5 software~

webMethods EntireX

EntireX RPC Programming

Version 9.6

April 2014

webMethods EntireX

This document applies to webMethods EntireX Version 9.6.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-RPC-96-20140628

Table of Contents

1 Introduction to RPC Programmingcccceeuiiiiiiiiiiiiiiiiiiiiicciceec e, 1
RPC TechnolOgycoveiuiiiiiiieiiiieee e 2
RPC-based COMPONENLSoovuiiiiiiiiiiiiiiiiiiiiciie e 2
Reliable RPCooiiiiiiiiiic s 4

2 Using the Broker ID in Applicationscccceouiiiiiiiiiiiiiiiiiiiiiiiicciececccceccc e 7
URL-style Broker IDccooiiiiiiiiiiiccecc e 8
Transport-method-style Broker IDccccooiiiiiiiiiiiiiiiiiicccec e 10

3 Software AG IDL Fileccccociiiiiiiiiiiiiiiiiiiiici 13
Introduction to the IDL Filecccccooviiiiiiiii 14
IDL Data TYPeS ..ccuvviiiiiiiiiiiiciiiic i 14
Fixed and Unbounded Arraysccooviviiiiiiiiiiiicc 17
Rules for Coding IDL Filescccoouiiiiiiiiiiiiiiiiiiiiiccicccccc e 18
Rules for Coding Group and Parameter Namescccocoovieviiiiiiiiiniiiciicens 18
Rules for Coding Library, Library Alias, Program, Program Alias and Structure
INAINES ...oiiiiiiii 19

4 Command and Info Services IDLSccccocoiiiiiiiiiiiiiii 21
Command Service IDLcccooooiiiiiiiiiiiic 22
Info Service IDLc.cooiiiiiiiiiiiiiicc 25
EXQMIPLES ..o e 28

5 Common Features of Wrappers and RPC-based Componentsc.cccceeviiiiiinnnnnn. 31
Change RPC Password by Wrappers and RPC Clientsc...ccooooeviiiniinnnn. 32
Natural Logon or Changing the Library Namecccccccooviiiiiiiiiniiiiiiiinnn, 33
Conversational RPCc.cooiiiiiiiii 34
Non-conversational RPCccccoiiiiiiiiiiiiiic 34
Natural SECUTItYcccooviiiiiiiiiiiiii 35
RPC COMPIESSION ..ottt s 35

1 Introduction to RPC Programming

B RPC TECNNOIOQY ...ttt et e et e et
B RPC-hased COMPONENTScooiiiiiiiiit et e e e e e ettt e e e e e e e e e ettt r e e e e e e e eeeans
B REHADIE RPC ... i1 a e

Introduction to RPC Programming

RPC Technology

A Remote Procedure Call (RPC) is a protocol that one program can use to request a service from
a program located in another computer in a network without having to understand network details.
(A procedure call is also sometimes known as a function call or a subroutine call.)

RPC uses the client/server model. The requesting program is a client and the service-providing
program is the server. Like a regular or local procedure call, an RPC is a synchronous operation
requiring the requesting program to be suspended until the results of the remote procedure are
returned. However, the use of lightweight processes or threads that share the same address space
allows multiple RPCs to be performed concurrently.

When program statements that use RPC are compiled into an executable program, an interface
object is included in the compiled code that acts as the representative of the remote procedure
code. When the program is run and the procedure call is issued, the interface object receives the
request and forwards it to a client runtime program in the local computer. The client runtime
program has the knowledge of how to address the remote computer and server application and
sends the message across the network that requests the remote procedure. Similarly, the server
includes a runtime program and interface object that interface with the remote procedure itself.
Results are returned the same way.

Some examples of RPC technology are Software AG's EntireX/Natural RPC, Microsoft RPC, and
DCE RPC.

RPC-based Components

= |ntroduction
= Advantages of RPC-based Components
= Connectivity Matrix

Introduction

The production of RPC-based components is called “wrapping” (Java Wrapper, XML/SOAP
Wrapper, DCOM Wrapper, NET Wrapper etc.). The wrapped components are perfectly embedded
in their environments, for example:

* in C as functions and procedures

® in Java and .NET as classes and methods

* in COBOL and Natural as subprograms

® in COM container-enabled applications as COM/DCOM objects

2 EntireX RPC Programming

Introduction to RPC Programming

' RPC-based Clients 'RPC-based Servers
Middleware

CoBOL
Wrapper

Java Wrapper

Advantages of RPC-based Components

The programmer can work with familiar data types without having to worry about their repres-
entation on different hardware platforms, including conversion of codepages, etc.

RPC-based components use the EntireX Interface Definition Language (IDL) to create programming-
language-independent interfaces between client and server components. See Software AG IDL
File in the IDL Editor documentation.

The Software AG IDL file can be automatically created from Natural subprograms, COBOL and
PL/I. See IDL Extractor for Natural, IDL Extractor for COBOL, IDL Extractor for PL/I.

There are generation tools for the RPC-based client and server components (stubs, skeletons,
etc.). See the EntireX Workbench and the IDL Compiler in the IDL Editor documentation.

RPC-based components support non-conversational and conversational RPC communication.

EntireX RPC-based components are compatible with Natural RPC. For Natural RPC servers,
see Setting Up a Natural RPC Environment in your Natural documentation.

EntireX RPC Programming 3

Introduction to RPC Programming

Connectivity Matrix

Feature
Client Client Server Server Client Server
Connection Extraction | Generation | Extraction | Generation | Connectivity | Connectivity
Web Service X X X X X X
XML Service X X X X X X
Java X X X X
NET X X X X
PHP, Perl, Ruby via X
WSDL/XSD
COBOL X X X X X
PL/I X X X X X
Natural X X X X X X
RPC X
CL X
C X X X X
Assembler
WebSphere MQ X X X X
webMethods Integration X X X X X
Server

Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becoming more and more important. Reliable messaging is one important technology for this type

of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX

RPC technology and persistence, which is implemented with units of work (UOWs).

