
CentraSite

CentraSite Application Framework

Version 9.6

April 2014

This document applies to CentraSite Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-DG-CSAF-96-20140318

Table of Contents

Preface .. v
1 Introduction ... 1

RegistryBean .. 3
BeanPool ... 3
StandaloneRegistryProvider .. 4

2 Configuration .. 5
Bean Types Managed by CSAF .. 6
Re-Reading Outdated Objects .. 7

3 Mapping Beans to Registry Objects with Annotations ... 9
Introduction to Bean Mapping ... 10
Standard Mappings .. 18
Generating Beans with the Command Line ... 19

4 Querying the Registry ... 23
Application Framework Simple Search ... 24
Application Framework JAXR-Based Search ... 32

5 Event Mechanism .. 35
6 Asset Types .. 37

Usage Sample for Type Management .. 38
7 Association Types .. 41

Usage Sample for Association Type Management .. 42
8 Lifecycle Management ... 45

Usage Sample for LCM .. 47
9 Revision Management ... 49

Usage Sample for Revision Management .. 51
10 Multi-User Scenarios ... 53
11 Setting the Classpath ... 55
12 Examples .. 57

CRUD Example .. 58

iii

iv

Preface

The description of the CentraSite Application Framework consists of the following sections:

Introduction

Configuration

Mapping Beans to Registry Objects with Annotations

Querying the Registry

Event Mechanism

Asset Types

Association Types

Lifecycle Management

Revision Management

Multi-User Scenarios

Setting the Classpath

Examples

Javadocs for the Application Framework

Application Framework Error Messages

v

vi

1 Introduction

■ RegistryBean ... 3
■ BeanPool .. 3
■ StandaloneRegistryProvider .. 4

1

The CentraSite Application Framework (CSAF) provides a programming model for developing
custom extensions on top of CentraSite. It supports JAXR (JavaAPI for XMLRegistries) and extends
the CentraSite JAXR-based API and the Pluggable UI - the framework on which the CentraSite UI
is built.

It contains two independent parts: the persistence framework and the validation framework.

The persistence framework provides the ability to operate on registry data using JavaBeans instead
of the JAXR-based API. This is done in a fashion similar to object-relational mapping tools such
as Hibernate or Java Persistence API. It this case, Java Beans are mapped to registry objects. All
this is done declaratively using Java5 Annotations.

This framework was created with the intention of making it easier to work with registries that
support the JAXR-based interface, such as CentraSite. Its usage does not require in general any
specific or deep knowledge of this API.

A direct benefit of this is shortened application development time.

The validation framework provides an extensible mechanism for validating Java beans. Multiple
numbers of constraints can be attached to each bean. The notion of scopes is also supported, i.e.,
constraints apply only when specific conditions about the bean are met.

CentraSite Application Framework2

Introduction

This figure above shows the architecture of a commonCentraSite application extension developed
using CSAF.

There are two major points that have to be clear in order to understand how the persistence
framework works, namely how the bean model is built based on the RegistryBean interface and
the BeanPool.

The following topics are discussed in this chapter:

RegistryBean

The RegistryBean (com.softwareag.centrasite.appl.framework.beans.RegistryBean) interface has to stay
on top of each bean model hierarchy. It contains the properties that a registry object would have,
namely a key and a name. Implementing is the only restriction the framework on the application
beanmodel. The user can useDynamicRegistryBean (com.softwareag.centrasite.appl.framework.beans.Dy-
namicRegistryBean) for implementation of RegistryBeans. It implementsRegistryBean andRevision-
Bean (com.softwareag.centrasite.appl.framework.beans.RevisionBean), which is the revision-aware ex-
tension of the RegistryBean interface.

There is onemore option here. If the registry bean needs to be lifecycle-aware, then the user should
use the com.softwareag.centrasite.appl.framework.lcm.beans.LifeCycleAware interface instead ofRegistry-
Bean. Its implementation is handled by com.softwareag.centrasite.appl.framework.lcm.beans.LCAware-
DynamicRegistryBean.

BeanPool

The BeanPool (com.softwareag.centrasite.appl.framework.persistence.BeanPool) is the main interface
with which the application interacts in order to use the persistence framework. All CRUD (create,
read, update, delete) operations search via this interface, and registry queries are done via this
interface. The user must be aware that the BeanPool instances are not thread safe. There can be
only one beanPool per SessionContext. CSAFprovides the functionality to create beanPool instances
by using SessionContext.createBeanPool();. The beanPool can be accessed by
SessionContext.getCurrentBeanPool();. This method returns the BeanPool instance that is as-
sociated with the given context. The CurrentBeanPoolContext interface defines the contract for im-
plementations which knows how to scope the notion of a current bean pool. An implementation
of this interface is provided as ThreadLocalCurrentBeanPoolContext, which maintains current bean
pools for the given execution thread. This functionality is extensible, so users can create their own
context by implementing CurrentBeanPoolContext.

More information about these interfaces can be found in the Javadoc of the framework.

3CentraSite Application Framework

Introduction

StandaloneRegistryProvider

In order to obtain a connection to the repository, an instance of StandAloneRegistryProvidermust
be created. This registry provider has several important parameters for its creation that will affect
the functionality of CSAF. CSAF supports several constructorswhich exclude some of the properties
and use their default values instead. The constructor with full parameter list is:

StandaloneRegistryProvider(String registryUrl, String user, String ↩
password, boolean browserBehaviour){}

Specifies the URL to the CentraSite registry. Default value is
http://localhost:53307/CentraSite/CentraSite

registryUrl

The username of the registry useruser

The password of the registry userpassword

Sets the "com.centrasite.jaxr.BrowserBehaviour" property of the connection
factory. To enable type management, this flag must be set to "true"; to enable
RevisionManagement it must be "false". Default value is "false".

browserBehaviour

Example for creating a BeanPool instance by using SessionContext and StandaloneRegistryPro-
vider

SessionContext context = null;
RegistryProvider provider = null;
try {

provider = new StandaloneRegistryProvider(registryUsername,
registryPassword, true);

Configuration conf = new Configuration();
conf.setRegistryProvider(provider);

conf.addBeanType(Item.class);
conf.addBeanType(Action.class);
conf.addBeanType(Entry.class);
conf.addBeanType(ExternalLink.class);
context = SessionContext.createInstance(conf);

} catch (CSAppFrameworkException e) {
// Do something with the exception

}

BeanPool beanPool = context.getCurrentBeanPool();

CentraSite Application Framework4

Introduction

2 Configuration

■ Bean Types Managed by CSAF ... 6
■ Re-Reading Outdated Objects ... 7

5

You can configure the CentraSite Application Framework via theConfiguration object (com.software-
ag.centrasite.appl.framework.Configuration). The following can be configured here:

■ Bean types managed by CSAF
■ Persistence mode
■ Bean mode
■ Maximum concept cache size
■ Cache scope
■ Re-reading of outdated objects

Additionally, the configuration object supports a generic property: key/name pair. It can used to
configure any of the above mentioned properties generically.

After the Configuration object has been initialized, it can be passed to the
com.softwareag.centrasite.appl.framework.SessionContext.createInstance()method,
which creates a SessionContext instance. This instance can then create com.softwareag.centrasite.ap-
pl.framework.persistence.BeanPool instances and can be used for the lifetime of the application.

