
CentraSite

The CentraSite API for XQJ

Version 9.6

April 2014

This document applies to CentraSite Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-DG-XQJ-96-20140318

Table of Contents

The CentraSite API for XQJ .. v
1 What is XQJ? .. 1

Features of the CentraSite XQJ Interface .. 2
2 Working with the CentraSite XQJ Interface .. 3

Executing an XQuery with a Standard XQExpression .. 4
Executing an XQuery with an XQPreparedExpression ... 7
Working with a Materialized XQSequence .. 10

3 CentraSite-Specific Extensions to XQJ ... 13
Updating a Database Using XQJ .. 14
Inserting a Document in the CentraSite Registry/Repository 14

A XQDataSource Properties ... 15

iii

iv

The CentraSite API for XQJ

You can use XQJ, the XQuery API for Java™, for processing XML and for data integration
applications. This document introduces the CentraSite implementation of XQJ and its features. It
explains how to use the API and provides examples for each type of task.

The reader of the document should be an experienced Java programmer.

This document covers the following topics.

Introduces the XQuery API for Java and explains its featuresWhat is XQJ?

Describes various tasks you can perform with XQJWorking with the CentraSite XQJ Interface

Describes proprietary facilities for updating a database and
inserting documents in the registry/repository.

CentraSite-Specific Extensions to XQJ

Lists and explains all datasource propertiesXQDataSource Properties

Javadoc for CentraSite-specific extensions to the XQJ API.Javadoc: XQJ Extensions

Messages and codes listedMessages and Codes: XQJ messages

v

vi

1 What is XQJ?

■ Features of the CentraSite XQJ Interface ... 2

1

XQJ, the XQuery API for Java, is based on XQuery, a query language promulgated by the W3C
that can operate both on physical XML documents, and also on virtual XML documents that have
been derived from data sources such as relational or object databases. XQJ is a powerful new API
standard developed for invoking XQuery expressions against virtually any XML or relational
database and processing query results. XQJmakes the full power of the XQuery language available
to Java applications. You can programmatically process the results in your Java code in a JDBC-
like manner. XQJ is to XQuery what JDBC is to SQL.

The XQJ standard specifies a number of Java interfaces. The CentraSite XQJ interface implements
the functionality defined by these interfaces, and thus makes XQJ available to the application; in
addition, the CentraSite XQJ interface implements extensions that support CentraSite-specific
features.

Note: With effect from version 8.2, CentraSite supports the final release of the XQJ specific-
ation (in contrast, earlier versions of CentraSite supported a preliminary release of the XQJ
specification). Note that the XQJ interface that is implemented by current versions of
CentraSite is not compatible with the interface that was implemented by versions of
CentraSite prior to version 8.2. Documentation of the prior XQJ interface is available to
Software AG customers who have a current maintenance contract in Empower, Software
AG's global extranet (http://empower.softwareag.com/).

Features of the CentraSite XQJ Interface

The CentraSite XQJ interface supports:

■ Prepared XQueries
■ The submission of queries to the CentraSite registry/repository
■ XQuery updates
■ Transaction control (commit, rollback)
■ User authentication prior to connecting to the database
■ Variable binding to parameterize queries
■ Handling registry/repository errors and warnings
■ The creation and execution of materialized sequences and items
■ Differentmodels for accessing data in the CentraSite registry/repository (DOM, SAX, and StAX-
compatible streams)

The CentraSite API for XQJ2

What is XQJ?

http://empower.softwareag.com/

2 Working with the CentraSite XQJ Interface

■ Executing an XQuery with a Standard XQExpression ... 4
■ Executing an XQuery with an XQPreparedExpression .. 7
■ Working with a Materialized XQSequence .. 10

3

If you wish to develop an XQJ application, you will find the classes of the CentraSite XQJ imple-
mentation in the jar file rts/bin/xqj.jar under the CentraSite installation location.

You can use the CentraSite XQJ interface to perform an XQuery on the basis of a standard XQEx-
pression or an XQPreparedExpression. With a standard XQExpression, the query is parsed each
time it is executed. If a query is to be executed many times, it can be more efficient to use an XQ-
PreparedExpression, which is parsed only once.

