5 software~

webMethods EntireX

Reliable RPC

Version 9.5 SP1

November 2013

webMethods EntireX

This document applies to webMethods EntireX Version 9.5 SP1.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-RELIABLERPC-95SP1-20140628

Table of Contents

Reliable RPCooiiiiiiiiieieee et et v
1 Overview of Reliable RPCcccccoiiiiiiiiiiiiiiiiiii e 1
Introduction to Reliable RPCcccoooiiiiiiiiiii 2
Broker Configurationccooiiiiiiiiiiiic 3
2 Reliable RPC fOr C WIAPPETcoiiiiiiiiiiiiiiiiiie ittt 5
Writing @ CLENtcoooiiiiiiiic 6
Writing a Client using AUTO COMMITcccoiiiiiiiiiiiiiiiiiciccceeee e 12
WIIHING @ SEIVET ..oovviiiiiiiiiiiiiciiccic 13
3 Reliable RPC for COBOL WIAPPETccccoviiuiiiiiiiiiiiiiiiieiieicieecicete e 15
Writing @ CHENtcoooviiiiiiiiiiii e 16
WIHNG @ SEIVET ..ot 21
4 Reliable RPC for DCOM WIQPPETooiuiiiiiiiiiiiiiiiciiecie et 23
Writing @ CHEntooiiiiiiii s 24
WIIHNE @ SETVET ...ooiiiiiiiiiiiiiiiii e 25
5 Reliable RPC for INET Wrapperccccooviiiiiiiiiiiiiiciiicicccceccccce e 27
Writing @ CHEntooiiiiiii 28
WIIHNE @ SETVET ...ooiiiiiiiiiiiiiii i 30
6 Reliable RPC for Java WIappercccccooiiiiiiiiiiiciiciccccec e 31
Writing @ CHENtoooviiiiiiiiiii 32
WIIHING @ SEIVET ..oovvviiiiiiiiiiicciiciccc 33
7 Reliable RPC for XML/SOAP WIaPPeTcccooiiuiiiiiiiiiiiiiiceiceieeneeee e 35
Writing @ CHENtcociiiiiiiiiiiii 36
WIHNG @ SEIVET ..ot 36

Reliable RPC

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

Introduction to Reliable RPC Concepts of Reliable RPC; Broker configuration for Reliable RPC.

Reliable RPC for C Wrapper Reliable RPC for C Wrapper. Also includes an AUTO_COMMIT call
sequence example.

Reliable RPC for COBOL Wrapper Reliable RPC for COBOL Wrapper.
Reliable RPC for DCOM Wrapper Reliable RPC for DCOM Wrapper.
Reliable RPC for .NET Wrapper Reliable RPC for .NET Wrapper.
Reliable RPC for Java Wrapper Reliable RPC for Java Wrapper.
Reliable RPC for XML/SOAP Wrapper Reliable RPC for XML/SOAP Wrapper.

vi

1 Overview of Reliable RPC

B ntroduction 10 RelADIE RPC e e
B Broker CONfIQUIALIONoeiiiie et e et e et e e e et e e e et e e e e reeas

Overview of Reliable RPC

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becoming more and more important. Reliable messaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

Reliable RPC allows asynchronous calls (“fire and forget”)

Reliable RPC is supported by most EntireX wrappers

Reliable RPC messages are stored in the Broker's persistent store until a server is available

Reliable RPC clients are able to request the status of the messages they have sent

Persistent
Store

.‘ [

RPC
with UOW : v

RPC | EntireX
Client < Broker

Error Status
RFC
with UOW

b

RPC
Server

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the respective Software AG component.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

= AUTO_COMMIT
" CLIENT_COMMIT

2 Reliable RPC

Overview of Reliable RPC

While AUTO_COMMIT commits each RPC message implicitly after sending it, a series of RPC messages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Broker Configuration

A Broker configuration with PSTORE is recommended. This enables the Broker to store the messages
for more than one Broker session. These messages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
teature. The lifetime of the messages and the status information can be configured with the attributes
UWTIME and UWSTAT-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW, MAX-UOWS and MAX -
UOW-MESSAGE - LENGTH may be used in addition to configure the units of work. See Broker Attributes
in the administration documentation.

The following rules apply:
Java

The result of the method RPCService.getStatusOfMessage depends on the configuration of the
unit of work status lifetime. If the status is not stored longer than the message, the method returns
(not available).

