
webMethods EntireX

Administration under z/VSE

Version 9.6

April 2014

This document applies to webMethods EntireX Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ADMIN-96-20140628VSE

Table of Contents

1 Setting up Broker Instances ... 1
Setting up TCP/IP Transport .. 2
Setting up Entire Net-Work/Adabas SVC Transport ... 2
Starting and Stopping the Broker .. 2
Tracing EntireX Broker ... 3
Protecting a Broker against Denial-of-Service Attacks .. 4

2 Administration of Broker Stubs .. 7
Available Stubs ... 8
Transport Methods for Broker Stubs .. 8
Using the Batch Stub Interface Module BKIMB ... 10
Using the CICS Stub Interface Module BKIMC ... 11
Data Encryption ... 12
Tracing for Broker Stubs ... 12

3 Operator Commands ... 13
Command Syntax ... 14
General Broker Commands .. 14
Participant-specific Commands ... 20
Security-specific Commands .. 25
Transport-specific Commands ... 26
XCOM-specific Commands .. 29

4 Broker Command-line Utilities ... 33
ETBINFO .. 34
ETBCMD .. 40

5 Configuring Broker for Internationalization ... 47
Configuring Translation ... 48
Configuring Translation User Exits .. 49
Configuring ICU Conversion ... 49
Writing Translation User Exits ... 50

6 Managing the Broker Persistent Store ... 53
Implementing an Adabas Database as Persistent Store ... 54
Migrating the Persistent Store .. 60

7 Tracing EntireX Components under z/VSE ... 63
Tracing EntireX Broker ... 64
Tracing Broker Stubs .. 64
Activating Tracing for the RPC Server ... 65

8 Broker Shutdown Statistics ... 67
Shutdown Statistics Output ... 68
Table of Shutdown Statistics .. 68

9 Command Logging in EntireX .. 73
Introduction to Command Logging ... 74
ACI-driven Command Logging ... 75
Dual Command Log Files .. 76

10 Accounting in EntireX Broker ... 77

iii

EntireX Accounting Data Fields ... 78
Example Uses of Accounting Data ... 81

11 Broker Resource Allocation ... 85
General Considerations .. 86
Specifying Global Resources .. 86
Restricting the Resources of Particular Services .. 87
Specifying Attributes for Privileged Services .. 89
Maximum Units of Work ... 89
Calculating Resources Automatically .. 90
Dynamic Memory Management .. 92
Storage Report .. 93
Maximum TCP/IP Connections per Communicator .. 96

Administration under z/VSEiv

Administration under z/VSE

1 Setting up Broker Instances

■ Setting up TCP/IP Transport .. 2
■ Setting up Entire Net-Work/Adabas SVC Transport .. 2
■ Starting and Stopping the Broker .. 2
■ Tracing EntireX Broker ... 3
■ Protecting a Broker against Denial-of-Service Attacks .. 4

1

This chapter contains information on setting up the Broker under z/VSE. It assumes that you have
completed the relevant steps described under Installing EntireX under z/VSE.

Setting up TCP/IP Transport

The recommended way to set up the TCP/IP communicator is to define PORT=nnnn and optionally
HOST=x.x.x.x|host_name under TCP/IP-specific Attributes (DEFAULTS=TCP) under Broker Attributes
in the platform-independent administration documentation.

However, if no port number is specified in the broker attribute file, the broker kernelwill use default
port number of 1971. This is the same default port number that the stubs use.

Setting up Entire Net-Work/Adabas SVC Transport

To set up EntireX Net-Work communication mechanism

1 Ensure that appropriate values are supplied in the broker attribute file section DEFAULTS=NET,
paying particular attention to the IUBL parameter - which specifies themaximum send/receive
buffer length that can be sent between an application and Broker kernel within a single request
- and NABS, which governs the total amount of storage available concurrently for all users
communicating over this transportmechanism. SeeAdabas SVC/Entire Net-Work-specific Attrib-
utes (DEFAULTS=NET) under Broker Attributes in the platform-independent administration doc-
umentation.

2 Ensure that communicationwith the broker is possible by running the installation verification
programs (BCOC, BCOS) using transport type NET.

Starting and Stopping the Broker

Starting the Broker

To start the broker

■ Run job RUNETB.J.

If the UPSI bit is not set (see Broker installation step Step 4: Customize the EntireX Broker Startup
Job Control (RUNETB.J)) you will be prompted on the console with following message: Broker
V9.6.0.00 ready for communication: ETB00001.

Administration under z/VSE2

Setting up Broker Instances

Stopping the Broker

To stop the broker

■ Use the following console command:

task_id ETBSTOP

If the console prompt is suppressed, enter an MSG command before the console command:

MSG partition_id

Tracing EntireX Broker

This section covers the following topics:

■ Broker TRACE-LEVEL Attribute
■ Attribute File Trace Setting
■ Deferred Tracing

Broker TRACE-LEVEL Attribute

The Broker TRACE-LEVEL attribute determines the level of tracing to be performed while Broker is
running. The Broker has a master TRACE-LEVEL specified in the Broker section of the attribute file
as well as several individual TRACE-LEVEL settings that are specified in the following sections of
the attribute file. You can also modify the different TRACE-LEVEL values while Broker is running,
without having to restart the Broker kernel for the change to take effect.

Specified in Attribute File SectionIndividual Settings

DEFAULTS=BROKERMaster trace level

Trace option of the CONVERSION parameter that can be defined in
DEFAULTS=SERVICE | TOPIC

Conversion trace level

DEFAULTS=SECURITYSecurity trace level

DEFAULTS=NET | TCPTransport trace level

These individual TRACE-LEVEL values determine the level of tracing within each subcomponent.
If not specified, the master TRACE-LEVEL is used.

3Administration under z/VSE

Setting up Broker Instances

Attribute File Trace Setting

DescriptionTrace Level

No tracing. Default value.0

Traces incoming requests, outgoing replies, and resource usage.1

All of Trace Level 1, plus all main routines executed.2

All of Trace Level 2, plus all routines executed.3

All of Trace Level 3, plus Broker ACI control block displays.4

Note: Trace levels 2 and above should be used onlywhen requested by SoftwareAG support.

Deferred Tracing

It is not always convenient to run with TRACE-LEVEL defined, especially when higher trace levels
are involved.Deferred tracing is triggeredwhen a specific condition occurs, such as anACI response
code or a broker subtask abend. Such conditions cause the contents of the trace buffer to bewritten,
showing trace information leading up the specified event. If the specified event does not occur,
the Broker tracewill contain only startup and shutdown information (equivalent to TRACE-LEVEL=0).
Operating the trace in this mode requires the following additional attributes in the broker section
of the attribute file. Values for TRBUFNUM and TRAP-ERROR are only examples.

DescriptionValueAttribute

Specifies the deferred trace buffer size = 3 * 64 K.3TRBUFNUM

Indicates trace is not written until an event occurs.WRAPTRMODE

Assigns the event ACI response code 00780322 "PSI: UPDATE failed".322TRAP-ERROR

Protecting a Broker against Denial-of-Service Attacks

An optional feature of EntireX Broker is available to protect a broker running with SECURITY=YES
against denial-of-service attacks. An application that is running with invalid user credentials will
get a security response code. However, if the process is doing this in a processing loop, the whole
system could be affected. If PARTICIPANT-BLACKLIST is set to YES, EntireX Broker maintains a
blacklist to handle such “attacks”. If an application causes ten consecutive security class error
codes within 30 seconds, the blacklist handler puts the participant on the blacklist. All subsequent
requests from this participant are blocked until the BLACKLIST-PENALTY-TIME has elapsed.

Server Shutdown Use Case

Here is a scenario illustrating another use of this feature that is not security-related.

Administration under z/VSE4

Setting up Broker Instances

An RPC server is to be shut down immediately, using Broker Command and Information Services
(CIS), and has no active request in the broker. The shutdown results in the LOGOFF of the server.
The next request that the server receives will probably result in message 00020002 "User does not
exist", which will cause the server to reinitialize itself. It was not possible to inform the server that
shutdown was meant to be performed.

With the blacklist, this is now possible. As long as the blacklist is not switched off, when a server
is shut down immediately using CIS and when there is no active request in the broker, a marker
is set in the blacklist. When the next request is received, this marker results in message 00100050
"Shutdown IMMED required", which means that the server is always informed of the shutdown.

5Administration under z/VSE

Setting up Broker Instances

6

2 Administration of Broker Stubs

■ Available Stubs ... 8
■ Transport Methods for Broker Stubs .. 8
■ Using the Batch Stub Interface Module BKIMB .. 10
■ Using the CICS Stub Interface Module BKIMC .. 11
■ Data Encryption .. 12
■ Tracing for Broker Stubs ... 12

7

Available Stubs

This table lists all Broker stubs available under the z/VSE operating system that are to be used
with the programming languages Natural, COBOL, Assembler and C.

The stub you choose depends on the following:

■ the environment (CICS or Batch)
■ the availability of administration features such as tracing and compression

Stub ModuleTrace
Transport

Environment SSLTCPNET

BKIMBYes*NoYesYesAll environments that use Batch

BKIMCYes*NoYesYesAll environments that use CICS

The request needs to use TCP transport method. Tracing is not available with NET transport.*

Transport Methods for Broker Stubs

■ Transport Method Values
■ Setting the Timeout for the Transport Method
■ Limiting the TCP/IP Connection Lifetime

Transport Method Values

TipsTransport Value

TCP ■ Provides remote machine and cross-platform communication.

NET ■ Provides the best performing transport if the application and Broker kernel reside on the
same machine.

■ Provides for remote communications if EntireNet-Work is also installed on the application
and Broker kernel machines.

■ Requires the installation of Adabas components. We recommend installing the Adabas
modules deliveredwith EntireX installation kit. See yourAdabas documentation formore
information on installing the Adabas SVC.

■ Tracing is not supported.

Administration under z/VSE8

Administration of Broker Stubs

To use the stubs' internal security functionality, API version 8 or higher needs to be used by the
application. (e.g., EntireX RPC Server, NAT42). The delivered phases are linked for use with in-
ternal security.

Setting the Timeout for the Transport Method

Introduction

If the transport layer is interrupted, communication between the broker and the stub - that is, client
or server application - is no longer possible. A client or server might possibly wait infinitely for a
broker reply or message in such a situation. To prevent this and return control to your calling
application in such a situation, set a timeout value for the transport method.

The timeout settings for transport layers are independent of the timeout settings of the broker.

Setting the timeout for the transport layer is possible for the transportmethodTCP, and is supported
by all broker stubs under z/VSE.

Transport Timeout Values

The timeout value for the transport method is set by the environment variable TIMEOUT on the
stub side. This transport timeout is used together with the broker timeout - which is set by the
application in the WAIT field of the broker ACI control block - to calculate the actual value for the
transport layer's timeout. The following table describes the possible values for the transport timeout:

Description

Transport
Timeout
Value

Infinite wait for the application.0

The transport method additionally waits this time in seconds. A negative value is treated as
TIMEOUT=0 (infinite wait for the application).

n

Transport method waits additional 20 seconds.nothing set

The actual timeout for transport layer equals broker timeout (WAIT field) + timeout value for
transport method.

9Administration under z/VSE

Administration of Broker Stubs

Limiting the TCP/IP Connection Lifetime

With transport method TCP/IP, the broker stub establishes one or more TCP/IP connections to the
brokers specified with BROKER-ID. These connections can be controlled by the transport-specific
CONNECTION-NONACT attribute on the broker side, but also by the transport-specific environment
variable NONACT on the stub side. If NONACT is not 0, it defines the non-activity time (in seconds) of
active TCP/IP connections to any broker. See NONACT under Environment Variables in EntireX.
Whenever the broker stub is called, it checks for the elapsed non-activity time and closes connections
with a non-activity time greater than the value defined with NONACT.

DescriptionTransport Non-activity Value

Infinite lifetime until application is stopped.0

Transport connections with non-activity time greater than nwill be closed.n (seconds)

Transport connections with non-activity time greater than 300s (default) will be
closed.

Nothing set

Using the Batch Stub Interface Module BKIMB

You can use BKIMB for all batch environments. This stub interfacemodule is delivered as a phase,
which can be loaded by your application dynamically, and as an object for linking. During runtime,
the EXX960 library and the WAL826 library need to be included into the LIBDEF search chain. If
you need to statically link your applicationwith the interface object, include the following objects:

PHASE <appl_phase_name>,*
INCLUDE <app_obj>
INCLUDE BKIMB
INCLUDE ETBVPRE
INCLUDE ETBVEVA
INCLUDE ETBENC
INCLUDE ETBTB
ENTRY <app_entry>

To set up a secure environment

1 Statically link your application with the following interface objects:

Administration under z/VSE10

Administration of Broker Stubs

PHASE <appl_phase_name>,*
INCLUDE <app_obj>
INCLUDE BKIMB
INCLUDE ETBUPRE
INCLUDE ETBUEVA
INCLUDE ETBVPRE
INCLUDE ETBVEVA
INCLUDE ETBENC
INCLUDE ETBTB
ENTRY <app_entry>

Or:

If BKIMB is to be loaded dynamically, you can relink the phase for use with security. Refer
to the delivered job control example BKIMB.J.

2 Rename phase SECUEXI0 in library EXX960 to SECUEXIT.

Using the CICS Stub Interface Module BKIMC

You can use BKIMC for all CICS environments. This stub interface module is delivered as a phase,
which can be loaded by your application dynamically, and as an object for linking. To enable CICS
to find the various programs, include the EXX960 sublibrary in theDFHRPL chain and add follow-
ing definition to your CICS environment:

DEFINE PROGRAM(BKIMC) GROUP(EXX) LANGUAGE(ASSEMBLER) (only required if not linked ↩
to your application)
DEFINE PROGRAM(BROKERC) GROUP(EXX) LANGUAGE(C)

If you need to statically link your applicationwith the interface object, include the following objects:

PHASE <appl_phase_name>,*
INCLUDE <app_obj>
INCLUDE BKIMC
INCLUDE ETBVPRE
INCLUDE ETBVEVA
INCLUDE ETBENC
INCLUDE ETBTB
ENTRY <app_entry>

To set up a secure environment

1 Statically link your application with the following interface objects:

11Administration under z/VSE

Administration of Broker Stubs

PHASE <appl_phase_name>,*
INCLUDE <app_obj>
INCLUDE BKIMC
INCLUDE ETBUPRE
INCLUDE ETBUEVA
INCLUDE ETBVPRE
INCLUDE ETBVEVA
INCLUDE ETBENC
INCLUDE ETBTB
ENTRY <app_entry>

Or:

If BKIMC is to be loaded dynamically, you can relink the phase for use with security. Refer
to the delivered job control example BKIMC.J.

