5 software~

webMethods EntireX

EntireX PL/I Wrapper

Version 9.5 SP1

November 2013

webMethods EntireX

This document applies to webMethods EntireX Version 9.5 SP1.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXPLIWRAPPER-95SP1-20140628

Table of Contents

EntireX PL/I WIQPPeT ...coooviiiiiiiiiiiiiiiiiic i v
1 Introduction to the PL/T WIappercccoevviiiiiiiiiiiiiiicccccc 1
DeSCIIPHION ..ot 2
Generic RPC Services Modulecccoooiiiiiiiiiiiiiiiii 2
PL/I Client Applicationsccccoiiiiiiiiiiiiiiiiiciiecie e 4
PL/I Server APPLCAtionc.ocuiiiiiiiiiiiiiiicccei e 4
2 Using the PL/T WIQPPET ...cveiiiiiiiiiiiiiieiee ettt e 7
Using the PL/I Wrapper for the Client-sideccccovviiiiiiiiiiiiiiiii, 8
Using the PL/I Wrapper for the Server Sideccccooiiiiiiiiiiii, 16
Generating PL/I Source Files from Software AG IDL Filesccccocoviiiiiiinninns 22
3 Using the PL/I Wrapper in Command-line Modec.cccocooiiiiiiiiiiiiis 27
Command-line OPtioNSccceeiiiiiiiiiiiiiiii e 28
Example Generating an RPC Clientcccocooiiiiiiiiiiiic 28
Example Generating an RPC Servercccocoiiiiiiiiiiiiiiiiicccics 29
Further EXamplescccooiiiiiiiiiiiiiiiicc 29
4 Software AG IDL t0 PL/I MapPINgc.ccccoviiiiiiiiiiiiiicicciccicciceeeeeec e 33
Mapping IDL Data Types to PL/I Data TyPescccceevvevuiiiiiiiiiiiiiiiiiiciiece 34
Mapping Library Name and Aliascccocoeviiiiiiiiiiiiiiccc 37
Mapping Program Name and Aliascccceeviiiiiiiiiiiiiiiiiiicicceccc e 37
Mapping Parameter Namesccccooviiiiiiiiiiiiiiiiiic 38
Mapping Fixed and Unbounded Arrayscccocooviiiiiiiiiiiiiiic 39
Mapping Groups and Periodic GIroupscccocceevviiiiiiiiiiiiiiiiiiiiiiicciccecen 40
Mapping SrUCTUTEScceiiiiiiiiiiice e 40
Mapping the Direction Attributes IN, OUT, INOUTccccceeviiiiiniiiniiiiiine 40
Mapping the ALIGNED Attributecccccoooiiiiiiiiiiiiiiii, 41
Calling Servers as Procedures or FUNCHONSccceeiiiiiiiiiiiiiiiiiiiiciicecee, 41
5 Writing an RPC Client Application with the PL/I Wrapperccccccocvvviiiiiiiinnnnnnne 43
Step 1: Generic Declarations Required by the PL/I Wrapperc.cccccoevininninnenn. 44
Step 2: Declare the (Generated) Data Structures for (Generated) Interface
ODJECES .ot 45
Step 3: Declare ENTRY Definitions to (Generated) Interface Objects 45
Step 4: Required Settings in the RPC Communication Areacccccoeuviiuinnnnnnn. 46
Step 5: Optional Settings in the RPC Communication Areac.ccccccoviiiniinnnnnnn. 46
Step 6: Issue the RPC Requestccccociiiiiiiiiiiiiiiiiiiiiiiccc 46
Step 7: Examine the Error Code ..o 47
6 Using Broker Logon and Logoffcccccociiiiiiiiiiiiiiiiiccc 49
Log on to the BroKerccociiiiiiiiiiic 50
Log off from the BroKerccccoiiiiiiiiiiiiiiiiiiciciiccecccececee e 51
Additional HIntscccooiiiiiiiiiiiiiiii 51
7 Using the RPC Communication ATeaccooouiiiiiiiiiiiiiiicicccce 53
8 Conversational RPCcccoiiiiiiiiiii 55
Using Conversational RPC ..o 56
Terminating a Conversational RPC Communicationccccceevviiiiiiniiniiininnnen. 58

