
CentraSite

Implementation Concepts

Version 9.6

April 2014

This document applies to CentraSite Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-IG-DEPLOY-96-20140318

Table of Contents

Preface .. vii
1 Overview of CentraSite ... 1

Design-Time Features and Benefits ... 2
Run-Time Features and Benefits .. 3

2 Implementation Decisions and Configuration Tasks .. 5
Issues to Consider Before Implementation .. 6
Configuration Checklist ... 6

3 Obtaining and Installing the Starter Kit .. 9
4 Choosing a Deployment Strategy .. 11

Deploying CentraSite to Support Your SDLC .. 12
Deployment Options .. 12
Deployment Considerations .. 14

5 Defining Your Organizational Structure ... 15
What is an Organization? ... 16
The Default Organization .. 17
Child Organizations ... 17
Consumer Organizations ... 18
Modeling Your Organizations .. 19
Choosing an Organizational Strategy .. 20

6 Setting Up Users and Groups .. 23
Adding Users to CentraSite ... 24
Using CentraSite with an External Naming Directory .. 25
Bootstrap Users, Organization Administrators and Primary Contacts 25
Guest Users .. 27
Issues to Consider When Adding Users to CentraSite .. 27
Defining and Using Groups in CentraSite ... 28
Ways in Which CentraSite Uses Groups .. 28
System-Defined Groups Available in CentraSite ... 28
Using Groups from Your External Authentication System 29

7 Using Permissions and Roles to Manage Access to the Registry 31
Instance-Level Permissions .. 32
Role-based Permissions .. 35
Issues to Consider when Working with Permissions ... 37
Roles ... 38

8 Customizing Your Asset Catalog .. 41
Creating Custom Types .. 42
Defining and Using Taxonomies .. 47
Creating Custom Association Types .. 50
Working with Asset Types, Taxonomies and Association Types in a Multi-Stage
Environment ... 51
Issues to Consider when Customizing Your Registry ... 52

9 Defining Lifecycle Models ... 55
How Lifecycle Models Help You Organize Your Assets ... 56

iii

How Lifecycle Models Help You Govern Your Assets .. 56
Lifecycle Model States and Transitions .. 57
Associating a Lifecycle Model with an Asset Type .. 60
System-Wide vs. Organization-Specific Lifecycles .. 61
When to Use Lifecycle Models ... 62
Lifecycle Stages .. 62
Creating a Lifecycle Model for a Single-Stage Environment 63
Issues to Consider When Using Lifecycle Models in a Single-Stage
Environment ... 67
Creating a Lifecycle Model for a Two-Stage Environment 67
Issues to Consider When Using Lifecycle Models in a Two-Stage
Environment ... 70
Updating Assets That Are Under Lifecycle Management 71
Reverting an Asset to a Previous State ... 72
Managing Lifecycle Models ... 73

10 Defining Design/Change-Time Policies ... 75
What is a Design/Change-Time Policy? ... 76
System-Wide vs. Organization-Specific Policies .. 78
Policy Priority ... 79
Pre-Operation and Post-Operation Event Types .. 79
What Happens When a Design/Change-Time Policy Executes? 80
OnTrigger Policies .. 80
Typical Uses for Design/Change-Time Policies ... 81
Issues to Consider When Developing Design/Change-Time Policies 83
Managing Design/Change-Time Policies ... 84

11 Working with Versions and Revisions .. 87
What is Versioning? .. 88
Which Objects Can You Version? ... 88
What is a Revision? .. 89
System-Assigned Version Identifiers vs. User-Assigned Version Identifiers 89
Using Versions to Avoid Enforcement Gaps in Policies and Lifecycle Models 89
When Should You Version an Asset? ... 90
How Do Lifecycles and Versioning Relate? ... 91
Managing the Transition to a New Version ... 91
Versioning in CentraSite vs. Versioning in Source Code Control Systems
(SCCS) ... 91
Cleaning Up Old Versions ... 92

12 Planning Your Run-Time Environment ... 93
Basic Components in the Run-Time Environment (when using webMethods
Mediator as the PEP) .. 94
Deploying CentraSite for Run-Time Governance .. 95

13 Implementing the Mediation Environment .. 99
Managing the Collection of Metrics ... 100
Managing the Collection of Events .. 101
Using CentraSite with Other Policy Enforcement Points 102

Implementation Conceptsiv

Implementation Concepts

Using CentraSite with Insight .. 102
14 Managing Run-Time Policies ... 103

Run-Time Policy Scope ... 104
Run-Time Policy Actions .. 106
Run-Time Policy Deployment .. 106
Creating and Testing Policies ... 107
Activating a Run-Time Policy .. 108
Modifying a Run-Time Policy .. 108
Lifecycle Model for Policies in a Multi-Stage Deployment of CentraSite 109

15 Managing Virtualized Services .. 111
Which Services Should You Virtualize? ... 112
The Basic Elements of a Virtual Service ... 115
Virtual Service Processing Steps .. 115
Configuring CentraSite for Virtual Services .. 118
Creating Virtual Services .. 123
Deploying a Virtual Service ... 124
Revising a Virtual Service .. 126

16 Identifying the Consumers of Virtual Services .. 131
How Are Consumer Applications Represented and Used in CentraSite? 132
How Does Mediator Identify Consumer Applications at Run Time? 133
Defining Application Assets in CentraSite .. 134
Deciding How to Identify a Consumer Application .. 135
Registering an Application Asset with a Virtual Service 136
Issues to Consider when Defining Applications .. 137

17 Managing Endpoints ... 139
Who Uses Endpoint Information? .. 140
How Service Endpoints Are Represented in CentraSite .. 141
Managing the Endpoints of a Native Service over its Lifecycle 142
Adopting a Naming Convention for Binding Names .. 144
Managing Endpoints of a Virtual Service over its Lifecycle 145
Deploying Multiple Virtual Services for a Single Native Service 146

vImplementation Concepts

Implementation Concepts

vi

Preface

This document describes concepts and considerations associated with implementing CentraSite
for different use-case goals. This guide is intended for the individuals who are involved with the
deployment and implementation of CentraSite, including the Enterprise Architects and
Implementation Leaders who are responsible for planning and managing the implementation of
CentraSite at their site.

Important: This guide provides suggested approaches and practices for implementing
CentraSite. However, you should always test that a particular approach or recommendation
to ensure that it satisfies the needs of your organization.

The content is organized under the following sections:

Provides a high-level overviewof themajor components in aCentraSite
environment.

Overview of CentraSite

Identifies the high-level decisions that you need to make and tasks you
need to complete when implementing CentraSite.

Implementation Decisions and
Configuration Tasks

Describes how to obtain and install a set of examples that you can
reference while preparing for your implementation.

Obtaining and Installing the
Starter Kit

Describes the approaches you can use to implement CentraSite in terms
of single- or multi-stage deployments.

Choosing a Deployment Strategy

Describes the role ofOrganizations in aCentraSite registry and identifies
issues you should considerwhen defining organizations for a CentraSite
implementation.

Defining Your Organizational
Structure

Describes the role of Users and Groups in a CentraSite registry and
identifies issues you should consider when defining organizations for
a CentraSite implementation.

Setting Up Users and Groups

Describes how CentraSite uses permissions and roles to control access
to registry objects and operations and identifies issues you should
consider when assigning roles and permissions to CentraSite users.

Using Permissions and Roles to
Manage Access to the Registry

Describes ways in which you can customize the registry to support the
types of assets thatmake up your SOAenvironment and identifies issues
you should consider when making these customizations.

Customizing Your Asset Catalog

Describes the versioning and revisioning capabilities in CentraSite and
discusses when to generate new versions of existing assets.

Working with Versions and
Revisions

Describes how CentraSite uses lifecycle models to enable governance
of assets in the registry and identifies issues you should consider when
applying lifecycle models to the assets in your SOA environment.

Defining Lifecycle Models

Describes how you can use design/change-time policies to control the
creation, modification and deletion of registry objects and identifies

Defining Design/Change-Time
Policies

vii

issues you should considerwhen applying design/change-time policies
to your registry.

Provides an overview of the components that make up the run-time
environment and describes how the components interoperate when
CentraSite is implemented across two stages.

Planning Your Run-Time
Environment

Describes issues to consider when configuring webMethods Mediator
for collecting performance metrics and logging. Also provides
information about using CentraSite with Insight.

Implementing the Mediation
Environment

Describes how to use run-time policies to enforce security policies,
perform logging tasks and monitor performance metrics for virtual
services.

Managing Run-Time Policies

Describes how to create virtual services, who should create virtual
services and when to create virtual services. Also discusses which
services you should consider virtualizing.

Managing Virtualized Services

Describes how consumer applications are identified at run time and are
specified at design time.

Identifying the Consumers of
Virtual Services

Describes howCentraSite represents the endpoints for services and how
to keep endpoint information up-to-date as a service moves through its
development lifecycle.

Managing Endpoints

Implementation Conceptsviii

Preface

1 Overview of CentraSite

■ Design-Time Features and Benefits .. 2
■ Run-Time Features and Benefits .. 3

1

Today's enterprises are rapidly adopting Service Oriented Architecture (SOA) as a strategy for
delivering business applications that can be developed and extended quickly.

CentraSite is a comprehensive and extensible SOA governance platform that you can deploy to
support numerous usage scenarios. CentraSite provides a single platform for design-time and
run-time governance, enabling enterprises to manage their Web services from the request stage
through the deployment and maintenance stages of their lifecycle.

Design-Time Features and Benefits

CentraSite supports the development of SOA-based applications by enabling developers, architects
and business analysts to:

■ Publish Web services and other reusable assets into their organization's central registry.
■ Discover Web services and other reusable assets and use them to assemble new applications.
■ Obtain detailed information about aWeb service, including the list of its consumers, its technical
support contacts, its disposition in the development lifecycle, usage tips and performance data.

■ Examine the relationships that a Web service has with other artifacts in the SOA environment
in order to understand how a change to that service will impact the service's sub-components
and dependants.

CentraSite supports an array of design-time tools that enable developers, architects and business
analysts to discover, publish and reuse SOA assets.

Managing the content of the registry is critical to the success of an SOA environment. To support
this effort, CentraSite's governance capabilities and tools enable administrators and architects to:

■ Control access to CentraSite and to individual assets listed in the registry.
■ Model the specific entities and artifacts that make up an organization's SOA environment.
■ Enable reuse of computing assets by providing easy access to in-depth information about an
artifact's technical properties, semantics and relationships to other artifacts in the SOA.

■ Define classification systems (taxonomies) to ensure that Web services and other assets can be
easily discovered and managed.

■ Impose mandatory testing, approval processes and/or quality checks on assets to ensure that
they adhere to organizational standards and policies.

■ Model the development lifecycle for a type of asset and specify policies that are to be triggered
when an asset transitions from one lifecycle state to another.

Implementation Concepts2

Overview of CentraSite

Run-Time Features and Benefits

CentraSite provides tools that support themanagement andmonitoring of services in the run-time
environment. Using CentraSite, administrators can define policies that execute on policy enforce-
ment points (PEPs) that reside between the consumer and the service endpoint. These policies
typically perform security-related activities (such as authentication and message encryption/de-
cryption), auditing/logging tasks and performance reporting functions.

WhenwebMethodsMediator is used as a policy enforcement point, administrators can define and
deploy “virtual services” into the run-time environment. Virtual services operate as consumer-
facing proxies for the endpoints where Web services are actually hosted. Besides performing se-
curity, logging and monitoring activities, a virtual service can also execute advanced mediation
steps such as message routing, load-balancing, failover handling and message transformation.

3Implementation Concepts

Overview of CentraSite

CentraSite supports the run-time environment by enabling you to:

■ Define and manage standard run-time policies.
■ Attach run-time policies to Web services and deploy the policies to specified PEPs in the run-
time environment.

■ Define and deploy “virtual services” to performmediation steps such as routing, load-balancing,
failover and/or message transformation.

■ Monitor the run-time performance of services and identify services that fail to meet specified
thresholds.

Out of the box, CentraSite provides support for the following policy-enforcement points and run-
time monitoring products:

■ webMethods Mediator, which is a PEP that provides policy enforcement, service mediation and
monitoring capabilities. webMethods Mediator enforces run-time policies that you create in
CentraSite.

■ webMethods Insight, which is amonitoring tool that enables you to seewhat is happening in real-
time with service transactions as they flow across any system. It provides visibility and control
at the transaction level to heterogeneous SOA environments.

CentraSite also includes a framework called SOALink, which enables it to interoperate with other,
third-party PEPs.

Implementation Concepts4

Overview of CentraSite

2 Implementation Decisions and Configuration Tasks

■ Issues to Consider Before Implementation ... 6
■ Configuration Checklist .. 6

5

This section describes decisions and issues you should consider while you are planning your im-
plementation of CentraSite. It also contains a checklist that summarizes the key configuration and
preparatory steps that must be completed during the implementation process.

Issues to Consider Before Implementation

Before you begin your implementation of CentraSite you should first define the goals and principles
that you want to achieve by establishing SOA governance. Here are some of the questions you
should think about beforehand:

■ Who are the stakeholders and what organizations do you want to reach with your SOA-gov-
ernance initiative?

■ What are their roles in the development of SOA artifacts?
■ What are the governance rules and processes that you want to establish?
■ What kind of artifacts do you want to manage utilizing CentraSite?
■ Howcanyou support better reuse by introducing company-wide classification schemes for assets?
■ How will you measure the success of your SOA environment and your SOA-governance initi-
atives?

■ What is the development lifecycle of your artifacts today and what should it be? What type of
stakeholder interactions occur during the lifecycle transitions?

Configuration Checklist

The following identifies the key configuration decisions and tasks that you will need to perform
in order to prepare your implementation of CentraSite for use.

■ Determine whether you will implement a single registry or multiple registries. See Choosing a
Deployment Strategy.

■ Install each instance of CentraSite and configure its connection to the external authentication
system. See Using CentraSite with an External Naming Directory.

■ Identify the organization structure you will use for each registry, identify organization admin-
istrators, and create the organizations. SeeDefining Your Organizational Structure and Setting
Up Users and Groups.

■ Determine whether the default role assignments given to the Users group are appropriate for
each organization and modify these assignments as necessary. See Consumer Organizations
and Configuring the Default Roles that CentraSite Assigns to Users in an Organization.

Implementation Concepts6

Implementation Decisions and Configuration Tasks

■ Identify the types of assets that you want to catalog in CentraSite and define new types and/or
customize the predefined types as necessary. Create the required taxonomies and/or association
types to support your customizations. See Customizing Your Asset Catalog.

■ Determinewhich asset types youwill place under lifecyclemanagement and create the required
lifecycle models. See Defining Lifecycle Models.

■ Determinewhich polices youwant to place on the objects in your registry and create the required
design/change-time policies to enforce these policies. SeeDefiningDesign/Change-Time Policies.

■ Create the Consumer Registration policy on each instance of CentraSite. See Using Policies to
Execute a Consumer Registration and The Consumer Registration Policy

If youwill be using CentraSite with webMethodsMediator for run-timemediation, youmust also
perform the following tasks to prepare CentraSite for use:

■ Define a target and a user account for eachwebMethodsMediator that is attached to an instance
of CentraSite. See Implementing the Mediation Environment.

■ Create the lifecycle model and associated policies required to enable deployment of virtual
services. See Defining the Lifecycle Model for Services and Virtual Services.

■ Define the process your site will use for creating, deploying, and promoting virtual services
and make sure that the participants in this process have the necessary permissions to perform
their assigned tasks. SeeManaging Run-Time Policies andManaging Virtual Services.

7Implementation Concepts

Implementation Decisions and Configuration Tasks

8

3 Obtaining and Installing the Starter Kit

Software AG provides a starter kit for CentraSite that include examples of many of the registry
objects that are described in this guide. You can install this kit to create a “demo” environment in
which many of the concepts presented in this document have been implemented.

To obtain the starter kit, go to the CentraSite Developer Community and follow the installation
instructions provided with the kit.

9

http://techcommunity.softwareag.com/ecosystem/communities/public/centrasite

10

4 Choosing a Deployment Strategy

■ Deploying CentraSite to Support Your SDLC ... 12
■ Deployment Options .. 12
■ Deployment Considerations ... 14

11

This section contains information you need to think about before deploying CentraSite in your
environment.

Deploying CentraSite to Support Your SDLC

When developingWeb services and other assets, most IT organizations follow a systems develop-
ment life cycle (SDLC) that includes at least the following basic phases:

■ Adevelopment phase, whenWeb services and other assets are requested and developed, individual
contributions are integrated and development tests are conducted.

■ A test phase, when services and other assets are tested in a controlled environment that mimics
production scenarios.

■ A production phase, when services and other assets are made operational. Generally, when an
asset reaches this stage the environment in which it resides is tightly controlled and access to
the asset itself is very restricted.

In CentraSite, the series of steps that make up your SDLC are represented by a lifecycle model. The
lifecyclemodel is customized to your environment and enables you to establish governance controls
over all phases of the SDLC for different types of assets.

Whenplanning yourCentraSite implementation, the first thing youmust do is choose a deployment
strategy that supports your organization's SDLCand its implementation requirements. The strategy
you choose will determine the number of stages (instances of a CentraSite registry) that your or-
ganization will maintain and how it will map the phases of its SDLC to these stages.

Deployment Options

This section presents three basic deployment strategies and describes how you might map the
phases of the SDLC to each of them. As a first step in planning your CentraSite implementation,
you should review the following strategies and choose the strategy that best supports your organ-
ization's SDLC and its governance objectives.

■ Single-Stage Deployment: In a single stage deployment, the entire SDLC is represented within
one instance of CentraSite. With this strategy, you deploy and maintain a single registry. The
assets that you place in the registry remain there over their entire lifecycle.

When you use the single-stage strategy, you map all three basic phases of the SDLC to a single
lifecycle model in CentraSite. To promote an asset through the SDLC (for example, to move it
from the development phase to the test phase), you simply switch the asset's lifecycle state in
the registry.

Implementation Concepts12

Choosing a Deployment Strategy

The following figure depicts a single-stage deployment. Note that the states that make up its
lifecycle comprise the full SDLC (from request to retirement).

Single-Stage Deployment

■ Two-Stage Deployment: In a two-stage deployment, the SDLC is split between two instances of
CentraSite. One instance, called the creation CentraSite, is used to manage assets during the de-
velopment and test phases of the SDLC. The other instance, called the consumption CentraSite,
manages assets that are in the production phase of the SDLC.

This strategy enables your organization to completely separate assets in the pre-production
phases from assets that are actually operational. (In some organizations, the physical separation
of development and production systems is necessary to satisfy legal regulations.)

When you use the two-stage approach, the SDLC is represented by two lifecycle models in
CentraSite. One lifecycle model exists on the creation CentraSite. This model represents the
states that make up the development and test phases of the SDLC. The other model exists on
the consumption CentraSite. It represents the states that make up the production phase of the
SDLC.

To promote an asset to a phase of its lifecycle that resides on another stage, you export the asset
from its current registry and import it into the registry that hosts the next phase of its lifecycle.

Two-Stage Deployment

■ Three-Stage Deployment: In a three-stage deployment, you deploy a separate registry for each
major phase of the SDLC (Development, Test, Production).

Each registry has a lifecyclemodel that represents the states thatmake up its phase of the SDLC.
As with any approach that involves multiple stages, you promote an asset from one phase to
the next by exporting the asset from its current registry and importing it into the registry that
hosts the next phase of the SDLC.

Three-Stage Deployment

13Implementation Concepts

Choosing a Deployment Strategy

Deployment Considerations

The deployment strategy you choose depends on factors such as your organization's policy require-
ments, standard processes and governance objectives. The following are points to consider when
selecting a strategy for your organization:

■ Realize that any deployment that involvesmultiple stages requires additional effort to configure
and administer. Also keep in mind that the promotion process for a multi-stage environment
will be more complex and time-consuming, because it involves physically exporting objects
from one registry and importing them into another. You should not deploy a multi-stage con-
figuration unless your organization has a compelling reason to do so. Aim for a deployment
strategy that aligns well with your organization's SDLC process, satisfies your organization's
governance objectives and uses the fewest number of stages.

■ If you intend to use CentraSite for both design-time governance and run-time governance,
consider using the two-stage deployment. This configuration enables you tomaintain one registry
formanagingWeb services (and associated assets) while they are in the development and testing
phases of their lifecycle and another registry for configuring, deploying and monitoring Web
services that are in the production phase of their lifecycle.

Although it is possible to use a single-stage deployment for both design-time and run-time
governance, such a configuration is suitable only for small or mid-size environments. Do not
use a single-stage deployment if you intend to use CentraSite to manage both the design-time
and run-time aspects of a large number of assets.

Note: If you expect your organization's registry to begin small and grow over time, you
are better off startingwith a two-stage deployment rather than attempting to switchwhen
you outgrow the single-stage configuration.

■ If youwill use CentraSite only for design-time governance, consider using a single-stage deploy-
ment. Deploying a multi-stage configuration for design-time governance does not generally
offer any benefits. You should only consider a multi-stage deployment in a design-time imple-
mentation if your organization has a specific need to physically separate the registry of assets
in the pre-production phases from the registry of assets in the production phase.

Implementation Concepts14

Choosing a Deployment Strategy

5 Defining Your Organizational Structure

■ What is an Organization? .. 16
■ The Default Organization .. 17
■ Child Organizations ... 17
■ Consumer Organizations .. 18
■ Modeling Your Organizations ... 19
■ Choosing an Organizational Strategy .. 20

15

After selecting your deployment strategy, you must define the organizational structure of your
registry. The structure you choose determines how the assets in your registry are organized. It
also plays a key role in controlling who can access various portions of the registry.

What is an Organization?

In CentraSite, an organization is a high-level container for the assets and other objects that make
up a CentraSite registry. Any object that is not an organization must belong to an organization.
You use organizations to partition your registry into autonomous collections of assets that you
can administer independently. Typically, you use organizations to arrange your registry around
functional lines of business, regional subsidiaries, branches, legal entities, departments, B2B
partners (e.g., suppliers and customers) or similar criteria.

By default, only users within an organization have permission to view the organization's assets.
If other users require access to the organization's assets, they must obtain explicit permissions to
do so. Thus, on a broad level, organizations enable you to restrict the visibility of a collection of
assets to a specified group of users.

Organizations also act as a scoping mechanism for the following registry functions:

■ Role-based permissions

Implementation Concepts16

Defining Your Organizational Structure

■ Lifecycle models
■ Design/change-time policies
■ Run-time policies
■ Supporting documents

For example, organization administrators can create lifecycle models and design/change-time
policies that apply only to the assets that belong to their organization.

An organization also represents a specific group of users within the registry. This quality allows
you to apply many permissions and capabilities collectively to all users in an organization.

The Default Organization

CentraSite is installed with one predefined organization called Default Organization. The default
organization owns the system-defined registry objects that CentraSite uses. You cannot delete the
default organization nor can you rename it.

As a best practice, you should avoid using the default organization as an ordinary organization.
Instead, treat it as the “home” for system-wide objects such as asset types, taxonomies, targets
and system-wide policies, and restrict membership in this organization to a small number of ad-
ministrative users.

Child Organizations

You can use parent-child associations to represent hierarchical relationships among organizations.
Parent-child relationships enable you to collectively administer certain aspects of the associated
organizations. For example, after you establish a parent-child relationship between organizations,
administrators can collectively grant roles and permission to users that belong to a parent organ-
ization or any of its children.Moreover, the administrator of a parent organization also has admin-
istrative control over the organization's descendants (meaning he or she canmanage users, assets,
policies, lifecycles and so forth within the parent organization and all of its descendants).

To create a parent-child relationship, youmust create the child organization fromwithin the parent
organization. A child organization functions just like an ordinary organization. It does not inherit
any characteristics from its parent. It has its own administrator (although the administrator of the
parent organization also has administrative privileges in the child organization) and it has its own
set of users, policies, lifecycle models and assets. A child organization can have additional child
organizations of its own.

As you define the organizational structure for your registry, identify organizations that you want
to relate in a hierarchical form and use parent-child relationships to reflect the hierarchy.

17Implementation Concepts

Defining Your Organizational Structure

When defining your organizational structure, keep the following points in mind with respect to
parent-child relationships:

■ A child organization can belong to only one parent.
■ Youmust create the parent organization first and then create the child from the parent. In other
words, you cannot create two unrelated organizations and then, at a later time, establish a parent-
child relationship between them.

■ Once you associate organizations in a parent-child relationship, you cannot disassociate the
organizations.

■ You cannot move a child organization to a different parent.
■ You cannot promote a child organization to become top-level parent organization.
■ A child does not inherit properties or objects from its parent (other than the fact that organization
administrators in the parent organization are automatically allowed to administer the child or-
ganization). Nor do the parent's organization-specific policies and lifecycles apply to its children.
A child organization creates and maintains its own policies and lifecycles independent of its
parent. In this respect, it is like any other organization. (To impose policies and lifecycles on all
organizations in the registry, you can create system-wide policies and lifecycles as described
later in this guide.)

Consumer Organizations

Bydefault, CentraSite gives every user in an organization the ability to act both as an asset consumer
(meaning the user can view assets in the registry) and an asset provider (meaning the user can
publish assets into the registry). CentraSite does this by assigning both the Asset Provider role
and the Asset Consumer role to the organization's Users group (the group comprising all users
in the organization).

If you have groups of users that will only consume assets (a group of external partners, perhaps),
consider creating a separate organization for just those users. Remove theAsset Provider role from
the organization's Users group so that the users in the organization have just the Asset Consumer
role. Any organization that wants to extend assets to these consumers can do so by giving the
consumer organization's Users group permission to view the assets.

Implementation Concepts18

Defining Your Organizational Structure

Modeling Your Organizations

Although you might be tempted to create an organizational structure that precisely mimics the
organization chart within your enterprise, this is not usually a practical strategy. Many low-level
organizational units within your enterprise have no relationship to your SOA environment and,
therefore, do not need to be represented in the registry. Furthermore, the low-level work groups
within an enterprise tend to be very dynamic, which makes them unsuitable entities on which to
base your registry's organizational structure.

