
webMethods EntireX

EntireX Web Services Wrapper for Natural

Version 9.6

April 2014

This document applies to webMethods EntireX Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXWEBSERVICESWRAPPER-96-20140628NAT

Table of Contents

I .. 1
1 Using Web Services Wrapper for Natural ... 3

Prerequisites ... 4
Step 1: Start the Web Services Wrapper for Natural .. 4
Step 2: Select the Natural Library (Optional) ... 5
Step 3: Select the Natural Subprograms .. 6
Step 4: Redesign the Interface for Natural Subprograms (Optional) 8
Step 5: Configure the Web Service Client .. 11
Step 6: Deploy the Web Service .. 12
Generation Result ... 13
Preferences ... 14

2 Using the Web Services Wrapper for Natural in Command-line Mode 15
II Natural to XML Schema Type Mapping ... 17

3 Natural to IDL Mapping ... 19
Mapping Natural Data Types to Software AG IDL ... 20
Redesigning the Extracted Interface .. 21
Extracting the IDL Library Name .. 21
Extracting the IDL Program Name .. 21
Extracting IDL Parameter Names .. 21
Extracting IDL Directions (IN,OUT,INOUT) ... 22
Extracting Natural REDEFINES ... 23
Extracting Multiple Interfaces .. 23
Extracting Natural Arrays, Groups, X-Arrays and Variable Arrays 24
Extracting Natural Structure Information (IDL Levels) 26
Extracting Parameters defined with OPTIONAL .. 26
Setting Natural Parameters to Constants ... 27
Suppressing Natural Parameters ... 27
Renaming a Program ... 27

4 XML Structures and IDL-XML Mapping .. 29
XML Structure Description .. 30
Basic IDL-XML Mapping ... 30
Arrays ... 34
Groups .. 36
IN / OUT / IN OUT Parameters ... 39

5 WSDL to IDL Mapping ... 41
Extracting IDL from WSDL Files ... 42
Mapping WSDL XML Schema Data Type to Software AG IDL 42
Extracting the Name for the IDL Library ... 43
Extracting the Name for the IDL Program ... 43

III ... 45
6 Writing Applications with the Web Services Wrapper for Natural 47
7 Delivered Client and Server Examples for Natural .. 51

iii

iv

I
■ 1 Using Web Services Wrapper for Natural ... 3
■ 2 Using the Web Services Wrapper for Natural in Command-line Mode .. 15

1

2

1 Using Web Services Wrapper for Natural

■ Prerequisites .. 4
■ Step 1: Start the Web Services Wrapper for Natural ... 4
■ Step 2: Select the Natural Library (Optional) ... 5
■ Step 3: Select the Natural Subprograms .. 6
■ Step 4: Redesign the Interface for Natural Subprograms (Optional) ... 8
■ Step 5: Configure the Web Service Client ... 11
■ Step 6: Deploy the Web Service ... 12
■ Generation Result ... 13
■ Preferences ... 14

3

The Web Services Wrapper for Natural allows you allows you to generate Web services from
Natural subprograms in a NaturalONE project in Eclipse. The generated Web service objects,
which are WS-Stack Web service archives (file extension .aar) can be deployed in a Web Services
Stack runtime, registered in CentraSite and testedwith the XMLTester.Web services client applic-
ations can then access theseWeb services that expose some business logic implemented byNatural
server components.

This chapter describes the steps for generating a Web service using Web Services Wrapper for
Natural.

Prerequisites

Touse theWeb ServicesWrapper forNatural you need SoftwareAGDesignerwith theNaturalONE
and EntireX plug-ins installed.

Step 1: Start the Web Services Wrapper for Natural

To start the Web Services Wrapper for Natural, select a Natural subprogram (file extension .NSN)
located in a library of a NaturalONE project, and from the context menu chooseGenerate Web
Service.... Alternatively you can start the Web Services Wrapper for Natural from the context
menu of theNatural source folder or any parent folder in the project, including theNatural library
and the Project folder.

EntireX Web Services Wrapper for Natural4

Using Web Services Wrapper for Natural

Step 2: Select the Natural Library (Optional)

If you have started the wizard from a folder containing multiple Natural libraries, the wizard
displays a page showing all available libraries from which you can select one.

5EntireX Web Services Wrapper for Natural

Using Web Services Wrapper for Natural

Select the Natural library from the list and continue with Step 3: Select the Natural Subprograms.

Step 3: Select the Natural Subprograms

The following wizard page provides a list of available Natural subprograms.

EntireX Web Services Wrapper for Natural6

Using Web Services Wrapper for Natural

In the Source pane, select at least one program from the list ofNatural subprograms (CALLNATs).
You can also choose Select All orDeselect All.

In the Extraction Settings pane, checkRedesign the interfaces if youwant to design the extracted
interfaces to the Natural subprograms. TheNext button will be enabled. See Step 4: Redesign the
Interface for Natural Subprograms (Optional). If you do not check Redesign the interfaces, see
Natural to IDL Mapping in the IDL Extractor for Natural documentation for default mappings.

Check Replace special characters in parameter names by underscore to substitute the special
characters '$', '#', '&', '@', '/' by underscores. See also Extracting IDL Parameter Names in the IDL
Extractor for Natural documentation.

PressNext to continue.

■ If Redesign the interfaces is checked, continue with Step 4: Redesign the Interface for Natural
Subprograms (Optional).

■ Otherwise continue with Step 5: Configure the Web Service Client.