EntireX PL/| Wrapper

Closing and Committing a Conversational RPC Communicationcccoce... 58
9 Using Natural SeCUTityccociiiiiiiiiiiii 61
10 USING TIACE ..ooiiiiiiiiiiiiiicciic e 63
Using Trace in Batch, CICS with Call Interfaces, and IMScccoooiiiinninnn 64
Using Trace in CICS ..o 64
11 Using Internationalization with the PL/I Wrappercccccoviiiiiiiiiniiiiiics 65
12 Client and Server Examples for z/OS CICSccccoooiiiiiiiiiiiiiiiiciecceeee, 67
Basic RPC Client Example - CALCc.ccocciiiiiiiiiiiiiiiiiiiicc, 68
Basic RPC Server Example - CALC ..ot 69
13 Client and Server Examples for z/OS Batchc.ccccovviiiiiiiiiiiiiiiiiiiiie 71
Basic RPC Client Example - CALC ..., 72
Basic RPC Server Example - CALCcccoiiiiiiiiiiiiiiiccccec e 73
14 Client and Server Examples for z/OSIMS BMPcccccovviiiiiiiiiiiiiiiiiiiciice, 75
15 PL/I Wrapper Referenceccccceivuiiiiiiiiiiiiiiiiiiiccccic s 77
The RPC Communication Area (Reference)cccovvuveeemiiiieiiniiieeenniieeeenieeeenn 78
PL/I Wrapper Modules Delivered as Sources on z/OSccccooevviiiiiiinennnnene. 81

iv EntireX PL/| Wrapper

EntireX PL/| Wrapper

The EntireX PL/I Wrapper provides access to RPC-based components from PL/I applications. It
enables you to develop both client and server applications.

Introduction Introduction to the PL/I Wrapper.

Using Step-by-step guide on how to generate interactively and build (write, compile and
link) clients and server applications with the PL/I Wrapper. Programming models
for batch, CICS and IMS PL/I RPC applications are introduced.

Command-line Mode Using the PL/I Wrapper in command-line mode.

IDL to PL/I Mapping Describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the PL/I programming language.

Writing Applications A step-by-step guide how to write applications with the PL/I Wrapper and an
introduction to further advanced topics.

Examples Describes the delivered PL/I Wrapper example programs.
Reference Provides reference material for the PL/I Wrapper.
Tracing Tracing for the PL/I Wrapper.

vi

1 Introduction to the PL/I Wrapper

LB =Yoo USRS PPPPPPRR
B GeneriC RPC SErviCes MOTUIEoiiiiiieiiiiii ettt e e et e e et e e e s nnaee e e
B PL/IClient APPHCALIONSeeeeeiei ettt e et e et e e e
B PL/SErVEr APPLICATION ... ettt a e e e

Introduction to the PL/l Wrapper

The EntireX PL/I Wrapper provides access to RPC-based components from PL/I applications. It
enables you to develop both client and server applications.

Description

The PL/I Wrapper provides access to RPC servers for PL/I client applications and access to PL/I
servers for any RPC client. PL/I Wrapper generation tools of the Workbench take as input a Software
AG IDL file, which describes the interface of the RPC, and generates PL/I sources that implement
the functions and data types of the interface.

Wrapper b PLA-based
Generic RPC Cliznts I
RPC Servers ! Services F
- <+ P podule
EntireX Broker
: e > -4 b PLN-basad
RPC Clients RFC Server = > Servers |
-

The generated functions can be compiled with the PL/I compiler of your target platform.
The PL/I Wrapper works as follows:

® PL/I code is generated from the Software AG IDL file.

® The generic RPC services module implements functionality that is not specific to a given IDL
file (e.g., broker logon and logoff). The generated PL/I code makes use of this functionality.

® The Software AG IDL Compiler and an appropriate template are used for the PL/I code genera-
tion.

Generic RPC Services Module

In order to minimize the amount of code generated for a specific IDL, all service-type functionality
required by the client interface object is implemented in a generic RPC services module.

The generic RPC services module contains the call to the broker stub, as well as other functions
needed for RPC communication where an interface object is not needed, such as:

® Broker Logon and logoff

2 EntireX PL/| Wrapper

Introduction to the PL/l Wrapper

® Conversational support
® Connecting RPC clients to RPC servers via the broker

" etc.

For more information, see Using the Generic RPC Services Module.

EntireX PL/| Wrapper 3

Introduction to the PL/l Wrapper

PL/I Client Applications

For a given IDL file, the Software AG IDL Compiler and a PL/I code generation template for clients
are used to generate client interface objects and include files. The source code generated by the
PL/I Wrapper can be compiled with your target PL/I compiler. Application developers use the
generated client interface object(s) and the include files to write PL/I applications that access RPC
servers.

PLII Client DL RPC Server

Programmer

I: > EntireX - >
- Broker

Client Wrapper

(FL/l RPC Stub) | lSEfl.rEi’ ’
mplamentation
—
Generic RPC |
Services Module
—

For more information, see Using the PL/I Wrapper.

PL/I Server Application

The Software AG IDL Compiler and a PL/I code generation template for servers are used to gen-
erate a server (skeletons) for a specific IDL. Most target environments in batch mode and CICS
work without interface objects. For IMS, server interface objects are generated too and have to be
used.

Application developers use the generated server (skeleton) to write their own server code for each
program in the IDL. The source code is compiled and linked with your target PL/I compiler. Your
server program names need to match the program name as specified in the IDL file.

4 EntireX PL/| Wrapper

Introduction to the PL/I Wrapper

RPC
Client

Serverm#q:pa'm |
i (PL/I RPC Stub)

Server
Implementation

(1) The server wrapper is required for target platform IMS.

