5 software~

webMethods EntireX

EntireX Broker ActiveX Control

Version 9.6

April 2014

webMethods EntireX

This document applies to webMethods EntireX Version 9.6.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXACI-96-20140628ACTX

Table of Contents

PTOACE ..t v
1 Broker ActiveX Control Introductionc.cccoviiiiiiiiiiiiii 1
Broker ACT ..o 2
Transaction ObJECtSccooiiiiiiiiiiicc 2
2 Writing Applications - Broker ActiveX Controlcccccoevviiiiiiiiiiiiiiiiiiiciees 3
Calling a Broker FUNCHONccoooviiiiiiiiiiicccc 4
Viewing the Type Libraryccccccooiiiiiiiiiiiiiiiiiice e 6
Adding the Broker ActiveX Control Component to Visual Studiocccccceceenne 7
Using Internationalization with Broker ActiveX Controlcccoccoe, 9
Using the Property Pagesccccooviiiiiiiiiiiiiiiiiiiiicciccccecce e 10
3 Broker ActiveX Control with Visual Basiccccociiviiiiiii 13
Step 1: Instantiate EntireX Broker ActiveX Controlcccccceevviiiiiiiiiiiiniiinnenn. 14
Step 2: Instantiate the Transaction Objectc.cocoviiiiiiiiiiiiii 16
Step 3: Call Methodscooviiiiiiiiiiiii 16
Step 4: Access the Returned Dataccoceiiiiiiiiiiiiiiiii 17
Step 5: Cleanup RESOUTCESc.ccceiiuiiiiiiiiiiiicic e 20
Step 6: Error Handling in Transaction Object Methodsc.cccccciviiiiiiiinninn 20
Examples: Writing an ACI Client and Server with Broker ActiveX Control 20
4 Using Broker ActiveX Control with Active Server Pagesccccocveviiviiiiiiiiiinnene 25
PrereqUISItesccoooiiiiiiiiiiiii 26
Designing a Web Page with ASP and Broker ActiveX Controlc.ccoeeeienn. 26
Using Broker ActiveX Control in Multiple Pagesccccoceiiviiiiiiiiiiiiiiicinnnn. 28
5 Using Broker ActiveX Control with NET ..., 29
Using Broker ActiveX Control with Visual Studio .NETccccccooiiiiiininnnnn 30
A Small Visual Basic .NET Examplecccccoviiiiiiiiiiiiiicc, 30
6 Transaction Objects in Broker ActiveX Controlccceciiviiiiiiiiiniiiiiiiiiccceeee, 31
Advantages of Transaction Objectscccceiiiiiiiiiiiiiiiiiiiie 32
Calling the Transaction Object Eitor ..o 32
Managing TOR Filesccccciiiiiiiiiiiiiiiiiiiiiii i 34
Defining Methodsccooiiiiiiiii 37
Specifying Connection Informationcccovviiiiiiiiiiiiiiiccce, 43
Defining Custom Data TyPescccovuiiiiiiiiiiiiiiicccc e 46
TOR Files in IDL Formatcccoooiiiiiiiiiiiiiiiiicccccc 49
TOR Files in XML Formatccccccoiiiiiiiiiiiiiicc 51
Storing TOR Files in a Tamino Databasecccocooviiiiiiiiiiiiii, 55
7 Calling Broker ActiveX Control Remotelycccoceiiiiiiiiiiiiiiiiiiiiiiiice 59
Setting up the Server Environmentcccccooiiiiiiiiiiiiii 60
Setting up the Client Environmentcccccoooiiiiiiiniiiini, 65
Testing the CONNECtIONcccciciiiiiiiiiiiiii 68
8 Publish and Subscribe with Broker ActiveX Controlccccoviiiiiiiiiiiiiiiii 71
Writing Subscriber Applicationscccooeiiiiiiiiiiiiiiiiiii 72
Writing Publisher Applicationscccooiiiiiiiiiiiiiiicee 77
9 Reference - Broker ActiveX Controlc.cccooviiiiiiiiiiiiiiiii 81

EntireX Broker ActiveX Control

Methods of Broker ActiveX Controlc.cccoviiiiiiiiiiii 82
Properties of Broker ActiveX Controlcccooviiiiiiiiiiiiiiicce 83

iv EntireX Broker ActiveX Control

Preface

Broker ActiveX Control allows GUI application developers to use an ActiveX-based interface to
access EntireX Broker. It can be used within ActiveX containers, such as Visual Basic, PowerBuilder,
Delphi, Microsoft Excel, Microsoft Word.

Broker ActiveX Control Broker ActiveX Control provides a programmatic interface to

Introduction COM-enabled programming environments. It has two types of operation:
the Broker ACI and transaction objects. Broker ActiveX Control enables
you to create EntireX ACI clients and EntireX ACI servers.

Writing Applications - Broker Topics include calling a Broker function; viewing the type library; using

ActiveX Control internationalization; using property pages.
Broker ActiveX Control with Visual Basic is used here as an example of a development environment
Visual Basic in which applications using Broker ActiveX Control can work. Broker

ActiveX Control can be used by any programming language or
programming environment that can act as a container for ActiveX
controls.

Using Broker ActiveX Control =~ Microsoft's Active Server Page (ASP) is an HTML page that includes

with Active Server Pages one or more scripts and reusable ActiveX server components to create
dynamic Web pages. The scripts and ActiveX components are processed
on a Microsoft Web server before the page is sent to the user.

Using Broker ActiveX Control =~ How to use Broker ActiveX Control with Visual Studio .NET. An example
with .NET is provided.

Transaction Objects in Broker ~ Transaction objects (TOs) in Broker ActiveX Control are selections of

ActiveX Control logical methods that are stored in a transaction object repository (TOR).
These logical methods contain all the connection and interface details
necessary to communicate with the Broker.

Calling Broker ActiveX Control You can call Broker ActiveX Control remotely if you use it as an

Remotely automation server. This means you can use the Broker component from
a separate process - either on the same machine or on another machine
in the network.

Publish and Subscribe with the Broker ActiveX Control provides five Broker functions to enable

Broker ActiveX Control publishing and subscription. Publish and subscribe enables an
application to send a message (publication) to multiple receivers
(subscribers).

Reference - Broker ActiveX Methods and properties of Broker ActiveX Control.

Control

vi

1 Broker ActiveX Control Introduction

LI = (0] Y O U PRUR T OTOPPRPPRRR
B TraNSACHON ODJECES ... veiiie ittt et

Broker ActiveX Control Introduction

Broker ActiveX Control provides a programmatic interface to COM-enabled programming envir-
onments. It has two types of operation: the Broker ACI and transaction objects. Broker ActiveX
Control enables the user to create EntireX ACI clients and EntireX ACI servers.

Broker ACI

The Broker ACI provides a simple automation API that is one-to-one compatible with the published
EntireX Broker ACI. It provides Broker ActiveX Control properties and corresponding property

pages for the control parameters detailed in the Broker ACI fields. This API is conceptually com-
patible with current Broker programming practices. Further, the Broker ActiveX Control program-
mer can count on programmatic behavior consistent with programming the Broker API directly,
such as non-blocking calls and polling for completion.

Transaction Objects

Broker ActiveX Control generates ActiveX automation server interfaces dynamically at runtime
from files in the Transaction Object Repository (TOR).

Broker ActiveX Control transaction objects provide a dictionary subsystem and user interface that
will allow the EntireX Broker developer to define a dynamic IDispatch interface. This interface
allows received data to be accessed with the traditional automation methodology.

The transaction object definition of a method also includes parsing up the SEND and RECEIVE
buffers of a Broker message into parameters and return properties respectively. The transaction
objects are loaded at runtime and the ActiveX container can then call the methods of that transaction
object to send/receive data.

See Transaction Objects in Broker ActiveX Control for more information.

2 EntireX Broker ActiveX Control

2 Writing Applications - Broker ActiveX Control

= Calling a Broker FUNCHON ..o,
= Viewing the Type Libraryccccooieiiiiiiiieee

= Adding the Broker ActiveX Control Component to Visual Studio

= Using Internationalization with Broker ActiveX Control
= Using the Property Pagesuvvvvvvvvvvvvviiiiiiiiiiiiiiiiinnnn,

Writing Applications - Broker ActiveX Control

Calling a Broker Function

Setting the Broker ActiveX Properties
You can set the Broker ActiveX properties either in the program or in the property pages.
Specifying the Send Parameters

Before executing a send function, specify the send parameters with the method
SetSendDatalong(String bsData, Long Datalen) or SetSendData(String bsData, Short
Datalen).

This method sets only the send buffer.

The first parameter specifies the buffer that has to be sent to the server. The second parameter
specifies the number of bytes to be transferred.

The following rules apply to the SetSendData method:

® The Datalen bytes of the string bsData are copied to the internal send buffer.

" Abyte copy is performed (not a string character copy), which means that the string bsData can
contain zero bytes.

" The function BOOL SetSendData(String bsData, Short Datalen) can be used if the send
buffer is smaller than 32 KB.

Calling the Broker Function

" Set the required properties.
® When you use the send function, use the method SetSendData to set up the send buffer.

® When you use the receive function, use the property ReceiveBufferSize to set up the size of
the internal receive buffer.

= Use the static automation method to call the Broker functions:
BOOL InvokeBrokerFunction()

This method executes the Broker function defined by the current value of the property Function.
Depending on the function, the required Broker parameters are taken from the current values of
the corresponding properties.

If the Broker call is successful:

® The function returns TRUE.

4 EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

® The ErrorCode property is set to '00000000' and the ErrorMsg property is empty.
If the Broker call is a Send or Receive function, this call may also update the ConvID property.

If the Broker call is a Receive function and asterisks were specified for ServerClass, ServerName
and Service, the call updates the ServerClass, ServerName and Service properties.

If the Broker call is a Receive or Send with implicit Receive (Wait > 0), the number of bytes received
is stored in the property ReturnDatalength and the returned data can be retrieved with the
GetReceiveData method.

If the Broker call fails:

® The function returns FALSE.

® The ErrorCode and ErrorMsg properties contain the corresponding error reason.
The error code has two parts:

= error class (first four digits), which provides information for the application on how to react to
the returned error, and

® error number (last four digits), which indicates the reason for the error.
The GetErrorText method is still available and returns the value of the ErrorMsg property.

For more information see Error Messages and Codes.

Getting the Contents of the Receive Buffer

If a Receive function was executed, the receive buffer can be retrieved with the function
STRING GetReceiveData()

AboutBox

The AboutBox method is used to show the version of Broker ActiveX Control.

A message box will be displayed containing the About information.

AboutBox ()

EntireX Broker ActiveX Control 5

Writing Applications - Broker ActiveX Control

About EntireX Broker Active Control El

Entirel Broker Activel Contral

’% £.0.0.95

(2] Copyright 1396 - 2008 Software AG. Al rights reserved.

wharning: This computer program is protected by copyright lav and
international treatiez. Unauthorized reproduction or distribution of thiz
proaram, or any portion of it, may result in severe civil and criminal
penalties, and will be progecuted.

Protected by the Patents:
- EP 0942 362
- EP 0600 235 and US 5,329,615
- U5 5,812,768

Viewing the Type Library

» To view the Type Library of Broker ActiveX Control

m Use the OLE/COM Object Viewer (choose EntireX Broker ActiveX Control and choose View
Type Information).

; OLE/COM Obiject Viewer [_ O] =]
Fil= Object “Wiew Help

|3 & B0

[#-[&] Active Scripting Engine s Automation Dbjects
Active Scripting Engine with Autharing {40FCEE D5-2438-11CF-A3DE-030036F 1 2602}
Active Scripting Engine with Parzing
wkomation Objects
Bitmap Effect

Reqistry I

Caomponent Categories

E“mta':'l Transition . {40FCEED5-2438-11CF-430E-080036F 12502} [409] = Automation Objects
ankrolE

Controls zafely initializable from persistent data
Controlz that are zafely zcriptable

Document Objects

Embeddable Objects

Internet Explarer Browser Communication Band
Internet Studio Web Site \Wizards

t M Control

& OLEViewer Interface Wiewers

Ready A

To do this with Visual Basic, see Using Broker ActiveX Control as an Automation Server.

6 EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

Adding the Broker ActiveX Control Component to Visual Studio

» To add the Broker ActiveX Control component to Visual Studio

1

2
3

In Visual Studio, choose Toolbox > Components.