7EntireX Web Services Wrapper for Natural

Using Web Services Wrapper for Natural

Step 4: Redesign the Interface for Natural Subprograms (Optional)

In this step, you can redesign the interface. This includes:

■ Extracting Multiple Interfaces
■ Extracting Natural REDEFINES
■ Extracting IDL Directions (IN,OUT,INOUT)
■ Setting Natural Parameters to Constants
■ Suppressing Natural Parameters
■ Renaming a Program

EntireX Web Services Wrapper for Natural8

Using Web Services Wrapper for Natural

Use this page for the following tasks:

■ Define the direction of parameters in the extracted interface. ChooseMap to In,Map to Out or
Map to InOut for each parameter on level 1.

■ Definewhich parameters redefined in theNatural PDAare part of the extracted interface. Choose
Map to In,Map toOut orMap to InOut for the REDEFINE base parameter or any REDEFINE path.

■ Hide or suppress unneeded parameters in the extracted interface. Choose Suppress.
■ Set parameters to constants and hide or suppress them in the extracted interface. Choose Set
Constant.

This page consists of the following main parts:

9EntireX Web Services Wrapper for Natural

Using Web Services Wrapper for Natural

■ Top line
The top line contains the current Natural subprogram and the IDL library name. The combo
box can be used as quick navigation if more than one Natural subprogram is selected.

■ Middle
Themiddle part contains a tab item for each interface (IDL program) extracted from theNatural
subprogram.

Note: It is possible to extract more than one interface (IDL program) from a Natural sub-
program. To create, rename and remove interfaces, use the toolbar on the right side of
tab folder.

DescriptionFunctionIcon

Creates a new interface (IDLprogram) based on the original parameters of theNatural
subprogram.

Create

Creates a new interface (IDL program) based on the current interface (active tab). All
modifications of the current interface are copied.

Duplicate

Change the name of the current interface (active tab). The name must be unique.Rename

Removes the current interface (active tab). At least one interface must exist.Remove

Expands the Natural and IDL tree.Expand All

Collapse the Natural and IDL tree.Collapse All

■ Middle left
Input pane. The parameters of the Natural subprogram to extract from. For each Natural sub-
programparameter you can choose one of the operationsMap to In,Map toOut,Map to InOut,
Suppress and Set Constant. Additionally for REDEFINEs, a quick fix is available (icons on the
left side of the pane) to choose which parameters redefined in the Natural PDA are part of the
extracted interface.

Notes:

1. The mapping operationsMap to In,Map to Out,Map to InOut, Suppress and Set Constant
are also available in the context menu of the Natural parameter tree.

2. Natural parameters that are suppressed or set to constant in the interface are rendered in it-
alic type. For example, in the screen above, FUNCTION (A3) is set to constant; FILLER1(A4)
and FILLER2(A60) are suppressed; FUNCTION-DATA(A161) and its first REDEFINE path are
implicitly suppressed because the second REDEFINEpathwith prefix MOD-DATA-2-R2 is selected.

3. The value for Natural parameters set to constant are displayed behind the parameter in the
Natural parameter tree (e.g. in the screen above, FUNCTION (A3) [MOD]).

4. Natural parameters mapped in the interface are displayed with a green tick ().

EntireX Web Services Wrapper for Natural10

Using Web Services Wrapper for Natural

■ Middle right
Output pane. The extracted interface (IDL).

■ Bottom
Reference. The Natural subprogram source and its PDA sources, each displayed in a separate
tab.

Tips:

■ The panes can be resized.
■ To enlarge parameter lists, use the vertical bars on the side.
■ You can close the bottom pane if it is not needed by clicking on the triangle next toNatural
Subprogram Source. In this way, you have more space for viewing the upper panes.

Use the quick navigation or chooseNext to continue. If multiple Natural subprograms have been
selected in the Natural subprogram selection step, redesign the next interface. The amount of
subprograms extracted so far is indicated by the fraction next to the title (current/total).

If multiple Natural subprograms have been selected in the Natural subprogram selection step,
redesign the next interface. The amount of subprograms extracted so far is indicated by the fraction
next to the title (current/total).

If only oneNatural subprogramhas been selected or no further one has to be redesigned, continue
with Step 5: Configure the Web Service Client.

Step 5: Configure the Web Service Client

On the next wizard page you can specify the name of the Web service and service URL (which
depends of course on where it is deployed) and whether to deploy the Web service in a WS-stack
runtime and register it in a CentraSite instance. You can change the proposed default values ac-
cording to your needs.

11EntireX Web Services Wrapper for Natural

Using Web Services Wrapper for Natural

Step 6: Deploy the Web Service

If you chose to deploy theWeb service, a wizard page is displayed where you can select the target
WS-stack instance for the deployment. In the workspace preferences (Window > Preferences >
SoftwareAG >WS-Stack >Deployment) you can define a list of additionalWS-stack deployment
targets. Select one of these targets.

Note: Deployment inWS-stack requires authentication. The default authentication credentials
are preconfigured (user: admin, password: axis2). If the WS-stack installation was secured
differently, contact you administrator for the current credentials. See also Deploying and
Undeploying Web Service Archives in section Software AG Designer Plug-in of theWeb Services
Stack documentation.

EntireX Web Services Wrapper for Natural12

Using Web Services Wrapper for Natural

If you chose to register theWeb service in a CentraSite, additionalWizard pages will be displayed
that guide you through the Web service registration process. See the WS-stack documentation,
section Configuration > Eclipse Plug-in > Registering a Web Service Package in CentraSite for more in-
formation.

Generation Result

When thewizard has finished successfully, youwill see additional artifacts in your Eclipse project:

■ .aar file
This is the generated Web service package (containing the metadata files that define the Web
service).

■ .wsdl file
This is the Web service description language file that describes the basic interface of the service
to be used by Web service client applications.

Note: The actualWSDL of the deployedWeb servicemight differ from this file (containing
the actual service URL, transport bindings and policies that are in effect according to the
service configuration in the target WS-stack). You can query the effective WSDL of the
deployed service using the service's URL, appended with "?wsdl" (without quotes).

