
webMethods EntireX

RPC-ACI Bridge

Version 9.5 SP1

November 2013



This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ACI-95SP1-20140628BRIDGE



Table of Contents

EntireX RPC-ACI Bridge .................................................................................................... v
1 Introduction to the EntireX RPC-ACI Bridge .................................................................. 1
2 Administering EntireX RPC-ACI Bridge ........................................................................ 3

Customizing the RPC-ACI Bridge ............................................................................. 4
Configuring the RPC Server Side ............................................................................... 6
Configuring the ACI Client Side ................................................................................ 9
Starting the RPC-ACI Bridge ................................................................................... 10
Stopping the RPC-ACI Bridge ................................................................................. 11
Application Identification ........................................................................................ 11

3 Writing ACI Servers for the RPC-ACI Bridge in COBOL ............................................. 13
Tasks ......................................................................................................................... 14
Data Types ................................................................................................................ 15
Declaring the Variables for the Data Types .............................................................. 16

4 Writing ACI Servers for the RPC-ACI Bridge in Natural ............................................. 17
Tasks ......................................................................................................................... 18
Data Types ................................................................................................................ 19
Declaring the Variables for the Data Types .............................................................. 20

5 Writing RPC Clients for the RPC-ACI Bridge with the C Wrapper .............................. 23
6 Writing RPC Clients for the RPC-ACI Bridge in Java ................................................... 25

iii



iv



EntireX RPC-ACI Bridge

The RPC-ACI Bridge enables RPC-based client applications to be used
with ACI servers.

Introduction

Customizing the RPC-ACI Bridge; configuring the RPC server side and
ACI client side.

Administration

Overview of tasks and supported data types when writing server
applications in COBOL for the RPC-ACI Bridge.

Writing ACI Servers in COBOL

Overview of tasks and supported data types when writing server
applications in Natural for the RPC-ACI Bridge.

Writing ACI Servers in Natural

v



vi



1 Introduction to the EntireX RPC-ACI Bridge

The EntireX RPC-ACI Bridge allows standard RPC clients to communicate with an ACI server.
The RPC-ACI Bridge transforms the RPCs from the clients intoACImessages. The RPC-ACI Bridge
acts on one side as an RPC server and on the other side as an ACI client. In this documentation
we distinguish between the Broker for RPC, which sends the RPCs from the client to the server
side of the RPC-ACI Bridge and the Broker for ACI, which sends the messages to the ACI server.
These two brokers can be the same instance. Use distinct services for the RPCs and ACI.

The RPC-ACI Bridge can connect to ACI servers in any language. We describe the use of Natural
and COBOL ACI servers. For existing COBOL programs you can use the COBOL IDL Generator
to generate the IDL file for the RPC clients.

The RPC-ACI Bridge supports RPC clients in different programming languages.

1



2



2 Administering EntireX RPC-ACI Bridge

■ Customizing the RPC-ACI Bridge ......................................................................................................... 4
■ Configuring the RPC Server Side ......................................................................................................... 6
■ Configuring the ACI Client Side ............................................................................................................ 9
■ Starting the RPC-ACI Bridge .............................................................................................................. 10
■ Stopping the RPC-ACI Bridge ............................................................................................................ 11
■ Application Identification ................................................................................................................... 11

3



The RPC-ACI Bridge enables RPC-based client applications to be used with ACI servers.

Customizing the RPC-ACI Bridge

For the setup of the RPC-ACI Bridge there are

■ a configuration file and
■ scripts to start the RPC-ACI Bridge.

Location of the RPC-ACI Bridge

The RPC-ACI Bridge is contained in the file entirex.jar.

The Configuration File

The default name of the configuration file is entirex.rpcacibridge.properties. The RPC-ACI Bridge
searches for this file in the current working directory.

You can set the name of the configuration file with -Dentirex.server.properties=<your file
name>with “/” as file separator.

The configuration file contains the configuration for both parts of the RPC-ACI Bridge.

To set up the RPC-ACI Bridge

1 Use the RPC server agent of the System Management Hub.

2 Add the RPC-ACI Bridge as an RPC server.

RPC-ACI Bridge4

Administering EntireX RPC-ACI Bridge



See Administering the EntireX RPC Servers using System Management Hub in the UNIX and
Windows administration documentation for details.

Or:

Use the scripts to start the RPC-ACI Bridge.

