
webMethods EntireX

Software AG IDL Extractor for WSDL

Version 9.5 SP1

November 2013

This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXWSDLEXTRACTOR-95SP1-20140628

Table of Contents

1 Introduction to the Software AG IDL Extractor for WSDL ... 1
2 Using the Software AG IDL Extractor for WSDL ... 3

Step 1: Start the IDL Extractor for WSDL .. 4
Step 2: Select a Source .. 5
Step 3a: Specify CentraSite Location .. 6
Step 3b: Specify UDDI Server .. 7
Step 3c: Specify WSDL File .. 8
Step 3d: Specify WSDL File URL ... 9
Step 4: Specify Output Files ... 10
Step 5: Specify Broker Settings ... 10
Step 6: Specify Options for Target Programming Language 11
Extraction Result .. 15

3 Using the IDL Extractor for WSDL in Command-line Mode .. 17
4 WSDL to IDL Mapping ... 19

Extracting IDL from WSDL Files ... 20
Mapping WSDL XML Schema Data Type to Software AG IDL 20
Extracting the Name for the IDL Library ... 21
Extracting the Name for the IDL Program ... 21

5 Writing Web Service Client Applications .. 23
Web Service Clients .. 24
Configuring Advanced Web Service Clients .. 25
Example: Setting up an EntireX Client to Consume a Secured Web Service 26

iii

iv

1 Introduction to the Software AG IDL Extractor for WSDL

The Software AG IDL Extractor for WSDL is a wizard that generates Web service client artifacts
from a WSDL file. With these artifacts, EntireX RPC client applications can access external Web
services.

With the IDL Extractor for WSDL you can import from the following sources:

■ local file
■ URL (http, ftp etc.)
■ UDDI registry
■ CentraSite registry

The IDL Extractor for WSDL produces the IDL file and an XML mapping file. The SOAP binding
information is written into the XMLmapping file (XMM), for example, the SOAPAction value and
the namespace definitions. The two other bindings (HTTP and MIME) only return the IDL file,
but no XML mapping file. In this case a warning dialog is displayed. WSDL files with mixed
bindings, including a SOAP binding, also return an XML mapping file, but display the warning
message too. The IDL Extractor for WSDL generates for each service definition in the WSDL file
(according to the generation rules) IDL/XMM files named wsdl-service-name.idl and wsdl-ser-
vice-name.xmm. The XML mapping and IDL parameter directions depend on the WSDL source
file; INERR and OUTERR mapping trees are possible.

1

2

2 Using the Software AG IDL Extractor for WSDL

■ Step 1: Start the IDL Extractor for WSDL ... 4
■ Step 2: Select a Source .. 5
■ Step 3a: Specify CentraSite Location .. 6
■ Step 3b: Specify UDDI Server ... 7
■ Step 3c: Specify WSDL File .. 8
■ Step 3d: Specify WSDL File URL ... 9
■ Step 4: Specify Output Files .. 10
■ Step 5: Specify Broker Settings .. 10
■ Step 6: Specify Options for Target Programming Language .. 11
■ Extraction Result ... 15

3

Caution: If you modify the imported IDL file, do this only in the XML Mapping Editor to
ensure the correct dependencies between the IDL and the related XMM file.

Step 1: Start the IDL Extractor for WSDL

Start the IDL Extractor for WSDL as any other Eclipse New wizard:

Software AG IDL Extractor for WSDL4

Using the Software AG IDL Extractor for WSDL

Step 2: Select a Source

Depending on the location of theWSDLdocument to analyze, choose one of the following options:

For File,URL,CentraSite and already defined UDDI registry connections, check the radio button
Use Entry from List. To define additional connections to UDDI server, check the radio button
Create newUDDIRegistry Connection. UDDI registry connection are defined in the preferences;
see also UDDI Registration.