C

The result of the procedure £ERXGetReliableStatus depends on the configuration of the unit of
work status lifetime in the EntireX Broker configuration. If the status is not stored longer than the
message, the procedure returns the error code 00780305 (no matching UOW found).

COBOL

The result of the generic RPC function call "RS" - get reliable status depends on the configuration
of the unit of work status lifetime in the EntireX Broker configuration. See COMM-FUNCTION in the

COBOL Wrapper documentation. If the status is not stored longer than the message, the function
call returns the error code 00780305 (no matching UOW found).

NET

The result of the function Service.GetReliableStatus depends on the configuration of the unit
of work status lifetime in the EntireX Broker configuration. If the status is not stored longer than
the message, the function returns the error code 00780305 (no matching UOW found).

Reliable RPC 3

Overview of Reliable RPC

DCOM

The result of the function RPCService.get_StatusOfMessage depends on the configuration of the
unit of work status lifetime in the EntireX Broker configuration. If the status is not stored longer
than the message, the function returns the error code 00780305 (no matching UOW found).

4 Reliable RPC

2 Reliable RPC for C Wrapper

B OWHEING @ CHBNE ..o e ettt e et e s 6
= Writing a Client using AUTO COMMIToeiiiiiiiie ettt e e e e as 12
13

B WIIHING @ SBIVET ettt et e e e e e e et

Reliable RPC for C Wrapper

Writing a Client

This section shows a reliable RPC client for CLIENT_COMMIT mode. All methods for reliable RPC
are defined in erx.h. The methods applicable to reliable RPC as described under API Function De-
scriptions for Reliable RPC are:

® ERXGetReliableState

" ERXSetReliableState

ERXReliableCommit
" ERXReliableRollback

ERXGetReliablelD
" ERXGetReliableStatus

The example below is included as source in directory examples/ReliableRPC/CClient.

Step 1: Base Declarations Required by the C Wrapper

Step 1a: Include the Generated Header File

Define the generated client header file. This header file includes the RPC runtime header file erx.h
and defines structures and prototypes for your RPC messages.

/* include generated header file */
#include "cmail.h"

Step 1b: Define Global Variables to Communicate with the Client Interface Objects

/* Required global variables for the CLIENT interface */

ERXeReturnCode ERXrc;
ERX_CLIENT_IDENTIFICATION ERXClient;
ERX_SERVER_ADDRESS ERXServer;
ERX_SERVER_ADDRESS ERXServerDefault;
ERXCallId ERXCall1ID;
ERX_ERROR_INFO ERXErrorInfo;

6 Reliable RPC

Reliable RPC for C Wrapper

Step 2: Required Settings for the C Wrapper

Step 2a: Identify the User with a Broker User ID

For implicit broker logon, if required in your environment, the client password can be given here.
It is provided then through the RPC interface object call.

/* set client identification */

memset(&ERXClient, 0, sizeof(ERXClient));
strcpy((char*) ERXClient.szUserId, "ERX-USER");
strcpy((char*) ERXClient.szPassword, "ERX_PASS");

Step 2b: Set the Broker and Service to be Called

Your application will wait a maximum of 55 seconds for a server response. If the server does not
answer within this period, the broker gives your program control again with an error code 00740074.

ERXServer.Medium = ERX_TM_BROKER_LIBRARY;
ERXServer.ulTimeQut = 55;

/* set Broker-Id, server-name, class-name and service-name */

strcpy((char*) ERXServer.Address.BROKER.szEtbidName, "ETBOO1");
strcpy((char*) ERXServer.Address.BROKER.szServerName, "SRVI");
strcpy((char*) ERXServer.Address.BROKER.szClassName, "RPC");

strcpy((char*) ERXServer.Address.BROKER.szServiceName, "CALLNAT");

Step 3: Register with the RPC Runtime

As a general rule, you have to register the RPC runtime before you use it. After registration, the
RPC runtime holds information on a per-thread basis. See also Using the RPC Runtime under
Writing Advanced Applications with the C Wrapper.

/* register to the RPC runtime */

ERXrc = ERXRegister(ERX_CURRENT_VERSION);
If (ERX_FAILED(C ERXrc))

{

/* code for error handling */

}

Reliable RPC 7

Reliable RPC for C Wrapper

Step 4: Broker Logon
We logon by EntireX Broker.