Instead of organizing the contents of your registry around the low-level departments on an organ-
ization chart, group it by higher-level concepts such as functional units, lines of business, process
owners, legal entities (e.g., subsidiaries and affiliates) or regional divisions. Think in terms of who
owns the assets that will reside in the registry or has primary responsibility for developing and
maintaining them. Create organizations to represent those areas.

If you intend to give external partners access to CentraSite, create separate organizations for each
partner. (By partners we mean any external entities with which your enterprise interacts, such as
suppliers and other vendors, dealers and distributors, customers, government agencies, trade or-
ganizations and so forth.)

The following shows the organizational structure that is defined in the starter kit example. This
example has a level of granularity that is appropriate for defining organizations.

Example Organization Structure

19Implementation Concepts

Defining Your Organizational Structure

DescriptionOrganization

This organization serves as the home for administrative and system-wide artifacts.Default Organization

This organization represents Information Technology (IT) departments that operate
across (i.e., are shared by) other lines of business. This organization would include

Shared IT Services

theQualityAssurance (QA)department, the SOACompetencyCenter and individuals
who serve as enterprise-wide IT architects.

This organization is responsible for systems and services related to customer
management (from CRM to claims processing).

Customer Care

This organization represents the department responsible for providing external-facing
services including customer-facing portal sites and business-to-business services.

E-Commerce

This organization is the parent organization for all external partner organizations.
It is a “pseudo” organization that is used to hold organizations that represent external
parties.

Trading Partners

This organization represents an external partner that provides or consumes assets.
This organization is a child of the Trading Partners organization.

Acme Inc.

This organization represents an external partner that provides or consumes assets.
This organization is a child of the Trading Partners organization

Flowers.com

If you are using a multi-stage deployment, you might replicate the same organizational structure
across all registries. Or you might adopt a different structure in each registry. For example, on the
creation CentraSite you might use the organizational structure like the one described above.
However, on the consumptionCentraSite, youmight define just two organizations: an “operations
organization”, which owns and manages all of the assets in the registry, and a “consumer organ-
ization”, which contains users who can browse the consumption registry. The organizational
structure that you adopt for other stages will depend on your particular requirements.

Choosing an Organizational Strategy

Aside from choosing a deployment strategy, defining your organizational structure is one of the
most critical deployment decisions you will make. It is important to choose a structure that is
stable and will endure over time. After you establish your registry's structure and put your gov-
ernance processes in place, it is difficult to make fundamental changes to the way in which the
registry is organized. Such a change would not only require you to transfer assets to different or-
ganizations, but might also require you to redefine the lifecycle models, policies and permissions
that support your governance environment.

When planning your organizational strategy, take the following points into consideration:

■ In general, create organizations around the concept of asset visibility, ownership or responsib-
ility. In the pre-production stages, use organizations to represent themajor stakeholders involved
in the pre-production aspects of the asset's development lifecycle (e.g., service owners, developers
and the SOA Competency Center). In the production stage, use organizations to represent the

Implementation Concepts20

Defining Your Organizational Structure

groups of users who represent assets owners, consumers of assets and the operators of the
production services.

■ If a particular group of users requires the use of custom lifecyclemodels or design-time policies,
create a separate organization for those users.

■ If you have groups of users whose needs are “consumer only”, create separate consumer organ-
izations for those users.

■ Keep in mind that a user can belong to only one organization within a CentraSite registry. If
you have a userwhowill create assets formultiple organizations, add the user to the organization
in which he or she will work primarily. Then use roles to give the user the ability to create assets
in other organizations.

■ Keep in mind that an asset also belongs to only one organization. To make an asset accessible
to multiple organizations, you must give the users in those organizations permission to access
the asset.

■ Avoid creating an organizational structure that is too fine-grained. Keeping the structure of the
registry synchronized with your low-level development teams and work-units will require a
significant amount of work. Moreover, a fine-grained structure is generally not needed in order
to govern your assets effectively.

21Implementation Concepts

Defining Your Organizational Structure

22

6 Setting Up Users and Groups

■ Adding Users to CentraSite ... 24
■ Using CentraSite with an External Naming Directory ... 25
■ Bootstrap Users, Organization Administrators and Primary Contacts .. 25
■ Guest Users ... 27
■ Issues to Consider When Adding Users to CentraSite ... 27
■ Defining and Using Groups in CentraSite ... 28
■ Ways in Which CentraSite Uses Groups .. 28
■ System-Defined Groups Available in CentraSite .. 28
■ Using Groups from Your External Authentication System ... 29

23

Users represent individuals that are known to CentraSite. You assign roles and permissions to
users to specify which operations they can perform and which registry objects they can access.
(Roles and permissions are discussed in more detail later in this guide.) Groups enable you to
collectively assign roles and permissions to groups of users.

Adding Users to CentraSite

To interact with a CentraSite registry, an individual must have a user account with the registry.

A user account is represented by an instance of a User object. AUser object contains basic attributes
such as the name, email address and phone number for an individual. It also includes a link to
the individual's user account in an external authentication system. This attribute is required if the
User object represents an individual who will actually log on to CentraSite. You can customize
the User object type to include additional attributes as necessary.

A user account can be activated or deactivated by an administrator. Active users are allowed to
log on to CentraSite. Inactive users exist in the registry, but they are not permitted to log on to
CentraSite. Additionally, permissions cannot be granted to inactive users, inactive users cannot
be assigned ownership of an asset (although they will retain ownership of the assets that they
already own), nor can they be assigned to groups. Administrators generally deactivate users who
leave the company or otherwise cease to be valid users of the registry. If you want to delete a user
from CentraSite, you must deactivate the user first.

Tip: To keep your audit trail intact when a user leaves the registry, simply deactivate that
user and leave his or her existing assets in place. If you delete the user or transfer the user's
assets to someone else, the audit trail for those assets will be lost.

You can also use inactive users to represent individuals who are actors within your SOA environ-
ment, but are not actual users of the registry. For example, youmightmodel certain line-of-business
managers as “users” in the CentraSite registry so that you can express associations between these
individuals and various assets in the registry. Such users might never log on to CentraSite them-
selves, and therefore would not need to have an account that is active and linked to the external
authentication system. However, the registry would know of these users, so assets could be asso-
ciated with them. (Points-of-contact for external parties such as suppliers and distributors are
additional individuals that you might want to model as inactive users.)

Note: Because inactive users cannot be assigned to groups, users who are inactive are not
eligible to receive automatic email notifications from CentraSite. You might want to take
this point into consideration when deciding whether to make a user inactive or active.

Only users who belong to a role that includes the "Manage Users" permission can add, modify
and/or delete users on CentraSite. However, any user (including guests) can view other users of
the registry.

Implementation Concepts24

Setting Up Users and Groups

Using CentraSite with an External Naming Directory

AlthoughCentraSitemaintains its owndatabase of user accounts, it authenticates users externally,
either through the local operating system or an external directory service such as Active Directory
or a Lightweight Directory Access Protocol (LDAP) server. Because authentication is handled by
an external facility, it is not necessary for CentraSite to maintain its own set of user passwords.
Password management is handled by your organization's existing authentication system.

By default, CentraSite is configured to authenticate users against the local operating system.While
this configuration is adequate for initial experimentation and demonstration, it is generally not
suitable for an enterprise-wide implementation of CentraSite. When you deploy CentraSite for
actual use within your enterprise, you will need to configure it to authenticate users against a
production-quality authentication service such as Active Directory or an LDAP server. Moreover,
you should complete this configuration step before you begin creating organizations and setting
up users, groups and roles.

Loading User Metadata from the External Directory

When you configure CentraSite to use Active Directory or LDAP for user authentication, youmap
the user metadata from the authentication system to the User object in CentraSite. This enables
CentraSite to import the metadata (e.g., name, phone number, email address) for a user from the
external directory when you create an account for that user in CentraSite. (Be aware that this is a
one-time import. CentraSite simply loads the appropriatemetadata from the authentication system
into its database. It does not attempt to keep the usermetadata synchronizedwith the authentication
system afterwards.)

When you create user accounts in CentraSite, you can define the accounts individually or you can
use the “bulk load” facility to import multiple users from the authentication system at one time.

Bootstrap Users, Organization Administrators and Primary Contacts

When you install an instance of CentraSite, it initially has two user accounts: an account for the
bootstrap user and an account for the default user.

■ The bootstrap user refers to the user who installs CentraSite. This user is given a user account in
the Default Organization and becomes the initial Organization Administrator and Primary
Contact for that organization. This user is also given the CentraSite Administrator role, which
gives him or her “super admin” privileges. You can choose to assign each of these roles to other
users later in the deployment process.

■ The default user represents an internal user that owns the predefined objects installed with
CentraSite. The default user exists for CentraSite's internal use. You cannot edit or delete this
account. You cannot use the default user account to log on to CentraSite.

25Implementation Concepts

Setting Up Users and Groups

Note: There are actually a few additional user accounts that CentraSite creates for its own
internal use, but the account for the default user is the only “visible” account that you or
your users are likely to encounter while using CentraSite.

Generally, the bootstrap user creates the initial set of organizations. However, other users can
perform this task if the bootstrap user adds those users to CentraSite and gives them the CentraSite
Administrator role.

When you create an organization, CentraSite requires you to identify the users that will serve as
the organization's administrator and as the organization's primary contact.

■ Organization Administrator. The organization administrator is a user that has the Organization
Administrator role for the organization. An organization must have at least one user in the Or-
ganization Administrator role. It can havemultiple users in this role. A user in one organization
can serve as an organization administrator for another organization; however, this role is usually
given to someonewithin the organization.Anorganization administrator performs administrative
tasks for the organization, such as:
■ Adding users to the organization
■ Defining groups and roles
■ Defining custom lifecycle models for the organization
■ Creating child organizations

An Organization Administrator can also view, edit and delete any asset, policy or lifecycle
model that belongs to his or her organization or to any of the organization's descendants.

■ Primary Contact. The primary contact is simply a user who acts as the point-of-contact for an
organization. An organization has just one primary contact. The user who is designated as the
primary contact does not receive any additional roles or permissions by serving in this capacity.
You can optionally select the same user to serve as both the administrator and the primary
contact for an organization, but CentraSite does not require you to do this. You can have different
users serving in each of these capacities.

After an organization is created, and its organization administrator and primary contact are as-
signed, the organization administrator (or any user with “Manage Users” permission for the or-
ganization) can begin adding additional users to the organization.

Implementation Concepts26

Setting Up Users and Groups

Guest Users

CentraSite supports the concept of a guest user. Guests are userswho can access the registrywithout
a user account (i.e., they access the registry anonymously).

The capabilities given to a guest are determined by the set of permissions specified in the Guest
role. Typically, you give guest users read-only access to a limited set of objects.

By default, guests are given permission to use the “asset catalog” pages in the CentraSite Control
user interface. They can use these pages to browse the assets whose permissions extend to the
system-defined group called “Everyone”.

When you deploy CentraSite, think about the level of access you want to extend to guest users
and configure the Guest role accordingly. Additionally, make sure that users who publish assets
to your registry know that the Everyone group includes guest users, and that by granting access
to this group, they enable access by anonymous users.

As a best practice, you should never give anything other than view permission to the Everyone
group. This group should not be given permission to modify or delete registry objects.

Issues to Consider When Adding Users to CentraSite

When adding users to CentraSite, keep the following points in mind:

■ To access a CentraSite registry in any capacity other than as a guest, a user must have a user
account on CentraSite, and that account must be associated with a user account in an external
authentication system.

■ Users belong to organizations. You must create your organizations first and then add users to
them.

■ A user can belong to one and only one organization.
■ As a general rule, usersworkwith assets and objects that belong to their organization.However,
an administrator can give users permissions to perform work in other organizations when ne-
cessary.

27Implementation Concepts

Setting Up Users and Groups

Defining and Using Groups in CentraSite

A group represents a specified set of users. A group can be empty or contain any number of users.
It can contain users from different organizations.

Only administratorswith “ManageUsers” permission can create, edit and delete groups, however,
all users (including guests) can view the groups that exist within an instance of CentraSite.

Ways in Which CentraSite Uses Groups

Within CentraSite, groups are used for the following purposes:

■ To assign roles to groups of users.
■ To give a group of users access to a specific object in the registry.
■ To identify the group of individuals who are authorized to approve certain types of requests.
■ To identify the target audience for certain policy actions (for example, the intended recipients
of an email action).

System-Defined Groups Available in CentraSite

CentraSite provides the following system-defined groups.

■ Users—The set of users that belong to an organization. Every organization has a Users group.
■ Members—The set of users that belong to an organization or any of its descendant organizations.
Every organization has a Members group.

■ Everyone—The set of all users that are definedwithin an instance of CentraSite. This group includes
guest users.

CentraSite manages themembership of these groups automatically. You cannot delete the system-
defined groups or edit their membership. You can, however, edit the roles that are assigned to a
system-defined group and use them in all of the same ways as you can a regular user-defined
group.

Implementation Concepts28

Setting Up Users and Groups

Using Groups from Your External Authentication System

CentraSite can use groups that are defined in the external authentication system. When you use
an external group with CentraSite, the membership of the group is defined and managed by the
authentication system, not by CentraSite (i.e., you cannot use CentraSite to add members to the
group or delete members from the group).

When CentraSite executes a request that references an external group, it accesses the external au-
thentication system to resolve the group's membership. It performs the requested activity for each
user who is a member of the specified group and is also a registered user on CentraSite. Users that
are named in the external group but are not registered CentraSite users are ignored.

You can use externally defined groups in exactly the same way as native groups that you define
in CentraSite. For example, you can assign roles to externally defined groups and you can grant
permissions to them.

If your authentication system already defines groups of users that are significant to your SOA
environment (e.g., SOA Architects, SOA Project Review Team, SOAManagers), consider adding
them to CentraSite as external groups. Doing this will simplify maintenance by eliminating the
need to update two systems when the membership of a group changes.

Note: Groups that are nested in the external authentication are supported by CentraSite. (If
you are using LDAP, note that only the “recurse up” option is supported for group resolu-
tion. The “recurse down” option is not supported.)

29Implementation Concepts

Setting Up Users and Groups

30

7 Using Permissions and Roles to Manage Access to the

Registry
■ Instance-Level Permissions ... 32
■ Role-based Permissions ... 35
■ Issues to Consider when Working with Permissions ... 37
■ Roles .. 38

31

Permissions determinewhich operations users can perform andwhich set of objects they can access.
There are two types of permissions in CentraSite: instance-level permissions and role-based permissions.

■ Instance-level permissions enable access to one specific instance of an object in the registry. They
provide fine-grain access control over registry objects. You grant instance-level permissions
directly to individual users or to groups.

■ Role-based permissions enable access to an entire class of objects or give users the ability to perform
certain operations inCentraSite. Role-basedpermissions provide coarse-grain control over objects
in the registry. You assign role-based permissions to roles, and you assign the roles to individual
users or groups.

The following diagram illustrates the relationships between instance-level permissions, role-based
permissions, users, groups and roles.

Instance-Level Permissions

An instance-level permission gives a specified user or group access to one particular object in the
registry. Instance-level permissions, which are granted at the View,Modify or Full level, determine
how a specified user or group is allowed to interact with a registry object.

Enables the specified user or group to...This Permission Level...

View ■ Access the object
■ Read the object's metadata (except its instance-level permission settings)

Modify ■ Perform all of the activities granted by the View permission
■ Edit the object's metadata (except its instance-level permission settings)
■ Read the object's instance-level permission settings

Full ■ Perform all of the activities granted by the View andModify permissions

Implementation Concepts32

Using Permissions and Roles to Manage Access to the Registry

Enables the specified user or group to...This Permission Level...

■ Delete the object
■ Set the object's instance-level permission settings

Note that each permission level inherits the capabilities of the preceding level.

Objects that Support Instance-Level Permissions

Access control at the instance-level is not supported by all object types in the registry. The following
list identifies the types of objects on which you can control access at the instance level.

■ Assets (of any type)
■ Supporting documents
■ Design/Change-time policies **
■ Run-time policies **
■ Taxonomies **
■ Report Templates **

** All CentraSite users have implicit and irrevocable permission to view all instances of these object
types. However, you can use instance-level permissions to restrict who can edit and delete them.

Access to other types of objects is controlled using the broader role-based permissions (described
below) or is enabled contextually. (Enabled contextually means that an object is a constituent of
some other “access-controlled” object. For example, the individual operations and bindings asso-
ciated with a Web service are objects that can only be accessed within the context of the Service
object itself. Therefore, the permissions that control access to the Service object also control access
to the service's constituent objects.)

Setting Instance-Level Permissions

To set permissions on an object, you must have Full permission on the object. You can use the
CentraSite Control user interface to assign instance-level permissions to any of the types of objects
listed above. Additionally, you can set permissions on the following types of objects using the
CentraSite plug-in for Eclipse: assets, taxonomies, report templates and supporting documents.

Besides setting instance-level permissions through the user interface, you can create design/change-
time policies to automate the assignment of instance-level permissions on certain types of objects
(specifically, assets and policies). For example, you might use a design/change-time policy to
automatically extend access to specified groups of consumers when an asset switches to the “De-
ployed” state.

33Implementation Concepts

Using Permissions and Roles to Manage Access to the Registry

Profile Permissions

Assets (of any type) include an additional level of access control called a profile permission. Profile
permissions enable you to control access to individual profileswithin an instance of an asset.

A profile represents a collection of attributes. It is used to group the metadata for an asset when
the asset is displayed in the user interface. Profiles enable CentraSite Control and the CentraSite
plug-in for Eclipse to present the details for an asset in an organizedmanner. In CentraSite Control,
for example, all of the attributes associated with a particular profile are grouped together on a
separate tab.

The attributes associated with a profile are displayed on individual tabs in CentraSite Control

Profile permissions determine which profiles a user sees when he or she views an asset with
CentraSite Control or the CentraSite plug-in for Eclipse. You might use profile permissions, for
example, to limit the amount of information that consumers see for an asset.

Important: Profile permissions restrict access at the UI level but not the API level. At the API
level, profile permissions are irrelevant. If a user has view permission on an asset, he or she
can access all of the asset's metadata through the API, regardless of whether profile permis-
sions exist for the asset.

Implementation Concepts34

Using Permissions and Roles to Manage Access to the Registry

Role-based Permissions

A role-based permission is a permission that CentraSite confers to users through a role. A role is
a set of role-based permissions that you assign to users or groups.

Role-based permissions enable access to an entire set of objects or give users the ability to perform
certain operations in CentraSite. Unlike instance-level permissions, which are granted directly to
individual users or groups, role-based permissions are assigned to roles, and roles are assigned
to users and groups. You cannot assign a role-based permission to a user or group directly.

There are two basic types of role-based permissions:

■ Permissions that enable access to areas of the CentraSite Control user interface (UI permissions)
■ Permissions that enable users to create and/or access certain types of registry and repository
objects (object-access permissions)

Permissions that Enable Access to Areas of the User Interface

Role-based permissions include a set of permissions that enable access to certain features and
screen sets in the CentraSite Control user interface. These permissions determine which tabs are
displayed to a user in CentraSite Control's navigation bar.

For example, CentraSite will not display the Policies tab to a user unless the user has the "Use the
Policy UI" permission. The UI-related permissions also include permissions that enable users to
view certain logs and use certain controls in CentraSite Control.

By default, all CentraSite users (including guests) have permission to use the Asset Catalog area
of the CentraSite Control user interface. To use the other parts of the user interface, a user must
belong to a role that explicitly includes the appropriate user interface permission (meaning that
the role includes the actual permission itself) or implicitly includes the permission (meaning that
the role includes a permission that implicitly grants the UI permission). For example, when you
give a user permission to "ManageDesign/Change-Time Policies", that permission implicitly grants
that user permission to the "Use the Policy UI".

35Implementation Concepts

Using Permissions and Roles to Manage Access to the Registry

Permissions that Enable Access to Objects in the Registry or Repository

Role-based permissions also include permissions that enable users to create and/or work with an
entire class of objects. Generally speaking, these types of role-based permissions grant a specified
level of access to all objects of a specific type. For example, theModify Assets permission grants
Modify level access on all objects of type Asset. The role-based permissions enable you to apply
access controls over an entire class of objects instead of assigning permissions on each instance of
an object individually.

These role-based permissions are granted at varying levels. The name of the permission itself in-
dicates the level of access that it grants.

The permission enables users to...If the name includes the
following term...

Read objects of a specified type. This level is equivalent to giving a user View
instance-level permission on all objects of a given type.

View

Read and edit objects of a specified type. This level is equivalent to giving a user
Modify instance-level permission on all objects of a given type.

Modify

Create and read objects of a specified type. This level is equivalent to giving a user
View instance-level permission of all objects of a given type and giving them the
ability to create new instances of that type.

Create

Create, read, edit, delete and modify the instance-level permission of objects of a
specified type and modify the object's instance-level permissions. This level is

Manage

equivalent to giving a user Full instance-level permission of all objects of a given
type.

Note: Be aware that CentraSite does not provide role-based permissions at all levels for all
object types. Access to certain objects types can only be granted at the Manage level, for
example. Refer to theCentraSite user documentation for the role-based permissions available
for each object type.

Organization-Specific vs. System-Wide Permissions

The permissions that enable access to registry/repository objects are either organization-specific or
system-wide. An organization-specific permission grants a specific level of access to all objects of
a given type within a specified organization. Permissions that enable access to assets, policies and li-
fecycle models are organization-specific. A system-wide permission grants access to objects that
are available to all organizations, such as taxonomies and asset types.

System-wide permissions are generally given only to a small group of high-level administrators.

Permissions are system-wide or organization-specific

Implementation Concepts36

Using Permissions and Roles to Manage Access to the Registry

Issues to Consider when Working with Permissions

CentraSite provides you with coarse-grain and fine-grain permission controls. You will use both
types, depending on your needs.Whenworkingwith permissions in CentraSite, keep the following
points in mind:

■ All users, including guests, have implicit and irrevocable Viewpermission on the following types
of objects. You can control who canmanage these types of objects (i.e., create, modify and delete
them), but you cannot revoke view-level access to these objects.
■ Organizations
■ Users
■ Groups
■ Roles
■ Taxonomies
■ Asset Types
■ Policies
■ Run-Time Targets
■ Report Templates

■ When a user has multiple instance-level permissions for the same object, the user receives the
union of the combined permissions. For example, if a user has View permission on object ABC
and belongs to a group that has Full permission on object ABC, the user will get Full permission
on the object.

37Implementation Concepts

Using Permissions and Roles to Manage Access to the Registry

■ When a user has both role-based permission and instance-level permission on the same object,
the user also receives the union of the combined permissions. For example, if a user has the View
instance-level permission on asset and also has the role-based "Manage Assets" permission, the
user receives Full permission on the object (as conferred by the "Manage Assets" permission).

■ There will be times when you need to decide whether to use instance-based or role-based per-
missions to grant a group of users access to a set of assets.When decidingwhich type of permis-
sion to use, keep the following points in mind:
■ When you grant role-based permissions to a group of users, those users are given permission
to access all assetswithin the organization. You will not be able to selectively hide assets from
certain members of the group. Additionally, all users in the group receive a specified level of
access (i.e., View, Modify or Manage). You cannot selectively reduce this level of access for
individual users. (Although you can selectively increase an individual user's level of access.)

■ If you grant access to an asset using a role-based permission, youwill not be able to selectively
hide profiles from the users with the role-based permission. The role-based permissions auto-
matically confer permission to view all profiles for an asset.

■ Any approach that involves instance-level permissions, by definition, requires you to configure
permissions on each asset individually. If you use instance-level permissions to routinely
grant permissions to specified groups of users, consider creating a policy to do this for you
automatically.

■ If you need to hide or reveal certain profiles as an asset progresses through its lifecycle states,
consider creating policies to automatically set the appropriate profile permissionswhen the asset
switches state.

■ Avoid granting instance-level permissions to individual users unless you have a specific reason
to do so. Granting these permissions to groups instead of individuals, gives you greater flexib-
ility and makes permission changes easier to manage.

■ Be aware that if you grant instance-level permissions to an external group (i.e., a group that is
defined and managed in your external authentication system), it might take CentraSite longer
than normal to remove those permission assignments from a registry object.

Roles

A role is a set of role-based permissions. Assigning a role to a user gives the user the permissions
specified in the role. Roles can be assigned to individual users or to groups. CentraSite is installed
with several predefined roles, including the following:

■ CentraSite Administrator. This role includes every role-based permission available in CentraSite.
As such, it confers “super admin” capabilities to the users to which it is assigned. Users in this
role can view, edit and delete virtually any object in the registry. This role cannot be deleted or
edited. At least one user must be assigned to this role at all times.

Implementation Concepts38

Using Permissions and Roles to Manage Access to the Registry

■ Organization Administrator. This role includes the set of role-based permissions that enable a
user to administer an organization. Users in this role can view, edit or delete any object within
an organization or the organization's descendants. This role cannot be deleted or edited. Each
organization must have at least one user assigned to the organization's Organization Adminis-
trator role.

■ Asset Provider. This role includes the "Create Assets" permission, which enables a user to create
assets within his or her organization. By default, all users in an organization receive this role
(however, you can configure this behavior as described later). You can modify the permissions
associated with this role.

■ Asset Consumer. This role includes the "View Assets" permission, which enables a user to view
all of the assets that belong to his or her organization. By default, all users in an organization
receive this role (however, you can configure this behavior as described later). You can modify
the permissions associated with this role.

The predefined roles are usually adequate for most CentraSite implementations. However, you
can create custom roles if the ones that CentraSite provides do not suit your needs. You can also
modify many of the predefined roles that CentraSite supplies.

Note: Avoid creating a role that is equivalent to the CentraSite Administrator role. The
CentraSite Administrator role is specifically optimized to maximize performance. An
equivalent role will not perform as efficiently as the predefined CentraSite Administrator
role that is installed with CentraSite.

To create or modify a role, you must have the "Manage Users" permission for the organization to
which the role belongs. Be aware, however, that you cannot create a role that hasmore permissions
than what your own user account has. For example, if you do not have the "Manage Taxonomies"
permission, you cannot create a role that includes the "Manage Taxonomies" permission.