Notes:

1. The supported URL protocols are FILE, FTP, HTTP, HTTPS and JAR, for example

http://host/myservice?WSDL

2. If the connection is over HTTPS, you need to set up HTTPS in Software AG Designer:

Define trustStore in Designer, for example with the following lines in file eclipse.ini

5Software AG IDL Extractor for WSDL

Using the Software AG IDL Extractor for WSDL

-Djavax.net.ssl.trustStore=<path to keystore>
-Djavax.net.ssl.trustStorePassword=<keystore password>

If hostname verification for certification is to be disabled, also add the line:

-Dcom.softwareag.entirex.ssl.hostnameverify=false

■ CentraSite
If the WSDL source file to be extracted is available in CentraSite, continue with Step 3a: Specify
CentraSite Location. If the connection is over HTTPS, see the Note below.

■ UDDI Registry Connection
If the WSDL source file to be extracted is accessible using a UDDI registry connection (UDDI
server), continue with Step 3b: Specify UDDI Server. If the connection is over HTTPS, see the
Note below.

■ File
If the WSDL source file to be extracted is available in your workspace and you have selected it,
the file location will be entered in the wizard automatically in the next Step 3c: Specify WSDL
File.

■ URL
Continue with Step 3d: Specify WSDL File URL. If the connection is over HTTPS, see the Note
below.

Step 3a: Specify CentraSite Location

When importing from CentraSite, the following screen is displayed:

Software AG IDL Extractor for WSDL6

Using the Software AG IDL Extractor for WSDL

Step 3b: Specify UDDI Server

When importing from a UDDI server, the following screen is displayed:

7Software AG IDL Extractor for WSDL

Using the Software AG IDL Extractor for WSDL

You can search for Businesses or Services. You can restrict your search using % as a wildcard, for
example ex%. The search returns a list of service providers and their respective services. Select
one service and continue withNext.

Step 3c: Specify WSDL File

If you selected the WSDL source file before you started the wizard, the file location is already
present. Enter or browse for the WSDL source file. Continue with Step 4: Specify Output Files.

Software AG IDL Extractor for WSDL8

Using the Software AG IDL Extractor for WSDL

Step 3d: Specify WSDL File URL

Enter the URL for the WSDL source file.

9Software AG IDL Extractor for WSDL

Using the Software AG IDL Extractor for WSDL

Step 4: Specify Output Files

Select the container where the IDL and XMM files will be stored.

Step 5: Specify Broker Settings

In the following screen you can optionally modify Broker settings.

Software AG IDL Extractor for WSDL10

Using the Software AG IDL Extractor for WSDL

Step 6: Specify Options for Target Programming Language

TheOptions for Target Programming Language page allows you to specify transformation rules
for variable-length fields and unbounded arrays. This is required if you later use the COBOL
Wrapper or PL/I Wrapper with the extracted IDL – otherwise COBOL or PL/I wrapping is not
possible. If you later use the Natural Wrapper, transformation rules are optional. If they are used,
the interface from a Natural point of view is more legacy-like, easier to use but with restrictions.

11Software AG IDL Extractor for WSDL

Using the Software AG IDL Extractor for WSDL

With the transformation rules, you define default (maximum) lengths and sizes depending on the
originating data types on the XML side. If you need different (maximum) lengths and sizes for
fields with the same data type, use the XML Mapping Editor. See Using the XML Mapping Editor

Caution: If you modify the imported IDL file, do this only in the XML Mapping Editor to
ensure the correct dependencies between the IDL and the related XMM file.

Depending on the target programming language of your scenario, the available/possible transform-
ation rules differ. Use the combo-box and choose the target programming language:

■ COBOL
■ Natural
■ PL/I Client
■ PL/I Server

Software AG IDL Extractor for WSDL12

Using the Software AG IDL Extractor for WSDL

■ Other

COBOL

For generation of clients and servers with the COBOL Wrapper.

Variable-length fields and unbounded arrays with unlimited number of elements are not directly
supported by COBOL. There are two possibilities to specify options:

■ Transform to Fixed-length COBOL Fields and Tables
Variable-length fields on the XML side are mapped to fixed-length COBOL data items, that is,
they will always be padded (alphanumeric with trailing blanks; binary with x00). Unbounded
arrays on the XML side are mapped to fixed-size COBOL tables, see Tables with Fixed Size under
COBOL to IDL Mapping in the IDL Extractor for COBOL documentation. This means they will
always be filled up to themaximumnumber of elements. To use this possibility, enter the length
or size to define the restriction, for example 256, 1024 or 20.