Under Windows use jrpcacibridge.bat in the folder bin to start the RPC-ACI Bridge. You may
customize this file.

Under UNIX use jrpcacibridge.bsh in the folder bin to start the RPC-ACI Bridge. You may cus-
tomize this file.

Both scripts use the configuration file entirex.rpcacibridge.properties in the folder etc.

Configuring more than one RPC-ACI Bridge

If you configure more than one RPC-ACI Bridge that connect to the same EntireX Broker, the fol-
lowing items must be distinct:

■ The user for the ACI client side (property entirex.rpcacibridge.userid).
■ The trace output file (property entirex.server.logfile).
■ The monitor port for SMH (property entirex.server.monitorport).
■ The log for the Windows Service (property entirex.server.serverlog).
■ The trace output file of the SMH agent for RPC servers.

5RPC-ACI Bridge

Administering EntireX RPC-ACI Bridge



Configuring the RPC Server Side

The RPC server side of the RPC-ACI Bridge is configured like the Java RPC Server. The RPC-ACI
Bridge uses the properties that start with “entirex.server”.

The RPC server side can adjust the number of worker threads to the number of parallel requests.
Use the properties entirex.server.fixedservers, entirex.server.maxservers,
entirex.server.minservers to configure this scalability. If entirex.server.fixedservers=yes,
the number of entirex.server.minservers is started and the server can process this number of
parallel requests. If entirex.server.fixedservers=no, the number of worker threads balances
between entirex.server.minservers and entirex.server.maxservers. This is done by a so-
called attach server thread. On startup, the number of worker threads is
entirex.server.minservers. If more than entirex.server.minservers arewaiting for requests,
a worker thread stops if its receive call times out. The timeout period is configured with
entirex.server.waitserver.

Alternatively to the properties, you can use the command-line option. The command-line options
have a higher priority than the properties set as Java system properties and these have higher
priority than the properties in the configuration file.

ExplanationDefault Value
Command-line
OptionName

Broker IDlocalhost : 1971-brokerentirex.server.
brokerid

The codepage the server uses. Permitted
values are the name of the codepages the

-codepageentirex.server.
codepage

JVM supports. Use the value LOCAL when
the default codepage of the JVM should be
used. See Internationalizationwith EntireX for
details.

0 (no compression)-compresslevelentirex.server.
compresslevel

9BEST_COMPRESSION

1BEST_SPEED

-1, mapped to
6

DEFAULT_COMPRESSION

8DEFLATED

0NO_COMPRESSION

0N

8Y

Encryption level (if Broker is version 6.1.1
or higher. Valid values: 0,1,2).

0-encryptionentirex.server.
encryptionlevel

RPC-ACI Bridge6

Administering EntireX RPC-ACI Bridge



ExplanationDefault Value
Command-line
OptionName

Can be used in a user-written translation
exit of the broker.
See BrokerService,
setEnvironment(java.lang.String)

entirex.server.
environment

(EntireX Java ACI) in the Javadoc
documentation of the Java ACI.

If "no", use an attach server thread to
manage worker threads, otherwise run

noentirex.server.
fixedservers

minimum number of server threads. See
properties entirex.server.maxservers,
entirex.server.minservers.

Path and name of the trace output file.-logfileentirex.server.
logfile

Maximum number of worker threads.32entirex.server.
maxservers

Minimum number of server threads.1entirex.server.
minservers

The port where the server listens for
commands from the System Management

0-smhportentirex.server.
monitorport

Hub (SMH). If this port is 0, no port is used
and the management by the SMH is
disabled.

The name of the server.entirex.server.name

The password for secured access to the
Broker.
For Java 1.4 and above, the password is
encrypted and written to the property
entirex.server.password.e.
To change the password, set the new
password in the properties file (default is
entirex.rpcacibridge.properties).
To disable password encryption set
entirex.server.passwordencrypt=no.
Default for this property is "yes".
For Java 1.3 and below, the password
encryption is not available.

-passwordentirex.server.
password

The file name of the property file.entirex.rpcacibridge.properties-propertyfileentirex.server.
properties

Number of restart attempts if the Broker is
not available. This can be used to keep the

15-restartcyclesentirex.server.
restartcycles

Java RPC Server running while the Broker
is down for a short time.

no/yes/auto/Name of BrokerSecurity object.no-securityentirex.server.

