
CentraSite

CentraSite Control Pluggable Architecture

Version 9.6

April 2014



This document applies to CentraSite Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-OIINMDG-PLUG-96-20140318



Table of Contents

Preface ................................................................................................................................ v
I Introduction ..................................................................................................................... 1

1 Introduction ............................................................................................................. 3
II Customizing the Welcome Page ..................................................................................... 5

2 Customizing the Welcome Page .............................................................................. 7
Introduction ....................................................................................................... 8
Technical Implementation of the Welcome Page ............................................... 9
Installing the Customized Welcome page ........................................................ 15
Example of a customized Welcome Page ......................................................... 17
Special Programming Techniques .................................................................... 26

III Customizing Content Pages ........................................................................................ 27
3 Customizing Content Pages .................................................................................. 29

Extension Points ............................................................................................... 30
Activating the IDE ............................................................................................ 51
Step-by-Step Guide .......................................................................................... 52

IV Setting the Preferred Plug-in and Order of Plug-ins .................................................. 53
4 Setting the Preferred Plug-in and Order of Plug-ins ............................................. 55

V Installing and Uninstalling Plug-ins ............................................................................. 57
5 Installing and Uninstalling Plug-ins ..................................................................... 59

Directory Structure ........................................................................................... 60
Installing a Plug-in ........................................................................................... 61
Uninstalling a Plug-in ...................................................................................... 61
The Plug-In Management Perspective ............................................................. 61

VI Special and Advanced Topics ...................................................................................... 63
6 Special and Advanced Topics ................................................................................ 65

Icons ................................................................................................................. 66
Class Loading ................................................................................................... 66
Multithreading and Synchronization ............................................................... 68
Nested Layouts ................................................................................................. 68

VII Javadoc Documentation of the APIs .......................................................................... 71
7 Javadoc Documentation of the APIs ..................................................................... 73

VIII Appendix A: Step-by-Step Guide ............................................................................. 75
8 Appendix A1: Eclipse Prerequisites ...................................................................... 77
9 Appendix A2: Setting up the Plug-in project ........................................................ 79
10 Appendix A3: Plugging into CentraSite Control ................................................ 85
11 Appendix A4: Bring Your Own Layouts to the Screen ....................................... 89

iii



iv



Preface

This document describes CentraSite Control's pluggable architecture. Using this architecture, you
can extend CentraSite Control's functionality by adding your own features with appropriate
graphical user interfaces and Java classes.

The document contains the following sections:

This section gives an overview of the pluggable architecture and
indicates the areas of functionality in which user-defined plug-ins can
be added.

Introduction

This section describes the available extension points for the CentraSite
Control Welcome page, as well as the Java classes and methods that
you need to implement in order to plug in to the extension points.

Customizing the Welcome Page

This section describes the available extension points for the CentraSite
Control content pages, as well as the Java classes and methods that
you need to implement in order to plug in to the extension points.

Customizing Content Pages

This section describes how to set a preferred extension point when
you invoke the user interface.

Setting the Preferred Plug-in and
Order of Plug-ins

This section describes how to install and uninstall plug-ins.Installing and Uninstalling
Plug-ins

This section describes topics of particular interest to advanced users.Special and Advanced Topics

This section summarizes the Javadoc documentation for the Java classes
and methods that define the extension points.

JavadocDocumentationof theAPIs

This section gives you step-by-step instructions on how to create, install
and use sample plug-ins.

Appendix A: Step-by-Step Guide

v



vi



I Introduction

1



2



1 Introduction

CentraSite Control offers a pluggable architecture that allows you to extend the standard graphical
interface by adding your own features.

The CentraSite Control user interface is itself a plug-in to a base infrastructure, in other words,
the base infrastructure provides extension pointswhere CentraSite Control is plugged in. The base
infrastructure is composed of the Application Designer, which provides the basic graphical infra-
structure of the GUI, and the plug-in infrastructure base, which allows plug-ins to communicate
with the Application Designer.

The pluggable architecture is illustrated in the following diagram:

The plug-in infrastructure is inspired by Eclipse, which allows the user interface to be extended
by domain-specific or customer-specific functionality.

3



Plug-ins are implemented as Java classes. The points in the code at which plug-ins can be added
are called extension points. CentraSite Control offers extension points that allow you to implement
or extend the following features:

■ Provide an alternative login screen.
■ Add a perspective.
■ Add a topic to the navigation pane within any perspective.
■ Support I18N (internationalization) for layouts contributed by a plug-in.
■ Add a logo and links to the login dialog.
■ Handle the creation and termination of the connection to a backend machine.
■ Add a perspective contributing the following components: a toolbar, a logo, one or more topics
and a background screen. A perspective allows you to group topics in the navigation view.

■ Add a command to the context menu of a registry object or a repository object
■ Add a property to an object. The property is then visible in detail views and under theGeneral
tab.

■ Add a tab to the detail view of registry objects and repository objects.
■ Add a source of notifications.
■ Add secondary icons to nodes in the graphical impact analysis.
■ Extend the Summary tab.
■ Replace the standard detail view used as editor for registry / repository objects by an object type
specific editor.

■ Extend the set of available import commands.
■ Extend the search dialog by additional conditions.

A plug-in can itself provide extension points for further plug-ins.

The available extension points are described in the section Extension Points.

CentraSite Control Pluggable Architecture4

Introduction



II Customizing the Welcome Page

5



6



2 Customizing the Welcome Page

■ Introduction ...................................................................................................................................... 8
■ Technical Implementation of the Welcome Page ...................................................................................... 9
■ Installing the Customized Welcome page ............................................................................................. 15
■ Example of a customized Welcome Page ............................................................................................. 17
■ Special Programming Techniques ....................................................................................................... 26

7



TheWelcome page that you see when you start CentraSite Control can be customized to suit your
own requirements. You can change aspects such as icons used, colors, text, fonts and layouts. You
can also define links that will take you straight to the pages of CentraSite Control that you use the
most, and links to external web sites.

The information contained in the following sections describes how to customize your Welcome
page.

Introduction

The standardWelcome page gives you quick links to the pages of CentraSite Control that youwill
probably use frequently during your day-to-day work with CentraSite. It also provides links to
external web sites that provide useful information related to CentraSite. In theWelcome page you
can specify the language you wish to use for your further work with CentraSite Control, and you
can specify the date format to be used in the various displays.

A search box allows you perform a keyword search for registry assets and objects whose name or
description contains the given keyword.

The Welcome page has the following schematic layout:

CentraSite Control Pluggable Architecture8

Customizing the Welcome Page



The header section at the top contains a title text and a subtitle text. You can change the texts, the
fonts and colors used to display the texts. An icon can be displayed adjacent to the title and subtitle.
A search box is displayed by default, which allows you to perform a keyword search for an asset.
You can hide the search box as part of the page customization. You can change the background
color for the whole header section, and you can change the background color of the search box.

Below the header section, there can be one or more so-called widgets. Eachwidget contains a title,
with an icon adjacent to the text. Under the title, you can have a list of entries, each representing
some executable action. Typically, an action contains a URL to either a page of your choice within
CentraSite Control, or to an external web page that you regularly visit within the context of your
work with CentraSite.

There are several kinds of widget:

■ Single-column widget
In this widget, the executable actions are displayed as a table consisting of a single column. Each
table cell contains one executable action. Each cell can also have an icon beside it. There is a
header text above the table.

■ Multi-column widget
In thiswidget, the executable actions are displayed as a table consisting of two ormore columns.
Each table cell contains one executable action. Each cell can also have an icon beside it. There is
a header text above each column of the table.

■ HTML-style widget
In this widget, the contents are freely programmable as HTML code. TheHTML statements you
use must be valid within the context of an HTML table cell, i.e. there is an implicit HTML <td>
element enclosing the HTML code you supply.

TheWelcome page can contain up to 10widgets. Thewidgets are displayed side by side in a single
row.

In general, you can use CSS stylesheet statements to customize the appearance of text and colors
in the Welcome page.

Technical Implementation of the Welcome Page

TheWelcome page is implemented as a plug-in module within the CentraSite pluggable UI archi-
tecture. This means that all of the development aspects that are relevant for implementing
CentraSite plug-in modules apply also to the Welcome page.

The following sections describe the technical implementation of the Welcome page.

■ Overview of Java Methods used

9CentraSite Control Pluggable Architecture

Customizing the Welcome Page



■ Java interface hierarchy

Overview of Java Methods used

The layout and contents of the Welcome page are implemented as Java code.

Each customizable part of the Welcome page requires a corresponding Java class. The Welcome
screen can be defined as a combination of the following hierarchical structures:

■ The header and body of the Welcome page.
■ The widgets in the body of the Welcome page.
■ The items in the columns of the widgets.

Screen Component: Welcome Page

TheWelcome page is composed of a header and a body. The header contains a title, subtitle, icon,
search box and background image. The body contains one or more widgets.

The content and appearance of these components are determined by the Java methods shown in
the following diagram.

The following table describes the purpose of these Java methods:

CentraSite Control Pluggable Architecture10

Customizing the Welcome Page



DescriptionJava MethodName of Java interface

Defines the header text to be used.getTitle();IWelcomePage

Defines the CSS style information for the header.getTitleStyle();IWelcomePage

Defines the header subtitle text to be used.getSubTitle();IWelcomePage

Defines the CSS style information for the header
subtitle.

getSubTitleStyle();IWelcomePage

Defines the icon to be used in the header.getImage();IWelcomePage

Defines whether the search box in the header part is
visible or invisible.

isSearchVisible();IWelcomePage

Defines a background image to be used for the search
box.

getSearchBackgroundImage();IWelcomePage

Defines a background image to be used for the header
part.

getHeaderBackgroundImage();IWelcomePage

Defines a background image to be used for the body
part.

getBottomBackgroundImage();IWelcomePage

Defines the widgets that will be used in the body
part.

getWidgets();IWelcomePage

Screen Component: Widget

The body part of theWelcome page is composed of one or more widgets. A widget can define just
HTML code (an HTML-style widget) or can define content and layout, similar to the header part
of theWelcome page. The content/layout components are: a background image, a header text, the
definition of a single-column table of items, the definition of a multi-column table of items.

The content and appearance of these components are determined by the Java methods shown in
the following diagram.

11CentraSite Control Pluggable Architecture

Customizing the Welcome Page



The following table describes the purpose of these Java methods:

DescriptionJava MethodName of Java interface

Defines the screen width of the widget.getWidth();IWidget

Defines HTML code for an HTML-style widget.getHtml();IHtmlWidget

Defines the background image to be used for a column of
a widget.

getBackgroundImage();IColumnWidget

Defines the header text of a column of a widget.getTitle();IColumnWidget

Defines the CSS style for the header text of a column of a
widget.

getTitleStyle();IColumnWidget

Defines the background image to be used for the header
part of the widget.

getImage();IColumnWidget

Defines the subtitle text of a single-column widget.getSubTitle();ISingleColumnWidget

Defines the CSS style for the subtitle header text of a
single-column widget.

getSubTitleStyle();ISingleColumnWidget

Defines the items contained in a single-column widget.getItems();ISingleColumnWidget

Defines the columns used in a multi-column widget.getColumns();IMultiColumnWidget

Defines the subtitle text of a column of a multi-column
widget.

getSubTitle();IColumn

CentraSite Control Pluggable Architecture12

Customizing the Welcome Page



DescriptionJava MethodName of Java interface

Defines the CSS style for the subtitle text of a column of a
multi-column widget.

getSubTitleStyle();IColumn

Defines the items contained in a column of amulti-column
widget.

getItems();IColumn

Screen Component: Item

Each widget in the body part of the Welcome page can contain one or more items, arranged in
one or more table columns. An item represents an executable action, which you can define freely;
for example, the action could be the activation of a URL in order to reach a particular page within
CentraSite Control or an external web site.

The content and appearance of these components are determined by the Java methods shown in
the following diagram.