■ Limit Variable-length Fields and Unbounded Arrays to a Maximum
For variable-length fields, EntireX provides a possibility to transform them into variable-length
fields with a maximum length. See IDL Data Types under Software AG IDL File in the IDL Editor
documentation, AVnumber and BVnumber under column Type and Length. In this case the
variable-length fields are also mapped to fixed-length COBOL data items, but they will be
trimmed (alphanumeric with blank, binary with x00) on the COBOL side. Unbounded arrays
with amaximumare directly supported inCOBOL in the formof COBOL tableswith the OCCURS
DEPENDING on clause, see Tables with Variable Size - DEPENDING ON Clause. Only filled elements
are transferred. In this case the RPC message size is reduced compared with the alternative
Transform to Fixed-length COBOL Fields and Tables above. To use this possibility, enter a leading
V-character before the limited length or limited size of unbounded arrays, such as V256, V1024
or V20.

Natural

For generation of clients and servers with the Natural Wrapper.

Variable-length fields and unbounded arrays with unlimited number of elements are directly
supported by Natural. As an alternative, EntireX also provides the possibility to transform to a
more legacy-like interface with fixed length.

■ Transform to Fixed-length Fields and Fixed-size Arrays on the Natural Side
Variable-length fields on the XML side are mapped to fixed-length Natural data types, that is,
they will always be padded (alphanumeric with trailing blanks; binary with x00). Unbounded
arrays on the XML side are mapped to fixed-length Natural arrays, that is, they will always be
filled up to the maximum number of elements. Using this possibility you benefit from easier
and simpler Natural programming. To use this possibility, check the check boxes and enter the
restricted length for variable-length alphanumeric fields, such as 253, variable-length binary
fields such as 126, and the restricted size, for example 20,20,20 for unbounded arrays.

13Software AG IDL Extractor for WSDL

Using the Software AG IDL Extractor for WSDL

■ Transform to Variable-length Fields and Variable-size Arrays on the Natural Side
Variable-length fields on the XML side are mapped to Natural DYNAMIC data types. No padding
occurs on theNatural side. Unbounded arrays on the XML side aremapped toNatural X-Arrays.
Only filled elements are transferred. In this case the RPC message size is reduced compared
with the alternativeTransform to Fixed-length Fields and Fixed-size Arrays on the Natural Side above.
To use this possibility, uncheck the check boxes.

PL/I Client

For generation of clients with the PL/I Wrapper. The following possibilities exist in scenarios with
PL/I clients:

■ Transform to Fixed-length Fields and Arrays
Variable-length fields on the XML side are mapped to fixed-length PL/I data items, that is, they
will always be padded (alphanumeric with trailing blanks; binarywith x00). Unbounded arrays
on the XML side are mapped to fixed-size PL/I arrays, see Arrays under PL/I to IDL Mapping.
This means they will always be filled up to the maximum number of elements. To use this pos-
sibility, enter the length or size to define the restriction, for example 256, 1024 or 20.

■ Limit Variable-length Fields to a Maximum
As an alternative, variable-length fields can be mapped to PL/I data type with the attribute
VARYING. See also IDL Data Types under Software AG IDL File in the IDL Editor documentation
AVnumber and BVnumber under column Type and Length. In this case no padding occurs on
the PL/I side. To use this possibility, enter a leading V-character before the limited length, such
as V256 or V1024.

Note: This alternative does not exist for unbounded arrays.

PL/I Server

For generation of servers with the PL/I Wrapper. The following possibilities exist in scenarios with
PL/I servers:

■ Transform to Fixed-length Fields and Arrays
Variable-length fields on the XML side are mapped to fixed-length PL/I data items, that is, they
will always be padded (alphanumeric with trailing blanks; binarywith x00). Unbounded arrays
on the XML side are mapped to fixed-size PL/I arrays, see Arrays under PL/I to IDL Mapping in
the IDL Extractor for PL/I documentation. This means they will always be filled up to the max-
imumnumber of elements. To use this possibility, enter the length or size to define the restriction,
for example 256, 1024 or 20.