/* Logon to EntireX Broker Middleware */

ERXrc = ERXLogon(&ERXClient,
ERXServer.Address.BROKER_Library.szEtbidName);

if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 5: Set Reliable-State

Before reliable RPC can be used, the reliable state must be set to either ERX_RELIABLE_CLIENT_COMMIT
or ERX_RELIABLE_AUTO_COMMIT

/* Set reliable RPC state to client commit */

ERXrc = ERXSetReliableState(ERX_RELIABLE_CLIENT_COMMIT);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 6: Send the RPC Message

The RPC interface object SENDMAIL is called as a C procedure. See Calling Servers as Procedures or
Functions under Software AG IDL to C Mapping in the C Wrapper documentation.

/* do the remote procedure call */
SENDMAIL(gTo, gSubject, gText);

Step 7: Get the Reliable RPC Message ID

Get the reliable RPC message ID before you commit any reliable RPC messages, otherwise the
reliable ID will be lost and checking for the RPC message status will not be possible.

/* Get the reliable ID */

ERXrc = ERXGetReliableID(&ERXServer, pReliablelD);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

8 Reliable RPC

Reliable RPC for C Wrapper

Step 8: Check the Reliable RPC Message Status

After the reliable RPC message ID has been got, you can query the status of the reliable RPC
message. This is a separate call independent of any reliable RPC messages, so we use the default
server connection (ERXServerDefault). Valid reliable RPC message states can be found in header
file etbcdef.h. See Broker ACI Control Block Definition in the ACI for C documentation.

See Using Persistence and Units of Work in the general administration documentation, Understanding
UOW Status under Using Persistence and Units of Work in the general administration documentation
and Broker UOW Status Transition under Concepts of Persistent Messaging in the general administration
documentation for more information.

/* Check the reliable RPC message status */

ERXrc = ERXGetReliableStatus(&ERXClient,
&ERXServerDefault,
pReliablelD,
pReliableStatus);

if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 9: Send a Second RPC message
Send a second reliable RPC message.

/* do the remote procedure call */
SENDMAIL(gTo, gSubject, gText);

Step 10: Commit Both Reliable RPC Messages

Now we commit both reliable RPC messages. This will deliver all reliable RPC messages to the
server if it is available.

/* Commit all made reliable RPC messages */
ERXrc = ERXReliableCommit(&ERXServer);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Reliable RPC 9

Reliable RPC for C Wrapper

Step 11: Reset ERX_SERVER_ADDRESS

For reliable RPC, the ERX_SERVER_ADDRESS will be overwritten by the RPC runtime, so it is necessary
to reset the ERX_SERVER_ADDRESS structure with the required values.

/*

* After a ERXReliableCommit we have to use a new server connection
* 5o we restore our default server connection for further calls.
/)

memcpy (&ERXServer, &ERXServerDefault, sizeof(ERX_SERVER_ADDRESS));

Step 12: Check the Reliable RPC Message Status

To determine that reliable RPC messages are delivered, we query the reliable RPC message status
again. See also Step 8 above.

Step 13: Send a Third RPC message
Send a third reliable RPC message.

/* do the remote procedure call */
SENDMAIL(C gTo, gSubject, gText);

Step 14: Get the Reliable RPC Message ID
Get the reliable RPC message ID. See also Step 7.

/* Get the reliable ID */

ERXrc = ERXGetReliableID(&ERXServer, pReliablelD);
if(ERX_FAILED(CERXrc))

{

/* code for error handling */

}

Step 15: Check the Reliable RPC Message Status
After the reliable RPC message ID has been got, query the status of the reliable RPC message again.

/* Check the reliable RPC message status */

ERXrc = ERXGetReliableStatus(&ERXClient,
&ERXServerDefault,
pReliablelD,
pReliableStatus);

if(ERX_FAILED(ERXrc))

{

10 Reliable RPC

Reliable RPC for C Wrapper

/* code for error handling */
}

Step 16: Roll back the Third Message
Roll back the current reliable RPC message.

/* Roll back Message 3 */

ERXrc = ERXReliableRollback(&ERXServer);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 17: Check the Reliable RPC Message Status
After rolling back the reliable RPC message, query the status of the reliable RPC message.

