
CentraSite

Object Type Management

Version 9.6

April 2014



This document applies to CentraSite Version 9.6.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-AG-ASSETS-96-20140318



Table of Contents

Preface ................................................................................................................................ v
1 What is a Type? ............................................................................................................... 1

Attributes ................................................................................................................... 3
Profiles ........................................................................................................................ 8

2 What is a Virtual Type? ................................................................................................. 13
The Properties of a Virtual Type .............................................................................. 14
Using the Inherit Base Type Profiles, LCM and Policies Options ............................ 15

3 Who Can Create and Manage Types? ........................................................................... 17
4 Creating a New Type ..................................................................................................... 19

Creating the New Type ............................................................................................ 20
Defining Attributes for a Type ................................................................................. 24
Defining Profiles for an Asset Type ......................................................................... 32

5 Viewing or Editing a Type ............................................................................................. 41
6 Viewing or Editing a Virtual Type ................................................................................ 45
7 The Predefined Asset Types in CentraSite .................................................................... 47

The Predefined Asset Types Installed with CentraSite ............................................ 48
Modifications You Can Make to CentraSite's Core Asset Types .............................. 50

8 Customizing the User and Organization Types ............................................................ 51
9 Deleting a Type .............................................................................................................. 53
10 Working with Composite Types .................................................................................. 55

Overview .................................................................................................................. 56
Shared vs Nonshared Components ......................................................................... 57
Required Objects ...................................................................................................... 57
Collectors .................................................................................................................. 57
Defining Composite Asset Types ............................................................................. 58
Semantics of Relationships and Operations ............................................................. 61
Extended Rules ......................................................................................................... 63
Usage Scenarios ........................................................................................................ 65
Propagation of Profile Permissions .......................................................................... 78
The Predefined Composite Asset Types .................................................................. 78

11 Working with Association Types ................................................................................. 89
Who Can Create and Manage Association Types? .................................................. 90
Adding an Association Type .................................................................................... 90
Editing the Properties of an Association Type ......................................................... 91
Deleting an Association Type ................................................................................... 92

iii



iv



Preface

This document describes how to use CentraSite Control to create and manage custom types.

The content is organized under the following sections:

Describes the characteristics and purpose of a type.What is a Type?

Describes the characteristics and purpose of a virtual type.What is a Virtual Type?

Describes the permissions needed to create, edit or delete a type.Who Can Create and Manage Types?

Describes how to add a custom type to CentraSite.Creating a New Type

Describes how to view or modify the definition of a type.Viewing or Editing a Type

Describes how to view ormodify the definition of a virtual type.Viewing or Editing a Virtual Type

Identifies the predefined types installed with CentraSite and
describes the kinds of modifications you can make to them.

The Predefined Asset Types Installed
with CentraSite

Describes the modifications you can make to the User and
Organization types installed with CentraSite.

Customizing the User and Organization
Types

Describes how to delete a type.Deleting a Type

Explainswhat a composite type is and identifies the components
of the composite types that are installed with CentraSite.

Working with Composite Types

Describes how to define and manage association types.Working with Association Types

v



vi



1 What is a Type?

■ Attributes ......................................................................................................................................... 3
■ Profiles ........................................................................................................................................... 8

1



A type (also called an object type) is analogous to a class in object-oriented programming and de-
scribes a kind of object that the registry can store. Objects abstract the real-world entities and each
object belongs to a particular type which defines its characteristics and behavior.

CentraSite includesmany predefined types. Any custom type that you add to CentraSite is treated
as an asset type (i.e., instances of that type are treated as assets).

Types are system-wide objects, meaning that they apply to all organizations. Consequently, all
organizations within a particular instance of CentraSite use (or have access to) the same global set
of types.

A type is made up of attributes. Attributes hold data about an object. When a type defines an asset
(i.e., if it is an asset type), the attributes that make up the type are assigned to profiles. Profiles de-
termine how the type's attributes are grouped and presented when an instance of that type is
displayed in CentraSite Control or the CentraSite plug-in for Eclipse.

Attributes are grouped by profile when displayed in a CentraSite graphical user interface

Asset types also include an additional set of properties called advanced settings. These properties
determine how instances of that type are to be managed by CentraSite. Among other things, the
advanced settings for an asset type determine whether assets of the type are visible in the catalog
browser, whether they can be usedwith reports and/or policies, andwhether they can be versioned.

Types are described in detail in the following sections.

Object Type Management2

What is a Type?



Attributes

An attribute represents an individual characteristic, property or piece of information about an
asset. For example, the asset type for a Service includes attributes that identify the name of the
service, provide the service's endpoints, identify the owner of the service, supply links to program-
ming documentation and so forth.

All types that represent assets include the following basic attributes:

DescriptionAttribute

The name under which the asset is cataloged.Name

A descriptive comment that provides additional information about an asset.Description

The Universally Unique Identifier (UUID) that is assigned to the asset and uniquely
identifies it within the registry. CentraSite automatically assigns a UUID to an asset
when the asset is added to the registry.

Key

The user-assigned version identifier for an asset. The user-assigned identifier can be
made up of any sequence of characters. It is not required to be numeric.

Version

The system-assigned version number that CentraSite maintains for its own internal
use. CentraSite automatically assigns this identifier to an object when a version of the

System Version

object is created. The system-assigned identifier is always numeric and always has
the format:

MajorVersion.Revision

Where:

■ MajorVersion is an integer that represents the asset's version number. This value
is incremented by one when a new version of the asset is generated (e.g., 1.0, 2.0,
3.0).

■ Revision is an integer that represents an update to a particular version of an asset.
When the revisioning feature is enabled for CentraSite, the Revision number is
incremented each time a change is made to the object (e.g., 1.0, 1.1, 1.2).

An asset's System Version attribute cannot be deleted or modified by a user.

The date on which the asset was added to the catalog. CentraSite automatically sets
this attribute when a user adds the asset to the catalog. Once it is set, it cannot be
modified.

Created

The date on which the catalog entry for the asset was last updated. CentraSite
automatically updates this attributewhen a usermodifies any of the asset's attributes.

Last Modified

The organization to which the asset belongs.Submitting
Organization

The user who currently owns the asset. CentraSite automatically sets this attribute
when a user adds the asset to the catalog.

Owner

3Object Type Management

What is a Type?



DescriptionAttribute

The asset's current lifecycle state. If a lifecyclemodel has been associatedwith an asset
type, CentraSite updates this attribute as the asset passes through its lifecycle.

Lifecycle State

An asset can also have any number of additional attributes that are specific to the asset's type. For
example, an asset might include attributes that do the following:

■ Provide contact information for technical support (for example, phone numbers and email ad-
dresses)

■ Classify the asset according to one or more taxonomies
■ Describe an asset's relationship to other assets or registry objects
■ Specify details regarding system requirements and technical specifications
■ Provide links to program documentation, sample code, usage notes and so forth

Attribute Data Types

When you add an attribute to a type, you specify the attribute's data type. The data type determines
what kind of information the attribute can hold. After you add an attribute to a type, the attribute's
data type cannot be changed.

The following table lists the data types that you can assign to an attribute. Most types can be con-
figured to hold a single value or multiple values (i.e., an array of values).

DescriptionData Type

Holds a "true" or "false" value.Boolean

Note: When a Boolean value is displayed in theCentraSite user interface, it's value is
generally displayed as "Yes" (if the attribute's value is true) or "No" (if the attribute's value
is false) .

Holds references to one or more categories in a specified taxonomy. You use this type of
attribute to classify assets according to a specified taxonomy.

Classification

Holds a value that is supplied by a user-defined Java plug-in.Computed
Attribute

Once you have defined a computed attribute, you can use it in CentraSite Control in the
same way as any other attribute. You can, for example, assign the attribute to a profile or
reorder the attribute position within a profile.

Holds a timestamp that represents a specific date and/or time.Date/Time

Holds a value that represents a period of time as expressed in Years,Months, Days, Hours,
Minutes and Seconds.

Duration

Holds an email address. This data type only accepts values in the format:Email

anyString@anyString

Object Type Management4

What is a Type?



DescriptionData Type

Note: When a user enters a value for an Email attribute, CentraSite verifies that the value
conforms to the format above, but it does not attempt to validate the address itself.

Holds references to one ormore documents that reside inCentraSite's supporting document
library or at a specified URL.

File

You can use this type of attribute to attach documents such as programming guides, sample
code and other types of files to an asset.

Holds a numeric IP address in the v4 or v6 format.IP Address

Holds a string of text. When this type of string is displayed in a CentraSite user interface,
the string is displayed in amulti-line text box and lines of text are wrapped to fit the width
of the box. (Compare this with the String data type described below.)

Multiline String

The Internationalized option allows you to store the text in internationalized string format.
For more information about the Internationalized option, see the String data type, below.

Holds a numeric value. When you define an attribute of this type, you can specify the
number of decimal positions that are to be shownwhen the attribute is displayed in a user

Number

interface. If you do not want to restrict the number of decimal positions that the user
interface displays, choose theMaximum Precision option to display all positions.

You can optionally assign a label such as "Seconds", "tps", "KB", "EUR" or "$" to attributes
of this type, and specify whether this label is to appear as a prefix or a suffix when the
attribute's value is displayed in a user interface.

Note: The underlying data type for this kind of attribute is a Java double.

Holds a string of text. When this type of string is displayed, it is displayed in a single-line
text box. If a value exceeds the width of the box, the excess characters are simply not
displayed.

String

The Internationalized option allows you to create a String attribute that holds different
values for different locales. In CentraSite Control, for example, if a user logs on toCentraSite
in an English locale and he or she assigns a value to an Internationalized String attribute,
that value will be visible to other users with English locales. If a user in a German locale
were to view the attribute, the attribute would appear empty because it has no value for
the German locale. If the German-locale user were to subsequently assign a value to the
attribute, the attribute would then have two String values: one in English and one in
German.

When CentraSite Control displays an Internationalized String, it displays the value
associated with the user's current locale. In the example described above, it would show
the English value to users with English locales and the German value to users in German
locales. Users in other locales would see an empty attribute until a value for their locale
had been assigned to the attribute.

The Enumeration option allows you to specify a list of allowed values for the attribute.

Holds a URL/URI. This type of attribute only accepts values in the form:URL/URI

protocol://host/ path

5Object Type Management

What is a Type?



DescriptionData Type

Where:

■ protocol is any protocol that java.net.URL supports
■ host is the name or IP address of a host machine
■ path (optional) is the path to the requested resource on the specified host

Holds references to other registry objects. You use this type of attribute to express a
relationship between an asset and another object in the registry.

Relationship

Attribute Names

An attribute that is one of the following types has two names associatedwith it: a display name and
a schema name.

Boolean
Date
Duration
Email
Multiline String
IP Address
Number
String
URL

The display name for these types of attributes is the name that is displayed by the CentraSite
Control and CentraSite plug-in for Eclipse user interfaces. An attribute's display name can consist
of any combination of characters, including spaces.

The following are all valid display names:

Business Owner
Amount (in $)
Numéro de téléphone
Avg. Invocations/Minute
1099 Code

You can change an attribute's display name at any time.

The attribute's schema name is the name that CentraSite actually gives to the underlying JAXR-
based slot that represents the attribute in the registry. This name must be NCName-conformant,
meaning that:

■ The name must begin with a letter or the underscore character (_).

Object Type Management6

What is a Type?



■ The remainder of the name can contain any combination of letters, digits, or the following
characters: . - _ (i.e., period, dash, or underscore). It can also contain combining characters and
extender characters (e.g., diacriticals).

■ The name cannot contain any spaces.

Formore information about theNCName type, seehttp://www.w3.org/TR/xmlschema-2/#NCName.

If you do not specify a schema name for an attribute, CentraSite automatically generates a default
schema name based on the attribute's display name. It does this by taking the attribute's display
name and replacing any spaces in the name with underscore characters (_) and/or by removing
any invalid character in the name.

If you explicitly specify a schemanamewhich is notNCName-conformant, CentraSitewill request
that you change it to an NCName-conformant name.

The following table describes the default schema names that CentraSite would generate for the
display names shown above.

The resulting schema name is…CentraSite would generate this
schema name…

For this Display Name…

Valid. You would not need to change the schema
name.

Business_OwnerBusiness Owner

Valid. You would not need to change the schema
name.

Amount_in_Amount (in $)

Valid. You would not need to change the schema
name.

Numéro_de_téléphoneNuméro de téléphone

Valid. You would not need to change the schema
name.

Avg._Invocations_MinuteAvg. Invocations Minute

Valid. You would not need to change the schema
name.

_099_Code1099 Code

Note also that an attribute's schema name must be unique within the type (i.e., two attributes in
a type cannot have the same schema name).

After the attribute is created, you can no longer change its schema name.

7Object Type Management

What is a Type?

http://www.w3.org/TR/xmlschema-2/#NCName


Names for the Other Attribute Types

The concept of display names and schemanames does not apply to the following types of attributes:

Classification
File
Relationship

These types are not represented using JAXR-based slots and, therefore, do not require underlying
schema names. These attributes have one name, which can consist of any combination of letters,
numbers or special characters (including spaces).

Computed Attributes

CentraSite Control offers you the possibility to add computed attributes into asset type definitions
and profiles; this allows you to define attributes which require complex computation in Java and
then implement them as a Java plug-in, thus overcoming the limitations of predefined attribute
types. You could, for example, make attribute values localizable by using computed attributes.

A computed attribute must describe its scale for the rendering within the profile of the asset type.

For a Java-based plug-in for a computed attribute, you create a jar file that contains the plug-in
definition, and you load the jar file via CentraSite Control into the repository.

After you have added a computed attribute into a profile definition, you can performadministration
tasks on the computed attribute in the same way as for normal attributes. For example, you can
define the ordering of the attributes in a profile, regardless of whether they are standard attributes
or computed attributes.

Profiles

Profiles are used to manage the presentation of attributes in the user interface. They determine
how the attributes are groupedwhen an instance of the asset type is displayed.When you display
an asset in CentraSite Control, for example, the attributes associated with a particular profile are
grouped together on a tab.

In CentraSite Control, profiles appear as tabs

Object Type Management8

What is a Type?



When you define an asset type, you specify the profiles onwhich its attributes are to be displayed.
CentraSite does not require an attribute to be assigned to a profile. If you do not assign an attribute
to a profile, the attribute will not be visible in the user interface (the attribute will still be available
via the API). You can assign an attribute to multiple profiles if you want it to appear on multiple
profiles (tabs) in the user interface.

You can define any number of profiles for an asset type. You can specify the order in which you
want the profiles to appear when an instance of the type is displayed. You can also specify the
order in which attributes are to be displayed within each profile.