2 Rename phase SECUEXI0 in library EXX960 to SECUEXIT.

Data Encryption

Broker control block field ENCRYPTION-LEVEL and broker attribute ENCRYPTION-LEVEL determine
whether data encryption is used. The password is always encrypted; user IDs are not encrypted.

Tracing for Broker Stubs

If transport method TCP is used, a stub trace may be turned on for diagnostic purposes. Set up
the following environment variable in your application job control or CICS startup.

//SETPARM STUBLOG=2

Administration under z/VSE12

Administration of Broker Stubs

3 Operator Commands

■ Command Syntax .. 14
■ General Broker Commands ... 14
■ Participant-specific Commands .. 20
■ Security-specific Commands ... 25
■ Transport-specific Commands .. 26
■ XCOM-specific Commands ... 29

13

Command Syntax

The following command format is required to communicate with EntireX Broker, using the oper-
ator console. Parameters in UPPERCASE must be typed “as is”. Parameters in lowercase must be
substituted with a valid value. Operator commands have the following format:

task_id command[parameter]

is the ID of the broker tasktask_idwhere
is the operator commandcommand

is an optional parameter allowed by the operator command you are issuingparameter

General Broker Commands

The following broker commands are available:

■ BROKER TRACE
■ DPOOL
■ DRES
■ DSTAT
■ ETBEND
■ ETBSTOP
■ FLUSH
■ PSTORE TRACE
■ SHUTDOWN class,server,service
■ TRACE
■ TRAP-ERROR

BROKER TRACE

Alias of broker command TRACE. Modifies the setting of the broker-specific attribute TRACE-LEVEL.

Example

To set a trace level 2 for broker

■ Enter command:

Administration under z/VSE14

Operator Commands

task_id BROKER TRACE=2

If the console prompt is suppressed, enter an MSG command before the console command:

MSG partition_id

See TRACE-LEVELunderBrokerAttributes in the platform-independent administrationdocumentation.

DPOOL

Lists all memory pools currently allocated by EntireX Broker. Start address, pool size in bytes and
name of pool are provided. There can be multiple entries for a specific type of pool.

Sample Output

ETBM0720 Operator typed in: DPOOL
ETBM0657 Broker pool usage:
ETBM0657 0x2338FFB8 16781380 bytes COMMUNICATION POOL
ETBM0657 0x243A9EB8 368964 bytes CONVERSATION POOL
ETBM0657 0x24404F38 233668 bytes CONNECTION POOL
ETBM0657 0x2443EF38 4395204 bytes LONG MESSAGES POOL
ETBM0657 0x24870BB8 3703876 bytes SHORT MESSAGES POOL
ETBM0657 0x24BF9398 134244 bytes PARTICIPANT POOL
ETBM0657 0x24C1AF78 36996 bytes PARTICIPANT EXTENSION POOL
ETBM0657 0x24C24798 26724 bytes PROXY QUEUE POOL
ETBM0657 0x24C2BDA8 131668 bytes SERVICE ATTRIBUTES POOL
ETBM0657 0x24C4CB98 54372 bytes SERVICE POOL
ETBM0657 0x24C5AF78 32900 bytes SERVICE EXTENSION POOL
ETBM0657 0x24D31FA8 344148 bytes SUBSCRIPTION POOL
ETBM0657 0x24D865A8 129620 bytes TOPIC ATTRIBUTES POOL
ETBM0657 0x2338F420 2952 bytes TOPIC POOL
ETBM0657 0x24DA6778 30852 bytes TOPIC EXTENSION POOL
ETBM0657 0x24C63B18 87268 bytes TIMEOUT QUEUE POOL
ETBM0657 0x24C79398 179300 bytes TRANSLATION POOL
ETBM0657 0x24CA5F38 176324 bytes UNIT OF WORK POOL
ETBM0657 0x24CD1798 391268 bytes WORK QUEUE POOL
ETBM0657 0x24DAEB98 33892 bytes PSTORE SUBSCRIBER POOL
ETBM0657 0x24DB73A8 19540 bytes PSTORE TOPIC POOL
ETBM0582 Function completed

15Administration under z/VSE

Operator Commands

DRES

Displays EntireX Broker's resource usage for conversations,message buffers, participants, services,
topics, the timeout queue, units of work, and the work queue. Resource usage provides the total
number, the number of free elements, and the number of used elements.

Sample Output

ETBM0720 Operator typed in: DRES
ETBM0581 Broker resource usage:
ETBM0581 Resource ------------------ Total # --- Free # --- Used #
ETBM0581 Conversations 4096 852 3244
ETBM0581 Long message buffers 0 0 0
ETBM0581 Short message buffers 8192 7384 808
ETBM0581 Participants 256 235 21
ETBM0581 Services 256 240 16
ETBM0581 Topics 0 0 0
ETBM0581 Timeout Queue 1280 845 435
ETBM0581 Units Of Work 0 0 0
ETBM0581 Work Queue 256 239 17
ETBM0582 Function completed

DSTAT

Displays the total number of active elements, and an optional highwatermark for services, clients,
servers, conversations, message buffers, topics, publishers, subscribers, and publications.

Sample Output

ETBM0720 Operator typed in: DSTAT
ETBM0580 Broker statistics:
ETBM0580 NUM-SERVICE 0
ETBM0580 Services active 7
ETBM0580 NUM-CLIENT 0
ETBM0580 Clients active 10
ETBM0580 Clients active HWM 10
ETBM0580 NUM-SERVER 0
ETBM0580 Servers active 10
ETBM0580 Servers active HWM 10
ETBM0580 NUM-CONVERSATION 0
ETBM0580 Conversations active 607
ETBM0580 Conversations active HWM .. 968
ETBM0580 NUM-LONG-BUFFER 0
ETBM0580 Long buffers active 0
ETBM0580 Long buffers active HWM ... 0
ETBM0580 NUM-SHORT-BUFFER 0
ETBM0580 Short buffers active 1219
ETBM0580 Short buffers active HWM .. 1928
ETBM0580 NUM-TOPIC 0
ETBM0580 Topics active 0

Administration under z/VSE16

Operator Commands

ETBM0580 NUM-PUBLISHER 0
ETBM0580 Publishers active 0
ETBM0580 Publishers active HWM 0
ETBM0580 NUM-SUBSCRIBER 0
ETBM0580 Subscribers active 0
ETBM0580 Subscribers active HWM 0
ETBM0580 NUM-PUBLICATION 0
ETBM0580 Publications active 0
ETBM0580 Publications active HWM ... 0
ETBM0582 Function completed

ETBEND

Processing stops immediately. Current calls to the EntireX Broker are not allowed to finish.

ETBSTOP

Alias of ETBEND.

FLUSH

Flush all trace data kept in internal trace buffers to stderr (SYSOUT). The broker-specific attribute
TRMODE=WRAP is required.

PSTORE TRACE

Modifies the trace level for the Adabas persistent store (Adabas-specific attribute TRACE-LEVEL).

Example

To set a trace level 2 for the Adabas persistent store

■ Enter command:

task_id PSTORE TRACE=2

See TRACE-LEVELunderBrokerAttributes in the platform-independent administrationdocumentation.

17Administration under z/VSE

Operator Commands

SHUTDOWN class,server,service

Shuts down the specified service immediately and stops all servers that have registered this service.

Example

To shutdown service CLASS=RPC, SERVER=SRV1, SERVICE=CALLNAT

■ Enter command:

task_id SHUTDOWN RPC,SRV1,CALLNAT

TRACE

Modifies the setting of the broker-specific attribute TRACE-LEVEL.

Sample Commands

To modify the trace level

■ Enter command, for example:

task_id TRACE=0
task_id TRACE=1
task_id TRACE=4

See TRACE-LEVELunderBrokerAttributes in the platform-independent administrationdocumentation.

TRAP-ERROR

Modifies the setting of the broker-specific attribute TRAP-ERROR.

Sample Command

To modify the setting for TRAP-ERROR

■ Enter command:

Administration under z/VSE18

Operator Commands

task_id TRAP-ERROR=nnnn

where nnnn is the four-digit API error number that triggers the trace handler.

See TRAP-ERRORunderBroker Attributes in the platform-independent administration documentation.

19Administration under z/VSE

Operator Commands

Participant-specific Commands

Within EntireX Broker nomenclature, a participant is an application implicitly or explicitly logged
on to the Broker as a specific user. A participant could act as client, server, publisher or subscriber.
The following participant-specific commands are available:

■ CANCEL parameter
■ USERLIST
■ USERS parameter

CANCEL parameter

Operator command CANCEL is used to delete participants from EntireX Broker. The following
parameters are supported:

DescriptionParameter

Cancel all participants with the specified user_id. Non-persistent resources will be
freed by the timeout manager. Prefix "USER=" is the default value and may be omitted.

[USER=]user_id

Cancel the participant with the sequence number seqno. Non-persistent resources will
be freed by the timeout manager. Operator commands USERLIST and USERS display
sequence numbers of all selected participants.

SEQNO=seqno

Sample Commands

To cancel all participant entries of user "DOE"

■ Enter command:

task_id CANCEL DOE

Or:

task_id CANCEL USER=DOE

To cancel participant with sequence number "11"

■ Enter command:

Administration under z/VSE20

Operator Commands

task_id CANCEL SEQNO=11

USERLIST

Operator command USERLISTdisplays a list of selectedparticipant entries. The followingparameters
are supported:

DescriptionParameter

Display all participants.none | *

Display all participants with user ID user_id. Wildcard characters are supported.user_id

Sample Commands

To display all participants

■ Enter command:

task_id USERLIST

Or:

task_id USERLIST *

To display all participants with user ID "DOE"

■ Enter command:

task_id USERLIST DOE

This produces the following output. See Description of USERLIST Output Columns below.

ETBM0720 Operator typed in: USERLIST DOE
ETBM0687 Participants:
ETBM0687 USER-ID ------------------------ C S P U E CHR SEQNO
ETBM0687 DOE N Y N N Y ASC 1
ETBM0582 Function completed

To display all participants with user ID starting with uppercase "D"

■ Enter command:

21Administration under z/VSE

Operator Commands

task_id USERLIST D*

This produces the following output. See Description of USERLIST Output Columns below.

ETBM0720 Operator typed in: USERLIST D*
ETBM0687 Participants:
ETBM0687 USER-ID ------------------------ C S P U E CHR SEQNO
ETBM0687 DOE N Y N N Y ASC 1
ETBM0687 DOE1 N Y N N Y EBC 2
ETBM0687 DOE2 N Y N N Y EBC 3
ETBM0687 DOE3 N Y N N Y EBC 4
ETBM0582 Function completed

To display all participants with 4-character user ID, starting with uppercase "D" and with uppercase "E" as
third character

■ Enter command:

task_id USERLIST D?E?

This produces the following output. See Description of USERLIST Output Columns below.

ETBM0720 Operator typed in: USERLIST D?E?
ETBM0687 Participants:
ETBM0687 USER-ID ------------------------ C S P U E CHR SEQNO
ETBM0687 DOE1 N Y N N Y EBC 2
ETBM0687 DOE2 N Y N N Y EBC 3
ETBM0687 DOE3 N Y N N Y EBC 4
ETBM0582 Function completed

Description of USERLIST Output Columns

DescriptionKeyword

User ID (32 bytes, case-sensitive). See USER-ID under Broker ACI Fields.USER-ID

Client.C

Participant is a client, otherwise "N".Y

Server.S

Participant is a server, otherwise "N".Y

Publisher.P

Participant is a publisher, otherwise "N".Y

Administration under z/VSE22

Operator Commands

DescriptionKeyword

Subscriber.U

Participant is a subscriber, otherwise "N".Y

Big endian.E

Participant is on a big-endian machine.Y

Participant is on a little-endian machine.N

Character set.CHR

Participant is an ASCII user.ASC

Participant is an EBCDIC user.EBC

Sequence number of participant. Can be used for operator command CANCEL parameter.SEQNO

USERS parameter

Operator command USERS displays selected user data of participant entries. The following para-
meters are supported:

DescriptionParameter

Display all participants.none | *

Display all participants with user ID user_id. Wildcard characters are supported.user_id

Sample Commands

To display all participants

■ Enter command:

task_id USERS

Or:

task_id USERS *

To display all participants with user ID "DOE"

■ Enter command:

23Administration under z/VSE

Operator Commands

task_id USERS DOE

This produces the following output. See Description of USERS Output Columns below.

ETBM0720 Operator typed in: USERS DOE
ETBM0687 Participants:
ETBM0687 USER-ID: DOE
ETBM0687 CLIENT: N SERVER: Y PUBLISHER: N SUBSCRIBER: N
ETBM0687 SEQNO: 6 BIG ENDIAN: Y CHARSET: ASCII PUID:
ETBM0687 202073756E6578322D2D30303030324646462D2D3030303030303031
ETBM0687 TOKEN:
ETBM0582 Function completed

Description of USERS Output Columns

DescriptionKeyword

User ID (32 bytes, case-sensitive). See USER-ID under Broker ACI Fields.USER-ID

CLIENT

Participant is a client, otherwise "N".Y

SERVER

Participant is a server, otherwise "N".Y

PUBLISHER

Participant is a publisher, otherwise "N".Y

SUBSCRIBER

Participant is a subscriber, otherwise "N".Y

BIG ENDIAN

Participant is on a big-endian machine.Y

Participant is on a little-endian machine.N

CHARSET

Participant is an ASCII user.ASC

Participant is an EBCDIC user.EBC

Internal unique ID of participant. Hexadecimal 28-byte value in printable format.PUID

Optionally identifies the participant. See TOKEN under Broker ACI Fields.TOKEN

Administration under z/VSE24

Operator Commands

Security-specific Commands

DSECSTAT

Displays the number of successful and failed Security authentications and Security authorizations.

Sample Output

ETBM0720 Operator typed in: DSECSTAT
ETBM0579 Security Authentications - successful: 20 failed: 0
ETBM0579 Security Authorizations - successful: 0 failed: 0

RESET userid

Resets the Security context for the specified user ID.

Sample Output

ETBM0720 Operator typed in: RESET EXXBATCH
ETBM0578 Reset ACEE for SAF-ID EXXBATCH : 20 instances found

SECURITY TRACE

Modifies the trace level for the EntireX Security (security-specific attribute TRACE-LEVEL). Broker-
specific attribute SECURITY=YESmust be set.

Example

To set a trace level 2 for EntireX Security

■ Enter command:

task_id SECURITY TRACE=2

See TRACE-LEVELunderBrokerAttributes in the platform-independent administrationdocumentation.

25Administration under z/VSE

Operator Commands

Transport-specific Commands

Transport-specific commands are available for Adabas/Entire Net-Work communicators and TCP
communicators; the COM command can be used for all communicators. The following command
syntax applies:

COM parameter

This command is executed by all configured transport communicators. The following parameters
are supported:

DescriptionParameter

Displays the current status of the transport communicator.STATUS

Used to suspend the transport communicator. The transport communicator is halted but will not
shut down. User requests receive response code 148.