For more information, see Using the PL/I Wrapper.

EntireX PL/| Wrapper

2 Using the PL/l Wrapper

= Using the PL/I Wrapper for the CHENt-SIAEvvviiiiiieeee e 8
= Using the PL/I Wrapper for the Server Sideoooiiiiiiiiii e 16
= Generating PL/I Source Files from Software AG IDL FileSvvviiiiiiiiiiiiiicc e 22

Using the PL/I Wrapper

Using the PL/I Wrapper for the Client-side

The EntireX PL/I Wrapper provides access to RPC-based components from PL/I applications. It
enables you to develop both client and server applications.

This section introduces the various possibilities for RPC-based client applications written in PL/I.

= Using the PL/I Wrapper for Batch Mode (z/OS and z/VSE)
= Using the PL/I Wrapper for CICS

= Using the PL/I Wrapper for CICS with Call Interfaces

= Using the Generic RPC Services Module

= Hints for Compiling and Linking (Binding)

= PL/| Preprocessor Settings

A step-by-step guide is provided in the section Writing Applications with the PL/I Wrapper. Read
this section first before writing your first RPC client program.

Using the PL/l Wrapper for Batch Mode (z/OS and z/VSE)

This mode applies to IMS, z/OS and z/VSE.

Call Interface 2
Target Platform: Batch for ...(%)

generated -

Specific RPC Functions PLISRVS

I Call Interface

Broker Stub

8 EntireX PL/| Wrapper

Using the PL/I Wrapper

@ The linkage name of the module can be customized, see ERXPREFIX under PL/I Preprocessor
Settings.

@ For the target platforms see Generating PL/I Source Files from Software AG IDL Files.

In this scenario, the PL/I RPC client customer application, every generated client interface object,
the specific RPC functions module (PLISRVS), the Batch Using the Generic RPC Services Module
(PLISRVIB) and the broker stub are linked together to an executable application.

» To use the PL/l Wrapper for Batch

1

Generate the client interface objects for the target, e.g. "Batch for z/OS". See Generating PL/I
Source Files from Software AG IDL Files.

If necessary, use FTP to transfer the client interface object to the target platform where you
write your application.

Write your PL/I RPC client application. See Writing Applications with the PL/I Wrapper.

If necessary, use FTP to transfer the client interface object and your application to the target
platform where you compile your application.

Set the preprocessor switch ERXTARGET in file RPCPPS (PL/I Preprocessor Settings) to "BATCH".

Compile the following, using a PL/I compiler supported by PL/I Wrapper:

" the generated client interface object(s)
* the specific RPC functions module (PLISRVS)
* the batch generic RPC service module (PLISRVIB)

your PL/I RPC client customer application

Note the Hints for Compiling and Linking (Binding).

Link (bind) all compiled modules together with the broker stub to an executable program,
using the standard linker (binder) of the target platform. Use a broker stub supported for
batch processing in your environment.

EntireX PL/| Wrapper

Using the PL/I Wrapper

Using the PL/l Wrapper for CICS

EXEC CICS LINK Tﬂl‘gEt Platform: CICS for ... (3)

generated -

Specific RP

functions ifi
Specific RP
- PLISRVS() fynctions Spedific RPC
PLISRVS(T) fynctions

PLISRVS{1)

EXEC CICS LINK

Broker Stub

@ The linkage name of the module can be customized, see £RXPREFIX under PL/I Preprocessor
Settings.

@ The CICS name of the module can be customized, see ERXPREFIX under PL/I Preprocessor Set-
tings.

@ For the target platforms, see Generating PL/I Source Files from Software AG IDL Files.

In this scenario the PL/I RPC Client Customer Application, every generated client interface object
and the CICS Using the Generic RPC Services Module (PLISRVIC) are installed each as separate
individual CICS programes.

The broker stub is linked together with the CICS Generic RPC Services (PLISRVIC) only, thus an
update of the broker stub merely requires relinking and reinstallation of the Generic RPC Service
module. The client interface objects themselves are not involved.

Use the PL/I Wrapper for CICS if

® you want to have an EXEC CICS LINK interface to your RPC stubs,

" you wish to separate the broker stub from the client interface objects(s)

10 EntireX PL/| Wrapper

Using the PL/I Wrapper

" you require a distributed program link to the client interface object(s).

» To use the PL/l Wrapper for CICS

1

10

Generate the RPC stub for the target, e.g. "CICS for z/OS". See Generating PL/I Source Files
from Software AG IDL Files.

If necessary, use FTP to transfer the client interface object to the target platform where you
write your application.

Write your PL/I RPC client application (see Writing Applications with the PL/I Wrapper),
taking into consideration the manner in which CICS programs are called.

If necessary, use FTP to transfer the client interface object and your application to the target
platform where you translate and compile your application.