Software AG IDL Extractor for WSDL14

Using the Software AG IDL Extractor for WSDL

■ Limit Variable-length Fields to a Maximum
As an alternative, variable-length fields can be mapped to PL/I data type with the attribute
VARYING. See also IDL Data Types under Software AG IDL File in the IDL Editor documentation,
AVnumber and BVnumber under column Type and Length. In this case no padding occurs on
the PL/I side. To use this possibility, enter a leading V-character before the limited length, such
as V256 or V1024.

Note: This alternative does not exist for unbounded arrays.

■ Transform to Variable-size Arrays on the PL/I Side
As an alternative for unbounded arrays on the XML side, they can be mapped to PL/I arrays
using (*,*,*) notation. Only filled elements are transferred. Note that PL/I does not allow
resizing of these data types and arrays. In this case the RPC message size is reduced compared
with the first alternative Transform to Fixed-length PL/I Fields and Arrays above. To use this pos-
sibility, uncheck the check box.

Note: This alternative does not exist for variable-length fields.

Other

If you later use wrappers other than the COBOLWrapper, Natural Wrapper or PL/I Wrapper, no
transformation rules are required. Variable-length fields and unbounded arrays are extracted as
is; there are no restrictions regarding data length that can be transferred in variable-length fields
and the number of elements that can be transferred in unbounded arrays.

Press Finish to start extraction.

Extraction Result

When the operation is completed, the IDL file is opened with the Software AG IDL Editor.

If the WSDL source files to extract from contain parameters that cannot be mapped to IDL para-
meters, an IDL file with incorrect IDL syntax is created. The unsupported parameters lead to IDL
parameters of data type Error, which is not supported. In the Problems View you get a marker
for the first error in the IDL file.

15Software AG IDL Extractor for WSDL

Using the Software AG IDL Extractor for WSDL

16

3 Using the IDL Extractor for WSDL in Command-line Mode

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax. The
table below shows the command-line option for the IDL Extractor for WSDL.

DescriptionOptionCommandTask

Display this usage message.-help-extract:wsdlExtract an IDL file and an
XMM file from a Web
service.

Name of the project or subfolder where the IDL
and XMM files are stored.

-project

Example

<workbench> -extract:wsdl /Demo/example.wsdl

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

Status and processing messages are written to standard output (stdout), which is normally set to
the executing shell window.

17

18

4 WSDL to IDL Mapping

■ Extracting IDL from WSDL Files ... 20
■ Mapping WSDL XML Schema Data Type to Software AG IDL .. 20
■ Extracting the Name for the IDL Library ... 21
■ Extracting the Name for the IDL Program ... 21

19

Extracting IDL from WSDL Files

The Software AG IDL Extractor for WSDL produces the IDL file and an XML mapping file. The
SOAP-binding information is written into the XML mapping file (XMM), for example, the
SOAPAction value and the namespace definitions. The two other bindings (HTTP and MIME)
only return the IDL file, but no XML mapping file. In this case, a warning dialog is displayed.
WSDL files with mixed bindings, including a SOAP binding, also return an XML mapping file,
but display the warning message too. The XML mapping and IDL parameter directions depend
on the WSDL source file; INERR and OUTERR mapping trees are possible.

Mapping WSDL XML Schema Data Type to Software AG IDL

Software AG IDLXMMWSDL / XML Schema

BV (or BVn or Bn) (3)binarybinary, base64Binary

BV (or BVn or Bn) (3)binaryhexBinary (1)

Lbooleanboolean

Ddate:yyyy-MM-dd (2)date

F4floatfloat

F8floatdouble

I1integerbyte, unsignedByte

I2integershort, unsignedShort

I4integerint, unsignedInt

N29.0numberinteger, positiveInteger,
nonPositiveInteger,negativeInteger,
nonNegativeInteger

N22.7numberdecimal, number

N19.0numberlong, unsignedLong

TdateTime:HH:mm:ss (2)time

TdateTime:yyyy-MM-dd'T'HH:mm:ss (2)dateTime

A8stringgYearMonth

A11stringgDay, gYear

A12stringgMonth

A13stringgMonthDay

AV (or AVn or An) (3)stringstring (and all types not listed here)

Notes:

Software AG IDL Extractor for WSDL20

WSDL to IDL Mapping

1. The hexBinary format is not supported by the XML/SOAP Runtime.

2. Edit the date and dateTime patterns manually to match the formats of the original documents.

Example: <myTime xsi:type="xsd:date">11:08:23+01:00</myTime> --> dateTime:HH:mm:ss'
+01:00 ' --> T

Note: The +01:00 is not supported by IDL (EntireX RPC protocol).