■ Generic Profiles
■ Computed Profiles
■ Assigning Permissions on Profiles

Generic Profiles

In addition to the profiles that you define, CentraSite provides several predefined profiles, called
generic profiles, which you can optionally include in an asset type.

The generic profiles contain system-defined attributes and controls. The information on the gen-
eric profiles is generated by CentraSite. You cannot customize the content of the generic profiles
or add attributes to them. You can, however, select which of these profiles you want CentraSite
to include with an asset type.

9Object Type Management

What is a Type?



DescriptionGeneric Profile

Available only for Service, XML Schema, Application Server, BPEL Process, Interface and
Operation asset types. Provides basic information about the asset. For a service asset, this

Summary

profile includes a list of the operations and bindings that the service provides. For a BPEL
Process, Interface or Operation asset, the profile shows basic information such as the asset
owner, but includes no type-specific attributes.

Displays the list of users and applications that are registered to consume the asset. This
profile also contains controls for registering an application, a user or a group as a consumer
of the asset.

Consumers

Displays the list of users who are registered to receive notifications when changes are
made to the asset.

Subscriptions

Displays the list of categories by which an asset is classified. This profile also contains
controls for adding "ad hoc" classifiers to an asset.

Classification

Displays the list of objects to which the asset is related. This profile also contains controls
for establishing "ad hoc" relationships between an asset and other objects in the registry.

Associations

Displays the asset's instance-level permissions. This profile also contains controls for
modifying the asset's instance-level permissions.

To view all of the instance-level permissions for an asset, a user must have Modify or
Full permissions on the asset. To edit the instance-level permissions for an asset, a user

Permissions

must have Full permissions on the asset. If a user has only View permission on an asset,
the Permissions profile shows only that particular user's permissions for the asset.

Displays the versioning history for an asset and provides links to earlier versions and
revisions of the asset. This profile also contains the controls for generating a new version

Versions

of the asset, purging older versions of the asset and reverting to a previous version of an
asset.

Displays the list of links to external documents and files that are attached to the asset.
This profile also contains controls for attaching documents and files to an asset.

External Links

Displays the list of object-specific properties that have been assigned to an asset. An
object-specific property consists of a key, which identifies the name of the property, and

Object-Specific
Properties

an optional String value, which contains the data associated with the property. (A
property's value can be null.)

Object-specific properties are used to hold information about an instance of an asset when
there is no predefined attribute to hold that data. Typically, they are used in one-off
situations to attach ad-hoc data to an instance of an asset. For example, if you were
managing a certification effort, you might use an object-specific property to identify the
set of assets that required certification.

Displays the update activity associated with an asset. This profile lists each change that
has been made to an asset (including changes in an asset's lifecycle state) and identifies
the user that made the change.

Audit Log

Available for only Package and IS Package types.Displays the list of objects to which the asset
is related. This profile also contains controls for establishing "ad hoc" relationships between
an asset and other objects (assets, users, organizations etc) in the registry.

Members

Object Type Management10

What is a Type?



DescriptionGeneric Profile

Displays the run-time performance metrics associated with an asset. If you are using
webMethodsMediator, webMethods Insight or another run-timemonitoring component
to log performance metrics for an asset, CentraSite displays those metrics on this profile.

Note: The Performance profile is displayed for virtual services regardless of whether
you enable or disable it for the Service asset type. In other words, when you disable the

Performance

Performance profile for the Service asset type, CentraSite removes the profile from service
assets, but continues to display it for virtual services.

Displays the run-time events associated with an asset. If you are using webMethods
Mediator,webMethods Insight or another run-timemonitoring component to log run-time
events for an asset, CentraSite displays those events on this profile.

Note: The Eventsprofile is displayed for virtual services regardless ofwhether you enable
or disable it for the Service asset type. In otherwords, when you disable the Events profile

Events

for the Service asset type, CentraSite removes the profile from service assets, but continues
to display it for virtual services.

Displays the list of design/change-time policies and run-time policies that are applicable
to an asset (i.e., it displays all the policies whose scope encompasses the displayed asset).

Note: The Policies profile is displayed for virtual services regardless of whether you
enable or disable it for the Service asset type. In otherwords,when you disable thePolicies

Policies

profile for the Service asset type, CentraSite removes the profile from service assets, but
continues to display it for virtual services.

Available for Virtual Service, Virtual XML Service and Virtual REST Service types.

For a Virtual Service, displays the protocol (HTTP , HTTPS or JMS) and SOAP format
(1.1 or 1.2) of the requests that the service will accept.

ProcessingSteps

For aVirtual REST Service or Virtual XMLService, displays the protocol (HTTP orHTTPS)
of the requests that the service will accept. Also, you specify the HTTP methods (GET,
POST, PUT, DELETE or Use Context Variable) that are supported by the native service.

This profile also contains the request routing methods and protocol for authenticating
the requests.

Available for Virtual Service, Virtual XML Service and Virtual REST Service types. Displays
the list of virtualized services that are ready for deploying in the webMethods Mediator
target.

Deployment

11Object Type Management

What is a Type?



Computed Profiles

CentraSite Control offers you the possibility to add computed profiles into asset type definitions;
this gives you the option to define your own profile, which means that you can implement your
own algorithms for calculating the values youwish to represent. You could for example aggregate
or compute attribute information from embedded or linked objects.

You can combine the attribute specific profile and the generic profiles layout concept in a single
computed profile.

Computed profiles let you create your own layout by using a UI Rendering Concept. You can also
specify your own rendering logic to display the computed values. You could, for example, create
a custom display of performance metrics as a graphic or an animation.

A computedprofile can be implemented as a Java plug-in. For a Java-based plug-in for a computed
profile, you create an archive file that contains the plug-in definition, and you load the archive
file via CentraSite Control into the repository.

After you have added a computed profile into the asset type definition, you can perform adminis-
tration tasks on the computed profile in the same way as for normal profiles. For example, you
can define profile-based permissions, and you can define the order of the computed profile relative
to the other profiles in the asset detail display.

Assigning Permissions on Profiles

You can restrict access to individual profiles by setting profile permissions on an instance of an
asset. Doing this enables you to control who can view and/or edit the attribute values on a partic-
ular instance of a profile. For more information about controlling access to individual profiles
within an asset, see Setting Permissions on an Asset in the document Using the Asset Catalog.

Important: Profile permissions restrict access at the UI level but not the API level. At the API
level, profile permissions are irrelevant. If a user has view permission on an asset, he or she
can access all of the asset's metadata through the API, regardless of whether profile permis-
sions exist for the asset.

Object Type Management12

What is a Type?



2 What is a Virtual Type?

■ The Properties of a Virtual Type ......................................................................................................... 14
■ Using the Inherit Base Type Profiles, LCM and Policies Options ................................................................ 15

13



Certain predefined types installed with CentraSite are classified as virtual types. A virtual type is
a variant of a specified object type, which is referred to as its base type. A virtual type has the same
set of attributes as its base type, but has its own set of profiles and properties and adds its own
behavior. A virtual type can also have its own lifecycle model and policies.

Virtual types do not have a separate storage structure or a schema, so the instances of a virtual
type are stored as regular objects. For example, a Virtual Service inherits the service and adds its
own behavior, yet it is stored as Service Object.

Virtualized services are used for entities that are very similar, but generally need to be governed
separately. For example, the REST Service type and the XML Service type are both virtual types
of the Service type. As services, they have basically the same set of metadata as a Service type,
however, you might want to apply different policies to these types of services or manage them
using different lifecycle models than a regular Web Service asset.

Several predefined virtual types are installed with CentraSite. For a list of the virtual types that
CentraSite provides, see The Predefined Asset Types Installed with CentraSite.

Note: Support for virtual types is limited to those predefined virtual types that are installed
with CentraSite. You cannot create custom virtual types of your own.

Virtual types are described in detail in the following sections.

The Properties of a Virtual Type

Virtual types have properties that differ from regular types. The following list describes the ways
in which a virtual type differs from a regular object type.

A virtual type inherits all of its attributes from its base type. Therefore, you cannot add attributes
directly to a virtual type. To add new attributes to a virtual type, you add the attributes to the base
type. You can selectively display these attributes on the profiles that you have defined in the type.
Similarly, you cannot delete attributes from or edit the properties of attributes in the virtual type.
All attribute creation, deletion, and definition is performed on the base type, and those changes
are applied to all of its virtual types.

A virtual type has its own set of Advanced Settings, which enables you to configure the following
properties specifically for a virtual type:

■ Large and small icons
■ Visible in Asset Browse
■ Enable Reports
■ Policies can be applied
■ Require Consumer Registration

Object Type Management14

What is a Virtual Type?



■ Enable Versioning
■ Top Level Type
■ Enable Lifecycle Management
■ Visible in Search
■ Inherit Base Type Profiles
■ Inherit Base Type Policies
■ Inherit Base Type LCM

A virtual type has an Inherit Base Type Policies option, which determines whether the policies
of the base type also apply to the virtual type. You can enable or disable this option for each virtual
type. For more information about using the Inherit Base Type Policies option, see the document
Working with Design/Change-Time Policies.

A virtual type has an Inherit Base Type LCM option, which determines whether the virtual type
follows the same lifecycle model as its base type by default. You can enable or disable this option
for each virtual type. For more information about using the Inherit Base Type LCM option, see
Customizing Lifecycle Management.

A virtual type can have its own set of profiles:

■ A virtual type has an Inherit Base Type Profiles option, which determines whether the profiles
of the base type also apply to the virtual type. You can enable or disable this option for each
virtual type. For more information about using the Inherit Base Type Profiles option, see Ap-
plying Profiles to Virtual Types

Likemany other predefined types, you cannot delete the virtual predefined types that are installed
with CentraSite.

Using the Inherit Base Type Profiles, LCM and Policies Options

The Inherit options for a virtual type determineswhether the profiles, lifecyclemodels and policies
associated with the base type are also applied to the virtual type.

For more information about how each of these options affect a virtual type, see the following sec-
tions:

■ Applying Profiles to Virtual Types
■ Applying Lifecycle Models to Virtual Types in the document Customizing Lifecycle Management
■ Applying Policies to Virtual Types in the section Functional Scope in the documentWorking with
Design/Change-Time Policies

15Object Type Management

What is a Virtual Type?



By default, the Inherit options are enabled for each of the predefined virtual types installed with
CentraSite.

Object Type Management16

What is a Virtual Type?



3 Who Can Create and Manage Types?

To create custom types, you must belong to a role that has the "Manage Asset Types" permission.
Besides allowing you to create custom types, this permission allows you to edit and delete any
user-defined asset type. Additionally, it allows you to edit certain predefined types that are installed
with CentraSite. By default, users in the CentraSite Administrator or Asset Type Administrator
role have this permission, although an administrator can grant this permission to other roles.

For more information about permissions, see About Roles and Permissions in the document Users,
Groups, Roles and Permissions.

17



18



4 Creating a New Type

■ Creating the New Type ..................................................................................................................... 20
■ Defining Attributes for a Type ............................................................................................................. 24
■ Defining Profiles for an Asset Type ..................................................................................................... 32

19



CentraSite provides awizard for defining new types.When creating a new type, keep the following
points in mind:

■ A type has two names: a display name and a schema name.
■ The display name is the name that CentraSite uses when it refers to the type in the user inter-
face. (This is the name that appears in the catalog browser, for example.) The display name
can contain any character, including spaces.

■ The schema name is the name that is given to the underlying schema that contains the type
definition. The schema namemust conform to the naming requirements for anNCName data
type, which does not permit names with spaces or most special characters.

By default, CentraSite derives the schema name from the display name that you specify for the
type. If your display name includes special characters, then youmust explicitly specify a schema
name that is NCName conformant in the type's Advanced Settings dialog box.

■ If you intend to include a Classification attribute in your custom type, make sure that the corres-
ponding taxonomy exists before you begin creating the new type. To add aClassification attribute
to a type, you must specify the taxonomy with which the attribute is associated. You cannot do
this unless the taxonomy already exists in CentraSite. For information about creating taxonomies,
see the document Taxonomies.

■ If you intend to include a Relationship attribute in your custom type, make sure that the corres-
ponding association type exists before you begin creating the new type. To add a Relationship
attribute to a type, you must specify the type of association that the attribute represents. You
cannot do this unless the association type is already defined CentraSite. For information about
defining association types, seeWorking with Association Types.

The following sections describe how to create a new type.

Creating the New Type

Use the following instructions to create a new type:

To create a new type

1 In CentraSite Control, go to Administration > Types.

2 On the Types tab, click Add Asset Type to open the Add Asset Typewizard.

3 In panel 1, complete the following fields:

Object Type Management20

Creating a New Type



Do the following...In this field...

Enter a display name for the type. Choose a name that your users will recognize and
understand. For example, use "BPEL Process Document", not "bpdoc".

The name you assign to the asset type can contain any character, including spaces.
However, if you specify a name that does not conform to the NCName type, you must
click the Advanced Settings button and specify a name that is NCName conformant in
the Schema Name field. For NCName requirements, see the Schema Name field
description in the next step.

Name

Note: If the name that you assign to the asset type is NCName conformant, except that
is includes spaces, it is not necessary to explicitly specify the type's schema name.
CentraSite automatically replaces space characterswith the _ character when it generates
the schema name for an asset type.

Optional. Enter a brief description of the type.Description

4 Click Advanced Settings and complete the following steps as necessary.

1. Verify that the schema name and the namespace name that were generated by CentraSite
are valid.

Do the following...In this field...

Verify that the schema name that CentraSite generated for this asset type is NCName
conformant.

CentraSite automatically populates this field with a name that is derived from the
asset type name that you specified in the previous step. For example, if your asset
type name is "My Asset Name", CentraSite automatically populates this field with
"My_Asset_Name".

If the schema name generated by CentraSite does not meet the following criteria, you
must specify a name that does.

Schema
Name

■ The name must begin with a letter or the underscore character (_).
■ The remainder of the name can contain any combination of letters, digits, or the
following characters: . - _ (i.e., period, dash, or underscore). It can also contain
combining characters and extender characters (e.g., diacriticals).

■ The name cannot contain any spaces.

Additionally, the type's fully qualified schema name must be unique among all types
in the registry. SeeNamespace, below.

For more information about the NCName type, see
http://www.w3.org/TR/xmlschema-2/#NCName.

Note: You cannot change the schema name after the type is created.

Modify the namespace that CentraSite has proposed for the type if necessary. By
default, CentraSite generates the namespace in the following form:

Namespace

21Object Type Management

Creating a New Type

http://www.w3.org/TR/xmlschema-2/#NCName


Do the following...In this field...

http://namespaces.OrganizationName.com/Schema

Where, OrganizationName is the name of your organization.

TheNamespace value is used to qualify the name specified inSchemaName. Together,
the Schema Name andNamespace values produce the type's fully qualified name.
This name must be unique within the registry.