SUSPEND

Resume a suspended transport communicator. If the communicator was not suspended before,
an error message will be displayed.

RESUME

Stop an active or suspended transport communicator. The transport communicator will shut
down. All transport-specific resources will be freed. User requests receive response code 148.

STOP

Start a transport communicator thatwas previously stopped. If the communicatorwas not stopped
before, an error message will be displayed.

START

Sets the trace level for the transport method. If the global trace level (see TRACE) is set with
command
task_id TRACE=n
this applies to all transport methods. This command will also override any existing
transport-specific settings. If you subsequently enter command
task_id TCP TRACE=n
only the trace level for TCP/IP transport is modified.

TRACE

Note: With command TCP Tnn, the trace level is set for all TCP communicators. Setting a trace
level for a single TCP instance is not supported.

Administration under z/VSE26

Operator Commands

Sample Output

ETBM0720 Operator typed in: COM STATUS
ETBW0718 TCP Communicator 0 currently active
ETBW0718 TCP Communicator 1 currently active
ETBW0718 NET Communicator 0 currently suspended
XCO0039I 00113 Total number of commands = 17
XCO0057I 00113 Operator entry active
ETBM0720 Operator typed in: COM SUSPEND
ETBM0721 TCP Communicator 0 suspended
ETBM0721 TCP Communicator 1 suspended
ETBM0721 NET Communicator 0 suspended

NET parameter

This command is executed by X-COM, theAdabas/EntireNet-Work communicator. See command
COM above for a list of supported parameters.

Sample Output

ETBM0720 Operator typed in: NET STATUS
ETBW0718 NET Communicator 0 currently active
XCO0039I 00113 Total number of commands = 17
XCO0057I 00113 Operator entry active

TCP parameter

This command is executed by TCP communicators. See command COM above for a list of supported
parameters.

Sample Output

ETBM0720 Operator typed in: TCP STATUS
ETBW0718 TCP Communicator 0 currently active
ETBW0718 TCP Communicator 1 currently active

ETBM0720 Operator typed in: TCP RESUME
ETBM0721 TCP Communicator 0 resumed
ETBM0721 TCP Communicator 1 resumed

To manipulate a specific communicator instance (max. five instances can be started), use the
command T00, T01, T02, T03 or T04 for the respective TCP instance.

27Administration under z/VSE

Operator Commands

Sample Output

ETBM0720 Operator typed in: T00 STATUS
ETBW0718 TCP Communicator 0 currently active

ETBM0720 Operator typed in: T01 STATUS
ETBW0718 TCP Communicator 1 currently active

Sample Transport Commands

To display status of all transport communicators

■ Enter command:

task_id COM STATUS

To suspend first TCP communicator

■ Enter command:

task_id T00 SUSPEND

Administration under z/VSE28

Operator Commands

XCOM-specific Commands

Note: All operator commands beginningwith "X" belong to X-COM, theAdabas/EntireNet-
Work communicator. The following commands operate only on the Adabas transport
mechanism: XCQES, XHALT, XPARM, XSTART, XSTAT and XUSER. These commands have no effect
on functions not related to the Adabas transport mechanism.

XEND and XSTOP function independently of the transport mechanism. (They stop the Broker's pro-
cessing immediately, whereby existing calls to the EntireX Broker are not allowed to finish.)

XABS

Displays the current number, and the highest number, of used bytes in the Adabas attached buffer
pool to the console.

Note: This command operates on the Adabas transport mechanism only. It has no effect on
functions not related to the Adabas transport mechanism.

Sample Output

ETBM0720 Operator typed in: XABS
XCO0090I 00113 Attached buffer usage
XCO0091I 00113 Number of bytes in use = 0
XCO0092I 00113 Highest number of bytes in use = 6400

XCQES

Displays the current number, and the highest number, of Adabas command queue elements to
the console.

Note: This command operates on the Adabas transport mechanism only. It has no effect on
functions not related to the Adabas transport mechanism.

Sample Output

ETBM0720 Operator typed in: XCQES
XCO0030I 00113 Number of active CQEs = 0
XCO0031I 00113 Highest number of active CQEs = 1

29Administration under z/VSE

Operator Commands

XEND

Alias of ETBEND.

XHALT

New calls to the EntireX Broker are temporarily rejected. Processing is resumed by issuing the
XSTART operator command. XHALT is an alias for command NET SUSPEND.

Note: This command operates on the Adabas transport mechanism only. It has no effect on
functions not related to the Adabas transport mechanism.

Sample Output

ETBM0720 Operator typed in: XHALT
ETBM0721 NET Communicator 0 suspended

XPARM

Displays the values of Adabas SVC, database ID, number of CQEs, number of attached buffers,
and the application name for the Adabas transport to the console.

Note: This command operates on the Adabas transport mechanism only. It has no effect on
functions not related to the Adabas transport mechanism.

Sample Output

ETBM0720 Operator typed in: XPARM
XCO0032I 00113 Parameters for this session:
XCO0033I 00113 SVC = 249
XCO0034I 00113 NODE = 00113
XCO0035I 00113 NCQE = 00100
XCO0036I 00113 NABS = 10000
XCO0037I 00113 User application = ETBNUC

XSTART

Processing of new calls to the EntireX Broker, interrupted with the XHALT command, is resumed.
XSTART is an alias of command NET RESUME.

Note: This command operates on the Adabas transport mechanism only. It has no effect on
functions not related to the Adabas transport mechanism.

Administration under z/VSE30

Operator Commands

Sample Output

ETBM0720 Operator typed in: XSTART
ETBM0721 NET Communicator 0 resumed

XSTAT

Displays the EntireX Broker statistics as console messages.

Note: This command operates on the Adabas transport mechanism only. It has no effect on
functions not related to the Adabas transport mechanism.

XSTOP

Alias of ETBEND.

XUSER

Displays the current number, as well as the highest number, of users actively issuing commands
using the Adabas transport mechanism to the console.

Note: The number of users displayed with this operator command will not represent all of
the Broker clients and servers but only the subset of users issuing commands using the
Adabas transportmechanism.Command and Information Services provides comprehensive
information about all Broker clients and servers.

31Administration under z/VSE

Operator Commands

32

4 Broker Command-line Utilities

■ ETBINFO ... 34
■ ETBCMD ... 40

33

EntireXBroker provides the following internal services: CommandService and Information Service,
which can be used to administer and monitor brokers. Because these services are implemented
internally, nothing has to be started or configured. You can use these services immediately after
starting EntireX Broker.

ETBINFO

Queries the Broker for different types of information, generating an output text string with basic
formatting. This text output can be further processed by script languages. ETBINFO uses data de-
scriptions called profiles to control the type of data that is returned for a request. ETBINFO is useful
for monitoring and administering EntireX Broker efficiently, for example howmany users can run
concurrently and whether the number of specified message containers is large enough.

Although basic formatting of the output is available, it is usually formatted by script languages
or other means external to the Broker.

■ Running the Command-line Utility
■ Command-line Parameters
■ Profile
■ Format String

Running the Command-line Utility

In a z/VSE environment, run the command-line utility ETBINFO as shown below:

* $$ JOB JNM=RUNINFO,CLASS=0,DISP=D
* $$ LST CLASS=A,DISP=H
// JOB RUNINFO
*
* INFORMATION SERVICES SAMPLE JCL
*
// LIBDEF *,SEARCH=(SAGLIB.EXX960,SAGLIB.WAL826)
/*
/* / EXEC ETBINFO,PARM='ENVAR("LOGNAME=ENTIRE")/-d BROKER -c PING -bip:+
/* port:TCP'
// EXEC ETBINFO,PARM='ENVAR("LOGNAME=ENTIRE")/-d BROKER -c PING -bETBn+

nnnn:SVCmmm:NET'
/*
// EXEC LISTLOG
/&
* $$ EOJ

Administration under z/VSE34

Broker Command-line Utilities

Command-line Parameters

The table below explains the command-line parameters. The format string and profile parameters
are described in detail following the table. All entries in the Option column are case-sensitive.

Explanation
Req/
OptCommand-line ParameterOption

Broker identifier, for examplelocalhost:1971:TCP.Rbrokerid-b

Class as selection criterion.Oclass-c

Comma-separated values, suitable for input into a
spreadsheet or other analysis tool. Any format string

Ocsvoutput-C

specified by means of format string or profile
command-line parameters is ignored.

Possible values:Robject-d

Provides Info onObject

Broker.BROKER

Client.CLIENT

Command log filter.CMDLOG-FILTER

Conversation.CONVERSATION

Entire Net-Work transport.NET

Participant.PARTICIPANT

Broker pool usage.POOL-USAGE

Unit-of-work status.PSF

Adabas persistent store.PSFADA

c-tree persistent store.PSFCTREE

DIV persistent store.PSFDIV

FILE persistent store.PSFFILE

Publication.PUBLICATION

Publisher.PUBLISHER

Broker resource usage.RESOURCE-USAGE

EntireX Security.SECURITY

Server.SERVER

Service.SERVICE

Broker statistics.STATISTICS

Subscriber.SUBSCRIBER

TCP transport.TCP

Topic.TOPIC

Participant (short).USER

35Administration under z/VSE

Broker Command-line Utilities

Explanation
Req/
OptCommand-line ParameterOption

Worker.WORKER

Worker usage.WORKER-USAGE

Receiver's class name. This selection criterion is valid
only for object PSF.

Orecv class-e

Format string howyou expect the output. SeeProfile.OFormat String-f

Receiver's service name. This selection criterion is
valid only for object PSF.

Orecv service-g

Prints help information.Ohelp-h

Conversation ID as selection criterion. Only valid for
object CONVERSATION.

Oconvid-i

Conversation's type.Oconv type-I

Receiver's server name. This selection criterion is valid
only for object PSF.

Orecv server-j

Receiver's token. This selection criterion is valid only
for object PSF.

Orecv token-k

The amount of information displayed:Olevel-l

All information.FULL

User-specific information.SHORT

Receiver's user ID. This selection criterion is valid
only for object PSF.

Orecv userid-m

Server name. This selection criterion is valid only for
the objects SERVER, SERVICE or CONVERSATION.

Oserver name-n

Here you can specify a sublibrary element that defines
the layout of the output. There are default files you

Olibrary.sublibrary(profile.pro)-p

canmodify or you can use your own. The default files
are:

NETCONVCLOGFLTCLIENTBROKER

PSFDIVPSFCTREEPSFADAPSFPOOL

SECURITYRESOURCEPUBSHRPUBLICPSFFILE

SUBSCBRSTATISSERVICESERVER

WKRUSAGEWORKERUSERTOPICTCP

See Profile.

Physical user ID. This selection criterion is valid only
for objects CLIENT, SERVER, CONVERSATION,
SUBSCRIBER, PUBLISHER or PUBLICATION.

Note: Must be a hex value.

Opuserid-q

Administration under z/VSE36

Broker Command-line Utilities

Explanation
Req/
OptCommand-line ParameterOption

Publication ID. This selection criterion is valid only
for object PUBLICATION.

Opublication id-P

Refresh information after seconds.Osec-r

Service. This selection criterion is valid only for objects
SERVER, SERVICE or CONVERSATION.

Oservice-s

This selection criterion is valid only for objects
CLIENT, SERVER, SERVICE, CONVERSATION,
SUBSCRIBER, PUBLISHER, PUBLICATION or TOPIC.

Otoken-t

Topic name. This selection criterion is valid only for
objects PUBLICATION, SUBSCRIBER, PUBLISHER, or
TOPIC.

Otopic-T

User ID. This selection criterion is only valid for the
display types CLIENT, SERVER, SERVICE,

Ouserid-u

CONVERSATION, SUBSCRIBER, PUBLISHER,
PUBLICATION or TOPIC.

Subscriber's subscription type. This selection criterion
is valid only for object SUBSCRIBER.

Osubscr type-U

Unit of work status. This selection criterion is valid
only for object PSF.

OUOW status-v

Unit of work ID. This selection criterion is valid only
for object PSF.

OUOW ID-w

User ID. For security purposes.Ouserid-x

Password. For security purposes.Opassword-y

Used with userid to uniquely identify a caller to
Command and Information Services.

Otoken-z

Profile

If you do not use the profile option or a format string, your output will be an unformatted list with
all columns of that display type. To display specific columns, specify a profile that includes only
those columns.

The following default sample profiles include all the columns defined for each display type:

■ SERVICE■ PSFCTREE■ BROKER

■ CLIENT ■ STATIS■ PSFDIV

■ PSFFILE■ CLOGFLT ■ SUBSCBR

■ TCP■ PUBLIC■ CONV

■ POOL ■ TOPIC■ PUBSHR

■ RESOURCE■ PSF ■ USER

37Administration under z/VSE

Broker Command-line Utilities

■ WKRUSAGE■■ SECURITYPSFADA

■■ WORKERSERVER

You can either delete the columns not required or copy the default profile and modify the order
of the columns. Ensure that the column names have a leading “%”. Column names can be written
in one line or on separate lines. The output is always written side by side.

Location of Profiles

On z/VSE, the profiles used to control the format of the data displayed aremembers of the EXX960
sublibrary and are named SERVER.PRO, CLIENT.PRO etc.

Example for using a profile:

// EXEC ETBINFO,PARM='ENVAR("LOGNAME=ENTIRE")/-b LOCALHOST:1971:TCP +
-d SERVICE -p DD:SAGLIB.EXX960(SERVICE.PRO)'

Format String

The format string, if specified, will override the use of a profile. The format string is built like a
printf() in C language. The string must be enclosed in quotation marks. You can specify the
columns by using a “%” and the column name. The column name must contain letters only. Nu-
meric characters are not allowed. You can specify the length of column output by using a format
precision, as in the ANSI-C printf() function. The column name must be followed by a blank.
For example:

// EXEC ETBINFO,PARM='ENVAR("LOGNAME=ENTIRE")/-b LOCALHOST:1971:TCP +
-d SERVICE', +
PARM=' -f "CLASS: %24SERVER-CLASS SERVER: %24SERVER-NA+
ME SERVICE: %24SERVICE"'

which produces:

CLASS: SAG SERVER: ETBCIS SERVICE: ↩
 INFO
CLASS: SAG SERVER: ETBCIS SERVICE: ↩
 USER-INFO
CLASS: SAG SERVER: ETBCIS SERVICE: ↩
 CMD
CLASS: SAG SERVER: ETBCIS SERVICE: ↩
PARTICIPANT-SHUTDOWN
CLASS: SAG SERVER: ETBCIS SERVICE: ↩
 SECURITY-CMD

Example:

Administration under z/VSE38

Broker Command-line Utilities

// EXEC ETBINFO,PARM='ENVAR("LOGNAME=ENTIRE")/-b DAVLCSI:9084:TCP +
-d BROKER', +
PARM=' -f "%12.12CPLATNAME %NUM-SERVER %NUM-CLIENT"'

which produces:

z/VSE 5.1.2 12 200

You can also use an arbitrary column separator, which can be any character other than “%”. You
can use \n for a new line in the output and \t for a tabulator in the format string or profile. Please
note that due to the PARM string syntax in the z/VSE EXEC command, \n becomes \\n. For example:

// EXEC ETBINFO,PARM='ENVAR("LOGNAME=ENTIRE")/-b LOCALHOST:1971:TCP +
-d SERVICE', +
PARM=' -f "CLASS: %SERVER-CLASS \\n\\tSERVER: %SERVER-+
NAME \\n\\tSERVICE: %SERVICE"'

which produces:

CLASS: SAG
SERVER: ETBCIS
SERVICE: INFO

CLASS: SAG
SERVER: ETBCIS
SERVICE: USER-INFO

CLASS: SAG
SERVER: ETBCIS
SERVICE: CMD

CLASS: SAG
SERVER: ETBCIS
SERVICE: PARTICIPANT-SHUTDOWN

CLASS: SAG
SERVER: ETBCIS
SERVICE: SECURITY-CMD

39Administration under z/VSE

Broker Command-line Utilities

ETBCMD

Allows the user to take actions - for example purge a unit of work, stop a server, shut down a
Broker - against EntireX Broker.

