
webMethods EntireX

EntireX XML/SOAP Wrapper

Version 9.6

April 2014

This document applies to webMethods EntireX Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXXMLWRAPPER-96-20140628

Table of Contents

1 Introduction to the XML/SOAP Wrapper ... 1
XML/SOAP Wrapper Concepts ... 2
Development Environment .. 5
XML/SOAP Runtime Environment ... 6
Glossary of Terms ... 8

2 Migration Considerations for XML/SOAP Components .. 9
Migrating XML/SOAP Components for EntireX Version 8 and above 10
Migrating XML/SOAP Components from EntireX Version 7.n 11

3 Using the XML/SOAP Wrapper .. 19
Mapping IDL Parameters to XML Structures .. 20
Setting Wrapper Properties .. 21
Generating an XMM File .. 22
Default Values Used by the XML/SOAP Runtime ... 23

4 RPC Environment Manager .. 25
5 RPC Environment Monitor ... 29
6 EntireX XML Tester ... 31

Introduction to the XML Tester .. 32
XML Tester Options ... 33
Using the XML Tester ... 36
XML Tester for Conversational RPC .. 40

7 Using the XML/SOAP Wrapper in Command-line Mode .. 43
Command-line Options .. 44
Example .. 44
Further Examples ... 45

8 Tracing the XML/SOAP Runtime .. 47
9 Introduction to Writing Applications with the XML/SOAP Wrapper 49

Connecting between XML-based Clients and an EntireX RPC Server 50
Connecting EntireX Clients and XML-based Server .. 51

10 Writing Advanced Applications with the XML/SOAP Wrapper 53
XML/SOAP Listener ... 54
Natural Logon or Changing the Library Name ... 55
Using RPC Compression .. 56
Using Conversational RPC ... 56
Using Natural Security ... 58
Using Compression .. 59
Using EntireX Security ... 60
HTTP Proxy Settings .. 61
XML/SOAP RPC Server with HTTP Basic Authentication 61
XML/SOAP Listener with HTTP Basic Authentication and UsernameToken
Authentication for EntireX Authentication .. 62
Using SSL or TLS with the XML/SOAP RPC Server .. 66
Using Internationalization with EntireX XML Components 68
Null Value Suppression .. 69

iii

User-specified Settings ... 75
Map Fault to IDL Parameter .. 75
Whitespace Handling ... 85

11 Connect an Existing EntireX RPC Server with an XML-based Client 87
Connect RPC Server with XML-based Client, using a Web Application 88
Connect RPC Server with XML-based Client, using the Java API of EntireX
XML/SOAP Runtime .. 90
Running the Application .. 91

12 Build an EntireX RPC Server and Use an Existing XML-based Client with It 93
Generation Process ... 94
Running the Application .. 94

13 Build an EntireX RPC Client and Use an Existing XML-based Server 95
Generation Process ... 96
Running the Application .. 96

14 Connect an Existing EntireX RPC Client to an XML-based Server 99
Generation Process ... 100
Running the Application .. 101

15 Configuring Client and Server Applications ... 103
Configuring a Client to Call the EntireX XML/SOAP Runtime (Java API) 104
Configuring a Client to Call the EntireX XML/SOAP Runtime (XML/SOAP
Listener) .. 104
Configuring an XML/SOAP RPC Server .. 105

16Deployment to XML/SOAPRPCServer andDynamicConfiguration of XML/SOAP
RPC Server .. 107

Introduction .. 108
Deploying an XMM File to XML/SOAP RPC Server ... 108
Undeploying an XMM File to XML/SOAP RPC Server ... 110
Configuring XML/SOAP RPC Server Dynamically ... 112

17 Examples .. 115
Example 1: Existing Natural Client that Connects to a Web Service 116
Example 2: Publish an EntireX RPC Server for Web Clients 120

18 Frequently Asked Questions (FAQ) and Troubleshooting .. 123
XML/SOAP Listener ... 124
XML/SOAP RPC Server .. 124
XML/SOAP RPC Server in the Software AG Runtime ... 125

19 Reference - HTTP and Java Interface ... 127
Client Using the Java Interface ... 128
The Java Interface ... 130
The HTTP Interface .. 130

20 XML Structures and IDL-XML Mapping .. 133
XML Structure Description .. 134
Basic IDL-XML Mapping ... 134
Arrays ... 138
Groups .. 140
IN / OUT / IN OUT Parameters .. 143

EntireX XML/SOAP Wrapperiv

EntireX XML/SOAP Wrapper

21 XML Schema Standards Conformance (XML/SOAP Wrapper) 145
XML Schema Parser Standards Conformance ... 146
XML Schema Writer Standards Conformance ... 147

22 Reliable RPC for XML/SOAP Wrapper ... 149
Introduction to Reliable RPC ... 150
Writing a Client .. 150
Broker Configuration ... 150

23 SOAP and Web Services (XML/SOAP Listener) .. 151
SOAP Support .. 152
Web Services ... 152

24 Support of Representational State Transfer (REST) ... 155
GET Manner ... 156
Limitations .. 156
Example .. 156

vEntireX XML/SOAP Wrapper

EntireX XML/SOAP Wrapper

vi

1 Introduction to the XML/SOAP Wrapper

■ XML/SOAP Wrapper Concepts .. 2
■ Development Environment .. 5
■ XML/SOAP Runtime Environment .. 6
■ Glossary of Terms ... 8

1

The EntireX XML/SOAPWrapper enables XML-based communication to EntireX/Natural RPC
servers and communication from EntireX/Natural RPC clients to XML-based servers.

XML/SOAP Wrapper Concepts

The EntireX XML/SOAPWrapper and the XML/SOAP RPC Server enable XML-based communic-
ation via XML/SOAPWrapper. An EntireX RPC server or a Natural RPC Server can communicate
with XML-based clients. Similarly, an EntireX RPC client or Natural RPC client can communicate
with an XML-based server via XML/SOAPRPC Server. EntireX participants (client or server) with
an XML-based application (server or client) can be easily integrated with the EntireX Workbench
and the EntireX XML/SOAPWrapper/ XML/SOAP RPC Server.

TheXMLMapping File is anXMLfile (file extension .xmm) generated by the EntireXXMLMapping
Editor and used by the EntireX XML/SOAP Runtime, to map between XML documents and En-
tireX/Natural RPC parameters.

Communication is synchronous.

XML-based Clients Calling EntireX/Natural RPC Server

The XML-based client sends an XML document to EntireX XML/SOAP Runtime.

From an incoming XML document, the EntireX XML/SOAP Runtime extracts (using the mapping
file) the information necessary to call an EntireX/Natural RPC server. It executes the RPC. The
result returned by the EntireX/Natural RPC server is used to create an outgoing XML document.

The XML-based client gets an XML document containing the response.

Mapping example: calc

EntireX XML/SOAP Wrapper2

Introduction to the XML/SOAP Wrapper

A mapping editor is provided to map the XML structures to those of the server application.

EntireX/Natural RPC Client Calling XML-based Server

The RPC client sends a request to the XML/SOAP RPC Server. The XML/SOAP RPC Server
translates (using the mapping file) the information of an EntireX client call to XML (so it can be
understood by an applicationwith an XML interface). The XML/SOAPRPC Server sends the XML
document to the XML-based server via HTTP(s) and receives an XML document from the XML-
based server. It translates the received XML document and sends the response to the RPC client.

3EntireX XML/SOAP Wrapper

Introduction to the XML/SOAP Wrapper

EntireX XML/SOAP Wrapper4

Introduction to the XML/SOAP Wrapper

Development Environment

■ XML Mapping Editor
■ Generation Utilities

During the development process, users map XML document structures to RPC parameters and
vice versa, and generate the XMM (XML Mapping) File.

XML Mapping Editor

The input for the XML Mapping Editor is an existing Software AG IDL file. See XML Mapping
Editor.

The XML Mapping Editor allows users to map the structure of an incoming XML document to
the incoming parameters (IN, INOUT) of an Natural RPC Server and the parameters returned by
the EntireX/Natural RPC server (OUT, INOUT) to the structure of the outgoing XML document.

To ease the development process, standard mappings can be created automatically. These can be
modified and adapted.

Supported standard mappings are:

■ element-oriented mapping
■ attribute-oriented mapping
■ SOAP-conformant mapping

See Basic IDL-XML Mapping.

5EntireX XML/SOAP Wrapper

Introduction to the XML/SOAP Wrapper

Generation Utilities

After the mapping process, the following runtime components can be generated:

■ XMLMapping Files
are used during runtime to map between the XML documents and the EntireX/Natural RPC
parameters.

XML/SOAP Runtime Environment

The EntireXXML/SOAPRuntime enables XML-based clients to communicatewith an EntireX/Nat-
ural RPC Server; and it enables EntireX RPC clients to communicate with applications that have
an XML or SOAP interface (via XML/SOAP Runtime).

XML Clients Communicating with EntireX/Natural RPC Servers

The incoming XML document is mapped by the generated XMM file to the EntireX/Natural RPC
parameters, using themapping files created during the development process. From the parameters
returned by the EntireX/Natural RPC server, the generated XMM file creates the outgoing XML
document, using the corresponding mapping files.

The XML/SOAP Runtime provides two client-side interfaces:

■ A Java interface
The Java interface can be used by Java clients. See Client Using the Java Interface.

■ An HTTP interface
TheHTTP interface supportsHTTPPost Request andHTTPGet Request. SeeTheHTTP Interface.

To make it possible to call the XML/SOAP Runtime from within a Web server, see Administering
the EntireX XML/SOAP Listener in the UNIX and Windows administration sections.

EntireX XML/SOAP Wrapper6

Introduction to the XML/SOAP Wrapper

EntireX Clients Communicating with XML or SOAP Interfaces

The XML/SOAP Runtime can connect EntireX clients to applications that have an XML or SOAP
interface, for example SAP or PeopleSoft. These applications are then the XML server. Example:
An EntireX client requests information of an SAP application. The request is sent to the EntireX
Broker and the EntireX XML/SOAP Runtime (translated to XML there) and then to the SAP XML
interface, processed by the SAP application. The repsonse is returned the same way.

The XML/SOAP Runtime provides two server-side interfaces:

■ A Java interface
The Java interface can be used to modify the document and determine further processing.

■ An HTTP interface
The XML/SOAP document is sent to the specified target.

7EntireX XML/SOAP Wrapper

Introduction to the XML/SOAP Wrapper

Glossary of Terms

XML-based Client

Client sends and receives data as an XML or SOAP document.

XML-based Server

Server receives and sends data as an XML or SOAP document (for example a Web service).

XML/SOAP RPC Server

With the XML/SOAP RPC Server you can process XML-based server calls from EntireX RPC cli-
ents/Natural RPC clients. The EntireXRPC client communicateswith the XML-based server, using
the XML/SOAP RPC Server.

XML/SOAP Runtime

The EntireXXML/SOAPRuntime enables XML-based clients to communicatewith an EntireX/Nat-
ural RPC Server; and it enables EntireX RPC clients to communicate with applications that have
an XML or SOAP interface (via XML/SOAP Runtime).

XML/SOAP Wrapper

The EntireX XML/SOAPWrapper enables XML-based communication to EntireX/Natural RPC
servers and communication from EntireX/Natural RPC clients to XML-based servers.

XML Mapping File

TheXMLMapping File is anXMLfile (file extension .xmm) generated by the EntireXXMLMapping
Editor and used by the EntireX XML/SOAP Runtime, to map between XML documents and En-
tireX/Natural RPC parameters.

EntireX XML/SOAP Wrapper8

Introduction to the XML/SOAP Wrapper

2 Migration Considerations for XML/SOAP Components

■ Migrating XML/SOAP Components for EntireX Version 8 and above .. 10
■ Migrating XML/SOAP Components from EntireX Version 7.n .. 11

9

Migrating XML/SOAP Components for EntireX Version 8 and above

This section covers the following topics:

■ Migrating XML/SOAP RPC Server
■ Migrating XML/SOAP Wrapper
■ Migrating XML/SOAP Listener

Migrating XML/SOAP RPC Server

Update the start script to set the paths to current installation. If the properties file contains a path
to the configuration file, you may need to adjust the path. The properties and configuration files
can be used as before. SeeConfiguration File for the XML/SOAPRPCServer in theUNIX andWindows
administration documentation for more information.

Migrating XML/SOAP Wrapper

Update the start script to set the paths to current installation.

Migrating XML/SOAP Listener

Using the Software AG Web Server based on Apache Tomcat / Software AG Runtime from Software AG Install-
ation

Save your Web services (AAR files) and modified configuration files (i.e. axis2.xml). You do not
need to re-generate yourWeb services (AAR files). If the configuration was modified, perform the
same modifications for the new installation and restart Software AGWeb Server. Redeploy the
web services (AAR files).

Note: The new installationwill use another port by default, whichmeans that theWeb clients
need to be adjusted.

Using another Web Server

Save your Web services (AAR files) and modified configuration files (i.e. axis2.xml). You do not
need to re-generate yourWeb services (AARfiles). For deployment of filewsstack.war and copying
file entirex.jar to Web Services Stack, see the separate Web Services Stack documentation, also
available underwebMethodsProductDocumentation on theSoftwareAGDocumentationwebsite.

If configuration was modified, perform the same modifications for new installation and restart
the Web server. Redeploy the Web services (AAR files).

EntireX XML/SOAP Wrapper10

Migration Considerations for XML/SOAP Components

http://documentation.softwareag.com/

Migrating XML/SOAP Components from EntireX Version 7.n

The architecture of the EntireXXML/SOAPListener (formerly known as XMLServlet) and EntireX
XML/SOAP RPC Server was changed with version 8.0. The previous version worked as a Web
application running directly in the Web server; the current version works as part of Software AG
Common Web Services Stack (WSS), which is a Web application running in a Web server. This
change has impact on configuration, packaging and deployment of EntireX Web services.

Note: This section describes migration from a version earlier than 8.

■ Migrating XML/SOAP RPC Server from Version 7.n
■ Migrating XML/SOAP Wrapper from Version 7.n
■ Migrating XML/SOAP Listener from Version 7.n - Introduction
■ Migrating from Version 7.n to one or more Listener Services with new URL(s)
■ Migrating from Version 7.n to one Listener Service, Keeping the URL used by Applications

Migrating XML/SOAP RPC Server from Version 7.n

The XML/SOAP RPC Server requires the directory of a Software AGCommonWeb Services Stack
installation. The JAR file wsstack-client.jar located in <WS_STACK_HOME>/libmust be added to
classpath. (Note: the JAR file wsstack-client.jarmust remain in this lib directory). File entirex.jar
from EntireX installation must also be present in classpath.

The XML parser required has changed. Therefore, the (optional) properties file (if used) must be
modified by redefining the parameter for the XML stream parser in the following way:

entirex.sdk.xml.runtime.xmlparserfactory=com.ctc.wstx.stax.WstxInputFactory

The configuration file can be used as before. To make use of the latest features, some extensions
in the configuration file are required. See Configuration File for the XML/SOAP RPC Server in the
UNIX and Windows administration documentation for more information.

Migrating XML/SOAP Wrapper from Version 7.n

The used XML parser has changed. XML/SOAPWrapper uses XMLStreamParser, so the classpath
must contain the JAR files of XMLStreamParser. The EntireX installation comes with stax-api.jar
and wstx-asl.jar. The two XMLStreamParser JAR files are located in <EntireX Home>/classes.

If you are compiling source using the class XMLRPCService, you require an additional JARfile axiom-
api-<version>.jar. This JAR file is located in <WebservicesStack>/lib.

11EntireX XML/SOAP Wrapper

Migration Considerations for XML/SOAP Components

Migrating XML/SOAP Listener from Version 7.n - Introduction

The XML/SOAP Listener requires a Software AGCommonWeb Services Stack (WSS) installation.
The WSS Web application is the container of XML/SOAP Listener. In previous EntireX versions
(lower than version 8) the XML/SOAP Listener was referred to as “XML Servlet” and was a Web
application itself. The file entirex.jar containing the XML/SOAP Runtime is placed in directory lib
of the WSS Web application. An EntireX Web service is created using the XML Mapping Editor
as in previous versions, and using a PackagingWizard to build anAARfile. The AARfile contains
all information for this Web service and must be deployed to the Web application.

