5 software~

webMethods EntireX

Administration

Version 9.6

April 2014

webMethods EntireX

This document applies to webMethods EntireX Version 9.6.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ADMIN-96-20140628GENERAL

Table of Contents

1 Environment Variables in EntireXccccccooviiiiiiiiiiiiiiiiiiiiiiciccec e 1
Table of Environment Variablescccocoiiiiiiiiiiiiiiiiiiiic e 2
Using Environment Variables under z/OScccociiiiiiiiiiiiiiiiniiiie 6
Using Environment Variables under UNIX ..o, 6
Using Environment Variables under Windowscccccoooiiiiiiiiiiiiniiiiiiic 6
Using Environment Variables under BS2000/OSD (Batch, Dialog)cccccceevunnnee. 7
Using Environment Variables under z/VSEc.cccoiiiiiiiiiiiiiiieeee 7

2 Directories as Used in EntireXcccoocooiiiiiiiiiiiiii 9
Application Data DIireCtoryccooiiiiiiiiiiiiiicccc 11
Broker DIreCtorycocuiiiiiiiiiiiiiiiiiicciici e 10
Broker User Exit Dir€CtOryc.ccoiiiiiiiiiiiiiiicccccc 11
Application Data DIre€CtOryccceeviiiiiiiiiiiiiiiiiiiiiecicceeeee e 11
Trace DIreCtOryc.oooiiiiiiiiiii 11
User's Home DIreCtOrycccceoiiiiiiiiiiiiiiiiiiiiiiiiic i 12
WOrking DirectOryccooouiiiiiiiiiiiiiiiii i 12
EntireX Directory etC ... 12

3 Broker Resource AllOCationcccoouiiiiiiiiiiiiiiiiccc 13
General Considerationsccccoceiiiiiiiiiiiiiii 14
Specifying Global RESOUICEScocuiiiuiiiiiiiiiiiiiiieciieee e 15
Restricting the Resources of Particular Servicescccccoeiiiiiiiiiniiiiiiiininnnnn, 15
Specifying Attributes for Privileged Servicesc.cccocoviiiiniiiiiiiiiiii 17
Maximum Units of WOrkc.ccoiiiiiiiii, 18
Calculating Resources Automaticallycccoooooiiiiiiiii 18
Dynamic Memory Managementcccocuiiiiiiiiiiiiiiiiiiicceeccieen 20
Dynamic Worker Managementcccoouiviiiiiiiiiiiiicccecee 21
Storage Reportoooiiiiiiiiiiiiiii 22
Maximum TCP/IP Connections per Communicatorccccevviiiiiiiiiniiiiininnnn. 26

4 Broker Atributes ..o 29
Name and Location of Attribute Fileccccccooviiiiiiiiii, 31
Attribute SYNtaXocooiiiiiiiii 31
Broker-specific Attributescccoeviiiiiiiiiiiii 33
Service-specific Attributesccooiiiiiiiii 58
Topic-specific Attributes ... 71
Codepage-specific Attributescocoiiiiiiiiiiiiii 78
Adabas SVC/Entire Net-Work-specific Attributescccocoiiiniiiiiiiie, 82
Security-specific AtIIDULEScccociiiiiiiiiiiiiii 86
TCP/IP-specific Attributesccooiiiiiiii 92
c-tree-specific Attributesccccooiiiiiiiiiii 96
SSL-specific AtIIbULeScooiiiiiiiiiii 98
DIV-specific Atributescocoviiiiiiiiii 103
Adabas-specific Attributesccccooiiiiiiiiiiiiii 103
Variable Definition Fileccccooiiiiiiii 105

5 Concepts of Persistent Messagingcccceveeviiiiiiiiiiiiiiiiiiiiiiicccesee e 107

Administration

Client Server Model: Persistent Messagingccccoevvvuiiieniiiiieiinniciicceeicen, 108
Publish-and-Subscribe Model: Persistent Behaviorcccccociiininnn. 109
Definitions of Persistent Messaging Termscccccceevviiiiiiiiiniiiiiiiiniiiciicnen 111
Availability of Persistent StOTec.cocooiiiiiiiiiiiii 113
Migrating the Persistent StOrecccociiiiiiiiiiiiiiiiiiiice, 115
Persistent Store Report ..o 118
Swapping out New Units of WOrkcccoooiiiiiiiiiiiicc, 121
6 Using Persistence and Units of WOTkccccoviiiiiiniiiiii, 123
Implementation ISSUESc.ccooiiiiiiiiiiii 124
Using Units of WOTKocciiiiiiiiiiiiiic 129
UsINg PersiStencec.ooiiiiiiiiiiiiii 133
Using Persistent Statusccccovviiiiiiiiiiiiiiiii 138
Recovery ProCeSSINgcc.covuiiiiiiiiiiiiiiiiiiceic e 140
7 Broker UOW Status Transitionccccocviiiiiiiiiiiiiiiiiiiicccc 143
Initial UOW Status: NULL | Receivedcccociiiiiiiiiiiiiiiiiiiiccicccc 144
Initial UOW Status: Accepted | Deliveredcccccooiiiiiiiiiniiiiccc, 145
Initial UOW Status: Processed | Timedoutccoccoovviiiiiiiiiiiiiiiiiie 146
Initial UOW Status: Cancelled | Discarded | Backedoutcccccoecuiiiiiiiinnnne 147
Legend for UOW Status Transition Tableccccccccoviiiiiiiiiiniiiiiiiiiiceeen, 148
Table of Column Abbreviationscccoeciiiiiiiiiiiiiiiiii e, 148
8 Data Compression in EntireX Broker ... 149
INtrodUCtiONooviiiiiii 150
ZID o 150
Implementationc.cooouiiiiiiiiiiiii 150
Sequencing SUMIMATYccooiiiiiiiiiiii e 151
Sample Programscccceeiiiiiiiiiiiiiiiiiii 152
9 Accounting in EntireX BrokKerccccooiiiiiiiiiiiiiiiiiiiii, 155
EntireX Accounting Data Fieldscccocoviiiiiiii 156
Using Accounting under UNIX and Windowsccccevviiiiiiiiiiiiniiiiiiinnen, 159
Using Accounting under z/OS ..o 160
Example Uses of Accounting Dataccccceeviiiiiiiiiiiiiniiiiiiceceeceee, 162
10 Timeout Considerations for EntireX Brokercccccocooviiiiiiiiiiiiii, 165
Timeout UNitsc..oooiiiiiiiii 166
Timeout SettNGSccooviiiiiiiiiiiii 166
Relationship between Timeout Valuesc.ccccooiiiiiiii 167
Timeout-related Error MeSssagesccccevvuiiviiiiiiiiiiiiiiiiiiiiicciccicceccee e 169
11 EXXMSG - Command-line Tool for Displaying Error Messagescccocceueenenn 173
Running the EXXMSG Command-line Utilitycccocceiviiiiiniiiiiiniiiineen. 174

Administration

1 Environment Variables in EntireX

= Table of ENVIFONMENt VArabIESvviiiiiiii i
= Using Environment Variables Under Z/OSooiiiiiiiiie e
= Using Environment Variables under UNIXuuiuieiiiiiiiiiiiiiiiiiiiiiiiiiieiiee e eeeeeeee e
= Using Environment Variables under WINAOWSoooiiiiiiiiiie e
= Using Environment Variables under BS2000/0OSD (Batch, Dialog)coovvviiiieeieiiiiiiiiiieceee e
= Using Environment Variables Under Z/VSEooi i

Environment Variables in EntireX

This chapter gives an overview of environment variables in EntireX and how they are used.

Table of Environment Variables

The table below provides an overview of environment variables used on the various platforms
supported by EntireX.

Environment Variable

Platform

z/0S

Win

UNIX |z/VSE

zlVM

Opt/
Req

Description

More Information

SAG

X

Root directory for all
Software AG
infrastructure products
(e.g. System Management
Hub, Software AG
Common Platform).

EXXDIR

Top level directory for
EntireX.

EXXVERS

Version level directory of
the EntireX. Deprecated.
Kept for reasons of
compatibility with earlier
versions.

PATH

System variable.
Additional program
directories required by
EntireX are added to this
variable by the EntireX
environment script.

Not required by EntireX
Mini Runtime.

See Shell Environment
Settings under
Post-installation Steps under
UNIX.

LD_LIBRARY_PATH

System variable.
Additional shared library
directories required by
EntireX are added to this
variable by the EntireX
environment script.

See Shell Environment
Settings under
Post-installation Steps under
UNIX.

SHLIB_PATH

Same as
LD_LIBRARY_PATH on
HP-UX.

See Shell Environment
Settings under
Post-installation Steps under
UNIX.

LIBPATH

Same as
LD_LIBRARY_PATH on
AIX.

See Shell Environment
Settings under

Administration

Environment Variables in EntireX

Platform

Opt/

Environment Variable |z/OS |Win |UNIX |z/VSE |z/VM | Req | Description More Information
Post-installation Steps under
UNIX.

CLASSPATH X | x R |System variable.

Additional JAR file path
entries required by
EntireX are added to this
variable by the EntireX
environment script
(UNIX) or during
installation (Windows).
ARGDIR X R |Home directory of the |See Systern Management Hub
System Management Hub |for EntireX.
ARGVERS X R |Version of the System
Management Hub
ETB_ATTR X | x O |Value of Broker attribute |See Broker Attributes in the
file. Set automatically by |platform-independent
the Broker startup shell |administration
script. documentation.

ETB_LOG x | x O |Accounting file. See Accounting in EntireX
Broker in the general
administration
documentation.

ETB_NONACT X | x| x X O |Limits the TCP/IP Stub-to-broker connection

NONACT connection lifetime. non-activity time in seconds.
If not 0, connections with a
non-activity time greater
than ETB_NONACT will be
closed. See Limiting the
TCP/IP Connection Lifetime in
the platform-specific Stub
Administration sections of the
EntireX documentation.

ETB_SOCKETPOOL | x | x | x O |Values: ON (default) or |See Support of Clustering in a

OFF to establish an High Availability Scenario

affinity between threads |under Administration of

and TCP/IP connections |Broker Stubs in the

in a DVIPA environment. | platform-specific
administration
documentation.

ETB_STUBLOG x | x| x X [x O |Trace level for the EntireX|See Application Stublog File

STUBLOG Broker APIL. in the UNIX administration
documentation |
Tracing for Broker Stubs
under z/OS | | | z/VM.

Administration

Environment Variables in EntireX

Platform

Opt/
Environment Variable |z/OS |Win |UNIX |z/VSE |z/VM | Req | Description More Information
ETB_STUBLOGPATH X | x O |Under UNIX and
Windows, the directory
where the log file is
created if ETB_STUBLOG
is used.
ETB_TIMEQUT x | x| x X |x O |Stub transport timeout. |See Setting the Timeout for the
TIMEOUT Transport Method in the
platform-specific broker stub
administration
documentation.
ERX_TRACELEVEL X | x O |Sets the trace level for Tracing for various EntireX
EntireX RPC Runtime. |components such as DCOM
Wrapper, .NET Wrapper
and C Wrapper. See Tracing
webMethods EntireX in the
platform-specific
administration
documentation.
ETB_TRANSPORT x | x| x X O |Sets the default transport|See Transport Methods for
TRANSPORT method for Broker stubs. |Broker Stubs in the
platform-specific broker stub
administration
documentation.
ADALNK x | x O |The Adabas module that |See Managing the Broker
is needed by the Broker |Persistent Store in the
kernel to access the platform-specific
Adabas persistent store. |administration
documentation.
ETBLNK X R |Identifies the absolute |See Broker Stubs under
path to the broker stubs |Post-installation Steps under
library if EntireX Broker |UNIX.
has been installed.
ERX_TRACEFILE X | x O |Sets the name of the trace|Tracing for various EntireX
file for EntireX RPC components such as DCOM
Runtime. Wrapper, .NET Wrapper
and C Wrapper. See Tracing
webMethods EntireX in the
platform-specific
administration
documentation.
ERX_ETBAPIVERS X | x O |Determines the Broker |EntireX components such as
API version to use. DCOM Wrapper, .NET
Wrapper and C Wrapper
and the EntireX Broker are

Administration

Environment Variables in EntireX

Platform

Opt/

Environment Variable |z/OS |Win |UNIX |z/VSE |z/VM | Req | Description More Information
able to detect automatically
the best API version to use
(if no environment variable
is defined or the value 0 is
assigned). However, for
backward compatibility to
EntireX Broker, it might be
necessary to set a preferred
API Version for the Broker.

ERX_CODEPAGE X | x O |Sets the locale string to be |Internationalization for

used for various EntireX components

internationalization with [such as DCOM Wrapper,

the EntireX RPC Runtime. |.NET Wrapper and C
Wrapper, if communicating
with EntireX Broker version
7.1.x and below. See
Preparing EntireX Components
for Internationalization.

NA2_BKDBGS x | x O |Security exit debug level.

Used for protecting the
Broker kernel on UNIX
and Windows to leverage
the local security system.
NA2_BKDBGF X | x O |Security exit debug file. |See Setting up EntireX
Used for protecting the |Security for Broker Kernel in
Broker kernel on UNIX |the UNIX and Windows
and Windows to leverage | post-installation
the local security system. |[documentation.
NAZ2_BKDIAG X | x O |Security exit diagnostics.
Use only if requested by
Software AG support.

NAZ2_BKPRIV X | x X O |Security exit setting. See Setting up EntireX
Security for Broker Kernel in
the UNIX and Windows
post-installation
documentation;

Step 4: Rename SECUEXIO to
SECUEXIT for Security
(Optional) in the z/VM
installation documentation.

REGFILE X R |RGS repository for

Software AG Base
Technology components
under UNIX.

Administration

Environment Variables in EntireX

Using Environment Variables under z/0OS

Under CICS, Batch and IMS, use the SAGTOKEN Utility to set and delete environment variables. See
SAGTOKEN Utility under Administering Broker Stubs in the z/OS administration documentation.

In Com-plete, use the EXAENV environment store to set and delete environment variables. See EX-
AENV Environment Store under Administering Broker Stubs.

Using Environment Variables under UNIX

The following table shows how to use environment variables with the C, Bourne and Korn shells.
For other shells, see your UNIX documentation.

C Shell

Action Syntax Example

Set environment variable setenv variable value |setenv ERX_TRACELEVEL ADVANCED

Delete environment variable|unsetenv variable unsetenv ERX_TRACELEVEL

Bourne and Korn Shells

Action Syntax Example

Set environment variable variable = value |ERX_TRACELEVEL=ADVANCED
export variable export ERX_TRACELEVEL

Delete environment variable|unset variable unset ERX_TRACELEVEL

Using Environment Variables under Windows

The following table shows how to use environment variables under Windows:

Action Syntax Examples

Set environment variable SET variable = value |SET ERX_TRACELEVEL=ADVANCED
SET ETB_STUBLOG=NONE

Delete environment variable|SET variable = SET ERX_TRACELEVEL=

6 Administration

Environment Variables in EntireX

Using Environment Variables under BS2000/0SD (Batch, Dialog)

Environment variables are emulated with SDF variables or, failing that, with job variables.

Replace all underscores in the variable names by hyphens. For example, variable ETB_STUBLOG is
called ETB-STUBLOG under BS2000/OSD.

The following table shows how to use job variables under BS2000/OSD:

Action Syntax Example

Set environment variable /CATJIV variable /CATJV ETB-STUBLOG

/SETJIV variable,C'value'|/SETJV ETB-STUBLOG,C'1"'
Delete environment variable|/ERAJV variable /ERAJV ETB-STUBLOG

Using Environment Variables under z/VSE

Action Syntax Examples

Set environment variable //SETPARM variable = value|//SETPARM STUBLOG=2

Delete environment variable | Remove SETPARM statement /* /SETPARM STUBLOG=2

Administration 7

2 Directories as Used in EntireX

= Application Data Directory

Broker User Exit Directory
Application Data Directory

Broker Directory

Trace Directory
User's Home Directory ...
Working Directory
EntireX Directory efc

Directories as Used in EntireX

Application Data Directory

Windows

Under Windows, the application data directory is the folder that serves as a common repository
for application-specific data.

Example: C:\ Documents and Settings \username\ Application Data

Broker Directory

UNIX

This directory is a subdirectory of the EntireX main directory /opt/softwareag/EntireX/con-
figletb/<brokerid>.

Example: /opt/softwareag/EntireX/config/etb/ ETB001

Windows

This directory is a subfolder of the EntireX config directory <drive>:\ Software AG\ EntireX \ con-
fig\etb\<brokerid>.

Example: <drive>:\ SoftwareAG\ EntireX \ config\etb\ ETB001

10 Administration

Directories as Used in EntireX

Broker User Exit Directory

UNIX
This directory is a subdirectory of the EntireX main directory /opt/softwareag/EntireX/security_exit.
Windows

This directory is a subfolder of the EntireX main directory, for example: C:\ Software AG\ EntireX \ se-
curity_exit.

Application Data Directory

Windows

The local application data directory is a folder that serves as a common repository for (non-
roaming) application-specific data.

Example: C:\ Documents and Settings \username\ Application Data

Trace Directory

Windows

Traces are written into the ..\ My Documents\ Software AG\ EntireX folder. The location of the folder
My Documents can be specified by the user. By default it is a subdirectory of the user's Profile folder
referenced by the ZUSERPROFILE% environment variable.

Example: C:\ Documents And Settings \ username\ My Documents\ Software AG\ EntireX

Administration 11

Directories as Used in EntireX

User's Home Directory

Windows
This folder is also known as the My Documents folder. The location of the folder My Documents

can be specified by the user. By default it is a subdirectory of the Profile folder referenced by the
%USERPROFILE% environment variable.

Example: C:\ Documents And Settings\ username\ My Documents

Working Directory

Windows

This is the directory your application is running in.

Example: C:\ Temp

EntireX Directory etc

UNIX
This directory is a subdirectory of the EntireX main directory /opt/softwareag/EntireX/etc.
Windows

This directory is a subfolder of the EntireX main directory <drive>:\ SoftwareAG\ EntireX \etc.

Example: C:\<drive>:\ Software AG\ EntireX \etc

12 Administration

3 Broker Resource Allocation

= General Considerationsccccceeviiiiieennn
= Specifying Global Resourcescccvveenee.
= Restricting the Resources of Particular Services ...
= Specifying Attributes for Privileged Services
= Maximum Units of Workccoooviiiiinnns
= Calculating Resources Automatically
= Dynamic Memory Managementcce...
= Dynamic Worker Management
= Storage Reportccoovviiiiiiiiiiiic,

= Maximum TCP/IP Connections per Communicator

13

Broker Resource Allocation

The EntireX Broker is a multithreaded application and communicates among multiple tasks in
memory pools. If you do not need to restrict the memory expansion of EntireX Broker, we strongly
recommend you enable the dynamic memory management in order to handle changing workload
appropriately. See Dynamic Memory Management below. If dynamic memory management is
disabled, non-expandable memory is allocated during startup to store all internal control blocks
and the contents of messages.

General Considerations

Resource considerations apply to both the global and service-specific levels:

* Dynamic assignment of global resources to services that need them prevents the return of a
“Resource Shortage” code to an application when resources are available globally. It also enables
the EntireX Broker to run with fewer total resources, although it does not guarantee the availab-
ility of a specific set of resources for a particular service.

® Flow control ensures that individual services do not influence the behavior of other services by
accident, error, or simply overload. This means that you can restrict the resource consumption
of particular services in order to shield the other services.

In order to satisfy both global and service-specific requirements, the EntireX Broker allows you
to allocate resources for each individual service or define global resources which are then allocated
dynamically to any service that needs them.

The resources in question are the number of conversations, number of servers, plus units of work
and the message storage, separated in a long buffer of 4096 bytes and short buffer of 256 bytes.
These resources are typically the bottleneck in a system, especially when you consider that non-
conversational communication is treated as the special case of “conversations with a single message
only” within the EntireX Broker.

Global resources are defined by the parameters in the Broker section of the attribute file. The
number of conversations allocated to each service is defined in the service-specific section of the
attribute file. Because the conversations are shared by all servers that provide the service, a larger
number of conversations should be allocated to services that are provided by more than one
server. The number of conversations required is also affected by the number of clients accessing
the service in parallel.

14 Administration

Broker Resource Allocation

Specifying Global Resources

You can specify a set of global resources with no restrictions on which service allocates the resources:

= Specify the global attributes with the desired values.

* Do not specify any additional restrictions. That is, do not provide values for the following Broker-
specific attributes:

LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
CONV-DEFAULT
SERVER-DEFAULT

® Also, do not provide values for the following server-specific attributes:

LONG-BUFFER-LIMIT
SERVER-LIMIT
SHORT-BUFFER-LIMIT
CONV-LIMIT

Example

The following example defines global resources. If no additional definitions are specified, resources
are allocated and assigned to any server that needs them.

NUM-CONVERSATION=1000
NUM-LONG-BUFFER=200
NUM-SHORT-BUFFER=2000
NUM-SERVER=100

Restricting the Resources of Particular Services

You can restrict resource allocation for particular services in advance:

® Use CONV-LIMIT to limit the resource consumption for a specific service.

® Use CONV-DEFAULT to provide a default limit for services for which CONV-LIMIT is not defined.
Example

In the following example, attributes are used to restrict resource allocation:

Administration 15

Broker Resource Allocation

DE
NU
Co

DE
CL
CL

FAULTS=BROKER
M-CONVERSATION=1000
NV-DEFAULT=200

FAULTS=SERVICE
ASS=A, SERVER=A, SERVICE=A, CONV-LIMIT=100
ASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=UNLIM

CLASS=C, SERVER=C, SERVICE=C

Memory for a total of 1000 conversions is allocated (NUM-CONVERSATION=1000).

Service A (CLASS A,SERVER A,SERVICE A) is limited to 100 conversation control blocks used simul-
taneously (CONV- LIMIT=100). The application that wants to start more conversations than specified
by the limit policy will receive a “Resource shortage” return code. This return code should result
in a retry of the desired operation a little later, when the resource situation may have changed.

Service B (CLASS B,SERVER B,SERVICE B) is allowed to try to allocate as many resources as necessary,
provided the resources are available and not occupied by other services. The number of conver-
sations that may be used by this service is unlimited (CONV-LIMIT=UNLIM).

Service C (CLASS C,SERVER C,SERVICE C) has no explicit value for the CONV-LIMIT attribute. The
number of conversation control blocks that it is allowed to use is therefore limited to the default
value which is defined by the CONV-DEFAULT Broker attribute.

The same scheme applies to the allocation of message buffers and servers:

In the following example, long message buffers are allocated using the keywords NUM-LONG-
BUFFER, LONG-BUFFER-DEFAULT and LONG-BUFFER-LIMIT

DEFAULTS=BROKER
NUM-LONG-BUFFER=2000
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, LONG-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

In the following example, short message buffers are allocated using the keywords NUM-SHORT -
BUFFER, SHORT-BUFFER-DEFAULT and SHORT-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=2000
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, SHORT-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

16

Administration

Broker Resource Allocation

* In the following example, servers are allocated using the keywords NUM- SERVER, SERVER-DEFAULT
and SERVER-LIMIT

DEFAULTS=BROKER
NUM-SERVER=2000
SERVER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SERVER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Specifying Attributes for Privileged Services

If privileged services (services with access to unlimited resources) exist, specify UNLIMITED for the
attributes CONV-LIMIT, SERVER-LIMIT, LONG-BUFFER-LIMIT and SHORT-BUFFER-LIMIT in the service-
specific section of the attribute file.

For example:

DEFAULTS=SERVICE
CONV-LIMIT=UNLIM
LONG-BUFFER-LIMIT=UNLIM
SHORT-BUFFER-LIMIT=UNLIM
SERVER-LIMIT=UNLIM

To ensure a resource reservoir for peak load of privileged services, define more resources than
would normally be expected by specifying larger numbers for the Broker attributes that control
global resources:

NUM-SERVER
NUM-CONVERSATION
CONV-DEFAULT
LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
SERVER-DEFAULT

Administration 17

Broker Resource Allocation

Maximum Units of Work

The maximum number of units of work (UOWs) that can be active concurrently is specified in the
Broker attribute file. The MAX-UOWS attribute can be specified for the Broker globally as well as for
individual services. It cannot be calculated automatically. If a service is intended to process UOWs,
a MAX-UOWS value must be specified.

If message processing only is to be done, specify MAX-UOWS=0 (zero). The Broker (or the service)
will not accept units of work, i.e., it will process only messages that are not part of a UOW. Zero
is used as the default value for MAX-UOWS in order to prevent the sending of UOWs to services that
are not intended to process them.

Calculating Resources Automatically

To ensure that each service runs without impacting other services, allow the EntireX Broker to
calculate resource requirements automatically:

= Ensure that the attributes that define the default total for the Broker and the limit for each service
are not set to UNLIM.

= Specify AUTO for the Broker attribute that defines the total number of the resource.

" Specity a suitable value for the Broker attribute that defines the default number of the resource.

The total number required will be calculated from the number defined for each service. The re-
sources that can be calculated this way are Number of Conversations, Number of Servers, Long
Message Buffers and Short Message Buffers.

Avoid altering the service-specific definitions at runtime. Doing so could corrupt the conversation
consistency. Applications might receive a message such as “NUM-CONVERSATIONS reached” although
the addressed service does not serve as many conversations as defined. The same applies to the
attributes that define the long and short buffer resources.

Automatic resource calculation has the additional advantage of limiting the amount of memory

used to run the EntireX Broker. Over time, you should be able to determine which services need

more resources by noting the occurrence of the return code “resource shortage, please retry”. You
can then increase the resources for these services. To avoid disruption to the user, you could instead
allocate a relatively large set of resources initially and then decrease the values using information
gained from the Administration Monitor application.

Number of Conversations

To calculate the total number of conversations automatically, ensure that the CONV-DEFAULT Broker
attribute and the CONV- LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute

18 Administration

Broker Resource Allocation

file. Specify NUM-CONVERSATION=AUTO and an appropriate value for the CONV-DEFAULT Broker attrib-
ute. The total number of conversations will be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-CONVERSATION=AUTO
CONV-DEFAULT=200

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A

CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

= Service A and Service C both need 200 conversations (the default value). Service B needs 100
conversations (CONV-LIMIT=100).

B Because NUM-CONVERSATIONS is defined as AUTO, the broker calculates a total of 500 conversations
(200 + 200 + 100).

® NUM-CONVERSATIONS=AUTO allows the number of conversations to be flexible without requiring
additional specifications. It also ensures that the broker is started with enough resources to meet
all the demands of the individual services.

" AUTO and UNLIM are mutually exclusive. If CONV-DEFAULT or a single CONV-LIMIT is defined as
UNLIM, the EntireX Broker cannot determine the number of conversations to use in the calculation,
and the EntireX Broker cannot be started.

Number of Servers

To calculate the number of servers automatically, ensure that the SERVER-DEFAULT Broker attribute
and the SERVER-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute file.
Specify NUM-SERVER=AUTO and an appropriate value for the SERVER-DEFAULT Broker attribute. The
total number of server buffers will be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SERVER=AUTO
SERVER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B

CLASS=C, SERVER=C, SERVICE=C

Long Message Buffers

To calculate the number of long message buffers automatically, ensure that the LONG-BUFFER-DE -
FAULT Broker attribute and the LONG-BUFFER-LIMIT service-specific attribute are not set to UNLIM

Administration 19

Broker Resource Allocation

anywhere in the attribute file. Specify NUM- LONG-BUFFER=AUTO and an appropriate value for the
LONG-BUFFER-DEFAULT Broker attribute. The total number of long message buffers will be calculated
using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-LONG-BUFFER=AUTO
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B

CLASS=C, SERVER=C, SERVICE=C

Short Message Buffers

To calculate the number of short message buffers automatically, ensure that the SHORT-BUFFER-
DEFAULT Broker attribute and the SHORT-BUFFER- LIMIT service-specific attribute are not set to UNLIM
anywhere in the attribute file. Specify NUM- SHORT-BUFFER=AUTO and an appropriate value for the
SHORT-BUFFER-DEFAULT Broker attribute. The total number of short message buffers will be calcu-
lated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=AUTO
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A

CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

Dynamic Memory Management

Dynamic memory management is a feature to handle changing Broker workload without any restart
of the Broker task. It increases the availability of the Broker by using various memory pools for
various Broker resources and by being able to use a variable number of pools for the resources.