■ Running the Command-line Utility
■ Command-line Parameters
■ List of Commands and Objects
■ Examples

Running the Command-line Utility

In a z/VSE environment, run the ETBCMD command-line utility like this:

* $$ JOB JNM=RUNCMD,CLASS=0,DISP=D
* $$ LST CLASS=A,DISP=H
// JOB RUNCMD
*
* COMMAND SERVICES SAMPLE JCL
*
// LIBDEF *,SEARCH=(SAGLIB.EXX960,SAGLIB.WAL826)
/*
/* / EXEC ETBCMD,PARM='ENVAR("LOGNAME=ENTIRE")/-d BROKER -c PING -bip:+
/* port:TCP'
// EXEC ETBCMD,PARM='ENVAR("LOGNAME=ENTIRE")/-d BROKER -c PING -bETBnn+

nnn:SVCmmm:NET'
/*
// EXEC LISTLOG
/amp;
* $$ EOJ

Command-line Parameters

The table below explains the command-line parameters. All entries in theOption column are case-
sensitive.

Explanation
Req/
OptParameterOptionCommand-line Parameter

Broker ID.Re.g. ETB001-bbrokerid

Command to be performed. See List
of Commands and Objects below.

R-ccommand ■ ALLOW-NEWUOWMSGS

■ CLEAR-CMDLOG-FILTER

■ CONNECT-PSTORE

■ DISABLE-ACCOUNTING

■ DISABLE-CMDLOG-FILTER

Administration under z/VSE40

Broker Command-line Utilities

Explanation
Req/
OptParameterOptionCommand-line Parameter

■ DISABLE-CMDLOG

■ DISABLE-DYN-WORKER

■ DISCONNECT-PSTORE

■ ENABLE-ACCOUNTING

■ ENABLE-CMDLOG-FILTER

■ ENABLE-CMDLOG

■ ENABLE-DYN-WORKER

■ FORBID-NEWUOWMSGS

■ PING

■ PRODUCE-STATISTICS

■ PURGE

■ RESET-USER

■ RESUME

■ SET-CMDLOG-FILTER

■ SHUTDOWN

■ START

■ STATUS

■ STOP

■ SUBSCRIBE

■ SUSPEND

■ SWITCH-CMDLOG

■ TRACE-FLUSH

■ TRACE-OFF

■ TRACE-ON

■ TRAP-ERROR

■ UNSUBSCRIBE

The object type to be operated on.
See List of Commands and Objects
below.

Within EntireXBroker nomenclature,
a participant is an application

R-dobject type ■ BROKER

■ CONVERSATION

■ PARTICIPANT

■ PSF

■ SUBSCRIBER implicitly or explicitly logged on to
the Broker as a specific user. A■ SECURITY
participant could act as client, server,
publisher or subscriber.

■ SERVER

41Administration under z/VSE

Broker Command-line Utilities

Explanation
Req/
OptParameterOptionCommand-line Parameter

■ SERVICE

■ TRANSPORT

Error number being trapped.Oerrornumber-e

Exclude attach servers from service
shutdown.

O-E

Prints help information.O-hhelp

Service triplet.Oclass/server/service-nclass/server/service

Command option.O-ooption ■ IMMED

■ QUIESCE

■ LEVELn, where n=1-8

Physical User ID. For SERVER and
PARTICIPANT objects only. Thismust
be a hex value.

Opuserid-ppuserid

Sequence number of participant.Osequence number-Sseqno

Token. For PARTICIPANT and
SUBSCRIBER objects only.

Otoken-ttoken

Topic name. For SUBSCRIBER object
only.

Otopic-Ttopic

Unit of work ID. For PSF object only.Ouowid-uuowid

User ID. For PARTICIPANT and
SUBSCRIBER objects only.

Ouserid-Uuserid

User ID for security purposes.Ouserid-xsecuserid

One of the following:
COM|NET|TCP|Tnn. See table below.

OTransport ID-Xtransportid

Password for security purposes.Opassword-ysecpassword

Transport ID Values

This table explains the possible values for parameter transportid:

ExplanationTransport ID

all communicatorsCOM

NET transport communicatorNET

all TCP/IP communicatorsTCP

TCP/IP communicator 1T00

TCP/IP communicator 2T01

TCP/IP communicator 3T02

Administration under z/VSE42

Broker Command-line Utilities

ExplanationTransport ID

TCP/IP communicator 4T03

TCP/IP communicator 5T04

43Administration under z/VSE

Broker Command-line Utilities

List of Commands and Objects

This table lists the available commands and the objects to which they can be applied.

Object

Command

xALLOW-NEWUOWMSGS

xCLEAR-CMDLOG-FILTER

xCONNECT-PSTORE

xDISABLE-ACCOUNTING

xDISABLE-CMDLOG-FILTER

xDISABLE-CMDLOG

xDISCONNECT-PSTORE

xENABLE-ACCOUNTING

xENABLE-CMDLOG-FILTER

xENABLE-CMDLOG

xFORBID-NEWUOWMSGS

xPING

xPRODUCE-STATISTICS

xPURGE

xRESET-USER

xSET-CMDLOG-FILTER

xxxxxSHUTDOWN

xSTART

xSTATUS

xSTOP

xSUBSCRIBE

xSWITCH-CMDLOG

xxxTRACE-OFF

xxxTRACE-ON

xUNSUBSCRIBE

Administration under z/VSE44

Broker Command-line Utilities

Examples

Description
ETBCMD Example PARM Strings

Displays ETBCMD help text.PARM='ENVAR("LOGNAME=ENTIRE")/-h'

Turns Broker tracing off.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d BROKER -c TRACE-OFF'

Sets Broker trace level to 2.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d BROKER -c TRACE-ON -o LEVEL2'

Performs Broker shutdown.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d BROKER -c SHUTDOWN'

Shutdown service
CLASS=ACLASS,SERVER=ASERVER,SERVICE=ASERVICE.

PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d SERVICE -c SHUTDOWN -o IMMED -n
ACLASS/ASERVER/ASERVICE' See also SHUTDOWN SERVICE under Broker Command and

Information Services for more information on shutdown
options.

Create list of servers and shutdown specific server in two
steps (first step uses ETBINFO). See also SHUTDOWN SERVER
under Broker Command and Information Services.

1. Determine a list of all servers with sequence numbers.EXEC
ETBINFO,PARM='ENVAR("LOGNAME=ENTIRE")/-b
etb001 -d SERVER -l FULL -f"%USER-ID
%SEQNO"'

2. Shutdown server with sequence number 32.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d SERVER -c SHUTDOWN -o IMMED -S32'

Performs an EntireX ping against the Broker.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d BROKER -c PING'

Disconnects the Broker PSTORE.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d PSF -c DISCONNECT-PSTORE'

Connects the Broker PSTORE.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d PSF -c CONNECT-PSTORE'

Purges a unit of work.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d PSF -c PURGE -u 100000000U00001A'

Allows new units of work to be stored.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d PSF -c ALLOW-NEWUOWMSGS'

Disallows new units of work to be stored.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d PSF -c FORBID-NEWUOWMSGS'

Subscribes subscriber to topic NYSE.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d SUBSCRIBER -c SUBSCRIBE -U U1 -t t1
-T NYSE'

Unsubscribes subscriber from topic NYSE.PARM='ENVAR("LOGNAME=ENTIRE")/-b etb001
-d SUBSCRIBER -c UNSUBSCRIBE -U U1 -t t1
-T NYSE'

45Administration under z/VSE

Broker Command-line Utilities

46

5 Configuring Broker for Internationalization

■ Configuring Translation ... 48
■ Configuring Translation User Exits .. 49
■ Configuring ICU Conversion .. 49
■ Writing Translation User Exits .. 50

47

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

This chapter explains in detail how to configure the broker for the various internationalization
approaches, how to write a translation user exit and how to write a SAGTRPC user exit.

See alsoWhat is the Best Internationalization Approach to use? under Introduction to Internationalization

Configuring Translation

To configure translation

■ In the Broker attribute file, set the service-specific or topic-specific broker attribute TRANSLATION
to SAGTCHA as the name of the translation routine. Example:

TRANSLATION=SAGTCHA

Administration under z/VSE48

Configuring Broker for Internationalization

Configuring Translation User Exits

To configure translation user exits

As a prerequisite, the user-written translation module must be accessible to the Broker worker
threads.

1 Copy the user-written translation module into any sublibrary defined to EntireX Broker's
LIBDEF chain.

2 In the Broker attribute file, set the service-specific or topic-specific broker attribute TRANSLATION
to the name of the user-written translation routine. Example:

TRANSLATION=MYTRANS

Configuring ICU Conversion

To configure ICU conversion

1 In the Broker attribute file, set the ICU-CONVERSION (default for z/VSE is NO):

ICU-CONVERSION=YES

2 In the Broker attribute file, set the service-specific or topic-specific broker attribute CONVERSION.
Default for z/VSE is NO. Examples:

■ ICU Conversion with SAGTCHA for ACI-based Programming:

CONVERSION=(SAGTCHA,TRACE=1,OPTION=SUBSTITUTE)

■ ICU Conversion with SAGTRPC for RPC-based Components and Reliable RPC:

CONVERSION=(SAGTRPC,TRACE=2,OPTION=STOP)

We recommend always using SAGTRPC for RPC data streams. Conversion with Multibyte,
Double-byte and other Complex Codepageswill always be correct, and Conversion with Single-byte
Codepages is also efficient because SAGTRPCdetects single-byte codepages automatically. See
Conversion Details.

3 Optionally configure a CONVERSION OPTION to tune error behavior tomeet your requirements;
see OPTION Values for Conversion.

49Administration under z/VSE

Configuring Broker for Internationalization

To configure locale string defaults (optional)

■ If the broker's locale string defaults do notmatch your requirements (see Broker's Locale String
Defaultsunder Locale StringMapping in the internationalizationdocumentation),we recommend
you assign suitable locale string defaults for your country and region, see the respective at-
tribute in Codepage-specific Attributes (DEFAULTS=CODEPAGE) under Broker Attributes in the
platform-independent administration documentation for how to customize the broker's locale
string defaults.

To customize mapping of locale strings (optional)

■ If the built-in locale string mapping mechanism does not match your requirements, you can
assign specific codepages to locale strings. See Broker's Built-in Locale String Mapping under
Locale String Mapping in the internationalization documentation and locale-string for in-
formation on customizing the mapping of locale strings to codepages.

Writing Translation User Exits

This section covers the following topics:

■ Introduction
■ Structure of the TRAP Control Block
■ Using the TRAP Fields

Introduction

EntireXBroker provides an interface to enable user-written translation routines in the programming
language . It contains three parameters:

■ The address of the TRAP control block (TRAP = Translation Routine / Area for Parameters).
■ The address of a temporarywork area. It is aligned to fullword / long integer boundary (divisible
by 4). The work area can only be used for temporary needs and is cleared after return.

■ A fullword (long integer) that contains the length of the work area.

Note: Names for user-written translation routines starting with "SAG" are reserved for
Software AG usage and must not be used, e.g. "SAGTCHA" and "SAGTRPC".

Administration under z/VSE50

Configuring Broker for Internationalization

Structure of the TRAP Control Block

The Assembler dummy section TR$TRAP covers the layout of the TRAP control block:

TR$TRAP DSECT ,
TR$TYPE DS F TRAP type
TR$TYP2 EQU 2 TRAP type ETB 121
TR$ILEN DS F Input buffer length
TR$IBUF DS A Address of input buffer
TR$OLEN DS F Output buffer length
TR$OBUF DS A Address of output buffer
TR$DLEN DS F Length of data returned:
* Should be set to the minimum value of TR$ILEN
* and TR$OLEN.
TR$SHOST DS F Sender's host:
* x'00000000' = little endian
* x'00000001' = big endian
TR$SCODE DS F Sender's character set:
SEBCIBM EQU X'00000022' EBCDIC (IBM)
SEBCSNI EQU X'00000042' EBCDIC (SNI)
SA88591 EQU X'00000080' ASCII
TR$RHOST DS F Receiver's host --> see TR$SHOST
TR$RCODE DS F Receiver's char set --> see TR$SCODE
TR$BHOST DS F BROKER host --> see TR$SHOST
TR$BCODE DS F BROKER char set --> see TR$SCODE
TR$SENVA DS F Sender's ENVIRONMENT field supplied:
OFF EQU X'00000000' ENVIRONMENT field not set
ON EQU X'00000001' ENVIRONMENT field set
*
TR$RENVA DS F Receiver's ENVIRONMENT field supplied:
* --> see TR$SENVA
TR$SENV DS CL32 Sender's ENVIRONMENT field
TR$RENV DS CL32 Receiver's ENVIRONMENT field
TR$LEN EQU *-TR$TRAP Length of TRAP

The translation routine USRTCHA is an example of the translation user exit, it is contained in the
EntireX Common source library.

Using the TRAP Fields

The TR$DLENmust be supplied by the user-written translation routine. It tells the Broker the length
of themessage of the translation. In our example its value is set to theminimum length of the input
and output buffer.

All other TRAP fields are supplied by the Broker and must not be modified by the user-written
translation routine.

The incomingmessage is located in a buffer pointed to by TR$IBUF. The length (not to be exceeded)
is supplied in TR$ILEN. The character set information from the send buffer can be taken from
TR$SCODE.

