5 software~

webMethods EntireX

EntireX Java Wrapper

Version 9.6

April 2014

webMethods EntireX

This document applies to webMethods EntireX Version 9.6.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXJAVAWRAPPER-96-20140628

Table of Contents

L e s 1
1 Introduction to the Java Wrapperc.ccccooiiiiiiiiiii 3
2 Using the Java WIaPPeTccccovviiiiiiiiiiiiiiiiiiccccic e 5

Generating Java SOUICESccieiiiiiiiiiiicc e 6
Generating a Java Client Interface Objectc.ccceiiviiiiiiiiiiiiiiiiiiics 11
Generating a Java Client Interface Object without inner Classes
(Bean-compliant)ccccoovuiiiiiiiiiiiiiie e 12
Generating a Java Server Interface Objectcccocoiviiiiiiiiiiiiiii, 13
Using the IDL TeSterccooiiiiiiiiii 14
3 Using the Java Wrapper in Command-line Modecccccooiiiiiniiiiiiinnn 17
Command-line OPtionscccciiiiiiiiiiiiiiic 18
EXamMPLe ..o 19
Further Examplesccooooiiiiiiiiiii 20
4 Software AG IDL to Java Mappingccccceviiiiiiiiiiiiiiiiiiiiciccicceeccc e 23
Mapping IDL Data Types to Java Data Typesccccovviiiiiiiiiiiniiiiiiinnne, 24
Mapping Library Name and Aliascccoocooviiiiiiiiiiiii, 25
Mapping Program Name and Aliascccceeviiiiiiiiiiiiiiiiniiiccceccee, 26
Mapping Parameter Namescoccooiiiiiiiiii 26
Mapping Fixed and Unbounded Arrayscccoceeviiniiiiieniiiniiiniiiieeeee 26
Mapping Groups and Periodic GIoupscccocevviviiiiiiiiiiiiiiiiicccicecs 27
Mapping SrUCtUTESc.ooiiiiiiiiiicc e 32
Mapping the Direction Attributes IN, OUT, and INOUTc.ccccevvirnnnnnn. 37
Mapping the aligned Attributec.ccooviiiiiii 37
Calling Servers as Procedures or FUNCHONScccoevviiiiiiiiiiiiiiiiiiiine, 38

IT Writing Applications with the Java Wrapper ... 39

5 Writing Simple Applications with the Java Wrapperccccccooviviiiiiiiinnnn 41
Required StePsccociiiiiiiiiiiiiiicii 42
Java Wrapper Constructorsccooviiiiiiiiiiiiciicccccee 42
Generated Java Wrapper Methodsccccociiiiiiiiiniiiiii, 43

6 Writing Advanced Applications - Java Wrapperc.cccoovviiiiiiiiicniiciic, 45
Natural Logon or Changing the Library Namec.cccccccovviiiiiniiiinnnnnn. 46
Customizing the Generated Java Classescccceviiiiiiiiiiiiiiiiiiiiiice 46
Using RPC COmMPIessionccccocuiiiiiiiiiiiiiiiiiiiiciiciiccccneceec e 48
Using Conversational RPCc.ccoccoiiiiiiiiiiiiiiiicc, 48
Using Natural Security ..o 49
Support of DVIPAoooiiiiiiiiiiiiiici e 50

7 Writing RPC Clients for the RPC-ACI Bridge in Javaccccocveviiiiniiiiiicne 51

OO 53

8 Reliable RPC for Java WIapPerccccoviiiiiiiiiiiiiiiiiciiccicciciccc e 55
Introduction to Reliable RPCc.cooiiiiiiiiiiiic 56
Writing @ CHENtoociiiiiiiiiiiii e 57
WIHNG @ SEIVET ..cuviiiiiiciicc 59
Broker Configurationc.ccooiiiiiiiiiiiiiiiii i 59

EntireX Java Wrapper

9 Java Wrapper Examplescccocuiiiiiiiiiiiiiiiiiic 61
Delivered Java Wrapper Examplescccoooooiiiiiiiiiiiiii, 62
Running the Delivered Examplescccccociiiiiiiiiiiiiiiiiiiiiiiiiiciccee 64

iv EntireX Java Wrapper

|

® 1 Introduction 10 the JaVa WIEPPETii i 3
B 2 USING the JAVA WIPPET ..ottt e e e e e e e 5
= 3 Using the Java Wrapper in Command-ling MOGEccouiiiiiiiiiiee e 17

= 4 Software AG IDL t0 Java MapPinNgcooeiiiiiiiiiiie e 23

1 Introduction to the Java Wrapper

The EntireX Java Wrapper provides access to EntireX RPC-based components from Java applica-
tions. EntireX Java RPC enables users to develop both client and server applications written in
Java. Java applets can also be used as EntireX RPC clients.

To use the Java Wrapper, the IDL file must be in a Java project.
The Java Wrapper uses the properties of an IDL file to

" use a source folder (the folder that the Java builder uses to compile Java source classes)

make the classes public

= extend a custom class for the RPC client

put the client and the tester in a client package

put the server in a server package.

" set a superclass to be extended by all the bean-compliant client-generated classes.

The Java Wrapper generates multiple Java sources from an IDL file and (internally) the related
CVM file (see CVM File), if such a file has been generated. The following sources can be generated:
® RPC client

® RPC client (Bean-compliant)

" RPC server

" RPC tester

2 Using the Java Wrapper

B GENErating JAVA SOUCESviviiiiiieee ettt e e ettt e e e e e e e ettt e e e e e e e ettt e e e e e e e e s e 6
= Generating a Java Client Interface OBJECEoiiiiiiiiie e 11
= Generating a Java Client Interface Object without inner Classes (Bean-compliant)cccooeeviiieiiiinnn. 12
= Generating a Java Server Interface ODJECooiiiiiiiiiii i 13
L O LT (L= R = (- PSP PPPPP 14

Using the Java Wrapper

Generating Java Sources

Select an IDL File

To generate a Java source, select an IDL file and, using the context menu, choose All or All (with

Bean compliant client).

5] Package Explorer &4 'Eg Hierarchey

= 1= Demo
[sre
B\ JRE System Library [jrel.6.0_07]

Mew

Open
Open With
Show In

=] Copy

5= Copy Qualified Marne
i

||z Paste

3 Delete

Build Path
Refactor

£y Irmpart. .
7y Export. .,

Q§“ Refresh
Assign Warking Sets...

Edit: xML Mapping of Software Ac I0L

Test Software 4G IDL...

Edit: COBOL Mapping of Software AG IDL

Run As
Debug As
Profile As
Team
Compare With
Replace with

Generate PLIT From Software A IDL
Generate EJB from Software AG IDL
Generate Java from S 2 Aig I0L

Properties

Generate COBCL from Software AG IDL
Generate C from Software AG IDL

F3

Alk+Shift+w L

Chrl+C

Chrl+y

Delete

Alk+Shift+T L

FS

v+ vBH v v v v w v v w

Alt+Enter

5g 7708

R nk

RPC Client (Eean compliant)
RPC Server

RPC Tester

Al

All {with Bean compliant client)

In addition to the standard commands of Eclipse, the context menu of a Java file contains a group

of commands for the Java Wrapper.

EntireX Java Wrapper

Using the Java Wrapper

Command Description

All Executes the next three steps described below. The RPC Client
(Bean-compliant) will not be executed.

RPC Tester Generates a client test program.

RPC Server Generates a Java server class and a server skeleton for your own
implementation.

RPC Client Generates a Java client class.

All (with Bean-compliant client)|Same as All, but the generated client will be Bean-compliant.

RPC Client (Bean-compliant) |Generates Java (client) classes instead of inner classes. There is one client
class generated for each library in the Software AG IDL file.

/\, Important: If the IDL file is in a Java project, the Java Wrapper uses the project to compile
the Java files. If the IDL file is in a simple project, the Java files are generated, but not com-
piled.

To compile the files generated by the Java Wrapper, file entirex.jar must be included in the build
path of the project. The Java Wrapper checks whether entirex.jar is in the project's build path. If
not, the setting for entirex.jar on the preference page is added to the build path.

EntireX Java Wrapper 7

Using the Java Wrapper

Preferences

H Preferences

|I:y|:ue filter ket Java Wrapper e
Centrasite Al The Java ‘Wrapper preferences are used to generate the various Java code, e.q. for client, server or tester,
Connectivity
Help For general settings use Entirex’

InstallfUpdate
lava The wisibility for generated classes, The package For the client is also used For the bester,
Mylyn If wou want to generate a kester, the RPC client class must be public,
Flug-in Development Public package
Report Design .
Run/Debug EntireX JAR.: | [Browise. ..]
[=)- Software AG Client
[=)- Enkire, Package name: | |
C Wrapper

COBOL Wrapper

Custom Wrapper
DoZM \Wrapper Java customization class: | |

The optional superclass used For the client interface object,

Deployment Enviror

EJB Wit apper The optional superclass For all Bean compliant dlasses generated, apart From the actual client interface objeck,
I0L Extractaor For CC 5 | | |
I0L Extractar For Me dperciass:

I0L Extractaor For PL Server

Installation Package name: | |

PL/T Wrapper
RPC Environments

%ML Mapping Editar
Product 1 Samole Prefe ™

’Restore Defauls l l apply]

.;:':?:;. [Ok l[Cancel]

In general, the preferences of the Java Wrapper are used to set the Customization Class and the
package name for the RPC client and the RPC server. The package for the client is also used for
the tester. If you want to generate a tester, the RPC client class must be public. The Superclass
field is used to specify an extension class for all Bean-compliant generated classes apart from the
actual client interface object.