The following topics are discussed in this chapter:

Bean Types Managed by CSAF

The framework keeps an internal data model for user-defined bean classes, i.e., bean classes that
extend the com.softwareag.centrasite.appl.framework.beans.RegistryBean interface. After the bean inter-
faces have been defined as Java classes having the @RegistryObject annotation, they must be re-
gistered by calling the Configuration.addBeanType(java.util.Class)method.

In principle, calling Configuration.addBeanType(java.util.Class) for each bean class is not
mandatory, since CSAF tries to process this information (configuration) at runtimewhen required.
Nevertheless, it is still highly recommended because there are cases in which it is not possible to
obtain the mapping information at runtime, e.g., when performing a search in the registry.

Bean Modes

The framework supports two bean modes: BACKED and SIMPLE
(com.softwareag.centrasite.appl.framework.persistence.BeanMode). This mode specifies
how the beans interact with the underlying implementation of the API supporting JAXR.

When using the SIMPLE mode, data from the bean is transferred to the registry object only when
the user explicitly requests this by calling one of the BeanPool methods (update(),
flush(),delete()).

CentraSite Application Framework6

Configuration

Whenusing the BACKEDmode, data from the bean is transferred to the registry object immediately
after it is set in the bean. The advantage of this is that extra features such as locking and caching
can be used.

Note: SIMPLE mode is deprecated; BACKED mode should always be preferred.

Persistence Modes

The framework supports two persistence modes: FULL and MAP_ONLY. This mode specifies
how and whether the data will be persisted in the registry.

When using the FULLmode, the data is entirely persisted in the registry. This is the default mode.

When using theMAP_ONLYmode, the data is not persisted in the registry at all; it is just mapped
from the bean to the registry object. It is assumed that the persistence is done outside of the
framework. This is used, for example, in a Pluggable UI environment, and applies to any custom
extension of the CentraSite UI. In this, the Pluggable UI takes care of storing the object in the re-
gistry.

Cache Configuration

Two properties of the caching can be configured: the maximum concept cache size and the cache
scope. Both parameters configure the concept mapping cache within the framework.

The default value for the cache size is 1000.

There are two available scopes for the cache:

There is one cache for the whole application.APPLICATION

Each session has its own cache.SESSION

Re-Reading Outdated Objects

The framework provides support to re-read outdated registry beans automatically. This is controlled
by the Configuration.PROP_AUTO_REREAD_OUTDATED_OBJECTS property. Possible values are "true"
and "false".

If the property value is set to "true" then when an outdated object is modified by the system it will
automatically be re-read from the registry, i.e., reverted to the latest state in the database, before
applying any changes. Otherwise the user receives a com.softwareag.centrasite.appl.framework.persist-
ence.ObjectOutdatedExceptionwhen performing themodification. Note that if this feature is turned
on the current client of CSAF will override any changes made by another client.

7CentraSite Application Framework

Configuration

8

3 Mapping Beans to Registry Objects with Annotations

■ Introduction to Bean Mapping .. 10
■ Standard Mappings .. 18
■ Generating Beans with the Command Line ... 19

9

The following topics are discussed in this chapter:

Introduction to Bean Mapping

The beans are mapped to registry objects using Java5 Annotations.

Each bean from the application bean model has to extend or implement the RegistryBean
(com.softwareag.centrasite.appl.framework.beans.RegistryBean) interface. If an interface extends the
RegistryBean interface, an implementation must be provided and specified using the @Bean an-
notation:

@RegistryObject(objectTypeName="{http://namespaces.CentraSite.com/csaf}Item")
@Bean(implementationClass = "...")
public interface Item extends RegistryBean{
...
}

The table below describes the annotations currently supported by the CentraSite Application
framework.

DescriptionPropertiesScopeAnnotations

Maps a bean to a registry object
with a specific object type.

objectTypeName (optional) – the
name of the object type of the registry
object.

Type@RegistryObject

objectTypeKey (optional) – the key
of the object type.

At least one of the propertiesmust be
specified.

Maps a bean property to a registry
object property. The properties

target (optional) – the name of the
target property in the registry object.

Method@Property

should have the same type. TheThe property must be a standard
mapper does not provide typeproperty of a predefined JAXR-based
conversion, except for JAXR
InternationalString to/from String.

object type. If the target property is
not specified, it is assumed that it
matches the name of the bean
property.

Maps a bean property to a registry
object slot. Multivalue slots are

Name (mandatory) – the name of the
slot to which this property is to be

Method@Slot

supported. Also provided are typemapped. The JAXR-based property
conversion slot values which arebeingmapped canbe customdefined,
string to integer, Boolean, date,
timestamp and Calendar.

or the JAXR-based object type that

CentraSite Application Framework10

Mapping Beans to Registry Objects with Annotations

DescriptionPropertiesScopeAnnotations

this property comes from can be
custom.

targetType (optional) – specifies the
type of the bean property. It is used
when the property is a collection and
thus the mapping cannot guess the
underlying property.

type (optional) – the type of the bean
property. Supported types are
BOOLEAN, DATE, CALENDAR,
TIMESTAMP, INTEGER and AUTO.
The latter allows themapper to guess
the property type.

Maps all slots of a registry object
to a bean property (Collection).

targetType (mandatory) - the type
of bean that is to be mapped to a
single slot.

Method@Slots

Used in conjunction with the
@Slots property. Maps the

target (mandatory) – can be one
value from the enum

Method@SlotProperty

properties of the bean of the typeSlotPropertyName – NAME,
SLOT_TYPE, VALUES. specified as target type with the

@Slots annotation. A slot has a
name, slot type and values. All
these properties can be mapped
using this annotation.

Maps a bean property to the
TelephoneNumber object from the

type (optional) – the type of the
telephone numbers.

Method@TelephoneNumbers

JAXR-based infomodel. Such
objects are used in the User JAXR
Object.

Maps a bean property to a
ExternalLink JAXR-based object or
a collection of them.

slotName (optional) – the name of a
slot inside the ExternalLink registry
object to be mapped that is checked

Method@ExternalLink

for having a specified value. This is
used to pick the proper ExternalLink
if the registry object has more than
one.

slotValue (optional) – the value of
the slot to be checked.

type (optional) – type of the bean
used for the mapping

Maps a property to an association.
It can be either the association

key (optional) – the key of the
association type to be used. Either

Method@Association

11CentraSite Application Framework

Mapping Beans to Registry Objects with Annotations

DescriptionPropertiesScopeAnnotations

object itself or the target of the
association.

type (see below) or key must be
present.

type (optional) – the association type
to be used. Either type or key must
be present.

targetType (optional) – the type of
the bean to be mapped. It is used
when the beanproperty is a collection
and the type cannot be guessed.

mappedTo (optional) – the property
can be mapped to either the
association registry object or the
target of the association.

cascadeStyle (optional) –
Supported cascade styles are ALL
(Cascade on all operations), UPDATE
(Cascade on update operations),
DELETE (Cascade on delete
operations), NONE (no cascading).

Used in conjunction with the
@Association annotation. Maps a

NoneMethod@AssociationTarget

bean to a target of an association.
It is used when a bean is mapped
to an association object using the
@Association annotation. Then
inside that bean a property must
be mapped to the target.

Maps a bean property to a
classification. Both the

classificationScheme (optional)
– the name of the
ClassificationScheme to be used.

Method@Classification

classification object and its concept

parentConcept (optional) – the path
of the parent concept. Used when
mapping enumeration classifications.

can be used. The mapping can be
simple – Bean property <->
Classification(Concept) or
enumeration – Bean property <->

parentConceptKey (optional) – the
key of the parent concept. Either the
path or the key can be used.

