
webMethods EntireX

EntireX RPC Programming

Version 9.6

April 2014



This document applies to webMethods EntireX Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-RPC-96-20140628



Table of Contents

1 Introduction to RPC Programming ................................................................................. 1
RPC Technology ......................................................................................................... 2
RPC-based Components ............................................................................................ 2
Reliable RPC ............................................................................................................... 4

2 Using the Broker ID in Applications ............................................................................... 7
URL-style Broker ID ................................................................................................... 8
Transport-method-style Broker ID ........................................................................... 10

3 Software AG IDL File .................................................................................................... 13
Introduction to the IDL File ..................................................................................... 14
IDL Data Types ......................................................................................................... 14
Fixed and Unbounded Arrays ................................................................................. 17
Rules for Coding IDL Files ....................................................................................... 18
Rules for Coding Group and Parameter Names ...................................................... 18
Rules for Coding Library, Library Alias, Program, Program Alias and Structure
Names ....................................................................................................................... 19

4 Command and Info Services IDLs ................................................................................ 21
Command Service IDL ............................................................................................. 22
Info Service IDL ........................................................................................................ 25
Examples .................................................................................................................. 28

5 Common Features of Wrappers and RPC-based Components ..................................... 31
Change RPC Password by Wrappers and RPC Clients ........................................... 32
Natural Logon or Changing the Library Name ....................................................... 33
Conversational RPC ................................................................................................. 34
Non-conversational RPC .......................................................................................... 34
Natural Security ....................................................................................................... 35
RPC Compression .................................................................................................... 35

iii



iv



1 Introduction to RPC Programming

■ RPC Technology ............................................................................................................................... 2
■ RPC-based Components .................................................................................................................... 2
■ Reliable RPC ................................................................................................................................... 4

1



RPC Technology

A Remote Procedure Call (RPC) is a protocol that one program can use to request a service from
aprogram located in another computer in a networkwithout having to understand network details.
(A procedure call is also sometimes known as a function call or a subroutine call.)

RPC uses the client/server model. The requesting program is a client and the service-providing
program is the server. Like a regular or local procedure call, an RPC is a synchronous operation
requiring the requesting program to be suspended until the results of the remote procedure are
returned. However, the use of lightweight processes or threads that share the same address space
allows multiple RPCs to be performed concurrently.

When program statements that use RPC are compiled into an executable program, an interface
object is included in the compiled code that acts as the representative of the remote procedure
code. When the program is run and the procedure call is issued, the interface object receives the
request and forwards it to a client runtime program in the local computer. The client runtime
program has the knowledge of how to address the remote computer and server application and
sends the message across the network that requests the remote procedure. Similarly, the server
includes a runtime program and interface object that interface with the remote procedure itself.
Results are returned the same way.

Some examples of RPC technology are Software AG's EntireX/Natural RPC, Microsoft RPC, and
DCE RPC.

RPC-based Components

■ Introduction
■ Advantages of RPC-based Components
■ Connectivity Matrix

Introduction

The production of RPC-based components is called “wrapping” (Java Wrapper, XML/SOAP
Wrapper, DCOMWrapper, .NETWrapper etc.). Thewrapped components are perfectly embedded
in their environments, for example:

■ in C as functions and procedures
■ in Java and .NET as classes and methods
■ in COBOL and Natural as subprograms
■ in COM container-enabled applications as COM/DCOM objects

EntireX RPC Programming2

Introduction to RPC Programming



Advantages of RPC-based Components

■ The programmer canworkwith familiar data typeswithout having toworry about their repres-
entation on different hardware platforms, including conversion of codepages, etc.

■ RPC-based components use theEntireX InterfaceDefinition Language (IDL) to create programming-
language-independent interfaces between client and server components. See Software AG IDL
File in the IDL Editor documentation.

■ The Software AG IDL file can be automatically created fromNatural subprograms, COBOL and
PL/I. See IDL Extractor for Natural, IDL Extractor for COBOL, IDL Extractor for PL/I.

■ There are generation tools for the RPC-based client and server components (stubs, skeletons,
etc.). See the EntireX Workbench and the IDL Compiler in the IDL Editor documentation.

■ RPC-based components support non-conversational and conversational RPC communication.
■ EntireX RPC-based components are compatible with Natural RPC. For Natural RPC servers,
see Setting Up a Natural RPC Environment in your Natural documentation.

3EntireX RPC Programming

Introduction to RPC Programming



Connectivity Matrix

Feature

Connection
Server

Connectivity
Client

Connectivity
Server

Generation
Server

Extraction
Client

Generation
Client

Extraction

xxxxxxWeb Service

xxxxxxXML Service

xxxxJava

xxxx.NET

xvia
WSDL/XSD

PHP, Perl, Ruby

xxxxxCOBOL

xxxxxPL/I

xxxxxxNatural

xRPC

xCL

xxxxC

Assembler

xxxxWebSphere MQ

xxxxxwebMethods Integration
Server

Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becomingmore andmore important. Reliablemessaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

■ Reliable RPC allows asynchronous calls (“fire and forget”)
■ Reliable RPC is supported by most EntireX wrappers
■ Reliable RPC messages are stored in the Broker's persistent store until a server is available
■ Reliable RPC clients are able to request the status of the messages they have sent

EntireX RPC Programming4

Introduction to RPC Programming



5EntireX RPC Programming

Introduction to RPC Programming



6



2 Using the Broker ID in Applications

■ URL-style Broker ID ........................................................................................................................... 8
■ Transport-method-style Broker ID ....................................................................................................... 10

7



The Broker ID describes the connection from a client or server to a Broker instance. It indicates
the protocol or transport method to be used and where the Broker is located. We distinguish two
styles of Broker IDs: the URL-style Broker ID and the transport-method-style Broker ID.

The URL-style Broker ID is the recommended style. Simple forms of this style are identical with
the transport method style. For both styles, the syntax, values, defaults, examples, and restrictions
are listed.

