not even in memory. Transient channels can be thought of as a relay between 1
or more publishers and 1 or more subscribers.

Off-heap Channels

Off-heap channels, similar to reliable channels, store the events in memory, but this
channel type uses off-heap memory. This allows the normal JVM heap memory to be
left free for short lived events, while longer living events can be stored off the JVM heap.
This reduces the work the garbage collector needs to do to manage these events since
they are out of range of the garbage collector.

Additional Channel Attributes

In addition to the 3 aributes above which define storage behavior for events, there are a
number of other important aributes that can be set for a channel.

Dead Event Store

When events are removed automatically, either by the capacity policy of the channel or
the age (TTL) policy of the events itself and they have not been consumed, it may be a
requirement for those events to be processed separately. If so, channels or queues can
be created with a dead event store so any events that are purged automatically from
that have not been consumed will be moved into the dead event store. Dead event stores
themselves can be a channel or a queue and can be created with any aributes you wish.

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 151

ChannelKeys

Channels can also be created with a set of channel keys which define how channel
events can be managed based on the content of the events. For more information, please
see the Channel Publish Keys section

Cluster Wide

The cluster wide flag indicates that a channel is created on all cluster realm nodes. For
more information on clustering please see our clustering section.

Engine

There are 2 types of optional engine which a channel can use:

Merge Engine: The Merge Engine is used for Registered Events, and allows delivery
of just the portion of an event's data that has changed, rather than of the entire event.

JMS Engine: The JMS Engine deals with JMS topics within Universal Messaging.

Universal Messaging Channel Publish Keys
Channels can be created with a set of Channel Publish Key objects, as well as the default
aributes that define behaviour of a channel and the events on a channel.

Channel Keys allow a channel or queue to automatically purge old events when new
events of the same "type" are received. Two events are of the same "type" if the value in
their dictionary (nEnventAributes) for the key defined as the Channel Key are identical.
The channel will store the specified number of most recent events whose values match
for the Channel Key.

Channel Publish Keys enable the implementation of Last Value Caches. In a last value
cache, only the most recent value for a given type of event is kept on the channel. In
high-update situations, where only the most recent values are of interest, Channel
Publish Keys can greatly improve efficiency in this way. By altering the depth associated
with the channel publish key, a recent values cache (where a set number of the most
recent events of the same type are stored) can also easily be implemented.

Using Channel Keys to Automatically Purge Redundant Data

For example, if you have a channel called BondDefinitions which should only contain
the most recent event published for each Bond, you can enforce this automatically by
using a channel key. This functionality vastly simplifies data publication, since the
publisher will not have to check the value of data currently on the channel.

In the above example you would create a BondDefinition channel as shown in the
following Enterprise Manager screen shot:

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 152

Note that in addition to creating a channel with the Name "BondDefinitions" and a type
of "Reliable", the channel also has a Channel Key called BONDNAME with a depth of 1.
The channel key defines the key in the nEventProperties which identifies events as being
of the same type if their value for this key match. In order to add a ChannelKey, type the
name of the key into the Channel Key box on the dialog and click add. If you want the
key to have a depth of greater than 1 then click the up arrow adjacent to the Key Depth
field or enter the number manually.

If this is configured, as soon as an event is published to the BondDefinitions channel
with a Dictionary entry called BONDNAME, the server checks to see if there is another
event with the same value for that key. For example, if an event is published with a
dictionary containing a key of BONDNAME and value of bondnameA and there is
already an event with BONDNAME=bondnameA, then the old event will be removed,
and the new one will take its place as the latest definition for bondnameA.

Another example would be if you wanted to keep the latest definition and the 2 before it
you would create the channel key with depth 3 as in the following screen shot (implying
that maximum 3 events with the same value for key name BONDNAME can exist on the
channel).

If you wanted to keep an archive of all bondname values that were published to the
channel, you could add a join from the BondDefinitions channel to, for example, a
BondDefinitionsArchive channel. On this channel the absence of a Channel Key called

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 153

BONDNAME will mean that it will store all events that have been published to the
BondDefinitions channel.