If more memory is needed than currently available, another memory pool is allocated for the
specific type of resource. If a particular memory pool is no longer used, it will be deallocated.

The following Broker attributes can be omitted if DYNAMIC-MEMORY -MANAGEMENT=YES has been
defined:

20 Administration

Broker Resource Allocation

= NUM-CLIENT = NUM-PUBLISHER = NUM-SUBSCRIBER-TOTAL
® NUM-CMDLOG-FILTER = NUM-SERVER = NUM-TOPIC
= NUM-COMBUF = NUM-SERVICE = NUM-TOPIC-EXTENSION

= NUM-CONV[ERSATION] ® NUM-SERVICE-EXTENSION = NUM-TOPIC-TOTAL
® NUM-LONG[-BUFFER] ® NUM-SHORT[-BUFFER] = NUM-UOW |MAX-UOWS |MUOW
= NUM-PUBLICATION = NUM-SUBSCRIBER = NUM-WQE

If you want statistics on allocation and deallocation operations in Broker, you can configure Broker
to create a storage report with the attribute STORAGE-REPORT. See Storage Report below.

] Note: To ensure a stabile environment, some pools of Broker are not deallocated automatic-

ally. The first pools of type COMMUNICATION, CONVERSATION, CONNECTION, HEAP, PARTICIPANT,
PARTICIPANT EXTENSION, SERVICE ATTRIBUTES, SERVICE, SERVICE EXTENSION, TIMEOUT
QUEUE, TRANSLATION, WORK QUEUE are excluded from the automatic deallocation even when
they have not been used for quite some time. Large pools cannot be reallocated under some
circumstances if the level of fragmentation in the address space has been increased in the
meantime.

Dynamic Worker Management

Dynamic worker management is a feature to handle the fluctuating broker workload without re-
starting the Broker task. It adjusts the number of running worker tasks according to current
workload. The initial portion of worker tasks started at Broker startup is still determined by NUM-
WORKER.

If more workers are needed than currently available, another worker task is started. If a worker
task is no longer needed, it will be stopped.

The following Broker attributes are used for the configuration if DYNAMIC-WORKER-MANAGEMENT=YES
has been defined:

" WORKER-MAX

= WORKER-MIN

® WORKER-NONACT

® WORKER-QUEUE-DEPTH

® WORKER-START-DELAY

The following two attributes are very performance-sensitive:

= Attribute WORKER-QUEUE-DEPTH defines the number of unassigned user requests in the input
queue before a new worker task is started.

Administration 21

Broker Resource Allocation

= Attribute WORKER-START-DELAY defines the time between the last worker task startup and the
next check for another possible worker task startup. It is needed to consider the time for activ-
ating a worker task.

Both attributes depend on the environment, in particular the underlying operating system and
the hardware. The goal is to achieve high-performance user request processing without starting
too many worker tasks.

A good starting point to achieve high performance is not to change the attributes and to observe
the performance of the application programs after activating the dynamic worker management.

If broker attribute DYNAMIC-WORKER-MANAGEMENT=YES is set, operator commands are available under
z/OS to deactivate and subsequently reactivate dynamic worker management.

The following section illustrates the two different modes of dynamic worker management:

" Scenario 1

DYNAMIC-WORKER-MANAGEMENT=YES
NUM-WORKER = 5

WORKER-MIN 1

WORKER-MAX = 32

Broker is started with 5 worker tasks and then dynamically varies the number of worker tasks
within the range from WORKER-MIN=1 to WORKER-MAX=32 due to DYNAMIC-WORKER-MANAGEMENT=YES.

®= Scenario 2

DYNAMIC-WORKER-MANAGEMENT=NO
NUM-WORKER = 5

WORKER-MIN 1

WORKER-MAX = 32

Broker is started with 5 worker tasks. The WORKER-MIN/MAX attributes are ignored due to DYNAMIC-
WORKER-MANAGEMENT=NO.

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocate memory pools. This section details how to create the report and provides a sample report.

= Creating a Storage Report
= Platform-specific Rules
= Sample Storage Report

See also Broker-specific attribute STORAGE - REPORT.

22 Administration

Broker Resource Allocation

Creating a Storage Report

Use Broker's global attribute STORAGE - REPORT with the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

Platform-specific Rules

z/OS
DDNAME ETBSREP assigns the report file. Format RECFM=FB, LRECL=121 is used.
UNIX and Windows

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument - r, the token following argu-
ment - r will be used as the file name.

BS2000/0SD

LINK-NAME ETBSREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

z/VSE

Logical unit SYS015 and logical file name ETBSREP are used. Format RECORD- FORMAT=FB,
RECORD-LENGTH=121 is used.

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1 ©
.
Identifier Address Size Total Date <
Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 <«
12:28:58.768 Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 «
12:28:58.769 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 18239256 bytes 2009-06-26 <«
12:28:58.769 Allocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 19001308 bytes 2009-06-26 «
12:28:58.769 Allocated
BROKER POOL 0x27072010 61540 bytes 19062848 bytes 2009-06-26 «

12:28:58.775 Allocated

Administration 23

Broker Resource Allocation

CONVERSATION POOL
12:28:58.775 Allocated
CONNECTION POOL
12:28:58.779 Allocated
LONG MESSAGES POOL
12:28:58.782 Allocated
SHORT MESSAGES POOL
12:28:58.806 Allocated
PARTICIPANT POOL
12:28:58.827 Allocated

PARTICIPANT EXTENSION POOL

12:28:58.829 Allocated
PROXY QUEUE POOL
12:28:58.829 Allocated
SERVICE ATTRIBUTES POOL
12:28:58.829 Allocated
SERVICE POOL
12:28:58.830 Allocated
SERVICE EXTENSION POOL
12:28:58.831 Allocated
TIMEOUT QUEUE POOL
12:28:58.831 Allocated
TRANSLATION POOL
12:28:58.832 Allocated
UNIT OF WORK POOL
12:28:58.834 Allocated
WORK QUEUE POOL
12:28:58.835 Allocated
BLACKLIST POOL
12:28:58.838 Allocated
SUBSCRIPTION POOL
12:28:58.839 Allocated
TOPIC ATTRIBUTES POOL
12:28:58.841 Allocated
TOPIC POOL

12:28:58.842 Allocated
TOPIC EXTENSION POOL
12:28:58.842 Allocated
PSTORE SUBSCRIBER POOL
12:28:58.843 Allocated
PSTORE TOPIC POOL
12:28:58.843 Allocated
COMMUNICATION POOL
12:30:58.514
ACCOUNTING POOL
12:30:58.515
BROKER POOL
12:30:58.516
CONVERSATION POOL
12:30:58.518
CONNECTION POOL
12:30:58.519

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

0x27082010

0x270DD0O10

0x27117010

0x27549010

0x278D2010

0x278F3010

0x278FD010

0x27904010

0x27925010

0x27933010

0x2793C010

0x27952010

0x2797E010

0x279AA010

0x27A0A010

0x27A15010

0x27A6A010

0x26FB6068

0x27A8A010

0x27A92010

0x27A9B010

0x25FB5010

0x26FB7010

0x27072010

0x27082010

0x270DD0O10

368964 bytes
233668 bytes
4395204 bytes
3703876 bytes
134244 bytes
36996 bytes
26724 bytes
131668 bytes
54372 bytes
32900 bytes
87268 bytes
179300 bytes
176324 bytes
391268 bytes
42084 bytes
344148 bytes
129620 bytes
2952 bytes
30852 bytes
33892 bytes
19540 bytes
16781380 bytes
762052 bytes
61540 bytes
368964 bytes

233668 bytes

19431812

19665480

24060684

27764560

27898804

27935800

27962524

28094192

28148564

28181464

28268732

28448032

28624356

29015624

29057708

29401856

29531476

29534428

29565280

29599172

29618712

12837332

12075280

12013740

11644776

11411108

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

bytes

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

24

Administration

Broker Resource Allocation

LONG MESSAGES POOL 0x27117010 4395204 bytes 7015904 bytes 2009-06-26 «
12:30:58.520 Deallocated

SHORT MESSAGES POOL 0x27549010 3703876 bytes 3312028 bytes 2009-06-26 «
12:30:58.526 Deallocated

PROXY QUEUE POOL 0x278FD010 26724 bytes 3285304 bytes 2009-06-26 «
12:30:58.530 Deallocated

SUBSCRIPTION POOL 0x27A15010 344148 bytes 2941156 bytes 2009-06-26 «
12:30:58.530 Deallocated

TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 2811536 bytes 2009-06-26 <«
12:30:58.531 Deallocated

TOPIC POOL 0x26FB6068 2952 bytes 2808584 bytes 2009-06-26 <
12:30:58.531 Deallocated

TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 2777732 bytes 2009-06-26 «
12:30:58.531 Deallocated

TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 2690464 bytes 2009-06-26 «
12:30:58.532 Deallocated

UNIT OF WORK POOL 0x2797E010 176324 bytes 2514140 bytes 2009-06-26 «
12:30:58.533 Deallocated

WORK QUEUE POOL 0x279AA010 391268 bytes 2122872 bytes 2009-06-26 <«
12:30:58.533 Deallocated

BLACKLIST POOL 0x27A0A010 42084 bytes 2080788 bytes 2009-06-26 <«
12:30:58.534 Deallocated

PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 2046896 bytes 2009-06-26 <«
12:30:58.534 Deallocated

PSTORE TOPIC POOL 0x27A9B010 19540 bytes 2027356 bytes 2009-06-26 «
12:30:58.534 Deallocated

PARTICIPANT POOL 0x278D2010 134244 bytes 1893112 bytes 2009-06-26 «
12:49:25.817 Deallocated

PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 1856116 bytes 2009-06-26 <«
12:49:25.818 Deallocated

SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 1724448 bytes 2009-06-26 «
12:49:25.818 Deallocated

SERVICE POOL 0x27925010 54372 bytes 1670076 bytes 2009-06-26 «
12:49:25.818 Deallocated

SERVICE EXTENSION POOL 0x27933010 32900 bytes 1637176 bytes 2009-06-26 <«
12:49:25.819 Deallocated

TRANSLATION POOL 0x27952010 179300 bytes 1457876 bytes 2009-06-26 «
12:49:25.819 Deallocated

HEAP POOL 0x25EB4010 1050692 bytes 407184 bytes 2009-06-26 «
12:49:25.820 Deallocated

KERNEL POOL 0x25E48010 407184 bytes 0 bytes 2009-06-26 «
12:49:25.820 Deallocated

Header Description

Identifier |[Name of the memory pool.

Address |[Start address of the memory pool.

Size Size of the memory pool.

Total Total size of all obtained memory pools.

Date, Time |Date and time of the action.

Administration 25

Broker Resource Allocation

Header Description

Action The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated .
Deallocated: memory pool is deallocated.

Maximum TCP/IP Connections per Communicator

This table shows the maximum number of TCP/IP connections per communicator:

Platform Maximum Number of TCP/IP Connections per Communicator

AIX 2,048
BS2000/0SD (2,048
HP-UX 2,048

Linux 4,096
Solaris 65,356
Windows [4,096
z/OS 16,384
z/VSE 2,048

With the Broker-specific attribute POLL, these restrictions can be lifted under z/OS, UNIX and
z/VSE. See POLL.

See also MAX-CONNECTIONS under TCP-0BJECT (Struct INFO_TCP)under Information Reply Structures
in the Broker CIS documentation.

Note for z/OS
Under z/OS, the following message may appear in the broker log:

ETBD0286 Diagnostic Values:
accept: 124, EDC51241 Too many open files.errno2: 84607302 05080146

The most common reason for this TCP/IP Communicator diagnostic message is the limitation of
open files per user. The value of MAXFILEPROC in the BPXPRMOO parmlib member should be greater
than the expected number of TCP/IP connections.

26 Administration

Broker Resource Allocation

Note for UNIX

Under UNIX, you can use the following command to display the maximum number of open files
in the operating system shell.

ulimit -n

This value should be greater than the expected number of TCP/IP connections.

Administration 27

28

4 Broker Attributes

= Name and Location of AtHDULE Fleooveeiii e 31
B AMADUIE SYNIAX .t 31
® Broker-Specific AtIDUIESooiiiii s 33
B Service-SPECific ARTIDULIES ... 58
B TOPIC-SPECIfIC ALHDUIES ... e 71
m Codepage-SpPecific ATIDULESoii i 78
= Adabas SVC/Entire Net-Work-Specific AIHDULEScooiiiiiiiiiiii e 82
® Security-SPECIfic AHTIDULESo e 86
B TCP/IP-SPECIfIC ARTDULES ... oottt et e e e e e e baeeee s 92
B C-tree-SPECIfiC AIMDULES ... 96
B SSL-SPECIfIC ARTDULES ... 98
B DIV-SPECIfIC AHMDULIES ...t 103
B Adabas-SPECIfic ARMDULESvieiiiiieee e 103
m Variable DEfiNItion Fileeiiiiiii e 105

29

Broker Attributes

| Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to

all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, publishers and subscribers as well as of the Broker itself.
You can customize the Broker environment by modifying the attribute settings.

30 Administration

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

Platform File Name/Location
z/OS Member EXBATTR in the EntireX Broker source library.
UNIX File etbfile in directory <InstD7ir>/EntireX/config/etb/<BrokerName> (default) *

Windows File<BrokerName>.atr in directory <InstD7ir>\EntireX\ config\etb\<BrokerName> (default)

*

BS2000/OSD |File ETB-ATTR in library EXX960.JOBS.

z/VSE Library member ETBnnn.ATR, where nnn is a placeholder specifiying the broker instance
(e.g.nnn=the assigned broker ID).

* When starting a broker manually, name and location of the broker attribute file can be overwrit-
ten with the environment variable ETB_ATTR.

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value
The following rules and restrictions apply:

® A line can contain multiple entries separated by commas.

" Attribute names can be entered in mixed upper and lowercase.

" Spaces between attribute names, values and separators are ignored.
" Spaces in the attribute names are not allowed.

® Commas and equal signs are not allowed in value notations.

* Lines starting with an asterisk (*) are treated as comment lines. Within a line, characters following
an * or # sign are also treated as comments.

® The CLASS keyword must be the first keyword in a service definition.

® Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

® Multiple topics can be included in a single topic definition section. The attribute settings will
apply to all topics defined in the section.

Administration 31

Broker Attributes

" Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

Attributes specified after the topic definition (TOPIC keyword) override the default characteristics
for the topic.

Attribute values can contain variables of the form ${variable name} or $variable name:

Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

The variable name can contain only alphanumeric characters and the underscore (_) character.
The first non-alphanumeric or underscore character terminates the variable name.

under UNIX and Windows, the string $ {variable name} is replaced with the value of the
corresponding environment variable.

On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable name will be used as the variable value.

If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

32

Administration

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section begins with the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem

is corrected.

¢ Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large

values for the broker attributes that define the global resources.

Operating System
ur
Opt/ W = % o %
Attribute Values Req & = = g @
ABEND-LOOP-DETECTION YES | NO @] z u w v b

YES Stop broker if a task terminates abnormally twice, that is, the same
abend reason at the same abend location already occurred. This
attribute prevents an infinite abend loop.

NO Use only if requested by Software AG Support. This setting may make
sense if a known error leads to an abnormal termination, but a hotfix
solving the problem has not yet been provided. Reset to "YES" when
the hotfix has been installed.

ABEND-MEMORY -DUMP

YES | NO ‘O|Z‘U‘W‘V‘b

YES Print all data pools of the broker if a task terminates abnormally. This
dump is needed to analyze the abend.

NO If the dump has already been sent to Software AG, you can set to "NO"
to avoid the extra overhead.

ACCOUNTING

NO | 128-255 ©) z

NO | YES (@) u w v b
[SEPARATOR=char]

Determines whether accounting records are created.

NO Do not create accounting records.
nnn The SMF record number to use when writing the accounting records.

YES Create accounting data.
char=separator character(s). Up to seven separator characters can
be specified using the SEPARATOR suboption, for example
ACCOUNTING = (YES, SEPARATOR=;).If no separator character is
specified, the comma character will be used.

Administration

33

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
See also Accounting in EntireX Broker in the z/OS administration
documentation.
ACCOUNTING-VERSION 1121314 | 0 | z | u | w ‘ v ‘ b

Determines whether accounting records are created.

1 Collect accounting information. This value is supported for reasons of
compatibility with EntireX Broker 7.2.1 and below.

2 Collect extended accounting information in addition to that available
with option 1.

3 Create accounting records in layout of version 3.

4 Create accounting records in layout of version 4.

This parameter applies when ACCOUNTING is activated.

AUTOLOGON

YES | NO ‘O|z’u‘w‘v‘b

YES LOGON occurs automatically during the first SEND or REGISTER.
NO The application has to issue a LOGON call.

BLACKLIST-PENALTY-TIME

dbmlnlnSInMIn R z u w \% b
H

Define the length of time a participant is placed on the
PARTICIPANT-BLACKLIST to prevent a denial-of-service attack.

n Same as n S.

n'S Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

BROKER-ID

A32 ‘R|z ‘ u‘w‘v ‘ b

Identifies the broker to which the attribute file applies. The broker ID must
be unique per machine.

Note: The numerical section of the BROKER - ID is no longer used to determine
the DBID in the EntireX Broker kernel with Entire Net-Work transport (NET).

To determine the DBID, use attribute NODE in the DEFAULTS=NET section of
the attribute file.

34

Administration

Broker Attributes

Operating System
o
Opt/ 0 x % g %
Attribute Values Req g = = @
CLIENT-NONACT I5SM I nlnS | nM | R z u w v b
nH

Define the non-activity time for clients.

n Same as rS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

A client that does not issue a broker request within the specified time limit
is treated as inactive and all resources for the client are freed.

CMDLOG

NO | YES ‘O|z’u‘w‘v‘b

NO Command logging will not be available in the broker.

YES Command logging features will be available in the broker.

CMDLOG-FILE-SIZE

1024 | n (@] z u w \% b

Defines the maximum size of the file that the command log is written to, in
kilobytes. The value must be 1024 or higher. The default value is 1024. When
one command log file grows to this size, broker starts writing to the other
file. For more details, see Command Logging in EntireX.

CONTROL-INTERVAL

60s| nlnSlnMI| nH @] z u w v b

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby broker will check the status of the standard broker after the
elapsed CONTROL- INTERVAL time.

n Same as nS.
nS Interval in seconds (max. 2147483647).
nM Interval in minutes (max. 35791394).

nH Interval in hours (max. 596523).
The minimum value is 16 seconds. We strongly recommend the default
value (60 seconds), except for very slow machines.

CONV-DEFAULT

UNLIM | n ‘O|z’u‘w‘v‘b

Default number of conversations that are allocated for every service.

Administration

35

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
UNLIM The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION.
n Number of conversations.
This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.
DEFERRED

NO | YES ‘O|z‘u‘w‘v‘b

Disable or enable deferred processing of units of work.

NO Units of work cannot be sent to the service until it is available.

YES Units of work can be sent to a service that is not up and registered.
They will be processed when the service becomes available.

DYNAMIC-MEMORY -MANAGEMENT

YES | NO ‘O|Z’u’w‘v‘b

YES An initial portion of memory is allocated at broker startup based on
defined NUM- * attributes or internal default values if no NUM-*
attributes have been defined. More memory is allocated without broker
restart if there is a need to use more storage. Unused memory is
deallocated. The upper limit of memory consumption can be defined
by the attribute MAX-MEMORY. See Dynamic Memory Management.

NO All memory is allocated at broker startup based on the calculation
from the defined NUM- * attributes. Size of memory cannot be changed.
This was the known behavior of EntireX 7.3 and earlier.

If you run your broker with attribute DYNAMIC-MEMORY -MANAGEMENT=YES,
the following attributes are not needed:

= CONV-DEFAULT = NUM-PUBLISHER
HEAP-SIZE = NUM-SERVER

® | ONG-BUFFER-DEFAULT = NUM-SERVICE-EXTENSION
® PUBLICATION-DEFAULT = NUM-SERVICE

® SERVER-DEFAULT B NUM-SHORT[-BUFFER]
® SHORT-BUFFER-DEFAULT = NUM-SUBSCRIBER-TOTAL
® SUBSCRIBER-DEFAULT = NUM-SUBSCRIBER

= NUM-CLIENT = NUM-TOPIC-EXTENSION
® NUM-CMDLOG-FILTER = NUM-TOPIC-TOTAL

36

Administration

Broker Attributes

Operating System
o
Opt/ @ x % 4 %
=
Attribute Values Req 8 5 = 5 a
= NUM-COMBUF = NUM-TOPIC

= NUM-CONV[LERSATION] = NUM-UQW|MAX-UQWS |MUOW
® NUM-LONGL-BUFFER] = NUM-WQE
® NUM-PUBLICATION

Caution: However, if one of these attributes is defined, it determines the

allocation size of that particular broker resource.

DYNAMIC-WORKER-MANAGEMENT

NO | YES ‘O|z’u‘w‘ ‘b

NO All worker tasks are started at broker startup. The number of worker
tasks is defined by NUM-WORKER. After this initial step, no further
worker tasks can be started. This is default and simulates the behavior
of EntireX version 8.0 and earlier.

YES As above, the initial portion of worker tasks started at broker startup
is determined by NUM-WORKER. However, if there is a need to handle
an increased workload, additional worker tasks can be started at
runtime without restarting broker. Conversely, if a worker task remains
unused, it is stopped. The upper and lower limit of running worker
tasks can be defined by the attributes WORKER-MIN and WORKER-MAX.

If you run broker with DYNAMIC-WORKER-MANAGEMENT=YES, the following
attributes are useful to optimize the overall processing:

= WORKER-MAX

= WORKER-MIN

= WORKER-NONACT

= WORKER-QUEUE-DEPTH

= WORKER-START-DELAY

The attribute NUM-WORKER defines the initial number of worker tasks started
during initialization. See Dynamic Worker Management.

FORCE

oives [0 [[[|

NO Go down with error if IPC resources still exist.

YES Clean up the left-over IPC resources of a previous run.

Note:

Administration

37

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
1. If broker is started twice, the second instance will kill the first by removing
the IPC resources.
2. For BS2000/0OSD, z/OS and z/VSE, see separate attribute FORCE in section
Adabas SVC/Entire Net-Work-specific Attributes.
HEAP-SIZE 1024 | n | o | z | uw | w [v | b

Defines the size of the internal heap in KB. Not required if you are using
DYNAMIC-MEMORY -MANAGEMENT. If you are not using dynamic memory
management, we strongly recommend specifying - as a minimum - the
default value of 1024 KB.

ICU-CONVERSION

YES | NO |O|z|u‘w‘v‘b

Disable or enable ICU conversion. Default for z/VSE is NO; other platforms
YES.

YES ICU is loaded and available for conversion. It is a prerequisite for
SAGTCHA and SAGTRPC.

NO ICU is not loaded and not available for conversion. SAGTCHA and
SAGTRPC cannot be used.

If any of the broker service definitions uses the internationalization approach
“ICU conversion”, that s, the conversion methods SAGTCHA and SAGTRPC
are defined by the service-specific or topic-specific attribute CONVERSION,
ICU-CONVERSION mustbe set to "YES". The internationalization approaches
“Translation”, “Translation User Exit” and “SAGTRPC User Exit” do not
require ICU conversion. If all broker service definitions use these
internationalization approaches, ICU-CONVERSION can be set to "NO".

ICU requires additional storage to run properly. If ICU conversion is not
needed, setting ICU-CONVERSION to "NO" will help to avoid unnecessary
storage consumption.

ICU-SET-DATA-DIRECTORY

w0 (o] [[w][|

Disable or enable ICU custom converter usage. Not defined for mainframe
platforms.

YES The broker tries to locate ICU custom converters with the mechanism
defined by the platform, see Building and Installing ICU Custom
Converters in the platform-specific administration documentation.

NO Use of ICU custom converters is not possible.

IPV6

YES | NO |O|z|u‘w‘ ‘b

38

Administration

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

YES Establish SSL and TCP/IP transport in IPv6 and IPv4 networks
according to the TCP/IP stack configuration.

NO Establish SSL and TCP/IP transport in IPv4 network only.

This attribute applies to EntireX version 9.0 and above.

LONG-BUFFER-DEFAULT

UNLIM | n ‘O|z’u’w‘v‘b

Number of long buffers to be allocated for each service or topic.

UNLIM The number of long message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-LONG-BUFFER.

n Number of buffers.

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

MAX-MEMORY

OlnlnKI| nM | (@] z u w v b
nG | UNLIM

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY-MANAGEMENT=YES has been defined.

0, UNLIM No memory limit.

others Defines the maximum limit of allocated memory. If limit is
exceeded, error 671 “Requested allocation exceeds
MAX-MEMORY” is generated.

MAX-MESSAGE-LENGTH

2147483647 | n ‘O|Z‘u‘w‘v‘b

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

MAX-MESSAGES-IN-UOW

16 1 n ‘O|z‘u‘w‘v‘b

Maximum number of messages in a UOW (or publication).

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE - LENGTH.

MAX-UOWS

Qi EEEEEEEEERE

The maximum number of UOWSs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a MAX-UOWS value must be 1 or larger for the broker.

Administration

39

Broker Attributes

Attribute

Operating System

Ll

3

Opt/ 0
Values Req 8

Windows
BS2000

UNIX

The MAX-UOWS value for the service will default to the value set for the
broker. NUM-UOW is an alias of this parameter.

MESSAGE-CASE

NONE | UPPER | @) z u w A b
LOWER

Indicates if certain error message texts returned by the broker to its clients
or written by the broker to its log file are to be in mixed case, uppercase, or
lowercase.

NONE No changes are made to message case.
UPPER Messages are changed to uppercase.
LOWER Messages are changed to lowercase.

MUOW

See NUM-UQW.

NEW-UOW-MESSAGES

YES | NO (@) z u w \% b

YES New UOW messages are allowed.
NO New UOW messages are not allowed.

This applies to UOW when using Persistence and should not be used for
non-persistent UOWSs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down.
You can set NEW-UOW-MESSAGES to "NO" to prevent new UOW messages
from being added after a broker restart. This action allows only consumption
(not production) of UOWSs to occur after broker restart. After the persistent
store capacity has been sufficiently reduced, the EntireX Broker administrator
can issue a CIS command, see ALLOW-NEWUOWMSGS under Broker CIS Data
Structures in the ACI Programming documentation. This action allows new
UOW messages to be sent to the broker. Reset attribute NEW-UOW-MESSAGES
to "YES", which permits new UOW messages to be produced in subsequent
broker sessions.

NUM-BLACKLIST-ENTRIES

256 | n ‘O|Z’u‘w‘v‘b

Number of entries in the participant blacklist. Default value is 256 entries.
Together with BLACKLIST-PENALTY -TIME and PARTICIPANT-BLACKLIST,
this attribute is used to protect a broker running with SECURITY=YES against
denial-of-service attacks. See Protecting a Broker against Denial-of-Service
Attacks in the platform-specific broker administration documentation.

NUM-CLIENT

n ‘R|z‘u‘w‘v‘b

Number of clients that can access the broker concurrently. A value of 0 (zero)
is invalid.

40

Administration

Broker Attributes

Operating System
o
Opt/ 0 x % g %
Attribute Values Req g = = @
NUM-CMDLOG-FILTER 11n (@] z u w v b

Maximum number of filters that can be specified simultaneously.

Tip: We recommend you limit this value to the number of services that are

being monitored. Minimum value is 1. A value of zero is invalid when the
attribute CMDLOG is set to "YES". See Command Logging in EntireX for more
information.

NUM-COMBUF

1 -999999 |R|z|u‘w‘v‘b

Determines the maximum number of communication buffers available for
processing commands arriving in the broker kernel. The size of one
communication buffer is usually 16 KB split into 32 slots of 512 bytes, but it
ultimately depends on the hardware architecture of your CPU. A value of
0 (zero) is invalid.

NUM-CONVERSATION or
NUM-CONV

n1 AUTO ‘R|z’u’w‘v‘b

Defines the number of conversations that can be active concurrently. The
number specified should be high enough to account for both conversational
and non-conversational requests. (Non-conversational requests are treated
internally as one-conversation requests.)

n Number of conversations.

