5 software~

CentraSite

CentraSite APl for JAXR

Version 9.6

April 2014

This document applies to CentraSite Version 9.6.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: [INM-DG-JAXR-96-20140318

Table of Contents

PTOACE ..t v
1 INtrodUctionoooiiiiiiii 1
I Using the CentraSite API for JAXRcccciiiiiiiiiiiiiiiiiii e 3
2 Using the CentraSite AP for JAXRccccooiiiiiiiiiiie 5
3 Creating and Closing a JAXR-based Connectioncccceecviiiiiiniiiiiiniiiiiennnnnn 7
Creating a JAXR-based Connectioncccovvvviiiiiiiiiiiiiiiicccce, 8
Closing a JAXR-based CONNECIONcccuieiiiiiiiiiiiiiieiiieiie e 10

4 Defining @ SEIVICEcociiiiiiiiiiiiiiii i 13
5 A Service that Uses Another Servicecccoccvviiiiiiiiiiiii 15
6 A Service with Additional Informationcccccevviiiiiiniiiiiis 17
7 Pre-Defined Classification Schemes (Taxonomies)cccceeeuieeeirniieeeeninieeennnne. 19
8 IMpact ANALYSIS ...oovuiiiiiiiiiiiiiiie e 21
IT CentraSite API for JAXR Reference Informationcccccoviiieieeieeieciiiiieeere e, 23
9 CentraSite API for JAXR Reference Informationcccccoii 25
10 User-Defined ODbJectsccciviiiiiiiiiiiiiiiiiiiiiiicci s 27
11 Direct XQuery Access to the Stored Datac..ccooioiiiiiiiiin 29
12 Unique Keysoooiiiiiiiiiiiiiiiiii 31
13 Simultaneous Database Access and LocKingccovviiieiiiiiiiiiiiiciic, 33
14 The Callercoviiiiiiiiiiiii s 35
15 Semantics of Remove Operationsccovveiieiiiiiiiiniciiccece e 37
16 Delete Operationc..ocooiiiiiiiiiii 39
RegistryODbjectccoiviiiiiiiiiiiiiiiiii 40
ASSOCIATION ..t 41
AuditableEvent ..o 41
Classificationcccociiiiiiiiiiiiiii 41
ClassificationSchemeccccooiiiiiiiiiiiiii, 41
CONCEPL ..o 41
Externalldentifier ..o 42
ExternalLinkcccoooiiiiiiiiii 42
Organizationc.ooiiiiiiiiiiii 42
RegistryEntry ..o 42
RegistryPackagecccocueiuiiiiiiiiiiieiccccececc e 42
SEIVICE ..ot 43
ServiceBindingccccoiiiiiiiiiiiiiiii 43
SpecificationLinkcccoooiiiiiiiii 43
US T e 43

17 Unsupported Methodsoccooiiiiiiiii, 45
18 Unsupported FINdQUAlIfIETSc.coooviiiiiiiiiiiiiiiiiiiiiccccccce e 47
19 Using Wildcardsccooieiiiiiiiiiiiiiccc 49
20 Using NamMeSPACESccuieiiiiiiiiiiiiiiii ettt 51
21 The Method createSIotccoviiiiiiiiiiiiii 53
22 Caching Considerationscccevieiuiiiiiiiciiiiiceccec e 55
JAXR-based Caching Strategyccccevvviiiiiiiiiiiiiiiiiiceceecee 56

CentraSite API for JAXR

Caching in CentraSite User Interfacesccccocoeviniiiiiiiniiiii 56
Dynamically Loaded JAR Filesc.ccooiiiiiiiiiii 57
Cache LoCationcccocuiiiiiiiiiiiiiiccicc 57

iv CentraSite API for JAXR

Preface

This document explains how to use the CentraSite API for JAXR (Java Application Program
Interface for eXtensible Markup Language Repositories). Here you can find reference information
that describes the additions that we have made to the JAXR standard as published by the Java
Community Process (JCP), and also sections that demonstrate some common use cases for the
CentraSite API for JAXR and provide examples.

The reader of this document should be an experienced Java programmer, with knowledge of XML
and the concepts of enterprise repositories.