To set the broker ID and the server address for all new IDL files in the workspace, use the preference
page “EntireX”.

8 EntireX Java Wrapper

Using the Java Wrapper

& Preferences |:|®

|t3-'|:ue Filker text | Entirex =l

= Saftware AG *| General Entires IDL preferences to specify the Broker ID and the Service
Description (Class, Server, Service) that are used in the various Entirel \Wrappers,
JMET W
PAPREY Broker 10 | localhost: 1971
C Wrapper

Cuskom Wrapper
DCOM Wrapper
Deplovment Environments Service: | CALLMAT
EJE Wrapper
IDL Extractor For COBOL
1DL Extractar For Matural
IDL Extractor For PLJT
Installation
Java Wrapper
PLIT Wrapper
RPC Environments -
Weh Service Wrapper
#ML Mapping Editar
Proxy Settings
UDDI Reqistries

Server Mame: | SRY1

|
COBOL Wrapper Server Class: | RPC |
|
|

[Resture Qefaults] [Apply]

|£

2 [(] 4 H Zancel]

Properties

For the settings of an individual IDL file, use the properties of this file. The property pages include
the same fields to set as the preference pages. In addition, the property page of the Java Wrapper
includes the project-specific setting of the source folder. This is the package root of the generated
files.

EntireX Java Wrapper 9

Using the Java Wrapper

M Properties for, one.idl

[Evpe filker text | EntireX Java Wrapper e

Resource The Java Wrapper properties are used to generate the various Java code, e.g, for client, server or tester, The default

Enikirex settings are provided by the Java Wrapper preferences,
Entirex C Wrapper
Entirex COBOL Wrapper
EnkireX Custom \Wrapper
Entirex DCOM Wrappet

The visibility For generated classes, The package for the client is also used For the tester,
If ou want to generate a kester, the RPC client class must be public,

Entire EJB Wrapper Public package
Entire Arapper Source folder: | lB_rnwse...]
Entire PLIT Wrapper]
Run/Debug Settings Client
Package name: | | [B;owse... l

The optional superclass used for the client interface object,

Java customization class: | | [Brgwse... l

The optional superclass for all Bean compliant classes generated, apart from the actual client interface object.

Superclass: | | [BI’DﬂSB... l
Server
Package name: | | [Browsg... l

’Restore Qefaultsl [Apply]

@ I a4 l[Cancel]

& Properties for example.idl

|ty|:ue filker bext | Entirex (=

RESDEE General Entirel IDL properties to specify the Broker ID and the Service Descripkion

Entire (Class, Server, Service) that are used in the various Entirel \Wrappers, The defaulk
Entire \MET \Wrapper settings are provided by the Entirel preference page.

Entires C \Wrapper |
Entirex COBOL Wrapper
Enkires Cuskorn Wrapper Server Class: | RPC |

Broker I | localhosk: 1971

Entirex DCOM Wrapper
Entirex EJB Wrapper
Entirei Java Wrapper Service: | CALLMAT
Entire PLIT Wrapper

Entirex Web Service Wrapper

Run/Debug Settings

Server Mame: | SRVl

[Restore Defaults] [apply]

) [K H Cancel]

10 EntireX Java Wrapper

Using the Java Wrapper

Starting the IDL Tester

There are two alternatives for starting the EntireX IDL Tester:

" From the Context Menu
This is the preferred method. In the context menu of the IDL file, choose Test Software AG
IDL.... A dialog appears for choosing the program to test.

The IDL Tester is generated and launched as a separate Java Application. See EntireX IDL Tester

for more details.

® From Generated Test Program
To start the IDL Tester, select the generated test program in the Navigator or Package Explorer
and choose Run from the context menu or toolbar.

The IDL Tester is started as a separate application. See Using the IDL Tester.

Generating a Java Client Interface Object

» To generate a Java client interface object

1 Inthe Navigator view or in the Package Explorer, select the Software AG IDL file.

2 From the context menu, choose Generate Java from Software AG IDL > RPC Client.

This starts the generation of the Java source. The Java source files are written to the source
folder of the IDL file. The source folder is set in the properties of the IDL file.

This starts the generation and compiles the generated Java sources. The Java source files and the
class files are written to the directory of the IDL file.

File

Description

KLibrary name>.java

The Java source code of the generated client interface object. The library name is
used to build the file name and the class name. Do not change this file.

If more than one library is defined in the IDL file, separate client interface object files will be gen-
erated for each library.

EntireX Java Wrapper

11

Using the Java Wrapper

Generating a Java Client Interface Object without inner Classes (Bean-com-
pliant)

When using the Java Wrapper to generate an RPC client (Bean-compliant), the resulting client in-
terface object contains no inner classes. Instead, there will be separate classes generated for each
structure within the IDL file.

| Note: A superclass to be extended by all the newly generated classes can be specified in the

setup menus for Preferences and Properties.

» To generate a Java client interface object (Bean-compliant)

1 Select an IDL file.

2 From the context menu, choose Generate Java from Software AG IDL > RPC Client (Bean-
compliant).

As a result, the generation of the Java source is started. The Java source files are written to
the source folder of the IDL file and the generated Java sources are compiled.

| Note: The source folder can be specified in the setup menu for Properties.

The Java source files and class files are written to the directory of the IDL file. The following table
gives a short description:

File Description

<Library name>.java |The Java source code of the generated client interface object. The library name is
used to build the file name and the class name. Do not change this file.

<Structure name>.java |A Java class is generated for each structure and group within the input IDL file(s).

| Note: If more than one library is defined in the IDL file, separate client interface object files

will be generated for each library.

12 EntireX Java Wrapper

Using the Java Wrapper

Generating a Java Server Interface Object

» To generate a Java server interface object

1 Inthe Navigator view or the Package Explorer, select the Software AG IDL file.

2 From the Context menu, choose Generate Java from Software AG IDL > RPC Server.

The Java Wrapper produces the following files for the server interface object in the source folder
of the IDL file.

File Description

KLibrary name>Stub.java| The Java source code of the generated server interface object. The library name
followed by Interface Object is used to build the file name. Do not change this

file.
<Library A Java source file that contains a server skeleton. This is a complete Java class
name >Server.java that can be compiled. It contains all methods the server has to implement. Add

your application-specific coding in the places marked with the // insert
your application specific code here comment. The library name
followed by “Server” is used to build the file name. If this file exists, it will not
be generated.

Abstract<Library A Java source file that contains the generated part of the server as an abstract
name >Server.java class. The server skeleton <Library name>Server.java extends this class and
contains the application-specific code. Separating the generated code and the
application-specific code simplifies re-generation of the RPC server.

If more than one library is defined in the IDL file, separate server interface object files will be
generated for each library. The server package name is used as the package name in the generated
server files. The server package is part of the Java Wrapper properties of the IDL file. At runtime,
configure the server packages in the Java RPC Server configuration. The Java RPC Server uses the
library name (which is part of the RPC request from the client) to dynamically load a class named
<Library name>Stub.class. The RPC server searches for this server interface object class as well as
the server class using the actual classpath.

EntireX Java Wrapper 13

Using the Java Wrapper

Using the IDL Tester

The client test program is an easy-to-use utility to check whether the remote call works. The client
test program supports most of the data types and features of the IDL.

If there is no client interface object already defined, the IDL Tester will generate a Bean-compliant
client interface object. However, if there is a previously generated client interface object, it will
not be overwritten, regardless if it is Bean-compliant or not.

There are two alternatives for generating and running the standard client test program:

® From the context menu of an IDL file. This is the preferred method. See EntireX IDL Tester in
the EntireX Workbench documentation.

® Using Generate Java... > RPC Tester. See below.
This section covers the following topics:

= Calling the IDL Tester using Generate Java ... > RPC Tester
= Using the IDL Tester in Batch Mode

Calling the IDL Tester using Generate Java ... > RPC Tester

1. In the Navigator view or in the Package Explorer, select the Software AG IDL file.

2. From the context menu, choose Generate Java from Software AG IDL > RPC Tester. For each
program in the IDL file, one class with the name <Library name>T<program name>.java is
generated. The class <Library name>T<program name> can be started as a standalone Java ap-
plication.

14 EntireX Java Wrapper

Using the Java Wrapper

] Package Explorer &3 'Eg Hierarchy

= :_:d Demo
=% e
= :-E (default package)
[+ D Example java

Pl
Qpen F3
Cpen Yith
Cpen Type Hierarchy F4
Shows In Ak 4+ Shift+
1= Copy Chel4C
E= Copy Qualified Marme
7 Paste Chrl+y
¥ Delete Dielete
Build Path
Solrce Al +Shift+5
Refackor Alt+3Shifk+T
Ly Import. ..
= Export...
References
Declarations
.ﬁh Refresh FS

Assign Working Sets. ..