Executing an XQuery with a Standard XQExpression

To execute an XQuery with a standard XQExpression

1 Invoke the getXQConnection()method to get the XQConnection object from the JAXRCon-
nection.

Example

/* Get the XQConnection from the JAXRConnection */
XQConnection connection = jaxrConnection.getXQConnection ();

You have now established an XQConnection.

2 Create an XQExpression object from the XQConnection object. The XQExpression is used to
invoke several other methods to perform various tasks using the CentraSite XQJ interface.
You may create more than one XQExpression from a single connection if required.

Example

/* Create XQExpression from XQConnection to execute an XQuery. */
XQExpression expression = connection.createExpression();

3 Optionally, you can bind one or more external variables. An external variable is a type of
variable that can be dynamically added to the query by declaring the variable in the query.
The value of the variable can be set externally and added to the pre-set variablewhile executing
the XQuery.

The CentraSite API for XQJ4

Working with the CentraSite XQJ Interface

Example

String xquery = "declare variable $year as xs:int external" +
"for $q in input()/bib/book where $q/@year > $year return $q" ;

XQExpression expression = connection.createExpression();
expression.bindInt(new QName("year"),1993,XQItemTypeHelper.createIntXQItemType());
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

4 Invoke the executeQuery()method. This returns an XQResultSequence.

Example

/* Executing an XQuery */
/* Instance of the query string: */
String xquery = "for $b in input()/book return $b/title";
/* Execute the above XQuery String, which returns an XQResultSequence */
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

5 The XQResultSequence represents the XQuery result. Retrieve the query result and read/print
it in XML format. The query result sequence is displayed item by item.Using XQJ, it is possible
to get the result sequence in DOM, SAX and StAX-compatible formats.

Note: You cannot scroll the XQResultSequences backwards.

Example

/* Iterating the XQResultSequence */
XMLStreamReader reader = null;
While(xqResultSequence.next())
{

reader = xqResultSequence.getItemAsStream();
/* Iterate the XML StreamReader using StAX-compatible APIs */

}
connection.commit();
connection.close();

5The CentraSite API for XQJ

Working with the CentraSite XQJ Interface

Example using the getInt() method

/* Instance of the XQuery String */
String xquery =" for $b in input()/bib/book return xs:int($b/@year) ";
/* This query on execution will return the year as an integer value */
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

xqResultSequence.next();
int I = xqResultSequence.getInt();

Example using the getAtomicValue() method

/* Instance of the XQuery String */
String xquery = "for $p in input()/book return xs:string($p/title)";
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

/* This query on execution will return the title as a String */
xqResultSequence.next();
String str = xqResultSequence.getAtomicValue();

Example using the getNode() method

/* Instance of the XQuery String */
String xquery = "for $q in input()/bib/book return $q";
XQResultSequence xqResultSequence = expression.executeQuery(xquery);
xqResultSequence.next();
Node node = result.getNode();

Example using the writeItemToSAX() method

xqResultSequence.next();
StringWriter sw = new StringWriter();

/* Provide a org.xml.sax.ContentHandler, which is saxhandler in our case */
XQSAXTextEventHandler saxhandler = new XQSAXTextEventHandler(sw);
resultSequence.writeItemToSAX(saxhandler);
System.out.println(sw);

6 Finally, invoke the XQConnection.close()method to close the connection to the registry/re-
pository.

The CentraSite API for XQJ6

Working with the CentraSite XQJ Interface

Example

/* Commit and close the XQConnection once you have completed working with it */
connection.commit();
connection.close();

Executing an XQuery with an XQPreparedExpression

To execute an XQuery with an XQPreparedExpression

1 Invoke the getXQConnection()method to get the XQConnection object from the JAXRCon-
nection.

Example

/* Get the XQConnection from the JAXRConnection */
XQConnection connection = jaxrConnection.getXQConnection ();

You have now established an XQConnection.

2 Create an XQPreparedExpression object from the XQConnection object. The XQPreparedEx-
pression is used to invoke several othermethods to perform various tasks using the CentraSite
XQJ interface. Youmay createmore than one XQPreparedExpression from a single connection
if required.

Example

/* Create XQPreparedExpression from XQConnection */
String pQuery = "for $q in input()/bib/book return $q";
XQPreparedExpression preparedExpression = conn.prepareExpression(pQuery);

3 Optionally, you can bind one or more external variables. An external variable is a type of
variable that can be dynamically added to the query by declaring the variable in the query.
The value of the variable can be set externally and added to the pre-set variablewhile executing
the XQuery.