AUTO Uses the CONV-DEFAULT and the service-specific CONV - LIMIT values
to calculate the number of conversations. The values used in the
calculation must not be set to "UNLIM".

Note:

1. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

2. See Wildcard Service Definition.

NUM-LONG-BUFFER or
NUM-LONG

n1 AUTO ‘R|z’u‘w‘v‘b

Defines the number of long message containers. Long message containers
have a fixed length of 4096 bytes and are used to store requests that are
larger than 2048 bytes. Storing a request of 8192 bytes, for example, would
require two long message containers.

n Number of buffers.

AUTO Uses the LONG-BUFFER-DEFAULT and the service-specific
LONG-BUFFER-LIMIT values to calculate the number of long

Administration

41

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

message buffers. The values used in the calculation must not be set
to "UNLIM".

A value of 0 (zero) is invalid.

In non-conversational mode, message containers are released as soon as the
client receives a reply from the server. If no reply is requested, message
containers are released as soon as the server receives the client request.

In conversational mode, the last message received is always kept until a new
one is received.

Note:

1. If a catch-all service is defined in the service-specific section of the attribute
file, the value of AUTO is invalid.

2. See Wildcard Service Definition.

NUM-PUBLICATION

n | AUTO ‘O|z’u‘w‘v‘b

Defines the number of publications that can be active concurrently.

n Number of publications

AUTO Uses the PUBLICATION-DEFAULT and the topic-specific
PUBLICATION-LIMIT to calculate the number of publications. The
values used in the calculation must not be set to "UNLIM"

Note:

1. A value of 0 (zero) is invalid.

2. If a wildcard topic is defined in the topic-specific section of the attribute
file, the value of AUTO is invalid.

NUM-PARTICIPANT-EXTENSION

n (@] z u w \% b

Defines the number of participant extensions to link participants as clients
and servers.

n Number of participant extensions

not specified If this attribute is not set, the default value is calculated based
on NUM-CLIENT and NUM-SERVER.

A value of 0 (zero) is invalid.

42

Administration

Broker Attributes

Operating System
o
Opt/ 0 x % g %
Attribute Values Req g = = @
NUM-PUBLISHER n (@] z u w v b

Number of publishers that can access the broker concurrently. A value of 0
(zero) is invalid.

NUM-SERVER

n | AUTO ‘R|z‘u‘w‘v‘b

Defines the number of servers that can offer services concurrently using the
broker. This is not the number of services that can be registered to the broker
(see NUM-SERVICE).

n Number of servers.

AUTO Uses the SERVER-DEFAULT and the service-specific SERVER-LIMIT
values to calculate the number of servers. The values used in the
calculation must not be set to "UNLIM".

Note:

1. Setting this value higher than the number of services allows the starting
of server replicas that provide the same service.

2. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

3. See Wildcard Service Definition.

NUM-SERVICE

n R z u w \% b

Defines the number of services that can be registered to the broker. This is
not the number of servers that can offer the services (see NUM-SERVER). A
value of 0 (zero) is invalid.

NUM-SERVICE-EXTENSION

n | AUTO ‘O|z‘u‘w‘v‘b

Defines the number of service extensions to link servers to services.

n Number of service extensions.

AUTO Uses the value specified or calculated for
NUM-SERVER + NUM-CLIENT, plus an extra cushion.

not specified If this attribute is not set, the default value is NUM-SERVER
multiplied by NUM-SERVICE.

The minimum value is NUM- SERVER.
The maximum value is NUM- SERVER multiplied by NUM-SERVICE.

Caution is recommended with this attribute:

Administration

43

Broker Attributes

Attribute

Operating System

Ll

3

Opt/ 0
Values Req 8

Windows
BS2000

UNIX

B Set this attribute only if the storage resources allocated for service
extensions need to be restricted.

® Note that the value <n> allows only the specified number of server
instances of </7> to be used.

= Value AUTO will calculate the number of allowed server instances from
NUM-SERVER, which itself might be set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each service definition (see note below).

NUM-SHORT-BUFFER or
NUM-SHORT

n1 AUTO ‘R|z‘u‘w‘v‘b

Defines the number of short message containers. Short message containers
have a fixed length of 256 bytes and are used to store requests of no more
than 2048 bytes. To store a request of 1024 bytes, for example, would require
four short message containers.

n Number of buffers.

AUTO Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short

message buffers. The values used in the calculation must not be set
to "UNLIM".

Note:

1. In non-conversational mode, message containers are released as soon as
the client receives a reply from the server. If no reply is requested, message
containers are released as soon as the server receives the client request.

2. In conversational mode, the last message received is always kept until a
new one is received.

3. If a wildcard service is defined in the service-specific section of the
attribute file, the value of AUTO is invalid.

4. See Wildcard Service Definition.

NUM-SUBSCRIBER

n | AUTO ‘O|z‘u‘w‘v‘b

Defines the number of subscribers that can be active concurrently.

n Number of subscribers.

AUTO Uses the SUBSCRIBER-DEFAULT and the topic-specific
SUBSCRIBER-LIMIT to calculate the number of subscribers.

44

Administration

Broker Attributes

Attribute

Operating System

Ll

3

Opt/ 0
Values Req 8

Windows
BS2000

UNIX

A value of 0 (zero) is invalid. If a wildcard topic is defined in the
topic-specific section of the attribute file, the value of AUTO is invalid.

NUM-SUBSCRIBER-TOTAL

n | AUTO |O|z|u|w‘v‘b

Defines the total number of subscribers that can be durably subscribed. Their
subscription information is saved in the persistent store.

n Total number of subscribers.
AUTO Uses the value defined or calculated for NUM-SUBSCRIBER.

A value of 0 (zero) is invalid. This value must be greater than or equal to
the NUM-SUBSCRIBER value. Parameter is required if
SUBSCRIBER-STORE=PSTORE is defined.

NUM-TOPIC

n ‘O|z‘u‘w‘v‘b

Defines the number of topics that can be active in the broker. A value of 0
(zero) is invalid.

NUM-TOPIC-EXTENSION

n | AUTO ‘O|z‘u‘w‘v‘b

Defines the number of topic extensions to link subscribers to topics.

n Number of topic extensions.

AUTO Uses the value specified for
NUM-SUBSCRIBER+ NUM-PUBLISHER, plus an extra cushion.

not specified If this attribute is not set, the default value is NUM- SUBSCRIBER
multiplied by NUM-TOPIC.

The minimum value is NUM-SUBSCRIBER.
The maximum value is NUM- SUBSCRIBER multiplied by NUM-TOPIC.

Caution is recommended with this attribute.

® Set this attribute only if the storage resources allocated for topic extensions
need to be restricted.

® Note that the value <> allows only the specified number of topic instances
of <17> to be used.

= Value AUTO calculates the number of allowed server instances from
NUM-SUBSCRIBER, which itself might set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each topic definition (see note below).

NUM-TOPIC-TOTAL

n | AUTO ‘O|Z‘U‘W‘V‘b

Defines the total number of topics for which durable subscribers are allowed.

Administration

45

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
n Total number of topics that allow durable subscriptions.
AUTO Uses the value defined for NUM-TOPIC.
This value must be greater than or equal to the NUM-TOPIC value. This
parameter is required if SUBSCRIBER-STORE=PSTORE is defined.
NUM- UOM 0ln o z [uw | w | v | b
The maximum number of UOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a NUM-UOW value must be 1 or larger for the broker.
(MAX-UOWS is an alias for this attribute.)
The NUM-UOW value for the service will default to the value set for the broker.
NUM-WORKER 11 n(max. 10) R z u w \ b
Number of worker tasks that the broker can use. The number of worker
tasks determines the number of functions (SEND, RECEIVE, REGISTER, etc.)
that can be processed concurrently. At least one worker task is required;
this is the default value.
NUM-WQE 1-32768 | R [z | u | w | v | b

Maximum number of requests that can be processed by the broker in parallel,
over all transport mechanisms.

Each broker command is assigned a worker queue element, regardless of
the transport mechanism being used. This element is released when the user
has received the results of the command, including the case where the
command has timed out.

PARTICIPANT-BLACKLIST

YES | NO | R | z | u ‘ w ‘ v ‘ b

Determines whether participants attempting a denial-of-service attack on
the broker are to be put on a blacklist.

YES Create a participant blacklist.
NO Do not create a participant blacklist.

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

PARTNER-CLUSTER-ADDRESS

A32 ‘R|z‘u‘w‘v‘b

This is the address of the load/unload broker in transport-method-style.
Transport methods TCP and SSL are supported. See Transport-method-style

46

Administration

Broker Attributes

Attribute

Operating System

w | 8
: | %

Opt/ 0
Values Req 8

Windows

UNIX

Broker ID for more details. This attribute is required if the attribute RUN-MODE
is specified.

POLL

YES | NO |O|Z|u| ‘v‘

In earlier EntireX versions, the maximum number of TCP/IP connections
per communicator was limited; see Maximum TCP/IP Connections per
Communicator for platform-specific list. With attribute POLL introduced in
EntireX version 9.0, this restriction can be lifted under z/OS, UNIX and
z/VSE.

YES The po11() system call is used to lift the resource restrictions with
select() in multiplexing file descriptor sets.

NO This setting is used to run the compatibility mode in Broker. The
pol1() system call is not used. The limitations described under
Maximum TCP/IP Connections per Communicator apply.

Note: Setting this attribute to YES increases CPU consumption. POLL=YES

is only useful if you need more than the maximum number of TCP/IP
connections per communicator; we recommend POLL=NO to reduce CPU
consumption.

PSTORE

N_OIHOTICOLD|O|z|u‘w‘v‘b

Defines the status of the persistent store at broker startup, including the
condition of persistent units of work (UOWSs). With any value other than
"NO", PSTORE-TYPE must be set.

NO No persistent store.

HOT Persistent UOWs are restored to their prior state during
initialization.

COLD Persistent UOWs are not restored during initialization, and the
persistent store is considered empty.

Note: For a hot or cold start, the persistent store must be available when

your broker is restarted.

PSTORE-REPORT

NO | YES |O|z|u‘w‘v‘b

Determines whether PSTORE report is created.

NO Do not create the PSTORE report file.
YES Create the PSTORE report file.

See also Persistent Store Report.

Administration

47

Broker Attributes

Operating System
o
Opt/ 0 x % g %

Attribute Values Req 8 5 = @
PSTORE-TYPE DIV (z/OS) | CTREE @) z u w v b

(UNIX, Windows) |

Adabeas (all platforms)

| FILE (UNIX,

Windows)

Describes the type of persistent store driver required.

DIV Data in Virtual. z/OS only, and default on this platform. See
DIV-specific Attributes below and Implementing a DIV Persistent
Store under Managing the Broker Persistent Store in the z/OS
administration documentation.

CTREE c-tree database. UNIX and Windows only. See c-tree-specific
Attributes and c-tree Database as Persistent Store in the UNIX and
Windows administration documentation.

ADABAS Adabas. All platforms. See also Adabas-specific Attributes (below)
and Managing the Broker Persistent Store in the platform-specific
administration documentation.

FILE B-Tree database. UNIX and Windows only. No longer supported.

PSTORE-VERSION

21314 |O|Z|u|w‘v‘b

Determines the version of the persistent store. PSTORE=COLD is not needed
to upgrade the PSTORE to version 3. Any broker restart with
PSTORE-VERSION=3 will upgrade the PSTORE version.

PSTORE-VERSION=3 is needed for ICU support. We recommended setting
PSTORE-VERSION=3.

PSTORE-VERSION=4 is needed to use the DIV PSTORE handler introduced
with version 9.0. It requires much less configuration data.

Caution:

= If you go back to PSTORE-VERSION=2 after upgrading to
PSTORE-VERSION=3, the broker will only process data previously created
with version 2. No version 3 data will be accessible.

= If you change the DIV PSTORE from version 3 to 4, perform a COLD
restart for the change to take effect, or run PSTORE UNLOAD/LOAD first.

PUBLICATION-DEFAULT

n | UNLIM ‘O|z‘u‘w‘v‘b

Default number of publications that are allocated for every topic.

n Number of publications.

48

Administration

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

UNLIM The number of publications is restricted only by the number of
publications globally available. Precludes the use of
NUM-PUBLICATION=AUTO.

This value can be overridden by specifying a PUBLICATION-LIMIT for the
topic. A value of 0 (zero) is invalid.

PUBLICATION-LIFETIME

nlnSInM | nH I nD @] z u w v b
| nY

Lifetime of a publication in absolute time units. Publications are retained
by broker until they are either received by all subscribers or the publication
lifetime has expired.

n Same as nS.

nS Publication lifetime in seconds (max. 2147483647).
nM Publication lifetime in minutes (max. 35791394).
nH Publication lifetime in hours (max. 596523).

nD Publication lifetime in days (max. 24855).

nY Publication lifetime in years (max. 68).

The publication lifetime is calculated even for periods of time when broker
is stopped.

PUBLISH-AND-SUBSCRIBE |YES | NO o[z | uw | w | v | b
Run publish and subscribe subsystem. Subsystem requires a license.

RUN-MODE STANDARD | O z u w v b
STANDBY |

PSTORE-LOAD |
PSTORE-UNLOAD

Determines the initial run mode of the broker.

STANDARD Default value. Normal mode.
STANDBY Deprecated. Supported for compatibility reasons.

PSTORE-LOAD Broker will run as load broker to write Persistent Store
data to a new persistent store. See also Migrating the
Persistent Store.

PSTORE-UNLOAD Broker will run as unload broker to read an existing
persistent store and pass the data to a broker running
in PSTORE-LOAD mode. See also Migrating the
Persistent Store.

Administration

49

Broker Attributes

Operating System
o
Opt/ 0 x % g %
Attribute Values Req g = = @
SECURITY NO | YES (@] z u w v b

Determines whether the EntireX Broker security exits are activated.

NO The security exits are not activated.

YES The security exits are activated. If the security routines cannot be
activated, the broker will not start.

Broker trace reports the type of security which is active and from where the
security module USRSEC is loaded:

® EntireX Security
= User-written USRSEC.

SECURITY-PATH

A255 ‘O|z‘u‘w‘ ‘b

Full path and file name of an executable file (for example, DLL for Windows
or shared library for UNIX) containing the user security exit which the kernel
will load and call. Example:

SECURITY-PATH=usersec.dl]

This assumes the DLL is in the default path. Or:

SECURITY-PATH=c:\brokerexit\yoursecu.dl]

If the path name contains spaces, enclose it in quotation marks. Example:

SECURITY-PATH="c:\Software AG\broker exit\yoursecu.dl1"

Note: This attribute is used only when implementing a user-written security

exit.

SERVER-DEFAULT

n | UNLIM ‘O|z‘u‘w‘v‘b

Default number of servers that are allowed for every service.

n Number of servers.

UNLIM The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM- SERVER=AUTO.

This value can be overridden by specifying a SERVER- LIMIT for the service.
A value of 0 (zero) is invalid.

SERVICE-UPDATES

YES | NO ‘O|Z’u’w‘v‘b

Switch on/off the automatic update mode of the broker.

50

Administration

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

YES The broker reads the attribute file whenever a service registers for the
first time. This allows the broker to honor modifications in the attribute
file without a restart. The attribute file is read only when the first server
registers for a particular service; it is not reread when a second replica
is activated.

NO The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

SHORT-BUFFER-DEFAULT

UNLIM | n ‘O|z‘u‘w‘v‘b

Number of short buffers to be allocated for each service.

UNLIM The number of short message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-SHORT -BUFFER=AUTO.

n Number of buffers.

This value can be overridden by specifying a SHORT-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

SSLPORT

See PORT.

SSL-RESTART

See RESTART.

SSL-RETRY-LIMIT

See RETRY -LIMIT.

SSL-RETRY-TIME

See RETRY - TIME.

SSTORE
SSTORE-TYPE

These parameters are obsolete. The subscriber store in a secondary store is
no longer supported. We recommend you use the PSTORE persistent store
to store your subscriber data. For this, set broker-specific parameter
SUBSCRIBER-STORE=PSTORE.

STORAGE-REPORT

NO | YES |O|z|u|w‘v‘b

Create a storage report about broker memory usage.

NO Do not create the storage report.
YES Create the storage report.

See Storage Report under Broker Resource Allocation.

STORE

wIBROKER‘O|z’u‘w‘V‘b

Sets the default STORE attribute for all units of work. This attribute can be
overridden by the STORE field in the Broker ACI control block.

OFF Units of work are not persistent.

Administration

51

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zIVSE
BS2000

zi0sS
UNIX

BROKER Units of work are persistent.

SUBSCRIBER-DEFAULT

n | UNLIM ‘O|z‘u‘w‘v‘b

Default number of subscribers that are allowed for every topic.

n Number of subscribers

UNLIM The number of subscribers is restricted only by the number of
subscribers globally available. Precludes the use of
NUM-SUBSCRIBER=AUTO.

This value can be overridden by specifying a SUBSCRIBER-LIMIT for the
topic. A value of 0 (zero) is invalid.

SUBSCRIBER-STORE

w|PSTORE‘O|z]u]w‘v‘b

Determines whether subscriber information is stored and where.

NO No subscriber information is to be stored.

PSTORE Save subscriber data in PSTORE.

Tip: The subscriber store in a secondary store is no longer supported. We

recommend you use the PSTORE persistent store to store your subscriber
data.

TCPPORT

See PORT.

SWAP-OUT-NEW-UOWS

NO | YES ‘O|z‘u‘w‘v‘b

Determines whether conversations with units of work remain in memory
or are swapped. See slso Swapping out New Units of Work.

NO All conversations with UOWSs remain in memory.

YES Conversations with UOWSs (STORE=BROKER) created by a client and
finished with an EOC without being accepted by a server will be
swapped out of memory. The data is persisted on PSTORE and there
is no need to keep it in memory unless a server wants to receive this
data.

Note: See service-specific attribute MIN-UOW-CONVERSATIONS - IN-MEMORY

for defining a minimum number of UOW conversations kept in memory to
improve the performance for servers receiving new UOW conversations
without waiting for swap-in of data from PSTORE. During broker restart, all
new and unassigned UOW conversations remain in PSTORE only. This
reduces the restart time significantly.

52

Administration

Broker Attributes

Attribute

Operating System

Opt/ 0
Values Req 8

Windows
zIVSE
BS2000

UNIX

See also Swapping out New Units of Work.

TCP-RESTART

See RESTART.

TCP-RETRY-LIMIT

See RETRY -LIMIT.

TCP-RETRY-TIME

See RETRY - TIME.

TOPIC-UPDATES

YES | NO ‘O|Z’u’w‘v‘b

Switch on/off automatic update of topic defaults in the broker.

YES The broker reads the attribute file whenever a topic is being subscribed
for the first time. This allows broker to honor modifications in the
attribute file without a restart. The attribute file is read only when the
first subscriber subscribes to a particular topic. It is not reread when
a second subscriber subscribes to the same topic.

NO The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

TRACE-DD

A255 ‘O|z‘ ‘ ‘ ‘

A string containing data set attributes enclosed in quotation marks. These
attributes describe the trace output file and must be defined if you are using
using a GDG (generation data group) as output data set. See Flushing Trace
Data to a GDG Data Set under Tracing EntireX Broker.

The following keywords are supported as part of the TRACE - DD value:

= DATACLAS

® DCB including BLKSIZE, DSORG, LRECL, RECFM
= DISP

= DSN

= MGMTCLAS

= SPACE

B STORCLAS

= UNIT

Refer to your JCL Reference Manual for a complete description of the syntax.

Example:

Administration

53

Broker Attributes

Attribute

Operating System

Opt/ 0
Values Req 8

Windows

zIVSE
BS2000

UNIX

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),

SPACE=(CYL, (100,10)),
STORCLAS=SMS"

TRACE-LEVEL

0-4 ‘O|z’u’w‘v‘b

The level of tracing to be performed while the broker is running.

0 No tracing. Default value.

1 Traces incoming requests, outgoing replies, resource usage and conversion
errors if SAGTRPC is used for CONVERSION with the conversion options
SUBSTITUTE-NONCONV or STOP.

2 All of trace level 1, plus all main routines executed.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus Broker ACI control block displays.

If you modify the TRACE - LEVEL attribute, you must restart the broker for
the change to take effect. For temporary changes to TRACE - LEVEL without
restarting the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software
AG support.

TRANSPORT ICPISSLINET | O [z [u [w | v | b
The broker transport may be specified as any combination of one or more
of the following methods:

TCP TCP/IP is supported.

SSL SSL or TLS is supported. This value is not supported for a broker
under z/VSE.

NET Entire Net-Work is supported. This value is not supported for a broker
under UNIX or Windows.

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method

will be supported by the broker.

TRANSPORT=TCP - NET specifies that both the TCP/IP and Net-Work transport

methods will be supported by the broker.

54 Administration

Broker Attributes

Operating System
o
Opt/ w x % g %

Attribute Values Req 8 5 = @
TRANSPORT=TCP-SSL-NET specifies that the TCP/IP, SSL (or TLS), and
Entire Net-Work transport methods will be supported by the broker.
Section TCP/IP-specific Attributes describes the parameters for each
transport method.

TRAP-ERROR nnnn o | z [u [w | | b
Where nnnnis the four-digit API error number that triggers the trace handler,
for example 0007 (Service not registered). Leading zeros are not required.
There is no default value.

See Deferred Tracing in the platform-specific Broker administration
documentation.

TRBUFNUM n o[z [u [w | | b
Changes the trace to write trace data to internal trace buffers. 1 is the size
of the trace buffer in 64 KB units. There is no default value.

TRMODE WRAP o[z [u [w | | b
Changes the trace mode. "WRAP" is the only possible value. This value
instructs broker to write the trace buffer (see TRBUFNUM) if an event occurs.
This event is triggered by a matching TRAP - ERROR during request processing
or when an exception occurs.

UMSG See MAX-MESSAGES-IN-UOW.

UOW-MSGS See MAX-MESSAGES-IN-UOW.

UWSTAT-LIFETIME

no value | n[S] | nM O z u w v b
| nH | nD

The value to be added to the UWTIME (lifetime of associated UOW). If a value
is entered, it must be 1 or greater; a value of 0 will result in an error. If no
value is entered, the lifetime of the UOW status information will be the same
as the lifetime of the UOW itself.

nS Number of seconds the UOW status exists longer than the UOW itself
(max. 2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).
nD Number of days (max. 24855).

The lifetime determines how much additional time the UOW status is
retained in the persistent store and is calculated from the time at which the
associated UOW enters any of the following statuses: "PROCESSED",
"TIMEOUT", "BACKEDOUT", "CANCELLED", "DISCARDED". The
additional lifetime of the UOW status is calculated only when broker is

Administration

95

Broker Attributes

Operating System
o
Opt/ w x % g %

Attribute Values Req 8 5 = @
executing. Value in UNSTAT-LIFETIME supersedes the value (if specified)
in attribute UNSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not
have to be identical to the unit specified for UNTIME.

UWSTATP 0ln o[z | u | w | v | b
Contains a multiplier used to compute the lifetime of a persistent status for
the service. The UWSTATP value is multiplied by the UNTIME value (the
lifetime of the associated UOW) to determine the length of time the status
will be retained in the persistent store.

0 The status is not persistent.

1 - 254 Multiplied by the value of UNTIME to determine how long a
persistent status will be retained.

Note: This attribute has not been supported since EntireX version 7.3. Use

UWSTAT-LIFETIME instead.

UWTIME 1D I nS|I nM | nH | (@] z u w v b
nD

Defines the default lifetime for units of work for the service.

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

If the UOW is inactive - that is, is not processed within the time limit - it is
deleted and given a status of "TIMEOUT". This attribute can be overridden
by the UWTIME field in the Broker ACI control block.

See Timeout Considerations for EntireX Broker.

WAIT-FOR-ACTIVE-PSTORE

NO | YES ‘O|z‘u‘w‘v‘b

Determines whether broker should wait for the Adabas Persistent Store to
become active.

NO Ifbroker should start witha PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will stop.

YES If broker should start with a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will retry every 10 seconds to

56

Administration

Broker Attributes

Operating System
o
Opt/ 0 » § w %
| S| 3| 5| % | &
Attribute Values Req 5 =
initiate communications with the PSTORE. Broker will reject any user
requests until broker is able to contact the Adabas database.
WORKER-MAX 321n @] z u w b
(min. 1, max. 32)
Maximum number of worker tasks the broker can use.
WORKER-MIN 1| n (min. 1, max. 32) (@) z u w b

Minimum number of worker tasks the broker can use.

WORKER-NONACT

mnInSInMInH‘ 0 | z] u] w ‘ ‘ b

Non-activity time to elapse before a worker tasks is stopped.

n Same as nS.
nS Non-activity time in seconds (default 70, max. 2147483647).
nM Non-activity time in in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

Caution: A value of 0 (zero) is invalid. If you set this value too low, additional

overhead is required for starting and stopping worker tasks. The default
and recommended value is 70S.

WORKER-QUEUE-DEPTH

11 n(min. 1) ‘ @) | z ‘ u ‘ w ‘ ‘ b

Number of unassigned user requests in the input queue before another
worker task gets started. The default and recommended value is 1. A higher
value will result in longer broker response times.

WORKER-START-DELAY

internal-value | n l O | z | u | w ‘ ‘ b

n Delay is extended by n seconds.

Delay after a successful worker task invocation before another worker task
can be started to handle current incoming workload. This attribute is used
to avoid the risk of recursive invocation of worker tasks, because starting a
worker task itself causes workload increase.

If no value is specified, an internal value calculated by the broker is used to
optimize dynamic worker management. This calculated value is the
maximum time required to start a worker task.

Administration

of

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sections Wildcard Service Definition and Service
Update Modes below the table.

Operating System
o
ot | o | x | & | 4 | B
Attribute Values Req R =] = g @
CLASS A32 R z u w A\ b
(case-sensitive)

Part of the name that identifies the service together with the
SERVER and SERVICE attributes. CLASS must be specified first,
followed immediately by SERVER and SERVICE.

Classes starting with any of the following are reserved for use by
Software AG and should not be used in customer-written
applications: BROKER, SAG, ENTIRE, ETB, RPC, ADABAS,
NATURAL. Valid characters for class name are letters a-z, A-Z,
numbers 0-9, hyphen and underscore. Do not use dollar, percent,
period or comma. See also the restriction for SERVICE attribute
names.

CLIENT-RPC-AUTHORIZATION NIY @) z b

Determines whether this service is subject to RPC authorization
checking.

N No RPC authorization checking is performed.

Y RPC library and program name are appended to the
authorization check performed by EntireX Security. Specify
"YES" only to RPC-supported services.

To allow conformity with Natural Security, the
CLIENT-RPC-AUTHORIZATION parameter can optionally be
defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).

CONV-LIMIT UNLIM | ‘ 0 ‘ z | u | w | v ‘ b

Allocates a number of conversations especially for this service.

UNLIM The number of conversations is restricted only by the
number of conversations globally available. Precludes

58 Administration

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

the use of NUM-CONVERSATION=AUTO in the Broker
section of the attribute file.

n Number of conversations.

A value of 0 (zero) is invalid.

If NUM-CONVERSATION=AUTO is specified in the Broker section of
the attribute file, CONV-LIMIT=UNLIM is not allowed in the service
section. A value must be specified or the CONV-LIMIT attribute
must be suppressed entirely for the service so that the default
(CONV-DEFAULT) becomes active.

CONV-NONACT

5MInlnSl R z u w \% b
nM | nH

Non-activity time for connections.

n Same as nS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

A value of 0 (zero) is invalid. If a connection is not used for the
specified time, that is, a server or a client does not issue a broker
request that references the connection in any way, the connection
is treated as inactive and the allocated resources are freed.

CONVERSION

Format: A255 O z u w A b

(SAGTCHA [,
TRACE =n] [,
OPTION =s]

SAGTRPC [,
TRACE =n] [,
OPTION =s]

name [,
TRACE =n]

NO)

Defines conversion for internationalization. See Internationalization
with EntireX and What is the Best Internationalization Approach to
use? under Introduction to Internationalization for help on making
decisions about the internationalization approach.

