
webMethods EntireX

Administration

Version 9.6

April 2014

This document applies to webMethods EntireX Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ADMIN-96-20140628GENERAL

Table of Contents

1 Environment Variables in EntireX ... 1
Table of Environment Variables ... 2
Using Environment Variables under z/OS ... 6
Using Environment Variables under UNIX ... 6
Using Environment Variables under Windows ... 6
Using Environment Variables under BS2000/OSD (Batch, Dialog) 7
Using Environment Variables under z/VSE ... 7

2 Directories as Used in EntireX .. 9
Application Data Directory .. 11
Broker Directory ... 10
Broker User Exit Directory ... 11
Application Data Directory .. 11
Trace Directory ... 11
User's Home Directory ... 12
Working Directory .. 12
EntireX Directory etc .. 12

3 Broker Resource Allocation ... 13
General Considerations .. 14
Specifying Global Resources .. 15
Restricting the Resources of Particular Services .. 15
Specifying Attributes for Privileged Services .. 17
Maximum Units of Work ... 18
Calculating Resources Automatically .. 18
Dynamic Memory Management .. 20
Dynamic Worker Management .. 21
Storage Report .. 22
Maximum TCP/IP Connections per Communicator .. 26

4 Broker Attributes ... 29
Name and Location of Attribute File ... 31
Attribute Syntax ... 31
Broker-specific Attributes .. 33
Service-specific Attributes .. 58
Topic-specific Attributes .. 71
Codepage-specific Attributes ... 78
Adabas SVC/Entire Net-Work-specific Attributes ... 82
Security-specific Attributes .. 86
TCP/IP-specific Attributes .. 92
c-tree-specific Attributes .. 96
SSL-specific Attributes ... 98
DIV-specific Attributes ... 103
Adabas-specific Attributes ... 103
Variable Definition File ... 105

5 Concepts of Persistent Messaging ... 107

iii

Client Server Model: Persistent Messaging .. 108
Publish-and-Subscribe Model: Persistent Behavior ... 109
Definitions of Persistent Messaging Terms .. 111
Availability of Persistent Store ... 113
Migrating the Persistent Store .. 115
Persistent Store Report ... 118
Swapping out New Units of Work ... 121

6 Using Persistence and Units of Work .. 123
Implementation Issues ... 124
Using Units of Work ... 129
Using Persistence .. 133
Using Persistent Status ... 138
Recovery Processing ... 140

7 Broker UOW Status Transition .. 143
Initial UOW Status: NULL | Received ... 144
Initial UOW Status: Accepted | Delivered ... 145
Initial UOW Status: Processed | Timedout .. 146
Initial UOW Status: Cancelled | Discarded | Backedout 147
Legend for UOW Status Transition Table .. 148
Table of Column Abbreviations ... 148

8 Data Compression in EntireX Broker .. 149
Introduction .. 150
zlib .. 150
Implementation .. 150
Sequencing Summary ... 151
Sample Programs ... 152

9 Accounting in EntireX Broker ... 155
EntireX Accounting Data Fields ... 156
Using Accounting under UNIX and Windows .. 159
Using Accounting under z/OS ... 160
Example Uses of Accounting Data ... 162

10 Timeout Considerations for EntireX Broker .. 165
Timeout Units ... 166
Timeout Settings ... 166
Relationship between Timeout Values ... 167
Timeout-related Error Messages .. 169

11 EXXMSG - Command-line Tool for Displaying Error Messages 173
Running the EXXMSG Command-line Utility ... 174

Administrationiv

Administration

1 Environment Variables in EntireX

■ Table of Environment Variables .. 2
■ Using Environment Variables under z/OS ... 6
■ Using Environment Variables under UNIX .. 6
■ Using Environment Variables under Windows ... 6
■ Using Environment Variables under BS2000/OSD (Batch, Dialog) ... 7
■ Using Environment Variables under z/VSE ... 7

1

This chapter gives an overview of environment variables in EntireX and how they are used.

Table of Environment Variables

The table below provides an overview of environment variables used on the various platforms
supported by EntireX.

More InformationDescription
Opt/
Req

Platform
Environment Variable z/VMz/VSEUNIXWinz/OS

Root directory for all
Software AG

RxSAG

infrastructure products
(e.g. SystemManagement
Hub, Software AG
Common Platform).

Top level directory for
EntireX.

RxEXXDIR

Version level directory of
the EntireX. Deprecated.

RxEXXVERS

Kept for reasons of
compatibilitywith earlier
versions.

See Shell Environment
Settings under

System variable.
Additional program

RxPATH

Post-installation Steps under
UNIX.

directories required by
EntireX are added to this
variable by the EntireX
environment script.
Not required by EntireX
Mini Runtime.

See Shell Environment
Settings under

System variable.
Additional shared library

RxLD_LIBRARY_PATH

Post-installation Steps under
UNIX.

directories required by
EntireX are added to this
variable by the EntireX
environment script.

See Shell Environment
Settings under

Same as
LD_LIBRARY_PATH on
HP-UX.

RxSHLIB_PATH

Post-installation Steps under
UNIX.

See Shell Environment
Settings under

Same as
LD_LIBRARY_PATH on
AIX.

RxLIBPATH

Administration2

Environment Variables in EntireX

More InformationDescription
Opt/
Req

Platform
Environment Variable z/VMz/VSEUNIXWinz/OS

Post-installation Steps under
UNIX.

System variable.
Additional JAR file path

RxxCLASSPATH

entries required by
EntireX are added to this
variable by the EntireX
environment script
(UNIX) or during
installation (Windows).

See System Management Hub
for EntireX.

Home directory of the
SystemManagementHub

RxARGDIR

Version of the System
Management Hub

RxARGVERS

See Broker Attributes in the
platform-independent

Value of Broker attribute
file. Set automatically by

OxxETB_ATTR

administration
documentation.

the Broker startup shell
script.

See Accounting in EntireX
Broker in the general

Accounting file.OxxETB_LOG

administration
documentation.

Stub-to-broker connection
non-activity time in seconds.

Limits the TCP/IP
connection lifetime.

OxxxxETB_NONACT
NONACT

If not 0, connections with a
non-activity time greater
than ETB_NONACTwill be
closed. See Limiting the
TCP/IP Connection Lifetime in
the platform-specific Stub
Administration sections of the
EntireX documentation.

See Support of Clustering in a
High Availability Scenario

Values: ON (default) or
OFF to establish an

OxxxETB_SOCKETPOOL

under Administration ofaffinity between threads
Broker Stubs in theand TCP/IP connections

in a DVIPA environment. platform-specific
administration
documentation.

See Application Stublog File
in the UNIX administration
documentation |
Tracing for Broker Stubs
under z/OS | | | z/VM.

Trace level for the EntireX
Broker API.

OxxxxxETB_STUBLOG
STUBLOG

3Administration

Environment Variables in EntireX

More InformationDescription
Opt/
Req

Platform
Environment Variable z/VMz/VSEUNIXWinz/OS

Under UNIX and
Windows, the directory

OxxETB_STUBLOGPATH

where the log file is
created if ETB_STUBLOG
is used.

See Setting the Timeout for the
Transport Method in the

Stub transport timeout.OxxxxxETB_TIMEOUT
TIMEOUT

platform-specific broker stub
administration
documentation.

Tracing for various EntireX
components such as DCOM

Sets the trace level for
EntireX RPC Runtime.

OxxERX_TRACELEVEL

Wrapper, .NET Wrapper
and C Wrapper. See Tracing
webMethods EntireX in the
platform-specific
administration
documentation.

See Transport Methods for
Broker Stubs in the

Sets the default transport
method for Broker stubs.

OxxxxETB_TRANSPORT
TRANSPORT

platform-specific broker stub
administration
documentation.

SeeManaging the Broker
Persistent Store in the

The Adabas module that
is needed by the Broker

OxxADALNK

platform-specifickernel to access the
Adabas persistent store. administration

documentation.

See Broker Stubs under
Post-installation Steps under
UNIX.

Identifies the absolute
path to the broker stubs
library if EntireX Broker
has been installed.

RxETBLNK

Tracing for various EntireX
components such as DCOM

Sets the name of the trace
file for EntireX RPC
Runtime.

OxxERX_TRACEFILE

Wrapper, .NET Wrapper
and C Wrapper. See Tracing
webMethods EntireX in the
platform-specific
administration
documentation.

EntireX components such as
DCOMWrapper, .NET

Determines the Broker
API version to use.

OxxERX_ETBAPIVERS

Wrapper and C Wrapper
and the EntireX Broker are

Administration4

Environment Variables in EntireX

More InformationDescription
Opt/
Req

Platform
Environment Variable z/VMz/VSEUNIXWinz/OS

able to detect automatically
the best API version to use
(if no environment variable
is defined or the value 0 is
assigned). However, for
backward compatibility to
EntireX Broker, it might be
necessary to set a preferred
API Version for the Broker.

Internationalization for
various EntireX components

Sets the locale string to be
used for

OxxERX_CODEPAGE

such as DCOMWrapper,internationalization with
the EntireXRPCRuntime. .NET Wrapper and C

Wrapper, if communicating
with EntireX Broker version
7.1.x and below. See
PreparingEntireXComponents
for Internationalization.

Security exit debug level.
Used for protecting the

OxxNA2_BKDBGS

Broker kernel on UNIX
andWindows to leverage
the local security system.

See Setting up EntireX
Security for Broker Kernel in

Security exit debug file.
Used for protecting the

OxxNA2_BKDBGF

the UNIX and WindowsBroker kernel on UNIX
post-installation
documentation.

andWindows to leverage
the local security system.

Security exit diagnostics.
Use only if requested by
Software AG support.

OxxNA2_BKDIAG

See Setting up EntireX
Security for Broker Kernel in

Security exit setting.OxxxNA2_BKPRIV

the UNIX and Windows
post-installation
documentation;
Step 4: Rename SECUEXI0 to
SECUEXIT for Security
(Optional) in the z/VM
installation documentation.

RGS repository for
Software AG Base

RxREGFILE

Technology components
under UNIX.

5Administration

Environment Variables in EntireX

Using Environment Variables under z/OS

Under CICS, Batch and IMS, use the SAGTOKENUtility to set and delete environment variables. See
SAGTOKEN Utility under Administering Broker Stubs in the z/OS administration documentation.

In Com-plete, use the EXAENV environment store to set and delete environment variables. See EX-
AENV Environment Store under Administering Broker Stubs.

Using Environment Variables under UNIX

The following table shows how to use environment variables with the C, Bourne and Korn shells.
For other shells, see your UNIX documentation.

C Shell

ExampleSyntaxAction

setenv ERX_TRACELEVEL ADVANCEDsetenv variable valueSet environment variable

unsetenv ERX_TRACELEVELunsetenv variableDelete environment variable

Bourne and Korn Shells

ExampleSyntaxAction

ERX_TRACELEVEL=ADVANCED
export ERX_TRACELEVEL

variable = value
export variable

Set environment variable

unset ERX_TRACELEVELunset variableDelete environment variable

Using Environment Variables under Windows

The following table shows how to use environment variables under Windows:

ExamplesSyntaxAction

SET ERX_TRACELEVEL=ADVANCED
SET ETB_STUBLOG=NONE

SET variable = valueSet environment variable

SET ERX_TRACELEVEL=SET variable =Delete environment variable

Administration6

Environment Variables in EntireX

Using Environment Variables under BS2000/OSD (Batch, Dialog)

Environment variables are emulated with SDF variables or, failing that, with job variables.

Replace all underscores in the variable names by hyphens. For example, variable ETB_STUBLOG is
called ETB-STUBLOG under BS2000/OSD.

The following table shows how to use job variables under BS2000/OSD:

ExampleSyntaxAction

/CATJV ETB-STUBLOG/CATJV variableSet environment variable

/SETJV ETB-STUBLOG,C'1'/SETJV variable,C'value'

/ERAJV ETB-STUBLOG/ERAJV variableDelete environment variable

Using Environment Variables under z/VSE

ExamplesSyntaxAction

//SETPARM STUBLOG=2//SETPARM variable = valueSet environment variable

/* /SETPARM STUBLOG=2Remove SETPARM statementDelete environment variable

7Administration

Environment Variables in EntireX

8

2 Directories as Used in EntireX

■ Application Data Directory ... 11
■ Broker Directory .. 10
■ Broker User Exit Directory ... 11
■ Application Data Directory ... 11
■ Trace Directory ... 11
■ User's Home Directory ... 12
■ Working Directory .. 12
■ EntireX Directory etc .. 12

9

Application Data Directory

Windows

Under Windows, the application data directory is the folder that serves as a common repository
for application-specific data.

Example: C:\Documents and Settings\username\Application Data

Broker Directory

UNIX

This directory is a subdirectory of the EntireX main directory /opt/softwareag/EntireX/con-
fig/etb/<brokerid>.

Example: /opt/softwareag/EntireX/config/etb/ETB001

Windows

This directory is a subfolder of the EntireX config directory <drive>:\SoftwareAG\EntireX\con-
fig\etb\<brokerid>.

Example: <drive>:\SoftwareAG\EntireX\config\etb\ETB001

Administration10

Directories as Used in EntireX

Broker User Exit Directory

UNIX

This directory is a subdirectory of the EntireX main directory /opt/softwareag/EntireX/security_exit.

Windows

This directory is a subfolder of the EntireXmain directory, for example:C:\SoftwareAG\EntireX\se-
curity_exit.

Application Data Directory

Windows

The local application data directory is a folder that serves as a common repository for (non-
roaming) application-specific data.

Example: C:\Documents and Settings\username\Application Data

Trace Directory

Windows

Traces arewritten into the ..\MyDocuments\Software AG\EntireX folder. The location of the folder
MyDocuments can be specified by the user. By default it is a subdirectory of the user's Profile folder
referenced by the %USERPROFILE% environment variable.

Example: C:\Documents And Settings\username\My Documents\Software AG\EntireX

11Administration

Directories as Used in EntireX

User's Home Directory

Windows

This folder is also known as theMy Documents folder. The location of the folderMy Documents
can be specified by the user. By default it is a subdirectory of the Profile folder referenced by the
%USERPROFILE% environment variable.

Example: C:\Documents And Settings\username\My Documents

Working Directory

Windows

This is the directory your application is running in.

Example: C:\Temp

EntireX Directory etc

UNIX

This directory is a subdirectory of the EntireX main directory /opt/softwareag/EntireX/etc.

Windows

This directory is a subfolder of the EntireX main directory <drive>:\SoftwareAG\EntireX\etc.

Example: C:\<drive>:\SoftwareAG\EntireX\etc

Administration12

Directories as Used in EntireX

3 Broker Resource Allocation

■ General Considerations .. 14
■ Specifying Global Resources ... 15
■ Restricting the Resources of Particular Services .. 15
■ Specifying Attributes for Privileged Services ... 17
■ Maximum Units of Work .. 18
■ Calculating Resources Automatically ... 18
■ Dynamic Memory Management .. 20
■ Dynamic Worker Management ... 21
■ Storage Report ... 22
■ Maximum TCP/IP Connections per Communicator ... 26

13

The EntireX Broker is a multithreaded application and communicates among multiple tasks in
memory pools. If you do not need to restrict thememory expansion of EntireX Broker, we strongly
recommend you enable the dynamicmemorymanagement in order to handle changingworkload
appropriately. See Dynamic Memory Management below. If dynamic memory management is
disabled, non-expandable memory is allocated during startup to store all internal control blocks
and the contents of messages.

General Considerations

Resource considerations apply to both the global and service-specific levels:

■ Dynamic assignment of global resources to services that need them prevents the return of a
“Resource Shortage” code to an applicationwhen resources are available globally. It also enables
the EntireX Broker to runwith fewer total resources, although it does not guarantee the availab-
ility of a specific set of resources for a particular service.

■ Flow control ensures that individual services do not influence the behavior of other services by
accident, error, or simply overload. This means that you can restrict the resource consumption
of particular services in order to shield the other services.

In order to satisfy both global and service-specific requirements, the EntireX Broker allows you
to allocate resources for each individual service or define global resourceswhich are then allocated
dynamically to any service that needs them.

The resources in question are the number of conversations, number of servers, plus units of work
and the message storage, separated in a long buffer of 4096 bytes and short buffer of 256 bytes.
These resources are typically the bottleneck in a system, especially when you consider that non-
conversational communication is treated as the special case of “conversationswith a singlemessage
only” within the EntireX Broker.

Global resources are defined by the parameters in the Broker section of the attribute file. The
number of conversations allocated to each service is defined in the service-specific section of the
attribute file. Because the conversations are shared by all servers that provide the service, a larger
number of conversations should be allocated to services that are provided by more than one
server. The number of conversations required is also affected by the number of clients accessing
the service in parallel.

Administration14

Broker Resource Allocation

Specifying Global Resources

You can specify a set of global resourceswith no restrictions onwhich service allocates the resources:

■ Specify the global attributes with the desired values.
■ Donot specify any additional restrictions. That is, do not provide values for the following Broker-
specific attributes:

LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
CONV-DEFAULT
SERVER-DEFAULT

■ Also, do not provide values for the following server-specific attributes:

LONG-BUFFER-LIMIT
SERVER-LIMIT
SHORT-BUFFER-LIMIT
CONV-LIMIT

Example

The following example defines global resources. If no additional definitions are specified, resources
are allocated and assigned to any server that needs them.

NUM-CONVERSATION=1000
NUM-LONG-BUFFER=200
NUM-SHORT-BUFFER=2000
NUM-SERVER=100

Restricting the Resources of Particular Services

You can restrict resource allocation for particular services in advance:

■ Use CONV-LIMIT to limit the resource consumption for a specific service.
■ Use CONV-DEFAULT to provide a default limit for services for which CONV-LIMIT is not defined.

Example

In the following example, attributes are used to restrict resource allocation:

15Administration

Broker Resource Allocation

DEFAULTS=BROKER
NUM-CONVERSATION=1000
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, CONV-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ Memory for a total of 1000 conversions is allocated (NUM-CONVERSATION=1000).
■ Service A (CLASS A,SERVER A,SERVICE A) is limited to 100 conversation control blocks used simul-
taneously (CONV-LIMIT=100). The application thatwants to startmore conversations than specified
by the limit policywill receive a “Resource shortage” return code. This return code should result
in a retry of the desired operation a little later, when the resource situation may have changed.

■ Service B (CLASS B,SERVER B,SERVICE B) is allowed to try to allocate asmany resources as necessary,
provided the resources are available and not occupied by other services. The number of conver-
sations that may be used by this service is unlimited (CONV-LIMIT=UNLIM).

■ Service C (CLASS C,SERVER C,SERVICE C) has no explicit value for the CONV-LIMIT attribute. The
number of conversation control blocks that it is allowed to use is therefore limited to the default
value which is defined by the CONV-DEFAULT Broker attribute.

The same scheme applies to the allocation of message buffers and servers:

■ In the following example, long message buffers are allocated using the keywords NUM-LONG-
BUFFER, LONG-BUFFER-DEFAULT and LONG-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-LONG-BUFFER=2000
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, LONG-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ In the following example, short message buffers are allocated using the keywords NUM-SHORT-
BUFFER, SHORT-BUFFER-DEFAULT and SHORT-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=2000
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SHORT-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Administration16

Broker Resource Allocation

■ In the following example, servers are allocated using the keywords NUM-SERVER, SERVER-DEFAULT
and SERVER-LIMIT:

DEFAULTS=BROKER
NUM-SERVER=2000
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SERVER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Specifying Attributes for Privileged Services

If privileged services (services with access to unlimited resources) exist, specify UNLIMITED for the
attributes CONV-LIMIT, SERVER-LIMIT, LONG-BUFFER-LIMIT and SHORT-BUFFER-LIMIT in the service-
specific section of the attribute file.

For example:

DEFAULTS=SERVICE
CONV-LIMIT=UNLIM
LONG-BUFFER-LIMIT=UNLIM
SHORT-BUFFER-LIMIT=UNLIM
SERVER-LIMIT=UNLIM

To ensure a resource reservoir for peak load of privileged services, define more resources than
would normally be expected by specifying larger numbers for the Broker attributes that control
global resources:

NUM-SERVER
NUM-CONVERSATION
CONV-DEFAULT
LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
SERVER-DEFAULT

17Administration

Broker Resource Allocation

Maximum Units of Work

The maximum number of units of work (UOWs) that can be active concurrently is specified in the
Broker attribute file. The MAX-UOWS attribute can be specified for the Broker globally as well as for
individual services. It cannot be calculated automatically. If a service is intended to process UOWs,
a MAX-UOWS value must be specified.

If message processing only is to be done, specify MAX-UOWS=0 (zero). The Broker (or the service)
will not accept units of work, i.e., it will process only messages that are not part of a UOW. Zero
is used as the default value for MAX-UOWS in order to prevent the sending of UOWs to services that
are not intended to process them.

Calculating Resources Automatically

To ensure that each service runs without impacting other services, allow the EntireX Broker to
calculate resource requirements automatically:

■ Ensure that the attributes that define the default total for the Broker and the limit for each service
are not set to UNLIM.

■ Specify AUTO for the Broker attribute that defines the total number of the resource.
■ Specify a suitable value for the Broker attribute that defines the default number of the resource.

The total number required will be calculated from the number defined for each service. The re-
sources that can be calculated this way are Number of Conversations, Number of Servers, Long
Message Buffers and Short Message Buffers.

Avoid altering the service-specific definitions at runtime. Doing so could corrupt the conversation
consistency. Applicationsmight receive amessage such as “NUM-CONVERSATIONS reached” although
the addressed service does not serve as many conversations as defined. The same applies to the
attributes that define the long and short buffer resources.

Automatic resource calculation has the additional advantage of limiting the amount of memory
used to run the EntireX Broker. Over time, you should be able to determine which services need
more resources by noting the occurrence of the return code “resource shortage, please retry”. You
can then increase the resources for these services. To avoid disruption to the user, you could instead
allocate a relatively large set of resources initially and then decrease the values using information
gained from the Administration Monitor application.

Number of Conversations

To calculate the total number of conversations automatically, ensure that the CONV-DEFAULT Broker
attribute and the CONV-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute

Administration18

Broker Resource Allocation

file. Specify NUM-CONVERSATION=AUTO and an appropriate value for the CONV-DEFAULT Broker attrib-
ute. The total number of conversationswill be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-CONVERSATION=AUTO
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

■ Service A and Service C both need 200 conversations (the default value). Service B needs 100
conversations (CONV-LIMIT=100).

■ Because NUM-CONVERSATIONS is defined as AUTO, the broker calculates a total of 500 conversations
(200 + 200 + 100).

■ NUM-CONVERSATIONS=AUTO allows the number of conversations to be flexible without requiring
additional specifications. It also ensures that the broker is startedwith enough resources tomeet
all the demands of the individual services.

■ AUTO and UNLIM are mutually exclusive. If CONV-DEFAULT or a single CONV-LIMIT is defined as
UNLIM, the EntireX Broker cannot determine the number of conversations to use in the calculation,
and the EntireX Broker cannot be started.

Number of Servers

To calculate the number of servers automatically, ensure that the SERVER-DEFAULT Broker attribute
and the SERVER-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute file.
Specify NUM-SERVER=AUTO and an appropriate value for the SERVER-DEFAULT Broker attribute. The
total number of server buffers will be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SERVER=AUTO
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Long Message Buffers

To calculate the number of long message buffers automatically, ensure that the LONG-BUFFER-DE-
FAULT Broker attribute and the LONG-BUFFER-LIMIT service-specific attribute are not set to UNLIM

19Administration

Broker Resource Allocation

anywhere in the attribute file. Specify NUM-LONG-BUFFER=AUTO and an appropriate value for the
LONG-BUFFER-DEFAULTBroker attribute. The total number of longmessage bufferswill be calculated
using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-LONG-BUFFER=AUTO
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Short Message Buffers

To calculate the number of short message buffers automatically, ensure that the SHORT-BUFFER-
DEFAULTBroker attribute and the SHORT-BUFFER-LIMIT service-specific attribute are not set to UNLIM
anywhere in the attribute file. Specify NUM-SHORT-BUFFER=AUTO and an appropriate value for the
SHORT-BUFFER-DEFAULT Broker attribute. The total number of short message buffers will be calcu-
lated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=AUTO
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

Dynamic Memory Management

Dynamicmemorymanagement is a feature to handle changingBrokerworkloadwithout any restart
of the Broker task. It increases the availability of the Broker by using various memory pools for
various Broker resources and by being able to use a variable number of pools for the resources.

If more memory is needed than currently available, another memory pool is allocated for the
specific type of resource. If a particular memory pool is no longer used, it will be deallocated.

The following Broker attributes can be omitted if DYNAMIC-MEMORY-MANAGEMENT=YES has been
defined:

Administration20

Broker Resource Allocation

■ NUM-SUBSCRIBER-TOTAL■ NUM-PUBLISHER■ NUM-CLIENT

■ NUM-CMDLOG-FILTER ■ NUM-TOPIC■ NUM-SERVER

■ NUM-SERVICE■ NUM-COMBUF ■ NUM-TOPIC-EXTENSION

■ NUM-TOPIC-TOTAL■ NUM-SERVICE-EXTENSION■ NUM-CONV[ERSATION]

■ NUM-LONG[-BUFFER] ■ NUM-UOW|MAX-UOWS|MUOW■ NUM-SHORT[-BUFFER]

■■ ■NUM-SUBSCRIBERNUM-PUBLICATION NUM-WQE

If youwant statistics on allocation anddeallocation operations in Broker, you can configure Broker
to create a storage report with the attribute STORAGE-REPORT. See Storage Report below.