7The CentraSite API for XQJ

Working with the CentraSite XQJ Interface

Example

/* Binding variables in Prepared Expressions */
String pQuery = "declare variable $int as xs:int external" +
 "for $q in input()/bib/book where $q/@year = $int return $q";

XQPreparedExpression preparedExpression = conn.prepareExpression(pQuery);

/* Bind the appropriate value to the prepared expression using the matching ↩
binding API provided. */

Using bindInt() to bind an int value to the prepared expression

preparedExpression.bindInt(new QName("int"), 1994, ↩
XQItemTypeHelper.createIntXQItemType());

Using bindNode() to bind a node to the prepared expression

/* Get a node to bind by executing an expression */
XQExpression expression = connection.createExpression();
XQResultSequence xqResultSequence =
 expression.executeQuery("for $q in input()/bib/book where $q/@year = 1994 ↩
return $q/title");
xqResultSequence.next();

/* Get a node from the result sequence retrieved above */
Node node = xqResultSequence.getNode();

/* PreparedQuery */
String pquery = "declare variable $node external " +
 "for $q in input()/bib/book where $q/title = $node return $q";
XQPreparedExpression prepared = connection.prepareExpression(pQuery);

/* Bind the above retrieved node to the prepared query */
prepared.bindNode(new QName("node"), node);

4 Invoke the executeQuery()method. This returns an XQResultSequence.

The CentraSite API for XQJ8

Working with the CentraSite XQJ Interface

Example

/* Execute the prepared expression which returns an XQResultSequence */
XQResultSequence xqResultSequence = preparedExpression.executeQuery();

5 The XQResultSequence represents the XQuery result. Retrieve the query result and read/print
it in XML format. The query result sequence is displayed item by item.Using XQJ, it is possible
to get the result sequence in DOM, SAX and StAX-compatible formats.

Example

/* Iterating the XQResultSequence */
XQResultSequence xqResultSequence = preparedExpression.executeQuery();
XMLStreamReader reader = null;
While(xqResultSequence.next())
{

reader = xqResultSequence.getItemAsStream();
/* Iterate the XML StreamReader using StAX-compatible APIs */

}

Example using the getInt() method

XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
int I = xqResultSequence.getInt();

Example using the getAtomicValue() method

XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
String str = xqResultSequence.getAtomicValue();

Example using the getNode() method

XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
Node node = result.getNode();

9The CentraSite API for XQJ

Working with the CentraSite XQJ Interface

Example using the writeItemToSAX() method

XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
StringWriter sw = new StringWriter();

/* Provide an org.xml.sax.ContentHandler, which is saxhandler in our case */
XQSAXTextEventHandler saxhandler = new XQSAXTextEventHandler(sw);
resultSequence.writeItemToSAX(saxhandler);
System.out.println(sw);

6 Finally, invoke the XQConnection.close()method to close the connection to the registry/re-
pository.

Example

/* Commit and close the XQConnection once you have completed working with it */
connection.commit();
connection.close();

Working with a Materialized XQSequence

A materialized sequence is not bound to any connection or XQuery expression. It can be created
from XQResultSequences or from a java.util.iterator.

Examples

Creating a Sequence

This example demonstrates how to create a materialized sequence from Java collection via the
java.util.iterator interface. It creates a materialized sequence holding 3 int items.

ArrayList items = new ArrayList();
items.add(conn.createItemFromInt(123,null));
items.add(conn.createItemFromInt(456,null));
items.add(conn.createItemFromInt(789,null));
XQSequence sequence = conn.createSequence(items.iterator());

Creating a Copy from an XQResultSequence

This example demonstrates how anXQResultSequence can be copied into amaterialized sequence.
The materialized sequence will exist independently of the XQResultSequence.

The CentraSite API for XQJ10

Working with the CentraSite XQJ Interface

String query = "for $q in input()/bib/book where $q/@year = 1994 return $q";
XQExpression expression = connection.createExpression();
XQResultSequence resultSequence = expression.executeQuery(query);

XQSequence Sequence = connection.createSequence(resultSequence);

11The CentraSite API for XQJ

Working with the CentraSite XQJ Interface

12

3 CentraSite-Specific Extensions to XQJ

■ Updating a Database Using XQJ .. 14
■ Inserting a Document in the CentraSite Registry/Repository ... 14

13

Software AG's CentraSite adds useful facilities to the XQJ interface for updating a database and
for inserting a document into the CentraSite registry/repository. These facilities are described in
the following sections.