/* Get the reliable RPC message status */

ERXrc = ERXGetReliableStatus(&ERXClient,
&ERXServerDefault,
pReliablelD,
pReliableStatus);

if(ERX_FAILED(CERXrc))

{

/* code for error handling */

}

Step 18: Broker Logoff

Log off from EntireX Broker.

/* Logoff from EntireX Broker Middleware */

ERXrc = ERXLogoff(&ERXClient,
ERXServerDefault.Address.BROKER_Library.szEtbidName);

if (ERX_FAILED(C ERXrc))

{

/* code for error handling */

}

Reliable RPC 11

Reliable RPC for C Wrapper

Step 19: Deregister with the RPC Runtime
As a general rule, after using the RPC runtime you should unregister from it. This will free all re-
sources held by the RPC runtime for the caller. See Using the RPC Runtime under Writing Advanced

Applications with the C Wrapper for more information.

/* unregister to the RPC runtime */
ERXUnregister();

Writing a Client using AUTO COMMIT

This section gives some hints for reliable RPC AUTO_COMMIT mode. It is not a complete example

and shows only the correct order of reliable RPC method calls. The reliable ID to check the message
status must be retrieved immediately after the reliable RPC message is sent and before any other
RPC runtime calls - otherwise the reliable ID is lost and retrieving the message status is not possible.

/* Initialize pERXServer */

* After initializing pERXServer with your connection settings (broker ID,
* server-name, calss-name, service-name) create a copy of it

* (pERXDefaultServer). Use this copy to resolve the reliable status after
* a reliable RPC message.

=)

memcpy (pERXServer, pERXDefaultServer, sizeof(ERX_SERVER_ADDRESS));

/* Set reliable state to AUTO_COMMIT */
ERXSetReliableState(ERX_RELIABLE_AUTO_COMMIT);

/* reliable RPC message 1 */

SENDMAIL(gTo, gSubject, gText);

/*

* The reliable ID must be resolved directly
* after a reliable RPC message

*/

ERXGetReliableID(pERXServer, pReliablelID);

12 Reliable RPC

Reliable RPC for C Wrapper

/* Resolve the reliable status */
ERXGetReliableStatus(pERXClient, pERXDefaultServer, pReliablelD,
pReliableStatus);

/* For a second AUTO_COMMIT RPC message, use a new server connection */
memcpy (pERXServer, pERXDefaultServer, sizeof(ERX_SERVER_ADDRESS));

/* reliable RPC message 2 */

SENDMAIL(gTo, gSubject, gText);

/*

* The reliable ID must be resolved directly
* after a reliable RPC message

*/

ERXGetReliableID(pERXServer, pReliablelID);

/* Resolve the reliable status */
ERXGetReliableStatus(pERXClient, pERXDefaultServer, pReliablelD,
pReliableStatus);

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it returns an error code different to 0000000. This causes a cancel of the
transaction (unit of work inside the Broker) and the error code is written to the user status field
of the unit of work.

For writing reliable RPC servers, see Using the C Wrapper for the Server Side (z/OS, UNIX, Windows,
BS2000/0SD, IBM i).

To execute a reliable RPC service with an RPC server, the parameter 10gon must be set to "YES",
see

® Configuring the BS2000/OSD Batch RPC Server under Administering the BS2000/0OSD Batch RPC
Server

= Setting Server Parameters for the RPC Server in the UNIX and Windows administration document-
ation

Reliable RPC 13

14

3 Reliable RPC for COBOL Wrapper

= Writing a Client
= Writing a Server

15

Reliable RPC for COBOL Wrapper

Writing a Client

The following steps describe how to write a COBOL reliable RPC client program with the scenario
Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE) in
the COBOL Wrapper documentation and Linkage access to RPC communication.

Reliable RPC requires an explicit broker logon. See Using Broker Logon and Logoff under Writing
Applications with the COBOL Wrapper.

Step 1: Declare the Data Structures for RPC Client Interface Objects

For every program definition in the Software AG IDL file, the templates will generate a copybook
file that describes the customer data of the interface as a COBOL structure. For ease of use, the
copybook can be embedded into the RPC client program.

However, if more appropriate, customer data structures can be used. In this case the COBOL data
types and structures must match the interfaces of the generated client interface objects, otherwise
unpredictable results will occur.

* Declare the customer data of the generated RPC interface
01 SENDMATL.

