
CentraSite

Run-Time Governance Reference

Version 9.6

April 2014

This document applies to CentraSite Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-DG-ACTIONSR-96-20140318

Table of Contents

Preface .. v
1 Run-Time Events and Key Performance Indicator (KPI) Metrics 1

The Run-Time Event Types .. 2
The Key Performance Indicator (KPI) Metrics ... 3
The Event Notification Destinations .. 3
Destinations for the Monitoring and Transaction Events .. 4
The Metrics Tracking Interval .. 5
Configuring CentraSite to Receive Run-Time Events and Metrics 6
Viewing Run-Time Events and Metrics ... 15
Creating Custom Run-Time Events ... 17
Modifying Run-Time Events .. 18

2 Built-In Run-Time Actions Reference for Virtual Services .. 19
Summary of the Run-Time Actions for Virtual Services ... 20
The watt.server.auth.skipForMediator Property ... 22
Action Evaluation Order and Dependencies ... 22
Usage Cases for Identifying/Authenticating Consumers .. 25
Run-Time Actions Reference for Virtual Services .. 27

3 Built-In Run-Time Actions Reference for APIs ... 47
Summary of the Run-Time Actions ... 48
The watt.server.auth.skipForMediator Property ... 53
Effective Policies ... 54
Usage Cases for Identifying/Authenticating Clients ... 58
Run-Time Actions Reference .. 59

4 Computed Runtime Actions .. 115
Writing Your Own Computed Runtime Action ... 116

iii

iv

Preface

This document describes the run-time events and performance metrics, as well as the run-time
actions that you can apply to virtual services or APIs.

The content is organized under the following sections:

Describes:Run-Time Events and Key
Performance Indicator (KPI)
Metrics ■ The run-time events and Key Performance Indicator (KPI) metrics that

can be collected and reported for each virtual service deployed in your
system.

■ How to configure CentraSite to receive the events and metrics from
the policy-enforcement point (such as Mediator) that collects them.

You use these actions only when you are using CentraSite Control to
create run-time policies for virtual services. This section provides:

Built-In Run-Time Actions
Reference for Virtual Services

■ A summary of the run-time actions.
■ An alphabetic reference of all actions and their parameters.
■ A listing of the action evaluation order and action dependencies.
■ Some common combinations of actions used to authenticate/identify
consumers.

You use these actions only when you are using the CentraSite Business
UI to create policy enforcement rules for APIs. This section provides an
alphabetic reference of all actions and their parameters.

Built-In Run-Time Actions
Reference for APIs

Describes how to write a computed action and integrate it into the
CentraSite environment.

Computed Runtime Actions

v

vi

1 Run-Time Events and Key Performance Indicator (KPI)

Metrics
■ The Run-Time Event Types ... 2
■ The Key Performance Indicator (KPI) Metrics ... 3
■ The Event Notification Destinations .. 3
■ Destinations for the Monitoring and Transaction Events .. 4
■ The Metrics Tracking Interval ... 5
■ Configuring CentraSite to Receive Run-Time Events and Metrics ... 6
■ Viewing Run-Time Events and Metrics ... 15
■ Creating Custom Run-Time Events ... 17
■ Modifying Run-Time Events ... 18

1

CentraSite can receive run-time events and Key Performance Indicator (KPI) metrics. A run-time
event is an event that occurs while services are actively deployed on the target. Examples of run-
time events include:

■ Successful or unsuccessful SOAP requests/responses.
■ Policy violation events, which are generated upon violation of service’s run-time policy.
■ Service monitoring events, which are generated by the service-monitoring actions in the run-
time policy.

KPI metrics are used to monitor the run-time execution of virtual services. Metrics include the
maximum response time, average response time, fault count, availability of virtual services, and
more. If you include run-time monitoring actions in your run-time policies, the actions will mon-
itor the KPI metrics for virtual services, and can send alerts to various destinations when user-
specified performance conditions for a service are violated.

CentraSite provides predefined event types for use with any supported policy-enforcement point
(PEP), such as webMethods Mediator. In addition, you can create custom event types.

The run-time event data are collected by the PEP and published to CentraSite via SNMP. The PEP
publishes data for all run-time events for all instances of the PEP target.

You can view the run-time events and metrics on the CentraSite Control user interface. You can
view them for all targets, for a particular target, or for a particular virtual service.

The following topics are discussed:

The Run-Time Event Types

The types of run-time events that Mediator can publish are as follows:

DescriptionEvent Type

A Lifecycle event occurs each time Mediator is started or shut down.Lifecycle

An Error event occurs each time an invocation of a virtual service results in an error.Error

A Policy Violation event occurs each time an invocation of a virtual service violates a
run-time policy that was set for the virtual service.

Policy Violation

A Transaction event occurs each time a virtual service is invoked (successfully or
unsuccessfully).

Transaction

Mediator publishes key performance indicator (KPI)metrics, such as the average response
time, fault count, and availability of all virtual services (described below).

Monitoring

Run-Time Governance Reference2

Run-Time Events and Key Performance Indicator (KPI) Metrics

The Key Performance Indicator (KPI) Metrics

For the Monitoring event type, Mediator can publish the following types of KPI metrics:

Reports on...Metric

The percentage of time that a virtual service was available during the current
interval. A value of 100 indicates that the service was always available. Only

Availability

the timewhen the service is unavailable counts against thismetric. If invocations
fail due to policy violations, this parameter could still be as high as 100.

The average amount of time it took the service to complete all invocations in
the current interval. This is measured from the moment Mediator receives the
request until the moment it returns the response to the caller.

Average Response Time

The number of failed invocations in the current interval.Fault Count

The maximum amount of time it took the service to complete an invocation in
the current interval.

Maximum Response Time

The minimum amount of time it took the service to complete an invocation in
the current interval.

Minimum Response Time

The number of successful service invocations in the current interval.Successful Request Count

The total number of requests for each service running inMediator in the current
interval.

Total Request Count

Note: Bydefault,AverageResponseTime,MinimumResponseTime andMaximumResponse
Time do not includemetrics for failed invocations. You can includemetrics for failed invoc-
ations by setting the pg.PgMetricsFormatter.includeFaults parameter to true. For more in-
formation, see the section Advanced Settings in the document Administering webMethods
Mediator.

The Event Notification Destinations

Mediator can publish data about the run-time events and metrics to the following destinations:

■ An SNMP server. You can use one or both of the following kinds of servers:
■ CentraSite's SNMP server, which uses SNMPv3 user-security model.

For the procedure to configure Mediator to send SNMP traps to the CentraSite SNMP server,
see the section SNMPDestinations for Run-Time Events in the documentAdministering webMeth-
ods Mediator.

■ A third-party SNMP server, which uses either the SNMPv1 community-based securitymodel
or the SNMPv3 user-based security model.

3Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

For the procedure to configure Mediator to send SNMP traps to a third-party SNMP server,
see the section SNMPDestinations for Run-Time Events in the documentAdministering webMeth-
ods Mediator.

■ AnEDAdestination.Mediator can use EDA to publish run-time events andmetrics to a database.
Mediator uses a JDBC connection pool that you need to define in the Integration Server.

For the procedure to configureMediator to send this data to an EDAdestination, see the section
EDA Configuration for Publishing Run-Time Events and Metrics in the document Administering
webMethods Mediator.

Destinations for the Monitoring and Transaction Events

For theMonitoring and Transaction event types, there are additional event notification destinations
to choose from (in addition to the EDA and SNMP destinations).

Monitoring events are generated by the following run-time actions that you can configure for your
virtual services in CentraSite:

■ Monitor Service Performance.
■ Monitor Service Level Agreement.
■ Throttling Traffic Optimization.

Transaction events are generated by the run-time action Log Invocations.

The available destinations for Monitoring and Transaction events are:

■ An EDA destination (a database).
■ The CentraSite SNMP server or a third-party SNMP server.
■ The virtual service's Events profile in CentraSite.
■ An SMPT email server.
■ Your Integration Server's local log.
■ Your Integration Server's audit log (for Transaction events only).

You will select these destinations when you configure your virtual services in CentraSite.

These additional destinations for the monitoring and transaction events are described below.

■ SMTP Email Servers
■ The Integration Server's Local Log

Run-Time Governance Reference4

Run-Time Events and Key Performance Indicator (KPI) Metrics

■ The Integration Server's Audit Log

SMTP Email Servers

To specify an SMTP email destination, you must:

■ Select the “Email” option as a destinationwhen you configure the run-time actions listed above.
■ Set the “Email Configuration” parameters in Integration Server Administrator (go to Solutions
> Mediator > Administration > Email) as described in the section SMTP Destinations for Alerts
and Transaction Logging in the document Administering webMethods Mediator.

The Integration Server's Local Log

To specify the Integration Server's local log as a destination, you must:

■ Select the “Local Log” option as a destination when you configure the run-time actions listed
above. When configuring the actions, you must also specify the severity of the messages to be
logged (the logging level).

■ Set the Integration Server Administrator's logging level forMediator tomatch the logging levels
specified for the run-time actions (go to Settings > Logging > Server Logger). For example, if a
“Log Invocation” action is set to the logging level of Error, you must also set Integration Server
Administrator's logging level for Mediator to Error. If the action's logging level is set to a low
level (Warning-level or Informationlevel), but Integration Server Administrator's logging level
forMediator is set to a higher level (Error-level), then only the higher-levelmessages arewritten
to the log file.

Entries posted to the local log are identified by a product code of MED.

The Integration Server's Audit Log

You can select the Integration Server Audit Log as a destination for the “Log Invocation” action
only. If you expect a high volume of invocations in your system, it is recommended that you select
the Audit Log destination. For more information, see the webMethods Audit Logging Guide.

The Metrics Tracking Interval

Mediator tracks performance metrics by intervals. The interval is a period of time you set in Me-
diator, during which metrics are collected for reporting to CentraSite. You set the interval in the
Publish Interval field on theMediator > Administration > CentraSite Communication page in
the Integration Server Administrator. For details, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

5Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

Mediator only tracksmetrics for the current interval. At the end of the interval,Mediator aggregates
the metrics and reports them to CentraSite. Once the metrics are reported, Mediator resets its
counters for the new interval. Mediator does not calculate and aggregate metrics across intervals.
If Mediator is shut down or the virtual service is undeployed before the current interval expires,
the performance data is discarded.

Note: To avoid the need forMediator to store metrics during periods of inactivity, Mediator
stores only first and last zero value metrics that occurs during an interval, and discards the
remaining consecutive zero value metrics. Doing this drastically reduces the storage space
consumed by the metrics, and speeds the queries you perform in the dashboard. Skipping
the in-between zero metrics will not affect in the performance graphs shown in the dash-
board.

For more information about the metrics tracking interval, see the section Key Performance Indicator
Metrics and Run-Time Event Notifications in the document Administering webMethods Mediator.

Configuring CentraSite to Receive Run-Time Events and Metrics

Prerequisites:

■ Ensure that Mediator is configured for publishing events to an SNMP server, as described in
the section SNMP Destinations for Run-Time Events in the document Administering webMethods
Mediator.

■ If you use a target type other than Mediator or webMethods Insight, be sure to configure
CentraSite to publish events by providing your own MIB file in your target type's definition
file, as described in the section Run-Time Targets. (CentraSite provides a MIB file for Mediator
and Insight.)

■ Optionally change CentraSite's default settings for logging run-time events, as described in the
section Logging. By default, CentraSite logs all predefined event types, but youmay disable any
type.

CentraSite provides an Event Receiver, which is a data collector that collects the run-time event
data. The Event Receiver listens for run-time events from the target instances via the SNMP (Ap-
plication-Layer) protocol, and contains the logic to parse and store event data in the Event Receiver's
data store. You must configure the Event Receiver's properties file as described below.

This section includes the following topics:

■ Components of the Event Receiver
■ Configuring the Event Receiver
■ Event Type Modeling

Run-Time Governance Reference6

Run-Time Events and Key Performance Indicator (KPI) Metrics

■ Event Modeling

Components of the Event Receiver

The Event Receiver contains the following components.

■ The SNMP Listener

CentraSite's SNMPv3 Trap Listener, which supports SNMP4J. This Listener starts automatically
when CentraSite starts.

■ The Intermediate Queue

The queue from the SNMP Listener to the Event Processor. This queue decouples the SNMP
Listener threads from the Event Processor to improve throughput. The following modes are
supported.
■ FileSystem: Incoming Traps will be stored temporarily in the file system
■ InMemory: Incoming Traps will be stored temporarily in memory
■ NoQueue: Incoming Traps will not be stored in any intermediate queue; the SNMP Listener
threads will be processed.

To select the mode, set the eventsQueueImpl property as described in Setting the Events Queue
Implementation Property.

■ The Event Processor

The Event Processor (SOALinkSNMPEventsListener) transforms incoming SNMPv3 Traps into
an XML file (Events.xml) that complies with the schema in the RuntimeEvents Collection com-
ponent. The Event Processor transforms an SNMPv3 Trap to the Events.xml file as follows:

1. Determines the Event Type (and Target Type) to which the Trap belongs, and gets the corres-
ponding UUIDs. This involves searching all Event Type-to-Trap mappings in all the defined
target types, using the Trap’s OID. Since this is an expensive search, the Event Type-to-Trap
mapping is cached to improve performance.

2. Parses the Trap attributes and obtains: the Service (UUID); the Target (Name); the TimeStamp
and the SessionId. The Processor then searches the registry/repository and obtains the corres-
ponding UUID for the Target Name. This mapping is also cached to improve performance.

3. Collects the remaining attributes from the Trap.

4. Constructs the Events.xml file using the Event TypeUUID, Target TypeUUID, Service UUID,
Target UUID, TimeStamp, SessionId and other collected attributes.

■ The Batch Condition

The Batch Condition is a set of OR conditions used by the Event Processor. The Event Processor
supports twomodes of event storage intoCentraSite: BatchMode andNoBatchMode. BatchMode
is available only for FileSystem and InMemory queues. When BatchMode is enabled, the Event

7Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

http://www.snmp4j.org/

Processor continues to accumulate Events.xml documents until one of the conditions is evaluated
as true. Then it inserts all the documents as a single batch into CentraSite.

To specify BatchMode or NoBatchMode, set the batch-related properties as described in Setting
the Properties for FileSystem or InMemory.

■ The RuntimeEvents Collection

The run-time events are stored in the RuntimeEvents Collection as non-registry objects. For in-
formation about how events are stored, see Event Type Modeling.

Configuring the Event Receiver

The Event Receiver is bundled in the installation as a Web-Application named SOALinkSNM-
PEventsListener supporting the JavaEE standard. The configuration file for the Event Receiver is
located here:

<CentraSite_directory>/cast/cswebapps/SOALinkSNMPEventsListener/WEB-INF/web.xml

Theweb.xml configuration file contains all the Event Receiver configuration properties. Youmust
set these properties as described below, and then restart CentraSite.

■ Setting the Database Configuration Properties
■ Setting the SNMPv3 Transport Configuration Properties
■ Setting the SNMPv3 USM Configuration Properties
■ Setting the Events Queue Implementation Property
■ Setting the Properties for FileSystem or InMemory

Setting the Database Configuration Properties

In the Event Receiver's configuration file, set the following properties related to the RuntimeEvents
Collection database .

DescriptionDatabase Property

The URL of the RuntimeEvents Collection
database. All run-time eventswill be persisted
to this database.

com.softwareag.centrasite.soalink.events.dbUrl

The user name that the Events Listener will
use for authentication before persisting event

com.softwareag.centrasite.soalink.events.dbUserId

data to the RuntimeEvents Collection
database. The default value of this property
is the predefined user EventsUser.

Optionally, you can change the value
EventsUser to any login user who has the
following privileges:

Run-Time Governance Reference8

Run-Time Events and Key Performance Indicator (KPI) Metrics

DescriptionDatabase Property

■ Write access on the Tamino collection
"RuntimeEvents".

■ Read access on "TargetTypes", "Targets",
"RuntimeEventTypes" and "LogUnit",
which are under the Tamino collection
"CentraSite".

If you want to change the value to a login
user, enter that login user's name in the form
<hostName>\<userName>.

Important: The predefined password of
EventsUser is EventsManager4CS (there is no
need to specify the password in this file). If
you want to change this password, or if you
have changed the value EventsUser to a login
user, youmust change the password. For details,
see the section Users, Groups, Roles, and
Permissions. Whenever you change the
password, you must restart CentraSite.

The non-activity timeout in seconds for the
RuntimeEvents Collection database (default
2592000 seconds (i.e., 30 days)).

com.softwareag.centrasite.soalink.events.dbNonActivityTimeOut

Setting the SNMPv3 Transport Configuration Properties

In the Event Receiver's configuration file, set the following properties related to a SNMPv3
Transport.

DescriptionSNMPv3 Transport Property

Wire transport protocol that
will be used by the SNMP

com.softwareag.centrasite.soalink.events.snmp.transport

Listener. Supported values are:
TCP and UDP.

The CentraSite host name or IP
address to which the SNMP
listener will bind.

com.softwareag.centrasite.soalink.events.snmp.host

The port to which the SNMP
listener will bind. The default
is 8181.

If Microsoft Internet
Information Services (IIS) is

com.softwareag.centrasite.soalink.events.snmp.port

installed (or will be installed)
on the same machine hosting

9Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

DescriptionSNMPv3 Transport Property

IS/Mediator, then you may
want to change the default
SNMP port of 8181 to
something else, to avoid any
potential runtime conflicts
when sending SNMP packets.

Maximum inbound message
size in bytes (an integer). Traps

com.softwareag.centrasite.soalink.events.snmp.maxInboundMessageSizeInBytes

that exceed this size limit will
be rejected. Default value is
256Kb.

The SNMP Listener's
Worker-Thread pool size

com.softwareag.centrasite.soalink.events.snmp.dispatcherPoolSize

(default is 10). This determines
the throughput of the Listener.

Setting the SNMPv3 USM Configuration Properties

In the Event Receiver's configuration file, set the following properties related to SNMPv3 USM.

DescriptionSNMPv3 USM Property

EngineId to be used by the SNMP Listener.
If the parameter is left blank, the SNMP
Listener will auto-generate the engineId.

com.softwareag.centrasite.soalink.events.snmp.engineId

The SecurityName to be used by the SNMP
Listener.

com.softwareag.centrasite.soalink.events.snmp.securityName

The Maximum SecurityLevel to be
supported by SNMP Listener. Supported

com.softwareag.centrasite.soalink.events.snmp.securityLevel

values in order are: NOAUTH_NOPRIV,
AUTH_NOPRIV and AUTH_PRIV. For
example, AUTH_PRIVprovides the highest
level of security but also supports the other
two levels. Similarly AUTH_NOPRIV
supports NOAUTH_NOPRIV.

AuthorizationProtocol to be used by the
SNMP Listener for decoding the incoming
trap. Supported values are: MD5 and SHA.

com.softwareag.centrasite.soalink.events.snmp.authProtocol

The PassPhrase key to be used by the
AuthorizationProtocol. The passphrase key

com.softwareag.centrasite.soalink.events.snmp.authPassPhraseKey

length should be >= 8. The key is stored in
this file; the passphrase value is stored
securely in passman.

The PrivacyProtocol to be used by the SNMP
Listener for decoding the incoming trap.

com.softwareag.centrasite.soalink.events.snmp.privProtocol

Run-Time Governance Reference10

Run-Time Events and Key Performance Indicator (KPI) Metrics

DescriptionSNMPv3 USM Property

Supported values are: DES, AES128, AES,
AES192, AES256, 3DES and DESEDE.

The PassPhrase key to be used by the
PrivacyProtocol. The passphrase length

com.softwareag.centrasite.soalink.events.snmp.privPassPhraseKey

should be >= 8. The key is stored in this file;
the passphrase value is stored securely in
passman.

Setting the Events Queue Implementation Property

In the Event Receiver's configuration file, set the following property related to the implementation
of the events queue.

DescriptionEvents Queue Property

Supported values are:com.softwareag.centrasite.soalink.events.eventsQueueImpl

■ FileSystem: Incoming Traps will be stored
temporarily in the file system

■ InMemory: Incoming Traps will be stored
temporarily in memory

■ NoQueue: Incoming Traps will not be stored in
any intermediate queue; the SNMP Listener
threads will be processed one by one

Additional, related properties are described in
Setting the Properties for FileSystem or InMemory.

Setting the Properties for FileSystem or InMemory

When the eventsQueueImpl property is set to either FileSystem or InMemory, you should also set
the following properties.

DescriptionProperty for FileSystem or InMemory

Enable or disable batch insertion of events
into the database. Supported values are

com.softwareag.centrasite.soalink.events.enableBatchInsertion

true and false. If true, events will be
batched as per the "batching rules"
properties below, and the batch will be
stored to the database. If false, events will
be stored to the database one by one.

Maximum number of events in a batch.
Should be an integer value. A value <= 0

com.softwareag.centrasite.soalink.events.maxNumOfEventsPerBatch

disables this rule. This rule is evaluated
only on arrival of a new Trap.

11Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

DescriptionProperty for FileSystem or InMemory

Maximum size (in bytes) of a batch.
Default value is 512KB. Should be an

com.softwareag.centrasite.soalink.events.maxSizeOfBatch

integer value. A value <= 0 disables this
rule. This rule is evaluated only on arrival
of a new Trap.

Maximum time interval (in milliseconds)
between two subsequent batch storages.

com.softwareag.centrasite.soalink.events.maxTimeIntervalBetweenBatches

Should be an integer value. A value <= 0
disables this rule. Unlike the other two
rules, this rule is evaluated periodically.
Hence this rule prevents any trap stuck in
the batch for ever if inflow of traps stops;
in short this acts as a batch-timeout. A very
low value for this rule reduces batch
efficiency and introduces unnecessary
looping.

(Only applies when the eventsQueueImpl
property is set to FileSystem.) The

com.softwareag.centrasite.soalink.events.fileSystemQueueDir

directory that should be used as
FileSystemQueue. Incoming trapswill be
stored in this directory temporarily and
hence should have write permission. The
path can be absolute or relative. It is
advisable to provide the absolute path.
Relative paths will be considered relative
to one of the following, based on
availability in the same order:

1. SOALinkSNMPEventsListener/WEB-INF
directory for exploded deployments.

2. javax.servlet.context.tempdir for zipped
deployments.

3. java.io.tmpdir if none of the above are
available.

Run-Time Governance Reference12

Run-Time Events and Key Performance Indicator (KPI) Metrics

Event Type Modeling

Event types aremodeled as registry objects. The String, Date, Integer and Boolean event attributes
are stored in the registry/repository as slots. The File-Type attributes (representing payloads/binary-
data) are stored as HasExternalLink associations.

For example, consider the predefined event type Transaction. If you go to the Target Type details
page, youwill see the Transaction event type attributes (which are obtained from thewebMethod-
sESB.mib file) as follows:

TypeObject IDAttribute Name

String1.3.6.1.4.1.1783.201.1.1.1Service

String1.3.6.1.4.1.1783.201.1.1.2Target

Date1.3.6.1.4.1.1783.201.1.1.3Timestamp

String1.3.6.1.4.1.1783.201.1.1.4Consumer

String1.3.6.1.4.1.1783.201.1.1.5RequestStatus

File1.3.6.1.4.1.1783.201.1.1.6ResponsePayload

File1.3.6.1.4.1.1783.201.1.1.7RequestPayload

Integer1.3.6.1.4.1.1783.201.1.1.8ProviderRoundTripTime

Integer1.3.6.1.4.1.1783.201.1.1.9TotalRoundTripTime

String1.3.6.1.4.1.1783.201.1.1.16SessionID

String1.3.6.1.4.1.1783.201.1.1.17ConsumerIP

String1.3.6.1.4.1.1783.201.1.1.21OperationName

String1.3.6.1.4.1.1783.201.1.1.22NativeEndpoint

All of these attributes (except the File-Type attributes RequestPayload and ResponsePayload) are
stored as registry object slots, as follows:

Slot Value (Attribute)Slot TypeSlot Key

Servicexs:stringuddi_16d34470-9a92-11dd-9b43-e319c2a6593c

Targetxs:stringuddi_f18b5a40-9a91-11dd-b95e-b4758b17b88b

TimeStampxs:datetimeuddi_c798d3c0-9a91-11dd-889e-b999c87ba6b7

Consumerxs:stringuddi_a7476ff0-a108-11dd-9c38-d8fd010529cc

RequestStatusxs:stringuddi_a7476ff0-a108-11dd-9c38-eac6d60fc855

ProviderRoundTripTimexs:integeruddi_a7476ff0-a108-11dd-9c38-f3f84c6111f0

TotalRoundTripTimexs:integeruddi_a7476ff0-a108-11dd-9c38-d02170b3aae3

SessionIDxs:stringuddi_21b67010-9a92-11dd-926a-991c4c180c79

ConsumerIPxs:stringuddi_a7476ff0-a108-11dd-9c38-d34f346cb3d5

OperationNamexs:stringuddi_f1c8a185-4b18-4974-a360-6c70756a174a

NativeEndpointxs:stringuddi_524d05f5-d526-4605-b594-ace1cb750d33

13Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

The File-Type attributes ResponsePayload and RequestPayload are stored as HasExternalLink
associations, as follows:

Association Name (Attribute)Association Key

ResponsePayloaduddi:a747704b-a108-11dd-9c38-fde9d932116a

RequestPayloaduddi:a745265b-a108-11dd-9c38-bf43eee17363

The "Target Type to Event Type Association" Object

A target type (represented as a concept) is associatedwith an event type (represented as a registry
object) by a "Target Type to Event Type Association" object, which defines the "UUID toMIB OID"
mapping.