2 WindowsApplication2 - Microsoft Visual Studio
File Edit ‘Wiew Project Buld Debug Data Tools window Community Help

=2 EE WindowsApplication2
=d| My Project
=] Form1.vb

s‘l—IlImageListl
< | =
cdsoldti,., [FEdass ... |[ZPrope...
Cukput
Show output From: - _ﬂ ,JJ _1, 4 =]

[E3Code Definition Window | $ECall Browser | (=] output

EVRAEE R = R TR '~ - = b Debug Ay CPU - [KN T -

[l - i |2 & 3| | T of ol |53 4] &]| 23 @
Solution Explorer - Windows.., » 3 X /’?m Start Page - X >§_
.5';13 E = 6%, : All Windows Forms gc
[54 Solution "windowsapplication2' (1 pr a u E Common Controls é.—

Containers
Menus & Toolbars
Data

I~/ Components

& Poirter

,\% BackgroundwWorker
E DirectaryEntry

{fll DirectorySearcher
) ErrorProvider

i3] EventLog

65] FileSystemiwatcher
HelpProvider

(=W ImageList
|Aﬂ MessageQuels
#0] PerformanceCounker

_a Process

& SerialPort

l.',';" ServiceControllar
Timer

Printing
Dialogs

Crystal Reports
General

Ready

From the context menu, choose Choose Item.

In the Choose Toolbox Items dialog under COM Components, check "EntireX Broker ActiveX

Control".

EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

Choose Toolbox ltems

\MET Framewark Companents | ©CM Components |

Mame Path Library L
Entirey Broker Activel Control CHPROGRA~ICOMMON~11SOFTW, ., Enkirex Broker ...
[] gotobar Class C TN S system 32 medm, oo
[Helpviewerwrapper Class CWINDOWSIPCHealthiHelpCEriBin.,. Help Center I ...
] HHCkrl object Cm IO S system 32 hhckrl oo
[HHCrr Object W INDOWS) system32 hhckrl oo
] HHCkrl object Cm IO S system 32 hhckrl oo
[HmiDlgHelper Class W INDOWS) system32) mshkmled. dll OpksHald 1.0T...
[1nstalEnginect! Object Cm IO S system 32 aschrls, ooy Ackive Setup Co...
[] ListPad class CWIMDOW S Syskem32cic. dil cic 1.0 Type Lib...
[] LM Auto Effect Behaivar Cm IO S system 32 im_t. dll ¥
= | a2 bt
ActionBywr Class

Language: Language Meutral

Version: 1.0.0115

o4] [Zancel] [Reset]

% WindowsApplication2 - Microsoft Visual Studio

File Edit ‘iew Project Buld Debug Data Tools window Community Help
G- - e | # S ¢~ Sl 5L b Debug = iy CPU - | [KN 5
El-gilllz & o] 5

Solution Explorer - Windows... » & X | Forml.vb [Design]* | Start Page - X
Y E = 6?}, . All Windows Forms

e Common Controls
p : Containers

= 2 ;nl:::‘:rso?epclt]hcatmnz Menus & Toolbars
=] Farm1.vb —
=/ Components
& Poirter
E Backgroundswaorker
@ DirectaryEntry
{:,1 DirectorySearcher
&) ErrorProvider
i3] EvertlLog
SE:J] FileSystemiwatcher
HelpProvider
(=W ImageList
S MessageQueus

#4| PerfarmanceCounter

=l

-
o+ el =+ | U = . =S

I'o—

u]
_i Process
& SerialPort
(= ImageList1 l.',';" ServiceController
< | & Timer
Il“fgSquti... IQ%CIass :_!]Prope... |,§i Entirex Broker Activel Control
Gt -1 X Printing

Dialogs
Crystal Reports
General

Show autput Fram: = LB | & - =

[E3Code Definition Window | $2Call Browser | (=] Output

Ready

8 EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

EntireX Broker ActiveX Control is now known to Visual Studio. It can be copied and pasted
into the new form for later use.

% WindowsApplication2 - Microsoft ¥isual Studio

Fil= Edit ‘Wew Project Build Debug Data Format Tools Wwindow Community Help

IR RN W= R SREENE - N =l - EIDebug - Any CPU - | [KN -
_ g - = — g H =] 4 2
El-g L..”.. iy 2

Solution Explorer - Windows... - L X FormL.vb [Design]® | Start Fage « » | Properties >~ 1 X
= | 2R E = &= f-"g-'l, AnBrokerl AxBrokerLib,AxBroker

J Solution “Windowsapplication2' (1 pr Form

= _@ WindowsApplication2
=d| My Project (ApplicationSetti A

=] Farmt.vb (DataBindings)
(Mame) AxBrokerl
AccessibleDescri

¥

4
T

AccessibleMame
[T o o AccessibleRole Default
AdapterError
CEntireX Broker 0 fdCount 0
AllowDrop False
Anchor Top, Left
APTVeErsion Zz
BrokerID

BrokerSecurity

A s &

CausesYalidatior True
ClignkID 1]
ClientUserid
CommandLog

Cormmit Time

(=P Imagelist1 CompressLevel

PSR T S Y

< >
Activel -Edit; Activel -Properties.. .
L‘Z]Soluti. . '__/%Class jPrope. oo Ackivel - About...

Qukput - 0 X

Showe output from: h - NS S =
{ApplicationSettings)
Maps property settings ko an

licati figuration file,
[Code Definition Windav | #E1Call Brawser | 5] Cutput S AT G AN S

Ready

Using Internationalization with Broker ActiveX Control

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

By default, Broker ActiveX Control uses the Windows ANSI codepage to convert the Unicode
(UTF-16) representation within BSTRINGS to the multibyte or single-byte encoding sent to or re-
ceived from the broker. This codepage is also transferred as part of the locale string to tell the
broker the encoding of the data.

If you want to adapt the Windows codepage, see the Regional Settings in the Windows Control
Panel and your Windows documentation.

EntireX Broker ActiveX Control 9

Writing Applications - Broker ActiveX Control

With the property LocaleString (see LocaleString in Reference - Broker ActiveX Control) you can
prevent a locale string from being sent if communicating with broker version 7.1.x and below
(blank out the property for this purpose).

Restrictions

® Only the codepage configured for Windows in the Regional Settings can be used. It is not possible
to use any codepage other than the codepage configured for Windows in the Regional Settings.
Only LOCAL or blank is allowed as a value for the property. See Using the Abstract Codepage
Name LOCAL under Locale String Mapping in the internationalization documentation for more
information.

® No TOR file property is available. When you are using the TOR interface, you can set this
property as usual in your own application.

® The Windows codepage used by Broker ActiveX Control must also be a codepage supported
by the broker, depending on the internationalization approach. See Locale String Mapping in the
internationalization documentation for information on how the broker derives the codepage
from the locale string.

Using the Property Pages

If you do not use Transaction Object Repository (TOR) files, you can also supply the properties
using the property sheet of Broker ActiveX Control. (If you use Broker ActiveX Control as an
automation server, the property pages are not available.)

The property sheet contains the following:

= General Page
= Function Page
= Parameters Page
= Results Page

General Page

With this page you can specify the API version and the size of the receive buffer.

10 EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

Properties

General | Function | Parameters | Results |

X]

AP Version:
E RSIOM 8 [requires ETE 7.2) v |

Euffers:

Beceive buffer size;| ERE3E = b,

I Ok H Cancel][Apply

Function Page

With this page you can specify the function to be called and Service, Server Class and Server Name.

Properties

Function; |SEND v|

Connected ta:

Server Clazs: | |

Server Mame: | |

Service: | |

I 0k l [Cancel Apply

Parameters Page

With this page you can specify the Conversation ID, Broker ID, User ID, Password, Environment,

Wait time, and Option.

EntireX Broker ActiveX Control

11

Writing Applications - Broker ActiveX Control

Properties [z

Optior: | NULL

Broker I0:

| |
Meer D | |
| |
| |

Pagzword:

Enviranment;

I Ok H Cancel] Apply

Results Page

This page displays the results of the Broker function.

Function Dutput:

Server Clazz: Return: 0
Server Mame: Conwe. 1D

Service: | |

Eror Information:
Error Code:

Error meszage: | |

I 0k l [Cancel Apply

12

EntireX Broker ActiveX Control

3 Broker ActiveX Control with Visual Basic

= Step 1: Instantiate EntireX Broker ActiveX Control
= Step 2: Instantiate the Transaction Object
m Step 3: Call MethodSvvvvvviveiieeiice,
= Step 4: Access the Returned Datavvvvvvininns
= Step 5: Cleanup ReSOUICeSccovvvvvveeeeeeeiiininn,

= Step 6: Error Handling in Transaction Object Methods

= Examples: Writing an ACI Client and Server with Broker ActiveX Controlccccoovviiiiiiiiiiiiiiiiiece,

13

Broker ActiveX Control with Visual Basic

Visual Basic is used here as an example of a development environment in which applications using
Broker ActiveX Control can work. Broker ActiveX Control can be used by any programming lan-
guage or programming environment that can act as a container for ActiveX controls.

Note: If you edit a Visual Basic application that uses Broker ActiveX Control and save these

changes with the new version of Broker ActiveX Control, you will not be able to use this
application with Broker ActiveX Control version 1.2.1.

Step 1: Instantiate EntireX Broker ActiveX Control

» To use Broker ActiveX Control as a control

1 From the Project, Components, Controls menu choose EntireX Broker ActiveX Control.

2 Drop it into your dialog.

14 EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

AxBrokerl AxBrokerlib, AxBroker - AxBrokerl AxBrokerlib, fxBroker -
A=
licationSettings) ~ MaximumSize oo ~
Bindings) Messageld
AxBrokerl MessageType
AccessibleDescription Minirun Size 0;0
Accessiblehlame Modifiers Friend
AccessibleRols Diefault MewPassward
AdapterError Cpkion 0
AdCount 0 Padding 0;0;0;0
allowDrop False PartrerBrokerID
anchar Top, Left Password Password
APTYersion] PublicationID
BrokerID localhost:1971 ReceiveBufferLength 65536
BrokerSecurity Receivebuffersize 1]
CausesValidation True ReturnCatalength 0
ClientID 0 ReturnLength 1]
ClientUserid SecurityToken
CaommandLog SendBufferSize 1]
CammitTime Server’lass
CompressLevel ServerMame
ZonktextMenustrip {none) Service
CarvID MOME Size 100; 50
CorreStatus 1] Skare 1
CredentialsTvpe TabIndex 1
Dack, None TabsStop True
EncrypkionLewel a Tag
Erwironment Token
ErrorCode Taopic
EtraorMsg LIiAWID
ErrorTextState True LG Skatus 1}
Farcelogan False 12w SkatusLife
Function 1 LI SkatusPersist 1}
GenerateMernber True LW Time
Localestring LOCAL UserData
Location 96; 103 UserID Userld
Locked False Userstatus
LogicalBrakerID UseSameEufferstate False
LogicalService sediaitCursor False
LogicalSetMame Wisible True
Margin R] R Wit ait S
Activel -Edit; Activel -Properties...; Actives - Activel -Edit; Ackivel -Properties...; dckives -
About.., about..,
{DataBindings) {DataBindings)
The data bindings For the control. The data bindings for the contral,

In this example, Name is set to "BOX" in the Properties dialog:

Using Broker ActiveX Control as an Automation Server:

If you want to

" see the interface description of Broker ActiveX Control in the object browser or

" use the early bind feature,

EntireX Broker ActiveX Control 15

Broker ActiveX Control with Visual Basic

from the Project > References menu choose Browse and then select Broker ActiveX Control in
<drive>:\ SoftwareAG\ EntireX \bin \ebx.dll.

To use Broker ActiveX Control as an automation server, you can define the following in your code:

Dim BOX as Object

or

Dim BOX as Broker
Set BOX=CreateObject("EntireX.Broker.ACI")

If you use Broker ActiveX Control as an automation server, you will not be able to:

= call the methods DefineTOMethods and AboutBox

" use the property pages.

Step 2: Instantiate the Transaction Object

If a Transaction Object Repository (TOR) file is used, it is not necessary to set the other properties.
If you want to use a transaction object, instantiate the transaction object with the command:

Dim TransObject As Object
Set TransObject = BOX.CreateTransObject("c:\\path\\to\\trans\\object\\object.tor")

BOXis the name set previously.

See the list of methods available for supporting transaction objects.

Step 3: Call Methods

Once a transaction object has been instantiated, the methods defined in that transaction object can
be called. If the transaction object method being called has one or more return values, transaction
object methods always return these values wrapped in a return object.

Dim ReturnObject As Object
Set ReturnObject = TransObject.MyMethod("Paraml", 50, "Param3")

A return object is always used, as TO methods usually return multiple scalar data items, or arrays,
structures or records. These in fact define the possible return values in a return object. They will
be either scalars:

= 2-byte INT

16 EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

" 4-byte INT
= etc., basically all scalar types handled through the automation VARIANT structure

or objects:

= structure objects
® collection objects
" arrays

= records

Alias custom types are mapped internally to the data type they alias, either scalars or objects.