3. Mapped according to specified transformation rules. See Step 6: Specify Options for Target
Programming Language.

Extracting the Name for the IDL Library

The IDL library name (see library-definition under Software AG IDL Grammar in the IDL Editor
documentation)will be used from the value of the name attribute of the tag <service>, for example:

<definitions ...>
<service name="LIBRARYNAME">

<port .../>
</service>

</definitions>

Extracting the Name for the IDL Program

The RPC program name (see program-definition under Software AG IDL Grammar in the IDL
Editor documentation) will be used from the value of the name attribute of the tag <operation>
as child of the tag <portType>, for example:

<definitions ...>
<portType name="...">

<operation name="PROGRAMNAME">
<input .../>
<output .../>

</operation>
</portType>

</definitions>

21Software AG IDL Extractor for WSDL

WSDL to IDL Mapping

22

5 Writing Web Service Client Applications

■ Web Service Clients ... 24
■ Configuring Advanced Web Service Clients .. 25
■ Example: Setting up an EntireX Client to Consume a Secured Web Service .. 26

23

Web Service Clients

EntireX, in conjunctionwith the SoftwareAGCommonWeb Services Stack (WSS), provides devel-
opment and runtime functionality to support EntireX RPC clients consuming (or calling) Web
services. The relevant products parts are:

■ IDL Extractor for WSDL to generate an XML/SOAP mapping from the service's WSDL.
■ XMLMapping Editor to adapt the mapping file if necessary. See XML Mapping Editor.
■ EntireX XML/SOAP RPC Server, acting as the EntireXWeb service runtime, to deploy the XML
mapping file into and perform the Web service call. See Administering the EntireX XML/SOAP
RPC Server in the UNIX and Windows administration documentation.

■ WebServices Stack client runtime,which handles the underlying SOAP,WS-Policy andmessage
transport. See the separate Software AG Common Web Services Stack documentation.

For each Web service client that is deployed in XML/SOAP RPC Server, a special configuration is
required. The default name of the configuration file is entirex.xmlrpcserver.configuration.xml. Example
configuration:

...
<TargetServer name="http://localhost:10010/wsstack/services/example">

<xmms>
<exx-xmm
name="C:\MyWorkspace\Example\example.xmm"
wsdl="http://localhost:10010/wsstack/services/example?wsdl"
service="example"
port="EXAMPLESOAP11Port"
soapVersion="1.1"
repository="C:\SoftwareAG\WS-Stack\repository" />

</xmms>
</TargetServer>
...

is the XMMmapping file for the servicecodewhere
is the reachable URL for the WSDL file of the service. This WSDL file can
contain additional WS-Policy information for the service that is supported
by the Web Services Stack

wsdl

is the service name inside the WSDL file of the serviceservice

is the port inside theWSDL file. This information is neededwhen theWSDL
file can contain more than one port. The value in this example is the default
number; this number can be changed during installation

port

can be "1.1" or "1.2"soapVersion

Software AG IDL Extractor for WSDL24

Writing Web Service Client Applications

is the client "repository" of the Web Services Stack (containing the conf and
modules subfolders)

repository

Configuring Advanced Web Service Clients

AWeb Services Stack client using advanced Web services functionality (WS-Security, WS-Reli-
ableMessaging, etc.) requires the following configuration data:

■ A "repository" containing configuration files and extensionmodules (.mar files). The "repository"
is a folder containing subfolders conf and modules.

■ The conf folder contains the client's global configuration file axis2.xml for theWeb Services Stack
engine.

■ The modules folder contains modules for WS-* extensions, for example
■ addressing-1.4.mar if WS-Addressing is used
■ rampart-1.4.mar if WS-Security is used
■ rahas-1.4.mar if WS-Trust is used

■ If WS-Security is used, an additional security configuration filewsclientsec.properties is required.
The name and location of this file can be configured in the client's global configuration file ax-
is2.xml, using the securityConfigFile property.