02 SM-COMA.
03 SM-TOADDRESS PIC X(60).
03 SM-SUBJECT PIC X(20).
03 SM-TEXT PIC X(100).

Step 2: Declare and Initialize the RPC Communication Area

The RPC communication area must be declared and initialized in your RPC client program as
follows:

* Declare RPC communication area
02 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" to COMM-VERSION.

16 Reliable RPC

Reliable RPC for COBOL Wrapper

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOL Wrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into your client interface objects:

* assign the broker to talk with
MOVE "Tocalhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with

MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.
* assign the user ID for Broker logon

MOVE "ERXUSER" to COMM-USERID.

MOVE "PASSWORD" to COMM-PASSWORD.

Step 4a: Perform a Broker Logon

MOVE "LO" TO COMM-FUNCTION.
EXEC CICS LINK
PROGRAM ("COBSRVI™")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

RESP (CICS-RESPI)
RESP?2 (CICS-RESP2)
END-EXEC.

Step 4b: Examine the Error Code

Check whether the logon call was successful or not.

Step 5: Enable Reliable RPC with CLIENT_COMMIT

Before reliable RPC can be used, the reliable state must be set to either ERX_RELIABLE_CLIENT_COMMIT
or ERX_RELIABLE_AUTO_COMMIT.

= "C"-CLIENT_COMMIT
= "A"-AUTO_COMMIT

Reliable RPC 17

Reliable RPC for COBOL Wrapper

* Set the reliable RPC mode
MOVE "C" TO COMM-RELIABLE-STATE.

Step 6a: Send the RPC Message
The RPC message is sent using the EXEC CICS LINK interface.

* Send the RPC message
MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK
PROGRAM ("SENDMAIL")
RESP (CICS-RESP1)
RESP?2 (CICS-RESP2)
COMMAREA (SENDMATL)
LENGTH (LENGTH OF SENDMATIL)
END-EXEC.

Step 6b: Examine the Error Code

When the RPC message is returned, it needs to be checked whether it was successful or not:

IF COMM-RETURN-CODE IS = ZERO
Perform success-handling
ELSE
Perform error-handling
END-IF.

The field COMM-RETURN-CODE in the RPC communication area contains the error provided
by the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

Note: After successful call (Step 6a) the UOWID is available in the RPC communication area

field COMM-ETB-UQW-ID. See The RPC Communication Area (Reference) in the COBOL Wrapper
documentation.

Step 7a: Check the Reliable RPC Message Status

To determine that reliable RPC messages are delivered, the reliable RPC message status can be
queried. See Understanding UOW Status under Using Persistence and Units of Work in the general
administration documentation and Broker UOW Status Transition under Concepts of Persistent
Messaging in the general administration documentation for more information.

18 Reliable RPC

Reliable RPC for COBOL Wrapper

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESPZ.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ~ ("COBSRVI™)

RESP (CICS-RESPI)

RESPZ (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

Note: After successful call the UOW status is available in the RPC communication area field

COMM-RELIABLE-STATUS. See The RPC Communication Area (Reference) in the COBOL Wrapper
documentation.

Step 7b: Examine the Error Code

Check whether the check status call was successful or not.

Step 8: Send a Second RPC Message

Send a second reliable RPC message. See Step 6a and Step 6b.

Step 9: Check the Reliable RPC Message Status

Check the reliable RPC message before the commit call. See Step 7a and Step 7b.
Step 10a: Commit both Reliable RPC Messages

Now both reliable RPC messages are committed. This will deliver all reliable RPC messages to
the server if it is available.

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RC" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ~ ("COBSRVI™)

RESP (CICS-RESPI)

RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

Reliable RPC 19

Reliable RPC for COBOL Wrapper

Step 10b: Examine the Error Code

Check whether the commit call was successful or not.

Step 11: Send a Third RPC Message

Send a third reliable RPC message. See Step 5a and Step 5b.

Step 12: Check the Reliable RPC Message Status

Check the reliable RPC message before the rollback call. See Step 6.

Step 13a: Roll Back the Third RPC Message

Roll back the current reliable RPC message.