Assigning Roles to Users

You assign roles to users or groups using the CentraSite Control user interface. A user or group
can be assigned multiple roles. When a user is given multiple roles, he or she receives the union
of all permissions in those roles.

Configuring the Default Roles that CentraSite Assigns to Users in an Organization

By default, CentraSite assigns the Asset Provider and Asset Consumer roles to an organization's
Users group. Consequently, every user that you add to an organization receives these roles.

If you do not want users in your organization to receive these roles automatically, or if you want
to customize the set of permissions that users receive by default, you can do any of the following:

■ Remove the Asset Provider and/or Asset Consumer roles from the organization's Users group.
■ Modify the set of permissions associated with the Asset Provider and/or Asset Consumer roles
that are assigned to the Users group.

39Implementation Concepts

Using Permissions and Roles to Manage Access to the Registry

■ Create custom roles and assign them to the organization's Users group (instead of, or in addition
to, the Asset Provider and/or Asset Consumer roles).

For example, if you want to create an organization whose users can only consume assets, you
would remove the Asset Provider role from that organization's Users group. Doing this ensures
that users added to the organization only receive permission to view assets. (An administrator
could, of course, selectively give specific users in the organization permission to publish assets as
necessary.)

Implementation Concepts40

Using Permissions and Roles to Manage Access to the Registry

8 Customizing Your Asset Catalog

■ Creating Custom Types .. 42
■ Defining and Using Taxonomies ... 47
■ Creating Custom Association Types .. 50
■ Working with Asset Types, Taxonomies and Association Types in a Multi-Stage Environment 51
■ Issues to Consider when Customizing Your Registry ... 52

41

CentraSite's flexible and extensible registry structure enables you to model virtually any kind of
asset that you might want to include in your asset catalog. It supports a rich set of attribute types
for defining the different properties and qualities of your assets. These types include attributes
that you can use to classify an asset according to a predefined or custom taxonomy and attributes
that you can use to associate the asset with other objects in the registry.

This section describes the three major aspects of your catalog that you can customize: types, tax-
onomies and associations.

Creating Custom Types

A type (also called an object type) describes a kind of object that the registry can store. Besides de-
fining the set of attributes that make up an object, a type includes several system properties that
determine, among other things, whether objects of the type are visible in the user interface,
whether objects of the type can be used with reports and/or policies, and whether they can be
versioned.

CentraSite includes many predefined types. You can customize many of these predefined types
and also create custom types of your own.

Note: Types are system-wide objects, meaning that they apply to all organizations. Con-
sequently, all organizations within a particular instance of CentraSite use (or have access
to) the same global set of types.

Object Types vs. Asset Types

All items stored in the CentraSite registry are objects of a particular type. Users, policies and tax-
onomies are examples of objects that are stored in the registry. An asset is a specific kind of object
that represents an artifact in your SOA environment such as a Web service, an XML schema or a
business process. In other words, all assets are objects, but not all objects are assets.

The asset catalog represents the set of all objects in your registry that are assets. Many features
within CentraSite operate specifically on the contents of the asset catalog.

Any custom type that you add to CentraSite is considered to be an asset type. Consequently, all
instances of a custom type are treated as assets.

Implementation Concepts42

Customizing Your Asset Catalog

Customizing the Predefined Asset Types Installed with CentraSite

CentraSite is installed with a number of predefined asset types, including types that represent
Web services, XML schemas and BPEL processes. Before using these types in your environment,
you should examine their type definitions and customize them as necessary.

With respect to customizing the predefined asset types installed with CentraSite, you can:

■ Add attributes to the type
■ Move certain attributes from one profile to another
■ Specify which profiles are to be displayed for the type
■ Change the type's system-property settings (for example, specify whether the type supports
versioning or can be used with design/change-time policies)

Creating Custom Asset Types

Besides customizing the predefined asset types that are installed with CentraSite, you can also
define custom types of your own. For example, if you wanted to include items such as service re-
quests, IT projects and source code libraries in your registry, you would create a custom type for
each of these entities.

Note: Before creating a custom type, always check to see whether CentraSite provides a
predefined type that youmight be able to customize anduse. Customizing one ofCentraSite's
predefined types will save you time, especially if the type requires a file importer.

Before creating a custom type, youmust first decide which aspects of an entity youwant to model
in the registry. If you were creating a type to represent IT projects, for example, you might want
to capture characteristics such as the name of the project requestor, the lines of business the project
is expected to affect, the project plan, the project manager and the project's expected completion
date. After you decide which specific characteristics and qualities you want to model, you can
create a custom type that includes a corresponding attribute for each of those characteristics or
qualities.

43Implementation Concepts

Customizing Your Asset Catalog

Assigning Attributes to a Type

An attribute holds data about an asset. All asset types include a basic set of attributes for general
information such as the asset's name, description, creation date and owner. You define additional
attributes to hold data that is specific to the type of asset that you want to store in the registry.

When you define an attribute, you specify:

■ The type of data that the attribute will hold (e.g., String, Number, Boolean)
■ Whether the attribute will hold a single value or multiple values (i.e., an array)
■ Whether an attribute is required or optional
■ Whether the attribute is read-only

Besides basic data types such as String, Number and Boolean, CentraSite supports the following
special types:

DescriptionAttribute Type

This type enables users to classify an asset according to a specified taxonomy.Classification

This type enables users to establish an association between an asset and another object in
the registry.

Relationship

This type enables users to link an asset to a file that resides in CentraSite's repository or exists
at a URL-addressable location on the network.

File

The inclusion of these attribute types facilitate many of the advanced features in CentraSite. It is
a good idea to make use of them whenever possible.

For example, let's say you were creating the Project asset type described earlier in this section.
Rather than using a String attribute to identify the project manager in this type, you could use a
Relationship attribute instead. A Relationship attribute will not only identify the individual who
is serving as the project manager, it will also provide the additional benefits of 1) enabling users
to obtain detailed information about the project manager (because the attribute itself will link
users to the actual User object for that individual), and 2) allowing the relationship to be discovered
and reported by CentraSite's Impact Analysis feature. For example, one could use the Impact
Analysis feature to locate all of the projects managed by a particular individual.

Implementation Concepts44

Customizing Your Asset Catalog

Assigning Attributes to Profiles

A profile defines a collection of attributes that are meant to be grouped together for presentation
purposes.

The attributes associated with a profile are displayed on individual tabs in CentraSite Control

When you define a new asset type, you specify on which profiles the type's attributes are to be
displayed.

All asset types include several generic profiles. Among others, these include:

■ Audit Log profile—Displays the history of changes to the asset (including changes in an asset's
lifecycle state).

■ Consumers profile—Displays the users and/or applications that are registered consumers of an
asset.

■ Permissions profile—Displays instance-level permissions for an asset.

45Implementation Concepts

Customizing Your Asset Catalog

■ Classifications profile—Displays an asset's classifiers.
■ Associations profile—Lists the registry objects to which the asset is related.

The information on the generic profiles is generated by CentraSite. You cannot customize the
content of these profiles or add attributes to them. You can, however, select which of these profiles
you want CentraSite to include when it displays an asset of a defined type.

To display the attributes that you define for an asset type, you create custom profiles and assign
the attributes to them. CentraSite does not require an attribute to be assigned to a profile. However,
if you do not assign an attribute to a profile, the attribute will not be visible in the user interface.
You can assign an attribute to multiple profiles if you want it to appear on multiple profiles (tabs)
in the user interface.

Note: If you want to provide different views of an asset to different users or groups, divide
the attributes among profiles in a way that enables you to use profile permissions to select-
ively show or hide the appropriate set of attributes to different users or groups.

Creating Custom Asset Types that can be Imported from an Input File

The CentraSite Control user interface enables users to add assets to the registry in the following
ways:

■ Users can create an asset “from scratch”,meaning that theymanually assign values to the asset's
attributes in the CentraSite Control user interface.

■ Users can import an asset from an archive file (a file that contains objects that have been exported
from an instance of CentraSite).

■ Users can import the asset from an input file. To add an asset in this way, CentraSite must be
configured with an “importer” that can read the input file and generate an instance of the spe-
cified asset type from it.

CentraSite includes importers for the following types of assets:

Required Input FileType of Asset

Web Services Description Language (WSDL) fileWeb Service

XML Schema Definition (XSD) fileXML Schema

Business Process Execution Language (BPEL) fileBusiness Process

If you want your users to be able to generate an instance of a custom asset type from an input file,
you must build a custom importer and register it in CentraSite. You can find information about
developing a custom importer in the SOALink Cookbook.

Implementation Concepts46

Customizing Your Asset Catalog

Defining and Using Taxonomies

A taxonomy is a hierarchical classification scheme. In CentraSite, you use taxonomies to classify
objects in the registry. Taxonomies enable you to filter, group and sort the contents of the registry.

A taxonomy consists of a name and zero or more categories. A category represents a classification
within the taxonomy. A category can have multiple levels of sub-categories.

Classifying Assets Using Taxonomies

When users publish assets to CentraSite, they can classify the assets in two ways:

■ By directly assigning values to an asset's Classification attributes. If an asset's type includes one
or more Classification attributes, users can classify the asset by simply setting these attributes.

■ By assigning ad-hoc classifiers to an asset's Classifications profile. This profile enables users to
classify an asset by any available taxonomy defined in CentraSite. It allows users to assign
classifiers to an asset in cases where the asset itself does not include any explicit Classification
attributes or does not include the needed type of Classification attribute.

47Implementation Concepts

Customizing Your Asset Catalog

How Taxonomies Help Users Locate Assets

Classified assets are easier for users to locate because CentraSite includes convenient tools for fil-
tering, reporting and querying the registry by taxonomy. For example, the Browse page in
CentraSite Control enables users to browse the asset catalog according to a specified taxonomy.
Additionally, the advanced search feature in CentraSite Control enables users to query the registry
for assets that are classified a particular way. By classifying assets, you enable users to discover
them using these tools.

Note: If youwant users to be able to browse the asset catalog by a taxonomy, youmust enable
the taxonomy's "Taxonomy is browsable" property. If this property is not enabled, it will
not appear in the catalog browser's Browse by drop-down list.

Using Taxonomies to Target the Execution of Design/Change-Time Policies

Design/change-time policies execute when events within the policy's scope occur in the registry.
The scope of a policy specifies to which type of registry objects the policy applies (e.g., Service
objects, Policy objects, User objects) and during which types of events the policy is triggered (e.g.,
a PreCreate event, a PostCreate event, a PreStateChange event).

Classifying assets can help you create highly targeted design/change-time policies, because the
scope of a policy can be additionally constrained to objects that are classified in a specified way.
For example, instead of applying a particular policy to all Application Server assets, you might

Implementation Concepts48

Customizing Your Asset Catalog

want to restrict the policy to just the Application Server assets that are classified by the “APAC”
category from the “Domains” taxonomy.

When you define a custom asset type, think about whether you will need to apply different
design/change-time policies to specific subsets of that type. If so,make sure the asset type includes
a Classification attribute that can be used to distinguish those subsets. (Consider making this a
required attribute to ensure that users do not forget to classify assets of this type.)

The Scope of a Taxonomy

Like types, taxonomies are system-wide objects, meaning that they apply to all organizations (i.e.,
all organizations have access to the same global set of taxonomies). You cannot restrict a taxonomy
to a specific organization.

Taxonomies are also visible to all users. You can give specific users Modify or Full instance-level
permissions on taxonomies, but you cannot revoke a user's View permission. All users (including
guest users) can view the taxonomies defined within an instance of CentraSite.

The Predefined Taxonomies Installed with CentraSite

CentraSite installs a number of standard taxonomies that you can use to classify assets.

These include:

■ ISO 3166 Country Codes
■ North American Industry Classification System 2002 (NAICS)
■ ThomasNet Supplier Registry
■ Product and Service Category System: United Nations Standard Products and Services Code
(UNSPSC)

CentraSite also includes a number of special-purpose taxonomies that it uses for its own internal
classification of registry objects.

You cannot delete any of the predefined taxonomies installed with CentraSite or modify their
category structure. You can, however,modify certain attributes and properties for these taxonomies.
Additionally, you can suppress them in the user interface. For example, if your users will never
use the NAICS taxonomies that CentraSite provides, you can remove these taxonomies from the
user interface.

49Implementation Concepts

Customizing Your Asset Catalog

Defining Custom Taxonomies

In addition to using the taxonomies that CentraSite provides, you can create your own custom
taxonomies.

When you include a Classification attribute in a type, you usually need to create a corresponding
taxonomy for the attribute (unless the required taxonomy already exists in the CentraSite registry).
For example, let's say you decide that youwant to classify yourApplication Server assets according
to the domain in which they reside. To do this you would first create a custom taxonomy that
identifies the various domains in your environment. Then, after the taxonomy exists, you would
customize the Application Server asset type and add a Classification attribute to it that enables
users to classify application server assets by the “Domain” taxonomy.

Creating Custom Association Types

An association type describes a type of relationship that can exist between objects in the registry.

An association type has a name, a forward label (which describes the relationship of the source
object to a target object) and an optional reverse label (which describes the relationship of the
target object to the source object).

Youuse association types to defineRelationship attributes in an asset type. In the following example,
a Relationship attribute called “Managed By” has been included in the Project asset type to asso-
ciate a project asset with the user that manages the project.

You Use Association Types to Define Relationship Attributes in Object Types

Implementation Concepts50

Customizing Your Asset Catalog

How Association Types Are Used to Relate Assets to Other Objects

When users publish assets to the registry, there are two ways in which they can relate an asset
with other objects in the registry.

■ By establishing the relationship using an asset's Relationship attributes. If an asset's type includes
one or more Relationship attributes, users can relate an asset to other objects in the registry by
simply setting these attributes.

■ By establishing an ad-hoc association using the asset's Associations profile. If an asset's type includes
the Associations profile, users can relate assets of that type with other objects on an “ad hoc”
basis. Using this profile, users can relate an asset to virtually any other object in the registry
(assuming they have view permission on the target object).

How Association Types and Relationship Attributes Support Impact Analysis

CentraSite's Impact Analysis feature reports the associations that exist among objects in the registry.
By viewing an Impact Analysis report for an asset (either in graphical or tabular form), users can
quickly determine to which objects the asset is related.

When you include Relationship attributes in an asset type, you not only enable users to specify
the objects to which an asset is related, you enable the relationships to be discovered and reported
by the Impact Analysis feature.

Creating Custom Association Types

CentraSite provides numerous predefined association types for you to use to create Relationship
attributes. However, you can also create custom association types as needed.

Like types and taxonomies, association types are system-wide objects. They apply to all organiza-
tions defined in the registry (i.e., all organizations within an instance of CentraSite have access to
the same global set of association types). You cannot restrict the use of an association type to a
specific organization.

Working with Asset Types, Taxonomies and Association Types in a Multi-
Stage Environment

If you are working in a multi-stage environment, it is important to “master” your custom asset
types, taxonomies and association types on one stage and then promote them to the other stages.
Do not attempt to manually define these objects in each stage. Doing this will create objects that
are equivalent, but not identical. That is, the objects will have the same attributes, but they will
not have the sameUniversallyUnique Identifier (UUID). It is theUUID that uniquely distinguishes
an object in the registry.

51Implementation Concepts

Customizing Your Asset Catalog

When objects are imported into CentraSite (either through an import process or a promotion
process), CentraSite uses the UUID to determinewhether an object that you are importing already
exists on the target instance of CentraSite. If the UUID does not already exist, CentraSite adds the
imported object to the registry. If an object with the same UUID exists in the target registry, and
the object that you are importing has a more recent timestamp than it, CentraSite automatically
replaces the object in the target registry with the one that you are importing.

Important: Because the import process uses timestamps to determine whether an object in
an archive file is more recent than the one that exists in the target registry, it is important
that the system clocks on all of the participating stages are synchronized.

When you promote an asset from one stage to another, CentraSite also promotes the asset's type
and the taxonomies that it uses. If you have manually defined these objects on the target instance
of CentraSite, theywill be duplicated, instead of replaced, during the promotion process. This will
create a confusing situationwherein you have two instances of the same asset type and/or taxonomy
on the target instance of CentraSite.

To avoid this condition, always create your custom asset types, taxonomies, and association types
on the first stage of a multi-stage deployment and export those objects to the registries that host
the subsequent stages of the lifecycle.

Note: Association types that the asset uses are not automatically exported with an asset. If
the asset uses custom association types, you must export the association types separately
and import them on the other stage(s) before you import the asset itself.

Issues to Consider when Customizing Your Registry

CentraSite providesmanyways for you to customize the asset catalog. After you install CentraSite,
you should customize the predefined asset types provided by CentraSite (if necessary) and create
new types, taxonomies and association types as required for your site.

Note: Although you should do the initial customization after CentraSite is installed, you
can always add additional asset types, taxonomies and association types as you develop
the need for them.

When customizing the catalog for your site, keep the following points in mind:

■ You can customize any of the predefined asset types installedwithCentraSite by adding attributes
to them and/or modifying the content and organization of the profiles associated with the type.

■ If you have an asset that is not represented by one of the predefined types provided byCentraSite,
youmust create a custom asset type for it. If you want users to be able to generate the asset type
from an input file, youmust also create a custom importer for that type and register the importer
in CentraSite.

Implementation Concepts52

Customizing Your Asset Catalog

■ Consider using Classification attributes and Relationship attributes instead of ordinary String
attributes whenever possible. Among other benefits, these attribute types enable users to more
easily discover assets and understand the relationships that an asset has with other objects in
the registry.

■ In general, use a Classification attribute or an enumerated String instead of an ordinary String
attribute when you want the attribute to be more strongly typed.

■ Instead of defining multiple asset types to represent variants of the same basic type, consider
creating one basic type and using a classification attribute to differentiate them. For example,
instead of creating separate asset types for different kinds ofWeb services (e.g., business services,
technical services, security services), use the one basic Web service asset type and use a Classi-
fication attribute to classify its variations.

■ When you are designing a new asset type, think about the design/change-time polices that you
might want to apply to assets of that type. If you need to apply different policies to different
sub-sets of the asset type, use a Classification attribute to differentiate the sub-sets.

■ If you do not want users to be able to assign ad hoc classifiers and/or associations to instances
of a particular type of asset, omit the Classifications and/or Associations profiles from that asset's
type.

■ If a taxonomy is designed to be used with specific types of assets, specify those types in the
taxonomy's Applicable to Object Types tab. This will prevent users from using the taxonomy
to classify objects with which the taxonomy was not intended to be used.

■ You can define taxonomies withmultiple levels of sub-categories to create very fine-grain levels
of classification. When you do this, users can search for assets that are classified by a specific
category or any of its sub-categories. For example, the “Service Type” taxonomy shown in the
figure below would enable users to locate a specific type of technical service (e.g. a Utility or a
Network service) or all "technical services" (i.e., all services that are classified by the Technical
Services category or by any of its sub-categories).

■ If you are working in a multi-stage environment, always master your custom asset types, tax-
onomies and association types on one stage and export them to the other stages. Do not attempt
to define these objects manually on each stage.

53Implementation Concepts

Customizing Your Asset Catalog

54

9 Defining Lifecycle Models

■ How Lifecycle Models Help You Organize Your Assets .. 56
■ How Lifecycle Models Help You Govern Your Assets .. 56
■ Lifecycle Model States and Transitions .. 57
■ Associating a Lifecycle Model with an Asset Type .. 60
■ System-Wide vs. Organization-Specific Lifecycles .. 61
■ When to Use Lifecycle Models ... 62
■ Lifecycle Stages .. 62
■ Creating a Lifecycle Model for a Single-Stage Environment .. 63
■ Issues to Consider When Using Lifecycle Models in a Single-Stage Environment ... 67
■ Creating a Lifecycle Model for a Two-Stage Environment .. 67
■ Issues to Consider When Using Lifecycle Models in a Two-Stage Environment .. 70
■ Updating Assets That Are Under Lifecycle Management ... 71
■ Reverting an Asset to a Previous State .. 72
■ Managing Lifecycle Models ... 73

55

A lifecycle model describes the distinct steps through which a particular type of SOA asset passes
on its way from conception to retirement. In a very simple sense, a lifecycle model enables you to
classify assets according to the state they have reached in their lifecycle. It also provides the basis
for CentraSite's lifecycle governance capabilities. Using these capabilities, you can steer assets
through the different steps of their lifecycle and apply governance controls at significant junctures
of the lifecycle process.

How Lifecycle Models Help You Organize Your Assets

One benefit of using lifecyclemodels is that they give you increased visibility into the development
and/or operational status of the assets in your catalog.

When you apply a lifecyclemodel to an asset type, the lifecyclemodel itself is treated as a taxonomy
by many of CentraSite's browse and search tools. For example, using the catalog browser in
CentraSite Control, you can view the contents of your catalog according to a specified lifecycle
model. This view enables you to quickly ascertain which assets are in a particular phase of their
development lifecycle.

CentraSite's search tools and reporting features also allow you to query assets by lifecycle state.
You can use the advanced search feature, for example, to filter assets by their lifecycle state. You
can also use CentraSite's reporting facility to examine the lifecycle status of the assets in your
catalog.

How Lifecycle Models Help You Govern Your Assets

Lifecycle models enable you to govern your assets more effectively by allowing you to enforce
governance controls at various points in an asset's lifecycle.

When you associate a lifecycle model with an asset type, you make it possible to impose
design/change-time policies at each step of the asset's lifecycle. These policies enable you to control
the transition of an asset from one step of its lifecycle to another by triggering review and approval
processes, issuing email notifications, updating permission settings and generally verifying that
an asset meets the requirements necessary to enter the next step in its lifecycle.

Note: The following discussion of lifecycle models describes how you can use lifecycle
models with assets. CentraSite also uses lifecycle models to manage policies and lifecycle
models.

Implementation Concepts56

Defining Lifecycle Models

Lifecycle Model States and Transitions

A lifecycle model is composed of states and transitions.

A state represents a distinct step through which an asset passes on its way from conception to re-
tirement. A very simple lifecycle model for an asset might include states such as Design, Develop-
ment, Test, Operational and Retired. It might also include the Canceled state for assets whose life-
cycle is terminated prior to completion.

A transition represents the act of switching an asset from one state to another. When you define a
lifecycle model, you specify both the states that make up the lifecycle and the transitions that can
occur from each state. For example, the Test statemight have possible transitions to theOperational,
Development and Canceled states. If these are the only three transitions that you define for the
Test state, these are the only states to which CentraSite will allow an asset in the Test state to be
switched.

Lifecycle models are composed of states and transitions

A lifecycle model must have one initial state. Assets to which the model is applied enter the initial
state when they are first added to the registry. Every state except the initial state must have at
least one inbound transition associated with it.

A lifecycle model must have at least one end state. An end state has no outbound transitions asso-
ciated with it. The lifecycle model depicted in the figure above, for example, has two end states:
Canceled and Retired.

57Implementation Concepts

Defining Lifecycle Models

Assigning Permissions to Lifecycle Model States

Each state that you define in a lifecycle model includes a set of optional state permissions. State
permissions enable you to restrict who can transition assets to a specified state. You can assign
state permissions to individual users or to groups.

If you do not explicitly assign permissions to a state, any userwithModify permission on an object
can switch the object to that state.

You can optionally assign permissions to the states in a lifecycle

When you assign permissions to a state, two sets of users are allowed to switch an asset to that
state: 1) the set of users to which you explicitly grant state permission and 2) users who have im-
plicit permission to switch lifecycle states. The set of users who have implicit permission to switch
lifecycle states are:

■ Userswith "Manage System-WideLifecycleModels" permission (on objectsmanagedby a system-
wide lifecycle model).

■ Users with "Manage Lifecycle Models" permission (on objects managed by an organization-
specific lifecycle model).

■ The owner of the Lifecycle Model.

Note that the group of users with implicit permission to switch states does not include the owner
of the asset itself. If you want to give asset owners the ability to switch their assets to a particular
state, you must explicitly include them using the state permission settings.

Also note that granting state permission to a user does not, in itself, give the user the ability to
switch an asset to that state. The user must also have Modify permission on the asset itself. For
example, let's say you give the Users group for organization ABC permission to switch assets to
the Development state. Doing this does not mean that any user in organization ABC can switch
the assets in organization ABC to the Development state. It means that any user in organization
ABC with Modify permission on an asset can switch that asset to the Development state.

Implementation Concepts58

Defining Lifecycle Models

Note: CentraSite does not allow you to modify a lifecycle model, including its state permis-
sions, after you activate the model (more about activation, below). If you assign state per-
missions to a lifecycle model, consider assigning the permissions to groups instead of indi-
vidual users. Doing this will enable you to make simple adjustments to the permission
settings by simply modifying the membership of the assigned groups. You will not need
to deactivate the model to make these kinds of changes.

Triggering Policies during Lifecycle Model Transitions

You can configure design/change-time policies to execute during the transition points in an asset's
lifecycle. For example, you might apply a policy that gives View permission to a specified group
of users when an asset enters the Operational state, or you might apply a policy that obtains ap-
provals from a review group before an asset enters the Development state.

CentraSite will trigger polices when specified state transitions occur

When you create a policy that executes on a state change event, you specify whether the policy is
to execute immediately before CentraSite actually modifies the asset's state (which is called a
PreStateChange event) or immediately after CentraSite modifies the asset's state (a PostStateChange
event).

Generally speaking, you execute policies that perform approval and validation actions on the
PreStateChange event. In other words, you use PreStateChange policies to ensure that an asset
satisfies the entry criteria for a given state.

On a PostStateChange event, you typically execute policies that update the asset (e.g., granting
instance-level permissions to the users who need to work with the asset in the next phase of its
lifecycle) or issue notifications (e.g., sending an email). In short, you use PostStateChange policies
to execute actions that are to be carried out only if the asset's state is switched successfully.

There are, of course, exceptions to the generalizations above. Under some circumstances youmight
want to set an asset's instance-level permissions or update its attributes in a PreStateChange policy.
But generally speaking, youwant to perform approval and validation actions in a PreStateChange
policy, and you want to issue notifications and perform “state-certain” actions (i.e., actions that

59Implementation Concepts

Defining Lifecycle Models

should occur only after an object's state has been successfully switched) in a PostStateChange
policy.