Note: To ensure a stabile environment, some pools of Broker are not deallocated automatic-
ally. The first pools of type COMMUNICATION, CONVERSATION, CONNECTION, HEAP, PARTICIPANT,
PARTICIPANT EXTENSION, SERVICE ATTRIBUTES, SERVICE, SERVICE EXTENSION, TIMEOUT
QUEUE, TRANSLATION, WORK QUEUE are excluded from the automatic deallocation even when
they have not been used for quite some time. Large pools cannot be reallocated under some
circumstances if the level of fragmentation in the address space has been increased in the
meantime.

Dynamic Worker Management

Dynamic worker management is a feature to handle the fluctuating broker workload without re-
starting the Broker task. It adjusts the number of running worker tasks according to current
workload. The initial portion of worker tasks started at Broker startup is still determined by NUM-
WORKER.

If more workers are needed than currently available, another worker task is started. If a worker
task is no longer needed, it will be stopped.

The following Broker attributes are used for the configuration if DYNAMIC-WORKER-MANAGEMENT=YES
has been defined:

■ WORKER-MAX

■ WORKER-MIN

■ WORKER-NONACT

■ WORKER-QUEUE-DEPTH

■ WORKER-START-DELAY

The following two attributes are very performance-sensitive:

■ Attribute WORKER-QUEUE-DEPTH defines the number of unassigned user requests in the input
queue before a new worker task is started.

21Administration

Broker Resource Allocation

■ Attribute WORKER-START-DELAY defines the time between the last worker task startup and the
next check for another possible worker task startup. It is needed to consider the time for activ-
ating a worker task.

Both attributes depend on the environment, in particular the underlying operating system and
the hardware. The goal is to achieve high-performance user request processing without starting
too many worker tasks.

A good starting point to achieve high performance is not to change the attributes and to observe
the performance of the application programs after activating the dynamic worker management.

If broker attribute DYNAMIC-WORKER-MANAGEMENT=YES is set, operator commands are available under
z/OS to deactivate and subsequently reactivate dynamic worker management.

The following section illustrates the two different modes of dynamic worker management:

■ Scenario 1

DYNAMIC-WORKER-MANAGEMENT=YES
NUM-WORKER = 5
WORKER-MIN = 1
WORKER-MAX = 32

Broker is started with 5 worker tasks and then dynamically varies the number of worker tasks
within the range from WORKER-MIN=1 to WORKER-MAX=32due to DYNAMIC-WORKER-MANAGEMENT=YES.

■ Scenario 2

DYNAMIC-WORKER-MANAGEMENT=NO
NUM-WORKER = 5
WORKER-MIN = 1
WORKER-MAX = 32

Broker is startedwith 5worker tasks. The WORKER-MIN/MAX attributes are ignored due to DYNAMIC-
WORKER-MANAGEMENT=NO.

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocatememory pools. This section details how to create the report and provides a sample report.

■ Creating a Storage Report
■ Platform-specific Rules
■ Sample Storage Report

See also Broker-specific attribute STORAGE-REPORT.

Administration22

Broker Resource Allocation

Creating a Storage Report

Use Broker's global attribute STORAGE-REPORTwith the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

Platform-specific Rules

z/OS

DDNAME ETBSREP assigns the report file. Format RECFM=FB, LRECL=121 is used.

UNIX and Windows

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument -r, the token following argu-
ment -rwill be used as the file name.

BS2000/OSD

LINK-NAME ETBSREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

z/VSE

Logical unit SYS015 and logical file name ETBSREP are used. Format RECORD-FORMAT=FB,
RECORD-LENGTH=121 is used.

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1 ↩

 ↩

Identifier Address Size Total Date ↩
 Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 ↩
12:28:58.768 Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 ↩
12:28:58.769 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 18239256 bytes 2009-06-26 ↩
12:28:58.769 Allocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 19001308 bytes 2009-06-26 ↩
12:28:58.769 Allocated
BROKER POOL 0x27072010 61540 bytes 19062848 bytes 2009-06-26 ↩
12:28:58.775 Allocated

23Administration

Broker Resource Allocation

CONVERSATION POOL 0x27082010 368964 bytes 19431812 bytes 2009-06-26 ↩
12:28:58.775 Allocated
CONNECTION POOL 0x270DD010 233668 bytes 19665480 bytes 2009-06-26 ↩
12:28:58.779 Allocated
LONG MESSAGES POOL 0x27117010 4395204 bytes 24060684 bytes 2009-06-26 ↩
12:28:58.782 Allocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 27764560 bytes 2009-06-26 ↩
12:28:58.806 Allocated
PARTICIPANT POOL 0x278D2010 134244 bytes 27898804 bytes 2009-06-26 ↩
12:28:58.827 Allocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 27935800 bytes 2009-06-26 ↩
12:28:58.829 Allocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 27962524 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 28094192 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE POOL 0x27925010 54372 bytes 28148564 bytes 2009-06-26 ↩
12:28:58.830 Allocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 28181464 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 28268732 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TRANSLATION POOL 0x27952010 179300 bytes 28448032 bytes 2009-06-26 ↩
12:28:58.832 Allocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 28624356 bytes 2009-06-26 ↩
12:28:58.834 Allocated
WORK QUEUE POOL 0x279AA010 391268 bytes 29015624 bytes 2009-06-26 ↩
12:28:58.835 Allocated
BLACKLIST POOL 0x27A0A010 42084 bytes 29057708 bytes 2009-06-26 ↩
12:28:58.838 Allocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 29401856 bytes 2009-06-26 ↩
12:28:58.839 Allocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 29531476 bytes 2009-06-26 ↩
12:28:58.841 Allocated
TOPIC POOL 0x26FB6068 2952 bytes 29534428 bytes 2009-06-26 ↩
12:28:58.842 Allocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 29565280 bytes 2009-06-26 ↩
12:28:58.842 Allocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 29599172 bytes 2009-06-26 ↩
12:28:58.843 Allocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 29618712 bytes 2009-06-26 ↩
12:28:58.843 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 12837332 bytes 2009-06-26 ↩
12:30:58.514 Deallocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 12075280 bytes 2009-06-26 ↩
12:30:58.515 Deallocated
BROKER POOL 0x27072010 61540 bytes 12013740 bytes 2009-06-26 ↩
12:30:58.516 Deallocated
CONVERSATION POOL 0x27082010 368964 bytes 11644776 bytes 2009-06-26 ↩
12:30:58.518 Deallocated
CONNECTION POOL 0x270DD010 233668 bytes 11411108 bytes 2009-06-26 ↩
12:30:58.519 Deallocated

Administration24

Broker Resource Allocation

LONG MESSAGES POOL 0x27117010 4395204 bytes 7015904 bytes 2009-06-26 ↩
12:30:58.520 Deallocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 3312028 bytes 2009-06-26 ↩
12:30:58.526 Deallocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 3285304 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 2941156 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 2811536 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC POOL 0x26FB6068 2952 bytes 2808584 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 2777732 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 2690464 bytes 2009-06-26 ↩
12:30:58.532 Deallocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 2514140 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
WORK QUEUE POOL 0x279AA010 391268 bytes 2122872 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
BLACKLIST POOL 0x27A0A010 42084 bytes 2080788 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 2046896 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 2027356 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PARTICIPANT POOL 0x278D2010 134244 bytes 1893112 bytes 2009-06-26 ↩
12:49:25.817 Deallocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 1856116 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 1724448 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE POOL 0x27925010 54372 bytes 1670076 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 1637176 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
TRANSLATION POOL 0x27952010 179300 bytes 1457876 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
HEAP POOL 0x25EB4010 1050692 bytes 407184 bytes 2009-06-26 ↩
12:49:25.820 Deallocated
KERNEL POOL 0x25E48010 407184 bytes 0 bytes 2009-06-26 ↩
12:49:25.820 Deallocated

DescriptionHeader

Name of the memory pool.Identifier

Start address of the memory pool.Address

Size of the memory pool.Size

Total size of all obtained memory pools.Total

Date and time of the action.Date, Time

25Administration

Broker Resource Allocation

DescriptionHeader

The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated .
Deallocated: memory pool is deallocated.

Action

Maximum TCP/IP Connections per Communicator

This table shows the maximum number of TCP/IP connections per communicator:

Maximum Number of TCP/IP Connections per CommunicatorPlatform

2,048AIX

2,048BS2000/OSD

2,048HP-UX

4,096Linux

65,356Solaris

4,096Windows

16,384z/OS

2,048z/VSE

With the Broker-specific attribute POLL, these restrictions can be lifted under z/OS, UNIX and
z/VSE. See POLL.

See also MAX-CONNECTIONSunder TCP-OBJECT (Struct INFO_TCP)under InformationReply Structures
in the Broker CIS documentation.

Note for z/OS

Under z/OS, the following message may appear in the broker log:

ETBD0286 Diagnostic Values:
accept: 124, EDC5124I Too many open files.errno2: 84607302 050B0146

The most common reason for this TCP/IP Communicator diagnostic message is the limitation of
open files per user. The value of MAXFILEPROC in the BPXPRM00 parmlib member should be greater
than the expected number of TCP/IP connections.

Administration26

Broker Resource Allocation

Note for UNIX

Under UNIX, you can use the following command to display the maximum number of open files
in the operating system shell.

ulimit -n

This value should be greater than the expected number of TCP/IP connections.

27Administration

Broker Resource Allocation

28

4 Broker Attributes

■ Name and Location of Attribute File .. 31
■ Attribute Syntax .. 31
■ Broker-specific Attributes .. 33
■ Service-specific Attributes ... 58
■ Topic-specific Attributes .. 71
■ Codepage-specific Attributes ... 78
■ Adabas SVC/Entire Net-Work-specific Attributes .. 82
■ Security-specific Attributes .. 86
■ TCP/IP-specific Attributes ... 92
■ c-tree-specific Attributes ... 96
■ SSL-specific Attributes ... 98
■ DIV-specific Attributes .. 103
■ Adabas-specific Attributes ... 103
■ Variable Definition File .. 105

29

Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to
all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, publishers and subscribers as well as of the Broker itself.
You can customize the Broker environment by modifying the attribute settings.

Administration30

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

File Name/LocationPlatform

Member EXBATTR in the EntireX Broker source library.z/OS

File etbfile in directory <InstDir>/EntireX/config/etb/<BrokerName> (default) *UNIX

File <BrokerName>.atr in directory <InstDir>\EntireX\config\etb\<BrokerName> (default)
*

Windows

File ETB-ATTR in library EXX960.JOBS.BS2000/OSD

Library member ETBnnn.ATR, where nnn is a placeholder specifiying the broker instance
(e.g.nnn= the assigned broker ID).

z/VSE

When starting a brokermanually, name and location of the broker attribute file can be overwrit-
ten with the environment variable ETB_ATTR.

*

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value

The following rules and restrictions apply:

■ A line can contain multiple entries separated by commas.
■ Attribute names can be entered in mixed upper and lowercase.
■ Spaces between attribute names, values and separators are ignored.
■ Spaces in the attribute names are not allowed.
■ Commas and equal signs are not allowed in value notations.
■ Lines startingwith an asterisk (*) are treated as comment lines.Within a line, characters following
an * or # sign are also treated as comments.

■ The CLASS keyword must be the first keyword in a service definition.
■ Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

■ Multiple topics can be included in a single topic definition section. The attribute settings will
apply to all topics defined in the section.

31Administration

Broker Attributes

■ Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

■ Attributes specified after the topic definition (TOPIC keyword) override the default characteristics
for the topic.

■ Attribute values can contain variables of the form ${variable name} or $variable name:
■ Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

■ The variable name can contain only alphanumeric characters and the underscore (_) character.
■ The first non-alphanumeric or underscore character terminates the variable name.
■ under UNIX and Windows, the string ${variable name} is replaced with the value of the
corresponding environment variable.

■ On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

■ If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable namewill be used as the variable value.

■ If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

Administration32

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section beginswith the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem
is corrected.

Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large
values for the broker attributes that define the global resources.

Operating System

Opt/
ReqValuesAttribute

bvwuzOYES | NOABEND-LOOP-DETECTION

Stop broker if a task terminates abnormally twice, that is, the same
abend reason at the same abend location already occurred. This
attribute prevents an infinite abend loop.

YES

Use only if requested by SoftwareAGSupport. This settingmaymake
sense if a known error leads to an abnormal termination, but a hotfix

NO

solving the problem has not yet been provided. Reset to "YES" when
the hotfix has been installed.

bvwuzOYES | NOABEND-MEMORY-DUMP

Print all data pools of the broker if a task terminates abnormally. This
dump is needed to analyze the abend.

YES

If the dumphas already been sent to SoftwareAG, you can set to "NO"
to avoid the extra overhead.

NO

zONO | 128-255ACCOUNTING

bvwuONO | YES
[SEPARATOR=char]

Determines whether accounting records are created.

Do not create accounting records.NO

The SMF record number to usewhenwriting the accounting records.nnn

Create accounting data.
char= separator character(s). Up to seven separator characters can
be specified using the SEPARATOR suboption, for example

YES

ACCOUNTING = (YES, SEPARATOR=;). If no separator character is
specified, the comma character will be used.

33Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See also Accounting in EntireX Broker in the z/OS administration
documentation.

bvwuzO1 | 2 | 3 | 4ACCOUNTING-VERSION

Determines whether accounting records are created.

Collect accounting information. This value is supported for reasons of
compatibility with EntireX Broker 7.2.1 and below.

1

Collect extended accounting information in addition to that available
with option 1.

2

Create accounting records in layout of version 3.3

Create accounting records in layout of version 4.4

This parameter applies when ACCOUNTING is activated.

bvwuzOYES | NOAUTOLOGON

LOGON occurs automatically during the first SEND or REGISTER.YES

The application has to issue a LOGON call.NO

bvwuzR5m | n | n S | nM | n
H

BLACKLIST-PENALTY-TIME

Define the length of time a participant is placed on the
PARTICIPANT-BLACKLIST to prevent a denial-of-service attack.

Same as n S.n

Non-activity time in seconds (max. 2147483647).n S

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).n H

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

bvwuzRA32BROKER-ID

Identifies the broker to which the attribute file applies. The broker ID must
be unique per machine.

Note: The numerical section of the BROKER-ID is no longer used to determine
theDBID in the EntireX Broker kernelwith EntireNet-Work transport (NET).
To determine the DBID, use attribute NODE in the DEFAULTS=NET section of
the attribute file.

Administration34

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzR15M | n | nS | nM |
nH

CLIENT-NONACT

Define the non-activity time for clients.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A client that does not issue a broker request within the specified time limit
is treated as inactive and all resources for the client are freed.

bvwuzONO | YESCMDLOG

Command logging will not be available in the broker.NO

Command logging features will be available in the broker.YES

bvwuzO1024 | nCMDLOG-FILE-SIZE

Defines the maximum size of the file that the command log is written to, in
kilobytes. The valuemust be 1024 or higher. The default value is 1024.When
one command log file grows to this size, broker starts writing to the other
file. For more details, see Command Logging in EntireX.

bvwuzO60s | n | nS | nM| nH
|

CONTROL-INTERVAL

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby broker will check the status of the standard broker after the
elapsed CONTROL-INTERVAL time.

Same as nS.n

Interval in seconds (max. 2147483647).nS

Interval in minutes (max. 35791394).nM

Interval in hours (max. 596523).nH
The minimum value is 16 seconds. We strongly recommend the default
value (60 seconds), except for very slow machines.

bvwuzOUNLIM | nCONV-DEFAULT

Default number of conversations that are allocated for every service.

35Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION.

UNLIM

Number of conversations.n

This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.

bvwuzONO | YESDEFERRED

Disable or enable deferred processing of units of work.

Units of work cannot be sent to the service until it is available.NO

Units of work can be sent to a service that is not up and registered.
They will be processed when the service becomes available.

YES

bvwuzOYES | NODYNAMIC-MEMORY-MANAGEMENT

An initial portion of memory is allocated at broker startup based on
defined NUM-* attributes or internal default values if no NUM-*

YES

attributes have beendefined.Morememory is allocatedwithout broker
restart if there is a need to use more storage. Unused memory is
deallocated. The upper limit of memory consumption can be defined
by the attribute MAX-MEMORY. See Dynamic Memory Management.

All memory is allocated at broker startup based on the calculation
from the defined NUM-* attributes. Size ofmemory cannot be changed.
This was the known behavior of EntireX 7.3 and earlier.

NO

If you run your brokerwith attribute DYNAMIC-MEMORY-MANAGEMENT=YES,
the following attributes are not needed:

■ NUM-PUBLISHER■ CONV-DEFAULT

■ HEAP-SIZE ■ NUM-SERVER

■ NUM-SERVICE-EXTENSION■ LONG-BUFFER-DEFAULT

■ PUBLICATION-DEFAULT ■ NUM-SERVICE

■ NUM-SHORT[-BUFFER]■ SERVER-DEFAULT

■ SHORT-BUFFER-DEFAULT ■ NUM-SUBSCRIBER-TOTAL

■ NUM-SUBSCRIBER■ SUBSCRIBER-DEFAULT

■ NUM-CLIENT ■ NUM-TOPIC-EXTENSION

■ NUM-TOPIC-TOTAL■ NUM-CMDLOG-FILTER

Administration36

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ NUM-COMBUF ■ NUM-TOPIC

■ NUM-UOW|MAX-UOWS|MUOW■ NUM-CONV[ERSATION]

■ NUM-LONG[-BUFFER] ■ NUM-WQE

■ NUM-PUBLICATION

Caution: However, if one of these attributes is defined, it determines the
allocation size of that particular broker resource.

bwuzONO | YESDYNAMIC-WORKER-MANAGEMENT

All worker tasks are started at broker startup. The number of worker
tasks is defined by NUM-WORKER. After this initial step, no further

NO

worker tasks can be started. This is default and simulates the behavior
of EntireX version 8.0 and earlier.

As above, the initial portion of worker tasks started at broker startup
is determined by NUM-WORKER. However, if there is a need to handle

YES

an increased workload, additional worker tasks can be started at
runtimewithout restarting broker. Conversely, if aworker task remains
unused, it is stopped. The upper and lower limit of running worker
tasks can be defined by the attributes WORKER-MIN and WORKER-MAX.

If you run broker with DYNAMIC-WORKER-MANAGEMENT=YES, the following
attributes are useful to optimize the overall processing:

■ WORKER-MAX

■ WORKER-MIN

■ WORKER-NONACT

■ WORKER-QUEUE-DEPTH

■ WORKER-START-DELAY

The attribute NUM-WORKER defines the initial number ofworker tasks started
during initialization. See Dynamic Worker Management.

uONO | YESFORCE

Go down with error if IPC resources still exist.NO

Clean up the left-over IPC resources of a previous run.YES

Note:

37Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

1. If broker is started twice, the second instancewill kill the first by removing
the IPC resources.

2. For BS2000/OSD, z/OS and z/VSE, see separate attribute FORCE in section
Adabas SVC/Entire Net-Work-specific Attributes.

bvwuzO1024 | nHEAP-SIZE

Defines the size of the internal heap in KB. Not required if you are using
DYNAMIC-MEMORY-MANAGEMENT. If you are not using dynamic memory
management, we strongly recommend specifying - as a minimum - the
default value of 1024 KB.

bvwuzOYES | NOICU-CONVERSION

Disable or enable ICU conversion. Default for z/VSE is NO; other platforms
YES.

ICU is loaded and available for conversion. It is a prerequisite for
SAGTCHA and SAGTRPC.

YES

ICU is not loaded and not available for conversion. SAGTCHA and
SAGTRPC cannot be used.

NO

If any of the broker service definitions uses the internationalization approach
“ICUconversion”, that is, the conversionmethods SAGTCHAandSAGTRPC
are defined by the service-specific or topic-specific attribute CONVERSION,
ICU-CONVERSIONmust be set to "YES". The internationalization approaches
“Translation”, “Translation User Exit” and “SAGTRPC User Exit” do not
require ICU conversion. If all broker service definitions use these
internationalization approaches, ICU-CONVERSION can be set to "NO".

ICU requires additional storage to run properly. If ICU conversion is not
needed, setting ICU-CONVERSION to "NO" will help to avoid unnecessary
storage consumption.

wuOYES | NOICU-SET-DATA-DIRECTORY

Disable or enable ICU custom converter usage. Not defined for mainframe
platforms.

The broker tries to locate ICU custom converters with themechanism
defined by the platform, see Building and Installing ICU Custom
Converters in the platform-specific administration documentation.

YES

Use of ICU custom converters is not possible.NO

bwuzOYES | NOIPV6

Administration38

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Establish SSL and TCP/IP transport in IPv6 and IPv4 networks
according to the TCP/IP stack configuration.

YES

Establish SSL and TCP/IP transport in IPv4 network only.NO

This attribute applies to EntireX version 9.0 and above.

bvwuzOUNLIM | nLONG-BUFFER-DEFAULT

Number of long buffers to be allocated for each service or topic.

The number of long message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-LONG-BUFFER.

UNLIM

Number of buffers.n

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

bvwuzO0 | n | nK | nM |
nG | UNLIM

MAX-MEMORY

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY-MANAGEMENT=YES has been defined.

No memory limit.0, UNLIM

Defines the maximum limit of allocated memory. If limit is
exceeded, error 671 “Requested allocation exceeds
MAX-MEMORY” is generated.

others

bvwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

bvwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a UOW (or publication).

See MAX-MESSAGE-LENGTH.MAX-MSG

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bvwuzO0 | nMAX-UOWS

Themaximumnumber ofUOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a MAX-UOWS value must be 1 or larger for the broker.

39Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The MAX-UOWS value for the service will default to the value set for the
broker. NUM-UOW is an alias of this parameter.

bvwuzONONE | UPPER |
LOWER

MESSAGE-CASE

Indicates if certain error message texts returned by the broker to its clients
or written by the broker to its log file are to be in mixed case, uppercase, or
lowercase.

No changes are made to message case.NONE

Messages are changed to uppercase.UPPER

Messages are changed to lowercase.LOWER

See NUM-UOW.MUOW

bvwuzOYES | NONEW-UOW-MESSAGES

New UOWmessages are allowed.YES

New UOWmessages are not allowed.NO

This applies to UOWwhen using Persistence and should not be used for
non-persistent UOWs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down.
You can set NEW-UOW-MESSAGES to "NO" to prevent new UOWmessages
frombeing added after a broker restart. This action allows only consumption
(not production) of UOWs to occur after broker restart. After the persistent
store capacity has been sufficiently reduced, the EntireXBroker administrator
can issue a CIS command, see ALLOW-NEWUOWMSGS under Broker CIS Data
Structures in the ACI Programming documentation. This action allows new
UOWmessages to be sent to the broker. Reset attribute NEW-UOW-MESSAGES
to "YES", which permits newUOWmessages to be produced in subsequent
broker sessions.

bvwuzO256 | nNUM-BLACKLIST-ENTRIES

Number of entries in the participant blacklist. Default value is 256 entries.
Togetherwith BLACKLIST-PENALTY-TIME and PARTICIPANT-BLACKLIST,
this attribute is used to protect a broker runningwith SECURITY=YES against
denial-of-service attacks. See Protecting a Broker against Denial-of-Service
Attacks in the platform-specific broker administration documentation.

bvwuzRnNUM-CLIENT

Number of clients that can access the broker concurrently. A value of 0 (zero)
is invalid.

Administration40

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzO1 | nNUM-CMDLOG-FILTER

Maximum number of filters that can be specified simultaneously.

Tip: We recommend you limit this value to the number of services that are
being monitored. Minimum value is 1. A value of zero is invalid when the
attribute CMDLOG is set to "YES". See Command Logging in EntireX for more
information.

bvwuzR1 - 999999NUM-COMBUF

Determines the maximum number of communication buffers available for
processing commands arriving in the broker kernel. The size of one
communication buffer is usually 16 KB split into 32 slots of 512 bytes, but it
ultimately depends on the hardware architecture of your CPU. A value of
0 (zero) is invalid.

bvwuzRn | AUTONUM-CONVERSATION or
NUM-CONV Defines the number of conversations that can be active concurrently. The

number specified should be high enough to account for both conversational
and non-conversational requests. (Non-conversational requests are treated
internally as one-conversation requests.)

Number of conversations.n

Uses theCONV-DEFAULT and the service-specificCONV-LIMITvalues
to calculate the number of conversations. The values used in the
calculation must not be set to "UNLIM".

AUTO

Note:

1. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

2. SeeWildcard Service Definition.

bvwuzRn | AUTONUM-LONG-BUFFER or
NUM-LONG Defines the number of long message containers. Long message containers

have a fixed length of 4096 bytes and are used to store requests that are
larger than 2048 bytes. Storing a request of 8192 bytes, for example, would
require two long message containers.

Number of buffers.n

Uses the LONG-BUFFER-DEFAULT and the service-specific
LONG-BUFFER-LIMIT values to calculate the number of long

AUTO

41Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

message buffers. The values used in the calculation must not be set
to "UNLIM".

A value of 0 (zero) is invalid.

In non-conversationalmode, message containers are released as soon as the
client receives a reply from the server. If no reply is requested, message
containers are released as soon as the server receives the client request.

In conversationalmode, the last message received is always kept until a new
one is received.

Note:

1. If a catch-all service is defined in the service-specific section of the attribute
file, the value of AUTO is invalid.

2. SeeWildcard Service Definition.

bvwuzOn | AUTONUM-PUBLICATION

Defines the number of publications that can be active concurrently.

