
webMethods EntireX

EntireX .NET Wrapper

Version 9.6

April 2014

This document applies to webMethods EntireX Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXDOTNETWRAPPER-96-20140628

Table of Contents

EntireX .NET Wrapper ... v
1 Introduction to the .NET Wrapper .. 1

Description ... 2
Generic .NET Wrapper Runtime .. 3
.NET Client Applications ... 3
.NET Server DLL .. 4

2 Using the .NET Wrapper ... 5
Generation Process ... 6
Using .NET Wrapper Interactively .. 6

3 Microsoft Visual Studio Wizard for EntireX .NET Wrapper ... 9
Installing the Add-in .. 10
Using the Add-in .. 10
Uninstalling the Add-in ... 14

4 Using the .NET Wrapper in IDL Compiler Command-line Mode 15
5 Software AG IDL to .NET Mapping .. 17

Mapping IDL Data Types to .NET Data Types .. 18
Mapping Library Name and Alias ... 20
Mapping Program Name and Alias ... 21
Mapping Parameter Names ... 21
Mapping Fixed and Unbounded Arrays ... 22
Mapping Groups and Periodic Groups ... 22
Mapping Structures .. 22
Mapping the Direction Attributes IN, OUT and INOUT .. 23
Mapping the ALIGNED Attribute ... 23
Calling Servers as Procedures or Functions ... 23

6 Writing Applications with the .NET Wrapper .. 25
Writing a Client Application .. 26
Writing a Server DLL ... 28
Deploying Wrapped .NET Servers ... 28
Creating ASP.NET Web Services .. 29
Using Internationalization with the .NET Wrapper .. 31

7 Reliable RPC for .NET Wrapper .. 33
Introduction to Reliable RPC ... 34
Writing a Client .. 35
Writing a Server .. 37
Broker Configuration ... 37

8 .NET Wrapper Reference ... 39
Attributes .. 40
Classes .. 41

9 EntireX .NET Wrapper Application Configuration .. 51
Assembly Versioning ... 52
Client Configuration .. 53
Server Configuration .. 57

iii

iv

EntireX .NET Wrapper

The EntireX .NETWrapper provides access to RPC servers for .NET client applications and access
to .NET servers for any RPC client. The .NETWrapper generation tools of the Workbench take as
input a Software AG IDL file, which describes the interface of the RPC, and generates C# classes
that implement the methods and data types of the interface.

Describes the functionality of the EntireX .NET Wrapper.Introduction

How to use the .NETWrapper: the generation process; using the
.NET Wrapper interactively

Using

Using .NET Wrapper with Microsoft Visual Studio Add-in.Visual Studio Wizard for .NET Wrapper

Using the .NET Wrapper in IDL Compiler command-line modeUsing the .NETWrapper in IDLCompiler
Command-line Mode

Mapping Software AG IDL data types to .NET data types.IDL to .NET Mapping

Writing a client application with the EntireX .NET Wrapper.Writing Applications

Configuring a .NET Wrapper application.EntireX .NET Wrapper Application
Configuration

Introduction to reliable RPC; writing a client and a server for
Reliable RPC; Broker configuration.

Reliable RPC

Reference material (attributes and classes).Reference

v

vi

1 Introduction to the .NET Wrapper

■ Description .. 2
■ Generic .NET Wrapper Runtime ... 3
■ .NET Client Applications ... 3
■ .NET Server DLL .. 4

1

Description

The EntireX .NETWrapper provides access to RPC servers for .NET client applications and access
to .NET servers for any RPC client. The .NETWrapper generation tools of the Workbench take as
input a Software AG IDL file, which describes the interface of the RPC, and generates C# classes
that implement the methods and data types of the interface.

The generated classes can be compiled with the C# compiler into a .NET assembly which can then
be called from any .NET language.

The .NET Wrapper works as follows:

■ C# code is generated from the Software AG IDL file. Using C# is a natural choice when full-
fledged .NET programming is required, since C# was designed for the .NET platform.

■ The .NETWrapper runtime implements functionality that is not specific to a given IDL file (e.g.,
marshalling and unmarshalling of data). The generatedC# codemakes use of the .NETWrapper
runtime functionality. The customer interface and the .NETWrapper runtime is “managed”.NET
code (C#) and makes use of advanced .NET features such as Attributes, VersionInfo, etc.

■ The .NETWrapper runtime makes use of the functionality of the “unmanaged” RPC C runtime
(dllimport in C#). “Managed”.NET code and “unmanaged” DLL code can be combined safely.

■ The SoftwareAG IDLCompiler and an appropriate template are used for the C# code generation.

EntireX .NET Wrapper2

Introduction to the .NET Wrapper

Generic .NET Wrapper Runtime

In order tominimize the amount of code generated for a specific IDL, all service-type functionality
required by the client stub or the server DLL is implemented in a generic .NET Wrapper runtime
SoftwareAG.EntireX.NETWrapper.Runtime.dll. The generic .NET Wrapper runtime implements
service classes, i.e.:

■ Marshalling .NET data types to Software AG IDL data types
■ Unmarshalling Software AG IDL data types to .NET data types
■ Connecting to RPC servers via Broker
■ Connecting .NET servers via Broker with any RPC client.

.NET Client Applications

For a given IDL file, the Software AG IDL Compiler and a C# code generation template for clients
are used to generate a client stub. The source code generated by the .NETWrapper can be compiled
into a .NET assembly with the C# compiler. Application developers can use the generated client
stub assembly to write .NET applications that access RPC servers. They are not limited to C# as
programming language. Any .NET programming language based on the Common Language
Runtime (CLR) can make use of the client stub assembly. Choices are C#, VisualBasic.NET or
managed C++.

3EntireX .NET Wrapper

Introduction to the .NET Wrapper

.NET Server DLL

The SoftwareAG IDLCompiler and aC# code generation template for servers are used to generate
a C# code frame for a specific IDL. Application developers can use the generated frame to write
their own server code for each program in the IDL. The source code can be compiled into a .NET
assembly (DLL) with the C# compiler. The assembly name needs to match the library name as
specified in the IDL file.

EntireX .NET Wrapper4

Introduction to the .NET Wrapper

2 Using the .NET Wrapper

■ Generation Process ... 6
■ Using .NET Wrapper Interactively ... 6

5

Generation Process

To generate the C# client or server code, use the EntireXWorkbench. This can be done interactively
with the graphical user interface or in Command-line Mode.

Using .NET Wrapper Interactively

To use the .NET Wrapper functions, open your Eclipse Workspace.

Setting Wrapper Options

Before you start the generation of C# code for the first time, adjust the global options for the .NET
Wrapper in the Eclipse preferences under Software AG > EntireX > .NET Wrapper.

On theGeneral tab, set the paths to the Microsoft .NET Framework directory and the EntireX
.NET Wrapper runtime (SoftwareAG.EntireX.NETWrapper.Runtime.dll). The preferences on the
Generate Client andGenerate Server tabs are identical. Choose your default settings for the cli-
ent/server generation.

DescriptionOption

Used to define additional options for the C# compiler (cse.exe).C# compiler options

A folder (structure) for C# code generation and compilation relative to the
Eclipse project where the IDL file is located.

Project relative output
directory

Default/String/StringBuilder: in the default case, "string" is used for IN and
"StringBuilder" is used for OUT/INOUT parameters. In the case of "String",

String handling

the C# type "string" is used for IN/INOUT/OUT. In the case of
"StringBuilder", the C# class "StringBuilder" is used.

A string is used to prefix the name of the inner classes when the Sanitize
option is selected (only necessary for Visual Basic clients).

Class name prefix for inner
classes

Use this flag only if you have large environments built with previous
versions of the .NET Wrapper. If this flag is set and you have more than

Use IDL file base name for
output

one library in your IDL file, a C# file is generated with the file base name
of the IDL file (base name=file name without extension). If this flag is not
set, the library name is used as file base name for the generated C# file (one
file for every library in the IDL file).