Debug As

Prafile As

YWalidate

Team

Compare \With

Replace With

Restore From Local History, ..
Web Services

Properties Alk+Enter

k

5%~ -0

Alt+Shift+2, R
Alt+5hift+2, 3

IE 1 Run on Server
| 2 Ja

+a Application

ﬁ Cpen Fun Dialog. ..

3. Inthe Navigator view or the Package Explorer, select the file <Library name>T<program name>.java
and choose Run As from the context menu or Run... from the Run menu. This creates a launch
configuration and starts the tester. See also Running the Delivered Examples.

See EntireX IDL Tester in the EntireX Workbench documentation for more information.

EntireX Java Wrapper

15

Using the Java Wrapper

Using the IDL Tester in Batch Mode

» To start the Tester in Batch mode

= Enter the following command

Java -classpath <your classpath> <library>T<program> -batch

where <your classpath> contains the class of the RPC tester and the file entirex.jar.
<library> is the name of the library and

<program> is the name of the program.

For the delivered example.idl, the following RPC testers are provided: ExampleTcalc, ExampleThello,
ExampleTpower.

An RPC is executed with the default values.

If youadd -both instead of -batch, the GUI of the tester is opened, but the messages and parameter
values are written to SYSOUT, too.

To change the broker ID, use -b <broker id>. To change the server address, use -s
{class/server/service>, for example:

java ExampleTcalc -b Tocalhost:1971 -s RPC/SRVI/CALLNAT + 3 5

» To modify the default values

= In the command line add the parameters to the commands.

They will be assigned to the input values one after the other. Enter, for example java ExampleTcalc
+ 3 5 to calculate 8.

16 EntireX Java Wrapper

3 Using the Java Wrapper in Command-line Mode

B ComMMANGA-INE OPLONSiiiiiiii ittt e et e e e et e e e e e e e et e e e e e e e n e

= Example

= Further Examples

17

Using the Java Wrapper in Command-line Mode

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax.

Command-line Options

Note: The commands -java:allbeancompliant, -java:tester and

-java:clientbeancompliant commands will generate a Bean-compliant Java client. To
generate client with inner classes (the old way) use - java:client or -java:all commands.

Task

Command

Option

Description

Generate all Java
source files for the
specified IDL file(s).

-java:all

-clientpackage

The client package name for the
wrapper class.

-customclass

A non-default superclass of the
wrapper class.

-help

Display this usage message.

-serverpackage

The server package name for the
server interface object class.

-sourcefolder

The folder for the generated
classes.

Generate the

JavaBean-compliant
Java client(s) for the
specified IDL file(s).

-java:allbeancompliant

-clientpackage

The client package name for the
wrapper class.

-customclass

A non-default superclass of the
wrapper class.

-help

Display this usage message.

-serverpackage

The server package name for the
server interface object class.

-sourcefolder

The folder for the generated
classes.

Generate the Java
client(s) for the
specified IDL file(s).

-java:client

-clientpackage

The client package name for the
wrapper class.

-customclass

A non-default superclass of the
wrapper class.

-help

Display this usage message.

-public

Generate a public wrapper class.

-sourcefolder

The folder for the generated
classes.

Generate the
JavaBean-compliant
Java client(s) for the

-java:clientbeancompliant

-clientpackage

The client package name for the
wrapper class.

-customclass

A non-default superclass of the

specified IDL file(s). wrapper class.
-help Display this usage message.
18 EntireX Java Wrapper

Using the Java Wrapper in Command-line Mode

Task Command Option Description
-public Generate a public wrapper class.
-sourcefolder |The folder for the generated
classes.
Generate the Java |[-java:server -help Display this usage message.
serve'zr'(s) for th.e -serverpackage |The server package name for the
specified IDL file(s). server interface object class.
-sourcefolder |The folder for the generated
classes.
Generate the Java |[-java:tester -clientpackage |The client package name for the
client(s) and tester(s) wrapper class.
fpr the specified IDL -customclass |A non-default superclass of the
file(s). wrapper class.
-help Display this usage message.
-sourcefolder |The folder for the generated
classes.
Example

<workbench> -java:client /Demo/Example.idl -sourcefolder /Demo/srcl -clientpackage «
com.client

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The name of the IDL file and the source folder include the project name. In the example, the project
Demo is used. If the IDL file name describes a file inside the Eclipse workspace, the name is case-
sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a file name in the file system. Thus, the IDL files do not need to be part of an Eclipse
project.

If the source folder does not exist in the workspace but the first part describing the project exists,
the source folder is created.

If the IDL file is located outside the Eclipse workspace, the source folder is also a folder in the file
system.

Status and processing messages are written to standard output (stdout), which is normally set to
the executing shell window.

EntireX Java Wrapper 19

Using the Java Wrapper in Command-line Mode

Further Examples

Windows
® Example 1:

<workbench> -java:client C:\Temp\example.idl -sourcefolder src -clientpackage <
com.client

Uses the IDL file at C:\ Temp \example.idl and generates the Java source files to the subfolder
src\com\client of the current working directory.

Output to standard output:

Using workspace file:/C:/myWorkspace/.
Processing IDL file C:\Temp\example.idl
Writing to file src/com/client/Example.java.
Exit value: 0O

® Example 2:

<workbench> -java:client C:\Temp*idl -sourcefolder src -clientpackage com.client

Generates Java clients for all IDL files in C:\ Temp.

® Example 3:

<workbench> -java:client C:\Temp\example.idl -sourcefolder C:\Temp\src <«
-clientpackage com.client

Uses the IDL file at C:\ Temp \example.idl and generates the Java source files to
C:\Temp\src\com\client.

* Example 4:

<workbench> -java:client C:/Temp/example.idl -sourcefolder C:/Temp/src <«
-clientpackage com.client

The same as above. Both slashes and backslashes are permitted.

* Example 5:

20 EntireX Java Wrapper

Using the Java Wrapper in Command-line Mode

<workbench> -java:client -help

or

<workbench> -help -java:client

Both show a short help for the Java client wrapper.
Linux
* Example 1:

<workbench> -java:client /Demo/Example.idl -sourcefolder /Demo/srcl -clientpackage <«
com.client

If the project Demo exists in the workspace and Example.idl exists in this project, this file is used.
Otherwise, /Demo/Example.idl is used from file system.

® Example 2:

<workbench> -java:client /Demo/*.idl -sourcefolder /Demo/srcl -clientpackage <
com.client

Generates Java clients for all IDL files in project Demo (or in folder /Demo if the project does not
exist). The generated files are in /Demo/src1/com/client.

* Example 3:

<workbench> -java:client -help

or

<workbench> -help -java:client

Both show a short help for the Java client wrapper.

EntireX Java Wrapper 21

22

4 Software AG IDL to Java Mapping

= Calling Servers as Procedures or Functions

Mapping IDL Data Types t0 Java Data TYPEScceiiiiiiiiiiiiiiee et
Mapping Library Name and Alias
Mapping Program Name and Alias
Mapping Parameter Names
Mapping Fixed and Unbounded Arrays
Mapping Groups and Periodic Groups
Mapping Structurescccceevvvvvveeen.n.
Mapping the Direction Attributes IN, OUT, and INOUTooiiiiiiiiiie e
Mapping the aligned Attribute

23

Software AG IDL to Java Mapping

Mapping IDL Data Types to Java Data Types

In the table below, the following metasymbols and informal terms are used for the IDL.

® The metasymbols [and] surround optional lexical entities.

® The informal term number (or number [.number])is a sequence of numeric characters, for example
123.

Software AG IDL Description Java Data Types Note
Anumber Alphanumeric String 1,3
AV Alphanumeric variable length String
AVLnumber] Alphanumeric variable length with maximum |String 1
length

B number Binary bytel] 1,6
BV Binary variable length bytel]
BV number] Binary variable length with maximum length |bytel] 1
D Date Java.util.Date 5
F4 Floating point (small) float 2
F8 Floating point (large) double 2
I1 Integer (small) byte
12 Integer (medium) short
14 Integer (large) int
K number Kanji String 1
KV Kanji variable length String
KV number] Kanji variable length with maximum length String 1
L Logical boolean
N number [.number] |Unpacked decimal java.math.BigDecimall|4
NU number [.number]|Unpacked decimal unsigned java.math.BigDecimal |4
P number [.number] |Packed decimal java.math.BigDecimal |4
PU number [.number]|Packed decimal unsigned java.math.BigDecimal |4
T Time java.util.Date 5
U number Unicode String 7
uv Unicode variable length String 7
UV number Unicode variable length with maximum length |String 7

| Notes:

1. The field length is given in bytes.

24 EntireX Java Wrapper

Software AG IDL to Java Mapping

2. If floating-point data types are used, rounding errors can occur. Therefore, the values of sender
and receiver might differ slightly.

3. If you use the value null (null pointer) as an input parameter (for IN and INOUT parameters) for
type A, a blank string will be used.

4. If you use the value null (null pointer) as an input parameter (for IN and INOUT parameters) for
types N/P, the value 0 (or 0.0) will be used.