Introduction

Using the CentraSite API for JAXR

Creating and Closing a JAXR-based Connection

Defining a Service
® A Service that Uses Another Service

® A Service with Additional Information

Pre-Defined Classification Schemes (Taxonomies)

® Impact Analysis

CentraSite API for JAXR Reference Information Extensions
= User-Defined Objects
® CentraSite JAXR-based extensions (Javadoc)
® Direct XQuery Access to the Stored Data
Details and Restrictions
® Unique Keys
® Simultaneous Database Access and Locking
® The Caller
B Semantics of Remove Operations
® Delete Operation
® Unsupported Methods
® Unsupported FindQualifiers
® Using Wildcards
® Using Namespaces
® The Method createSlot
Caching

® Caching Considerations

Preface

Messages and Codes

® CentraSite API for JAXR Messages

vi

CentraSite API for JAXR

1 Introduction

The CentraSite API for JAXR is based on the Java API for XML Registries (JAXR) standard.
CentraSite supports JAXR capability level 1; in addition, it has some extensions that enable you
to exploit specific functions of CentraSite.

Online API reference documentation for the JAXR API is available in the Java EE documentation.
It is split into JAXR and JAXR infomodel.

A Java Web Services Tutorial with a section about JAXR is also available.

Software AG's extensions to the specification are described in the chapter CentraSite API for JAXR
Reference Information. They can be briefly summarized as follows:

" You can create user-defined object types.

CentraSite extends the JAXR object model by user-defined types, which may have triggers and
operations attached. Correspondingly, the CentraSite JAXR-based extensions interface extends
the JAXR query interface and allows you to search user-defined objects.

" XQuery access to the stored data.
CentraSite allows a client to access the stored data directly using XQuery via the XQJ-based

(XQuery API for Java) interface. For more information about XQJ, please refer to the specification
(JSR 225), which you can download from this URL: http://jcp.org/en/jsr/detail ?2id=225.

http://jcp.org/en/jsr/detail?id=225

I Using the CentraSite API for JAXR

= 2 Using the CentraSite APITOr JAXRoiiiiiiiei e 5
= 3 Creating and Closing @ JAXR-based CONNECHIONccouuiiiiiiiiiiieiiiii et 7
B 4 DEfiNING @ SEIVICE ...t 13
= 5 A Service that USeS ANOINEr SEIVICEcoiiiiiiiiii s 15
= 6 A Service with Additional INformationccooiiiiii 17
= 7 Pre-Defined Classification Schemes (TaXONOMIES)ccouuvriiiiiiiiiiiiiiiie e 19
L L o= T Y = TP 21

2 Using the CentraSite API for JAXR

This part of the CentraSite documentation describes common use cases. It also includes a number
of examples.

The following topics are discussed:

Creating and Closing a JAXR-based Connection
Defining a Service

A Service that Uses Another Service

A Service with Additional Information
Pre-Defined Classification Schemes (Taxonomies)

Impact Analysis

3 Creating and

Closing a JAXR-based Connection

= Creating a JAXR-based Connection
= Closing a JAXR-based Connection

Creating and Closing a JAXR-based Connection

The following topics are discussed in this chapter:

Creating a JAXR-based Connection

» To create a JAXR-based connection

Ensure that the CLASSPATH includes directories that contain the following files:

activation.jar
CentraSiteCommons.jar
CentraSiteDynLoader.jar
CentraSite] AXR-APLjar
CentraSiteLCM jar
CentraSiteLCM-api.jar
CentraSiteLCM-L10N jar
CentraSitePolicy-APLjar
CentraSiteResourceAccess-APl jar
CentraSiteUtils.jar
CentraSiteUtils-L10N.jar
CentraSiteVMS jar
CentraSiteVMS-L10N jar
commons-codec.jar
commons-httpclient.jar
commons-lang jar
commons-logging.jar
cstUtils jar
groovy-all* jar

inmUltil jar
inmUtilConf jar

jaxen.jar

jaxr-api.jar

jaxrpc.jar

jdom.jar

log4j.jar
PolicyLogBindings.jar
saaj.jar

saxpath.jar

script-api.jar
sin-common.jar
sin-misc.jar

sin-ssx.jar
sin-xmlserver.jar
stax-api.jar

CentraSite API for JAXR

Creating and Closing a JAXR-based Connection

TaminoAPI4] jar
TaminoAPI4]J-110n.jar
uddiKeyConverter.jar
wstx-asl.jar

wvcm.jar
xmlbeans.jar
Xqjapi.jar
Xgj-ino-api.jar

] Note: You can find these files in the CentraSite redist folder.

| Note: If you have activated an e-mail policy, the CLASSPATH must additionally include
the file mail.jar, which you can find in the rts/bin folder.

2 Start your client program with the following parameter:

-Djavax.xml.registry.ConnectionfFactoryClass=com.centrasite.jaxr.ConnectionfFactorylImpl

Or:

Set this property during program startup:

System.setProperty("javax.xml.registry.ConnectionFactoryClass",
<«

"com.centrasite.jaxr.ConnectionFactoryImpl");

3 Create a factory:

ConnectionFactory connfFactory = ConnectionFactory.newlInstance();

4 Supply the queryManagerURL to the connection:

Properties p = new Properties();
p.setProperty("javax.xml.registry.queryManagerURL",
P

"http://localhost:53307/CentraSite/CentraSite");

] Note: In CentraSite, the 11feCycleManagerURL is always the same as the

queryManagerURL, hence it need not be specified.

| Note: The port number, in the example above specified as 53307, may need to be changed

to suit your local configuration.

