
webMethods EntireX

EntireX Web Services Wrapper

Version 9.6

April 2014



This document applies to webMethods EntireX Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXWEBSERVICESWRAPPER-96-20140628



Table of Contents

EntireX Web Services Wrapper .......................................................................................... v
1 Introduction to Web Services in EntireX ......................................................................... 1

Web Services ............................................................................................................... 2
The Simple Object Access Protocol (SOAP) ............................................................... 3
Web Services Registries and CentraSite ..................................................................... 3
Web Service Architecture ........................................................................................... 4
General SOAP Architecture ....................................................................................... 4

2 Using the EntireX Web Services Wrapper ....................................................................... 5
Introduction ............................................................................................................... 6
Generate Web Services from Software AG IDL File .................................................. 7

3 Broker Command-line Utilities ....................................................................................... 9
Command-line Options ............................................................................................ 10
Example for Generating Web Services ..................................................................... 10
Further Examples ..................................................................................................... 11

4 Writing Web Services Applications ............................................................................... 13
Generation of EntireX Web Services ........................................................................ 14
Deploying EntireX Web Services ............................................................................. 15
Deploying Web Services Stack Runtime .................................................................. 16
Developing Web Service Client Applications .......................................................... 19
Testing EntireX Web Services ................................................................................... 19
Removing Web Services ........................................................................................... 19

5 Writing Advanced Web Services Applications ............................................................. 21
Supported Features .................................................................................................. 22
SOAP 1.2 ................................................................................................................... 22
WSDL Query ............................................................................................................ 23
Transports ................................................................................................................. 23
Policies ...................................................................................................................... 23
WS-ReliableMessaging ............................................................................................. 25
Configuring Web Services ........................................................................................ 26

iii



iv



EntireX Web Services Wrapper

The EntireX Web Services Wrapper is a wizard that generates Web services from Software AG
IDL, XML/SOAPmapping files or Natural subprogram files. The generated result is aWeb service
archive (.aar) that contains the relevant artifacts of theWeb service such as an XML/SOAPmapping
file (.xmm),WSDLfile and additional configuration files. TheWeb service archive can be deployed
for execution by the wizard or - in an extra deployment step - in a Web Services Stack with the
EntireX XML/SOAP Listener runtime.

Introduction to Web Services in EntireX.Introduction

Using EntireX Web Services Wrapper.Using

Using Web Services Wrapper in Command-line mode.Command-line Mode

Writing applications with EntireX Web Services Wrapper.Writing Applications

Writing advanced applications with EntireX Web Services Wrapper in
combination with the Software AG Common Web Services Stack.

Writing Advanced Applications

Related Literature

■ Software AG IDL Extractors
■ IDL Editor
■ EntireX XML Mapping Editor
■ Administering the EntireX XML/SOAP RPC Server in the UNIX and Windows administration
documentation

■ EntireX RPC Servers
■ RPC-ACI Bridge

v



vi



1 Introduction to Web Services in EntireX

■ Web Services ................................................................................................................................... 2
■ The Simple Object Access Protocol (SOAP) ........................................................................................... 3
■ Web Services Registries and CentraSite ................................................................................................ 3
■ Web Service Architecture ................................................................................................................... 4
■ General SOAP Architecture ................................................................................................................. 4

1



Web services are programmable, distributed application components accessible on theWeb using
solely standard internet protocols. In contrast to the current “document Web”, which specializes
in human interaction,Web services are designed to be accessed by programs to form a new applic-
ation architecture, the “application Web”. EntireX supports the creation of Web services from ex-
isting EntireX RPC servers.

Web Services

Generally speaking, a Web service application consists of three major Web service components:

■ AWeb service registry,which stores information aboutWeb service providers andWeb services.
■ AWeb service client, which makes use of a service offered on the Web using a standard mes-
saging and transport protocol.Web service clients can searchWeb service registries to finddesired
services.

■ AWeb service, which is accessible via a standardmessaging and transport protocol.Web services
publish information about themselves in a Web service registry. A Web service must provide
a precise technical description of its interfaces to be used by clients.

The standards on which Web services are based today are:

■ HTTP and SMTP for basic network transport services,
■ XML as data format,

EntireX Web Services Wrapper2

Introduction to Web Services in EntireX



■ the Simple Object Access Protocol (SOAP) for XML messaging and RPC,
■ the Web Service Description Language (WSDL) for service descriptions and
■ Universal Description, Discovery and Integration (UDDI) for Web service registries.

The Simple Object Access Protocol (SOAP)

SOAP (originally Simple Object Access Protocol) (SOAP 1.1) is a messaging and RPC protocol
designed for integrating heterogeneous Web services in the internet. It defines a message format
in the ExtensibleMarkup Language (XML) that can be transported over existing internet transport
protocols (HTTP, SMTP, FTP or others). By using standardXML, SOAPmessages are self-describing,
that is, they carry enough information for a receiver to decompose and process the message in a
standard way. By using standard internet protocols, SOAP seamlessly fits into existing internet
infrastructure (for example, routers, firewalls, Web servers).