Step 4: Access the Returned Data

You then access the returned data by interpreting the return object. The code required depends
on whether you are accessing scalars, structures, or arrays and records.

| Note: Care must be taken to avoid recursive complex type definitions. For example, a

structure should not be defined that contains an instance of itself, or less directly, an array
of structures should not be defined that contains an instance of the same array type. These
and other permutations of recursive definitions cannot be resolved, and thus cannot be
used.

Scalars
Scalars can be accessed through the return object with code like this:

Dim Str As String
Dim Int As Integer

Str = ReturnObject.MyString
Int = ReturnObject.MyInt
Structures

Structures can be accessed from the return object like this:

EntireX Broker ActiveX Control 17

Broker ActiveX Control with Visual Basic

Dim Struct As Object

Dim Str As String

Set Struct = ReturnObject.MyStruct
Str = Struct.MyString

Arrays and Records Exposed as Collections

Arrays and records are exposed by Broker ActiveX Control as automation collections when the
method CreateTransObject is used. As collections, they support the Count property, as well as
the I'tem property that acts as the default value when subscripting is performed without the Item
name. Thus, an array in the return object can be accessed like this:

Dim Array_Value As 0Object

Dim I As Integer

Dim MyInt As Integer

Set Array_Value = ReturnObject.MyArray

For I = 0 To Array_Value.Count - 1
MyInt = Array_Value(I)

Next I

The elements of a record can be accessed with the following method:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For T = 0 To Array_Value.Count - 1
Set Struct = Array_Value(I)
Str = Struct.Str
Next

or also:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For Each Struct in Array_Value
Str = Struct.str
Next

18 EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

Arrays and Records Exposed as Safe Arrays

Arrays and Records are exposed as safe arrays when the method

CreateTransObjectSA(torfilename) is used. Instead of the Count property, the LBound and UBound

functions are supported.

An array in the return object can be accessed like this:

Dim Array_Value as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray

For I = LBound(Array_Value) To UBound(Array_Value)
Str = Array_Valuel[I]

Next

The elements on a record can be accessed with the following method:

Dim Array_Value as Variant
Dim Struct as Variant

Dim I as Integer

Dim Str as String

Array_Value = ReturnObject.MyArray

For I = LBound(Array_Value) To UBound(Array_Value)
Set Struct = Array_Valuel[I]
Str = Struct.Str

Next

Another possible For statement:

For Each Struct in Array_Value
Str = Struct.Str
Next

There are no limitations to the number of complex types or their relationship to each object in a
transaction object. Arrays can exist within structures, and conversely, structures and arrays can
exist within records, etc. Thus, multidimensional arrays can easily be simulated if the given Broker

service that the method maps to provides data in such a format.

EntireX Broker ActiveX Control

19

Broker ActiveX Control with Visual Basic

Step 5: Cleanup Resources

When objects in your automation code are no longer used, be sure to call:

Set ObjectName = Nothing

This decrements the reference count of the object, thus allowing cleanup of object resources. While
the above information pertains specifically to Visual Basic, the concepts are also relevant to other
automation controllers, such as Delphi and FoxPro.

Step 6: Error Handling in Transaction Object Methods

TO methods do not return an error flag; they raise a standard ActiveX exception instead. In
Visual Basic, this exception can be caught with an 'On error’ clause. The most likely reason for the
failure of a TO method is that the Broker call that was issued returned an error. In Visual Basic,
use the standard Err object to retrieve the error number and message (Err.Number and Err.Descrip-
tion).

If the error is a Broker error, Err.Description shows a generic error message "Automation Error".
For a detailed error description use the ErrorCode and ErrorMsg properties.

Examples: Writing an ACI Client and Server with Broker ActiveX Control

= Writing an ACI Client with Broker ActiveX Control
= Writing an ACI Server with Broker ActiveX Control

Writing an ACI Client with Broker ActiveX Control

On Error Resume Next

Dim ebx As Object

Dim senddata As String
Dim lToopcount As Integer

loopcount = 0
simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "Tocalhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"

20 EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

ebx.Service = "ASERVICE"
ebx.UserId = "EBX-USER"
ebx.function = 9 "' Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub

End If

Do
ebx.function = 1 ' Send
ebx.ConvID = "NONE"

' SetSendData data, length of data
Len(senddata)

ebx.SetSendData senddata,

ebx.wait = "10s" " wait 10 seconds for a response from server

ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg

Else

MsgBox "Received " + Str(ebx.ReturnDatalength) + " bytes (" + ebx.GetReceiveData + ")"

End If

loopcount = loopcount + 1
If loopcount = 2 Then
senddata = " shutdown"
End If

Loop Until Toopcount > 2

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Writing an ACI Server with Broker ActiveX Control

On Error Resume Next

Dim ebx As Object

Dim senddata As String
Dim receivedata As String
' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")

ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"
ebx.Service = "ASERVICE"

EntireX Broker ActiveX Control

21

Broker ActiveX Control with Visual Basic

ebx.UserId = "EBX-USER"
ebx.function = 9 ' Logon
ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub

End If

ebx.function = 6 ' Register
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage

End If

Do

ebx.function = 2 ' Receive

ebx.wait = "yes" ' wait until data is received

ebx.ConvID = "NEW"

ebx.SetReceiveBufferlLength = 1024 ' we are now able to receive messages up to 1024 <
bytes

ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then

MsgBox ebx.ErrorMsg

Else

' save received data

receivedata = ebx.GetReceiveData

' send response

ebx.function =1 ' Send

' SetSendData data, length of data

ebx.SetSendData senddata, Len(senddata)

ebx.wait = "no" ' don't wait for a response

ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then

MsgBox ebx.ErrorMsg

Else

MsgBox "Received data: " + receivedata

End If

End If

" loop until the received data has the string "shutdown" from the position 20
receivedata = Mid(receivedata, 20, 8)

Loop Until receivedata = "shutdown"

ebx.function = 7 ' DeRegister
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction

22 EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

EntireX Broker ActiveX Control 23

24

4 Using Broker ActiveX Control with Active Server Pages

B PrereqUISItES ...oovvvvviiiiieee e

= Designing a Web Page with ASP and Broker ActiveX Controloooiiuiiiiiiiiiieiiiiiee e

= Using Broker ActiveX Control in Multiple Pages

25

Using Broker ActiveX Control with Active Server Pages

Microsoft's Active Server Page (ASP) is an HTML page that includes one or more scripts and re-
usable ActiveX server components to create dynamic Web pages. The scripts and ActiveX compon-
ents are processed on a Microsoft Web server before the page is sent to the user.

Prerequisites

Installation prerequisites for all EntireX components are described centrally. See Prerequisites in
the EntireX Release Notes.

To use Broker ActiveX Control with ASP, you must have a running Web server.

Designing a Web Page with ASP and Broker ActiveX Control

Creating an Instance of the ActiveX Control and the Transaction Object

<%

Set EBX = server.Createobject("EntireX.Broker.ACI")
Set torobj = EBX.CreateTransObject("calc.tor")
or

Set torobj = EBX.CreateTransObjectSA("calc.tor") (if returnvalue contains array)
%>

Calling a TOR Method

Set retobj = torobj.calc(op,opl,op?2)

Accessing the Data
Scalars

<% string = retobj.result %>

26 EntireX Broker ActiveX Control

Using Broker ActiveX Control with Active Server Pages

Structures

<% string = retobj.result.str %>
Arrays
You can have access to array elements:

<kstring = retobj.retarr(0) %>

or

<%

return = retobj.retarr
string = return(0)

%>

or

<%

For Each element in retobj.retarr
string = element

Next

%>

Records

You can have access to record elements:

<kstring = retobj.retrec(0).str %>

or

<%

Set return = retobj.retrec(3)
Response.Write return.str

%>

or

EntireX Broker ActiveX Control 27

Using Broker ActiveX Control with Active Server Pages

<%

For Each struct in retobj.retrec
string = struct.str

Next

%>

or

<%

Array_Value = retobj.retrec

For I = LBound(Array_Value) To UBound(Array_Value)
string = Array_Value(I).str

Next

%>

Using Broker ActiveX Control in Multiple Pages

Objects created by Server.CreateObject or CreateTransObject have page scope. They will be
destroyed automatically when the current ASP page is finished.

To create an object with session or application scope, you can either use the <OBJECT> tag and set
the SCOPE parameter to SESSION or APPLICATION, or store the object in a session or application
variable.

For example, an object stored in a session variable, as shown in the following script, is destroyed
when the Session object is destroyed. That is, when the session times out, or the Abandon method
is called.

<% Set Session("torobj") = EBX.CreateTransObject("calc.tor")%>

You can destroy the object by setting the variable to "Nothing" or setting the variable to a new
value.

<% Session("torobj") = Nothing %>

28 EntireX Broker ActiveX Control

5 Using Broker ActiveX Control with .NET

= Using Broker ActiveX Control with Visual Studio NETooiiiiiiiiiii e

= A Small Visual Basic .NET Example

29

Using Broker ActiveX Control with .NET

Using Broker ActiveX Control with Visual Studio .NET

» To use Broker ActiveX Control with Visual Studio .NET

1 Add Broker ActiveX Control to the Project references.
2 Add a Broker Control variable BrokerLib.BrokerClass().

While you are using Broker ActiveX Control, the properties and methods of the object are listed
in the member list.

Using Custom Data Types

A\ Important: To use custom data types you have to access the items through a temporary
object.

A Small Visual Basic .NET Example

create new ActiveX Control
Dim broker As New BrokerLib.BrokerClass()

Dim TransactionObject As Object
Dim SomeObject As 0Object
Dim CTObject As Object

' load tor object
TransactionObject = broker.CreateTransObject("Broker.tor")

'"'call a method from the tor object
SomeObject = TransactionObject.GetData("Personl")

reference a temporary object to the Customer Data type

CTObject = SomeObject.CustData

' access to the items of the Customer Data
Console.WriteLine("Name :" & CTObject.Name)
Console.WritelLine("Address :" & CTObject.Address)

30 EntireX Broker ActiveX Control

6 Transaction Objects in Broker ActiveX Control

= Advantages of Transaction ODJECESvieiiiiiiieiiii e
= Calling the Transaction ObJECt EQILOFvviiiiiiie e
ManagINg TOR FIIESeeeeiiee ettt e e e e e e e
DEfiNING MELNOGASeeeiii s
Specifying Connection INFOrMALIoNcoiiiiiiiie e
Defining CUSTOM Data TYPESeeeiiiiiieeiit et
B TOR FileS in IDL FOMMAL ..ot
B TORFleS in XML FOMMALeeeeiiiiie ettt et e e
= Storing TOR Files in @ Tamino Databasecuoviiiiiiiiiiii e

31

Transaction Objects in Broker ActiveX Control

Transaction Object (TOs) in Broker ActiveX Control are selections of logical methods that are
stored in a transaction object repository (TOR). These logical methods contain all the connection
and interface details necessary to communicate with EntireX Broker.

Advantages of Transaction Objects

The advantages of using transaction objects are:

" Services are defined once, in one place, and distributed as needed. They can then be used by
anyone from many different applications to access back-end applications.

* Transaction objects can encapsulate all connection and conversational information from the
developer, which simplifies the implementation and administration of distributed applications.

® The SEND-BUFFER of a message is broken down into parameters, and the RECEIVE-BUFFER
is mapped to the return object. This means you do not have to worry about offsets, data types,
repeating fields (arrays), or structures.

Calling the Transaction Object Editor

The Transaction Object Editor is a tool within Broker ActiveX Control with which you can define
and maintain transaction objects. It is invoked by calling the method DefineTOMethods from a
form that includes an ActiveX control.

The Transaction Object Editor can be called directly using the TORed1it executable. The extension
".tor" is registered as a file type, so you can call the Transaction Object Editor with a double click
from the Windows Explorer.

When the Transaction Object Editor is started, a license check is performed. If there is no license
file or if the license has expired, the editor will be closed.

Note: Before you start the TOR Editor for the first time, you need to register the required

DLL ebx.dll to your Windows system manually. Simply open a DOS prompt in folder
<drive>:\ Software AG\ EntireX \bin and run the command regsvr32 ebx.d11. If you later
want to use a TOR Editor from a different installation directory, register the corresponding
ebx.dll as above.

32 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

* Transaction Object Editor

File Edit Options Help
Definition of thiz method:
Method: || j Mew Copu... | Delete
Call Type l Farameters | Retum Object] Method Lonnection...
Call types supported by thiz method:

Call Type Action Dezcrption M
Send Data b ethiod pazses data to a Broker Service |

’ Send and Receive Data Method passes data to a Broker Service,
Receive Data M ethiod recelves data from a Broker Servi
Logon Logon to the Broker
Logoff Logoff from Broker
End of Corversation Terminate one or more conversations
Syncpoint Syncpoint
Reaizter Reaizter a Semver
Drereqizter Dereqizter a Server
Subscribe User Subscribes a user to a topic
Unzubscribe user Unsubscribe a uzer from a topic
Send publication Send a publication mezzage to a topic
Recerve publication Receive publication from a topic b

£ >

Connection. .. Custorn Tupes. . E it

When a transaction object is loaded, the corresponding file name will be displayed in the title bar.
If loading or saving fails, an error message will be displayed in the title bar.