Universal Messaging Queue Attributes
Universal Messaging channels provide 3 main aributes. Depending on the options
chosen, these define the behaviour of the events published and stored by the Universal
Messaging Realm Server. The availability of the events on a queue is defined by the
chosen aributes of the queue upon creation.

Each of these aributes are described in the following sections.

Queue TTL

The TTL for a queue defines how long (in milliseconds) each event published to the
queue will remain available to consumers. Specifying a TTL of 0 will mean that events
will remain on the queue indefinitely. If you specify a TTL of 10000, then after each
event has been on the queue for 10000 milliseconds, it will be automatically removed by
the server.

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 154

Queue Capacity

The capacity of a queue defines the maximum number of events may remain on a queue
once published. Specifying a capacity of 0 will mean that there is no limit to the number
of events on a queue. If you specify a capacity of 10000, then if there are 10000 events on
a queue, and another event is published to the queue, the 1st event will be automatically
removed by the server.

Queue Type

Universal Messaging queues can be of 4 different types, simple, reliable, persistent and
mixed. The difference lies in the type of physical storage used for each type and the
performance overhead associated with each type.

Simple Queues

Simple queues have their messages stored in the Universal Messaging Realm's own
memory space supplying a high-speed queue type. The difference between a Simple
and Reliable is the fact that the event ids are reset to 0 in a Simple queue whenever the
Universal Messaging Server is restarted.

Reliable Queues

Reliable queues have their messages stored in the Universal Messaging Realm's own
memory space. The first fact that is implied is that the maximum number of bytes that
all messages across all reliable queues within a Universal Messaging Realm is limited by
the maximum heap size available to the Java Virtual Machine hosting that Realm. The
second fact implied is that if the Universal Messaging Realm is restarted for any reason,
all messages stored on reliable queues will be removed from the queue as a maer of
policy. However, as Universal Messaging guarantees not to ever reuse event ids within a
queue, new messages published in those queues will get assigned event ids incremented
from the event id of the last message prior to the previous instance stopping.

Persistent Queues

Persistent queues have their messages stored in the Universal Messaging Realm's
persistent queue disk based store. The persistent queue store is a high performance file
based store that uses a separate file for each queue on that Realm facilitating migrating
whole queues to different Realms. All messages published to a persistent queue will be
stored to disk, hence it is guaranteed that they will be kept and delivered to subscribers
until it is purged or removed as a result of a TTL or capacity policy. Messages purged
from a persistent queue are marked as deleted however the store size will not be
reduced until maintenance is performed on the queue using the Universal Messaging
AdminTool. This augments the high performance of the Universal Messaging Realm.

Mixed Queues

Mixed queues allow the users to specify whether the event is stored persistently or in
memory as well as that the Time To Live (TTL) of the individual event. On construction

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 155

of a Mixed queue the TTL and Capacity can be set, if the user supplies a TTL for an
event this is used instead of the queue

Universal Messaging Native Communication Protocols
Universal Messaging supports four Native Communication Protocols. These TCP protocols
are:

Universal Messaging Socket Protocol (nsp)

Universal Messaging SSL Protocol (nsps)

Universal Messaging HTTP Protocol (nhp)

Universal Messaging HTTPS Protocol (nhps)

These wire protocols are available for client-to-realm and realm-to-realm connections.

Universal Messaging Socket Protocol (nsp)

The Universal Messaging Socket Protocol (NSP) is a plain TCP socket protocol
optimized for high throughput, low latency and minimal overhead.

Universal Messaging Socket Protocol (nsp)

Universal Messaging SSL Protocol (nsps)

The Universal Messaging SSL (NSPS) Protocol uses SSL sockets to provide the benefits
of the Universal Messaging Socket Protocol combined with encrypted communications
and strong authentication.

We strongly recommend use of the NSPS protocol in production environments, where
data security is paramount.