The following table shows the contents of a sample object that associates the target typewebMethods
Mediator with the event type Transaction. The table's columns are described below.

■ Attribute: The Attribute column is not part of the object; it is included here simply for your
reference.

■ Slot Key: Contains the UUID, which is obtained from the event type registry object.
■ Slot Type: Contains the slot type, which is obtained from the event type registry object.
■ Slot Value: Contains the event type attribute's Object Identifier (OID), which is obtained from
the MIB file.

Slot Value (Event Attribute
OID)

Slot TypeSlot Key (Event Type UUID)Attribute

1.3.6.1.4.1.1783.201.1.1.1xs:stringuddi_16d34470-9a92-11dd-9b43-e319c2a6593cService

1.3.6.1.4.1.1783.201.1.1.2xs:stringuddi_f18b5a40-9a91-11dd-b95e-b4758b17b88bTarget

1.3.6.1.4.1.1783.201.1.1.3xs:datetimeuddi_c798d3c0-9a91-11dd-889e-b999c87ba6b7TimeStamp

1.3.6.1.4.1.1783.201.1.1.4xs:stringuddi_a7476ff0-a108-11dd-9c38-d8fd010529ccConsumer

1.3.6.1.4.1.1783.201.1.1.5xs:stringuddi_a7476ff0-a108-11dd-9c38-eac6d60fc855RequestStatus

1.3.6.1.4.1.1783.201.1.1.6xs:anyURIuddi_a747704b-a108-11dd-9c38-fde9d932116aResponsePayload

1.3.6.1.4.1.1783.201.1.1.7xs:anyURIuddi_a745265b-a108-11dd-9c38-bf43eee17363RequestPayload

1.3.6.1.4.1.1783.201.1.1.8xs:integeruddi_a7476ff0-a108-11dd-9c38-f3f84c6111f0ProviderRoundTripTime

1.3.6.1.4.1.1783.201.1.1.9xs:integeruddi_a7476ff0-a108-11dd-9c38-d02170b3aae3TotalRoundTripTime

1.3.6.1.4.1.1783.201.1.1.16xs:stringuddi_21b67010-9a92-11dd-926a-991c4c180c79SessionID

1.3.6.1.4.1.1783.201.1.1.17xs:stringuddi_a7476ff0-a108-11dd-9c38-d34f346cb3d5ConsumerIP

1.3.6.1.4.1.1783.201.1.1.21xs:stringuddi_f1c8a185-4b18-4974-a360-6c70756a174aOperationName

1.3.6.1.4.1.1783.201.1.1.22xs:stringuddi_524d05f5-d526-4605-b594-ace1cb750d33NativeEndpoint

Run-Time Governance Reference14

Run-Time Events and Key Performance Indicator (KPI) Metrics

Event Modeling

An event is an instance of an event type. Events are modeled in a separate schema from the event
type schema. CentraSite models events as non-registry objects (to avoid storing large amounts of
unwanted event data in the registry/repository), and instead stores event data in a database collec-
tion within the Event Receiver. CentraSite maps events to their corresponding event types, using
the event types' UUIDs. Similarly, events are mapped to target types, targets and services using
UUIDs and the event type attributes.

The stored event data will contain:

■ The event Trap ID (MIB OID).
■ The event Trap value, which consists of:

■ The attribute key (MIB OID).
■ The attribute value.

The event data is stored in the Event Receiver as an "events" doctype.

If an event contains payloads (e.g., File-Type attributes such as ResponsePayload andRequestPay-
load), the payloads are stored in the Event Receiver as a "payloads" doctype, andwill be referenced
by the event stored under the "event" doctype, using ino:id. This is used to reduce de-serialization
of the usually large payloads, and to improve performance of queries on the stored events.

Viewing Run-Time Events and Metrics

You can view the run-time events and metrics that occurred for:

■ A particular target or all targets (see Viewing Run-Time Events and Metrics for Targets).
■ Each virtual service (see Viewing Run-Time Events and Metrics for Virtual Services).
■ Each API (see Viewing Run-Time Events and Metrics for APIs).

Viewing Run-Time Events and Metrics for Targets

Use the following procedure to view lists of run-time events for a particular target or for all targets.

If you are using theMediator target, ensure thatMediator is configured to send event notifications
to the destination(s) that are applicable for each event type. For details, see SNMP Destinations for
Run-Time Events in the document Administering webMethods Mediator.

Note: You must have the permissions to manage targets, as described in the section Run-
Time Targets.

15Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

To view a list of run-time events for targets

1 In CentraSite Control, go toOperations > Events > Event List.

2 Use the following fields to filter the event list you want to view:

Specify...In this field...

The type of the target whose events you want to view.Target Type

The target whose events you want to view (or select All to view events of all targets).Target

A particular event type, or select All to view all event types. For descriptions of the
predefined event types, see the The Run-Time Event Types.

Event Type

Select All or Virtual Service.

Note: CentraSite does not provide out-of-the-box policy-enforcement for web services.

Service Type

A range of dates from which to view the events.Date Range

Alternatively, select the check box next to this field and click the calendar and select a
starting date and time.

Start Date

Click the calendar and select an ending date and time.End Date

3 Click the Search button.

4 The generated event list displays the following information:

DescriptionField

The date/time that the event occurred. Click this hyperlinked value to view the Event
Detail page, which will contain the event's SOAP request or response name in the
Attribute column. Click the hyperlinked request or response name to display the full
SOAP request or response.

Date/Time

(Read-only.) The session ID that generated the event.Session ID

(Read-only.) The type of event (e.g., Monitoring, Policy Violation, Error, etc.).Event Type

(Read-only.) The name of the service that caused the event.Service Name

(Read-only.) The service’s type.Service Type

(Read only.) The target on which the event occurred.Target

(Read only.) The type of the target on which the event occurred.Target Type

Note: To view the list of attributes that are mapped for each event type, go to the target
type's detail page (see the section Run-Time Targets).

Run-Time Governance Reference16

Run-Time Events and Key Performance Indicator (KPI) Metrics

Viewing Run-Time Events and Metrics for Virtual Services

You can view the events and metrics for a virtual service in its Events profile and its Performance
profile. For details, see the section Virtual Services in CentraSite Control.

Viewing Run-Time Events and Metrics for APIs

You can view the events and metrics for an API in its Runtime Events profile and its Runtime
Metrics profile. For details, see the section Virtual Services in CentraSite Control.

Creating Custom Run-Time Events

CentraSite provides the predefined event types described inTheRun-Time Event Types. In addition,
you can create custom run-time events that CentraSite will monitor.

Note: Prerequisite: Youmust have theManage Runtime Event Types permission. By default,
the predefined roles CentraSite Administrator and Operations Administrator include this
permission. Formore information about roles and permissions, see the sectionUsers, Groups,
Roles, and Permissions.

Important: To enable CentraSite to recognize custom event types, ensure that your MIB file
(which is contained in your target type definition file) contains the SNMP Traps metadata
andObject Identifiers for the custom events. Formore information, see the sectionRun-Time
Targets.

To create custom event types

1 In CentraSite Control, go toOperations > Events > Event Types to display the Event Types
page.

The page displays all the predefined event types (Monitoring, Policy Violation, Transaction,
Error and Lifecycle) and any custom event types that have been defined.

2 To view the details of any event type, click its hyperlinked name.

The list of attributes for the event type is displayed. You can edit the attributes of custom
event types, but not the predefined event types (seeModifying Custom Run-Time Events).

3 To create a custom event type, click theAdd Event Type button. In theAdd/Edit Event Type
page specify a name and description for the event type. Event type names can contain any
character (including spaces), and are not case-sensitive.

4 In the Event TypeAttribute panel, the following default attributes are displayed. These attrib-
utes are required and cannot be deleted.

17Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

Data TypeAttribute

DateTimeStamp

StringTarget

StringService

StringSessionID

To create additional attributes, perform the following steps:

1. Click the plus button at the bottom of the attribute list.

2. Specify a name in theName column and a value in the Data Type column (Boolean, File,
Date, Integer or String). Attribute names can contain any character (including spaces).

3. To add another attribute, click the plus button at the bottom of the list.

4. To delete an attribute, click the minus button for the attribute you want to delete.

5. Click Save.

Modifying Run-Time Events

To edit and delete custom event types, perform the following steps.

To modify a custom run-time event

1 In CentraSite Control, go toOperations > Events > Event Types to display the Event Types
page.

The page displays all event types that have been defined.

2 To delete a custom event type, select the check box next to the event type and click theDelete
button.

3 To edit the attributes of a custom event type, perform the following steps:

1. Click its hyperlinked name to display the Add/Edit Event Type page.

2. You can change the value of an attribute’s data type, but not its name. Data types can be
Boolean, File, Date, Integer or String.

3. To add another attribute, use the plus button at the bottom of the list.

4. To delete an attribute, click the minus button next to the attribute.

5. Click Save.

Run-Time Governance Reference18

Run-Time Events and Key Performance Indicator (KPI) Metrics

2 Built-In Run-Time Actions Reference for Virtual Services

■ Summary of the Run-Time Actions for Virtual Services .. 20
■ The watt.server.auth.skipForMediator Property .. 22
■ Action Evaluation Order and Dependencies .. 22
■ Usage Cases for Identifying/Authenticating Consumers ... 25
■ Run-Time Actions Reference for Virtual Services ... 27

19

This section describes the built-in run-time actions that you can include in run-time policies for
virtual services. You use these actions only when you are using CentraSite Control to create run-
time policies for virtual services. The content is organized under the following sections:

Summary of the Run-Time Actions for Virtual Services

You can include the following kinds of built-in run-time actions in the run-time policies for virtual
services:

■ WS-SecurityPolicy 1.2 Actions
■ Monitoring Actions
■ Additional Actions

WS-SecurityPolicy 1.2 Actions

Mediator provides two kinds of actions that supportWS-SecurityPolicy 1.2: authentication actions
and XML security actions.

Authentication Actions (WS-SecurityPolicy 1.2)

Mediator uses the following authentication actions to verify that the requests for virtual services
contain a specified WS-Security element:

Uses WS-SecurityPolicy authentication to validate user names and
passwords that are transmitted in the SOAPmessage header for theWSS
Username token.

Require WSS Username Token

Identifies consumers based on a WSS X.509 token.Require WSS X.509 Token

Uses aWSS SecurityAssertionMarkupLanguage (SAML) assertion token
to validate service consumers.

Require WSS SAML Token

XML Security Actions (WS-SecurityPolicy 1.2)

These actions provide confidentiality (through encryption) and integrity (through signatures) for
request and response messages.

Requires that a request's XML element (which is represented by anXPath expression)
be signed.

Require Signing

Requires that a request's XML element (which is represented by anXPath expression)
be encrypted.

Require Encryption

Requires that requests be sent via SSL client certificates, and can be used by both
SOAP and REST services.

Require SSL

Run-Time Governance Reference20

Built-In Run-Time Actions Reference for Virtual Services

Requires that timestamps be included in the request header. Mediator checks the
timestamp value against the current time to ensure that the request is not an old

Require Timestamps

message. This serves to protect your system against attempts at message tampering,
such as replay attacks.

Monitoring Actions

Mediator provides the following run-time monitoring actions:

This action monitors a user-specified set of run-time performance conditions for
a virtual service, and sends alerts to a specified destination when these
performance conditions are violated.

Monitor Service
Performance

This action provides the same functionality as “Monitor Service Performance”
but this action is different because it enables you to monitor a virtual service's

Monitor Service Level
Agreement

run-time performance especially for particular consumer(s). You can configure
this action to define a Service Level Agreement (SLA), which is set of conditions
that defines the level of performance that a specified consumer should expect
from a service.

(Not available in Mediator versions below 9.0.) This action limits the number of
service invocations during a specified time interval, and sends alerts to a specified

Throttling Traffic
Optimization

destinationwhen the performance conditions are violated. You can use this action
to avoid overloading the back-end services and their infrastructure, to limit
specific consumers in terms of resource usage, etc.

Additional Actions

Mediator provides the following actions, which you can use in conjunctionwith the actions above.

You use this action in conjunction with an authentication action (“Require
WSS Username Token”, “RequireWSS X.509 Token” or “Require HTTP Basic

Identify Consumer

Authentication”). Alternatively, you can use this action alone to identify
consumers only by host name or IP address.

This action uses HTTP basic authentication to verify the consumer's
authentication credentials contained in the request's Authorization header
against the Integration Server's user account.

Require HTTP Basic
Authentication

This action authorizes consumers against a list of users and/or a list of groups
registered in the Integration Server on which Mediator is running. You use

Authorize User

this action in conjunction with an authentication action “Require WSS
Username Token”, “Require WSS SAML Token” or “Require HTTP Basic
Authentication”.

This action authorizes consumer applications against all consumer applications
who are registered in CentraSite as consumers for the service.

Authorize Against
Registered Consumers

Logs request/response payloads to a destination you specify.Log Invocations

Validates all XML request and/or response messages against an XML schema
referenced in the WSDL.

Validate Schema

21Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

The watt.server.auth.skipForMediator Property

This property specifies whether Integration Server authenticates requests for Mediator. You must
set this property to true.

No request to Mediator should be authenticated by Integration Server. Instead, authentication
should be handled by Mediator. Thus, to enable Mediator to authenticate requests, you must set
skipForMediator to true (by default it is false).

When this parameter is set to true, Integration Server skips authentication for Mediator requests
and allows the user credentials (of any type) to pass through so that Mediator can authenticate
them. If you change the setting of this parameter, you must restart Integration Server for the
changes to take effect.

To set skipForMediator to true

1 In the Integration Server Administrator, click Settings > Extended.

2 Click Show and Hide Keys.

Look for the watt.server.auth.skipForMediator property and ensure it is set to true.

3 If the watt.server.auth.skipForMediator property is not present, add it as follows:

1. Click Edit Extended Settings.

2. Type watt.server.auth.skipForMediator=true on a separate line.

3. Click Save.

4. Restart Integration Server.

Action Evaluation Order and Dependencies

When you deploy a virtual service, CentraSite automatically validates the service's run-time policy
(or policies) to ensure that:

■ Any action that appears in a single policy multiple times is allowed to appear multiple times.

For those actions that can appear in a policy only once (for example, Identify Consumer), Medi-
ator will choose only one, which might cause problems or unintended results.

■ All action dependencies are properly met. That is, some actions must be used in conjunction
with another particular action.

Run-Time Governance Reference22

Built-In Run-Time Actions Reference for Virtual Services

CentraSite will inform you of any violation, and you will need to correct the violations before de-
ploying the service.

■ Effective Policies

Effective Policies

When you deploy a virtual service to Mediator, CentraSite combines the actions specified within
the service's run-time policy (or policies) that apply to the virtual service, and generates what is
called the effective policy for the virtual service. For example, suppose your virtual service is within
the scope of two run-time policies: one policy that performs a logging action and another policy
that performs a security action. When you deploy the virtual service, CentraSite automatically
combines the two policies into one effective policy. The effective policy, which contains both the
logging action and the security action, is the policy that CentraSite actually deploys to Mediator
with the virtual service.

When CentraSite generates the effective policy, it validates the resulting action list to ensure that
it contains no conflicting or incompatible actions. If the list contains conflicts or inconsistencies,
CentraSite resolves them according to Policy Resolution Rules. For example, an action list can in-
clude only one Identify Consumer action. If the resulting action list contains multiple Identify
Consumer actions, CentraSite resolves the conflict by including only one of the actions (selected
according to a set of internal rules) in the effective policy and omitting the others.

The effective policy that CentraSite produces for a virtual service is contained in an object called
a virtual service definition (VSD). TheVSD is given toMediatorwhen you deploy the virtual service.
After you deploy a virtual service, you can view its VSD (and thus examine the effective policy
that CentraSite generated for it) from the CentraSite user interface or from the Mediator user in-
terface.

The following table shows:

■ The order in which Mediator evaluates the actions.
■ Action dependencies (that is, whether an action must be used in conjunction with another par-
ticular action).

■ Whether an action can be included multiple times in a single policy. If an action cannot be in-
cluded multiple times in a single policy, Mediator selects just one for the effective policy, which
may cause problems or unintended results.

23Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

Can include multiple times in a policy?DependencyActionEvaluation
Order

If multiple actions appear, and one of them
has its Client Certificate Required

None.Require SSL1

parameter set to Yes, only one occurrence
of the action appears in the effective policy.

No. Mediator includes only one action in
the effective policy.

InMediator versions below9.0:
None.

RequireHTTPBasic
Authentication

2

In Mediator version 9.0 and
above: Identify Consumer.

No. Mediator includes only one action in
the effective policy.

Identify Consumer action.Require WSS
Username Token

3

No. Mediator includes only one action in
the effective policy.

Identify Consumer action.Require WSS X.509
Token

4

No. Mediator includes only one action in
the effective policy.

None.RequireWSSSAML
Token

5

Yes. Mediator generates a UNION of all
Require Signing actions for the effective
policy.

Identify Consumer action.Require Signing6

Yes. Mediator generates a UNION of all
Require Encryption actions for the effective
policy.

Identify Consumer action.Require Encryption7

No. Mediator includes only one action in
the effective policy.

Require SSL, Require Signing
and Require Encryption.

RequireTimestamps8

No. Mediator includes only one action in
the effective policy.

If Identify Consumer's
identifier field is set to:

Identify Consumer9

■ HTTPAuthenticationToken,
the action Require HTTP
Basic Authentication is also
required.

■ WS-Security Authentication
Token, the action Require
WSSUsernameToken is also
required.

■ Consumer Certificate, the
actions Require WSS X.509
Token or Require Signing are
also required.

No. Mediator includes only one action in
the effective policy.

Require HTTP Basic
Authentication, Require WSS

Authorize User10

Username Token or Require
WSS SAML Token.

Run-Time Governance Reference24

Built-In Run-Time Actions Reference for Virtual Services

Can include multiple times in a policy?DependencyActionEvaluation
Order

No. Mediator includes only one action in
the effective policy.

Identify Consumer action.Authorize Against
Registered
Consumers

11

If at least one occurrence of the action is
configured to validate requests, and at least

None.Validate Schema12

one occurrence of the action is configured
to validate responses, then Mediator
includes in the effective policy an action to
validate both requests and responses.
Otherwise, an action is chosen which
validates only requests or only responses
(depending on the value of the Validate
SOAP Messages parameter of the action).

No. Mediator includes only one action in
the effective policy.

None.Log Invocation13

Yes. Mediator includes all Monitor Service
Performance actions in the effective policy.

None.Monitor Service
Performance

14

Yes. Mediator includes all Monitor Service
Level Agreement actions in the effective
policy.

Identify Consumer action.Monitor Service
Level Agreement

15

Yes. Mediator includes all Throttling
TrafficOptimization actions in the effective
policy.

IdentifyConsumer (if the Limit
Traffic for Applications option
is selected).

Throttling Traffic
Optimization

16

Usage Cases for Identifying/Authenticating Consumers

When deciding which type of identifier to use to identify a consumer application, consider the
following points:

■ Whatever identifier you choose to identify a consumer application, it must be unique to the
application. Identifiers that represent user names are often not suitable because the identified
users might submit requests for multiple applications.

■ Identifying applications by IP address or host name is often a suitable choice, however, it does
create a dependency on the network infrastructure. If a consumer application moves to a new
machine, or its IP address changes, you must update the identifiers in the application asset.

■ Using X.509 certificates or a custom token that is extracted from the SOAPmessage itself (using
an XPATH expression), is often the most trouble-free way to identify a consumer application.

Following are some common combinations of actions used to authenticate/identify consumers.

25Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

■ Scenario 1: Identify consumers by IP address or host name
■ The simplest way to identify consumers is to use the Identify Consumer action and set its
Identify User Using parameter to specify either a host name or an IP address (or a range
of IP addresses).

■ Scenario 2: Authenticate consumers by HTTP authentication token
Use the following actions:
■ IdentifyConsumer action, and set its Identify User Usingparameter toHTTPAuthentication
Token (to identify consumers using the token derived from the HTTP header).

■ Require HTTP Basic Authentication.
■ Additionally, you can use one or both of the following:

■ AuthorizeUser action (to authorize a list of users and/or groups registered in the Integration
Server on which Mediator is running).

■ AuthorizeAgainst RegisteredConsumers action (to authorize consumer applications against
all Application assets registered as consumers for a service in CentraSite).

■ Scenario 3: Authenticate consumers by WS-Security authentication token
Use the following actions:
■ Identify Consumer action, and set its Identify User Using parameter to WS-Security Au-
thentication Token (to identify consumers using the token derived from the WSS Header).

■ Require WSS Username Token action.
■ Additionally, you can use one or both of the following:

■ AuthorizeUser action (to authorize a list of users and/or groups registered in the Integration
Server on which Mediator is running).

■ AuthorizeAgainst RegisteredConsumers action (to authorize consumer applications against
all Application assets registered as consumers for a service in CentraSite).

■ Scenario 4: Authenticate consumers by WSS X.509 token
■ Identify Consumer action, and set its Identify User Usingparameter toConsumerCertificate
(to identify consumers using the WSS X.509 token).

■ Require WSS X.509 Token action
■ Require SSL action.

Run-Time Governance Reference26

Built-In Run-Time Actions Reference for Virtual Services

Run-Time Actions Reference for Virtual Services

This section describes the following built-in run-time actions that you can include in run-time
policies for virtual services:

■ Authorize Against Registered Consumers
■ Authorize User
■ Identify Consumer
■ Log Invocation
■ Monitor Service Performance
■ Monitor Service Level Agreement
■ Require Encryption
■ Require HTTP Basic Authentication
■ Require Signing
■ Require SSL
■ Require Timestamps
■ Require WSS SAML Token
■ Require WSS Username Token
■ Require WSS X.509 Token
■ Throttling Traffic Optimization
■ Validate Schema

Authorize Against Registered Consumers

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action. However, if the Identify Consumer action is set to identify users
via theHTTP Authentication Token option, then “Authorize Against Registered Con-
sumers” should not be included in the policy.

Authorizes consumer applications against all consumer applications who are registered in
CentraSite as consumers for the service.

Input Parameters

None.

27Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

Authorize User

Note: Dependency requirement: A policy that includes this action must also include one of
the following: theRequireWSSSAMLToken action or the Identify Consumer actionwith
one of the following options selected: “HTTP Authentication Token” or “WS-Security Au-
thentication Token”.

Authorizes consumers against a list of users and/or a list of groups registered in the Integration
Server on which Mediator is running.

Input Parameters

Boolean Authorizes consumers against a list of users who are
registered in the Integration Server on which Mediator is running.
Specify one or more users in the fields below this option.

Perform authorization against
list of users

Boolean Authorizes consumers against a list of groups who are
registered in the Integration Server on which Mediator is running.
Specify one or more groups in the fields below this option.

Perform authorization against
list of groups

Note: By default, both of the input parameters are selected. If you de-select one of these
parameters, the fields showing the list of users (or groups) is not displayed.

Identify Consumer

Mediator uses this action to identify consumer applications based on the kind of consumer identi-
fier (IP address, HTTP authorization token, etc.) you specify. Alternatively, this action provides
an option to allow anonymous users to access the assets.

Input Parameters

Boolean Specifies whether to allow all users to access the asset, without restriction.Anonymous
Usage
Allowed

DescriptionValue

Default.Allows only the users specified in the Identify User Using
parameter to access the assets.

False

Allow all users to access the asset. In this case, do not configure the
Identify User Using parameter.

True

String Specifies the kind of consumer identifier that the action will use to identify consumer
applications.

Identify
User
Using

DescriptionValue

Run-Time Governance Reference28

Built-In Run-Time Actions Reference for Virtual Services

Identifies one ormore consumer applications based on their originating
IP addresses.

IP Address

Identifies consumer applications based on a host name.Host Name

UsesHTTPBasic authentication to verify the consumer's authentication
credentials contained in the request's Authorization header. Mediator
authorizes the credentials against the list of consumers available in the
Integration Server onwhichMediator is running. This type of consumer
authentication is referred to as “preemptive authentication”. If you
want to use “preemptive authentication”, you should also include the
action Require HTTP Basic Authentication in the policy.