51Administration under z/VSE

Configuring Broker for Internationalization

The outgoing message must be written to the buffer pointed to by TR$OBUF. The length of the
output buffer is given in the field TR$OLEN. The character set is specified in TR$RCODE. If the addresses
given in TR$IBUF and TR$OBUF point to the same location, it is not necessary to copy the data from
the input buffer to the output buffer.

The environment fields TR$SENVA and TR$RENVA are provided to handle site-dependent character
set information. For the SEND and/or RECEIVE functions, you can specify data in the ENVIRONMENT
field of the Broker ACI control block. This data is translated into the codepage of the platform
where EntireX Broker is running (see field TR$BCODE) and is available to the TR$SENV or TR$RENV
field in the TRAP control block. TR$SENVA or TR$RENVA are set to ON if environmental data is
available.

The sample source USRTCHA contains a section to handle the ENVIRONMENT value *NONE. The trans-
lation will be skipped if *NONE is supplied by the sender or receiver. Any values given in the API
field ENVIRONMENTmust correspond to the values handled in the translation routine.

Administration under z/VSE52

Configuring Broker for Internationalization

6 Managing the Broker Persistent Store

■ Implementing an Adabas Database as Persistent Store .. 54
■ Migrating the Persistent Store .. 60

53

The persistent store is used for storing unit-of-work messages and publish-and-subscribe data to
disk. This means message and status information can be recovered after a hardware or software
failure to the previous commit point issued by each application component. Under z/VSE, the
broker persistent store can be implementedwith theAdabas database of SoftwareAG. This chapter
covers the following topics:

See also Concepts of Persistent Messaging in the general administration documentation.

Implementing an Adabas Database as Persistent Store

■ Introduction
■ Configuring and Operating the Adabas Persistent Store
■ Adabas DBA Considerations

Introduction

EntireX provides an Adabas persistent driver. This enables Broker unit of work (UOW) messages
and their status to be stored in an Adabas file. It is designed toworkwith Adabas databases under
z/OS, UNIX, Windows, BS200/OSD and z/VSE, and can be used where the database resides on a
differentmachine to Broker kernel. For performance reasons, we recommendusing EntireX Broker
on the same machine as the Adabas database.

Configuring and Operating the Adabas Persistent Store

Selecting the Adabas Persistent Store Driver

To create an Adabas Persistent Store, adapt and run job PSFADA.J in sublibrary EXX960. Running
this job will load an empty Adabas persistent store file into your Adabas database. To activate the
Adabas persistent store, set up at least following parameters in the broker attribute file. See Broker
Attributes in the platform-independent administration documentation.

DEFAULTS=BROKER
STORE = BROKER
PSTORE = HOT/COLD
PSTORE-TYPE = ADABAS

DEFAULTS=ADABAS
DBID = dbid
FNR = pstore_file_number

DEFAULTS=NET
ADASVC = svc_number

SeeManaging the Broker Persistent Store for more information.

Administration under z/VSE54

Managing the Broker Persistent Store

Restrictions

If a HOT start is performed, the Broker kernel must be executed on the same platform on which
also the previous Broker executed. This is because some portions of the persistent data are stored
in the native character set and format of the Broker kernel. It is also necessary to start Broker with
the same Broker ID as the previous Broker executed.

If a COLD start is executed, a check is made to ensure the Broker ID and platform information
found in the persistent store file is consistentwith the Broker being started (provided the persistent
store file is not empty). This is done to prevent accidental deletion of data in the persistent store
by a different Broker ID. If you intend to COLD start Broker and to utilize a persistent store file
which has been used previously by a different Broker ID, youmust supply the additional PSTORE-
TYPE parameter FORCE-COLD=Y.

Recommendations

■ Perform regular backup operations on your Adabas database. The persistent store driver writes
C1 checkpoint records at each start up and shut down of Broker.

■ For performance reasons, execute Broker on the same machine as Adabas.

Broker Checkpoints in Adabas

During startup, Broker writes the following C1 checkpoint records to the Adabas database. The
time, date and job name are recorded in theAdabas checkpoint log. This enables Adabas protection
logs to be coordinated with Broker executions. This information can be read from Adabas, using
the ADAREP utility with option CPLIST:

AdabasBroker Execution TypeBroker Execution Name

Normal Cold StartBroker Cold StartETBC

Normal Hot StartBroker Hot StartETBH

Normal TerminationBroker TerminationETBT

55Administration under z/VSE

Managing the Broker Persistent Store

Adabas DBA Considerations

■ BLKSIZE : Adabas Persistent Store Parameter for Broker
■ Table of Adabas Parameter Settings
■ Estimating the Number of Records to be Stored
■ Estimating the Number of Records to be Stored
■ Tips on Transports, Platforms and Versions

BLKSIZE : Adabas Persistent Store Parameter for Broker

Caution should be exercised when defining the block size (BLKSIZE) parameter for the Adabas
persistent store. This determines how much UOWmessage data can be stored within a single
Adabas record. Therefore, do not define a much larger block size than the size of the maximum
unit of work being processed by Broker. (Remember to add 41 bytes for each message in the unit
of work.) The advantage of having a good fit between the unit of work and the block size is that
fewer records are required for each I/O operation.

It is necessary to consider the following Adabas parameters and settings when using Adabas for
the persistent store file:

Table of Adabas Parameter Settings

DescriptionTopic

Allow sufficient Adabas user queue (UQ) elements each time you start Broker.
The Broker utilizes a number of user queue elements equal to the number of

Allowing Sufficient
Adabas UQ Elements

worker tasks (NUM-WORKER), plus two. Adabas timeout parameter (TNAE)
determines how long the user queue elementswill remain. This can be important
if Broker is restarted after an abnormal termination, and provision must be
made for sufficient user queue elements in the event of restarting Broker.

Considerationmust be given to theAdabas hold queue parameters NISNHQ and
NH. These must be sufficiently large to allow Adabas to add/update/delete the
actual number of records within a single unit of work.

Example: where there are 100 message within a unit of work and the average
message size is 10,000 bytes, the total unit of work size is 1 MB. If, for example,

Setting Size ofHoldQueue
Parameters

a 2 KB block size (default BLKSIZE=2000) is utilized by the Adabas persistent
store driver, there will be 500 distinct records within a single Adabas commit
(ET) operation, and provision must be made for this to occur successfully.

Considerationmust be given to the Adabas transaction time (TT) parameter for
cases where a large number of records is being updated within a single unit of
work.

Setting Adabas TT
Parameter

Sufficient logical work pool (LWP) size must be defined so that the Adabas
persistent store can update and commit the units of work. Adabas must be able
to accommodate this in addition to any other processing for which it is used.

Defining LWP Size

Administration under z/VSE56

Managing the Broker Persistent Store

DescriptionTopic

If Broker kernel is executed on a separate machine to the Adabas nucleus, with
a different architecture and codepage, thenwe recommend running theAdabas

Executing Broker Kernel
and Adabas Nucleus on
Separate Machines nucleus with the UEC (universal conversion) option in order to ensure that

Adabas C1 checkpoints are legible within the Adabas checkpoint log.

ThisAdabas option can be applied to theAdabas file to reduce by approximately
50% the amount of space consumed in the indexes.

Setting
INDEXCOMPRESSION=YES

If you anticipate havingmore than 16million recordswithin the persistent store
file, you must use 4-byte ISNs when defining the Adabas file for EntireX.

4-byte ISNs

Specification ofAdabas LP
Parameter

Caution: This parameter must be specified large enough to allow the largest
UOW to be stored in Adabas.

If this is not large enough, Broker will detect an error (response 9; subresponse
- 4 bytes - X'0003',C'LP') and Brokerwill not be able towrite any further UOWs.

See the description of the LP parameter underADARUNParameters in theDBA
Reference Summary of the Adabas documentation.

Estimating the Number of Records to be Stored

To calculate the Adabas file size it is necessary to estimate the number of records being stored. As
an approximate guide, there will be one Adabas record (500 bytes) for each unprocessed unit of
work, plus also n records containing the actual message data, which depends on the logical block
size and the size of the unit of work. In addition, there will be one single record (500 bytes) for
each unit of work having a persisted status.

Always allow ample space for the Adabas persistent store file since the continuous operation of
Broker relies of the availability of this file to store and retrieve information.

Estimating the Number of Records to be Stored

In this example there are 100,000 Active UOW records at any one time. Each of these is associated
with two message records containing the message data. UOW records are 500 bytes in length.
Each message record contains 2,000 bytes. In addition, there are 500,000 UOW status records
residing in the persistent store, for which the UOWhas already been completely processed. These
are 500 bytes long.

Note: The actual size of the data stored within the UOWmessage records is the sum of all
the messages within the UOW, plus a 41-byte header for each message. Therefore, if the
average message length is 59 bytes, the two 2,000 bytes, messagesrecords, could contain n
= 4,000 / (59+41), or 40 messages. Adabas is assumed to compress the message data by 50%
in the example (this can vary according to the nature of the message data).

3-byte ISNs and RABNs are assumed in this example. A device type of 8393 is used; therefore, the
ASSO block size is 4,096, and DATA block size is 27,644. Padding factor of 10% is specified.

57Administration under z/VSE

Managing the Broker Persistent Store

The following example calculates the space needed for Normal Index (NI), Upper Index (UI),
Address Converter (AC) and Data Storage (DS).

Required SpaceCalculation Factors

■■ = number UOW records: 0.1 + 0.5 million

+ number message records: 0.2 million

Number entries for descriptor WK

(21-byte unique key)

■ = 800,000 * (3 + 21 + 2)■ NI Space for descriptor WK
■ (3-byte ISN) ■ = 20,800,000 bytes

■■ = 5,648 blocks(4,092 ASSO block 10% padding)

■ = 5,648 * (21 + 3 + 3 + 1)■ UI Space for descriptor WK
■ (3-byte ISN + 3-byte RABN) ■ = 158,140 bytes

■■ = 43 blocks(4,092 ASSO block 10% padding)

■■ = number processed UOW records: 0.5
million

Number entries for descriptor WI

(8-byte unique key)

■ = 500,000 * (3 + 8 + 2)■ NI Space for descriptor WI
■ (3-byte ISN) ■ = 6,500,000 bytes

■■ = 1,765 blocks(4,092 ASSO block 10% padding)

■ = 17,649 * (8 + 3 + 3 + 1)■ UI Space for descriptor WI
■ (3-byte ISN and 3 byte RABN) ■ = 26,475 bytes

■■ = 8 blocks(4,092 ASSO block 10% padding)

■■ = number UOW records 0.1 + 0.5 millionNumber entries for descriptor WL

(96 byte key)

■ = 600,000 * (3 + 96 + 2)■ NI Space for descriptor WL
■ (3-byte ISN) ■ = 60,600,000 bytes

■■ = 16,455 blocks(4,092 ASSO block 10% padding)

■ = 164,548 * (96 + 3 + 3 + 1)■ UI Space for descriptor WL
■ (3-byte ISN and 3 byte RABN) ■ = 16,948,517 bytes

■■ = 461 blocks(4,092 ASSO block 10% padding)

■ = (800,000 + 1) * 3 / 4092■ Address Converter space
■ ■(4,092 ASSO block) = 587 blocks

Administration under z/VSE58

Managing the Broker Persistent Store

Required SpaceCalculation Factors

■■ = 0.2 million * 2000 * 0.5 = 200,000,000 bytesData storage for message data

(2,000-byte records compressedby 50%)

■■ = 0.6 million * 500 * 0.5 = 150,000,000 byteData storage for UOW data

(2,000-byte records compressedby 50%)

■■ = 14,068 blocksCombined space required for data

(27,644 DATA block 10% padding)

Total Required SpaceEntity Requiring Space

= 23,868 blocksNormal Index (NI)

= 512 blocksUpper Index (UI)

= 14,068 blocksData Storage (DS)

= 587 blocksAddress Converter (AC)

Tips on Transports, Platforms and Versions

■ Entire Net-Work
If you intend to use Adabas persistent store through Entire Net-Work, see the Entire Net-Work
documentation for installation and configuration details.

■ Adabas Versions
Adabas persistent store can be used on all Adabas versions currently released and supported
by Software AG.

■ Prerequisite Versions of Entire Net-Work with Adabas
See theAdabas and EntireNet-Work documentation to determine prerequisite versions of Entire
Net-Work to use with Adabas at your site.

59Administration under z/VSE

Managing the Broker Persistent Store

Migrating the Persistent Store

The contents of EntireX Broker's persistent store can bemigrated to a new persistent store in order
to change the PSTORE type or to use the same type of PSTORE with increased capacity.

The migration procedure outlined here requires two Broker instances started with a special
RUN-MODE parameter. One Broker unloads the contents of the persistent store and transmits the
data to the other Broker, which loads data into the new PSTORE. Therefore, for the purposes of
this discussion, we will refer to an unload Broker and a load Broker.

This procedure is based on Broker-to-Broker communication to establish a communication link
between two Broker instances. It does not use any conversion facilities, since the migration pro-
cedure is supported for homogeneous platforms only.

■ Configuration
■ Migration Procedure

Configuration

The migration procedure requires two Broker instances started with the RUN-MODE parameter. The
unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD

These commands instruct the Broker instances to perform the PSTORE migration.

Note: The attribute PARTNER-CLUSTER-ADDRESSmust be defined in both Broker instances to
specify the transport address of the load Broker. The unload Broker must know the address
of the load broker, and the load Brokermust in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on
host HOST2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to estab-
lish port 1972.

For ETB001, attribute PARTNER-CLUSTER-ADDRESS=HOST2:1972:TCP is set, and for ETB002, attribute
PARTNER-CLUSTER-ADDRESS=HOST1:1971:TCP is set to establish the Broker-to-Broker communication
between the two Broker instances.

Administration under z/VSE60

Managing the Broker Persistent Store

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE
on the unloader side, youmust set the attribute PSTORE=HOT. To load the data into the newPSTORE
on the loader side, you must set the attribute PSTORE=COLD. The load process requires an empty
PSTORE at the beginning of the load process.

Note: Use caution not to assign PSTORE=COLD to your unload Broker instance, as this startup
process will erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different per-
sistent stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end
of the migration process, a second report can be run on the resulting new persistent store. These
two reports can be compared to ensure that all contents were migrated properly. To run these re-
ports, set the attribute PSTORE-REPORT=YES. See PSTORE for detailed description, especially for the
file assignment.

Migration Procedure

The migration procedure is made up of three steps.

Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to
perform an initial compatibility check. This validation is performed by Broker according to platform
architecture type and Broker version number. The handshake ensures a correctly configured
partner cluster address and ensures that the user did not assign the same PSTORE to both Broker
instances. If a problem is detected, an error message will be issued and both Broker instances will
stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and
transmits the data to the load Broker instance. The load Broker instance writes the unchanged raw
data to the new PSTORE. A report is created if PSTORE-REPORT=YES is specified, and a valid output
file for the report is specified.

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare
the amount of migrated data. The result of this check is reported by the unload Broker instance
and the load Broker instance before they shut down.