Set the preprocessor switch ERXTARGET in file RPCPPS (PL/I Preprocessor Settings) to "CICS".
Using the CICS translator for PL/I provided with your CICS installation and a PL/I compiler
supported by PL/I Wrapper, translate and compile the following:

" the generated client interface object(s)

* the specific RPC functions module (PLISRVS)

® the CICS Generic RPC Service module (PLISRVIC)

= your PL/I RPC client customer application

Note the Hints for Compiling and Linking (Binding).

Link (bind) every generated client interface object together with thespecific RPC functions
module (PLISRVS) to a CICS program, using the standard linker (binder) of the target platform.

Link (bind) the CICS RPC service module (PLISRVIC) together with the broker stub to a CICS
program, using the standard linker (binder) of the target platform. Use a broker stub supported
in CICS. The CICS name of the module is PLISRVI and it can be customized, see ERXPREFIX
under PL/I Preprocessor Settings.

Link (bind) your PL/I RPC client customer application, using the standard linker (binder) of
the target platform.

Install every client interface object, the CICS RPC service module and your PL/I RPC client
customer application from the previous steps as separate CICS programs.

EntireX PL/| Wrapper "

Using the PL/I Wrapper

Using the PL/l Wrapper for CICS with Call Interfaces

Call Interface 2
Target Platform: Batch for ...(%)

generated -

Specific RPC Functions PLISRVS

I Call Interface

Broker Stub

@ The linkage name of the module can be customized, see £RXPREFIX under PL/I Preprocessor
Settings

@ For the target platforms, see Generating PL/I Source Files from Software AG IDL Files

The PL/I Wrapper could be used with a call interface, even in CICS. This means you build an ap-
plication where the PL/I RPC client customer application, every generated client interface object,
the specific RPC functions module (PLISRVS), the Batch Using the Generic RPC Services Module
(PLISRVIB) and the broker stub are linked together to an executable application, similar to the
Batch scenario.

Using a call interface within CICS may be useful if

" the restriction of the COMMAREA length (about 31 KB) prevents you from using the CICS
scenario

® you prefer a call interface instead of EXEC CICS LINK

12 EntireX PL/| Wrapper

Using the PL/I Wrapper

» To use the PL/l Wrapper with a call interface within CICS

1 Generate the client interface object for the target, e.g. "Batch for z/OS". See Generating PL/I
Source Files from Software AG IDL Files.

2 If necessary, use FTP to transfer the client interface object to the target platform where you
write your application.

3 Write your PL/I RPC client application. See Writing Applications with the PL/I Wrapper.

4 If necessary, use FTP transfer the client interface object and your application to the target
platform where you translate and compile your application.

5 Set the preprocessor switch ERXTARGET in file RPCPPS (PL/I Preprocessor Settings) to "BATCH".
6 Using the CICS translator for PL/I provided with your CICS installation and a PL/I compiler
supported by PL/I Wrapper, translate and compile the following:
" the generated client interface object(s)
* the specific RPC functions module (PLISRVS)
® the Batch RPC Service module (PLISRVIB)

PL/I RPC client customer application

See Hints for Compiling and Linking (Binding).

7 Link (bind) all translated and compiled modules together with the broker stub to a CICS

program, using the standard linker (binder) of the target platform. Use a broker stub supported
in CICS.

8 Install the program within CICS.
Using the Generic RPC Services Module

The generic RPC services module contains the call to the broker stub, as well as other functions
needed for RPC communication where a client interface object is not needed, such as
® Logon to broker LO and Logoff from broker LE. See Using Broker Logon and Logoff.

® Open Conversation OC, Close Conversation CB and Close Conversation with Commit CE. See
Conversational RPC.

® Create a Natural Security Token. See Using Natural Security.

Depending on your target environment the generic RPC services module is delivered in various
sources:

® For CICS, use the source PLISRVIC. This module is shared by all PL/I RPC client applications
because it is installed only once within CICS.

® For Batch and CICS with Call Interfaces use the source PLISRVIB.

EntireX PL/| Wrapper 13

Using the PL/I Wrapper

The program and linkage name of the generic RPC service module

" is PLISRVI by default
® does not depend on the source module used (PLISRVIB or PLISRVIC)

" can be customized, see PL/I Preprocessor Settings

The delivery of the generic RPC service module and other required modules depends on the
platform you are using.

® For platform z/OS, see PL/I Wrapper Modules Delivered as Sources on z/OS.
Hints for Compiling and Linking (Binding)

® The delivered generic RPC include data set EXP951.INCL (this data set may be delivered as a
patch with a different name EXP951.INnn, where nn is the patch level number, make sure you
install the highest patch level available) is required to SYSLIB input for the PL/I compiler.

® For a non-tracing version, the Trace Functions module delivered in the source PLISRVT in the
generic RPC source data set EXP951.SRCE must not be compiled and linked to your application.

PL/I Preprocessor Settings

The PL/I Wrapper requires the PL/I preprocessor for all scenarios, that is, the templates generate
source code including preprocessor statements. See your PL/I compiler documentation on how
to switch on the PL/I preprocessor.