The following table describes the purpose of these Java methods:

DescriptionJava MethodName of Java interface

Defines the CSS style for the item.getStyle();IItem

Defines the text to be displayed for the item.getTitle();IActionItem

Defines the icon to be displayed adjacent to the descriptive text.getImage();IActionItem

Defines the height in pixels of the area that contains the separator image.getHeight();ISeparatorItem

Defines the image be displayed as the separator item.getImage();ISeparatorItem

13CentraSite Control Pluggable Architecture

Customizing the Welcome Page



Methods Not Related To Screen Components

The following list shows the Java methods that are not related to a screen component, but which
are required for the pluggable UI architecture of CentraSite Control.

DescriptionJava MethodName of Java
interface

This informs thewidget or item about theCentraSite Control locale
that is required to localize texts for the display.

setLocale();(all interfaces)

This method is called automatically before any other method that
might depend on the locale.

This informs the widget or item about the CentraSite Control
context that is required for the processing to be done subsequently
by the execute() method.

setActionContext();(all interfaces)

This method is called automatically before any other method that
might depend on the action context.

This sets the status that the display of the current item must be
refreshed (true) or does not need to be refreshed (false).

invalidate();IWidget

This returns whether or not the display of the item needs to be
refreshed.

isInvalidated();IWidget

This method gets the widget to which the current item belongs.getWidget();IItem

This method sets the widget to which the current item belongs.setWidget();IItem

This activates the action to be performed when you click on the
current item.

execute();IActionItem

Java interface hierarchy

The interface hierarchy is as follows:

IWelcomePage

IWidget
IColumnWidget

IMultiColumnWidget
ISingleColumnWidget

IHtmlWidget

IColumn

IItem
IActionItem
ISeparatorItem

CentraSite Control Pluggable Architecture14

Customizing the Welcome Page



Installing the Customized Welcome page

The Welcome page is implemented as a CentraSite Control extension point in the context of
CentraSite's pluggable UI architecture. To install your customized Welcome page, you need to
modify CentraSite Control's pluggableUI configuration in the SoftwareAGRuntime environment.

The required deployment steps are describe in the following sections:

■ Stop Software AG Runtime
■ Updating the plugin.xml configuration file
■ Deploying the new Java classes to the PluggableUI environment
■ Start Software AG Runtime

Stop Software AG Runtime

Before you make any changes to the Software AG Runtime environment, stop the Software AG
Runtime process.

Updating the plugin.xml configuration file

The standard plugin.xml configuration file delivered with the CentraSite kit contains all of the
names of the CentraSite Control extension points, including the extension point for the Welcome
page. You must update this file to contain the definition of the customized Welcome page. The
configuration file is located in the folder <RuntimeDir>\workspace\webapps\PluggableUI\Centra-
SiteControl .

There are two elements in the standard plugin.xml file that refer to the Welcome page. The first
part defines the name of the extension point to be used for the Welcome page, and looks like this:

<extension-point id="welcomePage">
</extension-point>

The second part defines the Java class that implements the Welcome page, and looks like this:

<!-- Welcome Page -->
<extension

point="com.centrasite.control.welcomePage"
id="welcomePage"
class="com.centrasite.control.ext.welcome.standard.WelcomePage">

</extension>

The point attribute of the extension element in the second part must match the name given by
the id attribute of the plugin element (usually in the first line in the plugin.xml file) concatenated

15CentraSite Control Pluggable Architecture

Customizing the Welcome Page



with a dot and the id attribute of the extension-point element in the first part. For example, if
the id attribute of the plugin element is "com.centrasite.control" and the id attribute of the
extension-point element is "welcomePage", then the value of point attribute of the extension
element must be "com.centrasite.control.welcomePage".

The Java class identified by the class attribute of the extension element must implement the in-
terface IWelcomePage.

To use your customized Welcome page instead of the standard Welcome page, set the class at-
tribute to your customized Java class that implements the interface IWelcomePage.

For general information about plugin.xml, see the section Installing and Uninstalling Plug-ins.

The changes that youmake in plugin.xml take effect the next time Software AG Runtime is started.

Note: Instead of overwriting the standard element in plugin.xml, you might want to retain
a copy of the original element and comment it out. This means that you can revert easily
to the originalWelcome page if required, by commenting out your customized element and
uncommenting the original element.

Deploying the new Java classes to the PluggableUI environment

In addition to modifying the plugin.xml file, as described above, you need to copy the Java classes
for your customized Welcome page to the CentraSite Control location in Software AG Runtime.

There are two ways of doing this:

■ Create a jar file containing the class files for your customized Welcome page, and copy the jar
file to the CentraSiteControl\lib folder in Software AG Runtime.

■ Copy the class files to the CentraSiteControl\classes folder and its subfolders, according to the
naming convention of the Java package that contains the classes. If, for example, your package
name is com.centrasite.control.ext.welcome.sample, then copy the classes to the CentraSiteCon-
trol\classes\com\centrasite\control\ext\welcome\sample folder.

You can also combine these methods, and define some classes via a jar file in the lib folder and
some classes as class files in the appropriate subfolder of the classes folder. If you have defined a
class in both lib and a subfolder of classes, the class in the CentraSiteControl\classes subfolder will
be used.

If you have defined new icons for the customized Welcome page, you need to copy the icons to
the appropriate location under the CentraSiteControl folder. If, for example, your code contains the
definition public String getImage() { return "images/my_welcome_icon.png"; }, ensure
that the icon my_welcome_icon.png is copied to CentraSiteControl\images.

CentraSite Control Pluggable Architecture16

Customizing the Welcome Page



Start Software AG Runtime

After you have made the changes to the Software AG Runtime environment, restart the Software
AG Runtime process. The changes you have made should now be visible when you view the
Welcome Page.

Example of a customized Welcome Page

This section describes the customized welcome page that is provided as a demo in the product
distribution.

■ Location of demo files
■ Differences between standard Welcome Page and demo Welcome Page
■ Implementation of Welcome Page layout
■ Implementing the Demo as an Eclipse Java Project
■ Building the deployment files for Software AG Runtime
■ Deploying the demo to Software AG Runtime
■ Displaying the demo Welcome page

Location of demo files

All of the required files for the demo are contained in the folder demos\WelcomePage under the
CentraSite installation location. The following files are available at this location:

■ The Java source files. These are located in the subfolder src.
■ Icons to be displayed in the Welcome page. These are located in the subfolder resources.
■ Updates for the Software AG Runtime configuration. These are in the file resources\plugin.xml.
■ Eclipse project files .classpath and .project.
■ Apache Ant files build.properties and build.xml for building the files that will be deployed to
Software AG Runtime.

The following sections describe how to use these files to build and deploy the demo Welcome
page.

17CentraSite Control Pluggable Architecture

Customizing the Welcome Page



Differences between standard Welcome Page and demo Welcome Page

This section shows the differences between the standard welcome page and the demo welcome
page. Based on this you should be able to quickly evaluate the usefulness of this feature for your
own business requirements.

The standard welcome page has the following appearance:

The demo welcome page used as an example in this section has the following appearance:

CentraSite Control Pluggable Architecture18

Customizing the Welcome Page



The main changes between the standard welcome page and the customized welcome page that
Software AG supplies as a demo can be summarized as follows:

■ The text in the title of the header section has changed. Also the color of this text has changed.
■ The background color in the customized welcome page has changed.
■ The large icons in the titles of the header part and of the widgets have changed.
■ The small icons in the CentraSite widget have changed.
■ The widgets have 3-D effect shadowed borders.
■ The search box in the header section has been removed.

Implementation of Welcome Page layout

This section lists the layout possibilities of thewelcome page and specifies the Javamethodswhere
the layout is defined.

Note: If any background image that is defined for an area of the display is not as wide as
the area, the image is repeated horizontally until the whole width of the area is covered.

■ Header area
■ Separator between header part and widget part
■ Widget CentraSite
■ Widget Useful Links
■ Widget User Preferences
■ Default Settings for Widgets

Header area

Java MethodSource fileLayout component

getImage();WelcomePage.javaIcon

getHeaderBackgroundImage();WelcomePage.javaBackground image

getTitle();WelcomePage.javaTitle text

getTitleStyle();WelcomePage.javaCSS style of title text

getSubTitle();WelcomePage.javaSubtitle text

getSubTitleStyle();WelcomePage.javaCSS style of subtitle text

getSearchBackgroundImage();WelcomePage.javaBackground image of the Search box

isSearchVisible();WelcomePage.javaMake the Search box visible/invisible

19CentraSite Control Pluggable Architecture

Customizing the Welcome Page



Separator between header part and widget part

Java MethodSource fileLayout component

getImage();SeparatorItem.javaImage

getHeight();SeparatorItem.javaHeight in pixels

Widget CentraSite

Java MethodSource fileLayout component

getWidth();CentraSiteWidget.javaWidth of widget

getTitle();CentraSiteWidget.javaTitle text

getTitleStyle();CentraSiteWidget.javaCSS style of title text

getSubTitle();CentraSiteWidget.javaSubtitle text

getSubTitleStyle();CentraSiteWidget.javaCSS style of subtitle text

getImage();CentraSiteWidget.javaHeader icon

getBackgroundImage();CentraSiteWidget.javaBackground image

getItems();CentraSiteWidget.javaCentraSite widget: define the items to be included in
the bullet list

getImage();KeywordSearchItem.javaIcon for item "Asset Catalog"

getTitle();KeywordSearchItem.javaText for item "Asset Catalog"

getImage();AdvancedSearchItem.javaIcon for item "Advanced Search"

getTitle();AdvancedSearchItem.javaText for item "Advanced Search"

getImage();InboxItem.javaIcon for item "Inbox"

getTitle();InboxItem.javaText for item "Inbox"

getImage();MyFavoriteItem.javaIcon for item "My Favorites"

getTitle();MyFavoriteItem.javaText for item "My Favorites"

Widget Useful Links

CommentJava MethodSource fileLayout component

getImage();UsefulLinksWidget.javaHeader icon

getWidth();UsefulLinksWidget.javaWidth of widget

getTitle();UsefulLinksWidget.javaTitle text

getTitleStyle();UsefulLinksWidget.javaCSS style of title text

getSubTitle();UsefulLinksWidget.javaSubtitle text

getSubTitleStyle();UsefulLinksWidget.javaCSS style of subtitle
text

getBackgroundImage();UsefulLinksWidget.javaBackground image

CentraSite Control Pluggable Architecture20

Customizing the Welcome Page



CommentJava MethodSource fileLayout component

getTitle();DeveloperCommunityItem.javaText for item
"CentraSiteDevelopers
Community"

The creation of a
hyperlink that opens a

execute();DeveloperCommunityItem.javaURL for item
"CentraSiteDevelopers
Community" new browser page is

implemented by a call of
the
openPageInNewWindow
method of the
getDisplayAdapter()
class that is available in
the
CentraSiteControlUI.jar
file in Software AG
Runtime.

getTitle();CentraSiteCommunityItem.javaText for item
"CentraSite
Community"

See the comment for
"CentraSite Developers
Community".

execute();CentraSiteCommunityItem.javaURL for item
"CentraSite
Community"

getTitle();OnlineDocumentationItem.javaText for item
"CentraSite Online
Documentation"

See the comment for
"CentraSite Developers
Community".

execute();OnlineDocumentationItem.javaURL for item
"CentraSite Online
Documentation"

getItems();UsefulLinksWidget.javaDefine the items to be
included in the bullet
list

Widget User Preferences

Java MethodSource fileLayout component

getImage();UserPreferencesWidget.javaHeader icon

getWidth();UserPreferencesWidget.javaWidth of widget

getTitle();UserPreferencesWidget.javaTitle text

getTitleStyle();UserPreferencesWidget.javaCSS style of title text

getBackgroundImage();UserPreferencesWidget.javaBackground image

getSubTitle();LanguagesColumn.javaText of the "Languages" subtitle

getSubTitleStyle();LanguagesColumn.javaCSS style of the "Languages" subtitle

21CentraSite Control Pluggable Architecture

Customizing the Welcome Page



Java MethodSource fileLayout component

getWidth();LanguagesColumn.javaWidth of "Languages" column in pixels

getSubTitle();DateFormatsColumn.javaText of the "Date Formats" subtitle

getSubTitleStyle();DateFormatsColumn.javaCSS style of the "Date Formats" subtitle

getWidth();DateFormatsColumn.javaWidth of "Date Formats" column in pixels

getItems();LanguagesColumn.javaLanguages column: define the items to be included
in the bullet list

getItems();DateFormatsColumn.javaDate Formats column: define the items to be included
in the bullet list

Default Settings for Widgets

ConstantSource fileLayout component

BLUE_CIRCLE_ICONWelcomePage.javaWidgets: default "blue circle" icon to mark individual
entries in a widget

ORANGE_CIRCLE_ICONWelcomePage.javaWidgets: default "orange circle" icon to mark individual
entries in a widget

WIDGET_TITLE_STYLEWelcomePage.javaWidgets: default CSS style of the title text of a widget

WIDGET_SUBTITLE_STYLEWelcomePage.javaWidgets: default CSS style of the subtitle text of awidget

ACTION_ITEM_STYLEWelcomePage.javaWidgets: default CSS style of the text for each item of a
widget

Implementing the Demo as an Eclipse Java Project

If you wish to use Eclipse as your development environment for updating the Java sources of the
customizedwelcome page, the demos\WelcomePage folder contains the Eclipse project files .classpath
and .project. You can use these files to create an Eclipse Java project formanaging your Java sources.
To create and use the Eclipse Java project, proceed as follows:

To create and use the Eclipse Java project

1 Start Eclipse.

2 Select File > New > Project > Java Project.

This opens the wizard for creating a new Java project.