5. If you use the value null (null pointer) as an input parameter (for IN and INOUT parameters) for
types D/T, the current date/time will be used. You change this with the property
entirex.marshal.date. Setting entirex.marshal.date=null will map the value null to the
invalid date 0000-01-01 of the RPC marshalling. This is the invalid date value in Natural, too.
With this setting the invalid date as an output parameter will be mapped to null. The default
is to map the invalid date to 0001-01-01.

6. If you use the value null (null pointer) as an input parameter (for IN and INOUT parameters) for
type B, all binary values will be set to zero.

7. The length is given in 2-byte Unicode code units following the Unicode standard UTF-16. The
maximum length is 805306367 code units.

Please note also hints and restrictions on the Software AG IDL data types valid for all programming
language bindings. See IDL Data Types under Software AG IDL File in the IDL Editor documentation.

Mapping Library Name and Alias

The library name as specified in the IDL file is sent from a client to the server. Special characters
are not replaced. The library alias is not sent to the server.

In the RPC server, the IDL library name sent may be used to locate the target server. See Locating
and Calling the Target Server in the platform-specific administration or RPC server documentation.

The library name as given in the library definition of the IDL file is mapped to the class name of
the generated Java classes. See 1ibrary-definition under Software AG IDL Grammar in the IDL
Editor documentation. For the server interface object, the names of the class are composed as 7ibrary
name Interface Objectand 77brary name Server. For the client interface object, no suffix is appended.
When the class names are built, the library name is capitalized to match Java naming conventions.

The special characters '#' and '-' in the library name are replaced by the character '_".

If there is an alias for the library name in the 1ibrary-definitionunder Software AG IDL Grammar
in the IDL Editor documentation, this alias is used as is to form the client class name. Therefore,
this alias must be a valid Java class name. On the server side, the alias is used as is to form the
class name of the server class.

Example:

EntireX Java Wrapper 25

Software AG IDL to Java Mapping

*® library name Hu#G-O is converted to Hu_g_o

Mapping Program Name and Alias

The program name is sent from a client to the server. Special characters are not replaced. The
program alias is not sent to the server.

In the RPC server, the IDL program name sent is used to locate the target server. See Locating and
Calling the Target Server in the platform-specific administration or RPC server documentation.

The program name as given in the program-definition under Software AG IDL Grammar in the
IDL Editor documentation of the IDL file is mapped to method names within the generated Java
classes. To match Java naming conventions the program name is converted to lowercase.

The special characters '#' and '-' in the program name are replaced by the character '_".

If there is an alias for the program name in the program-definition under Software AG IDL
Grammar in the IDL Editor documentation, this alias is used as is for the method name. Therefore,
this alias must be a valid Java method name. On the server side, the alias is used as is for the
method name in the server class.

Mapping Parameter Names

The parameter names are mapped to fields inside the classes (see Mapping the Direction Attributes
IN, OUT, and INOUT).

Example:

" parameter name Hu#G-0 is converted to hu_g_o

Mapping Fixed and Unbounded Arrays

Arrays in the IDL file are mapped to Java arrays. If an array value does not have the correct
number of dimensions or elements, this will result in a Nul1PointerException or an
ArrayIndexOutOfBoundsException. If you use the value null (null pointer) as an input parameter
(for IN and INOUT parameters), an array will be instantiated.

26 EntireX Java Wrapper

Software AG IDL to Java Mapping

Mapping Groups and Periodic Groups

Groups (structures) in the IDL file are mapped to inner classes. If the Bean-compliant generation
mode is used, they are mapped to normal classes in their own files. The group members (structure
fields) are implemented as public fields of the inner class. If the bean-compliant generation is used,
the members (structure fields) are implemented as private fields with getter and setter methods.

Example

The following example shows how to program with groups in a Java client and server. The IDL
program consists of three groups, each with the same fields, but with different directions. The
client shows how to initialize the fields in the groups for the In and InOut parameters and how
to get the results from the Out and InOut parameters. The server part shows only the implemented
server method, not the other parts of the generated server skeleton. The server just moves the data
from the In parameters to the Out parameters and fills the gaps. We assume that C1ientGroup.class
and the client interface object Libgroup.class are in the same folder. To compile and run the client
and the server you need the entirex.jar. For the server we assume that LibgroupServer.class and
LibgroupStub.class are in the same folder and this folder is in the classpath of the EntireX Java
RPC Server.

IDL

library 'LibGroup' is
program 'Programl' is

define data parameter

1 Groupl (/3) In Qut
2 Field01 (A10)
2 Field02 (N2)
2 Field03 (I4)

1 Group?2 (/1) In
2 Field01 (A10)
2 Field02 (N2)
2 Field03 (I4)

1 Group3 (/2) Out
2 Field01 (A10)
2 Field02 (N2)
2 Field03 (I4)

end-define

EntireX Java Wrapper 27

Software AG IDL to Java Mapping

Client

import com.softwareag.entirex.aci.Broker;
import com.softwareag.entirex.aci.BrokerException;
import java.math.BigDecimal;

public class ClientGroup {
public static void main(String[] args) ({

/*

try

{

Broker broker = new Broker(Libgroup.DEFAULT_BROKERID, "Userl");
broker.logon();

// create the wrapper object.

Libgroup 1ib = new Libgroup(broker, Libgroup.DEFAULT_SERVER);
/]

// * Using the old style:

// * Get the reference for groupl from wrapper object and

// * fill groupl with data. Since groupl is InOut, there exists a
[/ * reference.

/1 */

// Groupl[] groupl = 1ib.getGroupl();

// for (int i = 0; i < groupl.length; i++) |

// // create a new instance of each array element of groupl.
// groupl[i]l = new Groupl();

// // fill the data in each field.

// groupl[i].setField01("groupl " + i);

// groupl[i].setField02(new BigDecimal(i));

// groupl[i].setField03(2 * i);

/])

* Fill the groupl parameters, using the new methods for indexed access.

*

/

Groupl[] groupl = 1lib.getGroupl();

for (int i = 0; i < groupl.length; i++) {
Groupl group = new Groupl();
group.setField01("groupl " + 1i);
group.setField02(new BigDecimal(i));
group.setField03(2 * 1i);

1ib.

setGroupl (i, group);

/*

* Create an instance for group2. There is no reference for group?2

* since this is an In parameter. Fill group2 with data.

=)

Groupl[] group2 = new Groupl[1];

for (int i = 0; i < group2.length; i++) {
// create a new instance of each array element of group?2.
group2[i]l = new Groupl();
// fill the data in each field.
group2[il.setField01("group2 " + i);
group2[i].setField02(new BigDecimal(i));

28

EntireX Java Wrapper

Software AG IDL to Java Mapping

group2[il.setField03(2 * 1i);
}
// do the RPC.
1ib.programl(group?);

iy i
// * Using the old style:
// * We can use the reference groupl, it is not modified.

/] */
// for (int i = 0; i < groupl.length; i++) {
// // get the data from the group and print.
// System.out.printin("Result of Programl; groupl[" + i + "] "
// + groupl[il.getField01() + ", " + groupl[il.getField02() + «
// + groupl[i].getField03());
/])
/*
* Retrieve the groupl elements, using the new indexed access method.
=

for (int i = 0; i < 3; i++) {
// get the data from the group and print.
System.out.printin("Result of Programl; groupl[" + i + "] "
+ lib.getGroupl(i).getField0l() + ", "
+ 1ib.getGroupl(i).getField02() + ", "
+ 1ib.getGroupl(i).getField03());

/] /*

// * Using the old style:

// * Get the reference for group3. group3 is Out.
/] */

// Groupl[] group3 = lib.getGroup3();

// for (int i = 0; i < group3.length; i++) {

// // get the data from the group and print.
// System.out.printin("Result of Programl; group3[" + i + "] "
// + group3[il.getField01() + ", " + group3[il.getField02() + «
// + group3[i].getField03());
/)
/*
* Retrieve the group3 elements, using the new indexed access method.
&Y/

for (int i = 0; 1 < 2; i++) |
// get the data from the group and print.
System.out.printin("Result of Programl; group3[" + i + "] "
+ 1ib.getGroup3(i).getField01() + ", "
+ 1ib.getGroup3(i).getField02() + ", "
+ 1ib.getGroup3(i).getField03());

broker.logoff();
} catch (BrokerException excep) {
excep.printStackTrace ();