EntireX Broker ActiveX Control 33

Transaction Objects in Broker ActiveX Control

Managing TOR Files

The following functions are available for managing TOR files.

= File Menu
= Edit Menu
= Options Menu

34 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

= Help Menu

File Menu

% Transaction Object Editor

File Edit Options Help
MNew
Cpen TOR...
Cpen =ML, ..
Cpen Tamino Chject, ..
urn Obje
Sawve I
Save as TOR... r
Save as IDL... Ak
Save as XML bt
Save as Tamino Object. .. 5 Met
Exit Met
COngor LDQ
Logaff Log
T Lo T
Menu Item Description
New Resets the TOR Editor.
Open TOR Loads an existing TOR file. A standard Open File dialog will be displayed. This
function is needed to modify an existing TOR file.
Open XML Loads an existing XML file. A standard Open File dialog will be displayed. This
function is needed to modify an existing XML file (see Loading an XML File).
Open Tamino Object |Loads an existing Tamino Object. The Open Tamino Object dialog will be
displayed. This function is needed to modify an existing Tamino object (see Loading
Tamino Objects).
Save Saves a TOR file.
Save as TOR Saves a new or modified TOR file. A standard Save File dialog will be displayed.
Save as IDL Saves a file in IDL format. If you have made any changes to the TOR file, you must
first save it in TOR file format.
Save as XML Saves a file in XML format. A standard Save File dialog will be displayed.
Save as Tamino Object | This function saves a file in Tamino. The Save Tamino Object dialog will be
displayed.
EXIT Closes the TOR Editor.

EntireX Broker ActiveX Control 35

Transaction Objects in Broker ActiveX Control

Edit Menu

% Transaction Object Editor

File | Edit Options Help

O Cusktom Data Tyvpes
_onneckion

Mo oL File > | Hew

Call Tvpe | Parameters | Fetumn EII::ie:::t]

Call Type Achion Descrption

Send Data Method paszes data to a Broker Se
ll Cand zmd PBarciua Matks kdathmAd maseas Aabs ba = Pralrar S

Menu ltem Description

Custom Types |Calls the Custom Data Types dialog.

Connection |Calls the Connection dialog.

XML File Calls a standard Open File dialog. When a file is selected, a text editor will be opened.

36 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Options Menu

* Transaction Object Editor

File Edit pkions Help

Definitior - optians l

M ethod: ||

Call Type l F'arameters] Feturn Object

Menu Item Description

XML options|Calls an XML Options dialog.

Help Menu

Menu Item [Description

Contents|Displays the Broker ActiveX Control online help.
About |Displays the About box.

Defining Methods

The following buttons are available in the transaction method definition model:

® The New button causes the method name within the dialog box to be added to the store.

® The Copy button copies the currently selected method to a new method.

® The Delete button removes the selected method from the store.

Methods are logically grouped in a transaction object. Each method specified in the transaction

object relates directly to a specific Broker service. To define a new method, therefore, you need to
know which services are available. Each method requires the following information:

= Connection
= Call Type
= Parameters

EntireX Broker ActiveX Control 37

Transaction Objects in Broker ActiveX Control

= Return Object

Connection

Connection information is specified using the Broker Connection Information dialog. Each TOR
file has default connection information, and each method has its individual connection information.
If a parameter is not defined in the connection information of a method, the default is taken. For
a description of the parameters, see Defining Connection Information.

Call Type

The Call Type tab represents the call types that can be used for this method.

Call Type

Description

Send Data

Used to define a method that accepts parameters but does not return data from
the service. This could be used to notify a back-end application of some event
without waiting for a response.

Send and Receive Data

Used to define a method that accepts parameters and returns data from that service.

Receive Data

Can be used to get information from a back-end application that requires no input,
for example MOTD (message of the day) information. It is also used to wait for
incoming requests if you are using Broker ActiveX Control to write Broker Server
applications.

Logon

Logon to EntireX Broker.

Logofft

Logoff from EntireX Broker.

End of Conversation

Used to end a conversation.

Syncpoint Used to commit, backout, or cancel a unit of work, obtain the status of a unit of
work, or delete the persistent status of a unit of work.

Register Informs EntireX Broker that a service is available.

Deregister Removes previously registered services from EntireX Broker's active list.

Subscribe User

Used to subscribe a user to a topic.

Unsubscribe User

Used to unsubscribe a user from a topic.

Send Publication

Used to send a publication message to a topic.

Receive Publication

Used to receive a publication message from a topic to which the user was previously
subscribed.

Control Publication

Used to commit or backout a publication message.

The Call Type tab is shown in the screen above.

38

EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Parameters

The Parameter tab exposes a multiline box containing individual parameter variables.

These parameters are placed into the SEND-BUFFER of the EntireX Broker call. Each parameter
has a data type (Integer, Real, String etc.) and a length.

* Transaction Object Editor

File Edit ©Options Help
Crefinition of this method:
Method: |ﬂ j Mew Copy... | Delete
I:a" T_'rll:lEl F'EI[EII‘I‘lE:tE-'rS] HEturn I:”:lIECt l MEthDd EDHHECHDH...
tethod data ikems:
Mame In Type Out Type Offzet Length
’ operand String String 1] 1
operator] Strinig Strinig 1 12
operator Strinig String 13 12
Add... Remowve b ove Do
Data iz provided as: Strinig w | Data affzet
Data is sent as: Strirg | Data length: |1 _%I
Cohnection. .. Custom Types. .. E it

EntireX Broker ActiveX Control 39

Transaction Objects in Broker ActiveX Control

Defining a Parameter List

If data is sent, it is necessary to define a parameter list for this method. The T0 method parameter
list serves as a "map" between the types passed as parameters, and the data types and locations
within the method's send buffer. Items within the T0 method parameter list are ordered sequentially
as they will be passed when the method is invoked.

List Control

A list control is used for defining, removing and ordering parameters of the current method. The
list control supports in-place editing of items names, and works together with the item configuration
controls positioned below. When a particular item is selected, it can be moved up and down the
list sequentially. The order of the list defines the order in which parameters are passed when the
method is invoked. Note that offsets are automatically generated for each list item, relative to the
start of the list, and the items (and their sizes) that precede it.

The Add function adds the field after the selected position.
Data Conversion

Data conversion is also supported between a type provided by the client and the type expected
by the Broker service. For parametersers, the user can specify the data type that will be provided,
and the type that will be sent to the Broker service. For return objects, the data received by the
Broker service can be set to the data type retrieved by the user. The important data types are those
sent to and received from a Broker service. Broker ActiveX Control automatically converts between
the data type received from the Broker and a data type specified by the user (see the Data is received
as and Data is retrieved as fields in the screen below).

Implemented Data Types
The scalar data types supported by the Broker ActiveX are a subset of the standard Automation

VARIANT types and are listed below. In cases where the selected data type is of fixed length, the
data length edit control is set to the appropriate length and grayed.

Transaction Object Method Data Types | Description

1-byte Integer 1-byte Integer used for signed and unsigned.
2-byte Integer 2-byte Integer used for signed and unsigned.
4-byte Integer 4-byte Integer used for signed and unsigned.
4-byte Real 4-byte Real compatible with "C" float.

8-byte Real 8-byte Real compatible with "C" double.
Bool Boolean variable.

String String of specified length.

Blob Generic byte block.

40 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Transaction Object Method Data Types |Description

Padding Used to separate types in the buffer.

Return Object

If the transaction object method is invoked with call type 'Send and Receive' or 'Receive’, a Return
Object is created. This is a logical object that enables you to retrieve multiple scalar values or records
by referencing its properties.

The Return Object tab exposes the individual properties that are mapped onto the RECEIVE-
BUFFER of the Broker call. When the data is returned from the Broker service, Broker ActiveX
Control uses the types and lengths of the defined properties to populate the values of the properties.
You can now access the contents of the receive buffer as ActiveX properties of the method that is
created by loading the transaction object.

EntireX Broker ActiveX Control 41

Transaction Objects in Broker ActiveX Control

* Transaction Object Editor
File Edit ©Options Help

Definition af this methad:

Method: |ﬂ j Mew Copu... | Delete
Call T}'DEI Parameters Return Object l Method Lonnection. .
tethod data iters: | Manually zet data affset
Mame In Type Out Type Offzet Length
’ result Strinig Strinig 0 12
Add... Remowve
Data iz receved as: String - | Data affzet
Data is retrieved as; | Sting > | Data length: |12 _%I
Connection. .. Custorn Tupes. . E it

As with the parameters, Broker ActiveX Control calculates the offset in the RECEIVE-BUFFER for
each property. For infomation on list control, data conversion and implemented data types, see
Defining a Parameter List.

Custom Data Types are used for non-scalar data types such as arrays and structures. They are also
used to assign aliases to parameters for consistent naming purposes.

42 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

The Manually set data offset check box allows the transaction object designer to override auto-
matic offset calculation and specify offsets manually. This feature is powerful, but also potentially
dangerous, because no base type checking can be performed.

Specifying Connection Information

Connection information relates directly to the Broker service that you want to communicate with
when using this method.

Transaction methods are defined using the Transaction Object Editor. Connection information is
specified using the Broker Connection Information dialog. Each TOR file has default connection
information, and each method has its individual connection information. If a parameter is not
specified in the connection information of a method, the default is taken. The Broker parameters
are part of this connection information (with the exception of Function, which depends on the
Call Type).

EntireX Broker ActiveX Control 43

Transaction Objects in Broker ActiveX Control

Broker Connection Information for method: calc ['5—(|
Server Class: OE.
Server Marme: Cancel
Service:
Braker 1D

Logical BrokerlD:

Logical Service:

Logical Set Mame:

Compression Level: hd

W it - | Broker Securty: I—Ll
Corvverzation 1D z Opticr; |NL|LL [~
O Tirme: UOwStatusPersist: IEIi
Encryption Lewel: |[MONE v | Force Logon: NO
Uszer [D:

Pagsword:

E nvironment;

Token:

T opic:

Publication D j 0 Status Life:

The Broker Connection Information dialog box accepts all the parameters required for establishing
the necessary Broker connection to execute the defined method/call type.

44 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Connection Information Parameters

Parameter Description

BrokerID The unique name of the Broker node that the services are attached to. Information
in this dialog can be changed without affecting the application code. For example,
if the BrokerID changed, you would change the connection information in the
methods (services) affected and distribute the new transaction object file. The next
time the application code loads the transaction object file and calls a method, the
new connection information will be used.

CompressLevel Compression level. Valid values: N1Y10-9. See also Data Compression in EntireX
Broker in the general administration documentation.

ServerClass, These three parameters represent the unique “signature” of this method call.

ServerName, Service

Wait The following values are set for this parameter, depending on the operation:
Operation Wait Value (in seconds)
Send 0

Send and Receive 30
Receive 59O

@ if no value is specified in the Connection info.

See Properties of Broker ActiveX Control for a description of the other parameters.
Setting the Broker Call Parameters

Calling a method of a transaction object results in a Broker call. The parameters for the Broker call
are taken either

® from the Broker Connection Information dialog, see above, or
" from the properties (see Properties of Broker ActiveX Control).

If a value is specified in the Connection Information dialog, this value is taken and overrides any
value specified in the properties.

If no value is specified in the Connection Information dialog, the current setting of the properties
is taken. Leaving these parameters blank in the Connection Information dialog enables you to
change these parameters dynamically, and also enables Broker communication in conversational
mode. See example below:

EntireX Broker ActiveX Control 45

Transaction Objects in Broker ActiveX Control

Visual Basic Example

This example shows a possible usage of dynamic parameter assignment:

Set TransObject=BOCX.CreateTransObject ("...calc.tor")

BOCX.UserID = "USER1"

BOCX.BrokerID = "ETB121"

Set ReturnOb = TransObject.calc("+", "000000000001", "000000000002")

Defining Custom Data Types

The Custom Data Types dialog allows you to define new data types that will appear in the Return
Object tag. With the Apply button you can embed a custom type within another custom type as
long as this does not result in a recursive inclusion.

The following four classes of custom data types are supported:

= Custom Data Type 'Alias'

= Custom Data Type 'Array '

= Custom Data Type 'Record'
= Custom Data Type 'Structure'

Any custom data type can be used in transaction objects return objects. Custom data types are not
supported as method parameters.

| Note: All custom data types can be used recursively. That is, any custom data type can be

used as a member or base type for any other custom type. This allows for nested structures,
as well as arrays within structures and records.