3 Select Create project from existing source.

4 Specify the path demos\WelcomePage as the location of the existing project files.

When you build the project in Eclipse (using for example Project > Build Project), there should
be no errors reported.

CentraSite Control Pluggable Architecture22

Customizing the Welcome Page



Building the deployment files for Software AG Runtime

To deploy the demowelcome page to SoftwareAGRuntime, you need to create a jar file containing
the Java classes of your Java sources, then copy the jar file and any required graphic icons to the
Software AG Runtime environment.

You can build the jar file by using Apache Ant with the build file build.xml provided in the
demos\WelcomePage folder. The file build.xml uses a properties file build.properties to define some
customer-specific files names and folder locations.

The build file build.xml also builds a zip file that contains the jar file and all required graphical
icons. To deploy the demo welcome page, you can unzip the contents of the zip file directly into
your Software AG Runtime location, as described below.

The build.properties file

The file build.properties contains the following properties that you should tailor to your working
environment before you run build.xml.

DescriptionProperty

This is the name that will be used for the jar file and zip file that are created by the Ant
task.

projectName

The jar file will be copied to the CentraSite\lib folder in the Software AG Runtime
environment, so choose a name that will easily distinguish the jar file from other jar
files at the Software AG Runtime location.

This is the location of the folderPluggableUI in the <RuntimeDir>/workspace/webapps/
directory. In a Windows environment, you should use forward slashes instead of
backward slashes in the path name.

pluggableLocation

This is the pathwhere yourCentraSite installation is located. In aWindows environment,
you should use forward slashes instead of backward slashes in the path name.

centraSiteLocation

Building the deployment files

The build.xml file contains the definition of the tasks to be performed by Ant. The tasks defined in
the delivered demo version are:

■ Compile the Java sources that are located in the folder src and store the Java classes in the folder
classes.

■ Create a jar file containing all of the class files, and store the jar file in the folder lib.
■ Create a zip file that contains the jar file and all icons associated with the customized welcome
page, and store the zip file in the folder lib.

The build.xml file is an XML file that contains element definitions such as:

23CentraSite Control Pluggable Architecture

Customizing the Welcome Page



<zipfileset dir="resources" prefix="images">
<include name="*.png" />

</zipfileset>

In such cases, the dir attribute indicates the name of the folder in the build environment where
Ant can locate the required files, and the prefix attribute indicates the folder in the Software AG
Runtime environmentwhere the fileswill be copied to. In the extract shown above, Antwill search
for all PNG graphics files ("*.png") in the resources folder in the build environment and add them
to the zip file so that they can be unzipped into the images folder in the Software AG Runtime en-
vironment.

To build the deployment files, you can use either of the following methods:

To build the deployment files (method 1)

1 In Eclipse, select the build.xml file in the Package Explorer view.

2 In the context menu, click Run As > Ant Build....

3 Ensure that the options are set for "Clear Environment", "Compile Sources", "Create JAR file",
"Create ZIP file".

4 Click Run.

To build the deployment files (method 2)

This method assumes that you have Apache Ant installed as an executable program on your
computer.

1 Open a command prompt window.

2 Go to the demos\WelcomePage folder.

3 Enter the command ant clean.

4 Enter the command ant.

In both methods, the Ant tasks defined in build.xml are processed. Ant builds a new jar file
demos\WelcomePage\lib\SagBlueWelcomePage.jar, containing all of the Java classes required for the
Software AG Runtime environment. It also build a zip file demos\WelcomePage\lib\SagBlueWel-
comePage.zip, containing the jar file and all required PNG graphics. The name "SagBlueWel-
comePage" comes from the definition of the property projectName in the file build.properties.

CentraSite Control Pluggable Architecture24

Customizing the Welcome Page



Deploying the demo to Software AG Runtime

To deploy the demo Welcome page to Software AG Runtime, you need to copy the Java classes
and icons of the demoWelcome page to the Software AG Runtimet environment, and update the
Software AG Runtime plugin.xml file. To do this, proceed as follows:

To deploy the demo Welcome page to Software AG Runtime

1 Stop Software AG Runtime.

2 Unzip the zip file created by the Ant build into <RuntimeDir>\workspace\webapps\Plug-
gableUI\CentraSiteControl directory.

Thiswill copy the jar file created byAnt into the folder <RuntimeDir>\workspace\webapps\Plug-
gableUI\CentraSiteControl\lib and the PNG files into the folder <RuntimeDir>\work-
space\webapps\PluggableUI\CentraSiteControl\images.

Or:

As an alternative to using the zip file, you can just copy the jar file from the Ant build into
<RuntimeDir>\workspace\webapps\PluggableUI\CentraSiteControl\lib and the PNG files into
<RuntimeDir>\workspace\webapps\PluggableUI\CentraSiteControl\images.

3 As indicated in the section Updating the plugin.xml configuration file, the plugin.xml file in
the Software AG Runtime environment must be updated to point to the Java classes of the
customized Welcome page. The file plugin.xml in the folder demos\WelcomePage\resources
contains the elements that must be updated in the plugin.xml file for Software AG Runtime.

Copy the entries manually from demos\WelcomePage\resources\plugin.xml to the plugin.xml
file under Software AG Runtime. Remember to comment out the original entries for the
standard Welcome page when you copy in the new entries.

4 Restart Software AG Runtime.

Displaying the demo Welcome page

After you have deployed the demo to the Software AG Runtime environment, as described in the
previous sectionDeploying the demo to Software AG Runtime, and restarted Software AG
Runtime, the demo Welcome page will be visible when you start CentraSite Control.

25CentraSite Control Pluggable Architecture

Customizing the Welcome Page



Special Programming Techniques

This section summarizes some of the techniques you might find useful when creating your own
customizedwelcomepage. You can find code examples of the techniques in the demos\WelcomePage
folder.

Code Example in demos\WelcomePage folder
Technique

AdvancedSearchItem.javaActivate the "Advanced Search" page.

KeywordSearchItem.javaActivate the "Keyword Search" page.

UserPreferencesItem.javaStart the "My Account" dialog.

CreateAssetItem.javaStart the "Add Asset" dialog.

ImportWsdlFileItem.javaStart the "Import" dialog.

MyFavoriteItem.javaActivate "My CentraSite" and show "Assets I Provide".

CentraSiteCommunityItem.javaOpen the external website
"http://communities.softwareag.com/centrasite".

DeveloperCommunityItem.javaOpen the external website "http://www.centrasite.com ".

OnlineDocumentationItem.javaOpen the external website
"http://documentation.softwareag.com/default.htm".

EmptyItem.javaCreate an empty line in a widget.

SeparatorItem.javaCreate a dotted dividing line.

DateFormatsColumn.javaCreate a column (list) with all available date formats.

DateFormatItem.javaSelect a specific date format from a list.

LanguagesColumn.javaCreate a column (list) with all available languages.

LanguageItem.javaSelect a specific language from a list.

CentraSite Control Pluggable Architecture26

Customizing the Welcome Page



III Customizing Content Pages

27



28



3 Customizing Content Pages

■ Extension Points ............................................................................................................................. 30
■ Activating the IDE ............................................................................................................................ 51
■ Step-by-Step Guide ......................................................................................................................... 52

29



Extension Points

An extension point is characterized by the following properties:

■ An ID by which it can be referenced.
■ An interface to be implemented by plug-ins. In most cases there is also an abstract base class
available that implements the interface. It is recommended to extend this class for your own
extensions.

■ Names of properties to be provided by a plug-in.
■ Optionally, it may be related / compared to a corresponding extension point offered in an Eclipse
environment.

An extension point provides the name of a class that implements the interface and property values.
In general, if there is an abstract base class, its usage is strongly encouraged.

The available extension points are described in the following sections.

■ I18N for Layouts
■ Parameters for Plug-ins
■ ConnectionHandler - Logon and Logoff / Exit
■ Perspectives
■ Topic
■ Command for Item
■ Bulk Command for Items
■ Add Property
■ Tab in Detail View
■ Add Source of Notification
■ Impact Analysis: NodeDecorator
■ Append Root Node to Topic
■ Replace Standard Detail View by another Editor
■ Extend Search Dialog by Additional Conditions
■ Download Documents
■ Attach Documents

CentraSite Control Pluggable Architecture30

Customizing Content Pages



I18N for Layouts

Use this when the layout of a plug-in needs to be localized.Usage

Attributes ■ point="com.softwareag.cis.plugin.i18n"
■ id
■ class
■ project (name of the plug-in directory)
■ prefix (as used by messages)
■ file (name of the property file to be used)

I18NHandlerInterface

Common18NHandlerStandard class

Class I18NManager inside PluggableUI handles this extension point. If an I18Message or a
text ID in a layout definition (as created using the Application Designer) refers to a source

Processing

ID that starts with the given prefix, the I18Manager will attempt to resolve this reference
using the given property file. In the case of a text ID, the corresponding layout must be part
of the plug-in whose directory is indicated by the project attribute.

PluggableUIProvided by

Example
<extension point="com.softwareag.cis.plugin.i18n"

id="CentraSiteControl"
class="com.softwareag.cis.plugin.ext.Common18NHandler"
project="CentraSiteControl"
prefix="INMCS"
file="com.centrasite.control.adapters.util.INMMessages"
>

</extension>

31CentraSite Control Pluggable Architecture

Customizing Content Pages



Parameters for Plug-ins

Usage ■ Use this to get parameters for a plug-in.

Attributes ■ point="com.softwareag.cis.plugin.parameter"
■ id
■ value

No interface to be implemented.Interface

Use the plug-in call ApplicationContext.getParameter() to obtain value.Processing

PluggableUIProvided by

Example <extension point="com.softwareag.cis.plugin.parameter"
id="welcomePageDefault"
value="true">

</extension>

CentraSite Control Pluggable Architecture32

Customizing Content Pages



ConnectionHandler - Logon and Logoff / Exit

Usage ■ Use at the start or end of a session of CentraSite Control .

Attributes ■ point="com.softwareag.cis.plugin.connectionHandler"
■ id
■ value

ConnectionHandlerInterface

■ void init (CommonAdapter ca)
■ void connect (Credentials c, CommonAdapter ca) throws Exception
■ void notifyConnected (CommonAdapter ca)
■ boolean isConnected()
■ void prepareDisconnect (CommonAdapter ca) throws Exception
■ void disconnect (CommonAdapter ca);

Processing ■ Logon:
■ Obtain credentials from the login screen
■ Call connect(Credentials) for each extension
■ If an exception occurs:

■ Show a popup with the exception
■ Disconnect each extension which is already connected
■ Restart

■ If all successful: start the workplace
■ Logoff:

■ Call prepareDisconnect() for each extension
■ If an exception occurs:

■ Show a popup with the exception
■ Done

■ Disconnect each extension which is already connected by calling the disconnect()
method

PluggableUIProvided by

33CentraSite Control Pluggable Architecture

Customizing Content Pages



Example   <extension point="com.softwareag.cis.plugin.connectionHandler" 
             id="login"
             ↩
class="com.centrasite.control.ext.CentraSiteConnectionHandler">
  </extension>

CentraSite Control Pluggable Architecture34

Customizing Content Pages



Perspectives

Perspectives allow certain predefined screen layouts to be stored. When several perspectives are
defined, it is possible to switch from one to the other easily.