Classification (Concept) which
concept is under a specified parent
concept. The latter provides a set
of predefined possible concepts,

conceptPath (optional) – the path
of the concept for this classification.

thus is similar to the notion of
enumeration.

conceptKey (optional) – the key of
the concept for this classification.

CentraSite Application Framework12

Mapping Beans to Registry Objects with Annotations

DescriptionPropertiesScopeAnnotations

Either the path or the key can be
used.

targetType (optional) – the type of
the bean used for the mapping.
Required when the property is a
collection and the type cannot be
guessed.

mappedTo (optional) – the bean can
bemapped either to the classification
object or to its concept.

cascadeStyle (optional) – The
supported cascade styles are ALL,
UPDATE, DELETE and NONE.

Used in conjunction with the
@Classification annotation. Maps

NoneMethod@ClassificationConcept

a bean to the Concept of the
Classification specified in the
@Classification annotation.

Maps class hierarchy to registry
objects. Classifications are used to

instances (mandatory) – the array
of the instances that this mapping
will address.

Type@ClassifiedInstances

achieve this. Each registry object
that corresponds to a bean from
the hierarchy is classified with a
concept. The latter belongs to a
taxonomy mirroring the class
hierarchy.

Sets the information for a specific
mapping between a bean from the
hierarchy and a registry object.

classificationScheme
(mandatory) – the classification
scheme towhich the concept belongs.

Type@ClassifiedInstance

Either the scheme name or the key
must be specified.

classificationSchemeKey
(mandatory) – the key of the
classification scheme. Either the
scheme name or the key must be
specified.

conceptKey (mandatory) – the key
of the concept used to classify this
instance.

conceptPath (mandatory) – thepath
of the concept used to classify this
instance.

13CentraSite Application Framework

Mapping Beans to Registry Objects with Annotations

DescriptionPropertiesScopeAnnotations

beanType (mandatory) – the type of
the bean that corresponds to this
instance.

Annotation formapping the return
value of a (getter) method to the

attributeName (mandatory) – The
name of the attribute represented by
this annotation.

Method@ClassificationAttribute

classification attribute specified at

cascadeStype (optional) – The
cascading style for this mapping.

type level. The attribute name is
mandatory and is used to identify
the attribute. This annotation is

targetType (optional) – The type of
the mapped bean. The bean itself
must be of type Concept.

very similar to the {@link
Classification} annotation in terms
of supported attributes and
underlying representation. The
difference is that the taxonomy is
obtained from the attribute
description. In order to use this
annotation, a classification
attribute must be defined at type
level (the registry object typemust
have a classification attributewith
the same attribute name as
specified in the annotation).

Annotation formapping the return
value of a (getter) method to the

attributeName (mandatory) – The
name of the attribute represented by
this annotation.

Method@FileAttribute

file attribute specified at type level.

cascadeStype (optional) – The
cascading style for this mapping.

The attribute name is mandatory
and is used to identify the
attribute. This annotation is very

targetType (optional) – The type of
the mapped bean. The bean itself
must be of type ExternalLink.

similar to the {@link ExternalLink}
annotation in terms of supported
attributes and underlying
representation. In order to use this
annotation, a file attributemust be
defined at type level (the registry
object type must have a file
attribute with the same attribute
name as specified in the
annotation).

Annotation formapping the return
value of a (getter) method to the

attributeName (mandatory) – The
name of the attribute represented by
this annotation.

Method@Relationship

attribute specified at type level.

cascadeStype (optional) – The
cascading style for this mapping.

The attribute name is mandatory
and is used to identify the
attribute. This annotation is very

CentraSite Application Framework14

Mapping Beans to Registry Objects with Annotations

DescriptionPropertiesScopeAnnotations

targetType (optional) – The type of
the mapped bean. The bean itself
must be of type Concept.

similar to the {@link Association}
annotation in terms of supported
attributes and underlying
representation. The difference is
that the association and target
types are not specified but are
obtained from the attribute
description. In order to use this
annotation, a relationship attribute
must be defined at type level (the
registry object type must have a
relationship attribute with the
same attribute name as specified
in the annotation).

Example:

/**
 * Java bean interface representing JAXR-based registry objects of type ↩
ServiceInterfaceVersion.
 */
@RegistryObject(objectTypeName = ↩
"{http://namespaces.CentraSite.com/csaf}ServiceInterfaceVersion")
@Bean(implementationClass = ↩
"com.softwareag.centrasite.appl.framework.persistence.beanmodel.impl.ServiceInterfaceVersionImpl")
public interface ServiceInterfaceVersion extends RegistryBean{

@Property(target = "name")
public String getName();
public void setName(String name);

/**
* Returns the description
*/
@Property(target = "description")
public String getDescription();

/**
* Sets the description
*/
public void setDescription(String description);

 /**
 * Returns the attachments
 */
 @ExternalLink(type = ↩
com.softwareag.centrasite.appl.framework.persistence.beanmodel.ExternalLink.class)
 ↩

15CentraSite Application Framework

Mapping Beans to Registry Objects with Annotations

 public List<com.softwareag.centrasite.appl.framework.persistence.beanmodel.ExternalLink> ↩
getAttachments();

 /**
 * Sets the attachments
 */
 public void setAttachments(
 List<com.softwareag.centrasite.appl.framework.persistence.beanmodel.ExternalLink> ↩
attachments);

 /**
 * Returns the short name of the interface version. Maps to ↩
{http://namespaces.CentraSite.com/csaf}shortName slot.
 */
 @Slot(name = "{http://namespaces.CentraSite.com/csaf}shortName")
 String getShortName();

 /**
 * Sets the short name property of the interface version.
 */
 void setShortName(String shortName);

 /**
 * Returns.
 */
 @Association(type = "HasReviewRequest", targetType = ReviewRequestOutcome.class, ↩
cascadeStype = CascadeStyle.DELETE)
 List<ReviewRequestOutcome> getReviewRequestOutcomes();

 /**
 * @param list
 */
 public void setReviewRequestOutcomes(List<ReviewRequestOutcome> list);

 /**
 * Returns the findings, which are attached to the bean.
 */
 @Classification(classificationScheme = "CSAF -Taxonomy", conceptPath = ↩
"/ClassificationInstances/Finding", targetType = Finding.class)

List<Finding> getFindings();

/**
*
* @param pFindings
*/
public void setFindings(List<Finding> pFindings);

@Slots(targetType = SlotBean.class)
public Collection<SlotBean> getSlots();

public void setSlots(Collection<SlotBean> slots);

CentraSite Application Framework16

Mapping Beans to Registry Objects with Annotations

}

/**
* Implementation of the {@link ServiceInterfaceVersion} bean interface.
*/
public class ServiceInterfaceVersionImpl extends DynamicRegistryBean implements
ServiceInterfaceVersion {

private String _shortName;
private List<ReviewRequestOutcome> _reviewRequestOutcomes;
private Collection<SlotBean> slots;
private String _instanceSlotName;
private List<Finding> findings;
private List<ExternalLink> externalLinks;

/**
* {@inheritDoc}
*/
public String getShortName() {

return _shortName;
}

/**
* {@inheritDoc}
*
* The setter is annotated that modifies the object and it needs to be
* updated in the JAXR-based registry.
*/
public void setShortName(String shortName) {