Reliable RPC allows asynchronous calls (“fire and forget”)

Reliable RPC is supported by most EntireX wrappers

Reliable RPC clients are able to request the status of the messages they have sent

Reliable RPC messages are stored in the Broker's persistent store until a server is available

EntireX RPC Programming

Introduction to RPC Programming

[Persistent

RPC
Client

RPC
Server

EntireX RPC Programming 5

2 Using the Broker ID in Applications

B URL-SEYIE BIOKEE 1D ...ttt 8
= Transport-method-Style BroKEr IDoooiiiiiii e 10

Using the Broker ID in Applications

The Broker ID describes the connection from a client or server to a Broker instance. It indicates
the protocol or transport method to be used and where the Broker is located. We distinguish two
styles of Broker IDs: the URL-style Broker ID and the transport-method-style Broker ID.

The URL-style Broker ID is the recommended style. Simple forms of this style are identical with
the transport method style. For both styles, the syntax, values, defaults, examples, and restrictions

are listed.

URL-style Broker ID

The URL syntax is described in RFC1738 and related RFCs.

<protocol><host><port><parameter>

Element Description Permitted Values Default Note
<protocol> |The transport protocol. |tcpip://, ssl://, http://, |tcpip:// Not
https://, or none; case-sensitive.
<host> The host where the Broker | A valid host name. |localhost For the syntax of
operates. This may be a the domain
numerical IP address name, see
or a domain name. RFC1034
(Domain Names
- Concepts and
Facilities).
<port> The port where the Broker |a valid port number | Non-Java-based
listens. in the form ": n ", components:
where nis an integer. | The default port is
resolved by the domain
name service (DNS) for
all components. If the
DNS cannot resolve the
port, 1971 is used for
TCP/IP and 1958 is used
for SSL.
Java-based-components:
The default depends on
the protocol:
tepip:// 1971
ssl:// 1958
http:// 80
https:// 443
8 EntireX RPC Programming

Using the Broker ID in Applications

Element Description Permitted Values Default Note

<parameter>|Parameters in the form |The keys and the none See Examples of
permitted values Parameters.

?<parml>&<parm2>&. .. |depend on the

protocol.

Examples

" Jocalhost

® localhost:1971

" tcpip://myhost.com:1971

tepip://127.0.0.1:1971

ssl://localhost:22101?trust_store=C:\ Software AG\ EntireX/etc/ExxCACert.jks&key_store=C:\ Soft-
wareAG\ EntireX/etc/ExxJavaAppCert.jks&key_passwd=ExxJavaAppCert

http://www.yourhost.com/servlets/tunnel

https://www.yourhost.com/servlets/tunnel

Examples of Parameters

Java Programming Language

1.
2.
3.

® N o Wl

poolsize=n (n: number of connections)

pooltimeout=n (n: number of seconds until timeout)

compresslevel=[0111213141516171819| DEFAULT_COMPRESSION INO_COMPRES-

SION IBEST_SPEED | DEFLATED IBEST_COMPRESSION IN | Y]

(set the level of compression; N is mapped to NO_COMPRESSION; Y is mapped to 6, see Using
Compression under Writing Advanced Applications - EntireX Java ACI

encryptionlevel=[01112] (set the encryption level, see Encryption under Writing Applications using
EntireX Security in the ACI Programming documentation)

For http, https: checkheaders=[yes|no] (check http headers if yes)

. For http, https: log=[yes|no] (enable tracing if yes)
. For ssl: verify_client=[yes|no] (SSL client has to send certificate if yes)

. For ssl: verify_server=[yes|no] (verify that the host name of the Broker is the common name of

the certificate, if yes.)

EntireX RPC Programming 9

Using the Broker ID in Applications

Other Programming Languages

1.
2.

For ssl: verify_client=[yes|no] (SSL client has to send certificate if yes)

For ssl: verify_server=[yesIno] (verify that the host name of the Broker is the common name of
the certificate if yes)

EntireX RPC Server under Windows / UNIX and SSL

You may use either the keyword SSL_file in the configuration file to specify parameters for SSL
or use SSL://<host><port>?ssl_file=MySSL file.

CICS RPC Server and SSL

Use the keyword SSL_file to specify the memory block with the parameters for SSL.
EntireX RPC under C and SSL

You may use either SSL://<host><port>?ssl_file=sMySSLfile or specify parameters for SSL in the
ERX structure ERX_CLIENT_IDENTIFICATION.

Transport-method-style Broker ID

Transport methods TCP, SSL and NET are available. The transport method may be omitted,
whereby certain rules apply. See Default Rules. The transport methods TCP and NET may be also
combined. See Examples below.

Transport Method TCP
<host><port>:TCP
Element | Description Permitted Values Default
<host> | The host where the Broker |Valid host name consisting of a |localhost
operates. domain name or a numerical IP
address.
<port> | The port where the Broker |Valid port number. The default port is resolved by the
listens. domain name service (DNS). If the
DNS cannot resolve the port, 1971
is used.

10 EntireX RPC Programming

Using the Broker ID in Applications

Transport Method SSL

<host><port>:SSL

Element | Description Permitted Values Default
<host> | The host where the Broker |Valid host name consisting of a |localhost

operates.

domain name or a numerical IP
address.

<port>

The port where the Broker
listens.

Valid port number.

The default port is resolved by the
domain name service (DNS). If the
DNS cannot resolve the port, 1958

is used.

Transport Method NET (Entire Net-Work) under z/0S, BS2000/0SD and z/VSE

<name><node>:[<svc>]:NET

Element |Description Permitted Values Default
<name>|Sequence of letters | Any sequence of letters is allowed. none
<node> |Sequence of digits | A node number for Entire Net-Work or a database ID. The node number [none
is required.
<svce> |SVC number Z/08, zZIVSE |SvCnnn, where nnnis a valid SVC number. SVC must be |none
uppercase. When omitted, the default SVC number is
used.
BS2000/0SD | Not applicable.
Examples

® Myhost.com:65534:SSL

ETB024::TCP tells the Broker to use TCP/IP. ETB024 will be used to look up the host TCP address.
Because the port number is not specified, the Broker ID ETB024 will be used by default to look
up the port number.