■ .idl file
The Software AG IDL file that describes the RPC interface of the Natural server component that
implements the service's business logic together with an optional client-side server-mapping
file (CVM). The IDL file is opened with the IDL Editor. See IDL File.

■ .cvm file (optional)
This file completes the IDL file with a mapping from the programming-language-neutral para-
meter definition in the IDL file to the parameters and data types expected by the Natural sub-
programs (CALLNATs). A CVM file always has to be kept in the same folder as its related IDL
file. See CVM File.

■ .xmm file
This is a mapping file that specifies the mapping of XML/SOAP to EntireX RPC and back. You
can edit this file with the EntireX XML Mapping Editor and customize it for subsequent Web
service re-generation.

13EntireX Web Services Wrapper for Natural

Using Web Services Wrapper for Natural

For more information see the NaturalONE documentation.

Preferences

Use the preference page for the IDL Extractor for Natural to manage the default values relevant
for step Step 3: Select the Natural Subprograms. See Preferences.

EntireX Web Services Wrapper for Natural14

Using Web Services Wrapper for Natural

2 Using the Web Services Wrapper for Natural in

Command-line Mode

Command-line mode is currently not supported.

15

16

II Natural to XML Schema Type Mapping

Natural to IDL Mapping

XML Structures and IDL-XMLMapping

WSDL to IDL Mapping

17

18

3 Natural to IDL Mapping

■ Mapping Natural Data Types to Software AG IDL ... 20
■ Redesigning the Extracted Interface .. 21
■ Extracting the IDL Library Name ... 21
■ Extracting the IDL Program Name .. 21
■ Extracting IDL Parameter Names ... 21
■ Extracting IDL Directions (IN,OUT,INOUT) .. 22
■ Extracting Natural REDEFINES .. 23
■ Extracting Multiple Interfaces ... 23
■ Extracting Natural Arrays, Groups, X-Arrays and Variable Arrays .. 24
■ Extracting Natural Structure Information (IDL Levels) .. 26
■ Extracting Parameters defined with OPTIONAL ... 26
■ Setting Natural Parameters to Constants .. 27
■ Suppressing Natural Parameters .. 27
■ Renaming a Program ... 27

19

This chapter describes howNatural data types aremapped to SoftwareAG IDLfiles by the Software
AG IDL Extractor for Natural and covers the following topics:

For more information on Natural syntax, refer to the Natural documentation.

Mapping Natural Data Types to Software AG IDL

The IDL Extractor for Natural maps the following subset of Natural data types to Software AG
IDL data types.

The following metasymbols and informal terms are used for the IDL in the table below.

■ The metasymbols "[" and "]" surround optional lexical entities
■ The informal terms n and m are sequences of numeric characters, for example 123.

DescriptionSoftware AG IDL Data TypeNatural Data Type

AlphanumericAnAnumber

Alphanumeric variable lengthAVnA DYNAMIC

BinaryBnumberBnumber

Binary variable lengthBVB DYNAMIC

not supportedC

DateDD

Floating point (small)F4F4

Floating point (large)F8F8

Integer (small)I1I1

Integer (medium)I2I2

Integer (large)I4I4

LogicalLL

Unpacked decimalNnumber[.number]Nnumber[.number]

Packed decimalPnumber[.number]Pnumber[.number]

TimeTT

UnicodeUnumberUnumber

Unicode variable lengthUVU DYNAMIC

EntireX Web Services Wrapper for Natural20

Natural to IDL Mapping

Redesigning the Extracted Interface

The IDL Extractor for Natural allows you to design the interface to your Natural subprogram
(CALLNAT). This includes

■ Extracting Multiple Interfaces
■ Extracting Natural REDEFINES
■ Extracting IDL Directions (IN,OUT,INOUT)
■ Setting Natural Parameters to Constants
■ Suppressing Natural Parameters

See Step 6: Redesign the Interface for Natural Subprograms (Optional) under Extracting Software AG
IDL File from a New Natural RPC Environment in the IDL Extractor for Natural documentation for
more information.

Extracting the IDL Library Name

The Natural library from where Natural programs are extracted is used as the IDL library name.
See library-definition under Software AG IDL Grammar in the IDL Editor documentation.

Extracting the IDL Program Name

The Natural program name is used as the IDL program name, see program-definition under
Software AG IDL Grammar in the IDL Editor documentation.

Extracting IDL Parameter Names

For source extractions, Natural parameter names are kept and used as IDL parameters, see
simple-parameter-definition under Software AG IDL Grammar in the IDL Editor documentation
and group-parameter-definitionunderSoftwareAG IDLGrammar in the IDLEditordocumentation.

For object extractions, Natural programs must be compiled (cataloged) with the compiler option
SYMGEN=ON to keep original Natural parameter names. Otherwise, generic parameter names are
generated (PARAMETER-1, PARAMETER-2, etc.).

In Select Natural Sources (see Step 3: Select the Natural Subprograms fromNaturalONEProject under
Extracting IDL from Natural Subprogram Sources in NaturalONE under Using the Software AG IDL

21EntireX Web Services Wrapper for Natural

Natural to IDL Mapping

Extractor for Natural if you are extracting from NaturalONE projects or Step 3: Select the Natural
Subprograms if you are extracting from a Natural RPC environment), you can choose special
characters ($, #, &, @, /) in Natural parameter names to be replaced by underscores. See Rules for
Coding Group and Parameter Names under Software AG IDL File in the IDL Editor documentation.

Extracting IDL Directions (IN,OUT,INOUT)

InmostNatural subprograms, parameters have no specification for a direction.Missing a direction
is unproblematic for local calls. For remote RPC calls, however, specifying the direction helps to
reduce data sizes.