Formore details, see theWorldWideWebConsortium's note at http://www.w3.org/TR/2000/NOTE-
SOAP-20000508/.

Web Services Registries and CentraSite

Web services created with EntireX can be registered in any UDDI registry, including CentraSite.
CentraSite offers enhanced registry functionality, and also repository functionality that enables
you to store Web services artifacts and register interdependencies for impact analysis.

3EntireX Web Services Wrapper

Introduction to Web Services in EntireX

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


Web Service Architecture

SOAP is one of the basic technologies required to buildWeb services. It is combinedwith the related
technologies Web services description language (e.g. WSDL) for describing Web services, and
Web service registries (e.g. UDDI based) for storing information about Web services.

■ AWeb service provider publishes a description of the service it offers to aWeb services registry;
■ AWeb service client contacts a Web services registry to find the service, and
■ uses the Web service description to actually bind to the Web service.

SOAP can be used for publish, find and bind operations.

The following level of SOAP and Web services functionality is provided:

■ SOAP enabling of EntireX RPC servers
■ generation of WSDL service descriptions for EntireX RPC servers
■ generation, configuration and deployment ofWeb services into the Software AGCommonWeb
Services Stack runtime

General SOAP Architecture

EntireX uses the Software AG CommonWeb Services Stack (WSS). WSS is a toolkit that provides
functionality for execution, configuration and management of Web services.

The core part of the WSS runtime is the SOAP engine, which is based on Apache Axis2.

TheEntireXWorkbenchprovides functionality to create, configure, and deploy EntireXWeb services.
EntireX Web services are packaged into a service archive (extension .aar).

Incoming SOAP requests are processed by the WSS SOAP engine. The SOAP request is given to
the XML/SOAP Runtime, which validates the request and transforms it into an RPC request. The
result of the RPC request in turn is transformed into a SOAP response message and sent back to
the client. If an error occurs, a SOAP fault message is sent back to the client.

EntireX Web Services Wrapper4

Introduction to Web Services in EntireX



2 Using the EntireX Web Services Wrapper

■ Introduction ...................................................................................................................................... 6
■ Generate Web Services from Software AG IDL File ................................................................................. 7

5



Introduction

The EntireX Web Services Wrapper is a wizard that generates Web services from Software AG
IDL, XML/SOAPmapping files or Natural subprogram files. The generated result is aWeb service
archive (.aar) that contains the relevant artifacts of theWeb service such as an XML/SOAPmapping
file (.xmm),WSDLfile and additional configuration files. TheWeb service archive can be deployed
for execution by the wizard or - in an extra deployment step - in a Web Services Stack with the
EntireX XML/SOAP Listener runtime.

The format of the generated descriptions is compliantwith theWeb Services Description Language
(WSDL 1.1 - http://www.w3.org/TR/wsdl).

Note: If the WSDL generation format document/literal is used, the generated Web service
is compliant with WS-I Basic Profile 1.1 (see http://www.ws-i.org).

Before the wizard is started for the first time, you should initialize the preference pagesWindow
> Preferences > Software AG > EntireX andWindow > Preferences > Software AG > EntireX >
Web Service Wrapperwith values appropriate for your environment.

Note also that some of the preferences of the XML Mapping Editor are applicable to Web service
generation, in particular WSDL style and namespace definitions. SeeMapping Parameters under
Using the XML Mapping Editor.

EntireX Web Services Wrapper6

Using the EntireX Web Services Wrapper



Generate Web Services from Software AG IDL File

To generate a Web service

1 Select the IDL file to be processed. If there is a related CVM File, it is also used (internally).

2 From the context menu of the IDL file, choose Properties.

■ Change the EntireX settings if necessary.
■ If necesssary, change the Web service generation settings using the WSDL tab (Service
Name and Service URL).

■ ChooseOK to leave the Properties dialog.

3 From the contextmenu of the IDL file, chooseGenerateWeb Service fromSoftwareAG IDL.

4 You can enter a service name. The default name is the name of the selected IDL file.

5 If you deselect Use defaults for the Configure EntireX service section, you can select the
following configuration items:

■ If you select general service parameters (XML-INIT.xml), an additional configuration page
will be appended. The parameters on this page are described in Administering the EntireX
XML/SOAP Listener in the UNIX and Windows administration sections.

■ If you selectSet connection and security parameters inmapping file, an additional config-
uration page will appear by clickingNext.

■ If you select Send connection and security parameters with SOAPmessage, an additional
configuration page will be appended. The selected parameters will be generated into the
SOAP header section of the generated WSDL file. A Web service client will then be able to
set these parameters in the SOAP header of the SOAP message.

6 If you selectDeploy service, an additional configuration pagewill be appended. SeeDeploying
EntireX Web Services underWriting Web Services Applications for this dialog.

7 If you select Register service to CentraSite, a configuration page will be appended. See
CentraSite Integration for this dialog.

8 ChooseNext, enter your configuration parameters and select the methods for which theWeb
service is to be generated.

9 Choose Finish to generate the Web service (mapping file, WSDL file and service archive).

Note: You can select more than one IDL file. All selected methods will be merged into one
Web service. As result you will get multiple mapping files, one WSDL file and one service
archive. Merging does not support the use of the same program name in different libraries.