7RPC-ACI Bridge

Administering EntireX RPC-ACI Bridge



ExplanationDefault Value
Command-line
OptionName

security

Server addressRPC/SRV1/CALLNAT-serverentirex.server.
serveraddress

Name of the file where start and stop of
worker threads is logged. Used by the
Windows RPC Service.

-serverlogentirex.server.
serverlog

The user ID of the Broker for RPC. See
entirex.server.password.

JavaServer-userentirex.server.
userid

Verbose output to standard output yes/no.no-verboseentirex.server.
verbose

Wait timeout for the attach server thread.600Sentirex.server.
waitattach

Wait timeout for the worker threads.300Sentirex.server.
waitserver

TCP/IP transport timeout. See Setting the
Transport Timeout underWriting Advanced
Applications - EntireX Java ACI.

20entirex.timeout

Trace level (1,2,3).0-traceentirex.trace

RPC-ACI Bridge8

Administering EntireX RPC-ACI Bridge



Configuring the ACI Client Side

These properties are used to configure the connection to the Broker for ACI.

Alternatively, you can use the command-line option. The command-line options have a higher
priority than the properties set as Java system properties and these have higher priority than the
properties in the configuration file

ExplanationDefault ValueCommand-line OptionName

Broker ID of the Broker for ACI.localhost-acibrokerentirex.rpcacibridge.
brokerid

0 (no compression)-acicompresslevelentirex.rpcacibridge.
compresslevel

Permitted values (you can
enter the text or the numeric
value):

9BEST_COMPRESSION

1BEST_SPEED

-1,
mapped to
6

DEFAULT_COMPRESSION

8DEFLATED

0NO_COMPRESSION

8Y

Encryption level (if Broker is version 6.1.1
or higher. Valid values: 0,1,2).

0-aciencryptionentirex.rpcacibridge.
encryptionlevel

This is for arrays of groups. Set this property
to "cobol" if the ACI server is a COBOL

-acimarshallingentirex.rpcacibridge.
marshalling

program. Set this property to "natural" if the
ACI server is a Natural program. Default is
" ", which lets the RPC client determine the
marshalling.

The password of the Broker forACI. For Java
1.4, the password is encrypted and written
to the property entirex.server.password.e.
To change the password, set the new
password in the properties file (default is
entirex.rpcacibridge.properties).
To disable password encryption set
entirex.server.passwordencrypt=no.
Default for this property is "yes".
For Java 1.3 and below, the password
encryption is not available.

-acipasswordentirex.rpcacibridge.
password

no/yes/auto/Name of BrokerSecurity object.no-acisecurityentirex.rpcacibridge.

9RPC-ACI Bridge

Administering EntireX RPC-ACI Bridge



ExplanationDefault ValueCommand-line OptionName

security

Server Address for the Broker for ACI.ACLASS/ASERVER/
ASERVICE

-aciserverentirex.rpcacibridge.
serveraddress

If set to "yes", additional trace output
(exception stack-traces and request and reply
buffers) is generated.

No-acitraceentirex.rpcacibridge.
trace

The user ID of the Broker for ACI. Use
different user IDs for different RPC-ACI
Bridges on the same Broker.

Value of system
property user.name
.

-aciuserentirex.rpcacibridge.
userid

Thewait time for receive requests. Permitted
values are nS|nM|nH, where n is the number
of seconds or minutes or hours.

0Sentirex.rpcacibridge.
waittime

Starting the RPC-ACI Bridge

To start the RPC-ACI Bridge

■ Use the script jrpcacibridge in the folder bin to start the RPC-ACI Bridge. You may customize
this file.

Or:

Use the RPC server agent in the System Management Hub to configure and start the RPC-
ACI Bridge.

See Administering the EntireX RPC Servers using System Management Hub in the UNIX and
Windows administration documentation for details.

On Windows you can start the RPC-ACI Bridge as a Windows Service. The installation of the
service is similar to the installation of the Java RPC Server. See Running the Java RPC Server as a
Windows Service under under Administering the EntireX Java RPC Server in the Windows adminis-
tration documentation in the Windows administration documentation.

RPC-ACI Bridge10

Administering EntireX RPC-ACI Bridge



Stopping the RPC-ACI Bridge

To stop the RPC-ACI Bridge

■ Use the RPC server agent in the SMH to stop the RPC-ACI Bridge.

Or:

Use the agent for the Broker. Use Deregister on the service, specified with the property
entirex.server.serveraddress.