The preprocessor settings are customized in the file RPCPPS; see PL/I Wrapper Modules Delivered
as Sources on z/OS. The following switches are available:

Preprocessor
Switch Values Explanation

ERXTARGET BATCH | CICS This is the most important switch. The setting must always be the
same as the target option during generation, i.e. when using the PL/I
Wrapper

= for Batch, it must be set to "BATCH"

= for CICS, it must be set to "CICS"

= for CICS with call interfaces, it must be set to "BATCH"

If the setting is not the same, it will not be possible to compile the PL/I
Wrapper successfully.

ERXPREFIX |A prefix composed |With this switch you can customize a prefix of the program and linkage
of any three name of the

characters valid for
PL/I names = Specific RPC Functions module (xxxSRVS)

® Generic RPC Services module (xxxSRVT)

14 EntireX PL/| Wrapper

Using the PL/I Wrapper

Preprocessor
Switch

Values

Explanation

® Trace Functions module (xxxSRVT)

The default of the prefix is PLI, the resulting linkage names therefore
are PLISRVS, PLISRVI and PLISRVT. In the scenario of CICS the prefix

also customizes the CICS program name (xxxSRVI) for the Generic
RPC Services module.

ERXTRACE

YES
NO

With this switch you can build a trace version, See Using Trace. For a

non-tracing version, if set to “NO”, the Trace Functions module

delivered in source RPCSRVT must not be compiled and linked to your

application.

EntireX PL/| Wrapper

15

Using the PL/I Wrapper

Using the PL/I Wrapper for the Server Side

The EntireX PL/I Wrapper provides access to RPC-based components from PL/I applications. It
enables you to develop both client and server applications.

This section introduces the various possibilities for RPC-based server applications written in PL/I.

= Using the PL/I Wrapper for Batch Mode (IMS, z/OS and z/VSE)
= Using the PL/I Wrapper for CICS

= Using the PL/I Wrapper for IMS BMP

= Hints for Compiling and Linking (Binding)

Using the PL/l Wrapper for Batch Mode (IMS, z/OS and z/VSE)

This scenario applies to IMS, z/OS and z/VSE.

Call Interface

J Target Platform: Batch for ...(!)

hd

@ For the target platforms, see Generating PL/I Source Files from Software AG IDL Files

In batch mode the RPC server requires no server interface objects. All parameters of your server
are set up dynamically in the format required. Your server is called dynamically using standard
call interfaces.

» To use the PL/l Wrapper for batch
1 Generate the server (skeleton) for the target e.g. "Batch for z/OS". See Generating PL/I Source
Files from Software AG IDL Files.

2 Ifnecessary, use FTP to transfer the server (skeleton) to the target platform where you write
your server.

16 EntireX PL/| Wrapper

Using the PL/I Wrapper

3 Use the generated server (skeleton) and complete it by applying your application logic.

4 Ifnecessary, use FTP to transfer the server interface object and your server to the target platform
where you compile your server.

5 Compile it using a PL/I compiler supported by PL/I Wrapper on your server.

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform.

7 Provide the server and the server interface object to the RPC Server for Batch.

EntireX PL/| Wrapper 17

Using the PL/I Wrapper

Using the PL/l Wrapper for CICS

EXEC CICS LINK

! Target Platform: CICS for ... (1)

b

@ For the target platforms, see Generating PL/I Source Files from Software AG IDL Files

In CICS the RPC Server requires no server interface objects. All parameters of your server are set
up dynamically in the format required. Your server is called using EXEC CICS LINK.

» To use the PL/l Wrapper for CICS

1 Generate the server (skeleton) for the target, e.g. "CICS for z/OS". See Generating PL/I Source
Files from Software AG IDL Files.

2 If necessary, use FTP to transfer the server (skeleton) to the target platform where you write
your server.

3 Use the generated server (skeleton) and complete it by applying your application logic.

4 Ifnecessary, use FTP to transfer the server interface object and your server to the target platform
where you translate and compile your server.

5 Translate and compile your server (including your application logic) using the CICS translator
for PL/I provided with your CICS installation and a PL/I compiler supported by PL/I Wrapper.

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform.

7 Install your server as a CICS program to provide it to the CICS RPC Server.

18 EntireX PL/| Wrapper

Using the PL/l Wrapper

Using the PL/l Wrapper for IMS BMP

Call Interface Target Platform: Batch for IMS (1)

l

generated

Call Interface
use

PSE List

@ For the target platforms, see Generating PL/I Source Files from Software AG IDL Files

In IMS, the RPC Server works with server interface objects. The interface objects provide the IMS-
specific PCB pointers to your server. Your server is called dynamically using standard call interfaces.
See IMS-specific PCB Pointers in the IMS RPC Server documentation.

PSB List

All IMS PCB pointers are listed in a so-called PSB list, an include file containing the PCB pointers
as PL/I declarations.