7EntireX Web Services Wrapper

Using the EntireX Web Services Wrapper



8



3 Broker Command-line Utilities

■ Command-line Options ..................................................................................................................... 10
■ Example for Generating Web Services ................................................................................................. 10
■ Further Examples ............................................................................................................................ 11

9



The Web Services Wrapper generates a WSDL file, a mapping file (extension .xmm) and a service
archive (extension .aar) to deploy into the common Web Services Stack.

Command-line Options

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax. The
table below shows the command-line option for the Web Services Wrapper.

DescriptionOptionCommandTask

Output directory, absolute path (fully qualified,
must exist). Ignored if the input is part of a project
in the Eclipse workspace. Same as -o.

-out-wsdlGenerate
WSDL, mapping and
archive files from
specified IDL file. Service URL. Same as -u.-url

Service name.-service=<service>

Use the file-specific properties. This optionmakes
the others superfluous, but is only available if the
input is part of an Eclipse project.

-properties

Example for Generating Web Services

<workbench> -wsdl /Demo/example.idl -properties

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The name of the IDL file includes the project name. In the example, the project Demo is used. If
the IDL file name describes a file within the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

The generated mapping file gets the name of the IDL file. The WSDL file and the service archive
get the name of the service, if specified, otherwise they get the name of the IDL file.

EntireX Web Services Wrapper10

Broker Command-line Utilities



<workbench> -wsdl /Demo/example.xmm -properties

This command generates theWSDL file and the service archive from the mapping file. If a service
name is specified, the WSDL file and the service file get the name of the service, otherwise they
get the name of the mapping file.

Status and processing messages are written to standard output (stdout), which is normally set to
the executing shell window.

Further Examples

Windows

Example 1

<workbench> -wsdl C:\Temp\example.idl

Uses the IDL file C:\Temp\example.idl and generates the files (EXAMPLE.wsdl and example.xmm)
in parallel to the IDL file. Slashes and backslashes are permitted in the file name. Output to
standard output:

Using workspace file:/C:/myWorkspace/.
LIBRARY = EXAMPLE

Program = CALC
Program = SQUARE

WSDL file "C:\Temp\EXAMPLE.wsdl" created.
Exit value: 0

Example 2

<workbench> -wsdl -help

or

<workbench> -help -wsdl

Both show a short help for the Web Services Wrapper.

11EntireX Web Services Wrapper

Broker Command-line Utilities



Linux

Example 1

<workbench> -wsdl /Demo/example.idl

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demo/example.idl is used from file system. The generated output (EXAMPLE.wsdl and
example.xmm) will be stored in /Demo, parallel to the IDL file.

Example 2

<workbench> -wsdl -help

or

<workbench> -help -wsdl

Both show a short help for the Web Services Wrapper.

EntireX Web Services Wrapper12

Broker Command-line Utilities



4 Writing Web Services Applications

■ Generation of EntireX Web Services ................................................................................................... 14
■ Deploying EntireX Web Services ........................................................................................................ 15
■ Deploying Web Services Stack Runtime ............................................................................................... 16
■ Developing Web Service Client Applications ......................................................................................... 19
■ Testing EntireX Web Services ............................................................................................................ 19
■ Removing Web Services ................................................................................................................... 19

13



This chapter describes the typical steps required to create and register aWeb servicewith theEntireX
Workbench and how it is made available to Web service client applications.

See alsoWeb Services Stack documentation, also available underwebMethods Product Document-
ation on the Software AG Documentationwebsite.

Generation of EntireX Web Services

The EntireX plug-ins for Eclipse provide support to expose EntireX services as Web services. We
assume a typical scenario where an existing (legacy) server application has been "wrapped" with
EntireX technology and is accessible to clients via the EntireX RPC protocol. The interface of the
service is described by an IDL file (see Software AG IDL File in the IDL Editor documentation) and
possibly a related client-side server mapping file (see CVM File) if such a file has been generated.
Using the EntireX Web service plug-ins for Eclipse, application developers can generate from an
IDL file (and optionally a CVM file), for example, example.idl (and example.cvm), the following:

■ a SOAP mapping (example.xmm)
■ a WSDL description (example.wsdl)
■ a service archive for the Web Services Stack (example.aar)

These files are used by the EntireX XML/SOAP Runtime to implement a Web service interface for
the given service.

From the context menu of your IDL file in the Package Explorer view, chooseGenerate Web
Service from Software AG IDL.

EntireX Web Services Wrapper14

Writing Web Services Applications

http://documentation.softwareag.com/


Deploying EntireX Web Services

■ Requirements
■ Deploying the Web Service
■ Undeploying the Web Service

Requirements

The following resources are required to deploy and run an EntireX Web service:

■ An application server where the Web Services Stack Web runtime is installed (wsstack.war).
TheWeb Services Stack is typically accessible at theURL http://<host-name>:<port-number>/wsstack/.
The default port number is 10010. This can be changed during installation. In the case of deploy-
ment in custom application servers, the port is configured by the corresponding server admin-
istration tools. For more details see theWeb Services Stack documentation, also available under
webMethods Product Documentation on the Software AG Documentationwebsite.