URL-style Broker ID

The URL syntax is described in RFC1738 and related RFCs.

<protocol><host><port><parameter>

NoteDefaultPermitted ValuesDescriptionElement

Not
case-sensitive.

tcpip://tcpip://, ssl://, http://,
https://, or none;

The transport protocol.<protocol>

For the syntax of
the domain

localhostA valid host name.
This may be a

The hostwhere the Broker
operates.

<host>

name, seenumerical IP address
or a domain name. RFC1034

(DomainNames
- Concepts and
Facilities).

a valid port number
in the form ": n ",
where n is an integer.

The portwhere the Broker
listens.

<port> Non-Java-based
components:
The default port is
resolved by the domain
name service (DNS) for
all components. If the
DNS cannot resolve the
port, 1971 is used for
TCP/IP and 1958 is used
for SSL.

Java-based-components:
The default depends on
the protocol:

1971tcpip://

1958ssl://

80http://

443https://

EntireX RPC Programming8

Using the Broker ID in Applications



NoteDefaultPermitted ValuesDescriptionElement

See Examples of
Parameters.

noneThe keys and the
permitted values

Parameters in the form<parameter>

depend on the
protocol.

?<parm1>&<parm2>&...

Examples

■ localhost
■ localhost:1971
■ tcpip://myhost.com:1971
■ tcpip://127.0.0.1:1971
■ ssl://localhost:22101?trust_store=C:\SoftwareAG\EntireX/etc/ExxCACert.jks&key_store=C:\Soft-
wareAG\EntireX/etc/ExxJavaAppCert.jks&key_passwd=ExxJavaAppCert

■ http://www.yourhost.com/servlets/tunnel
■ https://www.yourhost.com/servlets/tunnel

Examples of Parameters

Java Programming Language

1. poolsize=n (n: number of connections)

2. pooltimeout=n (n: number of seconds until timeout)

3. compresslevel=[0|1|2|3|4|5|6|7|8|9|DEFAULT_COMPRESSION|NO_COMPRES-
SION|BEST_SPEED|DEFLATED|BEST_COMPRESSION|N|Y]

(set the level of compression; N is mapped to NO_COMPRESSION; Y is mapped to 6, seeUsing
Compression underWriting Advanced Applications - EntireX Java ACI

4. encryptionlevel=[0|1|2] (set the encryption level, see Encryption underWriting Applications using
EntireX Security in the ACI Programming documentation)

5. For http, https: checkheaders=[yes|no] (check http headers if yes)

6. For http, https: log=[yes|no] (enable tracing if yes)

7. For ssl: verify_client=[yes|no] (SSL client has to send certificate if yes)

8. For ssl: verify_server=[yes|no] (verify that the host name of the Broker is the common name of
the certificate, if yes.)

9EntireX RPC Programming

Using the Broker ID in Applications



Other Programming Languages

1. For ssl: verify_client=[yes|no] (SSL client has to send certificate if yes)

2. For ssl: verify_server=[yes|no] (verify that the host name of the Broker is the common name of
the certificate if yes)

■ EntireX RPC Server under Windows / UNIX and SSL

You may use either the keyword SSL_file in the configuration file to specify parameters for SSL
or use SSL://<host><port>?ssl_file=MySSLfile.

■ CICS RPC Server and SSL

Use the keyword SSL_file to specify the memory block with the parameters for SSL.
■ EntireX RPC under C and SSL

You may use either SSL://<host><port>?ssl_file=MySSLfile or specify parameters for SSL in the
ERX structure ERX_CLIENT_IDENTIFICATION.

Transport-method-style Broker ID

Transport methods TCP, SSL and NET are available. The transport method may be omitted,
whereby certain rules apply. SeeDefault Rules. The transport methods TCP andNETmay be also
combined. See Examples below.

Transport Method TCP

<host><port>:TCP

DefaultPermitted ValuesDescriptionElement

localhostValid host name consisting of a
domain name or a numerical IP
address.

The host where the Broker
operates.

<host>

The default port is resolved by the
domain name service (DNS). If the

Valid port number.The port where the Broker
listens.

<port>

DNS cannot resolve the port, 1971
is used.

EntireX RPC Programming10

Using the Broker ID in Applications



Transport Method SSL

<host><port>:SSL

DefaultPermitted ValuesDescriptionElement

localhostValid host name consisting of a
domain name or a numerical IP
address.

The host where the Broker
operates.

<host>

The default port is resolved by the
domain name service (DNS). If the

Valid port number.The port where the Broker
listens.

<port>

DNS cannot resolve the port, 1958
is used.

Transport Method NET (Entire Net-Work) under z/OS, BS2000/OSD and z/VSE

<name><node>:[<svc>]:NET

DefaultPermitted ValuesDescriptionElement

noneAny sequence of letters is allowed.Sequence of letters<name>

noneAnode number for EntireNet-Work or a database ID. The node number
is required.

Sequence of digits<node>

noneSVC number<svc> SVCnnn, where nnn is a valid SVC number. SVCmust be
uppercase. When omitted, the default SVC number is
used.

z/OS, z/VSE

Not applicable.BS2000/OSD

Examples

■ Myhost.com:65534:SSL
■ ETB024::TCP tells the Broker to use TCP/IP. ETB024will be used to look up the host TCP address.
Because the port number is not specified, the Broker ID ETB024 will be used by default to look
up the port number.

■ ETB024:3800:TCP tells the Broker to use TCP/IP. ETB024 will be used to look up the host TCP
address. Because the port number is specified, no lookup for the port number takes place; 3800
is used directly for the port number.

■ ETB024::NET tells the Broker to use Entire Net-Work. Under z/OS: this format is used if the SVC
number must not be changed.

■ ETB024:SVC252:NET tells the Broker to use Entire Net-Work, SVC number 252, as the preferred
transport. This form applies to z/OS (due to the SVC number).