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 156

Universal Messaging SSL Protocol (nsps)

Universal Messaging HTTP Protocol (nhp)

The Universal Messaging HTTP (NHP) Protocol uses a native HTTP stack running over
plain TCP sockets, to transparently provide access to Universal Messaging applications
running behind single or multiple firewall layers.

This protocol was designed to simplify communication with Realms on private address
range (NAT) networks, the Internet, or within another organization's DMZ.

There is no requirement for a web server, proxy, or port redirector on your firewall to
take advantage of the flexibility that the Universal Messaging HTTP Protocol offers.
The protocol also supports the use of HTTP proxy servers, with or without proxy user
authentication.

An nhp interface will also support connections using the nsp protocol. For this reason it
is suggested that you use this protocol initially when evaluating Universal Messaging.

Universal Messaging HTTP Protocol (nhp)

Universal Messaging HTTPS Protocol (nhps)

The Universal Messaging HTTPS (NHPS) Protocol offers all the benefits of the
Universal Messaging HTTP Protocol described above, combined with SSL-encrypted
communications and strong authentication.

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 157

We strongly recommend use of the Universal Messaging HTTPS Protocol for
production-level applications which communicate over the Internet or mobile networks.

Universal Messaging HTTPS Protocol (nhps)

Recommendation

We generally recommend that you initially use the Universal Messaging HTTP Protocol
(nhp) for Universal Messaging Native clients, as this is the easiest to use and will support
both nhp and nsp connections.

When deploying Internet-applications, we recommend the Universal Messaging HTTPS
Protocol (nhps) for its firewall traversal and security features.

RNAMEs

The RNAME used by a Native Universal Messaging Client to connect to a Universal
Messaging Realm server using a Native Communication Protocol is a non-web-based
URL with the following structure:
<protocol>://<hostname>:<port>

where <protocol> can be one of the 4 available wire protocol identifiers:

nsp (Universal Messaging Socket Protocol),

nsps (Universal Messaging SSL Protocol),

nhp (Universal Messaging HTTP Protocol) or

nhps (Universal Messaging HTTPS Protocol)

An RNAME string consists of a comma-separated list of RNAMEs.

A Universal Messaging realm can have multiple network interfaces, each supporting
any combination of Native and Comet communication protocols.

User@Realm Identification

When a Universal Messaging Native Client connects to a Universal Messaging Realm,
it supplies the username of the currently-logged-on user on the client host machine.

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 158

This username is used in conjunction with the hostname of the realm to create a session
credential of the form user@realm.

For example if you are logged on to your client machine as user fred, and you specify
an RNAME string of nsp://realmserver.mycompany.com:9000, then your session will
be identified as fred@realmserver.mycompany.com.

Note, however, that if you were running the client application on the same machine as
the Universal Messaging Realm and decided to use the localhost interface in your
RNAME string, you would be identified as fred@localhost - which is a different
credential.

The Realm and channel Access Control Lists (ACL) checks will be performed against this
credential, so be careful when specifying an RNAME value.

Universal Messaging Comet Communication Protocols
Universal Messaging supports Comet and WebSocket over two Comet Communication
Protocols.

Streaming Comet, Long Polling or WebSocket

The Universal Messaging Comet API supports several both streaming and long polling
Comet or WebSocket communications. A developer can select which method to use
when starting a session with the JavaScript API.

Communication Protocols

HTTPS Protocol (https)

The Universal Messaging Comet HTTPS (SSL-encrypted HTTP) Protocol is a lightweight
web-based protocol, optimized for communication over web infrastructure such as client
or server-side firewalls and proxy servers.

This protocol simplifies communication between Universal Messaging Clients and
Realms running behind single or multiple firewall layers or on private address range
(NAT) networks. There is no requirement for an additional web server, proxy, or
port redirector on your firewall to take advantage of the flexibility that the Universal
Messaging HTTPS Protocol offers.

The protocol is fully SSL-encrypted and also supports the use of HTTP proxy servers,
with or without proxy user authentication.