Custom Data Type 'Alias’
An alias is a custom data type that allows an administrator to specify an alias for any defined data

type - custom or not. Aliasing also allows the definition of data types with specific in and out data
types (type translation).

46 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Array '

Custom Data types rg|
Cusztarn: |~3”~3.'r"EH-3|'I'I j Hew Copy Delete
Cusztom D ata type definition:
Bliaz Record | Structure |
D ata is received as: | Shing = | Datalength: |34 :II
Drata is retiesved as: | String hd
b azimum elements in the aray: |4 _
k. Apply

An array consists of multiple serial elements of the same data types. Arrays can be made up of
either scalar or custom data types. The number of elements in an array must be specified.

Array custom data types accept the same basic information as alias data types, with the addition
of the number of elements in the array. Arrays allow elements of the specified base type to be ac-
cessed in a subscripted fashion.

| Note: Multidimensional arrays and arrays of structures can be implemented by specifying
a custom array or record data type as the base type of this array.

EntireX Broker ActiveX Control 47

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Record'

A record is a repeating collection of data types - scalar or custom.

This custom data type allows you to define a collection of data types that can be accessed in a
subscripted fashion. The order of defined types in the Record can be changed. Also, the number
of records within the receive buffer can be specified if known.

Custom Data types E|

Cusztarn: |~3”~3.'r"EH-3|'I'I j Hew Copy | De_lete|

Cusztom D ata type definition:

Bliaz | Array || Fecord 5trun:ture|

Drata tppes in recaord:

M arne In Type Out Type Length
FPersonallD String String a
Firzsthame String String B4
’ Lasthame String String B4
add... | Remowve | tMove Up |
Data iz recepved a3 | Sting = | Datalength: |E-'-1 —
Data iz retrieved as: | Sting hd

td amirnum records in the buffer: |E1

48 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Structure’

A structure is a named collection of data types.

The controls for this custom data type are identical to those of the data type 'record’, with the ex-
ception of a repetitive count, which is not applicable.

TOR Files in IDL Format

When a TOR file is saved in IDL format, a file with extension .idl is generated. (The file must have
been saved as a TOR file before).

Save IDL file

Save jn: |l.f}EaIn:: j = £ EE-

B

ky Recent
Docurments

F"_'.'

L

Desktop

My Documents

My Computer

by Metwork. File name: cal | Save
Places

Save as upe: |IDL File [*.idl] j Cancel

This IDL file can be used by other EntireX tools such as DCOM Wrapper or Java Wrapper. It can
be modified with any editor like a regular IDL file.

EntireX Broker ActiveX Control 49

Transaction Objects in Broker ActiveX Control

Conversion Rules

List of the performed conversions:

In TOR file Converted to ... in IDL file
TOR file name Library name
Methodname Program name

Connection Info

"Server address" as comment

Dataltems in Parameter Map

"In" Parameters

Dataltems in Return Map

"Out" Parameters

Manual Offsets in Return Map

Will not be converted. If "manual offsets" is marked in a method, a comment
is generated for this program.

Custom Data Types The names of the CDTs used are displayed in a comment.
- Alias Nothing

- Array A dimension specification

- Record A dimension specification and a group

- Structure A group

Format Conversion

The IN-Type of the Parameter Map and the OUT-Type of the Return Map
are used.

-11 11

-12 12

-14 14

- Real 4 F4

- Real 8 F8

- Bool L

- String A<size>

- Blob B<size>

- Padding B<size>

50 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

TOR Files in XML Format

To use TOR files in XML format, Internet Explorer 5 or above is required.

Loading an XML File

When you load an XML file, the XML file is checked against the defined DTD (see The DTD File
list below). When you use the XML file, it is not necessary to store the transaction object in TOR
file format.

Saving an XML File

When a TOR file is saved in XML format, a file with the extension .xml is generated.

This XML file can be viewed with a browser that supports XML. It can also be viewed and edited
with any XML notepad or any text editor.

The DTD File

The structure of the XML file is defined in the DTD file. When you use a tool that validates XML
files, the XML file is checked against these definitions.

Entry in the DTD file Explanation

CIELEMENT EntireXTorFile (DefaultConnection? , <|Therootmustalwaysbe defined. It contains:
Method*, CDT*)>
® (-1 default connections

® (0-n methods

® 0-n CDT (= custom data types)

{IATTLIST EntireXTorFile Name CDATA #IMPLIED Name |ThenameoftheTORﬁ1e'
Version CDATA #IMPLIED>

Version | The EntireX version with which the
XML file was generated
CIELEMENT DefaultConnection EMPTY> The global connection information is stored
here.
CIATTLIST DefaultConnection %Connection;> All parameters in the default connection are

stored as attributes. See the detailed
description of the %Connection at the end
of this table.

EntireX Broker ActiveX Control 51

Transaction Objects in Broker ActiveX Control

Entry in the DTD file

Explanation

<IELEMENT Method (MethodConnection? , <«
Parameter*)>

Each method contains:

= (-1 method connections

® (0-n parameter

<IATTLIST Method Name CDATA #REQUIRED
CallType (SEND | RECEIVE | SEND-RECEIVE |
LOGON | LOGOFF |EOC | SYNCPOINT |
REGISTER | DEREGISTER | SUBSCRIBE |
UNSUBSCRIBE | SEND_PUB | RECEIVE_PUB |
CONTROL_PUB) #REQUIRED
ManualOffset (YES | NO) #IMPLIED>

A name and a call type must be defined for
each method. The manual offset contains
the manual offset switch of the return map.

<IELEMENT MethodConnection EMPTY>

The connection information of each method
is stored here.

<IATTLIST MethodConnection %Connection;>

All parameters belonging to the method
connection are stored as attributes. See the
detailed description of the %Connection at
the end of this table.

<IELEMENT Parameter (InFormat,
Length?)>

QutFormat, <

Each parameter contains:

= 1 in format
=] out format

® 0-1length

CVATTLIST Parameter Name CDATA #IMPLIED
Direction (IN | OUT | INOUT) <
#FIMPLIED
Offset CDATA #IMPLIED>

Name |Name of the parameter

Direction|IN: if parameter is from the
parameter map
OUT: if it is from the return map
Offset

Offset value of the return map, if
ManualOffset = YES

<IELEMENT CDT (Alias | Array | Record | <
Structure) >

A custom data type (CDT) is an alias, an
array, a record or a structure.

<IATTLIST CDT Name ID #REQUIRED>

The name of the CDT is required.

CIELEMENT Alias (InFormat, OutFormat, Length?)>

An alias contains:

= 1 in format
=] out format

® 0-1length

52

EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Entry in the DTD file

Explanation

<TELEMENT

Array (InFormat, OutFormat,

Length?)>

An array contains:

®] in format
=] out format

= (-1 length

CSTATTLIST

Array NumberEle CDATA fIMPLIED>

The numbers of elements for an array are
stored here.

<TELEMENT

Record (Parameter*)>

The record contains:

® 0-n parameter

CTATTLIST

Record NumberEle CDATA #IMPLIED>

The numbers of elements for a record are
stored here.

CTELEMENT

Structure (Parameter*) >

The structure contains:

® (0-n parameter

<TELEMENT

InFormat (Scalar | UsedCDT)>

An InFormat is a scalar value or a reference
to a CDT.

<TELEMENT

Scalar EMPTY>

CIATTLIST Scalar Format (I1 | I2 | I4 | F4 | F8 |

A scalar must be in one of the listed formats.

Bool | String | Blob | Padding) #fREQUIRED>

<IELEMENT UsedCDT EMPTY>

CIATTLIST UsedCDT Target IDREF #REQUIRED> A UsedCDT must reference the name of a
defined CDT.

<TELEMENT OutFormat (Scalar | UsedCDT)> An OutFormat is a scalar value or a
reference to a CDT.

<IELEMENT Length EMPTY>

<IATTLIST Length Value CDATA #IMPLIED> A length must be defined for scalars with
the values: string, BLOB and padding or
UsedCDTs.

CTENTITY % Connection All connection parameters are defined as

'ServerClass CDATA ##IMPLIED
ServerName CDATA #IMPLIED
Service CDATA #IMPLIED

ConversationID (NONE | NEW | OLD | ANY)

#FIMPLIED

UOWTime CDATA #IMPLIED
BrokerID CDATA #IMPLIED
UserID CDATA #IMPLIED
Password CDATA #IMPLIED

attributes.

EntireX Broker ActiveX Control

53

Transaction Objects in Broker ActiveX Control

Entry in the DTD file

Explanation

Environment CDATA #IMPLIED

Wait CDATA #IMPLIED

UOWStatusPersist CDATA #IMPLIED

Option (NULL | MSG | HOLD | IMMED |
QUIESCE

| EOC | CANCEL | LAST |

NEXT | PREVIEW | COMMIT | BACKOUT |

SYNC | ATTACH | DELETE |

TERMINATE |DURABLE |CHECKSERVICE)
##IMPLIED

FFIMPLIED

ForcelLogon (NO | YES) #IMPLIED
Compresslevel CDATA #fIMPLIED
Token CDATA #IMPLIED
Topic CDATA {#IMPLIED
PublicationID CDATA #IMPLIED
UOWStatusLife CDATA #IMPLIED
BrokerSecurity CDATA {IMPLIED"

EOCCANCEL | QUERY | SETUSTATUS | ANY |

Encryption (NONE | TO-BROKER | TO-TARGET)

P}

>

Defining the Location of the DTD and XSL File

A DTD file is used to check the XML file. An XSL file is used to view the XML file. To locate these

files, enter a reference in the XML Options:

Generate XML Options @

URL of DTD and =51 file:

||"||Z|Z|:IZ.-".-"|:"3HH:-:.-"E rikires,

Tamino Server Mame: ||.:..;a|h.;.3t

ak.

Tarnite DB Prefie A parine/mypD B /E rtirei< T orFile

Cancel

This reference can be a URL (like above) or a regular path (e.g., the default: the EntireX efc directory).

54

EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Using the XML Objects During Runtime
The XML file can also be used during runtime. It must be defined in the same way as the TOR file.

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("...\\calc.xml")

Storing TOR Files in a Tamino Database

To store and use TOR files in a Tamino database, Tamino 4.2.1 or higher and Internet Explorer 5
or higher are required.

Creating a Tamino Database for the TOR Files
In the EntireX etc directory an EntireXTorlno vrs.xml is provided. This file can be used to define
the schema in Tamino (_define function). It is very close to the DTD file. The XML files generated

can be directly stored in Tamino. The database prefix defined in Tamino must be defined in the
XML Options screen as well as the server name of the Tamino database.

Generate XML Options @

URL af DTD and =5L file:
||"I|Z|Z|:IZ.-".-"|:"3HH:-:.-"E rikires

Tamino Server Mame: ||.:..:a|h.;.3t

Tamino DB Prefic yaming/myDB/E ntireT orFile

aFk. Cancel

EntireX Broker ActiveX Control 55

Transaction Objects in Broker ActiveX Control

Loading Tamino Objects using the TOR Editor

When loading a Tamino object, the following dialog will be displayed:

Select Tamino Dbject '._IIEIFS__(I

Tamino Server Mame: |I|:n:alh|:|$t

Tamino DB Prefix; tamino/myDE A ntireiT orFile

Select by Object Mame j
] 8 Cancel |

If necessary, the Tamino server name and the Tamino database prefix can be changed here. The
name of the desired object can be entered directly or selected from the drop-down menu Select
by Object Name.

Storing Tamino Objects using the TOR Editor

When saving a Tamino object, the following dialog will be displayed:

Save Tamino Object [5_<|

Tamino Server Mame: |M
Taming DB Prefis: tamingmyDE A ntireT orFile

T amino Object Mame: |

QE. Cancel

If necessary, the Tamino server name and the Tamino DB prefix can be changed here. The name
of the object must be entered in the Tamino Object Name field. If a Tamino object with this name
already exists, you can overwrite the existing file or cancel the save operation.

56 EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Using Tamino Objects During Runtime

The Tamino object can also be used during runtime. It must be defined like the XML file:

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("Calc")

| Note: The name of the Tamino object is case-sensitive.

The Tamino server name and the Tamino DB prefix from the General XML Options screen are
used.

EntireX Broker ActiveX Control 57

58

7 Calling Broker ActiveX Control Remotely

= Setting up the Server Environment
= Setting up the Client Environment
= Testing the Connection

59

Calling Broker ActiveX Control Remotely

You can call Broker ActiveX Control remotely if you use it as an automation server. This means
you can use the Broker component from a separate process - either on the same machine or on
another machine in the network.

Setting up the Server Environment

To configure the security settings use Component Services from the Administrative Tools in the
Control Panel.

Below is a step-by-step guide on how to configure the server environment:

Step 1

Open the Component Services on the server.