The following new terms are applicable:

■ AAR Files
EntireX packs the XMMfile(s) and somemore files in aWeb service archive (.aar) that is deployed
in theWeb applicationWSStack. To put one ormore XMMfiles in oneWeb service archive, select
the XMM files and from the context menu chooseGenerate Web Service from EntireX Map-
ping.... All the files you select must have the same mapping type (i.e. SOAP or non-SOAP
mapping); do not mix mapping types.

■ File entirex-forward.war

The servlet entirex-forward only forwards the message to the new URL. This means you can
continue using the old URL and migrate the service to a new infrastructure. The servlet does
not process the payload, so thisWeb application does not contain an entirex.jar file and does not
contain a mapping file (XMM).

The following scenarios are available for migrating a service offered by XML Servlet of earlier
EntireX versions (lower than version 8):

■ migrating to one or more services, using new URL(s); seeMigrating from Version 7.n to one or
more Listener Services with new URL(s)

■ migrating to one service only, keeping the URL; seeMigrating from Version 7.n to one Listener
Service, Keeping the URL used by Applications

Migrating from Version 7.n to one or more Listener Services with new URL(s)

You can migrate a service offered by XML Servlet of earlier EntireX versions (lower than version
8) to one ormore services in the context of XML/SOAP Listener with newURL(s). That means you
can split the original service into different services, each with its own URL. However, this means
you need to update the address in the Web client.

To migrate a service with new URLs

1 Copy all the IDL-XMLmapping files (XMMs) listed in file xml-init.xml to one Eclipse project.

2 Select multiple XMM files that are to be bundled in one service, and from the context menu
chooseGenerate Web Service from EntireX Mapping

EntireX XML/SOAP Wrapper12

Migration Considerations for XML/SOAP Components

3 Modify the service name if required.

4 Uncheck Use of defaults.

5 CheckGeneral service parameters (xml-init.xml) if you have any XMM-independent settings
in file xml-init.xml.

6 Check Set connection and security parameters in mapping file.

7 Follow the wizard.

8 Modify the setting if required. The included XMMfiles can be selected with combo box at the
top.

9 Deploy the service.

10 Change the target URL of calling instances (Web clients).

13EntireX XML/SOAP Wrapper

Migration Considerations for XML/SOAP Components

Migrating from Version 7.n to one Listener Service, Keeping the URL used by Applications

The first step is to generate one service archive with all XMM files listed in file xml-init.xml. The
second step is the configuration and usage of entirex-forward.war. This section covers the following
topics:

■ Step 1: Generate Service Archive
■ Step 2: Use File entirex-forward.war
■ Example of Migrating with Servlet entirex-forward

Step 1: Generate Service Archive

To generate a service archive

1 Copy all IDL-XML mapping files (XMMs) listed in xml-init.xml to one Eclipse project.

2 Select all XMM files, and from the context menu chooseGenerate Web Service from EntireX
Mapping

3 Modify the service name if required. This service name is used for configuring of servlet
entirex-forward later.

4 Uncheck Use of defaults.

5 CheckGeneral service parameters (xml-init.xml)' if you have anyXMM-independent settings
in file xml-init.xml.

6 Check Set connection and security parameters in mapping file.

7 Follow the wizard.

8 Modify the setting if required. The included XMMfiles can be selected with combo box at the
top.

9 Deploy the service.

Step 2: Use File entirex-forward.war

ThisWeb application delivered as entirex-forward.war allows you to forward a SOAP/XML request
from an endpoint used in an older EntireX version (e.g. http://hostname:port/entirex/xmlrt) to an
endpoint used in the current EntireX version (e.g http://hostname:port/wsstack/services/example).

The steps below explain how to forward, for example, from the endpoint http://localhost:10010/en-
tirex/xmlrt to the endpoint http://localhost:10010/wsstack/services/example.

Important: The servlet entirex-forward forwards the calls to exactly one service and replaces
the old EntireX Web application; it does not run in parallel (old EntireX XML Servlet and
the new servlet entirex-forward).

EntireX XML/SOAP Wrapper14

Migration Considerations for XML/SOAP Components

Note: You cannot use the file entireX-forward.war to forward a call from oneWeb application
server to another.

To forward a SOAP/XML request

1 Rename entirex-forward.war to entirex.war.

2 Deploy entirex.war into the webapps folder of your application server (e.g. Tomcat).

3 Make sure that the Web Services Stack Web application (wsstack.war) is still deployed in the
same webapps folder.

4 Make sure that a service with the name "example" is deployed into the Web Services Stack
Web application. See Step 4 under Step 1: Generate Service Archive.

5 Make sure that your application server allows cross-context access. Set the crossContext at-
tribute of all Context implementations to "true". In Apache Tomcat you can modify the file
$CATALINA_HOME/conf/context.xml:

Set

<Context>

to

<Context crossContext="true">

6 Make sure that the file web.xml (located in webapps/entirex/WEB-INF) contains the following
entries:

<servlet>
<description>
This is the EntireX ForwardServlet</description>
<display-name>
forward</display-name>
<servlet-name>forward</servlet-name>
<servlet-class>
com.softwareag.entirex.xml.forward.ForwardServlet</servlet-class>
<init-param>
<description>
This is the targetURI</description>
<param-name>targetURI</param-name>
<!--replace the servicename with service name defined in aar -->
<param-value>/services/servicename</param-value>

</init-param>
<init-param>
<description>
This is the target context i.e. /wsstack</description>
<param-name>targetContext</param-name>
<param-value>/wsstack</param-value>

15EntireX XML/SOAP Wrapper

Migration Considerations for XML/SOAP Components

</init-param>
</servlet>
<servlet-mapping>
<servlet-name>forward</servlet-name>
<url-pattern>/xmlrt</url-pattern>

</servlet-mapping>

The old endpoint http://hostname:port/entirex/xmlrt is built from the name of the Web application
("entirex.war") and the url-pattern of the servlet entirex-forward ("/xmlrt"). The new endpoint
is built from the targetContext(/wsstack) and the targetURI(/"services/servicename").

You can modifiy these parameters to adopt your Web service.

Example of Migrating with Servlet entirex-forward

This section describes how a migrated service interacts with servlet entireX-forward.

For this example, the Tomcat installation that comes with the EntireX installation (Version 8.2) is
used. The assumed endpoint from the previous XML Servlet installation is http://localhost:10010/en-
tirex/xmlrt. The endpoint of the migrated service will be http://localhost:10010/wsstack/services/ex-
ampleXML.

The start point is file xml-init.xml (below), with its mapping file example.xmm.

Follow the steps above for generating a Web service archive file (*aar) with service name "ex-
ampleXML" (see Step 1: Generate Service Archive). The installation contains the generated ex-
ampleXML.aar in directory <installation home>/EntireX/examples/RPC/basic/example/XMLClient. File
exampleXML.aar is also deployed during installation if the Software AG Common Platform was
selected.

The last step is to configure and deploy the servlet entirex-forward.

To configure and deploy the servlet entirex-forward

1 Rename entirex-forward.war to entirex.war.

2 Deploy entirex.war to the webapps folder of your application server (e.g. Tomcat).

3 Make sure that the Web Services Stack Web application (wsstack.war) is still deployed in the
same webapps folder.

4 Make sure that a service with the name "exampleXML" is deployed into the Web Services
Stack Web application. If the Web server is running, start a browser session and enter URL
http://localhost:10010/wsstack/services. The service "exampleXML" should be listed.

5 Make sure that your application server allows cross-context access. Se the crossContext at-
tribute of all Context implementations to "true". In Apache Tomcat you can modify file
$CATALINA_HOME/conf/context.xml:

EntireX XML/SOAP Wrapper16

Migration Considerations for XML/SOAP Components

Set

<Context>

to

<Context="true">

6 Make sure that fileweb.xml (located inwebapps/entirex/WEB-INF) contains the following entries:

<servlet>
<description>
This is the EntireX ForwardServlet</description>
<display-name>
forward</display-name>
<servlet-name>forward</servlet-name>
<servlet-class>
com.softwareag.entirex.xml.forward.ForwardServlet</servlet-class>
<init-param>
<description>
This is the targetURI</description>
<param-name>targetURI</param-name>
<param-value>/services/exampleXML</param-value>

</init-param>
<init-param>
<description>
This is the target context i.e. /wsstack</description>
<param-name>targetContext</param-name>
<param-value>/wsstack</param-value>

</init-param>
</servlet>
<servlet-mapping>
<servlet-name>forward</servlet-name>
<url-pattern>/xmlrt</url-pattern>

</servlet-mapping>

The old endpoint http://hostname:port/entirex/xmlrt is built from the name of theWeb application
("entirex.war") and the URL pattern of the servlet entirex-forward ("/xmlrt"). The new end-
point is built from the targetContext(/wsstack) and the
targetURI(/"services/exampleXML").

7 Restart Tomcat.

8 Open the Software AG Designer and change to the EntireX perspective.

9 ChooseWindows > Show View > XML Tester to open the XML Tester.

10 Browse for <installation home>/EntireX/examples/RPC/basic/example/XMLClient/example.xmm.

11 Create a sample request document.

17EntireX XML/SOAP Wrapper

Migration Considerations for XML/SOAP Components

12 Start Java RPC serverwith script jrpcserver.bat or jrpcserver.bsh (depending on platform)
in directory bin of the EntireX installation that is used as a back-end.

13 SelectHTTP Test (XML/SOAP listener).

14 SetHTTP URI to "http://localhost:10010/wsstack/services/exampleXML".

15 Send request to see the service works.

16 SetHTTP URI to "http://localhost:10010/entirex/xmlrt".

17 Send request again (the request is sent to "old" address andwill be processed in the XML/SOAP
Listener embedded in Web Services Stack).

EntireX XML/SOAP Wrapper18

Migration Considerations for XML/SOAP Components

3 Using the XML/SOAP Wrapper

■ Mapping IDL Parameters to XML Structures ... 20
■ Setting Wrapper Properties ... 21
■ Generating an XMM File ... 22
■ Default Values Used by the XML/SOAP Runtime ... 23

19

Mapping IDL Parameters to XML Structures

Use the XML Mapping Editor to map IDL parameters to XML structures.

The mapping editor offers several mapping types:

■ element mapping: all IDL parameters map to elements in an XML document
■ attribute mapping: all scalar/simple IDL parameters map to attributes; program name and
complex types (groups and structures) map to elements

■ SOAP mapping: a standard SOAP document is generated, IDL parameters map to elements in
<Body>-part

■ user-defined mapping: users create their own XML or SOAP documents and map the IDL
parameters to elements or attributes of an XML document.

In addition, the mapping editor shows one of general information (Overview page), the request
message (XML Request), response message within fault information (XML Response page),
mapping parameters (Mapping Parameters page) or sample editor (XML Samples page) at one
time.

EntireX XML/SOAP Wrapper20

Using the XML/SOAP Wrapper

Setting Wrapper Properties

Before you start the generation of the XMM file, select the IDL file and open the context menu to
set the properties for this IDL file. The settings for an IDL file are inherited from the preferences
(they provide the defaults):

To set the general options, path settings and XML options

1 Select Preferences... in the Windows menu of Eclipse.

2 Select Software AG > EntireX.

3 Select the tab XML.

4 Fill in the screen as follows:

DescriptionScreen Item

This encoding is used for the XML/SOAP document sent, if the box
“Use incoming XML encoding” is not checked (for XML-based clients)
or if the XML/SOAP RPC Server is used.

XML default encoding

Check this box to enable the XML/SOAPWrapper to use same encoding
for the incoming document as for the outgoing document.

Use incoming XML encoding

5 Confirm the settings withOK.

21EntireX XML/SOAP Wrapper

Using the XML/SOAP Wrapper

After setting the general properties, set the properties specific to the IDL file. The settings for the
XML/SOAPWrapper classes are on the two tab pages: General and XML.

To set the IDL properties

1 In the file tree browser, select the IDL file to be processed.

2 To display the Propertieswindow, use either the context menu or the Filemenu and choose
Properties.

The subsequent screen will show the defaults you entered with Tools > Options..

3 Use this page to specify the Broker ID, the server address (Server class, Server name, and
Service) and other properties. If you do not enter Broker ID, server name, etc., the defaults
(as entered in the Tools /Optionsmenu) will be used.

4 Select the XML tab.

5 Complete the screen as follows:

DescriptionScreen Item

This encoding is used for the XML/SOAP document sent, if the box
“Use incoming XML encoding” is not checked (for XML-based Clients)
or if the XML/SOAP RPC Server is used.

XML default encoding

Check this box to enable the XML/SOAPWrapper to use the same
encoding for the incoming document as that used for the document
sent.

Use incoming XML encoding

6 Confirm the settings withOK.

Generating an XMM File

To generate the XMM file, use the EntireX Workbench.

The IDL file, the XML file and the properties are used to generate an XMM file.

To generate the XMM file

1 Specify an IDL-XML mapping.

2 Save the mapping.

If you are using the default settings of the EntireX Workbench, an XMM file is saved. The name of
the XMM file is <idl file name>.xmm

EntireX XML/SOAP Wrapper22

Using the XML/SOAP Wrapper

Caution: If you modify the IDL file, the IDL-XML mapping file or the properties, you must
re-generate the XMM file.

Default Values Used by the XML/SOAP Runtime

The XML/SOAP Runtime uses standard default values for all parameters (for EntireX RPC) and
elements/attributes (for XML documents) if no value can be retrieved and no user default value
is defined. The table below shows the standard default values for XML and RPC.

DescriptionValue

XML: Empty string with length 0
RPC: String with n blanks

A(n)

Empty string with length 0AV

String with n zerosB(n)

Empty field with length 0BV

XML: Empty string with length 0
RPC: String with n blanks

K(n)

Empty string with length 0KV

falseL

0I1

0I2

0I4

0.0F4

0.0F8

0.0N

0.0P

new Date()D

new Date()T

XML: Empty Unicode string with length 0
RPC: Unicode String with n blanks

U(n)

XML: Empty Unicode string with length 0UV

23EntireX XML/SOAP Wrapper

Using the XML/SOAP Wrapper

24

4 RPC Environment Manager

TheRPCenvironment ismanagedon theRPCenvironment preference page. TheRPCenvironments
can be created, edited and removed. There are several types of RPC environment: Natural, PL/I
and XML/SOAP. The RPC environment type will be used to prepare the selection lists of the fol-
lowing wizards:

■ Natural RPC Server
■ IDL Extractor for PL/I
■ XML/SOAP RPC Server

Use the RPC Environment Monitor to check the availablity of each RPC environment.

Using these wizards, you can add new RPC environments of the respective type. Tomanage these
RPC environments, open the Preferences page.

25

To edit an existing RPC environment, select the table row and press Edit.... If multiple entries are
selected, the first entry is used.

To remove an RPC environment, select the table row and press Remove. You can select multiple
environments.

To create a new RPC environment, choose Insert....

EntireX XML/SOAP Wrapper26

RPC Environment Manager

Choose the Type and enter the required fields: Broker ID, Server Address and a unique Environ-
ment Name, which will have the default format brokerID@serverAddress. The given Timeout value
must be in the range from 1 to 9999 seconds (default: 60).

EntireX Authentication describes the settings for the broker, and RPC Server Authentication
describes the settings for the RPC server.

The Extraction Settings are used for the IDL Extractors (Natural and PL/I) only. Use them to
specify the name of the Dataset/Library and theMember/Program name.

TheWrapper Settings are used for Natural Wrapper only, and you can specify the operation type
and target library name (not available for Save locally).

27EntireX XML/SOAP Wrapper

RPC Environment Manager

28

5 RPC Environment Monitor

The RPCEnvironmentMonitor is part of the EntireXWorkbench. It is an Eclipse view that provides
a quick overview of the availability of the defined RPC environments in your workspace.

To open the RPC Environment Monitor from the EntireX perspective

■ ChooseWindow > Show View > RPC Environment Monitor.

To open the RPC Environment Monitor from a non-EntireX perspective

■ ChooseWindow > Show View > Other > Software AG > RPC Environment Monitor.

The RPC environments are managed on the Preference page. See RPC Environment Manager.