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 159

HTTPS Protocol (hps)

HTTP Protocol (http)

The Universal Messaging Comet HTTP Protocol is a lightweight web-based protocol,
supporting communication through proxies and firewalls at the client or server end of
the network.

This protocol provides the same functionality as the Universal Messaging Comet HTTPS
protocol, but without SSL encrypted communications.

HTTP Protocol (hp)

Recommendation

We generally recommend the HTTPS Protocol (hps) for Universal Messaging Comet
clients, as this is both securely encrypted and easy to use.

RNAMEs

The RNAME used by a Universal Messaging Comet Client to connect to a Universal
Messaging Realm server will automatically default to the same protocol/host/port as
the web server from which an application is served, unless overridden by the developer
when starting a session.

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 160

Note that a Universal Messaging realm can have multiple network interfaces, each
supporting any combination of Native and Comet communication protocols.

Universal Messaging Durable Consumers
Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Universal Messaging supports durable consumers through use of Universal Messaging
named objects. When a subscription is created using a named object, the server
will ensure that the named object current position is maintained. As named object
subscriptions are restarted, say after application restart, the server will begin delivering
events from the last event which was successfully acknowledged by the client.

There are different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as
consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method on the nConsumeEvent

Google Protocol Buffers
Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and
this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffers in Java, C++ and Python, and third party
libraries provide support for many other languages including Flex, .NET, Perl, PHP

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 161

etc. Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer events through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in Universal Messaging, allowing
for server-side filtering of Google Protocol Buffer events, which can be sent on
resources just like normal Universal Messaging Events. The server side filtering
of messages is achieved by providing the server with a description of the data
structures(constructed at the .proto compile time, using the standard protobuf compiler
and the --descriptor_set_out option). The default location the server looks in for
descriptor files is /plugins/ProtobufDescriptors and this can be configured through the
Enterprise Manager. The server will monitor this folder for changes, and the frequency
of these updates can be configured through the Enterprise Manager. The server can
then extract the key value pairs from the binary Protobuf message, and filter message
delivery based on user requirements.

To create an nProtobuf event, simply build your protocol buffer as normal and pass it
into the nProtobuf constructor along with the message type used (see the programmatic
example below).

The Enterprise Manager can be used to view, edit and republish protocol buffer
events, even if the EM is no running on the same machine as the server. To enable this,
the server outputs a descriptor set to a configurable directory(by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Universal Messaging Named Objects
Universal Messaging provides the ability for the server to maintain state for the last
event that was consumed by a consumer on a channel. By providing a unique name, you
can create a named object on a channel and even when your application is stopped, the
next time you start your application, you will only consume available events from the
last event id that the server stored as successfully consumed by that named object.

Named objects can be persistent, i.e. the last event id is wrien to disk, so that if the
Universal Messaging Realm Server is restarted, the last event id consumed is retrievable
for each named object on a channel.

Universal Messaging - Event Filtering Guide
Universal Messaging's provides a server side filtering engine that allows events to be
delivered to the client based on the content of values within the event dictionary.

This section introduces filtering and describes the basic syntax of the filtering engine,
and provides examples to assist developers with designing the content of the events
within Universal Messaging. The filtering capabilities described in this page are what is
defined by the JMS standard.

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 162

Universal Messaging filtering can be applied at two levels. The first is between client and
server and the second is between server and server.

All Universal Messaging filtering is handled by the Universal Messaging server and
therefore significantly reduces client overhead and network bandwidth consumption.

For more documentation on filtering functionality which above and beyond that
available through the JMS standard please see the advanced filtering guide.

Basic Filtering

Each Universal Messaging event can contain an event dictionary as well as a byte array
of data. Standard filtering, as defined by JMS, allows dictionary entries to be evaluated
based on the value of the dictionary keys prior to delivering the data to the consumer.