Number of publicationsn

Uses the PUBLICATION-DEFAULT and the topic-specific
PUBLICATION-LIMIT to calculate the number of publications. The
values used in the calculation must not be set to "UNLIM"

AUTO

Note:

1. A value of 0 (zero) is invalid.

2. If a wildcard topic is defined in the topic-specific section of the attribute
file, the value of AUTO is invalid.

bvwuzOnNUM-PARTICIPANT-EXTENSION

Defines the number of participant extensions to link participants as clients
and servers.

Number of participant extensionsn

If this attribute is not set, the default value is calculated based
on NUM-CLIENT and NUM-SERVER.

not specified

A value of 0 (zero) is invalid.

Administration42

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzOnNUM-PUBLISHER

Number of publishers that can access the broker concurrently. A value of 0
(zero) is invalid.

bvwuzRn | AUTONUM-SERVER

Defines the number of servers that can offer services concurrently using the
broker. This is not the number of services that can be registered to the broker
(see NUM-SERVICE).

Number of servers.n

Uses theSERVER-DEFAULT and the service-specificSERVER-LIMIT
values to calculate the number of servers. The values used in the
calculation must not be set to "UNLIM".

AUTO

Note:

1. Setting this value higher than the number of services allows the starting
of server replicas that provide the same service.

2. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

3. SeeWildcard Service Definition.

bvwuzRnNUM-SERVICE

Defines the number of services that can be registered to the broker. This is
not the number of servers that can offer the services (see NUM-SERVER). A
value of 0 (zero) is invalid.

bvwuzOn | AUTONUM-SERVICE-EXTENSION

Defines the number of service extensions to link servers to services.

Number of service extensions.n

Uses the value specified or calculated for
NUM-SERVER + NUM-CLIENT, plus an extra cushion.

AUTO

If this attribute is not set, the default value is NUM-SERVER
multiplied by NUM-SERVICE.

not specified

The minimum value is NUM-SERVER.
The maximum value is NUM-SERVERmultiplied by NUM-SERVICE.

Caution is recommended with this attribute:

43Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ Set this attribute only if the storage resources allocated for service
extensions need to be restricted.

■ Note that the value <n> allows only the specified number of server
instances of <n> to be used.

■ Value AUTO will calculate the number of allowed server instances from
NUM-SERVER, which itself might be set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each service definition (see note below).

bvwuzRn | AUTONUM-SHORT-BUFFER or
NUM-SHORT Defines the number of short message containers. Short message containers

have a fixed length of 256 bytes and are used to store requests of no more
than 2048 bytes. To store a request of 1024 bytes, for example, would require
four short message containers.

Number of buffers.n

Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short

AUTO

message buffers. The values used in the calculation must not be set
to "UNLIM".

Note:

1. In non-conversationalmode, message containers are released as soon as
the client receives a reply from the server. If no reply is requested,message
containers are released as soon as the server receives the client request.

2. In conversationalmode, the last message received is always kept until a
new one is received.

3. If a wildcard service is defined in the service-specific section of the
attribute file, the value of AUTO is invalid.

4. SeeWildcard Service Definition.

bvwuzOn | AUTONUM-SUBSCRIBER

Defines the number of subscribers that can be active concurrently.

Number of subscribers.n

Uses the SUBSCRIBER-DEFAULT and the topic-specific
SUBSCRIBER-LIMIT to calculate the number of subscribers.

AUTO

Administration44

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

A value of 0 (zero) is invalid. If a wildcard topic is defined in the
topic-specific section of the attribute file, the value of AUTO is invalid.

bvwuzOn | AUTONUM-SUBSCRIBER-TOTAL

Defines the total number of subscribers that can be durably subscribed. Their
subscription information is saved in the persistent store.

Total number of subscribers.n

Uses the value defined or calculated for NUM-SUBSCRIBER.AUTO

A value of 0 (zero) is invalid. This value must be greater than or equal to
the NUM-SUBSCRIBER value. Parameter is required if
SUBSCRIBER-STORE=PSTORE is defined.

bvwuzOnNUM-TOPIC

Defines the number of topics that can be active in the broker. A value of 0
(zero) is invalid.

bvwuzOn | AUTONUM-TOPIC-EXTENSION

Defines the number of topic extensions to link subscribers to topics.

Number of topic extensions.n

Uses the value specified for
NUM-SUBSCRIBER + NUM-PUBLISHER, plus an extra cushion.

AUTO

If this attribute is not set, the default value is NUM-SUBSCRIBER
multiplied by NUM-TOPIC.

not specified

The minimum value is NUM-SUBSCRIBER.
The maximum value is NUM-SUBSCRIBERmultiplied by NUM-TOPIC.

Caution is recommended with this attribute.

■ Set this attribute only if the storage resources allocated for topic extensions
need to be restricted.

■ Note that the value <n> allows only the specified number of topic instances
of <n> to be used.

■ Value AUTO calculates the number of allowed server instances from
NUM-SUBSCRIBER, which itself might set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each topic definition (see note below).

bvwuzOn | AUTONUM-TOPIC-TOTAL

Defines the total number of topics forwhich durable subscribers are allowed.

45Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Total number of topics that allow durable subscriptions.n

Uses the value defined for NUM-TOPIC.AUTO

This value must be greater than or equal to the NUM-TOPIC value. This
parameter is required if SUBSCRIBER-STORE=PSTORE is defined.

bvwuzO0 | nNUM-UOW

Themaximumnumber ofUOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a NUM-UOW value must be 1 or larger for the broker.
(MAX-UOWS is an alias for this attribute.)

The NUM-UOW value for the servicewill default to the value set for the broker.

bvwuzR1 | n (max. 10)NUM-WORKER

Number of worker tasks that the broker can use. The number of worker
tasks determines the number of functions (SEND, RECEIVE, REGISTER, etc.)
that can be processed concurrently. At least one worker task is required;
this is the default value.

bvwuzR1 - 32768NUM-WQE

Maximumnumber of requests that can be processed by the broker in parallel,
over all transport mechanisms.

Each broker command is assigned a worker queue element, regardless of
the transportmechanismbeing used. This element is releasedwhen the user
has received the results of the command, including the case where the
command has timed out.

bvwuzRYES | NOPARTICIPANT-BLACKLIST

Determines whether participants attempting a denial-of-service attack on
the broker are to be put on a blacklist.

Create a participant blacklist.YES

Do not create a participant blacklist.NO

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

bvwuzRA32PARTNER-CLUSTER-ADDRESS

This is the address of the load/unload broker in transport-method-style.
Transport methods TCP and SSL are supported. See Transport-method-style

Administration46

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Broker ID formore details. This attribute is required if the attribute RUN-MODE
is specified.

vuzOYES | NOPOLL

In earlier EntireX versions, the maximum number of TCP/IP connections
per communicator was limited; seeMaximum TCP/IP Connections per
Communicator for platform-specific list. With attribute POLL introduced in
EntireX version 9.0, this restriction can be lifted under z/OS, UNIX and
z/VSE.

The poll() system call is used to lift the resource restrictions with
select() in multiplexing file descriptor sets.

YES

This setting is used to run the compatibility mode in Broker. The
poll() system call is not used. The limitations described under
Maximum TCP/IP Connections per Communicator apply.

NO

Note: Setting this attribute to YES increases CPU consumption. POLL=YES
is only useful if you need more than the maximum number of TCP/IP
connections per communicator; we recommend POLL=NO to reduce CPU
consumption.

bvwuzONO | HOT | COLDPSTORE

Defines the status of the persistent store at broker startup, including the
condition of persistent units of work (UOWs). With any value other than
"NO", PSTORE-TYPEmust be set.

No persistent store.NO

Persistent UOWs are restored to their prior state during
initialization.

HOT

Persistent UOWs are not restored during initialization, and the
persistent store is considered empty.

COLD

Note: For a hot or cold start, the persistent store must be available when
your broker is restarted.

bvwuzONO | YESPSTORE-REPORT

Determines whether PSTORE report is created.

Do not create the PSTORE report file.NO

Create the PSTORE report file.YES

See also Persistent Store Report.

47Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzODIV (z/OS) | CTREE
(UNIX, Windows) |

PSTORE-TYPE

Adabas (all platforms)
| FILE (UNIX,
Windows)

Describes the type of persistent store driver required.

Data in Virtual. z/OS only, and default on this platform. See
DIV-specific Attributes below and Implementing a DIV Persistent

DIV

Store underManaging the Broker Persistent Store in the z/OS
administration documentation.

c-tree database. UNIX and Windows only. See c-tree-specific
Attributes and c-tree Database as Persistent Store in the UNIX and
Windows administration documentation.

CTREE

Adabas. All platforms. See alsoAdabas-specific Attributes (below)
andManaging the Broker Persistent Store in the platform-specific
administration documentation.

ADABAS

B-Tree database. UNIX andWindows only.No longer supported.FILE

bvwuzO2 | 3 | 4PSTORE-VERSION

Determines the version of the persistent store. PSTORE=COLD is not needed
to upgrade the PSTORE to version 3. Any broker restart with
PSTORE-VERSION=3will upgrade the PSTORE version.

PSTORE-VERSION=3 is needed for ICU support. We recommended setting
PSTORE-VERSION=3.

PSTORE-VERSION=4 is needed to use the DIV PSTORE handler introduced
with version 9.0. It requires much less configuration data.

Caution:

■ If you go back to PSTORE-VERSION=2 after upgrading to
PSTORE-VERSION=3, the brokerwill only process data previously created
with version 2. No version 3 data will be accessible.

■ If you change the DIV PSTORE from version 3 to 4, perform a COLD
restart for the change to take effect, or run PSTORE UNLOAD/LOAD first.

bvwuzOn | UNLIMPUBLICATION-DEFAULT

Default number of publications that are allocated for every topic.

Number of publications.n

Administration48

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The number of publications is restricted only by the number of
publications globally available. Precludes the use of
NUM-PUBLICATION=AUTO.

UNLIM

This value can be overridden by specifying a PUBLICATION-LIMIT for the
topic. A value of 0 (zero) is invalid.

bvwuzOn | nS | nM| nH | nD
| nY

PUBLICATION-LIFETIME

Lifetime of a publication in absolute time units. Publications are retained
by broker until they are either received by all subscribers or the publication
lifetime has expired.

Same as nS.n

Publication lifetime in seconds (max. 2147483647).nS

Publication lifetime in minutes (max. 35791394).nM

Publication lifetime in hours (max. 596523).nH

Publication lifetime in days (max. 24855).nD

Publication lifetime in years (max. 68).nY

The publication lifetime is calculated even for periods of time when broker
is stopped.

bvwuzOYES | NOPUBLISH-AND-SUBSCRIBE

Run publish and subscribe subsystem. Subsystem requires a license.

bvwuzOSTANDARD |
STANDBY |

RUN-MODE

PSTORE-LOAD |
PSTORE-UNLOAD

Determines the initial run mode of the broker.

Default value. Normal mode.STANDARD

Deprecated. Supported for compatibility reasons.STANDBY

Brokerwill run as load broker towrite Persistent Store
data to a new persistent store. See alsoMigrating the
Persistent Store.

PSTORE-LOAD

Broker will run as unload broker to read an existing
persistent store and pass the data to a broker running

PSTORE-UNLOAD

in PSTORE-LOADmode. See alsoMigrating the
Persistent Store.

49Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzONO | YESSECURITY

Determines whether the EntireX Broker security exits are activated.

The security exits are not activated.NO

The security exits are activated. If the security routines cannot be
activated, the broker will not start.

YES

Broker trace reports the type of security which is active and fromwhere the
security module USRSEC is loaded:

■ EntireX Security
■ User-written USRSEC.

bwuzOA255SECURITY-PATH

Full path and file name of an executable file (for example, DLL forWindows
or shared library forUNIX) containing the user security exit which the kernel
will load and call. Example:

SECURITY-PATH=usersec.dll

This assumes the DLL is in the default path. Or:

SECURITY-PATH=c:\brokerexit\yoursecu.dll

If the path name contains spaces, enclose it in quotation marks. Example:

SECURITY-PATH="c:\Software AG\broker exit\yoursecu.dll"

Note: This attribute is used onlywhen implementing a user-written security
exit.

bvwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO.

UNLIM

This value can be overridden by specifying a SERVER-LIMIT for the service.
A value of 0 (zero) is invalid.

bvwuzOYES | NOSERVICE-UPDATES

Switch on/off the automatic update mode of the broker.

Administration50

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The broker reads the attribute file whenever a service registers for the
first time. This allows the broker to honormodifications in the attribute

YES

filewithout a restart. The attribute file is read onlywhen the first server
registers for a particular service; it is not rereadwhen a second replica
is activated.

The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

NO

bvwuzOUNLIM | nSHORT-BUFFER-DEFAULT

Number of short buffers to be allocated for each service.

The number of short message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-SHORT-BUFFER=AUTO.

UNLIM

Number of buffers.n

This value can be overridden by specifying a SHORT-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

See PORT.SSLPORT

See RESTART.SSL-RESTART

See RETRY-LIMIT.SSL-RETRY-LIMIT

See RETRY-TIME.SSL-RETRY-TIME

These parameters are obsolete. The subscriber store in a secondary store is
no longer supported. We recommend you use the PSTORE persistent store

SSTORE
SSTORE-TYPE

to store your subscriber data. For this, set broker-specific parameter
SUBSCRIBER-STORE=PSTORE.

bvwuzONO | YESSTORAGE-REPORT

Create a storage report about broker memory usage.

Do not create the storage report.NO

Create the storage report.YES

See Storage Report under Broker Resource Allocation.

bvwuzOOFF | BROKERSTORE

Sets the default STORE attribute for all units of work. This attribute can be
overridden by the STORE field in the Broker ACI control block.

Units of work are not persistent.OFF

51Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Units of work are persistent.BROKER

bvwuzOn | UNLIMSUBSCRIBER-DEFAULT

Default number of subscribers that are allowed for every topic.

Number of subscribersn

The number of subscribers is restricted only by the number of
subscribers globally available. Precludes the use of
NUM-SUBSCRIBER=AUTO.

UNLIM

This value can be overridden by specifying a SUBSCRIBER-LIMIT for the
topic. A value of 0 (zero) is invalid.

bvwuzONO | PSTORESUBSCRIBER-STORE

Determines whether subscriber information is stored and where.

No subscriber information is to be stored.NO

Save subscriber data in PSTORE.PSTORE

Tip: The subscriber store in a secondary store is no longer supported. We
recommend you use the PSTORE persistent store to store your subscriber
data.

See PORT.TCPPORT

bvwuzONO | YESSWAP-OUT-NEW-UOWS

Determines whether conversations with units of work remain in memory
or are swapped. See slso Swapping out New Units of Work.

All conversations with UOWs remain in memory.NO

Conversations with UOWs (STORE=BROKER) created by a client and
finished with an EOC without being accepted by a server will be

YES

swapped out of memory. The data is persisted on PSTORE and there
is no need to keep it in memory unless a server wants to receive this
data.

Note: See service-specific attribute MIN-UOW-CONVERSATIONS-IN-MEMORY
for defining a minimum number of UOW conversations kept in memory to
improve the performance for servers receiving new UOW conversations
without waiting for swap-in of data from PSTORE. During broker restart, all
new and unassigned UOW conversations remain in PSTORE only. This
reduces the restart time significantly.

Administration52

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See also Swapping out New Units of Work.

See RESTART.TCP-RESTART

See RETRY-LIMIT.TCP-RETRY-LIMIT

See RETRY-TIME.TCP-RETRY-TIME

bvwuzOYES | NOTOPIC-UPDATES

Switch on/off automatic update of topic defaults in the broker.

The broker reads the attribute filewhenever a topic is being subscribed
for the first time. This allows broker to honor modifications in the

YES

attribute file without a restart. The attribute file is read only when the
first subscriber subscribes to a particular topic. It is not reread when
a second subscriber subscribes to the same topic.

The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

NO

zOA255TRACE-DD

A string containing data set attributes enclosed in quotation marks. These
attributes describe the trace output file andmust be defined if you are using
using a GDG (generation data group) as output data set. See Flushing Trace
Data to a GDG Data Set under Tracing EntireX Broker.

The following keywords are supported as part of the TRACE-DD value:

■ DATACLAS

■ DCB including BLKSIZE, DSORG, LRECL, RECFM
■ DISP

■ DSN

■ MGMTCLAS

■ SPACE

■ STORCLAS

■ UNIT

Refer to your JCLReferenceManual for a complete description of the syntax.

Example:

53Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),
SPACE=(CYL,(100,10)),
STORCLAS=SMS"

bvwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running.

No tracing. Default value.0

Traces incoming requests, outgoing replies, resource usage and conversion
errors if SAGTRPC is used for CONVERSIONwith the conversion options
SUBSTITUTE-NONCONV or STOP.

1

All of trace level 1, plus all main routines executed.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus Broker ACI control block displays.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for
the change to take effect. For temporary changes to TRACE-LEVELwithout
restarting the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software
AG support.

bvwuzOTCP | SSL | NETTRANSPORT

The broker transport may be specified as any combination of one or more
of the following methods:

TCP/IP is supported.TCP

SSL or TLS is supported. This value is not supported for a broker
under z/VSE.

SSL

EntireNet-Work is supported. This value is not supported for a broker
under UNIX or Windows.

NET

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method
will be supported by the broker.

TRANSPORT=TCP-NET specifies that both the TCP/IP andNet-Work transport
methods will be supported by the broker.

Administration54

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

TRANSPORT=TCP-SSL-NET specifies that the TCP/IP, SSL (or TLS), and
Entire Net-Work transport methods will be supported by the broker.

Section TCP/IP-specific Attributes describes the parameters for each
transport method.

bwuzOnnnnTRAP-ERROR

Where nnnn is the four-digit API error number that triggers the trace handler,
for example 0007 (Service not registered). Leading zeros are not required.
There is no default value.

See Deferred Tracing in the platform-specific Broker administration
documentation.

bwuzOnTRBUFNUM

Changes the trace to write trace data to internal trace buffers. n is the size
of the trace buffer in 64 KB units. There is no default value.

bwuzOWRAPTRMODE

Changes the trace mode. "WRAP" is the only possible value. This value
instructs broker to write the trace buffer (see TRBUFNUM) if an event occurs.
This event is triggered by amatching TRAP-ERRORduring request processing
or when an exception occurs.

See MAX-MESSAGES-IN-UOW.UMSG

See MAX-MESSAGES-IN-UOW.UOW-MSGS

bvwuzOno value | n[S] | nM
| nH | nD

UWSTAT-LIFETIME

The value to be added to the UWTIME (lifetime of associatedUOW). If a value
is entered, it must be 1 or greater; a value of 0 will result in an error. If no
value is entered, the lifetime of theUOW status informationwill be the same
as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the UOW itself
(max. 2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

The lifetime determines how much additional time the UOW status is
retained in the persistent store and is calculated from the time at which the
associated UOW enters any of the following statuses: "PROCESSED",
"TIMEOUT", "BACKEDOUT", "CANCELLED", "DISCARDED". The
additional lifetime of the UOW status is calculated only when broker is

55Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

executing. Value in UWSTAT-LIFETIME supersedes the value (if specified)
in attribute UWSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not
have to be identical to the unit specified for UWTIME.

bvwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent status for
the service. The UWSTATP value is multiplied by the UWTIME value (the
lifetime of the associated UOW) to determine the length of time the status
will be retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UWTIME to determine how long a
persistent status will be retained.

1 - 254

Note: This attribute has not been supported since EntireX version 7.3. Use
UWSTAT-LIFETIME instead.

bvwuzO1D | nS | nM | nH |
nD

UWTIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

If the UOW is inactive - that is, is not processed within the time limit - it is
deleted and given a status of "TIMEOUT". This attribute can be overridden
by the UWTIME field in the Broker ACI control block.

See Timeout Considerations for EntireX Broker.

bvwuzONO | YESWAIT-FOR-ACTIVE-PSTORE

Determines whether broker should wait for the Adabas Persistent Store to
become active.

If broker should startwith a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will stop.

NO

If broker should start with a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will retry every 10 seconds to

YES

Administration56

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

initiate communicationswith the PSTORE. Broker will reject any user
requests until broker is able to contact the Adabas database.

bwuzO32 | n
(min. 1, max. 32)

WORKER-MAX

Maximum number of worker tasks the broker can use.

bwuzO1 | n (min. 1, max. 32)WORKER-MIN

Minimum number of worker tasks the broker can use.

bwuzO70S n | nS | nM | nHWORKER-NONACT

Non-activity time to elapse before a worker tasks is stopped.

Same as nS.n

Non-activity time in seconds (default 70, max. 2147483647).nS

Non-activity time in in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Caution: Avalue of 0 (zero) is invalid. If you set this value too low, additional
overhead is required for starting and stopping worker tasks. The default
and recommended value is 70S.

bwuzO1 | n (min. 1)WORKER-QUEUE-DEPTH

Number of unassigned user requests in the input queue before another
worker task gets started. The default and recommended value is 1. A higher
value will result in longer broker response times.

bwuzOinternal-value | nWORKER-START-DELAY

Delay is extended by n seconds.n

Delay after a successful worker task invocation before another worker task
can be started to handle current incoming workload. This attribute is used
to avoid the risk of recursive invocation of worker tasks, because starting a
worker task itself causes workload increase.

If no value is specified, an internal value calculated by the broker is used to
optimize dynamic worker management. This calculated value is the
maximum time required to start a worker task.

57Administration

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sectionsWildcard Service Definition and Service
Update Modes below the table.

Operating System

Opt/
ReqValuesAttribute

bvwuzRA32
(case-sensitive)

CLASS

Part of the name that identifies the service together with the
SERVER and SERVICE attributes. CLASSmust be specified first,
followed immediately by SERVER and SERVICE.

Classes starting with any of the following are reserved for use by
Software AG and should not be used in customer-written
applications: BROKER, SAG, ENTIRE, ETB, RPC, ADABAS,
NATURAL. Valid characters for class name are letters a-z, A-Z,
numbers 0-9, hyphen and underscore. Do not use dollar, percent,
period or comma. See also the restriction for SERVICE attribute
names.

bzON | YCLIENT-RPC-AUTHORIZATION

Determines whether this service is subject to RPC authorization
checking.

No RPC authorization checking is performed.N

RPC library and program name are appended to the
authorization check performed by EntireX Security. Specify
"YES" only to RPC-supported services.

Y

To allow conformity with Natural Security, the
CLIENT-RPC-AUTHORIZATION parameter can optionally be
defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).

bvwuzOUNLIM | nCONV-LIMIT

Allocates a number of conversations especially for this service.

The number of conversations is restricted only by the
number of conversations globally available. Precludes

UNLIM

Administration58

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

the use of NUM-CONVERSATION=AUTO in the Broker
section of the attribute file.

Number of conversations.n

A value of 0 (zero) is invalid.
If NUM-CONVERSATION=AUTO is specified in the Broker section of
the attribute file, CONV-LIMIT=UNLIM is not allowed in the service
section. A value must be specified or the CONV-LIMIT attribute
must be suppressed entirely for the service so that the default
(CONV-DEFAULT) becomes active.

bvwuzR5M | n | nS |
nM | nH

CONV-NONACT

Non-activity time for connections.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A value of 0 (zero) is invalid. If a connection is not used for the
specified time, that is, a server or a client does not issue a broker
request that references the connection in any way, the connection
is treated as inactive and the allocated resources are freed.

bvwuzOFormat: A255

(SAGTCHA [,
TRACE =n] [,
OPTION =s] |
SAGTRPC [,

TRACE =n] [,
OPTION =s] |
name [,

TRACE =n] |
NO)

CONVERSION

Defines conversion for internationalization. See Internationalization
with EntireX andWhat is the Best Internationalization Approach to
use? under Introduction to Internationalization for help on making
decisions about the internationalization approach.

59Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Conversion using ICUConversion (1) forACI-based
Programming.

SAGTCHA

Conversion using ICUConversion (1) forRPC-based
Components and Reliable RPC.

We recommend always using SAGTRPC for RPC
data streams.ConversionwithMultibyte, Double-byte

SAGTRPC (2)

and other Complex Codepageswill always be correct,
and Conversion with Single-byte Codepages is also
efficient because SAGTRPC detects single-byte
codepages automatically. See Conversion Details.

Name of the SAGTRPC user exit for RPC-based
components. See also Configuring SAGTRPC User

<name> (2)

ExitsunderConfiguring Broker for Internationalization
in the platform-specific administration
documentation andWriting SAGTRPC User Exits
in the platform-specific administration
documentation.

If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

NO

Only one internationalization approach can be active at one time
for a service. The CONVERSION attribute for internationalization
overrides the TRANSLATION attribute when defined for a service.
That is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

Note:

1. See also Configuring ICU Conversion under Configuring Broker
for Internationalization in the platform-specific administration
documentation.

2. SAGTRPCandSAGTRPCuser exit are not supported on z/VSE.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

No tracing0

Administration60

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

This level is an "on-error" trace. It provides
information on conversion errors only. For

Trace level
STANDARD

1

RPC calls this includes the IDL library, IDL
program and the data. Please note that if
OPTION Values for Conversion are set,
errors are ignored.

Tracing of incoming, outgoing parameters
and the payload.

Trace level
ADVANCED

2

This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

Trace level
SUPPORT

3

OPTION

See table of possible values under OPTIONValues for Conversion.

bvwuzONO | YESDEFERRED

Units of work cannot be sent to the service until it is
available.

NO

Units of work can be sent to a service that is not up and
registered. The units of work will be processed when the
service becomes available.

YES

bvwuzO0 | 1 | 2ENCRYPTION-LEVEL

Enforce encryption when data is transferred between client and
server.

No encryption is enforced.0

Encryption is enforced between server and broker kernel.1

Encryption is enforced between server and broker kernel, and
also between client and broker.