Application Identification

The application identification is sent from the RPC-ACI Bridge to the Broker. It is visible with
Broker Command and Info Services.

The identification consists of four parts: name, node, type, and version. These four parts are sent
with each Broker call and are visible in the trace information.

For the RPC-ACI Bridge these values are:

ANAME=RPC-ACI BridgeApplication name:

ANODE=<host name>Node name:

ATYPE=JavaApplication type:

AVERS=9.0.0.0Version:

11RPC-ACI Bridge

Administering EntireX RPC-ACI Bridge



12



3 Writing ACI Servers for the RPC-ACI Bridge in COBOL

■ Tasks ............................................................................................................................................ 14
■ Data Types .................................................................................................................................... 15
■ Declaring the Variables for the Data Types ........................................................................................... 16

13



The RPC-ACI Bridge is prepared for ACI servers written in COBOL.

Tasks

The RPC-ACI Bridge is prepared for ACI servers written in COBOL.

Writing an ACI server consists of two tasks:

■ implement the Broker calls
■ implement the processing of the received buffer and the response for the send buffer

Using Arrays of Groups

If your programs use arrays of groups, you have to adjust the marshalling.

To adjust the marshalling for arrays of groups

1 Use the property entirex.rpcacibridge.marshalling for the configuration.

2 Set the property to "cobol".

If your programs do not use arrays of groups, you do not need to set
entirex.rpcacibridge.marshalling.

RPC-ACI Bridge14

Writing ACI Servers for the RPC-ACI Bridge in COBOL



Data Types

RemarksFormatData Type

<number> bytes, encoding the charactersA<number> Alphanumeric

Only as last valueBytes up to the end of the buffer, maximal
length <number>

AV[number] Alphanumeric variable
length with maximum length

Same as data type AK<number> Kanji

Only as last valueSame as data type AV[number]KV[number] Kanji variable lengthwith
maximum length

Sign (+, -) and 3 bytes (digits)I1 Integer (small)

Sign (+, -) and 5 bytes (digits)I2 Integer (medium)

Sign (+, -) and 10 bytes (digits)I4 Integer (large)

Sign (+, -), <number1> bytes (digits)
[number2] bytes (digits), no decimal point.

N<number1>[.number2] Unpacked
decimal

<number1> bytes (digits) [number2] bytes
(digits), no decimal point.

NU<number1>[.number2] Unpacked
decimal unsigned

Sign (+, -), <number1> bytes (digits)
[number2] bytes (digits), no decimal point.

P<number1>[.number2] Packed
decimal

<number1> bytes (digits) [number2] bytes
(digits), no decimal point.

PU<number1>[.number2] Packed
decimal unsigned

1 Byte: X for true, all other falseL Logical

YYYY year, MM
month, DD day

YYYYMMDDD Date

YYYY year, MM
month, DD day, hh

YYYYMMDDhhmmssST Time

hour, mm minute, ss
second, S tenth of a
second.

Data Types not supported:

■ Binary (B[n],BV, BV[n])
■ Floating point (F4, F8)

15RPC-ACI Bridge

Writing ACI Servers for the RPC-ACI Bridge in COBOL



Declaring the Variables for the Data Types

This section describes how to declare the variables for the data types.

Use these declarations to map the receive buffer and the send buffer to variables.

Declaration and MarshallingData Type

Declaration for receive and send buffer:
PIC X(n)

A<number> Alphanumeric

Declaration for receive and send buffer: PIC X(n)AV[number] Alphanumeric variable
length with maximum length

Declaration for receive and send buffer: PIC X(n)K<number> Kanji

Declaration for receive and send buffer: PIC X(n)KV[number] Kanji variable length with
maximum length

Declaration for receive and send buffer: PIC S9(3)I1 Integer (small)

Declaration for receive and send buffer: PIC S9(5)I2 Integer (medium)

Declaration for receive and send buffer: PIC S9(10)I4 Integer (large)

Declaration for receive and send buffer: PIC
S9(number1)V(number2) SIGN LEADING SEPARATE

N<number1>[.number2] Unpacked
decimal

Declaration for receive and send buffer: PIC
9(number1)V(number2)

NU<number1>[.number2] Unsigned
unpacked decimal

Declaration for receive and send buffer: PIC
S9(number1)V(number2) SIGN LEADING SEPARATE
Declare local variable PIC S9(number1)V(number2) PACKED
DECIMALMove from receive buffer to local variable before
computation and from local variable to send buffer afterwards.