The basic syntax of the filter strings is defined in the following notation :
EXPRESSION

where:
EXPRESSION ::=
<EXPRESSION> |
<EXPRESSION> <LOGICAL_OPERATOR> <EXPRESSION> |
<ARITHMETIC_EXPRESSION> |
<CONDITIONAL_EXPRESSION>
ARITHMETIC_EXPRESSION ::=
<ARITHMETIC_EXPRESSION> <ARITHMETIC_OPERATOR> <ARITHMETIC_EXPRESSION> |
<ELEMENT> <ARITHMETIC_OPERATOR> <ARITHMETIC_EXPRESSION> |
<ARITHMETIC_EXPRESSION> <ARITHMETIC_OPERATOR> <ELEMENT>
CONDITIONAL_EXPRESSION ::=
<ELEMENT> <COMPARISON_OPERATOR> <ELEMENT> |
<ELEMENT> <LOGICAL_OPERATOR> <COMPARISON_OPERATOR> <ELEMENT>
ELEMENT ::=
<DICTIONARY_KEY> |
<NUMERIC_LITERAL> |
<LOGICAL_LITERAL> |
<STRING_LITERAL> |
<FUNCTION>
LOGICAL_OPERATOR ::= NOT | AND | OR
COMPARISON_OPERATOR ::= <> | > | < | = | LIKE | BETWEEN | IN
ARITHMETIC_OPERATOR ::= + | - | / | *
DICTIONARY_KEY ::= The value of the dictionary entry with the specified key
LOGICAL_LITERAL ::= TRUE | FALSE
STRING_LITERAL ::= <STRING_LITERAL> <SEPARATOR> <STRING_LITERAL> |
 Any string value, or if using LIKE, use the '_' character to denote wildcard
NUMERIC_LITERAL ::= Any valid numeric value
SEPARATOR ::= ,
FUNCTION ::= <NOW> | <EVENTDATA> | DISTANCE

The above notation thus gives rise to the creation of any of the following valid example
selector expressions :
size BETWEEN 10.0 AND 12.0
country IN ('uk', 'us', 'de', 'fr', 'es') AND size BETWEEN 14 AND 16
country LIKE 'u_' OR country LIKE '_e_'
size + 2 = 10 AND country NOT IN ('us', 'de', 'fr', 'es')
size / 2 = 10 OR size * 2 = 20
size - 2 = 8
 size * 2 = 20
price - discount < 10.0 AND ((discount / price) * price) < 0.4

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 163

For help more information on the available functions, please see the advanced filtering
guide.

Additional references for event filtering may be found within the JMS message selector
section of the JMS standard.

Universal Messaging - Advanced Filtering with Selectors
Universal Messaging supports standard selector based filtering and some advanced filtering
concepts which will be described here .

Content Sensitive Filtering

Each Universal Messaging event can contain an event dictionary and a tag, as well as a
byte array of data. Standard filtering, as defined by JMS, allows dictionary entries to be
evaluated based on the value of the dictionary keys prior to delivering the data to the
consumer.

Universal Messaging also supports a more advanced form of filtering based on the
content of the event data (byte array) itself as well as time and location sensitive filtering.
Universal Messaging also supports filtering based on arrays and dictionaries contained
within event dictionaries. There is no limit to the dept of nested properties that can be
filtered.

Filtering based on nested arrays and dictionaries

An event dictionary can contain primitive types as well as dictionaries. They can also
contain arrays of primitive types and arrays of dictionaries. Universal Messaging
supports the ability to filter based on these nested arrays and dictionaries.

if an nEventProperties object contains a key called NAMES which stores a String[] then
it is possible to specify a filter that will only deliver events that match based on values
within the array.

NAMES[] = 'myname'

- Returns events where any element in the NAMES array = 'myname'
NAMES[1] = 'myname'

- Returns events where the second element in the array = 'myname'

Similarly, if the array was an nEventProperties[] it would be possible to filter based on
the values within the individual nEventProperties objects contained within the array.

For example if the event's nEventProperties contains a key called CONTACTS which
stores an nEventProperties[] then the following selectors will be available.