The Perspective button will only be shown if more than one perspective is available. When you
click the button, a popup dialog appears, which allows you to select the required perspective.

The perspective can be switched in two ways:

■ Select one or more rows (perspectives) and clickOK.
■ Double click a single row.

Multiple perspectives will be represented in a way that the union of the corresponding topics is
displayed on the right hand side. The header will be changed depending on the perspective to
which the currently selected topic belongs.

The following features are provided for perspectives:

■ A fixed set of perspectives as configured via extensions. You can switch a perspective via the
Select Perspective dialog.

■ A fixed set of topics per perspective. The association between topics and the corresponding
perspective is established via the plug-in configuration file. Each declaration of a topic extension
must contain a reference to the ID of the associated perspective extension.

■ A perspective may contribute the following components:
■ A name and an icon being used to represent the perspective in the Select Perspective dialog.
■ An ICONLISTInfo object used to create a toolbar in the header frame. This can be suppressed
if the perspective's supportsViews()method returns "false".

■ The label and valid values for the View list box. This can be suppressed.
■ A tailored layout to be used as the workplace background. This will only be used if the per-
spective is used as the initial perspective (see the section Setting the Preferred Plug-in and
Order of Plug-ins for more information).

Usage ■ Each plug-in may contribute a perspective to contain its own topics or the topics of
other plug-ins (see next section)

Attributes ■ point="com.softwareag.cis.plugin.perspective"
■ id
■ class

PerspectiveInterface

■ String getTitle()

35CentraSite Control Pluggable Architecture

Customizing Content Pages



( used in dynamically generated Select Perspective dialog)
■ String getImageURL()

(used to represent a perspective by an icon in the Select Perspective dialog)
■ Toolbar:

■ ICONLISTInfo getToolbar()
■ Logo

■ String getLogoImageURL ()

(used for header frame)
■ Handling of the View listbox:

■ String getViewLabel()
■ String[] getViewValues()
■ String getView()

(returns the currently selected view)
■ void setView(String view)

(called when the user changes the view selection)
■ Default layout used for perspective background

■ String getWorkplaceDefaultLayout();

(used for background of workplace if no activity is opened)

AbstractPerspectiveAbstract base
class

PluggableUIProvided by

(CentraSite Control/plugin.xml)Example

<extension point="com.softwareag.cis.plugin.perspective"
id="controlPerspective" <---+
class="com.centrasite.control.ext.ControlPerspective"> |

</extension> |
<extension point="com.softwareag.cis.plugin.topic" |

id="registry" |
perspective="com.centrasite.control.controlPerspective" ---+
class="com.centrasite.control.ext.ImportantTypesTopic">

</extension>

If a perspective is selected for display, all topics belonging to that perspective become visible. If
one of these perspectives is selected in the navigation pane, the content of the header frame is
adjusted with respect to the toolbar, the View listbox and the visible logo.

CentraSite Control Pluggable Architecture36

Customizing Content Pages



Topic

Usage ■ Add a topic in the navigation view.

Attributes ■ point="com.softwareag.cis.plugin.topic"
■ id
■ perspective (see the section Perspectives)
■ class

TopicInterface

■ String getImageURL()
■ boolean isVisible()

(used when switching views)

AbstractTopicAbstract base class

Processing ■ When starting the user interface, a topic is added to the active perspective for each
known extension that refers to the perspective.

■ The first topic is selected.
■ When switching to a different topic, replace the content of the HEADER frame
according to the data provided by the corresponding perspective.

PluggableUIProvided by

Example
<extension point="com.softwareag.cis.plugin.topic"

id="registry"
perspective="com.centrasite.control.perspective"
class="com.centrasite.control.ext.ImportantTypesTopic">

</extension>

37CentraSite Control Pluggable Architecture

Customizing Content Pages



Command for Item

Usage ■ Add a command to a menu.

Attributes ■ point="com.centrasite.control.itemCommand"
■ id (default: name of implementing class)
■ class

ExtensionCommandInterface

■ boolean appliesTo (Item)
■ String getName()
■ String getImageURL()
■ int getCategory()

(used for grouping of commands)
■ abstract void execute(ActionContext actionContext)

AbstractExtensionCommandAbstract base class

Processing ■ When a list of commands for amenu item is retrieved (e.g. for contextmenu or toolbar),
the following steps are performed for each known extension:
■ create an instance of class and invoke appliesTo(Item).
■ If "true" is returned, the command is added to the list.

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.itemCommand" 
     id="test"
     ↩
class="com.centrasite.control.extpt.junit.DisplayRegObjKeyCommand">
</extension>

CentraSite Control Pluggable Architecture38

Customizing Content Pages



Bulk Command for Items

Usage ■ Add a command to a menu in which bulk actions are permitted.

Attributes ■ point="com.centrasite.control.itemBulkCommand"
■ id (default: name of implementing class)
■ class

ExtensionCommandInterface

■ boolean appliesTo (Item)
■ String getName()
■ String getImageURL()
■ int getCategory()

(used for grouping of commands)
■ abstract void execute(ActionContext actionContext)

AbstractExtensionCommandAbstract base class

Processing ■ When a list of commands for amenu item is retrieved (e.g. for contextmenu or toolbar),
the following steps are performed for each known extension:
■ create an instance of class and invoke appliesTo(Item).
■ If "true" is returned, the command is added to the list.

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.itemBulkCommand" 
     id="test"
     ↩
class="com.centrasite.control.extpt.junit.DisplayRegObjKeyCommand">
</extension>

39CentraSite Control Pluggable Architecture

Customizing Content Pages



Add Property

Usage ■ Add a property to a registry object.

Attributes ■ point="com.centrasite.control.registryObjectProperty"
■ d
■ class
■ (boolean) visible by default

ExtensionPropertyAccessorInterface

■ boolean appliesTo (String objectTypeQName, Connector con)
■ String getDisplayName(Locale locale)
■ String getDescription(Locale locale)
■ String getInternalName()
■ boolean getVisibleByDefault()
■ String getValue(Item item) throws Exception
■ void setValue(Item item, String value) throws Exception

AbstractPropertyAccessor (must be explicitly implemented)Abstract base class

Processing ■ When opening a report, all extensions are checked whether they want to contribute.
■ The corresponding accessors are added to the report.

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.registryObjectProperty" 
     id="test"
     ↩
class="com.centrasite.control.extpt.junit.LastModifiedPropertyAccessor">
</extension>

Note: Additional columns might also show up in upper table of theGeneral tab.

CentraSite Control Pluggable Architecture40

Customizing Content Pages



Tab in Detail View

Usage ■ Add a tab in the detail view of an object.

Attributes ■ point="com.centrasite.control.detailViewTab"
■ id
■ class

DetailViewTabInterface

■ String getTitle()
■ String getImageURL()
■ String getLayout()
■ void initAdapterFor (Item, DetailViewTabAdapter)
■ protected String getAdapterClass();
■ boolean appliesTo (Item)

(If this is returned, the tab will be displayed for the corresponding Item if
isVisible() returns true as well, otherwise the tab will not be displayed)

■ void setDetailsTabContext (DetailTabContext)
■ boolean isVisible(Item)

AbstractDetailViewTabAbstract base class

Processing ■ If the detail view for an Item is opened, it is checked for each known extension.
■ Create an instance of class and invoke appliesTo(Item). If "true" is returned,
getLayout() is invoked and the layout is added as a tab. The respective adapter
will be created implicitly by theApplicationDesignerwhen processing the layout.

■ The title of the tab is set with the result from calling getTitle().
■ Currently, items on tabs are not supported.Hence, the result from getImageURL()
is ignored.

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.detailViewTab"

id="lifecycle"
class="com.centrasite.control.lifecycle.LifeCycleDetails"

>
</extension>

41CentraSite Control Pluggable Architecture

Customizing Content Pages



Add Source of Notification

Usage ■ Add a source of a notification.

Attributes ■ point="com.centrasite.control.addRowToMyNotifications"
■ id (default: name of implementing class)
■ class

ReportExtensionItemsProviderInterface

■ Collection getItems() throws Exception;
■ void setConnector(Connector connector);
■ boolean isContributedItem(Item item);
■ String getChangedImageURL (Item item);

AbstractReportExtensionItemsProviderAbstract base class

Processing ■ The extension is initialized via the setConnector()method.
■ Obtain all items to be added to the list of items with pending notification via the
getItems()method.

■ isContributedItem() can be used to checkwhether this extension has contributed
the given item via getItems().

■ getChangedImageURL() is used to control the icon representing the reason for the
notification.

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.addRowToMyNotifications"

id="MyNotificationsApprovalItemsProvider"
class="com.softwareag.centrasite.control.lms.ext.

MyNotificationsApprovalItemsProvider">
</extension>

CentraSite Control Pluggable Architecture42

Customizing Content Pages



Impact Analysis: NodeDecorator

Usage ■ Change the visual representation of registry objects

Attributes ■ point="com.centrasite.control.assocNavigatorNodeDecorator"
■ id (default: name of implementing class)
■ class

NodeDecoratorInterface

■ String getImageURL(Item)

(none)Abstract base class

Processing ■ If the item is to be rendered in Impact Analysis, check all known extensions to
determine if they contribute to the item's visualization;
■ If getImageURL(item) returns null: check for the next extension
■ otherwise: use the URL being returned for secondary icon within visualization of
node in graphical impact analysis.

CentraSite ControlProvided by

Example
<extension ↩
point="com.centrasite.control.assocNavigatorNodeDecorator" 
     id="ExternalLinkNodeDecorator"
     class="com.centrasite.control.ext.ExternalLinkNodeDecorator">
</extension>

The following picture illustrates how ExternalLinks objects are decorated with icons representing
the type of the object they are referencing:

43CentraSite Control Pluggable Architecture

Customizing Content Pages



Append Root Node to Topic

Usage ■ Append a root node to an existing topic.

Attributes ■ point="com.centrasite.control.topicItems"
■ id
■ class

TopicItemsInterface

■ boolean appliesTo (Topic)
■ Collection getItems()

AbstractTopicItemsAbstract base class

Processing ■ For each topicwhose implementation class is derived from a class named BaseTopic
(true for all topics contributed by CentraSite Control) it is checked whether there are
any extension for the topicItems extension point. Each extensionwhose appliesTo()
method returns "true", the collection of Item objects returned by getItems() is
appended to the set of root nodes for the corresponding topic.

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.topicItems"

id="filesystem"
topic="com.centrasite.control.administration"
class="com.centrasite.control.ext.junit.FileSystemTopicItems">

</extension>

Note: Here, the FileSystemTopicItems extension is an extension of the base class
AbstractTopicItemswhose appliesTo()method returns "true" if the value of the
topic attribute matches the ID of the topic being passed.

CentraSite Control Pluggable Architecture44

Customizing Content Pages



Replace Standard Detail View by another Editor

Usage ■ Add an editor that can be configured per object type, even per object instance.

Attributes ■ point="com.centrasite.control.itemEditor"
■ id (default: name of implementing class)
■ class

ItemEditorInterface

■ public boolean appliesTo (Item item, Connector connector);
■ public String getLayout();
■ public String getTitle(Item item);
■ public String getAdapterClass();

(must return a class implementing the ItemEditorAdapter interface)

AbstractItemEditorAbstract base class

Processing ■ If appliesTo() returns true, the editor will be used when opening the detail for the
item being passed:
■ The given adapter class will be instantiated and initialized.
■ The given layout (=pageURL) is opened in the CONTENT frame on the right hand
side.

■ The title returned by getTitle() is used as the label for the activity.

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.itemEditor"

id="DataType"
class="com.softwareag.centrasite.ext.DataTypeEditor">

</extension>

45CentraSite Control Pluggable Architecture

Customizing Content Pages



Extend Search Dialog by Additional Conditions

Usage ■ Extend the search dialog by additional conditions, for example, you can add specific
search predicates for your own object types.