If you redesign the interface, you can define IDL directions in Step 6: Redesign the Interface for Nat-
ural Subprograms (Optional) under Extracting Software AG IDL File from a New Natural RPC Environ-
ment in the IDL Extractor for Natural documentation using the mapping operationsMap to In,
Map to Out,Map to InOut.

Otherwise, IDL directions can be inserted at top-level parameters (level 1) using a Natural line
comment in the Natural subprogram (CALLNAT) interface definition (DEFINE DATA PARAMETER),
example:

DEFINE DATA PARAMETER
1 #IN-FIELD-1 (P9) /* IN
1 #OUT-FIELD-1 (P9) /* OUT
1 #INOUT-FIELD-1 (P9) /* INOUT
1 #INOUT-FIELD-2 (P9)
1 #IN-GROUP-1 /* IN

2 #IN-GROUP-FIELD-1 (A10)
1 #OUT-GROUP-1 /* OUT

2 #OUT-GROUP-FIELD-1 (A10)
1 #INOUT-GROUP-1 /* INOUT

2 #INOUT-GROUP-FIELD-1 (A10)
1 #INOUT-GROUP-2

2 #INOUT-GROUP-FIELD-2 (A10)
1 #INOUT-GROUP-3

2 #INOUT-GROUP-FIELD-3 (A10) /* OUT
END-DEFINE

If no direction is specified (such as in #INOUT-FIELD-2 and #INOUT-GROUP-2 in the example above),
the default direction INOUT applies.

Specifications on a level greater than 1 (such as #INOUT-GROUP-FIELD-3 in the example above) are
ignored. Note that in IDL directions are specified on top-level fields (level 1), see attribute-list
under Software AG IDL Grammar in the IDL Editor documentation.

Specifications on IDL directions are only considered when extracting from a source. If you are
extracting from an object (compiled), as described in Step 5: Select Natural Subprograms from RPC

EntireX Web Services Wrapper for Natural22

Natural to IDL Mapping

Environment under Extracting Software AG IDL File from a New Natural RPC Environment in the IDL
Extractor for Natural documentation, the default direction INOUT always applies.

Extracting Natural REDEFINES

A redefinition is a second parameter layout of the same memory portion. The parameter
#BASE-FIELD is redefined by the fields FILLER-1 thru R-P3-01.

DEFINE DATA PARAMETER
1 #BASE-FIELD (A161)
1 REDEFINE #BASE-FIELD

2 FILLER-1 (A4)
2 FILLER-2 (A60)
2 R-P1-01 (A1)
2 R-P2-01 (A10)
2 R-P3-01 (I4)

END-DEFINE

With the extractor wizard you can select a single redefine path for IDL usage (here the fields
FILLER-1 thru R-P3-01) if you redesign the interface. See An Example for Extracting Natural
REDEFINES and Step 6: Redesign the Interface for Natural Subprograms (Optional) under Extracting
Software AG IDL File from a New Natural RPC Environment in the IDL Extractor for Natural docu-
mentation.

Extracting Multiple Interfaces

LegacyNatural subprograms often implementmultiple functions in a singleNatural subprogram.
The function executed is often controlled by a so-called function code or operation-code field. See
An Example for Extracting Multiple Interfaces.

With the extractor wizard you can extract the functions from the server as separate interfaces (IDL
programs). In this way, the legacy server with a single physical interface can be

■ turned into a web service with operations, where the legacy functions match operations.
■ calledwith an object-orientedwrapper such as the JavaWrapper, the .NETWrapper or theDCOM
Wrapper, where the legacy functions match methods.

Note that every function in the Natural subprogrammay have a different interface describedwith
REDEFINE syntax. Therefore, multiple interface extraction is often combinedwith ExtractingNatural
REDEFINES in the IDL Extractor for Natural documentation.

23EntireX Web Services Wrapper for Natural

Natural to IDL Mapping

For more information, see Step 6: Redesign the Interface for Natural Subprograms (Optional) under
Extracting Software AG IDL File from a New Natural RPC Environment in the IDL Extractor for Nat-
ural documentation.

Extracting Natural Arrays, Groups, X-Arrays and Variable Arrays

This section describes IDL mapping for Natural arrays and groups:

Arrays and Groups with Fixed upper Limits

Ordinary Natural arrays and groups with fixed/bound upper limits are mapped to Software AG
IDL fixed-bound-array definitions, see array-definition under Software AG IDL Grammar in the
IDL Editor documentation.

Natural syntax example:

DEFINE DATA PARAMETER
1 #ARRAY1 (I4/1:10) /* lower bound is fixed at 1, upper bound is 10
1 #ARRAY2 (I4/10) /* shortcut for (A5/1:10)
1 #GROUP1 (10)

2 #FIELD1 (I2)
2 #FIELD2 (A10)

. . .
END-DEFINE

X-Arrays and X-Groups

For X-arrays (eXtensible arrays) the number of occurrences is flexible at runtime. The number of
occurences can be resized, i.e. increased or reduced. It is defined by specifying an asterisk (*) for
index bounds.

Natural syntax example:

DEFINE DATA LOCAL
1 #X-ARRAY1 (A5/1:*) /* lower bound is fixed, upper bound is variable
1 #X-ARRAY2 (A5/*) /* shortcut for (A5/1:*)
. . .
END-DEFINE

Natural X-arrays are mapped to Software AG IDL unbounded-array definitions, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Natural X-arrays with variable lower bounds are not supported by Software AG RPC technology,
example:

EntireX Web Services Wrapper for Natural24

Natural to IDL Mapping

DEFINE DATA PARAMETER
1 #X-ARRAY1 (A5/*:10) /* lower bound is variable, upper bound is fixed
. . .
END-DEFINE

Variable Arrays and Variable Groups

In aNatural parameter data area (PDA), you can specify an array or groupwith a variable number
of occurrences. This is done with the index notation 1:V. The maximum number of occurrences
for such an array is either passed to the subprogram using an extra parameter such as
#ARRAY1-LIMIT (see example below), or it can be accessed using the system variable *OCCURRENCE.