ETB024:3800:TCP tells the Broker to use TCP/IP. ETB024 will be used to look up the host TCP
address. Because the port number is specified, no lookup for the port number takes place; 3800
is used directly for the port number.

ETB024::NET tells the Broker to use Entire Net-Work. Under z/OS: this format is used if the SVC
number must not be changed.

ETB024:SVC252:NET tells the Broker to use Entire Net-Work, SVC number 252, as the preferred
transport. This form applies to z/OS (due to the SVC number).

EntireX RPC Programming "

Using the Broker ID in Applications

Default Rules

® If broker ID does not specify a transport method, environment variable ETB_TRANSPORT is used.
® If environment variable ETB_TRANSPORT is also not specified, TCP is used.
* If the port number is not specified, 1971 is used for TCP and 1958 is used for SSL.

Technical Limitations

Java

® The transport method is not supported for the programming language Java and EntireX com-
ponents based on the programming language Java such as Broker Agent, Java Wrapper, Java
RPC Server, etc.

Other Programming Languages

® For all programming languages and for EntireX components under z/OS it depends on the
broker stub module used if the SVC number can be specified as part of the Broker ID. See SVC
Number for Broker Communication under Administering Broker Stubs in the z/OS administration
documentation.

® For all programming languages except Java and for EntireX components not based on the pro-
gramming language Java - such as EntireX RPC Server under z/OS, CICS, UNIX and Windows,
DCOM Wrapper, C Wrapper etc. - Broker ID has a maximum length of 32 characters (unless
the LONG-BROKER-1D is used; see LONG-BROKER-ID-LENGTH under Broker ACI Fields).

® For the URL style the supported protocols are:
" tcpip://
= ssl://

12 EntireX RPC Programming

3 Software AG IDL File

= Rules for Coding Library, Library Alias, Program, Program Alias and Structure Names

Introduction to the IDL Fileovviiiiiiii e,
IDL DAt TYPES .. .eeeeeeeeiiitee ettt e et e e e e
Fixed and Unbounded Arrayscoooiiiiiiiiiiii e
Rules for Coding IDL FilEScoiiiiiiiiiiiici e
Rules for Coding Group and Parameter Namescccveveeeeeiiiiiiiiieiceee e,

13

Software AG IDL File

A Software AG IDL file contains definitions of the interface between client and server. The IDL
file is used by Software AG wrappers to generate RPC clients, RPC servers and tester etc. on the
basis of these definitions. The IDL file can be edited by the IDL Editor provided by plug-ins for
Eclipse.

This document contains a descriptive introduction to IDL files. The syntax of IDL files in a formal
notation is given under Software AG IDL Grammar in the IDL Editor documentation.

Introduction to the IDL File

The IDL's syntax looks similar to a Software AG Natural parameter data definition statement.

Library 'EXAMPLE' Is
Program 'CALC' Is
Define Data Parameter

1 Operator (A1) In
1 Operand_1 (I4) In
1 Operand_2 (I4) In
1 Function_Result (I4) Qut
End-Define

The syntax is described in a formal notation under Software AG IDL Grammar in the IDL Editor
documentation.

IDL Data Types

The table below uses the following metasymbols and informal terms for the IDL.

® The metasymbols [and] surround optional lexical entities.

® Theinformal term number (or in some cases number. number) is a sequence of numeric characters,
for example 123.

Type and Length Description Example See Notes

Anumber Alphanumeric A100 1,2,7,17,20

AV Alphanumeric variable length AV 1,2,7,17,20, 21

AVnumber Alphanumeric variable length with maximum |AV100 1,2,7,17,20, 21
length

Bnumber Binary B10 1,2,15

BV Binary variable length BV 1,2,15,21

BVnumber Binary variable length with maximum length |BV128 1,2,15,21

D Date D 3,4,13

14 EntireX RPC Programming

Software AG IDL File

Type and Length Description Example See Notes

F4 Floating point (small) F4 11, 13,16

F8 Floating point (large) E8 12, 13,16

I Integer (small) I 8

12 Integer (medium) 12 9

14 Integer (large) 14 10

Knumber Kanji K20 1,2,7,17,18,20
KV Kanji variable length KV 1,2,7,17,18, 20, 21
KVnumber Kanji variable length with maximum length |KV200 1,2,7,17,18, 20, 21
L Logical L 3,14
Nnumber[.number] |Unpacked decimal N8 or N8.2 6,13
NUnumber[.number]|Unpacked decimal unsigned NU2 or NU6.2 |6, 13
Pnumber[.number] |Packed decimal P12 or P10.3 |6,13
PUnumber[.number] |Packed decimal unsigned PU3 or PU4.2 |6, 13

T Time T 3,513

Unumber Unicode U100 2,19

uv Unicode variable length uv 2,19, 21
UVnumber Unicode variable length with maximum length|UV200 2,19,21

Note that equivalents of the data types are not necessarily supported in every target programming
language environment. Also, value ranges of the mapped data type can differ. See Mapping Software
AG IDL Data Types in the respective Wrapper or language-specific documentation.

Notes:

1. There is, however, an absolute limit (1 GB) which cannot be exceeded.

2. The maximum length you can specify depends on your hardware and software configuration
(apart from this product).

3. The length is implicit and must not be specified.
4. The supported range is from 1.1.0001 up to 31.12.9999. Dates BC (before the birth of Christ) are

not supported.

It is also possible to transfer 1.1.0000 as a value. This is a special value (because there is no year
0) and denotes “no date” is given. The no date value is the internal state of a #DATE variable

(Natural type D) after a RESET #DATE is executed within Natural programs. The target language
environment determines how 'no date’ is handled.

See the notes under data type D in the section Mapping Software AG IDL Data Types to the target
language environment C | Java | .NET.