Administration

59

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

SAGTCHA Conversion using ICU Conversion " for ACI-based
Programming.

SAGTRPC @ Conversion using ICU Conversion " for RPC-based
Components and Reliable RPC.

We recommend always using SAGTRPC for RPC
data streams. Conversion with Multibyte, Double-byte
and other Complex Codepages will always be correct,
and Conversion with Single-byte Codepages is also
efficient because SAGTRPC detects single-byte
codepages automatically. See Conversion Details.

<name>® Name of the SAGTRPC user exit for RPC-based
components. See also Configuring SAGTRPC User
Exits under Configuring Broker for Internationalization
in the platform-specific administration
documentation and Writing SAGTRPC User Exits
in the platform-specific administration
documentation.

NO If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

Only one internationalization approach can be active at one time
for a service. The CONVERSION attribute for internationalization
overrides the TRANSLATION attribute when defined for a service.
That is, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

Note:

1. See also Configuring ICU Conversion under Configquring Broker
for Internationalization in the platform-specific administration
documentation.

2. SAGTRPC and SAGTRPC user exit are not supported on z/VSE.
TRACE

If tracing is switched on, the trace output is written to the broker
log file:

0 No tracing

60

Administration

Broker Attributes

Operating System
2 =
Opt/ 0 x 8 o g
Attribute Values Req 8 5 = A 4
1 Trace level This level is an "on-error" trace. It provides
STANDARD information on conversion errors only. For
RPC calls this includes the IDL library, IDL
program and the data. Please note that if
OPTION Values for Conversion are set,
errors are ignored.
2 Trace level Tracing of incoming, outgoing parameters
ADVANCED and the payload.
3 Trace level This trace level is for support diagnostics
SUPPORT and should only be switched on when
requested by Software AG support.
OPTION
See table of possible values under OPTION Values for Conversion.
DEFERRED NOIYES | O | z | u | w | v | b

NO Units of work cannot be sent to the service until it is
available.

YES Units of work can be sent to a service that is not up and
registered. The units of work will be processed when the
service becomes available.

ENCRYPTION-LEVEL

01112 ‘O‘z|u‘w|v‘b

Enforce encryption when data is transferred between client and
server.

0 No encryption is enforced.
1 Encryption is enforced between server and broker kernel.

2 Encryption is enforced between server and broker kernel, and
also between client and broker.

See also ENCRYPTION-LEVEL in Broker ACI control block and
Encryption under Writing Applications using EntireX Security in the
ACI Programming documentation.

Note: The per service ENCRYPTION-LEVEL attribute is to be

specified only where the broker attribute SECURITY=YES has been
specified and only if you are using EntireX Security.

LOAD-BALANCING

\@|No‘o‘z|u‘w|v‘b

Administration

61

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

YES When servers that offer a particular service are started, new
conversations will be assigned to these servers in a
round-robin fashion. The first waiting server will get the
first new conversation, the second waiting server will get
the second new conversation, and so on.

NO A new conversation is always assigned to the first server
in the queue.

LONG-BUFFER-LIMIT

UNLIMIn‘O‘z|u‘w|V‘b

Allocates a number of long message buffers for the service.

UNLIM The number of long message buffers is restricted only
by the number of buffers globally available. Precludes
the use of NUM- LONG-BUFFER=AUTO in the Broker
section of the attribute file.

n Number of long message buffers.

A value of 0 (zero) is invalid. If NUM- LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIMis notallowed in the service section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the service so that the default
(LONG-BUFFER-DEFAULT) becomes active.

MAX-MESSAGES-IN-UQOW

6in Jo [z uw][v o

Maximum number of messages in a UOW.

MAX-MESSAGE-LENGTH

2147483647 | n| O z u w b

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the
highest positive number that can be stored in a four-byte integer.

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE-LENGTH.

MAX-UOWS

017 R

0 The service does not accept units of work, i.e. it processes
only messages that are not part of a UOW. Using zero
prevents the sending of UOWs to services that are not
intended to process them.

62

Administration

Broker Attributes

Operating System
o
Opt/ w0 x % g %
Attribute Values Req R = = 4

n Maximum number of UOWs that can be active concurrently
for the service. If you do not provide a MAX-UOWS value for
the service, it defaults to the MAX - UOWS setting for the broker.
If you provide a value that exceeds that of the broker, the
service MAX - UOWS is set to the broker's MAX-UOWS value and
a warning message is issued.

Specify MAX -UOWS=0 for Natural RPC Servers. This restriction
will be removed with a later release.

MIN-UOW-CONVERSATIONS-IN-MEMORY

256 | n ‘O‘z|u’w|v’b

Defines the minimum number of UOW conversations
(STORE=BROKER, created by a client and finished with an EOC
without being accepted by a server) kept in memory to improve
the performance for servers receiving new UOW conversations
without waiting for data to be swapped in from PSTORE. See also
Swapping out New Units of Work.

256 The default value should be used if producer (client) and
consumer (server) of UOW conversations are both active at
the same time regardless of the speed producing or
consuming UOW conversations. It guarantees a reasonable
balance between memory being used and swap-out/swap-in
activities.

n Minimum number of UOW conversations kept in memory.
The value n is equal to or greater than 256.

Note: If broker-specific attribute SWAP-0UT -NEW-UOWS is set to
"NO", MIN-UOW-CONVERSATIONS - IN-MEMORY has no effect.

MUOW

See MAX-UQOWS.

NOTIFY-EOC

NO | YES (@) z u w A b

Specifies whether timed-out conversations are to be stored or
discarded.

NO Discard the EOC notifications if the server is not ready to
receive.

YES Store the EOC notifications if the server is not ready to

receive and then notify the server if possible.

Administration

63

Broker Attributes

Attribute

Operating System

w | 8
: | g

Opt/ w0
Values Req 8

Windows

UNIX

If a server is not ready to receive an EOC notification, it can be
stored or discarded. If it is stored, the server is notified, if possible,
when it is ready to receive.

Caution: The behavior activated by this parameter can be relied

upon only during a single lifetime of the broker kernel.
Specifically, conversations containing units of work, whose
lifetime can span multiple broker kernel sessions, cannot be
assumed to show this behavior, even with NOTIFY-EQOC=YES.

NUM-UOW

Alias for MAX-UOWS.

SERVER

A32 R z u w \% b
(case-sensitive)

Part of the name that identifies the service together with the CLASS
and SERVICE attributes.

CLASS must be specified first, followed immediately by SERVER
and SERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma.

SERVER-DEFAULT

n | UNLIM O z u w A b

Default number of servers that are allowed for every service.

n Number of servers.

UNLIM The number of servers is restricted only by the number
of servers globally available. Precludes the use of
NUM-SERVER=AUTO.

A value of 0 (zero) is invalid.

This value can be overridden by specifyinga SERVER-LIMIT for
the service.

SERVER-LIMIT

nIUNLIM‘O‘z|u’w|v’b

Allows a number of servers especially for this service.

n Number of servers.

UNLIM The number of servers is restricted only by the number
of servers globally available. Precludes the use of
NUM- SERVER=AUTO in the Broker section of the attribute
file.

64

Administration

Broker Attributes

Attribute

Operating System

Opt/ w0
Values Req 8

Windows

zVSE
BS2000

UNIX

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the
attribute file, SERVER-LIMIT=UNLIMis not allowed in the service
section. A value must be specified or the SERVER-LIMIT attribute
must be suppressed entirely for the service so that the default
(SERVER-DEFAULT) becomes active.

SERVER-NONACT

5MInlnSl R z u w \% b
nM | nH

Non-activity time for servers. A server that does not issue a broker
request within the specified time limit is treated as inactive and
all resources for the server are freed.

n Same as nS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

If a server registers multiple services, the highest value of all the
services registered is taken as non-activity time for the server.

SERVICE

A32 R z u w \% b
(case-sensitive)

Part of the name that identifies the service together with the CLASS
and SERVER attributes.

CLASS must be specified first, followed immediately by SERVER
and SERVICE.

The SERVICE attribute names "EXTRACTOR" and
"DEPLOYMENT" are reserved for Software AG internal use and
should not be used in customer-written applications. Valid
characters for service name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma. See also the restriction for CLASS attribute names.

SHORT-BUFFER-LIMIT

UNLIM | n (@) z u w v b

Allocates a number of short message buffers for the service.

UNLIM The number of short message buffers is restricted only
by the number of buffers globally available. Precludes
the use of NUM-SHORT-BUFFER=AUTO in the Broker
section of the attribute file.

Administration

65

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zZNSE
BS2000

05
LINIX

n Number of short message buffers.

If NUM-SHORT-BUFFER=AUTO is specified in the Broker section of
the attribute file, SHORT-BUFFER-LIMIT=UNLIM is not allowed
in the service section. A value must be specified or the
SHORT-BUFFER-LIMIT attribute must be suppressed entirely for
the service so that the default (SHORT-BUFFER-DEFAULT) becomes
active.

STORE

mlBROKER‘O‘z|u‘w|v‘b

Sets the default STORE attribute for all units of work sent to the
service.

OFF Units of work are not persistent.

BROKER Units of work are persistent.

This attribute can be overridden by the STORE field in the Broker
ACI control block.

TRANSLATION

Format: A255 O z u w A b

SAGTCHA |
NO | <name>

Activates translation or translation user exit for internationalization
(see Translation User Exit under Introduction to Internationalization).
For help on deciding the right internationalization approach for
your environment, see What is the Best Internationalization Approach
to use? under Introduction to Internationalization

SAGTCHA Conversion routine SAGTCHA for ACI-based
Programming, RPC-based Components and Reliable
RPC.

NO If translation is not to be used - e.g., for binary
payload (broker messages) - either omit the
TRANSLATION attribute or specify TRANSLATION=NO.

<name> Name of Translation User Exit. See also Configuring
Translation User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation or Writing Translation
User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation.

66

Administration

Broker Attributes

Operating System
g o
Opt/ 0 x 8 o g
Attribute Values Req 8 5 = A 4
The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service; that is, when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.
UMSG Alias for MAX-MESSAGES-IN-UOW.
UOW-MSGS Alias for MAX-MESSAGES-IN-UOW.

UWSTAT-LIFETIME

novalue | n[S]| O z u w v b
[nM | nH | nD

The value to be added to the UWTIME (lifetime of associated UOW).
If a value is entered, it must be 1 or greater; a value of 0 will result
in an error. If no value is entered, the lifetime of the UOW status
information will be the same as the lifetime of the UOW itself.

nS Number of seconds the UOW status exists longer than the
UOW itself (max. 2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).
nD Number of days (max. 24855).

The lifetime determines how much additional time the UOW
status is retained in the persistent store and is calculated from the
time at which the associated UOW enters any of the following
statuses: "PROCESSED", "TIMEOUT", "BACKEDOUT",
"CANCELLED", "DISCARDED". The additional lifetime of the
UOW status is calculated only when broker is executing. Value
in UNSTAT-LIFETIME supersedes the value (if specified) in
attribute UNSTATP.

Note: If no unit is specified, the default unit is seconds. The unit

does not have to be identical to the unit specified for UNTIME.

UWSTATP

017 EEEEEEERERE

Contains a multiplier used to compute the lifetime of a persistent
status for the service. The UNSTATP value is multiplied by the

UWT IME value (the lifetime of the associated UOW) to determine
the length of time the status will be retained in the persistent store.

0 The status is not persistent.

1 - 254 Multiplied by the value of UWTIME to determine how long
a persistent status will be retained.

Administration

67

Broker Attributes

Operating System
2 o
Opt/ w bt 5 Lh s
z = b
Attribute Values Req 8 5 =] o

Note: This attribute has not been supported since EntireX version
7.3.Use UNSTAT - LIFETIME instead.

UWTIME 1D I nSInM O z u w A b
| nH | nD

Defines the default lifetime for units of work for the service.

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

If the unit of work (UOW) is inactive, that is, not processed within
the time limit, it is deleted and given a status of TIMEQUT. This
attribute can be overridden by the UWT IME field in the Broker ACI
control block.

Wildcard Service Definition

The special names of CLASS = *, SERVER = *and SERVICE = * are allowed in the service-specific
section of the broker attribute file. These are known as "wildcard" service definitions. If this name
is present in the attribute file, any service that registers with the broker and does not have its own

entry in the attribute file will inherit the attributes that apply to the first wildcard service definition
found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily
complete):

CLASS = *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS = ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV -
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

68 Administration

Broker Attributes

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

* Inservice update mode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

® In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if

* there is a high frequency of REGISTER operations, or
" the attribute file is rather large and results in a high I/O rate for the broker.
The disadvantage to using non-update mode is that if specific attributes are modified, the broker

must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters can not be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

The situations 1 and 2 above are reported to the broker log file if TRACE option for CONVERSION is
set to level 1.

Report Situation in Broker Log File
if TRACE Option for

OPtions Supported for CONVERSION is setto 1

Bad Input Non-convertible

Characters Characters

(Sender's (Receiver's
Value Description SAGTCHA [SAGTRPC |Codepage) Codepage)
SUBSTITUTE Substitutes both yes yes No message. |No message

non-convertible characters
(receiver's codepage) and bad
input characters (sender's
codepage) with a

Administration 69

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for
OPtions Supported for CONVERSION is setto 1
Bad Input Non-convertible
Characters Characters
(Sender's (Receiver's
Value Description SAGTCHA [SAGTRPC |Codepage) Codepage)
codepage-dependent default
replacement character.
SUBSTITUTE-NONCONV|If a corresponding code point |yes yes Write detailed |No message.
is not available in the receiver's conversion
codepage, the character cannot erTor message.

be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.

BLANKOUT

Substitutes non-convertible
characters with a
codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

no

yes

No message.

No message.

STOP

Signals an error on detecting a
non-convertible or bad input
character. This is the default
behavior if no option is
specified.

yes

yes

Write detailed
conversion
error message.

Write detailed
conversion
error message.

70

Administration

Broker Attributes

Topic-specific Attributes

The topic-specific attribute section begins with the keyword DEFAULTS=TOPIC as shown in the
sample attribute file. It contains attributes that apply to the publish and subscribe communication
model.

Operating System
ur
Opt/ n * '§ h §
. = 5 g ﬁ
Attribute Values Req R = =
ALLOW-DURABLE YES | NO @) z u w v b

Determines whether a subscriber is allowed to perform a durable
subscription to a topic.

YES Subscriber may perform durable subscription.

NO Durable subscription not allowed.

If users are allowed to durably subscribe to any topic, you must
specify a value for the SUBSCRIBER-STORE parameter.

ALLOW-USER-SUBSCRIBE YES | NO ‘ e} ‘ z | u | w ‘ v ‘ b

Determines if it is possible for a user to subscribe to a topic directly
(YES) or only by Administrator.

YES Users are allowed to subscribe to the topic.

NO Users must be subscribed by the Administrator through CIS.
See Broker Command and Information Services. The subscribe
request of users is rejected.

AUTO-COMMIT-FOR-SUBSCRIBER NO | YES | 0 ‘ z | u | w | v | b

NO No COMMIT performed.

YES An implicit COMMIT is performed by broker when the
subscriber receives a publication, that is, the subscriber does
not need the CONTROL_PUBLICATION option COMMIT after
receiving each publication.

Caution: You may lose your last message.

CONVERSION Format: A255 @) z u w v b

(SAGTCHA
[TRACE =n]

Administration 71

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g
[, OPTION
=s])

Defines conversion for internationalization. See Internationalization
with EntireX. For help on making decisions about the
internationalization approach, see What is the Best Internationalization
Approach to use? under Introduction to Internationalization

SAGTCHA Conversion using ICU Conversion for ACI-based
Programming. For more information see Conversion
Details.

See also Configuring ICU Conversion under Configuring
Broker for Internationalization in the platform-specific
administration documentation.

NO If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

Only one internationalization approach can be active at one time
for a topic. The CONVERSION attribute for internationalization
overrides the TRANSLATION attribute when defined for a topic, that
is, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

0 No tracing

1 Trace level This level is an "on-error" trace. It provides
STANDARD information on conversion errors only.
Please note that if OPTION Values for
Conversion are set, errors are ignored.

2 Trace level Tracing of incoming, outgoing parameters
ADVANCED and the payload.

3 Tracelevel SUPPORT This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

OPTION

72

Administration

Broker Attributes

Operating System
o
Opt/ w0 . % g %
Attribute Values Req R = = 4

See OPTION Values for Conversion under Service-specific Attributes
above.

LONG-BUFFER-LIMIT

UNLIMInIO‘z|u|w|V|b

Allocates a number of long message buffers for the topic.

UNLIM The number of long message buffers is restricted only by
the number of buffers globally available. Excludes the
use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

n Number of long message buffers.

A value of 0 (zero) is invalid. If NUM- LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(LONG-BUFFER-DEFAULT) becomes active.

MAX-MESSAGES-IN-PUBLICATION

16 1 n ‘O‘z|u|w‘v‘b

Maximum number of messages in a publication.

MAX-PUBLICATION-MESSAGE-LENGTH

M|H‘O‘Z|u|W‘V’b

Maximum size of a message in a publication. The actual publication
size is transport-dependent.

PUBLICATION-LIFETIME

nlnS| nM | O z u w v b
nH | nD | nY

Lifetime of a publication in absolute time units. Publications are
retained by broker until they are either received by all subscribers
or the publication lifetime has expired.

n Same as nS.

nS Publication lifetime in seconds (max. 2147483647).
nM Publication lifetime in minutes (max. 35791394).
nH Publication lifetime in hours (max. 596523).

nD Publication lifetime in days (max. 24855).

nY Publication lifetime in years (max. 68).

The publication lifetime is calculated even for periods of time when
broker is stopped.

PUBLICATION-LIMIT

I’7|UNLIM‘O‘Z|U|W‘V‘}D

Administration

73

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

There is no default. Maximum number of publications possible for
this topic. If specified, this overrides the publication default value,
which is a general maximum value per topic. If neither parameter
is specified, the total number of publications for the topicis limited
only by NUM-PUBLICATION.

n Number of publications.

UNLIM The number of publications is restricted only by the
number of publications globally available. Excludes the
use of NUM-PUBLICATION=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If PUBLICATION-LIMIT=AUTO is
specified in the Broker section of the attribute file,
PUBLICATION-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified, or the PUBLICATION-LIMIT attribute
must be suppressed entirely for the topic so that the default
(PUBLICATION-DEFAULT) becomes active.

PUBLISHER-NONACT

5M I nlnSl @) z u w v b
nM | nH | nD
| nY

Non-activity of the publisher, after which an auto-logoff is
performed and the publisher's resources are freed.

n Same as nS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

nD Non-activity time in days (max. 24855).

nY Non-activity time in years (max. 68).

If not specified, defaults to 5 minutes. This is the time after which
the publisher's internal memory structures will be cleaned up and
a subsequent logon is required.

SHORT-BUFFER-LIMIT

UNLIMInIO‘z|u|w|V|b

Allocates a number of short message buffers for the topic.

UNLIM The number of short message buffers is restricted only
by the number of buffers globally available. Excludes the

74

Administration

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
ZIVSE
BS2000

zi0s
UNIX

use of NUM- LONG-BUFFER=AUTO in the Broker section of
the attribute file.

n Number of short message buffers.

A value of 0 (zero) is invalid. If NUM-SHORT-BUFFER=AUTO is
specified in the Broker section of the attribute file,
SHORT-BUFFER-LIMIT=UNLIMisnotallowed in the topics section.
A value must be specified, or the SHORT-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(SHORT-BUFFER-DEFAULT) becomes active.

SSTORE
SSTORE-TYPE

These parameters are obsolete. The subscriber store in a secondary
store is no longer supported. We recommend you use the primary
persistent store (PSTORE) to store your subscriber data. For this,
set broker-specific parameter SUBSCRIBER-STORE=PSTORE.

SUBSCRIBER-LIMIT

I’7|UNLIM‘O‘Z|U‘W‘V‘]D

There is no default. Maximum number of subscriptions possible
for this topic. If specified, this overrides the subscriber default
value, which is a general maximum value per topic. If neither
parameter is specified, the total number of subscribers for the topic
is limited only by NUM-SUBSCRIBER.

n Number of subscribers.

UNLIM The number of subscribers is restricted only by the
number of subscribers globally available. Excludes the
use of NUM-SUBSCRIBER=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If NUM- SUBSCRIBER=AUTO is specified
in the Broker section of the attribute file,
SUBSCRIBER-LIMIT=UNLIM is not allowed in the topic section. A
value must be specified, or the SUBSCRIBER- LIMIT attribute must
be suppressed entirely for the topic so that the default
(SUBSCRIBER-DEFAULT) becomes active.

SUBSCRIBER-NONACT

SM I nlnSl (@) z u w A b
nM | nH | nD
| nY

Non-activity of the subscriber after which an auto-logoff is
performed and the publisher's resources are freed.

n Same as nS.

Administration

75

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

nD Non-activity time in days (max. 24855).

nY Non-activity time in years (max. 68).

In the case of a non-durable subscriber, the user's subscription is
also cancelled. In the case of a durable subscriber, the user's
subscription is persisted, and it is not necessary for the user to issue
any subsequent SUBSCRIBE commands. The subscription of a
durable subscriber is also persisted even while broker is stopped.

If not specified, defaults to 5 minutes. This is the time after which
the subscriber's internal memory structures will be cleaned up and
a subsequent logon is required.

SUBSCRIPTION-EXPIRATION

NEVER | n | O z u w v b
nS 1 nM | nH |
nD | nY

Lifetime of a user's subscription in absolute time units.
Subscriptions are retained by broker until either the user issues an
UNSUBSCRIBE command or the subscription lifetime has expired.

NEVER Subscriber will never be purged from PSTORE.
n Same as nS.

nS Expiration time in seconds (max. 2147483647).
nM Expiration time in minutes (max. 35791394).
nH Expiration time in hours (max. 596523).

nD Expiration time in days (max. 24855).

nY Expiration time in years (max. 68).

Durable subscriptions remain effective even if the user performs
the LOGOFF command or broker is stopped. The subscription
lifetime is calculated also for periods of time when broker is
stopped.

SUBSCRIPTION-EXPIRATION is the time after which the
subscription expires. In the case of durable subscription, the
subscription is removed from the PSTORE. Broker removes expired
subscriptions only when the user is not currently active, for example

76

Administration

Broker Attributes

Operating System
g o
Opt/ ® x 8 u g
Attribute Values Req 8 5 = A 4
when the user has issued a LOGOFF command or after the
SUBSCRIBER-NONACT has passed if no LOGOFF is issued.
If SUBSCRIBER-NONACT is specified greater than
SUBSCRIPTION-EXPIRATION, broker adjusts
SUBSCRIPTION-EXPIRATION tothe value of SUBSCRIBER-NONACT.
TOPIC A96 R z u w v b
(case-sensitive)
Name of the topic for publish and subscribe processing. Valid
characters for topic name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore. Do not use dollar, percent, period or comma.
TRANSLATION Format: A255 O z u w v b
SAGTCHA |

NO | <name>

Activates translation or translation user exit for internationalization
(see Translation User Exit under Introduction to Internationalization).
See also What is the Best Internationalization Approach to use? under
Introduction to Internationalization

SAGTCHA Conversion routine SAGTCHA for AClI-based
programming, RPC-based components and for Reliable
RPC.

NO If translation is not to be used, e.g. for binary payload
(broker messages), either omit the TRANSLATION
attribute or specify TRANSLATION=NO.

<name> Name of Translation User Exit. See also Configuring
SAGTRPC User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation and Writing SAGTRPC
User Exits in the platform-specific administration
documentation.

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service, i.e. when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

Administration

77

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize the mapping of locale strings to codepages for the internation-
alization approaches ICU conversion and SAGTRPC user exit. These attributes do not apply to
other approaches. See Internationalization with EntireX for more information.

Attribute

Operating System

Opt/
Values Req

Windows

zi0sS
UNIX

DEFAULT_ASCII

zIVSE
o' | BS2000

Any ICU (@) z
converter
name or
alias. See
also
Additional
Notes
below.

c
B2
<

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker’s
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

® the calling component does not send a locale string itself, and

B the calling component is running on an ASCII platform (UNIX, Windows, etc.),
and

® one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used. See ICU Conversion under Introduction to Internationalization and
SAGTRPC User Exit under Introduction to Internationalization.

Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Defaults */
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

DEFAULT_EBCDIC_IBM

converter

Any ICU ‘ (@) ‘ z ‘ u ‘ w ‘ v ‘ b

78

Administration

Broker Attributes

Attribute

Operating System
wr
Opt/ w x % g %
Values Req & = S &
name or
alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

® the calling component does not send a locale string itself and

® the calling component is running on an IBM mainframe platform (z/OS, z/VSE
etc.) and

= one of the internationalization approaches ICU conversion or SAGTRPC user

exit is used.

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker’s Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

DEFAULT_EBCDIC_SNI

Any ICU ©) z u w v b
converter
name or
alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the locale string defaults if

® the calling component does not send a locale string itself, and

® the calling component is running on a Fujitsu EBCDIC mainframe platform
(BS2000/0SD), and

B one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

Administration

79

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zVSE
BS2000

zi0sS
UNIX

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker’s Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

locale-string

Any ICU @) z u w v
converter
name or
alias. See
also
Additional
Notes
below.

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker’s Locale String Processing under
Locale String Mapping in the internationalization documentation. This is useful:

= if the broker's locale string processing fails - i.e. leads to no codepage or to the
wrong codepage - you can explicitly assign the codepage which meets your
requirements.

® if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server, publisher or subscriber) and the value is the codepage that you
want to use in place of that locale string. In the first line of the example below, the
client or server application sends ASCII as a locale string; the broker maps this to
the codepage ISO 8859_1. In the same way EUC_JP_LINUX is mapped to
ibm-33722_P12A-1999. All other locale strings are mapped by the broker's mapping
mechanism, see Broker’s Built-in Locale String Mapping under Locale String Mapping
in the internationalization documentation. Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Codepage Assignments */
ASCII=IS08859
EUC_JP_LINUX=ibm-33722_P12A-1999
/* Customer-written ICU converters */
CP1140=myebcdic
CP0819=myascii

80

Administration

Broker Attributes

Operating System

" g
3 ﬁ

For more examples, see Bypassing Broker’s Built-in Locale String Mapping under
Locale String Mapping in the internationalization documentation and also Additional
Notes below.

Opt/ 0
Attribute Values Req 8

Windows

UNIX

Additional Notes

® Locale string matching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

= If ICU is used for the internationalization approach and if the style in not known by ICU, e.g.
ECSnnnn, _<cc> etc., the name will be mapped to a suitable ICU alias. For more details on
the mapping mechanism, see Broker’s Built-in Locale String Mapping under Locale String Mapping
in the internationalization documentation. For more details on ICU and ICU converter name
standards, see ICU Resources under Introduction to Internationalization.

= If SAGTRPC user exit is used for the internationalization approach, we recommend assigning
the codepage in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit,
see Broker’s Built-in Locale String Mapping under Locale String Mapping in the internationalization
documentation.

" See CONVERSION and CONVERSION attribute CONVERSION on this page for the internationalization
approach in use.

Administration 81

Broker Attributes

Adabas SVC/Entire Net-Work-specific Attributes

The Adabas SVC/Entire Net-Work-specific attribute section begins with the keyword DEFAULTS=NET
as shown in the sample attribute file. The attributes in this section are needed to execute the
Adabas SVC/Entire Net-Work communicator of the EntireX Broker kernel.

| Note: This section applies to mainframe platforms only. It does not apply to UNIX and

Windows.
Operating System
E =
Opt/ 0 X © & 8
Attribute Values Req C =] E e 4
ADASVC nnn R z \%
Sets the Adabas SVC number for EntireX Broker access.
The Adabas SVC is used to perform various internal functions, including
communication between the caller program and EntireX Broker.
Not supported on BS2000/OSD.

EXTENDED-ACB-SUPPORTINOIYES | O | =z | | I
Determines whether extended features of Adabas version 8 (or above) are
supported.

NO No features of Adabas version 8 or above will be used.