Attributes ■ point="com.centrasite.control.searchPredicate"
■ id
■ class

PredicateEditorInterface

■ Predicate getPredicate()

(Get predicate to be added by this editor)
■ String getLayout()

(Get URL of layout to be rendered)
■ String getAdapterClass()

(Get name of adapter class to be used for rendering, must be a subclass of
AbstractPredicateAdapter)

■ String getPredicateClass()

(Get name of predicate class to be used for rendering, must be a subclass of
AbstractPredicate)

The interface Predicate (many implementing classes are already available in
CentraSiteUtils.jar) with its abstract subclass AbstractPredicate has the following methods

■ boolean appliesTo(String objectTypeValue, CentraSiteQueryManager qm)

(Check whether this predicate applies to objects of given object type)
■ String getInternalType ()

(Get unique internal string representation of type of predicate; not to be localized. You
may use a namespace-like notation for your own.)

■ String getDisplayType ()

(Get human readable localized representation of type of predicate; CentraSite Control
will // display it on the left hand side in the Add Condition dialog)

■ void validate() throws InvalidPredicateException

(Validate parameters set for this predicate. The InvalidPredicateException should contain
a localized message text)

■ String getDisplayString () throws Exception

CentraSite Control Pluggable Architecture46

Customizing Content Pages



(Get human readable localized string representation of predicate including values
predicate; CentraSite Control will display it in the condition table in the header section
of the Search Registry dialog)

■ boolean requiresEnterpriseLicense()

(Check whether this predicate requires an Enterprise license)
■ void addTo (BusinessQuery bq) throws JAXRException

(Add contribution of predicate to givenBusinessQuery. This is theworkermethod applying
the predicate to the search result.)

AbstractPredicate also provides implementations for the following methods

■ Used for I18N support
■ Locale getLocale()
■ Void setLocale(Locale)
■ used for persisting predicates as part of queries.
■ String toXML ();
■ void setFromDom(Element predicateEement, Connection connection)
■ used to initialize the search dialogwith readonly predicates / conditionswhich can neither
modified or removed:

■ void setReadOnly(boolean readOnly);
■ boolean isReadOnly();

AbstractPredicateEditorAbstract base
class

Processing ■ When you click the appropriate button, this invokes the user-defined Adapter (layout)
screen for entering custom search related settings.
■ Create an instance of the class
■ Execute

CentraSite ControlProvided by

Example
<extension point="com.centrasite.control.searchPredicate" 
     id="ObjectTypePredicateEditor"
     class="com.centrasite.control...ObjectTypePredicateEditor">      ↩
       
</extension>

47CentraSite Control Pluggable Architecture

Customizing Content Pages



Download Documents

There is a menu entry in each asset's context menu that allows you to create a zipped archive of
the asset and optionally any attached documents, and to download the zipped archive to the file
system. You can customize the way in which the download feature behaves:

■ You can make the download entry in the context menu visible or invisible for users with the
Guest role.

■ You can change the text string displayed in the context menu.
■ You can change the format of the zipped archive.

Making the download menu entry visible/invisible for guest users

If a user with the Guest role can access an asset and view its context menu, the context menu entry
DownloadDocument is visible by default. You can specifywhether this entry is visible or invisible
for such users as follows:

To make the download menu entry visible/invisible for guest users

1 Locate the configuration file plugin.xml in the <RuntimeDir>\workspace\webapps\Plug-
gableUI\CentraSiteControl directory.

2 Open the file and locate the entry:

<extension point="com.softwareag.cis.plugin.parameter"
id="guestCanDownloadDocuments" value="true" />

3 To make the context menu entry invisible for guest users, change "true" to "false" and restart
Software AG Runtime. Similarly, if the context menu entry is already invisible and you want
to make it visible for guest users, set the value to "true" and restart Software AG Runtime.

Changing the text string displayed in the context menu

The text string displayed in the context menu is by default "Download Document". If you wish to
change this, you can do so by extending the CentraSite Control functionality via the extension
point downloadDocumentCommand. This extension point has the following definition:

Usage ■ Change the text string displayed in the contextmenu for downloading an asset.

Attributes ■ com.centrasite.control.downloadDocumentCommand
■ id (default: name of implementing class)
■ class

See the sample code.Interface

CentraSite Control Pluggable Architecture48

Customizing Content Pages



AbstractExtensionCommandAbstract base class

CentraSite ControlProvided by

See the sample code.Example

To change the text displayed for the context menu, your implementation of the extension point
must define a method getName() of type String. The return value of this method is the text that
will be displayed in the context menu.

You can find sample code for defining the extension point in the file DownloadDocumentCustom-
Command.java that is provided in the demo folder under the CentraSite installation folder.

Changing the format of the zipped archive

By default, the zipped archive contains the folder structure of the asset and its attached documents.
If you wish to change this, you can do so by extending the CentraSite Control functionality via
the extension point downloadDocumentCommand. The definition of the extension point is given
above.

To change the format of the zipped archive, your implementation of the extension point must
define a method that extends the base class DownloadOperation.

You can find sample code for defining the extension point in the files DownloadDocumentCustom-
Command.java and DownloadCustomOperation.java that are provided in the demo folder under the
CentraSite installation folder.

Attach Documents

Some assets include file-related attributes that allow you to attach supporting document(s) such
as programming guides, sample code and script files with the asset. When trying to attach a sup-
porting document with an asset, CentraSite Control displays the available documents underneath
their respective organization directory by default. If youwish to change this (that is, simply display
the documents by the side of its organization directory), you can do so by extending the CentraSite
Control functionality via the extension point attachDocumentCommand.

To customize the document layout:

1 Locate the configuration file plugin.xml in the <RuntimeDir>\workspace\webapps\Plug-
gableUI\CentraSiteControl directory.

2 Open the file and locate the entry:

49CentraSite Control Pluggable Architecture

Customizing Content Pages



<extension point="com.softwareag.cis.plugin.parameter" ↩
id="isCustomAttachDocument" value="false" />

<extension point="com.centrasite.control.attachDocumentCommand" ↩
id="AttachDocumentCustomCommand" ↩
class="com.centrasite.control.extpt.AttachDocumentCustomCommand" />

Where com.centrasite.control.extpt.AttachDocumentCustomCommand is the name of the
abstract base class that implements the interface.

3 To define your custom document layout, change "false" to "true" and restart Software AG
Runtime. Similarly, if the document layout is already customized and youwant to revert back
to the standard layout, set the value to "false" and restart Software AG Runtime.

Usage ■ Use this to define a custom layout of the documents while attaching to an asset via
the Attach Document dialog.

Attributes ■ com.centrasite.control.attachDocumentCommand
■ id (default: name of implementing class)
■ class

See the sample code.Interface

AbstractExtensionCommandAbstract base class

Processing ■ When you click the appropriate button, this invokes the user-defined Adapter
(layout) screen displaying all documents that are available for attaching to an asset.
■ Create an instance of the class
■ Execute

CentraSite ControlProvided by

Example <extension point="com.centrasite.control.attachDocumentCommand" ↩
id="AttachDocumentCustomCommand" ↩
class="com.centrasite.control.extpt.AttachDocumentCustomCommand" />

You can find sample code for defining the extension point in the files AttachDocumentCustomCom-
mand.java , AttachFile.xml and AttachFileAdapter.java that are provided in the demo folder under
the CentraSite installation folder.

CentraSite Control Pluggable Architecture50

Customizing Content Pages



Activating the IDE

The CentraSite distribution kit contains an IDE (integrated development environment) that you
can use to create and design a layout page. The IDE is a web application whose clients run inside
a web browser. The URL (assuming installation defaults) to start the IDE on a machine where
CentraSite is installed is:

http://localhost:53307/PluggableUI/HTMLBasedGUI/workplace/ide.html

The IDE is deactivated by default. In order to activate the IDE, set the attribute plugindevelopment
in the file cisconfig.xml to "true". This file is located in the CentraSite Control web application (in
the Application Server or Software AG Runtime location) in the folder cis/cisconfig.

The following example illustrates the required configuration setting:

<cisconfig plugindevelopment="true" ...>
...
</cisconfig>

Security Considerations

When activated, the IDE and included development tools do not require further authentication.
The following example illustrates the security-constraint and login-config elements to protect
the IDE and development tools with the HTML basic authentication method.

<security-constraint>
<web-resource-collection>

<web-resource-name>Plugin Development</web-resource-name>
<url-pattern>/HTMLBasedGUI/workplace/*</url-pattern>
<url-pattern>/servlet/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>developer</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>Plugin Development</realm-name>

</login-config>

In order to protect passwords transmitted in clear text between a browser and development tools
running on the application server, it is recommended to protect the communication through the
use of SSL. For information about SSL, refer to the sectionConfiguring Secure Communication between
CentraSite Components in the document Basic Operations.

51CentraSite Control Pluggable Architecture

Customizing Content Pages



Step-by-Step Guide

A step-by-step guide of how to create customized plug-ins for the CentraSite Control content
pages is provided in Appendix A: Step-by-Step Guide.

CentraSite Control Pluggable Architecture52

Customizing Content Pages



IV Setting the Preferred Plug-in and Order of Plug-ins

53



54



4 Setting the Preferred Plug-in and Order of Plug-ins

You can adapt the URL used to invoke the pluggable user interface with a preferred plug-in by
appending a query parameter such as

PLUGIN=com.centrasite.control

So the modified URL would be:

http://localhost:53307/PluggableUI/servlet/StartCISPage?PAGEURL=/PluggableUI/Login.html&PLU-
GIN=com.centrasite.control&LOCALE=en

The value of the PLUGIN parameter must match the value of the id parameter of a <plugin> root
element in one of the plug-ins. This sets the preferred plug-in.

This implies that for all extensions for a specific extension point, the extensions belonging to the
referenced plug-in will be first in order (normally the order is determined by the order attribute
in the plug-in configuration file).

For any extension point, the order of the associated extensions is determined by the following
properties:

■ The processing order of the plug-ins is controlled by the value of the order attribute of <plugin>
in the plugin.xml file. Plug-ins with a smaller value of the order attribute are processed first.
The preferred plug-in is always processed first.

■ The order of extensions, as configured in plugin.xml, for the associated extension point.

Depending on the extension point, the order of the extensions has a specific impact, for example:

■ The login screen displayed when the user interface is started in the browser.
■ The initial perspective shown after login.

55



56



V Installing and Uninstalling Plug-ins

57



58



5 Installing and Uninstalling Plug-ins

■ Directory Structure ........................................................................................................................... 60
■ Installing a Plug-in ........................................................................................................................... 61
■ Uninstalling a Plug-in ....................................................................................................................... 61
■ The Plug-In Management Perspective ................................................................................................. 61

59



Directory Structure

The plug-in environment is contained in a directory structure under the installation directory
<RuntimeWebAppsDir> of the Software AG Runtime. The document Basic Operations describes the
location of this directory.

Under <RuntimeWebAppsDir>\PluggableUIwe have the following structure:

WEB-INF/
classes/

log4j.xml
lib/ //JARs

cis/

HTMLBasedGUI/

PluggableUI
plugin.xml
*.html

accesspath/
xml/ // layout definitions
images/

CentraSiteControl
plugin.xml
*.html
*_SWT.xml

accesspath/
xml/ // layout definitions
images/ // icons
lib/ // JARs
classes/ // class files

MyPlugIn
plugin.xml
*.html
*_SWT.xml

accesspath/
xml/ // layout definitions
images/ // icons
lib/ // JARs
classes/ // class files

The structure includes a sample user-written plug-inMyPlugIn for illustration purposes.

CentraSite Control Pluggable Architecture60

Installing and Uninstalling Plug-ins



Installing a Plug-in

A plug-in should be provided as a ZIP archive with the directory structure as given in the section
Directory Structure.

The following actions need to be performed when installing a plug-in manually:

■ Check for availability of other plug-ins being a prerequisite.
■ Copy files (except the plugin.xml configuration file) into the directory structure shown in the
section Directory Structure.

■ Compile layout definitions.

Note: Using the plug-in may require a restart of Software AG Runtime.