_shortName = shortName;
}

public List<ReviewRequestOutcome> getReviewRequestOutcomes() {
return _reviewRequestOutcomes;

}

public void setReviewRequestOutcomes(List<ReviewRequestOutcome> list) {
_reviewRequestOutcomes = list;

}

public Collection<SlotBean> getSlots() {
return slots;

}

public void setSlots(Collection<SlotBean> slots) {
this.slots = slots;

}

public String getInstanceSlotName() {
return _instanceSlotName;

}

17CentraSite Application Framework

Mapping Beans to Registry Objects with Annotations

public void setInstanceSlotName(String slotName) {
_instanceSlotName = slotName;

}

public List<Finding> getFindings() {
return findings;

}

public void setFindings(List<Finding> findings) {
this.findings = findings;

}

public List<ExternalLink> getAttachments() {
return externalLinks;

}

public void setAttachments(List<ExternalLink> attachments) {
externalLinks = attachments;

}
}

Standard Mappings

The StandardMappings (com.softwareag.centrasite.appl.framework.beans.standard) are RegistryBeans
that represent all supported JAXR-based Registry Objects under the package com.centrasite.jaxr.in-
fomodel. They provide the functionality to operate andmanage JAXR-basedRegistryObjects through
the Application Framework with ease.

There are other kinds of objects that are included in this package although they are not Registry-
Objects (EmailAddress, PostalAddress, Slot…etc.). TheApplication Framework provides amapping
for them as well. Standard Mapping instances are created by the BeanPool's create(beanClass);
standard non-registry objectmappings (EmailAddress,PostalAddress, Slot…etc.) aremanaged using
the com.softwareag.centrasite.appl.framework.beans.standard.StandardMappingManager.

Formore information about themethods and functionality supported by StandardMappingsAPI,
please refer to the Javadoc of the framework.

CentraSite Application Framework18

Mapping Beans to Registry Objects with Annotations

Standard Mappings Usage Sample

//Create a com.softwareag.centrasite.appl.framework.beans.standard.Organization

com.softwareag.centrasite.appl.framework.beans.standard.Organization organization =
 ↩
beanPool.create(com.softwareag.centrasite.appl.framework.beans.standard.Organization.class);
organization.setName("MyOrganization");

// Create StandardMappingManager for managing Standard non RegistryObjects //mappings

StandardMappingManager smm = new StandardMappingManager(registryProvider);

//Create a postal address

com.softwareag.centrasite.appl.framework.beans.standard.PostalAddress pa =
 smm.createPostalAddress("streetNumber", "street", "city",
 "stateOrProvince", "country", "postalCode","type");
organization.setPostalAddress(pa);

// Get existing user and add it to the organization

com.softwareag.centrasite.appl.framework.beans.standard.User user =
 ↩
beanPool.read(com.softwareag.centrasite.appl.framework.beans.standard.User.class, USER_KEY);
Collection<User> users = new ArrayList<User>();
users.add(user);
organization.setUsers(users);

// save the changes

beanPool.flush();

Generating Beans with the Command Line

You can use a command line utility to generate registry beans.

■ Under Windows
■ Under Linux

19CentraSite Application Framework

Mapping Beans to Registry Objects with Annotations

■ Input Parameters

Under Windows

Use the following procedure to generate registry beans under Windows:

1. Open GenerateCSAFBeans.cmd in a text editor.

2. Add the following property statement:

<CentraSiteInstallDir>\utilities\ GenerateCSAFBeans.cmd -user <USERNAME> -pass ↩
<PASSWORD> -url <CENTRASITE-URL> -typename <TYPENAME> -interfacepackage ↩
<INTERFACEPACKAGE> -implpackage <IMPLPACKAGE> -destination <DESTINATION>

where, <CentraSiteInstallDir> is the CentraSite installation directory. By default, this is the
CentraSite folder under <SuiteInstallDir>.

Under Linux

Use the following procedure to generate registry beans under Linux:

1. Open GenerateCSAFBeans.sh in a text editor.

2. Add the following property statement:

<CentraSiteInstallDir>/utilities/ GenerateCSAFBeans.sh -user USERNAME -pass ↩
PASSWORD -url CENTRASITE-URL -typename TYPENAME -interfacepackage INTERFACEPACKAGE ↩
-implpackage IMPLPACKAGE -destination DESTINATION

where, <CentraSiteInstallDir> is the CentraSite installation directory. By default, this is the
CentraSite folder under <SuiteInstallDir>.

Input Parameters

The following table describes the complete set of input parameters that you can use to generate
the registry beans:

DescriptionParameter

Required. Your CentraSite user ID.USERNAME

Required. The password for your CentraSite user account.PASSWORD

Required. The fully qualified URL for the CentraSite registry/repository.

If you omit this parameter, the importer assumes that the registry/repository resides
at http://localhost:53307/CentraSite/CentraSite.

CENTRASITE-URL

Note: If the registry/repository is running on a different machine and port number,
you can use this parameter to specify its location instead of using the individual -h

CentraSite Application Framework20

Mapping Beans to Registry Objects with Annotations

DescriptionParameter

and -p parameters. (If you specify the -dburl parameter with the -h and/or -p
parameters, the -h and -p parameters will be ignored.)

Required. The namespace and name of the type to be generated (mandatory). Example:
{http://test}TestService. Or, the name of the virtual type to be generated. Example:

TYPENAME

"Virtual service" Note: The quotation marks are necessary, in order that "Virtual
service" is parsed as a single token.

Required. The name of the package in which the interfaces should be generated. For
example: com.sag.generated

INTERFACEPACKAGE

Required. The name of the package inwhich the implementation should be generated.
For example: com.sag.generated.impl

IMPLPACKAGE

Required. The location where the generated bean will be stored.DESTINATION

21CentraSite Application Framework

Mapping Beans to Registry Objects with Annotations

22

4 Querying the Registry

■ Application Framework Simple Search ... 24
■ Application Framework JAXR-Based Search ... 32

23

The Application Framework provides two search functionalities:

■ The Application Framework Simple Search uses only framework-specific data, so it is simpler
to use and supports all needed query operations. This search interface is also the recommended
one to use.

■ The Application Framework JAXR-based Search combines framework and JAXR-based data.
The advantage of this search is that it can use the whole JAXR-based functionality to query the
registry. The disadvantage is that in order to use it, the user must have considerable knowledge
of JAXR.

Application Framework Simple Search

The Application Framework Simple Search uses framework-specific data only and its usage has
been made as simple as possible.

1. Creating a search object
In order to search the registry, the user must create a search object using a BeanPool instance.
The BeanPool offers several methods for creating search objects:
■ Without arguments:

BeanPool.createSearch();

This creates a search object which, when executed, searches for objects in the registry from
all registered bean types (see the section Bean Types Managed by CSAF).

■ When a List of items is passed:

BeanPool.createSearch(List<Class<? extends RegistryBean>> beanClasses)

The created search object searches through all objects in the registry, from the specified list
of types.

■ When a single type is passed:

BeanPool.createSearch(Class<? extends RegistryBean bean> beanClass)

The search object searches the registry only for items from the specified type.

The search object has a result()method which searches the registry and returns a list of all
RegistryBean objects that satisfy the search criteria.