The status check starts when the view is opened. To force an additional check, choose Refresh
from theViews toolbar. The status check can be cancelled in the dialog that appears or within the
Eclipse progress view.When the check is complete or if it cancelled, the following symbols indicate
the status of the corresponding item. The table will be reloaded every time a status check is started
to make sure all stored RPC environments are available.

29

StatusSymbol

Running.

Not running.

Unknown (at the beginning of the check or if the check was cancelled).

Note: Additional status information (including errormessages) is displayedwhen refreshing
the view (by a ping command to all specified RPC servers).

EntireX XML/SOAP Wrapper30

RPC Environment Monitor

6 EntireX XML Tester

■ Introduction to the XML Tester ... 32
■ XML Tester Options ... 33
■ Using the XML Tester ... 36
■ XML Tester for Conversational RPC .. 40

31

Introduction to the XML Tester

Using the XML Tester you can send an XML document to the EntireX XML/SOAP Listener.

The XML Tester supports drag-and-drop editing, and you can restore the last used session within
a workspace. If the mapping file has changed, the views for request and response are cleared.

The XML Tester is provided by the EntireX Workbench as an Eclipse View and can be opened
from the XML Mapping Editor or XML/SOAPWrapper. It is also accessible fromWindows >
Show View > Other... > Software AG > XML Tester. The following test modes are available:

■ Quick Test (Using the Java Interface)
■ HTTP Test (Using the EntireX XML/SOAP Listener)

See sample screen and description of options below.

EntireX XML/SOAP Wrapper32

EntireX XML Tester

XML Tester Options

DescriptionTypeName

Check this box to test the Java interface of the XML/SOAP Runtime.
If checked, the Settings action will open theQuick Test Details
dialog.

Check boxQuick Test

The AAR file, which contains one or more mapping files (XMM
files), or the XMM file, which contains the mapping information.

Text fieldXMM or AAR File

Accept absolute path. If the file does not exist, the action Create
Sample XML... is disabled. When the file is found, the Broker ID
and Server Address are read and the corresponding fields in the
Quick Test Details dialog are filled.

Behavior depends on content of field XMM or AAR File:Combo box

■ If this field contains an AAR file, this combo is enabled and filled
with all the mappings stored in the archive. Select the mapping
you want from the list.

■ If this field contains an XMM file, the combo box is disabled.

Open a File open dialog to select the XMMor AAR file from the file
system.

ButtonBrowse...

Check this box to test the HTTP interface (EntireX XML/SOAP
Listener) of the XML/SOAPRuntime. If checked, theSettings action
will open theHTTP/HTTPS Parameters dialog.

Check boxHTTP Test

URI of the EntireX XML/SOAPListener.Will store the last ten called
URLs.

Combo boxHTTP URI to
contact

File name of the XML Document to be sent.Text fieldInput XML
Document to send

Open a File open dialog to select the XML Document file from the
file system.

ButtonBrowse...

Open theCreate Sample XML... dialog, see below. If the text file for
the XMM file does not contain a valid file path, the Create Sample
XML... button is disabled.

ActionCreate Sample
XML...

Input field for the XML data to be sent to the Broker, this area is
filled with the text/tree representation of the selected file, see Input
XML Document to send. If empty, the Play action is disabled.

Tree/Text/Raw
view

input - area

Output field for the XMLdata response from the Broker. By default,
the responsewill be displayed in platform encoding. But if the XML

Tree/Text/Raw
view

output - area

data request contains a valid encoding in the XML declaration, this
encodingwill be used and a tooltip text will inform you of this. This
view will also display the status and errors.

Open eitherQuickTestDetails orHTTP/HTTPSParametersdialog.
SeeQuick Test andHTTP Test above.

ActionSettings

33EntireX XML/SOAP Wrapper

EntireX XML Tester

DescriptionTypeName

Start the test. This action is disabled if there is no text in the input -
area.

Action /Play/Stop

Reset the input and output areas.ActionReset

Quick Test Details Dialog

Use theQuick Test Details dialog to change the Quick Test parameters. The Broker ID, Server
Address, the Security Settings, the Natural Settings can be modified for this XML Tester session.
Compression Level is a non-editable box that contains all possible values. Broker ID and Server
Address are editable dialog boxes and hold the last five used values. Use the Reliable RPC check
box to turn reliable messaging on or off (mode is AUTO-COMMIT). See Reliable RPC.

XML Tester HTTP/HTTPS Parameters Dialog

With theHTTP Header tab you can add more information for the call and set the SOAPAction.
An entry must be selected to be active. The Value box holds the last five used values for the cor-
responding property. It is editable, which means you can change a value by clicking directly in
the table.

EntireX XML/SOAP Wrapper34

EntireX XML Tester

With theHTTPS Parameters tab you can set parameters required for an HTTPS connection. An
entry must be selected to be active. The Value box holds the last five used values for the corres-
ponding property. It is editable, which means you can change a value by clicking directly in the
table.

Add New HTTP Parameter Dialog

With the Add new HTTP(S) Parameter dialog you can add a new HTTP or HTTPS parameter.
All Software AG's predefined HTTP parameters are listed in the Key box. For HTTPS, the Key
box contains predefined properties for HTTPS communication.

35EntireX XML/SOAP Wrapper

EntireX XML Tester

Edit HTTP Parameter Dialog

With the Edit HTTP(S) Parameter dialog you can change the value of a property. The Value box
is editable and holds the last five used values. The Key value for all predefined properties cannot
be modified.

Using the XML Tester

Using the XML Tester you can send an XML document to the EntireX XML/SOAP Listener.

To open the XML Tester

■ In perspectives other than EntireX, chooseWindow > Show View > XML Tester, in other
perspectives, chooseWindow > Show View > Other ... > Software AG > XML Tester.

Or:

ChooseWindow > Open Perspective > Other... and select EntireX Perspective. The XML
Tester view is part of this perspective.

Or:

In the XMLMapping Editor, switch to theOverview page, chooseQuick Test orHTTP Test
in the testing section.

Or:

In the XMLMapping Editor, switch to pageXMLSamples, select one document, chooseXML
Tester in the context menu.

EntireX XML/SOAP Wrapper36

EntireX XML Tester

To run a test

1 Load the mapping information. In field XMM or AAR File, enter the absolute path to the
AAR or XMM file that is being tested (you can use the Browse... button or a drag-and-drop
operation). If you enter an AAR file, all mappings contained in the archive are listed in the
combo box next to the XMM or AAR File field.

2 Select the testing interface (Java or HTTP):

■ Java interface: the XMMor AAR File fieldmust contain the full path and name of an XMM
or AAR archive. Choose theQuick Test option to use this interface.

■ HTTP interface: enter the name of the URI of the running EntireX XML/SOAP Listener.
Choose theHTTP Test option to use this interface.

3 Complete the input area:

■ Type your XML document.
■ Use the Create Sample XML... button and follow the dialog.

Note: If the IDL file contains only one library with one program, this is used for the
sample generation without opening the dialog.

Example dialog:

■ Load sampledocument, usingdrag-and-dropoperation on the samplepage ofXMLMapping
Editor or file browser.

37EntireX XML/SOAP Wrapper

EntireX XML Tester

The following tabs are available:
■ The Text View tab will try to color the request syntactically, making the XML easier to
read.

■ The Raw View tab is initially empty. When the first request is sent, it is filled with the
exact message sent together with information on the request method and the usedHTTP
headers with their values.

■ From then on the Raw View is displayed and is updated with the last sent request.
■ Select an existing XML document (you can use the Browse button) and enter it in the field
Input XML file to send.

EntireX XML/SOAP Wrapper38

EntireX XML Tester

4 If the testing interface is Java, the Settings action will open theQuick Test Details dialog.

The dialog contains the three tabs with the following settings:

■ Main
■ Broker Security
■ Natural Security

SeeQuick Test Details Dialog.

5 If using optionHTTPTest, theSettings actionwill open theHTTP/HTTPSParametersdialog.
The dialog contains two tabs with settings for the HTTP call:

■ HTTP Header
■ HTTPS Parameters

See XML Tester HTTP/HTTPS Parameters Dialog.

6 Send the request by choosing actionPlay. If the testing interface isHTTP, theSending request
dialog appears. Here you have several options:

■ hide the dialog by pressing Run in Background button
■ cancel the request. This will terminate the session with the server
■ show details about all running Eclipse jobs

A progress bar on the Eclipse status bar shows to indicate that the request is being sent.

If you used theQuick Test option, you cannot cancel the request.

7 When a response is received, it is displayed in the output area. Errors are also displayed in
the output area.

The Text View tab displays the XML response as formatted and syntactically colored text.
The Raw View tab displays the response “as is”. Information on the used request method,
response code and HTTP headers with their values is displayed for the XML response.

39EntireX XML/SOAP Wrapper

EntireX XML Tester

XML Tester for Conversational RPC

To use the XML Tester with conversational RPC

1 Open Settings.

2 Add key exx-conv and set value to "OPEN".

3 PressOK.

EntireX XML/SOAP Wrapper40

EntireX XML Tester

4 Select exx-conv.

5 PressOK.

6 Send the request.

7 The response contains the exx-xml-sessionID used for conversational communication. This
parameter is also added to HTTP/HTTPS parameters for the next call(s) automatically. The
parameter exx-conv is deactivated simultaneously.

8 <!-- snippet with exx-xml-sessionID in response document -->
<axis2ns1:EntireX xmlns:axis2ns1="urn:com.softwareag.entirex.xml.rt">

<exx-xml-sessionID>XML610C044029044C05</exx-xml-sessionID>
</axis2ns1:EntireX>

<!-- snippet -->

9 To finish the conversation, open the settings again, activate the exx-conv and set its value to
"COMMIT" or "BACKOUT".

41EntireX XML/SOAP Wrapper

EntireX XML Tester

10 The conversation is closed with the next sent call.

EntireX XML/SOAP Wrapper42

EntireX XML Tester

7 Using the XML/SOAP Wrapper in Command-line Mode

■ Command-line Options ... 44
■ Example .. 44
■ Further Examples .. 45

43

Command-line Options

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax. The
table below shows the command-line options for the XML/SOAPWrapper.

DescriptionOptionCommandTask

-map:soapCreate SOAP-conformant XML
mapping for all programs. Supported for compatibility

with older versions.
-map:soap1.1

-map:xmlattributesCreate attribute-preferred XML
mapping for all programs.

-map:xmlelementsCreate element-preferred XML
mapping for all programs.

If namespace is specified, the
namespace URI for the

-namespace-map:xmlwithxsdCreate element-preferred XML
mapping with XML Schema for all
programs program node. XML Schema

uses this namespaceURI as the
target namespace.

-xml:sampleCreate sample XML documents for
all programs.

Example

<workbench> -map:soap /Demo/example.idl

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The name of the IDL file includes the project name. In the example, the project Demo is used. If
the IDL file name describes a file inside the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

Status and processing messages are written to standard output (stdout), which is normally set to
the executing shell window.

EntireX XML/SOAP Wrapper44

Using the XML/SOAP Wrapper in Command-line Mode

Further Examples

Windows Example 1

<workbench> -map:soap C:\Temp\example.idl

Uses the IDLfileC:\Temp\example.idl and generates the XMLmapping file example.xmm in parallel
to the IDL. Slashes and backslashes are permitted in the file name. Output to standard output:

Using workspace file: C:\myWorkspace\.
Processing IDL file: C:\Temp\example.idl
Store XML mapping file: C:\Temp\example.xmm
Exit value: 0

Windows Example 2

<workbench> -map:soap /Demo/example.idl

Generates XML mapping files for all IDL files in project /Demo.

Linux Example 1

<workbench> -map:soap /Demo/example.idl

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demo/example.idl is used from file system.

Linux Example 2

<workbench> -map:soap /Demo/example.idl

Generates XML mapping files for all IDL files in project Demo (or in folder /Demo if the project
does not exist).

45EntireX XML/SOAP Wrapper

Using the XML/SOAP Wrapper in Command-line Mode

46

8 Tracing the XML/SOAP Runtime

See Tracing the XML/SOAP Runtime in the UNIX and Windows administration documentation.

47

48

9 Introduction to Writing Applications with the XML/SOAP

Wrapper
■ Connecting between XML-based Clients and an EntireX RPC Server .. 50
■ Connecting EntireX Clients and XML-based Server .. 51

49

Connecting between XML-based Clients and an EntireX RPC Server

Publish an Existing EntireX RPC Server for XML-based Clients

You have an existing EntireX RPC server and want to extend its availability to XML-based clients
(e.g. offer the functionality of your server as a Web service). The simplest approach is to use the
EntireX XML/SOAPWrapper to convert your XML documents to EntireX RPCs and vice versa.
Then the XML-based client will appear to communicate with an XML-based server.

See Connect an Existing EntireX RPC Server with an XML-based Client.

Use your XML-based Client and Connect to an EntireX RPC Server

You have an XML-based client that is to communicate with an EntireX RPC server or access a
component accessible via an EntireX RPC server. The simplest approach is to use the EntireX
XML/SOAPWrapper to convert your XML documents to EntireX RPCs and vice versa. Then an
XML-based client will appear to communicate with an XML-based server (your EntireX RPC
server).

See Build an EntireX RPC Server and Use an Existing XML-based Client with It.

EntireX XML/SOAP Wrapper50

Introduction to Writing Applications with the XML/SOAP Wrapper

Connecting EntireX Clients and XML-based Server

Involve an XML-based Server in your EntireX Application

You know or have written XML-based servers (e.g. Web services) and want to involve them in
your EntireX application. The simplest approach is to use the EntireX XML/SOAP RPC Server to
convert your EntireX RPCs to XML documents and vice versa; the EntireX XML/SOAP RPC
Server handles the HTTP communication.

See Build an EntireX RPC Client and Use an Existing XML-based Server.

Connect your RPC Client and the XML-based Server

You have an EntireX RPC client and want to implement your server application as an XML-based
server and you want the EntireX RPC client to use this XML-based server. The simplest approach
is to use the EntireX XML/SOAP RPC Server to convert your EntireX RPCs to XML documents
and vice versa; the EntireX XML/SOAP RPC Server will handle the HTTP communication.

See Connect an Existing EntireX RPC Client to an XML-based Server.

51EntireX XML/SOAP Wrapper

Introduction to Writing Applications with the XML/SOAP Wrapper

52

10 Writing Advanced Applications with the XML/SOAP

Wrapper
■ XML/SOAP Listener ... 54
■ Natural Logon or Changing the Library Name .. 55
■ Using RPC Compression .. 56
■ Using Conversational RPC .. 56
■ Using Natural Security .. 58
■ Using Compression ... 59
■ Using EntireX Security .. 60
■ HTTP Proxy Settings .. 61
■ XML/SOAP RPC Server with HTTP Basic Authentication .. 61
■ XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authen-
tication ... 62
■ Using SSL or TLS with the XML/SOAP RPC Server ... 66
■ Using Internationalization with EntireX XML Components .. 68
■ Null Value Suppression ... 69
■ User-specified Settings ... 75
■ Map Fault to IDL Parameter .. 75
■ Whitespace Handling ... 85

53

XML/SOAP Listener

With the XML/SOAP Listener you can define parameters inside the payload of a message. We re-
commend this approach rather thanHTTP parameters. Define the setting in the SOAP header and
under the first tag of XML document as follows:

SOAP Documents

...
<soap-env:SOAPHeader>

<exx:EntireX xmlns:exx="urn:com.softwareag.entirex.xml.rt">
<!-tags with parameter setting e.g: -->
<exx-natural-library>libraryname</exx-natural-library>
<exx-natural-security>true</exx-natural-security>

</exx:EntireX>
...
</soap-env:SOAPHeader>
...

XML Documents

<root-tag>
<exx:EntireX xmlns:exx="urn:com.softwareag.entirex.xml.rt">

<!-tags with parameter setting e.g: -->
<exx-natural-library>libraryname</exx-natural-library>
<exx-natural-security>true</exx-natural-security>

</exx:EntireX>
...
</root-tag>

EntireX XML/SOAP Wrapper54

Writing Advanced Applications with the XML/SOAP Wrapper

Natural Logon or Changing the Library Name

The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is spe-
cified in the IDL file. See library-definition under Software AG IDL Grammar in the IDL Editor
documentation. When the RPC is executed, this library name can be overwritten.