If you choose to omit “Require HTTP Basic Authentication”, the client
will be presented with a security challenge. If the client successfully

HTTP ↩
Authentication ↩
Token

responds to the challenge, the user is authenticated. This type of
consumer authentication is referred to as “non-preemptive
authentication”. For more information, see Require HTTP Basic
Authentication.

Note: If you select the value HTTP Authentication Token, do not
include the Authorize Against Registered Consumers action in
the policy. This is an invalid combination.

Validate user names and passwords that are transmitted in the SOAP
message header in the WSS Username Token. If you select this value,
you should also include the action Require WSS Username Token in
the policy.

WS-Security ↩
Authentication ↩
Token

Validates consumer applications based on anXMLelement (represented
by an XPath expression).

Custom ↩
Identification

Identifies consumer applications based on information in aWSS X.509
certificate. If you select this value, you should also include the action
RequireWSSX.509 Token or the actionRequire Signing in the policy.

Consumer ↩
Certificate

Validates the client's certificate that the consumer application submits
to the asset in CentraSite. The client certificate that is used to identify
the consumer is supplied by the client to the Mediator during the SSL
handshake over the transport layer. In order to identify consumers by
transport-level certificates, the run-time communication between the
client and the Mediator must be over HTTPS and the client must pass
a valid certificate.

To use this option, the following prerequisites must be met:

Client ↩
Certificate for ↩
SSL Connectivity

■ In Integration Server, create a keystore and truststore, as described
in Securing Communications with the Server in the webMethods
Integration Server Administrator's Guide.

■ In Integration Server, create an HTTPS port, as described in
Configuring Ports in thewebMethods Integration Server Administrator's
Guide.

29Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

■ Configure Mediator by setting the IS Keystore and IS Truststore
parameters, as described in Configuring Mediator > Keystore
Configuration in the document Administering webMethods Mediator.

■ Configure Mediator by setting the HTTPS Ports Configuration
parameter, as described in ConfiguringMediator > Ports Configuration
in the document Administering webMethods Mediator.

When deciding which type of identifier to use to identify a consumer application, consider the
following points:

■ Whatever identifier you choose to identify a consumer application, it must be unique to the
application. Identifiers that represent user names are often not suitable because the identified
users might submit requests for multiple applications.

■ Identifying applications by IP address or host name is often a suitable choice, however, it does
create a dependency on the network infrastructure. If a consumer application moves to a new
machine, or its IP address changes, you must update the identifiers in the application asset.

■ Using X.509 certificates or a custom token that is extracted from the SOAP or XMLmessage itself
(using an XPATH expression), is often the most trouble-free way to identify a consumer applic-
ation.

Log Invocation

Logs request/response payloads. You can specify the log destination and the logging frequency.
This action also logs other information about the requests/responses, such as the service name,
operation name, the Integration Server user, a timestamp, and the response time.

Note: You can include this action multiple times in a policy.

Input Parameters

StringOptional. Specifies whether to log all request payloads, all response payloads, or both.Log the
Following
Payloads

DescriptionValue

Log all request payloads.Request

Log all response payloads.Response

String Specifies how frequently to log the payload.Log
Generation
Frequency

DescriptionValue

Run-Time Governance Reference30

Built-In Run-Time Actions Reference for Virtual Services

Log all requests and/or responses.Always

Log only the successful responses and/or requests.On Success

Log only the failed requests and/or responses.On Failure

String Specifies where to log the payload.

Important: Ensure that Mediator is configured to log the payloads to the destination(s) you
specify here. For details, see Alerts and Transaction Logging in the document Administering
webMethods Mediator.

Send Data
To

DescriptionValue

Logs the payloads in the virtual service's Events profile inCentraSite.

Prerequisite: You must configure Mediator to communicate with
CentraSite (in the Integration ServerAdministrator, go toSolutions
> Mediator > Administration > CentraSite Communication). For
the procedure, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

CentraSite

Logs the payloads in the server log of the Integration Server on
which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and informational-level
alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration Server Administrator's logging level for
Mediator should match the logging level specified for this action
(go to Settings > Logging > Server Logger).

Logs the payloads in CentraSite's SNMP server or a third-party
SNMP server.

Prerequisite: You must configure the SNMP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
>Administration > SNMP). For the procedure, see the section SNMP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

SNMP

31Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

Sends the payloads to an SMTP email server, which sends them to
the email address(es) you specify here.Mediator sends the payloads
as email attachments that are compressed using gzip data
compression. To specify multiple addresses, use the button to
add rows.

Prerequisite: You must configure the SMTP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
> Administration > Email). For the procedure, see the section SMTP

Email

Destinations for Run-Time Events in the document Administering
webMethods Mediator.

Logs the payload to the Integration Server audit logger. For
information, see the webMethods Audit Logging Guide.

Note: If you expect a high volume of events in your system, it is
recommended that you select the Audit Log destination for this
action.

Audit Log

Monitor Service Performance

This action monitors a user-specified set of run-time performance conditions for a virtual service,
and sends alerts to a specified destination when the performance conditions are violated. You can
include this action multiple times in a single policy.

For the counter-basedmetrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
themetrics tracking interval. You can choosewhether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

For the aggregatedmetrics (AverageResponseTime,MinimumResponseTime,MaximumResponse
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Run-Time Governance Reference32

Built-In Run-Time Actions Reference for Virtual Services

Input Parameters

Specify one or more conditions to monitor. To do this, specify a metric, operator, and a
value for each metric. To specify multiple conditions, use the button to add multiple
rows. If multiple parameters are used, they are connected by the AND operator.

Action
Configuration
parameters

String Array The metrics to monitor.Name

DescriptionValue

Indicates whether the service was available to the
specified consumers in the current interval.

Availability

The average amount of time it took the service to
complete all invocations in the current interval.
Response time ismeasured from themomentMediator
receives the request until the moment it returns the
response to the caller.

Average Response Time

Monitor Service Level Agreement

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action.

This action is similar to the Monitor Service Performance action. Both actions can monitor the
same set of run-time performance conditions for a virtual service, and then send alerts when the
performance conditions are violated. This action is different because it enables you to monitor
run-time performance for one or more specified consumers. You can include this actionmultiple times
in a single policy.

You can configure this action to define a Service Level Agreement (SLA), which is a set of conditions
that defines the level of performance that a consumer should expect from a service. You can use
this action to identify whether a service's threshold rules are met or exceeded. For example, you
might define an agreement with a particular consumer that sends an alert to the consumer if re-
sponses are not sent within a certain maximum response time. You can configure SLAs for each
virtual service/consumer application combination.

For the counter-basedmetrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
themetrics tracking interval. You can choosewhether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

For the aggregatedmetrics (AverageResponseTime,MinimumResponseTime,MaximumResponse
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

33Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Input Parameters

Specify one or more conditions to monitor. To do this, specify a metric, operator,
and value for each metric. To specify multiple conditions, use the button to add

Action
Configuration
parameters multiple rows. If multiple parameters are used, they are connected by the AND

operator.

String Array The metrics to monitor.Name

DescriptionValue

Indicates whether the service was available to
the specified consumers in the current interval.

Availability

The average amount of time it took the service
to complete all invocations in the current
interval. Response time is measured from the
momentMediator receives the request until the
moment it returns the response to the caller.

Average Response Time

Indicates the number of faults returned in the
current interval.

Fault Count

The maximum amount of time to respond to a
request in the current interval.

Maximum Response Time

The minimum amount of time to respond to a
request in the current interval.

Minimum Response Time

The number of successful requests in the current
interval.

Successful Request Count

The total number of requests (successful and
unsuccessful) in the current interval.

Total Request Count

String Array Choose an appropriate operator.Operator

String Array Specify an appropriate value.Value

Object Array Specify theApplication asset(s) towhich this Service Level Agreement

will apply. To specify multiple Application assets, use the button to add
multiple rows.

Alert for
Consumer
Applications

Object Specify the following parameters for the alerts that will report on the Service
Level Agreement conditions:

Alert
parameters

Number The time period (in minutes) in which to monitor performance before
sending an alert if a condition is violated. For information about themetrics tracking
interval, see The Metrics Tracking Interval.

Alert
Interval

Run-Time Governance Reference34

Built-In Run-Time Actions Reference for Virtual Services

String Specifies how frequently to issue alerts for the counter-based metrics (Total
Request Count, Success Count, Fault Count).

Alert
Frequency

DescriptionValue

Issue an alert every time one of the specified
conditions is violated.

Every Time

Issue an alert only the first time one of the
specified conditions is violated.

Only Once

Require Encryption

Requires that a request's XML element (which is represented by anXPath expression) be encrypted.
This action supports WS-SecurityPolicy 1.2 and cannot be used with REST services.

Prerequisites

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communicationswith the Server in the documentAdministeringwebMethods Integration
Server.

2. ConfigureMediator: In the Integration Server Administrator, navigate to Solutions >Mediator
> Administration >General and complete the IS Keystore Name, IS Truststore Name andAlias
(signing) fields, as described inKeystore Configuration in the documentAdministeringWebMethods
Mediator.

When this policy action is set for the virtual service, Mediator provides decryption of incoming
requests and encryption of outgoing responses.Mediator can encrypt and decrypt only individual
elements in the SOAPmessage body that are defined by the XPath expressions configured for the
policy action. Mediator requires that requests contain the encrypted elements that match those in
the XPath expression. You must encrypt the entire element, not just the data between the element
tags. Mediator rejects requests if the element name is not encrypted.

Important: Donot encrypt the entire SOAP body because a SOAP requestwithout an element
will appear to Mediator to be malformed.

Mediator attempts to encrypt the response elements that match the XPath expressions with those
defined for the policy. If the response does not have any elements thatmatch the XPath expression,
Mediator will not encrypt the response before sending. If the XPath expression resolves a portion
of the response message, but Mediator cannot locate a certificate to encrypt the response, then
Mediator sends a SOAP fault exception to the consumer and a Policy Violation event notification
to CentraSite.

HowMediator Encrypts Responses

The Require Encryption action encrypts the response back to the client by dynamically setting a
public key alias at run time. Mediator determines the public key alias as follows:

35Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

1. IfMediator can access the X.509 certificate of the client (based on the incoming request signature),
it will use "useReqSigCert" as the public key alias.

OR

2. If the Identify Consumer action is present in the policy (and it successfully identifies a consumer
application), then Mediator will look for a public key alias with that consumer name in the "IS
Keystore Name" property. The "IS Keystore Name" property is specified in the Integration
Server Administrator, under Solutions > Mediator > Administration > General. This property
should be set to an Integration Server keystore that Mediator will use.

For an Identify Consumer action that allows for anonymous usage, Mediator does not require
a consumer name in order to send encrypted responses. In this case, Mediator can use one of
the following to encrypt the response in the following order, depending on what is present in
the security element:
■ A signing certificate.
■ Consumer name.
■ WSS username, SAML token or X.509 certificate.
■ HTTP authorized user.

OR

3. If Mediator can determine the current IS user from the request (i.e., if an Integration ServerWS-
Stack determined that Subject is present), then the first principal in that subject is used.

OR

4. If the above steps all fail, then Mediator will use either the WS-Security username token or the
HTTP Basic-Auth user name value. There should be a public key entry with the same name as
the identified username.

Note: You can include this action multiple times in a single policy.

Input Parameters

String Optional. Namespace of the element required to be encrypted.Namespace

Note: Enter the namespace prefix in the following format: xmlns:<prefix-name>. For example:
xmlns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.org/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

Run-Time Governance Reference36

Built-In Run-Time Actions Reference for Virtual Services

http://www.w3.org/TR/REC-xml-names/#ns-decl

<sp:SignedElements ↩
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:XPath ↩
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPath>
 </sp:SignedElements>

String An XPath expression that represents the XML element that is required to be encrypted.Element
Required
to be
Encrypted

Require HTTP Basic Authentication

This action uses HTTP Basic authentication to verify the consumer's authentication credentials
contained in the request's Authorization header. Mediator authorizes the credentials against the
list of consumers available in the Integration Server on which Mediator is running. This type of
consumer authentication is referred to as “preemptive authentication”. If you want to perform
“preemptive authentication”, a policy that includes this action must also include the Identify
Consumer action.

If the user/password value in the Authorization header cannot be authenticated as a valid Integ-
ration Server user (or if the Authorization header is not present in the request), a 500 SOAP fault
is returned, and the client is presentedwith a security challenge. If the client successfully responds
to the challenge, the user is authenticated. This type of consumer authentication is referred to as
“non-preemptive authentication”. If the client does not successfully respond to the challenge, a
401 “WWW-Authenticate: Basic” response is returned and the invocation is not routed to the
policy engine. As a result, no events are recorded for that invocation, and its key performance in-
dicator (KPI) data are not included in the performance metrics.

If you choose to omit the “Require HTTP Basic Authentication” action (and regardless of whether
an Authorization header is present in the request or not), then:

■ Mediator forwards the request to the native service, without attempting to authenticate the re-
quest.

■ The native service returns a 401 “WWW-Authenticate: Basic” response, which Mediator will
forward to the client; the client is presented with a security challenge. If the client successfully
responds to the challenge, the user is authenticated.

In the casewhere a consumer sends a requestwith transport credentials (HTTPBasic authentication)
and message credentials (WSS Username or WSS X.509 token), the message credentials take pre-
cedence over the transport credentials when Integration Server determines which credentials it
should use for the session. Formore information, seeRequireWSSUsernameToken andRequire
WSS X.509 Token. In addition, you must ensure that the service consumer that connects to the
virtual service has an Integration Server user account.

37Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

Note: Do not include the “Require HTTP Basic Authentication” action in a virtual service's
run-time policy if you selected theOAuth2 option in the virtual service's Routing Protocol
step.

Input Parameters

Note: This input parameter is not available in Mediator versions prior to 9.0.

Required. Authorizes consumers against the list of consumers available in
the Integration Server on which Mediator is running.

Authenticate Credentials

Require Signing

This action requires that a request's XML element (which is represented by an XPath expression)
be signed. This action supports WS-SecurityPolicy 1.2.

Prerequisites

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communicationswith the Server in the documentAdministeringwebMethods Integration
Server.

2. ConfigureMediator: In the Integration Server Administrator, navigate to Solutions >Mediator
> Administration >General and complete the IS Keystore Name, IS Truststore Name andAlias
(signing) fields, as described inKeystore Configuration in the documentAdministeringWebMethods
Mediator.Mediator uses the signing alias specified in theAlias (signing) field to sign the response.

When this action is set for the virtual service, Mediator validates that the requests are properly
signed, and provides signing for responses. Mediator provides support both for signing an entire
SOAP message body or individual elements of the SOAP message body.

Mediator uses a digital signature element in the security header to verify that all elements
matching the XPath expression were signed. If the request contains elements that were not signed
or no signature is present, then Mediator rejects the request.

Notes:

1. You must map the public certificate of the key used to sign the request to an Integration Server
user. If the certificate is not mapped, Mediator returns a SOAP fault to the caller.

2. You can include this action multiple times in a policy.

Run-Time Governance Reference38

Built-In Run-Time Actions Reference for Virtual Services

Input Parameters

String Optional. Namespace of the element required to be signed.Namespace

Note: Enter the namespace prefix in the following format: xmlns:<prefix-name>. For example:
xmlns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.org/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

<sp:SignedElements ↩
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:XPath ↩
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPath>
 </sp:SignedElements>

String An XPath expression that represents the XML element that is required to be signed.Element
Required
to be
Signed

Require SSL

Requires that requests be sent via SSL client certificates. This action supports WS-SecurityPolicy
1.2 and can be used for both SOAP and REST services.

When this action is set for the virtual service, Mediator ensures that requests are sent to the server
using the HTTPS protocol (SSL). The action also specifies whether the client certificate is required.
This allowsMediator to verify the client sending the request. If the policy requires the client certi-
ficate, but it is not presented, Mediator rejects the message.

When a client certificate is required, the Integration Server HTTPS port should be configured to
request or require a client certificate.

Input Parameters

Boolean Specifies whether client certificates are required for the purposes of:Client
Certificate
Required ■ Verifying the signature of signed SOAP requests or decrypting encrypted SOAP requests.

■ Signing SOAP responses or encrypting SOAP responses.

DescriptionValue

39Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

http://www.w3.org/TR/REC-xml-names/#ns-decl

Require client certificates.Yes

Default. Do not require client certificates.No

Require Timestamps

Note: Dependency requirement: A policy that includes this action must also include all of
the following actions: Require SSL, Require Signing, Require Encryption.

When this policy action is set for the virtual service,Mediator requires that timestamps be included
in the request header. Mediator checks the timestamp value against the current time to ensure
that the request is not an old message. This serves to protect your system against attempts at
message tampering, such as replay attacks. This action supportsWS-SecurityPolicy 1.2 and cannot
be used with REST services.

Mediator rejects the request if either of the following happens:

■ Mediator receives a timestamp that exceeds the time defined by the timestamp element.
■ A timestamp element is not included in the request.

Input Parameters

None.

Require WSS SAML Token

When this action is set for a virtual service, Mediator uses a WSS Security Assertion Markup
Language (SAML) assertion token to validate service consumers. This action supports WS-Secur-
ityPolicy 1.2 and cannot be used with REST services.

For more information about configuring your system for SAML token processing, see SAML
Support in Mediator in the document Administering webMethods Mediator.

Input Parameters

String Select one of the following SAML subject confirmation methods:SAML Subject
Confirmation DescriptionValue

Default. Select this option if consumers use the SAML V1.1 or V2.0
Holder-of-Key Web Browser SSO Profile, which allows for transport
of holder-of-key assertions. In this scenario, the consumer presents a
holder-of-key SAML assertion acquired from its preferred identity
provider to access a web-based resource at a service provider.

If you select Holder of Key, Mediator also implicitly selects the
“timestamp” and “signing” assertions to the virtual service definition

Run-Time Governance Reference40

Built-In Run-Time Actions Reference for Virtual Services

(VSD). Thus, you should not add the ““Require Timestamps” and
“Require Signing” policy actions to a virtual service if the “Require
WSS SAML Token” action is already applied.

Holder of Key

Select this option if consumers use SAML V1.1 Bearer token
authentication, inwhich a Bearer tokenmechanism relies upon bearer
semantics as ameans bywhich the consumer conveys toMediator the
sender's identity.

If you select Bearer, the “timestamp” and “signing” assertions will
be added to the virtual service definition (VSD).

Note: If consumers use SAML 2.0 Sender-Vouches tokens, configure
your system as described in SAMLSupport inMediator in the document
Administering WebMethods Mediator.

Bearer

String Specifies the WSS SAML Token version to use: 1.1 or 2.0.SAML Version

Require WSS Username Token

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action.

When this policy action is set for the virtual service,Mediator usesWS-SecurityPolicy authentication
to validate user names and passwords that are transmitted in the SOAP message header for the
WSS Username token. This action supports WS-SecurityPolicy 1.2 and cannot be used with REST
services.

In the case where a consumer is sending a request with both transport credentials (HTTP basic
authentication) andmessage credentials (WSS Username or X.509 token), the message credentials
take precedent over the transport credentials when Integration Server is determining which cre-
dentials it should use for the session. For more information, see Require HTTP Basic Authentic-
ation.

Mediator rejects requests that do not include the username token and password of an Integration
Server user. Mediator only supports clear text passwords with this kind of authentication

Input Parameters

None.

41Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

Require WSS X.509 Token

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action.

Identifies consumers based on aWSS X.509 token. This action supportsWS-SecurityPolicy 1.2 and
cannot be used with REST services.

In the case where a consumer is sending a request with both transport credentials (HTTP Basic
authentication) and message credentials (WSS X.509 token or WSS Username), the message cre-
dentials take precedence over the transport credentials when Integration Server is determining
which credentials it should use for the session. For more information, see Require HTTP Basic
Authentication. In addition, youmust ensure that the service consumer that connects to the virtual
service has an Integration Server user account.

Input Parameters

None.

Throttling Traffic Optimization

Notes:

1. This action is not available in Mediator versions below 9.0.

2. Dependency requirement: A policy that includes this action must also include the Identify
Consumer action if the Limit Traffic for Applications option is selected.

This action limits the number of service invocations during a specified time interval, and sends
alerts to a specified destination when the performance conditions are violated.

Reasons for limiting the service invocation traffic include:

■ To avoid overloading the back-end services and their infrastructure.
■ To limit specific consumers in terms of resource usage (that is, you can use the “Monitor Service
Level Agreement” action tomonitor performance conditions for a particular consumer, together
with “Throttling Traffic Optimization” to limit the resource usage).

■ To shield vulnerable servers, services, and even specific operations.
■ For service consumption metering (billable pay-per-use services).

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Run-Time Governance Reference42

Built-In Run-Time Actions Reference for Virtual Services

Input Parameters

Number Optional. Specifies the maximum number of invocations allowed per Interval
before issuing an alert. Reaching the soft limit will not affect further processing of requests
(until the Hard Limit is reached).

Note: The limit is reached when the total number of invocations coming from all all the
consumer applications (specified in theLimit Traffic for Applicationsfield) reaches

Soft Limit

the limit. Soft Limit is computed in an asynchronousmanner; thuswhenmultiple requests
are made at the same time, it may be possible that the Soft Limit alert will not be strictly
accurate.

NumberRequired. Specifies themaximumnumber of invocations allowed per alert interval
before stopping the processing of further requests and issuing an alert. Typically, this
number should be higher than the soft limit.

Note: The limit is reached when the total number of invocations coming from all all the
consumer applications (specified in theLimit Traffic for Applicationsfield) reaches

Hard Limit

the limit. Hard Limit is computed in an asynchronousmanner; thuswhenmultiple requests
are made at the same time, it may be possible that the Hard Limit alert will not be strictly
accurate.

String Specifies the consumer application(s) that this action applies to. To specify multiple
consumer applications, use the button to add rows, or select Any Consumer to apply
this action to any consumer application.

Limit
Traffic for
Applications

Number Specifies the amount of time for the soft limit and hard limit to be reached.Interval

String Specifies how frequently to issue alerts.Frequency

DescriptionValue

Issue an alert every time the specified condition is
violated.

Every Time

Issue an alert only the first time the specified condition
is violated.

Only Once

String Optional. Specifies where to log the alerts.

Important: Ensure that Mediator is configured to send event notifications to the
destination(s) you specify here. For details, see Alerts and Transaction Logging in the
document Administering webMethods Mediator.

Reply To
Destination

DescriptionValue

Sends the alerts to the virtual service's Events profile in
CentraSite.

Prerequisite: You must configure Mediator to
communicatewith CentraSite (in the Integration Server
Administrator, go to Solutions > Mediator >
Administration >CentraSiteCommunication). For the
procedure, see the section Configuring Communication

43Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

with CentraSite in the document Administering
webMethods Mediator.

CentraSite

Sends the alerts to the server log of the Integration
Server on which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and
informational-level alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration Server Administrator's
logging level for Mediator should match the logging
level specified for this action (go to Settings > Logging
> Server Logger).

Sends the alerts to CentraSite's SNMP server or a
third-party SNMP server.

Prerequisite: You must configure the SNMP server
destination (in the Integration Server Administrator, go
to Solutions >Mediator >Administration > Email). For
the procedure, see the section SNMP Destinations for
Run-Time Events in the document Administering
webMethods Mediator.

SNMP

Sends the alerts to an SMTP email server, which sends
them to the email address(es) you specify here. To
specify multiple addresses, use the button to add
rows.

Prerequisite: You must configure the SMTP server
destination (in the Integration Server Administrator, go
to Solutions >Mediator >Administration > Email). For
the procedure, see the section SMTP Destinations for

Email

Run-Time Events in the document Administering
webMethods Mediator.

String Optional. Specify a text message to include in the soft limit alert.Alert
Message for
Soft Limit

String Optional. Specify a text message to include in the hard limit alert.Alert
Message for
Hard Limit

Run-Time Governance Reference44

Built-In Run-Time Actions Reference for Virtual Services

Validate Schema

This action validates all XML request and/or responsemessages against an XML schema referenced
in the WSDL.

Mediator can enforce this policy action for messages sent between services. When this policy is
set for the virtual service, Mediator validates XML request messages, response messages, or both,
against the XML schema referenced in the WSDL.

Input Parameters

Object Validates request and/or response messages. You may select both Request and
Response.

Validate
SOAP
Message(s) DescriptionValue

Validate all requests.Request

Validate all responses.Response

Important: Be aware that Mediator does not remove wsu:Id attributes that may have been
added to a request by a consumer as a result of security operations against request elements
(i.e., signatures and encryptions). In this case, to avoid schema validation failures youwould
have to add a Request Handling step to the virtual service so that the requests are passed
to anXSL transformation file that removes the wsu:Id attribute. For details about the Request
Handling step, see the section Virtual Services in CentraSite Control .

45Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

46

3 Built-In Run-Time Actions Reference for APIs

■ Summary of the Run-Time Actions .. 48
■ The watt.server.auth.skipForMediator Property .. 53
■ Effective Policies ... 54
■ Usage Cases for Identifying/Authenticating Clients ... 58
■ Run-Time Actions Reference ... 59

47

This section describes the built-in run-time actions that you can include in run-time governance
rules for APIs. You use these actions only when you are using the CentraSite Business UI to create
run-time policies for APIs. The content is organized under the following sections:

Instructions throughout the remainder of this guide use the term "API" when referring to the
Virtual Services, Virtual XML Services and Virtual REST Services; and the term "client" when re-
ferring to the Consumer Applications in general.

■ Summary of the Run-Time Actions
■ The watt.server.auth.skipForMediator Property
■ Effective Policies
■ Usage Cases for Identifying/Authenticating Clients
■ Run-Time Actions Reference

Summary of the Run-Time Actions

You can include the following kinds of built-in run-time actions in the run-time governance rules
for APIs:

■ Request Handling Actions
■ Policy Enforcement Actions
■ Response Handling Actions
■ Error Handling Action

Request Handling Actions

RequestHandling is the process of receiving and transforming the incomingmessage from a client
into the custom format as expected by the native API.

Specifies the protocol (HTTPorHTTPS), SOAP format (for a SOAP-based
API), and theHTTPmethods (for a REST-basedAPI) to be used to accept
and process the requests.

Require HTTP / HTTPS

Specifies the JMS protocol to be used for the API to accept and process
the requests.

Require JMS

Invokes anXSL transformation in the SOAP request before it is submitted
to the native API.

Request Transformation

Invokes a webMethods Integration Server service to pre-process the
request before it is submitted to the native API.

InvokewebMethods Integration
Server

Run-Time Governance Reference48

Built-In Run-Time Actions Reference for APIs

Policy Enforcement Actions

Policy Enforcement is the process of enforcing the adherence to real-time policy compliance
identifying/authenticating, monitoring, auditing, and measuring and collecting result statistics
for an API.

Mediator provides the following categories of policy enforcement actions:

■ Authentication Actions
■ JMS Routing Actions
■ Logging and Monitoring Actions
■ Routing Actions
■ Security Actions
■ Traffic Management Action
■ Validation Action

Authentication Actions

Authentication actions verify that the API client has the proper credentials to access an API.

UsesHTTP basic authentication to verify the client's authentication credentials
contained in the request'sAuthorization header against the Integration Server's
user account.

HTTP Basic Authentication

Uses NTLM authentication to verify the client's authentication credentials
contained in the request'sAuthorization header against the Integration Server's
user account.

NTLM Authentication

Uses OAuth2 authentication to verify the client's authentication credentials
contained in the request'sAuthorization header against the Integration Server's
user account.

OAuth2 Authentication

JMS Routing Actions

JMS Routing actions route the incomingmessage to anAPI over JMS. For example, to a JMS queue
where an API can then retrieve the message asynchronously.

Specifies a JMS queue to which the Mediator is to submit the request, and the
destination to which the native API is to return the response.

JMS Routing Rule

Specifies JMSmessage properties to authenticate client requests before submitting
to the native APIs.

Set Message Properties

Specifies JMS headers to authenticate client requests before submitting to the
native APIs.

Set JMS Headers

49Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Logging and Monitoring Actions

Logging and Monitoring actions monitor and collect information about the number of messages
that were processed successfully or failed, the average execution time of message processing, and
the number of alerts associated with an API.

Logs request/response payloads to a destination you specify.Log Invocation

Specifies a Service Level Agreement (SLA), which is set of conditions that
define the level of performance that a specified client should expect from an
API.

Monitor Service Level
Agreement

This action provides the same functionality asMonitor Service Level Agreement
but this action is different because it enables you tomonitor theAPI's run-time

Monitor Service
Performance

performance for all clients. This actionmonitors a user-specified set of run-time
performance conditions for anAPI, and sends alerts to a specified destination
when these performance conditions are violated.

Routing Actions

Routing actions route the incoming message (e.g., directly to the API, or routed according to the
routing rules, or routed to a pool of servers for the purpose of load balancing and failover handling).

Routes the requests directly to a native endpoint that you specify.Straight Through Routing

Route requests to different endpoints based on specific values that
appear in the request message.

Context Based Routing

Route requests to different endpoints based on specific criteria that
you specify.

Content Based Routing

Routes the requests across multiple endpoints.Load Balancing and Failover Routing

Specifies the HTTP headers to process the requests.Set Custom Headers

Security Actions

Security actions provide client validation (through WSS X.509 certificates, WSS username tokens
etc.), confidentiality (through encryption) and integrity (through signatures) for request and re-
sponse messages.

For the client validation,Mediatormaintains a list of consumer applications specified in CentraSite
that are authorized to access the API published to Mediator. Mediator synchronizes this list of
consumer applications through a manual process initiated from CentraSite.

Generally speaking there are two different lists of consumers in the Mediator:

■ List of Registered Consumers

List of users and consumer applications (represented as Application assets) who are registered
as consumers for the API in CentraSite, and available in the Mediator.

Run-Time Governance Reference50

Built-In Run-Time Actions Reference for APIs

For more information on how to register as consumer for an API, refer to the online document-
ation section Registering as Consumer for an API in the document Virtualizing APIs Using the
CentraSite Business UI.

■ List of Global Consumers

List of all users and consumer applications (represented as consumers) available in theMediator.

For more information on how to create a consumer application asset, refer to the online docu-
mentation sectionManaging Consumer Applications for an API > Creating a Consumer Application
in the document Virtualizing APIs Using the CentraSite Business UI.

For more information on how to publish a consumer application toMediator, refer to the online
documentation sectionManaging Consumer Applications for an API > Publishing a Consumer Ap-
plication in the document Virtualizing APIs Using the CentraSite Business UI.

Mediator provides "Evaluate" actions that you can include in a message flow to identify and/or
validate clients, and then configure their parameters to suit your needs. You use these "Evaluate"
actions to perform the following actions:

■ Identify the clients who are trying to access the APIs (through IP address or hostname).
■ Validate the client's credentials.

Mediator validates the client's certificate that the client submits to the API in
CentraSite. The client certificate that is used to identify the client is supplied by
the client to the Mediator during the SSL handshake over the transport layer.

Evaluate Client
Certificate for SSL
Connectivity

Evaluate Hostname ■ Mediatorwill try to identify the client against either the RegisteredConsumers
list (the list of registered consumers in Mediator) or the Global Consumers list
(the list of available consumers in Mediator).

■ Mediator will try to validate the client's hostname against the specified list of
consumers in the Integration Server on which Mediator is running.

Evaluate HTTP Basic
Authentication

■ Mediatorwill try to identify the client against either the RegisteredConsumers
list (the list of registered consumers in Mediator) or the Global Consumers list
(the list of available consumers in Mediator).

■ Mediator will try to validate the client's authentication credentials contained
in the request's Authorization header against the specified list of consumers
in the Integration Server on which Mediator is running.

Evaluate IP Address ■ Mediatorwill try to identify the client against either the RegisteredConsumers
list (the list of registered consumers in Mediator) or the Global Consumers list
(the list of available consumers in Mediator).

■ Mediator will try to validate the client's IP address against the specified list of
consumers in the Integration Server on which Mediator is running.

51Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Applicable only for SOAP APIs.EvaluateWSSUsername
Token

■ Mediatorwill try to identify the client against either the RegisteredConsumers
list (the list of registered consumers in Mediator) or the Global Consumers list
(the list of available consumers in Mediator).

■ Mediator will try to validate the client's WSS username token against the
specified list of consumers in the Integration Server on which Mediator is
running.

Applicable only for SOAP APIs.Evaluate WSS X.509
Certificate

■ Mediatorwill try to identify the client against either the RegisteredConsumers
list (the list of registered consumers in Mediator) or the Global Consumers list
(the list of available consumers in Mediator).

■ Mediator will try to validate the client's WSS X.509 token against the specified
list of consumers in the Integration Server on which Mediator is running.

Evaluate XPath
Expression

■ Mediatorwill try to identify the client against either the RegisteredConsumers
list (the list of registered consumers in Mediator) or the Global Consumers list
(the list of available consumers in Mediator).

■ Mediator will try to validate the client's XPath expression against the specified
list of consumers in the Integration Server on which Mediator is running.

Applicable only for SOAP APIs.

Requires that a request's XML element (which is represented by an XPath
expression) be encrypted.

Require Encryption

Applicable only for SOAP APIs.

Requires that a request's XML element (which is represented by an XPath
expression) be signed.

Require Signing

Applicable only for SOAP APIs.

Requires that requests be sent via SSL client certificates.

Require SSL

Applicable only for SOAP APIs.

Requires that timestamps be included in the request header. Mediator checks the
timestamp value against the current time to ensure that the request is not an old

Require Timestamps

message. This serves to protect your system against attempts at message
tampering, such as replay attacks.

Applicable only for SOAP APIs.

Uses a WSS Security Assertion Markup Language (SAML) assertion token to
validate API clients.

Require WSS SAML
Token

Run-Time Governance Reference52

Built-In Run-Time Actions Reference for APIs

Traffic Management Action

Limits the number of service invocations during a specified time interval, and
sends alerts to a specified destination when the performance conditions are

Throttling Traffic
Optimization

violated. You can use this action to avoid overloading the back-end services and
their infrastructure, to limit specific clients in terms of resource usage, etc.

Validation Action

Validates all XML request and/or responsemessages against an XML schema referenced
in the WSDL.

Validate Schema

Response Handling Actions

Response Handling is the process of transforming the response message coming from the native
API into the custom format as expected by the client.

Invokes an XSL transformation in the response payloads from XML
format to the format required by the client.

Response Transformation

Invokes a webMethods Integration Server service to process the
response from the native API before it is returned to the client.

Invoke webMethods Integration
Server

Error Handling Action

Error Handling is the process of passing an exception message which has been issued as a result
of a run-time error to take any necessary actions.

Returns a custom error message (and/or the native provider's service
fault content) to the client when the native provider returns a service
fault.

CustomSOAPResponseMessage

The watt.server.auth.skipForMediator Property

This property specifies whether Integration Server authenticates requests for Mediator. You must
set this property to true.

No request to Mediator should be authenticated by Integration Server. Instead, authentication
should be handled by Mediator. Thus, to enable Mediator to authenticate requests, you must set
skipForMediator to true (by default it is false).

When this parameter is set to true, Integration Server skips authentication for Mediator requests
and allows the user credentials (of any type) to pass through so that Mediator can authenticate

53Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

them. If you change the setting of this parameter, you must restart Integration Server for the
changes to take effect.

To set skipForMediator to true

1 In the Integration Server Administrator, click Settings > Extended.

2 Click Show and Hide Keys.

Look for the watt.server.auth.skipForMediator property and ensure it is set to true.

3 If the watt.server.auth.skipForMediator property is not present, add it as follows:

1. Click Edit Extended Settings.

2. Type watt.server.auth.skipForMediator=true on a separate line.

3. Click Save.

4. Restart Integration Server.

Effective Policies

When you publish anAPI toMediator, CentraSite automatically validates theAPI's policy enforce-
ment workflow to ensure that:

CentraSite will inform you of any violation, and you will need to correct the violations before
publishing the API.

When you publish anAPI toMediator, CentraSite combines the actions specifiedwithin the proxy
API's enforcement definition, and generates what is called the effective policy for the API. For
example, suppose your API is configured with two run-time actions: one that performs a logging
action and another that performs a security action.When you publish theAPI, CentraSite automat-
ically combines the two actions into one effective policy. The effective policy, which contains both
the logging action and the security action, is the policy that CentraSite actually publishes toMedi-
ator with the API.

When CentraSite generates the effective policy, it validates the resulting action list to ensure that:

■ Any action that appears in a single message flow multiple times is allowed to appear multiple
times.

For those actions that can appear in amessage flowonly once (for example, Evaluate IPAddress),
Mediator will choose only one, which might cause problems or unintended results.

■ All action dependencies are properly met. That is, some actions must be used in conjunction
with another particular action.

Run-Time Governance Reference54

Built-In Run-Time Actions Reference for APIs

If the list contains conflicts or inconsistencies, CentraSite resolves them according to Policy Resol-
ution Rules.

The effective policy that CentraSite produces for an API is contained in an object called a virtual
service definition (VSD). The VSD is given to Mediator when you publish the API. After you
publish an API to Mediator, you can view its VSD (and thus examine the effective policy that
CentraSite generated for it) from the Mediator user interface.

The following table shows:

■ Action is WS-Security Policy 1.2 compliant.
■ Action dependencies (that is, whether an action must be used in conjunction with another par-
ticular action).

■ Action exclusives (that is, whether an action cannot be used in conjunction with another partic-
ular action).

■ Action occurrences (that is, whether an action can occur once ormultiple timeswithin amessage
flow stage).

Can include
multiple times in
a policy if the
selection criteria
is combined

using an AND
operator (not

OR)?

Mutually ExclusiveDependency RequirementWS-Security
Policy
Compliant

Action

OnceRequire JMSNoneNoRequire HTTP / HTTPS

OnceRequire HTTP / HTTPSNoneNoRequire JMS

MultipleNoneNoneNoRequest Transformation

MultipleNoneNoneNoInvoke webMethods
Integration Server

OnceNoneNoneYesRequire SSL

OnceNoneNoneYesRequire WSS SAML
Token

OnceNoneNoneYesRequire Signing

OnceNoneNoneYesRequire Encryption

OnceNoneAt least one of the
following actions:

YesRequire Timestamps

■ Evaluate WSS
Username Token

55Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Can include
multiple times in
a policy if the
selection criteria
is combined

using an AND
operator (not

OR)?

Mutually ExclusiveDependency RequirementWS-Security
Policy
Compliant

Action

■ Evaluate WSS X.509
Certificate

■ Require Signing
■ Require Encryption

OnceNoneNoneNoEvaluate OAuth2 Token

OnceNoneNoEvaluate HTTP Basic
Authentication

■ Evaluate OAuth2
Authentication

■ OAuth2Authentication
■ NTLM Authentication

OnceNoneNoneYesEvaluate WSS Username
Token

OnceNoneNoneYesEvaluate WSS X.509
Certificate

OnceNoneNoneNoEvaluate IP Address

OnceNoneNoneNoEvaluate XPath Expression

OnceNoneNoneNoEvaluate Hostname

OnceNoneNoneNoEvaluate Client Certificate
for SSL Connectivity

OnceNoneNoneNoLog Invocations

MultipleNoneAt least one of the
"Evaluate" actions, or the

NoMonitor Service Level
Agreement

Require WSS SAML
Token.

MultipleNoneAt least one of the
"Evaluate" actions, or the

NoMonitor Service
Performance

Require WSS SAML
Token.

MultipleNoneAt least one of the
"Evaluate" actions, or the

NoThrottling Traffic
Optimization

Require WSS SAML
Token, provided the
Alert for Consumer

Run-Time Governance Reference56

Built-In Run-Time Actions Reference for APIs

Can include
multiple times in
a policy if the
selection criteria
is combined

using an AND
operator (not

OR)?

Mutually ExclusiveDependency RequirementWS-Security
Policy
Compliant

Action

Applications value is
specified.

OnceNoneNoneNoValidate Schema

OnceAt least one of the
"Routing" actions.

NoHTTP Basic
Authentication

■ NTLM Authentication
■ OAuth2Authentication
■ JMS Routing Rule
■ Evaluate OAuth2
Authentication

OnceAt least one of the
"Routing" actions.

NoNTLM Authentication ■ HTTP Basic
Authentication

■ OAuth2Authentication
■ JMS Routing Rule
■ Evaluate HTTP Basic
Authentication

■ Evaluate OAuth2
Authentication

OnceAt least one of the
"Routing" actions.

NoOAuth2 Authentication ■ HTTP Basic
Authentication

■ NTLM Authentication
■ JMS Routing Rule
■ Evaluate HTTP Basic
Authentication

OnceNone of the "Routing"
actions.

NoneNoJMS Routing Rule

OnceNone of the "Routing"
actions.

JMS Routing RuleNoSet Message Properties

OnceNone of the "Routing"
actions.

JMS Routing RuleNoSet JMS Headers

OnceNone of the other
"Routing" actions.

NoneNoStraight Through Routing

57Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Can include
multiple times in
a policy if the
selection criteria
is combined

using an AND
operator (not

OR)?

Mutually ExclusiveDependency RequirementWS-Security
Policy
Compliant

Action

OnceNone of the other
"Routing" actions.

NoneNoContent Based Routing

OnceNone of the other
"Routing" actions.

NoneNoLoad Balancing and
Failover Routing

OnceNone of the other
"Routing" actions.

NoneNoContext Based Routing

OnceNoneAt least one of the
"Routing" actions.

NoSet Custom Headers

MultipleNoneNoneNoResponse Transformation

MultipleNoneNoneNoInvoke webMethods
Integration Server

OnceNoneNoneNoCustom SOAP Response
Message

Effective Policies

Usage Cases for Identifying/Authenticating Clients

When deciding which type of identifier to use to identify a client, consider the following points:

■ Whatever identifier you choose to identify a client, it must be unique to the application. Identi-
fiers that represent user names are often not suitable because the identified users might submit
requests for multiple APIs.

■ Identifying applications by IP address or host name is often a suitable choice, however, it does
create a dependency on the network infrastructure. If a client moves to a new machine, or its
IP address changes, you must update the identifiers in the application asset.

■ Using X.509 certificates or a custom token that is extracted from the SOAPmessage itself (using
an XPATH expression), is often the most trouble-free way to identify a client.

Following are some common combinations of actions used to authenticate/identify clients.

Run-Time Governance Reference58

Built-In Run-Time Actions Reference for APIs

■ Scenario 1: Identify clients by IP address or host name
■ The simplest way to identify clients is to use the Evaluate IP Address action.

■ Scenario 2: Authenticate clients by HTTP authentication token
Use the following actions:
■ Evaluate HTTP Basic Authentication to identify clients using the token derived from the
HTTP Header.

■ HTTP Basic Authentication.
■ Scenario 3: Authenticate clients by WS-Security authentication token
Use the following action:
■ Evaluate WSS Username Token action to identify clients using the token derived from the
WSS Header.

■ Scenario 4: Authenticate clients by WSS X.509 certificate
■ Evaluate WSS X.509 Certificate action to identify clients using the WSS X.509 certificate.
■ Require SSL action.

Run-Time Actions Reference

This section provides an alphabetic list of the built-in run-time actions you can include in the run-
time governance rules for APIs:

■ Content Based Routing
■ Context Based Routing
■ Custom SOAP Response Message
■ Evaluate Client Certificate for SSL Connectivity
■ Evaluate Hostname
■ Evaluate HTTP Basic Authentication
■ Evaluate IP Address
■ Evaluate OAuth2 Token
■ Evaluate WSS Username Token
■ Evaluate WSS X.509 Certificate
■ Evaluate XPath Expression
■ HTTP Basic Authentication
■ Invoke webMethods Integration Server
■ JMS Routing Rule
■ Load Balancing and Failover Routing
■ Log Invocation
■ Monitor Service Level Agreement
■ Monitor Service Performance
■ NTLM Authentication
■ OAuth2 Authentication

59Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

■ Response Transformation
■ Request Transformation
■ Require Encryption
■ Require HTTP / HTTPS
■ Require JMS
■ Require Signing
■ Require SSL
■ Require Timestamps
■ Require WSS SAML Token
■ Set Custom Headers
■ Set JMS Headers
■ Set Message Properties
■ Straight Through Routing
■ Throttling Traffic Optimization
■ Validate Schema

Content Based Routing

If you have a native API that is hosted at two or more endpoints, you can use the Content Based
Routing to route specific types of messages to specific endpoints.

You can route messages to different endpoints based on specific values that appear in the request
message.

When this action is configured for a proxy API, the requests are routed according to the routing
rules you create. That is, they are routed based on the successful evaluation of one or more XPath
expressions that are constructed utilizing the content of the request payload. For example, a
routing rule might allow requests for half of the methods of a particular service to be routed to
Endpoint A, and the remaining methods to be routed to Endpoint B.

Input Parameters

URI. Mandatory. Enter the URL of the native API endpoint to route the request to in case all
routing rules evaluate to False. For example:

Route To

http://mycontainer/creditCheckService

Click the Configure Endpoint Properties icon (next to the Route To field) if you want
to configure a set of properties for the specified endpoint.

Alternatively,Mediator offers “Local Optimization” capability if the native endpoint is hosted
on the same Integration Server as webMethods Mediator. With local optimization, API
invocation happens in-memory and not through a network hop.

Specify the native API in either of the following forms:

local://<Service-full-path>

Run-Time Governance Reference60

Built-In Run-Time Actions Reference for APIs

OR

local://<server>:<port>/ws/<Service-full-path>

For example:

local://MyAPIFolder:MyLocalAPI

whichpoints to the endpointAPIMyLocalAPIwhich is present under the folderMyAPIFolder
in Integration Server.

Click the Add Routing Rule button and complete the Add Routing Rule dialog box as
follows.

Add
Routing
Rule button

1. In the XPath Expression field, specify an argument to evaluate the XPath expression
contained in the request.

2. To add a customNamespace, specify a name and value for the namespace in the Prefix
and URI fields. If you need to add additional rows, use the plus button.

3. In the Route To field, specify the URL of the native API to route the request to, if the rule
criteria are met.

4.
Click theConfigure Endpoint Properties icon (next to theRoute To field) if you want
to configure a set of properties for the specified endpoint individually.

5. ClickOK.

Optional.This icon displays the Endpoint Propertiesdialog box that enables you to configure
a set of properties for the Mediator to route incoming requests to the native API as follows:

Configure
Endpoint
Properties

icon

Only for SOAP-BasedAPIs.Mediator can use the following optimization
methods to parse SOAP requests to the native API:

SOAP
Optimization
Method DescriptionValue

Mediator will use the Message
TransmissionOptimizationMechanism
(MTOM) to parse SOAP requests to the
API.

MTOM

Mediator will use the SOAP with
Attachment (SwA) technique to parse
SOAP requests to the API.

SwA

Default. Mediator will not use any
optimizationmethod to parse the SOAP
requests to the API.

None

Note:

1. Bridging between SwA andMTOM is not supported. If a client sends
a SwA request, Mediator can only forward SwA to the native API.
The same is true for MTOM, and applies to responses received from
the native API. That is, a SwA or MTOM response received by
Mediator from a native API will be forwarded to the client using the
same format it received.

61Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

2. When sending SOAP requests that do not contain a MTOM or SWA
attachment to a native API that returns an MTOM or SWA response,
the request 'Accept' header must be set to 'multipart/related'. This is
necessary so Mediator knows how to parse the response properly.

Number. Optional.The time interval (in seconds) afterwhich a connection
attempt will timeout. If a value 0 is specified (or if the value is not

HTTP Connection
Timeout

specified), Mediator will use the value specified in the Connection
Timeout field (go to Integration Server Administrator > Settings >
Extended). Default: 30 seconds.

Number. Optional. The time interval (in seconds) after which a socket read
attempt will timeout. If a value 0 is specified (or if the value is not

Read Timeout

specified), Mediator will use the value specified in the Read Timeout
field (Open the Integration Server Administrator. Go to > Settings >
Extended.). Default: 30 seconds.

Optional. To enable SSL client authentication that Mediator will use to
authenticate incoming requests for the native API, you must specify

SSL
Configuration

values for both the Client CertificateAlias field and the IS KeystoreAlias
field. If you specify a value for only one of these fields, a deployment
error will occur.

Note: SSL client authentication is optional; you may leave both fields
blank.

Prerequisite: You must set up the key alias and keystore properties in
the Integration Server. For the procedure, see the section Securing
Communications with the Server in the documentwebMethods Integration
Server Administrator’s Guide.

You will use these properties to specify the following fields:

DescriptionValue

Mandatory. The client's private key to be
used for performing SSL client
authentication.

Client Certificate Alias

Mandatory. The keystore alias of the
instance of Integration Server on which
Mediator is running. This value (along
with the value of Client Certificate
Alias) will be used for performing SSL
client authentication.

IS Keystore Alias

Only for SOAP-BasedAPIs. IndicateswhetherMediator should pass the
WS-Security headers of the incoming requests to the native API.

WS Security
Header

DescriptionValue

Run-Time Governance Reference62

Built-In Run-Time Actions Reference for APIs

Removes the security header if it is
processed byMediator (i.e., if Mediator
processes the header according to the
API's security run-time action). Note
that Mediator will not remove the
security header if both of the following
conditions are true: 1) Mediator did not
process the security header, and 2) the
mustUnderstand attribute of the
security header is 0/false).

Remove processed ↩
security headers

Default. Passes the security header, even
if it is processed by Mediator (i.e., even
if Mediator processes the header
according to the API's security action).

Pass all security headers

Context Based Routing

If you have a native API that is hosted at two or more endpoints, you can use the Context Based
Routing to route specific types of messages to specific endpoints.