If this flag is set, the IDL names are sanitized according to the programming
conventions for C#. SeeMapping IDL Data Types to .NET Data Types.

Sanitize

The C# data type "char" is used for IDL parameters of type A1.Generate "char" for A1 instead
of String

The C# data type "byte" is used for IDL parameters of type B1.Generate "byte" for B1 instead
of byte

EntireX .NET Wrapper6

Using the .NET Wrapper

DescriptionOption

Remove trailing blanks after unmarshalling the data. This flag is useful on
the client side to remove trailing blanks before the data returned from the
server is put into the C# classes string | StringBuilder.

Remove trailing blanks

These options are then used as default for the properties of your individual IDL files. You can
change these options (except those on theGeneral tab) for every individual IDL file.

7EntireX .NET Wrapper

Using the .NET Wrapper

8

3 Microsoft Visual Studio Wizard for EntireX .NET Wrapper

■ Installing the Add-in ... 10
■ Using the Add-in ... 10
■ Uninstalling the Add-in ... 14

9

The Visual Studio Wizard for .NETWrapper is a Software AG add-in for Microsoft Visual Studio
2010 that makes the client functionality of the EntireX .NET Wrapper available to Microsoft
Visual Studio 2010.

Prerequisites for all EntireX components are described centrally. SeeWindows Prerequisites in the
EntireX Release Notes.

Installing the Add-in

The EntireX .NETWrapperWizardAdd-in for Visual Studio .NET is part of the EntireX installation.
After you have installed EntireX, you can find the installer under etc in your EntireX installation
path. To install EntireX .NETWrapper Add-in, startNetVSAddIn90.msi and follow the instructions.

Caution: The installation pathmust include the bindirectory (e.g.C:\SoftwareAG\EntireX\bin)
of the corresponding EntireX installation, otherwise the add-in will not work properly!

Using the Add-in

Once the wizard has been installed, start Microsoft Visual Studio 2010. Under Project Types /
Visual C#; Projects, you will find a new template called EntireX .NET Wrapper Application.

EntireX .NET Wrapper10

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

Select this template to start the .NET Wrapper Wizard.

11EntireX .NET Wrapper

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

First enter the name of a Software AG IDL file in the opening window. You can select whatever
you want to generate client or server code. The project name will be set to IDLNameClient or
IDLNameServer automatically. You can enter the name of the path of the .NET Wrapper Runtime
DLL if it is not located in the default path.

On the page Broker/Service you can change the default settings for Broker and Service.

EntireX .NET Wrapper12

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

On the parameters page you can select the options Sanitize and char/string support.

Formore information on Broker/Service and parameters, see the EntireX .NETWrapper document-
ation.

When all data has been entered, click the button Finish. A new Visual Studio .NET solution will
be generatedwhich includes a projectwith the name IDLNameClient or IDLNameServer. This project
contains the Software AG IDL file, the generated .cs file C# file) and references to the System.dll
and the EntireX.NetWrapper.Runtime.dll.

The project will generate a class library (DLL), which can be used in any other .NET project C# or
VB.NET). For this purpose an additionalApp.config file is generatedwhich can be used in a project
where an .exe file is generated. The App.config file contains information about Broker, Services etc.

Caution: Any changes to the SoftwareAG IDLfilewill trigger the EntireXAddIn after saving.
The .cs file will be re-generated and all specifications youmade during the implementation
will be lost.

13EntireX .NET Wrapper

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

Uninstalling the Add-in

You can uninstall the EntireX .NET Wrapper Wizard Add-in for Visual Studio 2010 by using the
WindowsControl Panel >Add or Remove Programs. Select Software AGEntireX .NETWrapper
Wizard and choose Remove.

The EntireX .NET Wrapper Wizard Add-in for Visual Studio 2010 will be removed from your
computer.

Note: The add-in must be uninstalled before you uninstall EntireX, otherwise the uninstall
of EntireX will fail.

EntireX .NET Wrapper14

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

4 Using the .NET Wrapper in IDL Compiler Command-line

Mode

The table below shows the command-line options for the .NET Wrapper if the IDL Compiler is
used. Options can be valid for client and server side.

Description
Req/
OptOption

The EntireX Broker.R-D BROKER=nnn

The EntireX Service.R-D SERVICE=nnn

Template for client (csharp_client.tpl) or server generation
(csharp_server.tpl).

R-t nnn

Project relative output directory or absolute PathR-o nnn

String handling (Default if omitted).O-D
ATOSTRING=String|StringBuilder

Class name prefix for inner classes.O-D CLASSNAMEPREFIX=nnn

Generate "char" for A1 instead of String (1 if required).O-D A1TOCHAR=n

Generate "byte" for B1 instead of byte (1 if required).O-D B1TOBYTE=n

Remove trailing blanks (1 if required).O-D TRIM=n

Sanitize.O-PSANITIZE

File base name for output.O-F nnn

See also Starting the IDLCompiler in the IDL Editor documentation and IDL Compiler Usage Examples
in the IDL Editor documentation.

Example

To start the IDL Compiler with the parameters for the stub generation, enter, for example the fol-
lowing in a single command line:

15

java -classpath "%ProgramFiles%\Software
AG\EntireX\classes\saglic.jar";"%ProgramFiles%\Software
AG\EntireX\Classes\exxidlcompiler.jar" -Dsagcommon="%CommonProgramFiles%\Software
AG" com/softwareag/entirex/idlcompiler/TplParser -PSANITIZE -D BROKER="localhost:1971"
-D SERVICE="RPC/SRV1/CALLNAT" -t "%ProgramFiles%\Software
AG\EntireX\Template\csharp_client.tpl" -F example -o NET example.idl

The client stub is generated in the subdirectory NET.

Status and processing messages are written to standard output (stdout), which is normally set to
the executing shell window.

EntireX .NET Wrapper16

Using the .NET Wrapper in IDL Compiler Command-line Mode

5 Software AG IDL to .NET Mapping

■ Mapping IDL Data Types to .NET Data Types ... 18
■ Mapping Library Name and Alias .. 20
■ Mapping Program Name and Alias .. 21
■ Mapping Parameter Names ... 21
■ Mapping Fixed and Unbounded Arrays .. 22
■ Mapping Groups and Periodic Groups ... 22
■ Mapping Structures .. 22
■ Mapping the Direction Attributes IN, OUT and INOUT ... 23
■ Mapping the ALIGNED Attribute ... 23
■ Calling Servers as Procedures or Functions .. 23

17

Mapping IDL Data Types to .NET Data Types

The table below lists the metasymbols and informal terms that are used for the Software AG IDL.

■ The metasymbols [and] surround optional lexical entities.
■ The informal term “number” is a sequence of numeric characters, for example 123.

Note.NET Data TypesDescriptionSoftware AG IDL

1, 5char or String/StringBuilderAlphanumericA1

1String/StringBuilderAlphanumericAnumber

1String/StringBuilderAlphanumeric variable lengthAV

1String/StringBuilderAlphanumeric variable length with
maximum length

AV[number]

6byte or byte[]BinaryB1

byte[]BinaryBnumber

2byte[]Binary variable lengthBV

byte[]Binary variable length with maximum
length

BV[number]

3, 7DateTimeDateD

floatFloating point (small)F4

doubleFloating point (large)F8

sbyteInteger (small)I1

shortInteger (medium)I2

intInteger (large)I4

1String/StringBuilderKanjiKnumber

1String/StringBuilderKanji variable lengthKV

1String/StringBuilderKanji variable length with maximum
length

KV[number]

boolLogicalL

decimalUnpacked decimalNnumber [.number]

decimalUnpacked decimal unsignedNUnumber [.number]

decimalPacked decimalPnumber [.number]

decimalPacked decimal unsignedPUnumber[.number]

4, 7DateTimeTimeT

Notes:

EntireX .NET Wrapper18

Software AG IDL to .NET Mapping

1. System.String for direction in, otherwise System.Text.StringBuilder if Default is used for
parameter ATOSTRING. If String is used for ATOSTRING, System.String is used everywhere, and
if StringBuilder is used for ATOSTRING, System.Text.StringBuilder is used everywhere. See
Using the .NET Wrapper.