Example:

CentraSite Application Framework24

Querying the Registry

BeanPool beanPool = sessionContext.getCurrentBeanPool();

Search search = beanPool.createSearch();

2. Adding search predicates

Predicate explanation

The predicate is an object representation of a query criterion used to restrict the search results.
Predicates can be created from a factory-like class called Predicates
(com.softwareag.centrasite.appl.framework.persistence.search.Predicates).

It provides two static methods for creating each specific predicate:
■ Without specifying Bean Type:

Predicates.eq(String propertyName, Object value)

■ By specifying a Bean Type:

Predicates.eq(String propertyName, Object value,Class<? extends RegistryBean> ↩
beanType)

where
■ method name is the comparison operator:

logical conjunctionand

equaleq

greater than or equal toge

greater thangt

less than or equal tole

matches a string that can include wildcardslike

less thanlt

not equalne

logical disjunctionor

■ property name is the name of the property to be compared. This property name is a string
value representing the name of the Java property (getName() corresponds to “name”). The
search functionality supports adding a sequence of properties. This is accomplished by
knowing the searched RegistryBean property hierarchy and by separating following
properties with a dot ".".

Example:

25CentraSite Application Framework

Querying the Registry

The predicate is created for theURI property of the externalLinks
of the searchedRegistryBean,which should be equal to the given
value.

Predicates.eq("externalLink.uri ",
value)

■ value is the value to compare against. Most methods expect an Object value because the
search can handle a variety of objects including String, Number, Date, Calendar, Key, Re-
gistryBean and others. There are alsomethods that expect a specific value type. An example
is like(String propertyName, String value), which supports wildcards and therefore the
expected value type is String. Other object types that areworthmentioning are the so-called
support types (TelephoneNumbers, InternationalString, LocalizedString, EmailAddress,
PostalAddress, etc.). They can be used for search criteria but not as a searched object because
they are not registry beans. For example, the following search is valid:

Search search = beanPool.createSearch(User.class);
Predicates.eq("telephoneNumbers.countryCode", "someCountryCode");

But the following search is not valid:

Search search = beanPool.createSearch(EmailAddress.class);

■ beanType is the bean type for which the predicate will be applied.

Important: If no beanType is specified then the predicate is applied to the first bean
type in the Search object's list of bean types. Note that the first item of that list must
support the property passed to the predicate, otherwise the search will fail. In cases
where the search object is created for all supported bean types, the list is filled ran-
domly so the user must be aware of all common properties supported by these Re-
gistryBean types.

Each predicate can be added to the search object by invoking the search method:

addPredicate(Predicate predicate);

A search object can add multiple predicates, which can be treated as predicates joined by an
"and" operator. For example:

Search search = beanPool.createSearch();
search.addPredicate(predicate1);
search.addPredicate(predicate2);
search.addPredicate(predicate3);

is equal to "predicate1 and predicate2 and predicate3" in the query to be executed.

There are twomoremethods in the Predicates class: and(Predicate p1, Predicate p2) and
or(Predicate p1, Predicate p2). These methods create a so-called combine predicate.

CentraSite Application Framework26

Querying the Registry

They join two predicates by logical conjunction or logical disjunction respectively. This pre-
dicate can be added to the search object in the sameway as the common predicates explained
above.

Supported predicates description

All supported predicates are created from methods in the Predicates class
(com.softwareag.centrasite.appl.framework.persistence.search.Predicates).

Like Predicate

A predicate that supports usage of wildcards. The value field of the creating methods:

like(String propertyName, String value)
like(String propertyName, String value, Class<? extends RegistryBean> beanType)

is of Type String, so the user may add strings (possibly including wildcards).

Example:

like("name","%partOfExpectedName");

Wildcards

The like predicate supports wildcards in the manner of SQL and UDDI. For more details, refer
to the section About wildcards in the UDDI specification: http://uddi.org/pubs/uddi-v3.0.2-
20041019.htm#_Toc85908082. The wildcard characters are as follows:

IndicatesWildcard character

Any value for any number of characters%

Any value for a single character_

The following special cases are supported:

use the character string...To represent...

\%%

__

\\\

Greater Than Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared object
value is greater than the value given in the predicate's creating method “value” field:

gt(String propertyName, Object value)
gt(String propertyName, Object value, Class<? extends RegistryBean> beanType)

27CentraSite Application Framework

Querying the Registry

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908082
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908082

The value must be one of the following types: Number, Date, Calendar.

Example:

Calendar calendar = Calendar.getInstance();
Predicate predicate = Predicates.gt("requestDate",calendar);

Less Than Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared object
value is less than the value given in the predicate's creating method “value” field:

lt(String propertyName, Object value)
lt(String propertyName, Object value, Class<? extends RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar.

Example:

Predicate predicate = Predicates.lt("copyNumber",203);

Greater or Equal Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared object
value is greater than or equal to the value given in the predicate's creating method “value”
field:

ge(String propertyName, Object value)
ge(String propertyName, Object value, Class<? extends RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar.

Example:

Predicate predicate = Predicates.ge("copyNumber",203);

Less or Equal Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared object
value is less than or equal to the value given in the predicate's creating method “value” field:

le(String propertyName, Object value)
le(String propertyName, Object value, Class<? extends RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar.

Example:

CentraSite Application Framework28

Querying the Registry

Predicate predicate = Predicates.le("copyNumber",203);

Equal Predicate

A predicate that returns true if the compared object value is equal to the value given in the
predicate's creating method “value” field:

eq(String propertyName, Object value)
eq (String propertyName, Object value, Class<? extends RegistryBean> beanType)

The valuemust be one of the following types:Number, Date, Calendar, String, Key, RegistryBean.

If the value is of type RegistryBean then the comparison is made by the RegistryBean's key.

Example:

Predicate predicate = Predicates.eq("name","somePropertyname");

Not Equal Predicate

A predicate that returns true if the compared object value is not equal to the value given in the
predicate's creating method “value” field:

ne(String propertyName, Object value)
ne (String propertyName, Object value, Class<? extends RegistryBean> beanType)

The valuemust be one of the following types:Number, Date, Calendar, String, Key, RegistryBean.

If the value is of type RegistryBean then the comparison is made by the RegistryBean's key.

Example:

Predicate predicate = Predicates.ne("name","somePropertyname");

AND Predicate

A predicate that joins two predicates in a logical conjunction. The method that creates this
predicate:

public static Predicate and(Predicate p1, Predicate p2)

expects two predicates as arguments.

Example:

29CentraSite Application Framework

Querying the Registry

Predicate predicate1 = Predicates.eq("name","somePropertyname");
Predicate predicate2 = Predicates.eq("name","somePropertyname2");
Predicate andPredicate = Predicates.and (predicate1, predicate2);

OR Predicate

A predicate that joins two predicates in a logical disjunction. The method that creates this pre-
dicate:

public static Predicate or(Predicate p1, Predicate p2)

expects two predicates as arguments.

Example:

Predicate predicate1 = Predicates.eq("name","somePropertyname");
Predicate predicate2 = Predicates.eq("name","somePropertyname2");
Predicate orPredicate = Predicates.or (predicate1, predicate2);

3. Order can be created by using one of theOrder (com.softwareag.centrasite.appl.framework.per-
sistence.search.Order) static methods: asc(String propertyName) or desc(String
propertyName), creating ascending or descending order respectively for a given property. The
rules for the property name when creating Order are the same as when creating a Predicate.
The user must know whether the bean types added to the search object support the property
passed to theOrder asc(String propertyName) or desc(String propertyName)methods.Multiple
orders may be added to the search object.