■ The EntireX XML/SOAP Runtime (packaged as Java library entirex.jar). File entirex.jarmust be
located in theWEB-INF\lib folder of the Web Services Stack Web application.

■ The Eclipse plug-ins of the Web Services Stack must be installed.
■ EntireX Broker and RPC server hosting the server implementation are up and running.

Deploying the Web Service

Deploying a EntireX service means sending a service archive (extension .aar) to a running Web
Services StackWeb application. TheWeb Services StackWeb application stores the service archive
in theWEB-INF/services folder of the Web Services Stack Web application.

From the context menu of the generated service archive, choose Software AG Common Web
Services Stack >DeployWebService Package. Nowawizard startswhere you can select hostname,
port number, and a servlet address of the Web Services Stack Deployment Servlet. You also need
to authenticate with your credentials (user ID and password). On Finish, the service archive is
sent to the selected deployment connection point.

Note: For more information, see Deploying and Undeploying Web Service Archives in section
Software AG Designer Plug-in of theWeb Services Stack documentation.

You can verify the deployment of your service with context-menu item Software AG Common
Web Services Stack >ViewWeb Services Stack... or Software AG CommonWeb Services Stack
>View Web Service.

Note: After the installation of EntireX, only the default deployment connections are available
in a new workspace. The default values are:
Hostname: localhost

15EntireX Web Services Wrapper

Writing Web Services Applications

http://documentation.softwareag.com/


Port number: 10010 (this number can be changed during installation)
Servlet address: /wsstack/sagdeployer

ChooseWindows > Preferences > Software AG >Web Services Stack > Deployment to add, edit,
or remove deployment connections.

Undeploying the Web Service

Undeploying a EntireXWeb servicemeans informing a runningWeb Services StackWeb application
to remove a deployed service. TheWeb Services StackWeb application removes the corresponding
service archive from theWEB-INF/services folder of the Web Services Stack Web application. You
can verify the undeploymentwith the help of a browser. The undeployed service should disappear
from the list of the deployed services (e.g. http://localhost:10010/wsstack/services/listServices).

Deploying Web Services Stack Runtime

This section covers the following topics:

■ Deploying Web Services Stack Runtime to WebSphere 8.5
■ Deploying Web Services Stack Runtime to WebLogic 12c

Deploying Web Services Stack Runtime to WebSphere 8.5

If you want to deploy the Web Services Stack Web application to WebSphere 8.5, perform the
following steps:

To deploy to WebSphere 8.5

1 Copy Software AG_directory/WS-Stack/webapp/wsstack.war to a temporary location.

2 Unpack the WAR file

3 Copy all MAR files fromWEB-INF/modules toWEB-INF/lib and change their extensions to
JAR.

Important: There might be an issue with mapping of MAR files when using Microsoft
Office. When you have Microsoft Office installed, you cannot rename those files using
Windows Explorer. In this case, use the ren command prompt command. For example,
<TEMP_Directory>\WEB-INF\modules>copy addressing-1.41.mar
addressing-1.41.jar copies the MAR file and changes its extension from MAR to
JAR.

4 Copy entirex.jar to folder../wsstack/WEB-INF/lib.

EntireX Web Services Wrapper16

Writing Web Services Applications



5 Recreate the WAR file. You can use WinZip or any other application with support for ZIP
files.

6 Log on to the Administrative Console and navigate to Applications > New Application >
New Enterprise Application.

7 Enter the location of the wsstack.war file or browse for it using the Browse button. Then click
Next.

8 Select the Fast Path - Prompt only when additional information is required radio button
and then clickNext.

9 ClickNext and leave the default values for the options in theStep 1 Select installation options,
Step 2 Map modules for servers, and Step 3 Map virtual hosts for Web modules screens.

10 ClickNext to go to theStep 4Map context roots forWebmodules screen, and type inwsstack
in the Context root field.

11 Click Save to save the changes to the master configuration.

12 Navigate to Applications > Application Types > WebSphere Enterprise Applications.

13 Clickwsstack_war to open the configuration dialog.

14 In the configuration dialog, click the Class loading and update detection link.

15 For Class loader order, select Classes loaded with local class loader first (parent last) radio
button.

16 ForWAR class loader policy, select Single class loader for application radio button.

17 Navigate to Applications > Application Types > WebSphere Enterprise Applications.

18 Start the Web Services Stack Web application.

Deploying Web Services Stack Runtime to WebLogic 12c

To deploy wsstack.war as Web application for WL server

1 Explode wsstack.war in a directory named wsstack.

2 Add a file namedweblogic.xml to the folder ../wsstack/WEB-INF. weblogic.xmlhas the following
content:

<weblogic-web-app>
<container-descriptor>

<prefer-web-inf-classes>true</prefer-web-inf-classes>
</container-descriptor>

</weblogic-web-app>

3 Copy entirex.jar to folder../wsstack/WEB-INF/lib.

4 Open the weblogic console (e.g. http://localhost:7001/console.

17EntireX Web Services Wrapper

Writing Web Services Applications



5 SelectDeployments.

6 Choose Install.

7 Selectwsstack(open directory) as current location and choose next.

8 Select Install this deployment as an application and choose next.

9 SelectDD only for security and I will make the deployment accessible from the following
location for Source accessibility.