CentraSite API for JAXR 9

Creating and Closing a JAXR-based Connection

5 Set the BrowserBehaviour option:

p.setProperty("com.centrasite.jaxr.BrowserBehaviour", "yes");
connfFactory.setProperties(p);

Enabling BrowserBehaviour mode is the preferred way of creating a JAXR-based connection.
This is beneficial for several reasons. The BrowserBehaviour mode uses a less strict locking
pattern, and this can result in an increased number of parallel read and update operations.
For example in the CentraSite Control Ul while one user is looking at some asset, another
user can update the same asset in parallel. In the same scenario without BrowserBehaviour,
the update would fail as the necessary lock cannot not be granted.

Moreover, with BrowserBehaviour mode, the assets cached on the client side are refreshed
more often. After an asset is read, it will be refreshed in the cache if it is returned as the result
of a subsequent query with a newer timestamp.

6 Create the connection and set the user credentials. The setCredentials () method expects a
Set containing a java.net.PasswordAuthentication object.

Connection connection = connfFactory.createConnection();

HashSet credentials = new HashSet(1);
credentials.add(new PasswordAuthentication("userid", "password".toCharArray()));

connection.setCredentials(credentials);

7 With the connection given, the other environment objects can easily be constructed:

RegistryService regService = connection.getRegistryService();
BusinessLifeCycleManager 1cManager = regService.getBusinessLifeCycleManager();
BusinessQueryManager bgManager = regService.getBusinessQueryManager();

Closing a JAXR-based Connection

A JAXR-based connection uses some resources in the CentraSite XML Server. We therefore strongly
recommend making sure that a connection is closed in case of a JAXR-based client failure. Otherwise
the resources are released only after a non-activity timeout; this might hinder parallel users.

10 CentraSite API for JAXR

Creating and Closing a JAXR-based Connection

» To close a JAXR-based connection

n connection.close();

where connection is as specified in the example above.

CentraSite API for JAXR 11

12

4 Defining a Service

A service is provided by an organization. It should have a name and a description, and the details
are specified by service bindings which are further detailed by specification links. The following
code snippet, which assumes that the providing organization is known, shows how to create a
new service:

Organization providingOrganization = ...;

Service service = m_lcManager.createService("service name");
service.setProvidingOrganization(providingOrganization);
InternationalString description =

l1cManager.createlnternationalString("service description");
service.setDescription(description);

ServiceBinding serviceBinding = ...; // create service binding with specification «
links

service.addServiceBinding(serviceBinding);
ArraylList servicelist = new ArraylList();

servicelList.add(service);
l1cManager.saveServices(servicelList); // save service and related modified objects

13

14

5 A Service that Uses Another Service

If a service calls another service, this should be modeled with the pre-defined "Uses" association.

Service callingService = ...;
Service calledService = ...;

// find the "Uses" concept
ClassificationScheme associationType

=
bgManager.findClassificationSchemeByName(Collections.singleton(FindQualifier.EXACT_NAME_MATCH), <
"AssociationType");
Concept usesConcept

= bgManager.findConceptByPath("/" + associationType.getKey().getId() + "/Uses");

// create association of type "Uses"
Association usesAssociation = 1cManager.createAssociation(calledService, usesConcept);

callingService.addAssociation(usesAssociation); // callingService is now the
// source object of the association

ArraylList associationlList = new Arraylist();
associationlList.add(usesAssociation);
lcManager.saveAssociations(associationList, false); // save association and

// related modified objects

15

16

6 A Service with Additional Information

Each JAXR-based object instance may be supplied with arbitrary additional information. JAXR
uses the “slot” mechanism to provide this kind of extensibility.

] Note: JAXR allows arbitrary strings as slot names. The CentraSite implementation stores a

slot by creating an XML element whose tag name is the slot name. Consequently, a slot
name should be a valid XML QName. If a QName has a non-null URI, the lexical represent-
ation of the slotname is the URI enclosed in curly braces, followed by the local-name, for
example {myUri}mySlotname.

The following code snippet shows how to add a slot to a service object:

Service service = ...;

STot slot = TcManager.createSlot("{myUri}mySlotName", "slotValue", null);
service.addSlot(slot);

ArraylList servicelist = new Arraylist();
servicelList.add(service);
lcManager.saveServices(servicelList);

17

18

7 Pre-Defined Classification Schemes (Taxonomies)

The CentraSite registry comes with several pre-defined classification schemes:

= All the classification schemes that are defined in the JAXR standard.