Example:

Order order = Order.asc("description");

4. After adding the necessary predicates and orders to the search object, the search can be executed
by invoking the result()method on the search object. It returns a list of all RegistryBean objects
in the registry that applied the predicate conditions in the specified order. The result is lazy
loading compatible.

Here is an example of a Search lifecycle:

List searchTypes = new ArrayList();
searchTypes.add(ReviewRequestOutcome.class);
searchTypes.add(ServiceInterfaceVersion.class);

Search search = beanPool.createSearch(searchTypes);

Predicate predicate1 = Predicates.eq("ExternalLink.URI", ↩
"http://www.softwareag.com");
Predicate predicate2 = Predicates.eq("name","somePropertyname2");
Predicate orPredicate = Predicates.or (predicate1, predicate2);

CentraSite Application Framework30

Querying the Registry

Search.addPredicate(orPredicate);

search.addOrder("name");

List<RegistryBean> result = (List<RegistryBean>) search.result();

This means that all ReviewRequestOutcomes and ServiceInterfaceVersions will be searched
and the ones that have name equal to “somePropertyname2” or ExternalLink with URI equal
to “http://www.softwareag.com” will be returned in the resulting List of RegistryBean objects
ordered by name.

Extensibility

There are several points where the user can extend the existing Application Framework function-
ality.

Properties

Each Java bean property is internally represented as a com.softwareag.centrasite.appl.framework.map-
ping.Property instance.

The recommended way of creating a new property is by extending, directly or indirectly, the
BaseProperty class (com.softwareag.centrasite.appl.framework.mapping.BaseProperty).

In order to map the information from a given annotation to the new Property correctly, a user-
defined Property Processor that implements the PropertyAnnotationProcessor (com.software-
ag.centrasite.appl.framework.PropertyAnnotationProcessor) must be created.

Then the newly created PropertyProcessor must be added to the list of processors in the Bean-
TypeAnnotationProcessor (com.softwareag.centrasite.appl.framework.BeanTypeAnnotationPro-
cessor) using the addAnnnotationProcessor(Class<?> annotationType,
PropertyAnnotationProcessor annotationProcessor)method.

Property Mapper

Each property value must be transferred to/from the underlying registry object. For that purpose,
CSAFprovides the (com.softwareag.centrasite.appl.framework.persistence.mapper.PropertyMap-
per) interface.

Users can provide their own implementation of the PropertyMapper interface by hooking it to a
given type of Property. Such a property mapper is registered using the
com.softwareag.centrasite.appl.framework.persistence.mapper.PropertyMapperFactory.addHandler(PropertyMapperFactory.Handler)
method.

31CentraSite Application Framework

Querying the Registry

Predicate

The preferred method of creating a custom defined predicate is to extend the DefaultPredicate
(com.softwareag.centrasite.appl.framework.persistence.search.impl.DefaultPredicate) class directly
or indirectly. Anotherway is to directly implement the Predicate interface (com.softwareag.centra-
site.appl.framework.persistence.search.Predicate), although this is not recommended because it
does not offer default behavior.

In order to use this newly-created predicate, the user must create a custom defined predicate
handler, which must implement the PredicateHandler interface (com.softwareag.centrasite.ap-
pl.framework.persistence.search.PredicateHandler). This predicate handler must be added to the
PredicateFactory (com.softwareag.centrasite.appl.framework.persistence.search.impl.Predicate-
Factory) list of predicate handlers by calling addPredicateHandler(PredicateHandler handler).

Application Framework JAXR-Based Search

Whereas the BeanPool interface takes care of the standard CRUD operations to the registry, the
queries are performed using the Query interface (com.softwareag.centrasite.appl.framework.persist-
ence.Query):

package com.softwareag.centrasite.appl.framework.persistence;
public interface Query<T extends RegistryBean> {

List<T> run(QueryContext pContext) throws JAXRException, CSAppFrameworkException;
}

In order to do a query, one should implement this interface and place the querying routines in the
run()method implementation. The query is then executed via BeanPool.run():

<T extends RegistryBean> List<T> run(Query<T> pQuery) throws CSAppFrameworkException;

The returned data is then in the form of beans.

Thismechanism still requires knowledge of JAXR. The benefit is that JAXR is isolated in this inter-
face. Below is a sample implementation of Query:

final Query<EntryCode> q = new Query<EntryCode>() {
 public List<EntryCode> run(QueryContext context) throws JAXRException {
 final RegistryAccessor regDAO = context.getRegistryAccessor();
 final Concept concept = regDAO.findConceptByPath("CSAF-Taxonomy",
 "/ClassificationInstances/EntryCodeType");
 final List<EntryCode> result = new ArrayList<EntryCode>();
 for (Concept c : (Collection<Concept>) concep.getChildrenConcepts()) {
 try {
 EntryCode ec = ↩
context.getCurrentBeanPool().read(EntryCode.class, c.getKey().getId());
 result.add(ec);

CentraSite Application Framework32

Querying the Registry

 } catch (Exception e) {
 throw new RuntimeException(e.getMessage(), e);
 }
 }
 return result;
 }
 };
 List<RegistryBean> queryResult = getBeanPool().run(q);

In general, a Querywould use the JAXR-basedAPI to find and retrieve the data, and then the keys
of registry objects that were found are passed to the BeanPool to build the beans. These beans are
then returned as the result of the query execution.

33CentraSite Application Framework

Querying the Registry

34

5 Event Mechanism

TheCSAF allows the user to register and receive notificationswhen certain events occur. Currently,
three persistence events are supported: objectDeleted, objectCreated, objectUpdated. These events
can be intercepted by implementing the interface com.softwareag.centrasite.appl.framework.persist-
ence.PersistenceEventListener. Such listeners are registered via the BeanPool, which has methods
for adding, removing and retrieving listeners.

All of the supported events are post events; in other words, they are fired after an action has been
performed. CSAF currently does not support any pre-action events. However, such events are
being planned for upcoming versions.

35

36

6 Asset Types

■ Usage Sample for Type Management .. 38

37

Type Management provides CRUD (create, read, update and delete) operations for custom object
types. CSAF provides its own classes describing object (asset) types and their attributes. Type
Management supports operations on the following attributes: file, classification, relationship
and slot, where slot can be one of the following types:

■ xs:boolean
■ xs:dateTime
■ xs:date
■ xs:time
■ xs:duration
■ xs:anySimpleType
■ xs:integer
■ xs:string
■ xs:anyURI
■ xs:double
■ xs:decimal

Type Management also provides CRUD operations for profiles, and functionality to associate at-
tributes with profiles and attach profiles to types. Amanager interface com.softwareag.centrasite.ap-
pl.framework.types.TypeManager is the entry point for the application that uses CSAF.

Note: In order to use TypeManagement functionality, the StandaloneRegistryProvider instance
must be createdwith the browserBehaviour flag set to "true". Formore information on how
to do this, please check the Introduction.

For more information about the methods and functionality supported by Type Management,
please check the Javadoc of the framework.