10 Enter the path to the wsstack folder and choose next.

11 Choose Finish.

To deploy example.aar in wsstack Web application

■ As a prerequisite, Basic Authentication for your WL server has to be disabled. There are
two ways to do this:

■ Edit config.xml of your WL server and add
<enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentials>
under <security-configuration>.

■ Use the WebLogic scripting tool to modify the enforce-valid-basic-auth-credentials
attribute.

connect('weblogic','weblogic','t3://localhost:7001')
edit()
startEdit()
ls()
cd('SecurityConfiguration')
ls()
cd('base_domain')
ls()
set('EnforceValidBasicAuthCredentials','false')
ls()
save()
activate()
print 'Now Restart Your Server...'

EntireX Web Services Wrapper18

Writing Web Services Applications



Developing Web Service Client Applications

Once the EntireXWeb service is up and running and itsWSDL is accessible (viaHTTP),Web service
client applications can be developed. For example, in XMLSpy, in the menu bar choose SOAP >
Create new SOAP request and enter the URL of the service WSDL (e.g. http://local-
host:10010/wsstack/services/example?wsdl). XMLSpy reads theWSDL and displays a list of methods.
Select one, e.g. CALC, and fill in parameter values in the displayed SOAPmessage template. Finally
select SOAP > Send request to server to execute the Web service call.

Testing EntireX Web Services

From the context menu of the generated service archive, choose Test EntireX Web Service. This
starts the XML Tester.

Note: The XML Tester must already be configured for the generated and deployed service.

If the archive contains more than one XMM file describing the service, select the XMM file you
want. Follow the instructions for the XML Tester to create a sample document.

See XML Tester in the XML/SOAPWrapper documentation.

Removing Web Services

When aWeb service is removed from the project, usingWebServices Stack >RemoveWebService,
the following artifacts are additionally deleted depending on the source of the generated Web
service.

Additionally Deleted ArtifactsGenerated from

Natural ■ IDL file
■ XMM file
■ CVM file (if applicable)
■ WSDL file

IDL File ■ XMM file
■ WSDL file

XMM File ■ WSDLfile (if applicable)

19EntireX Web Services Wrapper

Writing Web Services Applications



20



5 Writing Advanced Web Services Applications

■ Supported Features ......................................................................................................................... 22
■ SOAP 1.2 ...................................................................................................................................... 22
■ WSDL Query .................................................................................................................................. 23
■ Transports ..................................................................................................................................... 23
■ Policies ......................................................................................................................................... 23
■ WS-ReliableMessaging .................................................................................................................... 25
■ Configuring Web Services ................................................................................................................. 26

21



See alsoWriting Web Service Client Applications in the IDL Extractor for WSDL documentation.

Supported Features

EntireX version 8.1 and above supports a number of advancedWeb services features in combination
with the Web Services Stack. This includes support for

■ SOAP 1.2 messaging
■ SOAP 1.2 binding in WSDL 1.1
■ multiple transports (HTTP, HTTPS, TCP, JMS)
■ WS-Policy (WS-Addressing, WS-Security, WS-ReliableMessaging)
■ WS-Policy Attachment to WSDL 1.1

SOAP 1.2

Web services created with the EntireX Workbench support by default SOAP 1.2 (ht-
tp://www.w3.org/TR/soap12-part1/) in addition to SOAP 1.1. No extra configuration is needed
for this.

WSDL 1.1 descriptions generated for EntireX services with the EntireX Workbench contain both
SOAP 1.1 and SOAP 1.2 binding definitions and endpoints.

Example (excerpt from a WSDL file):

...
<wsdl:service name="Calc">

<wsdl:port name="CalcSOAP11port_http" binding="ns0:CalcSOAP11Binding">
<soap:address location="http://host:port/wsstack/services/Calc" />

</wsdl:port>
<wsdl:port name="CalcSOAP12port_http" binding="ns0:CalcSOAP12Binding">

<soap12:address location="http://host:port/wsstack/services/Calc" />
</wsdl:port>

</wsdl:service>
...

WS-Stack also supports the Representational State Transfer (REST) style of messaging.

EntireX Web Services Wrapper22

Writing Advanced Web Services Applications

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/


WSDL Query

TheWSDLof anEntireX service that has been generated, configured anddeployed in aWeb Services
Stack runtime running in a servlet engine can be retrieved using the service URI appended with
"?wsdl".

Example: http://host:port/wsstack/service/myService?wsdl

The returnedWSDLwill reflect to the requestor all relevant configuration information of the service,
for example all endpoints through which the service is accessible and policies that are in effect for
the service.

Transports

Services can be configured to be accessible overmultiple transport protocols. The default transport
is HTTP. Using the Configuration Editor, you can configure different transports via which the
service can be accessed.

■ HTTPS: This requires that HTTPS is configured for the servlet engine that is running the Web
Services Stack service runtime.