" A classification scheme for the products using CentraSite. Thus, each registry object can be
classified with its product. This makes it easy to find all registry objects originating from a par-
ticular product.

The name of this classification scheme is "Products", and its member concepts are CentraSite
itself and products that use CentraSite.

" A classification scheme for database management systems: This can be used to classify data
sources by the type of the database management system they represent.

The name of this classification scheme is "Databases", and its member concepts are:

Adabas;
Tamino;
DB2;
Enabler;
MSSQL;
Oracle.

" A classification scheme for content types: This can be used to classify external links with their
content type/MIME type.
The name of this classification scheme is "ContentType". This is an external classification scheme.
= A classification scheme for the types of objects in the CentraSite repository: This can be used to
classify external links with their repository object type.

The name of this classification scheme is "RepositoryObjectType" , and its member concepts are:

BPEL;
BPELODbject;

19

Pre-Defined Classification Schemes (Taxonomies)

CustomComponent;
Documentation;
DTD;
E-mailEvent;
Emerger;
FileEvent;
HTML;

Icon;

JAR;

JMSEvent;
Layout;
Ontology;
Payload;
ProjectFolder;
ReportDefinition;
ScheduledTask;
Sequence;
SOAP;
Template;
Typelcon;
WSDD;

WSDL;

XML;

XSD;

XSLT;

Some external classification schemes used for UDDI mapping:

ClassificationGroup;

Object;

UseType;
uddi-org:wsdl:categorization:protocol;
uddi-org:wsdl:categorization:transport;
uddi-org:wsdl:portTypeReference;
uddi-org:wsdl:types;
uddi-org:xml:localName;
uddi-org:xml:namespace.

20

CentraSite API for JAXR

8 Impact Analysis

Impact analysis means finding dependencies between objects: which object depends on which
other object, or vice-versa: if one object is modified or deleted, which other objects are affected?
For example, if a web service interface changes, which callers must be adapted?

In JAXR, dependencies between objects are established via associations. There are a variety of pre-
defined association types, and moreover a JAXR-based client can create its own association types.
Although the names of the association types - for example HasChi1d or HasMember - suggest a
certain semantic, JAXR itself does not imply any semantics with the association types. CentraSite
supports the following conventions for associations.

If there is a dependency between two objects, each of which can exist on its own, then this depend-
ency should be expressed by a Uses association. Example: one web service calls another web service.
Remember that JAXR-based associations are directed: the association's source object should be
the caller/user (in general, the object that depends on another object), and the association's target
is the called/used object.

If there is an object C that cannot exist without another object P, then C should have a HasParent
association to P. Example: A table object cannot exist without a database object, hence there is a
HasParent association from each table to the corresponding database.

The reason for preferring HasParent over the “inverse” HasChi1d association is as follows:
CentraSite tries to maintain referential integrity; this means, among other things, that is not possible
to delete an object that is still the target of an association. Hence associations should be directed
in such a way that an object cannot be deleted if someone else still depends on it: an object should
not be deleted if it still has children, or if it is still in use by someone else.

21

22

I I CentraSite API for JAXR Reference Information

9 CentraSite API for JAXR Reference INformationcooovviiiiioiiiii e 25
10 USEr-DEfINEA ODJECESeeee ittt e et e e et e e et e e e e nreee e 27
11 Direct XQuery Access to the Stored Dataooiiiiiiiiiii e 29
12 UNIQUE KBYS ..ttt 31
13 Simultaneous Database Access and LOCKINGcooiiiiiiiiiiiiiciee e 33
A4 TRE CallEI ...ttt e e e e e e e e 35
15 Semantics 0f ReMOVE OPEIAtioNSvviviiiiiieiiiiii e 37
16 DEIBLE OPEIAtION ...ttt 39
17 Unsupported MEthOOSooiiiii e 45
18 Unsupported FINAQUANIFIESvvieeiiiie e 47
AQUSING WIIACAITAS ...t 49
20 USING NAMESPACESvvvvvvvvtiuttitisitiesiteeesseeesessesesses s s nennnnnnnnen 51
21 The Method CreateSIOtveeeiiii et e e e e a e e e e e e 53
22 Caching CONSIAEIALIONSvviiiiieiiiiiitie e e e e e e e e e e e e e e 55

23

24

9 CentraSite API for JAXR Reference Information

This part of the CentraSite documentation describes the differences between the JAXR standard
and our APL In particular, the CentraSite-specific extensions to the JAXR standard are explained
here.