XML/SOAP Wrapper (Java API)

To overwrite the library

■ An EntireX XML/SOAPWrapper client (Java API) must call the setLibraryNamemethod.

To force the library to be considered by Natural RPC Servers

■ Call the setNaturalLogonmethod.

XML/SOAP Listener

To overwrite the library

■ Use the parameter exx-natural-library.

To force the library to be considered by Natural RPC Servers

■ Set the parameter exx-natural-security to "true".

Caution: Natural RPC Servers and EntireX RPC Servers behave differently regarding the
library name.

See also Natural Logon or Changing the Library Name under Common Features of Wrappers and RPC-
based Components.

55EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Using RPC Compression

EntireX and Natural RPC support a feature called RPC compression to reduce network traffic.
The default for compression is on. See also RPC Compression under Common Features of Wrappers
and RPC-based Components.

XML/SOAP Wrapper (Java API)

To switch compression on and off

■ Use the setCompressionmethod of the class XMLRPCService inherited from class RPCService
in the Javadoc documentation of the Java ACI.

To check the current compression setting

■ Use the getCompressionmethod of the class XMLRPCService inherited from class RPCService
in the Javadoc documentation of the Java ACI.

XML/SOAP Listener

To switch compression on and off

■ Use the parameter exx-compression. Possible values: True, False.

Using Conversational RPC

It is assumed that you are familiar with the concepts of conversational and non-conversational
RPC. See also Conversational RPC under Common Features of Wrappers and RPC-based Components.

For conversational RPC you need an instantiated conversation object. See Conversation in the
Javadoc documentation of the Java ACI. Conversational RPC is enabled by passing a reference to
this object to the method setConversation. See setConversation in the Javadoc documentation
of the JavaACI.Different stubs can participate in the same conversation if they use the same instance
of a Conversation object. An RPC conversation is terminated by calling either the
closeConversationmethod or the closeConversationCommitmethod for one stub.

EntireX XML/SOAP Wrapper56

Writing Advanced Applications with the XML/SOAP Wrapper

XML/SOAP Wrapper (Java API)

To enable conversational RPC

■ Create a Conversation object and set this with setConversation on the wrapper object.

Differentwrapper objects can participate in the same conversation if they use the same instance
of a conversation object.

To abort a conversational RPC communication

■ Call the closeConversationmethod.

To close and commit a conversational RPC communication

■ Call the closeConversationCommitmethod.

XML/SOAP Listener

Conversations can only be used in connection with sessions. If the session is interrupted, the
conversation will be deleted.

To use conversational RPC

■ Use the parameter exx-convwith the value OPEN.

To continue conversational RPC

■ Pick up the parameter exx-sessionID in response and set the parameter as HTTP parameter
or in the same way as in the response document inside the request document.

To abort a conversational RPC communication

■ Use the parameter exx-convwith the value BACKOUT.

To close and commit a conversational RPC communication

■ Use the parameter exx-convwith the value COMMIT.

See also XML Tester for Conversational RPC.

Caution: Natural RPC Servers and EntireX RPC Servers behave differently when ending an
RPC conversation.

57EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

See also Conversational RPC under Common Features of Wrappers and RPC-based Components.

Using Natural Security

A Natural RPC Server may run under Natural Security to protect RPC requests. See also Natural
Security under Common Features of Wrappers and RPC-based Components.

XML/SOAP Wrapper (Java API)

To authenticate an EntireX XML/SOAP Wrapper client (Java API) against Natural Security

■ Specify a user ID and password in the logon method of class Broker.

If different user IDs and/or passwords are used for EntireX Security and Natural Security,
use the methods setRPCUserId or setRPCPassword to set the user IDs and/or passwords for
Natural Security.

To force an EntireX XML/SOAP Wrapper client (Java API) to log on to a specific Natural library

1 Call the setLibraryNamemethod.

2 Call the setNaturalLogonmethod.

See also Natural Logon or Changing the Library Name.

XML/SOAP Listener

To authenticate against Natural Security

■ Specify the parameters exx-userID and exx-password.

If a different user ID or password is used for EntireX Security and Natural Security, use the
parameters exx-rpc-userID and exx-rpc-password to set the user ID or password forNatural
Security.

To force a logon to a specific Natural library

1 Use the parameter exx-natural-library.

2 Set the parameter exx-natural-security to True.

See also Natural Logon or Changing the Library Name.

EntireX XML/SOAP Wrapper58

Writing Advanced Applications with the XML/SOAP Wrapper

Using Compression

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) may compress the messages sent to and received from the broker. There is a general
way to enable compression using broker ID, and another way that depends on whether you use
the XML/SOAPWrapper or the XML/SOAP Listener.

■ Using Broker ID
■ XML/SOAP Wrapper (Java API)
■ Using setCompressionLevel()
■ XML/SOAP Listener

Using Broker ID

You may append the keyword compresslevelwith one of the values below to the Broker ID.

Examples

■ localhost:1971?compresslevel=BEST_COMPRESSION
■ localhost?poolsize=4&compresslevel=9

Both examples set the compression level to 9.

XML/SOAP Wrapper (Java API)

Using setCompressionLevel()

Set the compression level with the method setCompressionLevel() as an integer or a string argu-
ment.

You can use the constants defined in class java.util.zip.Deflater.

If the string

■ starts with Y, compression is switched on with level 6,
■ starts with N, compression is switched off (level 0).

Permitted values are the integers 0 - 9 and the corresponding strings:

59EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

LevelCompression

9BEST_COMPRESSION

1BEST_SPEED

6DEFAULT_COMPRESSION

8DEFLATED

0NO_COMPRESSION

XML/SOAP Listener

To set the compression level

■ Use the parameter exx-compressLevel. The values are described in the section above
(XML/SOAPWrapper (Java API)).

Using EntireX Security

Java-based EntireX applications that require security can use the security services offered by EntireX
Security. See also Overview of EntireX Security in the EntireX Security documentation |
EntireXSecurity in the Javadoc documentation of the Java ACI.

Use the methods for security, which are included in class Broker. See Broker in the Javadoc docu-
mentation of the Java ACI. The two alternatives using security are:

■ using EntireX Security
■ using your own security implementation

XML/SOAP Wrapper (Java API)

To use EntireX Security, call Broker.useEntireXSecurity() for a Broker object. You can set the
encryption level with this call and you can enable the auto mode. The encryption level allows the
values ENCRYPTION_LEVEL_NONE, where themessage is not encrypted, ENCRYPTION_LEVEL_BROKER,
where themessage is encrypted on theway to the EntireX Broker, and ENCRYPTION_LEVEL_TARGET,
where the message is encrypted the whole way to the target. The auto mode specifies that the
Broker object uses the EntireX Security as needed by the EntireX Broker. If the EntireX Broker uses
security, the EntireX Security object is used by the Broker object. Themethod useEntireXSecurity()
must be called before the first call of logon(), which has to use a password. The security object
cannot change during a session with the EntireX Broker.

To use your own security implementation, implement the interface BrokerSecurity. This imple-
mentationmust have an accompaning security exit for the EntireX Broker. SeeUsing Sample Security

EntireX XML/SOAP Wrapper60

Writing Advanced Applications with the XML/SOAP Wrapper

Exits for Broker Security. Call themethods setSecurity()with the security object and set encryption
level or auto mode in the same way as the useEntireXSecurity()methods.

XML/SOAP Listener

The parameter exx-use-security (true, false) is responsible for EntireX Security. Set the encryption
level with the required parameter exx-encryption-level (0,1,2).

HTTP Proxy Settings

If the target server of yourWeb service has to be reached through a firewall, set and adjust to your
needs the following properties:

■ -Dhttp.proxySet=true

■ -Dhttps.proxySet=true

■ -Dhttp.proxyHost=httpprox.mydomain.org

■ -Dhttps.proxyHost=sslprox.mydomain.org

■ -Dhttp.proxyPort=8080

■ -Dhttps.proxyPort=443

■ -Dhttp.nonProxyHosts=*mydomain.org|localhost

■ -Dhttps.nonProxyHosts=*mydomain.org|localhost

■ -Dhttp.proxyUser

■ -Dhttps.proxyUser

■ -Dhttp.proxyPassword

■ -Dhttps.proxyPassword

Add the proxy settings to the start script.

XML/SOAP RPC Server with HTTP Basic Authentication

TheXML/SOAPRPCServer uses basic authentication for aWeb service if the configuration contains
the attribute basicAuthentication block in <TargetServer>. Basic authentication is used for all
calls associated with defined XMM files for the <TargetServer>.

Basic authentication can be usedwith fixed credentials or credentials set from the client application:

■ If <TargetServer> contains attributes user and password, these settings are used for basic authen-
tication.

61EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

■ Otherwise the client application must provide the credentials: Enable Natural logon and set
RPC user ID and RPC password.

See Configuration File for the XML/SOAP RPC Server in the UNIX and Windows administration
documentation.

XML/SOAP Listener with HTTP Basic Authentication and UsernameToken
Authentication for EntireX Authentication

The XML/SOAP Listener allows you to use the user credentials from the incoming request by
means of Basic Authentication or UsernameToken. The same credentials are used for EntireX Broker
authentication and (Natural) RPCServer authentication. Thismeans youneed tomake some settings
for the EntireX Web service in Web Service Wizard and Configuration Editor.

Note: UsernameToken is part ofWS-Security. SeeWS-Security UsernameToken Specification.
See also Example: Setting up an EntireX Client to Consume a Secured Web Service in the IDL
Extractor for WSDL documentation.

The priority of credentials settings is as follows:

1. exx-userID, exx-password, exx-rpc-userID, exx-rpc-password (highest priority)

2. UsernameToken

3. Basic Authentication (lowest priority)

To use the XML/SOAP Listener with Basic Authentication and UsernameToken Authentication

1 Select an IDL file or XMM file.

2 ChooseGenerate Web Service from Software AG....

3 Disable check box Use Defaults.

EntireX XML/SOAP Wrapper62

Writing Advanced Applications with the XML/SOAP Wrapper

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf

4 Enable at leastGeneral service parameters....

5 If using EntireX Security or Natural Security, enable Set connection and security... too.

63EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

6 PressNext.

7 Enable the required authentication. In this example, both possibilities of web service authen-
tication are enabled.

8 PressNext.

9 The page with XMM settings appears if it was selected before (step 5). Enable the required
security (EntireX Security and/or Natural Logon).

EntireX XML/SOAP Wrapper64

Writing Advanced Applications with the XML/SOAP Wrapper

10 PressNext and follow the wizard.

11 After generating the web service archive (extension "aar"), open the generated AAR file with
the Configuration Editor (e.g. with double click).

For more information on the Configuration Editor see Configuring Web Services.

65EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Using SSL or TLS with the XML/SOAP RPC Server

Using HTTPS with XML/SOAP RPC Server requires setting Java properties and changing the
protocol from http to https in the configuration file. This section covers the following topics:

■ SSL or TLS Settings
■ Sample Start Script
■ Configuration File Settings

See alsoConfiguration File for the XML/SOAPRPC Server in the UNIX andWindows administration
documentation.

SSL or TLS Settings

To configure SSL communication for the JRE

■ Set the following properties:

■ -Djavax.net.ssl.keyStore=<filename-without-blanks>
Here we keep the certificate and the private signing key of our client application, which is
the EntireX XML/SOAP RPC Server.

■ -Djavax.net.ssl.keyStorePassword=<you-should-know-it>
The password that protects the keystore.

■ -Djavax.net.ssl.keyStoreType=pkcs12
If not jks (default).

■ -Djavax.net.ssl.trustStore=<filename-without-blanks>
Here we keep the trusted certificate of the Web service host or the certificate of its signing
(issuing) certificate authority.

■ -Djavax.net.ssl.trustStorePassword=<you-should-know-it>
The password that protects the truststore.

■ -Djavax.net.ssl.trustStoreType=
If not jks (default).

For more information about Java and SSL, see your Java documentation (JSSE documentation).

EntireX XML/SOAP Wrapper66

Writing Advanced Applications with the XML/SOAP Wrapper

Sample Start Script

set CLASSPATH=.;.\classes\entirex.jar;..\WS-Stack\lib\wsstack-client.jar

set PROXYSETTINGS=-Dhttps.proxySet=true
-Dhttps.proxyHost=sslproxy.mydomain
-Dhttps.proxyPort=443
-Dhttps.nonProxyHosts="localhost"

set SSL=-Djavax.net.ssl.keyStore=C:\myKeystore.p12
-Djavax.net.ssl.keyStorePassword=myKeystorePassword
-Djavax.net.ssl.keyStoreType=pkcs12
-Djavax.net.ssl.trustStore=C:\myTrustStore.jks
-Djavax.net.ssl.trustStorePassword=myTruststorePassword

java -classpath %CLASSPATH% %SSL% %PROXYSETTING% ↩
com.softwareag.entirex.xml.rt.XMLRPCServer

For the changes that are required to the start script, see your Java documentation (JSSE document-
ation).

Configuration File Settings

Specify the fully qualified host name as TargetServer. The host name has tomatch theCN (Common
Name) item of the host certificate.

<?xml version="1.0" encoding="iso-8859-1" ?>
<EntireX
xmlns="http://namespaces.softwareag.com/entirex/xml/runtime/configuration" ↩
version="8.0"
>
 <XmlRuntime Version="1">
 <BrokerInfo>
 <BrokerId>localhost:1971</BrokerId>
 <ServerAddress>RPC/XMLSRV1/JAVA</ServerAddress>
 </BrokerInfo>
 <TargetServer name="https://targethost:8080/entirex/xmlrt">
 <xmms>
 <exx-xmm name="yourFile1.xmm" />
 <exx-xmm name="yourFile2.xmm" />
 </xmms>
 </TargetServer>
 </XmlRuntime>
</EntireX>

67EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Using Internationalization with EntireX XML Components

XML components support Conversion and Translation for Internationalization. If you choose
Conversion (which is recommended), the correct codepage must be send as locale string to the
EntireX Broker matching the encoding of the data sent. This codepage must also be a codepage
supported by the broker, see Locale String Mapping in the internationalization documentation for
information on how the broker derives the codepage from the locale string. For Translation and
more details on Conversion, see Internationalization with EntireX.

To enable EntireX XML components to send a codepage as locale string to the EntireX Broker,
they must be prepared as described below:

■ XML/SOAP Wrapper (Java API)
■ XML/SOAP Listener
■ XML/SOAP RPC Server

XML/SOAP Wrapper (Java API)

To enable use of the encoding of an incoming XML document for Broker communication

1 Call useCodePage(true) on the XMLRPCService object. The XML/SOAPWrapper will then
use the codepage retrieved from the XML document to send data to EntireX Broker.

2 Use a stream-orientedmethod of XMLRPCService to transfer the data to XML/SOAPWrapper.

XML/SOAP Listener

To enable use of the encoding of an incoming XML document for broker communication

■ Activate the parameter exx-use-codepage (true/false). The XML/SOAPWrapper will then
use the codepage retrieved from the incoming XML document to send data to the EntireX
Broker.

XML/SOAP RPC Server

The encoding for broker communication is defined by the parameter codepage.

■ The locale string for broker communication can be overridden for a broker version 7.2.x and
above. Instead of using the default encoding of the JVM, the given encoding is used.

■ It can be forced for a broker version 7.1.x and below.
■ It does not change the default encoding of your Java virtual machine.

EntireX XML/SOAP Wrapper68

Writing Advanced Applications with the XML/SOAP Wrapper

■ We recommend using UTF-8 as the file encoding for your JVM and the value LOCAL to send
the default encoding of the JVM to the broker, i.e start the XML/SOAP RPC Server with
-Dcodepage=LOCAL and -Dfile.encoding=utf-8. See also Using the Abstract Codepage Name
LOCAL under Locale StringMapping in the internationalization documentation formore inform-
ation.

The encoding for the outgoing XML document is determined by the IDL to XML Mapping. See
Defining the XML Encoding.