}

EntireX Java Wrapper 29

Software AG IDL to Java Mapping

Client Group (Bean-compliant)

import com.softwareag.entirex.aci.Broker;
import com.softwareag.entirex.aci.BrokerException;
import java.math.BigDecimal;

public class ClientGroup {
public static void main(Stringl[] args) {

try

{
Broker broker = new Broker(Libgroup.DEFAULT_BROKERID, "Userl");
broker.logon();
// create the wrapper object.
Libgroup Tib = new Libgroup(broker, Libgroup.DEFAULT_SERVER);
/* Get the reference for groupl from wrapper object and
* fill groupl with data. Since groupl is InOut, there exists a
* reference.
=
Groupl[] groupl = Tib.getGroupl();
for (int i = 0; i < groupl.length; i++) {
// create a new instance of each array element of groupl.
groupl[i] = new Groupl();
// fill the data in each field.
groupl[i].setField01("groupl " + i);
groupl[il.setField02(new BigDecimal(i));
groupl[iJ.setField03(2 * i);
}
/** Create an instance for group2. There is no reference for group?
* since this is an In parameter. Fill group2 with data.
=
Groupl[] group2 = new Groupl[1];
for (int i = 0; i < group2.length; i++) {
// create a new instance of each array element of group?2.
group2[il = new Groupl();
// fill the data in each field.
group2l[i].setField01("group2 " + i);
group2[i].setField02(new BigDecimal(i));
group2[i].setField03(2 * i);
}
// do the RPC.
lib.programl(group2);
// We can use the reference groupl, it is not modified.
for (int i = 0; i < groupl.length; i+t+) {
// get the data from the group and print.
System.out.printin("Result of Programl; groupl[" + i + "]
+ groupl[i].getField01() + ", " + groupl[i].getFieldO2() + ", "
+ groupl[i].getField03());

30

EntireX Java Wrapper

Software AG IDL to Java Mapping

// Get the reference for group3. group3 is Out.
Groupl[] group3 = Tib.getGroup3();
for (int i = 0; i < group3.length; i++) {
// get the data from the group and print.
System.out.printin("Result of Programl; group3[" + i + "]
+ group3[il.getField01() + ", " + group3[il.getField02() + ", "
+ group3[il.getField03());

}
broker.logoff();

} catch (BrokerException excep) f{
excep.printStackTrace ();

}

Server

public void programl (LibgroupServer.ProgramlGroup2[] group2) f{

/*

* ProgramlGroupl is InOut

* ProgramlGroup2 is In

* ProgramlGroup3 is Qut

* Move the values from ProgramlGroup?2 to ProgramlGroupl and move the

* value from ProgramlGroupl to ProgramlGroup3.

=/

int Tength = Math.min(programlGroupl.length, programlGroup3.length);

for (int i = 0; i < length; i++) {
if (programlGroup3[i] == null)

programlGroup3[i] = new ProgramlGroup3();

programlGroup3[i].field0l programlGroupl[i].field0l;
programlGroup3[i].field02 = programlGroupl[i].field02;
programlGroup3[i].field03 = programlGroupl[i].field03;

for (int i = length; i < programlGroup3.length; i++) {
if (programlGroup3[i] == null)
programlGroup3[i] = new ProgramlGroup3();
programlGroup3[i].field01 "New Text " + i;
programlGroup3[il.field02 = new BigDecimal(10);
programlGroup3[i].field03 = 100 + i;

}
// move the values from ProgramlGroupl to ProgramlGroup3.
length = Math.min(group2.length, programlGroupl.length);
for (int i = 0; i < length; i++) {
if (programlGroupl[i] == null)
programlGroupl[i] = new ProgramlGroupl();
programlGroupl[i].field0l = group2[i].field01;
programlGroupl[i].field02 = group2[i].field02;
programlGroupl[i].field03 group2[il].field03;

}
for (int i = length; i < programlGroupl.length; i++) {

EntireX Java Wrapper 31

Software AG IDL to Java Mapping

if (programlGroupl[i] == null)
programlGroupl[i] = new ProgramlGroupl();
programlGroupl[i].field0l = "New Text " + i;
programlGroupl[i].field02 = new BigDecimal(10);
programlGroupl[i].field03 = 100 + i;

Mapping Structures

Structures are mapped like Groups. See Mapping Groups and Periodic Groups.
Example

The following example shows how to program with structures in a Java client and server. The
structures are mapped to inner classes of the interface objects; if Bean-compliant generation is
used, the structures are mapped to normal classes in their own file. The IDL program consists of
one structure that is used with different directions. In the example above for the groups we have
the same fields in each group. This example shows how to simplify this by using a structure. The
structure is defined outside the program an references to the structure can be used several times
in different programs. The client shows how to initialize the fields in the references of the structure
for the In and InOut parameters and how to get the results from the Out and InOut parameters.
The server part shows only the implemented server method, not the other parts of the generated
server skeleton. The server just moves the data from the In parameters to the Out parameters and
fills the gaps. We assume that C1ientStrct.class and the client interface object Libstrct.class
are in the same folder. To compile and run the client and the server you need the entirex. jar.
For the server we assume that LibstrctServer.class and LibstrctStub.class are in the same
folder and this folder is in the classpath of the EntireX Java RPC Server.

IDL

library 'LibStrct' is
struct 'Structl' is
define data parameter
1 FieldO1l (A10)
1 Field02 (N2)
1 Field03 (I14)
end-define

program 'Programl' is
define data parameter
1 Refl ('Structl'/3) In Out
1 Ref2z ('Structl'/1) In
1 Ref3 ('Structl'/2) Out
end-define

32 EntireX Java Wrapper

Software AG IDL to Java Mapping

Client

import com.softwareag.entirex.aci.Broker;
import com.softwareag.entirex.aci.BrokerException;
import java.math.BigDecimal;

public class ClientStrct {
public static void main(Stringl[] args) {
try f

Broker broker = new Broker(Libstrct.DEFAULT_BROKERID, "Userl");
broker.logon();
// create the wrapper object.
Libstrct 1ib = new Libstrct(broker, Libstrct.DEFAULT_SERVER);
/* create a struct object (as defined in the wrapper object) for the
* InOut parameter structl.
=
Structl[] structl = new Structl[3];
/] 1*
// * Using the old style:
// * fill the struct object with data.

177 */

// for (int i = 0; i < structl.length; i++) {

// // create a new array element.

// structl[i] = new Structl();

// structl[i].setField0Ol("structl ");

// structl[i].setField02(new BigDecimal(4 + i));
// structl[i].setField03(i);

/])

// // set the struct object in the wrapper object
// 1ib.setRefl (structl);
/*
* Fi11 the structl parameters, using the new methods for indexed access.
*/
for (int i = 0; i < structl.length; i++) {
Structl struct = new Structl();
struct.setField0l("structl ");
struct.setField02(new BigDecimal (4 + i));
struct.setField03(i);
lib.setRefl(i, struct);
}
/* create a struct object (as defined in the wrapper object) for the
* In parameter struct?.
&y
Structl[] struct2 = new Structll[1];
for (int i = 0; i < struct2.length; i++) {
// create a new array element.
struct2[i] = new Structl();
struct2[i].setField01("struct2 ");
struct2[i].setField02(new BigDecimal(4 + i));
struct2[i].setField03(i);

EntireX Java Wrapper 33

Software AG IDL to Java Mapping

// do the RPC.
1ib.programl(struct2);

/]
// * Using the old style:
// * get the data from the InQOut parameter structl.

/] */
// for (int i = 0; i1 < structl.length; i++) {
// // get the data from the struct and print.
// System.out.printin("Result of Programl, structl[" + i + "] "
// + structl[il.getField01() + ", " + structl[i].getField02() <
+ " , "
// + structl[i]l.getField03());
/])
/*
* Retrieve the refl elements, using the new indexed access method.
%)

for (int i = 0; i < 3; i++) {
// get the data from the struct and print.
System.out.printin("Result of Programl, structl[" + i + "]
+ lib.getRefl(i).getField01() + ", "
+ Tib.getRefl(i).getField02() + ", "
+ Tib.getRefl(i).getField03());

}

[l]*

// * Using the old style:

// * get the struct object for the Out parameter struct3.
17 =/

// Structl[] struct3 = lib.getRef3();

// // get the data from the Out parameter struct3.

// for (int i = 0; i < struct3.length; i++) {

// // get the data from the struct and print.
// System.out.printin("Result of Programl, struct3[" + i + "] "
// + struct3[i].getField01() + ", " + struct3[il.getField02() + ", "
// + struct3[il.getField03());
/)
/*
* Retrieve the ref3 elements, using the new indexed access method.
%)

for (int i =0; i < 2; i++) {
// get the data from the struct and print.
System.out.printin("Result of Programl, struct3[" + i + "]
+ lib.getRef3(i).getField01() + ", "
+ 1ib.getRef3(i).getField02() + ", "
+ lib.getRef3(i).getField03());

broker.logoff();

} catch (BrokerException excep) {
excep.printStackTrace ();

}

34 EntireX Java Wrapper

Software AG IDL to Java Mapping

ClientStrct (Bean-compliant)

import com.softwareag.entirex.aci.Broker;
import com.softwareag.entirex.aci.BrokerException;
import java.math.BigDecimal;

public class ClientStrct {
public static void main(Stringl[] args) {
try {

Broker broker = new Broker(Libstrct.DEFAULT_BROKERID, "Userl");

broker.logon();

// create the wrapper object.

Libstrct Tib = new Libstrct(broker, Libstrct.DEFAULT_SERVER);

/* create a struct object (as defined in the wrapper object) for the

* InOut parameter structl.

)

Structll[] structl = new Structl[3];

// fill the struct object with data.

for (int i = 0; i < structl.length; i++) {
// create a new array element.
structl[i] = new Structl();
structl[i].setField0l1("structl ");
structl[i].setField02(new BigDecimal(4 + i));
structl[i].setField03(i);

}

/* create a struct object (as defined in the wrapper object) for the

* In parameter struct?2.