2. Unsigned integer ranging from 0 to 255.

3. Count of days AD (anno domini, after the birth of Christ). The valid range is from 1.1.0001 up
to 28.11.2737 (only the date part of DateTime is used).

4. Count of tenths of a secondAD (AnnoDomini, after the birth of Christ). The valid range is from
1.1.0001 00:00:00.0 up to 16.11.3168 09:46:39 plus 0.9 seconds.

5. If -D A1TOCHAR=1 is defined in the erxidl call, A1 is mapped to char, otherwise to
String/StringBuilder.

6. If -D B1TOBYTE=1 is defined in the erxidl call, B1 is mapped to byte, otherwise to byte[].

7. The Natural DATE type allows for the value 01.01.0000 to denote an undefined date. In order to
avoid the .NET runtime throwing an exception when attempting to assign the invalid date
value 01.01.0000 to a .NET DateTime variable, the .NET runtime converts an incoming neutral
date/time value 01.01.0000 00:00:00.0 into the special .NET DateTime value DateTime.MaxValue
- 1 tick (that is 31.12.9999:23:59:59.9999998). When this value is passed to the EntireX runtime
to be sent to an EntireX RPC service, it is converted back into the neutral RPC date/time value
01.01.0000 00:00:00.0.

Please also note the hints and restrictions on the IDLdata types valid for all programming language
bindings as described under IDL Data Types under Software AG IDL File in the IDL Editor docu-
mentation.

19EntireX .NET Wrapper

Software AG IDL to .NET Mapping

Mapping Library Name and Alias

The library name as specified in the IDL file is sent from a client to the server. Special characters
are not replaced. The library alias is not sent to the server.

In the RPC server, the IDL library name sent may be used to locate the target server. See Locating
and Calling the Target Server in the platform-specific administration or RPC server documentation.

The name of the .NET server assembly must match the library name.

The library name as given in the IDL file is used to compose the names of the generated output
files. See library-definition under Software AG IDL Grammar in the IDL Editor documentation.
Therefore the allowed characters are restricted by the underlying file system. The name is composed
from <library-name>.idl to <library-name>.cs as default. The name of the client stub file can
be changed by using the -F option of the erxidl command. See Using the .NET Wrapper in IDL
Compiler Command-line Mode.

In accordance with the C# conventions, the class name is built as follows with the default setting
-PSANITIZE:

■ The initial character and characters following one of the special characters '#', '$', '&', '+', '-', '_',
'.', '/' and '@' are converted to uppercase.

■ All other characters are converted to lowercase.
■ The special characters '#', '$', '&', '+', '-', '_', '.', '/' and '@' are removed.

Other special characters used in the library name are not changed andmay lead to problems with
your underlying file system and to compile errors.

If there is an alias for the library name in the library-definition, this alias is used “as is” to form
the class name. Therefore, this alias must be a valid C# class name. To fully control the output,
use alias names and do not use SANITIZE.

Examples:

MY-CLASS to MyClass (class)

MY-CLASS alias YOUR_CLASS to YOUR_CLASS(class)

EntireX .NET Wrapper20

Software AG IDL to .NET Mapping

Mapping Program Name and Alias

The program name is sent from a client to the server. Special characters are not replaced. The
program alias is not sent to the server.

In the RPC server, the IDL program name sent is used to locate the target server. See Locating and
Calling the Target Server in the platform-specific administration or RPC server documentation.

The program names as given in the IDL file are mapped to methods within the generated C#
sources. See program-definitionunder Software AG IDLGrammar in the IDLEditordocumentation.

In accordance with the C# conventions method names are built as follows with the default setting
-PSANITIZE:

■ Characters are converted to lowercase with the following exceptions
■ The special characters '#', '$', '&', '+', '-', '_', '.', '/' and '@' are removed
■ The character following one of the special characters is converted to uppercase.

Other special characters used in the programname are not changed andmay lead to compile errors.

If there is an alias for the program name in the program-definition under Software AG IDL
Grammar in the IDL Editor documentation, this alias is used “as is” for themethod name. Therefore,
this alias must be a valid C# method name. To fully control the output, use alias names and do
not use SANITIZE.

Examples:

MY-PROGRAM to MyProgram (method).

MY-PROGRAM alias YOUR_PROGRAM to YOUR_PROGRAM(method).

Mapping Parameter Names

The parameter names as given in the parameter-data-definition of the IDL file are mapped to
parameters of the generated C# methods.

In accordance with the C# conventions the parameter names are built as follows with the default
setting -PSANITIZE:

■ Characters are converted to lowercase except
■ The special characters '#', '$', '&', '+', '-', '_', '.', '/' and '@' are removed
■ The character following one of those special characters is converted to uppercase.

21EntireX .NET Wrapper

Software AG IDL to .NET Mapping

IDL files that use C# keywords (e.g. string or float) as parameter names are not supported. Do
not use C# keywords such as string or float as parameter names. Modify your IDL file accord-
ingly.

To fully control the output do not use SANITIZE.

Example:

MY-PARAM to myParam (parameter)

Mapping Fixed and Unbounded Arrays

Arrays in the IDL file are mapped to C# arrays. If an array value does not have the correct number
of dimensions or elements, this will result in an exception. If the value null (null pointer) is used
as an input parameter (for IN and INOUT parameters), an array will be instantiated by the runtime.

Mapping Groups and Periodic Groups

Groups in the IDL file are mapped to C# classes.

Thenamespace for group classes is SoftwareAG.EntireX.NETWrapper.Generated.filename.Groups
on the client side, and SoftwareAG.EntireX.NETWrapper.Server.libraryname.Groups on the
server side.

Mapping Structures

Structures in the IDL file are mapped to C# classes.

The namespace for structure classes is
SoftwareAG.EntireX.NETWrapper.Generated.filename.Structs on the client side, and
SoftwareAG.EntireX.NETWrapper.Server.libraryname.Structs on the server side.

See Mapping Groups and Periodic Groups.

EntireX .NET Wrapper22

Software AG IDL to .NET Mapping

Mapping the Direction Attributes IN, OUT and INOUT

■ IN parameters are implemented as normal parameters of the generated C# class method.
■ OUT parameters are implemented as out parameters of the generated C# class method.
■ INOUT parameters are implemented as ref parameters of the generated method.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

See attribute-list under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to the direction attribute.

Mapping the ALIGNED Attribute

Not supported.

Calling Servers as Procedures or Functions

The IDL syntax allows definitions of procedures only. It does not have the concept of a function.
A function is a procedure which, in addition to the parameters, returns a value. Procedures and
functions are transparent between clients and server, i.e. a client using a function can call a server
implemented as a procedure and vice versa.

In C# a procedure corresponds to a method with result type void, a function returns a value of
some type.

It is possible to treat an OUT parameter of a procedure as the return value of a function. The .NET
Wrapper generates a method with a non-void result type when the following two conditions are
met:

■ The last parameter of the procedure definition is of type OUT;
■ This last parameter of the procedure definition has the name Function_Result.

In this case no function parameter is generated for this OUT parameter.

See the .NET Wrapper example that comes with EntireX.