CONTACTS[].name = 'aname'

- Return events where the CONTACTS array contains an nEventProperties which
contains a key called name with the value 'aname'
CONTACTS[1].name = 'aname'

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 164

- Return events where the second element in the CONTACTS array of
nEventProperties contains a key called name with the value 'aname'
CONTACTS[].NAMES[] = 'myname'

- Return events where the CONTACTS array contains a NAMES arrays with a value
'myname' somewhere in the NAMES array.

EventData Byte[] Filtering

Universal Messaging's filtering syntax supports a keyword called 'EVENTDATA' that
corresponds to the actual byte array of data within the Universal Messaging event. There
are a number of operations that can be performed on the event data using this keyword.

This enables a reduction in the amount of data you wish to send to clients, since rather
than querying pre-determined dictionary values, you can now query the actual data
portion of the event itself without having to provide dictionary entries. If you have a
message structure and part of this structure includes the length of each value within
the structure, then you can refer to each portion of data. Alternatively if you know the
location of data within you byte array these can be used for filtering quite easily.

Below is a list of the available operations that can be performed on the EVENTDATA.
EVENTDATA.LENGTH()

- Returns the length of the byte[] of the data in the event.
EVENTDATA.AS-BYTE(offset)

- Returns the byte value found within the data at the specified offset.
EVENTDATA.AS-SHORT(offset)

- Returns a short value found within the data at the specified offset. Length of the
data is 2 bytes.
EVENTDATA.AS-INT(offset)

- Returns a int value found within the data at the specified offset. Length of the data
is 4 bytes.
EVENTDATA.AS-LONG(offset)

- Returns a long value found within the data at the specified offset. Length of the
data is 8bytes.
EVENTDATA.AS-FLOAT(offset)

- Returns a float value found within the data at the specified offset. Length of the
data is 4 bytes.
EVENTDATA.AS-DOUBLE(offset)

- Returns a double value found within the data at the specified offset. Length of the
data is 8 bytes.
EVENTDATA.AS-STRING(offset, len)

- Returns a String value found within the data at the specified offset for the length
specified.
EVENTDATA.TAG()

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 165

- Returns the String TAG of the event if it has one.

For example, we could then provide a filter string in the form of :
EVENTDATA.AS-STRING(0, 2) = 'UK'

If we knew that at position 0, the first 2 bytes would be a string that represents a value
you wish to filter on.

If we had data with 5 string values of varying length, and each length was prepended to
each string in 2 bytes, then we could evaluate any portion of the string as follows:
EVENTDATA.AS-STRING(0, EVENTDATA.AS-INT(0)) LIKE 'LON'

and the second string value after that would be calculated as follows:
 EVENTDATA.AS-STRING(EVENTDATA.AS-SHORT(0)+4, EVENTDATA-AS-SHORT(EVENTDATA.AS-SHORT(0)+2))

The offset is calculated based on the length of the first string + the 2 bytes of the first
strings size and 2 bytes for the size of the second string (Hence +4). This offset gives you
the size of the second string. Then you just need to get size of the second string, which is
found by EVENTDATA-AS-SHORT(EVENTDATA.AS-SHORT(0)+2).

This provides a powerful way of embedding functions within functions in order to
evaluate the data within an event.

Time Sensitive Filtering

Universal Messaging's filtering syntax also supports a function called 'NOW()' that
is evaluated at the server as the current time in milliseconds using the standard Java
time epoch. This function enables you to filter events from the server using a time
sensitive approach. For example, if your data contained a dictionary key element called
'DATE_SOLD' that contained a millisecond value representing the data when an item
was sold, one could provide a filter string on a subscription in the form of:
DATA_SOLD < (NOW() - 86400000)

Which would deliver events corresponding to items sold in the last 24 hours. This is a
powerful addition to the filtering engine within Universal Messaging.

Location Sensitive Filtering

Universal Messaging's filtering engine supports a keyword called DISTANCE. This
keyword is used to provide geographically sensitive filtering. This allows the calculation
of the distance between two points on the earths surface as defined by the latitude and
longitude.