=

Structl[] struct?2 = new Structll[1];

for (int i = 0; i < struct2.length; i++) {
// create a new array element.
struct2[i] = new Structl();
struct2[i].setField0l("struct2 ");
struct2[i].setField02(new BigDecimal(4 + i));
struct2[i].setField03(i);

}

// set the struct object in the wrapper object

lib.setRefl (structl);

// do the RPC.

lib.programl(struct2);

// get the struct object for the Qut parameter struct3.

Structl[] struct3 = lib.getRef3();

// get the data from the InOut parameter structl.

for (int i = 0; i < structl.length; i++) {
// get the data from the struct and print.
System.out.printin("Result of Programl, structl[" + i + "]

+ structll[il.getField01() + ", " 4+ structl[il.getField02() + <

EntireX Java Wrapper 35

Software AG IDL to Java Mapping

+ structl[il.getField03());
}
// get the data from the Out parameter struct3.
for (int i = 0; i < struct3.length; i++) {
// get the data from the struct and print.
System.out.printin("Result of Programl, struct3[" + i + "]
+ struct3[i].getField01() + ", " + struct3[i].getField02() + «

+ struct3[i].getField03());
}
broker.logoff();
} catch (BrokerException excep) f{
excep.printStackTrace ();
}

Server

public void programl (Structl[] ref2) ({
/*
* ProgramlGroupl is InOut
* ProgramlGroup?2 is In
* ProgramlGroup3 is Qut
* Move the values from ProgramlGroup2 to ProgramlGroupl and move the
* value from ProgramlGroupl to ProgramlGroup3.
=
int Tength = Math.min(programlRefl.length, programlRef3.length);
for (int i = 0; i < length; i++) f{
if (programlRef3[i] == null)
programlRef3[i] = new Structl();
programlRef3[i].field0l = programlRefl[i].field01l;
programlRef3[i].field02 = programlRefl[i].field02;
programlRef3[i].field03 = programlRefl[i].field03;

for (int i = length; i < programlRef3.length; i++) {
if (programlRef3[i] == null)
programlRef3[i] = new Structl();
programlRef3[i].field0l = "New Text " + i;
programlRef3[i].field02 = new BigDecimal(10);
programlRef3[i].field03 = 100 + i;
}

length = Math.min(ref2.length, programlRefl.length);
for (int i = 0; i < length; i++) {
if (programlRefl[i] == null)
programlRefl[i] = new Structl();
programlRefl[i].field0l = ref2[i].field01;
programlRefl[i].field02 = ref2[i].field02;
programlRefl1[i].field03 ref2[i].field03;

36 EntireX Java Wrapper

Software AG IDL to Java Mapping

for (int i = length; i < programlRefl.length; i++) f{
if (programlRefl[i] == null)
programlRefl1[i] = new Structl();
programlRefl[i].field0l = "New Text " + i;
programlRefl[i].field02 = new BigDecimal(10);
programlRefl1[i].field03 100 + i;

Mapping the Direction Attributes IN, OUT, and INOUT

The IDL syntax allows you to define parameters as IN parameters, OUT parameters, or IN 0UT
parameters (which is the default if nothing is specified). This direction specification is reflected in
the generated Java interface object as follows:

" IN parameters are sent from the RPC client to the RPC server. IN parameters are implemented
as parameters of the generated method.

" 0OUT parameters are sent from the RPC server to the RPC client. OUT parameters are implemented
as read-only properties. A getMethod is generated for each OUT parameter.

" INOUT parameters are sent from the RPC client to the RPC server and then back to the RPC client.
INOUT parameters are implemented as properties. A setMethod and a corresponding getMethod
is generated for each INOUT parameter.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

See the attribute-11st under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes in the IDL file and refer to the direction attribute.

Mapping the aligned Attribute

The aligned attribute is not relevant for the programming language Java. However, a Java client
can send the aligned attribute to an EntireX RPC server, where it might be needed.

See the attribute-11st under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes in the IDL file and refer to the aligned attribute.

EntireX Java Wrapper 37

Software AG IDL to Java Mapping

Calling Servers as Procedures or Functions

The IDL syntax allows definition of procedures only. It does not have the concept of a function.
A function is a procedure which, in addition to the parameters, returns a value. Procedures and
functions are transparent between clients and server, i.e. a client using a function can call a server
implemented as a procedure and vice versa. In Java a procedure corresponds to a method with
result type void, a function returns a value of some type.

It is possible to treat the OUT parameter of a procedure as the return value of a function. The Java
Wrapper generates a method with a non-void result type when the following conditions are met:

" the last parameter of the procedure definition is of type 0UT;

® this last parameter of the procedure definition has the name Function_Result. The name
Function_Result is not case-sensitive.

Of course, in this case getMethod is not generated for this 0UT parameter.

As an example, see the Java Wrapper example that comes with EntireX.

38 EntireX Java Wrapper

I I Writing Applications with the Java Wrapper

Writing Simple Applications with the Java Wrapper

® Required Steps
® Java Wrapper Constructors

" Generated Java Wrapper Methods

Writing Advanced Applications - Java Wrapper

® Natural Logon or Changing the Library Name

® Customizing the Generated Java Classes

Using RPC Compression

= Using Conversational RPC
® Using Natural Security

= Support of DVIPA

Writing RPC Clients for the RPC-ACI Bridge in Java

39

40

5 Writing Simple Applications with the Java Wrapper

m Required Stepsoovvvviiiiiienins
= Java Wrapper Constructors

= Generated Java Wrapper Methods

41

Writing Simple Applications with the Java Wrapper

Required Steps

Interaction with the Java Wrapper occurs through instantiating objects of different classes, invoking
their methods and manipulating their inner state. The basic steps for writing a client are listed
below. For details, see the examples delivered with EntireX (Delivered Java Wrapper Examples).
Methods and properties to interact with the EntireX Broker are completely inherited from the
EntireX Java ACIL The EntireX Java ACI also contains the class RPCService used as the superclass
by the generated Java Wrapper classes.

Basic Steps:
* Instantiate a Broker object.

One object instance represents one session to an EntireX Broker on your network. If you want
to work with multiple EntireX Brokers or with multiple sessions, create one object for each session
to an EntireX Broker.

® Use the Broker object to log the application on to EntireX Broker.
® Instantiate the generated Java Wrapper object (see Java Wrapper Constructors).

® Use the Java Wrapper methods (see Generated Java Wrapper Methods) to call the server programs
and access their parameters.

Java Wrapper Constructors

Two constructors are available for the generated Java Wrapper class:

® public Example (Broker broker)
® public Example (Broker broker, String serverAddr)

public Example (Broker broker)

This constructor requires an instantiated Broker object only. The server address used is specified
in the properties of the IDL file. Each generated Java Wrapper class has two public static String
constants which contain the default values of the Broker and the server as set in the properties of
the IDL file. For example:

42 EntireX Java Wrapper

Writing Simple Applications with the Java Wrapper

public static final String DEFAULT_BROKERID = "localhost";
public static final String DEFAULT_SERVER = "RPC/SRV1/CALLNAT";

A Java Wrapper object using the default settings may be instantiated with the following coding;:

Broker broker = new Broker(Example.DEFAULT_BROKERID, "UserId");
Example myExample = new Example(broker);

public Example (Broker broker, String serverAddr)

This constructor requires an instantiated Broker object and the server address. A Java Wrapper
object can be instantiated with the following coding:

Broker broker = new Broker("localhost", "UserId");
Example myExample = new Example(broker, "RPC/MYRPC/CALLNAT");

Generated Java Wrapper Methods

EntireX Interface Object Version Information

To get the version information of the generated interface object, use the method getStubVersion
(). Itis implemented in the RPC client and server interface objects. The method returns a version
string.

Example:
"EntireX RPC for Java Interface Object Version=8.2.0, Patch Level=0"
Application Identification

The application identification is sent from the application to the Broker. It is visible with Broker
Command and Info Services. The identification consists of four parts: name, node, type, and version.
These four parts are sent with each Broker call and are visible in trace information.

For the Java Wrapper these values are:

® Application name
ANAME=dava Runtime

® Node name
ANODE=<host name>

EntireX Java Wrapper 43

Writing Simple Applications with the Java Wrapper

® Application type
ATYPE=Java

= Version
AVERS=8.2.0.0

The application is allowed to set the application name with the method
Broker.setApplicationName(String).

See setApplicationName of class Broker in the Javadoc documentation of the Java ACI for more
information.

44 EntireX Java Wrapper

6 Writing Advanced Applications - Java Wrapper

= Natural Logon or Changing the Library Namecoooiriiiiiiiiiii e
= Customizing the Generated Java CIaSSesoiiiiiiiieiiiiii et
B USING RPC COMPIESSIONeeeiiitei ettt ettt e et e et e e et e e e et e e e s
B Using Conversational RPCouiiiiiiiiii ettt e e e

= Using Natural Security

= Support of DVIPA

45

Writing Advanced Applications - Java Wrapper

Each generated Java Wrapper class inherits methods from the EntireX Java ACI.