5. The data type T has two different meanings:

EntireX RPC Programming

15

Software AG IDL File

" A time-only meaning, which transfers a time without a date. The time-only meaning always
uses the invalid date 1.1.000 for the date part. The time part has a value range from 00:00:00.0
to 23:59:59.9. This time-only meaning is not supported.

" A timestamp meaning, consisting of a date and time.

The supported range is from 1.1.0001 0:00:00.0 up to 31.12.9999 23:59:59.9. Dates BC (before
the birth of Christ) are not supported.

It is also possible to transfer 1.1.0000 0:00:00.0 as a value. This is a special value (because there
is no year 0) and denotes “no time” is given. The “no time” value is the internal state of a
#TIME (Natural type T) variable after a RESET #TIME is executed within Natural programs.
The target language environment determines how “no time” is handled.

See the notes under data type T in the section Mapping Software AG IDL Data Types to the
target language C | Java | .NET.

6. The term number[. number] describes the number as it is: The first number is the number of digits
before the decimal point and the second number is the number of digits after the decimal point.
The total number of digits (before and after the decimal point) must not exceed 29. The number
of digits after the decimal point must not exceed 7.

7. The length is given in bytes, not in number of characters.

8. The valid integer range is from -128 up to +127.

9. The valid integer range is from -32768 up to +32767.

10. The valid integer range is from -2147483648 up to +2147483647.

11. The following term restricts the valid range which can be transferred from -n.nnnnnn+Enn up
to +n.nnnnnn+Enn. A mantissa of 7 decimal digits and an exponent of 2 decimal digits.

12 The following term restricts the valid range which can be transferred from -
n.nnnnnnnnnnnnnnn+Enn up to +n.nnnnnnnnnnnnnnn+Enn. A mantissa of 16 decimal digits
and an exponent of 2 decimal digits.

13. The real valid range and precision can be restricted by the mapping to the target language en-
vironment.

14. Valid values are TRUE and FALSE.
15. The length is given in bytes.

16. When using floating-point values, rounding errors can occur when converting to the target
language environment. Thus, values from sender and receiver might differ slightly.

17. In environments where multibyte, double-byte or other complex codepages are used, alphanu-
meric data may increase or decrease during conversion. Thus, to match the field length restriction
given by the IDL types A and AV with maximum length, data must be truncated, otherwise
unpredictable results will occur. The most popular internationalization approach ICU Conversion
under Introduction to Internationalization with CONVERSION=SAGTRPC takes care of data increase/de-
crease.

16 EntireX RPC Programming

Software AG IDL File

We recommend always using SAGTRPC for RPC data streams. Conversion with Multibyte, Double-
byte and other Complex Codepages will always be correct, and Conversion with Single-byte Codepages
is also efficient because SAGTRPC detects single-byte codepages automatically. See Conversion
Details.

See also Configuring ICU Conversion under Configuring Broker for Internationalization in the plat-
form-specific administration documentation.

18 In environments that use EBCDIC stateful codepages, encoded with escape technique (SI/SO
bytes), and where the most popular internationalization approach ICU Conversion under Intro-
duction to Internationalization with CONVERSION=SAGTRPC is used, the IDL types K and KV fields
allow you to transfer double-byte data without SO and SI bytes. This feature is designed for
use in Asian countries. For more information see Conversion with Multibyte, Double-byte and
other Complex Codepages.

19. The length is given in 2-byte Unicode code units following the Unicode standard. UTF-16. The
maximum length is restricted to 805306367 2-byte code units.

Depending on your target environment and target programming language, the mapping may
follow a different Unicode standard, for example UTF-32.

20.If SAGTRPC User Exit under Introduction to Internationalization is used as the internationalization
approach, the handling of the different IDL types depends on the implementation of the
SAGTRPC user exit. This is your responsibility as user. See Writing SAGTRPC User Exits in the
platform-specific administration documentation.

21. Variable-length (e.g. AV, AVn) fields are transferred in the RPC data stream in the length spe-
cified. A defined maximum in the IDL file limits the length that can be transferred.

Variable-length fields with maximum (e.g. AVn) are important for connections to endpoints
that have no concept of variable-length data, such as COBOL (see Software AG IDL to COBOL
Mapping) and PL/I (see Software AG IDL to PL/I Mapping).

Fixed and Unbounded Arrays

A fixed array is transferred in the RPC data stream with all its elements.

With an unbounded array, the current number of elements and their contents are transferred in
the RPC data stream. A defined maximum in the IDL file limits the number of elements that can
be transferred.

For the formal syntax of arrays, refer to array-definitionunder Software AG IDL Grammar in the
IDL Editor documentation under Software AG IDL Grammar in the IDL Editor documentation.

Unbounded arrays with a maximum are important for connections to COBOL, which supports a
similar concept with the 0CCURS DEPENDING ON clause. See Tables with Variable Size - DEPENDING
ON Clause under COBOL to IDL Mapping in the IDL Extractor for COBOL documentation.

EntireX RPC Programming 17

Software AG IDL File

Rules for Coding IDL Files

1. Statements and their lexical entities can begin in any column and are separated by any number
of whitespace characters: blank, new line carriage return, horizontal tab, and form feed.

2. The maximum line length allowed in an IDL file is 256 characters.
3. Comments can be entered in the following ways:

= If the entire line is to be used for a user comment, enter an asterisk or a slash and an asterisk
in columns 1 and 2 of the line:

* USER COMMENT
/* USER COMMENT

® If only the latter part of a line is to be used for a user comment, enter an asterisk or slash as-

terisk.
1 NAME (A20) * USER COMMENT
1 NUMBER (A15) /* USER COMMENT

Rules for Coding Group and Parameter Names

Group and parameter names

1. can be defined with the following characters:
® characters: ato z
® characters: Ato Z
= digits: 0 to 9 (a digit must not be the first character)
" special characters:- _$# & @+/

other characters are not allowed.
2. are limited to a maximum length of 31 characters

3. are not allowed to be the same as a valid type-length specification.