Associating a Lifecycle Model with an Asset Type

When you define a lifecyclemodel, you specify the asset types towhich themodel applies. Because
different types of assets usually have different development paths, you generally create models
that are specific to a single asset type (i.e., onemodel for Service assets, onemodel for XML Schema
assets, one model for Business Processes and so forth). However, if multiple asset types have the
same lifecycle path, you can apply the same lifecycle model to them all.

You can model different lifecycle models for different assets types

Implementation Concepts60

Defining Lifecycle Models

When you apply the same lifecycle model to multiple asset types, you do not necessarily have to
apply the same state-change policies to those types. You can trigger different policies depending
on the type of asset whose state is changed. If youwere using the lifecycle model for XML Schema
and DTDs shown in the figure above, you might create one policy that executes when an XML
Schema switches to the Available state and another policy that executes when a DTD switches to
the Available state.

System-Wide vs. Organization-Specific Lifecycles

A lifecycle model is either system-wide or organization-specific. System-wide lifecycle models apply
to all organizations within an instance of CentraSite. Organization-specific models apply only to
a specified organization.

You can use a system-wide lifecycle model when all of the organizations in the registry have to
follow the same lifecycle for a particular type of asset. If all your organizations will use the same
lifecycle for XML schemas, for example, you could create a system-widemodel for the XMLSchema
asset type. However, if each organization intends to follow a different lifecycle for XML schemas,
or if some organizations do not want to impose lifecycle models on their XML schemas at all, you
must use lifecycle models that are organization-specific.

Note that when you apply a system-wide lifecycle model to an asset type, all organizations must
follow the same path through the lifecycle, however, each organization can define its own set of
policies for the lifecycle's transition points. In other words, the state and transition definitions in
system-wide model are applied to all organizations, but each organization can associate its own
policies with the lifecycle model.

61Implementation Concepts

Defining Lifecycle Models

When to Use Lifecycle Models

CentraSite does not require you to apply lifecycle models to the assets in your registry. You can
create and maintain an asset catalog without them. However, most of CentraSite's policy-based
governance controls (e.g., enforcing approval processes, validating attribute settings) can only be
applied to assets that have an associated lifecycle model. The use of lifecycle models also makes
it easier to manage the assignment of permissions (e.g., granting View permissions to additional
organizations) as an asset moves through its lifecycle.

If youwant to use design/change-time policies to impose governance controls on a particular type
of asset or youwant to automate routinemanagement tasks at certain points in the asset's lifecycle
(such as setting permission assignments), associate a lifecycle model with the asset type.

Note: For your convenience, CentraSite provides predefined lifecycle models for several
types of assets. You can use these lifecycle models “as-is” or customize them to suit your
needs. For a list of the predefined lifecycle models, see the section The Predefined Lifecycle
Models Installed with CentraSite in the section Customizing Lifecycle Management.

Lifecycle Stages

Sometimes an asset's overall lifecycle is split across two or more registries. The most common ex-
ample of this occurs when assets that are in the development and test phases of their lifecycle are
maintained in one registry (the “creation” CentraSite) and assets that are deployed (i.e., in produc-
tion) are maintained in a separate registry (the “consumption” CentraSite).

When a site splits an asset's lifecycle acrossmultiple registries, each participating registry is referred
to as a stage. Each stage knows about the other participating stages, but does not know the details
of the lifecycle that takes place in those stages (that is, the registries that participate in the overall
lifecycle are not aware of the specific states and transitions that occur in the other registries).

To model a lifecycle that extends across multiple registries, you must create a separate lifecycle
model on each participating registry. Each model describes just the segment of the lifecycle that
occurswithin its own registry. For example, in themulti-stage lifecycle depicted above, the lifecycle
model on the creation registry would consist of the Requested, Declined, Approve, Development,

Implementation Concepts62

Defining Lifecycle Models

Revising, QA andPromoted states. The lifecyclemodel on the consumption registrywould consist
of the Pre-Production, In Production, Deprecated and Retired states.

To indicate that a lifecycle ends on one registry and continues on another, the state that represents
the end of an asset's lifecycle on a particular registry will include a pointer to the registry that
hosts the next stage of the lifecycle.

Important: Only an end state in a lifecycle model can have a pointer to another stage.

When an asset reaches the end of its lifecycle on one registry, you promote the asset to the next
stage of its lifecycle by exporting the asset from the current registry and importing it to the next.

When you import the asset into the registry that hosts the next stage of its lifecycle, CentraSite
will first verify that the asset is being imported into the correct stage. It does this by checking the
address specified in the “stage” parameter that is included in the archive file with the exported
asset. If the address identified in the stage parameter in the archive file matches the registry's own
address, CentraSite allows the asset to be imported.

Creating a Lifecycle Model for a Single-Stage Environment

This section describes a simple lifecycle model that you might create for an XML Schema in a
single-stage CentraSite deployment. This example assumes that the registry supports both the
development (creation) and production (consumption) environments.

In the lifecycle depicted in the following example, the organization that develops an XML schema
(the provider organization) retains ownership of that schema throughout the schema's entire life-
cycle. As the schema progresses through the lifecycle, the provider organizationmakes the schema
available to others organizations.When the schema reaches the Available state (the point at which
it might be used by services that are in production), the Operations organization assumes control
over the schema.

A basic lifecycle model for an XML Schema

63Implementation Concepts

Defining Lifecycle Models

In general, this lifecycle uses a simple “push it forward” design. With this approach, the user or
group responsible for completing a particular development phase switches the schema to the next
state when their phase is complete. This action triggers an approval policy, which prevents the
state change from occurring unless the “gatekeepers” associated with the next phase approve the
change. For example, the developer who proposes the development of a newXML schema pushes
the schema to the “Design” state after he or she prepares the specifications necessary for develop-
ment to begin. However, the schema does not actually enter the “Design” state until the “gatekeep-
ers” of the next phase, in this case the SOA Review group, approve the state change.

The following sections describe each state inmore detail. Note that each section includes a descrip-
tion of the state permissions assigned to the state (which identifies those responsible for switching
the schema to that particular state) and the policies that are executed during a transition to that
state.

The Proposed State

The Proposed state is the initial state in this lifecycle model. An XML schema asset enters the
Proposed state when a user adds a schema to the registry. (Typically, the user is a developer, but
it might be an analyst or business owner who is requesting the development of the schema.)

The schema remains in the Proposed state while the user gathers the information required for the
XML schema to enter the development phase. This might include supplying a formal request
document and/or preliminary specifications for the schema. The user might also attach a prelim-
inary XSD file to the schema asset at this point, but that would not be required.

State Permissions. None. An initial state does not have state permissions.

Implementation Concepts64

Defining Lifecycle Models

The Design State

The user switches the schema to the Design state after he or she has the documents and specifica-
tions needed to obtain approval to develop the schema. Entry into this state must be approved by
the SOA Review group.

The schema remains in the Design state until development of the schema is complete and the
schema is ready to undergo formal test and validation.

State Permissions. None. Any user with Modify permission on the XML Schema can switch the
schema to the Design state.

Policy Execution. When an XML schema is switched to the Design state, a PreStateChange policy
executes to obtain approval for the change from the SOA Review group.

The Test State

The developer switches the XML schema to the Test state when the schema is ready for formal
testing and validation. Entry into this state must be approved by the QA Acceptance group.

The schema remains in this state while it is in testing. However, a tester might return it to the
Design state if the schema fails the testing process and requires additional development or design
work.

State Permissions. None. Any user with Modify permission on the XML Schema can switch the
schema to the Test state.

Policy Execution. When an XML schema is switched to the Test state, a PreStateChange policy
executes to obtain approval for the change from the QA Acceptance group.

A PostStateChange policy executes to give Full permission on the schema to the QA Acceptance
group.

The Available State

A member of the QA Acceptance group switches the XML Schema to the Available state when
testing is complete and the schema is considered to be ready for use. Entry into this state must be
approved by the Operations Acceptance group.

When the schema enters this state, a groupwithin the Operations organization generally assumes
control of the schema and is given Full permission on the schema. As necessary, they grant View
permission to other users.

State Permissions. The QAAcceptance group is given permission to switch an XML schema asset
to this state.

65Implementation Concepts

Defining Lifecycle Models

Policy Execution.When an XML schema is switched to the Available state, a PreStateChange
policy executes to obtain approval for the state change from the Operations Acceptance group.

A PostStateChange policy executes to give Full permission on the XML schema to the Operations
Acceptance group. It removes all other instance-level permissions assigned to the schema.

The Canceled State

A member of the SOA Review group switches the schema to the Canceled state if development
of the schema is halted and will not be resumed. A schema might enter this state, for example, if
the proposal submitted by the developer is rejected by the SOAReviewgroup because the requested
schema already exists in the catalog.

State Permissions. The SOA Review group is the only group that is allowed to switch an XML
schema asset to this state.

Policy Execution. A PostStateChange policy sends an email to notify the entire SOAReviewgroup
that development of the schema has been terminated.

The Deprecated State

Amember of the Operations Acceptance group switches an XML schema to the Deprecated state
to indicate that the XML schema is obsolete.

State Permissions.TheOperationsAcceptance group is given permission to switch anXML schema
asset to this state.

Policy Execution. A PostStateChange policy sends an email to notify developers that the XML
schema has been deprecated.

The Retired State

Amember of theOperationsAcceptance group switches anXML schema to the Retired statewhen
the XML schema is no longer available for use.

State Permissions.TheOperationsAcceptance group is given permission to switch anXML schema
asset to this state.

Implementation Concepts66

Defining Lifecycle Models

Issues to Consider When Using Lifecycle Models in a Single-Stage Environ-
ment

When creating your own lifecyclemodels for a single-stage environment, keep the following points
in mind:

■ Be aware that in a single-stage lifecycle design like the one described above, the user who enters
the XML schema into the catalog retains ownership of the schema throughout its entire lifecycle.
Consequently, when the XML schema reaches the Available state in this lifecycle, the original
owner (and any other user with "Manage Assets" permission within the owner's organization)
retains the ability to edit and delete the schema. The schema will not be under the sole control
of the Operations organization. To address this issue, you might want to move the asset into
the Operations organization when it reaches the Available state.

■ In any lifecycle design that uses approval polices, it is important to ensure that the members of
the approval groups have View permission on the assets that they will be asked to approve.
Without View permission on the asset, an approver cannot process an approval request on that
asset. To ensure that the appropriate permissions are in effectwhen an asset reaches an approver,
consider including an action in the approval policy that grants View permission to the approval
group just before the policy executes the approval action.

■ Generally speaking, to change an asset to a particular state, a user must have state permission
on that state and haveModify permission on the asset itself. However, if the state change triggers
a policy that sets instance-level permissions on the asset, the user who triggers the policy must
have Full permission on the asset.Otherwise the policy will fail. Thus, if your lifecycle design uses
policies to set instance-level permissions on an asset during certain state changes, make sure
that you give the users who will make those state changes Full permission on the asset.

Creating a Lifecycle Model for a Two-Stage Environment

This section shows how you might take the simple lifecycle for an XML schema described above
and modify it for a two-stage deployment. As shown in the figure below, the overall lifecycle of
the schema, from the Proposed state to the Retired state, now occurs over two registries.

Example Lifecycle for XML Schema Split Over Two Registries

67Implementation Concepts

Defining Lifecycle Models

Modeling this kind of lifecycle requires two lifecycle models: one on the creation registry and one
on the consumption registry.

The Lifecycle Model on the Creation Registry

The lifecycle model on the creation registry encompasses the development and testing phases of
the lifecycle. This lifecyclemodel includes the Proposed, Design and Test states, just like the single-
stage example. The design of these steps in the lifecycle, in terms of state permissions and policy
execution, is also the same as the one used by the single-stage example. However, instead of
moving directly to the Available state when testing is complete, a schema moves to the Promoted
state.

Implementation Concepts68

Defining Lifecycle Models

The Promoted State

The Promoted state is an end state in this lifecyclemodel. TheStagesproperty is set on the Promoted
state. This property indicates that the schema's lifecycle continues on another registry and it
identifies the address of that registry.

A member of the QA Acceptance group switches the XML Schema to the Promoted state when
testing is complete and the schema is considered to be ready for use. Entry into this state must be
approved by the Operations Acceptance group.

After the schema enters the Promoted state, an administrator exports the schema to an archive
file. This file is subsequently imported by an administrator on the consumption registry.

State Permissions. The QAAcceptance group is given permission to switch an XML schema asset
to this state.

Policy Execution. When an XML schema is switched to the Available state, a PreStateChange
policy executes to obtain approval for the state change from the Operations Acceptance group.

A PostStateChange policy executes to give Full permission on the XML schema to a small group
of administrators. It removes all other instance-level permissions assigned to the schema.

The Lifecycle Model on the Consumption Registry

The lifecycle model on the consumption registry defines three states: Available, Deprecated and
Retired. The Available state is the initial state. A schema will enter this state when it is imported
into the registry.

In terms of state permissions and policy execution, the design of this lifecycle model is similar to
the last three states of the single-stage example.

69Implementation Concepts

Defining Lifecycle Models

Typically, on a consumption registry, an “operations” organization owns and controls all assets
in the registry. Users in this organization are the only ones permitted to create assets. (The schema
would be imported by one of these users, for example.) All other users are simply consumers. The
operations organization grants these users View permission on the assets as necessary.

Issues to ConsiderWhenUsing LifecycleModels in a Two-Stage Environment

When creating lifecyclemodels for a two-stage environment like the examples shown above, keep
the following points in mind:

■ The user who imports an asset into the consumption registry specifies the organization into
which asset will be imported. This user can import the asset to any organization for which he
or she has "Create Assets" permission. If the archive file includes system-wide objects, such as
asset types or taxonomies, the userwho performs the importmust also have permission to create
those types of objects. Because of the permission requirements that an import process might
require, an administrator in the CentraSite Administrator role often performs the import task.
(Bear in mind, that whoever imports the objects on the target registry becomes the owner of
those objects. For this reason, you might want to have more than one user in a role with the
permissions necessary to import all types of registry objects.)

■ Be aware that when an asset reaches an end state on a particular stage, the asset remains in that
end state on that stage regardless of the state changes that occur in the next stage. For example,
when a schema reaches the Promotion state in the example above, the schema's state will no
longer change on the creation registry. The remaining states in the schema's overall lifecycle
(i.e., the Available, Deprecated, Retired states), are reflected only in the consumption registry.
To determine whether a Promoted schema has been moved to the Deprecated or Retired states,
a user must view the asset in the consumption registry.

Implementation Concepts70

Defining Lifecycle Models

Updating Assets That Are Under Lifecycle Management

If you need to update an asset that has reached the “production” phase of its lifecycle, you have
a couple of choices. If you need to make a minor change, for example, you need to correct an at-
tribute setting, add a classifier to the asset or modify the asset's description, an authorized user
can simply make the change directly to the production version of the asset. If you are working in
a multi-stage environment, you will need to manually apply the updates to the asset in each of
the participating registries.

If the changes are substantive, in particular, if they involve changes to the structure of a schema
or the definition of an interface, then you should create a newversion of the asset.When you create
a new version of an asset, the new version enters the initial lifecycle state, just as though it were
a completely new asset. The new version of the asset will pass through the entire lifecycle just like
any other new asset of its type.

If you are working in a multi-stage environment, you must create the new version on the registry
that hosts the first stage of the lifecycle (i.e., on the creation CentraSite). When the new version
reaches the end state on that stage, you would promote the new version of the asset to the next
stage just as you did with the previous version of the asset.

Creating a Different Lifecycle Path for a New Version of an Asset

For certain asset types, you might want to define separate lifecycle paths for new instances of an
asset and new versions of an asset. For example, in a lifecycle for an XML schema like the one
shown below, youmight want new versions of existing schemas to bypass the Proposed state and
go directly to the Design state.

Alternate Lifecycle Path for a New Version of an Asset

Creating an alternate path in a lifecycle requires the use of policies that conditionally change the
state of an asset depending on theway inwhich the asset is classified. In the example shown above,
this is achieved by doing the following:

71Implementation Concepts

Defining Lifecycle Models

• Defining an initial state (the New state) through which all schemas (new or versioned) pass.

• Creating policies that execute immediately after a schema enters the New state. These policies
switch the schema to the “Proposed” state or the “Design” state depending whether the schema
is classified as “New” or “Existing”.

To implement a lifecycle like the one above, you must add to the XML Schema asset type a Classi-
fication attribute that can be used to classify a schema as either “New” or “Existing”. (You would
need to create a custom taxonomy to support this attribute.)

Youmust also create two policies that execute after a schema enters the New state: one policy that
executes when a “New” schema enters the New state (this policy will switch the schema to the
Proposed state), and one policy that executes when an “Existing” schema enters the New state
(this policy switches the schema to the Design state).

Note: The example above describes how you can use policies to conditionally route an asset
between two alternate paths when an asset enters the initial state of its lifecycle. However,
you can use this same technique to establish alternate paths at any point in the asset's life-
cycle. Its use is not limited to the initial state.

Reverting an Asset to a Previous State

When you switch an asset from one state to another, the asset exists in a “pending” state until the
requested state change is complete. While an asset is in the pending state, it cannot be modified.

For most state switches, this is a very brief period of time. However, if the state change involves
the execution of policies, it can be quite long (in the case of an approval policy, an assetmight remain
in the pending state for days).

An object remains in the "pending" state until the requested state change is complete

An asset can, on occasion, encounter conditions that cause it to become stuck in the pending state.
To resolve the situation where an asset becomes stuck in the pending state, a user that belongs to
the CentraSite Administrator role can use the Revert Pending State command to return the asset
to its prior state. After the asset is reverted and the issue that caused the asset to become stuck is
corrected, an authorized user can switch the asset to its next lifecycle state again.

Implementation Concepts72

Defining Lifecycle Models

Note: Reverting the lifecycle state of an asset does not undo any attribute changes that
might have beenmade by policies that executed during the first state change event. It simply
returns the asset's lifecycle property to its previous state. If other attribute changes occurred
during the state change event, you will need to undo those changes manually.

Managing Lifecycle Models

This section describes issues relating to the creation and maintenance of lifecycle models.

Activating a Lifecycle Model

Lifecycle models are themselves governed by a predefined lifecycle model. This lifecycle model
defines three states: New, Productive and Retired.

When you initially create a lifecycle model it enters the New state. CentraSite does not begin en-
forcing a new lifecycle model until you activate the model by switching it to the Productive state.

After you activate a lifecycle model (i.e., place it in the Productive state), that lifecycle model can
no longer be modified. To make changes to the lifecycle model, you must create a new version of
the model and make your changes to the new version.

Note: After you retire a lifecycle model, that model cannot be activated again. The Retired
state is an end state for lifecycle models.

Versioning or Replacing Lifecycle Models

If you need to make changes to a lifecycle model after the model has been activated (i.e., after you
place it in the “Productive” state), you must either create a new version of the existing model or
replace the existing model with a completely new model. You cannot modify a lifecycle model
directly after it has been activated.

The easiest way to apply changes to a lifecycle model is to generate a new version of the model.
This task involves the following basic steps:

1. Creating a new version of the model. During this step, CentraSite creates an exact copy of the
existing lifecycle model.

2. Updating the newversion of the lifecyclemodel as necessary (e.g., adjusting its state permissions,
inserting additional states, removing states,modifying transition paths, applying it to additional
object types).

3. Activating the new version. This step automatically activates the new version and retires the
old version.

73Implementation Concepts

Defining Lifecycle Models

When you activate a new version of a lifecycle, instances of assets that were created under the old
lifecyclemodel will automatically switch to the new lifecyclemodel if they are in a state that exists
in the new model. Otherwise, they will continue to follow the old lifecycle model until they are
switched to a state that exists in both models. At that point, they will switch to the new lifecycle
model. Formore information about howCentraSitemaps the states between old and newversions
of a lifecycle model, see the user documentation for lifecycle models.

You can also apply changes to a lifecycle by defining an entirely new lifecycle model. To put the
newmodel into effect, you must retire the existing model and then activate the newmodel. When
you change a lifecycle this way, the objects that were created using the old model will complete
their lifecycles under the old model. Objects that are created after the new model is activated will
follow the new model.

Modifying the Predefined Lifecycle Model for Lifecycle Models

The predefined lifecyclemodel that CentraSite uses for lifecyclemodels is made up of three states:
New, Productive andRetired. This lifecycle is generally adequate formost environments. However,
you can make certain types of customizations to it if necessary.

For information about the ways in which you can customize this lifecycle model, see the section
Customizing Lifecycle Management > Lifecycle Model for Lifecycle Models .

Implementation Concepts74

Defining Lifecycle Models

10 Defining Design/Change-Time Policies

■ What is a Design/Change-Time Policy? ... 76
■ System-Wide vs. Organization-Specific Policies .. 78
■ Policy Priority ... 79
■ Pre-Operation and Post-Operation Event Types .. 79
■ What Happens When a Design/Change-Time Policy Executes? .. 80
■ OnTrigger Policies ... 80
■ Typical Uses for Design/Change-Time Policies .. 81
■ Issues to Consider When Developing Design/Change-Time Policies .. 83
■ Managing Design/Change-Time Policies .. 84

75

Design/change-time polices provide governance controls that you can use to effectively administer
and manage Web services and other assets within your SOA environment. Design-time policies
enable you to control the acceptance of assets into the registry and manage their eventual deploy-
ment into the runtime environment. You can use design/change-time policies to ensure that assets
entering the SOA environment conform to organizational standards and conventions, meet the
architectural requirements of your enterprise and adhere to industry best practices. You can also
use policies to execute standardprocedures, such as initiating reviewprocesses, issuing notifications
and granting instance-level permissions at key junctures in an asset's lifecycle.

The following sections generally describe design/change-time policies and explain howyoumight
apply them at your site. For additional information about design/change-time policies, including
specific steps for the procedures described in these sections, see the sectionWorking with
Design/Change-Time Policies.

What is a Design/Change-Time Policy?

Adesign/change-time policy defines a sequence of user-specified tasks that CentraSite is to execute
when designated events occur in the registry. For example, a policy could instruct CentraSite to
perform any of the following tasks:

■ Verify that a schema name conforms to specified conventions when a new schema is added to
the catalog.

■ Submit a Web service to a review panel for approval before the service enters the Design state.
■ Send an email notification to the IT organization when a service is deployed.
■ Change the permission settings on an asset when the asset switches to the Available state.
■ Assign a user in a given role to a particular group when a new user is added to CentraSite.
■ Alter an asset's lifecycle path depending on the way in which the asset is classified.

A design/change-time policy has twomajor elements: it has an action list,which specifies the tasks
(policy actions) that are to be executed, and it has a defined scope, which specifies when the action
list is to be executed.

Implementation Concepts76

Defining Design/Change-Time Policies

Policy Actions

A policy action is a programmed task, written in Java or Groovy (a scripting language). A policy
action can perform any type of work you require (e.g., sending an email, validating an attribute
setting, submitting an approval request, updating a database). It can have one or more input
parameters. An action that sends an email message, for example, will include input parameters
that specify the text of themessage and towhom it is to be sent. A policy action returns a completion
code that indicates whether it completed its task successfully.

The action list in a policy can contain one or more actions. CentraSite executes the actions in the
order that they appear in the list. If an action does not complete successfully, CentraSite immediately
exits the policy and bypasses any remaining actions in the list. Policy failures are recorded in
CentraSite's policy log.

CentraSite is installed with a library of “built-in” policy actions that you can use to construct
policies. You can also develop your own custom actions using Java or Groovy.

Policy Scope

The policy's scope specifies the conditions under which CentraSite is to execute the policy. It
consists of two main parameters: Event Type and Object Type.

■ The Event Type parameter specifies the events to which the policy applies. An event represents a
specific point during a registry operation when policies can be executed. Such points include
the PreCreate event (the point in time just before CentraSite saves a new instance of an object
to the registry), the PostCreate event (the point immediately after CentraSite saves a new instance
of an object to the registry) and the PreDelete event (the point in time immediately before
CentraSite deletes an object). Other events include the points in time before and after an update
operation and before and after a state change. For a complete list of the supported event types,
see the topic Events during Which Design/Change-Time Policies Can Be Enforced in the section
Working with Design/Change-Time Policies > Functional Scope .

■ The Object Type parameter specifies the types of objects to which the policy applies. Policies can
be applied to any type of asset and to several other types of registry objects. For a complete list
of supported objects, see the topic Objects on Which Design/Change-Time Policies Can Operate in
the sectionWorking with Design/Change-Time Policies > Functional Scope .

Together, the event type and the object type determine when the policy will execute. You can
make the scope as narrow or as broad as you need. That is, you can target the policy for one par-
ticular type of event and object (e.g., a PreDelete event on an XML Schema) or apply the policy to
multiple events and objects (e.g., a PreCreate, PreUpdate or PreDelete event on an XML Schema,
a Service or a BPEL Process).

77Implementation Concepts

Defining Design/Change-Time Policies

Refining a Policy's Scope with Additional Selection Criteria

You can optionally refine the scope of a policy to narrow the set of objects to which the policy
applies. To do this, you include additional selection criteria based on an object's Name, Description
or Classification properties. For example, youmight create a policy that applies only toApplication
Servers whose name includes the string “myDomain.com:” or to Application Servers that are
classified as Software AG Runtime.

The ability to execute policies based on object classification is an especially effective way to select-
ively apply policies to objects. As described inCreating aDifferent Lifecycle Path for aNewVersion
of an Asset, you can use this technique to route assets between alternate paths in a lifecyclemodel.
However, this technique can generally be used any time youwant to apply a policy to a particular
subset of objects within the specified object types.

Scope of a Policy Action

A policy action also has a declared scope. The action's scope specifies the object and event types
with which the action can be used. Some actions have very specific object-type and event-type
requirements. For example, you can use the “Validate Policy Deactivation” action only during a
PreStateChange on a Policy object. Other actions support a broad range of object and event types.

A policy can contain only actions that support the full set of object types and event types specified
by the policy's scope. For example, if you create a policy that executes on the PreCreate and
PreUpdate events for XMLSchemas, it can only contain actionswhose scope includes the PreCreate
and PreUpdate event types and the XML Schema object type.