23EntireX .NET Wrapper

Software AG IDL to .NET Mapping

24

6 Writing Applications with the .NET Wrapper

■ Writing a Client Application .. 26
■ Writing a Server DLL .. 28
■ Deploying Wrapped .NET Servers .. 28
■ Creating ASP.NET Web Services .. 29
■ Using Internationalization with the .NET Wrapper ... 31

25

Writing a Client Application

Required Steps

Writing a client application with the EntireX .NETWrapper typically requires the following steps:

■ Starting from an IDL file, generate a C# client stub using either the EntireX Workbench .NET
Wrapper GUI or the Software AG IDL Compiler (erxidl) and the csharp_client.tpl template from
the command line.

■ Build a .NET assembly from the generated C# client stub.
■ Create an application that uses the generated client stub assembly and the .NETWrapper runtime
SoftwareAG.EntireX.NETWrapper.Runtime.dll.

The following description outlines as an example the steps required to build a .NETWrapper client
application (solution) with the Microsoft Visual Studio.

Generating the .NET Wrapper Client Stub from a Software AG IDL File

We assume the IDL source file has the name example.idl and there is an EntireX RPC service
available that implements the interface described in the IDL file.

If the IDLfilewas generated froma source containingNatural REDEFINEs, a CVMfile is required.
See Redesigning the Extracted Interface in the IDL Extractor for Natural documentation, and also
CVM File.

1. Open the EntireX Workbench, select the example.idl file.

2. From the .NET menu, choose Generate client. This will generate a C# source file example.cs.

See also Using the .NET Wrapper.

Creating a Microsoft Visual Studio Solution

1. Start Microsoft Visual Studio.

2. From the Filemenu, chooseNew > Blank Solution.... and choose an appropriate name for the
solution.

EntireX .NET Wrapper26

Writing Applications with the .NET Wrapper

Creating the .NET Wrapper Client Stub Library (Assembly)

1. Select the solution and choose Add, chooseNew Project.

2. In theNewProject dialog, chooseVisual C# Projects andClass Library. Choose an appropriate
name for the class library, e.g. "exampleClientStub".

3. Delete the default class file Class1.cs.

4. Select the newproject and chooseAdd >AddExisting Item and add the example.csfile generated
previously.

5. Select References, choose Add Reference and add the .NET Wrapper runtime SoftwareAG.En-
tireX.NETWrapper.Runtime.dll.

6. Build the class library.

Creating the .NET Wrapper Client Application

1. Add a newproject to the solution: Choose the solution,Add,NewProject...,Visual C# Projects,
ConsoleApplication. Choose an appropriate name for the project, for example, "exampleClient".

2. Rename the default class file Class1.cs as appropriate.

3. Choose References > Add Reference and add the .NET Wrapper runtime SoftwareAG.En-
tireX.NETWrapper.Runtime.dll.

4. ChooseReferences > Add Reference > Projects and add the .NETWrapper client stub example-
ClientStub.

5. Now implement your client application. Add the following lines to the top of the class file:

using SoftwareAG.EntireX.NETWrapper.Runtime;
using SoftwareAG.EntireX.NETWrapper.Generated.example;

6. In amethod of the application class implement the connection to an EntireX Broker, for example,

Broker broker = new Broker("localhost:1971", "ERX-USER");
broker.Logon("ERX-PASS");

and an EntireX RPC service, for example,

Service service = new Service(broker, "RPC/SRV1/CALLNAT", "EXAMPLE");
service.UserIDAndPassword("RPC-USER", "RPC-PASSWORD");

7. The example class can now be instantiated, for example,

27EntireX .NET Wrapper

Writing Applications with the .NET Wrapper

Example e = new Example(service);

and the example methods called, for example,

int result = ex.Calculator("+", 10, 15);

Writing a Server DLL

Required Steps

Writing a server DLL with the EntireX .NET Wrapper typically requires the following steps:

■ Starting from a Software AG IDL file, generate a C# file using either the EntireXWorkbench .NET
Wrapper GUI or the Software AG IDL Compiler (erxidl) and the csharp_server.tpl template from
the command line.

■ Insert your server-specific code at the required position for the programs (methods).
■ Build a .NET assembly (server DLL) from the generated C# file.

Building a .NET Wrapper server DLL with the Microsoft Visual Studio follows the rules for
building a client stub library.

Note: The file name of the server DLL and the name of the library/class in the generated C#
file must be identical.

Deploying Wrapped .NET Servers

The easiest way to deploy and run a .NET server is the so-called XCOPY-deployment. This means
that all relevant files of the server are installed in one folder. No additional registration and con-
figuration is required. The only prerequisite is that the EntireX runtime is installed. The following
files are typically required:

■ the server wrapper and implementation assembly (or assemblies)
■ the .NET Wrapper runtime (SoftwareAG.EntireX.NETWrapper.Runtime.dll)
■ the .NET server user exit DLL (dotNetServer.dll)
■ the RPC server executable (rpcserver.exe)
■ a configuration file (.cfg) for the RPC server according to the rules described under Configuring
the EntireXRPCServer for usewith the .NETWrapperunderEntireX .NETWrapper Application
Configuration.

EntireX .NET Wrapper28

Writing Applications with the .NET Wrapper

Tomake the .NET server available to EntireX clients, the .NETRPC servermust be up and running
and able to locate the server implementation.

The described XCOPY deployment method has the drawback that copies of the .NET Wrapper
runtime and the .NET RPC server have to be deployed with the application. It is possible to avoid
this by making use of the .NET Framework's application configuration capabilities. Various
parameters of a .NET application, say myapp.exe, can be configured in a configuration file
myapp.exe.config that must be located in the executable's folder. The configuration file defines in
XML format several parameters of the application, such as the dependent assemblies, version and
location and others. Using this method, neither the .NET Wrapper runtime nor the .NET RPC
server needs to be deployed. However, the configuration file for the .NET RPC server must be
located in the same folder as the RPC server itself, which by default is the bin folder of the EntireX
installation. As a consequence, if there are multiple .NET servers deployed on the system, they all
need to be configured in the .NET RPC server's configuration file.

Creating ASP.NET Web Services

The generated C# client stub can be used in an ASP.NET Web service to publish EntireX RPC
services as Web services. With Visual Studio you can easily create an ASP.NET Web service that
publishesmethods of the EntireX RPC service (or your ownmethods that just use the EntireX RPC
service).

Note: The .NETWrapper Runtime uses unmanagedDLLs. For this reason, ASP.NET applic-
ations have to run in full-trust mode.

Example

You have built the .NET Wrapper example EntireX\examples\RPC\basic\example\dotNetClient as
described in the README file.

Then create a new “ASP.NET Web service” project with references to the generated client stub
and the .NET Wrapper runtime.

You can use the following example code (in the .asmx file) to implement a Web method add that
exposes the calcmethod of the example.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Text;
using SoftwareAG.EntireX.NETWrapper.Runtime;

29EntireX .NET Wrapper

Writing Applications with the .NET Wrapper

using SoftwareAG.EntireX.NETWrapper.Generated.example;

namespace WebService1
{
/// <summary>
/// Summary description for Service1.
/// </summary>
public class Service1 : System.Web.Services.WebService
{
public Service1()
{
//CODEGEN: This call is required by the ASP.NET Web Services Designer
InitializeComponent();
}

#region Component Designer generated code

//Required by the Web Services Designer
private IContainer components = null;

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing && components != null)
{
components.Dispose();
}
base.Dispose(disposing);
}

#endregion

// WEB SERVICE EXAMPLE
[WebMethod]

public int add(int sum1, int sum2)
{
Example e = new Example();

int result = e.calc("+", sum1,sum2);
return result;
}

EntireX .NET Wrapper30

Writing Applications with the .NET Wrapper

}
}

Using Internationalization with the .NET Wrapper

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

The .NET Wrapper uses by default the “current locale” encoding set up on the Windows system
for converting UNICODE (UTF-16) representations of strings to single-byte or multibyte repres-
entations that are sent to the Broker, and vice versa.