For example:

18 EntireX RPC Programming

Software AG IDL File

1 PI (P1) In Out

is invalid and will cause an error because the name P1 is identical to the type-length P1.

4. must adhere to the rules of the target programming language, for example to permitted special
characters or reserved keywords.

5. cannot be defined as the following reserved names:
ALIGNED, CALLNAT, DATA, DEFINE, END-DEFINE, IMS, IN, INOUT, IS, LIBRARY, OUT, PARAMETER,
PROGRAM, RCODE, STRUCT, VERSION.

6. must be unique and must not conflict with those of the target programming language, see the
following portion of an IDL file

Define Data Parameter
1 AA (I2)
1 AA (I4)
1 long (I4)
End-define

and the output generated with the client.tpl as the template for target language C:

short int AA;
long AA; /*erroneous, double declaration*/
long long; /*erroneous, double declaration*/

The ambiguous declaration of AA and 1ong is passed unchecked and the stub will be generated.
As you can see, this is not valid C syntax.

Rules for Coding Library, Library Alias, Program, Program Alias and Structure
Names

The following rules apply to library, library alias, program, program alias and structure names:

1. Names are restricted by length. Library, library alias, program and program alias are restricted
to a maximum length of 128 characters. A structure name is restricted to a maximum length of
31 characters.

2. Names must adhere to the rules of the target programming language, for example regarding
permitted special characters or reserved keywords.

3. Names should not start with the prefix "SAG". The prefix "SAG" is used within the delivered IDL
files. See Change RPC Password by Wrappers and RPC Clients and Command and Info Services
IDLs for more information.

EntireX RPC Programming 19

Software AG IDL File

4. Names must be unique and different within the IDL file after conversion of the name to
lowercase or uppercase characters. You cannot use the same name for a library, library alias,
program, program alias and structure
Example: The following names are not allowed within an IDL file:
® MYLIBRARY and MyLibrary
" CALCand Calc

B MYSTRUCTURE and mystructure

20 EntireX RPC Programming

4 Command and Info Services IDLs

B COMMANG SEIVICE DL ..ot e e e e e

® |nfo Service IDL

= Examples

21

Command and Info Services IDLs

The Broker-internal RPC CIS Server provides the Command and Information Services using the
Remote Procedure Call (RPC) protocol.

Two CIS IDL files are available in directory EntireX\etc\idl.
RPC CIS is a complete implementation of the Command and Information Services.

See Broker CIS Data Structures in the ACI Programming documentation for a description of the CIS
API. The names of the fields can also be found in the IDL (with case-insensitive and insignificant
modifications).

The service names SAG/ETBCIS/RPCCIS and RPC/RPCCIS/CALLNAT can be used for all versions of
the CIS IDLs.

This chapter covers the following topics:

Command Service IDL

The files SagCmdServiceV6.idl to SagCmdServiceV8.idl are contained in directory etc. They provide
an interface description of CIS version 6 and above. Brokers with more recent CIS versions are
backward compatible down to version 6 via RPC CIS.

File SagCmdServiceV8.idl provides the interface description for all Command Services of CIS version
8.

This section covers the following topics:

= Stucture COMMAND_REQUEST
= Program COMMAND

Stucture COMMAND REQUEST

struct 'COMMAND_REQUEST' is /*Broker CIS: command request structure
define data parameter

1 Command (I2)

1 ObjectType (I2)

1 Option (12)

1 puid (B28)
1 uowid (A16)
1 Topic (A96)
1 uid (A32)
1 Token (A32)
1 ServerClass (A32)
1 ServerName (A32)
1 ServiceName (A32)
1 reserved_etbinfo_v73_2 (A32)

22 EntireX RPC Programming

Command and Info Services IDLs

1 convid (A16)
1 transportld (A3)
1 nSequenceNumber (14)
1 cExcludeAttachServers (I1)
1 nErrorNumber (I4)

end-define

The request structure is described under Command Request Structure under Broker CIS Data Structures
in the ACI Programming documentation. Note also the Command Request Parameter Combinations
under Broker CIS Data Structures in the ACI Programming documentation.

Program COMMAND

Program 'COMMAND':'command' is /*command request
define data parameter

1 CmdRequest ('COMMAND_REQUEST") In
1 Function_Result (I4) Out
end-define

You can call the command service using program COMMAND, with the structure COMMAND_REQUEST
as argument. See Command Request Structure under Broker CIS Data Structures in the ACI Program-
ming documentation. Alternatively, you can enter the functions listed in the table directly:

Program Short Name "'[Long Name Number|Command

COMMAND command n all available commands
CALLOW cmdAl1ow 13 ALLOW-NEWUOWMSGS
CCLECLF cmdClearCmdLogFilter 20 CLEAR-CMDLOG-FILTER
CNOP cmdNoOperation 88 NO-OPERATION

CCONPST cmdConnectPStore 17 CONNECT-PSTORE
CDISACC cmdDisableAccounting 28 DISABLE-ACCOUNTING
CDISCL cmdDisableCmdLog 24 DISABLE-CMDLOG
CDISCLF cmdDisableCmdLogFilter |22 DISABLE-CMDLOG-FILTER
CDISDWK cmdDisableDynWorker 37 DISABLE-DYN-WORKER
CDISPST cmdDisconnectPStore 18 DISCONNECT-PSTORE
CENAACC cmdEnableAccounting 27 ENABLE-ACCOUNTING
CENACL cmdEnableCmdLog 23 ENABLE-CMDLOG
CENACLF cmdEnableCmdLogFilter |21 ENABLE-CMDLOG-FILTER
CENADWK cmdEnableDynWorker 38 ENABLE-DYN-WORKER
CFORBID cmdForbid 14 FORBID-NEWUOWMSGS
CPROSTA cmdProduceStatistics 25 PRODUCE-STATISTICS
CPURGE cmdPurge 12 PURGE