YES Informs broker kernel to provide Adabas/WAL version 8 transport
capability. This parameter is required for sending/receiving more than
32 KB data over Adabas [NET] transport. This value should be set only if
you have installed Adabas/WAL version 8, Adabas SVC, and included
Adabas/WAL version 8 load libraries into the steplib of broker kernel;
otherwise, unpredictable results can occur.

FORCE NOIYES [O | 2z | | | v | b
Determines whether DBID table entries can be overwritten.

NO Overwrite of DBID table entries not permitted.

YES Overwrite of DBID table entries permitted. This is required when the DBID
table entry is not deleted after abnormal termination.

Caution: Overwriting an existing entry prevents any further communication

with the overwritten node. Use FORCE=YES only if you are absolutely sure that

no target node with that DBID is active.

82 Administration

Broker Attributes

Operating System
ur
Opt/ W x % g %

Attribute Values Req 8 5 = @

IDTNAME FORMAT: @) b
A8 idtname
I
ADABAS5B
If an ID table name is specified with the appropriate ADARUN parameter for
Entire Net-Work, Adabas or Natural, the same name must be specified here.
The ID table is used to perform various internal functions, including
communication between the caller program and the EntireX Broker. Only
supported under BS2000/OSD.

TUBL swoln | O | z | | | v | b
This parameter sets the maximum length (in bytes) of the buffer that can be
passed from the caller to EntireX Broker. The maximum size of IUBL is the same
as the maximum value of the Adabas parameter LU (see the Adabas Operations
Manual).

IUBL must be large enough to hold the maximum send-length plus receive-length
required for any caller program plus any administrative overhead for Adabas
and Entire Net-Work control structures.

LOCAL NOIYES | O [=z | | | v | b

Specifies whether the broker ID is local.

NO Broker ID can be accessed from remote nodes.

YES The broker ID is local. It is not accessible from remote nodes.

MAX-MESSAGE-LENGTH

2147483647 O z u w v b
[n

Maximum message size that the broker kernel can process using transport
method NET. The default value represents the highest positive number that can
be stored in a four-byte integer.

NABS win | o | z | | | v | b
The number of attached buffers to be used (max. 524287).
An attached buffer is an internal buffer used for interprocess communication.
An attached buffer pool equal to the NABS value multiplied by 4096 will be
allocated. This buffer pool must be large enough to hold all data (IUBL) of all
parallel calls to EntireX Broker.
The following formula can be used to calculate the value for NABS:
NABS = NCQE *IUBL / 4096.

NCQE win | o | z | | | v | b

Administration

83

Broker Attributes

Attribute

Operating System

" g
3 %

Opt/ w0
Values Req 8

Windows

UNIX

NCQE defines the number of command queue elements which are available for

processing commands arriving at the broker kernel over Adabas SVC / Net-Work
transport mechanism. Sufficient NCQE should be allocated to allow this transport
mechanism to process multiple broker commands concurrently. Each command
queue element requires 192 bytes, and the element is released when either the

user (client or server) has received the results of the command, or if the command
is timed out.

The number of command queue elements required to handle broker calls depends
on the number of parallel active broker calls that are using the transport
mechanism Adabas SVC / Entire Net-Work. For example, all broker commands
issued by any of the following application components using this transport
mechanism:

= clients

" servers

® publishers

® gsubscribers

NODE

1-65534 ©) z v b

Defines the unique DBID for EntireX Broker.

Used for internode Adabas/Entire Net-Work communication. There is no default;
the value of NODE must be a value greater than or equal to 1 or less than or equal
to 65534. If you set the parameter LOCAL=YES, you can use the same node number
for different installations of EntireX Broker in an Entire Net-Work environment.

Please note that the maximum value for NODE that is allowed for Entire Net-Work
under UNIX is 255.

If NODE is specified, it overrides the DB1D derived from the numeric part of
BROKER-ID.

TIME

wio [o [+ [[[v [

This parameter sets the timeout value for broker calls in seconds. The results of
a broker call must be received by the caller within this time limit.

TRACE-LEVEL

0-4 (@) z v b

The level of tracing to be performed while the broker is running with transport
method NET. It overrides the global value of trace level for all NET routines.

0 No tracing. Default value.

1 Display invalid Adabas commands.

84

Administration

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
ZIVSE
BS2000

zi0s
UNIX

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the

change to take effect. For temporary changes to TRACE - LEVEL without restarting

the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

Administration

85

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITYas shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is

specified.
Operating System
kel
Opt/ 7] = % o %
Attribute Values Req 8 5 = g @
ACCESS-SECURITY-SERVER |NO I YES @) b

Determines where authentication is checked.

NO Authentication is checked in the broker tasks. This requires broker to be running under
TSOS in order to execute privileged security checks.

YES Authentication is checked in the EntireX Broker Security Server for BS2000/OSD. This
does not require broker to be running under TSOS. See EntireX Broker Security Server
for BS2000/0SD in the BS2000/OSD administration documentation.

APPLICATION-NAME

A8 O z

Specifies the name of the application to be checked if FACILITY -CHECK=YES is defined. In
RACE, for example, an application "BROKER" with read permission for user "DOE" is defined
with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASS(CAPPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY - CHECK for more information.

AUTHENTICATION-TYPE

OS | TdapUrl | o z u w b
iafurl
(08 Authentication is performed against the local operating system. Default if

SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from
the attribute file.

IdapUrl Authentication is performed against the LDAP repository specified under
IdapUr]. Not supported under BS2000/OSD.

= For TCP, specify repository URL:

86

Administration

Broker Attributes

Operating System
o
Opt/ W x % g %
Attribute Values Req 8 5 = @
AUTHENTICATION-TYPE="1dap://HostName
[:PortNumber]"
® For SSL or TLS:
AUTHENTICATION-TYPE="1daps://HostName
[:PortNumber]"
If no port number is specified, the default is the standard LDAP port numb
389 for TCP transport. Examples for TCP and SSL (or TLS):
AUTHENTICATION-TYPE="Tdap://myhost.mydomain.com"
AUTHENTICATION-TYPE="T1daps://myhost.mydomain.com:636"
iafUrl Authentication is performed using Software AG's Integrated Authenticatior

Framework against the IAF service specified under 7afUr]. Not supported ur
BS2000/0OSD.

The URL of the IAF service is specified using

AUTHENTICATION-TYPE=
"iaf://HostName[:PortNumber]?SSLParameters"

If no port number is specified, the default is port number 1958. SSL or TLS
parameters are specified in the same format as for the ACI function SETSSLPAI
Example: AUTHENTICATION-TYPE="1af://myhost.mydomain.com:100C

AUTHENTICATION-TYPE=
"jaf://myhost.mydomain.com:100007
verify_server= no&

trust_store=
/opt/softwareag/EntireX/etc/ExxCACert.pem"

On z/OS, the URL of an IAF service running on the same host may specifiec

Administration

87

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zNVSE
BS2000

05
LINIX

AUTHENTICATION-TYPE=
"jaf.ipc://IAFServicelID[:SVCNumber]™"

Example:

AUTHENTICATION-TYPE=
"iaf.ipc://IAF075:SVC245"

Under z/OS, IAF is currently not capable of performing authorization calls against
RACEF resource definitions. As the default SECURITY - LEVEL sets both
authentication and authorization, it must be explicitly restricted to
SECURITY-LEVEL=AUTHENTICATION.

AUTHORIZATIONDEFAULT

w0 [o [[v [w []

Determines whether access is granted to a specified service if the specified could not be
found listed in the repository of authorization rules.

YES Grant access.
NO Deny access.

Applies only when using EntireX Security under UNIX and Windows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

AUTHORIZATIONRULE

A% [© | R |

List of authorization rules. Multiple sets of rules can be defined, each set is limited to 32
chars. The maximum number of AUTHORIZATIONRULE entries in the attribute file is 16.

Applies only when using EntireX Security under UNIX or Windows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

CHECK-IP-ADDRESS YES | NO | 0 ‘ z ‘ ‘ | ‘
Determines whether the TCP/IP address of the caller is subject to a resource check.
ERRTXT-MODULE NA2MSGO | @) z
NA2MSGT1 |

88

Administration

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = 8
NA2MSG2 |
ModuTeName

Specifies the name of the security error text module. Default is "NA2MSGO0", English
messages. For instructions on how to customize messages, see Build Language-specific Mes:
(Optional) under Installing EntireX Security under z/OS under z/OS in the z/OS installatic
documentation.

FACILITY-CHECK

oives [o [o [[[]

It is possible to check whether a particular user is at all allowed to use an application be
performing a password check. The advantage of this additional check is that when the
is not allowed to use this application, the broker returns error 00080013 and does not t
authenticate the user. Failing an authentication check may lead to the user's password b
revoked; this situation is avoided if the facility check is performed first. See attribute
APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed be

each authentication call.

IGNORE-STOKEN

NO | YES lOlz‘u|w| |b

Determines whether the value of the ACI field SECURITY - TOKEN is verified on each cz

INCLUDE-CLASS

wsivo [o [o [[[]

Determines whether the class name is included in the resource check.

INCLUDE-NAME

wso [o | o [[[]

Determines whether the server name is included in the resource check.

INCLUDE-SERVICE

wso [o [o [[[]

Determines whether the service name is included in the resource check.

LDAP-PERSON-BASE-BINDDN

TdapDn ‘ @) ‘ zZ ‘ u ‘ w | ‘

Used with LDAP authentication to specify the distinguished name where authenticati
information is stored. This value is prefixed with the user ID field name (see below). Exan

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

LDAP-REPOSITORY-TYPE

OpenLDAP | @) z u w
ActiveDirectory |
SunOneDirectory |
Tivoli | Novell |
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository
that most closely matches your actual repository. In the case of Windows Active Direc
the user ID is typically in the form domainName\ userlId.

LDAP-SASL-AUTHENTICATION

wovs [o [[[w []

Administration

89

Broker Attributes

Attribute

Operating System

Opt/ w0 & %
Values Req R g @

Windows

UNIX

Specifies whether or not Simple Authentication and Security Layer (SASL) is to perform the
authentication check. In practice, this determines whether or not the password supplied by
the user is passed in plain text between the broker kernel and the LDAP server. If SASL is
activated, this implies that the password is encrypted.

NO Password is sent to LDAP server in plain text.

YES Password is sent to LDAP server encrypted.

LDAP-USERID-FIELD

cen | uidFieldName l @) | z ‘ u ‘ w | ‘

Used with LDAP authentication to specify the first field name of a user in the Distinguished
Name, for example:

LDAP-USERID-FIELD=uid

MAX-SAF-PROF-LENGTH

1-256 @) z

This parameter should be increased if the length of the resource checks - that is, the length
of the profile comprising “<class>.<server>.<service>" - is greater than 80 bytes.

This parameter defaults to 80 if a value is not specified.

PASSWORD-TO-UPPER-CASE

NO | YES O z u w b

Determines whether the password and new password are converted to uppercase before
verification.

PRODUCT

RACE | ACF2 | @) z
TOP-SECRET

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

ACF2 Security system ACF2 is installed.
RACF Security system RACEF is installed. Default.
TOP-SECRET Security system TOP-SECRET is installed.

The default value is used if an incorrect or no value is specified.

PROPAGATE-TRUSTED-USERID

w0 [o [o~ [[|]

Determines whether a client user ID obtained by means of the trusted user ID mechanism
is propagated to a server using the ACI field CLTENT-USERID.

SAF-CLASS

SAF-CLASS-1IP

NBKSAG | O z

SAFClassName

Specifies the name of the SAF class/type used to hold the EntireX-related resource profiles.
NBKSAG | O z

SAFClassName

90

Administration

Broker Attributes

Attribute

Operating System

" g
3 ﬁ

Opt/ w0
Values Req 8

Windows

UNIX

Specifies the name of the SAF class/type used when performing IP address authorizat
checks.

SECURITY-LEVEL

AUTHORIZATION | @) z u w \% b
AUTHENTICATION
| ENCRYPTION

Specifies the mode of operation.

AUTHORIZATION Authorization, authentication, and encryption (not under

BS2000/OSD or z/VSE).
AUTHENTICATION Authentication and encryption.
ENCRYPTION Encryption only.

Caution: In version 8.0, the default value for this parameter was "AUTHORIZATION"

SECURITY-NODE

YES | name O z

This parameter can be used to specify a prefix that is added to all authorization check:
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often importa
distinguish between production, test, and development environments.

YES This causes the broker ID to be used as a prefix for all authorization checks.

name This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

Note: By not setting this parameter, no prefix is added to the resource check (the defat

behavior).

TRACE-LEVEL

0 0 [2 [« [w [v [&

Trace level for EntireX Security. It overrides the global value of trace level in the attribs
file.

TRUSTED-USERID

wsvo [o [o [[[]

Activates the trusted user ID mechanism for broker requests arriving over the local Ad
IPC mechanism.

USERID-TO-UPPER-CASE

NO | YES ‘O‘z‘ ‘ | ‘b

Determines whether user ID is converted to uppercase before verification.

UNTVERSAL NO | YES | o | z | | | |
Determines whether access to undefined resource profiles is allowed.
WARN-MODE NO | YES o | z | u | w | B

Determines whether a resource check failure results in just a warning or an error.

Administration

N

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

Operating System
o
Opt/ w0 = % g %
Attribute Values Req R 5 2 4
CONNECTION-NONACT [n | nS | nM O z u w \% b

| nH

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

n Same as nS.
nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).

nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime in the platform-specific Stub Administration sections
of the EntireX documentation.

HOST

0.0.0.0 | @) z u w v b
HostName |
IP
address

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of the
system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

MAX-MESSAGE-LENGTH

2147483647 O z u w A b
[n

92

Administration

Broker Attributes

Operating System
ur
Opt/ [x § 7] %
i 3 : 3 %
Attribute Values Req 8 5 =
Maximum message size that the broker kernel can process using transport method
TCP/IP. The default value represents the highest positive number that can be stored
in a four-byte integer.
PORT 1025-65535) O | z | w | w | v [b
The TCP/IP port number on which the broker will listen for connection requests.
If specified, PORT overrides broker attribute TCPPORT.
Note: TCPPORT will be retired with the next version.
If PORT is not specified but TCPPORT is specified, TCPPORT is used.
If TCPPORT is not specified, the broker will attempt to find its TCP/IP port number
from the TCP/IP Services file, using getservbyname. If broker cannot find its TCP/IP
port number from the TCP/IP Services file, it will use the default value of 1971.
A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.
RESTART YES | NO O z u w v b

YES The broker kernel will attempt to restart the TCP/IP communicator.
NO The broker kernel will not try to restart the TCP/IP communicator.

If specified, RESTART overrides broker attribute TCP-RESTART.

Note: TCP-RESTART will be retired with the next version.

If RESTART is not specified but TCP-RESTART is specified, TCP-RESTART is used.

The RESTART setting applies to all TCP/IP communicators.

RETRY-LIMIT

201 nl @) z u w v b
UNLIM

Maximum number of attempts to restart the TCP/IP communicator.
If specified, RETRY-LIMIT overrides broker attribute TCP-RETRY-LIMIT.

Note: TCP-RETRY-LIMIT will be retired with the next version.

If RETRY -LIMIT is not specified but TCP-RETRY - LIMIT is specified,
TCP-RETRY-LIMIT is used.

The RETRY - LIMIT setting applies to all TCP/IP communicators.

Administration

93

Broker Attributes

Operating System
o
Opt/ w0 = % g %
Attribute Values Req R 5 2 4
RETRY-TIME 3M | nlnS @) V4 u w v b

| nM | nH

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

n Sameas nS.

nS Wait time in seconds (max. 2147483647).
nM Wait time in minutes (max. 35791394).
nH Wait time in hours (max. 596523).

Minimum wait time is 1S.
If specified, RETRY - TIME overrides broker attribute TCP-RETRY - TIME.

Note: TCP-RETRY-TIME will be retired with the next version.

If RETRY - TIME isnot specified but TCP-RETRY - TIME is specified, TCP-RETRY - TIME
is used.

The RETRY - TIME setting applies to all TCP/IP communicators.

REUSE-ADDRESS

YES | NO O z u v b

YES | NO @) w

YES The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

NO The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting on Windows, and we strongly
advise you do not change this value on this platform.

Note:

This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the TCP/IP
stack when closing connections.

STACK-NAME

StackName‘ @) ‘ V4 | ‘ ‘ |

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

0s | o [2 [w [w [v | v

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

94

Administration

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zVSE
BS2000

zi0s
UNIX

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing error
responses.

2 All of trace level 1, plus errors if request entries could not be allocated.

3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG

support.

Administration

95

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS, BS2000/0SD, z/VSE.

Operating System
ur
Opt/ 0 x '§ @ %
. = = g
Attribute Values Req 8 5 = 8
MAXSIZE nlnM | nG O u w

Defines the maximum size of c-tree data files. Broker allocates one data file for control data
and another data file for message data:

n Maximum size in MB.
nM Maximum size in MB.

nG Maximum size in GB.

PAGESIZE n 1 nK @) u w

Determines how many bytes are available in each c-tree node. PSTORE COLD start is required
after changing this value.

n Same as nK

nK PAGESIZE in KB.

The default and minimum value is 8 KB.

If PSD Reason Code = 527 is returned during UOW write processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE to
anew PSTORE with an increased PAGESIZE value. See Migrating the Persistent Store and
define the increased PAGESIZE value for the load broker.

PATH A255 ‘ 0 ‘ ‘ u ‘ w ‘ |

Path name of the target directory for c-tree index and data files.

SYNCIO wlYEs\ o)] \ u \ w ‘ |

Controls the open mode of the c-tree transaction log.

NO c-tree transaction log is not opened in synchronous mode. Default.

YES c-tree transaction log is opened in synchronous mode to improve data security. It may
degrade performance of PSTORE operations, but offers the highest level of data
security. See c-tree Database as Persistent Store in the UNIX and Windows administration
documentation.

96 Administration

Broker Attributes

Operating System
o
Opt/ 0 g % g %
Attribute Values Req 8 = 2 2
TRACE-LEVEL|0-8 (@] u w

Trace level for c-tree persistent store. It overrides the global value of trace level in the attribute

file.

Administration

97

Broker Attributes

SSL-specific Attributes

The SSL-specific attribute section begins with the keyword DEFAULTS=SSL as shown in the sample
attribute file. The attributes in this section are needed to execute the SSL communicator of the
EntireX Broker kernel. In this section, “SSL” also applies to TLS (Transport Layer Security).

Operating System
2 o
Opt/ w bt el i =
= = o
Attribute Values Req & 5 = = @
CIPHER-SUITE string (@] z u w b

String that is passed to the underlying SSL implementation. SSL is a standardized
protocol that uses different cryptographic functions (hash functions, symmetric
and asymmetric encryption etc.). Some of these must be implemented in the
SSL stack; others are optional. When an SSL connection is created, both parties
agree by “handshake” on the cipher suite, that is, the algorithms and key lengths
used. In a default scenario, this information depends on what both sides are
capable of. It can be influenced by setting the attribute CIPHER-SUITE for the
SSL server side (the broker always implements the server side). Ths stubs connect
to the broker and thereby become the SSL clients.

Under UNIX and Windows, the OpenSSL implentation of the SSL server side
is used; on z/OS and BS2000/0OSD it is GSK.

Example for OpenSSL:

CIPHER-SUITE=RC4-MD5 Use RC4 with standard 128-bit
key and MD5 as hash.

CIPHER-SUITE=EXP-EDH-DSS-DES-CBC-SHA Extreme example.

Example for GSK:

CIPHER-SUITE=090306 Use DES and SHA1 with export key lengths, or
RC4 and MD5 with export key lengths, or
RC2 and MD5 with export key lengths.

For more information see:

" OpenSSL
http://www.openssl.org/docs/apps/ciphers.html

98

Administration

Broker Attributes

Operating System
£ o
Opt/ ® x 8 = S
Attribute Values Req 8 5 = R i
= GSK
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?
info/apis/gsk_attribute_set_buffer.htm
CONNECTION-NONACT [n1nS | nM | nH ‘ 0 ‘ z ‘ u ‘ w ‘ | b

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

n Same as nS.

nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).
nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled.

HOST hostname ‘ 0] ‘ z ’ u ‘ w ‘ | b
The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

KEY - LABEL name | o | z | | | |
The label of the key in the RACF keyring that is used to authenticate the broker
kernel (see also TRUST - STORE parameter).

(Example: "ETBCERT")

KEY-FILE file name | R | | u | ow | | b
File that contains the broker's private key (if not contained in KEY - STORE).
(Example: MyAppKey . pem)

Note: EntireX Broker supports only key files of type .pem. Files of type .jks are
not supported.

KEY-PASSWD password (A32) ‘ R ‘ ‘ u ‘ w ‘ | b

Password used to protect the private key. Unlocks MyAppKey . pem. Deprecated.
See KEY-PASSWD-ENCRYTPED below.

Administration

99

Broker Attributes

Operating System
2 =
Opt/ W * 5 o =
= = 0
Attribute Values Req R 5 = = @
KEY-PASSWD-ENCRYPTED|encrypted value R u w b
(A64)

Password used to protect the private key. Unlocks MyAppKey . pem. This attribute
replaces KEY -PASSWD to avoid a clear-text password as attribute value. If
KEY-PASSWD and KEY-PASSWD-ENCRYTPED are both supplied,
KEY-PASSWD-ENCRYTPED takes precedence.

KEY-STORE

file name ‘ R ‘ ’ u ‘ w ‘ | b

SSL certificate; may contain the private key.
(Example: ExxAppCert. pem)

Note: EntireX Broker supports only keystores of type .pem. Files of type .jks are

not supported.

MAX-MESSAGE-LENGTH

2147483647 | n | 0 ‘ z | u | w ‘ | b

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

PORT

1025 - 65535 ‘O‘zlulw‘ |b

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the example
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

RESTART

YES | NO | (@) ‘ z | u | w ‘ | b

YES The broker kernel will attempt to restart the SSL communicator (this is
the default value).

NO The broker kernel will not attempt to restart the SSL. communicator.

RETRY-LIMIT

@InlUNLIM‘O‘z’u’w‘ |b

Maximum number of attempts to restart the SSL communicator.

RETRY-TIME

MInInSInH‘O‘qu‘w‘ |b

Wait time between suspending SSL communication due to unrecoverable error
and the next attempt to restart it.

n Same as nS.

nS Wait time in seconds (max.2147483647).
nM Wait time in minutes (max. 35791394).
nH Wait time in hours (max. 596523).

100

Administration

Broker Attributes

Operating System
o
Opt/ W % 8 7] %
Attribute Values Req R 5 = g @
Minimum: 1S
REUSE-ADDRESS YES | NO ‘ o) ‘ z ‘ u ‘ w ‘ | b

YES The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).

NO The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

STACK-NAME

name ‘O‘zlu‘w‘ |

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

[0 [+ e[w][[

The level of tracing to be performed while the broker is running with transport
method SSL or TLS. It overrides the global value of trace level for all SSL or TLS
routines.

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing
erTor responses.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

If you modify the TRACE- LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

TRUST-STORE

file name\keyring‘ R ‘ z ‘ u ‘ w ‘ | b

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

Administration

101

Broker Attributes

Operating System
o
Opt/ o x H g g
Attribute Values Req g 5 = @
z/OS Specify the RACF keyring using the following

format: [USER-ID/JRING-NAME.If no value for
USER-IDis provided, the keyring is assumed to
be associated with the user ID that the broker
kernel is running under.

BS2000/0SD/Windows/UNIX Specify the file name of the CA certificate store.
Examples: EXXCACERT.PEM,
C:\Certs\ ExxCACert.pem

VERIFY-CLIENT

NO | YES ’O‘z’u’w‘ |b

YES Additional client certificate required.
NO No client certificate required (default).

102

Administration

Broker Attributes

DIV-specific Attributes

The DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

Operating System
2 o
Opt/ w bt 5 Lh s
z = b
Attribute | Values Req C 5 = 2 &
DIV Abl11 R V4

The VSAM Persistent Store parameters, enclosed in double quotes (
than one line. See Format Parameters under Managing the Broker Persistent Store in the z/OS
administration documentation for details of the parameters. In previous versions of EntireX, these
parameters were read from the SYSIN DD during broker kernel startup.

"

)- The value can span more

Adabas-specific Attributes

The Adabas-specific attribute section begins with the keyword DEFAULTS = ADABAS. The attributes

in this section

are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,

these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-
tribute.
Operating System
2 =
Attribute Values Req C 5 = e 8
BLKSIZE 126-20000 @) z u w v b
Optional blocking factor used for message data. If not specified, broker will split the message
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.
For reasons of efficiency, do not specify a BLKSIZE much larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.
The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.
Default value is 2000.
DBID 1-32535 R z u w v b

Administration

103

Broker Attributes

Operating System
o
Opt/ w0 x % 4 %

Attribute Values Req 8 5 = g @
Database ID of Adabas database where the persistent store resides.

FNR 1-3535 [R | oz [uw | w [v | b
File number of broker persistent store file.

FORCE-COLD [N I'Y | o | z | w | w | v | b
Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

MAXSCAN 0-n ©) z u w \Y b
Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

OPENRQ NIY | o | =z | w | w | v | b
Determines whether driver for Adabas persistent store is to issue an O0PEN command to
Adabas.

SVC 200255 | R |

| | |

v

Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

TRACE-LEVEL

0-8 | O ‘ z | u | w ‘ v | b

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

104

Administration

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

® BROKER-1ID (in Broker-specific attributeBROKER - ID)

" NODE (in Entire Net-Work-specific attribute NODE)

® PORT (in PORT (SSL) and PORT (TCP/IP))

How you use the variable definition file will depend upon your particular needs. For instance,

some optional attributes may require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

Administration 105

106

5 Concepts of Persistent Messaging

= Client Server Model: Persistent MESSAGINGvvveeiiuiiiiiiiiiii et 108
= Publish-and-Subscribe Model: Persistent BENAVIOTcocuiiiiiiiiiiiiiiic e 109
= Definitions of Persistent Messaging TerMSuuviiiiiiiiii e 111
= Availability of PersiStent STOMEooiiiiiiiiiii 113
m Migrating the Persistent STOTEviiiiiiiii e 115
B PerSiStENt STOrE REPOM ...t 118
= Swapping out NEW UNits Of WOIKooiiiiiiiic e 121

107

Concepts of Persistent Messaging

This chapter provides a brief introduction to the concepts of the persistent store and its role in
EntireX for providing persistent messaging within the client/server model and also for publish-
and-subscribe functionality. It covers the following topics:

The table Persistent Store Drivers lists the implementation choices available to each operating
system for accessing the physical persistent store. See also Using Persistence and Units of Work,
Broker UOW Status Transition under Concepts of Persistent Messaging and Managing the Broker
Persistent Store in the platform-specific administration documentation.

Client Server Model: Persistent Messaging

EntireX provides persistent messaging within the client/server model. This is achieved by storing
all persistent messages on disk so that if a system failure occurs, messages will automatically be
recovered allowing applications to be restarted without any loss of data. The section Using Per-
sistence and Units of Work describes implementation issues and how to use persistence and units
of work in EntireX Broker. Units of work can also be used without persistence; units of work which
are the vehicle for persistent messaging.

The following figure illustrates the concept of persistent messages.

- = Send .
[» EntireX Messaging Syncpoint
:. : : Option:
= = . Commit | EntireX
& | j Broker
i |
Recover Unit of Work i
Store
-‘..

Persistence in an EntireX Broker's unit of work (a group of logically related messages) has the
following four variations:

® Both the unit of work and its status have persistence.

108 Administration

Concepts of Persistent Messaging

® The unit of work does not have persistence, but its status does.
® The unit of work has persistence, but its status does not.

" Neither the unit of work nor its status has persistence.

The status of a message is information about the message rather than the actual message data itself.
This enables the sender to determine the progress of the message and determine if it has been re-
ceived by the partner and whether processing was successfully completed. This gives applications
the option of having the Broker kernel store only the message status and not the message itself,
provided the application has been written to resend data from a known point in the event of system
failure. This option can afford significant performance benefits over storing the whole message
data.

To support transaction control in a coordinated operation of distributed systems, EntireX can
group logically related messages into “units of work” that are committed to the EntireX Broker
for further transmission when complete. In case of failure on the server side, the receiving program
can backout the whole unit of work; this makes it available for processing later or by another
server.