MOVE DFHRESP(NORMAL) TO CICS-RESPIL.
MOVE DFHRESP(NORMAL) TO CICS-RESPZ.
MOVE "RR" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")

RESP (CICS-RESPI)

RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

Step 13b: Examine the Error Code

When the rollback call is returned, check whether it was successful or not. If the rollback call failed,
an explicit EOC needs to be sent:

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESPZ.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")

RESP (CICS-RESPI)

RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

20 Reliable RPC

Reliable RPC for COBOL Wrapper

Step 14a: Perform a Broker Logoff

MOVE "LF" TO COMM-FUNCTION.
EXEC CICS LINK
PROGRAM ("COBSRVI")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

RESP (CICS-RESPI)
RESP2 (CICS-RESP2)
END-EXEC.

Step 14b: Examine the Error Code

Check whether the logoff call was successful or not.

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it returns an error code greater than zero. This causes the transaction (unit
of work inside the Broker) to be cancelled, and the error code is written to the user status field of
the unit of work. For writing reliable RPC servers, see Using the COBOL Wrapper for the Server Side.

To execute a reliable RPC service with an RPC server:

" the parameter 10gon must be set to "YES", see
® Configuring the RPC Server under Administering the Batch RPC Server
® Configuring the RPC Server under Administering the EntireX RPC Server under z/OS IMS
® Configuring the RPC Server under Administering the Micro Focus RPC Server

® Configuring the BS2000/0OSD Batch RPC Server under Administering the BS2000/OSD Batch RPC
Server

" the parameter LOGN must be set to "YES", see Configuring the RPC Server.

Reliable RPC 21

22

4 Reliable RPC for DCOM Wrapper

= Writing a Client
= Writing a Server

23

Reliable RPC for DCOM Wrapper

Writing a Client

All methods for reliable RPC are available on the interface object. See Standard Wrapper Properties
under Generated DCOM Wrapper Objects for details. The methods are

" RPCService.Reliable (put and get)
" RPCService.ReliableCommit

" RPCService.ReliableRollback

" RPCService.MessagelD

" RPCService.get_StatusOfMessage

Create Broker object and interface object:

// DCOM Wrapper Object
MAILClass mail;
mail.Logon();

Disable reliable RPC:

mail.Reliable = mail.RELIABLE_OFF;

Enable reliable RPC with AUTO_COMMIT or CLIENT_COMMIT:

mail.Reliable = mail.RELIABLE_AUTO_COMMIT;
mail.Reliable = mail.RELIABLE CLIENT_COMMIT;

The first RPC message:

mail.SENDMAIL("mail receiver", "Subject 1", "Text 1");

Check the status: get the message ID first and use it to retrieve the status:

String messagelD = mail.MessagelD;
String messageStatus = mail.get_StatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);

The second RPC message:

24 Reliable RPC

Reliable RPC for DCOM Wrapper

mail.SENDMAIL("mail receiver", "Subject 2", "Text 2");

Commit the two messages:

mail.ReliableCommit();

Check the status again for the same message ID:

messageStatus = mail.get_StatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);

The third RPC message.

mail.SENDMAIL("mail receiver", "Subject 3", "Text 3");

Check the status: get the new message ID and use it to retrieve the status:

messagelD = mail.MessagelD();
messageStatus = mail.get_StatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);

Roll back the third message and check status:

mail.ReliableRollback();

messageStatus = mail.getStatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);
mail.logoff();

Limitations

® All program calls that are called in the same transaction (CLIENT_COMMIT) must be in the
same IDL library.

" Jtis not allowed to switch from CLIENT _COMMIT to AUTO_COMMIT in a transaction.

" Messages (IDL programs) must have only IN parameters.

Writing a Server

The server implementation consist of the four classes

® Abstract<IDL library name>Server
® <IDL library name>
® <IDL library name>Server

* <IDL library name>Stub

Reliable RPC 25

Reliable RPC for DCOM Wrapper

Add your implementation to the class <IDL library name>Server. There are no server-side methods
for reliable RPC. The server does not send back a message to the client. The server can run deferred,
thus client and server do not necessarily run at the same time. If the server fails, it throws an ex-
ception. This causes a cancel of the transaction (unit of work inside the broker) and the error code
is written to the user status field of the unit of work.

26 Reliable RPC

5 Reliable RPC for .NET Wrapper

= Writing a Client
= Writing a Server

27

Reliable RPC for .NET Wrapper

Writing a Client

All methods for reliable RPC are available on the service class object. See description of class
Service under Writing Applications with the NET Wrapper for details. The methods are:

= Service.SetReliableState
" Service.getReliableState
= Service.ReliableCommit
" Service.ReliableRollback
= Service.GetReliableld

= Service.GetReliableStatus

Example (this example is included as source in folder examples \ ReliableRPC\ NetClient)

Create Broker object and interface object.