The following dialog box will be displayed:

B=1E

@ File Action View ‘Window Help — & J
¢ =» @m 2 T EE=G
(] Console Rook A | Enkirey Broker Activer Control O objeck(s)

= @ Compaonent Services
= D Computers
= @ My Compuber
+-(_] CoM+ Applications
=1-(Z0 DCoM Config
+ AccStore Class
Entire Connection Comms Server
EntireConnection, Terminal
irex Broker Acl 2 Cantrol

+

¥
m
=2
2
=
ll
?-C =
= 2
o &
o
g C
=] 3
2
<

Select EntireX Broker ActiveX Control in the DCOM Config list box and choose the properties
from the context menu.

The following dialog box will be displayed:

60 EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

EntireX Broker ActiveX Control Properties

General |Locatinn Security | Endpoints | [dentity

Application Name:
Application [0
Application Type:
Authentication Level:

Local Path:

General properties of this DCOM applization

Entirel Broker Activel Contral

{FF4C2803-82ER-11CF-9817-0000C0C39393)

Local Server

QK] l Cancel Apply

Step 2

Click the Security tab.

EntireX Broker ActiveX Control Properties

General Locatinn| Security |Endp0ints |dentity

" Cugtomize

Access Permigsions

&+ Use Default

" Customize

" Use Default

&+ Customize

Launch and Activation Permissions

i

i

Configuration Permizzions

Edit...

QK H Cancel l Apply

EntireX Broker ActiveX Control

61

Calling Broker ActiveX Control Remotely

In the dialog box displayed above, keep the defaults for access, launch and configuration permis-
sions.

Step 3

Click the Identity tab.

EntireX Broker ActiveX Control Properties

General | Location || Security | Endpoints | dentity

which uzer account do wou want bo uze to un thiz application?

" The interactive user.

" This user.

[[1]8 H Cancel l

There are three options to define the user account to be used to run the application:
® The interactive user

This implies that a user with permission to launch the application must be logged on to the
server machine.

® The launching user

This implies that an account must be created on the server machine with the same username/pass-
word as on the client machine. This account will then be used to launch the application.

® This user
A final option is to specify a user account to be used when launching the application.
In each case, the username/password of the client machine must also exist on the server machine.

Select one of the options and choose OK to return to the Component Services.

62 EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

Step 4
Click on My Computer and choose the properties from the context menu.

([console Rook
= @ Cormponent Services
—-|_7] Computer
= I ompuker
+-|_] COM+ Applications
—-|_7] DComM Config

The following dialog box will be displayed; click on the Default Properties tab.

My Computer Properties [ng

Default Pratocols MSDTC COR Security
General Options Default Properties

[+ ‘Enable Distibuted COM on thiz compute

[Epable COM Internet Services on this computer
Default Distributed COKM Communication Properties
The Authentication Level specifies security at the packet level.

Default Authentication Lewvel;

Call |

The impersonation level specifies whether applications can determing
who iz calling them, and whether the application can do operations
uzing the client's identity.

Default |mperzonation Level:

Identify |

Security for reference tracking can be provided if authentication iz uged
and that the default imperzonation level iz nat anonymous.

I Provide additional security for reference tracking

[QK.] [Cancel] [Apply]

Choose the options as shown in the dialog box above.
Step 5

Click on the COM Security tab.

EntireX Broker ActiveX Control 63

Calling Broker ActiveX Control Remotely

My Computer Properties

Gerneral Optiong Default Properties
Default Protocols MSDTC COM Security

Access Permizsions

Y'ou may edit wha iz allowed default access to applications. You may
alzo zet limitz on applications that determine their own permizgions.

Edit Limits...

Launch and Activation Permissions

Y'ou may edit wha iz allowed by default ta launch applications or
activate objects, vou may alzo zet imitz on applications that
determine their awn permizsions.

Edit Limitz... Edit Default...

[QK] l Cancel l [Apply]

In the Launch and Activation Permissions area of the dialog box displayed above, choose Edit
Default. The following dialog box will be displayed:

LLaunch Permission

Security Limits]

Group or user names:

m Everyone

Add... | Bemove |

Permizzions for Administrators Allow Deny

Local Launch
Femote Launch
Local Activation

HEEE
ooOood

Femote dctivation

ak. | Cancel

64 EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

Make sure that either the user corresponding to the client machine account, or a group to which
the user belongs, has Allow Launch as Type of Access.

Choose OK in this screen and then Apply, and exit Component Services on the server.

Setting up the Client Environment

The EbxProxy.dll is installed by default on the server in directory <drive>:\ Software AG\ EntireX \ bin.
Copy the file from the server machine to the client machine.

The DLL must then be registered with: REGSVR32 <path>\EBXproxy.d11.

To configure the client environment use Component Services from the Administrative Tools in
the Control Panel.

Below is a step-by-step guide on how to configure the client environment:
Step 1

Open the Component Services on the client.

The following dialog box will be displayed:

i#:Com ponent Services E| El E|

@ File Action Wiew Window Help = J
&+ mm @ T
[Console Root # | | Entired Broker ActiveX Contral 0 objeck(s)

= @ Camponent Services
-1-[_1] Computers
= @ My Compuber
+-[_1] COM+ Applications
-1-[_7] DCoM Config

+ AccStore Class
+ Enkire Connection Comms Server
+ EntireConnection, Terminal
EntireX Broker Activer Control
+ Entirei, NatIDL v

Select EntireX Broker ActiveX Control in the DCOM Config list box, choose the properties from
the context menu and click the Location tab.

EntireX Broker ActiveX Control 65

Calling Broker ActiveX Control Remotely

Step 2

EntireX Broker ActiveX Control Properties

General | Location | Secunty | Endpointz | [dentity

The following settings allow DCOM to lozate the correct computer far this
application. If vou make more than one zelection, then DCOM uzes the first
applicable one. Clent applications rmay overnide your zelections.

| Run application on the computer where the data is located.
-

v Fun application on the fallowing computer:

hostname or [P address Browsze. ..

ak. || Cancel || Apply

In the Location tab of the ActiveX Control Properties dialog box above, select the check box Run
application on the following computer: and enter either the hostname or the IP address of the
server machine.

Choose Apply and then OK.

66 EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

Step 3
Select My Computer and choose the properties from the context menu.

([console Rook
= @ Cormponent Services
—-|_7] Computer
= I ompuker
+-|_] COM+ Applications
—-|_7] DComM Config

The My Computer Properties dialog box will be displayed. Select the Default Properties tab.

Default Pratocols MSDTC COR Security
General Options Default Properties

[+ ‘Enable Distibuted COM on thiz compute

[Epable COM Internet Services on this computer
Default Distributed COKM Communication Properties
The Authentication Level specifies security at the packet level.

Default Authentication Lewvel;

Call |

The impersonation level specifies whether applications can determing
who iz calling them, and whether the application can do operations
uzing the client's identity.

Default |mperzonation Level:

Identify |

Security for reference tracking can be provided if authentication iz uged
and that the default imperzonation level iz nat anonymous.

I Provide additional security for reference tracking

[QK.] [Cancel] [Apply]

Choose the check box Enable Distributed COM on this computer, set the default authentication
level to Call and the default impersonation level to Identify.

Choose OK.

EntireX Broker ActiveX Control 67

Calling Broker ActiveX Control Remotely

Testing the Connection

You are now ready to test the connection between the client machine and the server machine.
Test the TCP/IP Connection

Test the TCP/IP connection between the client and the server (use, for example, PING).

Test the Remote Call

To test whether an application can be called remotely, you can use the OLE/COM Object Viewer:
Run the OLE/COM Object Viewer on the client.

The OLE/COM Object Viewer dialog box will be displayed:

s OLE/COM Object Viewer
File Object ‘iew Help

=3 &| 55 a

=I-|&] Object Classes A 9 Automation Dbjects

=1 |&] Grouped by Companent Category {40FCEEDS-2433-11CF-430B-050036F1 2502}

+ MET Categaory

3D DireckTransform
Active Scripking Engine
Active Scripting Engine with Authoring
Active Scripting Engine with Encoding
Active Scripting Engine with Parsing
Automation Objects
Contrals

Design Time UI Ackivatable Control
MZE0 Fealibee Fiae e

Regiztmy]

Cornponent Cateqories
{40FCAEDS-2438-11CF-A3DB-080036F 1 2502} [409] = Automatio

B R e

Ready

Select Automation Objects in the navigation frame to display a list of all the automation objects
on the client machine.

A screen similar to the one displayed below will be displayed:

68 EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

5. OLE/COM Object Viewer
File Cbject Yiew Help

B3| &| B m|

&gz Dixtkey Class *~ Entirei Broker Activel Control

Mo jcon

gz eCsharpBuild Class AriBEl E 7 C2803B2E6-11CF- 981 7-0000C0C39333)
e SharpCommonBuild Class -
d:;: CSharpCompiler Class Registy | Implementation | Activation | Launch Permissions] Access Permissions

@gz eC5harpDebug Class

@, eCSharpDeviceSettings Class
@, eCSharpGeneral Class

@, eCSharpyersion Class

@52 eCSharpiWebsettings Class
[E8 EffectBur Class

@, EFStaticExtenderPravider.?
@ Emboss ApplD

é:z Encoder Feature Segment {F7AC2803-B2EB- 1 1CF-9B17-0000C0C39393} [<no name:=] = EntireX Broker ActiveX Control
@f EncryptedData Class {F7AC2E03-B2ER-11CF-9617-0000C0C39393}F [RemateServertlame] = remoteserver
% EndpointsTable Class Broker BrokerCtrl, 1 = Entirex Broker Activex Control

@, EndUsershelExt Class CLSID = {F7AC2E03-B2EE-1 1CF-0E17-0000C0C39303)
2. EngControl Class

{F7 AZZ803-BZEB-1 1CF-9B17-0000C0C39393} [<no name=] = Entirex, Broker Activex Control
{F7AC2803-62E6-1 1CF-9817-0000C0C39393) [ApplD] = {F7ACZ803-62E6-11CF-9617-0000C0C39393}
ProglD = Broker.BrokerChrl 1

Programmable

TypelLib = {F7AC2500-B2EB-11CF-9617-0000C0C39393;

WersionIndependentProglD = Entirel,Broker, ACT

O oy)) O O O O O e

@) Insertable =
> Engine Class Typelib =
g Engrave {F7 ACZB00-B2E6-11CF-9617-0000C0C39393¢
3 EnlistmentEnumerator Class 1.0 = Entiret Broker Active)! Control
é Entire’ Broker ActiveX Control 0
%Z Entire:, MatIDL win32 = Ci\Program Files\Software AGYENtirexiBinlebxproxy dil
R, EnumInpttS;aquenceCheckers Class FLAGS = 2
&, EnumTask Class v HELFDIR = CH\Program FilesiSoftware AG\ERtreX|Bin
< >

Ready

Select EntireX Broker ActiveX Control, open its context menu and choose Create Instance.

If the remote call is successful, the EntireX Broker component on the server machine will be called
and the following screen will be displayed:

LE/COM Object Viewer
File Object Wiew Help

B3 S| 25

+ @@ EntireX Broker ActiveX Control M| Mojeon Entirei Braker Active Contral
_DBraker Arsible (74 C2803-B2E6-110F-961 7000000039393}
IConnectionPoinkContainet

. Registry | Implementation | Activation LaunchPermissions]Access Perriizziong
IDataCbject

? IDispatch
? I0leCache {F7 AC2803-B2E6- 1 1CF-9617-0000C0C39393} [<no name =] = Entirer Broker Activex Control
T 10leControl {F7AC2803-B2EB-11CF-9617-0000C0C39393} [AppID] = {F7AC2803-B2EE- 1 1CF-9617-0000C0C39393}
9 I0keInPlaceactiveOhject ProgID = Broker,BrokerCtrl, 1
G I0lelnPlacebiect Programmable
9 IOIeInP_Ic'-ceObJ'nect'v\’indo\f\"ess Typelib = {F7ACZ800-E2EE-1 1CF-9B1 7-0000C0C 35393}
7 10leObject versionIndependentProgID = Entire Broker, ACT
? IPerPropertyBrowsing AppID
? IPEFSFt {F7 AZZ2803-BZE6-1 1CF-9617-0000C0C39393} [<no name=] = Entirex, Broker Activex Control
T IPEFSHStMEFﬂDW {F7AC2803-B2E6-11CF-9517-0000C0C 39393} [Remate Serverilame] = remoteserver
b IPEFSFtPFUDEFtYBag Broker.BrokerChrl.1 = Entire Broker Activel Control
7 IPersiststorage CLSID = {F7AC2B03-B2E6-1 1CF-0E17-0000C0C39393)
? IPersistStreamInit Insertable =
? IProvideClassInfao Typelib =
? IPro_‘fiEhBC_lassInF02 {F7AC2800-B2EE-1 1CF-981 7-0000C0C 395393}
9 IqQuickctivate 1.0 = Enkire Broker Activex Contral
? I5pecifyPropertyPages 0
? TUnknawn win32 = C:\Program Files)Software AG\EntireX\Binebxprosy . dil
9 IViewohiect FLAGS = 2
Z I\’Iewob]ettf v HELPDIR = C:\Program Files)Software AE\Entirex|Bin
< ¥
Ready

If you receive an error message (for example “Class not registered”) please check the following;:

EntireX Broker ActiveX Control 69

Calling Broker ActiveX Control Remotely

® the TCP/IP connection (with PING)
" the security definitions on the server with Component Services

" the remote server name on the client (this can also be checked with the OLE/COM Object
Viewer)

When the connection has been established, you will be able to run your application on the client.
Please remember that Broker ActiveX Control must be used as automation server. For information
on how to use Broker ActiveX Control with Visual Basic see Broker ActiveX Control as an Auto-
mation Server.