Null Value Suppression

■ Introduction
■ Default Setting for Null Value Suppression
■ Definition and Examples of Null Value Suppression Mode
■ Default Definition of Null Value

Introduction

The EntireX XML/SOAP Runtime introduced a feature called null value suppression to reduce to
amount of data transferred between Web client and Web service. Null value suppression (NVS)
allows you to hide tags or attributes with a specified value (so-called null value).

The different types of NVS are explained below. The EntireX XMLMapping Editor provides two
ways of setting/modifying the NVS type:

■ using a general setting on tabMapping Parameter
■ on each element or attribute in the definition of request/response on tab XML Request/ XML
Response

For several data types, a null value is defined by default. SeeDefault Definition of Null Value. To
change one of these null values, open the XMLRequest/XMLResponse tab, select the element/at-
tribute andmodify the property of the null valuemanually. For thismodification use theProperties
view or the Properties dialog (open with the context menu).

69EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Default Setting for Null Value Suppression

Suppression ModeData Type

No SuppressionSimple Elements

No SuppressionSimple Attributes

Cells at end (trim)Array Types

Suppress group elementsComplex Types

Tip: The default setting for elements and attributes changedwith version 7.3 from "Suppress
Element/Attribute" to "No Suppression". The null value suppression for elements and at-
tributes can be set independently. The null value suppression for Complex Typeswas intro-
duced with version 7.3.

Definition and Examples of Null Value Suppression Mode

If there is a significant difference between pure XMLand SOAP for a null value suppressionmode,
two examples are introduced.

EntireX XML/SOAP Wrapper70

Writing Advanced Applications with the XML/SOAP Wrapper

Valid forSuppression Mode

Elements, attributesNo Suppression

ElementsElements

AttributesAttributes

Elements inside an array definitionCells at End (Trim)

Elements inside an array definitionAll Empty Cells

Elements inside a group definitionSuppress Group Elements

AttributesDepends On Element

No Suppression

The element or attribute is always present in document. The minimum andmaximum occurrence
of element/attribute must be set to one.

Example 1

Displayed XML DocumentXML document

<prog>
<integer>0</integer>

</prog>

<prog>
<integer>0</integer>

</prog>

Elements

An element is hidden if

■ the element value is equal to null value
■ all attributes of the element can be suppressed
■ the element has only subelements that can be suppressed

Theminimumoccurrence of elementmust be zero, and themaximumoccurrence of elementmust
be one.

Example 2

71EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Displayed XML DocumentXML document

<prog /><prog>
<gr>
<integer>0</integer>
</gr>

</prog>

Attributes

An attribute with null value is hidden.

The minimum occurrence of attribute must be zero, and the maximum occurrence of attribute
must be one.

Example 3

Displayed XML DocumentXML document

<prog name="Henry"/><prog integer="0" name="Henry"/>

Cells at End (Trim)

All elements of array that fulfills the assertion of "Suppress Element/Attribute" are suppressed if
its index is higher than the highest index of the non-suppressed element.

The minimum occurrence of elements must be lower than the maximum occurrence, and the
maximum occurrence of elements must be the maximum number of elements or unlimited.

Displayed XML DocumentXML document

<prog>
<array>

<integer>0</integer>
<integer>1</integer>
<integer>0</integer>
<integer>2</integer>

</array>
</prog>

<prog>
<array>

<integer>0</integer>
<integer>1</integer>
<integer>0</integer>
<integer>2</integer>
<integer>0</integer>
<integer>0</integer>

</array>
</prog>

EntireX XML/SOAP Wrapper72

Writing Advanced Applications with the XML/SOAP Wrapper

All Empty Cells

All elements of array that fulfills the assertion of NVS_FIELD are suppressed.

The minimum occurrence of elements must be lower than the maximum of occurrence and max-
imum occurrence of elements must be maximum number of elements or unlimited.

Example 5a

Displayed XML DocumentXML document

<prog>
<array>

<integer>1</integer>
<integer>2</integer>

</array>
</prog>

<prog>
<array>

<integer>0</integer>
<integer>1</integer>
<integer>0</integer>
<integer>2</integer>
<integer>0</integer>
<integer>0</integer>

</array>
</prog>

Example 5b (for SOAP documents the XML/SOAP Runtime creates position attributes)

Displayed SOAP DocumentSOAP document

<prog>
<array>
<integer SOAP-ENC:position="[1]">1</integer>
<integer SOAP-ENC:position="[3]">2</integer>

</array>
</prog>

<prog>
<array>

<integer>0</integer>
<integer>1</integer>
<integer>0</integer>
<integer>2</integer>
<integer>0</integer>
<integer>0</integer>

</array>
</prog>

Suppress Group Elements

The suppression mode allows you to suppress group information if - and only if - all elements of
the group can be suppressed.

The minimum occurrence of elements must be zero.

73EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Example 6

Displayed XML DocumentXML document

<prog>
 <person>
 <firstname>Henry</ firstname >
 <lastname>Miller</ lastname >
 <someInformation>2</ ↩
someInformation >
 </person>
 <person/>
 <person>

<prog>
<person>

<firstname>Henry</ firstname >
<lastname>Miller</ lastname >
<someInformation>2</ someInformation >

</person>
<person>

<firstname></ firstname >
<lastname></ lastname >

 <firstname>John</ firstname ><someInformation>0</ someInformation >
 <lastname>Miles</ lastname ></person>
 <someInformation>0</ ↩<person>
someInformation ><firstname>John</ firstname >
 </person>
</prog>

<lastname>Miles</ lastname >
<someInformation>0</ someInformation >

</person>
</prog>

Depends On Element

Attribute of the element is visible if the element does not have the null value.

The minimum occurrence of attribute and associated element must be zero, and the maximum
occurrence must be one.

Example 7

Displayed XML DocumentXML document

<prog /><prog type="integer">0
<parm type="integer">0</parm>

</prog>

Default Definition of Null Value

Null ValueData Types

Empty StringString

0Integer

0.0Floating Point

0.0Numeric

No default definitionTime

No default definitionDate

EntireX XML/SOAP Wrapper74

Writing Advanced Applications with the XML/SOAP Wrapper

Null ValueData Types

No default definitionBinary

FalseBoolean

User-specified Settings

For further settings, use the method setUserProperty in XLRPCService (EntireX XML/SOAP
Runtime) in the Javadoc documentation of the Java ACI.

Map Fault to IDL Parameter

■ Introduction
■ Example
■ Testing the Fault Mapping

Introduction

The XML/SOAP RPC Server maps the values of IDL parameters to XML/SOAP documents and
vice versa. If the Web service responds with a fault document, this information is mapped to an
error and returned to RPC client normally. With the optional featureMap Fault to IDL Parameter
you canmap values from a normal response and also from a fault document response. This means
that no RPC error is returned to the RPC client; instead the fault information is contained in the
IDL file. An RPC error is returned to the client only if internal error processing problems occurred
within the XML/SOAP RPC Server. This feature is available for SOAP and XML documents.

Example

Note: This example illustrates the featureMap Fault to IDL Parameter. Other features
mentioned here, such as renaming parameters or assigning a prefix/namespace to a para-
meter, are described elsewhere.

75EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Sample IDL File

/* Sample IDL file
library 'Demo' is

program 'FaultToIDL' is
define data parameter
1 MyRequest In
2 RequestData (AV)
1 MyResponse Out
2 ResponseData (AV)
1 MyStatus Out ** parameters for fault information
2 Code (AV)
2 String (AV)
2 Detail (AV)

end-define

IDL-XML Mapping

To map fault items to IDL

1 In the XML Mapping Editor, generate a (SOAP) mapping and select the response tab.

2 Remove the parameter MyStatus, including its children, because the regular response will
not contain these parameters and the corresponding IDL parameters will be used for fault
information later.

EntireX XML/SOAP Wrapper76

Writing Advanced Applications with the XML/SOAP Wrapper

3 Open the Fault Document Manager (see bottom of opened tab Response) and select the doc-
ument to open the following wizard:

4 In the following steps, map "faultcode", "faultstring" and "detail" to IDL parameters. Fault
item "faultactor" is not used in this example.

5 Select "faultcode" and open the properties shown on the following screen:

77EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

6 Check Fault Mapped to IDL to enable the mapping path button. In this example, a mapping
path has not yet been entered and the button is labelled "<none>".

EntireX XML/SOAP Wrapper78

Writing Advanced Applications with the XML/SOAP Wrapper

7 Press the mapping path button.

8 Select the path to IDL parameter, for example "FaultToIDL/MyStatus/Code" and chooseOK
to display the following screen:

79EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

9 ChooseOK.

EntireX XML/SOAP Wrapper80

Writing Advanced Applications with the XML/SOAP Wrapper

10 Repeat the steps above to select the fault items "faultstring" (path to IDL parameter e.g.
"FaultToIDL /MyStatus/String") and "detail" (path to IDL parameter e.g. "FaultToIDL /MyS-
tatus/Detail").

Note: The fault item "info:detail" contains the complete document fragment enclosed
by an associated tag (in this example tag <detail>).

81EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

11 ChooseOK to save the IDL-XML mapping.

In subsequent steps you need to

■ Set up the XML/SOAP RPC Server with this XMM.
■ Set up a newWeb service or use an existing one.

Testing the Fault Mapping

As a quick test, implement a Web service that behaves as follows:

■ If the "requestData" field contains any data except "throwException", the field "responseData"
in the response document is set to a concatenation of the string "Receiving:" and the value of
field "requestData". See Request 2).

■ If the "requestData" field contains "throwException", the Web service responds with a SOAP
fault.

EntireX XML/SOAP Wrapper82

Writing Advanced Applications with the XML/SOAP Wrapper

Test Scenario

Request 1 (Expecting Normal Response)

The following screen illustrates a request that expects a normal response:

The following response is received (field responseData is filled):

83EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Request 2 (Expecting Fault Document)

The following screen illustrates a requestwhere a fault document from theWeb service is expected:

The following fault information is provided:

EntireX XML/SOAP Wrapper84

Writing Advanced Applications with the XML/SOAP Wrapper

Whitespace Handling
The XML/SOAP Runtime trims whitespace in values by default. The whitespace handling is also
determined by defining attribute xml:space (see XML specification) on element(s). The attribute
xml:space has the higher priority and is inherited from children of the element recursively.

This section covers the following topics:

■ Attribute xml:space
■ Changing the Default for Whitespace Handling

Attribute xml:space

The attribute xml:space can be added in the XML Mapping Editor. Select an element and add
new child, select the checkbox for xml:space and chooseOK. Depending on the application, perform
these steps for the request and/or response document definition. The attribute is addedwith value
"preserve". If another value is required, open the properties on the attribute and change the default
value.

Note: The XML/SOAP Runtime only supports the value "preserve" for attribute xml:space,
all other values disable the preserving of whitespace (that is, whitespace is trimmed).

85EntireX XML/SOAP Wrapper

Writing Advanced Applications with the XML/SOAP Wrapper

Changing the Default for Whitespace Handling

The steps required to keep whitespace as default depend on the EntireX component:

■ XML/SOAP Listener
Add the following line to file axis2.xml in WS-Stack Web application:

<parameter name="exx-xml-space">preserve</parameter>

■ Java API (XMLRPCService)
Set the user property entirex.sdk.xml.runtime.xmlspace:

XMLRPCService rpcService = new XMLRPCService(...);
...
rpcService.setUserProperty("entirex.sdk.xml.runtime.xmlspace","preserve");

■ XML/SOAP RPC Server
Add the following line to properties file of the XML/SOAP RPC Server:

entirex.sdk.xml.runtime.xmlspace=preserve

EntireX XML/SOAP Wrapper86

Writing Advanced Applications with the XML/SOAP Wrapper

11 Connect an Existing EntireX RPC Server with an

XML-based Client
■ Connect RPC Server with XML-based Client, using a Web Application ... 88
■ Connect RPC Server with XML-based Client, using the Java API of EntireX XML/SOAP Runtime 90
■ Running the Application .. 91

87

This chapter describes how to connect an existing RPC server with an XML-based client, using a
Web application that contains the EntireX XML/SOAP Runtime as part of Software AG Common
Web Services Stack, or using the Java API of EntireX XML/SOAP Runtime.

Connect RPC Server with XML-based Client, using a Web Application

To generate the application, using a default SOAP mapping for the Web Service

■ Select the IDL file that was used for creating the EntireX RPC server. From the context menu,
choose andGenerate Web Service from Software AG IDL and follow the instructions given
by the wizard.

EntireX XML/SOAP Wrapper88

Connect an Existing EntireX RPC Server with an XML-based Client

To generate the application, not using an XML Mapping or a non-Default SOAP Mapping

1 Select the IDL file that was used for creating the EntireX RPC server and open it with the
EntireX XML Mapping Editor.

2 Select the mapping and pressGenerate. Save the mapping file.

3 Depending on the tools used for the generation of the XML-based client, create anXMLSchema
or WSDL for the generation of the XML-based client.

Select the IDL file, and from the context menu chooseGenerate Web Service from Software
AG IDL.

For the generation of the XML Schema file: Select the XMM file and open the context menu.
ChooseGenerate XML Schema (XSD)....

89EntireX XML/SOAP Wrapper

Connect an Existing EntireX RPC Server with an XML-based Client

Connect RPC Server with XML-based Client, using the Java API of EntireX
XML/SOAP Runtime

To generate the application

1 Select the IDL file that was used for creating the EntireX RPC server and open it with the
EntireX XML Mapping Editor.

2 Select the mapping SOAP and pressGenerate. Save the mapping file.

3 Depending on the tools used for the generation of the XML-based client, create anXMLSchema
or WSDL for the generation of the XML-based client.

EntireX XML/SOAP Wrapper90

Connect an Existing EntireX RPC Server with an XML-based Client

Select the IDL file, and from the context menu chooseGenerate Web Service from Software
AG IDL.

For the generation of the XML Schema file: Select the XMM file and from the context menu
chooseGenerate XML Schema (XSD)....

Note: If this is not possible, write an XML-based client.

4 Create an XML-based client with a suitable tool. Follow the instructions on the screen, or
Generate Web Services from Software AG IDL File in the Web Services Wrapper documentation.

Running the Application

To run the application

1 Start the EntireX Broker (if required).

2 Configure and start the EntireX RPC server (if not started already).

3 Run the client application.

91EntireX XML/SOAP Wrapper

Connect an Existing EntireX RPC Server with an XML-based Client

92

12 Build an EntireX RPC Server and Use an Existing

XML-based Client with It
■ Generation Process ... 94
■ Running the Application .. 94

93

Generation Process

To generate the application

1 If a WSDL file or an XML Schema file for the XML-based client exists, use the IDL Extractor
for XML Schema or the IDL Extractor forWSDL, generating the IDL-XMLmapping automat-
ically.

Otherwise, write a suitable IDL file.

2 Select this generated or written IDL file and open the context menu to generate the desired
server skeleton, or, if you are using Natural, write a Natural server.

Running the Application

To run the application

1 Start the EntireX Broker (if required).

2 Configure and start the EntireX RPC server or Natural RPC Server.

3 Run the client application.

EntireX XML/SOAP Wrapper94

Build an EntireX RPC Server and Use an Existing XML-based Client with It

13 Build an EntireX RPC Client and Use an Existing

XML-based Server
■ Generation Process ... 96
■ Running the Application .. 96

95

Generation Process

To generate the application

1 If a WSDL file or an XML Schema file for the XML-based server exists, use the IDL Extractor
for XML Schema or the IDL Extractor forWSDL, generating the IDL-XML-Mapping automat-
ically.

Otherwise, write a suitable IDL file.

2 Select this generated or written IDL and open the context menu to generate the desired client
frame or, if you are using Natural, write a Natural client.

Running the Application

To run the application

1 Configure the XML/SOAP RPC Server. See Administering the EntireX XML/SOAP RPC Server
in the UNIX and Windows administration documentation.

2 Start the EntireX Broker.

EntireX XML/SOAP Wrapper96

Build an EntireX RPC Client and Use an Existing XML-based Server

3 Start the XML/SOAP RPC Server.

4 Run the client application.

97EntireX XML/SOAP Wrapper

Build an EntireX RPC Client and Use an Existing XML-based Server

98

14 Connect an Existing EntireX RPC Client to an XML-based

Server
■ Generation Process ... 100
■ Running the Application .. 101

99

Generation Process

To generate the application

1 Select the IDL file and open the context menu to create the EntireX RPC Client.

2 Select the IDL file and open with EntireX XMLMapping Editor. Select the mapping "SOAP"
and chooseGenerate. Save the mapping.