Mail mail = new Mail();
mail.service.broker.logon();

Enable reliable RPC with CLIENT_COMMIT:

mail.SetReliableState(Service.ReliableState.RELIABLE_AUTO_COMMIT) ;

The first RPC message.

mail.Sendmail("mail receiver", "subject 1", "Text 1");

Check the status: get the message ID first and use it to retrieve the status.

StringBuilder reliableID = new StringBuilder();
StringBuilder reliableStatus = new StringBuilder();

mail.service.GetReliablelD(ref reliablelD);
mail.service.GetReliableStatus(reliablelID, ref reliableStatus);

Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Qut.WriteLine("Reliable Status = " + reliableStatus.ToString());
The second RPC message.

28 Reliable RPC

Reliable RPC for .NET Wrapper

mail.Sendmail("mail receiver", "subject 2", "Text 2");

Commit the two messages.

mail.service.ReliableCommit();

Check the status again for the same message ID.

mail.service.GetReliableStatus(reliablelID, ref reliableStatus);

Console.Out.WritelLine("Reliable ID = " + reliablelID.ToString());
Console.Out.WritelLine("Reliable Status = " + reliableStatus.ToString());
The third RPC message.

mail.Sendmail("mail receiver", "subject 3", "Text 3");

Check the status: get the new message ID and use it to retrieve the status.

mail.service.GetReliablelID(ref reliablelD);
mail.service.GetReliableStatus(reliablelID, ref reliableStatus);
Console.Out.WritelLine("Reliable ID = " + reliablelID.ToString());
Console.Qut.WritelLine("Reliable Status = " + reliableStatus.ToString());

Roll back the third message and check status.

mail.service.ReliableRollback();
mail.service.GetReliableStatus(reliablelID, ref reliableStatus);

Console.Out.WriteLine("Reliable ID = " + reliablelID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

mail.service.broker.logoff();
Limitations

1. All program calls that are called in the same transaction (CLIENT_COMMIT) must be in the
same IDL library.
2. It is not allowed to switch from CLIENT _COMMIT to AUTO_COMMIT in a transaction.

3. Messages (IDL programs) must have IN parameters only.

Reliable RPC 29

Reliable RPC for .NET Wrapper

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it throws an exception. This causes the transaction (unit of work inside the
broker) to be cancelled, and the error code is written to the user status field of the unit of work.

30 Reliable RPC

6 Reliable RPC for Java Wrapper

= Writing a Client
= Writing a Server

31

Reliable RPC for Java Wrapper

Writing a Client

All methods for reliable RPC are available on the interface object. See RPCService in the Javadoc
documentation of the Java ACI for details. The methods are:

® RPCService.setReliable

® RPCService.getReliable

® RPCService.reliableCommit

® RPCService.reliableRollback

® RPCService.getMessageld

" RPCService.getStatusOfMessage

Example (this example is included as source in the examples/RPC/reliable/JavaClient folder):

Create Broker object and interface object.

Broker broker = new Broker(Mail.DEFAULT_BROKERID, userID);
Mail mail = new Mail(broker);
broker.logon();

Enable reliable RPC with CLTENT_COMMIT

mail.setReliable(RPCService.RELIABLE_CLIENT_COMMIT) ;

The first RPC message.

mail.sendmail("mail receiver", "Subject 1", "Text 1");

Check the status: get the message ID first and use it to retrieve the status.

String messagelID = mail.getMessagelD();
String messageStatus = mail.getStatusOfMessage(messagelD);

System.out.printin("Status: " + messageStatus + ", id: " + messagelD);
The second RPC message.
mail.sendmail("mail receiver", "Subject 2", "Text 2");

Commit the two messages.