If you want to adapt the locale settings of your Windows system, use the Regional and Language
Options in the Windows Control Panel.

The Broker class of the .NET Wrapper Runtime makes use of the .NET Framework class Sys-
tem.Text.Encoding for character conversion.

Refer also to the .NET Framework class library documentation for System.Text.Encoding.

TheCharacterEncodingproperty of theBroker class, that guides the character conversion, is initialized
with System.Text.Encoding.GetEncoding(0) (current locale). The codepage that corresponds to
this encoding is automatically transferred to the Broker as part of the locale string, specifying the
encoding of the data, when communicating with a Broker version 7.2 and above.

The application programmer can also assign a custom encoding object to the Broker class' character
encoding property for custom character conversions. If an encoding object is provided, the corres-
ponding codepage is transferred as part of the locale string to the Broker for all Broker versions.

If communicatingwith a Broker version 7.1 and below and if no encoding is provided by the .NET
Wrapper programmer, an EntireX administrator can force a codepage string to be sent to the
Broker by setting the environment variable ERX_CODEPAGE to the name of the respective codepage.
See ERX_CODEPAGE.

When setting the codepage with the environment variable ERX_CODEPAGE:

■ The ERX_CODEPAGE environment variable is ignored if the application programmer has already
provided a codepage.

■ The value of the ERX_CODEPAGE environment variable must be the name of the system's default
codepage. Under Windows, simply apply the value "LOCAL" to specify the default Windows
ANSI codepage.

■ The codepage specifiedmust be one that is supported by the Broker, depending on the Broker's
internationalization approach. See Locale StringMapping in the internationalizationdocumentation
for information on how the broker derives the codepage from the locale string.

31EntireX .NET Wrapper

Writing Applications with the .NET Wrapper

■ Before starting the application, set the locale stringwith the environment variable ERX_CODEPAGE.

Example:

ERX_CODEPAGE=LOCAL

EntireX .NET Wrapper32

Writing Applications with the .NET Wrapper

7 Reliable RPC for .NET Wrapper

■ Introduction to Reliable RPC .. 34
■ Writing a Client ... 35
■ Writing a Server .. 37
■ Broker Configuration .. 37

33

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becomingmore andmore important. Reliablemessaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

■ Reliable RPC allows asynchronous calls (“fire and forget”)
■ Reliable RPC is supported by most EntireX wrappers
■ Reliable RPC messages are stored in the Broker's persistent store until a server is available
■ Reliable RPC clients are able to request the status of the messages they have sent

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX .NET Wrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

■ AUTO_COMMIT

■ CLIENT_COMMIT

EntireX .NET Wrapper34

Reliable RPC for .NET Wrapper

While AUTO_COMMIT commits eachRPCmessage implicitly after sending it, a series of RPCmessages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

All methods for reliable RPC are available on the service class object. See description of class
Service for details. The methods are:

■ Service.SetReliableState
■ Service.getReliableState
■ Service.ReliableCommit
■ Service.ReliableRollback
■ Service.GetReliableId
■ Service.GetReliableStatus

Example (this example is included as source in folder examples\ReliableRPC\NetClient)

Create Broker object and interface object.

Mail mail = new Mail();
mail.service.broker.logon();

Enable reliable RPC with CLIENT_COMMIT:

mail.SetReliableState(Service.ReliableState.RELIABLE_AUTO_COMMIT);

The first RPC message.

mail.Sendmail("mail receiver", "subject 1", "Text 1");

Check the status: get the message ID first and use it to retrieve the status.

StringBuilder reliableID = new StringBuilder();
StringBuilder reliableStatus = new StringBuilder();

mail.service.GetReliableID(ref reliableID);
mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

The second RPC message.

35EntireX .NET Wrapper

Reliable RPC for .NET Wrapper

mail.Sendmail("mail receiver", "subject 2", "Text 2");

Commit the two messages.

mail.service.ReliableCommit();

Check the status again for the same message ID.

mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

The third RPC message.

mail.Sendmail("mail receiver", "subject 3", "Text 3");

Check the status: get the new message ID and use it to retrieve the status.

mail.service.GetReliableID(ref reliableID);
mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

Roll back the third message and check status.

mail.service.ReliableRollback();
mail.service.GetReliableStatus(reliableID, ref reliableStatus);

Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

mail.service.broker.logoff();

Limitations

1. All program calls that are called in the same transaction (CLIENT_COMMIT) must be in the
same IDL library.

2. It is not allowed to switch from CLIENT_COMMIT to AUTO_COMMIT in a transaction.

3. Messages (IDL programs) must have IN parameters only.

EntireX .NET Wrapper36

Reliable RPC for .NET Wrapper

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it throws an exception. This causes the transaction (unit of work inside the
broker) to be cancelled, and the error code is written to the user status field of the unit of work.

Broker Configuration

ABroker configurationwith PSTORE is recommended. This enables the Broker to store themessages
formore than one Broker session. Thesemessages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of themessages and the status information can be configuredwith the attributes
UWTIME and UWSTAT-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW, MAX-UOWS and MAX-
UOW-MESSAGE-LENGTHmay be used in addition to configure the units of work. See Broker Attributes
in the platform-independent administration documentation.

The result of the function Service.GetReliableStatus depends on the configuration of the unit
of work status lifetime in the EntireX Broker configuration. If the status is not stored longer than
the message, the function returns the error code 00780305 (no matching UOW found).

37EntireX .NET Wrapper

Reliable RPC for .NET Wrapper

38

8 .NET Wrapper Reference

■ Attributes ... 40
■ Classes ... 41

39

Attributes

Attribute classes are defined and implemented in the .NET Wrapper runtime and used in the C#
client stub code to hold information extracted from the IDL file.

EntireXVersionAttribute

This attribute contains version information.

Example

[EntireXVersion("9.6.0.n")]
public class Example

LibraryAttribute

This attribute contains the library name.

Example

[Library("EXAMPLE")]
public class Example

BrokerAttribute

This attribute contains the Broker ID.

Example

[Broker("localhost:1971")]
public class Example

ServiceAttribute

This attribute contains the service name.

EntireX .NET Wrapper40

.NET Wrapper Reference

Example

[Service("RPC/SRV1/CALLNAT")]
public class Example

ProgramAttribute

This attribute contains the program name.

Example

[Program("CALC")]
public int Calculator(

[SendAs(IdlType.A, Length=1f)][In] string operation,
[SendAs(IdlType.I4)][In] int operand1,
[SendAs(IdlType.I4)][In] int operand2

)

SendAsAttribute

This attribute contains type, length (fixed or dynamic) and dimension (fixed or dynamic) inform-
ation.

Direction Attributes (In, Out)

These attributes contain direction information. They are supported natively by C#.

Example

[Program("HELLO")]
public void Hello(

[SendAs(IdlType.A, Length=80f)][In] string client,
[SendAs(IdlType.A, Length=80f)][In, Out] ref StringBuilder mail

)

Classes

The .NET Wrapper runtime defines and implements several generic service classes that are used
in the generated C# client stub and by .NET client applications.

41EntireX .NET Wrapper

.NET Wrapper Reference

Broker

This class represents an EntireX Broker session and handles the connections to the Broker.

Constructors

public Broker()

Default Broker for default user.

The values for the default Broker and user are taken in the following order

■ from the application's configuration file or
■ from the [Broker] attribute of the client stub (Broker values only) or
■ from hard-coded constants localhost:1971 and ERX-USER.

public Broker(string hostName)

Broker on hostName for default user (ERX-USER).

public Broker(string hostName, string userName)

Broker on hostName for userName.

public Broker(string hostName, string userName, string token)

Broker on hostName for userNamewith token.

Methods

public void Logon()

Performs a logon to the Broker with the default user ID and password (that were set, for example,
with the UserID and Password property).

public void Logon(string password)

Performs a logon to the Broker with the given password.