You generally do not need to modify the namespace that CentraSite proposes for a
type. In most cases, the proposed namespace will be adequate. However, you might
modify the namespace if you want it to include the name of a different organization
or if you need to resolve a naming conflict between this type and an existing type.

Note: You cannot change the namespace value after the type is created.

2. If you want to use a custom icon to represent this type in the user interface, upload large
and small versions of the icon as described below.

Note: If you do not specify a custom icon, CentraSite assigns the default icon to the
type.

Do the following...In this field...

Optional. Specify the large icon that is to be used to represent this type. CentraSite
Control uses this icon when it displays the details for an instance of the type.

If youwant to use a custom icon, click theBrowse button and upload the file containing
the large version of the icon to CentraSite. The icon must be in GIF format. To ensure
proper alignment when it is displayed in the user interface, the icon must be 64 x 64
pixels in size.

Large Icon

Optional. Specify the small icon that is to be used to represent this type. CentraSite
Control displays this iconwhen instances of the type appear in lists or summary tables.

Small Icon

If youwant to use a custom icon, click theBrowse button and upload the file containing
the small version of the icon to CentraSite. The icon must be in GIF format. To ensure
proper alignment when it is displayed in the user interface, the icon must be 16 x 16
pixels in size.

3. Specify the type's advanced options as follows:

Object Type Management22

Creating a New Type



To...Enable this option...

Allow instances of this type to be displayed in the catalog browser. When
you enable this option, CentraSite Control includes the type in the Asset
Types pane on the Asset Catalog > Browse page. When you disable this
option, CentraSite Control omits the type from the Asset Types pane so
users cannot browse for instances of the type.

Visible in Asset
Browse

Allow reports to be generated against instances of this type.Enable reports

Allowuser-defineddesign/change-timepolicies to be created and enforced
for instances of this type.

Policies can be
applied

Note: If you disable this option, CentraSite will not apply any user-defined
design/change-time polices to instances of the type, even in cases where
the policy is designed to execute against all asset types.

Note: This option does not apply to system policies. CentraSite will apply
system policies to instances of the type whether this option is enabled or
not.

Require users to register an application when they submit consumer
registration requests for assets of this type.

Require Consumer
Registration

Allowusers to generate versions of instances of this type.When you disable
this option, CentraSite disables theAddNewVersions command and omits
the Versions profile from instances of this type.

Enable versioning

Allow users to create instances of this asset type "from scratch." When you
enable this option, users are allowed to create instances of the type using
the Add Asset button in CentraSite Control.

Top Level type

Generally you disable this option for types that are constituents of other
assets, or for types that are only meant to be added to the registry by an
importer. For example, theOperation type is used to represent an operation
that belongs to a Web service. Operations are derived automatically from
the service WSDL. They are not intended to be manually defined by users.
Therefore, the Operation type is not designated as a "top level type".

Allow a lifecycle model to be applied to assets of this type.Enable Lifecycle
Management

Allow users to define a search for this particular type. When you enable
this option, CentraSite Control includes the type in the Types list on the

Visible in Search

Advanced Search page. Including a type in this list enables users to define
queries that select on that specific type.

Note: If you change the state of this option and then do an advanced search,
you might need to refresh the Advanced Search page in order to see the
change reflected in the Types list.

For virtual types only.Apply the set of profiles that are defined for the virtual
object type and/or the set of profiles that are defined for the base type.

Inherit Base Type
Profiles

For virtual types only.Apply the set of policies that are defined for the virtual
object type and/or the set of policies that are defined for the base type.

Inherit Base Type
Policies

23Object Type Management

Creating a New Type



To...Enable this option...

For virtual types only. Apply the lifecycle model defined for the base type if
the virtual object type does not have an assigned lifecycle model.

Inherit Base Type
LCM

4. ClickOK.

5 In panel 2, specify the attributes that make up the type. If you need procedures for this step,
see Defining Attributes for a Type.

6 In panel 3, define profiles for the type and assign attributes to them. If you need procedures
for this step, see Defining Profiles for an Asset Type.

7 In panel 4, specify which of the generic profiles you want to include with the type. For more
information about generic profiles, see Generic Profiles.

8 In panel 5, specify the order inwhich youwant the profiles to appearwhen they are displayed
in the user interface.

9 Click Finish to save the new type.

Defining Attributes for a Type

■ General Procedure
■ Defining a Computed Attribute

General Procedure

Use the following steps to complete panel 2 in the Add Asset Type or Edit Asset Typewizard.
You use this panel to define the set of attributes that make up the asset type.

Using the Dialog

To define attributes for an asset type

1 Go to panel 2 in theAddAsset Typewizard (if you are creating a new type) or the Edit Asset
Typewizard (if you are modifying an existing type). If you need procedures for this step, see
Creating a New Type or Viewing or Editing a Type, respectively.

2 To add a new attribute to the type, click Add Attribute.

Complete the following fields in the Add Attribute dialog box:

Object Type Management24

Creating a New Type



Specify...In this field...

The display name for the attribute. This is the attribute name that users will see when
they view instances of this type in the user interface, therefore, the name should be
meaningful.

The display name can contain any combination of characters, including spaces. You can
change an attribute's display name at any time.

Note: If you are defining a Relationship attribute, by default the attribute's name will
be derived from the name of the association type that you assign to the attribute. You

Name

can, however, assign a customname to the Relationship attribute by specifying theName
attribute.

The schema name for the attribute. The schema name is the internal name that CentraSite
assigns to the attribute. This name can contain only letters, numbers and the underscore
character (_).

Schema
Name

If you do not enter a schema name, CentraSite automatically generates a schema name
for the attribute based on the name you enter in theName field. However, if the name
that CentraSite generates includes invalid characters, you will be prompted to provide
a valid schema name when you save the attribute. For information about valid schema
names, see Attribute Names.

After you create and save the attribute, you can no longer change its schema name.

Note: Relationship, File, and Classification attributes do not require schema names.

Optional. A brief description for the attribute.Description

Whether the attribute is required or optional. When you enable this option, CentraSite
prevents users from saving an asset of this type without first assigning a value to this
attribute.

Required

In the user interface, a required attribute is displayedwith an asterisk (*) next to its name.

Note: An attribute can be a required attribute and have a default value (see theDefault
field below). If you do not supply a value for an attribute that is required and has a
default value, the default value is automatically assigned to this attribute.

When editing an existing type:

■ If there are no instances of the type in the registry, you can add a required attribute
to an existing type.

■ If there are instances of the type in the registry, you can add a required attribute of
type "slot" or "classification", but not of type "relationship" or "file".

■ If you add a new required attribute, no automatic update of existing instances takes
place. This prevents the potential degradation of performance that could arise from
the automatic update of a large number of instances.

■ You can enable the Required option for an existing attribute even if there are empty
instances of the attribute. But in this case a default value must be provided for the
attribute.

25Object Type Management

Creating a New Type



Specify...In this field...

■ You can disable the Required option for an attribute at any time (even if assigned
instances of the attribute already exist in the registry).

See also the description of theDefault field below for details of default value processing
of required fields.

Whether users can modify the value of the attribute.Read-only

The Read-only option prevents the attribute's value from being changed after an asset
is created. When you enable this option, users can assign a value to the attribute when
an asset of this type is initially created. However, they cannot modify the attribute after
the asset has been saved.

You can enable or disable the Read-only option for an attribute at any time (even if
instances of the type already exist in the registry).

Whether the attribute can hold a just a single value or multiple values (i.e., an array of
values). Enabling theMulti Value option allows users to assign more than one value to
the attribute.

Multiplicity

Note: TheMultiplicity option is not available for the Boolean attribute type.

When editing an existing asset type:

■ You can switch an attribute'sMultiplicity option from Single Value toMulti Value
at any time (even if instances of the type already exist in the registry).

■ You can switch an attribute'sMultiplicity option fromMulti Value to Single Value
only if:
■ No instances of the type exist in the registry.

—OR—
■ Instances of the type exist in the registry, but each instance has at most one value
assigned to this attribute. (i.e., no instances exist wherein this attribute hasmultiple
values).

The attribute's type. Be aware that after you create an attribute, you cannot change its
type.

Data Type

Depending on the data type you select, additional type-specific fields or checkboxes
now appear in the dialog. Provide the appropriate information for these additional fields
or checkboxes.

See the sectionDefining Data Types below for details.

Optional. The value that is to be assigned to the attribute by default.Default
Value

Note: TheDefault Value option is not available for all attribute types.

When editing an existing asset type:

Object Type Management26

Creating a New Type



Specify...In this field...

■ You can change a default value, assign a default value, or remove a default value from
an attribute at any time. Changing the attribute's default value does not immediately
affect any existing instances of the attribute.

■ If you add a default value to an attribute that did not previously have one, and the
registry contains empty instances of that attribute, the default value will be assigned
to those assets the next time that they are saved to the registry.

■ If you add a new attribute to an existing type and you assign a default value to that
attribute, the default value will be assigned to the existing instances of that type the
next time those instances are saved to the registry.

If the attribute has the Required option set, then the following conditions apply:

■ When you create a new asset type with one or more required attributes, you do not
need to provide a default value for these attributes during the creation process.

■ If instances of an asset type exist, and you update the type definition in any manner,
regardless of whether you edit the required attributes or not (for example, adding a
new optional attribute, adding a new required attribute, or even editing the type
name), you must provide a default value for each required attribute of that type.
Required attributes that have no value will be set to the default value the next time
the instance is saved to the registry.

■ If instances with missing required attributes are viewed in CentraSite Control, these
attributes are simulated and displayed with the default value. But the default value
will not be added to the instance until the next save of the instance.

See also the description of theRequiredfield above for details of default value processing
of required fields.

For theData Typefield, complete the type-specific options as described in the sectionDefining
Data Types below.

ClickOK to save the attribute.

3 Repeat step 2 for each attribute that you want to add to the asset type.

4 If you need to edit an attribute that you have added to the asset type, click the name of the
attribute in panel 2 and make your changes in the Edit Attribute dialog box. Be aware that
certain options for an attribute cannot be changed after the attribute is created. For information
about the conditions under which an attribute's options can be changed, see the descriptions
of the options in step 2, above.

5 If you need to delete an attribute, select the attribute in panel 2 and clickDelete.

Important: CentraSite will not allow you to delete an attribute if an assigned instance
of the attribute is present in the registry.

27Object Type Management

Creating a New Type



Defining Data Types

For the Data Type field, complete the type-specific options as described below:

Do the following...If you are
adding this type
of data type...

In the Taxonomy field, specify the taxonomy by which users will classify the asset.

Note: After you create a classification attribute, neither its Taxonomy option or itsDefault
option can be changed.

Classification

When you choose this data type, you are indicating that the attribute value, and the way it
is rendered in a profile, will be generated using a Java plug-in.

Computed
Attribute

Choose Java as the implementation type, to indicate that you are using a Java plug-in.

In the field File, specify the name of the archive file that contains the Java plug-in.

See the sectionDefining a Computed Attribute below for more information.

Note: When you define a computed attribute, the dialog fields Required, Read-Only and
Multiplicity are not relevant, so they are automatically removed from the dialog.

In the Display As field, specify whether you want the user to specify:Date/Time

■ The date and time
■ The date only
■ The time only

Using this data type, you specify that an asset of the type you are currently defining can be
related to another asset or object.

Relationship

You define the nature of the relationship in the Relationship Type field, using one of the
following options:

■ Association
■ Aggregation using Source
■ Aggregation using Target
■ Composition using Source
■ Composition using Target

These options allow you to define a loose or tight coupling between the related objects.
Depending on the type of relationship, operations on an asset (such as delete, export, move
to another organization, set instance-level permissions, create a new version) can be applied
automatically also to the related asset or object.

See the sectionWorking with Composite Types for information on how you can use these
relationship types.

Object Type Management28

Creating a New Type



Do the following...If you are
adding this type
of data type...

In the Association Type field, specify the type of association that this attribute represents.
This is a label that you assign as a meaningful name for the relationship. Examples of labels
are "hasChild" and "hasParent", indicating a hierarchical relationship.

In the Relates To field, specify the type(s) of object that can be the target of the relationship.
You can specify more than one type of object by using the + icon. If you specify more than
one type of object in this field, this means that an object of the current object type can have
a relationship to an object that belongs to any of the given object types.

Note: The Relates To option is enforced in the user interface and at the API level. Within
the user interface, this option determines which types of object are shown to users when
they set the attribute. At the API level, this option causes CentraSite to reject any asset whose
attribute specifies an object that is not of an allowed type.

After you create a Relationship attribute, you can modify the attribute's Association Type
only if there are no assigned instances of the attribute in the registry. Similarly, you can
change or delete categories in theRelates To option only if the registry contains no assigned
instances of the attribute. You can, however, assign additional categories to the Relates To
option at any time (even if assigned instances of the attribute exist in the registry).

For more information about association types, seeWorking with Association Types.

Enable the Internationalized option if youwant to store the string values in internationalized
string form. For more information about the Internationalized option, see the description
of the String attribute in Attribute Data Types.

After you create a String or Multiline String attribute, you cannot change the attribute's
Internationalized option.

String or
Multiline
String

Enable the Enumeration option if you want to restrict the attribute to a predefined set of
values. When users edit this attribute in CentraSite Control, the enumerated values are
presented to them in a drop-down list.

String

CentraSite also enforces the Enumeration option at the API level, meaning that it will reject
any asset whose attribute does not contain one of the enumerated values.

If you enable the Enumeration option for a String attribute, you can add new items to the
enumerated list at any time (even if instances of the attribute exist in the registry). However,
you can remove an item from the list only if that item is not currently assigned to an instance
of this type in the registry.

After you create a String attribute, you cannot switch it from an enumerated String to a
non-enumerated String (or vice-versa).

29Object Type Management

Creating a New Type



Defining a Computed Attribute

The computed attribute is defined as the implementation of the ComputedAttribute interface. The
following topics describe how to define a computed attribute:

■ Implementation guidelines for Java-based computed attributes
■ Structure of archive file
■ Sample code
■ Loading a computed attribute into an asset type definition

Implementation guidelines for Java-based computed attributes

This section describes the Java interfaces andmethods that you need to implement for a computed
attribute.

DescriptionInterfaces

This interface declares basic rendering methods for the user interface. It extends the
ProfileAttribute interface.

ComputedAttribute

boolean: isUsed(): returns true if this attribute is used by at least one instance of the
corresponding asset type.

Collection: setValue(Collection): sets the value of this attribute.

AttributeDescriptor: getAttributeDescriptor(): returns the definition of this attribute.

String: getName(): returns the JAXR-based name of this attribute.

Collection: getValue(): returns the value of this attribute.

init(): adds the required parameters to the objects argument for attribute initialization.