11EntireX RPC Programming

Using the Broker ID in Applications



Default Rules

■ If broker ID does not specify a transport method, environment variable ETB_TRANSPORT is used.
■ If environment variable ETB_TRANSPORT is also not specified, TCP is used.
■ If the port number is not specified, 1971 is used for TCP and 1958 is used for SSL.

Technical Limitations

Java

■ The transport method is not supported for the programming language Java and EntireX com-
ponents based on the programming language Java such as Broker Agent, Java Wrapper, Java
RPC Server, etc.

Other Programming Languages

■ For all programming languages and for EntireX components under z/OS it depends on the
broker stub module used if the SVC number can be specified as part of the Broker ID. See SVC
Number for Broker Communication under Administering Broker Stubs in the z/OS administration
documentation.

■ For all programming languages except Java and for EntireX components not based on the pro-
gramming language Java - such as EntireX RPC Server under z/OS, CICS, UNIX andWindows,
DCOMWrapper, C Wrapper etc. - Broker ID has a maximum length of 32 characters (unless
the LONG-BROKER-ID is used; see LONG-BROKER-ID-LENGTH under Broker ACI Fields).

■ For the URL style the supported protocols are:
■ tcpip://
■ ssl://

EntireX RPC Programming12

Using the Broker ID in Applications



3 Software AG IDL File

■ Introduction to the IDL File ................................................................................................................ 14
■ IDL Data Types ............................................................................................................................... 14
■ Fixed and Unbounded Arrays ............................................................................................................ 17
■ Rules for Coding IDL Files ................................................................................................................ 18
■ Rules for Coding Group and Parameter Names ..................................................................................... 18
■ Rules for Coding Library, Library Alias, Program, Program Alias and Structure Names .................................. 19

13



A Software AG IDL file contains definitions of the interface between client and server. The IDL
file is used by Software AG wrappers to generate RPC clients, RPC servers and tester etc. on the
basis of these definitions. The IDL file can be edited by the IDL Editor provided by plug-ins for
Eclipse.

This document contains a descriptive introduction to IDL files. The syntax of IDL files in a formal
notation is given under Software AG IDL Grammar in the IDL Editor documentation.

Introduction to the IDL File

The IDL's syntax looks similar to a Software AG Natural parameter data definition statement.

Library 'EXAMPLE' Is
Program 'CALC' Is

Define Data Parameter
1 Operator (A1) In
1 Operand_1 (I4) In
1 Operand_2 (I4) In
1 Function_Result (I4) Out
End-Define

The syntax is described in a formal notation under Software AG IDL Grammar in the IDL Editor
documentation.

IDL Data Types

The table below uses the following metasymbols and informal terms for the IDL.

■ The metasymbols [ and ] surround optional lexical entities.
■ The informal term number (or in some cases number.number) is a sequence of numeric characters,
for example 123.

See NotesExampleDescriptionType and Length

1, 2, 7, 17, 20A100AlphanumericAnumber

1, 2, 7, 17, 20, 21AVAlphanumeric variable lengthAV

1, 2, 7, 17, 20, 21AV100Alphanumeric variable length with maximum
length

AVnumber

1, 2, 15B10BinaryBnumber

1, 2, 15, 21BVBinary variable lengthBV

1, 2, 15, 21BV128Binary variable length with maximum lengthBVnumber

3, 4, 13DDateD

EntireX RPC Programming14

Software AG IDL File



See NotesExampleDescriptionType and Length

11, 13, 16F4Floating point (small)F4

12, 13, 16F8Floating point (large)F8

8I1Integer (small)I1

9I2Integer (medium)I2

10I4Integer (large)I4

1, 2, 7, 17, 18, 20K20KanjiKnumber

1, 2, 7, 17, 18, 20, 21KVKanji variable lengthKV

1, 2, 7, 17, 18, 20, 21KV200Kanji variable length with maximum lengthKVnumber

3, 14LLogicalL

6, 13N8 or N8.2Unpacked decimalNnumber[.number]

6, 13NU2 or NU6.2Unpacked decimal unsignedNUnumber[.number]

6, 13P12 or P10.3Packed decimalPnumber[.number]

6, 13PU3 or PU4.2Packed decimal unsignedPUnumber[.number]

3, 5, 13TTimeT

2, 19U100UnicodeUnumber

2, 19, 21UVUnicode variable lengthUV

2, 19, 21UV200Unicode variable length with maximum lengthUVnumber

Note that equivalents of the data types are not necessarily supported in every target programming
language environment. Also, value ranges of themapped data type can differ. SeeMapping Software
AG IDL Data Types in the respective Wrapper or language-specific documentation.

Notes:

1. There is, however, an absolute limit (1 GB) which cannot be exceeded.

2. The maximum length you can specify depends on your hardware and software configuration
(apart from this product).

3. The length is implicit and must not be specified.

4. The supported range is from 1.1.0001 up to 31.12.9999. Dates BC (before the birth of Christ) are
not supported.

It is also possible to transfer 1.1.0000 as a value. This is a special value (because there is no year
0) and denotes “no date” is given. The no date value is the internal state of a #DATE variable
(Natural typeD) after a RESET #DATE is executedwithinNatural programs. The target language
environment determines how 'no date' is handled.

See the notes under data type D in the sectionMapping Software AG IDL Data Types to the target
language environment C | Java | .NET.

5. The data type T has two different meanings:

15EntireX RPC Programming

Software AG IDL File



■ A time-only meaning, which transfers a time without a date. The time-only meaning always
uses the invalid date 1.1.000 for the date part. The time part has a value range from 00:00:00.0
to 23:59:59.9. This time-only meaning is not supported.

■ A timestamp meaning, consisting of a date and time.

The supported range is from 1.1.0001 0:00:00.0 up to 31.12.9999 23:59:59.9. Dates BC (before
the birth of Christ) are not supported.