2

See also ENCRYPTION-LEVEL in Broker ACI control block and
Encryption underWriting Applications using EntireX Security in the
ACI Programming documentation.

Note: The per service ENCRYPTION-LEVEL attribute is to be
specified onlywhere the broker attribute SECURITY=YES has been
specified and only if you are using EntireX Security.

bvwuzOYES | NOLOAD-BALANCING

61Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

When servers that offer a particular service are started, new
conversations will be assigned to these servers in a

YES

round-robin fashion. The first waiting server will get the
first new conversation, the second waiting server will get
the second new conversation, and so on.

A new conversation is always assigned to the first server
in the queue.

NO

bvwuzOUNLIM | nLONG-BUFFER-LIMIT

Allocates a number of long message buffers for the service.

The number of long message buffers is restricted only
by the number of buffers globally available. Precludes

UNLIM

the use of NUM-LONG-BUFFER=AUTO in the Broker
section of the attribute file.

Number of long message buffers.n

A value of 0 (zero) is invalid. If NUM-LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the service section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the service so that the default
(LONG-BUFFER-DEFAULT) becomes active.

bvwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a UOW.

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the
highest positive number that can be stored in a four-byte integer.

See MAX-MESSAGE-LENGTH.MAX-MSG

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bvwuzO0 | nMAX-UOWS

The service does not accept units of work, i.e. it processes
only messages that are not part of a UOW. Using zero

0

prevents the sending of UOWs to services that are not
intended to process them.

Administration62

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Maximum number of UOWs that can be active concurrently
for the service. If you do not provide a MAX-UOWS value for

n

the service, it defaults to the MAX-UOWS setting for the broker.
If you provide a value that exceeds that of the broker, the
service MAX-UOWS is set to the broker's MAX-UOWS value and
a warning message is issued.

Specify MAX-UOWS=0 for Natural RPC Servers. This restriction
will be removed with a later release.

bvwuzO256 | nMIN-UOW-CONVERSATIONS-IN-MEMORY

Defines the minimum number of UOW conversations
(STORE=BROKER, created by a client and finished with an EOC
without being accepted by a server) kept in memory to improve
the performance for servers receiving new UOW conversations
withoutwaiting for data to be swapped in fromPSTORE. See also
Swapping out New Units of Work.

The default value should be used if producer (client) and
consumer (server) of UOW conversations are both active at

256

the same time regardless of the speed producing or
consuming UOW conversations. It guarantees a reasonable
balance betweenmemory being used and swap-out/swap-in
activities.

Minimum number of UOW conversations kept in memory.
The value n is equal to or greater than 256.

n

Note: If broker-specific attribute SWAP-OUT-NEW-UOWS is set to
"NO", MIN-UOW-CONVERSATIONS-IN-MEMORY has no effect.

See MAX-UOWS.MUOW

bvwuzONO | YESNOTIFY-EOC

Specifies whether timed-out conversations are to be stored or
discarded.

Discard the EOC notifications if the server is not ready to
receive.

NO

Store the EOC notifications if the server is not ready to
receive and then notify the server if possible.

YES

63Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

If a server is not ready to receive an EOC notification, it can be
stored or discarded. If it is stored, the server is notified, if possible,
when it is ready to receive.

Caution: The behavior activated by this parameter can be relied
upon only during a single lifetime of the broker kernel.
Specifically, conversations containing units of work, whose
lifetime can span multiple broker kernel sessions, cannot be
assumed to show this behavior, even with NOTIFY-EOC=YES.

Alias for MAX-UOWS.NUM-UOW

bvwuzRA32
(case-sensitive)

SERVER

Part of the name that identifies the service togetherwith the CLASS
and SERVICE attributes.

CLASSmust be specified first, followed immediately by SERVER
and SERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma.

bvwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number
of servers globally available. Precludes the use of
NUM-SERVER=AUTO.

UNLIM

A value of 0 (zero) is invalid.

This value can be overridden by specifying a SERVER-LIMIT for
the service.

bvwuzOn | UNLIMSERVER-LIMIT

Allows a number of servers especially for this service.

Number of servers.n

The number of servers is restricted only by the number
of servers globally available. Precludes the use of

UNLIM

NUM-SERVER=AUTO in the Broker section of the attribute
file.

Administration64

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the
attribute file, SERVER-LIMIT=UNLIM is not allowed in the service
section. A valuemust be specified or the SERVER-LIMIT attribute
must be suppressed entirely for the service so that the default
(SERVER-DEFAULT) becomes active.

bvwuzR5M | n | nS |
nM | nH

SERVER-NONACT

Non-activity time for servers. A server that does not issue a broker
request within the specified time limit is treated as inactive and
all resources for the server are freed.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If a server registers multiple services, the highest value of all the
services registered is taken as non-activity time for the server.

bvwuzRA32
(case-sensitive)

SERVICE

Part of the name that identifies the service togetherwith the CLASS
and SERVER attributes.

CLASSmust be specified first, followed immediately by SERVER
and SERVICE.

The SERVICE attribute names "EXTRACTOR" and
"DEPLOYMENT" are reserved for Software AG internal use and
should not be used in customer-written applications. Valid
characters for service name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma. See also the restriction for CLASS attribute names.

bvwuzOUNLIM | nSHORT-BUFFER-LIMIT

Allocates a number of short message buffers for the service.

The number of short message buffers is restricted only
by the number of buffers globally available. Precludes

UNLIM

the use of NUM-SHORT-BUFFER=AUTO in the Broker
section of the attribute file.

65Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Number of short message buffers.n

If NUM-SHORT-BUFFER=AUTO is specified in the Broker section of
the attribute file, SHORT-BUFFER-LIMIT=UNLIM is not allowed
in the service section. A value must be specified or the
SHORT-BUFFER-LIMIT attribute must be suppressed entirely for
the service so that the default (SHORT-BUFFER-DEFAULT) becomes
active.

bvwuzOOFF|BROKERSTORE

Sets the default STORE attribute for all units of work sent to the
service.

Units of work are not persistent.OFF

Units of work are persistent.BROKER

This attribute can be overridden by the STORE field in the Broker
ACI control block.

bvwuzOFormat: A255

SAGTCHA |
NO | <name>

TRANSLATION

Activates translation or translation user exit for internationalization
(see TranslationUser Exit under Introduction to Internationalization).
For help on deciding the right internationalization approach for
your environment, seeWhat is the Best InternationalizationApproach
to use? under Introduction to Internationalization

Conversion routine SAGTCHA for ACI-based
Programming, RPC-based Components and Reliable
RPC.

SAGTCHA

If translation is not to be used - e.g., for binary
payload (broker messages) - either omit the
TRANSLATION attribute or specifyTRANSLATION=NO.

NO

Name of Translation User Exit. See also Configuring
Translation User Exits under Configuring Broker for

<name>

Internationalization in the platform-specific
administration documentation orWriting Translation
User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation.

Administration66

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service; that is, when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

Alias for MAX-MESSAGES-IN-UOW.UMSG

Alias for MAX-MESSAGES-IN-UOW.UOW-MSGS

bvwuzOno value | n[S]
| nM| nH| nD

UWSTAT-LIFETIME

The value to be added to the UWTIME (lifetime of associatedUOW).
If a value is entered, it must be 1 or greater; a value of 0 will result
in an error. If no value is entered, the lifetime of the UOW status
information will be the same as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the
UOW itself (max. 2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

The lifetime determines how much additional time the UOW
status is retained in the persistent store and is calculated from the
time at which the associated UOW enters any of the following
statuses: "PROCESSED", "TIMEOUT", "BACKEDOUT",
"CANCELLED", "DISCARDED". The additional lifetime of the
UOW status is calculated only when broker is executing. Value
in UWSTAT-LIFETIME supersedes the value (if specified) in
attribute UWSTATP.

Note: If no unit is specified, the default unit is seconds. The unit
does not have to be identical to the unit specified for UWTIME.

bvwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent
status for the service. The UWSTATP value is multiplied by the
UWTIME value (the lifetime of the associated UOW) to determine
the length of time the statuswill be retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UWTIME to determine how long
a persistent status will be retained.

1 - 254

67Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Note: This attribute has not been supported since EntireX version
7.3. Use UWSTAT-LIFETIME instead.

bvwuzO1D | n S | nM
| n H | nD

UWTIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

If the unit of work (UOW) is inactive, that is, not processedwithin
the time limit, it is deleted and given a status of TIMEOUT. This
attribute can be overridden by the UWTIME field in the BrokerACI
control block.

Wildcard Service Definition

The special names of CLASS = *, SERVER = * and SERVICE = * are allowed in the service-specific
section of the broker attribute file. These are known as "wildcard" service definitions. If this name
is present in the attribute file, any service that registers with the broker and does not have its own
entry in the attribute filewill inherit the attributes that apply to the first wildcard service definition
found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily
complete):

CLASS = *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS = ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV-
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

Administration68

Broker Attributes

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

■ In service updatemode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

■ In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if
■ there is a high frequency of REGISTER operations, or
■ the attribute file is rather large and results in a high I/O rate for the broker.

The disadvantage to using non-updatemode is that if specific attributes aremodified, the broker
must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters can not be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

The situations 1 and 2 above are reported to the broker log file if TRACE option for CONVERSION is
set to level 1.

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

No messageNo message.yesyesSubstitutes both
non-convertible characters

SUBSTITUTE

(receiver's codepage) and bad
input characters (sender's
codepage) with a

69Administration

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

codepage-dependent default
replacement character.

No message.Write detailed
conversion
errormessage.

yesyesIf a corresponding code point
is not available in the receiver's
codepage, the character cannot

SUBSTITUTE-NONCONV

be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.

No message.No message.yesnoSubstitutes non-convertible
characters with a

BLANKOUT

codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

Write detailed
conversion
errormessage.

Write detailed
conversion
errormessage.

yesyesSignals an error on detecting a
non-convertible or bad input
character. This is the default

STOP

behavior if no option is
specified.

Administration70

Broker Attributes

Topic-specific Attributes

The topic-specific attribute section begins with the keyword DEFAULTS=TOPIC as shown in the
sample attribute file. It contains attributes that apply to the publish and subscribe communication
model.

Operating System

Opt/
ReqValuesAttribute

bvwuzOYES | NOALLOW-DURABLE

Determines whether a subscriber is allowed to perform a durable
subscription to a topic.

Subscriber may perform durable subscription.YES

Durable subscription not allowed.NO

If users are allowed to durably subscribe to any topic, you must
specify a value for the SUBSCRIBER-STORE parameter.

bvwuzOYES | NOALLOW-USER-SUBSCRIBE

Determines if it is possible for a user to subscribe to a topic directly
(YES) or only by Administrator.

Users are allowed to subscribe to the topic.YES

Usersmust be subscribed by theAdministrator throughCIS.
See Broker Command and Information Services. The subscribe
request of users is rejected.

NO

bvwuzONO | YESAUTO-COMMIT-FOR-SUBSCRIBER

No COMMIT performed.NO

An implicit COMMIT is performed by broker when the
subscriber receives a publication, that is, the subscriber does

YES

not need the CONTROL_PUBLICATION option COMMIT after
receiving each publication.

Caution: You may lose your last message.

bvwuzOFormat: A255

(SAGTCHA
[TRACE =n]

CONVERSION

71Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

[, OPTION
=s])

Defines conversion for internationalization. See Internationalization
with EntireX. For help on making decisions about the
internationalization approach, seeWhat is the Best Internationalization
Approach to use? under Introduction to Internationalization

Conversion using ICU Conversion for ACI-based
Programming. For more information see Conversion
Details.

See alsoConfiguring ICUConversionunderConfiguring
Broker for Internationalization in the platform-specific
administration documentation.

SAGTCHA

If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

NO

Only one internationalization approach can be active at one time
for a topic. The CONVERSION attribute for internationalization
overrides the TRANSLATION attributewhen defined for a topic, that
is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

No tracing0

This level is an "on-error" trace. It provides
information on conversion errors only.

Trace level
STANDARD

1

Please note that if OPTION Values for
Conversion are set, errors are ignored.

Tracing of incoming, outgoing parameters
and the payload.

Trace level
ADVANCED

2

This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

Trace level SUPPORT3

OPTION

Administration72

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See OPTION Values for Conversion under Service-specific Attributes
above.

bvwuzOUNLIM | nLONG-BUFFER-LIMIT

Allocates a number of long message buffers for the topic.

The number of longmessage buffers is restricted only by
the number of buffers globally available. Excludes the

UNLIM

use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

Number of long message buffers.n

A value of 0 (zero) is invalid. If NUM-LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(LONG-BUFFER-DEFAULT) becomes active.

bvwuzO16 | nMAX-MESSAGES-IN-PUBLICATION

Maximum number of messages in a publication.

bvwuzO31647 | nMAX-PUBLICATION-MESSAGE-LENGTH

Maximumsize of amessage in a publication. The actual publication
size is transport-dependent.

bvwuzOn | nS | nM |
nH | nD | nY

PUBLICATION-LIFETIME

Lifetime of a publication in absolute time units. Publications are
retained by broker until they are either received by all subscribers
or the publication lifetime has expired.

Same as nS.n

Publication lifetime in seconds (max. 2147483647).nS

Publication lifetime in minutes (max. 35791394).nM

Publication lifetime in hours (max. 596523).nH

Publication lifetime in days (max. 24855).nD

Publication lifetime in years (max. 68).nY

The publication lifetime is calculated even for periods of timewhen
broker is stopped.

bvwuzOn | UNLIMPUBLICATION-LIMIT

73Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

There is no default. Maximumnumber of publications possible for
this topic. If specified, this overrides the publication default value,
which is a general maximum value per topic. If neither parameter
is specified, the total number of publications for the topic is limited
only by NUM-PUBLICATION.

Number of publications.n

The number of publications is restricted only by the
number of publications globally available. Excludes the

UNLIM

use of NUM-PUBLICATION=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If PUBLICATION-LIMIT=AUTO is
specified in the Broker section of the attribute file,
PUBLICATION-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified, or the PUBLICATION-LIMIT attribute
must be suppressed entirely for the topic so that the default
(PUBLICATION-DEFAULT) becomes active.

bvwuzO5M | n | nS |
nM | nH | nD
| nY

PUBLISHER-NONACT

Non-activity of the publisher, after which an auto-logoff is
performed and the publisher's resources are freed.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Non-activity time in days (max. 24855).nD

Non-activity time in years (max. 68).nY

If not specified, defaults to 5 minutes. This is the time after which
the publisher's internal memory structures will be cleaned up and
a subsequent logon is required.

bvwuzOUNLIM | nSHORT-BUFFER-LIMIT

Allocates a number of short message buffers for the topic.

The number of short message buffers is restricted only
by the number of buffers globally available. Excludes the

UNLIM

Administration74

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

Number of short message buffers.n

A value of 0 (zero) is invalid. If NUM-SHORT-BUFFER=AUTO is
specified in the Broker section of the attribute file,
SHORT-BUFFER-LIMIT=UNLIM is not allowed in the topics section.
A value must be specified, or the SHORT-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(SHORT-BUFFER-DEFAULT) becomes active.

These parameters are obsolete. The subscriber store in a secondary
store is no longer supported. We recommend you use the primary

SSTORE
SSTORE-TYPE

persistent store (PSTORE) to store your subscriber data. For this,
set broker-specific parameter SUBSCRIBER-STORE=PSTORE.

bvwuzOn | UNLIMSUBSCRIBER-LIMIT

There is no default. Maximum number of subscriptions possible
for this topic. If specified, this overrides the subscriber default
value, which is a general maximum value per topic. If neither
parameter is specified, the total number of subscribers for the topic
is limited only by NUM-SUBSCRIBER.

Number of subscribers.n

The number of subscribers is restricted only by the
number of subscribers globally available. Excludes the

UNLIM

use of NUM-SUBSCRIBER=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If NUM-SUBSCRIBER=AUTO is specified
in the Broker section of the attribute file,
SUBSCRIBER-LIMIT=UNLIM is not allowed in the topic section. A
valuemust be specified, or the SUBSCRIBER-LIMIT attributemust
be suppressed entirely for the topic so that the default
(SUBSCRIBER-DEFAULT) becomes active.

bvwuzO5M | n | nS |
nM | nH | nD
| nY

SUBSCRIBER-NONACT

Non-activity of the subscriber after which an auto-logoff is
performed and the publisher's resources are freed.

Same as nS.n

75Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Non-activity time in days (max. 24855).nD

Non-activity time in years (max. 68).nY

In the case of a non-durable subscriber, the user's subscription is
also cancelled. In the case of a durable subscriber, the user's
subscription is persisted, and it is not necessary for the user to issue
any subsequent SUBSCRIBE commands. The subscription of a
durable subscriber is also persisted even while broker is stopped.

If not specified, defaults to 5 minutes. This is the time after which
the subscriber's internalmemory structureswill be cleaned up and
a subsequent logon is required.

bvwuzONEVER | n |
nS | nM | nH |
nD | nY

SUBSCRIPTION-EXPIRATION

Lifetime of a user's subscription in absolute time units.
Subscriptions are retained by broker until either the user issues an
UNSUBSCRIBE command or the subscription lifetime has expired.

Subscriber will never be purged from PSTORE.NEVER

Same as nS.n

Expiration time in seconds (max. 2147483647).nS

Expiration time in minutes (max. 35791394).nM

Expiration time in hours (max. 596523).nH

Expiration time in days (max. 24855).nD

Expiration time in years (max. 68).nY

Durable subscriptions remain effective even if the user performs
the LOGOFF command or broker is stopped. The subscription
lifetime is calculated also for periods of time when broker is
stopped.

SUBSCRIPTION-EXPIRATION is the time after which the
subscription expires. In the case of durable subscription, the
subscription is removed from the PSTORE. Broker removes expired
subscriptions onlywhen the user is not currently active, for example

Administration76

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

when the user has issued a LOGOFF command or after the
SUBSCRIBER-NONACT has passed if no LOGOFF is issued.

If SUBSCRIBER-NONACT is specified greater than
SUBSCRIPTION-EXPIRATION, broker adjusts
SUBSCRIPTION-EXPIRATION to the value ofSUBSCRIBER-NONACT.

bvwuzRA96
(case-sensitive)

TOPIC

Name of the topic for publish and subscribe processing. Valid
characters for topic name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore. Do not use dollar, percent, period or comma.

bvwuzOFormat: A255

SAGTCHA |
NO | <name>

TRANSLATION

Activates translation or translation user exit for internationalization
(see Translation User Exit under Introduction to Internationalization).
See alsoWhat is the Best Internationalization Approach to use? under
Introduction to Internationalization

Conversion routine SAGTCHA for ACI-based
programming,RPC-based components and forReliable
RPC.

SAGTCHA

If translation is not to be used, e.g. for binary payload
(broker messages), either omit the TRANSLATION
attribute or specify TRANSLATION=NO.

NO

Name of Translation User Exit. See also Configuring
SAGTRPC User Exits under Configuring Broker for

<name>

Internationalization in the platform-specific
administrationdocumentation andWriting SAGTRPC
User Exits in the platform-specific administration
documentation.

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service, i.e. when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

77Administration

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize themapping of locale strings to codepages for the internation-
alization approaches ICU conversion and SAGTRPC user exit. These attributes do not apply to
other approaches. See Internationalization with EntireX for more information.

Operating System

Opt/
ReqValuesAttribute

bvwuzOAny ICU
converter

DEFAULT_ASCII

name or
alias. See
also
Additional
Notes
below.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on an ASCII platform (UNIX, Windows, etc.),
and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used. See ICU Conversion under Introduction to Internationalization and
SAGTRPC User Exit under Introduction to Internationalization.

Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Defaults */
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

bvwuzOAny ICU
converter

DEFAULT_EBCDIC_IBM

Administration78

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

name or
alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself and
■ the calling component is running on an IBM mainframe platform (z/OS, z/VSE
etc.) and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

bvwuzOAny ICU
converter
name or
alias

DEFAULT_EBCDIC_SNI

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on a Fujitsu EBCDIC mainframe platform
(BS2000/OSD), and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

79Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

vwuzOAny ICU
converter
name or

locale-string

alias. See
also
Additional
Notes
below.

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker's Locale String Processing under
Locale String Mapping in the internationalization documentation. This is useful:

■ if the broker's locale string processing fails - i.e. leads to no codepage or to the
wrong codepage - you can explicitly assign the codepage which meets your
requirements.

■ if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server, publisher or subscriber) and the value is the codepage that you
want to use in place of that locale string. In the first line of the example below, the
client or server application sends ASCII as a locale string; the broker maps this to
the codepage ISO 8859_1. In the same way EUC_JP_LINUX is mapped to
ibm-33722_P12A-1999. All other locale strings aremapped by the broker'smapping
mechanism, see Broker's Built-in Locale StringMapping under Locale StringMapping
in the internationalization documentation. Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Codepage Assignments */
ASCII=ISO8859
EUC_JP_LINUX=ibm-33722_P12A-1999
/* Customer-written ICU converters */
CP1140=myebcdic
CP0819=myascii

Administration80

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

For more examples, see Bypassing Broker's Built-in Locale String Mapping under
Locale StringMapping in the internationalization documentation and alsoAdditional
Notes below.

Additional Notes

■ Locale stringmatching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

■ If ICU is used for the internationalization approach and if the style in not known by ICU, e.g.
ECSnnnn, <ll>_<cc> etc., the name will be mapped to a suitable ICU alias. For more details on
the mappingmechanism, see Broker's Built-in Locale StringMapping under Locale StringMapping
in the internationalization documentation. For more details on ICU and ICU converter name
standards, see ICU Resources under Introduction to Internationalization.

■ If SAGTRPC user exit is used for the internationalization approach, we recommend assigning
the codepage in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit,
see Broker's Built-in Locale StringMapping under Locale StringMapping in the internationalization
documentation.

■ See CONVERSION and CONVERSION attribute CONVERSION on this page for the internationalization
approach in use.

81Administration

Broker Attributes

Adabas SVC/Entire Net-Work-specific Attributes

TheAdabas SVC/EntireNet-Work-specific attribute section beginswith the keyword DEFAULTS=NET
as shown in the sample attribute file. The attributes in this section are needed to execute the
Adabas SVC/Entire Net-Work communicator of the EntireX Broker kernel.

Note: This section applies to mainframe platforms only. It does not apply to UNIX and
Windows.

Operating System

Opt/
ReqValuesAttribute

vzRnnnADASVC

Sets the Adabas SVC number for EntireX Broker access.

The Adabas SVC is used to perform various internal functions, including
communication between the caller program and EntireX Broker.

Not supported on BS2000/OSD.

bvzONO | YESEXTENDED-ACB-SUPPORT

Determines whether extended features of Adabas version 8 (or above) are
supported.

No features of Adabas version 8 or above will be used.NO

Informs broker kernel to provide Adabas/WAL version 8 transport
capability. This parameter is required for sending/receiving more than

YES

32 KB data over Adabas [NET] transport. This value should be set only if
you have installed Adabas/WAL version 8, Adabas SVC, and included
Adabas/WAL version 8 load libraries into the steplib of broker kernel;
otherwise, unpredictable results can occur.

bvzONO | YESFORCE

Determines whether DBID table entries can be overwritten.

Overwrite of DBID table entries not permitted.NO

Overwrite ofDBID table entries permitted. This is requiredwhen theDBID
table entry is not deleted after abnormal termination.

YES

Caution: Overwriting an existing entry prevents any further communication
with the overwritten node. Use FORCE=YES only if you are absolutely sure that
no target node with that DBID is active.

Administration82

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bOFORMAT:
A8idtname

IDTNAME

|
ADABAS5B

If an ID table name is specified with the appropriate ADARUN parameter for
Entire Net-Work, Adabas or Natural, the same name must be specified here.
The ID table is used to perform various internal functions, including
communication between the caller program and the EntireX Broker. Only
supported under BS2000/OSD.

bvzO8000 | nIUBL

This parameter sets the maximum length (in bytes) of the buffer that can be
passed from the caller to EntireX Broker. Themaximum size of IUBL is the same
as the maximum value of the Adabas parameter LU (see the Adabas Operations
Manual).

IUBLmust be large enough to hold themaximumsend-length plus receive-length
required for any caller program plus any administrative overhead for Adabas
and Entire Net-Work control structures.

bvzONO | YESLOCAL

Specifies whether the broker ID is local.

Broker ID can be accessed from remote nodes.NO

The broker ID is local. It is not accessible from remote nodes.YES

bvwuzO2147483647
| n

MAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process using transport
methodNET. The default value represents the highest positive number that can
be stored in a four-byte integer.

bvzO10 | nNABS

The number of attached buffers to be used (max. 524287).

An attached buffer is an internal buffer used for interprocess communication.
An attached buffer pool equal to the NABS value multiplied by 4096 will be
allocated. This buffer pool must be large enough to hold all data (IUBL) of all
parallel calls to EntireX Broker.

The following formula can be used to calculate the value for NABS:
NABS = NCQE *IUBL / 4096.

bvzO10 | nNCQE

83Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

NCQE defines the number of command queue elements which are available for
processing commands arriving at the broker kernel overAdabas SVC /Net-Work
transportmechanism. Sufficient NCQE should be allocated to allow this transport
mechanism to processmultiple broker commands concurrently. Each command
queue element requires 192 bytes, and the element is released when either the
user (client or server) has received the results of the command, or if the command
is timed out.

Thenumber of commandqueue elements required to handle broker calls depends
on the number of parallel active broker calls that are using the transport
mechanismAdabas SVC / Entire Net-Work. For example, all broker commands
issued by any of the following application components using this transport
mechanism:

■ clients
■ servers
■ publishers
■ subscribers

bvzO1-65534NODE

Defines the unique DBID for EntireX Broker.