Collection<Concept>: getTargetObjectTypes(): returns the appropriate target registry
object of this attribute. This method will be used when the attribute is of the
relationship data type.

Concept: getAssociationType(): returns the appropriate association type of this
attribute. This methodwill be usedwhen the attribute is of the relationship data type.

ClassificationScheme: getTaxonomy(): returns the appropriate classification scheme
of this attribute. This method will be used when the attribute is of the classification
data type.

void: init(Collection<CentraSiteRegistryObject>, Locale)ProfileAttribute

Collection: getValue();

String: getAttributeKey();

AttributeDescriptor: getAttributeDescriptor();

Object Type Management30

Creating a New Type



DescriptionInterfaces

This interface deals with the standard properties (isReadOnly(), is Required()...) for
an attribute.

AttributeDescriptor

String: getDataType(): returns the data type of this attribute. This can be one of the
supported standard types (xs:...), or one of the special types: File, RichText, Image
(allows the specification of the image type).

Object: getDefaultValue(): returns the default value of this attribute.

String[]: getEnumValues():

int: getMaxLength(): returns the maximum length of this attribute.

String: getMaxOccurs(): returns whether the attribute can have multiple occurrences.

String: getMinOccurs(): returns whether the attribute is optional or required.

Object: getNativeAtribute(): returns the native attribute instance if the data type is
not primitive, otherwise returns null.

int: getPrecision(): gets the precision for a "number" attribute.

String: getUnitLabel(): returns the slot's unit label.

boolean: hasDefaultValue(): returns whether this attribute has a default value.

boolean: isPrefix(): Returns true if the slot's unit label is a prefix, and false if it is a
suffix.

boolean: isReadOnly(): returns whether this attribute is read-only.

boolean: isRequired(): returns whether this attribute is required.

Structure of archive file

The archive file must contain the following folders and files:

DescriptionZip folder

This folder contains the config.properties file, which is the build file for the plug-in. This properties
file contains an entry of the following format:

META-INF

31Object Type Management

Creating a New Type



DescriptionZip folder

com.softwareag.centrasite.computed.attr.impl.class=com.sample.StringAttrImpl

This folder contains the archive file with the source code examples, the plug-in's executor class and
the external libraries.

lib

Sample code

Sample Java code for implementing a computed attribute is supplied in the demos folder under
CentraSite installation folder. The sample code is available in the files:

■ ComputedAttribute.java
■ ProfileAttribute.java
■ AttributeDescriptor.java

Loading a computed attribute into an asset type definition

After you have created an archive file that contains the attribute definition, you need to load the
archive file into the asset type definition. You do this by starting the Edit Asset Typewizard for
the appropriate existing asset type, or the Add Asset Typewizard for a new custom asset type,
and specifying in the wizard that you are defining a new computed attribute.

For details on how to load the archive file of a computed attribute into an asset type definition,
refer to the section Defining Attributes for a Type.

When you have loaded the archive file, the new attribute is displayed in the list of attributes that
can be assigned to an asset type profile.

Defining Profiles for an Asset Type

■ General Procedure
■ Defining a Computed Profile

Object Type Management32

Creating a New Type



■ Applying Profiles to Virtual Types

General Procedure

Use the following procedure to complete panel 3 in theAddAsset Type or Edit Asset Typewizard.
You use this panel to define profiles and their attributes.

You can add a profile in two ways:

■ Manually, using the asset type's available attributes.
To define a profile manually, you select attributes from the list of available attributes and assign
them to the profile.

■ Using a Java plug-in that contains a computed profile.
A computed profile is a user-defined profile that is implemented as a Java plug-in. You add the
computed profile to the asset type by importing the computed profile's definition froman archive
file. The plug-in specifies the attributes that are contained in the profile. The plug-in also has
the sole responsibility for rendering the layout representationwithin the profile. After a computed
profile has been defined for an asset type, the computed profile is treated in the same way as
any other profile; for example, permissions for computed profiles can be granted in the same
way as for standard profiles, and the ordering of profiles within a type definition is the same
for computed profiles as for standard profiles.

To add a profile to the asset type

1 Go to panel 3 in theAddAsset Typewizard (if you are creating a new type) or the Edit Asset
Typewizard (if you are modifying an existing type). If you need procedures for this step, see
Creating a New Type or Viewing or Editing a Type, respectively.

2 To add a new profile to the type, click Add Profile and perform the following steps.

1. In the Profile Name field, enter a name for the profile. This is the name that users will see
in the user interface when they view an asset of this type. Therefore, the name you assign
should be meaningful to your users (for example, "Technical Notes", not "tn").

Note: You cannot give a profile the same name as any of the generic profiles described
in Generic Profiles.

2. If the profile you wish to add is a computed profile, mark the checkboxComputed Profile
and select the implementation language from the drop-down list. If, for example, you have
implemented the computed profile using Java, then select Java.

When youmark the checkbox, the dialog's list of available attributes is replaced by the input
field Profile Implementation Archive. In this field, specify the name of the archive file
that contains the definition of the computed profile, then clickOK.

33Object Type Management

Creating a New Type



See the sectionDefining a Computed Profile below for information on how to implement
a computed profile.

Note: If you define a profile as a computed profile, you cannot change the profile
back to being a non-computed profile at a later stage. You can, however, change the
archive file that contains the definition of the computed profile.

3. If your new profile is not a computed profile, continue with this step.

Use the arrow buttons to specify the attributes for the new profile and the order in which
the attributes will be displayed.
■ Add an attribute to the profile bymarking the attribute's checkbox in the list of available
attributes and clicking the right-pointing arrow.

■ Add all of the available attributes to the profile by clicking the right-pointing double
arrow.

■ Remove an attribute from the profile by marking the attribute's checkbox in the list of
assigned attributes and clicking the left-pointing arrow.

■ Remove all attributes from the profile by clicking the left-pointing double arrow.
■ Change the position of an assigned attribute relative to the other assigned attributes
within the profile by marking the checkbox of the attribute and clicking the up or down
arrow as required.

4. ClickOK.

3 If you need to edit a profile that already exists within the type, click the name of the profile
in panel 3 and make your changes in the Edit Profile dialog box.

Use the arrow buttons, as described in the previous step forAdd Profile, to specify the attrib-
utes for the profile, and the order in which the attributes will be displayed.

4 If you need to delete a profile, select the profile in panel 3 and clickDelete.

Note: Deleting a profile does not delete the attributes that were assigned to the profile.
It simply removes the profile definition from the asset type. The attributes still exist
within the type. However, theywill not be visible in the user interface unless you assign
them to another profile.

Object Type Management34

Creating a New Type



Defining a Computed Profile

The following topics describe how to define a computed profile:

■ Definition of Java-based Computed Profile
■ Implementation guidelines for Java-based computed profiles
■ Structure of archive file
■ Sample computed profiles
■ Loading a computed profile into an asset type definition

Definition of Java-based Computed Profile

A Java based computed profile has the following rendering mechanism:

■ WithUiRendering: This dictates the user-defined rendering of the profile's attributes.
■ WithoutUiRendering: This dictates the CentraSite's default rendering of the profile’s attributes.
This default rendering is based on the attribute’s data type.

Implementation guidelines for Java-based computed profiles

This section describes the Java interfaces andmethods that you need to implement for a computed
profile.

DescriptionInterfaces

This interface declares basic rendering methods for the user interface.ComputedProfile

void: init(java.lang.Object, Locale): with CentraSiteRegistryObject as a
parameterwhere the necessary implementation is done andupdateAsset()which
would return a collection of registry object serves as a save hook.

boolean: canRenderUI(): This determines whether the rendering is based on the
UI (true) or on the triples associated with the profile (false).

Collection: getAttributes(): returns a collection of ProfileAttribute andwould
be called only when canRenderUI() returns true.

Collection: updateAsset(): returns a collection of CentraSiteRegistryObject
and would be called only when canRenderUI() returns true.

This interface is specific to the rendering for CentraSite Control.WebUIProfile

java.lang.Object: createProfileContent(): create the profile contents with XML
content (in compliance with Application Designer).

This interface is specific to the rendering for Eclipse Designer.EclipseProfile

35Object Type Management

Creating a New Type



DescriptionInterfaces

createFormContent(): create the profile contents on the supplied IManagedForm
(in compliance with Eclipse Designer SWT/JFace library).

This interface is specific to the rendering for CentraSite Business UI.BUIProfile

getEditPageURL(): returns URL of the edit page of computed profile and would
be called only when canRenderUI() returns true.

getViewPageURL(): returnsURL of the viewpage of computed profile andwould
be called only when canRenderUI() returns true.

getProfileDataAsJson(): returns a collection of profile data as JSON-formatted
string.

Collection computeProfileData (String userInputsAsJSON): sets a collection of
profile data as JSON-formatted string.

JSON specification is available at http://www.json.org/.

This interface deals with the standard UI rendering of the profile's attributes and
allows defining the attributes as key value pairs. The rendering of each attribute
will be the standard rendering for the corresponding datatype of the attribute.

ProfileAttribute

AttributeDescriptor: getAttributeDescriptor(): returns the descriptor of the
attribute.

String: getAttributeKey(): returns the key of the attribute.

String: getName(): returns the name of the attribute.

Collection: getValue(): returns the value of the attribute.

This interface deals with the user-defined UI rendering of the profile's attributes.
The UI rendering of the attributes will be determined by the coding of this
interface.

ComputedAttributeLine

void: buildUI(StringBuilder layout): Thismethod is responsible for rendering the
layout definition.

void: passivate(): This method is responsible for storing the values back to the
object.

void: revert(): This method is to revert the changes.

This interface deals with the standard properties (isReadOnly(), is Required()...)
for an attribute.

AttributeDescriptor

String: getMinOccurs(): returns theminimumallowed occurrences of this attribute.

Object Type Management36

Creating a New Type

http://www.json.org/


DescriptionInterfaces

String: getMaxOccurs(): returns the maximum allowed occurrences of this
attribute.

boolean: isRequired(): returns whether this attribute is required.

boolean: isReadOnly(): returns whether this attribute is read-only.

boolean: hasDefaultValue(): returns whether this attribute has a default value.

Object: getDefaultValue(): returns the default value of this attribute.

int: getMaxLength(): returns the maximum length of this attribute.

String: getDataType(): returns the data type of this attribute.

Object: getNativeAtribute(): returns the native attribute instance if the data type
is not primitive, otherwise returns null.

String[]: getEnumValues():

boolean: isPrefix(): returns whether this slot's unit label is a prefix or suffix value.
Return "true" if the unit label is a prefix, "false" for suffix.

int getPrecision(): returns the precision for a "number" attribute.

String: getUnitLabel(): returns this slot's unit label. The label may be null.

Structure of archive file

The archive file must contain the following folders and files:

DescriptionZip folder

This folder contains the config.properties file, which is the build file for the plug-in. This properties file contains
an entry of the following format:

META-INF

com.softwareag.centrasite.computed.profile.webui.impl.class=com.sample.MyProfileImpl

This folder contains the archive filewith the source code examples, the plug-in's executor class and the external
libraries.

lib

37Object Type Management

Creating a New Type



Sample computed profiles

Your CentraSite installation contains 5 sample computed profiles. Two samples are for the
CentraSite Control, one for the CentraSite Business UI, and the other two are for the Eclipse De-
signer.

The content is organized under the following sections:

■ Sample Computed Profiles for CentraSite Control
■ Sample Computed Profiles for CentraSite Business UI
■ Sample Computed Profiles for Eclipse Designer

Sample Computed Profiles for CentraSite Control

Your CentraSite installation contains two sample computed profiles (which is contained in demos
folder) that you can use to create an archive file for the computed profile specific to CentraSite
Control.

■ NonPrimitiveDataTypeSamples
■ SampleComputedProfile

Sample Computed Profiles for CentraSite Business UI

Your CentraSite installation contains a sample computed profile (which is contained in demos
folder) that you can use to create an archive file for the computed profile specific to CentraSite
Business UI.

■ SampleProfile

Sample Computed Profiles for Eclipse Designer

Your CentraSite installation contains two sample computed profiles (which is contained in demos
folder) that you can use to create an archive file for the computed profile specific to EclipseDesigner.

■ DesignerProfileSample
■ SampleComputedProfile

Object Type Management38

Creating a New Type



Loading a computed profile into an asset type definition

After you have created an archive file that contains the profile definition, you need to load the
archive file into the asset type definition. You do this by starting the Edit Asset Typewizard for
the appropriate asset type and specifying in the wizard that you are defining a new computed
profile.

For details on how to load the archive file of a computed profile into an asset type definition, refer
to the section Defining Profiles for an Asset Type.

When you have loaded the archive file, the new profile is displayed in the detail page of all assets
of the asset type.

Applying Profiles to Virtual Types

When an asset is an instance of a virtual type, the set of profiles that CentraSite applies to the asset
depends on the virtual type's Inherit Base Type Profiles setting. If the type's Inherit Base Type
Profiles option is enabled, CentraSite applies the profiles of the base type to the asset in addition
to the profiles of the virtual type. For example, the Inherit Base Type Profiles option is, by default,
enabled for virtual services. Therefore, when CentraSite applies profiles for a virtual service, it
applies the set of profiles that are defined for the Virtual Service object type and the set of profiles
that are defined for the Service object type (the base type for the Virtual Service type).

If you disable the Inherit Base Type Profiles option for a virtual type, CentraSite applies to the
asset only the profiles that are defined for the virtual type. Therefore, CentraSite applies to virtual
services only the profiles that are defined for the Virtual Service type. Profiles that are defined for
the Service type are not applied.

The following table summarizes how the set of profiles that CentraSite applies for a virtual type
is affected by the state of the Inherit Base Type Profiles option.

The instances of the virtual type will have...And the profile is defined for the...If the virtual type's "Inherit Base Type
Profiles" option is...

Base Type ProfilesBase TypeENABLED

Virtual Type ProfilesVirtual TypeENABLED

Base Type ProfilesBase TypeENABLED

—AND——AND—

Virtual Type ProfilesVirtual Type

NoneBase TypeDISABLED

Virtual Type ProfilesVirtual TypeDISABLED

Virtual Type ProfilesBase TypeDISABLED

—AND—

39Object Type Management

Creating a New Type



The instances of the virtual type will have...And the profile is defined for the...If the virtual type's "Inherit Base Type
Profiles" option is...

Virtual Type

For information about virtual types, seeWhat is a Virtual Type?. For information about which
predefined types in CentraSite are virtual types, see The Predefined Asset Types Installed with
CentraSite.

Object Type Management40

Creating a New Type



5 Viewing or Editing a Type

You use the Edit Asset Typewizard to view or edit the properties and options for an existing asset
type. When editing an existing type, keep the following points in mind:

■ You can modify the type's display name, description, icons and advanced options. You cannot
modify the type's SchemaName or itsNamespace property. These two properties are set when
the type is created and cannot be changed thereafter.