It is also possible to transfer 1.1.0000 0:00:00.0 as a value. This is a special value (because there
is no year 0) and denotes “no time” is given. The “no time” value is the internal state of a
#TIME (Natural type T) variable after a RESET #TIME is executed within Natural programs.
The target language environment determines how “no time” is handled.

See the notes under data type T in the sectionMapping Software AG IDL Data Types to the
target language C | Java | .NET.

6. The term number[.number] describes the number as it is: The first number is the number of digits
before the decimal point and the second number is the number of digits after the decimal point.
The total number of digits (before and after the decimal point) must not exceed 29. The number
of digits after the decimal point must not exceed 7.

7. The length is given in bytes, not in number of characters.

8. The valid integer range is from -128 up to +127.

9. The valid integer range is from -32768 up to +32767.

10. The valid integer range is from -2147483648 up to +2147483647.

11. The following term restricts the valid range which can be transferred from -n.nnnnnn+Enn up
to +n.nnnnnn+Enn. A mantissa of 7 decimal digits and an exponent of 2 decimal digits.

12. The following term restricts the valid range which can be transferred from -
n.nnnnnnnnnnnnnnn+Enn up to +n.nnnnnnnnnnnnnnn+Enn. A mantissa of 16 decimal digits
and an exponent of 2 decimal digits.

13. The real valid range and precision can be restricted by the mapping to the target language en-
vironment.

14. Valid values are TRUE and FALSE.

15. The length is given in bytes.

16.When using floating-point values, rounding errors can occur when converting to the target
language environment. Thus, values from sender and receiver might differ slightly.

17. In environments where multibyte, double-byte or other complex codepages are used, alphanu-
meric datamay increase or decrease during conversion. Thus, tomatch the field length restriction
given by the IDL types A and AV with maximum length, data must be truncated, otherwise
unpredictable resultswill occur. Themost popular internationalization approach ICUConversion
under Introduction to Internationalizationwith CONVERSION=SAGTRPC takes care of data increase/de-
crease.

EntireX RPC Programming16

Software AG IDL File



We recommend always using SAGTRPC for RPCdata streams.ConversionwithMultibyte, Double-
byte and other Complex Codepageswill always be correct, andConversion with Single-byte Codepages
is also efficient because SAGTRPC detects single-byte codepages automatically. See Conversion
Details.

See also Configuring ICU Conversion under Configuring Broker for Internationalization in the plat-
form-specific administration documentation.

18. In environments that use EBCDIC stateful codepages, encoded with escape technique (SI/SO
bytes), and where the most popular internationalization approach ICU Conversion under Intro-
duction to Internationalizationwith CONVERSION=SAGTRPC is used, the IDL types K and KV fields
allow you to transfer double-byte data without SO and SI bytes. This feature is designed for
use in Asian countries. For more information see Conversion with Multibyte, Double-byte and
other Complex Codepages.

19. The length is given in 2-byte Unicode code units following the Unicode standard. UTF-16. The
maximum length is restricted to 805306367 2-byte code units.

Depending on your target environment and target programming language, the mapping may
follow a different Unicode standard, for example UTF-32.

20. If SAGTRPCUser Exit under Introduction to Internationalization is used as the internationalization
approach, the handling of the different IDL types depends on the implementation of the
SAGTRPC user exit. This is your responsibility as user. SeeWriting SAGTRPC User Exits in the
platform-specific administration documentation.

21. Variable-length (e.g. AV, AVn) fields are transferred in the RPC data stream in the length spe-
cified. A defined maximum in the IDL file limits the length that can be transferred.

Variable-length fields with maximum (e.g. AVn) are important for connections to endpoints
that have no concept of variable-length data, such as COBOL (see Software AG IDL to COBOL
Mapping) and PL/I (see Software AG IDL to PL/I Mapping).

Fixed and Unbounded Arrays

A fixed array is transferred in the RPC data stream with all its elements.

With an unbounded array, the current number of elements and their contents are transferred in
the RPC data stream. A defined maximum in the IDL file limits the number of elements that can
be transferred.

For the formal syntax of arrays, refer to array-definition under Software AG IDL Grammar in the
IDL Editor documentation under Software AG IDL Grammar in the IDL Editor documentation.

Unbounded arrays with a maximum are important for connections to COBOL, which supports a
similar concept with the OCCURS DEPENDING ON clause. See Tables with Variable Size - DEPENDING
ON Clause under COBOL to IDL Mapping in the IDL Extractor for COBOL documentation.

17EntireX RPC Programming

Software AG IDL File



Rules for Coding IDL Files

1. Statements and their lexical entities can begin in any column and are separated by any number
of whitespace characters: blank, new line carriage return, horizontal tab, and form feed.

2. The maximum line length allowed in an IDL file is 256 characters.

3. Comments can be entered in the following ways:
■ If the entire line is to be used for a user comment, enter an asterisk or a slash and an asterisk
in columns 1 and 2 of the line:

* USER COMMENT
/* USER COMMENT

■ If only the latter part of a line is to be used for a user comment, enter an asterisk or slash as-
terisk.

1 NAME (A20) * USER COMMENT
1 NUMBER (A15) /* USER COMMENT

Rules for Coding Group and Parameter Names

Group and parameter names

1. can be defined with the following characters:
■ characters: a to z
■ characters: A to Z
■ digits: 0 to 9 (a digit must not be the first character)
■ special characters: - _ $ # & @ + /

other characters are not allowed.

2. are limited to a maximum length of 31 characters

3. are not allowed to be the same as a valid type-length specification.

For example:

EntireX RPC Programming18

Software AG IDL File



1 P1 (P1) In Out

is invalid and will cause an error because the name P1 is identical to the type-length P1.

4. must adhere to the rules of the target programming language, for example to permitted special
characters or reserved keywords.

5. cannot be defined as the following reserved names:

ALIGNED, CALLNAT, DATA, DEFINE, END-DEFINE, IMS, IN, INOUT, IS, LIBRARY, OUT, PARAMETER,
PROGRAM, RCODE, STRUCT, VERSION.