Natural syntax example:

DEFINE DATA PARAMETER
1 #ARRAY1-LIMIT (I4) /* extra parameter to pass the upper limit
1 #ARRAY1 (I4/1:V)
. . .
END-DEFINE

Natural variable arrays are mapped to Software AG IDL unbounded-array definitions, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

If the Natural server program uses a separate parameter such as #ARRAY1-LIMIT (see the example
above) instead of *OCCURRENCE to determine the upper bound limit, it is required to extract this
extra parameter, too. During runtime, it is also required to specify the number of occurences in a
calling RPC client.

In a Natural server program, Natural variable arrays

■ cannot be resized for direction INOUT, which means you can only reply the same number of
occurrences to the RPC client.

■ cannot be used for directionOUT either, because they cannot be created (instantiated). Youmay
get error 20050031 during extraction.

Arrays and Groups with Mixed Dimensions (X, Variable and Fixed)

Natural arrays and groups with a mixture of fixed variable and eXtensible dimensions are not
supported by Software AG RPC technolgy, example:

25EntireX Web Services Wrapper for Natural

Natural to IDL Mapping

DEFINE DATA PARAMETER
1 #ARRAY1 (I4/1:10,1:*) /* first dimension fixed and second eXtensible
1 #ARRAY2 (I4/1:10,1:V) /* first dimension fixed and second variable
1 #ARRAY3 (I4/1:V,1:*) /* first dimension variable and second eXtensible
. . .
END-DEFINE

Extracting Natural Structure Information (IDL Levels)

Source Extractions

Natural levels are always kept. This means that the structure in the extracted IDL is the same as
in the original Natural program.

Object Extractions

■ UNIX or Windows
In UNIX or Windows RPC environments, Natural levels are not kept. The IDL is extracted in a
flat way, where
■ all IDL parameters are at level 1;
■ all Natural groups are removed;
■ Natural fields within groups using repetition (PERIODIC GROUPS) are mapped to IDL arrays;
■ the dimension ofNatural arrayswithin groups using repetion (PERIODIC GROUPS) is increased
in the IDL. For example, a one-dimensional array may become a two-dimensional or three-
dimensional IDL array depending on the dimension of the group;

■ z/OS
In z/OSRPCenvironments, theNatural programsmust be compiled (cataloged)with the compiler
option SYMGEN=ON to keep Natural levels, otherwise flat extraction is carried out.

Extracting Parameters defined with OPTIONAL

For a parameter defined without OPTIONAL, a value must be passed from the invoking Natural
object, i.e. the caller.

For a parameter defined with OPTIONAL, a value can, but need not be passed from the invoking
Natural object to this parameter. With the SPECIFIED option, a Natural server can find out at
runtime whether an optional parameter has been defined or not.

The IDL Extractor for Natural ignores the OPTIONAL specification, i.e. the parameter is extracted
as without the OPTIONAL specification. See the Natural Documentation for more information.

EntireX Web Services Wrapper for Natural26

Natural to IDL Mapping

EntireX RPC technology does not support optional IDL parameters. Using pure Natural RPC
(Natural client to Natural server), Natural optional parameters are supported.

Setting Natural Parameters to Constants

Setting parameters to constant values and suppressing them in the IDL is part of the redesign
process of the extracted interface. This keeps the IDL client interface lean. See An Example for Set
Constant.

EntireX and Natural RPC make sure the constant value is passed to the Natural server during
runtime. No data is transferred between the RPC client and the RPC server.

For more information, see Step 6: Redesign the Interface for Natural Subprograms (Optional) under
Extracting Software AG IDL File from a New Natural RPC Environment in the IDL Extractor for Nat-
ural documentation.

Suppressing Natural Parameters

Hiding or suppressing unneeded parameters in the IDL is part of the redesign process of the ex-
tracted interface. This keeps the IDL client interface lean and minimizes the amount of data to be
transferred during runtime.

EntireX and Natural RPCmake sure to provide low values as input for suppressed parameters to
the Natural server called (blank for IDL type A, zero for numeric data types such as IDL I, N and
P). No data is transferred between an RPC client and the RPC server.

For more information, see Step 6: Redesign the Interface for Natural Subprograms (Optional) under
Extracting Software AG IDL File from a New Natural RPC Environment in the IDL Extractor for Nat-
ural documentation.

Renaming a Program

Renaming a program to a different name in the IDL is part of the redesign process of the extracted
interface. You can adjust the short Natural name to ameaningful longer name for better readability.
See An Example for Extracting Multiple Interfaceswhere the original Natural name CALC is renamed
to IDL names ADD, SUBTRACT, MULTIPLY etc.

EntireX andNatural RPCmake sure the original Natural server is called during runtime. Formore
information, see Step 6: Redesign the Interface for Natural Subprograms (Optional) under Extracting

27EntireX Web Services Wrapper for Natural

Natural to IDL Mapping

Software AG IDL File from a New Natural RPC Environment in the IDL Extractor for Natural docu-
mentation.

EntireX Web Services Wrapper for Natural28

Natural to IDL Mapping

4 XML Structures and IDL-XML Mapping

■ XML Structure Description ... 30
■ Basic IDL-XML Mapping ... 30
■ Arrays ... 34
■ Groups .. 36
■ IN / OUT / IN OUT Parameters ... 39

29

To understand the functionality and usage of the XML Mapping Editor, it is necessary to look at
the possible XML structures and how they are mapped to Software AG IDL.