When this action is configured for a proxy API, the requests are routed according to the routing
rules you create. A routing rule specifies where requests should be routed, and the criteria by
which they should be routed there. For example, requests can be routed according to certain clients,
certain dates/times, or according to requests that exceed/fall below a specifiedmetric (Total Count,
Success Count, Fault Count, etc.). You can create one or more rules.

Input Parameters

URI. Mandatory. Enter the URL of the native API endpoint to route the request to in case all
routing rules evaluate to False. For example:

Default
Route To

http://mycontainer/creditCheckService

Click the Configure Endpoint Properties icon (next to the Route To field) if you want
to configure a set of properties for the specified endpoint.

Alternatively,Mediator offers “Local Optimization” capability if the native endpoint is hosted
on the same Integration Server as webMethods Mediator. With local optimization, API
invocation happens in-memory and not through a network hop.

Specify the native API in either of the following forms:

local://<Service-full-path>

OR

local://<server>:<port>/ws/<Service-full-path>

63Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

For example:

local://MyAPIFolder:MyLocalAPI

whichpoints to the endpointAPIMyLocalAPIwhich is present under the folderMyAPIFolder
in Integration Server.

Click the Add Routing Rule button and complete the Add Routing Rule dialog box as
follows.

Add
Routing
Rule button

1. In theName field, specify a name for the routing rule.

2. In the Condition panel, specify the following as required:

a. In the Variable column, select Time, IP Address Range, Date, Consumer, Predefined
ContextVariable orCustomContextVariable. Formore information, seeUsing Context
Variables in APIs.

b. In the Value column, specify an applicable value.
ForDate choose Before, After or Equal To and enter a date.
For Time choose Before or After and enter a time.
For IP Address, enter numeric values for Between and And.
For Consumer, enter a consumer application name in the text box.
For Predefined Context Variable or Custom Context Variable, choose the String or
Integer data type. Select a predefined variable name or custom variable name from the
drop-down list. For String, choose Equal To orNot Equal To and enter a value. For
Integer, chooseGreater Than, Less Than,Not Equal To, Equal To or and enter a value.

Note:

i. For the list of the predefined context variables, see Using Context Variables in APIs.

ii. The predefined context variable PROTOCOL_HEADER is not available in the
drop-down list; to include PROTOCOL_HEADER in the rule, define the variable as
Custom Context Variable. For more information, see The API for Context Variables.

iii. If you define a custom context variable in the routing rule, you must write a
webMethods IS service and invoke it in the API's Context Based Routing action. In this
Integration Server service, use the API to get/set the custom context variable. For
more information, see The API for Context Variables.

If you need to specify multiple variables, use the plus button to add rows.

c. If you have more than one routing rule, choose an operator for the expression: AND
orOR (the default) .

3. In the Route To field, specify the URL of the native API endpoint to route the request to,
if the rule criteria are met.

4.
Click theConfigure Endpoint Properties icon (next to theRoute To field) if you want
to configure a set of properties for the specified endpoint individually.

5. ClickOK.

Optional.This icon displays the Endpoint Propertiesdialog box that enables you to configure
a set of properties for the Mediator to route incoming requests to the native API as follows:

Configure
Endpoint

Run-Time Governance Reference64

Built-In Run-Time Actions Reference for APIs

Only for SOAP-Based APIs. Mediator can use the following
optimization methods to parse SOAP requests to the native API:

SOAP Optimization
Method

Properties

icon
DescriptionValue

Mediator will use the Message
Transmission Optimization
Mechanism (MTOM) to parse SOAP
requests to the API.

MTOM

Mediator will use the SOAP with
Attachment (SwA) technique to parse
SOAP requests to the API.

SwA

Default. Mediator will not use any
optimization method to parse the
SOAP requests to the API.

None

Note:

1. Bridging between SwA and MTOM is not supported. If a client
sends a SwA request, Mediator can only forward SwA to the native
API. The same is true forMTOM, and applies to responses received
from the native API. That is, a SwA or MTOM response received
byMediator from a native API will be forwarded to the client using
the same format it received.

2. When sending SOAP requests that do not contain aMTOMor SWA
attachment to a nativeAPI that returns anMTOMor SWA response,
the request 'Accept' header must be set to 'multipart/related'. This
is necessary soMediator knows how to parse the response properly.

Number. Optional. The time interval (in seconds) after which a
connection attemptwill timeout. If a value 0 is specified (or if the value

HTTP Connection
Timeout

is not specified), Mediator will use the value specified in the
Connection Timeout field (go to Integration Server Administrator
> Settings > Extended). Default: 30 seconds.

Number. Optional. The time interval (in seconds) after which a socket
read attempt will timeout. If a value 0 is specified (or if the value is

Read Timeout

not specified), Mediator will use the value specified in the Read
Timeout field (Open the Integration Server Administrator. Go to >
Settings > Extended.). Default: 30 seconds.

Optional. To enable SSL client authentication that Mediator will use to
authenticate incoming requests for the native API, you must specify

SSL Configuration

values for both the Client Certificate Alias field and the IS Keystore
Alias field. If you specify a value for only one of these fields, a
deployment error will occur.

Note: SSL client authentication is optional; you may leave both fields
blank.

65Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Prerequisite: You must set up the key alias and keystore properties in
the Integration Server. For the procedure, see the section Securing
Communications with the Server in the documentwebMethods Integration
Server Administrator’s Guide.

You will use these properties to specify the following fields:

DescriptionValue

Mandatory. The client's private key to
be used for performing SSL client
authentication.

Client Certificate Alias

Mandatory. The keystore alias of the
instance of Integration Server on
whichMediator is running. This value
(along with the value of Client
Certificate Alias) will be used for
performing SSL client authentication.

IS Keystore Alias

Only for SOAP-Based APIs. Indicates whether Mediator should pass
the WS-Security headers of the incoming requests to the native API.

WS Security
Header

DescriptionValue

Default. Removes the security header
if it is processed by Mediator (i.e., if
Mediator processes the header
according to the API's security
run-time action). Note that Mediator
will not remove the security header if
both of the following conditions are
true: 1) Mediator did not process the
security header, and 2) the

Remove processed ↩
security headers

mustUnderstand attribute of the
security header is 0/false).

Passes the security header, even if it
is processed by Mediator (i.e., even if
Mediator processes the header
according to theAPI's security action).

Pass all security headers

Custom SOAP Response Message

This action returns a custom error response (and/or the native provider’s service fault content) to
the client when the native provider returns a service fault. Alternatively, you can configure global
error responses for all APIs, using Mediator's Service Fault Configuration page (see Configuring
Global Service Fault Responses in the document Administering webMethods Mediator).

Run-Time Governance Reference66

Built-In Run-Time Actions Reference for APIs

Input Parameters

String. Specify the custom failure message to the client.Failure Message

When the parameter is enabled, Mediator sends the native SOAP / REST failure
message to the client. When you enable this parameter, the Failure Message is

Send Native SOAP
Fault Message

ignored when a fault is returned by the native API provider. (Faults returned by
internal Mediator exceptions will still be handled by the Failure Message.)

String. Optional. Invokes one or more webMethods IS services to manipulate the
response message from the native API before it is returned to the consuming

Pre-processing
webMethods IS
Service application. The IS service will have access to the response message context (the

axis2MessageContext instance) before it is updatedwith the custom errormessage.
For example, youmight want to send emails or perform custom alerts based on the
response payload.

String. Optional. Invokes one or more webMethods IS services to manipulate the
API fault after the CustomSOAPResponseMessage action is invoked. The IS service

Post-processing
webMethods IS
Service will have access to the entire API fault and the custom errormessage. You canmake

further changes to the fault message structure, if needed.

Failure Messages

The failure message is returned in both of the following cases:

■ When a failure is returned by the native API provider.

In this case, the $ERROR_MESSAGE variable in the failure message will contain the message pro-
duced by the provider's exception that caused the error. This is equivalent to the getMessage
call on the Java Exception.

■ When a failure is returned by internal Mediator exceptions (such as policy violation errors,
timeouts, etc.).

In this case, $ERROR_MESSAGEwill contain the error message generated by Mediator.

Alternatively, you can configure global failure messages for all APIs, using Mediator's Service
Fault Configuration page, as described in the document Administering webMethods Mediator.

Mediator returns the following failure message to the consuming application:

Mediator encountered an error:$ERROR_MESSAGE while executing operation:$OPERATION ↩
service:$SERVICE at time:$TIME on date:$DATE. The client ip was:$CLIENT_IP. The ↩
current user:$USER. The consumer application:$CONSUMER_APPLICATION".

The precedence of the Failure Message configurations is as follows:

■ If you configure a Custom SOAP Response Message action for an API, the failure message
configurations take precedence over any settings on the global Service Fault Configuration page.

67Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

■ If you do not configure a Custom SOAP Response Message action for an API, the settings on
the Service Fault Configuration page take precedence.

The default failure message contains predefined fault handler variables ($ERROR_MESSAGE,
$OPERATION, etc.) which are described in the table below.

You can customize the default failure message using the following substitution variables, where
Mediator replaces the variable reference with the real content at run time:

■ The predefined context variables listed in The Predefined Context Variables.
■ Custom context variables that you declare usingMediator's API (seeThe API for Context Variables).

Note: If you want to reference a custom context variable that you have already defined
in aContext BasedRouting action (as opposed to one you have declared usingMediator's
API), then you must add the prefix $mx to the variable name in order to reference the
variable. For example, if you defined the variable TAXID, you would reference it as
$mx:TAXID.

The fault handler variables are described below.

Note: If no value is defined for a fault handler variable, then the returned value will be the
literal string "null". For example, $CONSUMER_APPLICATIONwill always be "null" if the service's
policy does not contain at least one of the "Evaluate" actions.

DescriptionFault Handler Variable

The error message produced by the exception that is causing the error. This is
equivalent to the getMessage call on the Java Exception. This maps to the
faultString element for SOAP 1.1 or the Reason element for SOAP 1.2 catch.

$ERROR_MESSAGE

The operation that was invoked when this error occurred.$OPERATION

The service that was invoked when this error occurred.$SERVICE

The time (as determined on the Container side) at which the error occurred.$TIME

The date (as determined on the Container side) at which the error occurred.$DATE

The IP address of the client invoking the service. This might be available for
only certain invoking protocols, such as HTTP(S).

$CLIENT_IP

The currently authenticated user. The user will be present only if the
Transport/SOAP Message have user credentials.

$USER

The currently identified consumer application (client).$CONSUMER_APPLICATION

Run-Time Governance Reference68

Built-In Run-Time Actions Reference for APIs

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383507
http://www.w3.org/TR/soap12-part1/#soapfault

Evaluate Client Certificate for SSL Connectivity

If you have a native API that requires to authenticate a client to the Integration Server using the
Secure Sockets Layer (SSL) client authentication, you can use the Evaluate Client Certificate action
to extract the client's identity certificate, and verify the client's identity (certificate-based authen-
tication).

This form of authentication does not occur at the message layer using a user ID and password or
tokens. This authentication occurs during the connection handshake using SSL certificates.

This action extracts the client identity certificate supplied by the client to the Mediator during the
SSL handshake over the Transport layer. For example, when you have configured this action for
a proxy API, the PEP extracts the certificate from the Transport layer. In order to identify clients
by transport-level certificates, the run-time communication between the client and the Mediator
must be over HTTPS and the client must pass a valid certificate.

To use this action, the following prerequisites must be met:

■ In Integration Server, create a keystore and truststore, as described in Securing Communications
with the Server in the webMethods Integration Server Administrator’s Guide.

■ In Integration Server, create an HTTPS port, as described in Configuring Ports in the webMethods
Integration Server Administrator’s Guide.

■ Configure Mediator by setting the HTTPS Ports Configuration parameter, as described in Con-
figuring Mediator > Ports Configuration in the document Administering webMethods Mediator.

Mediator rejects requests that do not include a client certificate during the SSL handshake over
the Transport layer.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String.The list of consumers againstwhich the client certificate should be validated for identifying
requests from a particular client.

Identify
Consumer

DescriptionValue

Mediator will try to verify the client identify certificate
against the list of consumer applicationswho are registered
as consumers for the specified API.

Registered Consumers

69Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Default.Mediator will try to verify the client identify
certificate against a list of all global consumers available in
the Mediator.

Global Consumers

Evaluate Hostname

If you have a native API that requires to authenticate a client to the Integration Server using the
hostname, you can use the Evaluate Hostname action to extract the client's hostname from the
HTTP request header, and verify the client's identity.

This action extracts the specified hostname from an incoming request and locates the client defined
by that hostname. For example, when you have configured this action for an API, the PEP extracts
the hostname from the request’s HTTP header at run time and searches its list of consumers for
the client defined by the hostname.

Mediator will evaluate the incoming request to identify and validate that the client's request ori-
ginated from a particular host machine.

Mediator rejects requests that do not include the hostname of an Integration Server user.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String. The list of consumers against which the hostname should be validated for identifying
requests from a particular client.

Identify
Consumer

DescriptionValue

Mediator will try to verify the client's hostname against the
list of consumer applications who are registered as
consumers for the specified API.

Registered Consumers

Default.Mediator will try to verify the client's hostname
against a list of all global consumers available in the
Mediator.

Global Consumers

Evaluate HTTP Basic Authentication

If you have a native API that requires to authenticate a client to the Integration Server using the
HTTP Basic Authentication, you can use the Evaluate HTTP Basic Authentication action to extract
the client's credentials (user ID and password) from the Authorization request header, and verify
the client's identity.

This action usesHTTPBasic authentication to verify the client's authentication credentials contained
in the request's Authorization header.When this action is configured for anAPI,Mediator validates
the credentials against the list of consumers available in the Integration Server on whichMediator

Run-Time Governance Reference70

Built-In Run-Time Actions Reference for APIs

is running. If you chosen the checkbox Authenticate User using the HTTP Basic Authentication,
this type of client authentication is referred to as “preemptive authentication”.

If the user/password value in the Authorization header cannot be authenticated as a valid Integ-
ration Server user (or if the Authorization header is not present in the request), a 500 SOAP fault
is returned, and the client is presentedwith a security challenge. If the client successfully responds
to the challenge, the user is authenticated. This type of client authentication is referred to as “non-
preemptive authentication”. If the client does not successfully respond to the challenge, a 401
“WWW-Authenticate: Basic” response is returned and the invocation is not routed to the policy
engine.

If you choose to omit the Authenticate User parameter (and regardless of whether an Authoriz-
ation header is present in the request or not), then Mediator forwards the request to the native
API, without attempting to authenticate the request.

In the case where a client sends a request with transport credentials (HTTP Basic Authentication)
and message credentials (WSS Username Token or WSS X.509 Token), the message credentials
take precedence over the transport credentialswhen Integration Server determineswhich credentials
it should use for the session. For more information, see Evaluate WSS Username Token and
Evaluate WSS X.509 Certificate.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String. The list of consumers against which authentication credentials (user ID and
password) should be validated for identifying requests from a particular client.

Identify
Consumer

DescriptionValue

Mediator will try to verify the client's credentials
against the list of consumer applications who are
registered as consumers for the specified API.

Registered Consumers

Default.Mediator will try to verify the client's
credentials against a list of all global consumers
available in the Mediator.

Global Consumers

Mediator forwards the request to the native API,
without attempting to verify client's credentials in
incoming request.

Do Not Identify

Use this checkbox to specify the users who can access the APIs. If you select the checkbox,
Mediator allows only the users specified in the Identify Consumer parameter to access
the APIs. If you do not select the checkbox, Mediator allows all users to access the API. In
this case, do not configure the Identify Consumer parameter.

Note: If you have selected theAuthenticate User option, the client that connects to the
API must have an Integration Server user account.

Authenticate
User

71Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Evaluate IP Address

If you have a native API that requires to authenticate a client to the Integration Server using the
IP address, you can use the Evaluate IP Address action to extract the client's IP address from the
HTTP request header, and verify the client's identity.

This action extracts the specified IP address from an incoming request and locates the client defined
by that IP address. For example, when you have configured this action for a proxy API, the PEP
extracts the IP address from the request’sHTTPheader at run time and searches its list of consumers
for the client defined by the IP address.

Mediator will evaluate the incoming request to identify and validate that the client's request ori-
ginated from a particular IP address.

Mediator rejects requests that do not include the IP address of an Integration Server user.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String. The list of consumers against which the IP address should be validated for identifying
requests from a particular client.

Identify
Consumer

DescriptionValue

Mediator will try to verify the client's credentials against the list
of consumer applications who are registered as consumers for
the specified API.

Mediator will evaluate whether the request header contains the
X-Forwarded-For, which is used for identifying the IP address
of a client through an HTTP proxy.

Registered Consumers

Default.Mediatorwill try to verify the client's credentials against
a list of all global consumers available in the Mediator.

Global Consumers

Mediator forwards the request to the native API, without
attempting to verify client's credentials in incoming request.

Do Not Identify

Evaluate OAuth2 Token

This action extracts the specified OAuth access token from an incoming request and locates the
client defined by that access token. For example, when you have configured this action for an API,
the PEP extracts the OAuth access token from the request’s HTTP header at run time and searches
its list of consumers for the client that is defined by that access token.

Mediator will evaluate the incoming request to identify and validate that the client's access token.

Mediator rejects requests that do not include the OAuth access token of an Integration Server user.

Run-Time Governance Reference72

Built-In Run-Time Actions Reference for APIs

Mediator supports OAuth2.0 using the grant type “Client Credentials”.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String. The list of consumers against which theOAuth token should be validated for identifying
requests from a particular client.

Identify
User

DescriptionValue

Mediator will try to verify the client's OAuth access
token against the list of consumer applications who are
registered as consumers for the specified API.

Registered Consumers

Default.Mediator will try to verify the client's OAuth
access token against a list of all global consumers
available in the Mediator.

Global Consumers

Boolean. Optional.This option uses your resource server to verify clients.When Integration Server
acts as a resource server, it receives requests from clients that include an access token. The
resource server asks the authorization server to validate the access token and user. If the token
is valid and the user has privileges to access the folders and services, the resource server executes
the request.

For more information about using Integration Server to act as a resource server, see the chapter
“Configuring OAuth” in the webMethods Integration Server Administrator's Guide.

Validate
Access
Token

DescriptionValue

Default. Mediator will verify the client's OAuth access
token against the list of consumers available in the
Integration Server on which Mediator is running.

True

Mediatorwill not verify the client's OAuth access token.False

Evaluate WSS Username Token

If you have a native API that requires to authenticate a client to the Integration Server using the
WS-Security authentication, you can use the Evaluate WSS Username Token action to extract the
client's credentials (username token and password) from theWS-Security SOAPmessage header,
and verify the client's identity.

This action extracts the username token andpassword supplied in themessage header of the request
and locates the client defined by that username token and password. For example, when you have
configured this action for an API, the PEP extracts the username token and password from the
SOAP header at run time and searches its list of consumers for the client that is defined by the
credentials.

To use this action, the following prerequisites must be met:

73Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

■ In Integration Server, create a keystore and truststore, as described in Securing Communications
with the Server in the webMethods Integration Server Administrator’s Guide.

■ In Integration Server, create an HTTPS port, as described in Configuring Ports in the webMethods
Integration Server Administrator’s Guide.

■ Configure Mediator by setting the HTTPS Ports Configuration parameter, as described in Con-
figuring Mediator > Ports Configuration in the document Administering webMethods Mediator.

Mediator rejects requests that do not include the username token and password of an Integration
Server user. Mediator only supports clear text passwords with this kind of authentication.

In the case where a client sends a request with transport credentials (HTTP Basic Authentication)
andmessage credentials (WSSUsernameToken orWSSX.509 Certificate), themessage credentials
take precedence over the transport credentialswhen Integration Server determineswhich credentials
it should use for the session. For more information, see Evaluate HTTP Basic Authentication
Action and Evaluate WSS X.509 Certificate Token.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String.The list of consumers againstwhich the username token andpassword should be validated
for identifying requests from a particular client.

Identify
Consumer

DescriptionValue

Mediator will try to verify the client's WSS username token
against the list of consumer applications who are registered
as consumers for the specified API.

Registered Consumers

Default.Mediatorwill try to verify the client'sWSS username
token against a list of all global consumers available in the
Mediator.

Global Consumers

Mediator forwards the request to the native API, without
attempting to verify the client's username token in incoming
request.

Do Not Identify

Evaluate WSS X.509 Certificate

If you have a native API that requires to authenticate a client to the Integration Server using the
WS-Security authentication, you can use the Evaluate WSS X.509 Certificate action to extract the
client identity certificate from the WS-Security SOAP message header, and verify the client's
identity.

This action extracts the certificate supplied in the header of an incoming SOAP request and locates
the client defined by the information in that certificate. For example, when you have configured
this action for an API, the PEP extracts the certificate from the SOAP header at run time and
searches its list of consumers for the client that is defined by the certificate.

Run-Time Governance Reference74

Built-In Run-Time Actions Reference for APIs

To use this action, the following prerequisites must be met:

■ In Integration Server, create a keystore and truststore, as described in Securing Communications
with the Server in the webMethods Integration Server Administrator’s Guide.

■ In Integration Server, create an HTTPS port, as described in Configuring Ports in the webMethods
Integration Server Administrator’s Guide.

■ Configure Mediator by setting the HTTPS Ports Configuration parameter, as described in Con-
figuring Mediator > Ports Configuration in the document Administering webMethods Mediator.

Mediator rejects requests that do not include the X.509 token of an Integration Server user.

In the case where a client sends a request with transport credentials (HTTP Basic Authentication)
andmessage credentials (WSSUsernameToken orWSSX.509 Certificate), themessage credentials
take precedence over the transport credentialswhen Integration Server determineswhich credentials
it should use for the session. For more information, see Evaluate WSS Username Token and
Evaluate HTTP Basic Authentication Action.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String.The list of consumers againstwhich theX.509 certificate should be validated for identifying
requests from a particular client.

Identify
Consumer

DescriptionValue

Mediatorwill try to verify the client's X.509 certificate against
the list of consumer applications who are registered as
consumers for the specified API.

Registered Consumers

Default.Mediatorwill try to verify the client's X.509 certificate
against a list of all global consumers available in theMediator.

Global Consumers

Mediator forwards the request to the native API, without
attempting to verify client's certificate in incoming request.

Do Not Identify

Evaluate XPath Expression

Note: This action does not support JSON-based REST APIs.

If you have a native API that requires to authenticate a client to the Integration Server using the
custom authentication, you can use the Evaluate XPath Expression action to extract the custom
authentication credentials (tokens, or username andpassword token combination) from the request
header, and verify the client's identity.

This action extracts the custom authentication credentials that is supplied in the request header
(which is represented using an XPath expression) and locates the client defined by the credentials.

75Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

The custom authentication credentials can be in the form of tokens, or a username and password
token combination. For example, when you have configured this action for anAPI, the PEP extracts
the custom credentials from the request header (using an XPath expression) at run time and
searches its list of consumers for the client defined by the credentials.

Mediator rejects requests that do not include the XPath expression of an Integration Server user.

If Mediator cannot identify the client, Mediator fails the request and generates a Policy Violation
event.

Input Parameters

String. The list of consumers against which the XPath expression should be validated for
identifying requests from a particular client.

Identify
Consumer

DescriptionValue

Mediator will try to verify the client's XPath expression
against the list of consumer applications who are
registered as consumers for the specified API.

Registered Consumers

Default.Mediator will try to verify the client's XPath
expression against a list of all global consumers
available in the Mediator.

Global Consumers

Mediator forwards the request to the native API,
without attempting to verify client's XPath expression
in incoming request.

Do Not Identify

String. Optional. The namespace of the XPath expression to be validated.Namespace

String. Mandatory. An argument to evaluate the XPath expression contained in the request.
See the sample below.

XPath
Expression

Let's take a look at an example. For the following SOAP message:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
</soap:Header>

<soap:Body>
<catalog xmlns="http://www.store.com">
<name>My Book</name>
<author>ABC</author>
<price>100</price>

</catalog>
</soap:Body>

</soap:Envelope>

The XPath expression appears as follows:

Run-Time Governance Reference76

Built-In Run-Time Actions Reference for APIs

/soap:Envelope/soap:Body

HTTP Basic Authentication

This action uses the HTTP authentication mechanism to validate incoming requests from clients.
Mediator authorizes the basic credentials (username and password) against a list of all global
consumers available in the Mediator.

If the username/password value in the Authorization header cannot be authenticated as a valid
Integration Server user (or if the Authorization header is not present in the request), a 500 SOAP
fault is returned, and the client is presented with a security challenge. If the client successfully
responds to the challenge, the user is authenticated. If the client does not successfully respond to
the challenge, a 401 "WWW-Authenticate: Basic" response is returned and the invocation is not
routed to the policy engine. As a result, no events are recorded for that invocation, and its key
performance indicator (KPI) data are not included in the performance metrics.