CRSTUSR cmdResetUser 29 RESET-USER

EntireX RPC Programming 23

Command and Info Services IDLs

Program Short Name "'[Long Name “ Number|Command
CTRARES cmdResume 31 RESUME
CSETCLF cmdSetCmdLogFilter 19 SET-CMDLOG-FILTER
CSHUTB cmdShutdownBroker 8 SHUTDOWN ©
CSHUTC cmdShutdownConversation|8 SHUTDOWN
CSHUTP cmdShutdownParticipant |8 SHUTDOWN
CSHUTS cmdShutdownServer 8 SHUTDOWN
CTRASTR cmdStart 33 START
CTRASTA cmdStatus 36 STATUS
CTRASTP cmdStop 32 STOP
CSUB cmdSubscribe 15 SUBSCRIBE “
CTRASUS cmdSuspend 30 SUSPEND
CSWICL cmdSwitchCmdLog 26 SWITCH-CMDLOG
CTRCFLU cmdTraceFlush 35 TRACE-FLUSH
CTRCOFF cmdTraceOff 2 TRACE-OFF
CTRCON cmdTraceOn 1 TRACE-ON
CTRPERR cmdTrapError 34 TRAP-ERROR
CUNSUB cmdUnsubscribe 16 UNSUBSCRIBE @
] Notes:

1. Short name as used, for example, by C programs.

2. Long name as used, for example, by Java programs.

3. You cannot execute CSHUTB (cmdShudtownBroker) in a non-secure mode.

4. See Writing Applications: Publish and Subscribe in the ACI Programming documentation.

The prototypes and source code can be found in the generated files:

Language |File(s)

C CSAGCCV8.h, CSAGCCV8.c

Java SagCmdServiceV8.java

NET Sagccv8.cs

24 EntireX RPC Programming

Command and Info Services IDLs

Info Service IDL

Files SaglnfServiceV6.idl to SagInfServiceV8.idl are contained in directory etc. They provide an interface
description of CIS version 6 and above. Brokers with more recent CIS versions are backward
compatible down to version 6 via RPC CIS.

File SagInfServiceV$.idl provides the interface description for all Information Services. The following
functions are used to receive an unbounded array of the corresponding Broker Information Service.

See also Using Unbounded Arrays under Writing Advanced Applications with the C Wrapper.

Structure INFORMATION_REQUEST

struct 'INFORMATION_REQUEST' is /*CIS: information request
define data parameter

1 ObjectType (12)

1 uid (A32)
1 puid (B28)
1 Token (A32)
1 ServerClass (A32)
1 ServerName (A32)
1 ServiceName (A32)
1 convid (A16)
1 uowid (A16)
1 uowStatus (I1)

1 userStatus (A32)
1 recvUID (A32)
1 recvToken (A32)
1 recvClass (A32)
1 recvServer (A32)
1 recvService (A32)
1 Topic (A96)
1 publicationId (A16)
1 subscriptionType (I2)

1 conversationType (I12)

1 level (I1)

end-define

The request structure is described under Information Request Structure under Broker CIS Data
Structures in the ACI Programming documentation.

EntireX RPC Programming 25

Command and Info Services IDLs

Program: INFO

program 'INFO':'info'
define data parameter

1

= R b b b b e e e e e e b e e b b b e e e e e

InfRequest
InfBroker
InfWorker
InfService
InfClient
InfServer
InfParticipant
InfConversation
InfPSF
InfPSFADA
InfPSFEDIV
InfPSFFile
InfPSFCTree
InfSubscriber
InfPublisher
InfPubTication
InfTopic

InfTcp
InfSecurity
InfSsl
InfCmdLogFilter
InfNet
InfPoolUsage
InfResourcelUsage
InfStatistics
InfUser
InfWorkerUsage
Function_Result

end-define

is /*all

("INFORMATION_REQUEST")
("INFO_BRK"/V)
("INFO_WRK"/V)
("INFO_SV'/V)
("INFO_CS'/V)
("INFO_CS'/V)
("INFO_CS'/V)
("INFO_CV'/V)
("INFO_PSF"/V)
("INFO_PSFADA'/V)
("INFO_PSFDIV'/V)
("INFO_PSFFILE'/V)
("INFO_PSFCTREE"/V)
("INFO_SUBSCRIBER"/V)
("INFO_PUBLISHER'/V)
("INFO_PUBLICATION'/V)
("INFO_TOPIC'/V)
("INFO_TCP"/V)
("INFO_SECURITY"/V)
("INFO_SSL"/V)
("INFO_CMDLOG_FILTER"/V)
("INFO_NET"/V)
("INFO_POOL_USAGE"/V)
("INFO_RESOURCE_USAGE"/V)
("INFO_STATISTICS'/V)
("INFO_USER"/V)
("INFO_WRK_USAGE"/V)
(I4)

In

OQut
Out
OQut
Out
OQut
Out
OQut
Out
OQut
OQut
Out
OQut
Out
OQut
Out
OQut
Out
OQut
Out
OQut
OQut
OQut
OQut
Out
OQut
Out
OQut

You can call the information service using program INFO, with the structure INFORMATION_REQUEST
as argument. See Information Request Structure under Broker CIS Data Structures in the ACI Program-
ming documentation. Depending on the object type, the reply will contain the corresponding
INFO_ structure containing one or more records. The variable array contains all available data. No
segmentation takes place. Alternatively, you can call directly the functions listed below for the
individual object types.

All functions below return the corresponding structure from the information reply structures.