XML Structure Description

An XML structure is the type of an XML document, that is, the blueprint to build or parse the
XML document. Every program of every library within a Software AG IDL file corresponds to at
least two XML structures: one for the incoming and one for the outgoing XML document. The
Error or Fault directions are also described as XML structures. There are InErr and OutErr XML
structures that are returned by the broker or server in case of broker or data errors or servicing
problems. The XML structures all start with one root node (corresponding to the library/program
combination of the Software AG IDL file), and all XML elements and attributes are linked under
that root node and may be further cascaded.

The XML structure may be represented as a tree of XML structure nodes (so-called XML parts).
For the EntireX XML/SOAPWrapper, no cyclic XML structures (that is, non-tree XML structures)
are allowed because mapping to Software AG IDL parts would be illegal. However, in general
this is not a severe restriction because Software AG IDL parts may not be cyclic either.

The XML parts have various properties. Important properties are the node name (tag name) and
the node type (element or attribute). Other properties are the data type and length, minimum and
maximum occurrence, the default values, the encoding, or the used or defined namespace. XML
parts may have links to IDL nodes (their IDL mapping links, see below).

In the XMLMapping Editor, the XML structures are displayed as node trees. For XML structures,
sample XMLdocuments can be generated to visualize the expected or generated XMLdocuments.

Basic IDL-XML Mapping

Mapping between IDL and XML describes the location of the data in the XML documents that
correspond to the RPC parameters. Getting data for the RPC request is called incoming direction,
putting RPC response data into an XML document is called outgoing direction. RPC parameters
can correspond to elements or attributes.

There are various basic strategies for generating elements or attributes from a given Software AG
IDL. The most important strategies are:

■ Element-preferredmapping:Model the library/programand every IDLparameter as an element.
The elements are cascaded in the same way as their IDL counterparts. The tree of IDL parts and
the tree of XML elements are very similar. Arrays or repeated groupsmay get envelope elements.

EntireX Web Services Wrapper for Natural30

XML Structures and IDL-XML Mapping

■ Attribute-preferred mapping: Model the library/program as root element. Model Arrays and
repeated groups as elements, possibly with envelope elements around them. Model all other
IDL parameters as attributes.

■ SOAP: Construct a SOAPmessage format according to the SOAP specification. Every Software
AG IDL part relates to an element in the SOAP:Body portion. Further fine-tuning according to
the specification may be done.

Some users prefer element modelling, others like to add attributes to existing elements wherever
possible. To minimize the work of building XML structures in the XML Mapping Editor, default
mappings are available. The XMLMapping Editor allows you to choose an element-preferred, an
attribute-preferred or a SOAP-conformant strategy (plus various detail level switches). The element-
preferred mode generates only element nodes, whereas the attribute-preferred mode generates
attributes wherever possible.

Example

IDL File

Library 'EXAMPLE' Is
Program 'CALC' Is
Define Data Parameter
1 Operation (A1) In
1 Operand_1 (I4) In
1 Operand_2 (I4) In
1 Function_result (I4) Out
End-Define

Element-preferred Mode

In the element-preferred mode, the IDL is mapped to the incoming XML document:

<CALC>
<Operation> ... </Operation>
<Operand_1> ... </Operand_1>
<Operand_2> ... </Operand_2>

</CALC>

and the outgoing XML document:

31EntireX Web Services Wrapper for Natural

XML Structures and IDL-XML Mapping

<CALC>
<Function_result> ... </Function_result>

</CALC>

The corresponding XML structure trees are:

and

Attribute-preferred Mode

In the attribute-preferred mode, the Software AG IDL above is mapped to the incoming XML
document:

<CALC Operation="..." Operand_1="..." Operand_2="..."/>

and the outgoing XML document.

<CALC Function_result="..."/>

The corresponding XML structure trees are:

and

EntireX Web Services Wrapper for Natural32

XML Structures and IDL-XML Mapping

SOAP-conformant Mapping

In SOAP-conformant mapping or the SOAP-conformant mode, the above Software AG IDL is
mapped to the incoming XML document:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body>

<CALC>
<Operation xsi:type="SOAP-ENC:string">...</Operation>
<Operand_1 xsi:type="SOAP-ENC:int">...</Operand_1>
<Operand_2 xsi:type="SOAP-ENC:int">...</Operand_2>

</CALC>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

and the outgoing XML document:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body>

<CALCResponse>
<Function_result xsi:type="SOAP-ENC:int">...</Function_result>

</CALCResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The corresponding XML structure trees:

33EntireX Web Services Wrapper for Natural

XML Structures and IDL-XML Mapping

and

Arrays

The IDL may contain array parameters, i.e. basic data types that are to be repeated for a specified
number of times. See following example:

...
1 Operation (A1/5) In
...

The Operationmaybe repeated 5 times. In this case Operationmust correspond to anXMLelement,
because with attributes the repetition cannot be modelled. The corresponding XML document
may then contain up to 5 Operation elements:

EntireX Web Services Wrapper for Natural34

XML Structures and IDL-XML Mapping

...
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
...

or it may contain a surrounding parent element (envelope) Operation:

...
<Operations>

<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>
<Operation> ... </Operation>

</Operations>
...

A switch in the XMLMapping Editor determineswhether arrays get a surrounding parent element
or not.

There is a maximum of three dimensions per IDL array. Each of the dimensions can have upper
and lower bounds defined. The format is as follows:

1 Operation (A1/3,6,8) In

which corresponds to a possible XML document:

<Operations1>
<Operations2>

<Operations3>
<Operation> ... </Operation>
...

</Operations3>
...

</Operations2>
...

</Operations1>

and XML structure:

35EntireX Web Services Wrapper for Natural

XML Structures and IDL-XML Mapping

...
Operations1 (element)

Operations2 (element, minocc=1, maxocc=3)
Operations3 (element, minocc=1, maxocc=6)

Operation (element, minocc=1, maxocc=8)

Groups

The IDL may contain entries that represent groups of parameters.