Here is an example of a client security configuration file wsclientsec.properties:

USERNAME=client
ENCRYPTION_USER=service
PASSWORD_CALLBACK_HANDLER_CLASS=com.softwareag.wsstack.test.PasswordCallbackHandler
KEYSTORE_FILE_ENCRYPT=client.jks
KEYSTORE_TYPE_ENCRYPT=jks
KEYSTORE_PASSWORD_ENCRYPT=apache
KEYSTORE_FILE_SIGN=client.jks
KEYSTORE_TYPE_SIGN=jks
KEYSTORE_PASSWORD_SIGN=apache
KEYSTORE_SSL_LOCATION=clientKS.jks
SSL_KEYSTORE_TYPE=jks
SSL_KEYSTORE_PASSWORD=apache
TRUSTSTORE_SSL_LOCATION=clientKS.jks
TRUSTSTORE_SSL_TYPE=jks
TRUSTSTORE_SSL_PASSWORD=apache

The USERNAME specifies the user name that the Web service client uses to authenticate itself with
theWeb service. It corresponds to Alias as described for the service configuration. ENCRYPTION_USER
and PASSWORD_CALLBACK_HANDLER correspond accordingly. The example Java password callback
handler from above can also be used for the client. TheWeb Services Stack provides some default

25Software AG IDL Extractor for WSDL

Writing Web Service Client Applications

password callback handlers that can be instantly used without needing to write a custom one. For
example com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler, which uses a
simple user configuration file users.xml. See the separateWS-stack documentation formore details.

A Web Services Stack client that connects to a Web Service that requires advancesd Web Services
policies (which are attached to the service's WSDL as policy attachment) automatically sets up
and processes the necessary SOAP headers in the SOAP message exchange with the service and
fills the required parameters according to the configuration information described above.

Example: Setting up an EntireX Client to Consume a Secured Web Service

This section describes how to set up EntireX RPC clients calling a remote Web service that has a
WS-Security UsernameToken policy in effect. Two scenarios are described: one where the security
policy is defined in the WSDL, and one where the policy is not defined.

■ Setting up an EntireX RPC Server to Configure WS-Security
■ Scenario 1: Service requires UsernameToken and has a Security Policy in the WSDL
■ Scenario 2: Service requires UsernameToken but does not declare this in the WSDL

Setting up an EntireX RPC Server to Configure WS-Security

To set up a dedicated XML/SOAP RPC Server instance to connect EntireX RPC clients to a secured
Web service, the following prerequisites apply, for example in a folder of their own in the file
system:

■ A startup script, jxmlserver.bat. You can copy this from <Install-Dir>\EntireX\bin and adapt
it.

■ Property file and config file, entirex.xmlrpcserver.properties and
entirex.xmlrpcserver.configuration.xml. You can copy these from<Install-Dir>\EntireX\conf
and adapt them.

■ AWSS client repository containing the subfolders conf, modules and services. You can copy
this from <Install-Dir>\WS-Stack\repository and adapt it

Note: For this example only the addressing and rampartmodules are required; delete
the others.

■ AWSS client security configuration properties file, wsclientsec.properties, containing at
least values for USERNAME and PASSWORD_CALLBACK_HANDLER_CLASS. You can copy this from
<Install-Dir>\EntireX\bin and adapt it.

Software AG IDL Extractor for WSDL26

Writing Web Service Client Applications

Scenario 1: Service requires UsernameToken and has a Security Policy in the WSDL

In this scenario, the Web Services Stack runtime can use the WS-Security policy from the WSDL
to determine which security headers need to be attached to the SOAP message. Follow the steps
below:

To set up an XML/SOAP RPC server with defined security policy

1 Store a copy of the service's WSDL (which also includes the policy attachment) in the test
folder.

2 Generate an XML/SOAP mapping file (.xmm) with the IDL Extractor for WSDL. Enter the
name of the XML/SOAP RPC Server ("XMLSERVER" in this example) under Broker Settings
on the wizard page.