6. must be unique and must not conflict with those of the target programming language, see the
following portion of an IDL file

Define Data Parameter
1 AA (I2)
1 AA (I4)
1 long (I4)
End-define

and the output generated with the client.tpl as the template for target language C:

short int AA;
long AA; /*erroneous, double declaration*/
long long; /*erroneous, double declaration*/

The ambiguous declaration of AA and long is passed unchecked and the stub will be generated.
As you can see, this is not valid C syntax.

Rules for Coding Library, Library Alias, Program, ProgramAlias and Structure
Names

The following rules apply to library, library alias, program, program alias and structure names:

1. Names are restricted by length. Library, library alias, program and program alias are restricted
to a maximum length of 128 characters. A structure name is restricted to a maximum length of
31 characters.

2. Names must adhere to the rules of the target programming language, for example regarding
permitted special characters or reserved keywords.

3. Names should not start with the prefix "SAG". The prefix "SAG" is used within the delivered IDL
files. SeeChangeRPCPassword byWrappers andRPCClients andCommand and Info Services
IDLs for more information.

19EntireX RPC Programming

Software AG IDL File



4. Names must be unique and different within the IDL file after conversion of the name to
lowercase or uppercase characters. You cannot use the same name for a library, library alias,
program, program alias and structure

Example: The following names are not allowed within an IDL file:
■ MYLIBRARY and MyLibrary

■ CALC and Calc

■ MYSTRUCTURE and mystructure

EntireX RPC Programming20

Software AG IDL File



4 Command and Info Services IDLs

■ Command Service IDL ..................................................................................................................... 22
■ Info Service IDL .............................................................................................................................. 25
■ Examples ...................................................................................................................................... 28

21



The Broker-internal RPC CIS Server provides the Command and Information Services using the
Remote Procedure Call (RPC) protocol.

Two CIS IDL files are available in directory EntireX\etc\idl.

RPC CIS is a complete implementation of the Command and Information Services.

See Broker CIS Data Structures in the ACI Programming documentation for a description of the CIS
API. The names of the fields can also be found in the IDL (with case-insensitive and insignificant
modifications).

The service names SAG/ETBCIS/RPCCIS and RPC/RPCCIS/CALLNAT can be used for all versions of
the CIS IDLs.

This chapter covers the following topics:

Command Service IDL

The files SagCmdServiceV6.idl to SagCmdServiceV8.idl are contained in directory etc. They provide
an interface description of CIS version 6 and above. Brokers with more recent CIS versions are
backward compatible down to version 6 via RPC CIS.

File SagCmdServiceV8.idlprovides the interface description for all Command Services of CIS version
8.

This section covers the following topics:

■ Stucture COMMAND_REQUEST
■ Program COMMAND

Stucture COMMAND_REQUEST

struct 'COMMAND_REQUEST' is /*Broker CIS: command request structure
define data parameter
1 Command (I2)
1 ObjectType (I2)
1 Option (I2)
1 puid (B28)
1 uowid (A16)
1 Topic (A96)
1 uid (A32)
1 Token (A32)
1 ServerClass (A32)
1 ServerName (A32)
1 ServiceName (A32)
1 reserved_etbinfo_v73_2 (A32)

EntireX RPC Programming22

Command and Info Services IDLs



1 convid (A16)
1 transportId (A3)
1 nSequenceNumber (I4)
1 cExcludeAttachServers (I1)
1 nErrorNumber (I4)
end-define

The request structure is described underCommandRequest StructureunderBroker CISData Structures
in the ACI Programming documentation. Note also the Command Request Parameter Combinations
under Broker CIS Data Structures in the ACI Programming documentation.

Program COMMAND

Program 'COMMAND':'command' is /*command request
define data parameter
1 CmdRequest ('COMMAND_REQUEST') In
1 Function_Result (I4) Out
end-define

You can call the command service using program COMMAND, with the structure COMMAND_REQUEST
as argument. See Command Request Structure under Broker CIS Data Structures in the ACI Program-
ming documentation. Alternatively, you can enter the functions listed in the table directly:

CommandNumberLong Name (2)Program Short Name (1)

all available commandsncommandCOMMAND

ALLOW-NEWUOWMSGS13cmdAllowCALLOW

CLEAR-CMDLOG-FILTER20cmdClearCmdLogFilterCCLECLF

NO-OPERATION88cmdNoOperationCNOP

CONNECT-PSTORE17cmdConnectPStoreCCONPST

DISABLE-ACCOUNTING28cmdDisableAccountingCDISACC

DISABLE-CMDLOG24cmdDisableCmdLogCDISCL

DISABLE-CMDLOG-FILTER22cmdDisableCmdLogFilterCDISCLF

DISABLE-DYN-WORKER37cmdDisableDynWorkerCDISDWK

DISCONNECT-PSTORE18cmdDisconnectPStoreCDISPST

ENABLE-ACCOUNTING27cmdEnableAccountingCENAACC

ENABLE-CMDLOG23cmdEnableCmdLogCENACL

ENABLE-CMDLOG-FILTER21cmdEnableCmdLogFilterCENACLF

ENABLE-DYN-WORKER38cmdEnableDynWorkerCENADWK

FORBID-NEWUOWMSGS14cmdForbidCFORBID

PRODUCE-STATISTICS25cmdProduceStatisticsCPROSTA

PURGE12cmdPurgeCPURGE

RESET-USER29cmdResetUserCRSTUSR

23EntireX RPC Programming

Command and Info Services IDLs



CommandNumberLong Name (2)Program Short Name (1)