If none of the authentication actions (HTTP Basic Authentication, NTLM Authentication or
OAuth2 Authentication) is configured for a proxy API, Mediator forwards the request to the
native API, without attempting to authenticate the request.

Input Parameters

String. The user credentials for authenticating client requests to the native API.Authenticate
Using DescriptionValue

Default.Mediator authenticates requests based on the credentials specified
in the HTTP header. It passes the “Authorization” header present in the
original client request to the native API.

Existing ↩
Credentials

Mediator authenticates requests according to the values you specify in
the User, Password andDomain fields.

DescriptionField

String. Mandatory. Account name of a
consumer who is available in the
Integration Server on which Mediator is
running.

Username

String. Mandatory.A valid password of the
consumer.

Password

Custom ↩
Credentials

String. Optional.Domain used by the server
to authenticate the consumer.

Domain

77Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Invoke webMethods Integration Server

Specifically, you would need to configure the Invoke webMethods Integration Server action to:

■ Pre-process the request messages into the format required by the native API, before Mediator
sends the requests to the native APIs.

■ Pre-process the native API’s response messages into the format required by the clients, before
Mediator returns the responses to the clients.

In some cases an API might need to process messages.

For example, you might need to accommodate differences between the message content that a
client is capable of submitting and the message content that a native API expects. For example, if
the client submits an order record using a slightly different structure than the structure expected
by the native API, you can use this action to process the record submitted by the client to the
structure required by the native API.

In the Request Handling sequence, this action invokes the webMethods IS service to pre-process
the request received from the client and before it is submitted to the native API.

In the Response Processing sequence, this action invokes the webMethods IS service to process
the response message received from the native API and before it is returned to the client.

Note: A webMethods IS service must be running on the same Integration Server as web-
MethodsMediator. It can call out a C++ or Java or .NET function. It can also call other Integ-
ration Server services to manipulate the message.

Input Parameters

String. Mandatory. Enter a name for the webMethods IS Service. This service will be
used to manipulate the request/response (the axis2 MessageContext instance).

Mediator will pass to the invoked IS service the request message context (the axis2
MessageContext instance), which contains the request-specific information. Also,

webMethods IS
Service

you can use the public IS services that acceptMessageContext as input tomanipulate
the response contents.

Run-Time Governance Reference78

Built-In Run-Time Actions Reference for APIs

JMS Routing Rule

This action allows you to specify a JMS queue to which the Mediator is to submit the request, and
the destination to which the native API is to return the response.

To use the JMSRouting Rule action, you publishmultiple APIs for a single nativeAPI. For example,
to make a particular native API available to clients over both HTTP and JMS, you would create
twoAPIs for the native API: one that accepts requests overHTTP and another that accepts requests
over JMS. Both APIs would route requests to the same native API on the back end.

Note: To make it easier to manage APIs, consider adopting a naming convention like the
one shown above. Doing so will make it easier to identify APIs and the native API with
which they are associated. Keep in mind however, that unlike native APIs, the names of
APIs cannot contain spaces or special characters (except _ and -). Consequently, if you adopt
a convention that involves using the name of the native API as part of the API name, then
the names of the native APIs themselves must not contain characters that are invalid in API
names.

To use this action the following prerequisites must be met:

■ Create an alias to a JNDI Provider (in the Integration Server Administrator, go to Settings >
Web Services). For the procedure, see the section Creating a JNDI Provider Alias in the document
Administering webMethods Integration Server.

■ To establish an active connection between Integration Server and the JMS provider, you must
configure Integration Server to use a JMS connection alias (in the Integration Server Adminis-
trator, go to Settings > Messaging > JMS Settings). For the procedure, see the section Creating
a JMS Connection Alias in the document Administering webMethods Integration Server.

■ Create a WS (Web Service) endpoint alias for provider Web Service Descriptor (WSD) that uses
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Provider Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

■ Configure a WS (Web Service) endpoint trigger (in the Integration Server Administrator, go to
Settings > Messaging > JMS Trigger Management). For the procedure, see the section Editing
WS Endpoint Triggers in the document Administering webMethods Integration Server.

■ Create a WS (Web Service) endpoint alias for consumerWeb Service Descriptor (WSD) that has
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Consumer Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

■ Additionally, in the proxy API'sMessage Flow area, make sure that you delete the predefined
Straight Through Routing and HTTP Basic Authentication actions from the Receive stage. This is
because, these actions are mutually exclusive.

79Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Input Parameters

String. Mandatory. Specify a connection alias for connecting to the JMS provider (e.g., an
Integration Server alias or a JNDI URL). For example, a JNDI URL of the form:

Connection
URL

jms:queue:dynamicQueues/MyRequestQueue?
wm-wsendpointalias=MediatorConsumer
&targetService=vs-jms-in-echo

Note that the wm-wsendpointalias parameter is required for Integration Server/Mediator
to look up the JMS consumer alias to send the request to the specified queue (e.g.,
MyRequestQueue), which is a dynamic queue in ActiveMQ. Also, the targetService
parameter is required if sending to another API that uses JMS as the entry protocol.

Optional. Specify a queue name where a reply to a message should be sent.Reply to
Destination

Enter an integer that represents the priority of this JMS message with respect to other
messages that are in the same queue. The priority value determines the order in which the

Priority

messages are routed. The lower the Priority value, the higher the priority (i.e., 0 is the highest
priority, and messages with this priority value are executed first).

■ Priority values 0 through 10.
■ The default priority for a JMS message is 0.

Formore information about priorities, seeWhatHappens if aQueue IncludesMultiple JMS
Messages?

Optional. A numeric value (in milliseconds) that specifies the expiration time of the JMS
message. If the time-to-live is specified as zero, expiration is set to zero which indicates the
message does not expire.

Time to
Live

The default value is 0.

Optional. The type of message delivery to the endpoint.Delivery
Mode DescriptionValue

Themessage is stored by the JMS server before
delivering it to the client.

Persistent

Default. The message is not stored before
delivery.

Non-Persistent

What Happens if a Queue Includes Multiple JMSMessages?

To determine the order in which to execute the JMSmessages in a queue, Mediator examines each
message's Priority setting.

The Priority setting contains a non-negative integer that indicates the JMS message's priority. A
priority value of 0 represents the highest possible priority.

Run-Time Governance Reference80

Built-In Run-Time Actions Reference for APIs

Note: A JMSmessage'sPriorityproperty is used onlywhen there aremultiple JMSmessages
to route in the queue. If the queue has only one message to route, the Priority property is
ignored entirely.

When a queue includes multiple JMS messages, Mediator routes the messages serially, in priority
order from lowest to highest (that is, it routes with message the lowest priority value first). Each
messages in the queue is routed to completion before the next one begins.

If two or more messages have the same priority value, their order is indeterminate. Mediator will
route these messages in serial fashion after all lower priority messages and before any higher
priority messages. However, you cannot predict their order

Example

If Mediator were given the following JMS messages to route for an API:

PriorityJMS Message

11JMS Message A

25JMS Message B

11JMS Message C

0JMS Message D

It would route the messages in the following order:

PriorityJMS Message

0JMS Message D

11JMS Message A then JMS Message C (or vice versa) The order of these two messages cannot be
controlled or predicted because they have the same priority.

25JMS Message B

Load Balancing and Failover Routing

If you have a native API that is hosted at two or more endpoints, you can use the Load Balancing
and Failover Routing to distribute requests among the endpoints.

Requests are distributed across multiple endpoints. The requests are intelligently routed based
on the "round-robin" execution strategy. The load for a service is balanced by directing requests
to two or more services in a pool, until the optimum level is achieved. The application routes re-
quests to services in the pool sequentially, starting from the first to the last service without consid-
ering the individual performance of the services. After the requests have been forwarded to all
the services in the pool, the first service is chosen for the next loop of forwarding.

Load-balanced endpoints also have automatic Failover capability. If a load-balanced endpoint is
unavailable (for example, if a connection is refused), then that endpoint is marked as "down" for

81Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

the number of seconds you specify in the Timeout field (during which the endpoint will not be
used for sending the request), and the next configured endpoint is tried. If all the configured load-
balanced endpoints are down, then a failure is sent back to the client. After the timeout expires,
each endpoint marked will be available again to send the request.

Input Parameters

URI. Mandatory. Enter the URLs of two or more endpoints in a pool to which the requests
will be routed. The application routes the requests to endpoints in the pool sequentially,

Route To

starting from the first to the last endpoint without considering the individual performance
of the endpoints. After the requests have been forwarded to all the endpoints in the pool, the
first endpoint is chosen for the next loop of forwarding.

Enter the URL of the endpoint to route the request to. For example:

http://mycontainer/creditCheckService

To specify additional endpoints, use the plus button next to the field to add rows.

Click theConfigure Endpoint Properties icon (next to the field) if youwant to configure
a set of properties for the endpoints individually.

Alternatively, Mediator offers “Local Optimization” capability if the native API is hosted on
the same Integration Server aswebMethodsMediator.With local optimization,API invocation
happens in-memory and not through a network hop.

local://<Service-full-path>

OR

local://<server>:<port>/ws/<Service-full-path>

For example:

local://MyAPIFolder:MyLocalAPI

whichpoints to the endpointAPIMyLocalAPIwhich is present under the folderMyAPIFolder
in Integration Server.

Optional.This icon displays the Endpoint Propertiesdialog box that enables you to configure
a set of properties for the Mediator to route incoming requests to the native API as follows:

Configure
Endpoint
Properties

icon

Only for SOAP-based APIs.Mediator can use the following optimization
methods to parse SOAP requests to the native API:

SOAP
Optimization
Method DescriptionValue

Run-Time Governance Reference82

Built-In Run-Time Actions Reference for APIs

Mediator will use the Message
TransmissionOptimizationMechanism
(MTOM) to parse SOAP requests to the
API.

MTOM

Mediator will use the SOAP with
Attachment (SwA) technique to parse
SOAP requests to the API.

SwA

Default. Mediator will not use any
optimizationmethod to parse the SOAP
requests to the API.

None

Note:

1. Bridging between SwA andMTOM is not supported. If a client sends
a SwA request, Mediator can only forward SwA to the native API.
The same is true for MTOM, and applies to responses received from
the native API. That is, a SwA or MTOM response received by
Mediator from a native API will be forwarded to the client using the
same format it received.

2. When sending SOAP requests that do not contain a MTOM or SWA
attachment to a native API that returns an MTOM or SWA response,
the request 'Accept' header must be set to 'multipart/related'. This is
necessary so Mediator knows how to parse the response properly.

Number. Optional.The time interval (in seconds) afterwhich a connection
attempt will timeout. If a value 0 is specified (or if the value is not

HTTP Connection
Timeout

specified), Mediator will use the value specified in the Connection
Timeout field (go to Integration Server Administrator > Settings >
Extended). Default: 30 seconds.

Number. Optional. The time interval (in seconds) after which a socket read
attempt will timeout. If a value 0 is specified (or if the value is not

Read Timeout

specified), Mediator will use the value specified in the Read Timeout
field (Open the Integration Server Administrator. Go to > Settings >
Extended.). Default: 30 seconds.

Optional. To enable SSL client authentication that Mediator will use to
authenticate incoming requests for the native API, you must specify

SSL
Configuration

values for both the Client CertificateAlias field and the IS KeystoreAlias
field. If you specify a value for only one of these fields, a deployment
error will occur.

Note: SSL client authentication is optional; you may leave both fields
blank.

Prerequisite: You must set up the key alias and keystore properties in
the Integration Server. For the procedure, see the section Securing
Communications with the Server in the documentwebMethods Integration
Server Administrator’s Guide.

83Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

You will use these properties to specify the following fields:

DescriptionValue

Mandatory. The client's private key to be
used for performing SSL client
authentication.

Client Certificate Alias

Mandatory. The keystore alias of the
instance of Integration Server on which
Mediator is running. This value (along
with the value of Client Certificate
Alias) will be used for performing SSL
client authentication.

IS Keystore Alias

Only for SOAP-based APIs. Indicates whether Mediator should pass the
WS-Security headers of the incoming requests to the native API.

WS Security
Header

DescriptionValue

Default. Removes the security header if
it is processed by Mediator (i.e., if
Mediator processes the header
according to theAPI's security run-time
policy). Note that Mediator will not
remove the security header if both of
the following conditions are true: 1)
Mediator did not process the security
header, and 2) the mustUnderstand

Remove processed ↩
security headers

attribute of the security header is
0/false).

Passes the security header, even if it is
processed by Mediator (i.e., even if
Mediator processes the header
according to the API's security action).

Pass all security headers

Log Invocation

This action logs request/response payloads. You can specify the log destination and the logging
frequency. This action also logs other information about the requests/responses, such as the API
name, operation name, the Integration Server user, a timestamp, and the response time.

Input Parameters

String. Specify whether to log all request/response payloads.Payloads

DescriptionValue

Run-Time Governance Reference84

Built-In Run-Time Actions Reference for APIs

Logs all request payloads.Request

Logs all response payloads.Response

String. Specify how frequently to log the payload.Log
Generation
Frequency

DescriptionValue

Logs all requests and/or responses.Always

Logs only the successful responses and/or requests.On Success

Logs only the failed requests and/or responses.On Failure

String. Specify where to log the payload.

Important: Ensure that Mediator is configured to log the payloads to the destination(s) you
specify here. For details, see the section Alerts and Transaction Logging in the document
Administering webMethods Mediator.

Send Data
To

DescriptionValue

Logs the payloads in the API's Events profile in CentraSite.

Prerequisite: You must configure Mediator to communicate with
CentraSite (in the Integration Server Administrator, go to Solutions
>Mediator >Administration >CentraSite Communication). For the
procedure, see the section Configuring Communication with CentraSite
in the document Administering webMethods Mediator.

CentraSite

Logs the payloads in the server log of the Integration Server onwhich
Mediator is running.

Also choose a value in the Log Level field:

■ Info: logs the error-level, warning-level, and informational-level
alerts.

■ Warn: logs the error-level and warning-level alerts.
■ Error: logs only error-level alerts.

Local Log

Important: The Integration Server Administrator's logging level for
Mediator should match the logging level specified for this action (go
to Settings > Logging > Server Logger).

Logs the payloads inCentraSite's SNMP server or a third-party SNMP
server.

Prerequisite: You must configure the SNMP server destination (in
the Integration Server Administrator, go to Solutions > Mediator >
Administration > SNMP). For the procedure, see the section SNMP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

SNMP

85Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Sends the payloads to an SMTP email server, which sends them to
the email address(es) you specify here. Mediator sends the payloads
as email attachments that are compressed using gzip data

compression. To specify multiple addresses, use the button to
add rows.

Prerequisite: Youmust configure the SMTP server destination (in the
Integration Server Administrator, go to Solutions > Mediator >

Email

Administration > Email). For the procedure, see the section SMTP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

Logs the payload to the Integration Server audit logger. For
information, see the webMethods Audit Logging Guide.

Note: If you expect a high volume of events in your system, it is
recommended that you select theAudit Logdestination for this action.

Audit Log

Mediator can use EDA to log the payloads to a database.

Prerequisite: You must configure the EDA destination (in the
Integration Server Administrator, go to Solutions > Mediator >
Administration > EDA). For the procedure, see the section EDA
Configuration for Publishing Run-Time Events and Metrics in the
document Administering webMethods Mediator.

EDA

Monitor Service Level Agreement

This action monitors a set of run-time performance conditions for an API, and sends alerts to a
specified destination when the performance conditions are violated. This action enables you to
monitor run-time performance for one or more specified clients.

You can configure this action to define a Service Level Agreement (SLA), which is a set of conditions
that defines the level of performance that a client should expect from an API. You can use this
action to identify whether an API threshold rules are met or exceeded. For example, you might
define an agreementwith a particular client that sends an alert to the client (consumer application)
if responses are not sent within a certain maximum response time. You can configure SLAs for
each API/consumer application combination.

For the counter-basedmetrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
themetrics tracking interval. You can choosewhether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

Run-Time Governance Reference86

Built-In Run-Time Actions Reference for APIs

For the aggregatedmetrics (AverageResponseTime,MinimumResponseTime,MaximumResponse
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Input Parameters

Specify one or more conditions to monitor. To do this, specify a metric, operator,

and value for each metric. To specify multiple conditions, use the button to

Action
Configuration
Parameters

addmultiple rows. If multiple parameters are used, they are connected by the AND
operator.

String. Array. The metrics to monitor.Name

DescriptionValue

Indicateswhether theAPIwas available to the specified
clients in the current interval.

Availability

The average amount of time it took the service to
complete all invocations in the current interval.
Response time ismeasured from themomentMediator
receives the request until the moment it returns the
response to the caller.

Average Response Time

Indicates the number of faults returned in the current
interval.

Fault Count

The maximum amount of time to respond to a request
in the current interval.

Maximum Response Time

The minimum amount of time to respond to a request
in the current interval.

Minimum Response Time

The number of successful requests in the current
interval.

Successful Request ↩
Count

The total number of requests (successful and
unsuccessful) in the current interval.

Total Request Count

String. Array. Specifies an operator.Operator

Integer. Array. Specifies an alert value.Value

87Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Object. Array. Specify the Application asset(s) towhich this Service Level Agreement

will apply. To specify multiple consumer applications, use the button to add
multiple rows.

Alert for
Consumer
Applications

Specifies the parameters for the alerts thatwill report on the Service Level Agreement
conditions:

Alert
Configuration
Parameters

Number. The time period (in minutes) in which to monitor performance before
sending an alert if a condition is violated. For information about themetrics tracking
interval, see The Metrics Tracking Interval.

Alert
Interval

String. Specifies how frequently to issue alerts for the counter-based metrics (Total
Request Count, Success Count, Fault Count).

Alert
Frequency

DescriptionValue

Issue an alert every time one of the specified conditions
is violated.

Every Time

Issue an alert only the first time one of the specified
conditions is violated.

Only Once

String. Specifies where to log the alert.

Important: Ensure that Mediator is configured to send event notifications to the
destination(s) you specify here. For details, see Alerts and Transaction Logging in the
document Administering webMethods Mediator.

Alert
Destination

DescriptionValue

Sends the alerts to theAPI's Events profile inCentraSite.

Prerequisite: You must configure Mediator to
communicatewith CentraSite (in the Integration Server
Administrator, go to Solutions > Mediator >
Administration >CentraSite Communication). For the
procedure, see the section Configuring Communication
with CentraSite in the document Administering
webMethods Mediator.

CentraSite

Run-Time Governance Reference88

Built-In Run-Time Actions Reference for APIs

Sends the alerts to the server log of the Integration
Server on which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and
informational-level alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration Server Administrator's
logging level for Mediator should match the logging
level specified for this action (go to Settings > Logging
> Server Logger).

Sends the alerts to CentraSite's SNMP server or a
third-party SNMP server.

Prerequisite: You must configure the SNMP server
destination (in the Integration Server Administrator,
go to Solutions >Mediator >Administration > Email).
For the procedure, see the section SNMP Destinations
for Run-Time Events in the document Administering
webMethods Mediator.

SNMP

Sends the alerts to an SMTP email server, which sends
them to the email address(es) you specify here. To

specify multiple addresses, use the button to add
rows.

Prerequisite: You must configure the SMTP server
destination (in the Integration Server Administrator,
go to Solutions >Mediator >Administration > Email).

Email

For the procedure, see the section SMTP Destinations
for Run-Time Events in the document Administering
webMethods Mediator.

Mediator can use EDA to log the payloads to a database.

Prerequisite: You must configure the EDA destination
(in the Integration Server Administrator, go to
Solutions > Mediator > Administration > EDA). For
the procedure, see the section EDA Configuration for
Publishing Run-Time Events andMetrics in the document
Administering webMethods Mediator.

EDA

String. Optional. Specify a text message to include in the alert.Alert Message

89Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Monitor Service Performance

This action is similar to theMonitor Service Level Agreement action. Both actions can monitor
the same set of run-time performance conditions for an API, and then send alerts when the per-
formance conditions are violated. However, this action monitors run-time performance for a spe-
cific client.

For the counter-basedmetrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
themetrics tracking interval. You can choosewhether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

For the aggregatedmetrics (AverageResponseTime,MinimumResponseTime,MaximumResponse
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Input Parameters

Specify one or more conditions to monitor. To do this, specify a metric, operator,

and value for each metric. To specify multiple conditions, use the button to

Action
Configuration
Parameters

addmultiple rows. If multiple parameters are used, they are connected by the AND
operator.

String. Array. The metrics to monitor.Name

DescriptionValue

Indicates whether the service was available to the
specified clients in the current interval.

Availability

The average amount of time it took the service to
complete all invocations in the current interval. Response
time is measured from the moment Mediator receives
the request until the moment it returns the response to
the caller.

Average Response Time

Run-Time Governance Reference90

Built-In Run-Time Actions Reference for APIs

Indicates the number of faults returned in the current
interval.

Fault Count

The maximum amount of time to respond to a request
in the current interval.

Maximum Response Time

The minimum amount of time to respond to a request
in the current interval.

Minimum Response Time

The number of successful requests in the current interval.Successful Request ↩
Count

The total number of requests (successful and
unsuccessful) in the current interval.

Total Request Count

String. Array. Specify an operator.Operator

Integer. Array. Specify an alert value.Value

Specify the parameters for the alerts that will report on the Service Level Agreement
conditions:

Alert
Configuration
Parameters

Number. The time period (in minutes) in which to monitor performance before
sending an alert if a condition is violated. For information about themetrics tracking
interval, see The Metrics Tracking Interval.

Alert
Interval

String. Specify how frequently to issue alerts for the counter-based metrics (Total
Request Count, Success Count, Fault Count).

Alert
Frequency

DescriptionValue

Issue an alert every time one of the specified conditions
is violated.

Every Time

Issue an alert only the first time one of the specified
conditions is violated.

Only Once

String. Specify where to log the alert.

Important: Ensure that Mediator is configured to send event notifications to the
destination(s) you specify here. For details, see Alerts and Transaction Logging in the
document Administering webMethods Mediator.

Alert
Destination

DescriptionValue

Sends the alerts to theAPI's Events profile in CentraSite.

Prerequisite: You must configure Mediator to
communicate with CentraSite (in the Integration Server
Administrator, go to Solutions > Mediator >
Administration > CentraSite Communication). For the
procedure, see the section Configuring Communication
with CentraSite in the document Administering
webMethods Mediator.

CentraSite

91Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Sends the alerts to the server log of the Integration Server
on which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and
informational-level alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration Server Administrator's
logging level for Mediator should match the logging
level specified for this action (go to Settings > Logging
> Server Logger).

Sends the alerts to CentraSite's SNMP server or a
third-party SNMP server.

Prerequisite: You must configure the SNMP server
destination (in the Integration Server Administrator, go
toSolutions >Mediator >Administration > Email). For
the procedure, see the section SNMP Destinations for
Run-Time Events in the document Administering
webMethods Mediator.

SNMP

Sends the alerts to an SMTP email server, which sends
them to the email address(es) you specify here. To

specify multiple addresses, use the button to add
rows.

Prerequisite: You must configure the SMTP server
destination (in the Integration Server Administrator, go
toSolutions >Mediator >Administration > Email). For

Email

the procedure, see the section SMTP Destinations for
Run-Time Events in the document Administering
webMethods Mediator.

Mediator can use EDA to log the payloads to a database.

Prerequisite: You must configure the EDA destination
(in the Integration ServerAdministrator, go toSolutions
>Mediator >Administration > EDA). For the procedure,
see the sectionEDAConfiguration for Publishing Run-Time
Events and Metrics in the document Administering
webMethods Mediator.

EDA

String. Optional. Specify a text message to include in the alert.Alert Message

Run-Time Governance Reference92

Built-In Run-Time Actions Reference for APIs

NTLM Authentication

This action uses the NTLM authentication to validate incoming requests from clients. Mediator
authorizes the NTLM credentials (username and password) against a list of all global consumers
available in the Mediator.

If the username/password value in the Authorization header cannot be authenticated as a valid
Integration Server user (or if the Authorization header is not present in the request), a 500 SOAP
fault is returned, and the client is presented with a security challenge. If the client successfully
responds to the challenge, the user is authenticated. If the client does not successfully respond to
the challenge, a 401 Unauthorized "WWW-Authenticate: NTLM" (for NTLM authentication) or
"WWW-Authenticate: Negotiate" (for Kerberos authentication) is returned in the response header
and the invocation is not routed to the policy engine. As a result, no events are recorded for that
invocation, and its key performance indicator (KPI) data are not included in the performance
metrics.

Note: Note that if Mediator is used to access a native API protected by NTLM (which is
typically hosted in IIS), then the native API in IIS should be configured to use NTLM as the
authentication scheme. If the authentication scheme is configured as “Windows”, then
“NTLM” should be in its list.

If none of the authentication actions (HTTP Basic Authentication, NTLM Authentication or
OAuth2 Authentication) is configured for a proxy API, Mediator forwards the request to the
native API, without attempting to authenticate the request.