26

EntireX RPC Programming

Command and Info Services IDLs

Program Short Name "'[Long Name * See

INFO info One of available reply structures; see Information Reply
Structures under Broker CIS Data Structures in the ACI
Programming documentation

IBROKER infoBroker BROKER-OBJECT

ICMDLGF infoCmdLogFilter |CMDLOG_FILTER-OBJECT

ICLIENT infoClient CLIENT-SERVER-PARTICIPANT-0BJECT

ICONV infoConversation |CONVERSATION-OBJECT

INET infoNet NET-0BJECT

IPOOLUS infoPoolUsage POOL-USAGE-0BJECT

IPARTI infoParticipant CLIENT-SERVER-PARTICIPANT-0BJECT

IPSF infoPsf PSF-0BJECT

IPSFADA infoPsfAda PSFADA-OBJECT

IPSFCTR infoPsfCtr PSFCTREE-OBJECT

IPSFDIV infoPsfDiv PSFDIV-0BJECT

IPSFFIL infoPsfFil PSFFILE-OBJECT

IPUBLIC infoPublication PUBLICATION-OBJECT

IPUBLIS infoPublisher PUBLISHER-OBJECT

IRESUS infoResourceUsage|RESOURCE-USAGE-OBJECT

ISECUR infoSecurity SECURITY-0BJECT

ISERVER infoServer CLIENT-SERVER-PARTICIPANT-0BJECT

ISERVIC infoService SERVICE-O0BJECT

ISSL infoSSL SSL-0BJECT

ISTAT infoStatistics STATISTICS-0BJECT

ISUBSCR infoSubscriber SUBSCRIBER-OBJECT

ITCP infoTcp TCP-0BJECT

ITOPIC infoTopic TOPIC-0BJECT

TUSER infolUser USER-OBJECT

IWORKER infolWlorke WORKER-OBJECT

IWORKUS infoWorkerUsage |WORKER-USAGE-OBJECT

| Notes:

1. Short name as used, for example, by C programs.

2. Long name as used, for example, by Java programs.

The prototypes and source code can be found in the generated files:

EntireX RPC Programming

27

Command and Info Services IDLs

Language |File(s)
C CSAGCIV8.h, CSAGCIVS.c

Java SagInfServiceV8.java

NET Sagciv8.cs

Examples

The following examples are available:

= NET CIS Client Example
= Java CIS Client Example

.NET CIS Client Example

The .NET CIS Client Example can be found in the examples directory NetWrapper\ Client\ SagCis-
Client.cs. The directory includes the source file SagCisClient.cs and the README.TXT.

Information required to prepare and configure the EntireX Workbench:

= EntireX Workbench.
® Using EntireX Custom Wrappers or
® Using the EntireX Workbench in Command-line Mode.

Information required to to write a .NET CIS Client:

® Writing Applications with the NET Wrapper.
® Using Unbounded Arrays under Writing Advanced Applications with the C Wrapper.

Build steps:

1. Prepare Eclipse.

2. Start Eclipse.

3. Create a new Java Project.

4. Add files SagCmdServiceV8.idl and SaginfServiceV8.idl to the project.

5. Generate the NET RPC Client from SagCmdServiceV8.idl using the context menu.
6. Generate the .NET RPC Client from SaglnfServiceV8.idl using the context menu.
7. Start Visual Studio.

8. Create a new Visual Studio Project. (NET Console Application).

9. Insert the generated sources SAGCCV8.cs and SAGCIV8.cs.

28 EntireX RPC Programming

Command and Info Services IDLs

10. Delete Program.cs.
11. Insert .NET example file SagCisClient.cs to the project.

12 Add Reference (<drive>:\ Software AG\ common \ EntireX \bin\ Software AG.EntireX.NETWrap-
per.Runtime.dll).

13. Build the solution.
14. Start the .NET CIS Client.

Java CIS Client Example

The Java CIS Client Example can be found in the examples directory EntireX \ Examples\ JavaWrap-
per\ Client\ SagCisService \ mainSagCisClient.java. This directory includes the source file mainSagCis-
Client.java and the README.TXT.

Information required to prepare and configure the EntireX Workbench:

® EntireX Workbench.
® Using EntireX Custom Wrappers or
® Using the EntireX Workbench in Command-line Mode

Information required to to write a Java CIS Client:
® Writing Applications with the Java Wrapper
Build steps:

Prepare Eclipse.

Start Eclipse.

Create a new Java Project.

Add files SagCmdServiceV8.idl and SaglnfServiceV8.idl to the project.

Add source file mainSagCisClient.java to the project.

Generate the Java RPC Client from SagCmdServiceV8.idl using the context menu.
Generate the Java RPC Client from SaglnfServiceV8.idl using the context menu.
Build the Java CIS Client project.

Start the Java CIS Client.

0 N o Aok »w N

EntireX RPC Programming 29

30

5 Common Features of Wrappers and RPC-based Components

= Change RPC Password by Wrappers and RPC ClIENtSvviviiiiiiiiiiiee e
= Natural Logon or Changing the Library NamMecoiuiiiiiiiiiiieciiie et

= Conversational RPC

= Non-conversational RPC

= Natural Security
= RPC Compression

31

Common Features of Wrappers and RPC-based Components

This chapter provides additional information on concepts and features common to all wrappers
and RPC-based components.

Change RPC Password by Wrappers and RPC Clients

The application programmer can embed an RPC password change in an application. This is useful
if the application programmer wants to provide this functionality to end users of RPC applications.
It is necessary if the RPC server forces alteration of the RPC password, otherwise denying use of
the RPC server.

The functionality is provided with a special-purpose IDL:

Library 'SAGCRPW' : 'SagChangeRPCPassword' is
Program 'SAGCRPW" : 'changeRPCPassword' is
Define Data Parameter
1 newRPCPassword (A8) in
End-Define

The prefix “SAG” is reserved and is used for Software AG delivered IDL files and must not be
used by customer applications; see Rules for Coding Library, Library Alias, Program, Program Alias
and Structure Names under Software AG IDL File in the IDL Editor documentation.

Proceed as follows:

* Define the IDL in the Workbench Editor and generate a wrapper as you would for any other
IDL.

® Write a wrapper client program and issue an RPC request as you would for any other IDL. See
the documentation on EntireX wrappers for an example.

" Specify the old RPC password in the same way as for any other RPC request issued. See the
wrapper documentation on how to specify the password.

Natural RPC Server running under Natural Security

" may force the user of an application to alter the RPC Password, e.g. in the following situations:

" NATS838:
Change your password. Enter the old and a new password

= NAT873:

32 EntireX RPC Programming

Common Features of Wrappers and RPC-based Components

User ID or password invalid

Other RPC Servers

® do not support this functionality.