The following topics are discussed:

User-Defined Objects

Direct XQuery Access to the Stored Data
Unique Keys

Simultaneous Database Access and Locking
The Caller

Semantics of Remove Operations

Delete Operation

Unsupported Methods

Unsupported FindQualifiers

Using Wildcards

Using Namespaces

The Method createSTot

Caching Considerations

25

26

10 User-Defined Objects

In addition to the pre-defined object types such as organizations, services and associations,
CentraSite allows you to define your own object types. Once such a type has been created using
the CentraSite Control GU]I, a corresponding concept exists in the ObjectType classification scheme.

» To create an instance of a user-defined object type

1 Create a RegistryEntry object.
2 Classify it with the type concept.

The following code example assumes that a user-defined type “{User-Uri}UserType” exists:

RegistryEntry userTypeObject
= (RegistryEntry)lcManager.createObject(LifeCycleManager.REGISTRY_ENTRY);

// find the "{User-Uri}UserType" concept
ClassificationScheme objectType
= bgManager.findClassificationSchemeByName(null, "ObjectType");
Concept userTypeConcept
= bgManager.findConceptByPath("/" + <
objectType.getKey().getId()
+ "/{User-UriltUserType");

// create classification
Classification userTypeClassification

= JcManager.createClassification(userTypeConcept);
userTypeObject.addClassification(userTypeClassification);

/*
* from now on the userTypeObject is of type "UserType", and

* userTypeObject.getObjectType() will return a concept equal to userTypeConcept
=

27

User-Defined Objects

// save object

ArraylList objectList = new ArraylList();
objectlList.add(userTypeObject);
1cManager.saveObjects(objectlList);

28

CentraSite API for JAXR

11 Direct XQuery Access to the Stored Data

A CentraSite JAXR client can call XQJ (XQuery API for Java technology) functionality directly in
order to access the registry data. JAXR itself also uses XQJ to access the registry. For more inform-
ation about XQ)J, please refer to the specification (JSR 225), which you can download from this
URL: http://jcp.org/en/jsr/detail?id=225.

The CentraSite CentraSiteConnection maintains an XQConnection object which it uses for its own
purposes as well as for direct client access. The client can get this object as follows, assuming he
already has a JAXR-based connection:

Connection jaxrCon = ...;
XQConnection xqjCon = ((CentraSiteConnection)jaxrCon).getXQConnection();

Asboth the client and JAXR use the same XQJ connection, the following restrictions apply (assuming
the client uses JAXR and XQ)J in parallel):

* The client must not call any JAXR-based save. .. method if he has an open transaction, because
JAXR performs the save. .. methods as one atomic operation based on an XQJ transaction.

® The client should never close the XQJ connection. Instead, he must close the JAXR-based con-
nection. This action cleans up anything else.

29

http://jcp.org/en/jsr/detail?id=225

30

12 Unique Keys

This implementation does not support client supplied keys. The method RegistryObject.setKey()
throws an UnsupportedCapabilityException. CentraSite rejects client-supplied keys.

31

32

13 Simultaneous Database Access and Locking

The CentraSite implementation stores all RegistryObjects in a common repository, which is a
database. If multiple JAXR-based clients (or, to be more precise, multiple JAXR-based connections)
are active simultaneously, it is possible that they might read and update the data in the common
database concurrently.

Multiple clients that update a RegistryObject must be synchronized in order to prevent lost updates.
Usually, this is handled by the underlying database's locking mechanism. However, since it is
likely that many JAXR-based clients would be browsing or searching the repository and only a
few JAXR-based clients would be modifying data, the CentraSite implementation has been optim-
ized to allow maximum concurrent access. In particular, if one or more JAXR-based clients are
reading a RegistryObject, another JAXR-based client may update it concurrently.

For example, if a user has opened CentraSite Control to look for a particular object and then keeps
his or her UI open for a protracted period — maybe even for several days — this should not prevent
other users from updating that object.

Locks for read access are therefore relatively permissive, but of course it must be ensured that two
JAXR-based clients cannot modify the same object at the same time. This is achieved as follows:

When a JAXR-based client starts to modify a RegistryObject, JAXR acquires an exclusive lock for
this object from the database management system. This prevents any other client from updating
the same object at the same time. When the JAXR-based client saves the modified object, the lock
is released as a side-effect of calling LifeCyclemanager.saveObjects (). Alternatively, if the JAXR-
based client decides to discard the changes, it should release the lock by calling
CentraSiteConnection.rollback().

With this locking behavior, there are two principal scenarios when two JAXR-based clients attempt
to modify the same object at the same time. Bear in mind that in order to modify an object, the
JAXR-based client always has to read it first, then modify the Java instance, then call saveObjects ()
in order to write the modified object back to the database.