Note: If an XML-based server does not exist, proceed as follows:

3 Depending on tools for generation of XML-based server create an XML Schema or WSDL for
generation of XML-based server.

EntireX XML/SOAP Wrapper100

Connect an Existing EntireX RPC Client to an XML-based Server

Select the IDL file and open the context menu. SelectGenerate Web Service from Software
AG IDL.

For generation of XML Schema file: Choose File > Save XML Schema as.

Create an XML-based client with a suitable tool and the WSDL / XML Schema file.

For generation of XML Schema file: Select the XMM file and in the context menu choose
Generate XML Schema (XSD)....

Note: If this is not possible, write an XML-based server.

Running the Application

To run the application

1 Configure the XML/SOAP RPC Server. See Administering the EntireX XML/SOAP RPC Server
in the UNIX and Windows administration documentation.

2 Start the EntireX Broker (if required).

3 Start the XML/SOAP RPC Server.

4 Run the client application.

101EntireX XML/SOAP Wrapper

Connect an Existing EntireX RPC Client to an XML-based Server

102

15 Configuring Client and Server Applications

■ Configuring a Client to Call the EntireX XML/SOAP Runtime (Java API) ... 104
■ Configuring a Client to Call the EntireX XML/SOAP Runtime (XML/SOAP Listener) 104
■ Configuring an XML/SOAP RPC Server ... 105

103

Configuring a Client to Call the EntireX XML/SOAP Runtime (Java API)

Configuration Information

The configuration information (which broker to use) is retrieved from the XMM file by default,
or the client sets this information explicitly.

For information on available methods, see XMLRPCService (EntireX XML/SOAP Runtime); for
available inherited methods, see RPCService (EntireX Java ACI).

For configuration of the behavior ofXML/SOAPRuntimewith setUserProperty see XMLRPCService.

Environment Settings

EntireX XML/SOAP Runtime requires correct setting for XML Stream Parser allowing access to
JAXP methods. The classpath must contain the required JAR files.

The Java properties are:

javax.xml.stream.XMLInputFactory
(default: com.ctc.wstx.stax.WstxInputFactory)

javax.xml.stream.XMLOutputFactory
(default: com.ctc.wstx.stax.WstxOutputFactory)

These must be set for the client application if they differ from the default settings.

Configuring a Client to Call the EntireX XML/SOAP Runtime (XML/SOAP
Listener)

Configuration Information

The configuration information (for the EntireX Broker) is retrieved from one of the following
sources:

■ XMM file (lowest priority) by default
■ configuration xml-init.xml inside theWeb service description (AARfile) generated by Packaging
Wizard

■ configuration of EntireX Web service in an external configuration file
■ HTTP/payload parameters (highest priority)

EntireX XML/SOAP Wrapper104

Configuring Client and Server Applications

See also Administering the EntireX XML/SOAP Listener in the UNIX and Windows administration
sections.

Environment Settings

EntireX XML/SOAP Runtime requires correct setting for the XML Stream Parser to allow access
to JAXP methods. The classpath must contain the required JAR files. The Java properties are:

javax.xml.stream.XMLInputFactory
(default: com.ctc.wstx.stax.WstxInputFactory)

javax.xml.stream.XMLOutputFactory
(default: com.ctc.wstx.stax.WstxOutputFactory)

If the settings differ from the default settings, set them in the start script of the Web server.

Configuring an XML/SOAP RPC Server

The XML/SOAP RPC Server reads configuration data from configuration file (lowest priority),
property file and command line (highest priority). You can define location and name of property
file and configuration file as command-line parameters. The property file may define the JAXP
parameters and the location and name of the configuration file. Default for the properties file is
entirex.xmlrpcserver.properties and for configuration file entirex.xmlrpcserver.configuration.xml located
in theworking directory. The configuration file (in XML format) contains information about EntireX
Broker and a list of target servers, including the mapping file associated with them. If a configur-
ation file or a properties file contains non-encrypted or base64-encoded passwords, the passwords
are replaced by the encrypted ones.

See Administering the EntireX XML/SOAP RPC Server in the UNIX and Windows administration
documentation.

105EntireX XML/SOAP Wrapper

Configuring Client and Server Applications

106

16 Deployment to XML/SOAP RPC Server and Dynamic

Configuration of XML/SOAP RPC Server
■ Introduction .. 108
■ Deploying an XMM File to XML/SOAP RPC Server .. 108
■ Undeploying an XMM File to XML/SOAP RPC Server ... 110
■ Configuring XML/SOAP RPC Server Dynamically .. 112

107

Introduction

The EntireX Workbench supports two methods of modifying the configuration of XML/SOAP
RPC Server:

■ deploy an XMM to a specified XML/SOAP RPC Server directly
■ interact with XML/SOAP RPC Server to perform configuration changes

The changes are activated immediately without restarting the XML/SOAP RPC Server.

Notes:

1. Setting the property entirex.server.allowdevelopment in the XML/SOAP RPC Server's
properties file (default name: entirex.xmlrpcserver.properties) to "true" (default) enablesdeployment
and dynamic configuration; setting this property to "false" disables deployment and dynamic
configuration.

2. A deploy call with XMM andWSDLmay transport a large amout of data. We therefore recom-
mend you increase the value of broker attribute MAX-MESSAGE-LENGTH in the attribute file.

Deploying an XMM File to XML/SOAP RPC Server

To deploy an XMM file to XML/SOAP RPC Server

1 Select an XMM file.

2 From the context menu, chooseDeploy to EntireX XML/SOAP RPC Server ... to display the
following screen:

EntireX XML/SOAP Wrapper108

Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC
Server

3 Create a new RPC environment for Broker ID and server address or select an XML/SOAP
RPC Server from the list.

109EntireX XML/SOAP Wrapper

Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC
Server

4 Complete the configuration by adding URL and, optionally, the WSDL file. If a WSDL file
with same name exists in directory, the field is filled by default. Choose Finish.

Undeploying an XMM File to XML/SOAP RPC Server

To undeploy an XMM file to XML/SOAP RPC Server

1 Select an XMM file.

2 From the contextmenu, chooseUndeploy fromEntireXXML/SOAPRPCServer ... to display
the following screen:

EntireX XML/SOAP Wrapper110

Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC
Server

3 Create a new RPC environment for broker ID and server address, or select an RPC server
from the list.

4 Choose Finish.

111EntireX XML/SOAP Wrapper

Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC
Server

Configuring XML/SOAP RPC Server Dynamically

To configure an XML/SOAP RPC Server dynamically

1 From theWindowmenu, choose Preferences to disply a screen similar to the one below:

2 Select an XML/SOAP RPC Server environment or create a new one.

EntireX XML/SOAP Wrapper112

Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC
Server

3 ChooseNext to view or manage the configuration of Web services.

113EntireX XML/SOAP Wrapper

Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC
Server

4 The second wizard page allows you to add, modify and remove service addresses and their
configuration as well as add, modify and remove XMMfile in the selected configuration. The
graphical user interface supports drag-and-drop operations.

EntireX XML/SOAP Wrapper114

Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC
Server

17 Examples

■ Example 1: Existing Natural Client that Connects to a Web Service ... 116
■ Example 2: Publish an EntireX RPC Server for Web Clients ... 120

115

Example 1: Existing Natural Client that Connects to a Web Service

Natural Program

* CALC : CLIENT *
* -- *
DEFINE DATA
LOCAL

01 #OPERATOR (A1)
01 #OPERAND1 (I4)
01 #OPERAND2 (I4)
01 #RESULT (I4)

*
01 #MSG (A60)

END-DEFINE
* -- *
ASSIGN #OPERAND1 = 12345
ASSIGN #OPERATOR = '+'
ASSIGN #OPERAND2 = 67890
ASSIGN #RESULT = 0
*
CALLNAT 'CALC' #OPERATOR (AD=O)

#OPERAND1 (AD=O)
#OPERAND2 (AD=O)
#RESULT (AD=A)

*
COMPRESS #OPERAND1 #OPERATOR #OPERAND2 '=' #RESULT

INTO #MSG LEAVING NO SPACE
*
PRINT #MSG
* -- *
END

■ Use the IDL Extractor for Natural to get the IDL file. In the EntireX perspective, useNew > IDL
Extractor for Natural . In other perspectives, useNew >Other... > Software AG > IDL Extractor
for Natural.

EntireX XML/SOAP Wrapper116

Examples

Software AG IDL

Library 'Example' Is
Program 'Calc' Is
Define Data Parameter
1 Operator (A1) In
1 Operand_1 (I4) In
1 Operand_2 (I4) In
1 Function_Result (I4) Out
End-Define

■ Select the IDL file and open the context menu.
■ ChooseGenerate Web Service from Software AG IDL, and the XMM and WSDL file will be
generated. See EntireX Web Services Wrapper.

Example.wsdl

<?xml version="1.0" encoding="utf-8"?>
<definitions name="example" ↩
targetNamespace="http://namespace.softwareag.com/entirex/xml/mapping"
 xmlns="http://schemas.xmlsoap.org/wsdl/" ↩
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ↩
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ↩
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="http://namespace.softwareag.com/entirex/xml/mapping" ↩
xmlns:sn0="urn:com-softwareag-entirex-rpc:EXAMPLE">
 <types>
 <xsd:schema targetNamespace="urn:com-softwareag-entirex-rpc:EXAMPLE">
 <xsd:element name="CALC">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Operator" type="xsd:string"/>
 <xsd:element name="Operand_1" type="xsd:int"/>
 <xsd:element name="Operand_2" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="CALCResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Function_Result" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>
 <message name="CALCSoapIn">
 <part name="parameters" element="sn0:CALC"/>

117EntireX XML/SOAP Wrapper

Examples

 </message>
 <message name="CALCSoapOut">
 <part name="parameters" element="sn0:CALCResponse"/>
 </message>
 <portType name="EXAMPLEPort">
 <operation name="CALC">
 <input message="tns:CALCSoapIn"/>
 <output message="tns:CALCSoapOut"/>
 </operation>
 </portType>
 <binding name="EXAMPLESOAP11Binding" type="tns:EXAMPLEPort">
 <soap:binding style="document" ↩
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CALC">
 <soap:operation soapAction="CALC"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <binding name="EXAMPLESOAP12Binding" type="tns:EXAMPLEPort">
 <soap12:binding style="document" ↩
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CALC">
 <soap12:operation soapAction="CALC"/>
 <input>
 <soap12:body use="literal"/>
 </input>
 <output>
 <soap12:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="example">
 <port name="EXAMPLESOAP11Port" binding="tns:EXAMPLESOAP11Binding">
 <soap:address location="http://localhost:10010/wsstack/example"/>
 </port>
 <port name="EXAMPLESOAP12Port" binding="tns:EXAMPLESOAP12Binding">
 <soap12:address location="http://localhost:10010/wsstack/example"/>
 </port>
 </service>
</definitions>

■ Create a service skeleton with Apache Axis.

EntireX XML/SOAP Wrapper118

Examples

java -classpath org.apache.axis.wsdl.WSDL2Java --server-side --skeletonDeploy true ↩
Example.wsdl

■ And write an implementation of this service.

/**
* Service.java
*
* Implementation of ExamplePort
* generated by the Apache Axis WSDL2Java emitter.
*/

package com.softwareag.namespace;

public class Service implements ExamplePort
{

public int calc(java.lang.String operator_, int operand_1, int operand_2)
throws java.rmi.RemoteException
{
int result = 0;

if (operator_.equals("+"))
{
result = operand_1 + operand_2;

}
else if (operator_.equals("-"))

{
result = operand_1 - operand_2;

}
else if (operator_.equals("*"))

{
result = operand_1 * operand_2;

}
else if (operator_.equals("/"))

{
result = operand_1 / operand_2;

}
return result;
}

}

■ Build and deploy the service (see Apache Axis documentation).
■ Configure the XML/SOAP RPC Server

119EntireX XML/SOAP Wrapper

Examples

entirex.xmlrpcserver.properties

jaxp parameters
if jaxp properties are not set in system properties
#
xmlruntime configuration file
entirex.sdk.xml.runtime.configurationfile=.entirex.xmlrpcserver.configuration.xml

entirex.xmlrpcserver.configuration.xml

<?xml version="1.0" encoding="iso-8859-1" ?>
<EntireX
 xmlns="http://namespaces.softwareag.com/entirex/xml/runtime/configuration" ↩
version="7.1.1">
 <XmlRuntime Version="1">
 <BrokerInfo>
 <BrokerId>localhost:1971</BrokerId>
 <ServerAddress>RPC/SRV1/CALLNAT</ServerAddress>
 </BrokerInfo>
 <TargetServer name="http://localhost:8080/axis/services/ExamplePort">
 <XmmList>
 <!-the name of XMM file-->
 <Xmm name="./Calc.xmm" />
 </XmmList>
 </TargetServer>
 </XmlRuntime>
</EntireX>

■ start the XML/SOAP RPC Server:

java com.softwareag.entirex.xml.rt.XMLRPCServer

Example 2: Publish an EntireX RPC Server for Web Clients

Software AG IDL File

library 'UserList' is
program 'Add' is

define data parameter
1 Name (AV) In
end-define

program 'Retrieve' is
define data parameter
1 Name (AV/V) Out
end-define

EntireX XML/SOAP Wrapper120

Examples

To publish the EntireX RPC/SOAP server

1 Create a new IDL file User List (Using:New > Software AG IDL file orNew > Others ... >
Software AG > Software AG IDL file).

2 Select the IDL file and generate the RPC server from the context menu.

3 Select the IDL file, and from the context menu chooseGenerate Web Service from Software
AG IDL. Generate and deploy the AAR file with the Packaging Wizard.

4 Select the tab XML Samples in the EntireX XMLMapping Editor and save one or all sample
documents.

5 Select the request document in the tree and open the XML Tester with the context menu.

6 Change the URL to the required address, for example: http://localhost:10010/wsstack/services/ex-
ample. Choose Send. The response document will be displayed in the lower portion of the
screen.

121EntireX XML/SOAP Wrapper

Examples

122

18 Frequently Asked Questions (FAQ) and Troubleshooting

■ XML/SOAP Listener ... 124
■ XML/SOAP RPC Server .. 124
■ XML/SOAP RPC Server in the Software AG Runtime .. 125

123

XML/SOAP Listener

■ If you receive message 2000 0007: Incoming XML document is invalid, there could be a dif-
ference between the mapping and the document, for example an element-preferred mapping
(XMM file) does not match the SOAP document.

■ Deploying/calling an EntireX Web service fails with
com.softwareag.wsstack.ui.deployment.DeploymentException:
com.softwareag.entirex.xml.rt.WSSServiceLifeCycle.

For the XML/SOAP Listener you need to set up aWeb server and install Software AG Common
Web Services Stack to this Web server. See Deploying Web Services Stack Runtime underWriting
Web Services Applications in the Web Services Wrapper documentation.

After successful installation: If entirex.jarwas not added to wsstack.war, copy or upload
inst_dir/EntireX/classes/entirex.jar to theWEB-INF/lib folder in theWeb Services Stack application
folder.

XML/SOAP RPC Server

■ Server does not start
■ Check classpath
■ If a file is not found:

■ Check location of property file, configuration file or XMM(s)
■ XML/SOAPRPC Server starts but receives anHTTP error for several reasons. Check the received
information fault document. If there is no information fault document, start XML/SOAP RPC
Server againwith trace (level =ADVANCED) and analyze the trace (look for the fault document).