Publish-and-Subscribe Model: Persistent Behavior

EntireX provides persistent publish-and-subscribe behavior by writing information to disk in order
to protect against system failures. This allows applications to be restarted without any loss of the
following types of data:

® Durable Subscription Information
This comprises a list of subscribers and the topics to which they have durably subscribed. This
ensures that users only have to subscribe once to a topic; their persistent status remains after
Broker is restarted. If the persistent store is used to maintain subscription status, you must define
the SUBSCRIPTION-EXPIRATION options.

= Publication Data

This data is also persisted if the administrator has defined this characteristic for the topic.

The diagram below shows the two types of publish-and-subscribe information which is written
to the persistent store.

Administration 109

Concepts of Persistent Messaging

Persistent Subscriber
Store

110 Administration

Concepts of Persistent Messaging

Definitions of Persistent Messaging Terms

= UOW

= Persistent Store

m Persistent Store Drivers
= JOW Lifetime

= Persistent UOW
Persistent Status
Publication

Durable Subscription
Publication Lifetime

= Subscription Expiration

uow

A unit of work (UOW) is a set of one or more messages that are processed as a single unit. The
sender of a UOW adds messages to the UOW and then indicates that the UOW is complete
(COMMIT). The UOW and its messages are not visible to the receiver until the sender has committed
the UOW. Once the UOW is committed, the receiver can receive the messages, and can indicate
when the UOW is complete (COMMIT).

Persistent Store

The persistent store is used for storing unit-of-work messages and publish-and-subscribe data to
disk. This means message and status information can be recovered after a hardware or software
failure to the previous commit point issued by each application component.

Persistent Store Drivers

A persistent store driver is an executable, or aload module, that implements access to the physical

persistent store. There is one persistent store driver for each persistent store type. The following
table shows the persistent store options:

Persistent

Store Type Description Operating System Notes

Adabas Uses Adabas database. UNIX, Windows, |Adabas, Software AG's ADAptable

z/OS, z/VSE dataBASe, is a high-performance,

multithreaded, database management
system.

DIV Uses IBM Data In Virtual z/OS This persistent store option is

facility on z/OS. implemented as a VSAM linear data set.

Administration 111

Concepts of Persistent Messaging

Persistent
Store Type Description Operating System Notes
CTREE c-tree© is an embedded local |UNIX and Windows | c-tree®© is the fast and reliable embedded

database that can be used as database of FairCom Corporation®.
your persistent store.

See also Managing the Broker Persistent Store in the platform-specific administration documentation
and also PSTORE-TYPE under Broker Attributes in the platform-independent administration docu-
mentation.

UOW Lifetime

Each UOW has a lifetime value associated with it. This is the period of time that the UOW is allowed
to exist without being completed. This time starts when the UOW is initially created and runs
until the UOW is completed. A UOW is completed when it is successfully:

® cancelled or backed out by its sender, or

® cancelled or committed by its receiver.

If the UOW is in ACCEPTED status when this lifetime expires, the UOW is placed into a TIMEOUT
status. Lifetime timeouts will not occur when the UOW is in either RECEIVED or DELIVERED
status.

A special “pseudo-clock” is maintained for UOW lifetimes. This clock is implemented in such a
way that it only runs when the Broker is active. This prevents a UOW lifetime from expiring while
the Broker is down or otherwise unavailable.

Persistent UOW

Persistence is an attribute of a UOW (unit of work). If a UOW is persistent, its messages are saved
in the persistent store when the sender COMMITs the UOW and they are retained until the receiver
COMMITs or CANCELs the UOW, or until its lifetime expires. If the Broker or system should fail after
the UOW is committed by the sender, the UOW (and its conversation) will be restored to their
last, stable status when the Broker restarts.

Persistent Status

Persistent status is an attribute of a UOW (unit of work). If a UOW has persistent status, the status
of the UOW is maintained in the persistent store, and is updated whenever the status changes.
The persistent status remains in the persistent store after the UOW is completed, until its status
lifetime has expired.

A persistent status value represents a multiple of the UOW lifetime value. Thus if a UOW has a
lifetime of 5M (whereby M stands for minutes) and a persistent status value of 4, the status of the
UOW would be deleted 20M (5M*4) after the UOW was completed.

112 Administration

Concepts of Persistent Messaging

Publication

A publication is one or more messages forming an atomic unit and sent by a publisher to a topic.
Subscribers are then able to receive publications committed after the time at which a subscriber
first subscribes.

Durable Subscription

Subscribers inform EntireX of their intent to receive publications by issuing a SUBSCRIBE command
and specifying the topic of interest. If the administrator has specified this topic to the Broker attrib-
ute file with a characteristic of DURABLE, users will be able to subscribe to the topic durably. This
means that the user's subscription status remains after EntireX is restarted.

Publication Lifetime

A characteristic of the topic is the lifetime which publications will live and be available to sub-
scribers. Once a publication has been received by all eligible subscribers, it will be removed auto-
matically, even before its lifetime has been reached.

Subscription Expiration

Subscribers inform EntireX of their intent to receive publications by issuing a SUBSCRIBE command
and specifying the topic of interest. If the administrator has specified this topic to the Broker attrib-

ute file with a characteristic of DURABLE, all user subscriptions to that topic will be durable. This
means that the user's subscription status remains after EntireX is restarted.

Availability of Persistent Store

@ Caution: The persistent store must be available before you attempt to start or restart the

Broker; otherwise your Broker will not initialize.

= |ntroduction
= Disconnect the Persistent Store

Administration 113

Concepts of Persistent Messaging

= Connect the Persistent Store
Introduction

The PSTORE must be available for the Broker to start. Subsequently, Broker will continue to function
even if the PSTORE becomes unavailable and applications issuing non-persistent commands will
continue without interruption. However, Broker will not be able to process commands relating
to persistence until the PSTORE becomes available again.

Users issuing commands involving persistence - for example units of work with persistence and
durable publish and subscribe - are notified of the unavailability of the PSTORE through an ACI
return code. In addition, persistent commands being processed at the point of unavailability are
backed out, and details of the PSTORE problem are written to the Broker log file.

There are several reasons for the PSTORE becoming unavailable. Examples:

" unavailability of the PSTORE file(s)
" capacity of PSTORE file being exceeded

" in the case of Adabas, termination of the database
Disconnect the Persistent Store

You can remove the state “No new Units of Work” - that is, no new persistent data - using CIS. If
the PSTORE capacity is exceeded, an error message is written to the Broker log file. You must use
Command and Information Services (CIS) to ensure that users cannot issue further commands
creating new units of work or publications.

During the time the PSTORE is unavailable, there is no timeout processing for unit-of-work and
publication records kept in the PSTORE. In addition, some in-memory resources relating to persistent
items, such as conversation control blocks, are also retained until the PSTORE becomes available
again and normal processing is resumed for all commands.

See executable command request DISCONNECT - PSTORE under £TBCMD: Executable Command Requests
under Broker Command and Information Services.

Connect the Persistent Store

Subsequently, you can use CIS to make the PSTORE available again, allowing users only to issue
commands consuming records from the PSTORE rather than producing new ones. After a period
of operation in this state, the contents of the PSTORE will be reduced sufficiently, and you can remove
the state “No new Units of Work” through CIS.

See executable command request CONNECT-PSTORE under £7BCMD: Executable Command Requests
under Broker Command and Information Services.

114 Administration

Concepts of Persistent Messaging

Migrating the Persistent Store

= |ntroduction
= Configuration
= Migration Procedure

Introduction

The contents of EntireX Broker's persistent store can be migrated to a new persistent store in order
to change the PSTORE type or to use the same type of PSTORE with increased capacity.

The migration procedure outlined here requires two Broker instances started with a special RUN-
MODE parameter. One Broker unloads the contents of the persistent store and transmits the data to
the other Broker, which loads data into the new PSTORE. Therefore, for the purposes of this discus-
sion, we shall refer to an unload Broker and a load Broker.

This procedure is based on Broker-to-Broker communication to establish a communication link
between two Broker instances. It does not use any conversion facilities, since the migration pro-
cedure is supported for homogeneous platforms only.

Administration 115

Concepts of Persistent Messaging

Broker - Broker
RUN-MODE=PSTORE-LOAD RUN-MODE=PSTORE-LUMLOAD
T T ‘ T
h h J h J
PSTORE=COLD REPORT PSTORE=HOT REPORT
Receives load requests to create a new Reads the old PSTORE and sends all data
PSTORE to the partner Broker

Configuration

The migration procedure requires two Broker instances, each started with the RUN-MODE attribute.
The unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD
These commands instruct the Broker instances to perform the PSTORE migration.

] Note: The attribute PARTNER-CLUSTER-ADDRESS must be defined in both Broker instances to

specify the transport address of the load Broker. The unload Broker must know the address
of the load broker, and the load Broker must in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on
host HOST?2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to estab-
lish port 1972.

116 Administration

Concepts of Persistent Messaging

For ETB001, attribute PARTNER-CLUSTER-ADDRESS =H0ST2:1972:TCP is set, and for ETB002, attribute
PARTNER-CLUSTER-ADDRESS=H0ST1:1971:TCPis setto establish the Broker-to-Broker communication
between the two Broker instances.

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE on
the unloader side, you must set the attribute PSTORE = HOT. To load the data into the new PSTORE
on the loader side, you must set the attribute PSTORE = COLD. The load process requires an empty
PSTORE at the beginning of the load process.

| Note: Use caution not to assign PSTORE =COLD to your unload Broker instance, as this startup

process will erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different per-
sistent stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end
of the migration process, a second report can be run on the resulting new persistent store. These
two reports can be compared to ensure that all contents were migrated properly. To run these re-
ports, set the attribute PSTORE-REPORT = YES. See PSTORE under Broker Attributes in the platform-
independent administration documentation for a detailed description, especially for the file assign-
ment.

Migration Procedure

The migration procedure is made up of three steps.
Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to
perform an initial compatibility check. This validation is performed by Broker according to platform
architecture type and Broker version number. The handshake ensures a correctly configured
partner cluster address and ensures that the user did not assign the same PSTORE to both Broker
instances. If a problem is detected, an error message will be issued and both Broker instances will
stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and
transmits the data to the load Broker instance. The load Broker instance writes the unchanged raw
data to the new PSTORE. A report is created if PSTORE-REPORT = YES is specified, and a valid output
file for the report is specified.

Administration 117

Concepts of Persistent Messaging

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare
the amount of migrated data. The result of this check is reported by the unload Broker instance
and the load Broker instance before they shut down.

When a Broker instances is started in RUN-MODE = PSTORE - LOAD or RUN-MODE = PSTORE-UNLOAD, the
Broker instances only allow administration requests. All other user requests are prohibited.

) Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica.
No filtering of unnecessary information will be performed - for example, UOWs in received
state. The master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE at-
tribute to PSTORE = HOT. Do not start your broker with the new persistent store using PSTORE =
COLD; this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your Broker in a normal RUN-MODE, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate
Broker instances; otherwise, applications would receive the same data twice. Once the migration
process is completed satisfactorily, and is validated, the old PSTORE contents should be discarded.

Persistent Store Report

You can create an optional report file that provides details about all records added to or deleted
from the persistent store. This section details how to create the report and provides a sample report.

= Configuration
= Sample Report

Configuration

To create a persistent store report, use Broker's global attribute PSTORE-REPORT with the value YES.

When the attribute value YES is supplied, all created or deleted persistent records will be reported
if the output mechanism is available.

If the value NO is specified, no report will be created.

The report file is created using the following rules:

118 Administration

Concepts of Persistent Messaging

BS2000/0SD

LINK-NAME ETBPREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

UNIX

Broker creates a file with the name PSTORE.REPORT in the current working directory. The file
name PSTORE.REPORT.LOAD will be used if Broker is started with RUN-MODE = PSTORE - LOAD.

The file name PSTORE.LOAD.UNLOAD will be used if Broker is started with RUN-MODE =
PSTORE-UNLOAD.

If the environment variable ETB_PSTORE_REPORT is supplied, the file name specified in the envir-
onment variable will be used.

If Broker receives the command-line argument - p, the token following argument -p will be used
as the file name.

Windows

Same as UNIX.

z/0S

DDNAME ETBPREP assigns the report file. Format RECFM=FB, LRECL=121 is used.
z/VSE

Logical unit SYS003 and logical file name ETBPREP are used. Format RECORD- FORMAT = FB, RECORD -
LENGTH =121 is used.

Sample Report

The following is an excerpt from a sample PSTORE report.

EntireX 8.0.0.00 PSTORE Report 2008-02-21 17:18:38 Page 1
Identifier Elements Total length Record Type Date Time ©
Action

100000000D000016 5 1148 Conversation 2008-02-21 17:18:57.190 <«
Created

100000000D000017 5 1148 Conversation 2008-02-21 17:18:57.654 <
Created

100000000D000018 5 1148 Conversation 2008-02-21 17:18:58.122 <«
Created

100000000D000019 5 1148 Conversation 2008-02-21 17:18:58.590 <
Created

100000000D00001A 5 1148 Conversation 2008-02-21 17:18:59.054 <«

Administration 119

Concepts of Persistent Messaging

Created
100000000D00001B 5 1148 Conversation 2008-02-21 17:18:59.518 <«
Created
100000000D00001C 5 1148 Conversation 2008-02-21 17:18:59.982 <«
Created
100000000D00001D 5 1148 Conversation 2008-02-21 17:19:00.538 <«
Created
100000000D00001E 5 1148 Conversation 2008-02-21 17:19:01.002 <
Created
100000000C000001 0 0 Conversation 2008-02-21 17:19:30.676 <«
Deleted
100000000C000002 0 0 Conversation 2008-02-21 17:19:31.675 <
Deleted
100000000C000003 0 0 Conversation 2008-02-21 17:19:32.675 <«
Deleted
100000000C000004 0 0 Conversation 2008-02-21 17:19:33.675 <«
Deleted
100000000C000005 0 0 Conversation 2008-02-21 17:19:34.675 <«
Deleted
100000000C000006 0 0 Conversation 2008-02-21 17:19:35.675 <«
Deleted

The following fields are provided in the report:

" Identifier provides the UOWID (record ID).
" Elements gives the number of messages per UOW when creating or loading records.
" Total Length gives the size of the raw record when creating or loading records.
" Record Type describes the type of the data. Following types are currently supported:
® Cluster: a special record for synchronization purposes
® Conversation: a unit of work as part of a conversation
" Master: a special record to manage the persistent store
® Publication:arecord containing a publication for a durable topic
® Subscription:arecord containing subscriber data (if SUBSCRIBER-STORE = PSTORE) is defined
® Date and time of the action
" Action describes the action of Broker. The following actions are currently supported:
" Created: record is created
" Deleted: record is deleted
" |oaded: record is loaded (Broker instance with RUN-MODE = PSTORE - LOAD)
® Unloaded: record is unloaded (Broker instance with RUN-MODE = PSTORE - UNLOAD)

120 Administration

Concepts of Persistent Messaging

Swapping out New Units of Work

The broker processes UOWs in memory. However, if a client produces a large number of UOWSs
and no server is available, or the server cannot handle all data, the number of UOWs in memory
may increase and reach a critical limit.

To avoid an overload of UOWs in memory, EntireX Broker can swap out new conversations that
containing UOWSs (STORE=BROKER) and that have been accomplished by the client with an EOC.
The data is persisted on PSTORE and there is no need to keep the data in memory unless a server
wants to receive the data.

Activate the swap-out feature with the broker-specific attribute SWAP-0UT-NEW-UOWS. It is not ac-
tivated by default. However, the swap-out feature can be configured per service to define a min-
imum portion of UOWSs kept in memory. Use the service-specific attribute MIN-UOW-CONVERSATIONS -
IN-MEMORY to define this portion.

Administration 121

122

6 Using Persistence and Units of Work

B MPIEMENTALION ISSUESieiiiiii ittt ettt e e e e e et e e e e e e e et taeeeaaaeeans 124
B USING UNIS OF WOTK ..ottt e e e st ee e e e neeeas 129
B USING PISISIENCEttt 133
B USING PErSISTENT STAUS ... 138
B RECOVEIY PrOCESSING ... 140

123

Using Persistence and Units of Work

This chapter describes implementation issues and how to use persistence and units of work in
EntireX Broker. It assumes you are familiar with EntireX Broker from both an administrative and
an application perspective, and with the ACI programming in particular. See also EntireX Broker
and EntireX Broker ACI Programming.

Implementation Issues

= Table of Persistent Store Drivers

= Changes are Required

= Attributes used for Units of Work

= ACI Fields used for Units of Work

= ACI Function SYNCPOINT used for Units of Work

= QOptions used for UOW Operations

= CID Implementation: Numeric Digits, Characters 0-9 and A-Z

Table of Persistent Store Drivers
A persistent store driver is an executable, or a load module that implements access to the physical

persistent store. There is one persistent store driver for each persistent store type. The following
table shows the persistent store options:

Persistent
Store Type Description Operating System Notes
Adabas Uses Adabas database. UNIX, Windows, |Adabas, Software AG's ADAptable
z/OS, z/VSE dataBASe, is a high-performance,
multithreaded, database management
system.
DIV Uses IBM Data In Virtual z/OS This persistent store option is
facility on z/OS. implemented as a VSAM linear data set.
CTREE c-tree© is an embedded local |UNIX and Windows |c-tree© is the fast and reliable embedded
database that can be used as database of FairCom Corporation®.
your persistent store.

124 Administration

Using Persistence and Units of Work

Changes are Required

It is important to note that some level of both application and system changes are necessary to
utilize UOWs. Existing message-based Broker applications will continue to operate as before.

Attributes used for Units of Work

The following table represents the keyword parameters that can be used in the Broker attribute
file for UOWs. A short form of the keyword is given if applicable. Default values are underlined.

Keyword

Value

Description

STORE

QFF | BROKER

Broker: sets default STORE attribute for all units of work.

Service: sets default STORE attribute for units of work sent
to the service.

MAX-UOWS or
MUOW

Broker: maximum number of active UOWs. If 0 is specified,
then the Broker will not support any UOW operations.

Service: maximum number of active UOWSs for a service.

UMSG

MAX-MESSAGES-IN-UQOW or

Broker: maximum number of messages in a UOW.

Service: maximum number of messages in a UOW for the
service.

PSTORE

NO I HOT |
COLD |
WARM

Broker only. Startup value for persistent store.

NO No persistent store.

HOT Persistent UOWs are restored to prior state during
initialization.

COLD Persistent UOWs are not restored during initialization,

and the persistent store is considered empty.

WARM (Internal Use Only) persistent UOWs are not restored
during initialization, but the persistent store remains
intact.

UWSTATP

Broker: persistent status is maintained either for persistent
or non-persistent UOWs.

Service: persistent status is maintained either for persistent
or non-persistent UOWs for a service.

UWTIME

1D nS I nMI
nH | nD

Broker: defines the lifetime of a UOW in seconds, minutes,
hours or days. This value is the time that it can remain in the
system without being completed. If the UOW is not
completed within this time, it is deleted with a status of
TIMEOUT

Service: defines the lifetime of a UOW for a service.

Administration

125

Using Persistence and Units of Work

Keyword

Value Description

MAX-UOW-MESSAGE-LENGTH|n | 31647 Broker: defines the default maximum message size that can

be sent.

Service: defines the maximum message size that can be sent
to a service.

DEFERRED NO I YES Broker: sets the default DEFERRED attribute for all services.

UOW s can be sent to a deferred service even if the service is
not registered.

Service: sets the DEFERRED attribute for a service.

ACI Fields used for Units of Work

The following fields have been added to the broker ACI control block. Note that the actual field
names may differ slightly depending on the programming language being used.

Keyword |Description
STORE |Indicates whether the specified UOW is persistent or not:
OFF The sender accepts the persistence option specified by the service or Broker (this is the
default value).
BROKER The sender wants persistence.
NO The sender does not want persistence, even if the service or Broker default is persistence.
Also returned with RECEIVE to indicate if the UOW being received is persistent or not.
UWTIME |The amount of time that the UOW can remain incomplete without being timed out. This is also
referred to as the UOW lifetime.
STATUS |The current status of a UOW. The status is returned on SEND, RECEIVE, and SYNCPOINT operations.
Applicable values are as follows:
RECEIVED One or more messages have been sent as part of a UOW but the UOW is not yet
committed.
ACCEPTED The UOW has been committed by the sender.
DELIVERED The UOW is currently being received.
BACKEDOUT * The UOW was backed out prior to being committed by the sender.
PROCESSED * the receiver of the UOW has committed it.
CANCELLED * the receiver of the UOW has cancelled it.
TIMEOUT * the UOW was not processed within the specified time.
DISCARDED * The UOW was not persistent and its data was discarded over a restart.
* The status values marked with an asterisk are persistent, and will only exist for UOWs with
persistent status.
126

Administration

Using Persistence and Units of Work

Keyword |Description
In addition, the following status values are returned on a RECEIVE operation to indicate if the
message being received is part of a UOW or not, and if so, which part:
RECV_NONE The message is not part of a UOW.
RECV_FIRST The message is the first message in a UOW.
RECV_MIDDLE The message is not the first or last message in a UOW.
RECV_LAST The message is the last message in a UOW.
RECV_ONLY The message is the only message in a UOW.
All RECV_ values except RECV_NONE reflect an actual UOW status of DELIVERED.
USTATUS|A user-defined status associated with a UOW. It can be specified as part of a SEND, RECEIVE, or
SYNCPOINT operation and will be returned whenever the status of a UOW is queried. See Using
User Status below for more information.
UOWID |A unique identifier for a unit of work. This value is returned on SEND and RECEIVE operations
and may be provided on SYNCPOINT operations that are querying status of UOWs.
UWSTATP|A numeric value indicating the lifetime value for persistent status. This value is a multiplier
against the UWT IME value. Applicable values are:
0 Use the default specified for the service or broker.
1-254 Use 1 to 254 times the UWT IME value as the status lifetime.
255 The sender does not want persistent status, even if the service or broker default is
persistent status.

ACI Function SYNCPOINT used for Units of Work

The SYNCPOINT function deals exclusively with UOWSs. The following table lists the OPTION values
that can be used with the SYNCPOINT function, and the associated behavior and restrictions of each

one.

| Note: In many cases, the behavior will be different depending on whether the issuer is the
sender or the receiver of the UOW.

Option Caller Behavior and Restrictions
BACKOUT Sender |If the specified UOW is in RECEIVED status, it will be put into BACKEDQUT status.
If persistent status is not specified, no trace of the UOW will remain.
Receiver |If the specified UOW is in DELIVERED status, it will be put back into ACCEPTED
status and its attempted delivery count will be incremented.
CANCEL Sender |If the specified UOW is in ACCEPTED status, it will be put into CANCELLED status.

If persistent status is not specified, no trace of the UOW will remain.

Receiver |If the specified UOW is in DELIVERED status, it will be put into CANCELLED status.
If persistent status is not specified, no trace of the UOW will remain.

Administration 127

Using Persistence and Units of Work

Option Caller Behavior and Restrictions

COMMIT Sender |If the specified UOW is in RECEIVED status, it will be put into ACCEPTED status. It
is now available to be received by the other partner.

Receiver |If the specified UOW is in DELIVERED status, it will be put into PROCESSED status.
If persistent status is not specified, no trace of the UOW will remain.

Both This is a special case of the COMMIT option, where the caller specifies UOWID=BOTH
in the request. This allows the caller to commit two UOWs, one being received and
one being sent, in a single atomic operation.

DELETE Sender |Deletes the persistent status of the specified UOW. The UOW must be complete
and must have been created by the caller. After this request, no trace of the UOW
will remain.

EOC Sender |Commits the UOW and sets an EOC indication on the associated conversation. See

COMMIT for additional information and restrictions.

EOCCANCEL |Sender

Commits the UOW and sets an EOC-CANCEL indication on the associated
conversation. See COMMIT for additional information and restrictions.

LAST Sender |Returns the status of the last UOW sent by the caller. In addition,
CLASS/SERVER/SERVICE details of the associated server are also returned. The
CONV-ID can be included to qualify the request.

QUERY Sender |With UOWID=n, returns the status of the specified UOW. In addition,

CLASS/SERVER/SERVICE details of the associated server are also returned.

SETUSTATUS [Both

Updates the user status field of the specified UOW. The UOW must be in RECEIVED,
ACCEPTED, or DELIVERED status.

Options used for UOW Operations

This table lists option values used to support UOW operations:

Option |Function |Behavior and Restrictions

SYNC |SEND This option indicates that the data being sent is part of a UOW. The UOW is created on
the first send, and subsequent sends will add messages to the UOW.

SYNC |RECEIVE|This option indicates that the RECEIVE can be satisfied only with a message in a UOW.

MSG RECEIVE|This option indicates that the RECEIVE can be satisfied only with non-UOW messages.

ANY RECEIVE|This option indicates that the RECEIVE can be satisfied by either a non-UOW or a UOW
message. It is up to the receiver to determine which, based on the UOWSTATUS field that
is returned.

COMMIT|SEND This option combinesa SENDand a SYNCPOINT, OPTION=COMMIT into a single operation.
It allows the sender to create and commit a UOW in a single operation.

128 Administration

Using Persistence and Units of Work

CID Implementation: Numeric Digits, Characters 0-9 and A-Z

In order to support unique conversation identifiers at Broker restart, there is an implementation
of the CID which is alphanumeric and an internal identifier.

| Note: The CID is a Broker-generated identifier for the conversation, and the application

should not make any assumptions about either the content or format of all or any part of
the CID field, or about any relationship between CIDs.

If any of the following three conditions exist, the all-numeric implementation of the CID field will
be used in order to ensure compatibility:

* the Broker does not support any UOW processing;
" the application program is using API_VERSION 1 or 2 in its request;

or

" the target service does not support UOWs.

| Note: This level of compatibility may be removed at some point in the future.

Using Units of Work

= UOW vs non-UOW Conversations

= Use of LOGON and TOKEN

= User |dentification for Units of Work

= Which Applications should use UOWs?

= Understanding UOW Status

= UOW Status on RECEIVE

= Using User Status

= Resource and Performance Considerations

UOW vs non-UOW Conversations

A Broker conversation will support either UOWs or messages, but not both. At the time the con-
versation is created, the Broker will determine which is to be supported.

Administration 129

Using Persistence and Units of Work

Sequencing of Messages across Conversations

The order of delivery of new conversations to receivers is determined by the COMMIT time of the
first UOW within its conversation. The conversation delivered to the receiver first is the one con-
taining the first UOW for which the sender issues a SEND,0PTION=COMMIT or SYNCPOINT,0P-
TION=COMMIT.

If there is more than one UOW in a conversation, the COMMIT time of the first UOW determines
the age of that conversation. Also, multiple UOWSs within a conversation are picked up by the re-
ceiver, in the same sequence as they were committed by the sender.

Scenario: A server starts to receive UOWSs (CONVID=NEW) and receives UOW T1 first, since this UOW
is committed first. If the server issues another receive (CONVID=NEW), it receives UOW T3. If, however,

the UOWs are not combined in conversations (i.e., every UOW is in a separate conversation), the
server receives (CONVID=NEW) UOW T1 first, then UOW T2, UOW T3, etc.

Conversation 1 Conversation 2
UOW T1 UOWT3
UOWT2 UOWT4

The COMMITTIME field in the Broker control block shows COMMITTIME of the first UOW in a conver-
sation.

Use of LOGON and TOKEN

An explicit LOGON function must be used before a program can use any of the UOW functions. In
order to enable client and server programs to recover the status of their UOWs in the event of a
failure (Broker, system, or application), these programs must specify a TOKEN value at the time of
logon.

130 Administration

Using Persistence and Units of Work

User Identification for Units of Work

EntireX Broker identifies participants by ACI fields USER- 1D and TOKEN if TOKEN is supplied or by
USER-ID and internal ID (so-called physical user ID) if TOKEN is not supplied. However, the imple-
mentation of persistent units of work is based on the user identification USER-1D and TOKEN.

@ Caution: In order to avoid unpredictable inconsistencies, all applications using persistent

units of work must use this user identification to run correctly. The ACI verification routines
do not restrict usage of UOWs to USER-1D and TOKEN yet. Modify your application accord-

ingly.
Which Applications should use UOWs?