61Administration under z/VSE

Managing the Broker Persistent Store

When a Broker instances is started in RUN-MODE=PSTORE-LOAD or RUN-MODE=PSTORE-UNLOAD, the
Broker instances only allow Administration requests. All other user requests are prohibited.

Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica.
No filtering of unnecessary information will be performed, for example, UOWs in received
state. The master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE
attribute to PSTORE=HOT. Do not start your broker with the new persistence store using
PSTORE=COLD; this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your broker in a normal run-mode, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate
Broker instances; otherwise, applicationswould receive the same data twice. Once themigration
process is completed satisfactorily, and is validated, the old PSTORE contents should be dis-
carded.

Administration under z/VSE62

Managing the Broker Persistent Store

7 Tracing EntireX Components under z/VSE

■ Tracing EntireX Broker ... 64
■ Tracing Broker Stubs ... 64
■ Activating Tracing for the RPC Server .. 65

63

Tracing EntireX Broker

To switch on tracing

■ Set the attribute TRACE-LEVEL in the broker attribute file

■ for minimal trace output to "1"
■ for detailed trace output to "2"
■ for full trace output to "3"

Example:

TRACE-LEVEL=2

To switch off tracing

■ Set the attribute TRACE-LEVEL in the broker attribute file to 0:

TRACE-LEVEL=0

Or:

Omit the TRACE-LEVEL attribute.

Tracing Broker Stubs

The broker stubs provide an option for writing trace files. Trace output is only available for
transport method TCP.

To switch on tracing for the broker stub

■ Before starting the client application, set the environment variable STUBLOG in your application
job control or CICS startup:

Administration under z/VSE64

Tracing EntireX Components under z/VSE

DescriptionTrace Level
Trace
Value

No tracing.NONE0

Traces initialization, errors, and all ACI request/reply strings.STANDARD1

Used primarily by system engineers, traces everything from level 1 and provides
additional information - for example the Broker ACI control block - as well as
transport information.

ADVANCED2

This is full tracing through the stub, including detailed traces of control blocks,
message information, etc.

SUPPORT3

Example:

//SETPARM STUBLOG=2

If the trace level is greater than 1, unencrypted contents of the send/receive buffersmay be exposed
in the trace.

Trace output is written to SYSOUT.

Remember to switch off tracing to prevent trace files from filling up your disk.

To switch off tracing for the broker stub

■ Set the environment variable STUBLOG to NONE or remove the SETPARM statement.

Activating Tracing for the RPC Server

To switch on tracing for the RPC server

■ Set the parameter TRACELEVEL in the configuration file RPCPARM in sublibrary EXP960. Example:

TRACELEVEL=SUPPORT

To evaluate the return codes, see Error Messages and Codes.

65Administration under z/VSE

Tracing EntireX Components under z/VSE

66

8 Broker Shutdown Statistics

■ Shutdown Statistics Output ... 68
■ Table of Shutdown Statistics .. 68

67

Shutdown Statistics Output

After a successful Broker execution, shutdown statistics and related information are produced.
This output is written in the following sequence:

1. The diagnostic message ETBD0444 is written into the Broker trace log.

2. The output - i.e. statistics, internals and user-specified parameters - is written into the end of
the Broker trace log file at shutdown.

Table of Shutdown Statistics

See Legend below for explanation of output type.

DescriptionDisplay Field
Output
Type

Identifies the Broker kernel towhich the attribute file applies. See
BROKER-ID.

Broker IDU

The version of the Broker kernel currently running.VersionI

The platform family for which this Broker kernel was built.Generated platform familyI

The platform on which this Broker kernel is currently running.Runtime platformI

The date and time when this Broker kernel started.Start timeI

The restart count indicates howmany times the Broker kernel has
been started with the persistent store. Therefore, after a cold start

Restart countS

(PSTORE=COLD), the restart countwill be 1. Then, after subsequent
hot starts (PSTORE=HOT), the restart count will be 2 or greater.

The value for the trace setting for this Broker kernel. See
TRACE-LEVEL.

Trace levelU

The number of worker tasks for this Broker kernel. See
NUM-WORKER.

Worker tasksU

The value of MAX-MEMORY or 0 if not defined. See MAX-MEMORY.MAX-MEMORYU

Size of the allocated memory, in bytes.Memory allocatedS

Highest size of allocated memory in bytes since Broker started.Memory allocated HWMS

Value of NUM-SERVICE or 0 if not defined. See NUM-SERVICE.NUM-SERVICEU

The number of services currently active for this Broker kernel.Services activeS

Value of NUM-CLIENT or 0 if not defined. See NUM-CLIENT.NUM-CLIENTU

The number of clients currently active for this Broker kernel.Clients activeS

The highwatermark for the number of clients active for this Broker
kernel.

Clients active HWMS

Administration under z/VSE68

Broker Shutdown Statistics

DescriptionDisplay Field
Output
Type

Value of NUM-SERVER or 0 if not defined. See NUM-SERVER.NUM-SERVERU

The number of servers currently active for this Broker kernel.Servers activeS

The high watermark for the number of servers active for this
Broker kernel.

Servers active HWMS

Value of NUM-CONVERSATION or 0 if not defined. See
NUM-CONVERSATION.

NUM-CONVERSATIONU

The number of conversations currently active for this Broker
kernel.

Conversations activeS

The high watermark for the number of conversations active for
this Broker kernel.

Conversations active HWMS

Value of NUM-LONG-BUFFER or 0 if not defined. See
NUM-LONG-BUFFER.

NUM-LONG-BUFFERU

The number of long message buffers currently in use for this
Broker kernel.

Long buffers activeS

The highwatermark for the number of longmessage buffers used
for this Broker kernel.

Long buffers active HWMS

Value of NUM-SHORT-BUFFER or 0 if not defined. See
NUM-SHORT-BUFFER.

NUM-SHORT-BUFFERU

The number of short message buffers currently in use for this
Broker kernel.

Short buffers activeS

The highwatermark for the number of shortmessage buffers used
for this Broker kernel.

Short buffers active HWMS

Value of NUM-TOPIC or 0 if not defined. See NUM-TOPIC.NUM-TOPICU

The number of topics currently active for this Broker kernel.Topics activeS

Value of NUM-PUBLISHER or 0 if not defined.NUM-PUBLISHERU

The number of publishers currently active for this Broker kernel.Publishers activeS

The high watermark for the number of publishers active for this
Broker kernel.

Publishers active HWMS

Value of NUM-SUBSCRIBER or 0 if not defined. See
NUM-SUBSCRIBER.

NUM-SUBSCRIBERU

The number of subscribers currently active for this Broker kernel.Subscribers activeS

The high watermark for the number of subscribers active for this
Broker kernel.

Subscribers active HWMS

Value of NUM-PUBLICATION or 0 if not defined. See
NUM-PUBLICATION.

NUM-PUBLICATIONU

The number of publications currently active for this Broker kernel.Publications activeS

The highwatermark for the number of publications active for this
Broker kernel.

Publications active HWMS

69Administration under z/VSE

Broker Shutdown Statistics

DescriptionDisplay Field
Output
Type

The type of persistent store used by this Broker kernel. See
PSTORE-TYPE.

Persistent store typeU

Indicateswhether units ofwork are persistent or not in this Broker
kernel. See STORE.

UOW persistenceU

Indicates the status of the persistent store at Broker startup. See
PSTORE.

Persistent store startupU

Themultiplier to compute the lifetime of the persistent status. See
UWSTATP.

Persistent status lifetimeU

Indicates whether or not deferred units of work are allowed. See
DEFERRED.

Deferred UOWs allowedU

The maximum number of units of work that can be active
concurrently for this Broker kernel. See MAX-UOWS.

Maximum allowed UOWsU

The maximum number of messages allowed in a unit of work.
See MAX-MESSAGES-IN-UOW.

Maximum messages per UOWU

Indicates the default lifetime for a unit of work. See UWTIME.UOW lifetime in secondsU

Indicates the maximum message size that can be sent. See
MAX-UOW-MESSAGE-LENGTH.

Maximum message lengthU

Indicates whether or not new units of work are allowed in this
Broker kernel. See NEW-UOW-MESSAGES.

New UOWmessages allowedU

The number of units ofwork currently active in this Broker kernel.UOWs activeS

The number of the last unit of work in this Broker kernel.Current UOWS

Indicates the status of accounting records in this Broker kernel.
See ACCOUNTING.

AccountingU

If applicable, the TCP port number on which this Broker kernel
will listen for connection requests. See TCPPORT.

TCP port *U

Marks the beginning of the section of summary statistics for all
the function calls.

Number of function callsI

The number of Broker DEREGISTER function calls since startup.DEREGISTERS

The number of Broker EOC function calls since startup.EOCS

The number of Broker KERNELVERS function calls since startup.KERNELVERSS

The number of Broker LOGOFF function calls since startup.LOGOFFS

The number of Broker LOGON function calls since startup.LOGONS

The number of Broker RECEIVE function calls since startup.RECEIVES

The number of Broker REGISTER function calls since startup.REGISTERS

The number of Broker SEND function calls since startup.SENDS

The number of Broker SYNCPOINT function calls since startup.SYNCPOINTS

The number of Broker UNDO function calls since startup.UNDOS

Administration under z/VSE70

Broker Shutdown Statistics

DescriptionDisplay Field
Output
Type

The number of Broker CONTROL_PUBLICATION function calls
since startup.

CONTROL_PUBLICATIONS

The number of Broker RECEIVE_PUBLICATION function calls
since startup.

RECEIVE_PUBLICATIONS

The number of Broker SEND_PUBLICATION function calls since
startup.

SEND_PUBLICATIONS

The number of Broker SUBSCRIBE function calls since startup.SUBSCRIBES

The number of Broker UNSUBSCRIBE function calls since startup.UNSUBSCRIBES

The number of Broker REPLY_ERROR function calls since startup.REPLY_ERRORS

Marks the beginning of the section of summary statistics for all
the worker tasks.

Worker task statisticsI

The identifier of the worker task.Worker numberI

The status of the worker task at shutdown.StatusI

The number of Broker calls handled by the worker task since
startup.

of callsS

The number of seconds theworker task has been idle since startup.Idle time in secondsS

* Does not apply to z/OS.

Legend

Origin of ValueValueDescription
Output
Type

Determined by Software AG EntireX.StaticInternal InformationI

Determined by Broker activity during execution.VariableShutdown StatisticS

Specified by Broker administrator before or, if allowable,
during execution.

VariableUser-Specified ParameterU

71Administration under z/VSE

Broker Shutdown Statistics

72

9 Command Logging in EntireX

■ Introduction to Command Logging .. 74
■ ACI-driven Command Logging ... 75
■ Dual Command Log Files .. 76

73

Command logging is a feature to assist in debugging Broker ACI applications. A command in this
context represents one user request sent to the Broker and the related response of Broker.

Command logging is a feature that writes the user requests and responses to file in a way it is
already known with Broker trace and TRACE-LEVEL=1. But command logging works completely
independent from trace, and data is written to a file only if defined command trace filters detect
a match.

Broker stub applications send commands or requests to the Broker kernel, and the Broker kernel
returns a response to the requesting application. Developers who need to resolve problems in an
application need access to those request and response strings inside the Broker kernel. That's
where command logging comes in. With command logging, request and response strings from or
to an application are written to a file that is separate from the Broker trace file.

Introduction to Command Logging

This section provides an introduction to command logging in EntireX and offers examples of how
command logging is implemented. It covers the following topics:

■ Overview
■ Command Log Files
■ Defining Filters
■ Programmatically Turning on Command Logging

Overview

Command logging is similar to a Broker trace that is generated when the Broker attribute TRACE-
LEVEL is set to 1. Broker trace and command logging are independent of each other, and therefore
the configuration of command logging is separate from Broker tracing.

The following Broker attributes are involved in command logging:

DescriptionAttribute

Set this to "N" if command logging is not needed.CMDLOG

A numeric value indicating the maximum size of command log file in KB.CMDLOG-FILE-SIZE

The maximum number of filters that can be set.NUM-CMDLOG-FILTER

In addition to CMDLOG=YES, the Broker needs the assignment of the dual command logging files
during startup. If these assignments aremissing, Brokerwill set CMDLOG=NO. See alsoBroker Attributes
in the platform-independent administration documentation.

Administration under z/VSE74

Command Logging in EntireX

Command Log Files

The Broker keeps a record of commands (request and response strings) in a command log file.

At Broker startup, you will need to supply two command log file names and paths. Only one file
is open at a time, however, and the Broker writes commands (requests and responses) to this file.

When the size of the active command log file reaches the KB limit set by CMDLOG-FILE-SIZE, the
file is closed and the second file is opened and becomes active. When the second file also reaches
the KB limit set by CMDLOG-FILE-SIZE, the first file is opened and second file is closed. Existing
log data in a newly opened file will be lost.

Defining Filters

In command logging, a filter is used to store and identify a class, server, or service, as well as a
topic name and user ID.

Use the System Management Hub to define a filter. . During processing, the Broker evaluates the
class, server, service, topic, and user ID associatedwith each incoming request and compares them
with the same parameters specified in the filters. If there is amatch, the request string and response
string of the request is printed out to the command log file.

Programmatically Turning on Command Logging

Applications using ACI version 9 or above have access to the new field LOG-COMMAND in the ACI
control block.

If this field is set, the accompanying request and the Broker's response to this request is logged to
the command log file.

Note: Programmatic command logging ignores any filters set in the kernel.

ACI-driven Command Logging

EntireX components that communicate with Broker can trigger command logging by setting the
field LOG-COMMAND in the ACI control block.

When handling ACI functions with command log turned on, Broker will not evaluate any filters.
Application developers must remember to reset the LOG-COMMAND field if subsequent requests are
not required to be logged.

75Administration under z/VSE

Command Logging in EntireX

Dual Command Log Files

Broker's use of two command log files prevents any one command log file from becoming too
large.

When starting a Broker with command log support, you must therefore specify two file names
and paths - one for each of the two command log files. The sample startup script installed with
the product uses the variables ETB_CMDLOG1 and ETB_CMDLOG2 as the default command log file
names.

At startup, Broker initializes both files and keeps one of them open. Command log statements are
printed to the open file until the size of this file reaches the value specified in the Broker attribute
CMDLOG-FILE-SIZE. This value must be specified in KB.

When the size of the open file exceeds the value specified in the Broker attribute CMDLOG-FILE-
SIZE, Broker closes this file and opens the other, dormant file. Because the Broker closes a log file
onlywhen unable to print out a complete log line, the size of a fullfilemay be smaller than CMDLOG-
FILE-SIZE.