When you create a policy, CentraSite's user interface will only allow you to select actions that
satisfy the specified scope of the policy. If you subsequently change the policy's scope, CentraSite
will not allow you to save the updated policy unless all of its actions support the policy's new
scope.

System-Wide vs. Organization-Specific Policies

A design/change-time policy is either system-wide or organization-specific. System-wide policies
apply to all organizations within an instance of CentraSite. Organization-specific models apply
only to a specified organization.

Whether a policy is system-wide or organization-specific affects the policy's scope. When a policy
is organization-specific, its scope is limited to the set of objects that belong to a specified organiz-
ation. For example, if you create a policy that executes on a PreDelete event for XML Schemas,
and you make that policy specific to organization ABC, that policy will execute only when XML
Schemas in organization ABC are deleted. If you make it system-wide, it will execute when an
XML Schema in any organization is deleted.

Implementation Concepts78

Defining Design/Change-Time Policies

Note: Once you create a policy, its organizational scope is fixed and cannot be changed.
That is, if you create a policywhose scope is specific to organizationABC, you cannot change
its scope to make it system-wide or switch it to another organization. You must create a
new policy and set its organizational scope in the new policy as needed.

Policy Priority

A policy has a priority value, which CentraSite uses when an event triggers multiple policies. You
can give a policy a priority value between 11 and 9999 (inclusive). Priority 11 is the default. Values
less than 11 and greater than 9999 are reserved for system use.

A policy's priority value is used only when an event triggers multiple policies. When this occurs,
CentraSite examines the priorities of the selected policies and executes the policies serially, in
priority order, from the lowest value to the highest value (that is, it executes the policy with the
lowest value first). Each policy in the series is executed to completion before the next one begins.

For example, if an event were to trigger the following policies, CentraSite would execute the
policies in the following order: B, A, C (as determined by the priority assignments 11, 25 and 100,
respectively).

PriorityPolicy

25A

11B

100C

If multiple policies have the same priority, they will be executed serially, but their order is inde-
terminate. (That is, you cannot predict the order. CentraSite will choose the order at enforcement
time.)

Pre-Operation and Post-Operation Event Types

Many of the event types to which you can apply policies represent pre-operation events or post-op-
eration events.

■ Pre-operation events occur immediately before a requested operation is performed on a registry
object. They include the following event types: PreCreate, PreUpdate, PreStateChange and
PreDelete. When you apply a policy to a pre-operation event, CentraSite executes the requested
operation only if the pre-operation policy executes successfully. You generally apply policies
at these points to prevent the requested operation from being executed unless an object satisfies
the verification checks performed by the policy.

79Implementation Concepts

Defining Design/Change-Time Policies

■ Post-operation events occur immediately after a requested operation is performed on a registry
object. They include the following event types: PostCreate, PostUpdate, PostStateChange,
PostDelete. When you apply a policy to a post-operation event, CentraSite executes the policy
only if the requested operation is performed successfully. Post-operation polices are often used
to notify users (via email) that certain changes have occurred in the registry, to update specified
attribute values and to assign permission settings on an object.

What Happens When a Design/Change-Time Policy Executes?

When an event occurs in the registry, CentraSite determines which policies are “within scope”
and executes those policies in priority order (from lowest assigned value to the highest assigned
value). If an actionwithin a policy fails, CentraSite immediately exits the policy. It does not execute
any of the remaining actions in the policy, nor does it execute any remaining policies that are
within scope of the event.

If the policy was triggered by a pre-operation event (e.g., a PreCreate event or a PreStateChange
event) the requested operation is also not executed. For example, if a user attempts to add an XML
Schema to the catalog, and the schema does not satisfy a validation policy that is triggered by the
PreCreate event for XML Schemas, CentraSite will reject the user's request to add the new schema
to the catalog.

Policy failures are written to CentraSite's policy log. From the Inbox page in CentraSite Control,
users can view the failed policies that were logged during the events that they initiated. Adminis-
trators with "View Policy Log" permission can view and query the entire log using CentraSite
Control's Logging feature.

OnTrigger Policies

CentraSite provides a special event type called an OnTrigger event. Policies that you create for
this event type can be run “on demand” from the CentraSite Control user interface. Anyone who
has View permission on an OnTrigger policy can execute the policy on demand.

When you run a policy on demand, CentraSite applies the policy directly to each object instance
in the registry that:

■ Is of a type specified in the policy's object scope.
■ Satisfies all conditional criteria specified by the policy (i.e., Name, Description and/or Classific-
ation criteria that the policy specifies).

■ Is an object on which the user running the policy has View permission. If the policy is organiz-
ation-specific, the policy is applied to only the objects that satisfy the preceding criteria and

Implementation Concepts80

Defining Design/Change-Time Policies

belong to the organization specified by the policy. If the policy is system-wide, the policy is
applied to all objects in the registry that satisfy the preceding criteria.

Administrators often use OnTrigger policies to assign permissions to a specified set of objects in-
stead of manually setting permissions on individual objects using the user interface.

Typical Uses for Design/Change-Time Policies

The following sections describe typical uses for design/change-time polices.

Using Policies to Initiate Reviews and Approvals

Enforcing a review and approval process is a common use of a design/change-time policy. To
create this type of policy, you include one of CentraSite's approval actions in the policy. An ap-
proval action identifies the group of users (the approver group) whose approval is required in
order to complete the policy successfully.When you configure an approval policy, you can specify
whether approval is required from just one approver in the group or from all approvers in the
group.

You apply approval polices to PreStateChange events. Thus, to use approval policies on assets,
those assets must be under lifecycle management.

Note: Approval policies can also be used with an OnConsumerRegistration event. This use
case is described later in this section.

When CentraSite executes an approval policy, it initiates an approval workflow. Users who are
designated approvers review the request on the Pending Approvals tab of their Inbox page in
CentraSite Control user interface. If the approvers approve the request, CentraSite executes the
requested state change. If an approver rejects the request, the policy fails and the requested state
change is not executed.

Pending approvals appear in the approvers inbox in CentraSite Control

81Implementation Concepts

Defining Design/Change-Time Policies

Users who submit requests that require approval can view the status of their requests on the Ap-
proval Requests tab of their Inbox page in the CentraSite Control user interface.

Using Policies to Validate Assets

Validation is another common task that you can perform using design/change-time policies. You
use validation policies to ensure that assets conform to organizational norms and standards before
they are accepted into the catalog or enter a critical lifecycle state. For example, you might create
validation policies to perform the following types of tasks:

■ Ensure that a service satisfies certain naming conventions, that it exists within a specified
namespace and/or supports specified protocols.

■ Ensure that an asset has been classified by a specified taxonomyand/or includes required attribute
settings.

■ Ensure that a service complieswithWeb Service Interoperability (WS-I) standards (Basic Profile
1).

■ Prevent an asset from being deleted unless it is has reached a specified state within its lifecycle.

CentraSite provides built-in actions that you can use to perform many validation tasks. You can
also create custom actions to perform validation tasks that are specific to your environment.

Using Policies to Modify Assets

You can use design/change-time policies to make changes to assets when certain events occur.
Setting instance-level permissions on an asset is an example of an update you might make using
a policy. Other kinds of changes you might make include classifying an asset, setting a specified
attribute when an asset completes a series of tests and changing an asset's lifecycle state.

CentraSite provides built-in actions that you can use to perform many kinds of updates to assets.
You can also create custom actions to modify assets.

Using Policies to Issue Notifications or Update External Systems

Notifying individuals when certain events occur in the registry is another common use case for
design/change time policies. CentraSite includes a built-in email action that you can use for this
purpose.

Youmight, for example, use this action to send an email to key users in your IT organizationwhen
a service switches to the Production state of its lifecycle. Youmight also create custom actions that
would send messages to and/or trigger processes on external systems when certain events occur
in the CentraSite registry.

Implementation Concepts82

Defining Design/Change-Time Policies

Using Policies to Execute a Consumer Registration

If you want to use CentraSite's consumer-registration feature, you must first create a consumer-
registration policy. CentraSite will not enable the consumer-registration feature until you create
this policy.

The consumer-registration feature in CentraSite enables users to register users and/or applications
as consumers of an asset. To complete the registration process, the owner of the asset must first
review and accept the user's request. If the owner accepts the request, the consumer-registration
policy, which you create, is executed. This policy includes the “Register Consumer” action, which
performs the actual registration process. It can optionally include other actions, such as an approval
action, as needed. For additional information about creating a policy that registers consumers, see
The Consumer Registration Policy.

Using Policies to Manage the Deployment of Virtual Services

If you use virtual services, youmust create policies that enable an administrator to deploy a virtual
service to webMethods Mediator and to make a virtual service undeployable while it is being re-
vised. For additional information about creating these kinds of policies, see Defining a Lifecycle
Path that Enables Deployment of a Virtual Service.

Issues to Consider When Developing Design/Change-Time Policies

The following are issues to keep in mind when creating design/change-time policies for your
CentraSite registry.

■ When an event occurs in the registry, CentraSite executes all policies whose scope encompasses
the event. Use priorities to control the order in which CentraSite executes the policies. Consider
assigning something other than the default priority of 11 to routine policies. Doing this will
enable you to more easily interject higher priority policies for the events associated with those
policies, should you ever need to do so.

■ Many of the built-in actions provided with CentraSite (including the approval actions) are
scoped for state-change events and can only be used with objects that are under lifecycle man-
agement. Before you create a policy, determine which policy actions you want to use and check
the event types that they support. To create certain types of policies, you might need to first
apply a lifecycle model to the objects that you intend to govern with those policies.

■ Exercise caution when using OnTrigger policies! If the policy updates objects, be certain that the
scope of the policy is set precisely and targets only the set of objects that you intend to change.
Used inappropriately, this type of policy can change objects inways that cannot easily be undone.

■ By default, CentraSite is configured to record only policy failures in the policy log. You can
optionally configure CentraSite to log both successful and failed policies in its log. However, if
you do this, the log can grow quite rapidly. Consider logging successful policy executions only

83Implementation Concepts

Defining Design/Change-Time Policies

when it is necessary for tracing or troubleshooting purposes. Or, if you choose to enable this
option as part of your normal operations, consider purging the log on a regular basis.

■ When CentraSite executes a policy, the policy's actions are executed on behalf of the user who
triggered the policy (in other words, the actions are executed under that user's account). If the
user does not have the permissions necessary to complete an operation initiated by a policy action,
the action (and thus, the policy) will fail. For example, if a user triggers a policy that sets permis-
sions on an object, the policy will fail unless the user has Full permission on the object. (Only
users with Full permission on an object are allowed to change the object's permission settings.)

Managing Design/Change-Time Policies

The following sections describe issues relating to the creation andmaintenance of design/change-
time policies.

Activating a Design/Change-Time Policy

Policies are managed by a predefined lifecycle installed with CentraSite. This lifecycle, called the
“Policy Lifecycle”, defines the following lifecycle states: New, Productive, Suspended andRetired.

To activate a policy, youmust place the policy in the Productive state. When you switch the policy
to this state, CentraSite begins enforcing it.

Modifying a Design/Change-Time Policy

You cannot modify a policy while it is in the Productive state. To make changes to a policy, you
can do any of the following:

■ Create a new version of the policy, make the necessary changes to the new version and switch
the new version to the Productive state when you are ready to put it into effect. Switching the
new version to the Productive state will immediately put the previous version in the Retired
state. (The Retired state is an end state. After you place a policy in this state, you can no longer
reactivate it.)

■ Create a completely new policy that includes the required changes. When you are ready to put
the new policy into effect, switch the old policy to the Suspended state and switch the new
policy to the Productive state. When you are certain that you will no longer need to revert to
the original policy, switch it to the Retired state.

■ Switch the existing policy to the Suspended state, make the necessary changes to the policy and
then switch it back to the Productive state. While the policy is in the Suspended state, it will not
be enforced. (Because suspending the policy results in an enforcement gap, one usually does
not use this approach in a production environment.)

Implementation Concepts84

Defining Design/Change-Time Policies

Copying a Design/Change-Time Policy

A design/change-time policy can become quite complex, especially if it contains several policy
actions. Instead of creating a new policy “from scratch”, it is sometimes easier to copy an existing
policy that is similar to the one you need and edit the copy.

CentraSite includes a copy feature that lets you do this. It produces a copy that is identical to the
original policy. Unlike a new version of a policy, a copy of a policy is not associated with the ori-
ginal policy in any way. CentraSite treats the copy just as if it were a new policy that you created
from scratch.

Modifying the Predefined Lifecycle Model for Policies

The predefined lifecycle model that CentraSite uses for policies is made up of four states: New,
Productive, Suspended and Retired. This lifecycle is generally adequate for most environments.
However, you can make certain minor types of customizations to it if necessary.

For information about the ways in which you can customize this lifecycle model, see the topic
Customizing the Predefined LifecycleModel for Policies in the sectionWorking with Design/Change-Time
Policies > Functional Scope .

85Implementation Concepts

Defining Design/Change-Time Policies

86

11 Working with Versions and Revisions

■ What is Versioning? ... 88
■ Which Objects Can You Version? ... 88
■ What is a Revision? ... 89
■ System-Assigned Version Identifiers vs. User-Assigned Version Identifiers .. 89
■ Using Versions to Avoid Enforcement Gaps in Policies and Lifecycle Models ... 89
■ When Should You Version an Asset? ... 90
■ How Do Lifecycles and Versioning Relate? ... 91
■ Managing the Transition to a New Version .. 91
■ Versioning in CentraSite vs. Versioning in Source Code Control Systems (SCCS) .. 91
■ Cleaning Up Old Versions ... 92

87

CentraSite's versioning capabilities enables you to maintain multiple versions of the same object.

What is Versioning?

Versioning an object creates a clone of the object. When you version an object, CentraSite copies
the source object with all of its attributes and then increments the version number in the “cloned”
target object. Additionally, CentraSite establishes a “supersedes” relationship between the new
version of the object and the old one. Among other things, this relationship enables you to view
and manage all versions of an asset from the asset's Versions profile in CentraSite Control.

Other than the differences described above, the new version is treated just as though it were a
new object. If it is of a type that is governed by a lifecycle model, the new version of the object
enters the initial state of that model (just like any new object of that type). Ownership of the new
version is given to the user who generates the new version. Consequently, the new version of the
object becomes part of that user's organization. Additionally, the instance-level permissions for
the new version are reset (the permission settings from the source object are not copied to the new
version).

Which Objects Can You Version?

You can create versions of the following types of objects:

■ Design/Change-Time Policies
■ Run-Time Policies
■ Lifecycle Models
■ Assets (except Virtual Services; see Revising a Virtual Service)

Whether a particular type of asset can be versioned depends on whether the Enable Versioning
property is enabled for the type. To version an asset, this property must be enabled in the asset's
type definition.

Implementation Concepts88

Working with Versions and Revisions

What is a Revision?

Revisioning is an optional feature that you enable or disable for the registry. When you enable the
revisioning feature, CentraSite automatically generates a minor version of an object every time an
update is made to the object. (All previous revisions are retained when a new one is created.) Re-
visioning enables you to reference or revert back to a specific revision of an object.

Note: When you enable the revisioning feature, CentraSitemaintains revisions for all objects
in the registry, not just objects that are versioned.

In some API-related documentation for CentraSite, a revision is referred to as a checkpoint.

System-Assigned Version Identifiers vs. User-Assigned Version Identifiers

CentraSite maintains two version identifiers for a versioned object: a system-assigned identifier and
a user-assigned identifier.

■ The system-assigned identifier is a version number that CentraSitemaintains for its own internal
use. CentraSite automatically assigns this identifier to an object when a version of the object is
created. The system-assigned identifier is numeric and always has the format MajorVersion.Re-
vision. The MajorVersion number is incremented by one each time you create a new version
of the object (e.g., 1.0, 2.0, 3.0). If the revisioning feature is enabled for your registry, the Revision
number is incrementedwhen updates aremade to the object (e.g., 1.0, 1.1, 1.2). You cannot delete
or modify an object's system-assigned identifier.

■ The user-assigned identifier is an optional identifier that you can assign to a specific version of
an object. This identifier does not need to be numeric. For example, you might use values such
as “V2 Alpha” or “V2.1 Build 0921” to identify a particular version of an object.

Using Versions to Avoid Enforcement Gaps in Policies and Lifecycle Models

CentraSite does not permit you to modify a policy (design/change-time or run-time) or a lifecycle
model while it is active. To modify an active instance of these types of objects, you must first de-
activate it. However, doing this results in a period of time during which the policy or lifecycle
model will not be enforced.

To avoid a gap in enforcement, you can use the versioning feature tomodify these types of objects.
Instead of deactivating the existing policy or lifecycle model, you generate a new version of the
object and make your changes to the new version. When you are ready to put the updated policy
or lifecycle model into effect, you simply switch the new version to the “Productive” state. When

89Implementation Concepts

Working with Versions and Revisions

you do this, CentraSite automatically deactivates the old policy or lifecycle model and activates
the new one.

For more information about versioning policies and lifecycle models, seeModifying a
Design/Change-TimePolicy,Modifying aRun-TimePolicy andVersioning or Replacing a Lifecycle
Model.

When Should You Version an Asset?

It is not necessary to version an asset to make minor changes to its metadata (e.g., the addition of
a supporting document, a change in the Description attribute, the addition or removal of a partic-
ular classifier or association). Nor should you generate versions for each incremental revision of
an asset that is produced during its development cycle.

You should only add a newversion of an asset to the registrywhen you have a new implementation
of the asset that is incompatible with the asset's existing consumers. For example, if a provider
updates (or intends to update) a Web service in a way that “breaks” the existing applications that
use the service, then you should create a new version of the asset in the registry. Such changes
would include modifications to the namespace assignments, message descriptions, interface
definitions and/or operation signatures in the service WSDL. It would also include changes to the
implementation of the service that do not explicitly affect the WSDL, but nevertheless affect the
way in which an existing consumer application interacts with the service. For example, a service
that returns an expanded set of result codes or generates a different form of customer ID might
break an existing consumer application even if the interface defined in the service WSDL did not
change. In short, you want to create a new version of a service asset for any new implementation
of the service that is incompatible with consumers of the existing service.

Note: Be aware that sometimes versioning one assetwill necessitate the versioning of another.
For example, if an XML schema changes, and that schema is imported by a Web service,
you will need to generate a new version of the XML schema and a new version of the Web
service that references it.

If a provider creates an implementation of a service that does not introduce compatibility issues
with consumers of the existing service (e.g., bug fixes or performance improvements), you do not
need to generate a new version of the service asset in CentraSite. Likewise, you do not necessarily
need to version a service if a provider simply adds operations to the existing implementation. You
can represent this type of change by just updating the existing asset in the registry.

Implementation Concepts90

Working with Versions and Revisions

How Do Lifecycles and Versioning Relate?

When you version an asset that is governed by a lifecycle model, the new version of the asset
enters the initial state of the lifecycle. If necessary, you can modify this behavior using
design/change-time policies.

For example, if the lifecycle model for an asset type includes preliminary steps such as Analysis,
Planning and Architectural Design, you might want to bypass these steps when a new version of
an asset is created. You can do this by executing a design/change-time policy that switches a new
version of an asset to an alternate path in the lifecycle model. For details, see Creating a Different
Lifecycle Path for a New Version of an Asset.

Managing the Transition to a New Version

When you deploy a new version of a Web service, you must plan for transitioning existing con-
sumers to the new version. The approach you use depends on how you intend to add the new
service to your existing operational environment. Youmight, for example, choose to host both the
old and new versions of the service for a period of time. Or you might require existing consumers
to upgrade to the latest version of the service, and then, at an agreed upon hand-over date, replace
the existing service with the new one. In either case, you should take steps to proactively notify
existing consumers when a new version begins its development lifecycle so that they can take
steps to adapt to the changes as necessary. You can use CentraSite to identify the existing consumers
of the service and notify the consumersmanually or you can create policies to do this automatically
when a new version reaches a particular state in its lifecycle.

After a new version of an asset is placed into production, new consumers should be discouraged
fromusing the older versions of the asset. Applying a lifecyclemodel that includes the “Deprecated”
state is a good way to indicate to users that an asset has been replaced by a newer version. As a
best practice, you should always switch an older version of an asset to the deprecated state as soon
as a new version of the asset is placed into production.

Versioning in CentraSite vs. Versioning in Source Code Control Systems
(SCCS)

An instance of an asset in CentraSite represents the finished deliverable that was produced (or
will be produced) by a specific development project or release cycle. CentraSite is not intended to
be used to chronicle every incremental build or internal version of an asset that a teamof developers
generates during a development cycle. However, when you register an asset in CentraSite, you
might want to include in its metadata an attribute that identifies the asset's corresponding set of

91Implementation Concepts

Working with Versions and Revisions

files in the source-control system. For example, when you place a service in production, youmight
want to attach a build number, branch ID or submission label to the asset in CentraSite to identify
the specific set of source-code files that the asset represents. You could define a custom attribute
to hold this identifier or you could use the user-assigned version identifier for this purpose.

Cleaning Up Old Versions

To keep the registry at a manageable size and reduce clutter, you should delete older versions of
assets when they are no longer active. To do this, you can use the purge feature that is provided
on the asset's Version profile. (If you do not see the Version profile for an asset, you will need to
edit the asset's type definition to enable it.)

Implementation Concepts92

Working with Versions and Revisions

12 Planning Your Run-Time Environment

■ Basic Components in the Run-Time Environment (when using webMethods Mediator as the PEP) 94
■ Deploying CentraSite for Run-Time Governance .. 95

93

The following sections contain information that you should review if you intend to use CentraSite
to govern Web services at run time.

Basic Components in the Run-Time Environment (when using webMethods
Mediator as the PEP)

When you use webMethods Mediator as your policy-enforcement point (PEP), your run-time en-
vironment consists of four main components: consumer applications, webMethods Mediator,
native services and CentraSite.

Basic Components in the Run-Time Environment

Consumer applications submit requests for operations that are provided by Web services that reside on
various systems in the network. As shown in the figure above, a consumer application submits its request
to a virtual service on the webMethods Mediator and not directly to the Web service itself.

1

webMethodsMediator hosts virtual services, which are proxy services that receive requests from consumer
applications on behalf of a particular Web service. A virtual service enforces standard policies that you

2

define for your environment (such as security enforcement and audit-trail logging) and handlesmediation
measures between consumer and provider such as protocol bridging, message transformation and
message routing.

Implementation Concepts94

Planning Your Run-Time Environment

Besides serving as an intermediary between consumer applications and native services, the Mediator
also collects performance statistics and event information about the traffic flowing between consumer
applications and the native services and reports this data to CentraSite.

Native services are Web services that process requests submitted by consumer applications. If a native
service produces a response, it returns the response to the virtual service and the virtual service returns
it to the consumer application.

3

CentraSite serves several key roles in the run-time environment. Besides serving as the system of record
for virtual services, run-time policies and related artifacts in the SOA environment, CentraSite provides

4

the tools you use to define virtual services and deploy them to webMethods Mediator. Additionally,
CentraSite receives and logs the performancemetrics and event data collected bywebMethodsMediator
and provides tools for viewing this data.

Deploying CentraSite for Run-Time Governance

When youuseCentraSite for run-time governance,we suggest that youuse a two-stage deployment
like the one shown below. Note that with this deployment strategy, each instance of CentraSite has
its own webMethods Mediator. This configuration creates an “air gap” between the development
and production environments, which completely separates the components that support your
production applications and services from those that support development and testing.

Note: For more information about the two-stage deployment strategy, see Choosing a De-
ployment Strategy.

95Implementation Concepts

Planning Your Run-Time Environment

An Overview of the Creation CentraSite Run-Time Environment

The creation environment supports the development and testing of run-time policies and virtual
services. It is used by the following types of users:

■ Developers, analysts, or other authorized CentraSite users publish the native services that will be
developed and added to the SOA environment.

■ Policy administrators develop and test the run-time policies that are to be applied to the native
services when they are virtualized.

■ Asset administrators create and test the virtual services that will be used to mediate access to the
native services.

After a virtual service has been created and tested on the creation CentraSite, the virtual service,
the run-time policies associated with it and the native service that it represents are promoted to
the consumption CentraSite.

An Overview of the Consumption CentraSite Run-Time Environment

The consumption CentraSite supports the production environment. Typically, the consumption
CentraSite is managed by the Operations or IT organization and only users in this organization
are permitted to publish assets to it.

The consumption CentraSite is used by the following types of users:

■ Developers and analysts access the consumption CentraSite to discover services that are available
for reuse. When access to a native service is mediated by a virtual service, users who browse
the catalog for re-usable services will see the virtual service, not the native service itself.

■ Designated administrators from the IT or Operations organization import the virtual services,
run-time policies and native services that have been developed and tested in the creation
CentraSite. These administrators will also:
■ Adjust the permissions settings to ensure that these objects can be viewed by the appropriate
groups of users (for example, they typically hide native services fromdevelopers and analysts
who browse the catalog for reusable services and expose only the virtual services to those
users).

■ Deploy virtual services to the Mediator.
■ Owners of the consumer applications that invoke virtual services access the consumptionCentraSite
to view the performance metrics and other events relating to the operation of virtual services
running in the Mediator.

Implementation Concepts96

Planning Your Run-Time Environment

General Concept of Operations between the Environments

The following diagram illustrates how the creation and consumption instances of CentraSite inter-
relate.

Description#

CentraSite. The creation CentraSite supports the development and testing of services and virtual services,
and the consumption CentraSite supports services and virtual services that are in production. Typically,

1

both registries have the same basic organizational structure, although they eachmight each have certain
“utility” organizations that are unique to their role as a creation or consumption server. (Note that the
two instances of CentraSite are not required to have the same organizational structure. They can have
different structures if that approach better suits your needs.)

Mediator. Each instance of CentraSite has its ownMediator (or Mediators). The Mediator in the creation
environment provides a test bed that developers use during the development of virtual services and

2

run-time policies. The Mediator in the consumption CentraSite is used exclusively for hosting virtual
services that are in production.

Native Services. A native service begins its lifecycle on the creation CentraSite. When the service is ready
for production, you promote it to the consumptionCentraSite. On the consumptionCentraSite, the native

3

service is typically hidden from users who browse the catalog looking for services to reuse and is visible
only to certain administrators (as a best practice).