Used for internodeAdabas/EntireNet-Work communication. There is no default;
the value of NODEmust be a value greater than or equal to 1 or less than or equal
to 65534. If you set the parameter LOCAL=YES, you can use the samenode number
for different installations of EntireX Broker in an EntireNet-Work environment.

Please note that themaximumvalue for NODE that is allowed for EntireNet-Work
under UNIX is 255.

If NODE is specified, it overrides the DBID derived from the numeric part of
BROKER-ID.

bvzO30 | nTIME

This parameter sets the timeout value for broker calls in seconds. The results of
a broker call must be received by the caller within this time limit.

bvzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method NET. It overrides the global value of trace level for all NET routines.

No tracing. Default value.0

Display invalid Adabas commands.1

Administration84

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

85Administration

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITYas shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is
specified.

Operating System

Opt/
ReqValuesAttribute

bONO | YESACCESS-SECURITY-SERVER

Determines where authentication is checked.

Authentication is checked in the broker tasks. This requires broker to be running under
TSOS in order to execute privileged security checks.

NO

Authentication is checked in the EntireX Broker Security Server for BS2000/OSD. This
does not require broker to be running under TSOS. See EntireX Broker Security Server
for BS2000/OSD in the BS2000/OSD administration documentation.

YES

zOA8APPLICATION-NAME

Specifies the name of the application to be checked if FACILITY-CHECK=YES is defined. In
RACF, for example, an application "BROKER"with read permission for user "DOE" is defined
with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASS(APPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY-CHECK for more information.

bwuzOOS | ldapUrl |
iafUrl

AUTHENTICATION-TYPE

Authentication is performed against the local operating system. Default if
SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from
the attribute file.

OS

Authentication is performed against the LDAP repository specified under
ldapUrl. Not supported under BS2000/OSD.

ldapUrl

■ For TCP, specify repository URL:

Administration86

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

AUTHENTICATION-TYPE="ldap://HostName
[:PortNumber]"

■ For SSL or TLS:

AUTHENTICATION-TYPE="ldaps://HostName
[:PortNumber]"

If no port number is specified, the default is the standard LDAP port number
389 for TCP transport. Examples for TCP and SSL (or TLS):

AUTHENTICATION-TYPE="ldap://myhost.mydomain.com"
AUTHENTICATION-TYPE="ldaps://myhost.mydomain.com:636"

Authentication is performed using Software AG's Integrated Authentication
Framework against the IAF service specified under iafUrl. Not supported under
BS2000/OSD.

The URL of the IAF service is specified using

iafUrl

AUTHENTICATION-TYPE=
"iaf://HostName[:PortNumber]?SSLParameters"

If no port number is specified, the default is port number 1958. SSL or TLS
parameters are specified in the same format as for theACI function SETSSLPARMS.
Example: AUTHENTICATION-TYPE="iaf://myhost.mydomain.com:10000?

AUTHENTICATION-TYPE=
"iaf://myhost.mydomain.com:10000?
verify_server= no&
trust_store=
/opt/softwareag/EntireX/etc/ExxCACert.pem"

On z/OS, the URL of an IAF service running on the same host may specified as

87Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

AUTHENTICATION-TYPE=
"iaf.ipc://IAFServiceID[:SVCNumber]"

Example:

AUTHENTICATION-TYPE=
"iaf.ipc://IAF075:SVC245"

Under z/OS, IAF is currently not capable of performing authorization calls against
RACF resource definitions. As the default SECURITY-LEVEL sets both
authentication and authorization, it must be explicitly restricted to
SECURITY-LEVEL=AUTHENTICATION.

wuOYES | NOAUTHORIZATIONDEFAULT

Determines whether access is granted to a specified service if the specified could not be
found listed in the repository of authorization rules.

Grant access.YES

Deny access.NO

Applies only when using EntireX Security under UNIX andWindows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

wuOA32AUTHORIZATIONRULE

List of authorization rules. Multiple sets of rules can be defined, each set is limited to 32
chars. The maximum number of AUTHORIZATIONRULE entries in the attribute file is 16.

Applies only when using EntireX Security under UNIX or Windows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

zOYES | NOCHECK-IP-ADDRESS

Determines whether the TCP/IP address of the caller is subject to a resource check.

zONA2MSG0 |
NA2MSG1 |

ERRTXT-MODULE

Administration88

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

NA2MSG2 |
ModuleName

Specifies the name of the security error text module. Default is "NA2MSG0", English
messages. For instructions on how to customizemessages, seeBuild Language-specificMessages
(Optional) under Installing EntireX Security under z/OS under z/OS in the z/OS installation
documentation.

zONO | YESFACILITY-CHECK

It is possible to check whether a particular user is at all allowed to use an application before
performing a password check. The advantage of this additional check is that when the user
is not allowed to use this application, the broker returns error 00080013 and does not try to
authenticate the user. Failing an authentication checkmay lead to the user's password being
revoked; this situation is avoided if the facility check is performed first. See attribute
APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed before
each authentication call.

bwuzONO | YESIGNORE-STOKEN

Determines whether the value of the ACI field SECURITY-TOKEN is verified on each call.

zOYES | NOINCLUDE-CLASS

Determines whether the class name is included in the resource check.

zOYES | NOINCLUDE-NAME

Determines whether the server name is included in the resource check.

zOYES | NOINCLUDE-SERVICE

Determines whether the service name is included in the resource check.

wuzOldapDnLDAP-PERSON-BASE-BINDDN

Used with LDAP authentication to specify the distinguished name where authentication
information is stored. This value is prefixedwith the user IDfield name (see below). Example:

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

wuzOOpenLDAP |
ActiveDirectory |

LDAP-REPOSITORY-TYPE

SunOneDirectory |
Tivoli | Novell |
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository type
that most closely matches your actual repository. In the case of Windows Active Directory,
the user ID is typically in the form domainName\userId.

wONO | YESLDAP-SASL-AUTHENTICATION

89Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Specifies whether or not Simple Authentication and Security Layer (SASL) is to perform the
authentication check. In practice, this determines whether or not the password supplied by
the user is passed in plain text between the broker kernel and the LDAP server. If SASL is
activated, this implies that the password is encrypted.

Password is sent to LDAP server in plain text.NO

Password is sent to LDAP server encrypted.YES

wuzOcn | uidFieldNameLDAP-USERID-FIELD

Usedwith LDAP authentication to specify the first field name of a user in the Distinguished
Name, for example:

LDAP-USERID-FIELD=uid

zO1-256MAX-SAF-PROF-LENGTH

This parameter should be increased if the length of the resource checks - that is, the length
of the profile comprising “<class>.<server>.<service>” - is greater than 80 bytes.

This parameter defaults to 80 if a value is not specified.

bwuzONO | YESPASSWORD-TO-UPPER-CASE

Determines whether the password and new password are converted to uppercase before
verification.

zORACF | ACF2 |
TOP-SECRET

PRODUCT

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

Security system ACF2 is installed.ACF2

Security system RACF is installed. Default.RACF

Security system TOP-SECRET is installed.TOP-SECRET

The default value is used if an incorrect or no value is specified.

zOYES | NOPROPAGATE-TRUSTED-USERID

Determines whether a client user ID obtained by means of the trusted user ID mechanism
is propagated to a server using the ACI field CLIENT-USERID.

zONBKSAG |
SAFClassName

SAF-CLASS

Specifies the name of the SAF class/type used to hold the EntireX-related resource profiles.

zONBKSAG |
SAFClassName

SAF-CLASS-IP

Administration90

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Specifies the name of the SAF class/type used when performing IP address authorization
checks.

bvwuzOAUTHORIZATION |
AUTHENTICATION
| ENCRYPTION

SECURITY-LEVEL

Specifies the mode of operation.

Authorization, authentication, and encryption (not under
BS2000/OSD or z/VSE).

AUTHORIZATION

Authentication and encryption.AUTHENTICATION

Encryption only.ENCRYPTION

Caution: In version 8.0, the default value for this parameter was "AUTHORIZATION".

zOYES | nameSECURITY-NODE

This parameter can be used to specify a prefix that is added to all authorization checks,
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often important to
distinguish between production, test, and development environments.

This causes the broker ID to be used as a prefix for all authorization checks.YES

This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

name

Note: By not setting this parameter, no prefix is added to the resource check (the default
behavior).

bvwuzO0 - 4TRACE-LEVEL

Trace level for EntireX Security. It overrides the global value of trace level in the attribute
file.

zOYES | NOTRUSTED-USERID

Activates the trusted user IDmechanism for broker requests arriving over the local Adabas
IPC mechanism.

bzONO | YESUSERID-TO-UPPER-CASE

Determines whether user ID is converted to uppercase before verification.

zONO | YESUNIVERSAL

Determines whether access to undefined resource profiles is allowed.

bwuzONO | YESWARN-MODE

Determines whether a resource check failure results in just a warning or an error.

91Administration

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

Operating System

Opt/
ReqValuesAttribute

bvwuzOn | nS | nM
| nH

CONNECTION-NONACT

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime in the platform-specific Stub Administration sections
of the EntireX documentation.

bvwuzO0.0.0.0 |
HostName |

HOST

IP
address

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of the
system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

bvwuzO2147483647
| n

MAX-MESSAGE-LENGTH

Administration92

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Maximummessage size that the broker kernel can process using transportmethod
TCP/IP. The default value represents the highest positive number that can be stored
in a four-byte integer.

bvwuzO1025 - 65535PORT

The TCP/IP port number on which the broker will listen for connection requests.

If specified, PORT overrides broker attribute TCPPORT.

Note: TCPPORTwill be retired with the next version.

If PORT is not specified but TCPPORT is specified, TCPPORT is used.

If TCPPORT is not specified, the broker will attempt to find its TCP/IP port number
from the TCP/IP Services file, using getservbyname. If broker cannot find its TCP/IP
port number from the TCP/IP Services file, it will use the default value of 1971.

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

bvwuzOYES | NORESTART

The broker kernel will attempt to restart the TCP/IP communicator.YES

The broker kernel will not try to restart the TCP/IP communicator.NO

If specified, RESTART overrides broker attribute TCP-RESTART.

Note: TCP-RESTARTwill be retired with the next version.

If RESTART is not specified but TCP-RESTART is specified, TCP-RESTART is used.

The RESTART setting applies to all TCP/IP communicators.

bvwuzO20 | n |
UNLIM

RETRY-LIMIT

Maximum number of attempts to restart the TCP/IP communicator.

If specified, RETRY-LIMIT overrides broker attribute TCP-RETRY-LIMIT.

Note: TCP-RETRY-LIMITwill be retired with the next version.

If RETRY-LIMIT is not specified but TCP-RETRY-LIMIT is specified,
TCP-RETRY-LIMIT is used.

The RETRY-LIMIT setting applies to all TCP/IP communicators.

93Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzO3M | n | nS
| nM | nH

RETRY-TIME

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

Same as n S.n

Wait time in seconds (max. 2147483647).n S

Wait time in minutes (max. 35791394).nM

Wait time in hours (max. 596523).n H

Minimum wait time is 1S.

If specified, RETRY-TIME overrides broker attribute TCP-RETRY-TIME.

Note: TCP-RETRY-TIMEwill be retired with the next version.

IfRETRY-TIME is not specified butTCP-RETRY-TIME is specified,TCP-RETRY-TIME
is used.

The RETRY-TIME setting applies to all TCP/IP communicators.

bvuzOYES | NOREUSE-ADDRESS

wOYES | NO

The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

YES

The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting on Windows, and we strongly
advise you do not change this value on this platform.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the TCP/IP
stack when closing connections.

NO

zOStackNameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bvwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

Administration94

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing error
responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

95Administration

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS, BS2000/OSD, z/VSE.

Operating System

Opt/
ReqValuesAttribute

wuOn | nM | nGMAXSIZE

Defines the maximum size of c-tree data files. Broker allocates one data file for control data
and another data file for message data:

Maximum size in MB.n

Maximum size in MB.nM

Maximum size in GB.nG

wuOn | nKPAGESIZE

Determines howmany bytes are available in each c-tree node. PSTORE COLD start is required
after changing this value.

Same as nKn

PAGESIZE in KB.nK

The default and minimum value is 8 KB.

If PSD Reason Code = 527 is returned during UOWwrite processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE to
a new PSTORE with an increased PAGESIZE value. SeeMigrating the Persistent Store and
define the increased PAGESIZE value for the load broker.

wuOA255PATH

Path name of the target directory for c-tree index and data files.

wuONO | YESSYNCIO

Controls the open mode of the c-tree transaction log.

c-tree transaction log is not opened in synchronous mode. Default.NO

c-tree transaction log is opened in synchronousmode to improve data security. It may
degrade performance of PSTORE operations, but offers the highest level of data

YES

security. See c-tree Database as Persistent Store in theUNIX andWindows administration
documentation.

Administration96

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

wuO0-8TRACE-LEVEL

Trace level for c-tree persistent store. It overrides the global value of trace level in the attribute
file.

97Administration

Broker Attributes

SSL-specific Attributes

The SSL-specific attribute section begins with the keyword DEFAULTS=SSL as shown in the sample
attribute file. The attributes in this section are needed to execute the SSL communicator of the
EntireX Broker kernel. In this section, “SSL” also applies to TLS (Transport Layer Security).

Operating System

Opt/
ReqValuesAttribute

bwuzOstringCIPHER-SUITE

String that is passed to the underlying SSL implementation. SSL is a standardized
protocol that uses different cryptographic functions (hash functions, symmetric
and asymmetric encryption etc.). Some of these must be implemented in the
SSL stack; others are optional. When an SSL connection is created, both parties
agree by “handshake” on the cipher suite, that is, the algorithms and key lengths
used. In a default scenario, this information depends on what both sides are
capable of. It can be influenced by setting the attribute CIPHER-SUITE for the
SSL server side (the broker always implements the server side). Ths stubs connect
to the broker and thereby become the SSL clients.

Under UNIX and Windows, the OpenSSL implentation of the SSL server side
is used; on z/OS and BS2000/OSD it is GSK.

Example for OpenSSL:

Use RC4with standard 128-bit
key and MD5 as hash.

CIPHER-SUITE=RC4-MD5

Extreme example.CIPHER-SUITE=EXP-EDH-DSS-DES-CBC-SHA

Example for GSK:

Use DES and SHA1 with export key lengths, or
RC4 and MD5 with export key lengths, or
RC2 and MD5 with export key lengths.

CIPHER-SUITE=090306

For more information see:

■ OpenSSL
http://www.openssl.org/docs/apps/ciphers.html

Administration98

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ GSK
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?
info/apis/gsk_attribute_set_buffer.htm

bwuzOn | nS | nM | nHCONNECTION-NONACT

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled.

bwuzOhostnameHOST

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

Amaximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

zOnameKEY-LABEL

The label of the key in the RACF keyring that is used to authenticate the broker
kernel (see also TRUST-STORE parameter).

(Example: "ETBCERT")

bwuRfile nameKEY-FILE

File that contains the broker's private key (if not contained in KEY-STORE).

(Example: MyAppKey.pem)

Note: EntireX Broker supports only key files of type .pem. Files of type .jks are
not supported.

bwuRpassword (A32)KEY-PASSWD

Password used to protect the private key. Unlocks MyAppKey.pem. Deprecated.
See KEY-PASSWD-ENCRYTPED below.

99Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bwuRencrypted value
(A64)

KEY-PASSWD-ENCRYPTED

Password used to protect the private key. Unlocks MyAppKey.pem. This attribute
replaces KEY-PASSWD to avoid a clear-text password as attribute value. If
KEY-PASSWD and KEY-PASSWD-ENCRYTPED are both supplied,
KEY-PASSWD-ENCRYTPED takes precedence.

bwuRfile nameKEY-STORE

SSL certificate; may contain the private key.

(Example: ExxAppCert.pem)

Note: EntireX Broker supports only keystores of type .pem. Files of type .jks are
not supported.

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

bwuzO1025 - 65535PORT

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the example
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

bwuzOYES | NORESTART

The broker kernel will attempt to restart the SSL communicator (this is
the default value).

YES

The broker kernel will not attempt to restart the SSL communicator.NO

bwuzO20 | n | UNLIMRETRY-LIMIT

Maximum number of attempts to restart the SSL communicator.

bwuzO3M | n | nS | nHRETRY-TIME

Wait time between suspending SSL communication due to unrecoverable error
and the next attempt to restart it.

Same as nS.n

Wait time in seconds (max.2147483647).nS

Wait time in minutes (max. 35791394).nM

Wait time in hours (max. 596523).nH

Administration100

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Minimum: 1S

bwuzOYES | NOREUSE-ADDRESS

The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).

YES

The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

NO

wuzOnameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method SSL or TLS. It overrides the global value of trace level for all SSL or TLS
routines.

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing
error responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

bwuzRfile name|keyringTRUST-STORE

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

101Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Specify the RACF keyring using the following
format: [USER-ID/]RING-NAME. If no value for

z/OS

USER-ID is provided, the keyring is assumed to
be associated with the user ID that the broker
kernel is running under.

Specify the file name of the CA certificate store.
Examples: EXXCACERT.PEM,
C:\Certs\ExxCACert.pem

BS2000/OSD/Windows/UNIX

bwuzONO | YESVERIFY-CLIENT

Additional client certificate required.YES

No client certificate required (default).NO

Administration102

Broker Attributes

DIV-specific Attributes

The DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

Operating System

Opt/
ReqValuesAttribute

zRA511DIV

The VSAM Persistent Store parameters, enclosed in double quotes (""). The value can span more
than one line. See Format Parameters underManaging the Broker Persistent Store in the z/OS
administration documentation for details of the parameters. In previous versions of EntireX, these
parameters were read from the SYSIN DD during broker kernel startup.

Adabas-specific Attributes

TheAdabas-specific attribute section beginswith the keyword DEFAULTS = ADABAS. The attributes
in this section are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,
these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-
tribute.

Operating System

Opt/
ReqValuesAttribute

bvwuzO126-20000BLKSIZE

Optional blocking factor used formessage data. If not specified, brokerwill split themessage
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.

For reasons of efficiency, do not specify a BLKSIZEmuch larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.

The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.

Default value is 2000.

bvwuzR1 - 32535DBID

103Administration

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Database ID of Adabas database where the persistent store resides.

bvwuzR1 - 32535FNR

File number of broker persistent store file.

bvwuzON | YFORCE-COLD

Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

bvwuzO0-nMAXSCAN

Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

bvwuzON | YOPENRQ

Determines whether driver for Adabas persistent store is to issue an OPEN command to
Adabas.

vzR200-255SVC

Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

bvwuzO0-8TRACE-LEVEL

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

Administration104

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

■ BROKER-ID (in Broker-specific attributeBROKER-ID)
■ NODE (in Entire Net-Work-specific attribute NODE)
■ PORT (in PORT (SSL) and PORT (TCP/IP))

How you use the variable definition file will depend upon your particular needs. For instance,
some optional attributesmay require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

105Administration

Broker Attributes

106

5 Concepts of Persistent Messaging

■ Client Server Model: Persistent Messaging ... 108
■ Publish-and-Subscribe Model: Persistent Behavior ... 109
■ Definitions of Persistent Messaging Terms .. 111
■ Availability of Persistent Store .. 113
■ Migrating the Persistent Store .. 115
■ Persistent Store Report ... 118
■ Swapping out New Units of Work .. 121

107

This chapter provides a brief introduction to the concepts of the persistent store and its role in
EntireX for providing persistent messaging within the client/server model and also for publish-
and-subscribe functionality. It covers the following topics:

The table Persistent Store Drivers lists the implementation choices available to each operating
system for accessing the physical persistent store. See also Using Persistence and Units of Work,
Broker UOW Status Transition under Concepts of Persistent Messaging andManaging the Broker
Persistent Store in the platform-specific administration documentation.

Client Server Model: Persistent Messaging

EntireX provides persistent messaging within the client/server model. This is achieved by storing
all persistent messages on disk so that if a system failure occurs, messages will automatically be
recovered allowing applications to be restarted without any loss of data. The section Using Per-
sistence and Units ofWork describes implementation issues and how to use persistence and units
ofwork in EntireX Broker. Units ofwork can also be usedwithout persistence; units ofworkwhich
are the vehicle for persistent messaging.

The following figure illustrates the concept of persistent messages.

Persistence in an EntireX Broker's unit of work (a group of logically related messages) has the
following four variations:

■ Both the unit of work and its status have persistence.

Administration108

Concepts of Persistent Messaging

■ The unit of work does not have persistence, but its status does.
■ The unit of work has persistence, but its status does not.
■ Neither the unit of work nor its status has persistence.

The status of amessage is information about themessage rather than the actualmessage data itself.
This enables the sender to determine the progress of the message and determine if it has been re-
ceived by the partner andwhether processingwas successfully completed. This gives applications
the option of having the Broker kernel store only the message status and not the message itself,
provided the application has beenwritten to resend data from a knownpoint in the event of system
failure. This option can afford significant performance benefits over storing the whole message
data.

To support transaction control in a coordinated operation of distributed systems, EntireX can
group logically related messages into “units of work” that are committed to the EntireX Broker
for further transmissionwhen complete. In case of failure on the server side, the receiving program
can backout the whole unit of work; this makes it available for processing later or by another
server.

Publish-and-Subscribe Model: Persistent Behavior

EntireX provides persistent publish-and-subscribe behavior bywriting information to disk in order
to protect against system failures. This allows applications to be restarted without any loss of the
following types of data:

■ Durable Subscription Information
This comprises a list of subscribers and the topics to which they have durably subscribed. This
ensures that users only have to subscribe once to a topic; their persistent status remains after
Broker is restarted. If the persistent store is used tomaintain subscription status, youmust define
the SUBSCRIPTION-EXPIRATION options.

■ Publication Data
This data is also persisted if the administrator has defined this characteristic for the topic.

The diagram below shows the two types of publish-and-subscribe information which is written
to the persistent store.

109Administration

Concepts of Persistent Messaging

Administration110

Concepts of Persistent Messaging

Definitions of Persistent Messaging Terms

■ UOW
■ Persistent Store
■ Persistent Store Drivers
■ UOW Lifetime
■ Persistent UOW
■ Persistent Status
■ Publication
■ Durable Subscription
■ Publication Lifetime
■ Subscription Expiration

UOW

A unit of work (UOW) is a set of one or more messages that are processed as a single unit. The
sender of a UOW adds messages to the UOW and then indicates that the UOW is complete
(COMMIT). TheUOWand itsmessages are not visible to the receiver until the sender has committed
the UOW. Once the UOW is committed, the receiver can receive the messages, and can indicate
when the UOW is complete (COMMIT).

Persistent Store

The persistent store is used for storing unit-of-work messages and publish-and-subscribe data to
disk. This means message and status information can be recovered after a hardware or software
failure to the previous commit point issued by each application component.

Persistent Store Drivers

Apersistent store driver is an executable, or a loadmodule, that implements access to the physical
persistent store. There is one persistent store driver for each persistent store type. The following
table shows the persistent store options:

NotesOperating SystemDescription
Persistent
Store Type

Adabas, Software AG's ADAptable
dataBASe, is a high-performance,

UNIX, Windows,
z/OS, z/VSE

Uses Adabas database.Adabas

multithreaded, database management
system.

This persistent store option is
implemented as a VSAM linear data set.

z/OSUses IBM Data In Virtual
facility on z/OS.

DIV

111Administration

Concepts of Persistent Messaging

NotesOperating SystemDescription
Persistent
Store Type

c-tree© is the fast and reliable embedded
database of FairCom Corporation®.

UNIXandWindowsc-tree© is an embedded local
database that can be used as
your persistent store.

CTREE

See alsoManaging the Broker Persistent Store in the platform-specific administration documentation
and also PSTORE-TYPE under Broker Attributes in the platform-independent administration docu-
mentation.

UOW Lifetime

EachUOWhas a lifetime value associatedwith it. This is the period of time that theUOW is allowed
to exist without being completed. This time starts when the UOW is initially created and runs
until the UOW is completed. A UOW is completed when it is successfully:

■ cancelled or backed out by its sender, or
■ cancelled or committed by its receiver.

If theUOW is inACCEPTED statuswhen this lifetime expires, theUOW is placed into a TIMEOUT
status. Lifetime timeouts will not occur when the UOW is in either RECEIVED or DELIVERED
status.

A special “pseudo-clock” is maintained for UOW lifetimes. This clock is implemented in such a
way that it only runs when the Broker is active. This prevents a UOW lifetime from expiring while
the Broker is down or otherwise unavailable.

Persistent UOW

Persistence is an attribute of a UOW (unit of work). If a UOW is persistent, its messages are saved
in the persistent store when the sender COMMITs the UOW and they are retained until the receiver
COMMITs or CANCELs the UOW, or until its lifetime expires. If the Broker or system should fail after
the UOW is committed by the sender, the UOW (and its conversation) will be restored to their
last, stable status when the Broker restarts.

Persistent Status

Persistent status is an attribute of a UOW (unit of work). If a UOWhas persistent status, the status
of the UOW is maintained in the persistent store, and is updated whenever the status changes.
The persistent status remains in the persistent store after the UOW is completed, until its status
lifetime has expired.

A persistent status value represents a multiple of the UOW lifetime value. Thus if a UOW has a
lifetime of 5M (whereby M stands for minutes) and a persistent status value of 4, the status of the
UOWwould be deleted 20M (5M*4) after the UOWwas completed.

Administration112

Concepts of Persistent Messaging

Publication

A publication is one or more messages forming an atomic unit and sent by a publisher to a topic.
Subscribers are then able to receive publications committed after the time at which a subscriber
first subscribes.