This section describes what can be performed with the methods inherited from the class RPCService.

Natural Logon or Changing the Library Name

The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is spe-
cified in the Software AG IDL file (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation). When the RPC is executed, this library name can be overwritten.

» To overwrite the library, a C Wrapper client must

m Call the setLibraryName method of the generated Java Wrapper class with the new library
name as a parameter.

» To force the library to be considered by Natural RPC Server

m Call the setNaturallLogon method of the generated Java Wrapper class with the parameter
set to True.

@ Caution: Natural and EntireX RPC servers behave differently regarding the library name.

See Natural Logon or Changing the Library Name.

Customizing the Generated Java Classes

You can extend the generated Java Wrapper Class of the client. By default, the generated client
class is a subclass of com.softwareag.entirex.aci.RPCService. The customization component
allows you to specify a class used as the superclass of the generated client class. This user-defined
class (customization class) must be a subclass of com.softwareag.entirex.aci.RPCService.

When a customization class is specified, the calls to the user-exit methods onEnter, onlLeave,
onException and onRetry are generated.

» To generate a customized Java Wrapper client

1 Implement your customization class. If you use a package for your customization class, specify
package and class in the following step. Place the source for the customization class in the
package folder, using the folder of the IDL file as package-root. The customization class needs
a default constructor and one additional constructor with 4 arguments. See the example below.

46 EntireX Java Wrapper

Writing Advanced Applications - Java Wrapper

2 Specify the name of your customization class in the EntireX Workbench, under Tools, Options,
Java. This name is stored in the entirex.properties file (which is in your home directory) using
the key entirex.wrapper.custom.class.

3 Generate the wrapper client classes

» To use the customized Java Wrapper client

= Add (public) arbitrary methods and fields to your customization class. These methods and
fields are inherited by the generated client class. Add your own processing instructions to
these methods.

» To perform all Broker-related processing in the generated Java Wrapper client

1 Overwrite the constructors of RPCService. You can instantiate wrapper classes without spe-
cifying a Broker object and server address as a parameter. Use the method setbroker() to
set or change the reference to the Broker object, and the method setServerAddress() to set
or change the server address.

2 Use the four user exit methods onEnter, onLeave, onException and onRetry. These methods
have default implementations in RPCService and can be overwritten in your customization
class. These exits are called at the beginning and the end of each generated method of the Java
Wrapper class and when a broker exception is thrown. See RPCService in the Javadoc docu-
mentation of the Java ACL.

Example of a Customization Class

package ExamplePackage;

import com.softwareag.entirex.aci.Broker;
import com.softwareag.entirex.aci.BrokerException;
import com.softwareag.entirex.aci.RPCService;

public class ExampleCustomization extends RPCService {
public ExampleCustomization ()
{
super();
}
public ExampleCustomization (Broker broker, String serverAddr, String
l1ibName, boolean compress)
{
super(broker, serverAddr, libName, compress);
}
protected void onEnter(String progname) throws BrokerException {
// insert your implementation here.
}

protected void onleave(String progname, int sendlLen, int receivelen) throws

EntireX Java Wrapper 47

Writing Advanced Applications - Java Wrapper

BrokerException ({
// insert your implementation here.
}

protected void onException(String progname, BrokerException exception) throws
BrokerException ({
// insert your implementation here.
}

protected boolean onRetry(String progname, BrokerException exception) throws
BrokerException {
// insert your implementation here.
return false;

Using RPC Compression

EntireX and Natural RPC support a feature called RPC compression to reduce network traffic.
The default for compression is on. See RPC Compression.

» To switch compression on and off

m Use the setCompression method of the class RPCService.

» To check the current compression setting

m Use the getCompression method of the class RPCService.

Using Conversational RPC

It is assumed that you are familiar with the concepts of conversational and non-conversational
RPC. See Conversational RPC.

» To enable conversational RPC

1 Create a Conversation object and set this with setConversation on the wrapper object.

2 Different wrapper objects can participate in the same conversation if they use the same instance
of a conversation object.

48 EntireX Java Wrapper

Writing Advanced Applications - Java Wrapper

» To abort a conversational RPC communication

» Abort an RPC conversation by calling the closeConversation method

» To close and commit a conversational RPC communication

s Commit the RPC conversation by calling the closeConversationCommit method.

() Caution: Natural RPC Servers and EntireX RPC Servers behave differently when ending an

RPC convsersation.

See Conversational RPC.

Using Natural Security

A Natural RPC Server may run under Natural Security to protect RPC requests. See Natural Security
under Common Features of Wrappers and RPC-based Components.

» To authenticate a Java Wrapper client against Natural Security

m Specify a user ID and password in the 1ogon method of class Broker.

If different user IDs and/or passwords are used for EntireX Security and Natural Security,
use the methods setRPCUserId or setRPCPassword to set the user IDs and/or passwords for
Natural Security.

» To force a Java Wrapper client to log on to a specific Natural library

1 Callthe setLibraryName method of the generated wrapper objects with the new library name
as a parameter.

2 Call the setNaturallLogon method of the generated wrapper objects with the parameter set
to true.

See also Natural Logon or Changing the Library Name.
Example:

Assume that library is a wrapper object that is generated from an IDL library. This object extends
com.softwareag.entirex.aci.RPCService. For this object, call the methods as shown:

EntireX Java Wrapper 49

Writing Advanced Applications - Java Wrapper

library.setRPCUserId("testuser");

library.setRPCPassword("password");

library.setlLibraryName("NATLIB"); // this is necessary only if the Natural Library
// name is different from the library name in <

the IDL.

library.setNaturallLogon(true);

The order of the four methods is arbitrary.

Support of DVIPA

A TCP/IP connection established between stub and broker is not exclusively assigned to a partic-
ular thread. With multi-threaded applications, two or more threads may use the same connection.
On the other hand, if a connection is busy, another new one is created to exchange data.

In order to access the same z/OS broker instance in a DVIPA-controlled environment, an affinity
between application thread and TCP/IP connection is needed to always use the same connection
within an application thread. Therefore, an environment variable is evaluated to control the
handling of TCP/IP connections.

If broker ID contains the parameter "poolsize=0" (e.g. ETB001?poolsize=0), an affinity between
threads and TCP/IP connections is established. All requests to one particular broker will use the
same TCP/IP connection.

See also Support of Clustering in a High Availability Scenario under Administration of Broker Stubs in
the platform-specific administration documentation.

50 EntireX Java Wrapper

7 Writing RPC Clients for the RPC-ACI Bridge in Java

The RPC-ACI Bridge enables RPC-based client applications to be used with ACI servers.

The EntireX RPC-ACI Bridge reports errors from the RPC server side and the ACI side to the RPC
clients. Errors from the ACI side include errors by the Broker for ACI. The RPC-ACI Bridge reports
the same error classes and error codes for the RPC server side as the XML/SOAP RPC Server. The
RPC-ACI Bridge reports errors of the ACI side in a client-specific way as described below.

» To write a Java client

1 Generate the Java RPC client stub from the IDL file as described in Using the Java Wrapper.
2 Implement the client with this stub.
All errors are reported as BrokerExceptions. Errors on the ACI side of the RPC-ACI Bridge are

BrokerExceptions in class 1018. See Message Class 1018 - EntireX RPC-ACI Bridge under Error
Messages and Codes.

51

52

I11

= § Reliable RPC fOr JAVA WIPPET .. .viiieiee ittt e e et a e e e e e e
B 9 JAVa WraPPEr EXAMPIES ..vvvviviiiiiiiiiiiiitie ettt e et et et et et e e e e e e e e et e e et et et et e aaraaaraaararees

53

54

8 Reliable RPC for Java Wrapper

= |ntroduction to R
= Writing a Client
= Writing a Server

ClIADIE RP C ..

B BroKer CONfIGUIALION ...ttt

95

Reliable RPC for Java Wrapper

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becoming more and more important. Reliable messaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

Reliable RPC allows asynchronous calls (“fire and forget”)

Reliable RPC is supported by most EntireX wrappers

Reliable RPC messages are stored in the Broker's persistent store until a server is available

Reliable RPC clients are able to request the status of the messages they have sent

Persistent
Store

.‘ [

RPC
with UOW : v

RPC | EntireX
Client < Broker

Error Status
RFC
with UOW

b

RPC
Server

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX Java Wrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

= AUTO_COMMIT
" CLIENT_COMMIT

56 EntireX Java Wrapper

Reliable RPC for Java Wrapper

While AUTO_COMMIT commits each RPC message implicitly after sending it, a series of RPC messages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

All methods for reliable RPC are available on the interface object. See RPCService in the Javadoc
documentation of the Java ACI for details. The methods are:

® RPCService.setReliable

® RPCService.getReliable

® RPCService.reliableCommit

® RPCService.reliableRollback

® RPCService.getMessageld

® RPCService.getStatusOfMessage

Example (this example is included as source in the examples/RPCl/reliable/JavaClient folder):

Create Broker object and interface object.