Input Parameters

String. Specifies the user credentials for authenticating client requests to the native API.

Note: Currently Windows only: If Mediator is used to access a native API protected by
NTLM (which is typically hosted in IIS), then the native API in IIS should be configured

Authenticate
Using

to use NTLM as the authentication scheme. If the authentication scheme is configured as
"Windows", then "NTLM" should be in its list. The "Negotiate" handshakewill be supported
in the near future. This note applies to all three of the following options for NTLM.

DescriptionValue

Default.Mediator uses the user credentials passed in the request header
for an NTLM handshake with the server.

Existing ↩
Credentials

Mediator uses the values you specify in theUser,Password andDomain
fields for an NTLM handshake with the server.

DescriptionField

String. Mandatory. Account name of a
consumer who is available in the
Integration Server onwhichMediator
is running.

Username

93Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

String. Mandatory.A valid password
of the consumer.

PasswordCustom ↩
Credentials

String. Optional. Domain used by the
server to authenticate the consumer.

Domain

Mediator will behave in "pass by" mode, allowing anNTLMhandshake
to occur between the client and server.

Note:

1. If the client is aWCF application, then the client should be configured
with clientCredentialType set to NTLM

2. If you configure for NTLM authentication scheme in transparent
mode, Mediator will behave in "pass by" mode, allowing an NTLM

Transparent

handshake to occur between the client and server. This kind of a
NTLM handshake becomes unreliable to authenticate the incoming
client request. Mediator now supports Kerberos handshake in
Transparentmode. If you choose to use theNTLMTransparentmode
with Kerberos authentication, set the value of
watt.pg.disableNtlmAuthHandler property to "true" in the
extended settings for the Integration Server. For more information
about configuring the extended settings, see theWorkingwith Extended
Configuration Settings section in the documentwebMethods Integration
Server Administrator’s Guide.

OAuth2 Authentication

This action uses theOAuth 2.0 authentication to validate incoming requests from clients.Mediator
authorizes the OAuth 2.0 credentials (access token) against a list of all global consumers available
in the Mediator.

This action uses the NTLM authentication to validate incoming requests from clients. Mediator
authorizes the credentials against a list of all global consumers available in the Mediator.

If the access token value in theAuthorization header cannot be authenticated as a valid Integration
Server user (or if the Authorization header is not present in the request), a 500 SOAP fault is re-
turned, and the client is presented with a security challenge. If the client successfully responds to
the challenge, the user is authenticated. If the client does not successfully respond to the challenge,
a "WWW-Authenticate: OAuth" response is returned and the invocation is not routed to the policy
engine. As a result, no events are recorded for that invocation, and its key performance indicator
(KPI) data are not included in the performance metrics.

If none of the authentication actions (HTTP Basic Authentication, NTLM Authentication or
OAuth2 Authentication) is configured for a proxy API, Mediator forwards the request to the
native API, without attempting to authenticate the request.

Run-Time Governance Reference94

Built-In Run-Time Actions Reference for APIs

Input Parameters

String. Specifies the OAuth2 access token for authenticating client requests to the native
API.

Authenticate
Using

DescriptionValue

Default.Mediator uses the OAuth2 access token specified in the HTTP
"Authorization" header to validate client requests for a native API.

Existing ↩
Token

Mediator uses the access token you specify in theOAuth2 Token, field
to validate client requests for a native API.

DescriptionField

String. Mandatory. Specifies an OAuth2
access token to be deployed byMediator.
The consumer need not pass theOAuth2
token during service invocation.

OAuth2 Token

Custom Token

Response Transformation

The Response Transformation action specifies:

■ The XSLT transformation file to transform response messages from native APIs into a format
required by the client.

In some cases a message needs to be transformed prior to sending to the client.

For example, you might need to accommodate differences between the message content that a
native API is capable of submitting and the message content that a client expects. For example, if
the native API submits an order record using a slightly different structure than the structure ex-
pected by the client, you can use this action to transform the record submitted by the native API
to the structure required by the client.

When this action is configured for a proxyAPI, the nativeAPI’s responsemessages are transformed
into the format required by the client, before Mediator returns the responses to the clients.

Input Parameters

File. Mandatory. Click Choose, select the XSL transformation file from your file system
and clickOK.

When you virtualize anAPI, the transformation file is validated. If there are no validation
errors, the XSLT file is displayed as a download link in the same dialog. If the

Transformation
File

transformation file is invalid (for example, non-XSLT file), this will be indicated by a
warning icon.

Note: If you make changes to the XSLT file in the future, you must republish the API.

95Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Important: The XSL file uploaded by the user should not contain the XML declaration
in it (e.g., xml version="1.0" encoding="UTF-8"). This is becausewhen theAPI is published
to Mediator, Mediator embeds the XSL file in the virtual service definition (VSD), and
since the VSD itself is in XML format, there cannot be an XML declaration line in the
middle of it. This can lead to unexpected deployment issues which can be avoided by
making sure the XSL file does not contain the declaration line.

Request Transformation

The Request Transformation action specifies:

■ TheXSLTTransformation File to transform requestmessages from clients into a format required
by the native API.

In some cases a native API might need to transform messages.

For example, you might need to accommodate differences between the message content that a
client is capable of submitting and the message content that a native API expects. For example, if
the client submits an order record using a slightly different structure than the structure expected
by the native API, you can use this action to transform the record submitted by the client to the
structure required by the native API.

When this action is configured for a proxy API, the incoming requests from the clients are trans-
formed into a format required by the native API, before Mediator sends the requests to the native
APIs.

Input Parameters

File. Mandatory. Click Choose, select the XSL transformation file from your file system
and clickOK.

When you virtualize anAPI, the transformation file is validated. If there are no validation
errors, the XSLT file is displayed as a download link in the same dialog. If the

Transformation
File

transformation file is invalid (for example, non-XSLT file), this will be indicated by a
warning icon.

Note: If you make changes to the XSLT file in the future, you must republish the API.

Important: The XSL file uploaded by the user should not contain the XML declaration
in it (e.g., xml version="1.0" encoding="UTF-8"). This is becausewhen theAPI is published
to Mediator, Mediator embeds the XSL file in the virtual service definition (VSD), and
since the VSD itself is in XML format, there cannot be an XML declaration line in the
middle of it. This can lead to unexpected deployment issues which can be avoided by
making sure the XSL file does not contain the declaration line.

Run-Time Governance Reference96

Built-In Run-Time Actions Reference for APIs

Require Encryption

This action requires that a request's XML element (which is represented by an XPath expression)
be encrypted.

To use this action, the following prerequisites must be met:

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communicationswith the Server in the documentAdministeringwebMethods Integration
Server.

2. ConfigureMediator: In the Integration Server Administrator, navigate to Solutions >Mediator
> Administration >General and complete the IS Keystore Name, IS Truststore Name andAlias
(signing) fields, as described inKeystore Configuration in the documentAdministeringWebMethods
Mediator.

When this action is configured for a proxyAPI,Mediator provides decryption of incoming requests
and encryption of outgoing responses.Mediator can encrypt and decrypt only individual elements
in the SOAP message body that are defined by the XPath expressions configured for the action.
Mediator requires that requests contain the encrypted elements that match those in the XPath ex-
pression. You must encrypt the entire element, not just the data between the element tags. Medi-
ator rejects requests if the element name is not encrypted.

Important: Donot encrypt the entire SOAP body because a SOAP requestwithout an element
will appear to Mediator to be malformed.

Mediator attempts to encrypt the response elements that match the XPath expressions with those
defined for the action. If the response does not have any elements thatmatch the XPath expression,
Mediator will not encrypt the response before sending. If the XPath expression resolves a portion
of the response message, but Mediator cannot locate a certificate to encrypt the response, then
Mediator sends a SOAP fault exception to the client and a Policy Violation event notification to
CentraSite.

HowMediator Encrypts Responses

The Require Encryption action encrypts the response back to the client by dynamically setting a
public key alias at run time. Mediator determines the public key alias as follows:

1. IfMediator can access the X.509 certificate of the client (based on the incoming request signature),
it will use "useReqSigCert" as the public key alias.

OR

2. If an "Evaluate" action is present in the message flow (and it successfully identifies a client),
then Mediator will look for a public key alias with that client name in the "IS Keystore Name"
property. The "IS KeystoreName" property is specified in the Integration Server Administrator,
under Solutions > Mediator > Administration > General. This property should be set to an In-
tegration Server keystore that Mediator will use.

97Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

For an "Evaluate" action that allows for anonymous usage, Mediator does not require a client
name in order to send encrypted responses. In this case, Mediator can use one of the following
to encrypt the response in the following order, depending on what is present in the security
element:
■ A signing certificate.
■ Client name.
■ WSS username, SAML token or X.509 certificate.
■ HTTP authorized user.

OR

3. If Mediator can determine the current IS user from the request (i.e., if an Integration ServerWS-
Stack determined that Subject is present), then the first principal in that subject is used.

OR

4. If the above steps all fail, then Mediator will use either the WS-Security username token or the
HTTP Basic-Auth username value. There should be a public key entry with the same name as
the identified username.

Input Parameters

String. Mandatory. Namespace of the element required to be encrypted.Namespace

Note: Enter the namespace prefix in the following format: xmlns:<prefix-name>. For example:
xmlns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.org/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

<sp:SignedElements ↩
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:XPath ↩
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPath>
 </sp:SignedElements>

String. Mandatory. An XPath expression that represents the XML element that is required to be encrypted.
See the sample below.

Element
to be
Encrypted

Let's take a look at an example. For the following SOAP message:

Run-Time Governance Reference98

Built-In Run-Time Actions Reference for APIs

http://www.w3.org/TR/REC-xml-names/#ns-decl

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
</soap:Header>

<soap:Body>
<catalog xmlns="http://www.store.com">
<name>My Book</name>
<author>ABC</author>
<price>100</price>

</catalog>
</soap:Body>

</soap:Envelope>

The XPath expression appears as follows:

/soap:Envelope/soap:Body

Require HTTP / HTTPS

If you have a native API that requires clients to communicate with the server using the HTTP
and/or HTTPS protocols, you can use the Require HTTP / HTTPS protocol action.

This action allows you to bridge the transport protocols between the client and the Mediator. For
example, suppose you have a native API that is exposed over HTTPS and an API that receives
requests over HTTP. In this situation, you can configure the API’s Require HTTP / HTTPS action
to accept HTTP requests and configure its Routing action to route the request to the native API
using HTTPS.

Input Parameters

String. Specifies the protocol over which the Mediator accepts requests from the client.

Note: CentraSite supports HTTP version 1.1 only.

Protocol

Important: Before you deploy an API over HTTPS, ensure that the Integration Server on which
the Mediator is running has been configured for SSL. In addition, make sure you specify an
HTTPS port in theMediator’s Ports Configuration page. (In the Integration ServerAdministrator,
go to Solutions > Mediator > Administration > General and specify the port in theHTTPS
Ports Configurationfield.) For details on the Port Configuration page, see the sectionConfiguring
Mediator in the document Administering webMethods Mediator.)

DescriptionValue

99Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Default.Mediator will only accept requests that are
sent using the HTTP protocol.

HTTP

Mediatorwill only accept requests that are sent using
the HTTPS protocol.

HTTPS

You can select bothHTTP and HTTPS if needed.

String. For SOAP-based APIs. Specifies the SOAP version of the requests which the Mediator
accepts from the client.

SOAP
Version

DescriptionValue

Default.Mediator will only accept requests that are
in the SOAP 1.1 format.

SOAP 1.1

Mediator will only accept requests that are in the
SOAP 1.2 format.

SOAP 1.2

String. For REST-basedAPIs. Specifies theHTTPmethods in incoming requestswhich theMediator
accepts from the client.

HTTP
Methods

DescriptionValue

Mediator will only accept GET invocations for the
native API.

GET

Mediator will only accept PUT invocations for the
native API.

PUT

Mediator will only accept POST invocations for the
native API.

POST

Mediator will only accept DELETE invocations for
the native API.

DELETE

You can select more than oneHTTP method if needed.

Note: It is important to specify all theHTTPmethods that are supported for theAPI. For example,
if theAPI is deployed toMediator and you selected only theGETmethod in its Straight Through
Routing action, then Mediator will only permit GET invocations. In this case, POST requests
will be rejected with a return of Status Code 405 even if the native API happens to support
POSTs.

Require JMS

If you have a nativeAPI that requires clients to communicatewith the server using the JMSprotocol,
you can use the Require JMS protocol action.

This action allows you to bridge protocols between the client and the native API. For example,
suppose you have a native API that is exposed over JMS and a client that submits SOAP requests
over HTTP. In this situation, you can configure the API’s Require JMS Protocol action to accept
SOAP requests over Java Message Service (JMS) and configure its JMS Routing Rule action to
route the request to the Web service using JMS.

When this action is configured for a proxy API, you can intentionally expose an API over a JMS
protocol. For example, if you have a native API that is exposed over HTTP, you might expose the

Run-Time Governance Reference100

Built-In Run-Time Actions Reference for APIs

API over JMS simply to gain the asynchronous-messaging and guaranteed-delivery benefits that
one gains by using JMS as the message transport.

To use this action the following prerequisites must be met:

■ Create an alias to a JNDI Provider (in the Integration Server Administrator, go to Settings >
Web Services). For the procedure, see the section Creating a JNDI Provider Alias in the document
Administering webMethods Integration Server.

■ To establish an active connection between Integration Server and the JMS provider, you must
configure Integration Server to use a JMS connection alias (in the Integration Server Adminis-
trator, go to Settings > Messaging > JMS Settings). For the procedure, see the section Creating
a JMS Connection Alias in the document Administering webMethods Integration Server.

■ Create a WS (Web Service) endpoint alias for provider Web Service Descriptor (WSD) that uses
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Provider Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

■ Configure a WS (Web Service) endpoint trigger (in the Integration Server Administrator, go to
Settings > Messaging > JMS Trigger Management). For the procedure, see the section Editing
WS Endpoint Triggers in the document Administering webMethods Integration Server.

■ Create a WS (Web Service) endpoint alias for consumerWeb Service Descriptor (WSD) that has
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Consumer Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

■ Additionally, in theAPI'sMessage Flow,make sure that you delete the predefinedRequire HTTP
/ HTTPS Protocol action from the Receive stage. This is because, these actions are mutually ex-
clusive.

Input Parameters

String. Mandatory. Specify the name of Integration Server's JMS provider alias. The alias
should include the JNDI destination name and the JMS connection factory.

JMS Provider
Alias

String. Specify the SOAP version of the requests which the Mediator accepts from the
client.

SOAP Version

DescriptionValue

101Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Default.Mediator will only accept requests that are
in the SOAP 1.1 format.

SOAP 1.1

Mediator will only accept requests that are in the
SOAP 1.2 format.

SOAP 1.2

Require Signing

This action requires that a request's XML element (which is represented by an XPath expression)
be signed.

Prerequisites

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communicationswith the Server in the documentAdministeringwebMethods Integration
Server.

2. ConfigureMediator: In the Integration Server Administrator, navigate to Solutions >Mediator
> Administration >General and complete the IS Keystore Name, IS Truststore Name andAlias
(signing) fields, as described inKeystore Configuration in the documentAdministeringWebMethods
Mediator.Mediator uses the signing alias specified in theAlias (signing) field to sign the response.

When this action is configured for a proxy API, Mediator validates that the requests are properly
signed, and provides signing for responses. Mediator provides support both for signing an entire
SOAP message body or individual elements of the SOAP message body. Mediator uses a digital
signature element in the security header to verify that all elements matching the XPath expression
were signed. If the request contains elements that were not signed or no signature is present, then
Mediator rejects the request.

Note: Youmustmap the public certificate of the key used to sign the request to an Integration
Server user. If the certificate is not mapped, Mediator returns a SOAP fault to the caller.

Input Parameters

String. Mandatory. Namespace of the element required to be signed.Namespace

Note: Enter the namespace prefix in the following format: xmlns:<prefix-name>. For example:
xmlns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.org/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

Run-Time Governance Reference102

Built-In Run-Time Actions Reference for APIs

http://www.w3.org/TR/REC-xml-names/#ns-decl

<sp:SignedElements ↩
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:XPath ↩
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPath>
 </sp:SignedElements>

String. Mandatory. An XPath expression that represents the XML element that is required to be signed. See
the sample below.

Element
to be
Signed

Let's take a look at an example. For the following SOAP message:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
</soap:Header>

<soap:Body>
<catalog xmlns="http://www.store.com">
<name>My Book</name>
<author>ABC</author>
<price>100</price>

</catalog>
</soap:Body>

</soap:Envelope>

The XPath expression appears as follows:

/soap:Envelope/soap:Body

Require SSL

This action requires that requests be sent via SSL client certificates.

When this action is configured for a proxy API, Mediator ensures that requests are sent to the
server using the HTTPS protocol (SSL). The action also specifies whether the client certificate is
required. This allows Mediator to verify the client sending the request. If the action requires the
client certificate, but it is not presented, Mediator rejects the message.

When a client certificate is required by the action, the Integration Server HTTPS port should be
configured to request or require a client certificate.

Note: In Integration Server, create an HTTPS port, as described in Configuring Ports in the
webMethods Integration Server Administrator's Guide.

103Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Input Parameters

Specifies whether client certificates are required for the purposes of:Client Certificate
Required

■ Verifying the signature of signed SOAP requests or decrypting encrypted SOAP
requests

■ Signing SOAP responses or encrypting SOAP responses

Require Timestamps

When this action is set for the API, Mediator requires that timestamps be included in the request
header. Mediator checks the timestamp value against the current time to ensure that the request
is not an old message. This serves to protect your system against attempts at message tampering,
such as replay attacks.

Mediator rejects the request if either of the following happens:

■ Mediator receives a timestamp that exceeds the time defined by the timestamp element.
■ A timestamp element is not included in the request.

Note: This action has no input parameters; you simply drag and drop the action into the
Message Flow area.

Input Parameters

None.

Require WSS SAML Token

When this action is configured for a proxy API, Mediator uses a WSS Security Assertion Markup
Language (SAML) assertion token to validate clients for an API.

Note: For information about configuring your system for SAML token processing, see SAML
Support in Mediator in the document Administering webMethods Mediator.

Input Parameters

String Specifies the SAML subject confirmation methods:SAML Subject
Confirmation DescriptionValue

Run-Time Governance Reference104

Built-In Run-Time Actions Reference for APIs

Default. Select this option if clients use the SAML V1.1 or V2.0
Holder-of-Key Web Browser SSO Profile, which allows for transport
of holder-of-key assertions. In this scenario, the client presents a
holder-of-key SAML assertion acquired from its preferred identity
provider to access a web-based resource at an API provider.

If you select Holder of Key, Mediator also implicitly selects the
“timestamp” and “signing” assertions to the virtual service definition
(VSD). Thus, you should not add the ““Require Timestamps” and

Holder of Key

“Require Signing” actions to theAPI if the “RequireWSS SAMLToken”
action is already applied.

Select this option if clients use the SAML V1.1 Bearer token
authentication, in which a Bearer tokenmechanism relies upon bearer
semantics as a means by which the client conveys to Mediator the
sender's identity.

If you select Bearer, the “timestamp” and “signing” assertions will
be added to the virtual service definition (VSD).

Note: If clients use SAML 2.0 Sender-Vouches tokens, configure your
system as described in SAML Support in Mediator in the document
Administering WebMethods Mediator.

Bearer

String Specifies the WSS SAML Token version to use: 1.1 or 2.0.SAML Version

Set Custom Headers

When this action is configured for a proxy API, Mediator includes custom HTTP headers to the
client requests before submitting to the native APIs.

Input Parameters

String.Mediator uses the HTTP headers that you specify in theName and Value columns below.

If you need to specify multiple headers, use the button to add rows.

Header

DescriptionValue

String.Aname for theHTTP header field. The header field
name ($field) is not case sensitive.

Name

String. A value for the HTTP header field.Value

Sample

Let's imagine you have a Name field "Authorization". This will be encoded in Base64 scheme as
follows: QXV0aG9yaXphdGlvbg==.

105Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Set JMS Headers

Every JMS message includes message header properties that are always passed from provider to
client. The purpose of the header properties is to convey extra information to the client outside
the normal content of the message body.

When this action is configured for a proxy API, Mediator uses the JMS header properties to au-
thenticate client requests before submitting to the native APIs.

To use this action the following prerequisites must be met:

■ Create an alias to a JNDI Provider (in the Integration Server Administrator, go to Settings >
Web Services). For the procedure, see the section Creating a JNDI Provider Alias in the document
Administering webMethods Integration Server.

■ To establish an active connection between Integration Server and the JMS provider, you must
configure Integration Server to use a JMS connection alias (in the Integration Server Adminis-
trator, go to Settings > Messaging > JMS Settings). For the procedure, see the section Creating
a JMS Connection Alias in the document Administering webMethods Integration Server.

■ Create a WS (Web Service) endpoint alias for provider Web Service Descriptor (WSD) that uses
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Provider Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

■ Configure a WS (Web Service) endpoint trigger (in the Integration Server Administrator, go to
Settings > Messaging > JMS Trigger Management). For the procedure, see the section Editing
WS Endpoint Triggers in the document Administering webMethods Integration Server.

■ Create a WS (Web Service) endpoint alias for consumerWeb Service Descriptor (WSD) that has
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Consumer Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

Input Parameters

String. The JMSmessage headers that Mediator will use to authenticate incoming requests for the
native API. To add additional rows, use the plus button.

Header

DescriptionValue

Run-Time Governance Reference106

Built-In Run-Time Actions Reference for APIs

String.Aname for the JMSmessage header field. The header
field name ($field) is not case sensitive.

Name

String. A value for the JMS message header field.Value

Settable JMS Header Properties

Getter MethodProperty TypeProperty Name

getJMSMessageID()stringMessage ID

getJMSPriority()intPriority

getTimeToLive()longTime To Live

getJMSDeliveryMode()intDelivery Mode

getJMSExpiration()longMessage Expiration

getJMSCorralationID()stringCorrelation ID

getJMSRedelivered()booleanRedelivered

getJMSTimeStamp()longTime Stamp

getJMSType()stringType

Set Message Properties

The message property fields are similar to header fields described previously in the Set JMS
Headers action, except these fields are set exclusively by the consumer application. When a client
receives a message, the properties are in read-only mode. If a client tries to modify any of the
properties, a MessageNotWriteableException will be thrown.

The properties are standard Java name/value pairs. The property names must conform to the
message selector syntax specifications defined in the Message interface.

Property fields are most often used for message selection and filtering. By using a property field,
amessage consumer can interrogate the property field and performmessage filtering and selection.

When this action is configured for a proxy API, Mediator uses the message properties to authen-
ticate client requests before submitting to the native APIs.

To use this action the following prerequisites must be met:

■ Create an alias to a JNDI Provider (in the Integration Server Administrator, go to Settings >
Web Services). For the procedure, see the section Creating a JNDI Provider Alias in the document
Administering webMethods Integration Server.

■ To establish an active connection between Integration Server and the JMS provider, you must
configure Integration Server to use a JMS connection alias (in the Integration Server Adminis-
trator, go to Settings > Messaging > JMS Settings). For the procedure, see the section Creating
a JMS Connection Alias in the document Administering webMethods Integration Server.

107Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

■ Create a WS (Web Service) endpoint alias for provider Web Service Descriptor (WSD) that uses
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Provider Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

■ Configure a WS (Web Service) endpoint trigger (in the Integration Server Administrator, go to
Settings > Messaging > JMS Trigger Management). For the procedure, see the section Editing
WS Endpoint Triggers in the document Administering webMethods Integration Server.

■ Create a WS (Web Service) endpoint alias for consumerWeb Service Descriptor (WSD) that has
a JMS binder. In the Integration Server Administrator, navigate to Settings >Web Services and
complete the Alias Name, Description, Descriptor Type, and Transport Type fields, as described
in the section Creating an Endpoint Alias for a Consumer Web Service Descriptor for Use with JMS in
the document Administering webMethods Integration Server.

Input Parameters

String. The custommessage properties Mediator will use to authenticate incoming requests for
the native API. To add additional rows, use the plus button.

Property

DescriptionValue

String. The name of the property.Name

String. The value of the property.Value

Straight Through Routing

This action routes the incoming requests to the Mediator directly to the native API.

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communicationswith the Server in the documentAdministeringwebMethods Integration
Server.

2. ConfigureMediator: In the Integration Server Administrator, navigate to Solutions >Mediator
> Administration >General and complete the IS Keystore Name, IS Truststore Name andAlias
(signing) fields, as described inKeystore Configuration in the documentAdministeringWebMethods
Mediator.

When this action is configured for an API, Mediator ensures that requests from the client are
parsed directly to the native API you specify. This action also includes a set of configuration
properties for the Mediator to process the incoming requests for the native API.