■ With respect to attributes:
■ You can add new optional attributes to the type at any time.
■ You can add new required attributes if there are no existing instances of the type in the registry.
If there are existing instances of a type, you can add a new required attribute of type "slot" or
"classification", but not of type "relationship" or "file".

■ If you add a new attribute, regardless ofwhether it is optional or required, no automatic update
of existing instances takes place. This prevents the potential degradation of performance that
could arise from the automatic update of a large number of instances.

■ You cannot modify the data type for an attribute, but you can modify many of an attribute's
other options. Be aware that certain are not permitted if assigned (i.e., non-empty) instances
of the attribute are present in the registry. For information about the kinds of changes you
canmake to an existing attribute, see the property and option descriptions inDefining Attrib-
utes for a Type.

■ You cannot delete an attribute from a type if an instance of the type existswith a value assigned
to the attribute. In such a situation, youmust first remove the attribute's value from each such
instance before you can delete the attribute.

Note that the command line tool "CentraSiteCommand" provides support for removing an
attribute, in cases where existing instances contain a value for the attribute. See below for
details.

■ You can add, modify, delete, rename and reorganize the profiles associated with a type at any
time.

41



Important: If you are modifying one of the predefined asset types installed with CentraSite,
review the information in The Predefined Asset Types Installed with CentraSite before you
begin. It explains the kinds of modifications that you can make to the predefined types.

Important: If you are using CentraSite in conjunction with other software products, for ex-
ample, the products of the SoftwareAGwebMethods Product Suite or a third-party product,
those products can add their own asset types to CentraSite. Be aware that CentraSite treats
these types as user-defined custom types, which can be modified by an administrator with
the appropriate permissions (just like any other custom type). Modifying or deleting these
types in CentraSite can lead to inconsistencies or errors in the product that uses the type.
For example, if you modify or delete a type that is used by the webMethods Product Suite,
components such as the webMethods Integration Server may no longer be able to publish
assets to CentraSite. To prevent these types of errors, do not modify or delete any asset type on
which other Software AG components or third-party products depend. For a list of the predefined
types that the webMethods Product Suite uses, see The Predefined Types Installed with
CentraSite.

Viewing or Editing a Type

To view or edit a type

1 In CentraSite Control, go to Administration > Types.

2 By default, all of the available types are displayed in the Types tab.

If you want to filter the list to see just a subset of the available types, enter a partial string in
the Search field. CentraSite applies the filter to theName column. The Search field is a type-
ahead field, so as soon as you enter any characters, the display will be updated to show only
those types whose name contains the specified characters. The wildcard character "%" is
supported.

3 In the Types tab, click the name of the asset type that you want to modify.

4 In the Asset Type Details page, click Edit to open the Edit Asset Typewizard.

5 On panel 1, edit the following fields as necessary:

Do the following...In this field...

Specify the display name for the type. Be sure to use a name that your userswill recognize
and understand. For example, use "BPEL Process Document", not "bpdoc".

The name you assign to the asset type can contain any character, including spaces.

Note: Changing the type's display name will not affect its schema name. The type's
schema name is fixed when a type is created. It is not affected by subsequent changes to
the type's display name.

Name

Optional. Enter a brief description of the type.Description

Object Type Management42

Viewing or Editing a Type



6 If youwant tomodify the icons associatedwith the type or change the type's advanced settings,
click Advanced Settings and modify the settings in the Advanced Settings dialog box as
needed. For additional information about the settings in this dialog box, see the descriptions
for these settings in Creating a New Type.

7 In panel 2, edit the type's attributes as necessary. If you need procedures for this step, see
Defining Attributes for a Type.

8 In panel 3, edit the type's profiles as necessary. If you need procedures for this step, see De-
fining Profiles for an Asset Type.

9 In panel 4, change the selection of generic profiles as necessary. For more information about
generic profiles, see Generic Profiles.

10 In panel 5, rearrange the order of the type's profiles as necessary.

11 Click Finish to save the updated type.

You can view multiple asset types as follows:

To view multiple asset types

1 In CentraSite Control, go to Administration > Types.

2 Ensure that the Types tab is selected.

3 Mark the checkboxes of the types whose details you want to view.

4 In the Actionsmenu, clickDetails.

TheDetails view of each of the selected types is now displayed.

Removing an Attribute

There is a command line tool that allows you to remove an attribute from an asset type, in cases
where existing instances of the type contain a value for the attribute. Using the tool, the attribute's
value is automatically removed from all existing instances, then the attribute is removed from the
type.

Notes:

1. If there are many existing instances, the remove operation can take some time to complete.

2. You cannot remove a predefined attribute from a predefined asset type. You can, however, re-
move a custom (i.e. user-defined) attribute from a predefined asset type.

To remove an attribute from an asset type

■ At the command line, enter a command of the following format:

43Object Type Management

Viewing or Editing a Type



CentraSiteCommand remove Attribute [-url <CENTRASITE-URL>] -user <USER-ID>
-password <PASSWORD> -assetType <ASSET-TYPE> [-attributeKind <ATTRIBUTE-KIND>]
-attributeName <ATTRIBUTE-NAME>

The following table describes the complete set of input parameters that you can use with the
remove Attribute utility:

DescriptionParameter

The fully qualified URL (http://localhost:53307/CentraSite/CentraSite) for the
CentraSite registry/repository.

-url

The user ID of a user who has the "CentraSite Administrator" role.-user

The password of the user identified by the parameter "-user".-password

The name of the asset type, in the format "{<namespace of the asset
type>}SchemaName".

-assetType

A one-character code representing the type of the attribute you wish to remove.
Allowable values are "C" for Classification, "R" for Relationship, "F" for File and
"S" for all other attribute types. The use of the

-attributeKind

attributeKind

parameter is optional. See the description of attribute types in the sectionWhat is
a Type? for more information about the various kinds of attributes.

The name of the attribute schema for attributes whose AttributeKind is "S". For
attributes with an AttributeKind other than "S" it is the name of the attribute
itself.

-attributeName

Here is an example of a call of this command:

CentraSiteCommand remove Attribute [-url ↩
"http://localhost:53307/CentraSite/CentraSite"] -user "Administrator"
-password "manage" -assetType "{http://namespaces.CentraSite.com/Schema}XMLSchema" ↩
[-attributeKind "S"]
-attributeName "test_String_Attribute"

You can execute the above command in the command line interface CentraSiteCommand.cmd
(Windows) or CentraSiteCommand.sh (UNIX) of Command Central. The tool is located in
<CentraSiteInstallDir>/utilities.

If you start the command line tool with no parameters, you receive a help text summarizing the
required input parameters.

The parameters of the command are case-sensitive, so for example the parameter "-url" must be
specified as shown and not as "-URL".

Object Type Management44

Viewing or Editing a Type



6 Viewing or Editing a Virtual Type

Use the procedure in this section to view or edit a virtual type. When editing a predefined virtual
type, keep the following points in mind:

■ You cannot modify the type's base type attribute. This property is set when the type is created
and cannot be changed thereafter.

■ Virtual types inherit their attributes from their base type Service object. You cannot directly
add attributes to, delete attributes from, or edit the properties of an attribute in a virtual type.
To make these kind of modifications, you must edit the base type. For more information about
virtual types, see Virtual Types.

■ You can add, modify, delete, rename and reorganize the profiles associated with a virtual type
at any time. However, you cannotmodify or delete the profiles that are inherited from the type's
base type.

To view or edit a virtual type

1 In CentraSite Control, go to Administration > Types.

2 By default, all of the available types are displayed in the Types tab.

If you want to filter the list to see just a subset of the available types, enter a partial string in
the Search field. CentraSite applies the filter to theName column. The Search field is a type-
ahead field, so as soon as you enter any characters, the display will be updated to show only
those types whose name contains the specified characters. The wildcard character "%" is
supported.

3 In the Types tab, click the name of the virtual type that you want to view or edit.

4 If you want to view or edit the properties of the virtual type, click Edit and modify the basic
attributes in the Edit Asset Typewizard as required.

5 If you want to view or edit the Inherit Base Type Profiles, Inherit Base Type Policies and In-
herit Base TypeLCMoptions, clickAdvancedSettings andmodify the settings in theAdvanced

45



Settings dialog box as needed. For additional information about the settings in this dialog
box, see the descriptions for these settings in Creating a New Type.

6 If you want to add or edit the profiles for the virtual type, see Defining Profiles for an Asset
Type.

7 Click Finish to save the updated type.

Object Type Management46

Viewing or Editing a Virtual Type



7 The Predefined Asset Types in CentraSite

■ The Predefined Asset Types Installed with CentraSite ............................................................................. 48
■ Modifications You Can Make to CentraSite's Core Asset Types ................................................................. 50

47



CentraSite is installed with a number of predefined asset types. Some of these types are "core
types" that belong to CentraSite itself. You can modify these types as described inModifications
You Can Make to CentraSite's Core Asset Types.

Other predefined types are installed to support the use of CentraSite by products such as the
webMethods Product Suite. These types belong to other products,which expect the type definitions
to remain unchanged. Modifying or deleting these types in CentraSite can lead to inconsistencies
or errors in the product that uses the type. For example, if youmodify or delete a type that is used
by the webMethods Product Suite, components such as the webMethods Integration Server may
no longer be able to publish assets to CentraSite. You must not modify these predefined asset
types.

The table in The Predefined Types Installed with CentraSite indicates which of the predefined
types are core types that belong to CentraSite and which belong to other products such as the
webMethods Product Suite.

The Predefined Asset Types Installed with CentraSite

The following table identifies the predefined asset types that are installed with CentraSite and
indicates to which product they belong.

■ The types that belong to CentraSite are core types that you can customize as described in
Modifications You Can Make to CentraSite's Core Asset Types. You cannot delete these types.

■ The types that belong to the webMethods Product Suite are custom types that are installed with
CentraSite. You must notmodify or delete these types.

OwnerType Name

CentraSiteApplication

CentraSiteApplication Server

CentraSiteBPEL Partner

CentraSiteBPEL Partner Link

CentraSiteBPEL Partner Link Type

CentraSiteBPEL Process

CentraSiteBPEL Role

webMethods Product SuiteBPM Process Project

webMethods Product SuiteCAF Security Role

webMethods Product SuiteCAF Task Rule

webMethods Product SuiteCAF Task Type

webMethods Product SuiteDecision Entity

webMethods Product SuiteE-form

Object Type Management48

The Predefined Asset Types in CentraSite



OwnerType Name

webMethods Product SuiteEvent Type

CentraSiteInterface

webMethods Product SuiteIS Connection

webMethods Product SuiteIS Package

webMethods Product SuiteIS Routing Rule

webMethods Product SuiteIS Server

webMethods Product SuiteIS Service

webMethods Product SuiteIS Service Interface

webMethods Product SuiteIS Specification

webMethods Product SuiteIS Type Definition

webMethods Product SuiteJDBC Datasource

CentraSiteOperation

CentraSitePackage

webMethods Product SuitePortlet

webMethods Product SuitePortlet Preference

webMethods Product SuiteProcess

webMethods Product SuiteProcess Pool

webMethods Product SuiteProcess Step

webMethods Product SuiteProcess Swimlane

CentraSiteREST Service (virtual type of Service)

webMethods Product SuiteRule Action

webMethods Product SuiteRule Data Model

webMethods Product SuiteRule Parameter

webMethods Product SuiteRule Project

webMethods Product SuiteRule Set

CentraSiteService

webMethods Product SuiteTN Document Type

webMethods Product SuiteTN Group

CentraSiteVirtual REST Service (virtual type of Service)

CentraSiteVirtual Service (virtual type of Service)

CentraSiteVirtual XML Service (virtual type of Service)

webMethods Product SuiteWeb Application

webMethods Product SuiteWeb Application Page

CentraSiteWS-Policy

CentraSiteXML Schema

CentraSiteXML Service (virtual type of Service)

49Object Type Management

The Predefined Asset Types in CentraSite



Modifications You Can Make to CentraSite's Core Asset Types

The following describes the ways in which you can customize the core asset types that belong to
CentraSite.

■ You canmodify the type's existing properties and options (other thanSchemaName,Namespace
and Base Type (for virtual types only)).

Note: AlthoughCentraSite allows you to change the display name of the predefined types,
we recommend that you do not do this. Name changesmight lead to problemswith future
upgrades of CentraSite.

■ You can add custom attributes to any type other than the predefined virtual types.
■ You can edit the options for existing attributes of any type other than the predefined virtual
types.

■ You can add profiles, delete profiles, edit profiles and rearrange the order of profiles in the type.
■ You cannot delete any of the predefined attributes that belong to the type. You can, however,
delete custom (i.e. user-defined) attributes that belong to the type.

■ You cannotmodify the inherited profiles and attributes of the predefined virtual types.

Object Type Management50

The Predefined Asset Types in CentraSite



8 Customizing the User and Organization Types

You can add custom attributes to the User and Organization objects that are installed with
CentraSite. Adding custom attributes to these types enables you to include additional metadata
about the organizations or users at your site. For example, if the organizationswithin your enterprise
belong to specific affiliates, you might want the Organization object to include an attribute that
identifies the affiliate to which an organization belongs.

You can add any number of custom attributes to a User or Organization. The attributes can be of
any attribute type. You can also customize the icons that are associated with these types.

When you add custom attributes to a User or Organization type, the attributes appear on the At-
tributes tab when a user or organization is displayed in CentraSite Control.

To customize the Organization or User type definition

1 In CentraSite Control, go to Administration > Types.

2 In the Types tab, click the Organization type or the User type, depending on which type you
want to customize.

3 In the Asset Type Details page, click Edit to open the Edit Asset Typewizard.

4 In panel 1, edit the following fields if you want to use a custom icon to represent this type in
the user interface.

Do the following...In this field...

Optional. Specify the large icon that is to be used to represent this type.CentraSite Control
uses this icon when it displays the details page for instances of the type.

If you want to use a custom icon, click the Browse button and upload the file containing
the large version of the icon to CentraSite. The icon you use must be in GIF format. To
ensure proper alignment when the icon is displayed in the user interface, it must be 64 x
64 pixels in size.

Large Icon

51



Do the following...In this field...

Optional. Specify the small icon that is to be used to represent this type.CentraSite Control
displays this icon when instances of this type appear in lists or summary tables.

Small Icon

If you want to use a custom icon, click the Browse button and upload the file containing
the small version of the icon to CentraSite. The icon you use must be in GIF format. To
ensure proper alignment when the icons is displayed in the user interface, it must be 16
x 16 pixels in size.

5 In panel 2, edit the type's attributes as necessary. If you need procedures for this step, see
Defining Attributes for a Type.