■ TCP: Additional configuration of the Web Services Stack runtime in axis2.xml is necessary to
enable support of this transport. See the separate Web Services Stack documentation for more
information.

■ JMS: Additional configuration of the Web Services Stack runtime in axis2.xml is necessary to
enable support of this transport. See the separate Web Services Stack documentation for more
information.

Policies

For services created with EntireX and Web Services Stack, additional policies can be defined per
service. These include WS-Addressing, WS-Security and WS-ReliableMessaging.

23EntireX Web Services Wrapper

Writing Advanced Web Services Applications



WS-Addressing

AWS-Addressing policy assertion can be defined for a service to accept SOAPmessages containing
a WS-Addressing SOAP header.

Example: WS-Addressing policy assertion

<wsp:Policy wsu:Id="Addressing"
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  ↩
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
  <wsp:ExactlyOne>
    <wsp:All>
      <wsaws:UsingAddressing
        xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>
    </wsp:All>
  </wsp:ExactlyOne>
</wsp:Policy>

WS-Addressing can be configured for a service using the Configuration Editor.

WS-Security

WS-Security policy assertions can be defined for a service to accept and enforce SOAP messages
containing a WS-Security SOAP header. With WS-Security the message exchange between a Web
service client and a service can be secured in the following aspects:

■ confidentiality: messages (or parts of messages) are encrypted on transport or on message level
■ integrity: messages (or parts of messages) are signed on transport or on message level
■ authentication: the sender of a message supplied authentication information on transport or on
message level that allows the service to perform authentication

WS-Security can be configured for a service using the Web Services Stack configuration editor.

The following security policies are supported:

■ Security bindings: TransportBinding, SymmetricBinding andAsymmetricBinding,which specify
by which mechanism confidentiality and integrity are ensured.
■ TransportBinding: specifies that themessage exchange is secured on transport level (HTTPS).
As a prerequisite, the secure transport needs to be enabled and configured for the servlet engine
that hosts the Web Services Stack service runtime.

■ SymmetricBinding: specifies that the confidentiality of the message exchange is achieved on
message level, using a symmetric encryption key that is shared between Web service client
and service.

EntireX Web Services Wrapper24

Writing Advanced Web Services Applications



■ AsymmetricBinding: specifies that the confidentiality of the message exchange is achieved
onmessage level using, an asymmetric encryption key (that is, client and service use different
private/public key pairs for encryption and decryption).

■ Timestamps: a service can have a policy that requires that timestamps are added to messages.
■ Authentication: policies can be defined that requiremessages exchanged contain authentication
information such that receivers can authenticate the sender. The following authentication
methods are supported:
■ HTTP basic authentication
■ client certificates for the HTTPS transport
■ user-name token contained in the message
■ digital signatures and X509 tokens contained in the message

WS-ReliableMessaging

AWS-ReliableMessaging policy assertion can be defined for a service. This service then only accepts
SOAP requests using the WS-ReliableMessaging protocol.

Example: WS-ReliableMessaging policy assertion

<wsp:Policy wsu:Id="ReliableMessaging" ↩
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
      ↩
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
      <wsp:ExactlyOne>
        <wsp:All>
<wsrm:RMAssertion  xmlns:wsrm=          ↩
"http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
            <wsrm:InactivityTimeout Milliseconds="600000"/>
          </wsrm:RMAssertion>
        </wsp:All>
      </wsp:ExactlyOne>
    </wsp:Policy>

25EntireX Web Services Wrapper

Writing Advanced Web Services Applications



Configuring Web Services

■ Introduction
■ Services Configuration View
■ EntireX Settings View

Introduction

The global configuration for the Web services engine is done in the configuration file axis2.xml.
See the separate Web Services Stack documentation for more on configuring the Web Services
Stack engine. For the services runtime, this configuration file is located in the Web Services Stack
Web application's configuration directory <servlet_engine_root>\webapps\wsstack\WEB-INF\conf.
The default location of the configuration folder of the Software AGWeb Server based on Apache
Tomcat is <SuiteInstallDir>/profiles/CTP/configuration.

Individual services or services group are configured in the services.xml file that is part of a services
archive. TheWeb Services Stack configuration editor provides an Eclipse user interface to configure
a service. Open a Web service archive (.aar) that was generated with the EntireXWorkbench with
theWeb Services Stack configuration editor. There are five views on different aspects of the service:

■ The Archive view displays the contents of a service archive and allows you to add additional
files to the archive or remove files from the archive. You can add additional Web service files
(*.idl, *.xmm) to the EntireX service. If an XMM file is selected, the mapping of the file must
match the mapping of the service.

If an IDL file is selected and a corresponding XMM file is available in the project, you are
prompted to
■ overwrite the existing mapping file on the basis of the IDL file, or
■ use the existing mapping file.

■ TheService view allows you to view andmodify various settings that apply to a service contained
in the archive.

■ TheOperations view allows you to view and modify settings that apply to an operation of a
service in the archive and corresponds to the Service view.

■ File services.xml allows you to view the services archive's configuration file in clear text (XML
format).

■ Configuration parameters for the XML/SOAP Listener; see EntireX Settings View.