Applications that should consider using UOWs fit into a couple of different categories.

" Applications that currently use multiple messages to communicate a single request are good
candidates for UOWs. Grouping these messages within a UOW can give the application addi-
tional control over how its data is processed.

® Applications that intend to utilize deferred services, persistence, or persistent status must use
UOWs, since these facilities are not available to message-based applications.

Understanding UOW Status

In order to use UOWs effectively, you need to understand

® the meaning of the various UOW status values;

® how they change based on events within the system;

and
® how these changes are influenced by both persistence and persistent status.
The diagram below represents the normal status values as a UOW progresses through the system.

These statuses and the transitions between them are not affected by either persistence or persistent
status. The status values are indicated in ovals.

Administration 131

Using Persistence and Units of Work

" Start with
.. No Loy .

SEND,
OPTION=5YNC

—a
SEND, / _
OPTION=SYNC | Received

T, OPTION=BACKOUT p Backed Out

.

L P
_— |
SYNCPOINT, OPTION=COMMIT

SEND,
OFTION=COMMIT

v
Accepted SYMCPOINT, OPTION=CANCEL »{ Cancellad
k. . . - f_f_,,—"'"x_ .) -~
A il
| |SYMCPOIMT, " BYNCPOINT,
RECEIVE, OPTION=5YMNC g e
i v QPFTIOMN=BACKOUT _____.--"" QPTIOMN=CAMCEL
A -)
/ -
RECEIVE, 7 . b = i
OPTION=SYNC | DE“"-"EFEd | T EYNCFOINT: DFTIDN _;OM[‘.I“T_ el .. Prncegsed

., o o
. . . .

__

Normal Status Values as a UOW progresses through System

] Note: The UOW is available to be received when it is first committed. The status values
BACKEDOUT, CANCELLED and PROCESSED are valid only if there is persistent status.

UOW Status on RECEIVE

When a RECEIVE is issued for a message within a UOW, you might expect that the UOW status
returned would be DELIVERED, since this is the actual status of the UOW. This is not the case,
however. On a RECEIVE, the Broker returns a special UOW status that reflects additional information
about the message and the UOW. These statuses are:

® RECV_FIRST=the message is the first message in a UOW.

® RECV_MIDDLE= the message is not the first or last message in a UOW.

® RECV_LAST=the message is the last message in a UOW.

® RECV_ONLY=the message is the only message in a UOW.

® RECV_NONE=the message is not part of a UOW. This status is particularly useful if the application
is receiving both messages and UOWs.

132 Administration

Using Persistence and Units of Work

If you receive a status of either RECV_LAST or RECV_ONLY and then issue another RECEIVE for the
same UOW, you will get an error 00740301 Conversation found: end of unit of workindic-
ating the end of the UOW.

Using User Status

The user status field of the UOW allows additional, application-specific information to be carried
with the UOW. It can be used to maintain status or indicate error information. It can also provide
a form of “out-of-band” data communication between the sender and the receiver of a UOW.

For example, if a server is processing a long-running UOW), it can periodically update the user
status of the UOW (using SYNCPOINT, OPTION=SETUSTATUS) to indicate its progress. The client can
periodically get the user status (using SYNCPOINT, OPTION=QUERY) and report the progress back
to the end-user.

As another example, the sender of a long-running UOW can update the user status to indicate
that processing of the UOW should be abandoned by the server. The server can periodically get
the user status while processing and react accordingly.

Resource and Performance Considerations

Each active UOW consumes memory resources (approximately 140 bytes per UOW) in a prealloc-
ated pool, not including the size of the message itself.

Also, additional memory resources such as the conversation and participant control blocks for the
UOW, together with messages associated with them, will remain in memory for a deferred service
when persistence is used. This can become significant when UOWs are being sent to a deferred
service. However, the message itself does not remain in memory if sent to a service which is not
currently registered - the whole purpose of deferred services. If the service is currently registered,
the message remains in memory.

Messages that are sent to any (registered or unregistered) service can be “paged out” by Broker
if storage is required. This feature considerably eases memory consumption when using persistence.

Using Persistence

= When do Persistent UOWs make Sense?

= Adding Persistence to a UOW

= Resource and Performance Considerations
= Which Information is saved with the UOW?
= What happens when Broker restarts?

Administration 133

Using Persistence and Units of Work

= JOWs and Replicated Servers
When do Persistent UOWs make Sense?

A UOW should be made persistent if the sender wants the Broker to assure that the UOW will be
deliverable, even if there is a system or Broker failure. Assured delivery assumes that the intended
receiver of the UOW is active, or becomes active within the specified lifetime of the UOW.

Since most existing Broker applications are interactive, they are probably not good candidates for
persistent UOWs. New application models can now be implemented, using persistent UOWs. For
example, a service that collects information from other services, such as accounting, inventory,
logging, etc., would be a good fit for persistent UOWSs. Another example could be a client sending
a long-running request to a service (one that may be inactive or busy), disconnecting, and coming
back some time later to retrieve the results. The reliability of assured delivery makes this model
practical.

Persistent UOWSs do not require persistent status.
Adding Persistence to a UOW

A UOW can be made persistent:

" by specifying STORE=BROKER in the ACI request that creates the UOW;

® by specifying STORE=BROKER in service definition or service defaults portion of the Broker attribute
file, making all UOWs for that service persistent; or

" by specifying STORE=BROKER in the Broker defaults section of the Broker attribute files, making
all UOWs in the system persistent.

In addition, specifying STORE=NO in the ACI request that creates the UOW will explicitly make the
UOW non-persistent, overriding any Broker or service default.

Resource and Performance Considerations

A persistent UOW consumes resources in two areas.

® When the UOW is committed by the sender, all of the messages are written to the persistent
store. This will generate multiple I/O operations, depending on the number and size of the
messages.

" Space used to store the UOW and its messages will be allocated in the persistent store and will
remain until the UOW is completed.

Performance of certain specific functions (e.g. SYNCPOINT OPTION=COMMIT by the sender of a UOW)
will be affected by the additional time required to perform the I/O operations associated with
writing the UOW and message(s) to the persistent store. These operations are performed synchron-

134 Administration

Using Persistence and Units of Work

ously because the Broker must ensure that the UOW, once committed, can be recovered in the
event of a system or Broker failure.

Which Information is saved with the UOW?

When the UOW is initially created in the persistent store, the following information is written:

® Unit-of-work ID
® Conversation ID
® UOW Sender information, including:
" User ID
= Token
" Server/service/class *
® UOW receiver information, including:
= User ID **
= Token **
" Server/service/class *
® Creation timestamp
= UOW lifetime value
" Persistence and persistent status values
The following pieces of information will be included when the UOW is initially written to the
persistent store and will be updated, as needed, during the life of the UOW:
= UOW status
" UOW user status
" Attempted delivery count
® Number of messages in UOW
® Total message size in UOW
= Persistent status lifetime value

® Conversation state and EOC reason code
* Server/service/class information is only saved if the sender or receiver is a registered service.

** The receiver's user ID and token are only saved if the receiver is a service that has already ac-
quired the conversation associated with this UOW. When there are multiple instances of a service,
this means that a new conversation can be restarted by any instance of the service, but an existing
conversation is bound to a specific instance of the service.

Administration 135

Using Persistence and Units of Work

What happens when Broker restarts?

= Restart Behavior of UOW
= Re-creation of Internal Control Blocks
= Behavior of Conversation at Broker Restart

] Note: “Restored” is an active UOW which has been returned to ACCEPTED status; “Discarded”

is a UOW which has not been returned to ACCEPTED status. “Discarded” does not imply the
status of DISCARDED.

o

otherwise your Broker will not restart.

Restart Behavior of

= Restart Table 1

uow

Caution: The persistent store must be available before you attempt to restart your Broker;

The behavior during restart of the following states depends on the previous settings of the options
Persistent UOW and Persistent Status.

UOW Status Persistent UOW: |Persistent Status: |Behavior of UOW UOW Status
before Restart and Status after Restart *
YES|NO YES | NO

RECEIVED YES YES UOW not restored; [BACKEDOUT
Status is restored

RECEIVED YES NO UOW not restored; |---
Status not restored

RECEIVED NO YES UOW not restored; |DISCARDED
Status is restored

RECEIVED NO NO UOW not restored; |---
Status not restored

ACCEPTED YES YES UOW is restored; ACCEPTED
Status is restored

ACCEPTED YES NO UOW is restored; ACCEPTED
Status is restored

ACCEPTED NO YES UOW not restored; |DISCARDED
Status is restored

ACCEPTED NO NO UOW not restored; |---
Status not restored

DELIVERED YES YES UOW is restored; ACCEPTED
Status is restored

DELIVERED YES NO UOW is restored; ACCEPTED
Status is restored

DELIVERED NO YES UOW not restored; [DISCARDED
Status is restored

136 Administration

Using Persistence and Units of Work

UOW Status Persistent UOW: |Persistent Status: |Behavior of UOW UOW Status
before Restart YES | NO YES [NO and Status after Restart *
DELIVERED NO NO UOW not restored; |---
Status not restored

PROCESSED **|YES YES Status is restored PROCESSED
PROCESSED **|YES NO Status is not restored |---
PROCESSED **|[NO YES Status is restored PROCESSED
PROCESSED **|NO NO Status not restored |---

* If either UOW or its status is restored.

** In this state, the UOW information has already been deleted upon reaching PROCESSED status.

= Restart Table 2

The behavior during restart of the following states does not depend on the settings of Persistent
UOW; in these cases only the Persistent Status exists and does not change after a restart. There

is no UOW to be restored.

UOW Status before Restart |Behavior of Status |UOW Status after Restart
CANCELLED Status is restored [CANCELLED
DISCARDED Status is restored [DISCARDED
BACKEDOUT Status is restored |BACKEDOUT
TIMEDOUT Status is restored | TIMEDOUT

Re-creation of Internal Control Blocks

To restore a UOW), the Broker re-creates all internal control blocks necessary to represent the UOW
when it was accepted. The table displays the targets of each control block type:

Control Block Type |Association: Sender | Receiver|Notes
PCB Sender; Receiver (optional) | PCB = Participant CB
SCB Sender; Receiver SCB = Service CB
CCB Sender; Receiver CCB = Conversation CB
Two CCBs represent the conversation.
UWCB Receiver UWCB = unit of work CB
The UWCB represents the UOW.

| Note: The messages associated with the UOW are not re-created in memory untila RECEIVE
is actually issued for the UOW.

Administration

137

Using Persistence and Units of Work

Behavior of Conversation at Broker Restart

Broker sets any units of work (UOWs) that are in DELIVERED status to ACCEPTED status during restart
processing. If this is the first unit of work within a conversation sent by a client to a server, the
assignment of the conversation to a particular server is dropped and the conversation is again
available for all servers offering the same service.

If there is more than one unit of work in a single conversation and the first UOW is already received
and committed by the server, the link to the server will kept even after this (non-first) UOW has
reverted from DELIVERED to ACCEPTED status during restart processing. The server can retrieve
units of work after restart with function RECEIVE OPTION=SYNC,CONVID=ANY and will get all old
conversations containing UOWs first and then new conversations containing UOWs.

Servers performing a RECEIVE OPTION=SYNC, CONVID=NEW will retrieve only conversations not
already assigned to this server. We strongly recommend that you implement
RECEIVE OPTION=SYNC,CONVID=ANY or CONVID=0LD to retrieve already assigned conversations.

UOWs and Replicated Servers

Special consideration must be given when restarts occur, and there are persistent UOWSs that are
being sent to replicated servers, e.g. when more than one copy of a server is active. This is because
a UOW is not associated with a server instance until the UOW's conversation is actually received
by a server. From an application perspective, this means that a conversation that has not yet been
received by its target server will be restored so that any instance of the server can process it.
However, once the conversation has been received, any subsequent UOWs sent on the conversation
will be restored so that only the specific instance, based on USER- 1D and TOKEN, can receive them.
The reasoning behind this is that a broker restart can occur without the servers being restarted,
and the servers could be maintaining context information based on the conversation.

It is important to note that this can cause problems if the server instances are started as a result of
load and the same load conditions are not present after the restart. For example, a UOW could be
bound to the fifth instance of a server, but after a restart there is only enough load to start three
instances. For this reason, we recommend that replicated servers using persistent UOWs not
maintain any conversations with multiple UOWs.

Using Persistent Status

= \When does Persistent Status make Sense?
= Adding Persistent Status to a UOW

138 Administration

Using Persistence and Units of Work

m Resource and Performance Considerations
When does Persistent Status make Sense?

Persistent status should be considered for applications in which the sender needs to know if UOWs
were actually processed successfully. In cases where the data associated with a UOW can be easily
re-created in the event of a failure, persistent status may be a more desirable and lower-overhead
alternative to a persistent UOW.

Persistent status does not require a persistent UOW.

Adding Persistent Status to a UOW

A UOW's status can be made persistent:

" by specifying a UNSTATP value between 1 and 254 in the ACI request that creates the UOW;

" by specifying a UNSTATP value between 1 and 254 in service definition or service defaults portion
of the Broker attribute file, making the status of all UOWs for that service persistent; or

" by specifying a UNSTATP value between 1 and 254 in the Broker defaults section of the Broker
attribute files, making the status of all UOWs in the system persistent.

Specifying UWSTATP=255 in the ACI request that creates the UOW will explicitly make the UOW
status non-persistent, overriding any broker or service default.

Resource and Performance Considerations

Using persistent status consumes resources in two areas.

® The persistent store is updated each time the UOW is modified, by either the sender or the re-
ceiver. These modifications occur whenever a SEND or RECEIVE function is issued for the UOW,
or whenever its status is changed, such as by SYNCPOINT OPTION=COMMIT. Depending on the
implementation, this will generate one or more 1/O operations.

® The space used for the UOW (but not its messages) in the persistent store remains allocated for
some period of time after the UOW has been completed.

The performance of individual requests will generally be affected by the additional time required
to perform the I/O operations associated with maintaining persistent status. At this time, all oper-
ations are performed synchronously, although that may change in future releases.

Administration 139

Using Persistence and Units of Work

Recovery Processing

= |ntroduction
= Determining the Status of a UOW
= A Real-world Example: Chess-by-Mail

Introduction

UOWs and persistence provide functionality for the application program (either client or server)
to recover from failures: i.e., system, broker or application. In addition, this functionality allow
new types of applications to be built, including ones not requiring concurrent execution of the
client and server.

There are no standard rules for recovery, because each application model will use this functionality
differently and will have different requirements for recovery. But the considerations in the following
section should be kept in mind.

Determining the Status of a UOW

The most useful function for recovery is the SYNCPOINT, OPTION=LAST. This function will return
the UOWID, CID, and status of the last UOW created by the caller, based on the USER-ID and
TOKEN. This function can be used when an application starts or when it detects a failure to determine
how much processing has been completed on a UOW. This information can then be used to decide
how to recover from the failure.

140 Administration

Using Persistence and Units of Work

A Real-world Example: Chess-by-Mail

Chess-by-mail is a sample of an application that takes advantage of UOWs, persistence, and per-
sistent status. In generic terms, this application involves a client and a server exchanging messages
on a single conversation. The conversation is long-running, and there is no requirement that the
client and the server be active at the same time.

Although chess-by-mail was conceived as a single application, it is perhaps easier to describe its
operation separately for the client and the server side. By convention, the white player is the client
and the black player is the server. For simplicity, any user interaction has been left out of the de-
scription. Also for simplicity, only one chess-by-mail game is assumed to be running at any one
time.

= Client Behavior
= Server Behavior

Client Behavior

The behavior of the chess-by-mail client is as follows:

1. Logon, specifying a USER-ID and TOKEN, which allow recovery of prior UOWs.
2. Issue SYNCPOINT, OPTION=LAST to determine the status of the last UOW created.

3. If the return code is 00780305 - UOW not found, then there is no game in progress. So send
the first white move to the server with: SEND OPTION=COMMIT,CID=NEW. If the send is successful,
logoff and exit.

4. If the return code from SYNCPOINT is 0, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

5. If the status is ACCEPTED, then the server has not yet received the last move, so logoff and exit.

6. If the status is DELIVERED, then the server is currently processing the last move, so logoff and
exit.

7. If the status is TIMEOUT, then the server did not receive the last move before its lifetime expired,
so logoff and exit.

8. If the status is PROCESSED, then the server has received the last move and committed the UOW.
Our application model has the client sending a move in response and committing both UOWSs
at the same time. So we need to receive the new move and send a reply to it.

9. Get the server's move with RECEIVE,OPTION=SYNC, CID=n, where n is the CID returned from
SYNCPOINT OPTION=LAST

10. Send the response move back using SEND OPTION=SYNC,CID=n.

11. Commit both the received and sent UOWSs with a single call
SYNCPOINT OPTION=COMMIT,UOWID=BOTH

12 Logoff and exit.

Administration 141

Using Persistence and Units of Work

Server Behavior

The behavior of the chess-by-mail server is as follows:

. Logon, specifying a Userid and Token, which allow recovery of prior UOWs.
. Register as the chess-by-mail server.

1
2
3.
4

Issue SYNCPOINT OPTION=LAST to determine the status of the last UOW created.

. If the return code is 00780305 - UOW not found, then there is no game in progress. So we receive

first white move from the client with: RECEIVE OPTION=SYNC,CID=NEW. When the RECEIVE has
been completed, continue at step 11.

If the return code from SYNCPOINT is O, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

If the status is ACCEPTED, then the client has not yet received the last move, so deregister, logoff
and exit.

If the status is DELIVERED, then the client is currently processing the last move, so deregister,
logoff and exit.

If the status is TIMEOUT, then the client did not receive the last move before its lifetime expired,
so deregister, logoff and exit.

If the status is PROCESSED, then the client has received the last move and committed the UOW.
Our application model has the server sending a move in response and committing both UOWs
at the same time. So we need to receive the new move and send a reply to it.

10. Get the client's move with RECEIVE,OPTION=SYNC, CID=n, where n is the CID returned from

SYNCPOINT,OPTION=LAST.

11. Send the response move back using SEND,0PTION=SYNC, CID=n.

12 Commit both the received and sent UOWSs with a single call:

SYNCPOINT,OPTION=COMMIT,UOWID=BOTH.

13. Deregister, logoff and exit.

142 Administration

7 Broker UOW Status Transition

= Table of Column Abbreviations

Initial UOW Status: NULL | RECEIVEuviiiiiiiiiiiii it
Initial UOW Status: Accepted | DEIIVEIEAcciiiiiiiiiiiie et
Initial UOW Status: Processed | TIMEAOULeviiiiiiiiiiie e
Initial UOW Status: Cancelled | Discarded | BaCkedoutccooviiiiiiiiiiiiiiic e
Legend for UOW Status Transition TabIEccouviiiiiiiiiiiiii e

143

Broker UOW Status Transition

This chapter contains the UOW status transition tables for EntireX Broker and covers the following

topics:

See also Broker ACI Fields in the ACI Programming documentation | Broker ACI Functions in the
EntireX Broker ACI Programming documentation | Error Messages and Codes.

Initial UOW Status: NULL | Received

Resulting UOW Status
No. |Initial UOW Status |Action [PU&PS PUGNPS |NPU&PS NPU&NPS |Description
2 |Received Send Received |Received |Received |Received
3 |Received Commit |Accepted |Accepted |Accepted |Accepted
4 |Received ReStart |BackedOut|NULL Discarded |NULL
5|Received BackOut |BackedOut|NULL BackedOut|NULL
6|Received TimeOut|BackedOutNULL BackedOut|NULL R6: This action can only be
a conversation timeout since
a UOW only exists once it is
committed.
7|Received Delete |Received |Received |Received |Received
8|Received Cancel |Received |Received [Received |Received
9|Received Receive |Received |Received |Received |Received
144 Administration

Broker UOW Status Transition

Initial UOW Status: Accepted | Delivered

Resulting UOW Status

No. |Initial UOW Status |Action |PU&PS PUGNPS |INPU&PS |NPU&NPS |Description

10| Accepted Receive |Delivered |Delivered |Delivered |Delivered

11| Accepted Timeout |Timedout |NULL Timedout |[NULL

12| Accepted Restart |Accepted |Accepted |Discarded |[NULL

13| Accepted Cancel |Cancelled |NULL Cancelled |[NULL

14| Accepted Delete |Accepted |Accepted |Accepted |Accepted

15| Accepted BackOut |Accepted |Accepted |Accepted |Accepted

16| Accepted Send Accepted |Accepted |Accepted |Accepted

17| Accepted Commit |Accepted |Accepted |Accepted |Accepted

18|Delivered Receive |Delivered |Delivered |Delivered |Delivered

19|Delivered Commit |Processed |NULL Processed |NULL

20 |Delivered Cancel |Cancelled |NULL Cancelled |[NULL R20:
Cancel
can only
be issued
by
receiver of
the UOW

21 |Delivered BackOut |Accepted |Accepted |Accepted |Accepted

22 |Delivered TimeOut|Timedout |NULL NULL NULL

23|Delivered Restart |Accepted |Accepted |Discarded |NULL

24 |Delivered Delete |Delivered |Delivered |Delivered |Delivered

26 |Delivered Send Delivered |Delivered |Delivered |Delivered

Administration

145

Broker UOW Status Transition

Initial UOW Status: Processed | Timedout

Resulting UOW Status

No. Initial UOW Status |Action [PU&PS PU&NPS [NPU&PS NPU&NPS | Description

27 |Processed Delete |NULL N/A |NULL N/A |Processed is a STABLE UOW
status:

28|Processed Timeout|NULL NULL |NULL N/A |All actions and transitions refer
to the status of a UOW.

29|Processed Restart |Processed | N/A |Processed N/A

30|Processed Backout |Processed | N/A |Processed N/A

31|Processed Cancel |Processed | N/A [Processed N/A

32| Processed Commit |Processed | N/A |Processed N/A

33 |Processed Receive |Processed | N/A |Processed N/A

34 |Processed Send Processed | N/A |Processed N/A

35|Timedout Restart |Timeout N/A |Timeout N/A |Timedout is a STABLE UOW
status:

36| Timedout Delete |NULL N/A |NULL N/A | All actions and transitions refer
to the status of a UOW.

37 | Timedout Timeout|NULL N/A |NULL N/A

38| Timedout Send Timedout N/A |Timedout N/A

39| Timedout Receive |Timedout N/A |Timedout N/A

40| Timedout Commit | Timedout N/A |Timedout N/A

41| Timedout Backout |[Timedout | N/A |Timedout N/A

42| Timedout Cancel |Timedout | N/A |Timedout N/A

146

Administration

Broker UOW Status Transition

Initial UOW Status: Cancelled | Discarded | Backedout

Resulting UOW Status

No. |Initial UOW Status | Action PU&PS PU&NPS [NPU&PS NPU&NPS | Description

43|Cancelled Delete |NULL N/A |NULL N/A |Cancelled is a STABLE UOW
status:

44 |Cancelled Restart |Cancelled N/A |Cancelled N/A |All actions and transitions
refer to the status of a UOW.

45|Cancelled TimeOut|NULL N/A |NULL N/A

46|Cancelled Send Cancelled N/A |Cancelled N/A

47|Cancelled Receive |Cancelled N/A |Cancelled N/A

48|Cancelled Commit |Cancelled N/A |Cancelled N/A

49|Cancelled Backout |Cancelled N/A |Cancelled N/A

50|Cancelled Cancel |[Cancelled N/A |Cancelled N/A

51|Discarded Delete N/A N/A |NULL N/A |Discarded is a STABLE UOW
status:

52|Discarded TimeOut N/A N/A |NULL N/A | All actions and transitions
refer to the status of a UOW.

53|Discarded Restart N/A N/A |Discarded N/A

54 |Discarded Cancel N/A N/A |Discarded N/A

55|Discarded Send N/A N/A |Discarded N/A

56|Discarded Receive N/A N/A |Discarded N/A

57|Discarded Commit N/A N/A |Discarded N/A

58| Discarded Backout N/A N/A |Discarded N/A

59|BackedOut TimeOut|NULL N/A |NULL N/A |BackedOutis a STABLE
UOW status:

60 |BackedOut Cancel |[BackedOut | N/A |BackedOut N/A | All actions and transitions
refer to the status of a UOW

61 |BackedOut Restart |BackedOut | N/A |BackedOut N/A

62 |BackedOut Send BackedOut | N/A |BackedOut N/A

63 |BackedOut Receive |BackedOut | N/A |BackedOut N/A

64 |BackedOut Commit |BackedOut | N/A |BackedOut N/A

65|BackedOut Delete |NULL N/A |NULL N/A

66 |BackedOut Backout |BackedOut | N/A |BackedOut N/A

Administration

147

Broker UOW Status Transition

Legend for UOW Status Transition Table

Abbreviation

Resulting UOW Status

N/A

Not applicable

UOW Status |Error condition, message issued, no change

Table of Column Abbreviations

Abbreviation lUOW Status
PU Persistent unit of work
PS Persistent status
NPU Non-persistent unit of work
NPS Non-persistent status
148

Administration

8 Data Compression in EntireX Broker

LI 121 (oo 1 o110 o PRSP PPPTPPRR 150
L O PPUUR 150
B MPIEMENTALION ...ttt e 150
B SEQUENCING SUMIMEIY ...ttt ettt e et e ettt et et e et e e s 151
B SAMPIE PrOGIAMSviiiiiie et e 152

149

Data Compression in EntireX Broker

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
clients and servers. This helps to reduce response time during transmissions as well as improve
the overall network throughput, especially with low-bandwidth connections.

This chapter gives an overview of data compression in EntireX Broker.

See also: COMPRESSLEVEL under Broker ACI Fields | Data Compression under Writing Applications:
Client and Server | Publish and Subscribe in the ACI Programming documentation.

Introduction

Compression is performed only on the SEND and RECEIVE buffers. The client or server application
has the option of setting the level of compression/decompression for data transmission. The
compression level can be set to achieve either no compression or a range of compression/decom-
pression. If during a data transmission the data buffer does not compress, a logged warning
message 00200450 indicates that the data has not been compressed during transmission.

| Note: The compression level is used to control compression only between the application
and the Broker kernel.

zlib

zlib is a general-purpose software implementing data compression across a variety of platforms.
Version 1.1.4 of zlib is implemented starting with EntireX Broker version 7. The functions used
within EntireX Broker represent a subset of those available within the zlib software.

The compression algorithms are implemented through the open source software zlib.

Implementation

Compression of the data is implemented by the following components of EntireX:

Components Description
Broker control The Broker control block (ETBCB) contains a field that is used to set the compression
block level. This field determines for any SEND/RECEIVE transmission whether the data

buffer will be compressed/decompressed. Possible values:

0-9 0 =no compression, 9 = maximum
compression/decompression

N Default. No compression.

150 Administration

http://www.zlib.net/

Data Compression in EntireX Broker

Components

Description

Y Compression level 6

If the data buffer does not compress, the kernel or stub generates a logged warning
message 00200450 indicating that the transmitted data is not compressed.

Note: See also ACI control block field COMPRESSLEVEL.

Stubs: Broker stub
and Java stub

The behavior of the Broker stub and Java stub is identical with respect to compression.

The logic of a client or server application sets the compress level of the Broker control
block when it issues the SEND or RECEIVE command. If the application issues a SEND,
the stub compresses the data buffer before transmission of the data. If the application
issues a RECEIVE, the stub decompresses the data buffer after reception of the data.

Note: The compression level is used to control compression only between the application
and the Broker kernel.

Broker kernel

When a client or server application SENDs the data to the Broker kernel, the application
specifies the level at which the kernel is to decompress the data.

When the client or server application issues the RECEIVE command, the Broker kernel
compresses the data before returning it to the application. The application specifies the
level at which the kernel is to compress the data.

Sequencing Summary

The following graphic shows the sequencing of data compression within EntireX Broker:

Administration

151

Data Compression in EntireX Broker

Sample Programs

convClt and convSrv

Sample programs convC1t and convSrv in directory examples/ ACl/conversational/C can be used as
an example of performing compression/decompression. Using the - rn option will cause compression
to be used at level <n>.

® convSrv can be instructed to use compression/decompression by specifying, for example:

convSrv -7 -r4

" -r4: This will cause a compression/decompression level of 4 to be used on all transmissions
between the server and the Broker.