EntireX .NET Wrapper42

.NET Wrapper Reference

public void Logon(string password, string newPassword)

Performs a logon to the Brokerwith the given password and changes the password to newPassword

public void Logon(string userID, string token, string password)

Performs a logon to the Broker with the given user ID, token and password

public void Logoff()

Performs a logoff from the Broker.

Properties

public bool ForceLogon

Specifies whether force logon is performed. The default is false.

public char BrokerSecurity

Sets or retrieves the level and type of Broker security to be used.

'N' : no security
'Y' : default EntireX Security
'C' : user-specific security

public int CompressionLevel

Specifies what compression level should be used. Possible values are in the range 0 to 9.
The following values have a dedicated purpose.

0: do not compress
1: use compression method with best speed
6: use default compression
8: deflated
9: use best compression
The default value is 0 (no compression)

public int EncryptionLevel

Specifies what encryption level should be used. Possible values are:

0: no encryption
1: encrypt communication with the Broker
2: encrypt communication with the RPC server
The default value is 0.

43EntireX .NET Wrapper

.NET Wrapper Reference

public string BrokerID

Retrieves the Broker ID of the given Broker class instance. This property is read only.

public byte[] IAFToken

Sets or retrieves the IAF token of a given Broker instance.

public string Password

Sets the password of a given Broker class instance for subsequent authentication. This property
is write only.

public byte[] SecurityToken

Sets or retrieves the security token of a given Broker class instance. The default value is null.

public string Token

Sets or retrieves the token of the given Broker class instance. The default value is null.

public string UserID

Sets or retrieves the user ID of the given Broker class instance for subsequent authentication.

Deprecated Properties

public Compress Compression

Please use the CompressionLevel property instead.

public bool Encryption

Please use the EncryptionLevel property instead.

Example

Broker broker = new Broker("ibm2:3762", "ERX-USER");
broker.Logon("ERX-PASS");

EntireX .NET Wrapper44

.NET Wrapper Reference

Service

Constructors

public Service()

Default service with default Broker.

public Service(string libraryName)

Service for given library with default Broker.

public Service(Broker broker)

Service for given Broker.

public Service(Broker broker, string trinity)

Service for givenBroker and service name: class/server/service (for example RPC/SRV1/CALLNAT).

public Service(string Broker broker, string trinity, libraryName)

Service for given Broker, service name: class/server/service and library.

Methods

public int SetReliableState(int uReliableState)

Set the Reliable State. Possible values:

RELIABLE_OFF (0) - default value
RELIABLE_AUTO_COMMIT (1)
RELIABLE_CLIENT_COMMIT (2)

See Reliable RPC for .NET Wrapper.

public int ReliableCommit()

Do a commit in Reliable State RELIABLE_CLIENT_COMMIT.

45EntireX .NET Wrapper

.NET Wrapper Reference

public int ReliableRollback()

Do a rollback in Reliable State RELIABLE_CLIENT_COMMIT.

public int GetReliableID(ref StringBuilder ReliableID)

Get the ReliableID.

public int GetReliableStatus(StringBuilder ReliableID, ref StringBuilder ↩
ReliableStatus)

Get the Reliable Status. Possible values:

RECEIVED
ACCEPTED
DELIVERED
BACKEDOUT
PROCESSED
CANCELLED
TIMEOUT
DISCARDED

See Broker ACI Fields in the ACI Programming documentation for more information.

public void CloseConversation()

Close an RPC conversation.

public void CloseConversationCommit()

Close an RPC conversation and commit.

public void UserIDAndPassword(string user, string password)

Specify user ID and password for a service.

public void OpenConversation()

Open an RPC conversation.

EntireX .NET Wrapper46

.NET Wrapper Reference

public unsafe object Invoke (string library , string method , params object[] ↩
objArray)

is the name of the class in the generated client stublibrarywhere
the name of the method to be invokedmethod
the methods parameters as an array of objects - the array size must fit the para-
meter count of the method .

objArray

Invoke returns the result (if any) of the invoked method.

The initialisation of the parameter array follows the rules:

1. Parameters of type groups, structs and arrays have to be assigned as follows

int[] numbers = new int[10] ;
...
objArray[i] = numbers ;

2. [in,out] and [out] parameters of the simple data types bool, char, byte, sbyte, decimal, float,
double, short, int and DateTime have to be assigned as follows:

int number = 4711 ;
...
objArray[i] = new Ref (ref number) ;

where Ref is the class SoftwareAG.EntireX.NETWrapper.Runtime.Ref.

Note: The name of the class and the assembly name (file name) have to be identical. For
each class, a separate assembly is required. All these assemblies have to be placed in the
folder of the client executable or have to be configured according to the rules described in
Configuring the EntireX RPC Server for use with the .NET Framework.

Properties

public Encoding CharacterEncoding

Define an encoding for character translation. Default is System.Text.Encoding.GetEncoding(0)
(current locale). See also the .NET Framework class library documentation for
System.Text.Encoding.

47EntireX .NET Wrapper

.NET Wrapper Reference

public bool Encryption

Specify whether encryption is used. The default is false.

public bool NaturalLogon

Specify whether Natural logon should be performed. The default is false. If NaturalLogon is set
to true but no RPCUserID and RPCPassword have been defined, the runtime uses the Broker user
ID and password (provided the Broker password has been set with the Password property).

public Broker Broker

Sets or retrieves the Broker instance associated with the given Service instance.

public string RPCUserID

Sets or retrieves the RPC user ID of a given Service instance.

public string RPCPassword

Sets the RPC user password of a given Service instance.

public string ServerAddress

Retrieves the server address (class/server/service triplet) of a given Service instance.

public string Library

Sets or retrieves the library name of a given Service instance.

public Uint Timeout

Sets or retrieves the timeout value for a given Service instance. Timeout = 0 is invalid. If 0 is set,
a default of 50 seconds will be used.

Example

Service service = new Service(broker, "RPC/SRV1/CALLNAT", "EXAMPLE");
service.UserIDAndPassword("RPC-USER", "RPC-Password");

EntireX .NET Wrapper48

.NET Wrapper Reference

XException

Properties

public int errorCode

If an XException is thrown, errorCode contains the specific error code.

public string Message

If an XException is thrown, Message contains the specific error message. SeeMessage Class 2002 -
.NET Wrapper under Error Messages and Codes.

Example

try {
...

} catch (EntireX.XException e) {
Console.WriteLine(e.Message) ;

};

Output: "02150148: EntireX Broker not active.

49EntireX .NET Wrapper

.NET Wrapper Reference

50

9 EntireX .NET Wrapper Application Configuration

■ Assembly Versioning .. 52
■ Client Configuration ... 53
■ Server Configuration .. 57

51

Most applications require some configuration parameters that represent durable applications or
user preferences.

The .NET framework includes configuration functionality that loads an application's configuration
automatically at runtimewithout programmer intervention. For a standalone application, named,
for example,myapp.exe youmust name the configuration file (containing configuration settings in
a given XML format) myapp.exe.config. The framework will then be able to load and parse the
configuration file automatically when myapp.exe is run. For an ASP.NET Web application the
configuration file is named web.config.

Assembly Versioning

.NET Framework assemblies support a strong versioning concept. The specific version of an as-
sembly and the versions of dependent assemblies are recorded in the assembly's manifest. The
versions of the dependent assemblies to be loaded at runtime are determined depending on the
version policy in effect.

The default version policy is that applications run only with the exact versions of dependent as-
semblies they were built with. Thus applications that are deployed together with their dependent
assemblies are not affected by newer or older versions of some of these assemblies. However, it
is sometimes desirable to update an assemblywith a newer version. In order tomake this possible,
the default version policy can be overridden by explicit version policies specified in configuration
files, for example, the application configuration file (<appname>.exe.config or web.config for Web
applications), the computer's machine configuration file (machine.config) or a publisher's policy
file.