Example
Assume a program uses two PSB definitions:

" I0PCB for the terminal interactions to check whether all outstanding messages are displayed or
not

" DBPCB for all database interactions to read, add, delete or update segments in a given database.
Technically the PLI / DLI interface module PLITDLI is called with the selected function code and

PCB parameters. On return the necessary status information can be checked to control the further
processing within the application program.

EntireX PL/| Wrapper 19

Using the PL/I Wrapper

This status information is provided as parameter on return of the PLITDLI call. For this purpose,
the PCB areas have to be defined with a DECLARE statement and as parameters.

DCL 01 IOPCB

02 LTERM-NAME CHAR (08)
02 FILLER_IO1 CHAR (02)
02 TPSTATUS CHAR (02) ,
02 FILLER_IO2 CHAR (20);
DCL 01 DBPCB
02 DBNAME CHAR (08)
02 SEG_LEVEL_NO CHAR (02)
02 DBSTATUS CHAR (02) ,
02 FILLER CHAR (20);

DBREAD: PROC(IOPCB, DBPCB) OPTIONSC...)
Now IMS is able to pass ADDRESSES for the IOPCB and DBPCB on entry of the application program.

The PSB list would be:

10 IOPCB POINTER,
10 DBPCB POINTER;

In the application program itself the IMS parameter can only be identified by its name, thus it is
necessary to provide a list of PCBs as an include file.

This include file is provided by the customer.
® The PSB list must be named PSBLIST (otherwise generation will not be possible) and it must not

be empty, it must contain at least 1 PCB pointer.

® Itis used by the IDL Extractor for PL/I to find the IMS-specific PCB pointers. In the IDL file,
parameters originating from PCB pointers are marked with the attribute IMS.

® It is completed in the generated server interface object with the following level-1 parameter
name, to address the IMS-specific PCB pointers correctly:

/* IMS parameter */
DCL 1 IMS_PARAMETER,
%INCLUDE PSBLIST;

* Together with the level-1 parameter name the data declarations in the PSB list include file must
form valid PL/I data declarations - otherwise compilation is not possible.

» To use the PL/l Wrapper for IMS

1 Generate the server (skeleton) and server interface objects for the target "IMS for z/OS". See
Generating PL/I Source Files from Software AG IDL Files.

20 EntireX PL/| Wrapper

Using the PL/I Wrapper

2 Ifnecessary, use FTP to transfer the server interface object and the server (skeleton) to the
target platform where you write your server.

3 Use the generated server (skeleton) and complete it by applying your application logic. You
can use the IMS specific PCB pointers in your server as usual.

4 Ifnecessary, use FTP to transfer the server interface object and your server to the target platform
where you compile your server.

5 Using a PL/I compiler supported by PL/I Wrapper, compile:
* the generated server interface object(s) providing the PSB List (see above) as an include
file
" your server (including your application logic).
See Hints for Compiling and Linking (Binding).

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform.

7 Provide the server interface object(s) in the server interface object library with the parameter
stublibtothe IMSRPC Server. See Configuring the RPC Server under Administering the EntireX
RPC Server under z/OS IMS.

8 Provide the server to the IMS RPC Server.
Hints for Compiling and Linking (Binding)

For IMS

® The delivered generic RPC include data set EXP951.INCL (this data set may be delivered as a
patch with a different name EXP951.INnn, where nn is the patch level number; make sure you
install the highest patch level available) is required to SYSLIB input for the PL/I compiler.

For all other platforms

® No special considerations apply.

EntireX PL/| Wrapper 21

Using the PL/I Wrapper

Generating PL/lI Source Files from Software AG IDL Files

This section describes how to generate PL/I source files from Software AG IDL files.

= Selecting an IDL File and Generating an RPC Client or RPC Server
= Settings

Selecting an IDL File and Generating an RPC Client or RPC Server

From the context menu, choose Generate PL/I from Software AG IDL > RPC Client and ... > RPC
Server to generate the PL/I source files.

22 EntireX PL/| Wrapper

Using the PL/I Wrapper

(2 Package Explorer 3 ‘fg Hierarchy T [—] <.}=='p ¥ =0

= 'L:‘,J- Demo
[gre
B IRE Svystem Library [v1.5.0]
|al example.idl

Tetw L4

Open F3
Dpen Wikh L4
Show In BlE+Shif+i F

1= Copy Chrl+iC

2| Paste Chrl+Y
¥ Delete Delete

Build Path k
Refactar Alk+Shift+T *

£ Impart...
5 Export...

.;:}Q Refresh FS
Assign Working Sets. .,

Walidate

Edit %ML Mapping of Software AG I0L...
Generate Web Service from Software AG IDL ...
Test Software AG IDL. ..

Generate DCOM From Software AG 0L
Fun As

Debug As

Profile &As

Team

Compare With

Replace With

Generate ... from Software AG I0L

Source
RPC Client

enerate PLIT From Software &G IDL
Generate JMET From Software &G IDL
Generake EIB from Software AG IDL
Generate lava from Software AG IDL
Generake COBOL From Software 4G IDL
Generate C from Software &G IDL

RPC Server

L . A R 7 B . . . A . .