For example, if you were designing a system that tracked the location of a tornado,
as the tornado moved position, the latitude and longitude would correspond to the
geographical location on the earth's surface. As the position of a tornado changed, an
event would be published containing the new latitude and longitude values as keys
within the dictionary ('latitude' and 'longitude' respectively). Using this premise, you
could provide a filter in the form of:
DISTANCE(Lat, Long, Units)

where :

M
Even Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 166

Latitude : the floating point value representing the latitude

Longitude : the floating point value representing the longitude

Units : Optional string indicating the return value to be

K: Kilometers < Default >

M : Miles

N : Nautical Miles

For example :
DISTANCE (51.50, 0.16, M) < 100

Which would deliver events that corresponded to tornadoes that were less than 100
miles away for the latitude and longitude values provided in the filter string.

The DISTANCE keyword provides a valuable and powerful extension to Universal
Messaging's filtering capabilities. If you require information that is sensitive to
geographical locations

Using Universal Messaging Shared Memory Protocol
Universal Messaging supports a special kind of communication protocol called
shm (Shared Memory). This communication protocol can only be used for intra host
connectivity and uses physical memory to pass data rather than the network stack.
Using shared memory as the communication protocol behaves just as any other nirvana
communication protocol and therefore can be used within any Universal Messaging
client or admin api application.

Once you have configured shared memory on your realm, it is ready to use by any
Universal Messaging application you wish to run on the same host. All you need to do
is set your RNAME to a the correct shared memory RNAME. For example, if you have
configured shared memory to use /tmp, then your RNAME would be:

shm://localhost/tmp

To test this out, you could run any one of the example applications that are provided
in the Universal Messaging download, by seing the RNAME from a Universal
Messaging Java client examples prompt as described above. For example, a subscriber
that subscribes to a channel called /test can be executed as follows:

nsubchan /test 0 1

Storage Properties
This storage properties panel allows for configuration of advanced storage properties, a
summary of these properties can be seen below:

M
Odd Header

Commonly Used Features

Universal Messaging Concepts Version 9.6 167

Auto Maintenance: Controls whether persistent store is maintained automatically (i.e.
events reaching their TTL, or events which have been purged are cleared from the
channel storage file.

Honour Capacity: Whether the channel / queue capacity seing will prevent
publishing of any more data once full. If true, the client will get an exception on
further publishes (a transactional publish will receive an exception on the commit
call, a non transactional publish will receive an asynchronous exception through the
nAsyncExceptionHandler). If false the oldest event will be purged to make room for
the newest.

Enable Caching: Control the caching algorithm within the server, if you set caching
to false, all events will be read from the file store. If true then if server has room in
memory, they will be stored in memory and reused.

Cache on Reload: When a server restarts it will scan all file based stores and check for
corruption. During this test the default behaviour is to disable caching to conserve
memory, however, in some instances it would be beer if the server had actually
cached the events in memory for fast replay.

Enable Read Buffering: Control the read buffering logic for the store on the server.

Read Buffer Size: If ReadBuffering is enabled then this function sets the size in bytes of
the buffer to use.

Sync Each Write: Control whether each write to the store will also call sync on the file
system to ensure all data is wrien to the Disk

Sync Batch Size: Control how often in terms of number of events to sync on the file
system to ensure all data is wrien to the Disk

Sync Batch Time: Control how often in terms of time elapsed to sync on the file
system to ensure all data is wrien to the Disk

Fanout Archive Target: Control whether all events fanned out are wrien to an archive

	Table of Contents
	Universal Messaging Concepts - Overview
	Architecture
	Universal Messaging Concepts - Architecture Overview
	Universal Messaging and Open Standards
	Universal Messaging Concepts : Universal Messaging Realm
	Messaging Paradigms supported by Universal Messaging
	Universal Messaging Brokerless API
	Universal Messaging Communication Protocols and RNAMEs
	Universal Messaging Shared Memory (SHM)