32 Reliable RPC

Reliable RPC for Java Wrapper

mail.reliableCommit();

Check the status again for the same message ID.

messageStatus = mail.getStatusOfMessage(messagelD);

System.out.printin("Status: " + messageStatus + ", id: " + messagelD);
The third RPC message.
mail.sendmail("mail receiver", "Subject 3", "Text 3");

Check the status: get the new message ID and use it to retrieve the status.

messagelID = mail.getMessagelID();
messageStatus = mail.getStatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);

Roll back the third message and check status.

mail.reliableRollback();

messageStatus = mail.getStatusOfMessage(messagelD);
System.out.printin("Status: " + messageStatus + ", id: " + messagelD);
broker.logoff();

Limitations

1. All program calls that are called in the same transaction (CLIENT_COMMIT) must be in the same
IDL library.

2. Itis not allowed to switch from CLIENT _COMMIT to AUTO_COMMIT in a transaction.

3. Messages (IDL programs) have IN parameters only.

Writing a Server

The server implementation consist of the four classes:

" Abstract<IDL library name>Server

" <IDL Tibrary name>

® <IDL Tibrary name>Server

® <IDL Tibrary name>Stub

Add your implementation to the class <IDL Tibrary name>Server. There are no server-side

methods for reliable RPC. The server does not send back a message to the client. The server can
run deferred, thus client and server do not necessarily run at the same time. If the server fails, it

Reliable RPC 33

Reliable RPC for Java Wrapper

throws an exception. This causes a cancel of the transaction (unit of work inside the Broker) and
the error code is written to the user status field of the unit of work.

34 Reliable RPC

7 Reliable RPC for XML/SOAP Wrapper

= Writing a Client
= Writing a Server

35

Reliable RPC for XML/SOAP Wrapper

Writing a Client

The client has to set the parameter exx-reliable in the HTTP header or in the XML/SOAP payload.
For more information see Writing Advanced Applications with the XML/SOAP Wrapper.

Writing a Server

Not applicable.

36 Reliable RPC

	Reliable RPC
	Table of Contents
	Reliable RPC
	1 Overview of Reliable RPC
	Introduction to Reliable RPC
	Broker Configuration

	2 Reliable RPC for C Wrapper
	Writing a Client
	Step 1: Base Declarations Required by the C Wrapper
	Step 1a: Include the Generated Header File
	Step 1b: Define Global Variables to Communicate with the Client Interface Objects

	Step 2: Required Settings for the C Wrapper
	Step 2a: Identify the User with a Broker User ID
	Step 2b: Set the Broker and Service to be Called

	Step 3: Register with the RPC Runtime
	Step 4: Broker Logon
	Step 5: Set Reliable-State
	Step 6: Send the RPC Message
	Step 7: Get the Reliable RPC Message ID
	Step 8: Check the Reliable RPC Message Status
	Step 9: Send a Second RPC message
	Step 10: Commit Both Reliable RPC Messages
	Step 11: Reset ERX_SERVER_ADDRESS
	Step 12: Check the Reliable RPC Message Status
	Step 13: Send a Third RPC message
	Step 14: Get the Reliable RPC Message ID
	Step 15: Check the Reliable RPC Message Status
	Step 16: Roll back the Third Message
	Step 17: Check the Reliable RPC Message Status
	Step 18: Broker Logoff
	Step 19: Deregister with the RPC Runtime

	Writing a Client using AUTO COMMIT
	Writing a Server

	3 Reliable RPC for COBOL Wrapper
	Writing a Client
	Step 1: Declare the Data Structures for RPC Client Interface Objects
	Step 2: Declare and Initialize the RPC Communication Area
	Step 3: Required Settings in the RPC Communication Area
	Step 4a: Perform a Broker Logon
	Step 4b: Examine the Error Code
	Step 5: Enable Reliable RPC with CLIENT_COMMIT
	Step 6a: Send the RPC Message
	Step 6b: Examine the Error Code
	Step 7a: Check the Reliable RPC Message Status
	Step 7b: Examine the Error Code
	Step 8: Send a Second RPC Message
	Step 9: Check the Reliable RPC Message Status
	Step 10a: Commit both Reliable RPC Messages
	Step 10b: Examine the Error Code
	Step 11: Send a Third RPC Message
	Step 12: Check the Reliable RPC Message Status
	Step 13a: Roll Back the Third RPC Message
	Step 13b: Examine the Error Code
	Step 14a: Perform a Broker Logoff
	Step 14b: Examine the Error Code

	Writing a Server

	4 Reliable RPC for DCOM Wrapper
	Writing a Client
	Writing a Server

	5 Reliable RPC for .NET Wrapper
	Writing a Client
	Writing a Server

	6 Reliable RPC for Java Wrapper
	Writing a Client
	Writing a Server

	7 Reliable RPC for XML/SOAP Wrapper
	Writing a Client
	Writing a Server