See the separate Web Services Stack documentation for more information on the Configuration
Editor.

EntireX Web Services Wrapper26

Writing Advanced Web Services Applications



Services Configuration View

EntireX Web services have some specific configurations that are defined by the Web Services
wizard of the EntireX Workbench. The ServiceLifeCycleClass, the EntireXMessageReceiver and
the session scope Application. You should not modify these settings for EntireX Web services.

■ WS-Addressing Configuration
■ WS-Security Configuration
■ Security Bindings
■ Keystore Configuration
■ Additional Security Options

WS-Addressing Configuration

To enableWS-Addressing headers for a service, check the EnableWS-Addressing check box. This
inserts a WS-Addressing policy into services.xml and enables the addressing module of the Web
Services Stack engine that processes addressing SOAP headers.

<wsp:Policy wsu:Id="User defined"
xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy

xmlns:wsu="http://docs.oasis-open.org/.../...wssecurity-utility-1.0.xsd">
<wsp:ExactlyOne>

<wsp:All>
<wsaws:UsingAddressing

xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>
<module ref="addressing"/>

WS-Security Configuration

WS-Security can be configured to ensure integrity, confidentiality and allow authentication of
messages exchanged between Web services clients and Web services. To enable WS-Security for
a service, check the EnableWS-Security check box, which then displays additional configuration
options. Message exchange can be secured either on transport level or on message level. You can
configure three different "bindings" for secure message exchange.

27EntireX Web Services Wrapper

Writing Advanced Web Services Applications



Security Bindings

■ Transport Security with SSL: message exchange is secured on transport level using SSL (HTTPS
transport). To be able to configure transport security, the servlet engine must have HTTPS
configured and enabled as a prerequisite. In addition, HTTPS must be configured for the Web
Services Stack in the global configuration file axis2.xml. This is not configured by default. As an
option you can specify whether a client certificate has to be provided on the transport.

■ Message-level securitywith symmetric binding:Message exchange is secured using a symmetric
key. Additional keystore configuration is required for symmetric binding.

■ Message level security with asymmetric binding: Message exchange is secured using an asym-
metric key. Additional keystore configuration is required for asymmetric binding.

Keystore Configuration

■ Location: the location of a Java keystore. This can be a relative path to a Java keystore contained
in the service archive, or an absolute path to a keystore located in the file system.

■ Keystore Password: the password required to access keys in the keystore.
■ Alias: the alias of the private key in the keystore that is used for signing outgoing messages.
The alias name is also used as the username that is used for authentication. The password for
accessing the private key is queried at runtime using the PasswordCallbackHandler (see below).
To verify a signature, a corresponding public key is used.

■ Encryption User: the alias of the public key in the keystore that is used for encryption. For de-
cryption, a private key is required. The password for accessing the private key is queried at
runtime, using the Password Callback Handler (see below).

■ Password Callback Class: This is the name of a class that implements a password callback
handler that is called by the Web Services Stack runtime to query a password for accessing a
private key in the keystore for singing or decrypting or a password for username token authen-
tication. The password callback handler class implementation needs to be provided by the ap-
plication writer.

Additional Security Options

■ Username Token authentication: the services requires a username token in the message header.
■ Include timestamp: the service requires a (signed) timestamp in the message header.
■ Sign header: the message header must be signed
■ Sign body: the message body must be signed
■ Encrypt body: the message body must be encrypted
■ Encrypt/sign message part: Xpath expressions can be specified to identify parts of a message
that are signed and/or encrypted.

Example:

EntireX Web Services Wrapper28

Writing Advanced Web Services Applications



Password Callback Handler

/*
/*
* PasswordCallbackHandler.java -
* com.softwareag.wsstack.test.PasswordCallbackHandler class
*
* Server/Client Password Callback Handler, responsible for delivering
* passwords for accessing a private signing or decryption key from a
* keystore or a password for a username token.
*/

package com.softwareag.wsstack.test;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class PasswordCallbackHandler implements CallbackHandler
{

/*
* Handles all supported callbacks
* @see javax.security.auth.callback.CallbackHandler#handle(
* javax.security.auth.callback.Callback[])
*/

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException

{
try {
for (int i = 0; i < callbacks.length; i++) {

WSPasswordCallback pwcb = (WSPasswordCallback)callbacks[i];
//get the type of the callback: SIGNATURE, DECRYPT, USERNAME_TOKEN
int usage = pwcb.getUsage();
String id = pwcb.getIdentifer();
if (usage == WSPasswordCallback.SIGNATURE) {
//supply password for signing key
if ("client".equals(id)) pwcb.setPassword("apache"); else
if ("service".equals(id)) pwcb.setPassword("apache");

} else
if (usage == WSPasswordCallback.DECRYPT) {
//supply password for decryption key
if ("client".equals(id)) pwcb.setPassword("apache"); else
if ("service".equals(id)) pwcb.setPassword("apache");

} else
if (usage == WSPasswordCallback.USERNAME_TOKEN_UNKNOWN) {
// verify username token on the server side
if (id != null) {
//get the password from the request