Administration under z/VSE76

Command Logging in EntireX

10 Accounting in EntireX Broker

■ EntireX Accounting Data Fields .. 78
■ Example Uses of Accounting Data .. 81

77

This chapter describes the accounting records for Broker that can be used for several purposes,
including:

■ application chargeback
for apportioning EntireX resource consumption on the conversation and/or the application level;

■ performance measurement
for analyzing application throughput (bytes, messages, etc.) to determine overall performance;

■ trend analysis
for using data to determine periods of heavy and/or light resource and/or application usage.

EntireX Accounting Data Fields

In the EntireX Accounting record, there are various types of data available for consumption by
applications that process the accounting data:

DescriptionType of Field
Accounting
VersionField Name

The time this record was written to
the accounting file in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Record Write Time

Broker ID from attribute file.A321EntireX Broker ID

Version information, v.r.s.pA81EntireX Version

=versionvwhere

=releaser

=service packs

=patch levelp

for example 9.6.0.00.

Platform where EntireX is running.A321Platform of Operation

Time EntireX was initialized in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1EntireX Start Time

It is always C for conversation. Future
Types will have a different value in
this field.

A11Accounting Record Type

USER-ID ACI field from the client in
the conversation.

A321Client User ID

TOKEN field from the ACI from the
client.

A321Client Token

Administration under z/VSE78

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

The physical user ID of the client, set
by EntireX.

A561Client Physical ID

Communication used by client:I11Client Communication Type

1 = Net-Work
2 = TCP/IP
3 = APPC
4 = WebSphere MQ
5 = SSL

Number of Requests made by client.I41Client Requests Made

Number of bytes sent by client.I41Client Sent Bytes

Number of bytes received by client.I41Client Received Bytes

Number of messages sent by client.I41Client Sent Messages

Number of messages received by
client.

I41Client Received Messages

Number of UOWs sent by client.I41Client Sent UOWs

Number of UOWs received by client.I41Client UOWs Received

Completion code client receivedwhen
conversation ended.

I41Client Completion Code

USER-ID ACI field from the server in
the conversation.

A321Server User ID

TOKEN field from the ACI from the
server.

A321Server Token

The physical user ID of the server, set
by EntireX.

A561Server Physical ID

Communication used by Server:I11Server Communication Type

1 = Entire Net-Work
2 = TCP/IP
3 = APPC
4 = WebSphere MQ
5 = SSL

Number of requests made by server.I41Server Requests Made

Number of bytes sent by server.I41Server Sent Bytes

Number of bytes received by server.I41Server Received Bytes

Number of messages sent by server.I41Server Sent Messages

Number of messages received by
server.

I41Server Received Messages

Number of UOWs sent by server.I41Server Sent UOWs

Number of UOWs received by server.I41Server Received UOWs

79Administration under z/VSE

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

Completion code server received
when conversation ended.

I41Server Completion Code

CONV-ID from ACI.A161Conversation ID

SERVER-CLASS from ACI.A321Server Class

SERVER-NAME from ACI.A321Server Name

SERVICE from ACI.A321Service Name

Will be N if CONV-ID=NONE is
indicated in application.

A11CID=NONE Indicator

Will be R if a conversation was
restarted after a Broker shutdown.

A11Restarted Indicator

Time conversation began in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Conversation Start Time

Time conversation was cleaned up in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Conversation End Time

Number ofmicroseconds of CPU time
used by the conversation

I41Conversation CPU Time

Actual identity of client derived from
authenticated user ID.

A322Client Security Identity

Node name of machine where client
application executes.

A322Client Application Node

Stub type used by client application.A82Client Application Type

Name of the executable that called the
broker. Corresponds to the Broker

A642Client Application Name

Information Service field
APPLICATION-NAME in the ACI
Programming documentation.

Mechanism by which authentication
is performed for client.

I12Client Credentials Type

Actual identity of server derived from
authenticated user ID.

A322Server Security Identity

Node name of machine where server
application executes.

A322Server Application Node

Stub type used by server application.A82Server Application Type

Name of the executable that called the
broker. Corresponds to the Broker

A642Server Application Name

Information Service field
APPLICATION-NAME in the ACI
Programming documentation.

Administration under z/VSE80

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

Mechanism by which authentication
is performed for server.

I12Server Credentials Type

RPC library referenced by clientwhen
sending the only/first requestmessage
of the conversation.

A1283Client RPC Library

RPC Program referenced by client
when sending the only/first request
message of the conversation.

A1283Client RPC Program

RPC library referencedby serverwhen
sending the only/first response
message of the conversation.

A1283Server RPC Library

RPC Program referenced by server
when sending the only/first response
message of the conversation.

A1283Server RPC Program

IPv4 address of the client.A164Client IPv4 Address

IPv4 address of the server.A164Server IPv4 Address

Application version of the client.A164Client Application Version

Application version of the server.A164Server Application Version

IPv6 address of the client.A465Client IPv6 Address

IPv6 address of the server.A465Server IPv6 Address

Note: Accounting fields of any version greater than 1 are created only if the attribute AC-
COUNTING-VERSION value is greater than or equal to the corresponding version. For example:
accounting fields of version 2 are visible only if ACCOUNTING-VERSION=2 or higher is specified.

Example Uses of Accounting Data

■ Chargeback
■ Trend Analysis

81Administration under z/VSE

Accounting in EntireX Broker

■ Tuning for Application Performance

Chargeback

Customers can use the EntireX accounting data to perform chargeback calculations for resource
utilization in a data center. Suppose EntireX Broker is being used to dispatch messages for three
business departments: Accounts Receivable, Accounts Payable, and Inventory. At the end of each
month, the customer needs to determine howmuchof the operation andmaintenance cost of EntireX
Broker should be assigned to these departments. For a typical month, assume the following is
true:

Average PercentagePercentageMessages SentPercentageAmount of DataDepartment

22.52040002550 MBAccts Payable

253060002040 MBAccts Receivable

52.5501000055110 MBInventory

The use of Broker resources here is based upon both the amount of traffic sent to the Broker (bytes)
as well as how often the Broker is called (messages). The average of the two percentages is used
to internally bill the departments, so 52.5% of the cost of running EntireX Broker would be paid
by the Inventory Department, 25% by the Accounts Receivable Department, and 22.5% by the
Accounts Payable Department.

Trend Analysis

The Accounting Data can also be used for trend analysis. Suppose a customer has several point-
of-sale systems in several stores throughout the United States that are tied into the corporate in-
ventory databasewith EntireX. The stubswould be running at the stores, and the sales datawould
be transmitted to the Broker, whichwould hand it off to the appropriate departments in inventory.
If these departments wish to ascertain when the stores are busiest, they can use the accounting
data to monitor store transactions. Assume all of the stores are open every day from 9 AM to 10
PM.

Maximum Weekend
Transactions in any Store

Average Weekend
Transactions per Store

Maximum Weekday
Transactions in any
Store

Average: Weekday
Transactions per StoreLocal Time

8328.2277.39 AM

10229.33111.210 AM

11337.94814.611 AM

9834.810656.212 noon

9534.26525.61 PM

10238.55217.22 PM

9942.72312.13 PM

Administration under z/VSE82

Accounting in EntireX Broker

Maximum Weekend
Transactions in any Store

Average Weekend
Transactions per Store

Maximum Weekday
Transactions in any
Store

Average: Weekday
Transactions per StoreLocal Time

8843.23418.34 PM

9345.24726.25 PM

10540.68738.26 PM

11039.28329.67 PM

8528.67818.68 PM

6217.55511.29 PM

The owner of the stores can examine the data and make decisions based upon the data here. For
example, on weekdays, he or she can see that there is little business until lunchtime, when the
number of transactions increase. It then decreases during lunch hour; then there is another increase
from 5 PM to 8 PM, after people leave work. Based on this data, the owner might investigate
changing the store hours onweekdays to 10 AM to 9 PM. On the weekend the trends are different,
and the store hours could be adjusted aswell, although there is amore regular customer flow each
hour on the weekends.

Tuning for Application Performance

Assume that a customer has two applications that perform basic request/response messaging for
similar sized messages. The applications consist of many Windows PC clients and Natural RPC
Servers on UNIX. An analysis of the accounting data shows the following:

Average Client Messages
Received per Conversation

Average Server Messages
Received per ConversationServiceServerClassApplication Type

10.2910.30SERVICE1SERVER1CLASS1Application 1:

8.9810.30SERVICE2SERVER2CLASS2Application 2:

A further analysis of the accounting data reveals that there are a lot of non-zero response codes
in the records pertaining to Application 2, and that a lot of these non-zero responses indicate
timeouts. With that information, the customer can address the problem by modifying the server
code, or by adjusting the timeout parameters for SERVER2 so that it can have more time to get a
response from the Service.

83Administration under z/VSE

Accounting in EntireX Broker

84

11 Broker Resource Allocation

■ General Considerations .. 86
■ Specifying Global Resources ... 86
■ Restricting the Resources of Particular Services .. 87
■ Specifying Attributes for Privileged Services ... 89
■ Maximum Units of Work .. 89
■ Calculating Resources Automatically ... 90
■ Dynamic Memory Management .. 92
■ Storage Report ... 93
■ Maximum TCP/IP Connections per Communicator ... 96

85

The EntireX Broker is a multithreaded application and communicates among multiple tasks in
memory pools.

General Considerations

Resource considerations apply to both the global and service-specific levels:

■ Dynamic assignment of global resources to services that need them prevents the return of a
“Resource Shortage” code to an applicationwhen resources are available globally. It also enables
the EntireX Broker to runwith fewer total resources, although it does not guarantee the availab-
ility of a specific set of resources for a particular service.

■ Flow control ensures that individual services do not influence the behavior of other services by
accident, error, or simply overload. This means that you can restrict the resource consumption
of particular services in order to shield the other services.

In order to satisfy both global and service-specific requirements, the EntireX Broker allows you
to allocate resources for each individual service or define global resourceswhich are then allocated
dynamically to any service that needs them.

The resources in question are the number of conversations, number of servers, plus units of work
and the message storage, separated in a long buffer of 4096 bytes and short buffer of 256 bytes.
These resources are typically the bottleneck in a system, especially when you consider that non-
conversational communication is treated as the special case of “conversationswith a singlemessage
only” within the EntireX Broker.

Global resources are defined by the parameters in the Broker section of the attribute file. The
number of conversations allocated to each service is defined in the service-specific section of the
attribute file. Because the conversations are shared by all servers that provide the service, a larger
number of conversations should be allocated to services that are provided by more than one
server. The number of conversations required is also affected by the number of clients accessing
the service in parallel.

Specifying Global Resources

You can specify a set of global resourceswith no restrictions onwhich service allocates the resources:

■ Specify the global attributes with the desired values.
■ Donot specify any additional restrictions. That is, do not provide values for the following Broker-
specific attributes:

LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT

Administration under z/VSE86

Broker Resource Allocation

CONV-DEFAULT
SERVER-DEFAULT

■ Also, do not provide values for the following server-specific attributes:

LONG-BUFFER-LIMIT
SERVER-LIMIT
SHORT-BUFFER-LIMIT
CONV-LIMIT

Example

The following example defines global resources. If no additional definitions are specified, resources
are allocated and assigned to any server that needs them.

NUM-CONVERSATION=1000
NUM-LONG-BUFFER=200
NUM-SHORT-BUFFER=2000
NUM-SERVER=100

Restricting the Resources of Particular Services

You can restrict resource allocation for particular services in advance:

■ Use CONV-LIMIT to limit the resource consumption for a specific service.
■ Use CONV-DEFAULT to provide a default limit for services for which CONV-LIMIT is not defined.

Example

In the following example, attributes are used to restrict resource allocation:

DEFAULTS=BROKER
NUM-CONVERSATION=1000
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, CONV-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ Memory for a total of 1000 conversions is allocated (NUM-CONVERSATION=1000).
■ Service A (CLASS A,SERVER A,SERVICE A) is limited to 100 conversation control blocks used simul-
taneously (CONV-LIMIT=100). The application thatwants to startmore conversations than specified
by the limit policywill receive a “Resource shortage” return code. This return code should result
in a retry of the desired operation a little later, when the resource situation may have changed.

87Administration under z/VSE

Broker Resource Allocation

■ Service B (CLASS B,SERVER B,SERVICE B) is allowed to try to allocate asmany resources as necessary,
provided the resources are available and not occupied by other services. The number of conver-
sations that may be used by this service is unlimited (CONV-LIMIT=UNLIM).

■ Service C (CLASS C,SERVER C,SERVICE C) has no explicit value for the CONV-LIMIT attribute. The
number of conversation control blocks that it is allowed to use is therefore limited to the default
value which is defined by the CONV-DEFAULT Broker attribute.

The same scheme applies to the allocation of message buffers and servers:

■ In the following example, long message buffers are allocated using the keywords NUM-LONG-
BUFFER, LONG-BUFFER-DEFAULT and LONG-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-LONG-BUFFER=2000
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, LONG-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ In the following example, short message buffers are allocated using the keywords NUM-SHORT-
BUFFER, SHORT-BUFFER-DEFAULT and SHORT-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=2000
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SHORT-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ In the following example, servers are allocated using the keywords NUM-SERVER, SERVER-DEFAULT
and SERVER-LIMIT:

DEFAULTS=BROKER
NUM-SERVER=2000
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SERVER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Administration under z/VSE88

Broker Resource Allocation

Specifying Attributes for Privileged Services

If privileged services (services with access to unlimited resources) exist, specify UNLIMITED for the
attributes CONV-LIMIT, SERVER-LIMIT, LONG-BUFFER-LIMIT and SHORT-BUFFER-LIMIT in the service-
specific section of the attribute file.

For example:

DEFAULTS=SERVICE
CONV-LIMIT=UNLIM
LONG-BUFFER-LIMIT=UNLIM
SHORT-BUFFER-LIMIT=UNLIM
SERVER-LIMIT=UNLIM

To ensure a resource reservoir for peak load of privileged services, define more resources than
would normally be expected by specifying larger numbers for the Broker attributes that control
global resources:

NUM-SERVER
NUM-CONVERSATION
CONV-DEFAULT
LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
SERVER-DEFAULT

Maximum Units of Work

The maximum number of units of work (UOWs) that can be active concurrently is specified in the
Broker attribute file. The MAX-UOWS attribute can be specified for the Broker globally as well as for
individual services. It cannot be calculated automatically. If a service is intended to process UOWs,
a MAX-UOWS value must be specified.

If message processing only is to be done, specify MAX-UOWS=0 (zero). The Broker (or the service)
will not accept units of work, i.e., it will process only messages that are not part of a UOW. Zero
is used as the default value for MAX-UOWS in order to prevent the sending of UOWs to services that
are not intended to process them.

89Administration under z/VSE

Broker Resource Allocation

Calculating Resources Automatically

To ensure that each service runs without impacting other services, allow the EntireX Broker to
calculate resource requirements automatically:

■ Ensure that the attributes that define the default total for the Broker and the limit for each service
are not set to UNLIM.