6 Click Finish to save the updated type.

Object Type Management52

Customizing the User and Organization Types



9 Deleting a Type

When you delete an asset type, keep the following points in mind:

■ You can delete a type only if there are no instances of that type in the registry.
■ The core asset types that belong to CentraSite are non-deletable. CentraSite will not allow you
to delete these types, even if there are no instances of the selected type in the registry. For a list
of the core types that belong to CentraSite, see The Predefined Types Installed with CentraSite.

Important: If you are using CentraSite in conjunction with other software products, for ex-
ample, the products of the SoftwareAGwebMethods Product Suite or a third-party product,
those products can add their own asset types to CentraSite. Be aware that CentraSite treats
these types as user-defined custom types, which can be deleted by an administrator with
the appropriate permissions (like any custom type). Deleting these types in CentraSite can
lead to inconsistencies or errors in the product that uses the type. For example, if you delete
a type that is used by the webMethods Product Suite, components such as the webMethods
Integration Server may no longer be able to publish assets to CentraSite. To prevent these
types of errors, do not delete any asset type on which other Software AG components or third-party
products depend. For a list of the predefined types that the webMethods Product Suite uses,
see The Predefined Types Installed with CentraSite.

To delete an asset type

1 In the CentraSite Control, go to Administration > Types to display the asset types list.

2 Enable the checkbox next to the name of an asset type that you want to delete.

3 ClickDelete.

When you are prompted to confirm the delete operation, clickOK.

You can delete multiple asset types in a single step. The rules described above for deleting a single
asset type apply also when deleting multiple asset types.

53



Important: If you have selected several asset typeswhere one ormore of them are predefined
types, you can use the Delete button to delete the types. However, as you are not allowed
to delete predefined asset types, only types you have permission for will be deleted. The
same applies to any other types for which you do not have the required permission.

To delete multiple asset types in a single operation

1 In CentraSite Control, go to Administration > Types to display the asset types list.

2 Mark the checkboxes of the asset types that you want to delete.

3 From the Actionsmenu, chooseDelete.

When you are prompted to confirm the delete operation, clickOK.

Object Type Management54

Deleting a Type



10 Working with Composite Types

■ Overview ....................................................................................................................................... 56
■ Shared vs Nonshared Components ..................................................................................................... 57
■ Required Objects ............................................................................................................................ 57
■ Collectors ...................................................................................................................................... 57
■ Defining Composite Asset Types ........................................................................................................ 58
■ Semantics of Relationships and Operations .......................................................................................... 61
■ Extended Rules .............................................................................................................................. 63
■ Usage Scenarios ............................................................................................................................. 65
■ Propagation of Profile Permissions ..................................................................................................... 78
■ The Predefined Composite Asset Types ............................................................................................... 78

55



Overview

Certain assets can be stored in CentraSite as a set of related registry objects. Such assets are called
composite assets. For example, if a web service provides several operations, this is stored in
CentraSite as a composite asset consisting of the Service asset plus a separate Operation object for
each of the web service's operations.

The objects that are constituents of a composite asset are referred to as components. In a composite
asset there is a root component and one or more sub-components that are related to the root
component. In the above example, the Service asset is the root component and theOperation objects
are the sub-components. A sub-component of a composite asset can itself be a composite asset.

Depending on the relationships defined, registry operations (such as deleting an asset or exporting
an asset) performed on a component of a composite asset can cause the same operation to be per-
formed automatically on other components of the composite asset.

The concept of relationships between different objects in a SOA environment follows the UML
idea of association relationships. This is only one of several forms of relationship supported by
UML, but most SOA Registry Repositories only offer this form. CentraSite extends this scope to
provide "aggregation" and "composition" relationships in addition to the existing association rela-
tionships. Each of these relationship forms provides its own semantics that affect specific operations
that can be performed on composite assets.

You can define composite assets for all asset types, including custom (i.e. user-defined) asset types.

TheCentraSite datamodel provides ameans of representing composite assets, and allows operations
to be performed on the entire composite asset or on sub-components in a consistent and well-
defined manner.

The following operations take the composition definitions into account:

■ Deleting an asset
■ Exporting an asset
■ Creating a new version of an asset
■ Setting the instance permissions on an asset
■ Changing the owner of an asset
■ Moving an asset to another organization

Note: Lifecycle state propagation is not included in the above list, as experience has shown
that suchmodels can causemajor problems in their definition and consistency rules. If such
a model is required, then it should be implemented via a custom pre/post-state change
policy.

Object Type Management56

Working with Composite Types



Shared vs Nonshared Components

Sometimes a component can serve as a constituent of multiple composite objects. For example,
XML schema "ABC" might contain schema "XYZ" as one of its components. Other services and/or
schemas might also include schema XYZ as a component. Components that can belong to more
than one composite object are referred to as shared components. Components that can only belong
to a particular instance of a composite object are referred to as nonshared components. For example,
the operations, bindings and interfaces associated with a Web service are considered nonshared
components. These objects belong solely to the service and cannot function as constituents of
other composite objects. Schemas, however, are considered sharable, meaning that they donot belong
exclusively to a particular composite object.

Required Objects

Besides components, a composite object can also have required objects. Required objects are registry
objects and/or repository items that are not actually part of the composite object itself, but support
or augment the composite object in an essential way. For example, if a Service object has a WS-
Policy attachment, the attached policy is treated as a required object because it specifies the WS-
Policies that must be applied to the service when it is deployed.

Required objects, while not actually part of the composite object, must be present in the registry
to make the object wholly complete or usable. (An asset's required objects are generally objects
that the export process must bundle with the asset in order for the asset to be wholly represented
and functional in another registry.)

Collectors

A collector is an internal process within CentraSite that identifies all of the constituents of a com-
posite object. A collector examines a given object and returns lists that identify:

■ The nonshared components associated with the composite object
■ The shared components associated with the composite object
■ The required objects associated with the composite object

Each composite type has its own collector. The lists produced by a collector are used by handlers
that operate on instances of composite objects. For example, when you delete an XML Schema,
the delete handler for schemas deletes the schema itself and all of the schema's nonshared com-
ponents as identified by the collector for XML Schemas.

57Object Type Management

Working with Composite Types



Defining Composite Asset Types

The relationships between components of a composite asset are definedusing relationship attributes
available in the appropriate asset type definition(s). A relationship can be defined on the root
component or on a sub-component.

In addition to using the predefined composite asset types, you can define your own composite
asset types. A user-defined composite asset type consists of the following parts:

■ a user-defined asset type; each instance of this type will be the root component of a composite
asset, and

■ other asset types or object types; instances of these types will be related to the root component
or to each other by means of relationship attributes.

The definition of a relationship may be changed at any time without affecting any instances.

You set up the associations between the components of a composite asset by using attributes of
the data type "Relationship" in the asset type definition. A relationship indicates a coupling between
two objects. A relationship has a direction, meaning that one of the related objects is the source of
the relationship and the other object is the target of the relationship.When youdefine a relationship,
you define it on the source object, not on the target object.

See the section Creating a New Type for information on how to create attributes of the data type
"Relationship".

The semantic of a relationship is usually indicated by the name you choose for the association
type of the relationship attribute (e.g. "hasChild" or "hasParent"). You can think of the association
type as a label that does not affect the behavior of the composite asset (technically it is a classification
on the relationship attribute), although it makes sense to choose meaningful association types for
the relationship attributes. To inform CentraSite about the semantics of the associations in your
composite asset type, you need to define the relationship attributes.

CentraSite provides several forms of relationship that allow you to define plain relationships
between assets as well as relationships for composite assets.

For our purposes, we will use terms and concepts introduced by UML as follows:

■ Association
The loosest form of coupling is provided by the association relationship. This is like a cross-ref-
erence between two components. It indicates that there is a dependency between the components
but no aggregation or composition. In this case, registry operations performed on a component
do not cause any operation to be performed automatically on the related component. For example,
supposeAsset A contains an association relationship toAsset B, and thenAsset A is then deleted;
in this case, the registry remains in a consistent state without having to delete or modify Asset
B in any way.

Object Type Management58

Working with Composite Types



NOTE: when an asset instance has an incoming relationship it may not be deleted until that in-
coming relationship has been removed or the asset that is the source of the relationship is in the
delete set.

■ Aggregation
A tighter coupling is provided by the aggregation relationship. Aggregation is similar to a
whole/part relationship in which components of a structure can also exist independently of the
structure; this is like the "contains" semantic, whereby one component contains another compon-
ent but does not own it. In this case, some operations performed on a component cause the same
operation to be performed automatically on the related component. For example, if you want
to export an asset, CentraSite automatically extends the export set by adding all of the components
that are coupled by aggregation. However, if you want to delete an asset, CentraSite leaves the
coupled components unchanged.

■ Composition
The tightest coupling is provided by the composition relationship. Composition is similar to a
whole/part relationship in which components of a structure cannot exist independently of the
structure; this is like the "owns" semantic, whereby one component owns another component.
In this case, all registry operations performed on a component cause the same operation to be
performed automatically on the related components. For example, if youwant to delete an asset,
then CentraSite automatically extends the delete set by adding all of the components that are
coupled by composition.

The form of relationship determines the way in which registry operations performed on one
component affect the related components. In the following table, entries marked with "yes" mean
that an operation on a component causes the same operation to be performed on the related
components, whereas table entries marked with "no" mean that the related components are not
changed.

Form of Relationship:Operation on component
CompositionAggregationAssociation

yesnonoMove asset to another organization

yesnonoChange asset owner

yesnonoDelete asset

yesyesnoExport asset

yesyesnoSet instance permissions on an asset

yesnonoCreate new version of an asset

These operations are the primary set which are affected by different forms of relationships and
are supported out-of-the-box by CentraSite.

Aggregation and Composition come in two forms, namely "with source" and "with target":

59Object Type Management

Working with Composite Types



■ Aggregation/Composition with source
Thismeans that the aggregation or composition treats the source component (i.e. the component
where the relationship is defined) as the containing or owning component, and the target com-
ponent (i.e. the component that the relationship points to) as the contained or owned component.

■ Aggregation/Composition with target
Thismeans that the aggregation or composition treats the source component (i.e. the component
where the relationship is defined) as the contained or owned component, and the target com-
ponent (i.e. the component that the relationship points to) as the containing or owning component.

You might find the following diagrams useful to illustrate the relationships in composite assets.
They are similar to UML diagrams, but allow the aggregation or composition to be on the target
component (in UML, they can only be on the source component). The forms "with source" and
"with target" are represented using a diamond-shaped symbol to indicate the containing/owning
component. Aggregation is indicated by a non-filled diamond symbol andComposition is indicated
by a filled diamond symbol. An arrowpoints from the source component to the target component,
with the arrowhead located at the target component. If the diamond symbol and the arrowhead
are located at the same component, only the diamond is shown.

Object Type Management60

Working with Composite Types



Semantics of Relationships and Operations

Association Relationship

Association relationships are the relationships that were available in later releases of CentraSite
v8 and are available with unchanged semantics in the current release.

Aggregation Relationship

The aggregation relationship changes the rules in the following way for operations:

RulesOperation

There are no changes in the delete rules when introducing aggregation.Delete an asset

There are no changes in the versioning rules when introducing aggregation.Create a new version of an
asset

However, for assets of type "Service" and "XML Schema", there is an additional
possibility: If you mark the checkbox "Propagate to dependent objects" when
you create a new version of the root component of a composite asset of one of
these types, the versioning will be propagated also to components of these
types that are connected to the root component via aggregation relationships.

Merges the permissions of the initiating component with those of the current
component. The permissions assigned to the contained component are the

Set instance permissions on
an asset

union of the permissions of the containing asset and the contained component.
If the user that performs the operation does not have Full permissions on a
component, then it and all of its sub-components will be skipped.

There are no changes in the move organization rules when introducing
aggregation.

Move asset to another
organization

There are no changes in the change owner ruleswhen introducing aggregation.Change the owner of an
asset

If a component that has a containing aggregation is added to the export set,
then the target is also added to the export set. The rules when selecting the

Export an asset

checkbox 'including instances' in the user interface apply as before with the
addition of the containing rules.

Note: For Export, the usage of recursive relationships on the type and instance level must
be taken into account.Whereby type level does notmean that the same instance is referenced.

61Object Type Management

Working with Composite Types



Composition Relationship

Composition relationships affect all of the defined operations to varying degrees.

Operation: Deleting an asset

On deletion, if the root component is added to the set to be deleted, then the sub-components will
also be added to the set to be deleted. The direction of the association does not play a role in defining
the set, only the containing designation. This means it is possible for the deletion to fail if one of
the assets added to the deletion set during this processing is referenced via the basic association
relationship target rules.

This rule is applied recursively. For example, if we have three assets that have the relationships
"A contains B contains C", then the following statements apply:

■ WhenA is deleted, then Bwill be deleted and finally because B is deleted, Cwill also be deleted.
■ When deleting C, only C will be deleted.

This fails if the deleting user does not have permission on any of the assets in the set acquired by
traversing the graph. The delete is considered atomic - either all are deleted or none. This avoids
inconsistencies in the outcome of the operation.

The relationship direction always plays a role in the deletion operation. An assetmay not be deleted
if it is the target of a relationship and the source is not part of the deletion set.

The deletion rules described here apply also when you purge old versions of an asset. In this case,
the purge operationwill be applied not only to the component being purged, but also to the related
sub-components.

Operation: Creating a new version of an asset

On versioning, if the root component is added to the set to be versioned, then the sub-components
will also be added to the set. The direction of the association does not play a role in defining the
set, only the containing designation.

If you create a new version of an asset that is the root component of a composite asset, and the
root component is related to one or more of the other components via composition relationships,
CentraSite automatically creates a new version of each of these other components.

Object Type Management62

Working with Composite Types



Operation: Exporting an asset

On export, if the root component is added to the set to be exported, then the sub-components will
also be added to the set. The direction of the association does not play a role in defining the set,
only the containing designation.

Operation: Setting instance permissions on an asset

On setting permissions, when the root component is added to the set to which the permissions
will be applied, then the sub-components asset are also added if and only if the user has the per-
mission to modify the permission of the target. If the user does not have permission, then the
graph traversal for the target is not carried further for this sub-graph.

The permission set that will be given to all sub-component assets is the merge based on what is
to be modified. The permissions assigned to the owned asset are the union of the permissions of
the owning asset and the owned asset.

Operation: Moving an asset to another organization

On moving an asset to another organization, when the root component is added to the set to be
moved, then the sub-components are also added. No permission checks are done during this op-
eration as only users in the CentraSite Administrator role may perform this operation.

Operation: Changing the owner of an asset

On changing ownership, when the root component is added to the set to be changed, then the
sub-components are also added to the set. No permission checks are done during this operation
as only users in the CentraSite Administrator role may perform this operation.