Run-Time Governance Reference108

Built-In Run-Time Actions Reference for APIs

Input Parameters

DescriptionField

URI. Mandatory. Enter the URL of the native API endpoint to route the request to in case all
routing rules evaluate to False. For example:

Route To

http://mycontainer/creditCheckService

Click the Configure Endpoint Properties icon (next to the Route To field) if you want
to configure a set of properties for the specified endpoint.

Alternatively,Mediator offers “Local Optimization” capability if the native endpoint is hosted
on the same Integration Server as webMethods Mediator. With local optimization, API
invocation happens in-memory and not through a network hop.

Specify the native API in either of the following forms:

local://<Service-full-path>

OR

local://<server>:<port>/ws/<Service-full-path>

For example:

local://MyAPIFolder:MyLocalAPI

whichpoints to the endpointAPIMyLocalAPIwhich is present under the folderMyAPIFolder
in Integration Server.

Optional.This icon displays the Endpoint Propertiesdialog box that enables you to configure
a set of properties for the Mediator to route incoming requests to the native API as follows:

Configure
Endpoint
Properties

icon

For SOAP-based APIs. Specifies the optimization methods that Mediator
can use to parse SOAP requests to the native API.

SOAP
Optimization
Method DescriptionValue

Mediator will use the Message
Transmission OptimizationMechanism
(MTOM) to parse SOAP requests to the
API.

MTOM

Mediator will use the SOAP with
Attachment (SwA) technique to parse
SOAP requests to the API.

SwA

109Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

DescriptionField

Default.Mediator will not use any
optimizationmethod to parse the SOAP
requests to the API.

None

Note:

1. Bridging between SwA andMTOM is not supported. If a client sends
a SwA request, Mediator can only forward SwA to the native API.
The same is true for MTOM, and applies to responses received from
the native API. That is, a SwA or MTOM response received by
Mediator from a native API will be forwarded to the client using the
same format it received.

2. When sending SOAP requests that do not contain a MTOM or SWA
attachment to a native API that returns an MTOM or SWA response,
the request 'Accept' header must be set to 'multipart/related'. This is
necessary so Mediator knows how to parse the response properly.

Number. Optional. Specifies the time interval (in seconds) after which a
connection attempt will timeout. If a value 0 is specified (or if the value

HTTP Connection
Timeout

is not specified),Mediatorwill use the value specified in the Connection
Timeout field (go to Integration Server Administrator > Settings >
Extended). Default: 30 seconds.

Number. Optional. Specifies the time interval (in seconds) after which a
socket read attempt will timeout. If a value 0 is specified (or if the value

Read Timeout

is not specified), Mediator will use the value specified in the Read
Timeout field (Open the Integration Server Administrator. Go to >
Settings > Extended.). Default: 30 seconds.

Optional. To enable SSL client authentication that Mediator will use to
authenticate incoming requests for the native API, you must specify

SSL
Configuration

values for both the Client CertificateAlias field and the IS KeystoreAlias
field. If you specify a value for only one of these fields, a deployment
error will occur.

Note: SSL client authentication is optional; you may leave both fields
blank.

Prerequisite: You must set up the key alias and keystore properties in
the Integration Server. For the procedure, see the section Securing
Communications with the Server in the documentwebMethods Integration
Server Administrator’s Guide.

You will use these properties to specify the following fields:

DescriptionValue

Run-Time Governance Reference110

Built-In Run-Time Actions Reference for APIs

DescriptionField

Mandatory. The client's private key to be
used for performing SSL client
authentication.

Client Certificate Alias

Mandatory. The keystore alias of the
instance of Integration Server on which
Mediator is running. This value (along
with the value of Client CertificateAlias)
will be used for performing SSL client
authentication.

IS Keystore Alias

For SOAP-based APIs.

Indicates whether Mediator should pass the WS-Security headers of the
incoming requests to the native API.

WS Security
Header

DescriptionValue

Default. Removes the security header if
it is processed by Mediator (i.e., if
Mediator processes the header according
to the API's security run-time action).
Note that Mediator will not remove the
security header if both of the following
conditions are true: 1) Mediator did not
process the security header, and 2) the
mustUnderstand attribute of the
security header is 0/false).

Remove processed ↩
security headers

Passes the security header, even if it is
processed by Mediator (i.e., even if
Mediator processes the header according
to the API's security action).

Pass all security headers

Throttling Traffic Optimization

This action limits the number of API invocations during a specified time interval, and sends alerts
to a specified destination when the performance conditions are violated.

Reasons for limiting the API invocation traffic include:

■ To avoid overloading the back-end services and their infrastructure.
■ To limit specific clients in terms of resource usage (that is, you can use the “Monitor Service
Level Agreement” action to monitor performance conditions for a particular client, together
with “Throttle API Usage” to limit the resource usage).

■ To shield vulnerable servers, services, and even specific operations.
■ For API consumption metering (billable pay-per-use APIs).

111Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Input Parameters

Number Optional. The maximum number of invocations allowed per Interval Value
before issuing an alert. Reaching the soft limit will not affect further processing of requests
(until the Hard Limit is reached).

Note: The limit is reached when the total number of invocations coming from all all the
clients (specified in the Limit Traffic for Applications field) reaches the limit. Soft

Soft Limit

Limit is computed in an asynchronous manner; thus when multiple requests are made at
the same time, it may be possible that the Soft Limit alert will not be strictly accurate.

String. Optional. A text message to include in the soft limit alert.Alert
Message for
Soft Limit

Required. The maximum number of invocations allowed per Interval Value before
stopping the processing of further requests and issuing an alert. Typically, this number
should be higher than the soft limit.

Note: The limit is reached when the total number of invocations coming from all all the
clients (specified in the Limit Traffic for Consumers field) reaches the limit. Hard

Hard Limit

Limit is computed in an asynchronous manner; thus when multiple requests are made at
the same time, it may be possible that the Hard Limit alert will not be strictly accurate.

String. Optional. A text message to include in the hard limit alert.Alert
Message for
Hard Limit

String. The consumer application(s) that this action applies to. To specify multiple

consumers, use the button to add rows, or selectAny Consumer to apply this action
to any consumer application.

Alert for
Consumer
Applications

String. The amount and unit (Minutes, Hours, Days or Weeks) of time for the soft limit
and hard limit to be reached.

Alert
Interval

String. Frequency to issue alerts.Alert
Frequency DescriptionValue

Run-Time Governance Reference112

Built-In Run-Time Actions Reference for APIs

Default. Issues an alert every time the specified condition
is violated.

Every Time

Issues an alert only the first time the specified condition
is violated.

Only Once

String. Optional. A place to log the alerts.

Important: Ensure that Mediator is configured to send event notifications to the
destination(s) you specify here. For details, see Alerts and Transaction Logging in the
document Administering webMethods Mediator.

Alert
Destination

DescriptionValue

Sends the alerts to the API's Events profile in CentraSite.

Prerequisite: You must configure Mediator to
communicate with CentraSite (in the Integration Server
Administrator, go to Solutions > Mediator >
Administration > CentraSite Communication). For the
procedure, see the sectionConfiguring Communicationwith
CentraSite in the document Administering webMethods
Mediator.

CentraSite

Sends the alerts to the server log of the Integration Server
on which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and
informational-level alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration ServerAdministrator's logging
level for Mediator should match the logging level
specified for this action (go toSettings > Logging > Server
Logger).

Sends the alerts to CentraSite's SNMP server or a
third-party SNMP server.

Prerequisite: You must configure the SNMP server
destination (in the Integration Server Administrator, go
to Solutions > Mediator > Administration > Email). For
the procedure, see the section SNMP Destinations for
Run-Time Events in the document Administering
webMethods Mediator.

SNMP

113Run-Time Governance Reference

Built-In Run-Time Actions Reference for APIs

Sends the alerts to an SMTP email server, which sends
them to the email address(es) you specify here. To specify

multiple addresses, use the button to add rows.

Prerequisite: You must configure the SMTP server
destination (in the Integration Server Administrator, go
to Solutions > Mediator > Administration > Email). For
the procedure, see the section SMTP Destinations for

Email

Run-Time Events in the document Administering
webMethods Mediator.

Mediator can use EDA to log the payloads to a database.

Prerequisite: Youmust configure the EDAdestination (in
the Integration Server Administrator, go to Solutions >
Mediator > Administration > EDA). For the procedure,
see the section EDAConfiguration for Publishing Run-Time
Events and Metrics in the document Administering
webMethods Mediator.

EDA

Validate Schema

This action validates all XML request and/or responsemessages against an XML schema referenced
in the WSDL.

Mediator can enforce this action for messages sent between APIs. When this action is configured
for a proxy API, Mediator validates XML request messages, response messages, or both, against
the XML schema referenced in the WSDL.

Input Parameters

Object. Validates request and/or response messages. You may select both Request and
Response.

Validate
SOAP
Message(s) DescriptionValue

Validate all requests.Request

Validate all responses.Response

Important: Be aware that Mediator does not remove wsu:Id attributes that may have been
added to a request by a client as a result of security operations against request elements
(i.e., signatures and encryptions). In this case, to avoid schema validation failures youwould
have to add a Request Transformation action or a Response Transformation action to the
API so that the requests and responses are passed to an XSL transformation file that removes
the wsu:Id attribute.

Run-Time Governance Reference114

Built-In Run-Time Actions Reference for APIs

4 Computed Runtime Actions

■ Writing Your Own Computed Runtime Action ... 116

115

CentraSite Business UI offers you the possibility to add computed runtime actions into the policy
workflow; this gives you the option to define your own runtime action; whichmeans that you can
implement your own algorithms for representing the action's user interface.

Computed runtime actions let you create your own layout by using a UI Rendering Concept. You
can also specify your own rendering logic to display the computed values. You could, for example,
create a custom display of the attribute as a drop down or a radio button.

A computed runtime action can be implemented using the GWT framework. For a computed
runtime action, you create an archive file that contains the plug-in definition, and you load the
archive file in the CentraSite CentraSiteBUIExtension folder.

Writing Your Own Computed Runtime Action

A computed runtime action can be implemented as a plug-in. The prepared plug-in is a collection
of files in a specific directory structure. After implementing the plug-in, the files are copied into
the CentraSiteBUIExtension folder under:

<CentraSiteInstallDir>\demos

In the following sections,we demonstrate a sample framework named “MyComputedRuntimeAc-
tion” that illustrates how a custom computed runtime action may be set up.

You may use this sample as a guideline, adapting it and renaming it to suit your individual re-
quirements. The sample indicates where customization is required.

The following topics are discussed in this document:

■ The Build Environment
■ Implementation Guidelines for Computed Runtime Action
■ Setting up the Computed Action Plug-in
■ Activating the Computed Action
■ Sample Computed Runtime Action

The Build Environment

This section explains the build environment for generating the files that are used for the GUI and
for compiling the necessary Java source files. It assumes the use of Ant, the Java-based build tool.

The following file system structure under the computed runtime action directory is assumed:

Run-Time Governance Reference116

Computed Runtime Actions

DescriptionName of File or Folder

This folder that holds the Java source files.src

This folder contains the archive file, plug-in's executor class and the external libraries.lib

The Ant input file for building the destination filesbuild.xml

The Ant file,build.xml can be used to establish a custom computed profile.

The classpath for the build step must refer to all JAR files contained in the redist folder of the
CentraSite installation. Add these JAR files to the build path of your java project also.

Implementation Guidelines for Computed Runtime Action

In order to create, install and use plug-ins, you must perform the following tasks:

■ Implementation for Computed Action UI
■ Implementation for Computed Action Parser

This section does not explain all the details of the Java source file; its purpose is to indicate the
code that must be modified to suit your environment.

Implementation for Computed Action UI

src\com\softwareag\centrasite\bui\extension\client\runtime\action\MyComputedRuntimeAc-
tionWidget.java

public class MyComputedRuntimeActionWidget extends Composite {
private PolicyActionJSO policyActionJso = null;
private TextBox valueBox = null;
private static final String WARNING_CSS = "loginTextBoxErrorBorder";

public MyComputedRuntimeActionWidget(String policyActionJson) {
FlowPanel container = new FlowPanel();
initWidget(container);

policyActionJso = getPolicyActionJso(policyActionJson);
if (policyActionJso == null) {
Label helloLabel = new Label("The JSON content is empty");
container.add(helloLabel);
return;
}

//Render widgets
container.add(getParametersView(policyActionJso));

}

private Widget getParametersView(PolicyActionJSO policyActionJso) {
FlowPanel parametersContainer = new FlowPanel();

117Run-Time Governance Reference

Computed Runtime Actions

JsArray<ParameterJSO> parameters = policyActionJso.getParameters();
if (parameters == null) {
return parametersContainer;
}

for (int i = 0; i < parameters.length(); i++) {
parametersContainer.add(getParameterView(parameters.get(i)));
}

return parametersContainer;
}

private Widget getParameterView(ParameterJSO parameterJso) {
FlowPanel parameterContainer = new FlowPanel();
Label nameLabel = new Label(parameterJso.getName());
parameterContainer.add(nameLabel);

valueBox = new TextBox();
valueBox.setLayoutData(parameterJso.getId());

String[] values = parameterJso.getValues();
if (values != null && values.length > 0) {
valueBox.setValue(values[0]);
}

parameterContainer.add(valueBox);
return parameterContainer;

}

public static native PolicyActionJSO getPolicyActionJso(String json) /*-{
return eval('(' + json + ')');

}-*/;

public String getJson() {
JsArray<ParameterJSO> parameters = policyActionJso.getParameters();
ParameterJSO parameterJso = null;
if (parameters != null && parameters.length() > 0) {
parameterJso = parameters.get(0);

String[] values = {valueBox.getValue()};
parameterJso.setValues(values);
}

return policyActionJso.toJSON();
}

public boolean isValid() {
String value = valueBox.getValue();
boolean isValid = (value != null && !"".equals(value));
if (!isValid) {
valueBox.addStyleName(WARNING_CSS);
} else {

Run-Time Governance Reference118

Computed Runtime Actions

valueBox.removeStyleName(WARNING_CSS);
}

return isValid;
}
}

The MyComputedRuntimeActionWidget class extends the class Composite, which declares the basic
rendering methods for the CentraSite Business user interface.

DescriptionImplementations

Constructor dictates the user-defined rendering of the
action's UI.

MyComputedRuntimeActionWidget(String ↩
policyActionJson)

Returns the JSON object from the specified object.getPolicyActionJson

Returns a JSON encoded string representing the action's
parameters.

String getJson()

Enforces validation logic for the action's parameter values.boolean isValid()

Implementation for Computed Action Parser

To implement your own computed runtime action with custom UI rendering, the parser (My-
ComputedRuntimeActionParser.java)must be located in the service directory. A parser is respons-
ible for generating compressed JSON data from the given policy action instance, and creating a
custom rendering of the action instnace using the JSON data.

Here is the frame of the computed runtime action parser implementation:

src\com\softwareag\centrasite\bui\extension\service\ MyComputedRuntimeActionParser.java

public class MyComputedRuntimeActionParser extends BasePolicyActionExtensionParser {

 public MyComputedRuntimeActionParser(CentraSiteSession centraSiteSession,
 CentraSitePolicyActionTemplate actionTemplate, CentraSitePolicyActionInstance ↩
actionInstance) {
 super(centraSiteSession, actionTemplate, actionInstance);
 }

 @Override
 public CentraSitePolicyActionInstance getActionInstance(String json) throws ↩
CLLException {
 Gson gson = new Gson();
 MyComputedRuntimeActionInfo = gson.fromJson(json, ↩
MyComputedRuntimeActionInfo.class);
 if (actionInfo == null) {
 return null;

119Run-Time Governance Reference

Computed Runtime Actions

 }

 CentraSitePolicyActionInstance policyActionInstance = null;
 CentraSiteObjectManager objectManager = ↩
getCentraSiteSession().getCentraSiteObjectManager();

 if (actionInfo.isActionInstance()) {
 policyActionInstance = objectManager.getPolicyActionInstance(actionInfo.getId());

 } else {
 policyActionInstance = ↩
objectManager.createPolicyActionInstance(actionInfo.getId());
 }

 if (policyActionInstance == null) {
 return null;
 }

 setParameterValues(policyActionInstance, actionInfo);
 return policyActionInstance;
 }

 private void setParameterValues(CentraSitePolicyActionInstance policyActionInstance,

 MyComputedRuntimeActionInfo actionInfo) throws CLLException {
 List<MyComputedRuntimeParameterInfo> parameters = actionInfo.getParameters();
 if (parameters == null || parameters.isEmpty()) {
 return;
 }

 MyComputedRuntimeParameterInfo parameterInfo = parameters.get(0);
 Collection<Object> convertedParameterValues = new ArrayList<Object>();
 convertedParameterValues.addAll(parameterInfo.getValues());
 policyActionInstance.setAttributeValue(parameterInfo.getId(), ↩
convertedParameterValues);
 }

 @Override
 public String getJson() throws CLLException {
 Gson gson = new Gson();

 MyComputedRuntimeActionInfo actionInfo = null;
 if (getActionInstance() != null) {
 CentraSitePolicyActionTemplate policyActionTemplate = ↩
getActionInstance().getCentraSitePolicyActionTemplate();
 actionInfo = new MyComputedRuntimeActionInfo(getActionInstance().getId(), ↩
policyActionTemplate.getName());
 actionInfo.setActionId(policyActionTemplate.getId());
 actionInfo.setIsActionInstance(true);
 } else if (getActionTemplate() != null) {
 actionInfo = new MyComputedRuntimeActionInfo(getActionTemplate().getId(), ↩
getActionTemplate().getName());

Run-Time Governance Reference120

Computed Runtime Actions

 actionInfo.setActionId(getActionTemplate().getId());
 }

 fillParameterInfos(getActionTemplate(), actionInfo);
 return (actionInfo != null ? gson.toJson(actionInfo) : null);
 }

 private void fillParameterInfos(CentraSitePolicyActionTemplate actionTemplate,
 MyComputedRuntimeActionInfo actionInfo) throws CLLException {
 if (actionTemplate == null) {
 return;
 }

 Collection<CentraSiteObjectAttribute> attributes = actionTemplate.getAttributes();

 if (attributes == null || attributes.isEmpty()) {
 return;
 }

 List<MyComputedRuntimeParameterInfo> parameters = new ↩
ArrayList<MyComputedRuntimeParameterInfo>(attributes.size());
 MyComputedRuntimeParameterInfo parameter = null;
 for (CentraSiteObjectAttribute attribute : attributes) {
 parameter = new MyComputedRuntimeParameterInfo(attribute.getName(), ↩
attribute.getDisplayName());
 parameters.add(parameter);
 }

 actionInfo.setParameters(parameters);
 }
}

Setting up the Computed Action Plug-in

The following diagram describes the main methods on each of the two Java source filesMy-
ComputedRuntimeActionWidget.java andMyComputedRuntimeActionParser.java and describes the
type of functions that they serve.

Description#

The getPolicyActionJsonmethod returns the JavaScript Object (JSO) from the given
JSON-formatted string.

The getActionInstancemethod returns a CentraSitePolicyActionInstance object from
the given JSON-formatted string.

The String getJsonmethod returns a JSON-formatted string from the existing policy action
action instance.

121Run-Time Governance Reference

Computed Runtime Actions

Description#

The boolean isValid()method enforces a validation logic for the user-defined rendering of the
runtime action.

Assuming that you have set up all the Java files correctly in the directories, you should be able to
build with the command:

ant -f build.xml jar all

Activating the Computed Action

After you define the computed action as a plug-in (extension point) with the above steps, enable
the computed action in the BusinessUI configuration file centrasite.xml in order to display the action
in the policy accordion.

Important: Remember that the action parameters defined in the configuration file are editable
and cannot be protected.

To activate the plug-in

1 Open the centrasite.xml file.

The configuration file is located in the cast\cswebapps\BusinessUI\system\conf directory.

2 Navigate to the property lines <UIProperties> -> <Extensions> -> <PolicyActions>

3 Append the property statement for your custom computed runtime action (“My-
ComputedRuntimeAction”) as below:

<PolicyActions>
 <PolicyAction id="uddi:44e3e2de-064c-432f-b67a-8fbca0fb04d6" ↩
class="com.softwareag.centrasite.bui.extension.service.MyComputedRuntimeActionParser" ↩
/>
</PolicyActions>

wherein,

DescriptionParameter

A unique identifier for the computed action.

It uniquely distinguishes an action in the CentraSite registry. If you wish to reconfigure the
action at a later stage, you identify the action using this id.

id

A parser implementation for the computed action.class

4 Save and close the configuration file.

Run-Time Governance Reference122

Computed Runtime Actions

5 Restart Software AG Runtime.

Sample Computed Runtime Action

Your CentraSite installation contains a sample computed runtime action (which is contained in
demos folder) that you can use to create an archive file for the custom runtime action specific to
the CentraSite Business UI.

■ SampleComputedRuntimeAction

123Run-Time Governance Reference

Computed Runtime Actions

124

	Run-Time Governance Reference
	Table of Contents
	Preface
	1 Run-Time Events and Key Performance Indicator (KPI) Metrics
	The Run-Time Event Types
	The Key Performance Indicator (KPI) Metrics
	The Event Notification Destinations
	Destinations for the Monitoring and Transaction Events
	SMTP Email Servers
	The Integration Server's Local Log
	The Integration Server's Audit Log

	The Metrics Tracking Interval
	Configuring CentraSite to Receive Run-Time Events and Metrics
	Components of the Event Receiver
	Configuring the Event Receiver
	Setting the Database Configuration Properties
	Setting the SNMPv3 Transport Configuration Properties
	Setting the SNMPv3 USM Configuration Properties
	Setting the Events Queue Implementation Property
	Setting the Properties for FileSystem or InMemory

	Event Type Modeling
	The "Target Type to Event Type Association" Object

	Event Modeling

	Viewing Run-Time Events and Metrics
	Viewing Run-Time Events and Metrics for Targets
	Viewing Run-Time Events and Metrics for Virtual Services
	Viewing Run-Time Events and Metrics for APIs

	Creating Custom Run-Time Events
	Modifying Run-Time Events

	2 Built-In Run-Time Actions Reference for Virtual Services
	Summary of the Run-Time Actions for Virtual Services
	WS-SecurityPolicy 1.2 Actions
	Authentication Actions (WS-SecurityPolicy 1.2)
	XML Security Actions (WS-SecurityPolicy 1.2)

	Monitoring Actions
	Additional Actions

	The watt.server.auth.skipForMediator Property
	Action Evaluation Order and Dependencies
	Effective Policies

	Usage Cases for Identifying/Authenticating Consumers
	Run-Time Actions Reference for Virtual Services
	Authorize Against Registered Consumers
	Authorize User
	Identify Consumer
	Log Invocation
	Monitor Service Performance
	Monitor Service Level Agreement
	Require Encryption
	Require HTTP Basic Authentication
	Require Signing
	Require SSL
	Require Timestamps
	Require WSS SAML Token
	Require WSS Username Token
	Require WSS X.509 Token
	Throttling Traffic Optimization
	Validate Schema

	3 Built-In Run-Time Actions Reference for APIs
	Summary of the Run-Time Actions
	Request Handling Actions
	Policy Enforcement Actions
	Authentication Actions
	JMS Routing Actions
	Logging and Monitoring Actions
	Routing Actions
	Security Actions
	Traffic Management Action
	Validation Action

	Response Handling Actions
	Error Handling Action

	The watt.server.auth.skipForMediator Property
	Effective Policies
	Effective Policies

	Usage Cases for Identifying/Authenticating Clients
	Run-Time Actions Reference
	Content Based Routing
	Context Based Routing
	Custom SOAP Response Message
	Failure Messages

	Evaluate Client Certificate for SSL Connectivity
	Evaluate Hostname
	Evaluate HTTP Basic Authentication
	Evaluate IP Address
	Evaluate OAuth2 Token
	Evaluate WSS Username Token
	Evaluate WSS X.509 Certificate
	Evaluate XPath Expression
	HTTP Basic Authentication
	Invoke webMethods Integration Server
	JMS Routing Rule
	Load Balancing and Failover Routing
	Log Invocation
	Monitor Service Level Agreement
	Monitor Service Performance
	NTLM Authentication
	OAuth2 Authentication
	Response Transformation
	Request Transformation
	Require Encryption
	Require HTTP / HTTPS
	Require JMS
	Require Signing
	Require SSL
	Require Timestamps
	Require WSS SAML Token
	Set Custom Headers
	Set JMS Headers
	Set Message Properties
	Straight Through Routing
	Throttling Traffic Optimization
	Validate Schema

	4 Computed Runtime Actions
	Writing Your Own Computed Runtime Action
	The Build Environment
	Implementation Guidelines for Computed Runtime Action
	Implementation for Computed Action UI
	Implementation for Computed Action Parser

	Setting up the Computed Action Plug-in
	Activating the Computed Action
	Sample Computed Runtime Action