RESUME31cmdResumeCTRARES

SET-CMDLOG-FILTER19cmdSetCmdLogFilterCSETCLF

SHUTDOWN (3)8cmdShutdownBrokerCSHUTB

SHUTDOWN8cmdShutdownConversationCSHUTC

SHUTDOWN8cmdShutdownParticipantCSHUTP

SHUTDOWN8cmdShutdownServerCSHUTS

START33cmdStartCTRASTR

STATUS36cmdStatusCTRASTA

STOP32cmdStopCTRASTP

SUBSCRIBE (4)15cmdSubscribeCSUB

SUSPEND30cmdSuspendCTRASUS

SWITCH-CMDLOG26cmdSwitchCmdLogCSWICL

TRACE-FLUSH35cmdTraceFlushCTRCFLU

TRACE-OFF2cmdTraceOffCTRCOFF

TRACE-ON1cmdTraceOnCTRCON

TRAP-ERROR34cmdTrapErrorCTRPERR

UNSUBSCRIBE (4)16cmdUnsubscribeCUNSUB

Notes:

1. Short name as used, for example, by C programs.

2. Long name as used, for example, by Java programs.

3. You cannot execute CSHUTB (cmdShudtownBroker) in a non-secure mode.

4. SeeWriting Applications: Publish and Subscribe in the ACI Programming documentation.

The prototypes and source code can be found in the generated files:

File(s)Language

CSAGCCV8.h, CSAGCCV8.cC

SagCmdServiceV8.javaJava

Sagccv8.cs.NET

EntireX RPC Programming24

Command and Info Services IDLs



Info Service IDL

Files SagInfServiceV6.idl to SagInfServiceV8.idl are contained in directory etc. They provide an interface
description of CIS version 6 and above. Brokers with more recent CIS versions are backward
compatible down to version 6 via RPC CIS.

File SagInfServiceV8.idlprovides the interface description for all Information Services. The following
functions are used to receive an unbounded array of the corresponding Broker Information Service.

See also Using Unbounded Arrays underWriting Advanced Applications with the C Wrapper.

Structure INFORMATION_REQUEST

struct 'INFORMATION_REQUEST' is /*CIS: information request
define data parameter
1 ObjectType (I2)
1 uid (A32)
1 puid (B28)
1 Token (A32)
1 ServerClass (A32)
1 ServerName (A32)
1 ServiceName (A32)
1 convid (A16)
1 uowid (A16)
1 uowStatus (I1)
1 userStatus (A32)
1 recvUID (A32)
1 recvToken (A32)
1 recvClass (A32)
1 recvServer (A32)
1 recvService (A32)
1 Topic (A96)
1 publicationId (A16)
1 subscriptionType (I2)
1 conversationType (I2)
1 level (I1)
end-define

The request structure is described under Information Request Structure under Broker CIS Data
Structures in the ACI Programming documentation.

25EntireX RPC Programming

Command and Info Services IDLs



Program: INFO

program 'INFO':'info' is /*all
define data parameter
1 InfRequest ('INFORMATION_REQUEST') In
1 InfBroker ('INFO_BRK'/V) Out
1 InfWorker ('INFO_WRK'/V) Out
1 InfService ('INFO_SV'/V) Out
1 InfClient ('INFO_CS'/V) Out
1 InfServer ('INFO_CS'/V) Out
1 InfParticipant ('INFO_CS'/V) Out
1 InfConversation ('INFO_CV'/V) Out
1 InfPSF ('INFO_PSF'/V) Out
1 InfPSFADA ('INFO_PSFADA'/V) Out
1 InfPSFDIV ('INFO_PSFDIV'/V) Out
1 InfPSFFile ('INFO_PSFFILE'/V) Out
1 InfPSFCTree ('INFO_PSFCTREE'/V) Out
1 InfSubscriber ('INFO_SUBSCRIBER'/V) Out
1 InfPublisher ('INFO_PUBLISHER'/V) Out
1 InfPublication ('INFO_PUBLICATION'/V) Out
1 InfTopic ('INFO_TOPIC'/V) Out
1 InfTcp ('INFO_TCP'/V) Out
1 InfSecurity ('INFO_SECURITY'/V) Out
1 InfSsl ('INFO_SSL'/V) Out
1 InfCmdLogFilter ('INFO_CMDLOG_FILTER'/V) Out
1 InfNet ('INFO_NET'/V) Out
1 InfPoolUsage ('INFO_POOL_USAGE'/V) Out
1 InfResourceUsage ('INFO_RESOURCE_USAGE'/V) Out
1 InfStatistics ('INFO_STATISTICS'/V) Out
1 InfUser ('INFO_USER'/V) Out
1 InfWorkerUsage ('INFO_WRK_USAGE'/V) Out
1 Function_Result (I4) Out
end-define

You can call the information service using program INFO, with the structure INFORMATION_REQUEST
as argument. See Information Request Structure under Broker CISData Structures in theACI Program-
ming documentation. Depending on the object type, the reply will contain the corresponding
INFO_ structure containing one or more records. The variable array contains all available data. No
segmentation takes place. Alternatively, you can call directly the functions listed below for the
individual object types.

All functions below return the corresponding structure from the information reply structures.

EntireX RPC Programming26

Command and Info Services IDLs



SeeLong Name (2)Program Short Name (1)

One of available reply structures; see Information Reply
Structures under Broker CIS Data Structures in the ACI
Programming documentation