3 Start the XML/SOAP RPC Server in a command window, using the start script.

4 Deploy the mapping file to the XML/SOAP RPC Server. Provide the location of the WSDL
and specify the desired service endpoint, name and port.

5 Configure the Web Services Stack repository for the service, using the following steps:

1. Stop the XML/SOAP RPC Server.

2. Edit the file entirex.xmlrpcserver.configuration.xml and add the repository definition
to the TargetServer section. For example:

<TargetServer
name="http://localhost:10010/wsstack/services/example.EXAMPLESOAP11Port/">
<xmms>
<exx-xmm
name="D:\TestWS\example.xmm"
port="EXAMPLESOAP11Port"
wsdl="D:\TestWS1\example.wsdl"
service="example"
soapVersion="1.1"
repository="repository"/>

</xmms>
</TargetServer>

3. Restart the XML/SOAP RPC Server.

6 Configure security for the WSS client runtime by modifying files wsclientsec.properties
and users.xml:

■ File wsclientsec.properties, containing the lines

27Software AG IDL Extractor for WSDL

Writing Web Service Client Applications

USERNAME=user
PASSWORD_CALLBACK_HANDLER_CLASS=

com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler

Specify the desired username, which should go into the UsernameToken. The password
callback handler class is used by theWSS client runtime to inquire a password for this user.
The ConfigFilePasswordCallbackHandler is a simple default handler deliveredwithWeb
Services Stack that reads the password of a given user from a flat file users.xml. You can
write a custom password callback handler for other methods to acquire passwords.

■ File users.xml. Example:

<?xml version="1.0" encoding="UTF-8"?>
<users>

<user username="user" password="pass" />
<user username="client" password="apache" />
<user username="service" password="apache" />
<user username="bob" password="bobPW" />

</users>

To test access to the remote Web service, use the XML Tester on the IDL file. See XML Tester in
the XML/SOAPWrapper documentation.

Scenario 2: Service requires UsernameToken but does not declare this in the WSDL

For this scenario, perform the steps as described above. Because the WSDL does not contain a se-
curity policy stating that UsernameToken is required, perform this additional step:

■ Explicitly tell the Web Services Stack client runtime about the UsernameToken required by the
service. Edit <SuiteInstallDir>/profiles/CTP/workspace/wsstack/repository/conf/axis2.sml, uncom-
ment the rampartmodule and add the OutFlowSecurity parameters:

<module ref="rampart"/>
<parameter name="OutflowSecurity">

<action>
<items>UsernameToken</items>
<user>user</user>
<passwordType>PasswordText</passwordType>
<passwordCallbackClass>
com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler
</passwordCallbackClass>

</action>
</parameter>

is a valid user name for authentication.userwhere

Software AG IDL Extractor for WSDL28

Writing Web Service Client Applications

	Software AG IDL Extractor for WSDL
	Table of Contents
	1 Introduction to the Software AG IDL Extractor for WSDL
	2 Using the Software AG IDL Extractor for WSDL
	Step 1: Start the IDL Extractor for WSDL
	Step 2: Select a Source
	Step 3a: Specify CentraSite Location
	Step 3b: Specify UDDI Server
	Step 3c: Specify WSDL File
	Step 3d: Specify WSDL File URL
	Step 4: Specify Output Files
	Step 5: Specify Broker Settings
	Step 6: Specify Options for Target Programming Language
	COBOL
	Natural
	PL/I Client
	PL/I Server
	Other

	Extraction Result

	3 Using the IDL Extractor for WSDL in Command-line Mode
	4 WSDL to IDL Mapping
	Extracting IDL from WSDL Files
	Mapping WSDL XML Schema Data Type to Software AG IDL
	Extracting the Name for the IDL Library
	Extracting the Name for the IDL Program

	5 Writing Web Service Client Applications
	Web Service Clients
	Configuring Advanced Web Service Clients
	Example: Setting up an EntireX Client to Consume a Secured Web Service
	Setting up an EntireX RPC Server to Configure WS-Security
	Scenario 1: Service requires UsernameToken and has a Security Policy in the WSDL
	Scenario 2: Service requires UsernameToken but does not declare this in the WSDL