The following example shows a configuration file fragment that, when placed in a standalone
application's <appname>.exe.configfile or aWeb application'sweb.config file or in themachine.config
file, directs the .NET runtime loader to load version 9.6.0.n of the .NET Wrapper runtime
whenever earlier versions in the range 7.1.1.0-7.2.1.73 are required.

<runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="SoftwareAG.EntireX.NETWrapper.Runtime"
publicKeyToken="645917c53ee5c617" />
 <bindingRedirect oldVersion="7.1.1.0-7.2.1.73" newVersion="9.6.0.n" />
 <codeBase version="9.6.0.n"
 ↩
href="file:///C:\SoftwareAG\EntireX\bin\SoftwareAG.EntireX.NETWrapper.Runtime.dll"/>
 </dependentAssembly>
 </assemblyBinding>
</runtime>

EntireX .NET Wrapper52

EntireX .NET Wrapper Application Configuration

Note: The <runtime> configuration fragment must come after the <configSections> and
<appSettings> sections of the configuration file, otherwise the .NET runtime will report
errors.

See also the Microsoft .NET Framework documentation on assembly versioning.

Client Configuration

The .NET Wrapper Runtime supports the .NET framework configuration mechanism for several
EntireX Broker and (RPC) Service class properties. Bymaking use of this configurationmechanism,
.NETWrapper client applications can avoid constructing Broker and Service objects explicitly and
leave this task to the .NET Wrapper Runtime.

There is one section group named EntireX with the two sections Broker and Service where you
can specify the settings for EntireX .NETWrapper Broker and Service class instances respectively.

Example

 <sectionGroup name="EntireX"> <!-- EntireX Configuration Section Group ↩
Definition -->
 <section name="Broker" type="System.Configuration.NameValueSectionHandler" />
 <section name="Service" type="System.Configuration.NameValueSectionHandler" />
 </sectionGroup>

For an ASP.NET web.config configuration file, the parameters of the NameValueSectionHandler
that processes the configuration must be specified in more detail.

<sectionGroup name="EntireX">
 <section name="Broker" type="System.Configuration.NameValueSectionHandler,
 ↩
System,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089,Custom=null" />
 <section name="Service" type="System.Configuration.NameValueSectionHandler,
 ↩
System,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089,Custom=null" />
</sectionGroup>

53EntireX .NET Wrapper

EntireX .NET Wrapper Application Configuration

Broker Configuration Section

If the default constructor Broker() is used to construct a Broker object, i.e. if there is no Broker
name (or Broker ID) supplied, then the application's configuration file is examined for configuration
settings to be taken as values. If no entry is found for a given setting name, the default values listed
in the table below will apply.

The following can be configured for Broker instances:

DescriptionKey

Specifies the Broker name (or Broker ID). The default value is "localhost:1971". Only the
URL-style broker ID is supported. See URL-style Broker ID.

name

Specifies the user ID to be used to connect to the Broker;
The default value is "NET-USER".

userID

Specifies the password to be used to connect to the Broker. This setting is only considered
when userID is also specified.
The default value is "NET-PASS".

password

Specifies whether the data sent to the Broker should be compressed.
Possible values are:

compression

■ NO_COMPRESSION (CompressionLevel=0)
■ BEST_COMPRESSION (CompressionLevel=9)
■ DEFAULT_COMPRESSION (CompressionLevel=6)
this.compression=Compression.DEFAULT_COMPRESSION;

■ BEST_SPEED (CompressionLevel=1)
■ DEFLATED (CompressionLevel=8)

Thedefault value isNO_COMPRESSION.Use eitherCompression orCompressionLevel.

Specifies what compression level should be used.
Possible values are in the range 0 to 9 (see CompressionLevel property in the Broker
class). Use either Compression or CompressionLevel.

compressionLevel

Specifies the encryption level used for the Broker.
Possible values are 0,1,2. See ENCRYPTION-LEVEL.

encryptionLevel

Specifies whether a forceLogon should be performed.
Possible values are "true" and "false".
The default value is "false".

forceLogon

Specifies a token value to be used in conjunction with the user ID.
The default value is "".

token

EntireX .NET Wrapper54

EntireX .NET Wrapper Application Configuration

Broker Configuration Example

<Broker>
<!-- EntireX Broker Configuration -->
<add key="name" value="localhost:1971" />
<add key="locationTransparency" value="false" />
<add key="locationTransparencySet" value="DefaultSet" />
<add key="userID" value="NET-USER" />
<add key="password" value="NET-PASS" />
<add key="compression" value="NO_COMPRESSION" />
<add key="encryptionLevel" value="0" />
<add key="forceLogon" value="false" />
<add key="token" value="top secret" />

</Broker>

Service Configuration Section

If the default constructor Service() is used to construct a Service object, i.e. there is no Service name
(class/server/service) supplied, then the application's configurationfile is examined for configuration
settings to be taken as values. If no entry is found for a given setting name, then the default values
apply as listed below.

The following can be configured for Service instances.

DescriptionKey

Specifies the name of the service.
Default value is "RPC/SRV1/CALLNAT".

name

Specifies whether the data sent to the RPC Server should be encrypted.
Possible values are "true" and "false".
The default value is "false".

Note: This setting has been deprecated!

encryption

Specifies whether a Natural logon should be performed.
Possible values are "true" and "false".
The default value is "false".

naturalLogon

Specifies the user ID to be used to connect to the RPC Server.userID

Specifies a password to be used to connect to the RPC Server. This setting is only considered
when userID is also specified.

password

55EntireX .NET Wrapper

EntireX .NET Wrapper Application Configuration

Service Configuration Example

<Service>
<!-- EntireX Service Configuration -->
<add key="name" value="RPC/SRV1/CALLNAT" />
<add key="locationTransparency" value="false" />
<add key="locationTransparencySet" value="DefaultSet" />
<add key="libraryName" value="" />
<add key="naturalLogon" value="false" />

</Service>

An Example Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <sectionGroup name="EntireX"> <!-- EntireX Configuration Section Group ↩
Definition -->
 <section name="Broker" type="System.Configuration.NameValueSectionHandler" />
 <section name="Service" type="System.Configuration.NameValueSectionHandler" />
 </sectionGroup>
 </configSections>
 <EntireX>
 <!-- EntireX Configuration Section -->
 <Broker>
 <!-- EntireX Broker Configuration -->
 <add key="name" value="localhost:1971" />
 <add key="locationTransparency" value="false" />
 <add key="locationTransparencySet" value="DefaultSet" />
 <add key="userID" value="NET-USER" />
 <add key="password" value="NET-PASS" />
 <add key="compression" value="NO_COMPRESSION" />
 <add key="encryptionLevel" value="0" />
 <add key="forceLogon" value="false" />
 <add key="token" value="top secret" />
 </Broker>
 <Service>
 <!-- EntireX Service Configuration -->
 <add key="name" value="RPC/SRV1/CALLNAT" />
 <add key="locationTransparency" value="false" />
 <add key="locationTransparencySet" value="DefaultSet" />
 <add key="libraryName" value="" />
 <add key="naturalLogon" value="false" />
 </Service>
 </EntireX>
 <appSettings>
 <!-- other app settings go here -->
 </appSettings>
</configuration>

EntireX .NET Wrapper56

EntireX .NET Wrapper Application Configuration

Server Configuration

The requirements for the .NETRPCServer are: the EntireXRPCServer (rpcserver.exe), dotNetServer.dll
and dotNetServer.cfg from the EntireX bin directory, Software AG's .NETWrapper (SoftwareAG.En-
tireX.NETWrapper.Runtime.dll) and a .NET Server DLL (Assembly).

See Administering the EntireX RPC Server in the Windows administration documentation.