■ XML/SOAP RPC Server gets the following error message: "Caused by:
java.lang.ClassCastException: org.apache.xerces.jaxp.SAXParserFactoryImpl cannot
be cast to javax.xml.stream.XMLInputFactory". To correct the error, modify the properties
file by redefining the parameter for the XML stream parser as follows:

entirex.sdk.xml.runtime.xmlparserfactory=com.ctc.wstx.stax.WstxInputFactory

In any case, check the following:

■ Configuration file: TargetServer attribute “name” is not fully qualified
■ Name may require a domain specification

EntireX XML/SOAP Wrapper124

Frequently Asked Questions (FAQ) and Troubleshooting

■ Name only contains target without service specification or/andwithwrong port (non-default
port)

■ Mapping
■ Mapping does not match service requirements
■ SOAPAction value is wrong or undefined

■ Connection cannot be established or connection failed
■ Wrong HTTP setting

Change / set Java properties http.proxyHost, http.proxyPort, httpsproxyHost,
https.proxyPort

■ Application error (service side)

XML/SOAP RPC Server in the Software AG Runtime

Use file <installation home>/profiles/CTP/configuration/logging/log_config.xml to configure the logging
settings. The log file sag-osgi.log or wrapper.log is written to directory <installation home>/pro-
files/CTP/logs.

To analyse the log, search for lines containing "EXX" and check the status/error:

EXX: Configuration Error: Reading configuration file fails.

The entirex.servers.properties cannot be loaded.Explanation

The file must be located in directory <installation home>\EntireX\etc\exx\workspace
and be accessible.

Action

EXX: Reading configuration fails: File does not exist.

The file entirex.servers.properties cannot be found.Explanation

Validate the installation.Action

EXX: XML/SOAP RPC Server does not start. Reason: {0}".

The server cannot start for reason {0}.Explanation

Action 1. Validate the properties and configuration file settings (see also log).

2. Validate if the properties and configuration are correct.

3. Validate if the paths of XMM files in configuration file are correct and the files are
accessible.

125EntireX XML/SOAP Wrapper

Frequently Asked Questions (FAQ) and Troubleshooting

126

19 Reference - HTTP and Java Interface

■ Client Using the Java Interface ... 128
■ The Java Interface ... 130
■ The HTTP Interface .. 130

127

Client Using the Java Interface

See also the delivered example XMMInvoker and XLRPCService (EntireX XML/SOAP Runtime) in
the Javadoc documentation of the Java ACI.

Step 1: Writing the Client Program

To write the client program

1 Initialize the Broker Object

Broker broker = new Broker(brokerID, userID);
// if a logon should be issued
broker.logon(password);

2 Initialize the XMLRPCService Object

XMLRPCService service;
service = new XMLRPCService(xmmfilename);//constructor with XMM

or

XMLRPCService service;
service = new XMLRPCService(broker, serverName, xmmfilename);

3 Initialize the Conversation Object

For one XMLRPCService, only one conversation may be used at a time.

private Conversation conv;
conv = new Conversation(service);

4 Assign the incoming XML document:

String xmlDocument = "<?xml version="1.0" encoding="iso8859-1"?>" +
"<CALC Operation=\"-\" Operand_1=\"1000000611\"
Operand_2=\"1000000288\"></CALC>";

5 Invoke the Service

Non-conversational

EntireX XML/SOAP Wrapper128

Reference - HTTP and Java Interface

try
{

String result = service.invokeXML(xmlDocument);
}
catch (XMLException e)
{

// Error handling ...
}
catch (BrokerException e)
{

// Error handling ...
}
catch (Exception e)
{

// Error handling ...
}

Conversational

try
{

service.setConversation(conv);
String result = service.invokeXML(xmlFromFile(filename));
service.closeConversationCommit();

}
catch (XMLException e)
{

// Error handling ...
}
catch (BrokerException e)
{

// Error handling ...
}
catch (Exception e)
{

// Error handling ...
}

The string result contains the returned document. It should be:

<CALC Function_result="899" />

129EntireX XML/SOAP Wrapper

Reference - HTTP and Java Interface

Step 2: Running the Client Program

The definition of the Java classpath must include

■ the generated XMM file, see Generating an XMM File
■ the entirex.jar file (delivered in the directory <EntireX Home>/classes)
■ the files for an XMLStreamParser, for example the delivered wstx-asl.jar and stax-api.jar (in the
directory <EntireX Home>/classes)

The Java Interface

Class XMLRPCService

XMLRPCService extends com.softwareag.entirex.aci.RPCService. See XLRPCService (EntireX
XML/SOAP Runtime) in the Javadoc documentation of the Java ACI.

The HTTP Interface

The HTTP interface supports HTTP POST Request and HTTP GET Request. The following HTTP
headers and parameters are available:

DescriptionDirectionHeader/Parameter

If this attribute is set, it overwrites both the properties of the XMMfile
and the settings of the servlet initialization.

INexx-brokerID

The service name is the triple set of server class/server name/service.
If this attribute is set, it overwrites both the properties of the XMMfile
and the settings of the servlet initialization.

INexx-service

The userID specified here is used for calling the broker.INexx-userID

The password specified here is used for calling the broker.INexx-password

Possible values: true | false. This optional parameter determines
whether EntireX Security is used. If the parameter is not defined for

INexx-use-security

the XML/SOAP Listener / XML Tester (Quick test), the runtime
determines if EntireX Security is required or not. If this parameter is
defined, the behavior is fixed depending on value. See EntireX Security
for EntireX Broker in the EntireX Security documentation.

Possible values: 0 | 1| 2. See ENCRYPTION-LEVEL, class Broker and
method BrokerSecurity in the Javadoc documentation of the Java
ACI.

INexx-encryption-level

EntireX XML/SOAP Wrapper130

Reference - HTTP and Java Interface

DescriptionDirectionHeader/Parameter

The RPC user ID specified here is used for Natural Security. If no RPC
user ID and no RPC password is defined, the values of exx-userID
and exx-password are used for these values.

INexx-rpc-userID

The RPC password specified here is used for Natural Security. If no
RPC user ID and no RPC password is defined, the values of
exx-userID and exx-password are used for these values.

INexx-rpc-password

Possible values: true | false. Determines whether Natural Security
is used. SeeUsingNatural Security in the JavaWrapper documentation.

INexx-natural-security

The Natural library. Applicable only if exx-natural-security is
"true". SeeUsingNatural Security in the JavaWrapper documentation.

INexx-natural-library

Determines the translation processing of the EntireX Broker. Valid
values: true | false | <character encoding>. If a character

INexx-use-codepage

encoding is set, this character encoding is used for RPC message. See
method useCodePage and setCharacterEncoding in the
documentation on classBrokerService in the Javadoc documentation
of the Java ACI.

Sets the compression level. See Using Compression underWriting
Advanced Applications - EntireX Java ACI.

INexx-compresslevel

Possible values: true |false. See Using Compression.INexx-compression

ThisHTTPheader is returned from the servlet to the client application.
If the client returns it to the servlet with the preceding call, the same

IN OUTexx-xml-sessionID

session will be used. For conversations, the exx-conv parameter is
also required.

In this HTTP header additional information is returned.OUTexx-xml-info

In this HTTP header error information is returned.OUTexx-xml-error

Possible values: OPEN | COMMIT | BACKOUT.

Conversations can only be used in connection with sessions. If the
session is interrupted, the conversation is deleted.

INexx-conv

Possible values: AUTO-COMMIT | OFF.

See Reliable RPC for XML/SOAPWrapper.

INexx-reliable

131EntireX XML/SOAP Wrapper

Reference - HTTP and Java Interface

132

20 XML Structures and IDL-XML Mapping

■ XML Structure Description ... 134
■ Basic IDL-XML Mapping ... 134
■ Arrays ... 138
■ Groups .. 140
■ IN / OUT / IN OUT Parameters ... 143

133

To understand the functionality and usage of the XML Mapping Editor, it is necessary to look at
the possible XML structures and how they are mapped to Software AG IDL.

XML Structure Description

An XML structure is the type of an XML document, that is, the blueprint to build or parse the
XML document. Every program of every library within a Software AG IDL file corresponds to at
least two XML structures: one for the incoming and one for the outgoing XML document. The
Error or Fault directions are also described as XML structures. There are InErr and OutErr XML
structures that are returned by the broker or server in case of broker or data errors or servicing
problems. The XML structures all start with one root node (corresponding to the library/program
combination of the Software AG IDL file), and all XML elements and attributes are linked under
that root node and may be further cascaded.

The XML structure may be represented as a tree of XML structure nodes (so-called XML parts).
For the EntireX XML/SOAPWrapper, no cyclic XML structures (that is, non-tree XML structures)
are allowed because mapping to Software AG IDL parts would be illegal. However, in general
this is not a severe restriction because Software AG IDL parts may not be cyclic either.

The XML parts have various properties. Important properties are the node name (tag name) and
the node type (element or attribute). Other properties are the data type and length, minimum and
maximum occurrence, the default values, the encoding, or the used or defined namespace. XML
parts may have links to IDL nodes (their IDL mapping links, see below).

In the XMLMapping Editor, the XML structures are displayed as node trees. For XML structures,
sample XMLdocuments can be generated to visualize the expected or generated XMLdocuments.

Basic IDL-XML Mapping

Mapping between IDL and XML describes the location of the data in the XML documents that
correspond to the RPC parameters. Getting data for the RPC request is called incoming direction,
putting RPC response data into an XML document is called outgoing direction. RPC parameters
can correspond to elements or attributes.

There are various basic strategies for generating elements or attributes from a given Software AG
IDL. The most important strategies are:

■ Element-preferredmapping:Model the library/programand every IDLparameter as an element.
The elements are cascaded in the same way as their IDL counterparts. The tree of IDL parts and
the tree of XML elements are very similar. Arrays or repeated groupsmay get envelope elements.

EntireX XML/SOAP Wrapper134

XML Structures and IDL-XML Mapping

■ Attribute-preferred mapping: Model the library/program as root element. Model Arrays and
repeated groups as elements, possibly with envelope elements around them. Model all other
IDL parameters as attributes.

■ SOAP: Construct a SOAPmessage format according to the SOAP specification. Every Software
AG IDL part relates to an element in the SOAP:Body portion. Further fine-tuning according to
the specification may be done.

Some users prefer element modelling, others like to add attributes to existing elements wherever
possible. To minimize the work of building XML structures in the XML Mapping Editor, default
mappings are available. The XMLMapping Editor allows you to choose an element-preferred, an
attribute-preferred or a SOAP-conformant strategy (plus various detail level switches). The element-
preferred mode generates only element nodes, whereas the attribute-preferred mode generates
attributes wherever possible.

Example

IDL File

Library 'EXAMPLE' Is
Program 'CALC' Is
Define Data Parameter
1 Operation (A1) In
1 Operand_1 (I4) In
1 Operand_2 (I4) In
1 Function_result (I4) Out
End-Define

Element-preferred Mode

In the element-preferred mode, the IDL is mapped to the incoming XML document:

<CALC>
<Operation> ... </Operation>
<Operand_1> ... </Operand_1>
<Operand_2> ... </Operand_2>

</CALC>

and the outgoing XML document:

135EntireX XML/SOAP Wrapper

XML Structures and IDL-XML Mapping

<CALC>
<Function_result> ... </Function_result>

</CALC>

The corresponding XML structure trees are:

and

Attribute-preferred Mode

In the attribute-preferred mode, the Software AG IDL above is mapped to the incoming XML
document:

<CALC Operation="..." Operand_1="..." Operand_2="..."/>

and the outgoing XML document.

<CALC Function_result="..."/>

The corresponding XML structure trees are:

and

EntireX XML/SOAP Wrapper136

XML Structures and IDL-XML Mapping

SOAP-conformant Mapping

In SOAP-conformant mapping or the SOAP-conformant mode, the above Software AG IDL is
mapped to the incoming XML document:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body>

<CALC>
<Operation xsi:type="SOAP-ENC:string">...</Operation>
<Operand_1 xsi:type="SOAP-ENC:int">...</Operand_1>
<Operand_2 xsi:type="SOAP-ENC:int">...</Operand_2>

</CALC>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

and the outgoing XML document:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body>

<CALCResponse>
<Function_result xsi:type="SOAP-ENC:int">...</Function_result>

</CALCResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The corresponding XML structure trees:

137EntireX XML/SOAP Wrapper

XML Structures and IDL-XML Mapping

and

Arrays

The IDL may contain array parameters, i.e. basic data types that are to be repeated for a specified
number of times. See following example:

...
1 Operation (A1/5) In
...

The Operationmaybe repeated 5 times. In this case Operationmust correspond to anXMLelement,
because with attributes the repetition cannot be modelled. The corresponding XML document
may then contain up to 5 Operation elements:

EntireX XML/SOAP Wrapper138

XML Structures and IDL-XML Mapping

...
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
...

or it may contain a surrounding parent element (envelope) Operation:

...
<Operations>

<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>

</Operations>
...

A switch in the XMLMapping Editor determineswhether arrays get a surrounding parent element
or not.

There is a maximum of three dimensions per IDL array. Each of the dimensions can have upper
and lower bounds defined. The format is as follows:

1 Operation (A1/3,6,8) In

which corresponds to a possible XML document:

<Operations1>
<Operations2>

<Operations3>
<Operation> ... </Operation>
...

</Operations3>
...

</Operations2>
...

</Operations1>

and XML structure:

139EntireX XML/SOAP Wrapper

XML Structures and IDL-XML Mapping

...
Operations1 (element)

Operations2 (element, minocc=1, maxocc=3)
Operations3 (element, minocc=1, maxocc=6)

Operation (element, minocc=1, maxocc=8)

Groups

The IDL may contain entries that represent groups of parameters.

Example

Library 'EXAMPLE' Is
Program 'ADD' Is
Define Data Parameter
1 Parameters In
2 Operand_1 (I4)
2 Operand_2 (I4)

1 Function_result (I4) Out
End-Define

The entry parameters are a group of two Operands. Groups will always be converted to XML
elements; the group elements will be mapped either to elements or to attributes.

Element-preferred mode

<ADD>
<Parameters>

<Operand_1> "..." </Operand_1>
<Operand_2> "..." </Operand_2>

</Parameters>
</ADD>

Attribute-preferred mode

<ADD>
<Parameters Operand_1="..." Operand_2="..."/>

</ADD>

EntireX XML/SOAP Wrapper140

XML Structures and IDL-XML Mapping

Array of Groups

Groups can be used in arrays, for example:

1 myparams (/5,4) In
2 Operation (I4)
2 Description (A80)
2 Mygroup

3 Operand_1 (I2)
3 Operand_2 (I2)

2 Options (A1/4)

Using the element-preferred mode, this IDL structure may be mapped to:

<Myparms1>
<Myparms2>

<Myparms>
<Operation> "..." </Operation>
<Description> "..." </Description>
<Mygroup>

<Operand_1> "..." </Operand_1>
<Operand_2> "..." </Operand_2>

</Mygroup>
<Options1>

<Options>"..."</Options>
...

</Options1>
</Myparms>
...

</Myparms2>
...

</Myparms1>

The corresponding XML structure for the element-preferred strategy is then:

...
Myparms1 (element)

Myparms2 (element, minocc=1, maxocc=5)
Myparms (element, minocc=1, maxocc=4)
Operation (element, I4)
Description (element, A80)
Mygroup (element, group, minocc=1, maxocc=1)
Operand_1 (element, I2)
Operand_2 (element, I2)

Options1 (element, minocc=1, maxocc=4)
Options (element, A1)

141EntireX XML/SOAP Wrapper

XML Structures and IDL-XML Mapping

Grouping XML Elements or Attributes

You can introduce new elements by grouping one or more existing elements or attributes.

This is especially useful when the IDL containsmany simple data types that could be semantically
grouped. This will increase the level of hierarchies in the XML document without affecting the
IDL.

Example

Library 'EXAMPLE' Is
Program 'SIMPLE' Is

Define Data Parameter
1 par1 (A1) In
1 par2 (A1) In
1 par21 (A1) In
1 par22 (I1) In
1 par23 (I4) In
1 par3 (A1) In
1 par31 (I2) In
1 par32 (I4) In
1 par4 (I1) In
1 par5 (A1) In

End-Define

will be transformed by the attribute-preferred strategy to:

<SIMPLE par1="..." par2="..." par21="..."
par22="..."

par3="..." par31="..." par32="..."
par4="..." par5="..."/>

or with the element-preferred strategy to:

<SIMPLE>
<par1> ... </par1>
<par2> ... </par2>
<par21> ... </par21>
<par22> ... </par22>
<par23> ... </par23>
<par3> ... </par3>
<par31> ... </par31>
<par32> ... </par32>
<par4> ... </par4>
<par5> ... </par5>

<SIMPLE>

You can now reorganize the XML structure, for example to:

EntireX XML/SOAP Wrapper142

XML Structures and IDL-XML Mapping

<SIMPLE par1="..." par4="..." par5="...">
<par2 par21="..." par22="..." par23="...">... </par2>
<par3 par31="..." par32="..."> ... </par3>

</SIMPLE>

IN / OUT / IN OUT Parameters

The incoming XML request must correspond to the incoming IN and IN OUT IDL parameters, and
the (created) outgoing XML response must contain the IN OUT and OUT IDL parameters. In the in-
coming XML structure, there is no difference between IN and IN OUT parameters; the same applies
to IN OUT and OUT parameters for the outgoing XML document.