29EntireX Web Services Wrapper

Writing Advanced Web Services Applications



String pass = pwcb.getPassword();
// authenticate the user
if (id.equals("client") && pass.equals("apache")) {

return;
} else {

throw new UnsupportedCallbackException(callbacks[i],
"authentication failed");

}
}

} else
if (usage == WSPasswordCallback.USERNAME_TOKEN) {

// supply password for username token on the client side
if (id != null) {

// suppy the password
String pass = pwcb.getPassword();
if (pass == null) {

if ("client".equals(id)) pwcb.setPassword("apache"); else
if ("service".equals(id)) pwcb.setPassword("apache");
pass = pwcb.getPassword();

}
}

}
} // for

}
catch (Throwable e) {
throw new RuntimeException(e);

}
return;

} // handle
}
}

EntireX Settings View

The EntireX Settings view allows you tomodify file xml-init.xml, which is part of theWeb Services
archive. The view contains two sections:

■ EntireX Service Parameters

EntireX Web Services Wrapper30

Writing Advanced Web Services Applications



■ XML/SOAP Listener Initialization Parameters

EntireX Service Parameters

The service section contains a combo box with one entry for the general settings and one entry for
each XMM file describing the service. The general settings are for all XMM files in the archive;
special settings for an XMM file supersede the general settings for this file.

DescriptionParameter

The broker to be used.Broker ID

The user ID used for calling the broker.User ID

The password used for calling the broker.Password

Possible values: 0|1|2. See ENCRYPTION-LEVEL, class Broker in the Javadoc
documentation of the Java ACI and method BrokerSecurity in the Javadoc
documentation of the Java ACI.

Encryption Level

Sets the compression level. SeeUsing Compression underWriting Advanced Applications
- EntireX Java ACI.

Compression Level

Determines the translation processing of the broker. Valid values:
true|false|<character encoding>. If a character encoding is set, this character

Use Codepage

encoding is used for RPC message. See method useCodePage and
setCharacterEncoding in the documentation on classBrokerService in the Javadoc
documentation of the Java ACI.

Possible values: true|false. To use EntireX Security. See EntireX Security for EntireX
Broker in the EntireX Security documentation.

Use security

This is the triplet of server class/server name/service.Server Address

The RPC user ID specified here is used for EntireX Security.RPC User ID

The RPC Password specified here is used for EntireX Security.RPC Password

The Natural library. Works only if exx-natural-security is true. SeeUsing Natural
Security in the Java Wrapper documentation.

Natural Library

Possible values: true|false. To use Natural Security. See Using Natural Security in the
Java Wrapper documentation.

Natural Logon

XML/SOAP Listener Initialization Parameters

DescriptionParameter

Sets the value of the default wait time field to the argument (see
setDefaultWaittime of classBrokerService in the Javadocdocumentation
of the Java ACI).

Default Wait Time

Interval in which the servlet checks and frees unused resources. The default
is 60 seconds.

Servlet Internal Sweep Time

Enable/disable the character reference for the XML payload.Enable Character Reference

31EntireX Web Services Wrapper

Writing Advanced Web Services Applications



DescriptionParameter

The parameter indicates whether a non-conversational call is finalized with
a logoff call to free Broker resource (default), or by means of timeout. The

Behavior of
Non-conversation Calls

default value for this parameter is "nonConv-with-logoff", which defines that
a non-conversational call will finish with an additional logoff call (two calls
per message). Set to "nonConv-without-logoff" to specify that a
non-conversational call will finish without logoff call (one call per message);
Broker will clean up resources by means of timeout.

EntireX Web Services Wrapper32

Writing Advanced Web Services Applications


	EntireX Web Services Wrapper
	Table of Contents
	EntireX Web Services Wrapper
	1 Introduction to Web Services in EntireX
	Web Services
	The Simple Object Access Protocol (SOAP)
	Web Services Registries and CentraSite
	Web Service Architecture
	General SOAP Architecture

	2 Using the EntireX Web Services Wrapper
	Introduction
	Generate Web Services from Software AG IDL File

	3 Broker Command-line Utilities
	Command-line Options
	Example for Generating Web Services
	Further Examples
	Windows
	Example 1
	Example 2

	Linux
	Example 1
	Example 2



	4 Writing Web Services Applications
	Generation of EntireX Web Services
	Deploying EntireX Web Services
	Requirements
	Deploying the Web Service
	Undeploying the Web Service

	Deploying Web Services Stack Runtime
	Deploying Web Services Stack Runtime to WebSphere 8.5
	Deploying Web Services Stack Runtime to WebLogic 12c

	Developing Web Service Client Applications
	Testing EntireX Web Services
	Removing Web Services

	5 Writing Advanced Web Services Applications
	Supported Features
	SOAP 1.2
	WSDL Query
	Transports
	Policies
	WS-Addressing
	WS-Security

	WS-ReliableMessaging
	Configuring Web Services
	Introduction
	Services Configuration View
	WS-Addressing Configuration
	WS-Security Configuration
	Security Bindings
	Keystore Configuration
	Additional Security Options

	EntireX Settings View
	EntireX Service Parameters
	XML/SOAP Listener Initialization Parameters