33

Simultaneous Database Access and Locking

Scenario A

JAXR-based Client A JAXR-based Client B

1. Read a RegistryObject.

2. Read the same RegistryObject.

3. Start to modify the object. This automatically
locks the object.

4. Start to modify the object. The attempt to lock the object
fails and a LockNotAvailableException is thrown.

As long as client "A" holds the exclusive lock for the object, client "B" is unable to modify it.

Scenario B

JAXR-based Client A JAXR-based Client B

1. Read a RegistryObject.

2. Read the same RegistryObject.

3. Start to modify the object. This automatically
locks the object.

4. Save the object. This releases the lock.

5. Start to modify the object. The attempt to lock the
object fails and an ObjectOutdatedExceptionis
thrown.

In scenario "B", client "A" has finished making its changes and has released the lock, so the lock
is now available for acquisition by another client, for example client "B". However, client B's local
copy of the object does not reflect the current database status of the object, which has been modified
in the meantime by client A. If client B were allowed to save object, client A's modifications would
be overwritten.

To avoid this, each RegistryObject has a last-modification date. When a lock is acquired, the API
checks whether the last-modification date of the object in the database is the same as the last-
modification date of the client's local copy of the object. If the dates are not the same, an
ObjectOutdatedException is thrown. This ensures that updates are not lost and that all modifica-
tions are based on the latest state of the object.

Immediately before the ObjectOutdatedException is thrown, the API cleans up its internal
structures. When the client catches the exception, it should release all references to the Registry-
Object and then re-read it. This should return the latest copy of the object from the database; the
client can now continue to make the necessary modifications to this clean copy.

34 CentraSite API for JAXR

14 The Caller

The caller identifies himself by issuing Connection.setCredentials(). The corresponding User
object is retrieved from the registry using the name given in the credentials. If the user record does
not yet exist, it is created. This new user object is not added to any organization.

Here, the user name is the name attribute as inherited from the RegistryObject interface. It should
not be confused with the user's PersonName.

The caller must be known before a connection can be used. In other words, setCredentials() is
required, otherwise a security error occurs.

] Note: The user name must be unique in the registry.

35

36

15 Semantics of Remove Operations

There are several methods that allow an object to be removed from its parent. Depending on the
kind of object, the remove operation has different effects:

= Associations, Classifications, External Identifiers, Service Bindings, Specification Links

If such an object is removed from its parent and the parent is then saved, the object is automat-
ically deleted, since it cannot exist as a standalone object. These objects can be removed using
the following methods:

RegistryObject.removeClassification()
RegistryObject.setClassifications()
RegistryObject.removeAssociation()
RegistryObject.setAssociations()
RegistryObject.removeExternalldentifier()
RegistryObject.setExternalldentifiers()
ServiceBinding.removeSpecificationLink()
Service.removeServiceBinding|()

® Other Objects

Other objects are delinked from their parents during the remove operation. They continue to
exist as separate objects. If the parent object is saved, the removed objects are also automatically
saved.

The remove operations for these objects are:

ClassificationScheme.removeChildConcept()
Concept.removeChildConcept()
Organization.removeUser()
Organization.removeService()
Organization.removeChildOrganization()
RegistryObject.removeExternalLink()

37

Semantics of Remove Operations

RegistryObject.setExternalLinks()
RegistryPackage.removeRegistryObject()

38 CentraSite API for JAXR

16 Delete Operation

B REGISITYODJECE ..ottt 40
B ASSOCIAIION .etiiiiiiiiii ettt — ittt ittt ittt ittt ittt ittt tattrrarrnrns 41
B OAUAITADIEEVENT ... e e 41
T o1 o LTSS TPPPPPPSPPPPPP 41
B ClasSifiCatIONSCNEME ...ttt e e et e e e e e e e 41
L 0704 1o{ o SO PPTR 41
B EXEEMNAIAENTIEr ... e s 42
B EXEEINAILINK Lottt 42
B ONGANIZALION ... 42
LT[g =1 A PSP O RP PP PPPPPPPRR 42
B REGISITYPACKAGE ... 42
L 1= o PSPPSR 43
B SEIVICEBINAING ..ttt 43
B SPECITICAtIONLINKvivie e 43
B Bl ittt e e e e e e e 43

39

Delete Operation

Deleting an object means deleting it from the persistent store. Optionally, the delete operation can
be called with an objectType parameter, which is one of the pre-defined LifeCycleManager interface
names. If this parameter is specified, only objects of that type are accepted for delete. The interface
names shown in the following list are allowed for a deletion; all others are rejected with an
InvalidRequestException.