Uninstalling a Plug-in

The following actions need to be performed to uninstall a plug-in manually:

■ Before you uninstall a plug-in, ensure that it is not required by another plug-in.
■ Remove the plug-in configuration file plugin.xml.
■ Remove the plug-in directory, for exampleMyPlugIn as shown in the sectionDirectory Structure.

Note: It might not be possible to remove files if they are in use, for example, while the ap-
plication server is running.

The Plug-In Management Perspective

A separate Plug-In Management perspective offers the following functions:

Invoke via...DescriptionFunction

Button in toolbarImport a ZIP-file containing all required
files for a plug-in

Install Plug-In

Select a node in the Plug-Ins topicSimilar to the About dialogTable of Plug-ins

Select the plug-in in the table and
select the command from the context
menu

Check which other plug-ins rely on the
plug-in to be uninstalled. If there are no
dependencies, the plug-in is uninstalled.

Uninstall Plug-In

61CentraSite Control Pluggable Architecture

Installing and Uninstalling Plug-ins



Invoke via...DescriptionFunction

Select plug-in in table and select
command from context menu

Requiredwhen theunderlyingApplication
Designer runtime is upgraded

Compile Layouts

Button in toolbarStart the Application
Designer layout editor

The Plug-In Management perspective is not visible by default. It is only visible if you set the pre-
ferred plug-in using PLUGIN=com.softwareag.cis.plugin in theURL that is used to start theGUI.

Example:

http://localhost:53307/PluggableUI/servlet/StartCISPage?PAGEURL=/PluggableUI/Login.html&PLU-
GIN=com.softwareag.cis.plugin&LOCALE=en

CentraSite Control Pluggable Architecture62

Installing and Uninstalling Plug-ins



VI Special and Advanced Topics

63



64



6 Special and Advanced Topics

■ Icons ............................................................................................................................................ 66
■ Class Loading ................................................................................................................................. 66
■ Multithreading and Synchronization ..................................................................................................... 68
■ Nested Layouts ............................................................................................................................... 68

65



Icons

There are various optional references to icons which may be contributed by a plug-in. Most icons
should be transparent GIFs unless stated otherwise in the table below. Here is a set of potential
locations for contributing icons:

RemarksRecommended Size in PixelsContext

Transparent GIF16x16Plug-in icon appearing in the common About
dialog

May be also JPG or PNG fileNoneBitmap for plug-in specific 2nd-level About
dialog

Transparent GIF16x16Perspective icon in Select Perspective dialog

May be also JPG or PNG fileHeight: 35. Width: depends
on space required for toolbar
and view listbox.

Header icon contributed by perspective

Transparent GIF16x16Icon representing an item in tree or table

Transparent GIF16x16Icon for command for an item (context menu
or toolbar in detail view)

Class Loading

The Pluggable UI relies heavily on dedicated class loaders. Whereas the code for a normal web
application is only loaded via the basicWebappClassLoader provided by Software AG Runtime,
this class loader is only used for loading the classes resembling the PluggableUI base with the
underlying Application Designer. The respective classes are loaded from the following directories
below <RuntimeWebAppsDir>\PluggableUI:

WEB-INF/classes
WEB-INF/lib/*.jar

In addition, locations holding common or shared class or jar files are searched by theWebappClass-
Loaderwhen attempting to resolve references to required classes.

Any code contributed by a plug-in is loaded by a corresponding instance of the PlugInWebappClass-
Loader from the following directories below <RuntimeWebAppsDir>\PluggableUI

CentraSite Control Pluggable Architecture66

Special and Advanced Topics



plugInDir/classes
plugInDir/lib/*.jar

If resolution fails, the PlugInWebappClassLoader for the current plug-in will delegate class loading
to the PlugInWebappClassLoaders for other plug-ins in the order as listed as <requiredPlugin> in
the plugin.xml of the current plug-in recursively. Finally, if resolution via required plug-ins fails,
the PlugInWebappClassLoaderwill delegate class loading to theWebappClassLoader.

The following picture illustrates the scenario of the LifeCycleManagement plug-in (representing
any other 3rd party plug-in) that depends on the CentraSiteControl plug-in and the PluggableUI
base infrastructure.

TheAdapterPlugInClassLoader is used byApplicationDesignerwhen resolving references to adapter
classes found in layout definitions. The AdapterPlugInClassLoaderwill never load classes itself. In-
stead, it will ask all known PlugInWebappClassLoaders in an unspecified order whether they can
load a required class.

Caution: You must avoid having the same adapter classes in more than one plug-in! Other-
wise, various classloading related issues (ClassCastException, ClassNotFoundException,
…) will result. Under normal conditions, fulfilling this restriction should not cause any
problems.

In general, you should avoid having multiple locations contributing the same classes within the
graph of locations spanned by the required plug-ins.

67CentraSite Control Pluggable Architecture

Special and Advanced Topics



Multithreading and Synchronization

Normally, when executing the HTTP requests on behalf of a single Application Designer session,
there is no parallel execution in multiple threads (unless the code contributed by a plug-in starts
a thread on its own). Hence, access to objects or properties having a scope restricted to the session
context does not require any synchronization.

However, when using global / static variables, this is no longer true: multiple active user sessions
may be processed in parallel.

Warning

Avoid usage of global variables. They may lead to the following issues:

■ Synchronization is required otherwise non-reproducible race conditions will result.
■ Memory leakages: if global collections that grow for each session are used.
■ Global references to JAXR-based RegistryObjects: a RegistryObject contains a reference to the
JAXR-based Connection (including the underlying credentials) which had been used to load it.
When resolving a secondary reference either of the following may happen:
■ If the connection is still open: credentials of another user will be used, thus causing a security
hole.

■ If the connection is no longer open: a corresponding exception will be thrown ("trying to use
a closed connection").

Nested Layouts

All adapter classes of a plug-in should not be just subclasses of com.softwareag.cis.server.Adapter.
Instead, they should be derived from one of the following classes:

■ com.softwareag.cis.plugin.adapter.util.CommonAdapter - for a plug-in that does not depend on
CentraSite Control

■ com.centrasite.control.adapters.BaseAdapter - for a plug-in that depends on CentraSite Control

BaseAdapter is a subclass of CommonAdapter and thus inherits certain properties. Among those is
the implicit registration of all adapters as "known adapters" in the current session context. However,
under certain circumstances it may happen that adapters for nested pages displayed using a
SUBCISPAGE or ROWTABSUBPAGES control are not automatically deregistered when closing
e.g. an activity displayed in the CONTENT frame on the right hand side of the workplace. This
may lead to subsequent NullPointerExceptions.

CentraSite Control Pluggable Architecture68

Special and Advanced Topics



Normally, de-registration is accomplishedwithin the destroy()method in CommonAdapter. Hence,
be careful when overriding this method in a subclass to call super.destroy(). In addition, you
should override the endProcess()method in the adapter for the container layout, which should
perform at least the following actions:

■ call super.endProcess()
■ call CommonAdapter.removeKnownAdapter (subPageAdapter) for each subPageAdapter

69CentraSite Control Pluggable Architecture

Special and Advanced Topics



70



VII Javadoc Documentation of the APIs

71



72



7 Javadoc Documentation of the APIs

The HTML-based Javadoc documentation of the APIs provides details of the classes andmethods
described here. Please refer to the HTML Javadoc documentation for reference material.

You should only use the packages and classes that are explicitly mentioned in the documentation.

There are three sets of Javadoc documentation:

■ PluggableUI (base architecture): com.softwareag.cis.plugin
■ CentraSite Control User Interface: com.centrasite.control...
■ CentraSite Control Backend: com.centrasite.control...

73



74



VIII Appendix A: Step-by-Step Guide

This section gives examples of how you can use the pluggable architecture to define and install
your own plug-ins.

DescriptionSection

Describes how to set up the Eclipse development
environment in which you will define the sample plug-ins.

Appendix A1: Eclipse Prerequisites

Describes how to set up the DemoPlugIn01 sample project.Appendix A2: Setting up the plug-in project

Describes how to make the sample project known to
CentraSite Control.

Appendix A3: Plugging into CentraSite
Control

Describes how to design your own layout pages (detail
views)

Appendix A4: Bring your own layouts to the
screen

75



76



8 Appendix A1: Eclipse Prerequisites

The descriptions in this chapter are based on a sample plug-in named DemoPlugIn01. We will
showhow to use Eclipse and standardCentraSite features in order to add the plug-in to CentraSite.

Before you start, ensure that you have a recent Eclipse version installed on your machine. Eclipse
is available as a download from http://www.eclipse.org/.

In Eclipse, selectWindow > Preferences > Java > Compiler in order to configure usage of / com-
pliance with the Java version currently supported by CentraSite.

The system requirements can be checked at http://documentation.softwareag.com/.

77

http://www.eclipse.org/
http://documentation.softwareag.com/


Example:

ClickApply to activate the settings. Eclipse will ask you to confirm the change, indicating that an
internal rebuild is required. Reply Yes. The rebuild takes only a few seconds.

CentraSite Control Pluggable Architecture78

Appendix A1: Eclipse Prerequisites



9 Appendix A2: Setting up the Plug-in project

Follow the steps below to set up the Java project for DemoPlugIn01:

1. Create a new Java project in Eclipse using File > New > Project > Java Project.

2. Specify "DemoPlugIn01" as the project name and check radio button labeled Create project
from existing source.

3. Click the Browse button that is located right to the input field labeledDirectory. The Browse
For Folder dialog is displayed.

4. Within the Browse For Folder dialog, navigate to and click on the PluggableUIweb application
folder of the Software AG Runtime application. In the remainder of this document, this folder
is indicated by <PluggableUIFolder>.

5. ClickMakeNewFolder. This causes an entryNewFolder to be created underPluggableUI. Select
the entryNew Folder, then from its contextmenu chooseRename, then enter the nameDemoPlu-
gIn01.

79



6. ClickOK.

7. In theNew Java Project dialog that becomes visible again, click Finish.

A new Java project calledDemoPlugIn01 has been created due to the previous actions. This project
is now visible in the Package Explorer view in Eclipse.

This project needs to be adapted.

1. Create the following four subfolders of DemoPlugIn01:
■ accesspath
■ classes
■ images
■ xml

To create each of these subfolders, chooseNew> Folder from the contextmenu ofDemoPlugIn01
in the package explorer, then type in the name in theNew Folder dialog.

2. Create a source folder called src. You can create the source folder by choosingNew > Source
Folder from the context menu of DemoPlugIn01.

3. In the context menu of DemoPlugIn01, choose Properties.

CentraSite Control Pluggable Architecture80

Appendix A2: Setting up the Plug-in project



4. Select Java Build Path from the tree on the left.

5. Select the Source tab and enter the value "DemoPlugIn01/classes" in the fieldDefault output
folder.

6. Switch to the Libraries tab.

An entry for the JRE library should be visible. If you do not see this entry, click Add Library
and select the JRE system library from the displayed list, then click Finish.

7. Click Add External JARs

In the resulting JARSelectiondialog, navigate to <PluggableUIFolder>/WEB-INF/lib and open
this folder.

8. Select all files, using for example the key combination Control-A, and clickOpen.

81CentraSite Control Pluggable Architecture

Appendix A2: Setting up the Plug-in project



9. Click Add External JARs again.

10. In the JAR Selection dialog, navigate to <PluggableUIFolder>/CentraSiteControl/lib.

11. Again, select all files and clickOpen.

CentraSite Control Pluggable Architecture82

Appendix A2: Setting up the Plug-in project



12. Click theOK button of the Properties for DemoPlugIn01 dialog.

Your project should now look like this:

Perhaps you have noticed that the classes subfolder of the project DemoPlugIn01 has disappeared
from the display. This is normal because the Java Development Tools (JDT) of Eclipse suppress
output folders from displaying by default (but they still exist on your hard disk).

83CentraSite Control Pluggable Architecture

Appendix A2: Setting up the Plug-in project



Furthermore, the old output folder bin that has been created by the JDT when creating the Java
project is not of any use for us, so you can delete it.