P<number1>[.number2] Packeddecimal

Declaration for receive and send buffer: PIC
9(number1)V(number2)Declare local variable PIC
9(number1)V(number2) PACKED DECIMAL
Move from receive buffer to local variable before computation and
from local variable to send buffer afterwards.

PU<number1>[.number2] Unsigned
packed decimal

Declaration for receive and send buffer: PIC X(1)L Logical

Declaration for receive and send buffer: PIC X(8)D Date

Declaration for receive and send buffer: PIC X(15)T Time

RPC-ACI Bridge16

Writing ACI Servers for the RPC-ACI Bridge in COBOL



4 Writing ACI Servers for the RPC-ACI Bridge in Natural

■ Tasks ............................................................................................................................................ 18
■ Data Types .................................................................................................................................... 19
■ Declaring the Variables for the Data Types ........................................................................................... 20

17



The RPC-ACI Bridge is prepared for ACI servers written in Natural.

Tasks

Writing an ACI server consists of two tasks:

■ implement the Broker calls
■ implement the processing of the received buffer and the response for the send buffer

Using Arrays of Groups

If your programs use arrays of groups, you have to adjust the marshalling.

To adjust the marshalling for arrays of groups

1 Use the property entirex.rpcacibridge.marshalling for the configuration.

2 Set the property to "natural".

If your programs do not use arrays of groups, you do not need to set
entirex.rpcacibridge.marshalling.

RPC-ACI Bridge18

Writing ACI Servers for the RPC-ACI Bridge in Natural



Data Types

NoteFormatDescriptionData Type

number bytes, encoding the characters.AlphanumericAnumber

1Bytes up to the end of the buffer.Alphanumeric variable lengthAV

1Bytes up to the end of the buffer, maximal
length number.

Alphanumeric variable length
with maximum length

AV[number]

Same as data type A.KanjiKnumber

1Same as data type AV.Kanji variable lengthKV

1Same as data type AV[number].Kanji variable length with
maximum length

KV[number]

sign (+, -) and 3 bytes (digits).Integer (small)I1

sign (+, -) and 5 bytes (digits).Integer (medium)I2

sign (+, -) and 10 bytes (digits).Integer (large)I4

sign (+, -), number1 bytes (digits) [number2]
bytes (digits), no decimal point.

Unpacked decimalNnumber1[.number2]

sign (+, -), number1 bytes (digits)
[number2] bytes (digits), no decimal point.

Packed decimalPnumber1[.number2]

1 byte: X for true, all other false.LogicalL

2YYYYMMDD.DateD

3YYYYMMDDhhmmssS.TimeT

Notes:

1. Only as last value.

2. YYYY year, MMmonth, DD day.

3. YYYY year, MM month, DD day, hh hour, mmminute, ss second, S tenth of a second.

Data Types not supported:

■ Binary (B[n],BV, BV[n])
■ Floating point (F4, F8)

19RPC-ACI Bridge

Writing ACI Servers for the RPC-ACI Bridge in Natural



Declaring the Variables for the Data Types

This section describes how to declare the variables for the data types. Use these declarations to
map the receive buffer and the send buffer to variables. For some data types, the values have to
be moved to a local variable before computation.

Example:

* Declaration
DEFINE DATA LOCAL
1 PNUMERIC (A012)
1 #NUMERIC (N8.3)
1 REDEFINE #NUMERIC
2 #NUMERIC1 (N11)
* Computation

MOVE EDITED RCVE-DATA.PNUMERIC TO #NUMERIC1 (EM=S9(11))
#NUMERIC := #NUMERIC + 1
MOVE EDITED #NUMERIC1 (EM=S9(11)) to SEND-DATA.PNUMERIC

Declaration and MarshallingData Type

Declaration for receive and send buffer: (An)A<number> Alphanumeric

Declaration for receive and send buffer: (A) DYNAMICAV Alphanumeric variable length

Declaration for receive and send buffer:
(A) DYNAMIC

AV[number] Alphanumeric variable
length with maximum length

Declaration for receive and send buffer:
(An)

K<number> Kanji

Declaration for receive and send buffer:
(A) DYNAMIC

KV Kanji variable length

Declaration for receive and send buffer:
(A) DYNAMIC

KV[number] Kanji variable length
with maximum length

Declaration for receive and send buffer:
(A4)MOVE EDITED to I1 variable with (EM=S9(3))