LifeCycleManager .ASSOCIATION
LifeCycleManager.CLASSIFICATION
LifeCycleManager.CLASSIFICATION_SCHEME
LifeCycleManager.CONCEPT
LifeCycleManager .EXTERNAL_IDENTIFIER
LifeCycleManager.EXTERNAL_LINK
LifeCycleManager .ORGANIZATION
LifeCycleManager .REGISTRY_ENTRY
LifeCycleManager .REGISTRY_PACKAGE
LifeCycleManager.SERVICE
LifeCycleManager.SERVICE_BINDING
LifeCycleManager .SPECIFICATION_LINK
LifeCycleManager.USER

Objects have relationships to each other: some relationships prohibit object deletion, while other
relationships are automatically cleaned up during deletion. The following sections describe for
each object type how it is treated during deletion.

RegistryObject

In general, an attempt to delete a registry object is rejected if:

" itis a new object, i.e., it has not yet been saved, or

" itis the target of an association.
Deleting a registry object has the following side-effects:

. Remove the object from all its packages; update the packages.

. Delink the object from all its external links; update the external links.

1

2

3. Delete all associations whose source object is the object to be deleted.

4. Delete all classifications whose classified object is the object to be deleted.
5

. Delete all external identifiers whose registry object is the object to be deleted.

40 CentraSite API for JAXR

Delete Operation

Association

1. Remove the association from its source object.

2. Update the source object. This automatically deletes the association.

AuditableEvent

It is not possible to delete an auditable event explicitly.

Classification

1. Remove the classification from its classified object.

2. Update the classified object. This automatically deletes the classification.

ClassificationScheme

1. Reject deletion if there are child concepts; otherwise:

2. Delete the classification scheme.

Concept

1. Reject deletion if there are child concepts; otherwise:
2. Remove the concept from its parent object.

3. Update the parent object.

4. Delete the concept.

CentraSite API for JAXR

41

Delete Operation

Externalldentifier

1. Remove the external identifier from its registry object.

2. Update the registry object. This automatically deletes the external identifier.

ExternalLink

1. Reject deletion if there are linked objects; otherwise:

2. Delete the external link.

Organization

1. Reject deletion if there are child organizations, services, or users; otherwise:
2. Remove the organization from its parent organization.
3. Update the parent organization.

4. Delete the organization.

RegistryEntry

1. Delete the registry entry.

RegistryPackage

1. Reject deletion if there are member objects; otherwise:

2. Delete the registry package.

42 CentraSite API for JAXR

Delete Operation

Service

1. Remove the service from its organization.
2. Update the organization.
3. Delete all service bindings whose service is the service to be deleted.

4. Delete the service.

ServiceBinding

1. Remove the service binding from its service.
2. Delete all specification links whose service binding is the service binding to be deleted.

3. Update the service. This automatically deletes the service binding.

SpecificationLink

1. Remove the specification link from its service binding.

2. Update the service binding's enclosing service. This automatically deletes the specification link.

User

1. Remove the user from its organization.
2. Update the organization.
3. Delete the user.

CentraSite API for JAXR 43

44

17 Unsupported Methods

The following methods are not supported and throw an UnsupportedCapabilityException excep-
tion:

® RegistryService.getDeclarativeQueryManager()

® RegistryService.makeRegistrySpecificRequest()

45

46

18 Unsupported FindQualifiers

The following FindQualifiers are not supported:

® COMBINE_CLASSIFICATIONS
= SERVICE_SUBSET
= SOUNDEX

47

48

19 Using Wildcards

The wildcard character, which is the percent (“%”) character, represents zero or more characters.
Thus, for example, the search string “"ABC%DEEF” finds all strings that begin with “ABC” and end
with “DEF”, with any number of characters in between. The search string “ABC%DEF%” finds
all strings that begin with “ABC” and include “DEF” anywhere else. If you do not include a
wildcard character in the search string, the search assumes that there is a wildcard character at
the end of the search string, unless the find qualifier "EXACT_NAME_MATCH" is specified. Thus,
for example, if you specify “ABC” as the search string, the search in fact looks for and finds strings
that match the pattern “ABC%”, i.e. all strings that begin with the characters “ABC”.