Usage Sample for Type Management

private String TYPE_LOCAL_NAME = "TypeLocalName";

private String TYPE_NAMESPACE = "http://test.namespace.test";

private String TYPE_NAME = "{" + TYPE_NAMESPACE + "}"
+ TYPE_LOCAL_NAME;

//Get a sessionContext instance

SessionContext sessionContext = initSessionContext();

CentraSite Application Framework38

Asset Types

// Get a TypeManager instance from sessionContext

TypeManager typeManager = sessionContext.getTypeManager();

// Create a custom object type

TypeDescription typeDescription = typeManager.createType("TypeDisplayName",
"TypeDescription", TYPE_LOCAL_NAME, TYPE_NAMESPACE);

// Create a Classification Attribute

AttributeDescription attrClass = typeManager.createClassificationAttribute(
"ClassificationAttributeName","ClassificationAttributeDescription",
Constants.CLASSIFICATION_SCHEME_PRODUCTS);

//Add attribute to custom type

typeDescription.addAttribute(attrClass);

//Create Profile

Profile profile = typeManager.createProfile("ProfileName");

// Create a File Attribute

AttributeDescription attrFile = typeManager.createFileAttribute(
"nameFileAttribute", "descriptionFileAttribute");

//Add attribute to profile

profile.addAttribute(attrFile);

//Add profile to custom type

typeDescription.addProfile(profile);

// Save custom type

typeManager.saveType(typeDescription);

//Get custom type by name

TypeDescription type = typeManager.getType(TYPE_NAME);

//Delete custom type

typeManager.deleteType(type);

39CentraSite Application Framework

Asset Types

40

7 Association Types

■ Usage Sample for Association Type Management .. 42

41

In general, registry objects can be related to each other via associations. An association belongs to
a specified association type. CentraSite supports predefined association types, such as "HasParent"
and "Uses"; in addition, you can create custom association types.

In CentraSite, an association type is uniquely identified by its value (for example: "HasParent",
"Uses", etc.). The value is specified when the association type is created; it cannot be subsequently
modified.

An association type can optionally have one or more locale-specific display names. If no locale-
specific display names are specified, the association type's value is used by default.

Each association type has a forward label; this is shown, for example, when a corresponding asso-
ciation is displayed by the impact analysis. See the section Impact Analysis in the document Using
the Asset Catalog for related information.

You can optionally specify a backward label. Multiple association types can share forward and/or
backward labels.

The CentraSite Application Framework type management feature provides methods for creating,
updating, deleting and finding association types. For details of the methods, please refer to the
Javadoc.

Usage Sample for Association Type Management

//Get a sessionContext instance
SessionContext sessionContext = initSessionContext();

// Get a TypeManager instance from sessionContext
TypeManager tm = sessionContext.getTypeManager();

AssociationType at = tm.createAssociationType("MyAssociationType", "MyDisplayName", ↩
"MyForwardLabel",
 "MyBackwardLabel", Locale.EN);
tm.saveAssociationType(at);

// find an association type by its value
AssociationType myAssociationType = tm.getAssociationType("MyAssociationType");

// find an association type by its display name
myAssociationType = tm.getAssociationTypeByName("MyDisplayName");

// add a display name with a different locale
myAssociationType.setName("MonNom", Locale.FRENCH);
tm.saveAssociationType(myAssociationType);

CentraSite Application Framework42

Association Types

// delete an association type
tm.deleteAsssociationType(myAssociationType);

43CentraSite Application Framework

Association Types

44

8 Lifecycle Management

■ Usage Sample for LCM .. 47

45

TheApplication Framework supports the LifecycleModel (LCM) functionality. The LCMprovides
the ability to define and track the life-cycle of a service and also provides away to define and enforce
policies that govern the path of an asset through the lifecycle. As a result, these policies can be
automated or enforced consistently. Using registry beans, we now support lifecycle-aware registry
beans.

The definition of an LC Model starts with the definition of an LC Model taxonomy. The state
model of an LC Model is a standard state model (deterministic finite automaton, DFA). The
model itself is represented as the concepts of the LCModel taxonomy. A taxonomy is not defined
for this, so associations are used to represent the state transitions. The states themselves are just
concepts within the taxonomy.

In order to create a lifecycle-aware registry bean, the user must create a registry bean that extends
com.softwareag.centrasite.appl.framework.lcm.beans.LifeCycleAware. Also, the implementation of this
registry bean must extend the com.softwareag.centrasite.appl.framework.lcm.beans.LCAwareDynamic-
RegistryBean. This ensures that the registry bean is lifecycle-aware and is ready to use for lifecycle
operations.

In order to manage the lifecycle models and states, the LCMManager must first be initialized:

com.softwareag.centrasite.appl.framework.SessionContext
sessionContext = initSessionContext();

com.softwareag.centrasite.appl.framework.lcm.LCMAdminManager
lcmAdminManager = sessionContext.getLCMAdminManager();

The com.softwareag.centrasite.appl.framework.lcm.LCMAdminManager provides all operations for
creating, modifying and deleting LCModels. State models for Lifecycle Management models can
theoretically be complex and encompass multiple machines and LCStates.

For more information about the methods and functionality supported by LCMAdminManager,
please check the Javadoc of the framework.

LCModels are state machines for LifecycleManagement and the state machinesmay not have any
states that cannot be reached. The com.softwareag.centrasite.appl.framework.lcm.LCModel provides
methods for all operations that can be performed on an LCModel. When the LCModel becomes
active, no changes to the LCModel are possible; instead, a new version of the LCModel can be
created using LCModel.createVersion().

The com.softwareag.centrasite.appl.framework.lcm.LCState provides access to the LCState and state
specific operations.

For more information about the methods and functionality supported by LCModel, please check
the Javadoc of the framework.

CentraSite Application Framework46

Lifecycle Management

Usage Sample for LCM

// initialize SessionContext

SessionContext sessionContext = initSessionContext();

// get the LCMAdminManager

LCMAdminManager lcmAdminManager = sessionContext.getLCMAdminManager();

// Create a LCModel

LCModel lcModel = lcmAdminManager.createLCModel();
lcModel.setDisplayName("DisplayName");
lcModel.setDescription("Description");

// the LCModel must set a standard mapping Organization:
//com.softwareag.centrasite.appl.framework.beans.standard.Organization

lcModel.setOrganization((Organization)organization, false);

// Create LCStates

LCState lcStateA = lcModel.createLCState();
String stateAName = "State A";
lcStateA.setName(stateAName);
lcStateA.setDescription("stateADesc");
Collection<LCState> states = new ArrayList<LCState>();
states.add(lcStateA);

// add LCStates to lcModel

lcModel.addStates(states);

//lcModel must set an initial State

lcModel.setInitialState(lcStateA);

// add the keys of all Types that should be enabled for LCM

Collection<String> typesToBeEnabledForLCM = new ArrayList<String>();
typesToBeEnabledForLCM.add(typeToEnableForLCMKeys);
lcModel.addEnabledTypes(typesToBeEnabledForLCM);

//Save the lcModel using the LCMAdminManager

lcmAdminManager.saveLCModel(lcModel);

//Find existing LCModel.

47CentraSite Application Framework

Lifecycle Management

//The result will contain all LCModels (active and inactive)
//that have the corresponding display name.
List<LCModel> listOfModels = ↩
lcmAdminManager.findLCModelByDisplayName("DisplayName",false);

CentraSite Application Framework48

Lifecycle Management

9 Revision Management

■ Usage Sample for Revision Management ... 51

49

CentraSite versioning capabilitiesmake it possible to create a new version of an object at any point
in time. However, the new version is per definition a new object instance which has to go through
the whole lifecycle again, firing creation policies etc. There is often a demand for versioning cap-
abilities that allow a defined state of the same object to be restored and referenced. Such a defined
state is referred to as a checkpoint in the remainder of this document.