Example

Library 'EXAMPLE' Is
Program 'ADD' Is
Define Data Parameter
1 Parameters In
2 Operand_1 (I4)
2 Operand_2 (I4)

1 Function_result (I4) Out
End-Define

The entry parameters are a group of two Operands. Groups will always be converted to XML
elements; the group elements will be mapped either to elements or to attributes.

Element-preferred mode

<ADD>
<Parameters>

<Operand_1> "..." </Operand_1>
<Operand_2> "..." </Operand_2>

</Parameters>
</ADD>

Attribute-preferred mode

<ADD>
<Parameters Operand_1="..." Operand_2="..."/>

</ADD>

EntireX Web Services Wrapper for Natural36

XML Structures and IDL-XML Mapping

Array of Groups

Groups can be used in arrays, for example:

1 myparams (/5,4) In
2 Operation (I4)
2 Description (A80)
2 Mygroup

3 Operand_1 (I2)
3 Operand_2 (I2)

2 Options (A1/4)

Using the element-preferred mode, this IDL structure may be mapped to:

<Myparms1>
<Myparms2>

<Myparms>
<Operation> "..." </Operation>
<Description> "..." </Description>
<Mygroup>

<Operand_1> "..." </Operand_1>
<Operand_2> "..." </Operand_2>

</Mygroup>
<Options1>

<Options>"..."</Options>
...

</Options1>
</Myparms>
...

</Myparms2>
...

</Myparms1>

The corresponding XML structure for the element-preferred strategy is then:

...
Myparms1 (element)

Myparms2 (element, minocc=1, maxocc=5)
Myparms (element, minocc=1, maxocc=4)
Operation (element, I4)
Description (element, A80)
Mygroup (element, group, minocc=1, maxocc=1)
Operand_1 (element, I2)
Operand_2 (element, I2)

Options1 (element, minocc=1, maxocc=4)
Options (element, A1)

37EntireX Web Services Wrapper for Natural

XML Structures and IDL-XML Mapping

Grouping XML Elements or Attributes

You can introduce new elements by grouping one or more existing elements or attributes.

This is especially useful when the IDL containsmany simple data types that could be semantically
grouped. This will increase the level of hierarchies in the XML document without affecting the
IDL.

Example

Library 'EXAMPLE' Is
Program 'SIMPLE' Is

Define Data Parameter
1 par1 (A1) In
1 par2 (A1) In
1 par21 (A1) In
1 par22 (I1) In
1 par23 (I4) In
1 par3 (A1) In
1 par31 (I2) In
1 par32 (I4) In
1 par4 (I1) In
1 par5 (A1) In

End-Define

will be transformed by the attribute-preferred strategy to:

<SIMPLE par1="..." par2="..." par21="..."
par22="..."

par3="..." par31="..." par32="..."
par4="..." par5="..."/>

or with the element-preferred strategy to:

<SIMPLE>
<par1> ... </par1>
<par2> ... </par2>
<par21> ... </par21>
<par22> ... </par22>
<par23> ... </par23>
<par3> ... </par3>
<par31> ... </par31>
<par32> ... </par32>
<par4> ... </par4>
<par5> ... </par5>

<SIMPLE>

You can now reorganize the XML structure, for example to:

EntireX Web Services Wrapper for Natural38

XML Structures and IDL-XML Mapping

<SIMPLE par1="..." par4="..." par5="...">
<par2 par21="..." par22="..." par23="...">... </par2>
<par3 par31="..." par32="..."> ... </par3>

</SIMPLE>

IN / OUT / IN OUT Parameters

The incoming XML request must correspond to the incoming IN and IN OUT IDL parameters, and
the (created) outgoing XML response must contain the IN OUT and OUT IDL parameters. In the in-
coming XML structure, there is no difference between IN and IN OUT parameters; the same applies
to IN OUT and OUT parameters for the outgoing XML document.

Make sure that all IDL parameters marked as IN are properly mapped to (incoming) XML parts.
Otherwise, the XML/SOAPRuntime can only assign a null representation (value “0”, empty string,
Boolean “false” etc.) to the respective unmapped IDL parameters. This is probably not the desired
value to be sent to the server. The XML Mapping Editor issues a warning when unmapped IN
parameters are found.

39EntireX Web Services Wrapper for Natural

XML Structures and IDL-XML Mapping

40

5 WSDL to IDL Mapping

■ Extracting IDL from WSDL Files ... 42
■ Mapping WSDL XML Schema Data Type to Software AG IDL .. 42
■ Extracting the Name for the IDL Library ... 43
■ Extracting the Name for the IDL Program ... 43

41

Extracting IDL from WSDL Files

The Software AG IDL Extractor for WSDL produces the IDL file and an XML mapping file. The
SOAP-binding information is written into the XML mapping file (XMM), for example, the
SOAPAction value and the namespace definitions. The two other bindings (HTTP and MIME)
only return the IDL file, but no XML mapping file. In this case, a warning dialog is displayed.
WSDL files with mixed bindings, including a SOAP binding, also return an XML mapping file,
but display the warning message too. The XML mapping and IDL parameter directions depend
on the WSDL source file; INERR and OUTERR mapping trees are possible.