Note that the catalog entry for a native service includes the endpoint(s) where the service is deployed.
As indicated by the figure above, these endpoints evolve as the service moves through development,
test and production. The handling of endpoints is discussed in more detail inManaging Endpoints.

97Implementation Concepts

Planning Your Run-Time Environment

Description#

Virtual Services. Like a native service, a virtual service begins its lifecycle on the creation CentraSite. You
cannot create a virtual service until the native service it represents is registered in the creation CentraSite
and it has been deployed on an endpoint in the network.

4

Typically, one creates a virtual service during the late stages of the development phase or when the
native service enters the test phase (in otherwords, after the service's interface is completely implemented
and an instance of the service is deployed and running at a knownpoint in the development environment).

After the virtual service has been tested and it is considered ready for production use, it is promoted to
the consumption CentraSite and deployed to a production Mediator.

Run-time Policy. A run-time policy defines a sequence of standard policy-enforcement actions that are
to be executed when a virtual service is invoked.

5

Administrators define and test run-time policies on the creation CentraSite. When the policies are
considered ready for production use, they are promoted to the consumption CentraSite.

Note: Before you deploy a virtual service to theMediator in the consumption environment, it is important
to ensure that all the run-time policies that apply to the virtual service have been promoted to the
consumption CentraSite.

Consumer Application. A consumer application identifies an application that invokes virtual services.
Consumer applications are defineddirectly on the consumptionCentraSite. They are not promoted from

6

the creation CentraSite. (Administrators on the creation CentraSite who define run-time policies will
typically define dummy consumers for testing purposes.)

Note: Technically speaking, a consumer application is represented by anApplication asset in the registry.
For more information about defining consumer applications, see Identifying the Consumers of Virtual
Services.

Implementation Concepts98

Planning Your Run-Time Environment

13 Implementing the Mediation Environment

■ Managing the Collection of Metrics .. 100
■ Managing the Collection of Events .. 101
■ Using CentraSite with Other Policy Enforcement Points ... 102
■ Using CentraSite with Insight ... 102

99

To use an instance of CentraSitewithwebMethodsMediator, youmust define a target that identifies
the specificwebMethodsMediator that youwant to use. A target is a registry object that represents
a particular instance of a policy enforcement point (in this case, an instance of webMethodsMedi-
ator). The target object specifies the address of the Mediator's deployment endpoint, which is the
endpoint that CentraSite uses to interact with Mediator to deploy virtual service.

If you use multiple Mediators with an instance of CentraSite, you must create a target for each
Mediator. Tomake theMediators easier to distinguishwhen they are viewed inCentraSite, consider
adopting a naming convention for targets that clearly identifies to which environment the target
belongs (e.g., development, test, production).

Targets are defined by an administrator with "Manage Runtime Targets" permission. Targets are
system-wide objects that are shared by all the organizations within an instance of CentraSite.

To communicate with CentraSite, a Mediator must have a user account on CentraSite. You have
to establish this user account before you can configureMediator's connection to CentraSite. Because
Mediator reads andwrites to certain objects in the registry (such as virtual services), its user account
requires a specific set of permissions. These permissions are identified in the Mediator user docu-
mentation.

Note: If you expect a high volume of traffic through a particularMediator, consider clustering
that Mediator. When you cluster Mediators, the cluster is represented by a single target
within CentraSite.

Managing the Collection of Metrics

webMethodsMediator collects performance data (e.g., average response time, total request count,
fault count) for the virtual services that it hosts. It publishes this data to CentraSite at regular in-
tervals. When you install and configure the Mediator, you must specify whether you want it to
collect performance data and, if so, how often you want it to publish the data to CentraSite.

We recommend that you always enable the collection of performance data on your Mediator. A
publication interval of 15minutes is appropriate formost environments. However, if theMediator
will handle a very high volume of traffic, consider increasing this interval to 30 or 60 minutes.
CentraSite stores the performance data that it receives from the Mediator in the performance log.
You can look at the performance information for a particular virtual service by viewing the virtual
service's Performance profile.

The performance data that CentraSite collects fromMediator can cause the log to growquite rapidly.
When the log grows very large, queries to the log can significantly affect CentraSite's performance.
To prevent this from happening, we suggest that you routinely purge old entries from the log.

CentraSite provides a log-purging utility that you can use to automatically purge the log on a
scheduled basis. We suggest that you use this utility to keep no more than one month of perform-

Implementation Concepts100

Implementing the Mediation Environment

ance data in the log (adjust this recommendation as necessary to accommodate your particular
needs). When you configure the log-purging utility, you can specify whether you want to delete
the purged log entries or export them to an archive file (in case you want to retain them for future
reference).

Note: Theperformancemetrics thatMediator collects enable service consumers (andpotential
service consumers) to determinewhether a virtual service is performing at a required level.
Mediator does not collect data at the granularity that a network administrator would need
in order to analyze performance problems (e.g., to determine why the response time for a
particular virtual service drops at a particular time of day). If you need data to support this
level of analysis, consider adding an Insight agent to your Mediator.

Managing the Collection of Events

In addition to performance metrics, webMethods Mediator can also log event data. Event data
supplies information about activities or conditions that occur on Mediator.

Mediator logs two basic kinds of events: 1) data relating to the operation of Mediator itself and 2)
data relating to the execution of virtual services.

The event data that Mediator collects about itself are referred to as lifecycle events. These events
represent activities or conditions that occur during the general operation of Mediator. Lifecycle
events are reported for the completion of significant processes (e.g., Mediator start-up) and the
detection of operational exceptions and policy violations. Mediator logs lifecycle events if you
configure it to do so.

Mediator collects the following types of event data relating to the execution of virtual services. Be
aware thatMediator does not collect this type of information automatically. If youwant to capture
these types of events, you must deploy run-time policies to do so.

■ Transaction Events report information about the requests that the Mediator processes. This type
of event is produced by the execution of a logging action in a run-time policy. For example, you
might configure a run-time policy to log all of the request and/or response messages submitted
to a particular virtual service.

■ Monitoring Events report transgressions relating to performance metrics. This type of event is
produced by the execution of a monitoring action in a run-time policy. For example, you might
configure a run-time policy to report occasions when the response time for a virtual service ex-
ceeds a specified threshold.

Mediator publishes event data as Simple Network Management Protocol (SNMP) traps. When
you install Mediator, you can configure it to publish this data to CentraSite, to another third-party
SNMP server or to both. If you choose to log event data to CentraSite, you can view the events
using the CentraSite Control user interface.

101Implementation Concepts

Implementing the Mediation Environment

Note: If you will be logging event data to CentraSite, you must first configure CentraSite's
event listener as described in the section Run-Time Governance Reference > Run-Time Events
and Key Performance Indicator (KPI) Metrics .

Like the performance log, the event logwill grow larger over time. If it becomes very large, queries
to the log will cause performance issues with CentraSite. To manage the size of the event log, we
suggest that you occasionally purge old entries from it. As a general guideline, considermaintaining
only three months of event data in the log. (Adjust this recommendation as necessary to accom-
modate your particular needs. If you routinely log request and response messages, for example,
you might need to purge more often.)

You can configure CentraSite's log-purging utility to purge the event log on a scheduled basis.
When you configure the purging facility, you can specify whether you want to delete the purged
entries or export them to an archive file (in case you want to retain them for future reference).

Using CentraSite with Other Policy Enforcement Points

Instead of (or in addition to) usingwebMethodsMediator formediation and/or policy enforcement,
you can use other third-party productswithCentraSite. Support for third-party policy-enforcement
and run-time governance tools is available through integrations that are provided by members of
the CentraSite Community. These tools are made available through the CentraSite Community
Web site at http://www.centrasite.org.

Using CentraSite with Insight

Insight is an additionalmonitoring tool from SoftwareAG that you can usewith CentraSite. Insight
provides deep visibility andmonitoring of services in a heterogenous SOAenvironment. CentraSite
provides support for Insight as a target type out-of-the-box. For additional information about In-
sight's uses and capabilities, see the Insight user documentation.

Implementation Concepts102

Implementing the Mediation Environment

http://www.centrasite.org

14 Managing Run-Time Policies

■ Run-Time Policy Scope ... 104
■ Run-Time Policy Actions ... 106
■ Run-Time Policy Deployment ... 106
■ Creating and Testing Policies ... 107
■ Activating a Run-Time Policy .. 108
■ Modifying a Run-Time Policy .. 108
■ Lifecycle Model for Policies in a Multi-Stage Deployment of CentraSite ... 109

103

A run-time policy defines a sequence of actions that a policy-enforcement point (PEP), such as
webMethodsMediator,will carry outwhen the PEP receives a request froma consumer application.
The actions that a run-time policy can execute depend on the type of PEP you are using. If you
are using webMethods Mediator, for example, you might create run-time policies to perform the
following kinds of tasks:

■ Verify that the requests submitted to a virtual service come from consumer applications that
are authorized to use the virtual service.

■ Validate request and response messages against the schema specified in the service's WSDL.
■ Log the request and response messages to the CentraSite event log.
■ Alert an administrator if the average response time for a service drops belowa specified threshold.

Run-time policies enable service architects to separate the logic that relates to general functions,
such as security,message validation, logging andmonitoring, from the business logic of the service.
By using policies to carry out these general activities, an organization can easily modify and re-
deploy the policies as necessary without disrupting the native services that perform the business
logic.

Like a design/change-time policy, a run-time policy consists of two major elements: an action list
and a defined scope. The policy's action list specifies the sequence of actions that are to be executed
by the PEP. The policy's scope determines to which virtual services the policy applies.

Note: The remaining sections assume that you are creating run-time policies that will be
deployed with virtual services on webMethods Mediator. If you are using another PEP, the
principles described in these sectionswill be similar, however, it will support its own unique
set of policy actions. The built-in policy actions that CentraSite provides out-of-the-box are to be
used only with webMethods Mediator. You cannot use these actions with other PEPs.

Run-Time Policy Scope

The scope of a run-time policy specifies for which virtual services the policy will be enforced. The
scope of a run-time policy is determined by the following policy parameters:

■ The Target Type parameter specifies the type of PEP on which the policy will be enforced. When
you create run-time policies forwebMethodsMediator, you set the Target Type to “webMethods
Integration Server”.

■ The Organization parameter specifies to which organization's virtual services the policy applies.
Like design-time policies, a run-time policy can be system-wide or organization-specific. System-
wide policies apply to virtual services in any organization. Organization-specific policies apply
only to virtual services that belong to a specified organization.

Implementation Concepts104

Managing Run-Time Policies

Note: Once you create a policy, its organizational scope is fixed and cannot be changed.
That is, if you create a policy whose scope is specific to organization ABC, you cannot
change its scope to make it system-wide or switch it to another organization. You must
create a new policy and set its organizational scope as needed.

■ The Asset Type parameter specifies to which types of assets the policy applies. When you create
run-time policies for webMethods Mediator, you set the Asset Type parameter to “Virtual Ser-
vices”. When you are creating a run-time policy for another type of PEP, you will set this para-
meter to “Web Services” (or possibly to some other asset type).

Refining the Run-Time Policy's Scope with Additional Selection Criteria

Although it is possible to create a run-time policy that applies to all virtual services, this is not the
common case. More frequently, you will create run-time policies that apply to a particular set of
virtual services (or possibly even one specific virtual service). For example, you might define a
run-time policy that monitors the response time for all virtual services that are considered to be
“critical”.

To target a policy for a particular set of virtual services, you refine the policy's scope by specifying
additional selection criteria based on the virtual service's Name, Description or Classification
properties. For example, if you wanted to apply a particular run-time policy to “critical” services
as described above, you would classify virtual services according to their criticality and create a
policy that targets virtual services that are classified as “critical”.

In cases where you need to apply a run-time policy to one specific virtual service, you can use the
selection criteria to identify the virtual service by name.

Note: While you are creating a run-time policy, you can refer to the policy's Service profile
to see exactly which set of virtual services are currently within the policy's scope.

To use run-time policies effectively, you need to think about what selection criteria your policies
will use to identify the set of virtual services with which they are to be used. Youmust also ensure
that the virtual services in your registry adhere to the Name, Description and/or Classification
conventions needed to support your selection scheme. For example, if you intend to enforce dif-
ferent logging policies for different classes of virtual services, you must define the taxonomy by
which the virtual services will be classified (for logging purposes) and ensure that virtual services
are classified according to this taxonomy before they are deployed.

105Implementation Concepts

Managing Run-Time Policies

Run-Time Policy Actions

CentraSite is installed with a set of actions that you use to define run-time policies for virtual ser-
vices deployed on webMethods Mediator. These actions fall into the following four categories:

Security actions, which youuse to identify and authenticate the consuming application that submitted
a request, to enforce the use of the SSL protocol (if required), to perform encryption and decryption
of specified parts of the request and response messages, and to validate signatures of messages
that are digitally signed.

Logging actions, which you use to log the request and/or response messages associated with a vir-
tual service. Logging actions can send the logged messages to Mediator's local log, CentraSite's
policy or audit log, to an SNMP server and/or email the messages to specified addresses.

Performance monitoring actions, which you use tomonitor specifiedmetrics (e.g., service availability,
average response time, fault count, request count) and log instances when these metrics violate
specified thresholds. Violations can be reported in Mediator's local log, in CentraSite's policy or
audit log, in an SNMP server and/or sent as an email message to specified addresses.

Data validation actions, which you use to validate the request and/or response message against the
WSDL associated with the virtual service.

Note: CentraSite does not require you to deploy run-time policies with a virtual service. It
is possible to deploy virtual services to webMethods Mediator without accompanying
policies. In practice, however, this is rare. One nearly always deploys virtual services with,
at the very least, some type of security-related policy to identify and authenticate the con-
suming application.

Run-Time Policy Deployment

When you deploy a virtual service to webMethods Mediator, CentraSite combines the actions
from all of the run-time policies that apply to the virtual service and generates what is called the
effective policy for the virtual service. For example, let's say your virtual service is within the scope
of two run-time policies: one policy that performs a logging action and another policy that performs
a security action.When you deploy the virtual service, CentraSite automatically combines the two
policies into one effective policy. The effective policy, which contains both the logging action and
the security action, is the policy that CentraSite actually deploys to the Mediator with the virtual
service.

When CentraSite generates the effective policy, it validates the resulting action list to ensure that
it contains no conflicting or incompatible actions. If the list contains conflicts or inconsistencies,
CentraSite resolves them according to the rules described in the section Run-Time Governance Ref-

Implementation Concepts106

Managing Run-Time Policies

erence > Built-In Run-TimeActions Reference for Virtual Services . For example, an action list can include
only one Identify Consumer action. If the resulting action list containsmultiple Identify Consumer
actions, CentraSite resolves the conflict by including only one of the actions (selected according
to a set of internal rules) in the effective policy and omitting the others.

The effective policy that CentraSite produces for a virtual service is contained in an object called
a virtual service definition (VSD). TheVSD is given toMediatorwhen you deploy the virtual service.
After you deploy a virtual service, you can view its VSD (and, thus, examine the effective policy
that CentraSite generated for it) from CentraSite Control or from the Mediator user interface.

Creating and Testing Policies

In a two-stage deployment of CentraSite, you will create and test run-time policies on the creation
CentraSite and then promote them to the consumptionCentraSitewhen they are considered ready
for use.

Distributing the Development of Policies

Because run-time policies involve several different aspects of operational behavior, there are often
several different types of architects or experts involved in their creation. For example,

■ Security-related policiesmight be defined andmanaged by a security architect, who is responsible
for ensuring that the policies adhere to corporate security standards.

■ Performance-monitoring policiesmight be defined and managed by an administrator or analyst
from the Operations organization.

■ Application-related policies (i.e., policies that involve logging or validating the data associated
with the service itself) might be defined and managed by an SOA Application Architect.

Because CentraSite combines applicable run-time policies at deployment time, it is possible to
distribute the policy-development responsibilities to the appropriate experts in your organization
as described above. Each expert defines and manages the policies for his or her area of expertise.
Then, at deployment time, CentraSite combines the applicable policies produced by each of these
experts into one effective policy for the virtual service.

107Implementation Concepts

Managing Run-Time Policies

Activating a Run-Time Policy

A run-time policy is not eligible for deployment unless it is “active”. In other words, when
CentraSite deploys a virtual service, it uses only “active” run-time policies to produce the effective
policy for the virtual service. Whether a run-time policy is active or inactive is determined by its
lifecycle state.

Run-time policies are governed by the same lifecycle model as design/change-time policies. The
predefined lifecycle model for policies that is installed with CentraSite is made up of four states:
New, Productive, Suspended and Retired. Under this lifecycle model, all policies enter the New
state when they are initially created.

While a run-time policy is in the New state, it is inactive. To activate a run-time policy, you must
place the policy in the Productive state. Switching the policy to the Productive state triggers an
internal system policy that activates the policy and makes it eligible for deployment.

If you activate a run-time policy that applies to a virtual service that is already deployed on web-
Methods Mediator, be aware that CentraSite will automatically re-deploy that virtual service with the
updated run-time policy. That is, CentraSite will automatically regenerate the effective policy for
the virtual service (to include the newly activated run-time policy) and then redeploy the virtual
service on webMethods Mediator.

To deactivate a run-time policy, you switch the policy to the Suspended state or the Retired state.
When you deactivate a run-time policy, CentraSite will automatically remove the policy from any vir-
tual service with which it is currently deployed. That is, CentraSite will automatically regenerate the
effective policy for each of those virtual services (to remove the deactivated policy) and then re-
deploy the virtual services on webMethods Mediator.

Note: We recommend that you use the lifecycle model that CentraSite provides for policies
“as-is”, even for a multi-stage deployment. For more information, see Lifecycle Model for
Policies in a Multi-Stage Deployment of CentraSite.

Modifying a Run-Time Policy

You cannot make changes to a run-time policy while it is active. To make changes to a policy after
it has been switched to the active state you must do one of the following:

1. Switch the policy to the Suspended state (to deactivate it), update the policy and then switch
it back to the Productive state (to reactivate it).

OR

Implementation Concepts108

Managing Run-Time Policies

2. Create a new version of the policy, make your changes to the new version of the policy and
then switch the new version to the Productive state. Switching the new version of the policy to
the Productive state will automatically Retire (and deactivate) the old version.

If you need to update a run-time policy that is already deployed with virtual services that are in
production, always use the secondmethod described above (i.e., create a newversion of the policy).
If you use the first method, which requires you to suspend the existing policy, your production
services will be running without the policy while you are making your revisions to it.

Additionally, if you need to make a change to a run-time policy on the creation CentraSite, and
that change needs to be promoted to the consumption CentraSite, always create a new version of
the policy and then promote the new version to the consumption registry. This will ensure that
the import process creates a new instance of the policy on the consumption registry (i.e., that it
does not overwrite the existing run-time policy) and that the updated policy is added to the registry
in the New (inactive) state. When you are ready to activate the imported policy, you switch it to
the Productive state.

Lifecycle Model for Policies in a Multi-Stage Deployment of CentraSite

CentraSite provides a lifecycle model for policies that applies to both design/change-time policies
and run-time policies. The lifecycle model has associated policies that CentraSite uses to validate,
activate and deactivate policies. Because of the complex nature of this lifecycle model, we recom-
mend that you use the lifecycle model as installed. Do not attempt to customize this lifecycle
model. (You can associate additional policies with its state changes, however.)

If you are operating in a multi-stage deployment, this means that you will use the same lifecycle
model on all stages in your environment. You will not define a multi-stage lifecycle model for
policies as you would for an asset.

When you develop a run-time policy on the creation CentraSite, that policy will enter the New
state. It will transition between the Productive and Suspended states as it undergoes development
and testing. When the run-time policy is considered to be ready for production, you will promote
it to the consumption CentraSite. Here it will also enter the lifecycle in the New state. When you
are ready to activate the policy in the consumption CentraSite, you switch it to the Productive
state.

Tip: To indicate that a policy has been promoted to the production environment, consider
adding a comment such as “PROMOTED” or “[Moved to Production]” to the policy'sDe-
scription property on the creation CentraSite.

109Implementation Concepts

Managing Run-Time Policies

110

15 Managing Virtualized Services

■ Which Services Should You Virtualize? .. 112
■ The Basic Elements of a Virtual Service ... 115
■ Virtual Service Processing Steps .. 115
■ Configuring CentraSite for Virtual Services .. 118
■ Creating Virtual Services ... 123
■ Deploying a Virtual Service .. 124
■ Revising a Virtual Service .. 126

111

A virtualized service is a service that runs on webMethods Mediator and acts as the consumer-
facing proxy for a service that runs elsewhere on the network. You can create a virtualized service
for a SOAP-based Web service, a REST service or an XML service. A virtualized service provides
a layer of abstraction between the service consumer and the service provider, and promotes loose
coupling by providing location, protocol and format independence between the consuming applic-
ation and the provider service.

For example, virtualized services enable you to:

■ Move native services to other physical addresses or switch providers without affecting existing
consumer applications.

■ Bridge differences (e.g., transport differences, message structure differences) between the cap-
abilities of a consuming application and the requirements of a native service.

■ Block portions of a service interface from certain consuming applications (i.e., expose selected
portions of the native service to certain consumers).

■ Provide access to different versions of a service through a single endpoint.

You use CentraSite to define virtualized services and to deploy them on specifiedMediators. After
you deploy a virtualized service, you use CentraSite as a “dashboard” from which to view per-
formance metrics and other run-time data relating to the usage of a virtualized service.

Which Services Should You Virtualize?

Although it is possible to virtualize any native service that is registered in CentraSite, you will
generally virtualize only certain types of services. The use of virtual services creates an additional
hop in the execution path and also consumes resources froman execution perspective. It is generally
not practical (or beneficial) to virtualize every native service in your environment. With respect
to virtualization, you want to strike a balance between the need to provide an SOA infrastructure
that is flexible and extensible with the need to maintain a manageable infrastructure that is not
overly complex.

Broadly speaking, there are three types of services you should consider virtualizing:

■ Business services (which you virtualize at the point of consumption)
■ Shared services
■ Services that are provided and consumed in different domains of control (e.g., cloud computing)

Implementation Concepts112

Managing Virtualized Services

Virtualizing Business Services at the Point of Consumption

As shown in the following diagram, one approach to virtualization is to think of your services in
terms of business services and technical services and to virtualize those services that are business
services.

Description#

Business processes are end-user applications that perform high-level tasks within your enterprise (e.g.,
fulfilling an order or generating a quote). Business processes provide business functionality by
orchestrating operations provided by different business services (depicted in layer 3).

1

Virtual services run in the layer between the business processes and business services. Each virtual service
functions as a proxy for a particular business service.

2

Business services are coarse-grain services that perform business-related tasks, such as performing a credit
check, setting up a new customer account or checking the status of an order. Business services generally

3

perform their work by invoking the operations of many different technical services (depicted in layer
4).

Because business services represent the point of consumption by end-user applications and processes,
they are good candidates for virtualization. Additionally, there are generally far fewer business services
than technical services (typically, 10% to 15% of services in an SOA environment are business services).

Technical services are fine-grained services that perform low-level tasks and/or utility functions such as
updating the employee database, retrieving a customer record or executing a query against the order

4

113Implementation Concepts

Managing Virtualized Services

Description#

database. Often, a technical service provides access to the functionality of a specific back-end system
such as a CRM system, an order-entry system or a financial system.

Note: There are cases when you might want to virtualize a technical service (see Virtualizing Shared
Services, below). However, these situations are rare. Generally speaking, you should avoid virtualizing
technical services unless they are used by consumers in multiple functional domains.

Virtualizing Shared Services

A shared service is a service that is used by multiple functional domains within an enterprise. For
example, consumers in the CRM area, the Sales and Marketing area and the Risk Management
area might each need access to customer data. Instead of giving these systems direct access to the
data service for the customer database, you virtualize the service and give these consumers access
to the virtual service (or virtual services). Virtualizing the service gives you greater control over
the interface that is exposed to these consumers, enables you to accommodate differences among
the consumers by applying different run-time policies and/or processing steps to them and also
gives you the flexibility to make modifications to the native service without impacting existing
consumers.

Virtualizing Services that are in Different Domains of Control (e.g., Cloud Computing)

Any service that is provided by an entity outside of the enterprise or is consumed by an entity
outside of the organization should be virtualized. For example, if you have an outside service that
provides sales forecasts for your industry, virtualizing this service would enable you to:

■ Monitor the performance and availability of the service, including compliancewith service-level
agreements (SLAs).

■ Shield consumers from changes in service providers.
■ Track dependencies between the external service and the applicationswithin the enterprise that
consume the service.

■ Resolve protocol and format inconsistencies between the outside service and the consuming
applications within your enterprise.

Similarly, you should virtualize any service that your organization offers to applications that execute
outside the enterprise (an inventory control service that you extend to suppliers and/or distributors,
for example).

Implementation Concepts114

Managing Virtualized Services

The Basic Elements of a Virtual Service

Avirtual service is aWeb service that runs onwebMethodsMediator. You use CentraSite to create,
edit, deploy and manage virtual services. Virtual services have the following major elements:

■ Basic service metadata andWSDL. When you create a virtual service, themetadata from the native
service is copied to the virtual service. The WSDL from a native SOAP-based Web service is
also copied to the virtual service. After the virtual service is generated, you can edit its metadata
and/or the WSDL as necessary.

■ A set of processing steps. Every virtual service includes a set of processing steps that you configure
before deploying the virtual service. The processing steps specify how the virtual service will
handle the requests it receives from consuming applications. Processing steps are discussed in
more detail later in this section.

■ One ormore targets. TheDeploymentprofile for a virtual service specifies the targets (webMethods
Mediators) on which the virtual service is deployed.

■ Run-time policies associated with the virtual service. ThePoliciesprofile for a virtual service identifies
the run-time policies that apply to the virtual service. These run-time policies are the ones that
CentraSite will include when it deploys the virtual service to the Mediators specified on the
Deployment profile.

■ Performance and Event profiles. The Performance and Events profiles enable you to examine the
run-time data associated with a virtual service. You use these profiles to view performance
metrics for a specified time period and to view events that have been logged for the virtual
service (e.g., SLA violations, service failures, logged request/response messages and so forth).