Extended Rules

This section deals with the extended rules or semantics that have been added to Aggregation and
Composition relationships.

63Object Type Management

Working with Composite Types



Changing Relationships

As part of the support for Aggregation and Composition, CentraSite allows the relationship form
to be changed after the type is created. This change affects all current instances and new instances.
This means that after a relationship attribute is created, the form (for association the default form,
for aggregation (both forms, i.e. "using source" and "using target") and for composite (both forms))
can be changed by an Asset Type Administrator. From that point onwards, the appropriate rules
will be applied when performing the defined operations.

Updating Assets

The following asset updates need to be taken into account when implementing models:

1. Adding relationships to existing instances. Given the below model:

It is perfectly legal to create instances of Type A and Type B independent of one another. In
fact in CentraSite this characteristic is mandatory, as the creation of multiple assets at the same
time is only allowed in a few places in the UI.

When adding the relationship between an instance of Type A and an instance of Type B,
CentraSite will not do any extra operations to guarantee the consistency of permissions at this
point.

2. Adding relationships to 2 different composites. Given the belowmodel (which is a legalmodel):

Object Type Management64

Working with Composite Types



The following restriction applies to user-defined asset types, but not predefined asset types: At
runtime if an instance of Type A creates a composite relationship to an instance of Type C, and
then an instance of Type B tries to create a composite relationship to the same instance of Type
C, this composition will be rejected. This is because a contained asset (instance of Type C) can
only have one owning asset (instance of Type A or instance of Type B).

Usage Scenarios

■ Overview
■ Delete usage scenarios
■ Versioning usage scenarios
■ Permission usage scenarios
■ Export usage scenarios
■ Move Organization usage scenarios
■ Change Ownership usage scenarios

Overview

In the following sections, the outcome of each operation is given based on a very simple type and
instance configuration.

Unless otherwise stated, the instances that each operation will be performed on will be:

65Object Type Management

Working with Composite Types



DescriptionKey

Instance of type AIoA

Instance of type BIoB

Delete usage scenarios

Association Relationship

Given the type model:

The result of the delete operation will be:

Expected resultOperation

Fail because of incoming relationship from IoADelete IoB

Success. Post-condition: IoB will be left intactDelete IoA

Aggregation Relationship with containing constraint on Type A

Given the type model:

The result of the delete operation will be:

Object Type Management66

Working with Composite Types



Expected resultOperation

Fail because of incoming relationship from IoADelete IoB

Success. Post-condition: IoB will be left intactDelete IoA

Aggregation Relationship with containing constraint on Type B

Given the type model:

The result of the delete operation will be:

Expected resultOperation

Fail because of incoming relationship from IoADelete IoB

Success. Post-condition: IoB will be left intactDelete IoA

Composition Relationship with containing constraint on Type A

Given the type model:

The result of the delete operation will be:

Expected resultOperation

Fail because of incoming relationship from IoADelete IoB

Success. Post-condition: IoB will be removedDelete IoA

67Object Type Management

Working with Composite Types



Composition Relationship with containing constraint on Type B

Given the type model:

The result of the delete operation will be:

Expected resultOperation

Success. Post-condition: IoA will be removedDelete IoB

Success. Post-condition: IoB will be left intactDelete IoA

Composition Relationship with permission scenario

Given the type model:

With the constraints:

■ User who will perform the deletion is Fred
■ Fred has Full permission on IoA
■ Fred has Read permission on IoB

The result of the delete operation will be:

Expected resultOperation

Fail. User Fred does not have full permission on IoBDelete IoB

Fail. User Fred does not have full permission on IoBDelete IoA

Object Type Management68

Working with Composite Types



Versioning usage scenarios

Versioning for Association Relationship and Aggregation Relationship are the same and do not
change from previous versions, therefore only Composition Relationship are shown below.

Given the type model:

Note: Both variants of a composite relationship (source and target) are supported and are
orthogonal.

Based on the instances given above, the following scenarios are considered relevant.

Versioning of IoB

This causes just IoB to be versioned, and the IoA version is left unchanged. Pictorially, this looks
like:

69Object Type Management

Working with Composite Types



Versioning of IoA

Versioning of IoA will result in the composite relationship being used to work out which other
assets should be versioned at the same time. Thiswill result in IoA and IoB being versioned together
(if we fail to version either then neither will be versioned).

This pictorially looks like:

Permission usage scenarios

For the permission scenarios, the following instances with the annotations for the owner and
permissions will be used as basis.

Object Type Management70

Working with Composite Types



Association Relationship permission propagation

When an Association Relationship is used, the permission propagation does not take place. This
means that if an instance permission is set, then only that instance's permission is affected. This
means that if user Mary adds Read permission for user Mark on IoA, thenMark only gets permis-
sion to Read IoA. He does not get permission to Read IoB. Pictorially this looks like:

Composition/Aggregation with weak propagation

One of the key points of permission propagation iswhat happens if a user only has a Full permission
on a subset of the assets to which the permissions need to be propagated. In this case, the usage
of the so-called weak propagation rule comes into effect. The rule states that if a user does not
have permission to propagate to all instances in the set, then the permissions will be propagated
to only the instances which are allowed.

For this scenario the following model will be used:

71Object Type Management

Working with Composite Types



Based on this model, the instances and the permissions to start with should be:

Now if user Paul adds Read permission for user Jack to IoA, Jack will only get this permission on
IoA as Paul does not have the rights to give Jack the permissions on IoB. Even though Paul has
Full permission on IoC, because it is a child of IoB, Jack does not get the permissions for IoC because
of weak propagation. We trim/terminate the propagation at IoB.

This pictorially looks like:

Object Type Management72

Working with Composite Types



Composition/Aggregation Relationship updating sub-component

Updating the permissions of a sub-component without affecting the overall composition/aggreg-
ation is not affectedwith the changes. Therefore if user Fredwants to explicitly addReadpermission
for Jack on IoB, this is possible.

This pictorially looks like:

73Object Type Management

Working with Composite Types



Composition/Aggregation Relationship with full propagation

Full propagation happens when all sub-components can be updated by the instigating user. As
example, Mary wants to give Read permission to Simon on IoA with permission propagation via
the Composition/Aggregation relationship. As Mary has Full permissions on IoA and IoB, the
permissions are propagated over the relationship.

This pictorially results in:

Export usage scenarios

Export with Association Relationship

Exportwill work the same as in previous versions - the usage given here assumes that no additional
options are chosen.

Given the model:

The result of the Export operation will be:

Object Type Management74

Working with Composite Types



Expected resultOperation

Export set contains IoB. It does not contain IoAExport IoB

Export set contains IoA. It does not contain IoBExport IoA

Export with Composition/Aggregation Relationship

For both Composition and Aggregation Relationships, the rules are exactly the same. When such
a Relationship with the appropriate containing rule is found, then traverse the relationship and
add sub-components to the set.

Given the model:

OR

The result of the Export operation will be:

Expected resultOperation

Export set contains IoB. It does not contain IoAExport IoB

Export set contains IoA and IoB.Export IoA

75Object Type Management

Working with Composite Types



Move Organization usage scenarios

Move organization is an administrative task andmay only be performed by someone with appro-
priate administration rights. This means that permissions and ownership do not play a role when
performing the move operation.

Move Organization with Association/Aggregation Relationship

When moving an asset from one organization to another, the Association and Aggregation Rela-
tionships do not change any related assets. This is because both of these relationships are considered
to be loosely coupled.

Given the model:

OR

The result of the Move Organization operation will be:

Expected resultOperation

Only IoB will be moved to the new organization. It does not move IoA.Move IoB

Only IoA will be moved to the new organization. It does not move IoB.Move IoA

Object Type Management76

Working with Composite Types



Move Organization with Composition Relationship

When a Composition Relationship with the appropriate containing rule is found, then traverse
the relationship and move the sub-components to the new organization.

Given the model:

The result of the Move Organization operation will be:

Expected resultOperation

Only IoB will be moved to the new organization. It does not move IoA.Move IoB

IoA and IoB will be moved to the new organization.Move IoA

Change Ownership usage scenarios

ChangeOwnership is an administrative task andmay only be performed by someonewith appro-
priate administration rights. This means that permissions and ownership do not play a role when
performing the change ownership operation.

Change Ownership with Association/Aggregation Relationship

When changing an asset's ownership from one user to another, the Association and Aggregation
Relationships do not change any related assets. This is because both of these relationships are
considered to be loosely coupled.

Given the model:

OR

77Object Type Management

Working with Composite Types



The result of the Change Ownership operation will be:

Expected resultOperation

Change the ownership of IoB. It does not affect IoA.Change Ownership of IoB

Change the ownership of IoA. It does not affect IoB.Change Ownership of IoA

Propagation of Profile Permissions

In addition to propagating permissions that control the access to an asset instance (as described
above), it is also possible to propagate permissions that control the access to the asset instance's
profiles.

Profile permissions of the root asset of a composite asset can be propagated to the other components
if the components have the same type as the root asset. This restriction arises because different
asset types can have different sets of profiles, whereas assets of the same type have the same set
of profiles.

Propagation of profile permissions is activated when you mark the checkbox Propagate profile
permissions in the asset's Permissions tab. This checkbox can only be selected if you have also
marked the checkbox Propagate Permissions to dependent objects.

The Predefined Composite Asset Types

The following identifies the nonshared components, shared components, and required objects
that are associated with each of the predefined composite types installed with CentraSite.

■ Service
■ Virtual Service
■ XML/REST Service
■ Virtual XML/REST Service
■ XML Schema
■ BPEL Process
■ WS-Policy
■ BPM Process Project

Object Type Management78

Working with Composite Types



■ BPM Process Step
■ IS Package
■ IS Service Interface
■ Process
■ Process Pool
■ Process Swimlane
■ Web Application
■ Portlet
■ CAF Task Type
■ TN Group
■ Business Rules Project
■ Data Model

Service

DescriptionNonshared Components

The objects that represent the specific ports that are defined in theWSDL.
(A port defines a specific endpoint where the service is provided.)

Binding(s)

The objects that represent the portType that is a defined in the WSDL. (A
portType defines a set of operations that the service provides.)

Interface(s)

The objects that represent the individual operations that the service
provides.

Operation(s)

The ExternalLink to the WSDL file and the WSDL file itself.Service WSDL

The ExternalLinks to the referencedWSDLfiles and the referencedWSDL
files themselves.

Important: If, at collection time, the collector discovers that a referenced
WSDL is also a component of another asset, it places that WSDL in the

Other WSDL (references to
WSDLs that are imported or
included in the main service
WSDL)

shared component list. Otherwise, it returns the referencedWSDL in the list
of nonshared components.

The object that represents the BPEL Partner Link Type towhich the service
is related (if such an association exists).

BPEL Partner Link Type

The object that represents the BPEL Role to which the service is related
(if such an association exists).

BPEL Role

DescriptionShared Components

The entire graph of XML schemas that are related to the service. (The graph includes
all of the XML schemas that the service references directly or indirectly). For each XML

XML Schema(s)

schema in the graph, the collector collects the ExternalLink to the XSDfile and the actual
XSD file itself.

79Object Type Management

Working with Composite Types



DescriptionRequired Objects

The Type object that defines the structure of a Service object in this registry
(including all user-defined profiles that have been defined for the type).

Service type

The WS-Policy objects that are associated with the service (if any).WS-Policy

ExternalLinks that point to files in the supporting document library plus the files
themselves (if any).

Note: The list of supporting documents that the collector returns includes 1)
documents that have been attached to the service using any of the predefined File

SupportingDocuments

attributes defined in the Service type, 2) documents that have been attached to the
service using a customFile attribute, and 3) any documents that have been attached
to the service using an ad-hoc ExternalLink.

Virtual Service

DescriptionNonshared Components

See nonshared components under Service above.The set of nonshared components
defined for the Service type.

The WS-Policy object associated with the virtual service.WS-Policy

The policy objects that represent the processing steps for the
virtual service.

Processing Steps

An internal copy of theWSDL that ismaintained for the virtual
service.

Extrinsic object

The virtual service's virtual service descriptor (VSD).VSD

DescriptionShared Components

See shared components underService above.The set of shared components defined for the
Service type.

DescriptionRequired Objects

The Type object that defines the structure of a Service object in this registry
(including all user-defined profiles that have been defined for the type).

Service type

The Service object from which the virtual service was generated.Native service

ExternalLinks that point to files in the supporting document library plus the files
themselves.

Note: The list of supporting documents that the collector returns includes 1)
documents that have been attached to the service using any of the predefined File

Supporting Documents

attributes defined in the Service type, 2) documents that have been attached to the
virtual service using a custom File attribute, and 3) any documents that have been
attached to the virtual service using an ad-hoc ExternalLink.

Object Type Management80

Working with Composite Types



XML/REST Service

DescriptionNonshared Components

Each ServiceBinding object represents an <endpoint/> element of the XML/REST
Service WSDL20.

ServiceBinding(s)

Each Binding Concept object represents a <binding/> element of the XML/REST
Service WSDL20.

Binding Concept(s)

Each Interface object represents an <interface/> element of the XML/REST Service
WSDL20.

Interface(s)

SpecificationLinks are used to link the Interface and Binding Concept objects to a
ServiceBinding object.

SpecificationLink(s)

EachOperation object represents anXML/REST Service Resource and is represented
as an element in the WSDL20.

Operation(s)

The ExternalLink to theWSDL20 file (in the CentraSite repository) and theWSDL20
file itself.

Service WSDL20

DescriptionShared Components

The entire graph of XML Schemas that are related to the XML/REST Service. (The graph
includes all of the XML Schemas that the XML/REST Service's Resources reference

XML Schema(s)

directly or indirectly). For each XML Schema in the graph, the collector collects the
ExternalLink to the XSD file (in the CentraSite repository) and the actual XSD file itself.

DescriptionRequired Objects

TheObjectTypeConcept that defines the structure of a Service object in this registry
(including all user defined profiles that have been defined for the type).

Service Type

The CentraSiteVirtualType Concept that identifies the VirtualType of the Service
object.

CentraSiteVirtualType

The WS-Policy objects that are associated with the service (if any).WS-Policy

ExternalLinks that point to files in the supporting document library plus the files
themselves (if any).

Note: The list of supporting documents that the collector returns includes 1)
documents that have been attached to the service using any of the predefined File

Supporting Documents

attributes defined in the Service type, 2) documents that have been attached to the
service using a customFile attribute, and 3) any documents that have been attached
to the service using an ad-hoc ExternalLink.

81Object Type Management

Working with Composite Types



Virtual XML/REST Service

DescriptionNonshared Components

See nonshared components under XML/REST Service above.The set of nonshared components
defined for the XML/REST Service
type.