The CSAF interfaces related to versioning are com.softwareag.centrasite.appl.framework.persistence.re-
vision.RevisionManager and com.softwareag.centrasite.appl.framework.beans.RevisionBean.

The CentraSite revisioning feature can be enabled system-wide, which means that every object
modification (create/update) of any instance of any type leads to the creation of a checkpoint.

A checkpoint has the following identifying attributes: a minor version number, a label and a
timestamp. Theminor version number is incremented each time a checkpoint is created. The label
is an optional description that can be used to add information about the change. Also a timestamp
that reflects the date of the checkpoint creation is recorded with the checkpoint. The creation of a
new checkpoint is recorded in the audit log.

It is possible to reference one specific checkpoint of an object directly and retrieve all of its data
as it was at the point in time when the checkpoint was created. This implies that changes made to
the object after the checkpoint took place are not reflected in the retrieved checkpoint. Note that
the checkpoints provide read-only access to the data; any attempt to update a checkpoint raises
an exception. However the current object can be updated.

Reading a bean instance from the registry using BeanPool.read() always returns the current (latest)
state of an object.

Deleting an object also deletes all of its checkpoints.

It is possible to purge a set of checkpoints to reduce the amount of data consumed by keeping
older states of the object.

Note that in order to use the Revision functionality, the StandaloneRegistryProvider instance must
be created with the browserBehaviour flag set to false. For more information on how to do this,
please check the Introduction section.

CentraSite Application Framework50

Revision Management

Usage Sample for Revision Management

package com.softwareag.centrasite.appl.framework.persistence.tests;

import java.util.ArrayList;
import java.util.Collection;

import com.softwareag.centrasite.appl.framework.SessionContext;
import com.softwareag.centrasite.appl.framework.beans.RevisionBean;
import com.softwareag.centrasite.appl.framework.beans.standard.Service;
import com.softwareag.centrasite.appl.framework.persistence.BeanPool;
import com.softwareag.centrasite.appl.framework.persistence.revision.RevisionManager;

public class Revisioning {
private static String checkpointName = "MyLabel";

public void revisioning() throws Exception {
SessionContext sessionContext = initSessionContext();
BeanPool beanPool = sessionContext.getCurrentBeanPool();

RevisionManager revManager = sessionContext.getRevisionManager();

//enable the feature if needed
if (!revManager.isRevisioningEnabled()) {

revManager.enableRevisioning();
}

// create new checkpoint
Service bean = beanPool.read(Service.class, "uddikey");
revManager.setCheckpoint(bean, checkpointName);

// get all checkpoints including the current state object
Collection<RevisionBean> checkpoints = revManager.getRevisionBeans(bean);

// restore to the only checkpoint
Collection<RevisionBean> restoreObjs = new ArrayList<RevisionBean>();
for (RevisionBean rev : checkpoints) {

if (rev.isRevision()) {
restoreObjs.add(rev);
break;

}
}

revManager.restoreBeans(restoreObjs);

// delete checkpoints based on label
revManager.deleteBeans(checkpointName);

}

51CentraSite Application Framework

Revision Management

private SessionContext initSessionContext() {
//initialize CSAF

return null;
}

}

CentraSite Application Framework52

Revision Management

10 Multi-User Scenarios

In order to address multi-user scenarios successfully, several aspects of the framework should be
noted.

A SessionContext is an expensive-to-create, threadsafe object intended to be shared by all application
threads. It is created once, usually on application startup, from aConfiguration instance. A BeanPool
is an inexpensive, non-threadsafe object that should be used once, for a single request (single unit
of work) and then discarded. The CurrentBeanPoolContext interface defines the contract for imple-
mentations which knows how to scope the notion of a current bean pool. ThreadLocalCurrentBean-
PoolContext, which maintains current bean pools for the given execution thread, is provided as an
example implementation of this interface.

The specification of JAXR does not support transactions or locking. CSAF and CentraSite's imple-
mentation extend the API with some locking and transaction capabilities. Here are some points
to note:

■ Transactions are handled internally and control over them (including isolation, demarcation,
etc.) is not exposed through CSAF. There is only support for bulk operations by using the
BeanPool.delete(java.util.Collection) and BeanPool.update(java.util.Collection)
methods. These methods guarantee the atomicity of the performed operation. There is also a
BeanPool.flush()which performs one bulk operation for the deleted beans and one for the
created and updated beans.

■ Eachmodification to a registry bean (RegistryBean instance) leads to obtaining an exclusive lock
for writing on the whole registry object in the database. This is a pessimistic locking strategy,
as the lock is obtained when the object is modified and not when it is actually persisted.

■ Whenever a lock on a registry object cannot be obtained (because it is taken by another client),
a com.softwareag.centrasite.appl.framework.persistence.LockNotAvailableException is thrown.

■ The notion of an outdated object denotes a registry object whose database representation has
been changed since it was read. This is usually caused by a different client modifying the same
instance. Trying tomodify an outdated object leads to a com.softwareag.centrasite.appl.framework.per-
sistence.ObjectOutdatedException. CSAF supports automatic re-reading of outdated objects; this

53

forces a re-read of the object from the database before applying the changes. See Configuration
for more details on how this can be configured.

In general, the application shouldminimize the time a registry object is kept locked in the database,
i.e., the time during which there are ongoing modifications on it.

CentraSite Application Framework54

Multi-User Scenarios

11 Setting the Classpath

In order to be able to use the CentraSite Application Framework features, the Java classpath must
include all the relevant class files. The easiest way to do this is to include all the JAR files that are
contained in the folder redist (including the subfolder redist/csaf). The redist folder is typically
located atC:\SoftwareAG\CentraSite\redist (MicrosoftWindows) or /opt/softwareag/CentraSite/redist
(UNIX).

55

56

12 Examples

■ CRUD Example .. 58

57

The CentraSite Application Framework SDK comes with two examples. One is for the persistence
functionality and the other is for the validation functionality.

CRUD Example

The CRUD example demonstrates the abilities of the persistence framework. It shows how the
BeanPool is initialized, configured and connected to the registry. Also it shows howCRUD (create,
read, update and delete) operations are performed and queries implemented and executed. It also
includes the beanmodel and samplemapping of themost commonly used bean relationships and
their JAXR-based representation.

CentraSite Application Framework58

Examples

	CentraSite Application Framework
	Table of Contents
	Preface
	1 Introduction
	RegistryBean
	BeanPool
	StandaloneRegistryProvider

	2 Configuration
	Bean Types Managed by CSAF
	Bean Modes
	Persistence Modes
	Cache Configuration

	Re-Reading Outdated Objects

	3 Mapping Beans to Registry Objects with Annotations
	Introduction to Bean Mapping
	Standard Mappings
	Standard Mappings Usage Sample

	Generating Beans with the Command Line
	Under Windows
	Under Linux
	Input Parameters

	4 Querying the Registry
	Application Framework Simple Search
	Extensibility

	Application Framework JAXR-Based Search

	5 Event Mechanism
	6 Asset Types
	Usage Sample for Type Management

	7 Association Types
	Usage Sample for Association Type Management

	8 Lifecycle Management
	Usage Sample for LCM

	9 Revision Management
	Usage Sample for Revision Management

	10 Multi-User Scenarios
	11 Setting the Classpath
	12 Examples
	CRUD Example