70 EntireX Broker ActiveX Control

8 Publish and Subscribe with Broker ActiveX Control

m Writing SUDSCHDEr APPIICALIONSvviiieeeee e

= Writing Publisher Applications

7"

Publish and Subscribe with Broker ActiveX Control

Broker ActiveX Control provides five Broker functions to enable publishing and subscription.
Publish and subscribe enables an application to send a message (publication) to multiple receivers
(subscribers).

This functionality is supported by the native COM interface as well as by the Transaction Object
Repository interface (TOR file).

Some examples of publish and subscribe for the native interface are given below.

Writing Subscriber Applications

A subscriber receives the publications that are sent by the publisher. Subscribers will only receive
publications that are sent after they have subscribed to a topic. Similarly, publishers can only send
a publication if at least one subscriber has already subscribed to a topic.

To learn more about a particular topic, see Writing Applications: Publish and Subscribe in the ACI
Programming documentation.

The methods, functions, properties and steps required to operate as subscriber are described here.

Methods

Method Description

InvokeBrokerFunction|Invoke the Broker function call.

GetReceiveData Return the most recently received publication as string.
Functions

These will be set in the function property. For all function calls, the UserID, Password (if security
Broker), Token and Topic properties must be set.

Function Option
Logon
Subscribe Option = None

Receive Publication|Option = None, Publication ID = NEW

Control Publication|Option = Commit

Unsubscribe Option = None

Logoff

72 EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

Properties

Property Description

APIVersion Must be set to 8 or above

Function See the Functions table.

Option Needed to receive and control publications.

UserID Your user ID.

Password Your password.

Wait Set an adequate amount of time to wait for a publication. The length of time
depends on your application and can be set to Yes to wait until a publication has
been received.

UOWstatus Broker returns the current status of the publication.

ReceiveBufferLength|Set to the maximum possible publication length.

Token Additional caller identifier. The combination of the user ID and the token must
be unique.

Topic The topic of the publication that is to be received. Use a topic that has been
registered with the EntireX Broker. Ask your broker administrator to get a valid
topic.

PubTication ID Always NEW for the first call to receive a publication. For subsequent messages,

reuse the received publication ID. See the step Check UOW status to find out
whether it is a multi-message publication.

A

Important: Please check the Error Status regularly; at least after every InvokeBrokerFunction.

» To operate as subscriber

QO &~ LW N

Set the APIVersion property to 8, the functionality Publish and Subscribe is only available
with API version 8 and above.

Set the BrokerID property for your EntireX Broker.
Set the UserID, Password (if required), Token and Topic properties.
Set the Option property to 0 (None).

Set the Function property to9 (Logon). You must be logged on to use the publish-and-subscribe
functionality.

Call the method InvokeBrokerFunction to perform the logon function. The application has
now been logged on to the EntireX Broker.

After successful logon to the Broker, set the function property to 19 (subscribe).

Call the method InvokeBrokerFunction tosubscribe. The application has now been subscribed
as anon-durable subscriber for this topic. If you want to be a durable subscriber, set the Option
property to Durable when calling the method InvokeBrokerFunction. To learn more about

EntireX Broker ActiveX Control 73

Publish and Subscribe with Broker ActiveX Control

the difference between durable and non-durable subscribers, see Concepts of Persistent Messaging
in the general administration documentation.

9 Setthe Wait property to the required value, for example 60s (s = seconds).

10 Set the Option property to 0 (None).

11 Set the PublicationID property to NEW.

12 Set the Function property to 18 (Receive Publication).

13 Set the ReceiveBufferlLength property to your maximum expected publication length (can
be up to 2048).

14 Call the method InvokeBrokerFunction to receive publications. The application will now
wait to receive a publication. With the current settings the application would receive a pub-
lication within 60 seconds or time out after 60 seconds. If the publication is larger than 2048
characters, Broker ActiveX Control will return an error. Assuming that an application has
received a publication, that publication now has a publication ID, assigned to it by the EntireX
Broker.

15 Get the received data with the method GetReceiveData.

16 The current status of the publication is stored in the UOWstatus property. Check this UOWstatus
now. A UOWstatus of 12 (Received Only), means that the received publication has only one
message. A UOWstatus of 9 (Received First) means that you have received the first message
of a multi-message publication. In this case you should request the other messages of this
publication, until a UOWstatus of 11 (Received Last) is returned. See Concepts of Persistent
Messaging in the general administration documentation for more information. To inform the
EntireX Broker that the subscriber has received and retrieved the publication the subscriber
must commit this.

17 Donot change the PublicationID property. This is required to refer to the received publication.

18 Set the Option property to 10 (Commit).

19 Set the Function property to 21 (Control Publication).

20 Call the method InvokeBrokerFunction to control the publication.

21 Get the UOWstatus property and check the status. The value of the UOWstatus should now
be 5 (Processed). Your application may now run in a loop between steps 9 and 21 to receive
several publications.

22 Set the Option property to 0 (None).

23 Set the Function property to 20 (Unsubscribe).

24 Call the method InvokeBrokerFunction to unsubscribe. The application has now been unsub-
scribed from the topic.

25 Set the Function property to 10 (Log off).

26 Call the method InvokeBrokerFunction to log off. The application has now been logged off
from the EntireX Broker.

74 EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

C# Example with a simple Subscriber who has Received only one Publication

using System;

// add the

"EntireX Broker ActiveX Control" in COM references

using BrokerLib;

namespace Pubsub

{

class Classl

{

static BrokerClass ebx;
// EntireX Broker ACI definitions.
const int function_logon = 9;

const int function_logoff = 10;
const int function_subscribe =
const int function_unsubscribe

19;
= 20;

const int function_receive_publication = 18;

const int function_control_publication

21;

const int option_none = 0;
const int option_commit = 10;
const int uowstatus_receive_only = 12;

const int uowstatus_receive_last

11;

// procedure to invoke an entirex broker function call.
static bool invokeEBX(short function, short option)

{

}

bool rc = true;
ebx.0ption = option;
ebx.Function = function;
ebx.InvokeBrokerFunction();
// check the error status after the broker call.
if (ebx.ErrorCode != "00000000")
{
Console.WritelLine(ebx.ErrorMsg);
rc = false;
}
return rc;

[STAThread]
static void Main(stringl] args)

{

bool receive_error = false;
bool subscribe_error = false;
ebx = new BrokerClass();

ebx.APIVersion = 8;

ebx.BrokerID = "localhost";
ebx.UserID = "EBXUSER";
ebx.Token = "EBXTOKEN";
ebx.Topic = "NYSE";

EntireX Broker ActiveX Control 75

Publish and Subscribe with Broker ActiveX Control

Console.WritelLine("Log on");
if (linvokeEBX(function_logon, option_none))
return; // lTogon failed

Console.WritelLine("Subscribe");
if (linvokeEBX(function_subscribe, option_none))
subscribe_error = true; // subscribe failed

if (!subscribe_error)
{
ebx.PublicationID = "NEW";
ebx.ReceiveBufferlLength = 2048;
ebx.Wait = "60s";
// loop until all messages of the publication have been received.
do
{
Console.WriteLine("Receive Publication");
if (linvokeEBX(function_receive_publication, option_none))
{
receive_error = true; // receive failed

break; // cancel the while Toop
}
else
{
// work with the received publication.
Console.WriteLine(ebx.GetReceiveData());
}
} while ((ebx.UOWStatus != uowstatus_receive_only) &&
(ebx.UOWStatus != uowstatus_receive_last));

if (lreceive_error)

{
Console.WritelLine("Control Publication");
invokeEBX(function_control_publication, option_commit);
// the publication status should be 5 (= processed)

Console.WritelLine("Publication status = " + ebx.UOWStatus);
}

Console.WriteLine("Unsubscribe");

invokeEBX(function_unsubscribe, option_none);
}

Console.WritelLine("Log off");
invokeEBX(function_logoff, option_none);

76

EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

Writing Publisher Applications

The publisher sends publications to subscribers. Publications will fail if there is no subscriber for
this topic. See Writing Applications: Publish and Subscribe in the ACI Programming documentation
for a list of the valid topics.

The methods, functions, properties and steps required to operate as Publisher are described below.

Methods
Method Description
InvokeBrokerFunction Invoke the broker function call.

SetSendData or SetSendDatalong|Set the publication to be sent.

Functions

These will be set in the Function property. For all function calls, the UserID, Password (if secure
Broker), Token and Topic properties must be set.

Function Option

Logon
Send Publication |Option = Sync, Publication ID = NEW.

Control Publication |Option = Commit. A publication can also be committed with function=send_publication
option=commit.

Logofft

Properties

Property Description

APIVersion Must be set to 8 or above.

Function See the function table.

Option Needed to send and control publication.

UserlID Your user ID.

Password Your password.

Wait Must be set to NO.

UOWstatus Broker returns the current status of the publication.

Token Additional identifier of the caller. The combination of the user ID and the token must be
unique.

EntireX Broker ActiveX Control 77

Publish and Subscribe with Broker ActiveX Control

Property Description

Topic The topic of the publication that is to be received. Use a topic that has been registered

with the EntireX Broker. Ask your Broker administrator to get a valid topic.

PubTicationID|Always NEW for the first call to send a publication. If you want to send a multi-message

publication, reuse the received publication ID to send the other messages.

A

Important: Please check the Error Status regularly; at least after every InvokeBrokerFunction.

» To operate as publisher

1 Set the APIVersion property to 8, the publish-and-subscribe functionality is only available
with API version 8 or above.

2 Set the BrokerID property for your EntireX Broker.

3 Setthe UserID, Password (if required), Token and Topic properties.

4 Set the Option property to 0 (None).

5 Set the Function property to 9 (Logon). You must log on to use the publish-and-subscribe
functionality.

6 Call the method InvokeBrokerFunction to perform the Logon function.
The application has now been logged on to the EntireX Broker.

7 Set the Option property to 10 (Commit).

8 Set the Function property to 17 (Send Publication).

9 Setthe Wait property to NO.

10 Set the PublicationID property to NEW.

11 Call the method SetSendData or SetSendDatalong to set the publication data.

12 Call the method InvokeBrokerFunction to send the publication.

13 Get the UOWstatus property and check this. It should be 2 (Accepted).
A publication has now been sent. Please note that the publication will fail if there are no
subscribers to this topic. If your publication has more than one message, the steps beginning
with Set the Option property to 10 (Commit) will change. See Concepts of Persistent Messaging
in the general administration documentation.

14 Set the Option property to O (None).

15 Set the Function property to 10 (Logoff).

16 Call the method InvokeBrokerFunction to log off.
The application has now been logged off from the EntireX Broker.

78 EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

C# Example with a simple Publisher who Sends only one (single-message) Publication

using System;
// add the "EntireX Broker ActiveX Control" in COM references
using BrokerLib;

namespace Pubsub
{
class Classl
{
static BrokerClass ebx;
// EntireX Broker ACI definitions
const int function_logon = 9;
const int function_logoff = 10;
const int function_send_publication = 17;
const int function_control_publication = 21;
const int option_none = 0;
const int option_commit = 10;

// procedure to invoke an entirex broker function call
static bool invokeEBX(short function, short option)
{
bool rc = true;
ebx.0ption = option;
ebx.Function = function;
ebx.InvokeBrokerFunction();
if (ebx.ErrorCode != "00000000")
{
Console.WriteLine(ebx.ErrorMsg);
rc = false;
}
return rc;
}

[STAThread]
static void Main(string[] args)
{
ebx = new BrokerClass();
String s = "A small c# publisher example with EntireX Broker ActiveX <
Control.";

ebx.APIVersion = 8;

ebx.BrokerID = "localhost";
ebx.UserID = "EBXUSER";
ebx.Token = "EBXTOKEN";
ebx.Topic = "NYSE";

Console.WritelLine("Log on");
if (linvokeEBX(function_logon, option_none))
return; // lTogon failed

EntireX Broker ActiveX Control 79

Publish and Subscribe with Broker ActiveX Control

ebx.Wait = "NO"; // set to NO because we cannot receive data
ebx.PublicationID = "NEW";

ebx.SetSendDatalong(s, s.Length); // set the sent data

Console.WritelLine("Send Publication");
invokeEBX(function_send_publication, option_commit);

// Check the status of the UOW. It should be 2 (= Accepted).
Console.WritelLine("Publication status = " + ebx.UOWStatus);

Console.WritelLine("Log off");
invokeEBX(function_logoff, option_none);

80

EntireX Broker ActiveX Control

9 Reference - Broker ActiveX Control

= Methods of Broker ActiveX Control ..