Natural Logon or Changing the Library Name

The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is spe-
cified in the Software AG IDL file (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation). The library name can be overridden by wrapper-specific methods,
see your wrapper documentation.

For EntireX RPC Servers, depending on the target server, the library name

® is used by an EntireX Java RPC server. The program name is a method within the class called
as the name of the class called. See Administering the EntireX Java RPC Server in the UNIX and
Windows administration documentation.

* isused by an EntireX RPC server under Windows as the name of the dynamic-link library (DLL).
The program name is a function export within the DLL called. See Administering the EntireX Java
RPC Server in the UNIX and Windows administration documentation.

* isused by an EntireX RPC server under UNIX as the name of the shared library or shared object
called. The program name is a function export within the shared library or shared object called.
See Administering the EntireX Java RPC Server in the UNIX and Windows administration docu-
mentation.

" is customizable if a CICS RPC Server is used. See Locating and Calling the Target Server.
® for Conversational RPC is considered for every remote procedure call that belongs to the con-
versation.

For Natural RPC servers, the library name

" is used as the Natural library name
® can have a maximum length of 8 characters

" is considered only if Natural Logon is forced, even to Natural RPC Server running without
Natural Security. If Natural Logon is not given, a Natural RPC Server (under Natural Security
or non-security) does not consider the library name. See your EntireX Wrapper documentation
for information on how Natural Logon can be forced.

® for Conversational RPC is evaluated at the time the conversation is opened. During an ongoing
RPC conversation the Natural library cannot be changed due to Natural RPC rules.

EntireX RPC Programming 33

Common Features of Wrappers and RPC-based Components

Conversational RPC

EntireX RPC and Natural RPC also supports conversational communication (also known as con-
nection-oriented communication), where the two partners (client and server) retain a communic-
ation link over several remote procedure calls.

A context can be maintained on the server side when a Natural RPC Server is in use. See the DEFINE
DATA CONTEXT statement in the appropriate Natural documentation.

EntireX Wrappers and RPC clients allow termination of an RPC conversation either successfully
or abnormally by offering two different methods or function calls for ending an RPC conversation.
See the appropriate EntireX Wrapper or RPC client documentation for information on how to
initiate the end of an RPC communication.

If communicating with a Natural RPC Server and
* the RPC conversation is ended normally,

the Natural RPC Server executes a Natural END TRANSACTION statement, resulting in a commit
of all database manipulations at the server side done within the RPC conversation;

" the RPC conversation is aborted,

the Natural RPC Server executes a Natural BACKOUT TRANSACTION statement, resulting in a
backout of all database manipulations done at the server side within the RPC conversation.

See your Natural and Natural RPC documentation for more information.
If communicating with an EntireX RPC Server

" no automatic database processing is initiated. Aborting and closing an RPC conversation are
the same and have no effect if database manipulations were done at the server side within the
RPC conversation.

Non-conversational RPC

The basic method of communication for both the EntireX and the Natural RPC is non-conversa-
tional (also known as connectionless communication).

Using this method,

® each RPC request is isolated and has no relationship to any other RPC request.

" there is no context and no context could be maintained by the RPC Server.

34 EntireX RPC Programming

Common Features of Wrappers and RPC-based Components

Natural Security

A Natural RPC Server may run under Natural Security to protect RPC requests. RPC clients need
to be

® authenticated
i.e. the RPC client needs to be defined within Natural Security. Authentication is done with a
user ID/password check.

* authorized
i.e. the RPC client needs to be allowed to access programs in the target Natural library, otherwise
a security violation error will be returned.

See your Natural Security documentation for more information.

RPC Compression

RPC compression is a feature used to reduce network data sizes. EntireX tries to select RPC com-
pression automatically. If RPC compression is supported by your RPC server, we recommend
using it.

Natural RPC Servers

Natural RPC Servers running under Natural version 3.1.6 and later support RPC compression. If
you are communicating with Natural RPC version 5.1.1 and later, RPC compression is selected
automatically. To enable connection to earlier versions of Natural RPC Servers, EntireX wrappers
and RPC technology allow you to switch off RPC compression.

EntireX RPC Servers

All versions of the EntireX RPC server support RPC compression. If you are communicating with
an RPC server using EntireX 5.3.1 and later, RPC compression is selected automatically.

EntireX RPC Programming 35

36

	EntireX RPC Programming
	Table of Contents
	1 Introduction to RPC Programming
	RPC Technology
	RPC-based Components
	Introduction
	Advantages of RPC-based Components
	Connectivity Matrix

	Reliable RPC

	2 Using the Broker ID in Applications
	URL-style Broker ID
	Examples
	Examples of Parameters
	Java Programming Language
	Other Programming Languages

	Transport-method-style Broker ID
	Transport Method TCP
	Transport Method SSL
	Transport Method NET (Entire Net-Work) under z/OS, BS2000/OSD and z/VSE
	Examples
	Default Rules
	Technical Limitations
	Java
	Other Programming Languages

	3 Software AG IDL File
	Introduction to the IDL File
	IDL Data Types
	Fixed and Unbounded Arrays
	Rules for Coding IDL Files
	Rules for Coding Group and Parameter Names
	Rules for Coding Library, Library Alias, Program, Program Alias and Structure Names

	4 Command and Info Services IDLs
	Command Service IDL
	Stucture COMMAND_REQUEST
	Program COMMAND

	Info Service IDL
	Structure INFORMATION_REQUEST
	Program: INFO

	Examples
	.NET CIS Client Example
	Java CIS Client Example

	5 Common Features of Wrappers and RPC-based Components
	Change RPC Password by Wrappers and RPC Clients
	Natural Logon or Changing the Library Name
	Conversational RPC
	Non-conversational RPC
	Natural Security
	RPC Compression
	Natural RPC Servers
	EntireX RPC Servers