Durable Subscription

Subscribers informEntireX of their intent to receive publications by issuing a SUBSCRIBE command
and specifying the topic of interest. If the administrator has specified this topic to the Broker attrib-
ute file with a characteristic of DURABLE, users will be able to subscribe to the topic durably. This
means that the user's subscription status remains after EntireX is restarted.

Publication Lifetime

A characteristic of the topic is the lifetime which publications will live and be available to sub-
scribers. Once a publication has been received by all eligible subscribers, it will be removed auto-
matically, even before its lifetime has been reached.

Subscription Expiration

Subscribers informEntireX of their intent to receive publications by issuing a SUBSCRIBE command
and specifying the topic of interest. If the administrator has specified this topic to the Broker attrib-
ute file with a characteristic of DURABLE, all user subscriptions to that topic will be durable. This
means that the user's subscription status remains after EntireX is restarted.

Availability of Persistent Store

Caution: The persistent store must be available before you attempt to start or restart the
Broker; otherwise your Broker will not initialize.

■ Introduction
■ Disconnect the Persistent Store

113Administration

Concepts of Persistent Messaging

■ Connect the Persistent Store

Introduction

The PSTOREmust be available for the Broker to start. Subsequently, Brokerwill continue to function
even if the PSTORE becomes unavailable and applications issuing non-persistent commands will
continue without interruption. However, Broker will not be able to process commands relating
to persistence until the PSTORE becomes available again.

Users issuing commands involving persistence - for example units of work with persistence and
durable publish and subscribe - are notified of the unavailability of the PSTORE through an ACI
return code. In addition, persistent commands being processed at the point of unavailability are
backed out, and details of the PSTORE problem are written to the Broker log file.

There are several reasons for the PSTORE becoming unavailable. Examples:

■ unavailability of the PSTORE file(s)
■ capacity of PSTORE file being exceeded
■ in the case of Adabas, termination of the database

Disconnect the Persistent Store

You can remove the state “No new Units of Work” - that is, no new persistent data - using CIS. If
the PSTORE capacity is exceeded, an error message is written to the Broker log file. You must use
Command and Information Services (CIS) to ensure that users cannot issue further commands
creating new units of work or publications.

During the time the PSTORE is unavailable, there is no timeout processing for unit-of-work and
publication records kept in the PSTORE. In addition, some in-memory resources relating to persistent
items, such as conversation control blocks, are also retained until the PSTORE becomes available
again and normal processing is resumed for all commands.

See executable command request DISCONNECT-PSTORE under ETBCMD: Executable Command Requests
under Broker Command and Information Services.

Connect the Persistent Store

Subsequently, you can use CIS to make the PSTORE available again, allowing users only to issue
commands consuming records from the PSTORE rather than producing new ones. After a period
of operation in this state, the contents of the PSTOREwill be reduced sufficiently, and you can remove
the state “No new Units of Work” through CIS.

See executable command request CONNECT-PSTORE under ETBCMD: Executable Command Requests
under Broker Command and Information Services.

Administration114

Concepts of Persistent Messaging

Migrating the Persistent Store

■ Introduction
■ Configuration
■ Migration Procedure

Introduction

The contents of EntireX Broker's persistent store can bemigrated to a new persistent store in order
to change the PSTORE type or to use the same type of PSTOREwith increased capacity.

The migration procedure outlined here requires two Broker instances started with a special RUN-
MODE parameter. One Broker unloads the contents of the persistent store and transmits the data to
the other Broker, which loads data into the new PSTORE. Therefore, for the purposes of this discus-
sion, we shall refer to an unload Broker and a load Broker.

This procedure is based on Broker-to-Broker communication to establish a communication link
between two Broker instances. It does not use any conversion facilities, since the migration pro-
cedure is supported for homogeneous platforms only.

115Administration

Concepts of Persistent Messaging

Configuration

The migration procedure requires two Broker instances, each started with the RUN-MODE attribute.
The unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD

These commands instruct the Broker instances to perform the PSTOREmigration.

Note: The attribute PARTNER-CLUSTER-ADDRESSmust be defined in both Broker instances to
specify the transport address of the load Broker. The unload Broker must know the address
of the load broker, and the load Brokermust in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on
host HOST2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to estab-
lish port 1972.

Administration116

Concepts of Persistent Messaging

For ETB001, attribute PARTNER-CLUSTER-ADDRESS = HOST2:1972:TCP is set, and for ETB002, attribute
PARTNER-CLUSTER-ADDRESS = HOST1:1971:TCP is set to establish the Broker-to-Broker communication
between the two Broker instances.

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE on
the unloader side, you must set the attribute PSTORE = HOT. To load the data into the new PSTORE
on the loader side, you must set the attribute PSTORE = COLD. The load process requires an empty
PSTORE at the beginning of the load process.

Note: Use caution not to assign PSTORE = COLD to your unload Broker instance, as this startup
process will erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different per-
sistent stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end
of the migration process, a second report can be run on the resulting new persistent store. These
two reports can be compared to ensure that all contents were migrated properly. To run these re-
ports, set the attribute PSTORE-REPORT = YES. See PSTORE under Broker Attributes in the platform-
independent administration documentation for a detailed description, especially for the file assign-
ment.

Migration Procedure

The migration procedure is made up of three steps.

Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to
perform an initial compatibility check. This validation is performed by Broker according to platform
architecture type and Broker version number. The handshake ensures a correctly configured
partner cluster address and ensures that the user did not assign the same PSTORE to both Broker
instances. If a problem is detected, an error message will be issued and both Broker instances will
stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and
transmits the data to the load Broker instance. The load Broker instance writes the unchanged raw
data to the new PSTORE. A report is created if PSTORE-REPORT = YES is specified, and a valid output
file for the report is specified.

117Administration

Concepts of Persistent Messaging

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare
the amount of migrated data. The result of this check is reported by the unload Broker instance
and the load Broker instance before they shut down.

When a Broker instances is started in RUN-MODE = PSTORE-LOAD or RUN-MODE = PSTORE-UNLOAD, the
Broker instances only allow administration requests. All other user requests are prohibited.

Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica.
No filtering of unnecessary information will be performed - for example, UOWs in received
state. The master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE at-
tribute to PSTORE = HOT. Do not start your broker with the new persistent store using PSTORE =
COLD; this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your Broker in a normal RUN-MODE, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate
Broker instances; otherwise, applicationswould receive the same data twice. Once themigration
process is completed satisfactorily, and is validated, the old PSTORE contents should be discarded.

Persistent Store Report

You can create an optional report file that provides details about all records added to or deleted
from the persistent store. This section details how to create the report and provides a sample report.

■ Configuration
■ Sample Report

Configuration

To create a persistent store report, use Broker's global attribute PSTORE-REPORTwith the value YES.

When the attribute value YES is supplied, all created or deleted persistent records will be reported
if the output mechanism is available.

If the value NO is specified, no report will be created.

The report file is created using the following rules:

Administration118

Concepts of Persistent Messaging

BS2000/OSD

LINK-NAME ETBPREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

UNIX

Broker creates a file with the name PSTORE.REPORT in the current working directory. The file
name PSTORE.REPORT.LOADwill be used if Broker is started with RUN-MODE = PSTORE-LOAD.

The file name PSTORE.LOAD.UNLOADwill be used if Broker is started with RUN-MODE =
PSTORE-UNLOAD.

If the environment variable ETB_PSTORE_REPORT is supplied, the file name specified in the envir-
onment variable will be used.

If Broker receives the command-line argument -p, the token following argument -pwill be used
as the file name.

Windows

Same as UNIX.

z/OS

DDNAME ETBPREP assigns the report file. Format RECFM=FB, LRECL=121 is used.

z/VSE

Logical unit SYS003 and logical file nameETBPREP are used. Format RECORD-FORMAT = FB, RECORD-
LENGTH = 121 is used.

Sample Report

The following is an excerpt from a sample PSTORE report.

EntireX 8.0.0.00 PSTORE Report 2008-02-21 17:18:38 Page 1

Identifier Elements Total length Record Type Date Time ↩
Action
100000000D000016 5 1148 Conversation 2008-02-21 17:18:57.190 ↩
Created
100000000D000017 5 1148 Conversation 2008-02-21 17:18:57.654 ↩
Created
100000000D000018 5 1148 Conversation 2008-02-21 17:18:58.122 ↩
Created
100000000D000019 5 1148 Conversation 2008-02-21 17:18:58.590 ↩
Created
100000000D00001A 5 1148 Conversation 2008-02-21 17:18:59.054 ↩

119Administration

Concepts of Persistent Messaging

Created
100000000D00001B 5 1148 Conversation 2008-02-21 17:18:59.518 ↩
Created
100000000D00001C 5 1148 Conversation 2008-02-21 17:18:59.982 ↩
Created
100000000D00001D 5 1148 Conversation 2008-02-21 17:19:00.538 ↩
Created
100000000D00001E 5 1148 Conversation 2008-02-21 17:19:01.002 ↩
Created
100000000C000001 0 0 Conversation 2008-02-21 17:19:30.676 ↩
Deleted
100000000C000002 0 0 Conversation 2008-02-21 17:19:31.675 ↩
Deleted
100000000C000003 0 0 Conversation 2008-02-21 17:19:32.675 ↩
Deleted
100000000C000004 0 0 Conversation 2008-02-21 17:19:33.675 ↩
Deleted
100000000C000005 0 0 Conversation 2008-02-21 17:19:34.675 ↩
Deleted
100000000C000006 0 0 Conversation 2008-02-21 17:19:35.675 ↩
Deleted

The following fields are provided in the report:

■ Identifier provides the UOWID (record ID).
■ Elements gives the number of messages per UOWwhen creating or loading records.
■ Total Length gives the size of the raw record when creating or loading records.
■ Record Type describes the type of the data. Following types are currently supported:

■ Cluster: a special record for synchronization purposes
■ Conversation: a unit of work as part of a conversation
■ Master: a special record to manage the persistent store
■ Publication: a record containing a publication for a durable topic
■ Subscription: a record containing subscriber data (if SUBSCRIBER-STORE = PSTORE) is defined

■ Date and time of the action
■ Action describes the action of Broker. The following actions are currently supported:

■ Created: record is created
■ Deleted: record is deleted
■ Loaded: record is loaded (Broker instance with RUN-MODE = PSTORE-LOAD)
■ Unloaded: record is unloaded (Broker instance with RUN-MODE = PSTORE-UNLOAD)

Administration120

Concepts of Persistent Messaging

Swapping out New Units of Work

The broker processes UOWs in memory. However, if a client produces a large number of UOWs
and no server is available, or the server cannot handle all data, the number of UOWs in memory
may increase and reach a critical limit.

To avoid an overload of UOWs in memory, EntireX Broker can swap out new conversations that
containing UOWs (STORE=BROKER) and that have been accomplished by the client with an EOC.
The data is persisted on PSTORE and there is no need to keep the data in memory unless a server
wants to receive the data.

Activate the swap-out feature with the broker-specific attribute SWAP-OUT-NEW-UOWS. It is not ac-
tivated by default. However, the swap-out feature can be configured per service to define a min-
imumportion ofUOWskept inmemory.Use the service-specific attribute MIN-UOW-CONVERSATIONS-
IN-MEMORY to define this portion.

121Administration

Concepts of Persistent Messaging

122

6 Using Persistence and Units of Work

■ Implementation Issues .. 124
■ Using Units of Work ... 129
■ Using Persistence .. 133
■ Using Persistent Status ... 138
■ Recovery Processing .. 140

123

This chapter describes implementation issues and how to use persistence and units of work in
EntireX Broker. It assumes you are familiar with EntireX Broker from both an administrative and
an application perspective, and with the ACI programming in particular. See also EntireX Broker
and EntireX Broker ACI Programming.

Implementation Issues

■ Table of Persistent Store Drivers
■ Changes are Required
■ Attributes used for Units of Work
■ ACI Fields used for Units of Work
■ ACI Function SYNCPOINT used for Units of Work
■ Options used for UOW Operations
■ CID Implementation: Numeric Digits, Characters 0-9 and A-Z

Table of Persistent Store Drivers

A persistent store driver is an executable, or a loadmodule that implements access to the physical
persistent store. There is one persistent store driver for each persistent store type. The following
table shows the persistent store options:

NotesOperating SystemDescription
Persistent
Store Type

Adabas, Software AG's ADAptable
dataBASe, is a high-performance,

UNIX, Windows,
z/OS, z/VSE

Uses Adabas database.Adabas

multithreaded, database management
system.

This persistent store option is
implemented as a VSAM linear data set.

z/OSUses IBM Data In Virtual
facility on z/OS.

DIV

c-tree© is the fast and reliable embedded
database of FairCom Corporation®.

UNIXandWindowsc-tree© is an embedded local
database that can be used as
your persistent store.

CTREE

Administration124

Using Persistence and Units of Work

Changes are Required

It is important to note that some level of both application and system changes are necessary to
utilize UOWs. Existing message-based Broker applications will continue to operate as before.

Attributes used for Units of Work

The following table represents the keyword parameters that can be used in the Broker attribute
file for UOWs. A short form of the keyword is given if applicable. Default values are underlined.

DescriptionValueKeyword

Broker: sets default STORE attribute for all units of work.

Service: sets default STORE attribute for units of work sent
to the service.

OFF | BROKERSTORE

Broker: maximum number of active UOWs. If 0 is specified,
then the Broker will not support any UOW operations.

Service: maximum number of active UOWs for a service.

0 | nMAX-UOWS or
MUOW

Broker: maximum number of messages in a UOW.

Service: maximum number of messages in a UOW for the
service.

16 | nMAX-MESSAGES-IN-UOW or
UMSG

Broker only. Startup value for persistent store.NO | HOT |
COLD |
WARM

PSTORE

No persistent store.NO

Persistent UOWs are restored to prior state during
initialization.

HOT

PersistentUOWs are not restoredduring initialization,
and the persistent store is considered empty.

COLD

(Internal Use Only) persistent UOWs are not restored
during initialization, but the persistent store remains
intact.

WARM

Broker: persistent status is maintained either for persistent
or non-persistent UOWs.

Service: persistent status is maintained either for persistent
or non-persistent UOWs for a service.

0 - 254UWSTATP

Broker: defines the lifetime of a UOW in seconds, minutes,
hours or days. This value is the time that it can remain in the

1D | nS | nM |
nH | nD

UWTIME

system without being completed. If the UOW is not
completed within this time, it is deleted with a status of
TIMEOUT

Service: defines the lifetime of a UOW for a service.

125Administration

Using Persistence and Units of Work

DescriptionValueKeyword

Broker: defines the default maximum message size that can
be sent.

Service: defines the maximummessage size that can be sent
to a service.

n | 31647MAX-UOW-MESSAGE-LENGTH

Broker: sets the default DEFERRED attribute for all services.
UOWs can be sent to a deferred service even if the service is
not registered.

Service: sets the DEFERRED attribute for a service.

NO | YESDEFERRED

ACI Fields used for Units of Work

The following fields have been added to the broker ACI control block. Note that the actual field
names may differ slightly depending on the programming language being used.

DescriptionKeyword

Indicates whether the specified UOW is persistent or not:STORE

The sender accepts the persistence option specified by the service or Broker (this is the
default value).

OFF

The sender wants persistence.BROKER

The sender does notwant persistence, even if the service or Broker default is persistence.NO

Also returned with RECEIVE to indicate if the UOW being received is persistent or not.

The amount of time that the UOW can remain incomplete without being timed out. This is also
referred to as the UOW lifetime.

UWTIME

The current status of aUOW.The status is returned on SEND, RECEIVE, and SYNCPOINT operations.
Applicable values are as follows:

STATUS

One or more messages have been sent as part of a UOW but the UOW is not yet
committed.

RECEIVED

The UOW has been committed by the sender.ACCEPTED

The UOW is currently being received.DELIVERED

The UOWwas backed out prior to being committed by the sender.BACKEDOUT *

the receiver of the UOW has committed it.PROCESSED *

the receiver of the UOW has cancelled it.CANCELLED *

the UOWwas not processed within the specified time.TIMEOUT *

The UOWwas not persistent and its data was discarded over a restart.DISCARDED *

* The status values marked with an asterisk are persistent, and will only exist for UOWs with
persistent status.

Administration126

Using Persistence and Units of Work

DescriptionKeyword

In addition, the following status values are returned on a RECEIVE operation to indicate if the
message being received is part of a UOW or not, and if so, which part:

The message is not part of a UOW.RECV_NONE

The message is the first message in a UOW.RECV_FIRST

The message is not the first or last message in a UOW.RECV_MIDDLE

The message is the last message in a UOW.RECV_LAST

The message is the only message in a UOW.RECV_ONLY

All RECV_ values except RECV_NONE reflect an actual UOW status of DELIVERED.

A user-defined status associated with a UOW. It can be specified as part of a SEND, RECEIVE, or
SYNCPOINT operation and will be returned whenever the status of a UOW is queried. See Using
User Status below for more information.

USTATUS

A unique identifier for a unit of work. This value is returned on SEND and RECEIVE operations
and may be provided on SYNCPOINT operations that are querying status of UOWs.

UOWID

A numeric value indicating the lifetime value for persistent status. This value is a multiplier
against the UWTIME value. Applicable values are:

UWSTATP

Use the default specified for the service or broker.0

Use 1 to 254 times the UWTIME value as the status lifetime.1-254

The sender does not want persistent status, even if the service or broker default is
persistent status.

255

ACI Function SYNCPOINT used for Units of Work

The SYNCPOINT function deals exclusively with UOWs. The following table lists the OPTION values
that can be usedwith the SYNCPOINT function, and the associated behavior and restrictions of each
one.

Note: In many cases, the behavior will be different depending on whether the issuer is the
sender or the receiver of the UOW.

Behavior and RestrictionsCallerOption

If the specified UOW is in RECEIVED status, it will be put into BACKEDOUT status.
If persistent status is not specified, no trace of the UOWwill remain.

SenderBACKOUT

If the specified UOW is in DELIVERED status, it will be put back into ACCEPTED
status and its attempted delivery count will be incremented.

Receiver

If the specified UOW is in ACCEPTED status, it will be put into CANCELLED status.
If persistent status is not specified, no trace of the UOWwill remain.

SenderCANCEL

If the specified UOW is in DELIVERED status, it will be put into CANCELLED status.
If persistent status is not specified, no trace of the UOWwill remain.

Receiver

127Administration

Using Persistence and Units of Work

Behavior and RestrictionsCallerOption

If the specified UOW is in RECEIVED status, it will be put into ACCEPTED status. It
is now available to be received by the other partner.

SenderCOMMIT

If the specified UOW is in DELIVERED status, it will be put into PROCESSED status.
If persistent status is not specified, no trace of the UOWwill remain.

Receiver

This is a special case of the COMMIT option, where the caller specifies UOWID=BOTH
in the request. This allows the caller to commit two UOWs, one being received and
one being sent, in a single atomic operation.

Both

Deletes the persistent status of the specified UOW. The UOWmust be complete
and must have been created by the caller. After this request, no trace of the UOW
will remain.

SenderDELETE

Commits the UOW and sets an EOC indication on the associated conversation. See
COMMIT for additional information and restrictions.

SenderEOC

Commits the UOW and sets an EOC-CANCEL indication on the associated
conversation. See COMMIT for additional information and restrictions.

SenderEOCCANCEL

Returns the status of the last UOW sent by the caller. In addition,
CLASS/SERVER/SERVICE details of the associated server are also returned. The
CONV-ID can be included to qualify the request.

SenderLAST

With UOWID=n, returns the status of the specified UOW. In addition,
CLASS/SERVER/SERVICE details of the associated server are also returned.

SenderQUERY

Updates the user status field of the specifiedUOW. TheUOWmust be in RECEIVED,
ACCEPTED, or DELIVERED status.

BothSETUSTATUS

Options used for UOW Operations

This table lists option values used to support UOW operations:

Behavior and RestrictionsFunctionOption

This option indicates that the data being sent is part of a UOW. The UOW is created on
the first send, and subsequent sends will add messages to the UOW.

SENDSYNC

This option indicates that the RECEIVE can be satisfied only with a message in a UOW.RECEIVESYNC

This option indicates that the RECEIVE can be satisfied only with non-UOWmessages.RECEIVEMSG

This option indicates that the RECEIVE can be satisfied by either a non-UOW or a UOW
message. It is up to the receiver to determine which, based on the UOWSTATUS field that
is returned.

RECEIVEANY

This option combines a SEND and a SYNCPOINT, OPTION=COMMIT into a single operation.
It allows the sender to create and commit a UOW in a single operation.

SENDCOMMIT

Administration128

Using Persistence and Units of Work

CID Implementation: Numeric Digits, Characters 0-9 and A-Z

In order to support unique conversation identifiers at Broker restart, there is an implementation
of the CID which is alphanumeric and an internal identifier.

Note: The CID is a Broker-generated identifier for the conversation, and the application
should not make any assumptions about either the content or format of all or any part of
the CID field, or about any relationship between CIDs.

If any of the following three conditions exist, the all-numeric implementation of the CID field will
be used in order to ensure compatibility:

■ the Broker does not support any UOW processing;
■ the application program is using API_VERSION 1 or 2 in its request;

or
■ the target service does not support UOWs.

Note: This level of compatibility may be removed at some point in the future.

Using Units of Work

■ UOW vs non-UOW Conversations
■ Use of LOGON and TOKEN
■ User Identification for Units of Work
■ Which Applications should use UOWs?
■ Understanding UOW Status
■ UOW Status on RECEIVE
■ Using User Status
■ Resource and Performance Considerations

UOW vs non-UOW Conversations

A Broker conversation will support either UOWs or messages, but not both. At the time the con-
versation is created, the Broker will determine which is to be supported.

129Administration

Using Persistence and Units of Work

Sequencing of Messages across Conversations

The order of delivery of new conversations to receivers is determined by the COMMIT time of the
first UOWwithin its conversation. The conversation delivered to the receiver first is the one con-
taining the first UOW for which the sender issues a SEND,OPTION=COMMIT or SYNCPOINT,OP-
TION=COMMIT.

If there is more than one UOW in a conversation, the COMMIT time of the first UOW determines
the age of that conversation. Also, multiple UOWs within a conversation are picked up by the re-
ceiver, in the same sequence as they were committed by the sender.

Scenario: A server starts to receiveUOWs (CONVID=NEW) and receives UOWT1 first, since this UOW
is committed first. If the server issues another receive (CONVID=NEW), it receivesUOWT3. If, however,
the UOWs are not combined in conversations (i.e., every UOW is in a separate conversation), the
server receives (CONVID=NEW) UOW T1 first, then UOW T2, UOW T3, etc.

The COMMITTIME field in the Broker control block shows COMMITTIME of the first UOW in a conver-
sation.

Use of LOGON and TOKEN

An explicit LOGON function must be used before a program can use any of the UOW functions. In
order to enable client and server programs to recover the status of their UOWs in the event of a
failure (Broker, system, or application), these programs must specify a TOKEN value at the time of
logon.

Administration130

Using Persistence and Units of Work

User Identification for Units of Work

EntireX Broker identifies participants by ACI fields USER-ID and TOKEN if TOKEN is supplied or by
USER-ID and internal ID (so-called physical user ID) if TOKEN is not supplied. However, the imple-
mentation of persistent units of work is based on the user identification USER-ID and TOKEN.

Caution: In order to avoid unpredictable inconsistencies, all applications using persistent
units of workmust use this user identification to run correctly. TheACI verification routines
do not restrict usage of UOWs to USER-ID and TOKEN yet. Modify your application accord-
ingly.

Which Applications should use UOWs?

Applications that should consider using UOWs fit into a couple of different categories.

■ Applications that currently use multiple messages to communicate a single request are good
candidates for UOWs. Grouping these messages within a UOW can give the application addi-
tional control over how its data is processed.

■ Applications that intend to utilize deferred services, persistence, or persistent status must use
UOWs, since these facilities are not available to message-based applications.

Understanding UOW Status

In order to use UOWs effectively, you need to understand

■ the meaning of the various UOW status values;
■ how they change based on events within the system;

and
■ how these changes are influenced by both persistence and persistent status.

The diagram below represents the normal status values as a UOWprogresses through the system.
These statuses and the transitions between them are not affected by either persistence or persistent
status. The status values are indicated in ovals.

131Administration

Using Persistence and Units of Work

Normal Status Values as a UOW progresses through System

Note: The UOW is available to be received when it is first committed. The status values
BACKEDOUT, CANCELLED and PROCESSED are valid only if there is persistent status.

UOW Status on RECEIVE

When a RECEIVE is issued for a message within a UOW, you might expect that the UOW status
returned would be DELIVERED, since this is the actual status of the UOW. This is not the case,
however. On a RECEIVE, the Broker returns a special UOWstatus that reflects additional information
about the message and the UOW. These statuses are:

■ RECV_FIRST= the message is the first message in a UOW.
■ RECV_MIDDLE= the message is not the first or last message in a UOW.
■ RECV_LAST= the message is the last message in a UOW.
■ RECV_ONLY= the message is the only message in a UOW.
■ RECV_NONE= themessage is not part of a UOW. This status is particularly useful if the application
is receiving both messages and UOWs.

Administration132

Using Persistence and Units of Work

If you receive a status of either RECV_LAST or RECV_ONLY and then issue another RECEIVE for the
same UOW, you will get an error 00740301 Conversation found: end of unit of work indic-
ating the end of the UOW.

Using User Status

The user status field of the UOW allows additional, application-specific information to be carried
with the UOW. It can be used to maintain status or indicate error information. It can also provide
a form of “out-of-band” data communication between the sender and the receiver of a UOW.