Updating a Database Using XQJ

Using theCentraSite XQJ interface, you can update the registry/repository. This feature is a Software
AG specific extension of XQJ.

To update an XQuery

1 Specify the string or the reader object containing the update XQuery

2 Invoke the executeUpdate()method on the expression

Example

String updateQuery = "update for $q in input()/bib/book where $q/@year = 1994" +
"do replace $q/title with <title>XQJ from SoftwareAG </title>";
XQResultSequence xqResultSequence = ↩
((XQExpressionImpl)expression).executeUpdate(updateQuery);
// execute update

Inserting a Document in the CentraSite Registry/Repository

This feature is a Software AG specific extension of XQJ.

To insert a document in the CentraSite Registry/Repository

1 Specify the XML instance to be inserted as a string or the reader object.

2 Execute the executeInsert()method in XQExpression to insert a document.

Example

String insertStr = "<your xml goes here>";
(XQExpressionImpl)expression).executeInsert(insertStr);

The CentraSite API for XQJ14

CentraSite-Specific Extensions to XQJ

A XQDataSource Properties

In addition to the standard properties, CentraSite offers the following properties for parameterizing
XQJ connections. Note that user credentials, i.e. user-ID and password, are passed via standard
properties, as shown below:

Standard Properties

DescriptionProperty

Unique user ID for connecting to the
registry/repository.

javax.xml.xquery.property.UserName

The password for the specified user ID.javax.xml.xquery.property.Password

The maximum number of open connections that can
be established from the datasource.

javax.xml.xquery.property.MaxConnections

CentraSite-Specific Properties

DescriptionProperty

Mandatory. The URI of the database to which
the user is connecting. This information is

com.softwareag.tamino.xqj.dbUri

mandatory to connect to the datasource, which
is the CentraSite registry/repository in this
context.

Mandatory. The name of the collection in the
registry/repository that the user will access to
query, update, or insert a document.

com.softwareag.tamino.xqj.defaultCollection

The locale to be set for the connection.com.softwareag.tamino.xql.locale

Together with the _lockMode parameter, this
parameter specifies the way in which two or

com.softwareag.tamino.xqj.isolationLevel

more transactions in a session context can access
the samedata simultaneously. The isolation level
can be set to "None".

15

Togetherwith the_isolationLevelparameter,
this parameter specifies the way in which two

com.softwareag.tamino.xqj.lockMode

or more transactions in a session context can
access the same data simultaneously.

The action to be taken if data is not accessible to
the current transaction because another

com.softwareag.tamino.xqj.lockWait

transaction has used the _isolationLevel or
_lockMode parameter to restrict access to the
data.

The number of records to be retrieved at a time
for display. This property accepts an integer
value.

com.softwareag.tamino.xqj.fetchSize

The parameter _sensitive is required when
opening a cursor with _xquery. Valid values are

com.softwareag.tamino.xqj.sensitive

"no" and "vague". If you specify "_sensitive=no",
an insensitive cursor is opened. This means that
the query is calculated on a fixed inputwhen the
cursor is opened, and thus the result sequence
remains unchanged as long as the cursor is
active. If you specify "_sensitive=vague", a vague
cursor is opened. The query is calculated on an
input that takes modification operations of
parallel transactions into account. Thus, the
result sequence can vary during the lifetime of
the cursor if documents that match the original
query criteria are inserted, updated or deleted
in the meantime.

The non-activity timeout in seconds.com.softwareag.tamino.xqj.nonactivityTimeout

The CentraSite API for XQJ16

XQDataSource Properties

	The CentraSite API for XQJ
	Table of Contents
	The CentraSite API for XQJ
	1 What is XQJ?
	Features of the CentraSite XQJ Interface

	2 Working with the CentraSite XQJ Interface
	Executing an XQuery with a Standard XQExpression
	Executing an XQuery with an XQPreparedExpression
	Working with a Materialized XQSequence

	3 CentraSite-Specific Extensions to XQJ
	Updating a Database Using XQJ
	Inserting a Document in the CentraSite Registry/Repository

	A XQDataSource Properties