Make sure that all IDL parameters marked as IN are properly mapped to (incoming) XML parts.
Otherwise, the XML/SOAPRuntime can only assign a null representation (value “0”, empty string,
Boolean “false” etc.) to the respective unmapped IDL parameters. This is probably not the desired
value to be sent to the server. The XML Mapping Editor issues a warning when unmapped IN
parameters are found.

143EntireX XML/SOAP Wrapper

XML Structures and IDL-XML Mapping

144

21 XML Schema Standards Conformance (XML/SOAP

Wrapper)
■ XML Schema Parser Standards Conformance ... 146
■ XML Schema Writer Standards Conformance .. 147

145

XML Schema Parser Standards Conformance

The XML Schema styles "Garden of Eden", "Russian Doll", "Salami Slice" and "Venetian Blind" are
supported. Each xsd:element declaration containing at least one xsd:element or xsd:attribute
will be interpreted as an IDL program.

Supported Features

■ Element declaration
■ Model group definition: group
■ Model groups: all, choice, sequence
■ Attribute declarations
■ Attribute group definitions
■ Simple type definitions
■ Complex type definitions
■ Wildcards: any (limited)
■ Type derivation (limited)
■ Anonymous types
■ Nested element declaration (Russian doll design)
■ Separate symbol spaces for elements, types, groups and attribute groups
■ Abstract and/or Equivalency classes (limited)
■ Target namespace resolver
■ xsi:type
■ Built-in simple types (primitive; simple derivation such as “restriction”)
■ Constraining facets
■ Date/time as per ISO 8601
■ Import
■ Include (limited)

EntireX XML/SOAP Wrapper146

XML Schema Standards Conformance (XML/SOAP Wrapper)

Unsupported Features

■ Identity constraints: unique, key, keyref: cannot be translated into XML structure nodes
■ Block
■ Built-in simple types (e.g. union)
■ Regular expressions in data types or patterns (only supported for date/time values)
■ Substitution group
■ Recursive data type definition

XML Schema Writer Standards Conformance

Supported Features

■ Element declaration
■ Attribute declarations
■ Model groups: choice, sequence
■ Nested element declaration (Russian doll design)
■ Type derivation (limited)
■ Anonymous types
■ Simple type definitions
■ Complex type definitions
■ Built-in simple types (primitive; simple derivation such as “restriction”)
■ Constraining facets
■ Date/time as per ISO 8601 subset
■ Annotations for XML mapping information
■ Separate symbol spaces for elements, types, groups and attribute groups
■ xsi:type (limited)

147EntireX XML/SOAP Wrapper

XML Schema Standards Conformance (XML/SOAP Wrapper)

Unsupported Features

■ Other Model groups or group definition (e.g. attribute groups)
■ Wildcards: any
■ Abstract and/or Equivalency classes (limited)

EntireX XML/SOAP Wrapper148

XML Schema Standards Conformance (XML/SOAP Wrapper)

22 Reliable RPC for XML/SOAP Wrapper

■ Introduction to Reliable RPC .. 150
■ Writing a Client .. 150
■ Broker Configuration .. 150

149

Introduction to Reliable RPC

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program and contain only IN parameters. The client interface object and the server in-
terface object are generated from the IDL file, using the EntireX XML/SOAPWrapper. For the
generation there are no options to set.

Reliable RPC is enabled at runtime. The client has to set the mode for reliable RPC.

For XML/SOAPWrapper, the only supportedmode is AUTO_COMMIT, which commits eachmessage
directly after sending it.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

The client has to set the parameter exx-reliable in theHTTPheader or in the XML/SOAPpayload.
For more information seeWriting Advanced Applications with the XML/SOAPWrapper.

Broker Configuration

ABroker configurationwith PSTORE is recommended. This enables the Broker to store themessages
formore than one Broker session. Thesemessages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of themessages and the status information can be configuredwith the attributes
UWTIME and UWSTAT-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW, MAX-UOWS and MAX-
UOW-MESSAGE-LENGTHmay be used in addition to configure the units of work. See Broker Attributes
in the platform-independent administration documentation.

EntireX XML/SOAP Wrapper150

Reliable RPC for XML/SOAP Wrapper

23 SOAP and Web Services (XML/SOAP Listener)

■ SOAP Support .. 152
■ Web Services ... 152

151

The EntireX XML/SOAPWrapper supports SOAP version 1.1 and 1.2 and enables you to create
Web services easily.

See also EntireX Web Services Wrapper.

SOAP Support

The XMLMapping Editor provides a default mapping for SOAP, both for the currently displayed
program aswell as for all programs in all libraries of the current IDL file. That is, the latter function
can be used to easily SOAP-enable all programs in an IDL file. See IDL to XML Mapping with the
XML Mapping Editor in the XML Mapping Editor documentation. The following mapping para-
meters can be chosen to fine-tune the SOAP default mapping:

■ XML Schema URN for the XML Schema version to be used. This will define the xsd prefix in
the SOAP-ENV:Envelope element, at the beginning of the SOAP message.

■ Namespace URI of the “payload” element node (this is the singleton element under the SOAP-
ENV:Body element). Various SOAP toolkits require certain namespace settings. The namespace
prefix will always be “m”.

Note that the SOAP default mapping also works for the “error” direction, where it defines the
“standard” SOAP fault message structure, as described in the specification.

The XML/SOAP Runtime detects whether SOAP is used in incoming messages. If so, the special
elements and attributes of the SOAP specification (SOAP-ENV:Envelope, SOAP-ENV:Body, type,
arrayType etc.) are handled accordingly.

Web Services

Web services are programmable, distributed application components accessible on theWeb using
solely standard internet protocols. See Introduction to Web Services in EntireX in the Web Services
Wrapper documentation.

You may create Web services with the EntireX XML/SOAP Listener by wrapping IDL programs
in SOAP message structures, as described in the preceding section, and then generating service
descriptions for them using theWSDLWizard. The service descriptions use the de facto standard
WSDL (Web Service Description Language) format.

To make Web services out of your IDL programs

1 Select the IDL file that you want to turn into one or more Web services.

EntireX XML/SOAP Wrapper152

SOAP and Web Services (XML/SOAP Listener)

2 From the context menu, chooseOpen With ... > EntireX XMLMapping Editor and choose
SOAP for mapping. ChooseGenerate.

3 Set up a servlet engine and configure the XML/SOAP Listener. See Administering the EntireX
XML/SOAP Listener in the UNIX and Windows administration sections.

4 Select the XMM or IDL file. Open the context menu and choose theGenerate Web Service
from EntireX Mapping (Generate Web Service from Software AG IDL).

5 The generatedWSDL file and the deployment unit (AAR file) can be found in the same folder
as the IDL file.

See Software AG IDL Extractor for WSDL.

153EntireX XML/SOAP Wrapper

SOAP and Web Services (XML/SOAP Listener)

154

24 Support of Representational State Transfer (REST)

■ GET Manner ... 156
■ Limitations .. 156
■ Example .. 156

155

The XML/SOAP Listener supports REST architecture.

GET Manner

The XML/SOAP Listener supports simple requests in GET manner. In this context, GET means
retrieving information (in the form of an entity) that is identified by the request URI.

A service accepts a request in plain XML, so the response format is also plain XML. The parameter
names mustmatch those of the service.

The request is formed as follows:

<URL_of_the_XML_service>/<program_name>?<parameter_1>=<value_1>&<parameter_2>=<value_2>...

Limitations

■ The request document cannot contain groups, arrays, other nested elements, or attributes.
■ Elements cannot be namespace-qualified.
■ Only services that accept requests in plain XML can be called.

Example

Enter the following GET request in the URL field of your Web browser:

http://localhost:8080/wsstack/services/example/CALC?Operation=+&Operand_1=20&Operand_2=36

The actual request is:

GET /wsstack/services/example/CALC?Operation=+&Operand_1=20&Operand_2=36 HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=UTF-8;action="CALC";
SOAPAction: CALC
User-Agent: Axis2
Host: localhost:8080

Your browser will display something like the following:

EntireX XML/SOAP Wrapper156

Support of Representational State Transfer (REST)

<CALC>
<Function_Result>56</Function_Result>

</CALC>

The actual response is:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/xml;charset=utf-8
Transfer-Encoding: chunked
Date: Thu, 07 Aug 2008 12:25:44 GMT

32
<CALC><Function_Result>56</Function_Result></CALC>
0

157EntireX XML/SOAP Wrapper

Support of Representational State Transfer (REST)

158

	EntireX XML/SOAP Wrapper
	Table of Contents
	1 Introduction to the XML/SOAP Wrapper
	XML/SOAP Wrapper Concepts
	XML-based Clients Calling EntireX/Natural RPC Server
	EntireX/Natural RPC Client Calling XML-based Server

	Development Environment
	XML Mapping Editor
	Generation Utilities

	XML/SOAP Runtime Environment
	XML Clients Communicating with EntireX/Natural RPC Servers
	EntireX Clients Communicating with XML or SOAP Interfaces

	Glossary of Terms
	XML-based Client
	XML-based Server
	XML/SOAP RPC Server
	XML/SOAP Runtime
	XML/SOAP Wrapper
	XML Mapping File

	2 Migration Considerations for XML/SOAP Components
	Migrating XML/SOAP Components for EntireX Version 8 and above
	Migrating XML/SOAP RPC Server
	Migrating XML/SOAP Wrapper
	Migrating XML/SOAP Listener
	Using the Software AG Web Server based on Apache Tomcat / Software AG Runtime from Software AG Installation
	Using another Web Server

	Migrating XML/SOAP Components from EntireX Version 7.n
	Migrating XML/SOAP RPC Server from Version 7.n
	Migrating XML/SOAP Wrapper from Version 7.n
	Migrating XML/SOAP Listener from Version 7.n - Introduction
	Migrating from Version 7.n to one or more Listener Services with new URL(s)
	Migrating from Version 7.n to one Listener Service, Keeping the URL used by Applications
	Step 1: Generate Service Archive
	Step 2: Use File entirex-forward.war
	Example of Migrating with Servlet entirex-forward

	3 Using the XML/SOAP Wrapper
	Mapping IDL Parameters to XML Structures
	Setting Wrapper Properties
	Generating an XMM File
	Default Values Used by the XML/SOAP Runtime

	4 RPC Environment Manager
	5 RPC Environment Monitor
	6 EntireX XML Tester
	Introduction to the XML Tester
	XML Tester Options
	Quick Test Details Dialog
	XML Tester HTTP/HTTPS Parameters Dialog
	Add New HTTP Parameter Dialog
	Edit HTTP Parameter Dialog

	Using the XML Tester
	XML Tester for Conversational RPC

	7 Using the XML/SOAP Wrapper in Command-line Mode
	Command-line Options
	Example
	Further Examples
	Windows Example 1
	Windows Example 2
	Linux Example 1
	Linux Example 2

	8 Tracing the XML/SOAP Runtime
	9 Introduction to Writing Applications with the XML/SOAP Wrapper
	Connecting between XML-based Clients and an EntireX RPC Server
	Publish an Existing EntireX RPC Server for XML-based Clients
	Use your XML-based Client and Connect to an EntireX RPC Server

	Connecting EntireX Clients and XML-based Server
	Involve an XML-based Server in your EntireX Application
	Connect your RPC Client and the XML-based Server

	10 Writing Advanced Applications with the XML/SOAP Wrapper
	XML/SOAP Listener
	SOAP Documents
	XML Documents

	Natural Logon or Changing the Library Name
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using RPC Compression
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using Conversational RPC
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using Natural Security
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using Compression
	Using Broker ID
	Examples

	XML/SOAP Wrapper (Java API)
	Using setCompressionLevel()
	XML/SOAP Listener

	Using EntireX Security
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	HTTP Proxy Settings
	XML/SOAP RPC Server with HTTP Basic Authentication
	XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authentication
	Using SSL or TLS with the XML/SOAP RPC Server
	SSL or TLS Settings
	Sample Start Script
	Configuration File Settings

	Using Internationalization with EntireX XML Components
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener
	XML/SOAP RPC Server

	Null Value Suppression
	Introduction
	Default Setting for Null Value Suppression
	Definition and Examples of Null Value Suppression Mode
	No Suppression
	Elements
	Attributes
	Cells at End (Trim)
	All Empty Cells
	Suppress Group Elements
	Depends On Element

	Default Definition of Null Value

	User-specified Settings
	Map Fault to IDL Parameter
	Introduction
	Example
	Sample IDL File
	IDL-XML Mapping

	Testing the Fault Mapping
	Test Scenario
	Request 1 (Expecting Normal Response)
	Request 2 (Expecting Fault Document)

	Whitespace Handling
	Attribute xml:space
	Changing the Default for Whitespace Handling

	11 Connect an Existing EntireX RPC Server with an XML-based Client
	Connect RPC Server with XML-based Client, using a Web Application
	Connect RPC Server with XML-based Client, using the Java API of EntireX XML/SOAP Runtime
	Running the Application

	12 Build an EntireX RPC Server and Use an Existing XML-based Client with It
	Generation Process
	Running the Application

	13 Build an EntireX RPC Client and Use an Existing XML-based Server
	Generation Process
	Running the Application

	14 Connect an Existing EntireX RPC Client to an XML-based Server
	Generation Process
	Running the Application

	15 Configuring Client and Server Applications
	Configuring a Client to Call the EntireX XML/SOAP Runtime (Java API)
	Configuration Information
	Environment Settings

	Configuring a Client to Call the EntireX XML/SOAP Runtime (XML/SOAP Listener)
	Configuration Information
	Environment Settings

	Configuring an XML/SOAP RPC Server

	16 Deployment to XML/SOAP RPC Server and Dynamic Configuration of XML/SOAP RPC Server
	Introduction
	Deploying an XMM File to XML/SOAP RPC Server
	Undeploying an XMM File to XML/SOAP RPC Server
	Configuring XML/SOAP RPC Server Dynamically

	17 Examples
	Example 1: Existing Natural Client that Connects to a Web Service
	Natural Program
	Software AG IDL
	Example.wsdl
	entirex.xmlrpcserver.properties
	entirex.xmlrpcserver.configuration.xml

	Example 2: Publish an EntireX RPC Server for Web Clients
	Software AG IDL File

	18 Frequently Asked Questions (FAQ) and Troubleshooting
	XML/SOAP Listener
	XML/SOAP RPC Server
	XML/SOAP RPC Server in the Software AG Runtime

	19 Reference - HTTP and Java Interface
	Client Using the Java Interface
	Step 1: Writing the Client Program
	Step 2: Running the Client Program

	The Java Interface
	Class XMLRPCService

	The HTTP Interface

	20 XML Structures and IDL-XML Mapping
	XML Structure Description
	Basic IDL-XML Mapping
	Example
	IDL File
	Element-preferred Mode
	Attribute-preferred Mode
	SOAP-conformant Mapping

	Arrays
	Groups
	Example
	Element-preferred mode
	Attribute-preferred mode

	Array of Groups
	Grouping XML Elements or Attributes
	Example

	IN / OUT / IN OUT Parameters

	21 XML Schema Standards Conformance (XML/SOAP Wrapper)
	XML Schema Parser Standards Conformance
	Supported Features
	Unsupported Features

	XML Schema Writer Standards Conformance
	Supported Features
	Unsupported Features

	22 Reliable RPC for XML/SOAP Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Broker Configuration

	23 SOAP and Web Services (XML/SOAP Listener)
	SOAP Support
	Web Services

	24 Support of Representational State Transfer (REST)
	GET Manner
	Limitations
	Example