For example, if a server is processing a long-running UOW, it can periodically update the user
status of the UOW (using SYNCPOINT, OPTION=SETUSTATUS) to indicate its progress. The client can
periodically get the user status (using SYNCPOINT, OPTION=QUERY) and report the progress back
to the end-user.

As another example, the sender of a long-running UOW can update the user status to indicate
that processing of the UOW should be abandoned by the server. The server can periodically get
the user status while processing and react accordingly.

Resource and Performance Considerations

Each active UOW consumesmemory resources (approximately 140 bytes per UOW) in a prealloc-
ated pool, not including the size of the message itself.

Also, additional memory resources such as the conversation and participant control blocks for the
UOW, together withmessages associatedwith them, will remain inmemory for a deferred service
when persistence is used. This can become significant when UOWs are being sent to a deferred
service. However, the message itself does not remain in memory if sent to a service which is not
currently registered - the whole purpose of deferred services. If the service is currently registered,
the message remains in memory.

Messages that are sent to any (registered or unregistered) service can be “paged out” by Broker
if storage is required. This feature considerably easesmemory consumptionwhenusing persistence.

Using Persistence

■ When do Persistent UOWs make Sense?
■ Adding Persistence to a UOW
■ Resource and Performance Considerations
■ Which Information is saved with the UOW?
■ What happens when Broker restarts?

133Administration

Using Persistence and Units of Work

■ UOWs and Replicated Servers

When do Persistent UOWs make Sense?

A UOW should be made persistent if the sender wants the Broker to assure that the UOWwill be
deliverable, even if there is a system or Broker failure. Assured delivery assumes that the intended
receiver of the UOW is active, or becomes active within the specified lifetime of the UOW.

Since most existing Broker applications are interactive, they are probably not good candidates for
persistent UOWs. New applicationmodels can now be implemented, using persistent UOWs. For
example, a service that collects information from other services, such as accounting, inventory,
logging, etc., would be a good fit for persistent UOWs. Another example could be a client sending
a long-running request to a service (one that may be inactive or busy), disconnecting, and coming
back some time later to retrieve the results. The reliability of assured delivery makes this model
practical.

Persistent UOWs do not require persistent status.

Adding Persistence to a UOW

A UOW can be made persistent:

■ by specifying STORE=BROKER in the ACI request that creates the UOW;
■ by specifying STORE=BROKER in service definition or service defaults portion of the Broker attribute
file, making all UOWs for that service persistent; or

■ by specifying STORE=BROKER in the Broker defaults section of the Broker attribute files, making
all UOWs in the system persistent.

In addition, specifying STORE=NO in the ACI request that creates the UOWwill explicitly make the
UOW non-persistent, overriding any Broker or service default.

Resource and Performance Considerations

A persistent UOW consumes resources in two areas.

■ When the UOW is committed by the sender, all of the messages are written to the persistent
store. This will generate multiple I/O operations, depending on the number and size of the
messages.

■ Space used to store the UOW and its messages will be allocated in the persistent store and will
remain until the UOW is completed.

Performance of certain specific functions (e.g. SYNCPOINT OPTION=COMMIT by the sender of a UOW)
will be affected by the additional time required to perform the I/O operations associated with
writing theUOWandmessage(s) to the persistent store. These operations are performed synchron-

Administration134

Using Persistence and Units of Work

ously because the Broker must ensure that the UOW, once committed, can be recovered in the
event of a system or Broker failure.

Which Information is saved with the UOW?

When the UOW is initially created in the persistent store, the following information is written:

■ Unit-of-work ID
■ Conversation ID
■ UOW Sender information, including:

■ User ID
■ Token
■ Server/service/class *

■ UOW receiver information, including:
■ User ID **
■ Token **
■ Server/service/class *

■ Creation timestamp
■ UOW lifetime value
■ Persistence and persistent status values

The following pieces of information will be included when the UOW is initially written to the
persistent store and will be updated, as needed, during the life of the UOW:

■ UOW status
■ UOW user status
■ Attempted delivery count
■ Number of messages in UOW
■ Total message size in UOW
■ Persistent status lifetime value
■ Conversation state and EOC reason code

* Server/service/class information is only saved if the sender or receiver is a registered service.

** The receiver's user ID and token are only saved if the receiver is a service that has already ac-
quired the conversation associatedwith this UOW.When there are multiple instances of a service,
this means that a new conversation can be restarted by any instance of the service, but an existing
conversation is bound to a specific instance of the service.

135Administration

Using Persistence and Units of Work

What happens when Broker restarts?

■ Restart Behavior of UOW
■ Re-creation of Internal Control Blocks
■ Behavior of Conversation at Broker Restart

Note: “Restored” is an activeUOWwhich has been returned to ACCEPTED status; “Discarded”
is a UOWwhich has not been returned to ACCEPTED status. “Discarded” does not imply the
status of DISCARDED.

Caution: The persistent store must be available before you attempt to restart your Broker;
otherwise your Broker will not restart.

Restart Behavior of UOW

■ Restart Table 1
The behavior during restart of the following states depends on the previous settings of the options
Persistent UOW and Persistent Status.

UOW Status
after Restart *

Behavior of UOW
and Status

Persistent Status:

YES | NO

Persistent UOW:

YES | NO

UOW Status
before Restart

BACKEDOUTUOW not restored;
Status is restored

YESYESRECEIVED

---UOW not restored;
Status not restored

NOYESRECEIVED

DISCARDEDUOW not restored;
Status is restored

YESNORECEIVED

---UOW not restored;
Status not restored

NONORECEIVED

ACCEPTEDUOW is restored;
Status is restored

YESYESACCEPTED

ACCEPTEDUOW is restored;
Status is restored

NOYESACCEPTED

DISCARDEDUOW not restored;
Status is restored

YESNOACCEPTED

---UOW not restored;
Status not restored

NONOACCEPTED

ACCEPTEDUOW is restored;
Status is restored

YESYESDELIVERED

ACCEPTEDUOW is restored;
Status is restored

NOYESDELIVERED

DISCARDEDUOW not restored;
Status is restored

YESNODELIVERED

Administration136

Using Persistence and Units of Work

UOW Status
after Restart *

Behavior of UOW
and Status

Persistent Status:

YES | NO

Persistent UOW:

YES | NO

UOW Status
before Restart

---UOW not restored;
Status not restored

NONODELIVERED

PROCESSEDStatus is restoredYESYESPROCESSED **

---Status is not restoredNOYESPROCESSED **

PROCESSEDStatus is restoredYESNOPROCESSED **

---Status not restoredNONOPROCESSED **

* If either UOW or its status is restored.

** In this state, the UOW information has already been deleted upon reaching PROCESSED status.

■ Restart Table 2
The behavior during restart of the following states does not depend on the settings of Persistent
UOW; in these cases only the Persistent Status exists and does not change after a restart. There
is no UOW to be restored.

UOW Status after RestartBehavior of StatusUOW Status before Restart

CANCELLEDStatus is restoredCANCELLED

DISCARDEDStatus is restoredDISCARDED

BACKEDOUTStatus is restoredBACKEDOUT

TIMEDOUTStatus is restoredTIMEDOUT

Re-creation of Internal Control Blocks

To restore a UOW, the Broker re-creates all internal control blocks necessary to represent the UOW
when it was accepted. The table displays the targets of each control block type:

NotesAssociation: Sender | ReceiverControl Block Type

PCB = Participant CBSender; Receiver (optional)PCB

SCB = Service CBSender; ReceiverSCB

CCB = Conversation CB

Two CCBs represent the conversation.

Sender; ReceiverCCB

UWCB = unit of work CB

The UWCB represents the UOW.

ReceiverUWCB

Note: Themessages associatedwith the UOW are not re-created inmemory until a RECEIVE
is actually issued for the UOW.

137Administration

Using Persistence and Units of Work

Behavior of Conversation at Broker Restart

Broker sets any units ofwork (UOWs) that are in DELIVERED status to ACCEPTED status during restart
processing. If this is the first unit of work within a conversation sent by a client to a server, the
assignment of the conversation to a particular server is dropped and the conversation is again
available for all servers offering the same service.

If there ismore than one unit ofwork in a single conversation and the first UOW is already received
and committed by the server, the link to the server will kept even after this (non-first) UOW has
reverted from DELIVERED to ACCEPTED status during restart processing. The server can retrieve
units of work after restart with function RECEIVE OPTION=SYNC,CONVID=ANY and will get all old
conversations containing UOWs first and then new conversations containing UOWs.

Servers performing a RECEIVE OPTION=SYNC, CONVID=NEWwill retrieve only conversations not
already assigned to this server. We strongly recommend that you implement
RECEIVE OPTION=SYNC,CONVID=ANY or CONVID=OLD to retrieve already assigned conversations.

UOWs and Replicated Servers

Special consideration must be given when restarts occur, and there are persistent UOWs that are
being sent to replicated servers, e.g. whenmore than one copy of a server is active. This is because
a UOW is not associated with a server instance until the UOW's conversation is actually received
by a server. From an application perspective, this means that a conversation that has not yet been
received by its target server will be restored so that any instance of the server can process it.
However, once the conversation has been received, any subsequentUOWs sent on the conversation
will be restored so that only the specific instance, based on USER-ID and TOKEN, can receive them.
The reasoning behind this is that a broker restart can occur without the servers being restarted,
and the servers could be maintaining context information based on the conversation.

It is important to note that this can cause problems if the server instances are started as a result of
load and the same load conditions are not present after the restart. For example, a UOW could be
bound to the fifth instance of a server, but after a restart there is only enough load to start three
instances. For this reason, we recommend that replicated servers using persistent UOWs not
maintain any conversations with multiple UOWs.

Using Persistent Status

■ When does Persistent Status make Sense?
■ Adding Persistent Status to a UOW

Administration138

Using Persistence and Units of Work

■ Resource and Performance Considerations

When does Persistent Status make Sense?

Persistent status should be considered for applications inwhich the sender needs to know if UOWs
were actually processed successfully. In cases where the data associatedwith a UOW can be easily
re-created in the event of a failure, persistent status may be a more desirable and lower-overhead
alternative to a persistent UOW.

Persistent status does not require a persistent UOW.

Adding Persistent Status to a UOW

A UOW's status can be made persistent:

■ by specifying a UWSTATP value between 1 and 254 in the ACI request that creates the UOW;
■ by specifying a UWSTATP value between 1 and 254 in service definition or service defaults portion
of the Broker attribute file, making the status of all UOWs for that service persistent; or

■ by specifying a UWSTATP value between 1 and 254 in the Broker defaults section of the Broker
attribute files, making the status of all UOWs in the system persistent.

Specifying UWSTATP=255 in the ACI request that creates the UOWwill explicitly make the UOW
status non-persistent, overriding any broker or service default.

Resource and Performance Considerations

Using persistent status consumes resources in two areas.

■ The persistent store is updated each time the UOW is modified, by either the sender or the re-
ceiver. These modifications occur whenever a SEND or RECEIVE function is issued for the UOW,
or whenever its status is changed, such as by SYNCPOINT OPTION=COMMIT. Depending on the
implementation, this will generate one or more I/O operations.

■ The space used for the UOW (but not its messages) in the persistent store remains allocated for
some period of time after the UOW has been completed.

The performance of individual requests will generally be affected by the additional time required
to perform the I/O operations associated with maintaining persistent status. At this time, all oper-
ations are performed synchronously, although that may change in future releases.

139Administration

Using Persistence and Units of Work

Recovery Processing

■ Introduction
■ Determining the Status of a UOW
■ A Real-world Example: Chess-by-Mail

Introduction

UOWs and persistence provide functionality for the application program (either client or server)
to recover from failures: i.e., system, broker or application. In addition, this functionality allow
new types of applications to be built, including ones not requiring concurrent execution of the
client and server.

There are no standard rules for recovery, because each applicationmodelwill use this functionality
differently andwill have different requirements for recovery. But the considerations in the following
section should be kept in mind.

Determining the Status of a UOW

The most useful function for recovery is the SYNCPOINT, OPTION=LAST. This function will return
the UOWID, CID, and status of the last UOW created by the caller, based on the USER-ID and
TOKEN. This function can be usedwhen an application starts orwhen it detects a failure to determine
howmuch processing has been completed on aUOW. This information can then be used to decide
how to recover from the failure.

Administration140

Using Persistence and Units of Work

A Real-world Example: Chess-by-Mail

Chess-by-mail is a sample of an application that takes advantage of UOWs, persistence, and per-
sistent status. In generic terms, this application involves a client and a server exchangingmessages
on a single conversation. The conversation is long-running, and there is no requirement that the
client and the server be active at the same time.

Although chess-by-mail was conceived as a single application, it is perhaps easier to describe its
operation separately for the client and the server side. By convention, the white player is the client
and the black player is the server. For simplicity, any user interaction has been left out of the de-
scription. Also for simplicity, only one chess-by-mail game is assumed to be running at any one
time.

■ Client Behavior
■ Server Behavior

Client Behavior

The behavior of the chess-by-mail client is as follows:

1. Logon, specifying a USER-ID and TOKEN, which allow recovery of prior UOWs.

2. Issue SYNCPOINT, OPTION=LAST to determine the status of the last UOW created.

3. If the return code is 00780305 - UOW not found, then there is no game in progress. So send
the first white move to the server with: SEND OPTION=COMMIT,CID=NEW. If the send is successful,
logoff and exit.

4. If the return code from SYNCPOINT is 0, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

5. If the status is ACCEPTED, then the server has not yet received the last move, so logoff and exit.

6. If the status is DELIVERED, then the server is currently processing the last move, so logoff and
exit.

7. If the status is TIMEOUT, then the server did not receive the last move before its lifetime expired,
so logoff and exit.

8. If the status is PROCESSED, then the server has received the last move and committed the UOW.
Our application model has the client sending a move in response and committing both UOWs
at the same time. So we need to receive the new move and send a reply to it.

9. Get the server's move with RECEIVE,OPTION=SYNC,CID=n, where n is the CID returned from
SYNCPOINT OPTION=LAST.

10. Send the response move back using SEND OPTION=SYNC,CID=n.

11. Commit both the received and sent UOWs with a single call
SYNCPOINT OPTION=COMMIT,UOWID=BOTH.

12. Logoff and exit.

141Administration

Using Persistence and Units of Work

Server Behavior

The behavior of the chess-by-mail server is as follows:

1. Logon, specifying a Userid and Token, which allow recovery of prior UOWs.

2. Register as the chess-by-mail server.

3. Issue SYNCPOINT OPTION=LAST to determine the status of the last UOW created.

4. If the return code is 00780305 - UOW not found, then there is no game in progress. Sowe receive
first white move from the client with: RECEIVE OPTION=SYNC,CID=NEW. When the RECEIVE has
been completed, continue at step 11.

5. If the return code from SYNCPOINT is 0, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

6. If the status is ACCEPTED, then the client has not yet received the last move, so deregister, logoff
and exit.

7. If the status is DELIVERED, then the client is currently processing the last move, so deregister,
logoff and exit.

8. If the status is TIMEOUT, then the client did not receive the last move before its lifetime expired,
so deregister, logoff and exit.

9. If the status is PROCESSED, then the client has received the last move and committed the UOW.
Our application model has the server sending a move in response and committing both UOWs
at the same time. So we need to receive the new move and send a reply to it.

10. Get the client's move with RECEIVE,OPTION=SYNC,CID=n, where n is the CID returned from

SYNCPOINT,OPTION=LAST.

11. Send the response move back using SEND,OPTION=SYNC,CID=n.

12. Commit both the received and sent UOWs with a single call:

SYNCPOINT,OPTION=COMMIT,UOWID=BOTH.

13. Deregister, logoff and exit.

Administration142

Using Persistence and Units of Work

7 Broker UOW Status Transition

■ Initial UOW Status: NULL | Received ... 144
■ Initial UOW Status: Accepted | Delivered .. 145
■ Initial UOW Status: Processed | Timedout ... 146
■ Initial UOW Status: Cancelled | Discarded | Backedout .. 147
■ Legend for UOW Status Transition Table .. 148
■ Table of Column Abbreviations ... 148

143

This chapter contains the UOWstatus transition tables for EntireX Broker and covers the following
topics:

See also Broker ACI Fields in the ACI Programming documentation | Broker ACI Functions in the
EntireX Broker ACI Programming documentation | Error Messages and Codes.

Initial UOW Status: NULL | Received

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

ReceivedReceivedReceivedReceivedSendReceived2

AcceptedAcceptedAcceptedAcceptedCommitReceived3

NULLDiscardedNULLBackedOutReStartReceived4

NULLBackedOutNULLBackedOutBackOutReceived5

R6: This action can only be
a conversation timeout since

NULLBackedOutNULLBackedOutTimeOutReceived6

a UOW only exists once it is
committed.

ReceivedReceivedReceivedReceivedDeleteReceived7

ReceivedReceivedReceivedReceivedCancelReceived8

ReceivedReceivedReceivedReceivedReceiveReceived9

Administration144

Broker UOW Status Transition

Initial UOW Status: Accepted | Delivered

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

DeliveredDeliveredDeliveredDeliveredReceiveAccepted10

NULLTimedoutNULLTimedoutTimeoutAccepted11

NULLDiscardedAcceptedAcceptedRestartAccepted12

NULLCancelledNULLCancelledCancelAccepted13

AcceptedAcceptedAcceptedAcceptedDeleteAccepted14

AcceptedAcceptedAcceptedAcceptedBackOutAccepted15

AcceptedAcceptedAcceptedAcceptedSendAccepted16

AcceptedAcceptedAcceptedAcceptedCommitAccepted17

DeliveredDeliveredDeliveredDeliveredReceiveDelivered18

NULLProcessedNULLProcessedCommitDelivered19

R20:
Cancel

NULLCancelledNULLCancelledCancelDelivered20

can only
be issued
by
receiver of
the UOW

AcceptedAcceptedAcceptedAcceptedBackOutDelivered21

NULLNULLNULLTimedoutTimeOutDelivered22

NULLDiscardedAcceptedAcceptedRestartDelivered23

DeliveredDeliveredDeliveredDeliveredDeleteDelivered24

DeliveredDeliveredDeliveredDeliveredSendDelivered26

145Administration

Broker UOW Status Transition

Initial UOW Status: Processed | Timedout

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

Processed is a STABLE UOW
status:

N/ANULLN/ANULLDeleteProcessed27

All actions and transitions refer
to the status of a UOW.

N/ANULLNULLNULLTimeoutProcessed28

N/AProcessedN/AProcessedRestartProcessed29

N/AProcessedN/AProcessedBackoutProcessed30

N/AProcessedN/AProcessedCancelProcessed31

N/AProcessedN/AProcessedCommitProcessed32

N/AProcessedN/AProcessedReceiveProcessed33

N/AProcessedN/AProcessedSendProcessed34

Timedout is a STABLE UOW
status:

N/ATimeoutN/ATimeoutRestartTimedout35

All actions and transitions refer
to the status of a UOW.

N/ANULLN/ANULLDeleteTimedout36

N/ANULLN/ANULLTimeoutTimedout37

N/ATimedoutN/ATimedoutSendTimedout38

N/ATimedoutN/ATimedoutReceiveTimedout39

N/ATimedoutN/ATimedoutCommitTimedout40

N/ATimedoutN/ATimedoutBackoutTimedout41

N/ATimedoutN/ATimedoutCancelTimedout42

Administration146

Broker UOW Status Transition

Initial UOW Status: Cancelled | Discarded | Backedout

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

Cancelled is a STABLE UOW
status:

N/ANULLN/ANULLDeleteCancelled43

All actions and transitions
refer to the status of a UOW.

N/ACancelledN/ACancelledRestartCancelled44

N/ANULLN/ANULLTimeOutCancelled45

N/ACancelledN/ACancelledSendCancelled46

N/ACancelledN/ACancelledReceiveCancelled47

N/ACancelledN/ACancelledCommitCancelled48

N/ACancelledN/ACancelledBackoutCancelled49

N/ACancelledN/ACancelledCancelCancelled50

Discarded is a STABLEUOW
status:

N/ANULLN/AN/ADeleteDiscarded51

All actions and transitions
refer to the status of a UOW.

N/ANULLN/AN/ATimeOutDiscarded52

N/ADiscardedN/AN/ARestartDiscarded53

N/ADiscardedN/AN/ACancelDiscarded54

N/ADiscardedN/AN/ASendDiscarded55

N/ADiscardedN/AN/AReceiveDiscarded56

N/ADiscardedN/AN/ACommitDiscarded57

N/ADiscardedN/AN/ABackoutDiscarded58

BackedOut is a STABLE
UOW status:

N/ANULLN/ANULLTimeOutBackedOut59

All actions and transitions
refer to the status of a UOW

N/ABackedOutN/ABackedOutCancelBackedOut60

N/ABackedOutN/ABackedOutRestartBackedOut61

N/ABackedOutN/ABackedOutSendBackedOut62

N/ABackedOutN/ABackedOutReceiveBackedOut63

N/ABackedOutN/ABackedOutCommitBackedOut64

N/ANULLN/ANULLDeleteBackedOut65

N/ABackedOutN/ABackedOutBackoutBackedOut66

147Administration

Broker UOW Status Transition

Legend for UOW Status Transition Table

Resulting UOW StatusAbbreviation

Not applicableN/A

Error condition, message issued, no changeUOW Status

Table of Column Abbreviations

UOW StatusAbbreviation

Persistent unit of workPU

Persistent statusPS

Non-persistent unit of workNPU

Non-persistent statusNPS

Administration148

Broker UOW Status Transition

8 Data Compression in EntireX Broker

■ Introduction .. 150
■ zlib ... 150
■ Implementation ... 150
■ Sequencing Summary .. 151
■ Sample Programs .. 152

149

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
clients and servers. This helps to reduce response time during transmissions as well as improve
the overall network throughput, especially with low-bandwidth connections.

This chapter gives an overview of data compression in EntireX Broker.

See also: COMPRESSLEVEL under Broker ACI Fields | Data Compression underWriting Applications:
Client and Server | Publish and Subscribe in the ACI Programming documentation.

Introduction

Compression is performed only on the SEND and RECEIVE buffers. The client or server application
has the option of setting the level of compression/decompression for data transmission. The
compression level can be set to achieve either no compression or a range of compression/decom-
pression. If during a data transmission the data buffer does not compress, a logged warning
message 00200450 indicates that the data has not been compressed during transmission.

Note: The compression level is used to control compression only between the application
and the Broker kernel.

zlib

zlib is a general-purpose software implementing data compression across a variety of platforms.
Version 1.1.4 of zlib is implemented starting with EntireX Broker version 7. The functions used
within EntireX Broker represent a subset of those available within the zlib software.

The compression algorithms are implemented through the open source software zlib.

Implementation

Compression of the data is implemented by the following components of EntireX:

DescriptionComponents

Broker control
block

The Broker control block (ETBCB) contains a field that is used to set the compression
level. This field determines for any SEND/RECEIVE transmission whether the data
buffer will be compressed/decompressed. Possible values:

0 = no compression, 9 = maximum
compression/decompression

0 - 9

Default. No compression.N

Administration150

Data Compression in EntireX Broker

http://www.zlib.net/

DescriptionComponents

Compression level 6Y

If the data buffer does not compress, the kernel or stub generates a logged warning
message 00200450 indicating that the transmitted data is not compressed.

Note: See also ACI control block field COMPRESSLEVEL.

The behavior of the Broker stub and Java stub is identical with respect to compression.

The logic of a client or server application sets the compress level of the Broker control
block when it issues the SEND or RECEIVE command. If the application issues a SEND,

Stubs: Broker stub
and Java stub

the stub compresses the data buffer before transmission of the data. If the application
issues a RECEIVE, the stub decompresses the data buffer after reception of the data.

Note: The compression level is used to control compression only between the application
and the Broker kernel.

When a client or server application SENDs the data to the Broker kernel, the application
specifies the level at which the kernel is to decompress the data.

When the client or server application issues the RECEIVE command, the Broker kernel
compresses the data before returning it to the application. The application specifies the
level at which the kernel is to compress the data.

Broker kernel

Sequencing Summary

The following graphic shows the sequencing of data compression within EntireX Broker:

151Administration

Data Compression in EntireX Broker

Sample Programs

convClt and convSrv

Sample programs convClt and convSrv in directory examples/ACI/conversational/C can be used as
an example of performing compression/decompression.Using the -rnoptionwill cause compression
to be used at level <n>.

■ convSrv can be instructed to use compression/decompression by specifying, for example:

convSrv -7 -r4

■ -r4: This will cause a compression/decompression level of 4 to be used on all transmissions
between the server and the Broker.

■ -7: The -7 that is needed as compression/decompression is only supported at Version 7 or
above.

■ convClt can be instructed to use compression/decompression by specifying, for example:

Administration152

Data Compression in EntireX Broker

convClt -7 -r2

■ -r2: This will cause a compression/decompression level of 2 to be used on all transmissions
between the client and the Broker.

■ -7: The -7 that is needed as compression/decompression is only supported at Version 7 or
above.

Option -g<filename>convClt and convSrv

To test how well various types of data will compress, you can use the option -g<filename>. You
can use, for example, the following syntax to specify that input is to be extracted from a pre-existing
file, using the two arguments from above.

convClt -7 -r2 -gmyfile1.txt

This will read inmyfile1.txt and send it to a registered server. If convSrv is the server, convSrvwill
reverse the data sequence and return the data.

convSrv -7 -r4 -gmyfile2.txt

This will write in myfile2.txt the data sent from the client.