Propetties Alk+Enter

For the RPC client,

EntireX PL/| Wrapper 23

Using the PL/I Wrapper

* this creates the folders client and include in the Container folder, defined in the properties. These
contain the client interface objects and the RPC client declarations.

® In command-line mode, use the command -"pli:client". See Using the PL/I Wrapper in
Command-line Mode

For the RPC server,

* this creates the folder server in the Container folder, defined in the properties. It contains the RPC
server implementation skeletons.

® Additionally, server interface objects may be generated depending on the platform, e.g. “IMS
for z/OS” and features chosen in the folder serverstub in the Container folder, defined in the
properties. It contains the server interface objects.

® In command-line mode, use command -p1i:server. See Using the PL/I Wrapper in Command-
line Mode.

@y Caution: Take care not to overwrite an existing server implementation with a server

skeleton. We recommend you move your server implementation to a different folder.

For both RPC client and RPC server

® If you generate using the GUI and generated files exist from a previous generation, you are
prompted to overwrite them.

® If you generate using command-line mode, existing files are always overwritten.
Settings
Use the properties of the IDL file to set the container folder where the source file subfolders will

be stored. The target platform setting is responsible for the file extension and the content of the
generated files.

24 EntireX PL/| Wrapper

Using the PL/I Wrapper

& Properties for example.idl

|t\,f|:ue filker bext

| EntireX PL{l Wrapper & o

Resource
Entirex

Entirex \MET ‘Wrapper
Enkirex C \Wrapper Cantainet: | IDema | [Ernwse...]

These PLIT properties are used to generate the various PLJT codes, e.g. for Client or Server. The
default settings are provided by the PLT preferences.

Entirex COBOL Wrapper
Entirex Custorn Wrapper
Entirex DCOM Wrapper

Target Platform: |Batch For zi0S w |

Entirex EJG Wrapper
Entirex Java Wrapper
Enkirex PLJT Wrapper
Entirex Web Service \Wrapper
RunfDebug Settings

[Restare Defaults] [Apply l

I Ok H Cancel]

Target Platform

Select Batch, TP Monitor and Operating System for which PL/I code is to be generated.

Target Description

Batch for z/OS |Batch-dependent PL/I code will be generated. Interface objects and servers are called using
standard call interface. Use this option if you want to build an RPC application as described
under
= Using the PL/I Wrapper for Batch Mode (client or server).
= Using the PL/I Wrapper for CICS with Call Interfaces (client).

CICS for z/OS |CICS-dependent PL/I code will be generated. The interface is mapped to DFHCOMMAREA.
Interface objects and servers are called using EXEC CICS LINK. Use this option if you want
to build an RPC application as described under
= Using the PL/I Wrapper for CICS (client or server).

IMS for z/OS |IMS-dependent PL/I code will be generated. Interface objects and servers are called using
standard call interface, considering also IMS-specific PCB pointers (IDL parameters marked
with the attribute IMS) for servers. See attribute-11ist under Software AG IDL Grammar
in the IDL Editor documentation. Use this option if you want to build an RPC application
for IMS as described under
= Using the PL/I Wrapper for Batch Mode (client)
= Using the PL/I Wrapper for IMS BMP (server)

The workspace default for the target platform is set in the preferences page of the PL/I Wrapper.

EntireX PL/| Wrapper 25

Using the PL/I Wrapper

& Preferences |:|E]

|tv|:|e filker kewxt

[=)- Software AG
= Enkirex

C Wrapper

EJE Wrapper

Installation

PLJT \Wrapper
RPC Environments
Web Service \Wrapper
*¥ML Mapping Editor
Proxy Settings
UDDI Reqistries

MET Wrapper

COBOL Wrapper

Cuskam Wrapper

DiZOM \Wrapper
Deployment Environments

IDL Extractor for COBOL
IDL Extractor For Matural
IDL Extractor for PLJT

Jawva Wrapper

PL/1 Wrapper

|

Server,

Target For the generated source: |Batch fFar 2f05

£

These PLJI preferences are used to generate the warious PLJT codes, e.q. For Client or

g

vl

[Restare Defaults] [Apply]

| ok

H Cancel]

In command-line mode, use -target to set this option.

26

EntireX PL/| Wrapper

3 Using the PLII

Wrapper in Command-line Mode

= Command-line Options
= Example Generating an RPC Client
= Example Generating an RPC Server
= Further Examplesccccceeeeeenns

27

Using the PL/I Wrapper in Command-line Mode

Command-line Options

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax. The
table below shows the command-line options for the PL/I Wrapper.

Task Command Option Description
Generate a PL/I -pli:client|-folder |Folder where the PL/I files will be stored.
client from the : :

-hel Display this usage message.
specified IDL file. P Py g 8

-target |Target platform, one of BATCH_Z0S, CICS_Z0S, IMS_Z0S.