	Management
	Universal Messaging Concepts - Administration and Management
	Universal Messaging Concepts - JMX Administration and Management

	Performance, Scalability and Resilience
	Universal Messaging Concepts - Performance, Scalabilty and Resilience
	Clustering
	Universal Messaging Clusters: An Overview
	Universal Messaging Clusters: Client Concepts

	Clustered Server Concepts
	Universal Messaging Clusters: Server Concepts
	Universal Messaging Clusters: Masters and Slaves
	Universal Messaging Clusters: Quorum
	Universal Messaging Clusters: Election of a new Master
	Universal Messaging Clusters: Message Passing
	Universal Messaging Clusters: Outages and Recovery
	Universal Messaging Clusters: Creating Clustered Resources
	Universal Messaging Clusters: Inter-Cluster Connections
	Universal Messaging Clusters with Sites
	Universal Messaging Clusters: Shared Storage Configurations

	Universal Messaging Clustering : Setting Up a HA Failover Cluster
	Universal Messaging Multicast: An Overview
	Universal Messaging Shared Memory (SHM)
	Scalability
	Universal Messaging Concepts - Performance, Scalability and Resilience
	Universal Messaging Realm Benchmarks
	Universal Messaging Concepts - Failover
	Connections Scalability With Universal Messaging

	Deployment
	Universal Messaging Concepts - Deployment
	Server
	Performance and Tuning
	Universal Messaging Deployment Guide - Server Failover / High Availability
	Universal Messaging Data Routing
	Federation Of Universal Messaging Servers
	Universal Messaging, Proxy servers and Firewalls
	Universal Messaging Deployment Guide - Server Memory
	Universal Messaging Server Parameters
	Universal Messaging Deployment Guide - Server Security
	Universal Messaging Concepts - Deployment
	Connecting to multiple realms using SSL
	Performance and Tuning - The Java Virtual Machine
	Performance and Tuning - The Network
	Performance and Tuning - The Operating System
	Performance and Tuning - The Universal Messaging Realm Server

	Client
	Universal Messaging Deployment - Connecting Over HTTP/HTTPS
	Universal Messaging Deployment Guide - Browser / Applet Deployment
	Universal Messaging and Browser Plugins
	Universal Messaging Deployment Guide - Client Jars
	Universal Messaging Deployment Guide - Client Security
	Universal Messaging Client Parameters
	Universal Messaging Deployment - Multiplexing Sessions

	Language Deployment Tips
	Universal Messaging Deployment - Adobe Flex Application Deployment
	Universal Messaging Deployment - Silverlight Application Deployment
	Universal Messaging Deployment - JavaScript Application Deployment

	Security
	Overview
	Universal Messaging Concepts - Security
	Universal Messaging Concepts - Security Architecture
	Using Universal Messaging over HTTP/HTTPS

	Authentication
	Universal Messaging Concepts - Authentication
	Universal Messaging Authentication and SASL
	Overview
	Client
	Server
	Client Negotiation
	Directory Backend
	Internal User Repository
	LDAP

	Converting a .jks Key Store to a .pem Key Store

	Access Control Lists
	Universal Messaging Concepts - Security Policies
	Universal Messaging Concepts - Access Control Lists (ACLs)

	SSL
	Universal Messaging Concepts - SSL Encryption
	Universal Messaging Concepts - Client SSL Configuration
	SSL Concepts

	Universal Messaging MQTT: An Overview
	Commonly Used Features
	Overview of Commonly Used Features
	Universal Messaging Sessions
	Channel Attributes
	Universal Messaging Channel Publish Keys
	Universal Messaging Queue Attributes
	Universal Messaging Native Communication Protocols
	Universal Messaging Comet Communication Protocols
	Universal Messaging Durable Consumers
	Google Protocol Buffers
	Universal Messaging Named Objects
	Universal Messaging - Event Filtering Guide
	Universal Messaging - Advanced Filtering with Selectors
	Using Universal Messaging Shared Memory Protocol
	Storage Properties