Mapping WSDL XML Schema Data Type to Software AG IDL

Software AG IDLXMMWSDL / XML Schema

BV (or BVn or Bn) (3)binarybinary, base64Binary

BV (or BVn or Bn) (3)binaryhexBinary (1)

Lbooleanboolean

Ddate:yyyy-MM-dd (2)date

F4floatfloat

F8floatdouble

I1integerbyte, unsignedByte

I2integershort, unsignedShort

I4integerint, unsignedInt

N29.0numberinteger, positiveInteger,
nonPositiveInteger,negativeInteger,
nonNegativeInteger

N22.7numberdecimal, number

N19.0numberlong, unsignedLong

TdateTime:HH:mm:ss (2)time

TdateTime:yyyy-MM-dd'T'HH:mm:ss (2)dateTime

A8stringgYearMonth

A11stringgDay, gYear

A12stringgMonth

A13stringgMonthDay

AV (or AVn or An) (3)stringstring (and all types not listed here)

Notes:

EntireX Web Services Wrapper for Natural42

WSDL to IDL Mapping

1. The hexBinary format is not supported by the XML/SOAP Runtime.

2. Edit the date and dateTime patterns manually to match the formats of the original documents.

Example: <myTime xsi:type="xsd:date">11:08:23+01:00</myTime> --> dateTime:HH:mm:ss'
+01:00 ' --> T

Note: The +01:00 is not supported by IDL (EntireX RPC protocol).

3. Mapped according to specified transformation rules. See Step 6: Specify Options for Target Pro-
gramming Language in the IDL Extractor for WSDL documentation.

Extracting the Name for the IDL Library

The IDL library name (see library-definition under Software AG IDL Grammar in the IDL Editor
documentation)will be used from the value of the name attribute of the tag <service>, for example:

<definitions ...>
<service name="LIBRARYNAME">

<port .../>
</service>

</definitions>

Extracting the Name for the IDL Program

The RPC program name (see program-definition under Software AG IDL Grammar in the IDL
Editor documentation) will be used from the value of the name attribute of the tag <operation>
as child of the tag <portType>, for example:

<definitions ...>
<portType name="...">

<operation name="PROGRAMNAME">
<input .../>
<output .../>

</operation>
</portType>

</definitions>

43EntireX Web Services Wrapper for Natural

WSDL to IDL Mapping

44

III
■ 6 Writing Applications with the Web Services Wrapper for Natural ... 47
■ 7 Delivered Client and Server Examples for Natural ... 51

45

46

6 Writing Applications with the Web Services Wrapper for

Natural

If you have generated and deployed a Web service from one or more Natural subprograms, you
can use a variety of Web service application development tools to develop web service client ap-
plications, for exampleMicrosoft Visual Studio, Java Frameworks such as Axis2 and others. These
are not covered in detail here. However, this chapter describes how to test a generatedWeb service
with the EntireX XML Tester. You can launch the EntireX XML Tester from the context menu of
a Web services archive .aar:

47

On the toolbar of the XML Tester you can initiate the generation of a sample XML/SOAP request
message that complies with the interface definition of the service.

Some default values for the request parameters are generated into the sample SOAP request. You
can edit them according to your needs and send the message to the Web service, using the Play
button on the toolbar.

EntireX Web Services Wrapper for Natural48

Writing Applications with the Web Services Wrapper for Natural

The SOAP response is displayed in the output pane of the XML tester and can be viewed there in
different formats.

For more information, see XML Tester in the XML/SOAPWrapper documentation.

49EntireX Web Services Wrapper for Natural

Writing Applications with the Web Services Wrapper for Natural

50

7 Delivered Client and Server Examples for Natural

See the readme files of the following examples for more information:

■ <Entire>/examples/RPC/basic/example/NaturalServer
■ <Entire>/examples/RPC/basic/example/SOAPClient
■ <Entire>/examples/RPC/reliable/NaturalServer
■ <Entire>/examples/RPC/reliable/SOAPClient

51

52

	EntireX Web Services Wrapper for Natural
	Table of Contents
	I
	1 Using Web Services Wrapper for Natural
	Prerequisites
	Step 1: Start the Web Services Wrapper for Natural
	Step 2: Select the Natural Library (Optional)
	Step 3: Select the Natural Subprograms
	Step 4: Redesign the Interface for Natural Subprograms (Optional)
	Step 5: Configure the Web Service Client
	Step 6: Deploy the Web Service
	Generation Result
	Preferences

	2 Using the Web Services Wrapper for Natural in Command-line Mode

	II Natural to XML Schema Type Mapping
	3 Natural to IDL Mapping
	Mapping Natural Data Types to Software AG IDL
	Redesigning the Extracted Interface
	Extracting the IDL Library Name
	Extracting the IDL Program Name
	Extracting IDL Parameter Names
	Extracting IDL Directions (IN,OUT,INOUT)
	Extracting Natural REDEFINES
	Extracting Multiple Interfaces
	Extracting Natural Arrays, Groups, X-Arrays and Variable Arrays
	Arrays and Groups with Fixed upper Limits
	X-Arrays and X-Groups
	Variable Arrays and Variable Groups
	Arrays and Groups with Mixed Dimensions (X, Variable and Fixed)

	Extracting Natural Structure Information (IDL Levels)
	Source Extractions
	Object Extractions

	Extracting Parameters defined with OPTIONAL
	Setting Natural Parameters to Constants
	Suppressing Natural Parameters
	Renaming a Program

	4 XML Structures and IDL-XML Mapping
	XML Structure Description
	Basic IDL-XML Mapping
	Example
	IDL File
	Element-preferred Mode
	Attribute-preferred Mode
	SOAP-conformant Mapping

	Arrays
	Groups
	Example
	Element-preferred mode
	Attribute-preferred mode

	Array of Groups
	Grouping XML Elements or Attributes
	Example

	IN / OUT / IN OUT Parameters

	5 WSDL to IDL Mapping
	Extracting IDL from WSDL Files
	Mapping WSDL XML Schema Data Type to Software AG IDL
	Extracting the Name for the IDL Library
	Extracting the Name for the IDL Program

	III
	6 Writing Applications with the Web Services Wrapper for Natural
	7 Delivered Client and Server Examples for Natural