Virtual Service Processing Steps

The processing steps associated with a virtual service determine how the virtual service handles
the requests it receives from consumer applications. All virtual services have four processing steps:

■ The Entry Protocol step
■ The Request Processing step
■ The Routing step
■ The Response Processing step

You configure these steps to specify how Mediator is to act upon the requests it receives for this
virtual service.

115Implementation Concepts

Managing Virtualized Services

Entry Protocol Step

The Entry Protocol step specifies the protocol (JMS, HTTP or HTTPS) in which the virtual service
accepts requests. This step allows you to bridge protocols between the consuming application and
the native service. For example, let's say that you have a native service that is exposed over JMS
and a consuming application that submits SOAP requests over HTTP. In this situation, you can
configure the virtual service's Entry Protocol step to accept HTTP requests and configure its
Routing Step (described below) to route the request to the native service using JMS.

Besides using the Entry Protocol step to resolve protocol differences between the consumer and
the native service, youmight use this step to intentionally expose a virtual service over a particular
protocol. For example, if you have a native service that is exposed over HTTP, you might expose
the virtual service over JMS simply to gain the asynchronous-messaging and guaranteed-delivery
benefits that one gains by using JMS as the message transport.

Request Processing Step

TheRequest Processing step specifies how the requestmessage is to be transformedor pre-processed
before it is submitted to the native service. You can configure this step to perform message trans-
formations using a specified XSLT file or by passing the message to a webMethods IS service (i.e.,
a webMethods Integration Server service running on the same Integration Server as webMethods
Mediator).

You can use this processing step to accommodate differences between the message content that a
consuming application is capable of submitting and the message content that a native service ex-
pects. For example, if the consuming application submits an order record using a slightly different
structure than the structure expected by the native service, you can use the Request Processing
step to transform the record submitted by the consuming application to the structure required by
the native service.

Routing Step

The Routing step specifies the endpoint towhich requests are to be routed and the protocol (HTTP
or JMS) by which they are to be submitted to the native service.

If the native service is exposed over JMS, you use the routing step to specify the queue to which
the Mediator is to submit the request and the destination to which the native service is to return
the response.

If the native service is exposed overHTTPorHTTPS, you can configure this step to route all requests
to a specified endpoint (straight through routing), route requests to different endpoints based on
the content of the request (content-based routing), route requests to different endpoints based on
factors such as the time of day or the requestor's IP address (context-based routing) or distribute
requests across multiple endpoints (load-balancing routing).

Implementation Concepts116

Managing Virtualized Services

Note: When you configure the Routing step, you can either manually type the endpoint of
the native service or you can select the endpoint from a list of known endpoints in the re-
gistry. As a best practice, you should always select the endpoint rather than typing it
manually. The act of selecting an endpoint establishes a relationship between the virtual
service and the native service that is hosted at the selected endpoint. This relationship is
rendered when you examine the virtual service or the native service using the Impact
Analysis feature.

Using the Routing Step to Direct Requests across Multiple Endpoints

If you have a native service that is hosted at two ormore endpoints, you can use the load balancing
option in the Routing Step to distribute requests among the endpoints or you can use the content-
based or context-based options to route different types of messages to different endpoints.

Using the content-based routing option, you can route messages to different endpoints based on
specific values that appear in the request message. You might use this capability, for example, to
determinewhich operation the consuming application has requested and route requests for complex
operations to an endpoint on a fast machine.

Using the context-based routing option, you can route messages based on criteria such as the time
of day and/or the identity of the consuming application. For example, youmight use this capability
to route requests from certain high-priority consumers to endpoints on a fast machine.

Note: With either option, you must provide a default endpoint to which the virtual service
can route requests that do not satisfy any of the specified criteria.

Response Processing Step

The Response Processing step is similar to the Request Processing step. This step specifies how
the responsemessage from the native service is to be transformed or processed before it is returned
to the consuming application. Like the Request Processing step, you can configure the Response
Processing step to performmessage transformations using a specified XSLT file or by passing the
message to a webMethods IS service. You can also use this step to return a customized error
message to the consuming application when a SOAP fault occurs. (CentraSite provides a set of
context variables that you can use to incorporate specific details about the transaction into the error
message. You might use these variables to include information such as the time and date of the
error, the consumer identifier, and/or the requestor's user ID.)

117Implementation Concepts

Managing Virtualized Services

Configuring CentraSite for Virtual Services

Before you can create and deploy Virtual Services on your instance of CentraSite, there are two
important configuration steps that you must perform.

■ You must define a target object for each instance of webMethods Mediator that CentraSite will
use.

■ You must define a lifecycle model for services and virtual services.

Defining Targets

Before you can deploy virtual services, you must define targets to represent the Mediators that
are attached to your instance of CentraSite. For example, if you will be deploying virtual services
to two different Mediators, you must create two target objects, one for each Mediator instance.

Note: CentraSite will not enable theDeploy button on theDeployment profile for a virtual
service until at least one target has been defined on your instance of CentraSite.

Defining a Lifecycle Model for Services and Virtual Services

To deploy virtual services, youmust define a lifecycle model for services and virtual services. You
must also create policies that enable and disable the Deployment profile depending on the state
of the virtual service within this lifecycle. You cannot deploy virtual services until this lifecycle model
and the necessary deployment-related policies exist and have been activated.

Note: The starter kit includes a lifecycle model for services and virtual services that you can
use as a guide. For more information about the starter kit, seeObtaining and Installing the
Starter Kit.

Understanding the Lifecycle for Services and Virtual Services

A virtual service is a specialized form of a Service asset type. Because virtual services are actually
service objects, a lifecycle model that applies to services applies to virtual services as well. Yet a
virtual service and a native service have distinctly different lifecycles. To accommodate this differ-
ence, you must create a lifecycle model that defines two separate lifecycle paths.

The following diagram shows a simple lifecycle model that supports both types of services. Note
that this lifecycle has a path for native services and a path for virtual services. Policies are used to
switch native services and virtual services to the appropriate path.

Note: To distinguish virtual services from native services (i.e., regular SOAP-based Web
services, REST services or XML services), CentraSite adds the CentraSite VirtualTypes:

Implementation Concepts118

Managing Virtualized Services

Virtual services classifier to a virtual service. This classifier enables you to create
design/change-time policies that target virtual services specifically.

In the following example, the Proposed state is the lifecycle model's initial state. When a native
service is created, it enters the Proposed state and from there, it follows the lifecycle path for native
services. After a native service is tested and it is ready to be promoted for production, a virtual
service is generated for it. The virtual service initially enters the Proposed state when it is created.
However, a design/change-time policy immediately switches the virtual service to the lifecycle
path for virtual services.

Simple Lifecycle of a Virtual Service on the Creation CentraSite

Description#

The Proposed state is the initial state for this lifecycle model. When a native service is created, it enters
the Proposed state and follows the lifecycle path for native services.

1

A virtual service is generated from the native service when the service is ready to go to production.
Generally, this step is performed after the native service has been tested and is considered ready for
production or after it has been promoted to the production environment.

2

The virtual service enters the lifecycle in the Proposed state, but a policy immediately switches it to the
VS_New state, which is the beginning of the lifecycle path for virtual services. This lifecycle path includes
states that enable or disable the deployment of the virtual service.

3

Note: To prevent users frommanually switching a native service to the lifecycle path for a virtual service,
you can apply a policy to the VS_New state to verify that only service assets classified as CentraSite
VirtualTypes: Virtual services enter this path.

119Implementation Concepts

Managing Virtualized Services

Creating the Lifecycle Model for Services and Virtual Services

To create a lifecyclemodel that supports both native services and virtual services, youmust perform
the general steps described below.

Note: To see how the following steps have been implemented in an actual lifecycle model,
install the starter kit and refer to the lifecycle model for services and virtual services. For
more information about the starter kit, seeObtaining and Installing the Starter Kit.

1. Create a lifecycle model for the “Service” asset type and in this model define the sequence of
states and transitions that make up the lifecycle path for a native service.

2. In the same lifecyclemodel (and following the sequence of states that you defined in the previous
step), define the sequence of states and transitions thatmake up the lifecycle for a virtual service.

Note: The lifecycle path for a virtual servicemust include at least one state that represents
the point where the virtual service has been completely configured and is ready to be
deployed. Before creating the lifecycle path for a virtual service, review the information
in Creating a Policy that Enables the Deployment Profile to ensure that your lifecycle
path includes the appropriate deployment-related states and policies.

3. Define a transition from the initial state of the lifecycle model to the first state in the lifecycle
path for virtual services. This will be the only transition that should connect the two lifecycle
paths. In the example depicted inUnderstanding the Lifecycle of Services and Virtual Services,
this is accomplished by allowing a transition from the Proposed state, which is the initial state
for the entire model, to the VS_New state, which is the first state in the lifecycle path for a vir-
tual service.

4. Apply a policy to the lifecycle model's initial state (PostStateChange) that switches the state of
a virtual service to the first state in the lifecycle path for virtual services. Use the Classification
filter to scope the policy so that it executes only for virtual services.

Implementation Concepts120

Managing Virtualized Services

In the example depicted in Simple Lifecycle of a Virtual Service on the Creation CentraSite,
this policy executes on the PostStateChange for theProposed state and switches virtual services
to the VS_New state.

5. Optionally, create a policy that executes on the VS_New state (PreStateChange) and verifies
that the service includes the CentraSite VirtualTypes: Virtual services classifier. Doing this
will prevent someone from inadvertently switching a native service to the virtual service lifecycle
path.

Defining a Lifecycle Path that Enables Deployment of a Virtual Service

The virtual service'sDeployment profile contains the controls that you use to deploy, undeploy
and redeploy the virtual service. When the Deployment profile is disabled, you cannot perform
these operations on the virtual service.

By default, theDeployment profile is disabledwhen you create a virtual service. This is to prevent
anyone from deploying the virtual service until after its processing steps have been properly
configured. To enable the Deployment profile, you must switch the virtual service to a state that
triggers the execution of a policy that enables the Deployment profile.

When you define the lifecycle path for a virtual service, you must determine during which states
the Deployment profile will be enabled and during which states it will be disabled. Then, you
must create policies to enable or disable theDeployment profile as appropriate when the virtual
service enters these states.

For example, if youwanted theDeployment profile to behave as shown in the lifecycle path below,
you would apply a policy that enables theDeployment profile when the virtual service switches
to the VS_Virtualized, VS_Certified or VS_Promoted state, and you would apply a policy to
disable theDeployment profilewhen the virtual service switches to theVS_Revising orVS_New
state.

Virtual Service Lifecycle Path with Deployment Status

121Implementation Concepts

Managing Virtualized Services

Creating a Policy that Enables the Deployment Profile

To enable theDeployment profile for a virtual service, create a policy that contains the following
action and apply this policy (on a PostStateChange) to all states duringwhich youwant the controls
on the Deployment profile to be enabled.

Change Deployment Status (enable)
 ↩

If you want to prevent users from modifying the processing steps for a virtual service after the
Deployment profile is enabled, include the Processing Step Status action in the policy to disable
the Processing Step profile as shown below.

Processing Step Status (disable)
Change Deployment Status (enable) ↩

Creating a Policy that Disables the Deployment Profile

To disable the Deployment profile, create a policy that contains the following action and apply
this policy (on a PostStateChange) to all states duringwhich youwant the controls on theDeploy-
ment profile to be disabled.

Change Deployment Status (disable)
 ↩

If your lifecycle includes policies that automatically disable the Processing Step profile when the
Deployment profile is enabled, this policy should include the Processing Step Status action to re-
enable the Processing Step profile as shown below.

Change Deployment Status (disable)
Processing Step Status (enable) ↩

Note: To see how these policies are implemented in an actual lifecycle model, install the
starter kit and examine the policies associated with the lifecycle model for services and
virtual services. For more information about the starter kit, seeObtaining and Installing
the Starter Kit.

Implementation Concepts122

Managing Virtualized Services

Creating Virtual Services

To create a virtual service in CentraSite, you must select the native service for which you want to
create the virtual service and run the “Virtualize” command. During the virtualization process,
CentraSite copies themetadata (including theWSDL) from the native service to the virtual service.
In other words, the virtual service is basically cloned from the native service.

Because the virtual service is cloned from the native service, it has its own copy of the service
metadata. If youmake a change to themetadata in the native service after you generate the virtual
service, you will need to explicitly update the virtual service if you want that change reflected in
the virtual service, too.

Note: If the native service includes file attributes that refer to documents in the supporting
document library, the virtual service will reference the same documents. CentraSite does
not create separate copies of the supporting documents for the virtual service. The virtual
service simply refers to the same supporting documents as the native service.

When Should You Create a Virtual Service?

Generally speaking, you do notwant to generate the virtual service unless the following conditions
are satisfied:

■ The interface for the native service is completely implemented and that interface is reflected in
the WSDL that is registered for the service in CentraSite.

■ An instance of the native service is deployed and running at a known point in network.
■ Themetadata for the native service is valid and up-to-date. If themetadata for the native service
has not been completely specified or is out-of-date, you should update it before you generate
the virtual service so that you do not carry inaccurate/incomplete data into the virtual service.

Important: Take care when assigning names to your virtual services. The name given to a
virtual service when it is created, cannot be changed afterwards.

Who Should Create a Virtual Service?

If a user has View permission on a native service and "Create Assets" permission within their own
organization, he or she can create a virtual service. However, the user will not be permitted to
configure the processing steps for the virtual service unless he or she also has the "Manage Runtime
Policies" permission for their organization. Only userswith "Manage Runtime Policies" permission
can configure these steps.

Consider identifying a small group of userswhowill be responsible for configuring the processing
steps for a virtual service. Give this group a role that includes the "Manage Run-time Policies"
permission. Because these users might configure virtual services that other users have created,

123Implementation Concepts

Managing Virtualized Services

they will also need Modify permission on the virtual services. To ensure that these users can edit
the virtual services that they need to configure, consider creating a design/change-time policy that
automatically gives this group Modify permission on a virtual service when it is created.

Virtual Service Ownership

One issue to consider when creating virtual services is the issue of ownership. When you create
a virtual service, CentraSite automatically adds the virtual service to your organization (even if the
native service itself belongs to another organization). You cannot explicitly specify the organization
to which you want the virtual service added.

The issue of ownership is important with respect to virtual services, because it determines which
run-time policies are applied to the virtual servicewhen it is deployed. If the native service belongs
to another organization, the existing run-time policies for your organization might or might not
be appropriate for it.

When youdefine the general process that your sitewill follow to create and deploy virtual services
(i.e., when you determine who will create a virtual service, who will configure a virtual service,
and who will deploy a virtual service), keep in mind that CentraSite always adds a virtual service
to the organization of the user who creates it. Make sure that whatever process you adopt for
creating virtual services places a virtual service in the appropriate organization.

Deploying a Virtual Service

There are several ways you can deploy a virtual service to aMediator instance. All methods except
the first one allow you to deploy multiple virtual services in a single step.

■ From the virtual service's detail page.
■ From theOperations > Deployment page.
■ From the target's detail page.
■ Running a script file from a command line.
■ Running a batch file.

To deploy a virtual service, the following conditions must be satisfied:

■ Ensure that you have the "Manage RuntimeTargets" permission. Only userswith this permission
can deploy a virtual service. CentraSite will not enable the deployment controls for any other
users.

■ Ensure that the run-time policies for the virtualized service are active. This is indicated in the
Policies profile on the virtualized service's detail page. If a policy is inactive, you must activate
it as described in the section Virtual Services in CentraSite Control > Creating Run-Time Policies .

Implementation Concepts124

Managing Virtualized Services

■ Ensure that the virtualized service has a design-time policy that includes theChangeDeployment
Status action and it is set to Yes. This action specifies whether the service is eligible for deploy-
ment. Formore information about this action, see the section Built-In Design/Change-Time Actions
Reference > Built-In Actions for Design/Change-Time Policies .

■ Ensure that the virtualized service has at least one target associated with it, and the target has
must already have been created, as described in the section Run-Time Targets.

■ Ensure that the target's specified deploymentURL is active and the user credentials of Integration
Server are valid. To check this, go to the target's detail page and click the Check Connection
button. If the connection is not active and valid, activate the deployment endpoint and modify
the user credentials as required.

■ Ensure that the virtualized service is in a “deployable” lifecycle state. If you are not certain in
which lifecycle states a virtualized service is eligible for deployment, consult your CentraSite
administrator.

If these conditions are not satisfied, all or part of the deployment user interface controls will be
disabled when you view the virtual service.

Note: Only users that are completely familiarwith your site'smediation environment should
be given permission to deploy virtual services. Generally, this would include a small
number of administrators who have operational responsibility for the Mediators on which
virtual services are deployed.

The Deployment Process

The deployment process is carried out by a sequence of interactions that occur between CentraSite
and the Mediator:

1. CentraSite pushes the virtualized service that is ready for deployment to the webMethods
Mediator target.

2. Instantly, theMediator deploys the virtualized service thatwas received fromCentraSite (along
with its effective run-time policy), and notifies CentraSite when the deployment process is
complete.

Undeploying a Virtual Service

After you deploy a virtual service to a Mediator, the virtual service remains deployed and active
on that Mediator until you manually undeploy. You can deploy a virtual service using the same
deployment mechanisms mentioned above.

125Implementation Concepts

Managing Virtualized Services

Redeploying a Virtual Service

A virtual service that is already deployed on a Mediator can be manually redeployed. You can
redeploy a virtual service using the same deployment mechanismsmentioned above. If youmake
changes to a virtual service's processing steps, for example, you must manually redeploy the vir-
tual service to put those changes into effect.

As described inModifying a Run-Time Policy, you cannot make changes to a run-time policy
while it is active. To make changes to a policy after it has been switched to the active state you
must do one of the following:

1. Switch the policy to the Suspended state (to deactivate it), update the policy and then switch
it back to the Productive state (to reactivate it).

OR

2. Create a new version of the policy, make your changes to the new version of the policy and
then switch the new version to the Productive state. Switching the new version of the policy to
the Productive state will automatically Retire (and deactivate) the old version.

If you need to update a run-time policy that is already deployed with virtual services that are in
production, always use the secondmethod described above (i.e., create a newversion of the policy).
If you use the first method, which requires you to suspend the existing policy, your production
services will be running without the policy while you are making your revisions to it.

Revising a Virtual Service

Web services are bound to change and evolve over time. The loose coupling principles of service-
oriented architecture (SOA) imply that service providers can release a new version of a shared
servicewithoutwaiting for consumers to adapt, and that service consumers should test and certify
on a new shared service version before switching. Consequently, youmight need to havemultiple
versions of a shared service running concurrently and simultaneously accessible by different service
consumers. Some service consumersmight need to continue using an old version of a service until
migration of the consumer code occurs. Therefore,Web services versioning is an important subject
that should be considered carefully in all enterprise SOA approaches.

Current standards for Web services have no explicit support for versioning. However, there are
two alternatives for handling access to multiple versions of Web services:

1. Require the consumer applications to change their code to specify which versions to access.

This option is rarely implemented due to its prohibitively complex and time-consuming nature.

2. Use a mediation layer (e.g., Mediator) to decouple the consumer from the provider, and thus
allow the mediation layer to route requests to the desired version of a given service.

Implementation Concepts126

Managing Virtualized Services

Mediator provides versioning solutions that you can implement, called “versioning patterns”.
To implement versioning patterns, you configure virtual services in CentraSite so that consumers
can access the desired version of a given service. You can use the versioning patterns to handle
access to both Minor and Major versions of services.

Mediator cannot run multiple versions of the same virtual service simultaneously. Mediator only
retains the last deployed version of a virtual service. However, suppose you havemultiple versions
of a native Web service. By using a versioning pattern, a single virtual service can provide access
to the various native service versions based on an intelligent routing scheme that routes requests
from a particular consumer to the correct native service version. A second option would be to
providemultiple virtual services that correspond tomultiple native service versions. For example,
suppose you have two versions of the native service “GetOrder”. You have the following options
in Mediator:

■ Provide a single virtual service that intelligently routes each consumer to the appropriate
“GetOrder” version (either version 1 or version 2).

Or
■ Provide one virtual service that routes consumers to version 1, and one virtual service that routes
consumers to version 2.

This section discusses the following topics:

■ Minor Versions vs. Major Versions
■ The Layer of Indirection Pattern
■ The Adapter Pattern
■ Combination of the Layer of Indirection Pattern and the Adapter Patterns

Minor Versions vs. Major Versions

Minor and Major versions of Web services are described as follows:

■ Minor version:

AMinor version is a version that is compatiblewith all consumers of the existing virtual service.
That is, the changes in a Minor version do not “break” the existing applications that use the
service. Examples of changes for a Minor version include:
■ Bug fixes.
■ Performance improvements.
■ The addition of a supporting document.
■ The addition of operations (as long as it does not break the existing applications).
■ A change in the Description attribute.

127Implementation Concepts

Managing Virtualized Services

■ Major version:

AMajor version is a version that is incompatiblewith consumers of the existing virtual service.
That is, the changes in a Major version “break” the existing applications that use the service.
Examples of a Major version include:
■ Modifications to the namespace assignments.
■ Modifications to message descriptions.
■ Modifications to interface definitions and/or operation signatures in the service WSDL.
■ Changes to the implementation of the service that do not explicitly affect the WSDL, but
nevertheless affect theway inwhich an existing consumer application interactswith the service.

For example, a service that returns an expanded set of result codes or generates a different
formof customer IDmight break an existing consumer application even if the interface defined
in the service WSDL did not change.

Note: Be aware that sometimes versioning one assetwill necessitate the versioning of another.
For example, if an XML schema changes, and that schema is imported by a Web service,
you will need to generate a new version of the XML schema and a new version of the Web
service that references it.

The Layer of Indirection Pattern

This pattern allows multiple Minor versions of a native service to coexist in the registry without
requiring consumers to change the code in their consumer applications, and helps to ensure a
graceful migration to the new Minor version.

To implement this pattern, you configure a single virtual service to route each request to the version
that is appropriate for each consumer (or group of consumers). That is, you configure the virtual
service's Routing step to use either the “content-based routing” option or the “context-based
routing” option.

■ Content-based routing option:

Using the content-based routing option, you can route request messages to different endpoints
based on specific values that appear in the requestmessage. For example, if a newMinor version
contains an additional operation, you can write a rule that routes all requests that reference the
newly-added operation to the new Minor version.

■ Context-based routing option:

Using the context-based routing option, you can route request messages to different endpoints
based on the identity of the consuming application. For example, if you want to allow only
certain consumers to access a newMinor version, youwrite a rule that routes only their requests
to the new Minor version.

Implementation Concepts128

Managing Virtualized Services

The Adapter Pattern

This pattern allows multipleMajor versions of a native service to coexist in the registry without
requiring consumers to change the code in their consumer applications, and helps to ensure a
graceful migration to the new Major version.

This is called the “adapter pattern” because Mediator will act as an adapter, adapting the client
requests before they are submitted to the native services.

Unlike the Layer of Indirection pattern -- which has one virtual service that can access each Minor
version of the native service -- this pattern has a separate virtual service for each Major version of the
native service.

To implement this pattern, you configure the virtual service's Request Processing step so that it
transforms the endpoint specified in a request to the endpoint of the desired version. The Request
Processing step specifies how the request message is to be transformed before it is submitted to
the native service. You can configure this step to performmessage transformations using a specified
XSLT file or by passing the message to a webMethods IS service (i.e., an Integration Server service
running on the same Integration Server as webMethods Mediator).

129Implementation Concepts

Managing Virtualized Services

Combination of the Layer of Indirection Pattern and the Adapter Patterns

This pattern has one virtual service that can access:

■ Multiple Major versions of a native service (i.e., utilizing the Adapter pattern).

Thus you configure the virtual service's Request Processing step so that it transforms the endpoint
specified in a request to the endpoint of the desired version..

■ Multiple Minor versions of a native service (i.e., utilizing the Layer of Indirection pattern).

Thus you configure the virtual service with either the “content-based routing” option or the
“context-based routing” option in order to route requests to theMinor version that is appropriate
for each consumer (or group of consumers).

Implementation Concepts130

Managing Virtualized Services

16 Identifying the Consumers of Virtual Services

■ How Are Consumer Applications Represented and Used in CentraSite? ... 132
■ How Does Mediator Identify Consumer Applications at Run Time? .. 133
■ Defining Application Assets in CentraSite ... 134
■ Deciding How to Identify a Consumer Application ... 135
■ Registering an Application Asset with a Virtual Service .. 136
■ Issues to Consider when Defining Applications .. 137

131

In CentraSite there are two concepts of “consumers”.

■ The first refers to developers who discover assets in the catalog that they want to reuse. Such
developers can register to become registered consumers of those assets. Youmight give registered
consumers access to more of the asset's metadata (i.e., enable them to view additional profiles)
and/or develop processes that notify them when changes occur to an asset that they consume.

■ The second concept refers specifically to a computer application that consumes (invokes) virtual
services at run time. This specific type of consumer is represented in the registry by instances
of theApplication asset type. Application assets are used bywebMethodsMediator to determine
from which computer application a request for a virtual service originated.

This section discusses the type of consumer that represents a computer application that consumes
virtual services. For clarity, the following sections in this document refer to this type of consumer
as a consumer application.

How Are Consumer Applications Represented and Used in CentraSite?

A consumer application is represented in CentraSite by an application asset. An application asset
is an instance of the Application asset type, which is one of the predefined types installed with
CentraSite. An application asset defines the precise characteristics bywhichMediator can identify
messages from a specific consumer application at run time.

The ability of Mediator to relate a message to a specific consumer application enables Mediator
to:

■ Indicate the consumer application to which a logged transaction event belongs.
■ Monitor a virtual service for violations of a service-level agreement (SLA) for a specified consumer
application.

■ Control access to a virtual service at run time (i.e., allow only authorized consumer applications
to invoke a virtual service).

The following figure shows the log entry for a request that a consumer application has submitted
to a virtual service. Note that the entry identifies the consumer application fromwhich the request
originated. This identification is enabled by an application asset that has been defined in the
CentraSite registry.

Implementation Concepts132

Identifying the Consumers of Virtual Services

How Does Mediator Identify Consumer Applications at Run Time?