153Administration

Data Compression in EntireX Broker

154

9 Accounting in EntireX Broker

■ EntireX Accounting Data Fields .. 156
■ Using Accounting under UNIX and Windows ... 159
■ Using Accounting under z/OS .. 160
■ Example Uses of Accounting Data .. 162

155

This chapter describes the accounting records for Broker that can be used for several purposes,
including:

■ application chargeback
for apportioning EntireX resource consumption on the conversation and/or the application level;

■ performance measurement
for analyzing application throughput (bytes, messages, etc.) to determine overall performance;

■ trend analysis
for using data to determine periods of heavy and/or light resource and/or application usage.

EntireX Accounting Data Fields

In the EntireX Accounting record, there are various types of data available for consumption by
applications that process the accounting data:

DescriptionType of Field
Accounting
VersionField Name

z/OS only.Type of SMF record.1-byte unsigned integer1SMF Record Type

UNIX, Windows, BS2000/OSD and
z/VSE: The time this record was

UNIX, Windows,
BS2000/OSD and z/VSE:

1Record Write Time

written to the accounting file in
YYYYMMDDHHMMSS format
z/OS: SMF timestamp.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format
z/OS: Timestamp

z/OS only.ID of the SMF system.4-byte string1SMF system ID

z/OS only.ID of the SMF subsystem.4-byte string1SMF subsystem ID

Broker ID from attribute file.A321EntireX Broker ID

Version information, v.r.s.pA81EntireX Version

=versionvwhere

=releaser

=service packs

=patch levelp

for example 9.6.0.00.

Platform where EntireX is running.A321Platform of Operation

Time EntireX was initialized in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1EntireX Start Time

Administration156

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

It is always C for conversation. Future
Types will have a different value in
this field.

A11Accounting Record Type

USER-ID ACI field from the client in
the conversation.

A321Client User ID

TOKEN field from the ACI from the
client.

A321Client Token

The physical user ID of the client, set
by EntireX.

A561Client Physical ID

Communication used by client:I11Client Communication Type

1 = Net-Work
2 = TCP/IP
3 = APPC
4 = WebSphere MQ
5 = SSL

Number of Requests made by client.I41Client Requests Made

Number of bytes sent by client.I41Client Sent Bytes

Number of bytes received by client.I41Client Received Bytes

Number of messages sent by client.I41Client Sent Messages

Number of messages received by
client.

I41Client Received Messages

Number of UOWs sent by client.I41Client Sent UOWs

Number of UOWs received by client.I41Client UOWs Received

Completion code client receivedwhen
conversation ended.

I41Client Completion Code

USER-ID ACI field from the server in
the conversation.

A321Server User ID

TOKEN field from the ACI from the
server.

A321Server Token

The physical user ID of the server, set
by EntireX.

A561Server Physical ID

Communication used by Server:I11Server Communication Type

1 = Entire Net-Work
2 = TCP/IP
3 = APPC
4 = WebSphere MQ
5 = SSL

Number of requests made by server.I41Server Requests Made

Number of bytes sent by server.I41Server Sent Bytes

157Administration

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

Number of bytes received by server.I41Server Received Bytes

Number of messages sent by server.I41Server Sent Messages

Number of messages received by
server.

I41Server Received Messages

Number of UOWs sent by server.I41Server Sent UOWs

Number of UOWs received by server.I41Server Received UOWs

Completion code server received
when conversation ended.

I41Server Completion Code

CONV-ID from ACI.A161Conversation ID

SERVER-CLASS from ACI.A321Server Class

SERVER-NAME from ACI.A321Server Name

SERVICE from ACI.A321Service Name

Will be N if CONV-ID=NONE is
indicated in application.

A11CID=NONE Indicator

Will be R if a conversation was
restarted after a Broker shutdown.

A11Restarted Indicator

Time conversation began in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Conversation Start Time

Time conversation was cleaned up in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Conversation End Time

Number ofmicroseconds of CPU time
used by the conversation

I41Conversation CPU Time

Actual identity of client derived from
authenticated user ID.

A322Client Security Identity

Node name of machine where client
application executes.

A322Client Application Node

Stub type used by client application.A82Client Application Type

Name of the executable that called the
broker. Corresponds to the Broker

A642Client Application Name

Information Service field
APPLICATION-NAME in the ACI
Programming documentation.

Mechanism by which authentication
is performed for client.

I12Client Credentials Type

Actual identity of server derived from
authenticated user ID.

A322Server Security Identity

Node name of machine where server
application executes.

A322Server Application Node

Administration158

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

Stub type used by server application.A82Server Application Type

Name of the executable that called the
broker. Corresponds to the Broker

A642Server Application Name

Information Service field
APPLICATION-NAME in the ACI
Programming documentation.

Mechanism by which authentication
is performed for server.

I12Server Credentials Type

RPC library referenced by clientwhen
sending the only/first requestmessage
of the conversation.

A1283Client RPC Library

RPC Program referenced by client
when sending the only/first request
message of the conversation.

A1283Client RPC Program

RPC library referencedby serverwhen
sending the only/first response
message of the conversation.

A1283Server RPC Library

RPC Program referenced by server
when sending the only/first response
message of the conversation.

A1283Server RPC Program

IPv4 address of the client.A164Client IPv4 Address

IPv4 address of the server.A164Server IPv4 Address

Application version of the client.A164Client Application Version

Application version of the server.A164Server Application Version

IPv6 address of the client.A465Client IPv6 Address

IPv6 address of the server.A465Server IPv6 Address

Note: Accounting fields of any version greater than 1 are created only if the attribute AC-
COUNTING-VERSION value is greater than or equal to the corresponding version. For example:
accounting fields of version 2 are visible only if ACCOUNTING-VERSION=2 or higher is specified.

Using Accounting under UNIX and Windows

■ Broker Attribute File Settings

159Administration

Accounting in EntireX Broker

■ Retrieving Accounting Data

Broker Attribute File Settings

ACCOUNTING = NO | YES | (YES, SEPARATOR=Separator Characters) (Default is NO)

Set this parameter to "NO" (i.e., do not create accounting data) or "YES" to create accounting data.
Up to seven separator characters can specified using the SEPARATOR suboption, for example
ACCOUNTING= (YES, SEPARATOR=;). If no separator character is specified, the comma character
will be used.

Retrieving Accounting Data

The accounting file will be located in the Broker's installed directory. The file's name is based on
the ETB_LOG environment variable and the current date and time (for uniqueness). Example: If
ETB_LOG is set to BROKER1.LOG, the accounting data file will be named BROKER1_YYYYMMDDH-
HMMSS.csv. If ETB_LOG is not set, the Broker's ID will be used, with an extension of CSV (e.g.
ETB048_YYYYMMDDHHMMSS.csv). See Environment Variables in EntireX.

Using Accounting under z/OS

The ACCOUNTING attribute indicates if accounting records will be generated. Accounting records
arewritten upon successful completion of a conversation. A conversation ending in an application
error (such as a timeout) is considered to be a successful conversation.

■ Attribute File
■ Retrieving Accounting Records
■ Accounting Record Layouts
■ Notes

Attribute File

ACCOUNTING={NO|128-255}

Set this parameter to "NO" (i.e., do not create accounting records) or to a number between 128 and
255, which specifies the SMF record type to use when writing the accounting records. In order to
avoid conflictswith other applications that also produce SMF records, checkwith your z/OS systems
programmer for an appropriate number. In addition, check with your z/OS systems programmer
to ensure that the selected SMF record number is set up to be written.

Default value: NO

Administration160

Accounting in EntireX Broker

Retrieving Accounting Records

The standard IBM IFASMFDPutility programmay be used to selectively offloadBroker and Broker
Services SMF records. Analysis and report routines - either user-written or those available from
IBM or various software vendors - may subsequently be used to process the offloaded records.

//* Copies selected records from the "live" SMF data sets
//*
//* Replace nnn (OUTDD parameter) with a valid SMF record type
//*
//* Note: the "DISPLAY SMF" operator command will show the names of the
//* SMF data sets
//*
//IFASMFDP EXEC PGM=IFASMFDP
//SYSPRINT DD SYSOUT=*
//MAN1 DD DISP=SHR,DSN=SYS1.MAN1
//MAN2 DD DISP=SHR,DSN=SYS1.MAN2
//MAN3 DD DISP=SHR,DSN=SYS1.MAN3
//OUTPUT DD DISP=(MOD,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(15,15),RLSE),
// DCB=(RECFM=VBS,LRECL=32760,BLKSIZE=0),
// DSN=EXX.SMF.RECORDS
//SYSIN DD *
DATE(2002001,2099366)
START(0000)
END(2359)
INDD(MAN1,OPTIONS(DUMP))
INDD(MAN2,OPTIONS(DUMP))
INDD(MAN3,OPTIONS(DUMP))
OUTDD(OUTPUT,TYPE(nnn))
//*

Note: The IBM publicationMVS System Management Facilities (SMF) provides complete in-
formation on SMF.

Accounting Record Layouts

EntireX provides three mappings for its accounting records in the following members, all located
in the EXX960.SRCE data set:

■ EXXCACT - A C language include file that maps the accounting record;
■ EXXACTR - An Assembler language MACRO that will generate a DSECT of the accounting re-
cord;

■ EXXSACT - An SAS DATA step that will read in a file with the appropriate field names.

161Administration

Accounting in EntireX Broker

Notes

■ Since there is no server for Broker Command and Information Services, no server data is gener-
ated in the SMF records for Command and Information Services conversations.

■ The unit for CPUTIME is expressed in microseconds.

Example Uses of Accounting Data

■ Chargeback
■ Trend Analysis
■ Tuning for Application Performance

Chargeback

Customers can use the EntireX accounting data to perform chargeback calculations for resource
utilization in a data center. Suppose EntireX Broker is being used to dispatch messages for three
business departments: Accounts Receivable, Accounts Payable, and Inventory. At the end of each
month, the customer needs to determine howmuchof the operation andmaintenance cost of EntireX
Broker should be assigned to these departments. For a typical month, assume the following is
true:

Average PercentagePercentageMessages SentPercentageAmount of DataDepartment

22.52040002550 MBAccts Payable

253060002040 MBAccts Receivable

52.5501000055110 MBInventory

The use of Broker resources here is based upon both the amount of traffic sent to the Broker (bytes)
as well as how often the Broker is called (messages). The average of the two percentages is used
to internally bill the departments, so 52.5% of the cost of running EntireX Broker would be paid
by the Inventory Department, 25% by the Accounts Receivable Department, and 22.5% by the
Accounts Payable Department.

Trend Analysis

The Accounting Data can also be used for trend analysis. Suppose a customer has several point-
of-sale systems in several stores throughout the United States that are tied into the corporate in-
ventory databasewith EntireX. The stubswould be running at the stores, and the sales datawould
be transmitted to the Broker, whichwould hand it off to the appropriate departments in inventory.
If these departments wish to ascertain when the stores are busiest, they can use the accounting
data to monitor store transactions. Assume all of the stores are open every day from 9 AM to 10
PM.

Administration162

Accounting in EntireX Broker

Maximum Weekend
Transactions in any Store

Average Weekend
Transactions per Store

Maximum Weekday
Transactions in any
Store

Average: Weekday
Transactions per StoreLocal Time

8328.2277.39 AM

10229.33111.210 AM

11337.94814.611 AM

9834.810656.212 noon

9534.26525.61 PM

10238.55217.22 PM

9942.72312.13 PM

8843.23418.34 PM

9345.24726.25 PM

10540.68738.26 PM

11039.28329.67 PM

8528.67818.68 PM

6217.55511.29 PM

The owner of the stores can examine the data and make decisions based upon the data here. For
example, on weekdays, he or she can see that there is little business until lunchtime, when the
number of transactions increase. It then decreases during lunch hour; then there is another increase
from 5 PM to 8 PM, after people leave work. Based on this data, the owner might investigate
changing the store hours onweekdays to 10 AM to 9 PM. On the weekend the trends are different,
and the store hours could be adjusted aswell, although there is amore regular customer flow each
hour on the weekends.

Tuning for Application Performance

Assume that a customer has two applications that perform basic request/response messaging for
similar sized messages. The applications consist of many Windows PC clients and Natural RPC
Servers on UNIX. An analysis of the accounting data shows the following:

Average Client Messages
Received per Conversation

Average Server Messages
Received per ConversationServiceServerClassApplication Type

10.2910.30SERVICE1SERVER1CLASS1Application 1:

8.9810.30SERVICE2SERVER2CLASS2Application 2:

A further analysis of the accounting data reveals that there are a lot of non-zero response codes
in the records pertaining to Application 2, and that a lot of these non-zero responses indicate
timeouts. With that information, the customer can address the problem by modifying the server
code, or by adjusting the timeout parameters for SERVER2 so that it can have more time to get a
response from the Service.

163Administration

Accounting in EntireX Broker

164

10 Timeout Considerations for EntireX Broker

■ Timeout Units ... 166
■ Timeout Settings ... 166
■ Relationship between Timeout Values .. 167
■ Timeout-related Error Messages ... 169

165

This chapter describes the timeout settings for EntireX Broker.

Timeout Units

The timeout duration can be specified in seconds (S), minutes (M) or hours (H), for example 100M.
If no unit is specified, the default is seconds.

Timeout Settings

DescriptionTimeout Setting

Any broker stub application that issues a LOGON but does not issue a REGISTER is a client.
During logon, broker allocates resources to each client and keeps them available to the

Client
Non-activity
Timeout client until the client application issues a LOGOFF. A client is considered inactive when

it is not issuing a broker request. A typical example of a broker request by a client is the
SEND function.

The CLIENT-NONACT value defines the maximum period of time a client can remain
inactive. See CLIENT-NONACT under Broker Attributes in the platform-independent
administration documentation. If the client continues to be inactive beyond this period
of time, Broker releases all the resources allocated to this client. This time is a global
attribute, applicable to all clients of the Broker.

Any broker stub application that issues a LOGON and also issues a REGISTER is a server.
During logon and registration, broker allocates resources to each server, and keeps them

Server
Non-activity
Timeout available to the server until the server issues a DEREGISTER and LOGOFF. A server is

considered inactivewhen it is not issuing a broker request. A typical example of a Broker
request by a server is the RECEIVE function.

The SERVER-NONACT value defines the maximum period of time a server can remain
inactive. See SERVER-NONACT under Broker Attributes in the platform-independent
administration documentation. If the server continues to be inactive beyond this period
of time, Broker releases all the resources allocated to this server. This time is a per-service
attribute, and can vary from one service definition to another. All servers, registered to
the same service, inherit the same SERVER-NONACT time. If a server registers to more
than one service, the highest SERVER-NONACT value is taken as the non-activity time
period.

A conversation begins when a client successfully sends a message addressed to a server.
The Broker allocates a unique conversation, even before the server receives this message.

Conversation
Non-activity
Timeout Broker also allocates resources to manage each conversation. A conversation remains

active as long as messages are being exchanged with this conversation ID. The
conversation remains inactive as long as neither a client nor a server makes a Broker
request, referencing this conversation ID. The resources allocated to a conversation are
freed when either a client or a server issues EOC.

Administration166

Timeout Considerations for EntireX Broker

DescriptionTimeout Setting

The CONV-NONACT value defines themaximumperiod of time a conversation can remain
inactive. If the conversation continues to be inactive beyond this period of time, Broker
releases all the resources allocated to this conversation.

Each UOWhas a lifetime value associatedwith it. This is the time that a UOW is allowed
to exist without being completed. A UOW is completed when it is successfully

UOW Lifetime
(UWTIME)

■ either cancelled or backed out by its sender
■ or cancelled or committed by its receiver.

If a UOW is in ACCEPTED status when this lifetime expires, the UOW is placed into a
timeout status. Lifetime timeouts will not occur when the UOW is in either RECEIVED
or DELIVERED status. See CONV-NONACT description in Relationship between Timeout
Values.

If EntireNet-Work is used to transmit a Broker request, the setting of the EntireNet-Work
NODE statement parameter REPLYTIMmay influence the behavior of the application (see

Transport
Timeouts

your EntireNet-Work documentation for details). All non-activity timeouts in the Broker
configuration should be consideredwhendetermining themaximum time. Thismaximum
time should be less than the value defined for REPLYTIM in the Entire Net-Work
configuration.

Relationship between Timeout Values

The interdependency between different timeouts is described as follows:

■ UOW Messages

167Administration

Timeout Considerations for EntireX Broker

■ Non-UOW Messages

UOW Messages

■ A server or a client engaged in a conversation will not be timed out until the UOW that they
are handling times out. CLIENT-NONACT (or SERV-NONACT) has no effect if it is shorter than UWTIME.

■ A conversation may time out earlier than either the client or the server. When an existing con-
versation times out, the participating server and client can start a new conversation. We recom-
mend you set the CONV-NONACT shorter than CLIENT-NONACT (or SERV-NONACT).

■ If either the client or server times out before the conversation does, the conversation does not
continue, that is, it reaches end of conversation (EOC). Nevertheless, the surviving participant
(client or server) can continue and receive any unread messages.

■ When a conversation times out, Broker checks for the status of all UOWs in this conversation.
Any UOWwith status RECEIVED or DELIVERED is backed out and enters into ACCEPTED status.
"Accepted" means that the UOW can be received by anyone (with CONV-ID=NEW), and that the
conversation has lost the link to the consumer of the UOW.

Note: The link to the consumer is lost only for the first UOW in a conversation when the
status changes to ACCEPTED; with subsequent UOWs, the link is not lost.

■ A common relationship between these three timeout values is as follows, although this may not
be the optimum combination in all situations:

UWTIME > SERV-NONACT > CLIENT-NONACT > CONV-NONACT

In common situations, this combination will achieve optimal resource consumption without
recourse to repeatedly restarting applications.

Administration168

Timeout Considerations for EntireX Broker

Non-UOW Messages

Timeout behavior remains the same as in UOWmessages, except that UWTIME (UOW lifetime at-
tribute) is not applicable here. The optimal hierarchy between the three timeout values is shown
below:

SERV-NONACT > CLIENT-NONACT > CONV-NONACT

Timeout-related Error Messages

When any client or server or conversation times out, the Broker does not immediately notify the
application. The application receives notification when it makes its next Broker request. The fol-
lowing are the errormessages commonly associatedwith the respective timeouts. The errors listed
below can occur in the case of blocked and non-blocked ACI calls. A blocked call is one in which
the ACI field WAIT is set to either "YES" or a non-zero numeric value.

See message 00740074.

■ CLIENT-NONACT
■ SERV-NONACT
■ CONV-NONACT

169Administration

Timeout Considerations for EntireX Broker

■ Special Case for UOW Messages

CLIENT-NONACT

In the following errors, it is assumed that client only has timed out, while the server and conver-
sation are active.

ExplanationError TextError Number

When the timed out client tries to make a Broker request.User does not exist00020002

The surviving partner (server) receives this error when
attempting to receive on a conversation which is closed because

EOC due to LOGOFF of
partner

00030012

the client has timed out. If there are any unread messages, the
server successfully receives them.

SERV-NONACT

In the following errors, it is assumed that only the server has timed out, while the client and con-
versation are active.

ExplanationError TextError Number

When the timed out client tries to make a Broker request.User does not exist00020002

The surviving partner (client) receives this error when attempting
to send on a conversation which is closed because the server timed
out.

Partner timeout occurred00030067

CONV-NONACT

It is assumed that server and client are active.

ExplanationError TextError Number

When either a server or a client attempts a newBroker request
affecting this timed out conversation.

No matching conversation
found

00030003

When both client and server are already engaged in a
conversation, and the conversation time out without the
partner issuing any Broker request.

Conversation timeout occurred00030073

Administration170

Timeout Considerations for EntireX Broker

Special Case for UOW Messages

UOWs involved in a conversation, andwhich are in DELIVERED state, revert to ACCEPTED statewhen
the conversation times out. UOWs in ACCEPTED state are no longer bound to a server nor to an
existing conversation. Therefore, UOW in ACCEPTED state is part of a new conversation that is
available to any server.

171Administration

Timeout Considerations for EntireX Broker

172

11 EXXMSG - Command-line Tool for Displaying Error

Messages
■ Running the EXXMSG Command-line Utility ... 174

173

EXXMSG is a command-line tool that displays the text of an EntireX error message for a supplied
error number. It is available on all platforms.

Running the EXXMSG Command-line Utility

Under z/OS, command-line utility EXXMSG is located in library EXB960.LOAD. Under UNIX and
Windows, the utility is located in the EntireX bin directory.

Command-line Parameters

The only command-line parameter is any 8-digit error code.

Sample Command

exxmsg 02150148

Sample Output

Software AG webMethods EntireX 9.0.0 (473) Linux 3.1.10-1.16-desktop
(c) Copyright 1997 - 2012 Software AG. All rights reserved.

02150148 EntireX Broker not active : (or Transport-Specific Error Text)
Explanation The requested Broker specified in BROKER-ID is not reachable.
Action Check the BROKER-ID. If it is correct, check if ETB_TRANSPORT

environment variable is defined and if defined, it should point to
the desired transport method. If problem persists, contact your
network administrator.

Administration174

EXXMSG - Command-line Tool for Displaying Error Messages

	Administration
	Table of Contents
	1 Environment Variables in EntireX
	Table of Environment Variables
	Using Environment Variables under z/OS
	Using Environment Variables under UNIX
	Using Environment Variables under Windows
	Using Environment Variables under BS2000/OSD (Batch, Dialog)
	Using Environment Variables under z/VSE

	2 Directories as Used in EntireX
	Application Data Directory
	Windows

	Broker Directory
	UNIX
	Windows

	Broker User Exit Directory
	UNIX
	Windows

	Application Data Directory
	Windows

	Trace Directory
	Windows

	User's Home Directory
	Windows

	Working Directory
	Windows

	EntireX Directory etc
	UNIX
	Windows

	3 Broker Resource Allocation
	General Considerations
	Specifying Global Resources
	Restricting the Resources of Particular Services
	Specifying Attributes for Privileged Services
	Maximum Units of Work
	Calculating Resources Automatically
	Dynamic Memory Management
	Dynamic Worker Management
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Maximum TCP/IP Connections per Communicator
	Note for z/OS
	Note for UNIX

	4 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definition
	Service Update Modes
	OPTION Values for Conversion

	Topic-specific Attributes
	Codepage-specific Attributes
	Adabas SVC/Entire Net-Work-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Variable Definition File

	5 Concepts of Persistent Messaging
	Client Server Model: Persistent Messaging
	Publish-and-Subscribe Model: Persistent Behavior
	Definitions of Persistent Messaging Terms
	UOW
	Persistent Store
	Persistent Store Drivers
	UOW Lifetime
	Persistent UOW
	Persistent Status
	Publication
	Durable Subscription
	Publication Lifetime
	Subscription Expiration

	Availability of Persistent Store
	Introduction
	Disconnect the Persistent Store
	Connect the Persistent Store

	Migrating the Persistent Store
	Introduction
	Configuration
	Migration Procedure

	Persistent Store Report
	Configuration
	Sample Report

	Swapping out New Units of Work

	6 Using Persistence and Units of Work
	Implementation Issues
	Table of Persistent Store Drivers
	Changes are Required
	Attributes used for Units of Work
	ACI Fields used for Units of Work
	ACI Function SYNCPOINT used for Units of Work
	Options used for UOW Operations
	CID Implementation: Numeric Digits, Characters 0-9 and A-Z

	Using Units of Work
	UOW vs non-UOW Conversations
	Sequencing of Messages across Conversations

	Use of LOGON and TOKEN
	User Identification for Units of Work
	Which Applications should use UOWs?
	Understanding UOW Status
	UOW Status on RECEIVE
	Using User Status
	Resource and Performance Considerations

	Using Persistence
	When do Persistent UOWs make Sense?
	Adding Persistence to a UOW
	Resource and Performance Considerations
	Which Information is saved with the UOW?
	What happens when Broker restarts?
	Restart Behavior of UOW
	Re-creation of Internal Control Blocks
	Behavior of Conversation at Broker Restart

	UOWs and Replicated Servers

	Using Persistent Status
	When does Persistent Status make Sense?
	Adding Persistent Status to a UOW
	Resource and Performance Considerations

	Recovery Processing
	Introduction
	Determining the Status of a UOW
	A Real-world Example: Chess-by-Mail
	Client Behavior
	Server Behavior

	7 Broker UOW Status Transition
	Initial UOW Status: NULL | Received
	Initial UOW Status: Accepted | Delivered
	Initial UOW Status: Processed | Timedout
	Initial UOW Status: Cancelled | Discarded | Backedout
	Legend for UOW Status Transition Table
	Table of Column Abbreviations

	8 Data Compression in EntireX Broker
	Introduction
	zlib
	Implementation
	Sequencing Summary
	Sample Programs
	convClt and convSrv
	Option -g<filename>convClt and convSrv

	9 Accounting in EntireX Broker
	EntireX Accounting Data Fields
	Using Accounting under UNIX and Windows
	Broker Attribute File Settings
	Retrieving Accounting Data

	Using Accounting under z/OS
	Attribute File
	Retrieving Accounting Records
	Accounting Record Layouts
	Notes

	Example Uses of Accounting Data
	Chargeback
	Trend Analysis
	Tuning for Application Performance

	10 Timeout Considerations for EntireX Broker
	Timeout Units
	Timeout Settings
	Relationship between Timeout Values
	UOW Messages
	Non-UOW Messages

	Timeout-related Error Messages
	CLIENT-NONACT
	SERV-NONACT
	CONV-NONACT
	Special Case for UOW Messages

	11 EXXMSG - Command-line Tool for Displaying Error Messages
	Running the EXXMSG Command-line Utility
	Command-line Parameters
	Sample Command
	Sample Output