Later onwewill need some icons for our plug-in. For now, let's just copy and rename some already
existing icons from the CentraSite Control plug-in and use them instead:

1. Using the Windows Explorer, navigate to <PluggableUIFolder>/CentraSiteControl/images.

2. Copy the filesmyFavorites.gif andmyFavorites24x24.gif to the images subfolder of our Java project
DemoPlugIn01.

3. In DemoPlugIn01/images, rename the file myFavorites.gif to star-16x16.gif and rename myFavor-
ites24x24.gif to star-24x24.gif. Use the command File > Rename in the Eclipse menu to do this.

4. In Eclipse, refresh the display of the package explorer. The names of the two images should
now be visible.

CentraSite Control Pluggable Architecture84

Appendix A2: Setting up the Plug-in project



10 Appendix A3: Plugging into CentraSite Control

We have now created a Java project inside the PluggableUI web application. However, there is
one missing piece that tells CentraSite Control that this folder contains a plug-in: the plug-in
configuration file. Amongst other things, the plug-in configuration file contains the information
about where a plug-in plugs into in CentraSite Control.

The idea of using plug-ins to extend an application's functionality is quite simple and meanwhile
well established by the Eclipse platform. The CentraSite Control software provides so-called ex-
tension points. These are positions in the program logic of the CentraSite Control programwhere
functionality can be added by a plug-in. Every time the program flow comes to such an extension
point, a search for plug-ins that extend CentraSite Control at this point takes place and the code
provided by the plug-ins is invoked.

Let's convert our arbitrary Java project to a CentraSite Control plug-in folder by providing a plug-
in configuration file. To do so, follow the steps below:

1. In the context menu of DemoPlugIn01 in the package explorer, chooseNew > File.

2. Type plugin.xml as the file name and click Finish.

3. Enter the following XML code:

<plugin id="demo.plugin01" order="101">

<requiredPlugin id="com.softwareag.cis.plugin" />

<!-- PlugInInfo -->
<extension point="com.softwareag.cis.plugin.plugInInfo"

id="DemoPlugIn01Info"
class="demo.plugin01.ext.PlugInInfo">

</extension>

</plugin>

85



4. Save the file using <Ctrl>+S.

First of all a plug-inmust have an identifier (here "demo.plugin01") which has to be unique among
all plug-ins. We recommend you to use naming conventions similar to Java package names.

The order number of a plug-in (here "101") gives CentraSite Control a priority for the sequence in
which the plug-ins have to be loaded at startup. The higher the number, the later a plug-in is
loaded.

We need to declare our plug-in as being dependent on the plug-in com.softwareag.cis.plugin because
we use an extension point provided by this plug-in. This dependency is indicated through the
requiredPlugin XML element.

For a list of all supported extension points, see the section Extension Points.

The extensionXML element in our fileDemoPlugIn01/plugin.xmldenotes that our plug-in extends
the user interface at a point where information about a plug-in can be contributed. The string that
looks like a Java package name is the name of the extension point (com.softwareag.cis.plugin.plugIn-
Info).

The extension identifier (here "DemoPlugIn01Info")must be unique among all extension identifiers
of a plug-in.

The class attribute specifies the fully qualified name of the class that implements the extension
(here demo.plugin01.ext.PlugInInfo). The top level package name for all of our Java code will be
demo.plugin01. We choose ext as the subpackage name for the implementing class to denote that
code that extends CentraSite Control resides here.

Now we have to implement the extension, i.e. we have to provide a Java class called demo.plu-
gin01.ext.PlugInInfowhich implements a specific interface required by the extension point.

1. In the context menu of DemoPlugIn01/src in the package explorer, chooseNew > Class.

2. Specify demo.plugin01.ext for the package name, PlugInInfo for the class name and com.software-
ag.cis.plugin.extpt.util.AbstractPlugInInfo for the superclass (you may uses the Browse button to
save some typing).

CentraSite Control Pluggable Architecture86

Appendix A3: Plugging into CentraSite Control



3. Make sure that the check box labeled with Inherited abstract methods is checked and click
Finish.

Eclipse now opens the file PlugInInfo.java in the Java editor.

Modify PlugInInfo.java in the Java editor as follows:

package demo.plugin01.ext;

import com.softwareag.cis.plugin.extpt.util.AbstractPlugInInfo;

public class PlugInInfo extends AbstractPlugInInfo {

public String getImageURL() {
return "../DemoPlugIn01/images/star-16x16.gif";

}

public String getLayout() {

87CentraSite Control Pluggable Architecture

Appendix A3: Plugging into CentraSite Control



return null;
}

public String getTitle() {
return "DemoPlugIn01";

}

public String getVendor() {
return "Software AG";

}

public String getVersion() {
return "0.0.0.1";

}
}

Save the modified file and make sure that no compile errors occur.

When you save the file, the Java file is automatically compiled into the folder classes of the project
DemoPlugIn01. (Remember: the classes subfolder of our project is suppressed from displaying).
The resulting class file is now accessible for the pluggable user interface of CentraSite Control.

Finally, let's check if CentraSite Control is aware of our minimalist plug-in:

1. Restart the Windows service "Software AG Runtime".

2. Start the CentraSite Control application from the Windows Start menu, using Start > All Pro-
grams > Software AG > CentraSite > CentraSite Control, and log in using your usual ID and
password.

3. Click the About button at the top of the page. In the subsequent dialog, click Plug-Ins.

If everything works fine, you should see a dialog box whose contents look quite similar to the
following screenshot. In particular, the line that represents our sample plug-in DemoPlugIn01
should be visible.

CentraSite Control Pluggable Architecture88

Appendix A3: Plugging into CentraSite Control



11 Appendix A4: Bring Your Own Layouts to the Screen

You can extend CentraSite Control by embedding your own layout pages. In this step you will
learn how to create a layout page with by using the Application Designer IDE. Furthermore you
will learn a very simple way to bring your own layout onto the screen.

Before we start, let’s preview what the result of this step will be. We will create a simple layout
page that presents some information to the user. This page can be requested by the user by clicking
on an icon in the tool bar of CentraSite Control. Feel free to extend the layout page and enhance
it with more information after you have worked through this step. In subsequent steps we will
use this page many times when we extend CentraSite Control at more andmore extension points.
So please make sure that this page and the code behind it is running properly.

Here is a screenshot of the final result of this step:

In order to create and design a layout page we need to have the right tool. The CentraSite distri-
bution kit contains an IDE (integrated development environment) that you can use for this purpose.
There is currently no shortcut created by the installation to start this IDE. Therefore we have to
create one manually. The IDE is a web application whose clients run inside a web browser. The

89



URL (assuming installation defaults) to start the IDE on a machine where CentraSite is installed
is http://localhost:53307/PluggableUI/HTMLBasedGUI/workplace/ide.html.

The IDE delivered in the distribution kit needs to be activated before you can use it. Refer to the
section Activating the IDE for information on how to do this.

To access the documentation for the IDE, open the Software AG documentation website at ht-
tp://documentation.softwareag.com/, clickwebMethods to display the list of documentation
components for the webMethods suite, then click Application Designer.

We start with the creation and design of a layout page. So please start the IDE now (leave your
Eclipse instance running).

After the IDE has started, perform the following steps:

1. In the button list on the left, click the button labeledwith the name of our plug-inDemoPlugIn01.

2. ClickNew Layout on the left side directly below the DemoPlugIn01 button.

3. In the resulting dialog window enter "SimpleInfoPage.xml" in the input field labeledName.

4. Click the leftmost image below the input field (see screenshot) to create an HTML page.

CentraSite Control Pluggable Architecture90

Appendix A4: Bring Your Own Layouts to the Screen

http://documentation.softwareag.com/
http://documentation.softwareag.com/


The IDE presents a standard HTML page in the preview area of the layout painter (in the center
of the right side). To get an idea about how our newly created layout looks initially, we should
request a preview of it from the layout painter. To do so, select the Preview icon from the toolbar
of the layout painter (located beside the diskette symbol). The current look of layout SimpleIn-
foPage.xml is presented in the preview area.

91CentraSite Control Pluggable Architecture

Appendix A4: Bring Your Own Layouts to the Screen



Starting from this layout, we will follow the steps below to create a layout that looks like the one
that is shown at the beginning of this step:

1. Click on the title bar of our layout (the bar above the Save button where the word Template is
visible).

2. In the Properties view for the title bar, located at the lower left corner of the layout painter,
change the name property from "Template" to "Simple Info Page".

3. Click the Save button of our layout (the content of the Properties view changes and the current
properties for the selected button become visible). Change the name property from "Save" to
"Refresh" and set the method property to "onRefresh" by just typing it in.

4. Save the layout by clicking on the diskette symbol in the tool bar of the layout painter. The
preview of our layout changes and now reflects the properties we changed.

5. Click the Controls button of the button list in the Controls view (located right to the preview
area).

CentraSite Control Pluggable Architecture92

Appendix A4: Bring Your Own Layouts to the Screen



6. Add three Independent Row controls to the body of our page:

a. Click Independent Row and hold the left mouse button down.

b. Drag the Independent Row icon to the page body of the layout (the white area below the
button that is now labeled Refresh) and release the left mouse button.

c. Click Add as Subnode from the popup menu that appears.

d. Perform the same action to add a second and a third Independent Row control to the page
body and click Add as last Subnode from the popup menu that appears after releasing the
mouse button.

7. Please notice that the pagebody node of the Layout view (located above the Properties view)
now contains three itr subnodes, representing the three Independent Row controls.

93CentraSite Control Pluggable Architecture

Appendix A4: Bring Your Own Layouts to the Screen



8. From theControls view, drag anddrop aLabel control onto the first itr subnode of the pagebody
node in the Layout view.

9. In the Properties view (which now presents the properties for the Label control we just added
to the layout) set the name property to "Some application context information:".

10. Set the asheadline property of the label to "true". To access this property, you have to select
the Appearance tab at the bottom of the Property view. You can select the value "true" using
the combo box to the right of the property name.

11. Drag and drop a Horizontal Distance control onto the second itr subnode of the pagebody
node in the Layout view.

12. In the Properties view, set the width property for theHorizontal Distance control to "10" by
just typing it in.

13. Drag and drop a Label control onto the second itr subnode of the pagebody node in the Layout
view. From the popup menu that appears after you release the mouse button, clickAdd as last
Subnode.

14. Set the name property of the newly added label to "Title:" and the width property to "200".

15. Add a Dynamic Text control as the last subnode to the second itr subnode of pagebody. Set
the valueprop property to "title" and the width property to "500".

16. Execute the last five steps again for the third itr subnode of the pagebody node in the Layout
view. Set the name property of the Label control to "Web application directory:" and the
valueprop property of theDynamic Text control to "webAppDir". All width properties remain
the same as for the children of the second itr subnode of pagebody.

17. Surround the first itr subnode with two vertical distances by dragging and dropping two
Vertical Distance controls onto the first itr subnode of pagebody (one as a preceding node and
one as a subsequent node of the itr). Set the height property for eachVertical Distance control
to "10".

18. Save the layout by clicking again on the diskette symbol in the tool bar of the layout painter.

CentraSite Control Pluggable Architecture94

Appendix A4: Bring Your Own Layouts to the Screen



Nowour layout looks like the one that is shown at the beginning of this step. Butwe are not finished
yet. Each layout needs to have some code behind it (the so-called page adapter) which we did not
provide yet. Among other things within a page adapter we can specify how to react on events that
occur due to user interactions (the push of a button for example) or fill the controlswith application
specific values etc.

The code behind our layout at this stage is provided by a dummy adapter that comes with the
IDE. But we need to provide our own, of course, so that the adapter knows what to do when a
user presses theRefresh button, for example. So our next task is to create an adapter for our layout.
Fortunately the IDE is equipped with tools that make life easy.

Follow the steps below to create an adapter for SimpleInfoPage:

1. If not already active, switch to theHome tab of the layout painter.

2. Select Preferences and type in the absolute path for the Java source directory of our CentraSite
Control plug-in DemoPlugIn01.

Tip: Instead of typing in the complete path, you can copy/paste the content of the field
labeledDirectory into the input field for the source directory. Then append "/src" to the
copied content (compare with following screenshot).