infoINFO

BROKER-OBJECTinfoBrokerIBROKER

CMDLOG_FILTER-OBJECTinfoCmdLogFilterICMDLGF

CLIENT-SERVER-PARTICIPANT-OBJECTinfoClientICLIENT

CONVERSATION-OBJECTinfoConversationICONV

NET-OBJECTinfoNetINET

POOL-USAGE-OBJECTinfoPoolUsageIPOOLUS

CLIENT-SERVER-PARTICIPANT-OBJECTinfoParticipantIPARTI

PSF-OBJECTinfoPsfIPSF

PSFADA-OBJECTinfoPsfAdaIPSFADA

PSFCTREE-OBJECTinfoPsfCtrIPSFCTR

PSFDIV-OBJECTinfoPsfDivIPSFDIV

PSFFILE-OBJECTinfoPsfFilIPSFFIL

PUBLICATION-OBJECTinfoPublicationIPUBLIC

PUBLISHER-OBJECTinfoPublisherIPUBLIS

RESOURCE-USAGE-OBJECTinfoResourceUsageIRESUS

SECURITY-OBJECTinfoSecurityISECUR

CLIENT-SERVER-PARTICIPANT-OBJECTinfoServerISERVER

SERVICE-OBJECTinfoServiceISERVIC

SSL-OBJECTinfoSSLISSL

STATISTICS-OBJECTinfoStatisticsISTAT

SUBSCRIBER-OBJECTinfoSubscriberISUBSCR

TCP-OBJECTinfoTcpITCP

TOPIC-OBJECTinfoTopicITOPIC

USER-OBJECTinfoUserIUSER

WORKER-OBJECTinfoWorkeIWORKER

WORKER-USAGE-OBJECTinfoWorkerUsageIWORKUS

Notes:

1. Short name as used, for example, by C programs.

2. Long name as used, for example, by Java programs.

The prototypes and source code can be found in the generated files:

27EntireX RPC Programming

Command and Info Services IDLs



File(s)Language

CSAGCIV8.h, CSAGCIV8.cC

SagInfServiceV8.javaJava

Sagciv8.cs.NET

Examples

The following examples are available:

■ .NET CIS Client Example
■ Java CIS Client Example

.NET CIS Client Example

The .NET CIS Client Example can be found in the examples directory NetWrapper\Client\SagCis-
Client.cs. The directory includes the source file SagCisClient.cs and the README.TXT.

Information required to prepare and configure the EntireX Workbench:

■ EntireX Workbench.
■ Using EntireX Custom Wrappers or
■ Using the EntireX Workbench in Command-line Mode.

Information required to to write a .NET CIS Client:

■ Writing Applications with the .NET Wrapper.
■ Using Unbounded Arrays underWriting Advanced Applications with the C Wrapper.

Build steps:

1. Prepare Eclipse.

2. Start Eclipse.

3. Create a new Java Project.

4. Add files SagCmdServiceV8.idl and SagInfServiceV8.idl to the project.

5. Generate the .NET RPC Client from SagCmdServiceV8.idl using the context menu.

6. Generate the .NET RPC Client from SagInfServiceV8.idl using the context menu.

7. Start Visual Studio.

8. Create a new Visual Studio Project. (.NET Console Application).

9. Insert the generated sources SAGCCV8.cs and SAGCIV8.cs.

EntireX RPC Programming28

Command and Info Services IDLs



10. Delete Program.cs.

11. Insert .NET example file SagCisClient.cs to the project.

12. Add Reference (<drive>:\SoftwareAG\common\EntireX\bin\SoftwareAG.EntireX.NETWrap-
per.Runtime.dll).

13. Build the solution.

14. Start the .NET CIS Client.

Java CIS Client Example

The Java CIS Client Example can be found in the examples directory EntireX\Examples\JavaWrap-
per\Client\SagCisService\mainSagCisClient.java. This directory includes the source filemainSagCis-
Client.java and the README.TXT.

Information required to prepare and configure the EntireX Workbench:

■ EntireX Workbench.
■ Using EntireX Custom Wrappers or
■ Using the EntireX Workbench in Command-line Mode

Information required to to write a Java CIS Client:

■ Writing Applications with the Java Wrapper

Build steps:

1. Prepare Eclipse.

2. Start Eclipse.

3. Create a new Java Project.

4. Add files SagCmdServiceV8.idl and SagInfServiceV8.idl to the project.

5. Add source file mainSagCisClient.java to the project.

6. Generate the Java RPC Client from SagCmdServiceV8.idl using the context menu.

7. Generate the Java RPC Client from SagInfServiceV8.idl using the context menu.

8. Build the Java CIS Client project.

9. Start the Java CIS Client.

29EntireX RPC Programming

Command and Info Services IDLs



30



5 CommonFeatures ofWrappers andRPC-basedComponents

■ Change RPC Password by Wrappers and RPC Clients ........................................................................... 32
■ Natural Logon or Changing the Library Name ........................................................................................ 33
■ Conversational RPC ........................................................................................................................ 34
■ Non-conversational RPC ................................................................................................................... 34
■ Natural Security .............................................................................................................................. 35
■ RPC Compression ........................................................................................................................... 35

31



This chapter provides additional information on concepts and features common to all wrappers
and RPC-based components.

Change RPC Password by Wrappers and RPC Clients

The application programmer can embed an RPC password change in an application. This is useful
if the application programmerwants to provide this functionality to end users of RPC applications.
It is necessary if the RPC server forces alteration of the RPC password, otherwise denying use of
the RPC server.

The functionality is provided with a special-purpose IDL:

Library 'SAGCRPW' : 'SagChangeRPCPassword' is
Program 'SAGCRPW' : 'changeRPCPassword' is

Define Data Parameter
1 newRPCPassword (A8) in

End-Define

The prefix “SAG” is reserved and is used for Software AG delivered IDL files and must not be
used by customer applications; see Rules for Coding Library, Library Alias, Program, Program Alias
and Structure Names under Software AG IDL File in the IDL Editor documentation.

Proceed as follows:

■ Define the IDL in the Workbench Editor and generate a wrapper as you would for any other
IDL.

■ Write a wrapper client program and issue an RPC request as you would for any other IDL. See
the documentation on EntireX wrappers for an example.

■ Specify the old RPC password in the same way as for any other RPC request issued. See the
wrapper documentation on how to specify the password.

Natural RPC Server running under Natural Security

■ may force the user of an application to alter the RPC Password, e.g. in the following situations:
■ NAT838:

Change your password. Enter the old and a new password

■ NAT873:

EntireX RPC Programming32

Common Features of Wrappers and RPC-based Components



User ID or password invalid

Other RPC Servers

■ do not support this functionality.