49

50

20 Using Namespaces

Some names, for example type names and slot names, comprise a namespace and a name. When
programming a JAXR-based client, these names must be represented in the following format:

{namespacelname
In other words, the namespace is enclosed in curly braces and is used as a prefix for the name.
Strings in this format are used in the following methods:

for objectType in CentraSiteQueryManager.findObjects()

for typeName in CentraSiteQueryManager.getTypeDescription()
for name in LifeCycleManager.createSlot()

for slotName in ExtensibleObject.getSlot()

51

52

21 The Method createSlot

The method createSlot in the interface LifeCycleManager takes 3 parameters; its signatures are
as follows:

Slot createSlot (String name, String value, String slotType)
Slot createSlot (String name, Collection values, String slotType)

The CentraSite implementation accepts any value of type String, or a null reference, for the third
parameter, s1otType. This parameter is stored with the slot, but it is not interpreted in any way.
Note, however, that the JAXR standard does not indicate how this parameter should be interpreted;
it might, for example, be interpreted as indicating the data type of the slot in some future imple-
mentation. We recommend specifying the sTotType as an "xs:string".

53

54

22 Caching Considerations

m JAXR-based Caching STrateOyooiiiriiiiiiiii s 56
= Caching in CentraSite USEr INTEIfACESociiiiiieeiiie e 56
= Dynamically Loaded JAR FIIBSeeiiei e 57
B CACNE LOCALION ...ttt 57

95

Caching Considerations

This chapter describes the following aspects of caching behavior as it affects the API:

JAXR-based Caching Strategy

Objects that are retrieved from the registry by means of the CentraSite API for JAXR are stored in
a cache by the JAXR-based connection. All objects stored in the cache are inspected from time to
time by the Java garbage collector, which may delete them if there are no references to them from
the application.

Any object reference that results from a call to getRegistryObject(), getRegistryObjects() or
any of the find methods is, if possible, resolved from the cache. If an application already holds a
reference to an object that resulted from any of these calls, the reference will also be in the cache,
and the call will return the same Java reference.

There are situations, however, where the cache is cleared completely. This occurs, for example,
after executing saveObjects ordeleteObjects. Any Java reference that is retrieved after the cache
is cleared will be different from a reference that was retrieved before the cache is cleared.

Note: This does not affect data integrity, since objects read cannot be concurrently updated.

Caching in CentraSite User Interfaces

The CentraSite user interfaces, i.e. Control and Eclipse, browse JAXR-based data; this means that
they make use of the JAXR-based caching mechanism, but they do not block concurrent updates.
Control and Eclipse users should be aware that, in general, the data display does not immediately
reflect changes that another user may make.

Note: This does not affect data integrity in the sense that outdated data may be the source
of any updates.

You can see the current data at any time by choosing the Refresh button.

56 CentraSite API for JAXR

Caching Considerations

Dynamically Loaded JAR Files

The system locally caches dynamically-loaded JAR files. You should be aware that the date and
time of the cached files are compared with the date and time of the library files whenever a new
connection is created; the JAR files in the cache are refreshed if they are found to be out of date.
This could mean that processing continues with a newer version of a JAR file after a connection
has been created.

Note also that problems may arise if a custom security manager has been implemented, because
the connection to the database will be refused.

Cache Location

The system uses the following strategy to determine the location of the cache store:

= If the system property com.softwareag.centrasite.dynloader.cache-dir is defined, then its
value is used as the location of the cache store.

= Otherwise, the location of the cache store is derived from:
1. A directory whose name is taken from the system property java.io.tmpdir;

2. A sub-directory whose name is constructed from the string "CentraSite", a package name,
and the string "Jars".

CentraSite API for JAXR 57

58

	CentraSite API for JAXR
	Table of Contents
	Preface
	1 Introduction
	I Using the CentraSite API for JAXR
	2 Using the CentraSite API for JAXR
	3 Creating and Closing a JAXR-based Connection
	Creating a JAXR-based Connection
	Closing a JAXR-based Connection

	4 Defining a Service
	5 A Service that Uses Another Service
	6 A Service with Additional Information
	7 Pre-Defined Classification Schemes (Taxonomies)
	8 Impact Analysis

	II CentraSite API for JAXR Reference Information
	9 CentraSite API for JAXR Reference Information
	10 User-Defined Objects
	11 Direct XQuery Access to the Stored Data
	12 Unique Keys
	13 Simultaneous Database Access and Locking
	14 The Caller
	15 Semantics of Remove Operations
	16 Delete Operation
	RegistryObject
	Association
	AuditableEvent
	Classification
	ClassificationScheme
	Concept
	ExternalIdentifier
	ExternalLink
	Organization
	RegistryEntry
	RegistryPackage
	Service
	ServiceBinding
	SpecificationLink
	User

	17 Unsupported Methods
	18 Unsupported FindQualifiers
	19 Using Wildcards
	20 Using Namespaces
	21 The Method createSlot
	22 Caching Considerations
	JAXR-based Caching Strategy
	Caching in CentraSite User Interfaces
	Dynamically Loaded JAR Files
	Cache Location