= Properties of Broker ActiveX Control

81

Reference - Broker ActiveX Control

Methods of Broker ActiveX Control

This section describes the methods of Broker ActiveX Control.

Broker ACI

The following methods are useful for writing applications using the native interface.

Method

Description

BSTR GetReceiveData()

Return the received data inner string

BSTR GetErrorText()

Return the last received error message.

BOOL SetSendDatalong(String, Long) or Copy user's data buffer into the send buffer.

BOOL SetSendData (String, Short)

BOOL InvokeBrokerFunction() Invoke the broker function call. Set the properties
Function and Option.

Transaction Objects

Method Description

Bool DefineTOMethods(String) Starts the TO editor. If you specify a valid TOR name, this TO

is then loaded into the editor. If a valid TOR name is not
specified, the currently loaded TO will be displayed or an
empty editor will be started.

Bool LoadTransObject(String)

Loads and initializes a transaction object. You must specify a
valid TOR file name; otherwise FALSE will be returned.

Object CreateTransObject(String)

Loads and initializes a transaction object. You must specify a
valid TOR file name. An object reference will be returned,
which can be used to call the methods defined in the TO. If
loading fails, a null reference will be returned.

Object CreateTransObjectSA(String)

This method uses the safe array implementation for arrays
instead of the collection implementation. If you experience
problems accessing arrays with an automation controller, try
using this method to instantiate a TOR object.

82

EntireX Broker ActiveX Control

Reference - Broker ActiveX Control

Properties of Broker ActiveX Control

Most properties of Broker ActiveX Control correspond to the Broker ACI fields. The properties
must be set to the appropriate values before using any function.

If transaction object repository (TOR) files are used, it will not be necessary to set all the properties.
See section Transaction Objects in Broker ActiveX Control. The properties can also be supplied
by means of the property pages (see Using the Property Pages in section Writing Applications -

Broker ActiveX Control).

Property Name

Broker ACI Field

Format

Length

API
Version

Description

Adapterkrror

not used

String

8

2

AdCount

not used

Long

2

APIVersion

API-VERSION

Short

2

Possible values: 1, 2, 3, 4, 5,
6,7,8,9.

The default is 2. This value
can be changed dynamically
by setting the property. If
the current value of the
FunctionorOption
property requires a minimal
API version, the value of
APIVersion will be
adjusted automatically.

BrokerID

BROKER-ID

String

32

Target Broker ID. See Using
the Broker ID in Applications
in the ACI Programming
documentation and details
on TCP/IP in Transport
Methods under Writing
Applications: Client and
Server | Publish and Subscribe
in the ACI Programming
documentation.

BrokerSecurity

KERNELSECURITY

String

ClientUserid

CLIENT-UID

String

32

The partner's user ID.

EntireX Broker ActiveX Control

83

Reference - Broker ActiveX Control

Property Name

Broker ACI Field

Format

Length

API
Version

Description

CommitTime

COMMITTIME

String

17

7

Readonly property.
Time when UOW was
committed.

Format:
YYYYMMDDHHMMSSms
ms = milliseconds in
Possible Values field.

Compresslevel

COMPRESSLEVEL

String

Compression level. Possible
values: N/Y/0-9.

The first character of the
string will be used as the
compression value. If you
type YES, the character Y
will be used and ES will be
cut off. Example:
Brokerl.CompressLevel =
"6".

See also Data Compression
under Writing Applications:
Client and Server | Publish
and Subscribe in the ACI
Programming
documentation.

ConvID

CONV-1ID

String

Conversation ID, see
Managing Conversation
Contexts under Writing
Applications: Client and
Server in the EntireX Broker
ACI Programming
documentation.

ConvStatus

CONV-STAT

Short

Contains the status of the
conversation when the
RECEIVE function is
complete. See Managing
Conwversation Contexts under
Writing Applications: Client
and Server in the EntireX
Broker ACI Programming
documentation. Possible
values:

1 NEW

2 OLD

3 NONE

84

EntireX Broker ActiveX Control

Reference - Broker ActiveX Control

AP

Property Name Broker ACI Field Format |Length Version |Description

EncryptionLevel ENCRYPTION-LEVEL Short 6 Possible values: 0, 1, 2. See
Encryption under Writing
Applications using EntireX
Security in the ACI
Programming
documentation.

Environment ENVIRONMENT String (32 1

ErrorCode ERROR-CODE String |8 1 Broker error code, see Error
Handling under Writing
Applications: Client and
Server | Publish and Subscribe
in the ACI Programming
documentation.

ErrorMsg not used String |40 1 Contains the error message
to the corresponding error
code.

ForcelLogon FORCE-LOGON Boolean 6 Possible values: Y, N.

Function FUNCTION Short 1 The functions to be

Possible values: performed by Broker.
1 SEND
2 RECEIVE
4 UNDO
5 EOC
6 REGISTER
7 DEREGISTER
8 VERSION
9 LOGON
10 |LOGOFF
13 [SYNCPOINT
14 |KERNELVERS
17 |SEND_PUBLICATION
18 |RECEIVE_PUBLICATION
19 |SUBSCRIBE
20 |UNSUBSCRIBE
21 |CONTROL_PUBLICATION
LocaleString LOCALE-STRING String |40 4 For sending locale strings to

the broker (see Using
Internationalization in

EntireX Broker ActiveX Control

85

Reference - Broker ActiveX Control

Property Name Broker ACI Field Format |Length C:rlsion Description
Writing Applications - Broker
ActiveX Control).
Messageld not used String |32 2
MessageType not used String (32 2
NewPassword NEWPASSWORD String |32 2
Option OPTION Short 1
Possible values:
0 NULL
1 MSG
2 HOLD
3 IMMED
4 QUIESCE
5 EOC
6 CANCEL
7 LAST
8 NEXT
9 PREVIEW
10 COMMIT
11 BACKOUT
12 SYNC
13 ATTACH
14 DELETE
15 EOCCANCEL
16 QUERY
17 SETUSTATUS
18 ANY
19 no longer used
20 DURABLE
21 CHECKSERVICE
Password PASSWORD String |32 1
ReceiveBufferLength|RECEIVE-LENGTH Long 3 Length of the receive buffer.
ReceiveBufferSize |RECEIVE-LENGTH Short 1 This is an old property. Can
be used instead of
ReceiveBufferlLength -
for buffers with less than
32 KB only.

86

EntireX Broker ActiveX Control

Reference - Broker ActiveX Control

Property Name Broker ACI Field Format |Length C:rlsion Description

ReturnDatalength RETURN-LENGTH Long 3 Length of returned data.

ReturnlLength RETURN-LENGTH Short 1 This is an old property. Can
be used instead of
ReturnDatalength - for
buffers with less than 32 KB
only.

SecurityToken SECURITY-TOKEN String |32 2 This is handled
automatically, but can be
filled in by the user if
required.

SendBufferSize Short 1 No longer used.

ServerClass SERVER-CLASS String (32 1 These three Broker

ServerName SERVER-NAME String (32 |1 parameters form the target
service.

Service SERVICE String |32 1

Store STORE Short 2 Possible values:

0 NULL
1 OFF
2 BROKER

Token TOKEN String |32 1

UOWID UOWID String |16

UOWStatus UOWSTATUS Short 3

Possible values:

0 NONE

1 RECEIVED

2 ACCEPTED

3 DELIVERED

4 BACKEDOUT

5 PROCESSED

6 CANCELLED

7 TIMEOUT

8 DISCARDED

9 FIRST

10 MIDDLE

11 LAST

12 ONLY
UOWStatusPersist UOW-STATUS-PERSIST Short 3

EntireX Broker ActiveX Control

87

Reference - Broker ActiveX Control

Property Name

Broker ACI Field

Format

Length

API
Version

Description

UOWTime

UWTIME

String

3

UserData

USER-DATA

String

16

2

This field is not converted
by the Broker. If the field
contains H'00', only the data
up to the first H'00' will be
sent.

UserlID

USER-ID

String

32

User ID.

UserStatus

USTATUS

String

32

Wait

WATT

String

Possible values: Yes No
<n>S - waiting n Seconds
(max 99999) <n>M - waiting
n Minutes (Max 99999)
<n>H - waiting n Hours
(max 99999). See Blocked and
Non-blocked Broker Calls
under Writing Applications:
Client and Server in the
EntireX Broker ACI
Programming
documentation.

Topic

String

Required for handling with
publish and subscribe.

PublicationID

String

Required for handling with
publish and subscribe.

UOWStatusLife

String

88

EntireX Broker ActiveX Control

	EntireX Broker ActiveX Control
	Table of Contents
	Preface
	1 Broker ActiveX Control Introduction
	Broker ACI
	Transaction Objects

	2 Writing Applications - Broker ActiveX Control
	Calling a Broker Function
	Setting the Broker ActiveX Properties
	Specifying the Send Parameters
	Calling the Broker Function
	Getting the Contents of the Receive Buffer
	AboutBox

	Viewing the Type Library
	Adding the Broker ActiveX Control Component to Visual Studio
	Using Internationalization with Broker ActiveX Control
	Using the Property Pages
	General Page
	Function Page
	Parameters Page
	Results Page

	3 Broker ActiveX Control with Visual Basic
	Step 1: Instantiate EntireX Broker ActiveX Control
	Step 2: Instantiate the Transaction Object
	Step 3: Call Methods
	Step 4: Access the Returned Data
	Scalars
	Structures
	Arrays and Records Exposed as Collections
	Arrays and Records Exposed as Safe Arrays

	Step 5: Cleanup Resources
	Step 6: Error Handling in Transaction Object Methods
	Examples: Writing an ACI Client and Server with Broker ActiveX Control
	Writing an ACI Client with Broker ActiveX Control
	Writing an ACI Server with Broker ActiveX Control

	4 Using Broker ActiveX Control with Active Server Pages
	Prerequisites
	Designing a Web Page with ASP and Broker ActiveX Control
	Creating an Instance of the ActiveX Control and the Transaction Object
	Calling a TOR Method
	Accessing the Data
	Scalars
	Structures
	Arrays
	Records

	Using Broker ActiveX Control in Multiple Pages

	5 Using Broker ActiveX Control with .NET
	Using Broker ActiveX Control with Visual Studio .NET
	Using Custom Data Types

	A Small Visual Basic .NET Example

	6 Transaction Objects in Broker ActiveX Control
	Advantages of Transaction Objects
	Calling the Transaction Object Editor
	Managing TOR Files
	File Menu
	Edit Menu
	Options Menu
	Help Menu

	Defining Methods
	Connection
	Call Type
	Parameters
	Defining a Parameter List
	List Control
	Data Conversion
	Implemented Data Types

	Return Object

	Specifying Connection Information
	Connection Information Parameters
	Setting the Broker Call Parameters
	Visual Basic Example

	Defining Custom Data Types
	Custom Data Type 'Alias'
	Custom Data Type 'Array '
	Custom Data Type 'Record'
	Custom Data Type 'Structure'

	TOR Files in IDL Format
	Conversion Rules

	TOR Files in XML Format
	Loading an XML File
	Saving an XML File
	The DTD File
	Defining the Location of the DTD and XSL File
	Using the XML Objects During Runtime
	Visual Basic Example

	Storing TOR Files in a Tamino Database
	Creating a Tamino Database for the TOR Files
	Loading Tamino Objects using the TOR Editor
	Storing Tamino Objects using the TOR Editor
	Using Tamino Objects During Runtime
	Visual Basic Example

	7 Calling Broker ActiveX Control Remotely
	Setting up the Server Environment
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Setting up the Client Environment
	Step 1
	Step 2
	Step 3

	Testing the Connection
	Test the TCP/IP Connection
	Test the Remote Call

	8 Publish and Subscribe with Broker ActiveX Control
	Writing Subscriber Applications
	Methods
	Functions
	Properties
	C# Example with a simple Subscriber who has Received only one Publication

	Writing Publisher Applications
	Methods
	Functions
	Properties
	C# Example with a simple Publisher who Sends only one (single-message) Publication

	9 Reference - Broker ActiveX Control
	Methods of Broker ActiveX Control
	Broker ACI
	Transaction Objects

	Properties of Broker ActiveX Control