Broker broker = new Broker(Mail.DEFAULT_BROKERID, userID);
Mail mail = new Mail(broker);
broker.logon();

Enable reliable RPC with CLIENT_COMMIT

mail.setReliable(RPCService.RELIABLE_CLIENT_COMMIT) ;

The first RPC message.

mail.sendmail("mail receiver", "Subject 1", "Text 1");

Check the status: get the message ID first and use it to retrieve the status.

EntireX Java Wrapper 57

Reliable RPC for Java Wrapper

String messagelID = mail.getMessagelID();
String messageStatus = mail.getStatusOfMessage(messagelD);

System.out.printin("Status: " + messageStatus + ", id: " + messagelD);
The second RPC message.
mail.sendmail("mail receiver", "Subject 2", "Text 2");

Commit the two messages.

mail.reliableCommit();

Check the status again for the same message ID.

messageStatus = mail.getStatusOfMessage(messagelD);

System.out.printin("Status: " + messageStatus + ", id: " + messagelD);
The third RPC message.
mail.sendmail("mail receiver", "Subject 3", "Text 3");

Check the status: get the new message ID and use it to retrieve the status.

messagelD = mail.getMessagelD();
messageStatus = mail.getStatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);

Roll back the third message and check status.

mail.reliableRollback();

messageStatus = mail.getStatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);
broker.logoff();

Limitations

1. All program calls that are called in the same transaction (CLIENT_COMMIT) must be in the same
IDL library.

2. Ttis not allowed to switch from CLIENT _COMMIT to AUTO_COMMIT in a transaction.

3. Messages (IDL programs) have IN parameters only.

58 EntireX Java Wrapper

Reliable RPC for Java Wrapper

Writing a Server

The server implementation consist of the four classes:

" Abstract<IDL Tibrary name>Server

= IDL Tibrary name>

® IDL Tibrary name>Server

= <IDL Tibrary name>Stub

Add your implementation to the class <IDL 1ibrary name>Server. There are no server-side
methods for reliable RPC. The server does not send back a message to the client. The server can
run deferred, thus client and server do not necessarily run at the same time. If the server fails, it

throws an exception. This causes a cancel of the transaction (unit of work inside the Broker) and
the error code is written to the user status field of the unit of work.

Broker Configuration

A Broker configuration with PSTORE is recommended. This enables the Broker to store the messages
for more than one Broker session. These messages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of the messages and the status information can be configured with the attributes
UWTIME and UWSTAT - LIFETIME. Other attributes such as MAX-MESSAGES- IN-UQW, MAX-UOWS and MAX -
UOW-MESSAGE - LENGTH may be used in addition to configure the units of work. See Broker Attributes
in the platform-independent administration documentation.

The result of the method RPCService.getStatusOfMessage depends on the configuration of the
unit of work status lifetime. If the status is not stored longer than the message, the method returns
(not available).

EntireX Java Wrapper 59

60

9 Java Wrapper Examples

= Delivered Java Wrapper EXaMPIEScooiiiiiiiii e

= Running the Delivered Examples

61

Java Wrapper Examples

Delivered Java Wrapper Examples

This section describes the examples for the Java Wrapper folder examples/java_wrapper of the De-
veloper's Kit.

= Scope
= Software AG IDL File and Interface Object Generation Process for the Example
= QOther EntireX Developer's Kit Wrapper Examples

Scope

This folder examples/RPC/basic/example/JavaClient contains an example of a standalone application
(MyClient.java) that calls remote procedures CALC and SQUARE with its associated IDL file ex-
ample.idl. An example implementation of a server interface object for the Java RPC Server is
available too (ExampleServer.java). This server interface object runs with the generic Java RPC
Server, which is part of the Java Runtime.

To run the examples from within the Eclipse IDE, import the folder examples/RPC/basic/example/]a-
vaClient into a Java project, then add entirex.jar to the build path of this project.

This example consists of the following programs, which may be called remotely using the EntireX
Broker:

= CALC
Uses two operands and one operator (+-*/) to return the result. A Java client will be able to call
our sample method like this:

Example myExample = new Example(broker);
int opl = 1234;
int op2 = 5678;
int y = myExample.calc ("+", opl, op2)

" SQUARE
Uses one input value to return its square.

62 EntireX Java Wrapper

Java Wrapper Examples

Software AG IDL File and Interface Object Generation Process for the Example

The IDL file describes the interface. See Software AG IDL File in the IDL Editor documentation. For
the mapping between IDL data types and types of Java see Mapping IDL Data Types to Java Data
Types.

This IDL file example.idl of the Java Wrapper example is part of the EntireX examples.

Library 'EXAMPLE' Is
Program 'CALC' Is
Define Data Parameter

1 Operation (A1) In

1 Operand_1 (I4) In

1 Operand_2 (I4) In

1 Function_result (I4) Out
End-Define

Program 'SQUARE' Is
Define Data Parameter

1 Operand (I4) In
1 Result (I4) Out
End-Define

Generating a client interface object with the Java Wrapper creates the following file in the source
folder of the IDL file: Example.java.

Generating a server interface object with the Java Wrapper produces the following files in the
source folder of the IDL file: ExampleServer.java, ExampleStub.java, AbstractExampleServer.java.

Other EntireX Developer's Kit Wrapper Examples

Other Wrappers of the Developer's Kit provide the same examples (CALC and SQUARE). The
examples can be mixed, meaning any client can call any server. Natural RPC is also fully compatible
with EntireX RPC. A Natural client can call any EntireX RPC server and vice versa.

For examples of other programming language bindings see:

® Delivered Examples for the C Wrapper in the C Wrapper documentation
® Delivered Examples for the COBOL Wrapper

* Delivered Examples for Natural in subdirectory Java Wrapper, Broker RPC/Client and Broker
RPC/Server.

EntireX Java Wrapper 63

Java Wrapper Examples

Running the Delivered Examples

Prerequisites for Running the Examples

1.

Verify that the Java classpath contains both the entirex.jar file, which is located in the classes
directory, and an entry for the directory containing the generated classes.

To run the client programs, an RPC server is needed. You may use the example RPC server
under CICS, UNIX and Windows. If you want to use a Natural RPC Server copy the *.nsn files
to a Natural library. You can also use the Java RPC Server under UNIX and Windows.

To run the client example

1. Generate the client interface object.
2. Compile the MyClient.java file.

3.
4
5

Run MyClient.class.

. Select one of the examples with the option button and press Call().

. If you want to use EntireX Security, uncomment the line

//broker.setSecurity(new EntireXSecurity(), false);

To run the server example

. Generate the RPC server as described under Generating a Java Server Interface Object.

Implement the methods in <7ibrary name>Server.java.

Run the Java RPC Server. The classpath must contain the directory of the server interface object
classes. If you start the Java RPC Server in the current directory, then add “.” to the classpath.
If the Java RPC Server is started in a different directory, the complete pathname of the Java
Wrapper example has to be part of the classpath. Otherwise the Java RPC Server cannot load
the server interface object classes.

To shut down the Java RPC Server, use the System Management Hub. (Note that this stops all
RPC servers that register the same service.)

64

EntireX Java Wrapper

	EntireX Java Wrapper
	Table of Contents
	I
	1 Introduction to the Java Wrapper
	2 Using the Java Wrapper
	Generating Java Sources
	Select an IDL File
	Preferences
	Properties
	Starting the IDL Tester

	Generating a Java Client Interface Object
	Generating a Java Client Interface Object without inner Classes (Bean-compliant)
	Generating a Java Server Interface Object
	Using the IDL Tester
	Calling the IDL Tester using Generate Java ... > RPC Tester
	Using the IDL Tester in Batch Mode

	3 Using the Java Wrapper in Command-line Mode
	Command-line Options
	Example
	Further Examples
	Windows
	Linux

	4 Software AG IDL to Java Mapping
	Mapping IDL Data Types to Java Data Types
	Mapping Library Name and Alias
	Mapping Program Name and Alias
	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Example
	IDL
	Client
	Client Group (Bean-compliant)
	Server

	Mapping Structures
	Example
	IDL
	Client
	ClientStrct (Bean-compliant)
	Server

	Mapping the Direction Attributes IN, OUT, and INOUT
	Mapping the aligned Attribute
	Calling Servers as Procedures or Functions

	II Writing Applications with the Java Wrapper
	5 Writing Simple Applications with the Java Wrapper
	Required Steps
	Java Wrapper Constructors
	public Example (Broker broker)
	public Example (Broker broker, String serverAddr)

	Generated Java Wrapper Methods
	EntireX Interface Object Version Information
	Application Identification

	6 Writing Advanced Applications - Java Wrapper
	Natural Logon or Changing the Library Name
	Customizing the Generated Java Classes
	Example of a Customization Class

	Using RPC Compression
	Using Conversational RPC
	Using Natural Security
	Support of DVIPA

	7 Writing RPC Clients for the RPC-ACI Bridge in Java

	III
	8 Reliable RPC for Java Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Writing a Server
	Broker Configuration

	9 Java Wrapper Examples
	Delivered Java Wrapper Examples
	Scope
	Software AG IDL File and Interface Object Generation Process for the Example
	Other EntireX Developer's Kit Wrapper Examples

	Running the Delivered Examples
	Prerequisites for Running the Examples
	To run the client example
	To run the server example