The WS-Policy object associated with the virtual service.WS-Policy

The policy objects that represent the processing steps for the
Virtual XML/REST Service.

Processing Steps

An internal copy of the WSDL20 that is maintained for the
Virtual XML/REST Service.

Extrinsic object

TheVirtual XML/RESTService's virtual service descriptor (VSD).VSD

DescriptionShared Components

See shared components under XML/REST
Service above.

The set of shared components defined for the
XML/REST Service type.

DescriptionRequired Objects

TheObjectTypeConcept that defines the structure of a Service object in this registry
(including all user-defined profiles that have been defined for the type).

Service type

The CentraSiteVirtualType Concept that identifies the VirtualType of the Service
object.

CentraSiteVirtualType

The XML/REST Service object from which the Virtual XML/REST Service was
generated.

Native service

ExternalLinks that point to files in the supporting document library plus the files
themselves.

Note: The list of supporting documents that the collector returns includes 1)
documents that have been attached to the service using any of the predefined File

Supporting Documents

attributes defined in the Service type, 2) documents that have been attached to the
virtual service using a custom File attribute, and 3) any documents that have been
attached to the virtual service using an ad-hoc ExternalLink.

XML Schema

DescriptionNonshared Components

The ExternalLink to the XSD file and the XSD file itself.XSD File

The entire graph of XML schemas that are related to this XML schema. (The
graph includes all of the schemas that this XML schema references directly

XML Schema(s) (referenced)

or indirectly). For each XML schema in the graph, the collector collects the
ExternalLink to the XSD file and the actual XSD file itself.

Object Type Management82

Working with Composite Types



DescriptionShared Objects

n/aNone

DescriptionRequired Objects

The Type object that defines the structure of an XML Schema object in this registry
(including all user-defined profiles that have been defined for the type).

XML Schema type

BPEL Process

DescriptionNonshared Components

The ExternalLink to the BPEL document and the BPEL document itself.BPEL File

The objects that represent partners in the BPEL process.BPEL Partners

The objects that represent partner links in the BPEL process.PartnerLinks

The association type that CentraSite uses to relate a BPEL process to a service.Association Type (Service)

DescriptionShared Objects

n/aNone

DescriptionRequired Objects

The Type object that defines the structure of a BPEL object in this registry (including
all user-defined profiles that have been defined for the type).

BPEL type

The services that are referenced by the BPEL's PartnerLinks. (This includes all of the
components and required objects associatedwith the referenced services. For a detailed
list of these components and required objects, see Service, above.)

Services

The PartnerLinkTypes that are referenced by the BPEL's PartnerLinks.PartnerLinkTypes

The Roles that are referenced by the BPEL's PartnerLinks.Roles

WS-Policy

DescriptionNonshared Components

The object representing the policy itself.Policy

The objects which form the parameters defined for the policy (if any).

Note: There can bemultiple levels of parameterswhich can be nested; parameters
from all levels will be included.

Policy Parameter

The object representing the conditions defined for the policy (for example, if the
policy has conditions such as "Name contains XML").

Policy Condition (if any)

83Object Type Management

Working with Composite Types



DescriptionShared Objects

n/aNone

DescriptionRequired Objects

A custom action that is used by the policy and is not available as part of
the predefined set.

Custom policy action

All action parameters used by a custom action that the policy uses (if
any).

Custom policy action parameters

The custom defined asset types that the policy is defined for (if any).Custom asset types

The registry object that the policy uses as a parameter (if any).Registry object

BPM Process Project

DescriptionComponents

Contains a set of Process Steps that invokes services and possibly other processes and has
documents as inputs and outputs.

Process

BPM Process Step

DescriptionComponents

webMethods Task Engine human activity task.CAF Task Type

A role which has the privilege to participate in CAF actions.CAF Security Role

The E-form object represents electronic forms that support forms-driven processes.E-Form

Represents a webMethods IS Service Type.IS Service

Allows grouping of process steps into an internal or external process. More than one
pool may exist within a process.

Process Pool

Contains a set of Process Steps that invokes services and possibly other processes and
has documents as inputs and outputs.

Process

A service is a software component that is described via a well defined interface and is
capable of being accessed via standard network protocols such as, but not limited to,

Service

SOAP over HTTP. CentraSite is able to extract metadata of services based on a WSDL
description.

The predefined JAXR-based type User.User

A reference to an XML Schema fileXML Schema

Object Type Management84

Working with Composite Types



IS Package

DescriptionComponents

Represents a webMethods IS Specification Type.IS Specification

Represents a webMethods IS Type Definition Type.IS Type Definition

Represents a webMethods IS Routing Rule Type.IS Routing Rule

Represents a webMethods IS Service Interface Type.IS Service Interface

Represents a webMethods IS Connection Type.IS Connection

Represents a webMethods IS Service Type.IS Service

IS Service Interface

DescriptionComponents

The objects that represent the specific ports that are defined in the WSDL. (A port defines a
specific endpoint where the service is provided.)

Binding(s)

The objects that represent the portType that is a defined in the WSDL. (A portType defines
a set of operations that the service provides.)

Interface(s)

The objects that represent the individual operations that the service provides.Operation(s)

Represents an Integration Server (IS) Service operation.IS Service

Represents a corresponding REST Service in the Integration Server (IS).REST Service

Process

DescriptionComponents

Represents an activity in a Process.Process Step

Allows grouping of Process Steps into an internal or external Process. More than one Process
Pool may exist within a Process.

Process Pool

DescriptionRequired Object

A user defined project that allows users to group BPM assets.BPM Process Project

85Object Type Management

Working with Composite Types



Process Pool

DescriptionComponents

Allows the grouping of Process Steps by actor.Process Swimlane

Process Swimlane

DescriptionComponents

Represents an activity in a Process.Process Step

Web Application

DescriptionComponents

Construct that is used to build User Interface pages for CAF web, portlet and task
applications.

Web Application Page

Portlet built using webMethods CAF User Interface technology. Supports JSR 168.Portlet

webMethods Task Engine human activity task.CAF Task Type

Java Web Application Security Role.CAF Security Role

Connection to a JDBC database.JDBC Datasource

Portlet

DescriptionComponents

Allows customized portlet behavior.Portlet Preference

Construct that is used to build User Interface pages for CAF web, portlet and task
applications.

Web Application Page

CAF Task Type

DescriptionComponents

webMethods Task Engine Task Assignment or Event execution mechanism.CAF Task Rule

Object Type Management86

Working with Composite Types



TN Group

DescriptionComponents

A description of a document type that is expected in a user's Trading Network.TN Document Type

Business Rules Project

DescriptionComponents

A container for related rule metaphor assets.Rule Set

Defines a set of data elements available to a rule.Data Model

Represents some external behavior.Rule Action

Data Model

DescriptionComponents

Represents the connection from a metaphor to a data model.Rule Parameter

87Object Type Management

Working with Composite Types



88



11 Working with Association Types

■ Who Can Create and Manage Association Types? ................................................................................. 90
■ Adding an Association Type .............................................................................................................. 90
■ Editing the Properties of an Association Type ........................................................................................ 91
■ Deleting an Association Type ............................................................................................................. 92

89



An Association Type is a logical definition of a relationship. An association type enables you to
define a relationship between an asset of one type and an asset of another type and/or to any
other object defined in CentraSite. The association type represents the relationship as a forward
label or reverse label. An association type can be used by the relationship attribute defined within
an asset's profile. For example, if you have an Association Type called "Uses", you can define a
Relationship attributewith this association type "Uses" for a Service asset. You can use that attribute
to link the Service asset to other Services in the catalog, to assets of other types (such as XML
schemas) and/or to other registry objects (such as Organizations, Policies). For an Asset Type,
when you define a relationship attribute using this Association Type it appears as a attribute on
the asset's detail page in the CentraSite Control.

One association type can be used by many asset types. For example, the "Has Parent" association
type, which is one of the predefined association types installed with CentraSite, provides parent-
child relationship information about an asset and the related to object, and is used by both the
Service asset type and the XML schema asset type.

Who Can Create and Manage Association Types?

To create custom association types, you must belong to a role that has the "Manage Asset Types"
permission. Besides allowing you to create custom association types, this permission allows you
to edit and delete any user-defined association type. Additionally, it allows you to edit certain
predefined association types installed by CentraSite. By default, users in the CentraSite Adminis-
trator and Asset Type Administrator roles have this permission, although an administrator can
grant this permission to other roles.

For more information about permissions, see About Roles and Permissions in the document Users,
Groups, Roles and Permissions.

Adding an Association Type

You use the following procedure to define a new association type.

To define a new association type

1 In CentraSite Control, go to Administration > Types. Click the Association Types tab.

2 Click Add Association Type.

3 In the Add Association Type dialog box, specify the following properties:

Object Type Management90

Working with Association Types



Do the following...In this field...

Enter a name for the association type. Be aware that this is the name that will be given
to attributes that use this association type. Therefore, the name should be meaningful
when used as an attribute name. For example, use an association name such as
"Developed By", not "developer association".

Name

■ An association name does not need to be unique within the CentraSite registry.
However, to reduce ambiguity, you should avoid giving multiple associations the
same name.

■ An association name can contain any character (including spaces).

Specify the relationship of the source asset (the one inwhich the "Relationship" attribute
resides) to one or more specified targets.

Forward Label

If you are not specifying a name for the forward label, then CentraSite will treat the
association type name as the forward label.

Optional. Specify the relationship of the specified targets to the source asset.Reverse Label

4 When you finish setting the association type's properties, clickOK.

Editing the Properties of an Association Type

When you attempt to modify an association type, keep the following points in mind:

■ You can modify the association type's name at any time.
■ You can modify an association type for relationship properties only if there is no relationship at-
tribute defined with it in the catalog. After a association type has been assigned to an attribute, it
can no longer be edited.

To modify an association type

1 In CentraSite Control, go to Administration > Types.

2 In the Association Types tab, select the association type's link that you want to modify.

3 Examine or modify the properties on the Edit Association Type dialog box as required.

4 ClickOK.

91Object Type Management

Working with Association Types



Deleting an Association Type

When you attempt to delete an association type, keep the following points in mind:

■ You cannot delete the association types that CentraSite provides out-of-the-box (not even if you
belong to a role with the "Manage Asset Types" permission).

■ You can delete an association type only if there is no relationship attribute defined with it in the
catalog. After a association type has been assigned to a relationship attribute, it can no longer
be deleted.

■ You cannot delete the stand-alone association type that is in use for defining an association in
the catalog.

To delete an association type

1 In the CentraSite Control, go to Administration > Types.

2 Go to the Association Types tab.

3 Enable the checkbox next to the name of an association type that you want to delete.

4 ClickDelete.

When you are prompted to confirm the delete operation, clickOK.

You can delete multiple association types in a single step. The rules described above for deleting
a single association type apply also when deleting multiple association types.

Important: If you have selected several association types, you can use the Delete button to
delete the types. However, you are not allowed to delete types for which you do not have
the required permission.

To delete multiple association types in a single operation

1 In CentraSite Control, go to Administration > Types.

2 Go to the Association Types tab.

3 Mark the checkboxes of the types that you want to delete.

4 From the Actionsmenu, chooseDelete.

When you are prompted to confirm the delete operation, clickOK.

Object Type Management92

Working with Association Types


	Object Type Management
	Table of Contents
	Preface
	1 What is a Type?
	Attributes
	Attribute Data Types
	Attribute Names
	Names for the Other Attribute Types

	Computed Attributes

	Profiles
	Generic Profiles
	Computed Profiles
	Assigning Permissions on Profiles


	2 What is a Virtual Type?
	The Properties of a Virtual Type
	Using the Inherit Base Type Profiles, LCM and Policies Options

	3 Who Can Create and Manage Types?
	4 Creating a New Type
	Creating the New Type
	Defining Attributes for a Type
	General Procedure
	Using the Dialog
	Defining Data Types

	Defining a Computed Attribute
	Implementation guidelines for Java-based computed attributes
	Structure of archive file
	Sample code
	Loading a computed attribute into an asset type definition


	Defining Profiles for an Asset Type
	General Procedure
	Defining a Computed Profile
	Definition of Java-based Computed Profile
	Implementation guidelines for Java-based computed profiles
	Structure of archive file
	Sample computed profiles
	Sample Computed Profiles for CentraSite Control
	Sample Computed Profiles for CentraSite Business UI
	Sample Computed Profiles for Eclipse Designer

	Loading a computed profile into an asset type definition

	Applying Profiles to Virtual Types


	5 Viewing or Editing a Type
	6 Viewing or Editing a Virtual Type
	7 The Predefined Asset Types in CentraSite
	The Predefined Asset Types Installed with CentraSite
	Modifications You Can Make to CentraSite's Core Asset Types

	8 Customizing the User and Organization Types
	9 Deleting a Type
	10 Working with Composite Types
	Overview
	Shared vs Nonshared Components
	Required Objects
	Collectors
	Defining Composite Asset Types
	Semantics of Relationships and Operations
	Association Relationship
	Aggregation Relationship
	Composition Relationship
	Operation: Deleting an asset
	Operation: Creating a new version of an asset
	Operation: Exporting an asset
	Operation: Setting instance permissions on an asset
	Operation: Moving an asset to another organization
	Operation: Changing the owner of an asset


	Extended Rules
	Changing Relationships
	Updating Assets

	Usage Scenarios
	Overview
	Delete usage scenarios
	Association Relationship
	Aggregation Relationship with containing constraint on Type A
	Aggregation Relationship with containing constraint on Type B
	Composition Relationship with containing constraint on Type A
	Composition Relationship with containing constraint on Type B
	Composition Relationship with permission scenario

	Versioning usage scenarios
	Versioning of IoB
	Versioning of IoA

	Permission usage scenarios
	Association Relationship permission propagation
	Composition/Aggregation with weak propagation
	Composition/Aggregation Relationship updating sub-component
	Composition/Aggregation Relationship with full propagation

	Export usage scenarios
	Export with Association Relationship
	Export with Composition/Aggregation Relationship

	Move Organization usage scenarios
	Move Organization with Association/Aggregation Relationship
	Move Organization with Composition Relationship

	Change Ownership usage scenarios
	Change Ownership with Association/Aggregation Relationship


	Propagation of Profile Permissions
	The Predefined Composite Asset Types
	Service
	Virtual Service
	XML/REST Service
	Virtual XML/REST Service
	XML Schema
	BPEL Process
	WS-Policy
	BPM Process Project
	BPM Process Step
	IS Package
	IS Service Interface
	Process
	Process Pool
	Process Swimlane
	Web Application
	Portlet
	CAF Task Type
	TN Group
	Business Rules Project
	Data Model


	11 Working with Association Types
	Who Can Create and Manage Association Types?
	Adding an Association Type
	Editing the Properties of an Association Type
	Deleting an Association Type