I1 Integer (small)

Declaration for receive and send buffer:
(A6)MOVE EDITED to I2 variable with (EM=S9(5))

I2 Integer (medium)

Declaration for receive and send buffer:
(A11)MOVE EDITED to I4 variable with (EM=S9(10))

I4 Integer (large)

Declaration for receive and send buffer:
(An), where n = number1 + number2 + 1 (one byte for the sign).
Redefine Nnumber1+number2 variable as Nnumber1.number2

N<number1>[.number2] Unpacked
decimal

variable. MOVE EDITED to Nnumber1+number2 variable with
(EM=S9(number1 + number2))

RPC-ACI Bridge20

Writing ACI Servers for the RPC-ACI Bridge in Natural



Declaration and MarshallingData Type

Declaration for receive and send buffer:
(An), where n = number1 + number2 + 1 (one byte for the sign).
RedefinePnumber1+number2variable as Pnumber1.number2variable.

P<number1>[.number2] Packed
decimal

MOVEEDITEDtoPnumber1+number2variablewith (EM=S9(number1
+ number2))

Declaration for receive and send buffer:
(A1)

L Logical

Declaration for receive and send buffer:
(A8)MOVE EDITED to Date variable with (EM=YYYYMMDD)

D Date

Declaration for receive and send buffer:
(A15)MOVE EDITED to Time variable with
(EM=YYYYMMDDHHIISST)

T Time

21RPC-ACI Bridge

Writing ACI Servers for the RPC-ACI Bridge in Natural



22



5 Writing RPC Clients for the RPC-ACI Bridge with the C

Wrapper

The RPC-ACI Bridge enables RPC-based client applications to be used with ACI servers.

To write a C client

■ Follow the instructions under Using the C Wrapper for the Client Side.

The RPC-ACI Bridge reports errors from the RPC server side and the ACI side to the RPC clients.
Errors from the ACI side include errors by the Broker for ACI.

The RPC-ACI Bridge reports the same error classes and error codes for the RPC server side as the
Java RPC Server. The RPC-ACI Bridge reports errors of the ACI side in a client-specific way as
error 10010007 (internal error of the RPC protocol). The detailedmessage of the error has the form
RPCACIBridge: < text >, where text indicates the cause of the error. SeeMessage Class 1018 -
EntireX RPC-ACI Bridge under Error Messages and Codes for additional information.

23



24



6 Writing RPC Clients for the RPC-ACI Bridge in Java

The RPC-ACI Bridge enables RPC-based client applications to be used with ACI servers.

The EntireX RPC-ACI Bridge reports errors from the RPC server side and the ACI side to the RPC
clients. Errors from theACI side include errors by the Broker forACI. The RPC-ACI Bridge reports
the same error classes and error codes for the RPC server side as the XML/SOAP RPC Server. The
RPC-ACI Bridge reports errors of the ACI side in a client-specific way as described below.

To write a Java client

1 Generate the Java RPC client stub from the IDL file as described in Using the Java Wrapper.

2 Implement the client with this stub.

All errors are reported as BrokerExceptions. Errors on the ACI side of the RPC-ACI Bridge are
BrokerExceptions in class 1018. SeeMessage Class 1018 - EntireX RPC-ACI Bridge under Error
Messages and Codes.

25



26


	RPC-ACI Bridge
	Table of Contents
	EntireX RPC-ACI Bridge
	1 Introduction to the EntireX RPC-ACI Bridge
	2 Administering EntireX RPC-ACI Bridge
	Customizing the RPC-ACI Bridge
	Location of the RPC-ACI Bridge
	The Configuration File
	Configuring more than one RPC-ACI Bridge

	Configuring the RPC Server Side
	Configuring the ACI Client Side
	Starting the RPC-ACI Bridge
	Stopping the RPC-ACI Bridge
	Application Identification

	3 Writing ACI Servers for the RPC-ACI Bridge in COBOL
	Tasks
	Using Arrays of Groups

	Data Types
	Declaring the Variables for the Data Types

	4 Writing ACI Servers for the RPC-ACI Bridge in Natural
	Tasks
	Using Arrays of Groups

	Data Types
	Declaring the Variables for the Data Types

	5 Writing RPC Clients for the RPC-ACI Bridge with the C Wrapper
	6 Writing RPC Clients for the RPC-ACI Bridge in Java