Natural Logon or Changing the Library Name

The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is spe-
cified in the Software AG IDL file (see library-definition under Software AG IDL Grammar in
the IDL Editor documentation). The library name can be overridden bywrapper-specificmethods,
see your wrapper documentation.

For EntireX RPC Servers, depending on the target server, the library name

■ is used by an EntireX Java RPC server. The program name is a method within the class called
as the name of the class called. See Administering the EntireX Java RPC Server in the UNIX and
Windows administration documentation.

■ is used by an EntireX RPC server underWindows as the name of the dynamic-link library (DLL).
The program name is a function export within the DLL called. SeeAdministering the EntireX Java
RPC Server in the UNIX and Windows administration documentation.

■ is used by an EntireX RPC server under UNIX as the name of the shared library or shared object
called. The program name is a function export within the shared library or shared object called.
See Administering the EntireX Java RPC Server in the UNIX and Windows administration docu-
mentation.

■ is customizable if a CICS RPC Server is used. See Locating and Calling the Target Server.
■ for Conversational RPC is considered for every remote procedure call that belongs to the con-
versation.

For Natural RPC servers, the library name

■ is used as the Natural library name
■ can have a maximum length of 8 characters
■ is considered only if Natural Logon is forced, even to Natural RPC Server running without
Natural Security. If Natural Logon is not given, a Natural RPC Server (under Natural Security
or non-security) does not consider the library name. See your EntireX Wrapper documentation
for information on how Natural Logon can be forced.

■ forConversational RPC is evaluated at the time the conversation is opened. During an ongoing
RPC conversation the Natural library cannot be changed due to Natural RPC rules.

33EntireX RPC Programming

Common Features of Wrappers and RPC-based Components



Conversational RPC

EntireX RPC and Natural RPC also supports conversational communication (also known as con-
nection-oriented communication), where the two partners (client and server) retain a communic-
ation link over several remote procedure calls.

A context can bemaintained on the server sidewhen aNatural RPC Server is in use. See the DEFINE
DATA CONTEXT statement in the appropriate Natural documentation.

EntireX Wrappers and RPC clients allow termination of an RPC conversation either successfully
or abnormally by offering two differentmethods or function calls for ending an RPC conversation.
See the appropriate EntireX Wrapper or RPC client documentation for information on how to
initiate the end of an RPC communication.

If communicating with a Natural RPC Server and

■ the RPC conversation is ended normally,

the Natural RPC Server executes a Natural END TRANSACTION statement, resulting in a commit
of all database manipulations at the server side done within the RPC conversation;

■ the RPC conversation is aborted,

the Natural RPC Server executes a Natural BACKOUT TRANSACTION statement, resulting in a
backout of all database manipulations done at the server side within the RPC conversation.

See your Natural and Natural RPC documentation for more information.

If communicating with an EntireX RPC Server

■ no automatic database processing is initiated. Aborting and closing an RPC conversation are
the same and have no effect if database manipulations were done at the server side within the
RPC conversation.

Non-conversational RPC

The basic method of communication for both the EntireX and the Natural RPC is non-conversa-
tional (also known as connectionless communication).

Using this method,

■ each RPC request is isolated and has no relationship to any other RPC request.
■ there is no context and no context could be maintained by the RPC Server.

EntireX RPC Programming34

Common Features of Wrappers and RPC-based Components



Natural Security

ANatural RPC Server may run under Natural Security to protect RPC requests. RPC clients need
to be

■ authenticated
i.e. the RPC client needs to be defined within Natural Security. Authentication is done with a
user ID/password check.

■ authorized
i.e. the RPC client needs to be allowed to access programs in the target Natural library, otherwise
a security violation error will be returned.

See your Natural Security documentation for more information.

RPC Compression

RPC compression is a feature used to reduce network data sizes. EntireX tries to select RPC com-
pression automatically. If RPC compression is supported by your RPC server, we recommend
using it.

Natural RPC Servers

Natural RPC Servers running under Natural version 3.1.6 and later support RPC compression. If
you are communicating with Natural RPC version 5.1.1 and later, RPC compression is selected
automatically. To enable connection to earlier versions of Natural RPC Servers, EntireX wrappers
and RPC technology allow you to switch off RPC compression.

EntireX RPC Servers

All versions of the EntireX RPC server support RPC compression. If you are communicating with
an RPC server using EntireX 5.3.1 and later, RPC compression is selected automatically.

35EntireX RPC Programming

Common Features of Wrappers and RPC-based Components



36


	EntireX RPC Programming
	Table of Contents
	1 Introduction to RPC Programming
	RPC Technology
	RPC-based Components
	Introduction
	Advantages of RPC-based Components
	Connectivity Matrix

	Reliable RPC

	2 Using the Broker ID in Applications
	URL-style Broker ID
	Examples
	Examples of Parameters
	Java Programming Language
	Other Programming Languages


	Transport-method-style Broker ID
	Transport Method TCP
	Transport Method SSL
	Transport Method NET (Entire Net-Work) under z/OS, BS2000/OSD and z/VSE
	Examples
	Default Rules
	Technical Limitations
	Java
	Other Programming Languages



	3 Software AG IDL File
	Introduction to the IDL File
	IDL Data Types
	Fixed and Unbounded Arrays
	Rules for Coding IDL Files
	Rules for Coding Group and Parameter Names
	Rules for Coding Library, Library Alias, Program, Program Alias and Structure Names

	4 Command and Info Services IDLs
	Command Service IDL
	Stucture COMMAND_REQUEST
	Program COMMAND

	Info Service IDL
	Structure INFORMATION_REQUEST
	Program: INFO

	Examples
	.NET CIS Client Example
	Java CIS Client Example


	5 Common Features of Wrappers and RPC-based Components
	Change RPC Password by Wrappers and RPC Clients
	Natural Logon or Changing the Library Name
	Conversational RPC
	Non-conversational RPC
	Natural Security
	RPC Compression
	Natural RPC Servers
	EntireX RPC Servers