= -7: The -7 that is needed as compression/decompression is only supported at Version 7 or
above.

® convC1t can be instructed to use compression/decompression by specifying, for example:

152 Administration

Data Compression in EntireX Broker

convClt -7 -r2

® -r2: This will cause a compression/decompression level of 2 to be used on all transmissions
between the client and the Broker.

® -7:The -7 that is needed as compression/decompression is only supported at Version 7 or
above.

Option -g<filename>convClIt and convSrv

To test how well various types of data will compress, you can use the option -g<filename>. You
can use, for example, the following syntax to specify that input is to be extracted from a pre-existing
file, using the two arguments from above.

convClt -7 -r2 -gmyfilel.txt

This will read in myfilel.txt and send it to a registered server. If convSrv is the server, convSrv will
reverse the data sequence and return the data.

convSrv -7 -r4 -gmyfile2.txt

This will write in myfile2.txt the data sent from the client.

Administration 153

154

9

Accounting in EntireX Broker

EntireX Accounting Data Fields ...

Using Accounting under UNIX and WINAOWSuevriiiiiiiiiie e

Using Accounting under z/OS

Example Uses of Accounting Data

155

Accounting in EntireX Broker

This chapter describes the accounting records for Broker that can be used for several purposes,

including;:

= application chargeback

for apportioning EntireX resource consumption on the conversation and/or the application level;

® performance measurement
for analyzing application throughput (bytes, messages, etc.) to determine overall performance;

" trend analysis

for using data to determine periods of heavy and/or light resource and/or application usage.

EntireX Accounting Data Fields

In the EntireX Accounting record, there are various types of data available for consumption by
applications that process the accounting data:

Accounting
Field Name Version Type of Field Description
SMF Record Type 1 1-byte unsigned integer |z/OS only.Type of SMF record.
Record Write Time 1 UNIX, Windows, UNIX, Windows, BS2000/0OSD and
BS2000/0OSD and z/VSE: |z/VSE: The time this record was
A14 Timestamp in written to the accounting file in
"YYYYMMDDHHMMSS" | YYYYMMDDHHMMSS format
format z/OS: SMF timestamp.
z/OS: Timestamp
SMF system ID 1 4-byte string z/OS only.ID of the SMF system.
SMF subsystem ID 1 4-byte string z/OS only.ID of the SMF subsystem.
EntireX Broker ID 1 A32 Broker ID from attribute file.
EntireX Version 1 A8 Version information, v.r.s.p
where v =version
r =release
s =service pack
p =patch level
for example 9.6.0.00.
Platform of Operation 1 A32 Platform where EntireX is running.
EntireX Start Time 1 Al4 Timestamp in Time EntireX was initialized in
"YYYYMMDDHHMMSS" [YYYYMMDDHHMMSS format.
format
156 Administration

Accounting in EntireX Broker

Accounting
Field Name Version |Type of Field Description
Accounting Record Type 1 Al Itis always C for conversation. Future
Types will have a different value in
this field.
Client User ID 1 A32 USER-ID ACI field from the client in
the conversation.
Client Token 1 A32 TOKEN field from the ACI from the
client.
Client Physical ID 1 A56 The physical user ID of the client, set
by EntireX.
Client Communication Type |1 In Communication used by client:
1=Net-Work
2 =TCP/IP
3=APPC
4 = WebSphere MQ
5=SSL
Client Requests Made 1 14 Number of Requests made by client.
Client Sent Bytes 1 14 Number of bytes sent by client.
Client Received Bytes 1 14 Number of bytes received by client.
Client Sent Messages 1 14 Number of messages sent by client.
Client Received Messages |1 14 Number of messages received by
client.
Client Sent UOWs 1 14 Number of UOWs sent by client.
Client UOWSs Received 1 14 Number of UOWs received by client.
Client Completion Code 1 14 Completion code client received when
conversation ended.
Server User ID 1 A32 USER-ID ACI field from the server in
the conversation.
Server Token 1 A32 TOKEN field from the ACI from the
server.
Server Physical ID 1 A56 The physical user ID of the server, set
by EntireX.
Server Communication Type |1 In Communication used by Server:
1 = Entire Net-Work
2 =TCP/IP
3=APPC
4 = WebSphere MQ
5=S5SL
Server Requests Made 1 14 Number of requests made by server.
Server Sent Bytes 1 14 Number of bytes sent by server.

Administration

157

Accounting in EntireX Broker

Accounting
Field Name Version Type of Field Description
Server Received Bytes 1 14 Number of bytes received by server.
Server Sent Messages 1 14 Number of messages sent by server.
Server Received Messages |1 14 Number of messages received by
server.
Server Sent UOWs 1 14 Number of UOWs sent by server.
Server Received UOWSs 1 14 Number of UOWs received by server.
Server Completion Code 1 14 Completion code server received
when conversation ended.
Conversation ID 1 Ale6 CONV-1ID from ACL
Server Class 1 A32 SERVER-CLASS from ACIL.
Server Name 1 A32 SERVER-NAME from ACIL.
Service Name 1 A32 SERVICE from ACL
CID=NONE Indicator 1 Al Will be N if CONV-ID=NONE is
indicated in application.
Restarted Indicator 1 Al Will be R if a conversation was
restarted after a Broker shutdown.
Conversation Start Time 1 Al4 Timestamp in Time conversation began in
"YYYYMMDDHHMMSS" | YYYYMMDDHHMMSS format.
format
Conversation End Time 1 Al4 Timestamp in Time conversation was cleaned up in
"YYYYMMDDHHMMSS" | YYYYMMDDHHMMSS format.
format
Conversation CPU Time 1 14 Number of microseconds of CPU time
used by the conversation
Client Security Identity 2 A32 Actual identity of client derived from
authenticated user ID.
Client Application Node 2 A32 Node name of machine where client
application executes.
Client Application Type 2 A8 Stub type used by client application.
Client Application Name 2 Aob4 Name of the executable that called the
broker. Corresponds to the Broker
Information Service field
APPLICATION-NAME in the ACI
Programming documentation.
Client Credentials Type 2 nn Mechanism by which authentication
is performed for client.
Server Security Identity 2 A32 Actual identity of server derived from
authenticated user ID.
Server Application Node 2 A32 Node name of machine where server

application executes.

158

Administration

Accounting in EntireX Broker

Accounting

Field Name Version |Type of Field Description

Server Application Type 2 A8 Stub type used by server application.

Server Application Name 2 Ab4 Name of the executable that called the
broker. Corresponds to the Broker
Information Service field
APPLICATION-NAME in the ACI
Programming documentation.

Server Credentials Type 2 n Mechanism by which authentication
is performed for server.

Client RPC Library 3 A128 RPC library referenced by client when
sending the only/first request message
of the conversation.

Client RPC Program 3 A128 RPC Program referenced by client
when sending the only/first request
message of the conversation.

Server RPC Library 3 A128 RPC library referenced by server when
sending the only/first response
message of the conversation.

Server RPC Program 3 Al28 RPC Program referenced by server
when sending the only/first response
message of the conversation.

Client IPv4 Address 4 Al6 IPv4 address of the client.

Server IPv4 Address 4 Alb6 IPv4 address of the server.

Client Application Version |4 Al6 Application version of the client.

Server Application Version |4 Al6 Application version of the server.

Client IPv6 Address 5 A46 IPv6 address of the client.

Server IPv6 Address 5 A46 IPv6 address of the server.

| Note: Accounting fields of any version greater than 1 are created only if the attribute AC-

COUNTING-VERSION value is greater than or equal to the corresponding version. For example:
accounting fields of version 2 are visible only if ACCOUNTING- VERSION=2 or higher is specified.

Using Accounting under UNIX and Windows

= Broker Attribute File Settings

Administration

159

Accounting in EntireX Broker

= Retrieving Accounting Data
Broker Attribute File Settings

ACCOUNTING =NO | YES | (YES, SEPARATOR=Separator Characters) (Default is NO)

Set this parameter to "NO" (i.e., do not create accounting data) or "YES" to create accounting data.
Up to seven separator characters can specified using the SEPARATOR suboption, for example
ACCOUNTING = (YES, SEPARATOR=;). If no separator character is specified, the comma character
will be used.

Retrieving Accounting Data

The accounting file will be located in the Broker's installed directory. The file's name is based on
the ETB_LOG environment variable and the current date and time (for uniqueness). Example: If
ETB_LOG is set to BROKER1.LOG, the accounting data file will be named BROKER1_Y VY YMMDDH -
HMMSS.csv. If ETB_LOG is not set, the Broker's ID will be used, with an extension of CSV (e.g.
ETB048_YYYYMMDDHHMMSS.csv). See Environment Variables in EntireX.

Using Accounting under z/0OS

The ACCOUNTING attribute indicates if accounting records will be generated. Accounting records
are written upon successful completion of a conversation. A conversation ending in an application
error (such as a timeout) is considered to be a successful conversation.

= Attribute File

= Retrieving Accounting Records
= Accounting Record Layouts

= Notes

Attribute File

ACCOUNTING={NO1128-255}

Set this parameter to "NO" (i.e., do not create accounting records) or to a number between 128 and
255, which specifies the SMF record type to use when writing the accounting records. In order to
avoid conflicts with other applications that also produce SMF records, check with your z/OS systems
programmer for an appropriate number. In addition, check with your z/OS systems programmer
to ensure that the selected SMF record number is set up to be written.

Default value: NO

160 Administration

Accounting in EntireX Broker

Retrieving Accounting Records

The standard IBM IFASMFDP utility program may be used to selectively offload Broker and Broker
Services SMF records. Analysis and report routines - either user-written or those available from
IBM or various software vendors - may subsequently be used to process the offloaded records.

//* Copies selected records from the "live" SMF data sets
Ve

//* Replace nnn (OUTDD parameter) with a valid SMF record type
11

//* Note: the "DISPLAY SMF" operator command will show the names of the
//* SMF data sets

/i

//TFASMFDP EXEC PGM=IFASMFDP

//SYSPRINT DD SYSQUT=*

//MAN1T DD DISP=SHR,DSN=SYS1.MAN1

//MAN2 DD DISP=SHR,DSN=SYSI.MANZ

//MAN3 DD DISP=SHR,DSN=SYS1.MAN3

//QUTPUT DD DISP=(MOD,CATLG),
// UNIT=SYSDA,SPACE=(TRK, (15,15),RLSE),
// DCB=(RECFM=VBS,LRECL=32760,BLKSIZE=0),
// DSN=EXX.SMF.RECORDS
//SYSIN DD *

DATE(2002001,2099366)

START(0000)

END(2359)

INDD(MANT,OPTIONS(DUMP))

INDD(MAN2,0PTIONS(DUMP))

INDD(MAN3,0OPTIONS(DUMP))

QUTDD(OUTPUT,TYPE(nnn))
e

Note: The IBM publication MVS System Management Facilities (SMF) provides complete in-
formation on SMF.

Accounting Record Layouts

EntireX provides three mappings for its accounting records in the following members, all located
in the EXX960.SRCE data set:

= EXXCACT - A Clanguage include file that maps the accounting record;

® EXXACTR - An Assembler language MACRO that will generate a DSECT of the accounting re-
cord;

= EXXSACT - An SAS DATA step that will read in a file with the appropriate field names.

Administration 161

Accounting in EntireX Broker

Notes

® Since there is no server for Broker Command and Information Services, no server data is gener-
ated in the SMF records for Command and Information Services conversations.

® The unit for CPUTIME is expressed in microseconds.

Example Uses of Accounting Data

= Chargeback
= Trend Analysis
= Tuning for Application Performance

Chargeback

Customers can use the EntireX accounting data to perform chargeback calculations for resource
utilization in a data center. Suppose EntireX Broker is being used to dispatch messages for three
business departments: Accounts Receivable, Accounts Payable, and Inventory. At the end of each
month, the customer needs to determine how much of the operation and maintenance cost of EntireX
Broker should be assigned to these departments. For a typical month, assume the following is
true:

Department Amount of Data | Percentage | Messages Sent | Percentage |Average Percentage
Accts Payable 50 MB 25 4000 20 22.5

Accts Receivable |40 MB 20 6000 30 25

Inventory 110 MB 55 10000 50 52.5

The use of Broker resources here is based upon both the amount of traffic sent to the Broker (bytes)
as well as how often the Broker is called (messages). The average of the two percentages is used
to internally bill the departments, so 52.5% of the cost of running EntireX Broker would be paid
by the Inventory Department, 25% by the Accounts Receivable Department, and 22.5% by the
Accounts Payable Department.

Trend Analysis

The Accounting Data can also be used for trend analysis. Suppose a customer has several point-
of-sale systems in several stores throughout the United States that are tied into the corporate in-
ventory database with EntireX. The stubs would be running at the stores, and the sales data would
be transmitted to the Broker, which would hand it off to the appropriate departments in inventory:.
If these departments wish to ascertain when the stores are busiest, they can use the accounting
data to monitor store transactions. Assume all of the stores are open every day from 9 AM to 10
PM.

162 Administration

Accounting in EntireX Broker

Maximum Weekday
Average: Weekday Transactions in any Average Weekend Maximum Weekend

Local Time | Transactions per Store Store Transactions per Store Transactions in any Store
9 AM 7.3 27 28.2 83

10AM [11.2 31 29.3 102

11AM |14.6 48 37.9 113

12 noon |[56.2 106 34.8 98

1 PM 25.6 65 34.2 95

2 PM 17.2 52 38.5 102

3PM 12.1 23 42.7 99

4 PM 18.3 34 43.2 88

5PM 26.2 47 45.2 93

6 PM 38.2 87 40.6 105

7 PM 29.6 83 39.2 110

8 PM 18.6 78 28.6 85

9 PM 11.2 55 17.5 62

The owner of the stores can examine the data and make decisions based upon the data here. For
example, on weekdays, he or she can see that there is little business until lunchtime, when the
number of transactions increase. It then decreases during lunch hour; then there is another increase
from 5 PM to 8 PM, after people leave work. Based on this data, the owner might investigate
changing the store hours on weekdays to 10 AM to 9 PM. On the weekend the trends are different,
and the store hours could be adjusted as well, although there is a more regular customer flow each
hour on the weekends.

Tuning for Application Performance
Assume that a customer has two applications that perform basic request/response messaging for

similar sized messages. The applications consist of many Windows PC clients and Natural RPC
Servers on UNIX. An analysis of the accounting data shows the following;:

Average Server Messages Average Client Messages
Application Type |Class Server Service Received per Conversation Received per Conversation
Application 1: |CLASS1|SERVER1|SERVICE1|10.30 10.29
Application 2: |CLASS2|SERVER?2 |SERVICE2|10.30 8.98

A further analysis of the accounting data reveals that there are a lot of non-zero response codes
in the records pertaining to Application 2, and that a lot of these non-zero responses indicate
timeouts. With that information, the customer can address the problem by modifying the server
code, or by adjusting the timeout parameters for SERVER?2 so that it can have more time to get a
response from the Service.

Administration 163

164

10 Timeout Considerations for EntireX Broker

B THMEOUL UNIES .ottt et e et e et e e e 166
B TIMEOUL SEHINGS .. .vveeeee ittt e e ettt e et e e et e e e et a e e e raee e 166
= Relationship between TIMEOUL VaAlUES ... 167
= Timeout-related ErmOr MESSAQESccoiuiriiiiiiiii et 169

165

Timeout Considerations for EntireX Broker

This chapter describes the timeout settings for EntireX Broker.

Timeout Units

The timeout duration can be specified in seconds (S), minutes (M) or hours (H), for example 100M.
If no unit is specified, the default is seconds.

Timeout Settings
Timeout Setting | Description
Client Any broker stub application thatissues a LOGON but does notissuea REGISTER is a client.

Non-activity
Timeout

During logon, broker allocates resources to each client and keeps them available to the
client until the client application issues a LOGOFF. A client is considered inactive when
it is not issuing a broker request. A typical example of a broker request by a client is the
SEND function.

The CLIENT-NONACT value defines the maximum period of time a client can remain
inactive. See CLIENT-NONACT under Broker Attributes in the platform-independent
administration documentation. If the client continues to be inactive beyond this period
of time, Broker releases all the resources allocated to this client. This time is a global
attribute, applicable to all clients of the Broker.

Server
Non-activity
Timeout

Any broker stub application that issues a LOGON and also issues a REGISTER is a server.
During logon and registration, broker allocates resources to each server, and keeps them
available to the server until the server issues a DEREGISTER and LOGOFF. A server is
considered inactive when it is not issuing a broker request. A typical example of a Broker
request by a server is the RECEIVE function.

The SERVER-NONACT value defines the maximum period of time a server can remain
inactive. See SERVER-NONACT under Broker Attributes in the platform-independent
administration documentation. If the server continues to be inactive beyond this period
of time, Broker releases all the resources allocated to this server. This time is a per-service
attribute, and can vary from one service definition to another. All servers, registered to
the same service, inherit the same SERVER-NONACT time. If a server registers to more
than one service, the highest SERVER-NONACT value is taken as the non-activity time
period.

Conversation
Non-activity
Timeout

A conversation begins when a client successfully sends a message addressed to a server.
The Broker allocates a unique conversation, even before the server receives this message.
Broker also allocates resources to manage each conversation. A conversation remains
active as long as messages are being exchanged with this conversation ID. The
conversation remains inactive as long as neither a client nor a server makes a Broker
request, referencing this conversation ID. The resources allocated to a conversation are
freed when either a client or a server issues EOC.

166

Administration

Timeout Considerations for EntireX Broker

Timeout Setting

Description

The CONV-NONACT value defines the maximum period of time a conversation can remain
inactive. If the conversation continues to be inactive beyond this period of time, Broker
releases all the resources allocated to this conversation.

UOW Lifetime
(UWTIME)

Each UOW has a lifetime value associated with it. This is the time that a UOW is allowed
to exist without being completed. A UOW is completed when it is successfully

= either cancelled or backed out by its sender

= or cancelled or committed by its receiver.

If a UOW is in ACCEPTED status when this lifetime expires, the UOW is placed into a
timeout status. Lifetime timeouts will not occur when the UOW is in either RECEIVED

or DELIVERED status. See CONV-NONACT description in Relationship between Timeout
Values.

Transport
Timeouts

If Entire Net-Work is used to transmit a Broker request, the setting of the Entire Net-Work
NODE statement parameter REPLYTIM may influence the behavior of the application (see
your Entire Net-Work documentation for details). All non-activity timeouts in the Broker
configuration should be considered when determining the maximum time. This maximum
time should be less than the value defined for REPLYTIM in the Entire Net-Work
configuration.

Relationship between Timeout Values

The interdependency between different timeouts is described as follows:

= JUOW Messages

Administration

167

Timeout Considerations for EntireX Broker

= Non-UOW Messages

UOW Messages

UWTIME

SERV-NOMACT
CLIENT-NONACT

CONV-NONACT
| 4

A server or a client engaged in a conversation will not be timed out until the UOW that they
are handling times out. CLIENT-NONACT (or SERV-NONACT) has no effect if it is shorter than UWTIME.

A conversation may time out earlier than either the client or the server. When an existing con-
versation times out, the participating server and client can start a new conversation. We recom-
mend you set the CONV-NONACT shorter than CLIENT-NONACT (or SERV-NONACT).

If either the client or server times out before the conversation does, the conversation does not
continue, that is, it reaches end of conversation (EOC). Nevertheless, the surviving participant
(client or server) can continue and receive any unread messages.

When a conversation times out, Broker checks for the status of all UOWs in this conversation.
Any UOW with status RECEIVED or DELIVERED is backed out and enters into ACCEPTED status.
"Accepted" means that the UOW can be received by anyone (with CONV-ID=NEW), and that the
conversation has lost the link to the consumer of the UOW.

| Note: The link to the consumer is lost only for the first UOW in a conversation when the
status changes to ACCEPTED; with subsequent UOWs, the link is not lost.

A common relationship between these three timeout values is as follows, although this may not
be the optimum combination in all situations:

UWTIME > SERV-NONACT > CLIENT-NONACT > CONV-NONACT

In common situations, this combination will achieve optimal resource consumption without
recourse to repeatedly restarting applications.

168 Administration

Timeout Considerations for EntireX Broker

Non-UOW Messages

SERV-NOMNACT
CLIENT-NOMACT

CONV-NONACT
| 4

Timeout behavior remains the same as in UOW messages, except that UWTIME (UOW lifetime at-
tribute) is not applicable here. The optimal hierarchy between the three timeout values is shown
below:

SERV-NONACT > CLIENT-NONACT > CONV-NONACT

Timeout-related Error Messages

When any client or server or conversation times out, the Broker does not immediately notify the

application. The application receives notification when it makes its next Broker request. The fol-

lowing are the error messages commonly associated with the respective timeouts. The errors listed
below can occur in the case of blocked and non-blocked ACI calls. A blocked call is one in which
the ACI field WAIT is set to either "YES" or a non-zero numeric value.

See message 00740074.

= CLIENT-NONACT
= SERV-NONACT
= CONV-NONACT

Administration 169

Timeout Considerations for EntireX Broker

= Special Case for UOW Messages

CLIENT-NONACT

In the following errors, it is assumed that client only has timed out, while the server and conver-
sation are active.

Error Number |Error Text Explanation
00020002 |User does not exist When the timed out client tries to make a Broker request.
00030012 |EOC due to LOGOFF of The surviving partner (server) receives this error when
partner attempting to receive on a conversation which is closed because
the client has timed out. If there are any unread messages, the
server successfully receives them.
SERV-NONACT

In the following errors, it is assumed that only the server has timed out, while the client and con-
versation are active.

Error Number |Error Text Explanation

00020002 |User does not exist When the timed out client tries to make a Broker request.

00030067 |Partner timeout occurred | The surviving partner (client) receives this error when attempting
to send on a conversation which is closed because the server timed
out.

CONV-NONACT

It is assumed that server and client are active.

Error Number |Error Text Explanation

00030003 |No matching conversation When either a server or a client attempts a new Broker request

found affecting this timed out conversation.

00030073 |Conversation timeout occurred | When both client and server are already engaged in a
conversation, and the conversation time out without the
partner issuing any Broker request.

170 Administration

Timeout Considerations for EntireX Broker

Special Case for UOW Messages

UOWs involved in a conversation, and which are in DELIVERED state, revert to ACCEPTED state when
the conversation times out. UOWSs in ACCEPTED state are no longer bound to a server nor to an
existing conversation. Therefore, UOW in ACCEPTED state is part of a new conversation that is
available to any server.

Administration 171

172

11 EXXMSG - Command-line Tool for Displaying Error

Messages

= Running the EXXMSG Command-line ULiliyooeeiiiiiiiii e 174

173

EXXMSG - Command-line Tool for Displaying Error Messages

EXXMSG is a command-line tool that displays the text of an EntireX error message for a supplied
error number. It is available on all platforms.

Running the EXXMSG Command-line Utility

Under z/OS, command-line utility EXXMSG is located in library EXB960.LOAD. Under UNIX and
Windows, the utility is located in the EntireX bin directory.

Command-line Parameters
The only command-line parameter is any 8-digit error code.

Sample Command

exxmsg 02150148

Sample Output

Software AG webMethods EntireX 9.0.0 (473) Linux 3.1.10-1.16-desktop
(c) Copyright 1997 - 2012 Software AG. All rights reserved.

02150148 EntireX Broker not active : (or Transport-Specific Error Text)

Explanation The requested Broker specified in BROKER-ID is not reachable.

Action Check the BROKER-ID. If it is correct, check if ETB_TRANSPORT
environment variable is defined and if defined, it should point to
the desired transport method. If problem persists, contact your
network administrator.

174 Administration

	Administration
	Table of Contents
	1 Environment Variables in EntireX
	Table of Environment Variables
	Using Environment Variables under z/OS
	Using Environment Variables under UNIX
	Using Environment Variables under Windows
	Using Environment Variables under BS2000/OSD (Batch, Dialog)
	Using Environment Variables under z/VSE

	2 Directories as Used in EntireX
	Application Data Directory
	Windows

	Broker Directory
	UNIX
	Windows

	Broker User Exit Directory
	UNIX
	Windows

	Application Data Directory
	Windows

	Trace Directory
	Windows

	User's Home Directory
	Windows

	Working Directory
	Windows

	EntireX Directory etc
	UNIX
	Windows

	3 Broker Resource Allocation
	General Considerations
	Specifying Global Resources
	Restricting the Resources of Particular Services
	Specifying Attributes for Privileged Services
	Maximum Units of Work
	Calculating Resources Automatically
	Dynamic Memory Management
	Dynamic Worker Management
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Maximum TCP/IP Connections per Communicator
	Note for z/OS
	Note for UNIX

	4 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definition
	Service Update Modes
	OPTION Values for Conversion

	Topic-specific Attributes
	Codepage-specific Attributes
	Adabas SVC/Entire Net-Work-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Variable Definition File

	5 Concepts of Persistent Messaging
	Client Server Model: Persistent Messaging
	Publish-and-Subscribe Model: Persistent Behavior
	Definitions of Persistent Messaging Terms
	UOW
	Persistent Store
	Persistent Store Drivers
	UOW Lifetime
	Persistent UOW
	Persistent Status
	Publication
	Durable Subscription
	Publication Lifetime
	Subscription Expiration

	Availability of Persistent Store
	Introduction
	Disconnect the Persistent Store
	Connect the Persistent Store

	Migrating the Persistent Store
	Introduction
	Configuration
	Migration Procedure

	Persistent Store Report
	Configuration
	Sample Report

	Swapping out New Units of Work

	6 Using Persistence and Units of Work
	Implementation Issues
	Table of Persistent Store Drivers
	Changes are Required
	Attributes used for Units of Work
	ACI Fields used for Units of Work
	ACI Function SYNCPOINT used for Units of Work
	Options used for UOW Operations
	CID Implementation: Numeric Digits, Characters 0-9 and A-Z

	Using Units of Work
	UOW vs non-UOW Conversations
	Sequencing of Messages across Conversations

	Use of LOGON and TOKEN
	User Identification for Units of Work
	Which Applications should use UOWs?
	Understanding UOW Status
	UOW Status on RECEIVE
	Using User Status
	Resource and Performance Considerations

	Using Persistence
	When do Persistent UOWs make Sense?
	Adding Persistence to a UOW
	Resource and Performance Considerations
	Which Information is saved with the UOW?
	What happens when Broker restarts?
	Restart Behavior of UOW
	Re-creation of Internal Control Blocks
	Behavior of Conversation at Broker Restart

	UOWs and Replicated Servers

	Using Persistent Status
	When does Persistent Status make Sense?
	Adding Persistent Status to a UOW
	Resource and Performance Considerations

	Recovery Processing
	Introduction
	Determining the Status of a UOW
	A Real-world Example: Chess-by-Mail
	Client Behavior
	Server Behavior

	7 Broker UOW Status Transition
	Initial UOW Status: NULL | Received
	Initial UOW Status: Accepted | Delivered
	Initial UOW Status: Processed | Timedout
	Initial UOW Status: Cancelled | Discarded | Backedout
	Legend for UOW Status Transition Table
	Table of Column Abbreviations

	8 Data Compression in EntireX Broker
	Introduction
	zlib
	Implementation
	Sequencing Summary
	Sample Programs
	convClt and convSrv
	Option -g<filename>convClt and convSrv

	9 Accounting in EntireX Broker
	EntireX Accounting Data Fields
	Using Accounting under UNIX and Windows
	Broker Attribute File Settings
	Retrieving Accounting Data

	Using Accounting under z/OS
	Attribute File
	Retrieving Accounting Records
	Accounting Record Layouts
	Notes

	Example Uses of Accounting Data
	Chargeback
	Trend Analysis
	Tuning for Application Performance

	10 Timeout Considerations for EntireX Broker
	Timeout Units
	Timeout Settings
	Relationship between Timeout Values
	UOW Messages
	Non-UOW Messages

	Timeout-related Error Messages
	CLIENT-NONACT
	SERV-NONACT
	CONV-NONACT
	Special Case for UOW Messages

	11 EXXMSG - Command-line Tool for Displaying Error Messages
	Running the EXXMSG Command-line Utility
	Command-line Parameters
	Sample Command
	Sample Output