■ Specify AUTO for the Broker attribute that defines the total number of the resource.
■ Specify a suitable value for the Broker attribute that defines the default number of the resource.

The total number required will be calculated from the number defined for each service. The re-
sources that can be calculated this way are Number of Conversations, Number of Servers, Long
Message Buffers and Short Message Buffers.

Avoid altering the service-specific definitions at runtime. Doing so could corrupt the conversation
consistency. Applicationsmight receive amessage such as “NUM-CONVERSATIONS reached” although
the addressed service does not serve as many conversations as defined. The same applies to the
attributes that define the long and short buffer resources.

Automatic resource calculation has the additional advantage of limiting the amount of memory
used to run the EntireX Broker. Over time, you should be able to determine which services need
more resources by noting the occurrence of the return code “resource shortage, please retry”. You
can then increase the resources for these services. To avoid disruption to the user, you could instead
allocate a relatively large set of resources initially and then decrease the values using information
gained from the Administration Monitor application.

Number of Conversations

To calculate the total number of conversations automatically, ensure that the CONV-DEFAULT Broker
attribute and the CONV-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute
file. Specify NUM-CONVERSATION=AUTO and an appropriate value for the CONV-DEFAULT Broker attrib-
ute. The total number of conversationswill be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-CONVERSATION=AUTO
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

Administration under z/VSE90

Broker Resource Allocation

■ Service A and Service C both need 200 conversations (the default value). Service B needs 100
conversations (CONV-LIMIT=100).

■ Because NUM-CONVERSATIONS is defined as AUTO, the broker calculates a total of 500 conversations
(200 + 200 + 100).

■ NUM-CONVERSATIONS=AUTO allows the number of conversations to be flexible without requiring
additional specifications. It also ensures that the broker is startedwith enough resources tomeet
all the demands of the individual services.

■ AUTO and UNLIM are mutually exclusive. If CONV-DEFAULT or a single CONV-LIMIT is defined as
UNLIM, the EntireX Broker cannot determine the number of conversations to use in the calculation,
and the EntireX Broker cannot be started.

Number of Servers

To calculate the number of servers automatically, ensure that the SERVER-DEFAULT Broker attribute
and the SERVER-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute file.
Specify NUM-SERVER=AUTO and an appropriate value for the SERVER-DEFAULT Broker attribute. The
total number of server buffers will be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SERVER=AUTO
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Long Message Buffers

To calculate the number of long message buffers automatically, ensure that the LONG-BUFFER-DE-
FAULT Broker attribute and the LONG-BUFFER-LIMIT service-specific attribute are not set to UNLIM
anywhere in the attribute file. Specify NUM-LONG-BUFFER=AUTO and an appropriate value for the
LONG-BUFFER-DEFAULTBroker attribute. The total number of longmessage bufferswill be calculated
using the value specified for each service.

For example:

91Administration under z/VSE

Broker Resource Allocation

DEFAULTS=BROKER
NUM-LONG-BUFFER=AUTO
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Short Message Buffers

To calculate the number of short message buffers automatically, ensure that the SHORT-BUFFER-
DEFAULTBroker attribute and the SHORT-BUFFER-LIMIT service-specific attribute are not set to UNLIM
anywhere in the attribute file. Specify NUM-SHORT-BUFFER=AUTO and an appropriate value for the
SHORT-BUFFER-DEFAULT Broker attribute. The total number of short message buffers will be calcu-
lated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=AUTO
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

Dynamic Memory Management

Dynamicmemorymanagement is a feature to handle changingBrokerworkloadwithout any restart
of the Broker task. It increases the availability of the Broker by using various memory pools for
various Broker resources and by being able to use a variable number of pools for the resources.

If more memory is needed than currently available, another memory pool is allocated for the
specific type of resource. If a particular memory pool is no longer used, it will be deallocated.

The following Broker attributes can be omitted if DYNAMIC-MEMORY-MANAGEMENT=YES has been
defined:

Administration under z/VSE92

Broker Resource Allocation

■ NUM-SUBSCRIBER-TOTAL■ NUM-PUBLISHER■ NUM-CLIENT

■ NUM-CMDLOG-FILTER ■ NUM-TOPIC■ NUM-SERVER

■ NUM-SERVICE■ NUM-COMBUF ■ NUM-TOPIC-EXTENSION

■ NUM-TOPIC-TOTAL■ NUM-SERVICE-EXTENSION■ NUM-CONV[ERSATION]

■ NUM-LONG[-BUFFER] ■ NUM-UOW|MAX-UOWS|MUOW■ NUM-SHORT[-BUFFER]

■■ ■NUM-SUBSCRIBERNUM-PUBLICATION NUM-WQE

If youwant statistics on allocation anddeallocation operations in Broker, you can configure Broker
to create a storage report with the attribute STORAGE-REPORT. See Storage Report below.

Note: To ensure a stabile environment, some pools of Broker are not deallocated automatic-
ally. The first pools of type COMMUNICATION, CONVERSATION, CONNECTION, HEAP, PARTICIPANT,
PARTICIPANT EXTENSION, SERVICE ATTRIBUTES, SERVICE, SERVICE EXTENSION, TIMEOUT
QUEUE, TRANSLATION, WORK QUEUE are excluded from the automatic deallocation even when
they have not been used for quite some time. Large pools cannot be reallocated under some
circumstances if the level of fragmentation in the address space has been increased in the
meantime.

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocatememory pools. This section details how to create the report and provides a sample report.

■ Creating a Storage Report
■ Platform-specific Rules
■ Sample Storage Report

See also Broker-specific attribute STORAGE-REPORT.

Creating a Storage Report

Use Broker's global attribute STORAGE-REPORTwith the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

93Administration under z/VSE

Broker Resource Allocation

Platform-specific Rules

Logical unit SYS015 and logical file name ETBSREP are used. Format RECORD-FORMAT=FB,
RECORD-LENGTH=121 is used.

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1 ↩

 ↩

Identifier Address Size Total Date ↩
 Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 ↩
12:28:58.768 Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 ↩
12:28:58.769 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 18239256 bytes 2009-06-26 ↩
12:28:58.769 Allocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 19001308 bytes 2009-06-26 ↩
12:28:58.769 Allocated
BROKER POOL 0x27072010 61540 bytes 19062848 bytes 2009-06-26 ↩
12:28:58.775 Allocated
CONVERSATION POOL 0x27082010 368964 bytes 19431812 bytes 2009-06-26 ↩
12:28:58.775 Allocated
CONNECTION POOL 0x270DD010 233668 bytes 19665480 bytes 2009-06-26 ↩
12:28:58.779 Allocated
LONG MESSAGES POOL 0x27117010 4395204 bytes 24060684 bytes 2009-06-26 ↩
12:28:58.782 Allocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 27764560 bytes 2009-06-26 ↩
12:28:58.806 Allocated
PARTICIPANT POOL 0x278D2010 134244 bytes 27898804 bytes 2009-06-26 ↩
12:28:58.827 Allocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 27935800 bytes 2009-06-26 ↩
12:28:58.829 Allocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 27962524 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 28094192 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE POOL 0x27925010 54372 bytes 28148564 bytes 2009-06-26 ↩
12:28:58.830 Allocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 28181464 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 28268732 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TRANSLATION POOL 0x27952010 179300 bytes 28448032 bytes 2009-06-26 ↩
12:28:58.832 Allocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 28624356 bytes 2009-06-26 ↩
12:28:58.834 Allocated

Administration under z/VSE94

Broker Resource Allocation

WORK QUEUE POOL 0x279AA010 391268 bytes 29015624 bytes 2009-06-26 ↩
12:28:58.835 Allocated
BLACKLIST POOL 0x27A0A010 42084 bytes 29057708 bytes 2009-06-26 ↩
12:28:58.838 Allocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 29401856 bytes 2009-06-26 ↩
12:28:58.839 Allocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 29531476 bytes 2009-06-26 ↩
12:28:58.841 Allocated
TOPIC POOL 0x26FB6068 2952 bytes 29534428 bytes 2009-06-26 ↩
12:28:58.842 Allocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 29565280 bytes 2009-06-26 ↩
12:28:58.842 Allocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 29599172 bytes 2009-06-26 ↩
12:28:58.843 Allocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 29618712 bytes 2009-06-26 ↩
12:28:58.843 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 12837332 bytes 2009-06-26 ↩
12:30:58.514 Deallocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 12075280 bytes 2009-06-26 ↩
12:30:58.515 Deallocated
BROKER POOL 0x27072010 61540 bytes 12013740 bytes 2009-06-26 ↩
12:30:58.516 Deallocated
CONVERSATION POOL 0x27082010 368964 bytes 11644776 bytes 2009-06-26 ↩
12:30:58.518 Deallocated
CONNECTION POOL 0x270DD010 233668 bytes 11411108 bytes 2009-06-26 ↩
12:30:58.519 Deallocated
LONG MESSAGES POOL 0x27117010 4395204 bytes 7015904 bytes 2009-06-26 ↩
12:30:58.520 Deallocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 3312028 bytes 2009-06-26 ↩
12:30:58.526 Deallocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 3285304 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 2941156 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 2811536 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC POOL 0x26FB6068 2952 bytes 2808584 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 2777732 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 2690464 bytes 2009-06-26 ↩
12:30:58.532 Deallocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 2514140 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
WORK QUEUE POOL 0x279AA010 391268 bytes 2122872 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
BLACKLIST POOL 0x27A0A010 42084 bytes 2080788 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 2046896 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 2027356 bytes 2009-06-26 ↩
12:30:58.534 Deallocated

95Administration under z/VSE

Broker Resource Allocation

PARTICIPANT POOL 0x278D2010 134244 bytes 1893112 bytes 2009-06-26 ↩
12:49:25.817 Deallocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 1856116 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 1724448 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE POOL 0x27925010 54372 bytes 1670076 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 1637176 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
TRANSLATION POOL 0x27952010 179300 bytes 1457876 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
HEAP POOL 0x25EB4010 1050692 bytes 407184 bytes 2009-06-26 ↩
12:49:25.820 Deallocated
KERNEL POOL 0x25E48010 407184 bytes 0 bytes 2009-06-26 ↩
12:49:25.820 Deallocated

DescriptionHeader

Name of the memory pool.Identifier

Start address of the memory pool.Address

Size of the memory pool.Size

Total size of all obtained memory pools.Total

Date and time of the action.Date, Time

The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated .
Deallocated: memory pool is deallocated.

Action

Maximum TCP/IP Connections per Communicator

This table shows the maximum number of TCP/IP connections per communicator:

Maximum Number of TCP/IP Connections per CommunicatorPlatform

2,048AIX

2,048BS2000/OSD

2,048HP-UX

4,096Linux

65,356Solaris

4,096Windows

16,384z/OS

2,048z/VSE

Administration under z/VSE96

Broker Resource Allocation

With the Broker-specific attribute POLL, these restrictions can be lifted under z/OS, UNIX and
z/VSE. See POLL.

See also MAX-CONNECTIONSunder TCP-OBJECT (Struct INFO_TCP)under InformationReply Structures
in the Broker CIS documentation.

97Administration under z/VSE

Broker Resource Allocation

98

	Administration under z/VSE
	Table of Contents
	1 Setting up Broker Instances
	Setting up TCP/IP Transport
	Setting up Entire Net-Work/Adabas SVC Transport
	Starting and Stopping the Broker
	Starting the Broker
	Stopping the Broker

	Tracing EntireX Broker
	Broker TRACE-LEVEL Attribute
	Attribute File Trace Setting
	Deferred Tracing

	Protecting a Broker against Denial-of-Service Attacks

	2 Administration of Broker Stubs
	Available Stubs
	Transport Methods for Broker Stubs
	Transport Method Values
	Setting the Timeout for the Transport Method
	Introduction
	Transport Timeout Values

	Limiting the TCP/IP Connection Lifetime

	Using the Batch Stub Interface Module BKIMB
	Using the CICS Stub Interface Module BKIMC
	Data Encryption
	Tracing for Broker Stubs

	3 Operator Commands
	Command Syntax
	General Broker Commands
	BROKER TRACE
	DPOOL
	DRES
	DSTAT
	ETBEND
	ETBSTOP
	FLUSH
	PSTORE TRACE
	SHUTDOWN class,server,service
	TRACE
	TRAP-ERROR

	Participant-specific Commands
	CANCEL parameter
	USERLIST
	USERS parameter

	Security-specific Commands
	DSECSTAT
	RESET userid
	SECURITY TRACE

	Transport-specific Commands
	COM parameter
	NET parameter
	TCP parameter
	Sample Transport Commands

	XCOM-specific Commands
	XABS
	XCQES
	XEND
	XHALT
	XPARM
	XSTART
	XSTAT
	XSTOP
	XUSER

	4 Broker Command-line Utilities
	ETBINFO
	Running the Command-line Utility
	Command-line Parameters
	Profile
	Location of Profiles

	Format String

	ETBCMD
	Running the Command-line Utility
	Command-line Parameters
	List of Commands and Objects
	Examples

	5 Configuring Broker for Internationalization
	Configuring Translation
	Configuring Translation User Exits
	Configuring ICU Conversion
	Writing Translation User Exits
	Introduction
	Structure of the TRAP Control Block
	Using the TRAP Fields

	6 Managing the Broker Persistent Store
	Implementing an Adabas Database as Persistent Store
	Introduction
	Configuring and Operating the Adabas Persistent Store
	Selecting the Adabas Persistent Store Driver
	Restrictions
	Recommendations
	Broker Checkpoints in Adabas

	Adabas DBA Considerations
	BLKSIZE : Adabas Persistent Store Parameter for Broker
	Table of Adabas Parameter Settings
	Estimating the Number of Records to be Stored
	Estimating the Number of Records to be Stored
	Tips on Transports, Platforms and Versions

	Migrating the Persistent Store
	Configuration
	Migration Procedure

	7 Tracing EntireX Components under z/VSE
	Tracing EntireX Broker
	Tracing Broker Stubs
	Activating Tracing for the RPC Server

	8 Broker Shutdown Statistics
	Shutdown Statistics Output
	Table of Shutdown Statistics

	9 Command Logging in EntireX
	Introduction to Command Logging
	Overview
	Command Log Files
	Defining Filters
	Programmatically Turning on Command Logging

	ACI-driven Command Logging
	Dual Command Log Files

	10 Accounting in EntireX Broker
	EntireX Accounting Data Fields
	Example Uses of Accounting Data
	Chargeback
	Trend Analysis
	Tuning for Application Performance

	11 Broker Resource Allocation
	General Considerations
	Specifying Global Resources
	Restricting the Resources of Particular Services
	Specifying Attributes for Privileged Services
	Maximum Units of Work
	Calculating Resources Automatically
	Dynamic Memory Management
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Maximum TCP/IP Connections per Communicator