95CentraSite Control Pluggable Architecture

Appendix A4: Bring Your Own Layouts to the Screen



3. Click the Save and Apply button at the top of the dialog.

4. In the Layout view select the topmost tree node called page (you probably need to scroll up).

5. Change the model property of page from "DummyAdapter" to "demo.plugin01.adapters.Sim-
pleInfoPageAdapter".

6. Save the layout (using the diskette symbol). The content of the Preview view changes and in-
dicates an error now. This is normal and can be ignored at the moment.

7. Switch to the Tools tab of the IDE and select Code Assistant. The look of the IDE changes and
the generated code for our page adapter is visible on the right side.

CentraSite Control Pluggable Architecture96

Appendix A4: Bring Your Own Layouts to the Screen



We could apply the necessary changes for the adapter class using the IDE. The more convenient
way is doing this inside of our already existing eclipse project to which we will switch back soon.
One more step inside the IDE is missing: the code is not yet stored in the file system. Hence, press
the diskette icon again! Now the adapter source code is stored in the Java source directory of our
CentraSite Control plug-in DemoPlugIn01.

You can close the IDE now.

Now return to your Eclipse environment. We need to refresh our plug-in project. To do so, select
the folderDemoPlugIn01 and chooseRefresh from the contextmenu.After doing this and expanding
all folders that relate to our plug-in, your eclipse project should look like the one below. Please
note the contents of subfolders accesspath and xmlwhich were formerly empty. The contents have
been created by our IDE activities. Most importantly, you should notice that there is now a new
package called demo.plugin01.adapters containing the class SimpleInfoPageAdapter.

Note that adapter classes used for plug-ins to CentraSite Control should be derived from the class
BaseAdapter rather than from the class Adapter as provided by Application Designer.

97CentraSite Control Pluggable Architecture

Appendix A4: Bring Your Own Layouts to the Screen



Let’s apply application code to the adapter SimpleInfoPageAdapter now. To do so, open file SimpleIn-
foPageAdapter.java by double-clicking its node in the tree, and enter the following code inside the
body of method onRefresh:

ApplicationContext applicationContext = new ApplicationContext(this);
// Application context
String title = applicationContext.getTitle();
File webAppDir = applicationContext.getWebAppDir();
this.setTitle(title != null ? title : "n/a");
this.setWebAppDir(webAppDir != null ? webAppDir.getAbsolutePath() : "n/a");

Some types will be marked by the Java editor as unknown when you enter the code. So please
press <Ctrl>+<Shift>+O to instruct the Java editor to add the necessary import statements automat-
ically (for the missing class called File please choose java.io.File from the resulting dialog).

Now save the file. There should be no compilation errors.

CentraSite Control Pluggable Architecture98

Appendix A4: Bring Your Own Layouts to the Screen



Now the core of this step: we will bring our user-defined layout inside CentraSite Control to the
screen. The questions here are when and how we do this. The first (when) is easy to answer: on
user request. For the second (how) there are a lot of possibilities. Using an extension point defined
by CentraSite Control suggests itself. But which one do we choose?

In this tutorial stepwewill extendCentraSite Control at another point in order to add a perspective.
Perspectives are listed on the top of the workbench. Once again we have to inform the pluggable
infrastructure that we are extending CentraSite Control at a new point. In order to do so, add the
following XML element to the plug-in description file plugin.xml in your Eclipse environment and
save it afterwards.

Add the following requiredPluginXML element after the existing requiredPluginXML element:

<requiredPlugin id="com.centrasite.control" />

Also add the following XML element to the already existing XML code:

<!-- Perspective -->
<extension point="com.softwareag.cis.plugin.perspective"

id="DemoPlugIn01Perspective"
class="demo.plugin01.ext.PlugInPerspective" >

</extension>

Save the file plugin.xml.

The implementation of our new perspective requires a new class which implements the necessary
interface:

99CentraSite Control Pluggable Architecture

Appendix A4: Bring Your Own Layouts to the Screen



1. In the context of DemoPlugIn01/src, create a new Java class called PlugInPerspective in
package demo.plugin01.ext. Use class
com.softwareag.cis.plugin.extpt.util.AbstractPerspective as the superclass.

2. Let method getTitle() return the string "DemoPlugIn01".

3. Let the getLogoImageURL()method return the path to our 24x24 icon (../DemoPlugIn01/images/star-
24x24.gif).

4. Insert the methods

public boolean hasTopicTree()
{

return false;
}

and

public boolean supportsViews()
{

return false;
}

The Java source should look exactly like this then:

package demo.plugin01.ext;

import java.util.List;

import com.softwareag.cis.plugin.extpt.util.AbstractPerspective;
import com.softwareag.cis.plugin.extpt.util.WorkplaceContext;
import com.softwareag.cis.server.util.ICONLISTInfo;

public class PlugInPerspective extends AbstractPerspective
{

public String getTitle()
{

return "DemoPlugIn01";
}

public String getImageURL()
{

return null;
}

public boolean hasTopicTree()
{

return false;
}

CentraSite Control Pluggable Architecture100

Appendix A4: Bring Your Own Layouts to the Screen



public boolean supportsViews()
{

return false;
}

public String getLogoImageURL()
{

return "../DemoPlugIn01/images/star-24x24.gif";
}

public ICONLISTInfo getToolbar()
{

return null;
}

public String getView()
{

return null;
}

public String getViewLabel()
{

return null;
}

public List getViewValues()
{

return null;
}

public String getWorkplaceDefaultLayout()
{

return null;
}

public void setView(String arg0)
{
}

public void setWorkplaceContext(WorkplaceContext arg0)
{
}

}

5. Save and close the Java source file.

We will now extend CentraSite Control with a new topic. In order to do so, add the following
XML element to the plug-in description file plugin.xml in your Eclipse environment and save it
afterwards.

101CentraSite Control Pluggable Architecture

Appendix A4: Bring Your Own Layouts to the Screen



<!-- Topic -->
<extension point="com.softwareag.cis.plugin.topic"

id="DemoPlugIn01Topic"
perspective="demo.plugin01.DemoPlugIn01Perspective"
class="demo.plugin01.ext.PlugInTopic" >

</extension>

The implementation of our new topic requires two new classes: the topic class itself which imple-
ments the necessary interface for the extension point and an adapter class for the topic. Let’s start
with the implementation of the adapter class:

1. In the context of DemoPlugIn01/src, create a new Java class called PlugInTopicAdapter in
package demo.plugin01.ext.adapters. Use class com.centrasite.control.adapters.TopicAdapter
as the superclass. Do not inherit abstract classes here.

2. Add a public default constructor to the class. The Java source should look exactly like this then:

package demo.plugin01.ext.adapters;

import com.centrasite.control.adapters.TopicAdapter;

public class PlugInTopicAdapter extends TopicAdapter
{

public PlugInTopicAdapter()
{
}

}

3. Save and close the Java source file.

And now the extending class:

1. In the context of DemoPlugIn01/src, create a Java class called PlugInTopic, in the package
demo.plugin01.ext, using the superclass com.centrasite.control.ext.util.BaseTopic. Check
the box labeled Inherited abstract methods.

2. Add a public default constructor which invokes the super(int) constructor to the source:

public PlugInTopic ()
{

super(0);
}

3. Let the method getTopicAdapterClass() return PlugInTopicAdapter.class.

4. Let method getTitle() return the string "DemoPlugIn01".

5. Add the following code to method initTree:

CentraSite Control Pluggable Architecture102

Appendix A4: Bring Your Own Layouts to the Screen



String title = "Simple Info Page";
String pageUrl = "../DemoPlugIn01/SimpleInfoPage.html";
String adapterClass = SimpleInfoPageAdapter.class.getName();
ActionContext actionContext = getTopicAdapter().getActionContext();
actionContext.showPage(pageUrl, title, adapterClass);

After this change of the source code you should press <Ctrl>+<Shift>+O to resolve compilation
problems.

6. Save the Java source file and make sure that no compilation errors occur. After applying the
changes described above, the Java source code for class PlugInTopic should look like this:

package demo.plugin01.ext;

import com.centrasite.control.ActionContext;
import com.centrasite.control.Item;
import com.centrasite.control.ext.util.BaseTopic;

import demo.plugin01.adapters.SimpleInfoPageAdapter;
import demo.plugin01.ext.adapters.PlugInTopicAdapter;

public class PlugInTopic extends BaseTopic
{

public PlugInTopic()
{

super(0);
}

protected Class getTopicAdapterClass()
{

return PlugInTopicAdapter.class;
}

protected void initTree() throws Exception
{

String title = "Simple Info Page";
String pageUrl = "../DemoPlugIn01/SimpleInfoPage.html";
String adapterClass = SimpleInfoPageAdapter.class.getName();
ActionContext actionContext = getTopicAdapter().getActionContext();
actionContext.showPage(pageUrl, title, adapterClass);

}

public void refresh(Item arg0, int arg1)
{
}

public String getTitle()
{

return "DemoPlugIn01";
}

103CentraSite Control Pluggable Architecture

Appendix A4: Bring Your Own Layouts to the Screen



public String getImageURL()
{

return null;
}

}

To see how our new extension affects CentraSite Control, restart the Software AGRuntime service
and openCentraSiteControl afterwards. The navigation pane shows the newperspectiveDemoPlu-
gIn01which has 1 topic entry calledDemoPlugIn01. Note also that the star-24x24.gif graphic is
visible in the header bar.

When you clickRefresh in the Simple Info Page display, the values forTitle andWeb application
directory are updated:

CentraSite Control Pluggable Architecture104

Appendix A4: Bring Your Own Layouts to the Screen


	CentraSite Control Pluggable Architecture
	Table of Contents
	Preface
	I Introduction
	1 Introduction

	II Customizing the Welcome Page
	2 Customizing the Welcome Page
	Introduction
	Technical Implementation of the Welcome Page
	Overview of Java Methods used
	Screen Component: Welcome Page
	Screen Component: Widget
	Screen Component: Item
	Methods Not Related To Screen Components

	Java interface hierarchy

	Installing the Customized Welcome page
	Stop Software AG Runtime
	Updating the plugin.xml configuration file
	Deploying the new Java classes to the PluggableUI environment
	Start Software AG Runtime

	Example of a customized Welcome Page
	Location of demo files
	Differences between standard Welcome Page and demo Welcome Page
	Implementation of Welcome Page layout
	Header area
	Separator between header part and widget part
	Widget CentraSite
	Widget Useful Links
	Widget User Preferences
	Default Settings for Widgets

	Implementing the Demo as an Eclipse Java Project
	Building the deployment files for Software AG Runtime
	The build.properties file
	Building the deployment files

	Deploying the demo to Software AG Runtime
	Displaying the demo Welcome page

	Special Programming Techniques


	III Customizing Content Pages
	3 Customizing Content Pages
	Extension Points
	I18N for Layouts
	Parameters for Plug-ins
	ConnectionHandler - Logon and Logoff / Exit
	Perspectives
	Topic
	Command for Item
	Bulk Command for Items
	Add Property
	Tab in Detail View
	Add Source of Notification
	Impact Analysis: NodeDecorator
	Append Root Node to Topic
	Replace Standard Detail View by another Editor
	Extend Search Dialog by Additional Conditions
	Download Documents
	Making the download menu entry visible/invisible for guest users
	Changing the text string displayed in the context menu
	Changing the format of the zipped archive

	Attach Documents

	Activating the IDE
	Step-by-Step Guide


	IV Setting the Preferred Plug-in and Order of Plug-ins
	4 Setting the Preferred Plug-in and Order of Plug-ins

	V Installing and Uninstalling Plug-ins
	5 Installing and Uninstalling Plug-ins
	Directory Structure
	Installing a Plug-in
	Uninstalling a Plug-in
	The Plug-In Management Perspective


	VI Special and Advanced Topics
	6 Special and Advanced Topics
	Icons
	Class Loading
	Multithreading and Synchronization
	Nested Layouts


	VII Javadoc Documentation of the APIs
	7 Javadoc Documentation of the APIs

	VIII Appendix A: Step-by-Step Guide
	8 Appendix A1: Eclipse Prerequisites
	9 Appendix A2: Setting up the Plug-in project
	10 Appendix A3: Plugging into CentraSite Control
	11 Appendix A4: Bring Your Own Layouts to the Screen