To determine the consumer application from which a request was submitted, a virtual service
must have a run-time policy that includes the Identify Consumer action. This action extracts a
specified identifier from an incoming request and locates the application asset defined by that
identifier.

For example, if you configure the Identify Consumer action to identify consumers by IP address,
Mediator extracts the IP address from a request's HTTP header and searches its list of application
assets for the application that is defined by that IP address.

You can configure the Identify Consumer action to identify consumer applications based on the
following information in a request message.

DescriptionIdentifier

The IP address from which the request originated.IP Address

The name of the host machine from which the request originated.Host Name

The user ID submitted by the requestor when it was asked to provide
basic HTTP credentials (user name and password).

HTTP Authentication Token

The WSS username token supplied in the header of the SOAP request
that the consumer application submitted to the virtual service.

WS-Security Authentication
Token

The X.509 certificate supplied in the header of the SOAP request that the
consumer application submitted to the virtual service.

Consumer Certificate

133Implementation Concepts

Identifying the Consumers of Virtual Services

Defining Application Assets in CentraSite

An application asset specifies the precise identifiers bywhichmessages from a particular consumer
application will be recognized at run time. An application asset has the following attributes for
specifying these identifiers:

■ IPv4 Address, which specifies one or more 4-byte IPv4 addresses that identify requests from a
particular consumer application. (This attribute is queried when the Identify Consumer action
is configured to identify consumer applications by IP address.)

Example: 192.168.0.10
■ IPv6 Address, which specifies one or more 128-bit IPv6 addresses that identify requests from a
particular consumer application. See the IPv6 addressing architecture specification ht-
tp://tools.ietf.org/html/rfc4291 for details of this format.

Example: 1234:5678:9ABC:DEF0:1234:5678:9ABC:DEF0
■ Identification Token, which specifies the host names, user names or other distinguishing strings
that identify requests from a particular consumer application. (This attribute is queried when
the Identify Consumer action is configured to identify consumer applications by host name,
HTTP user name, WSS user name or a custom token.)

■ Consumer Certificate, which specifies the X.509 certificates that identify requests from a particular
consumer. (This attribute is queried when the Identify Consumer action is configured to
identify consumer applications by a consumer certificate.)

For example, the following application asset describes a consumer application called SalesAnalyzer,
which is defined by a range of IP addresses.

Implementation Concepts134

Identifying the Consumers of Virtual Services

http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc4291

Synchronizing the Application Assets in CentraSite with the Mediator

WhenMediator identifies a consumer application at run time, it searches a local list of application
assets that it maintains. This list is initially downloaded from the CentraSite registry when you
start Mediator. Mediator periodically resyncs the list to keep it up-to-date.

Be aware that application assets are made available to Mediator as soon as they are added to the
registry. That is, an application asset that you add to CentraSite is given to Mediator the next time
Mediator resyncs its local list with the registry. Therefore, you should not add an application asset
to CentraSite's registry until you are able to provide the proper identifiers for it.

Deciding How to Identify a Consumer Application

When deciding which type of identifier to use to identify a consumer application at run time,
consider the following points:

■ Whatever identifier you choose to identify a consumer application, it must be unique to the
application. Identifiers that represent user names are often not suitable because the identified
users might submit requests from multiple consumer applications.

■ Although identifying applications by IP address or host name is often a suitable choice, it does
create a dependency on the network infrastructure. If a consumer application moves to a new
machine, or its IP address changes, you must update the identifiers in the application asset.

■ Using X.509 certificates or a custom token that is extracted from the SOAPmessage itself (using
an XPATH expression), is often the most trouble-free way to identify a consumer application.

135Implementation Concepts

Identifying the Consumers of Virtual Services

Note: Depending on which form of identification you choose, the run-time policy that you
use to extract the consumer identifier might need to perform certain prerequisite actions
prior to the Identify Consumer action. For example, if you want to identify a consumer
application by WS-Security authentication token, your run-time policy must execute the
RequireWSS Username Token action before it executes the Identify Consumer action. These
dependencies are described in the user documentation for the Identify Consumer action.

Registering an Application Asset with a Virtual Service

You use the Register as Consumer command in CentraSite to associate an application asset with
a virtual service. This command establishes an association between the application asset (which
represents a consumer application) and the virtual service that it consumes. Registering an applic-
ation asset with a virtual service enables you to use the Impact Analysis feature in CentraSite to
quickly determine which virtual services a consumer application consumes (and also determine
which consumer applications use a particular virtual service).

Additionally, if you use theAuthorizeAgainst RegisteredConsumers policy action to control access
to a virtual service at run time, only registered consumer applications are allowed to invoke the
virtual service. Consequently, when you use this form of access control, the consumer applications
that are permitted to use a virtual service must be registered to the virtual service.

The Consumer Registration Process

When you execute the Register as Consumer command, CentraSite does not immediately register
the application asset with the virtual service. Instead, it triggers a review and approval process
that includes the following steps:

1. CentraSite submits the request to the owner of the virtual service for review and approval.

2. The virtual service owner reviews the request and approves the request or rejects it. If the request
is approved, CentraSite executes the consumer-registration policy. This policy actually registers
the application asset with the virtual service.

The Consumer-Registration Policy

The consumer-registrationpolicy is a policy that includes theRegisterConsumer action and executes
on theOnConsumerRegistration event. TheOnConsumerRegistration event occurswhen the owner
of the asset approves the registration request, not when the user submits the registration request.
CentraSite does not provide a consumer-registration policy out-of-the-box. You must create this policy
for your instance of CentraSite. CentraSite will not enable the consumer-registration feature until
you create this policy.

Important: If you will be using the Authorize Against Registered Consumers policy action
to control access to a virtual service at run time, you should strongly consider including an

Implementation Concepts136

Identifying the Consumers of Virtual Services

approval step in your consumer-registration policy.When you use this formof access control
on a virtual service, registering a consumer application with the virtual service grants that
consumer application permission to invoke the service. To ensure that only authorized ap-
plications are registered with a virtual service, you might want to have a security adminis-
trator review and approve this type of registration request.

Issues to Consider when Defining Applications

When defining application assets, keep the following points in mind:

■ Any user who has permission to publish an asset to CentraSite can define an application asset.
However, not all users are generally qualified to create an asset of this type. Defining applications
is a critical task that should be performed only by an administrator who is familiar with the
webMethods Mediator(s), virtual services and run-time policies in your environment.

■ An application asset becomes available to Mediator as soon as you add it to the registry. Do not
add an application asset to CentraSite until you are able to provide the exact identifiers for the
consumer application that it represents.

■ Treat application assets as global objects and make them available to all organizations. Be sure
that your registry contains only one application asset per consumer application (i.e., a consumer
application should be represented by one and only one application asset in the registry).

■ Be sure that the identifiers that you assign to an application asset are unique to that application
asset. If multiple application assets have the same identifier, Mediator will simply associate the
identifier with the first matching application it finds in its local list of application assets at run
time.

■ If you control access to virtual services based on consumer applications (i.e., you use run-time
policies that include the Authorize Against Registered Consumers action), consider:
■ Including an approval step in your consumer-registration policy that requires a security ad-
ministrator to review and approve the registration event.

■ Giving only a small group of knowledgeable administrators permission to modify an applic-
ation asset after it is registered to a virtual service. This will prevent users from adding unau-
thorized identifiers to an existing application asset, and thus, allowing unauthorized consumer
applications to access the virtual service.

137Implementation Concepts

Identifying the Consumers of Virtual Services

138

17 Managing Endpoints

■ Who Uses Endpoint Information? .. 140
■ How Service Endpoints Are Represented in CentraSite ... 141
■ Managing the Endpoints of a Native Service over its Lifecycle .. 142
■ Adopting a Naming Convention for Binding Names ... 144
■ Managing Endpoints of a Virtual Service over its Lifecycle ... 145
■ Deploying Multiple Virtual Services for a Single Native Service ... 146

139

In an SOA environment, the tracking andmanagement of service endpoints is a key task. Not only
is your SOA environment likely have many individual services, but many of those services will
be deployed on multiple endpoints.

In general, a service will have multiple endpoints for the following reasons:

■ It acquires additional endpoints as it moves through its lifecycle. For example, by the time a
service goes into production, it is usually available at three different endpoints in your environ-
ment: at a development endpoint, at a test endpoint and at a production endpoint. To track the
endpoints that a service acquires as it moves through its development cycle, you add the end-
points to the metadata for the service in the registry.

■ It has different endpoints to accommodate the needs of different consumer applications. For
example, you might offer the same service over multiple entry protocols (e.g., both JMS and
HTTP) and/orwith different securitymechanisms. In CentraSite, you accommodate these needs
by exposing the service over multiple virtual services.

Who Uses Endpoint Information?

Endpoint information is needed by developers who write programs that bind to services.

At run time, a consumer application can bind to a service in one of two ways: it can perform a
static bind or a dynamic bind.

■ When a consumer application is written to use static binding, the program binds to a specified
address at run time (i.e., an endpoint that is already known by the program). When a developer
creates a program that uses static binding, he or she will get the endpoint of the service from
CentraSite at design time. Typically, this end point is added to a configuration file or a parameter
setting that the consumer program reads at run time. If the actual endpoint of the service ever
changes, the consumer program must be configured to access the service at its new endpoint.

■ When a consumer application is written to use dynamic binding, the program “looks up” the
service's address at run time and binds to that address. To use this type of binding, a developer
mustwrite a query to retrieve the service's endpoint fromCentraSite. At run time, the consumer
program executes the query and binds to the endpoint that the query returns. If the endpoint
of the service changes, one only has to update the service's endpoint information in CentraSite.
Nothing has to be changed in the consumer application.

The endpoint information that you maintain in CentraSite can be used for either purpose.

Implementation Concepts140

Managing Endpoints

How Service Endpoints Are Represented in CentraSite

Within CentraSite, the endpoints for a service are shown in theOperations panel on the service's
Summary profile. In this panel, an endpoint is represented as a Binding that identifies a specific
Access URI (i.e., address where the service is deployed).

The following example shows theOperations panel for a service that is deployed at two endpoints:
the endpoint represented by the ExpenseReporting_DEV binding and the endpoint represented
by the ExpenseReporting_TEST binding. Note that the Access URI column provides the exact
address of each endpoint.

The Binding and Access URI information that appears in theOperations panel is derived from
the <port> definitions in the service WSDL. Specifically, the Binding name is derived from the
name of the port and the Access URI is derived from the port's <address> element.

The Bindings on the Operations panel are derived from the <port> definitions in the service
WSDL

141Implementation Concepts

Managing Endpoints

Managing the Endpoints of a Native Service over its Lifecycle

When a native service moves through its lifecycle, it usually gains additional endpoints. For ex-
ample, during development, a developer generally deploys the service somewhere in the develop-
ment environment.When the servicemoves to the testing phase, it is generally deployed at another
endpoint for testing. Finally, when the service is placed in production, the operations organization
deploys the service at an endpoint in the production environment.

Each time you deploy a native service to an additional endpoint, you must add the new endpoint
to the service in CentraSite. To do this you:

1. Download the service WSDL from the CentraSite registry.

2. Add the endpoint to the WSDL (as an additional port definition).

3. Reattach the updated WSDL to the service in CentraSite.

When you attach the updated WSDL to the service, CentraSite will automatically update the
binding information on the service'sOperations panel.

Note: Although it is possible to represent the development, test and production endpoints
as individual services in the registry, we recommend that you avoid doing this. Such an
approach produces a large amount of duplicated metadata and does not return any real
benefits. Instead, maintain just one catalog entry for a native service and add the service
endpoints to this entry as the service progresses through its lifecycle.

Example of the Bindings for a Service in a Single-Stage Registry

If you are using a single-stage deployment of CentraSite, services remain in the same registry for
their entire lifecycle. Therefore, in this type of registry, the catalog entry for a service will include
the service's development, test and production endpoints.

The following shows an example of a service that has endpoints in the development, test and
production environments. Note that the naming scheme that has been used to identify the bindings
for this service clearly indicates the environment in which the endpoint resides.

In a single-stage environment, the development, test and production endpoints are listed for
the service

Implementation Concepts142

Managing Endpoints

Important: The endpoints for a service are visible to any user who has View permission on
the service in CentraSite. To prevent unauthorized access to the services themselves, be
sure that appropriate security measures are in place at these endpoints.

Example of the Endpoints for a Service in a Two-Stage Registry

In amulti-stage deployment, the set of endpoints that you publish to the registrywill vary according
to needs of the registry's audience. In a two-stage deployment, for example, you would list the
service's development and test endpoints on the creationCentraSite and youwould list the service's
test and production endpoints on the consumption CentraSite.

The following shows an example of the bindings you would see if you were to view a service in
the creation CentraSite and in the consumption CentraSite.

143Implementation Concepts

Managing Endpoints

Adopting a Naming Convention for Binding Names

When a service has multiple endpoints, the binding names give users a hint as to the endpoint's
function. As a best practice, consider adopting a naming convention for bindings that identifies
service endpoints in a clear and consistent manner. (This practice is especially important if your
consumer applications will be querying the registry to obtain a service endpoint run time.)

In the examples shown above, each binding name includes a suffix to indicate the environment
in which the endpoint resides.

Keep in mind that binding names are derived directly from the port names in the service WSDL.
Therefore, to produce bindings whose names conform to the particular naming scheme that you
have adopted, you must assign the appropriate names to port definitions in the WSDL to begin
with.

For example, to produce the binding names shown in the single-stage example described inExample
of the Bindings for a Service in a Single-Stage Registry, the port definitions in the WSDL must
look as follows.

Naming conventions for bindings must be applied to the port names in the WSDL

Implementation Concepts144

Managing Endpoints

Managing Endpoints of a Virtual Service over its Lifecycle

When you create a virtual service, CentraSite generates aWSDLfile for the virtual service. Initially,
Mediator generates this WSDL file as an abstract WSDL file, and is represented as an "empty"
WSDL in the format <protocol>://. However, when you deploy the virtual service, CentraSite
replaces the port definitions in this WSDL file with a port definition that specifies the virtual ser-
vice's endpoint on theMediator. At this time, it also updates the binding information that appears
on the virtual service'sOperations panel.

CentraSite will automatically update the port definitions in the virtual service WSDL and regen-
erate the corresponding bindings any time you deploy, undeploy or redeploy the virtual service.

Because the endpoint information for virtual services is generated and updated by CentraSite,
you should notmanually edit the endpoint information for virtual services. In otherwords, unlike
native services, you should not manually add endpoints to theWSDL of a virtual service. Instead,
simply allow CentraSite to generate and manage the endpoints for the virtual services that you
deploy.

Publishing the Test Endpoint for a Virtual Service on the Consumption Registry

In the consumption CentraSite, the catalog entry for a native service provides consumers with
bindings to the test instance of the service and to the production instance of the service. However,
with a virtual service, you cannot do this. The set of bindings for a virtual service are generated
and managed automatically by CentraSite, and you cannot manually add bindings to this set.

If you have a test instance of a virtual service deployed on the Mediator in your test environment,
and you would like to disclose that endpoint to users when they view the virtual service in the
registry, you can identify the endpoint in a separate attribute (i.e., as additional metadata) within
the virtual service on the consumption CentraSite.

Note: If you have consumer applications that will dynamically bind to a virtual service, be
aware that those applications will need to bind against the creation CentraSite during the
testing phase of their development and against the consumption CentraSitewhen they enter
production.

145Implementation Concepts

Managing Endpoints

Deploying Multiple Virtual Services for a Single Native Service

Often you will need to deploy a service on multiple endpoints to make the service available over
multiple transports and/or securitymechanisms. For example, youmightwant to extend the same
service over JMS and HTTP transports. Or, you might want to allow internal users to access a
service using basic HTTP user name/password credentials and you might require other users to
submit digital certificates.

To accommodate these kinds of operational requirements for a native service, you deploymultiple
virtual services for a single native service. For example, tomake a particular native service available
to consumers over bothHTTP and JMS, youwould create two virtual services for the native service:
one that accepts requests over HTTP and another that accepts requests over JMS. Both virtual
services would route requests to the same native service on the back end.

The following shows a registry inwhich a native service (SalesReportingService) has been exposed
over two virtual services.

Virtual Services provide two transports for one native service

Note: To make it easier to manage virtual services, consider adopting a naming convention
like the one shown above. Doing so will make it easier to identify virtual services and the
native service with which they are associated. Keep in mind however, that unlike native
services, the names of virtual services cannot contain spaces or special characters (except _
and -). Consequently, if you adopt a convention that involves using the name of the native
service as part of the virtual service name, then the names of the native services themselves
must not contain characters that are invalid in virtual service names.

Implementation Concepts146

Managing Endpoints

Using the Impact Analysis Tool to Find the Virtual Services for a Native Service

When you create a virtual service, CentraSite establishes a relationship between the virtual service
and the native service fromwhich you created it. If you createmultiple virtual services for a native
service, each of the virtual services will have an established relationship to the native service.

The associations that CentraSite creates between a native service and a virtual service enables you
to use the Impact Analysis tool to examine a native service and quickly locate all of its virtual
services.

The Impact Analysis tool will list the virtual services associated with a native service

Important: To ensure that a relationship is established between a native service and virtual
service, always use the Search for Endpoint button to set the Route To address in a virtual
service's Routing Protocols processing step. Do not manually type this address into the
Route To field. If you type the address manually, the relationship to the appropriate native
service will not be created.

147Implementation Concepts

Managing Endpoints

148

	Implementation Concepts
	Table of Contents
	Preface
	1 Overview of CentraSite
	Design-Time Features and Benefits
	Run-Time Features and Benefits

	2 Implementation Decisions and Configuration Tasks
	Issues to Consider Before Implementation
	Configuration Checklist

	3 Obtaining and Installing the Starter Kit
	4 Choosing a Deployment Strategy
	Deploying CentraSite to Support Your SDLC
	Deployment Options
	Deployment Considerations

	5 Defining Your Organizational Structure
	What is an Organization?
	The Default Organization
	Child Organizations
	Consumer Organizations
	Modeling Your Organizations
	Choosing an Organizational Strategy

	6 Setting Up Users and Groups
	Adding Users to CentraSite
	Using CentraSite with an External Naming Directory
	Loading User Metadata from the External Directory

	Bootstrap Users, Organization Administrators and Primary Contacts
	Guest Users
	Issues to Consider When Adding Users to CentraSite
	Defining and Using Groups in CentraSite
	Ways in Which CentraSite Uses Groups
	System-Defined Groups Available in CentraSite
	Using Groups from Your External Authentication System

	7 Using Permissions and Roles to Manage Access to the Registry
	Instance-Level Permissions
	Objects that Support Instance-Level Permissions
	Setting Instance-Level Permissions
	Profile Permissions

	Role-based Permissions
	Permissions that Enable Access to Areas of the User Interface
	Permissions that Enable Access to Objects in the Registry or Repository
	Organization-Specific vs. System-Wide Permissions

	Issues to Consider when Working with Permissions
	Roles
	Assigning Roles to Users
	Configuring the Default Roles that CentraSite Assigns to Users in an Organization

	8 Customizing Your Asset Catalog
	Creating Custom Types
	Object Types vs. Asset Types
	Customizing the Predefined Asset Types Installed with CentraSite
	Creating Custom Asset Types
	Assigning Attributes to a Type
	Assigning Attributes to Profiles
	Creating Custom Asset Types that can be Imported from an Input File

	Defining and Using Taxonomies
	Classifying Assets Using Taxonomies
	How Taxonomies Help Users Locate Assets
	Using Taxonomies to Target the Execution of Design/Change-Time Policies
	The Scope of a Taxonomy
	The Predefined Taxonomies Installed with CentraSite
	Defining Custom Taxonomies

	Creating Custom Association Types
	How Association Types Are Used to Relate Assets to Other Objects
	How Association Types and Relationship Attributes Support Impact Analysis
	Creating Custom Association Types

	Working with Asset Types, Taxonomies and Association Types in a Multi-Stage Environment
	Issues to Consider when Customizing Your Registry

	9 Defining Lifecycle Models
	How Lifecycle Models Help You Organize Your Assets
	How Lifecycle Models Help You Govern Your Assets
	Lifecycle Model States and Transitions
	Assigning Permissions to Lifecycle Model States
	Triggering Policies during Lifecycle Model Transitions

	Associating a Lifecycle Model with an Asset Type
	System-Wide vs. Organization-Specific Lifecycles
	When to Use Lifecycle Models
	Lifecycle Stages
	Creating a Lifecycle Model for a Single-Stage Environment
	The Proposed State
	The Design State
	The Test State
	The Available State
	The Canceled State
	The Deprecated State
	The Retired State

	Issues to Consider When Using Lifecycle Models in a Single-Stage Environment
	Creating a Lifecycle Model for a Two-Stage Environment
	The Lifecycle Model on the Creation Registry
	The Promoted State

	The Lifecycle Model on the Consumption Registry

	Issues to Consider When Using Lifecycle Models in a Two-Stage Environment
	Updating Assets That Are Under Lifecycle Management
	Creating a Different Lifecycle Path for a New Version of an Asset

	Reverting an Asset to a Previous State
	Managing Lifecycle Models
	Activating a Lifecycle Model
	Versioning or Replacing Lifecycle Models
	Modifying the Predefined Lifecycle Model for Lifecycle Models

	10 Defining Design/Change-Time Policies
	What is a Design/Change-Time Policy?
	Policy Actions
	Policy Scope
	Refining a Policy's Scope with Additional Selection Criteria

	Scope of a Policy Action

	System-Wide vs. Organization-Specific Policies
	Policy Priority
	Pre-Operation and Post-Operation Event Types
	What Happens When a Design/Change-Time Policy Executes?
	OnTrigger Policies
	Typical Uses for Design/Change-Time Policies
	Using Policies to Initiate Reviews and Approvals
	Using Policies to Validate Assets
	Using Policies to Modify Assets
	Using Policies to Issue Notifications or Update External Systems
	Using Policies to Execute a Consumer Registration
	Using Policies to Manage the Deployment of Virtual Services

	Issues to Consider When Developing Design/Change-Time Policies
	Managing Design/Change-Time Policies
	Activating a Design/Change-Time Policy
	Modifying a Design/Change-Time Policy
	Copying a Design/Change-Time Policy
	Modifying the Predefined Lifecycle Model for Policies

	11 Working with Versions and Revisions
	What is Versioning?
	Which Objects Can You Version?
	What is a Revision?
	System-Assigned Version Identifiers vs. User-Assigned Version Identifiers
	Using Versions to Avoid Enforcement Gaps in Policies and Lifecycle Models
	When Should You Version an Asset?
	How Do Lifecycles and Versioning Relate?
	Managing the Transition to a New Version
	Versioning in CentraSite vs. Versioning in Source Code Control Systems (SCCS)
	Cleaning Up Old Versions

	12 Planning Your Run-Time Environment
	Basic Components in the Run-Time Environment (when using webMethods Mediator as the PEP)
	Deploying CentraSite for Run-Time Governance
	An Overview of the Creation CentraSite Run-Time Environment
	An Overview of the Consumption CentraSite Run-Time Environment
	General Concept of Operations between the Environments

	13 Implementing the Mediation Environment
	Managing the Collection of Metrics
	Managing the Collection of Events
	Using CentraSite with Other Policy Enforcement Points
	Using CentraSite with Insight

	14 Managing Run-Time Policies
	Run-Time Policy Scope
	Refining the Run-Time Policy's Scope with Additional Selection Criteria

	Run-Time Policy Actions
	Run-Time Policy Deployment
	Creating and Testing Policies
	Distributing the Development of Policies

	Activating a Run-Time Policy
	Modifying a Run-Time Policy
	Lifecycle Model for Policies in a Multi-Stage Deployment of CentraSite

	15 Managing Virtualized Services
	Which Services Should You Virtualize?
	Virtualizing Business Services at the Point of Consumption
	Virtualizing Shared Services
	Virtualizing Services that are in Different Domains of Control (e.g., Cloud Computing)

	The Basic Elements of a Virtual Service
	Virtual Service Processing Steps
	Entry Protocol Step
	Request Processing Step
	Routing Step
	Using the Routing Step to Direct Requests across Multiple Endpoints

	Response Processing Step

	Configuring CentraSite for Virtual Services
	Defining Targets
	Defining a Lifecycle Model for Services and Virtual Services
	Understanding the Lifecycle for Services and Virtual Services

	Creating the Lifecycle Model for Services and Virtual Services
	Defining a Lifecycle Path that Enables Deployment of a Virtual Service
	Creating a Policy that Enables the Deployment Profile
	Creating a Policy that Disables the Deployment Profile

	Creating Virtual Services
	When Should You Create a Virtual Service?
	Who Should Create a Virtual Service?
	Virtual Service Ownership

	Deploying a Virtual Service
	The Deployment Process
	Undeploying a Virtual Service
	Redeploying a Virtual Service

	Revising a Virtual Service
	Minor Versions vs. Major Versions
	The Layer of Indirection Pattern
	The Adapter Pattern
	Combination of the Layer of Indirection Pattern and the Adapter Patterns

	16 Identifying the Consumers of Virtual Services
	How Are Consumer Applications Represented and Used in CentraSite?
	How Does Mediator Identify Consumer Applications at Run Time?
	Defining Application Assets in CentraSite
	Synchronizing the Application Assets in CentraSite with the Mediator

	Deciding How to Identify a Consumer Application
	Registering an Application Asset with a Virtual Service
	The Consumer Registration Process
	The Consumer-Registration Policy

	Issues to Consider when Defining Applications

	17 Managing Endpoints
	Who Uses Endpoint Information?
	How Service Endpoints Are Represented in CentraSite
	Managing the Endpoints of a Native Service over its Lifecycle
	Example of the Bindings for a Service in a Single-Stage Registry
	Example of the Endpoints for a Service in a Two-Stage Registry

	Adopting a Naming Convention for Binding Names
	Managing Endpoints of a Virtual Service over its Lifecycle
	Publishing the Test Endpoint for a Virtual Service on the Consumption Registry

	Deploying Multiple Virtual Services for a Single Native Service
	Using the Impact Analysis Tool to Find the Virtual Services for a Native Service