Starting the RPC Server

Before starting the EntireX RPC server, ensure that all dynamically loaded objects (server stubs
and server) can be accessed using the search path.

To start the EntireX RPC server manually

■ Use the format

RPCserver CFG=<name> [-option] [Brokerid] [Class] [ServerName] [Service]

where <name> determines the configuration file in use.

Options:

■ -smhport number
Sets the RPC server parameter smhport to number. Typically used by SMH Facility.

■ -serverlog <file>
Defines an alternative log file for Window services. Typically used by Windows Services.
See Running an EntireX RPC Server as a Windows Service in the Windows administration
documentation.

■ -s[ilent]: Run server in silent mode, that is: no terminal input will be required (e.g. acknow-
ledge errormessages). The jobwill terminate automatically. Recommended for background
jobs.

■ -TraceDestination <file>
Set the trace destination parameter.

■ -TraceLevel None.Standard.Advanced. Set the trace level parameter.

Note: The server input arguments will be resolved from left to right. Thus parameters
that can be applied on the command line as well in the configuration file may be
overriden.

57EntireX .NET Wrapper

EntireX .NET Wrapper Application Configuration

To start the EntireX RPC server using Windows services

■ See Running an EntireX RPC Server as a Windows Service in theWindows administration docu-
mentation.

Note: For reasons of compatibility with versions before 5.1.1, the old command to start the
server

RPCserver <Brokerid> <Class> <ServerName> <Service>

will continue to be supported. However, a server started with this call will use the default para-
meters. Parameters other than Broker ID, Class, ServerName, Service require the CFG= form of
the server start command.

To start the EntireX RPC server using System Mangagement Hub

1 See Administering the EntireX RPC Servers using System Management Hub in the UNIX and
Windows administration documentation for information on adding an EntireX RPC server
to the System Management Hub.

2 The SystemManagement Hub facility “Adding a Local RPC Server” will use the batch script
startcserver.bat of the EntireX Installation to apply the server parameters. Change the batch
script according to your system installation or add parameters to the System Management
Hub “Start Command” input property.

Stopping the Server

To stop the EntireX RPC server

■ Use one of the System Management Hub functionsDeregister a Service orDeregister a
Server. This method ensures that the deregistration from the Broker will be complete and
correct.

See also EntireX RPC Server Return Codes under Error Messages and Codes.

A file that corresponds to dotNetServer.cfg must be used as configuration file (configuration of
the EntireX RPC Server for use with the .NET Wrapper). The .NET Server Assembly (containing
one IDL library) will then be loaded when a program from this library is first accessed. With the
.NET Framework there are two distinct ways to locate the .NET Server Assembly:

1. If the rpcserver.exe, our .NETWrapper and the .NET ServerAssembly are all in the same directory,
the .NET Server Assembly will also be loaded from this directory.

2. If rpcserver.exe, our .NET Wrapper and the .NET Server Assembly are in different libraries, the
rpcserver.exemust be configured in the context of the .NET Framework (Configuring the EntireX
RPC Server for the .NET Framework). The Server Assemblymust also have a strong name. This

EntireX .NET Wrapper58

EntireX .NET Wrapper Application Configuration

is described in the Microsoft documentation for the .NET Framework (in our example server
in EntireXDir\Examples\NETWrapper\server\calc the Server Assembly has a strong name and
in Configuring the EntireX RPC Server for use with the .NET Framework).

Whereasmethod 1 is verywell suited for test and development purposes,method 2 is to be recom-
mended for more complex production environments. The user can decide which method to use.

Configuring the EntireX RPC Server for use with the .NET Wrapper

For the EntireX RPC Server to function with the .NET Wrapper properly, the file dotNetServer.cfg
from the installation or a similar file, should be used. The entries

■ Class=RPC
■ ServerName=dotNetServer
■ Service=CALLNAT
■ CallExit=dotNetServer
■ RunOption=Reset

should not be changed or deleted. No other run options should be added. All of the other settings
for the configuration of an EntireX RPC Server are available. See Administering the EntireX RPC
Server in the Windows administration documentation.

Note: Any server name can be used. However, we recommend using the name dotNetServer
to distinguish this one from any other RPC servers.

Configuring the EntireX RPC Server for use with the .NET Framework

Due to an incompatibility of the .NET Framework 2.0 to the earlier versions, we had to add an
additional section in the configSections part of rpcserver.exe.config:

<configSections>
 <!-- EntireX Configuration Section Group Definition -->
 <sectionGroup name="EntireX">
 <section name="Assemblies" type="System.Configuration.NameValueSectionHandler, ↩
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, ↩
Custom=null" />
 </sectionGroup>
</configSections>
<EntireX>
 <!-- EntireX Assembly Configuration -->
 <Assemblies>
 <add key="SoftwareAG.EntireX.NETWrapper.Runtime" ↩
value="C:\SoftwareAG\EntireX\bin\SoftwareAG.EntireX.NETWrapper.Runtime.dll" />
 </Assemblies>
</EntireX>

59EntireX .NET Wrapper

EntireX .NET Wrapper Application Configuration

where the location of our .NETRuntime is replaced by the location used in your EntireX installation.
Add an entry in the Assemblies section for each of your server assemblies:

<add key="MyAssembly", value="MyLocation"/>

where MyAssembly and MyLocation represent the name and location of your server assembly. If
versioning is required for your assemblies, follow the rules under Assembly Versioning.

EntireX .NET Wrapper60

EntireX .NET Wrapper Application Configuration

	EntireX .NET Wrapper
	Table of Contents
	EntireX .NET Wrapper
	1 Introduction to the .NET Wrapper
	Description
	Generic .NET Wrapper Runtime
	.NET Client Applications
	.NET Server DLL

	2 Using the .NET Wrapper
	Generation Process
	Using .NET Wrapper Interactively
	Setting Wrapper Options

	3 Microsoft Visual Studio Wizard for EntireX .NET Wrapper
	Installing the Add-in
	Using the Add-in
	Uninstalling the Add-in

	4 Using the .NET Wrapper in IDL Compiler Command-line Mode
	5 Software AG IDL to .NET Mapping
	Mapping IDL Data Types to .NET Data Types
	Mapping Library Name and Alias
	Mapping Program Name and Alias
	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes IN, OUT and INOUT
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	6 Writing Applications with the .NET Wrapper
	Writing a Client Application
	Required Steps
	Generating the .NET Wrapper Client Stub from a Software AG IDL File
	Creating a Microsoft Visual Studio Solution
	Creating the .NET Wrapper Client Stub Library (Assembly)
	Creating the .NET Wrapper Client Application

	Writing a Server DLL
	Required Steps

	Deploying Wrapped .NET Servers
	Creating ASP.NET Web Services
	Example

	Using Internationalization with the .NET Wrapper

	7 Reliable RPC for .NET Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Writing a Server
	Broker Configuration

	8 .NET Wrapper Reference
	Attributes
	EntireXVersionAttribute
	Example

	LibraryAttribute
	Example

	BrokerAttribute
	Example

	ServiceAttribute
	Example

	ProgramAttribute
	Example

	SendAsAttribute
	Direction Attributes (In, Out)
	Example

	Classes
	Broker
	Constructors
	Methods
	Properties
	Deprecated Properties
	Example

	Service
	Constructors
	Methods
	Properties
	Example

	XException
	Properties
	Example

	9 EntireX .NET Wrapper Application Configuration
	Assembly Versioning
	Client Configuration
	Example
	Broker Configuration Section
	Broker Configuration Example
	Service Configuration Section
	Service Configuration Example
	An Example Configuration File

	Server Configuration
	Starting the RPC Server
	Stopping the Server
	Configuring the EntireX RPC Server for use with the .NET Wrapper
	Configuring the EntireX RPC Server for use with the .NET Framework