See Target Platform for more information.

Generate a PL/I -pli:server|-folder [|Folder where the PL/I files will be stored.
server from the : -

-hel Display this usage message.
specified IDL file. ° pay & &

-target |Target platform; for more information, see above.

Example Generating an RPC Client

<workbench> -pli:client /Demo/example.idl -target CICS_Z0S

where <workbench>is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The name of the Software AG IDL file includes the project name. In the example, the project Demo
is used. If the IDL file name describes a file inside the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

If you do not specify a folder (option -folder), the generated PL/I source files (client interface
objects and the RPC client declarations) will be stored in parallel to the IDL file, in the generated
subfolders client and include, e.g. Demo/client and Demo/include.

28 EntireX PL/| Wrapper

Using the PL/I Wrapper in Command-line Mode

Example Generating an RPC Server

<workbench> -pli:server /Demo/example.idl -target IMS_Z0S

where <workbench>is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The generated PL/I source files (server interface objects and the server (skeletons))

* will be stored in parallel to the Software AG IDL file, in the generated subfolders server and
server_stubs, e.g. Demo/server and Demo/server_stubs.

* will overwrite existing files from a previous command-line mode generation.

@y Caution: Take care not to overwrite an existing server implementation with a server

skeleton. We recommend you move your server implementation to a different folder.

Further Examples

Windows
Example 1

<workbench> -pli:client C:\Temp\example.idl -folder src -target CICS_Z0S

Uses the IDL file C:\ Temp \example.idl and generates the PL/I source files to the subfolder src of
the IDL file. Slashes and backslashes are permitted in the file name. Output to standard output:

Using workspace file:/C:/myWorkspace/.

Run PL/I client wrapper with C:/Temp/example.idl and target CICS_Z0S.
Processing IDL file C:/Temp/example.idl

Store PL/I Source (1/2): C:\Temp\src/include/CALC

Store PL/I Source (2/2): C:\Temp\src/client/CALC

Exit value: 0

EntireX PL/| Wrapper 29

Using the PL/I Wrapper in Command-line Mode

Example 2

<workbench> -pli:client C:\Temp*idl -folder C:\Temp\src -target CICS_Z0S
Generates PL/I source files for all IDL files in C:\ Temnp.

Example 3

<workbench> -pli:client /Demo/example.idl -target CICS_Z0S

Uses the IDL file /Demo/example.idl and generates the PL/I source files in parallel to the IDL file,
here to the project /Demo.

Example 4
<workbench> -pli:client -help
or

<workbench> -help -pli:client

Both show a short help for the PL/I client wrapper.

Linux
Example 1

<workbench> -pli:client /Demo/example.idl -folder src -target CICS_Z0S

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demol/example.idl is used from file system. The generated output will be stored in
/Demolsrc, the subfolder of /Demo.

Example 2

<workbench> -pli:client /Demo/*.idl -folder src -target CICS_ZOS

Generates PL/I client files for all IDL files in project Demo (or in folder /Demo if the project does
not exist). The generated files are in /Demo/src.

30 EntireX PL/| Wrapper

Using the PL/I Wrapper in Command-line Mode

Example 3
<workbench> -pli:client -help
or

<workbench> -help -pli:client

Both show a short help for the PL/I client wrapper.

EntireX PL/| Wrapper

31

32

4 Software AG IDL to PL/I Mapping

Mapping IDL Data Types to PL/I Data Types
Mapping Library Name and Alias
Mapping Program Name and Alias
Mapping Parameter Names
Mapping Fixed and Unbounded Arrays
Mapping Groups and Periodic Groups
Mapping Structurescccceevvvvvveeen.n.

Mapping the ALIGNED Attribute
= Calling Servers as Procedures or Functions

Mapping the Direction Attributes IN, OUT, INOUToiiiiiiiiiii e

33

Software AG IDL to PL/I Mapping

This chapter describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the PL/I programming language. See also remarks and hints on the Software AG IDL
data types valid for all language bindings under Software AG IDL File in the IDL Editor document-
ation.

Mapping IDL Data Types to PL/I Data Types

The following metasymbols and informal terms are used for the IDL in the table below.

® The metasymbols [and] enclose optional lexical entities.

® The informal term number (or in some cases numberl.number?)is a sequence of numeric characters,
for example "123".

Client | Server
Software AG IDL Description PL/I Data Type Notes |Support|Support
Anumber Alphanumeric CHARCnumber) 1 X X
CHAR(™) 1,2
AV Alphanumeric not supported
variable length
AVLnumber] Alphanumeric CHARCnumber) VAR 1,16 |x X
variable length with CHAR(*) VAR 1.2
maximum length '
Bnumber Binary BIT(number * 8) 3,15 |x X
BIT(*) 3,2
BV Binary variable not supported
length
BVLnumber] Binary variable BIT(number*8) VAR 3,15 X
length with
maximum length
D Date CHAR(8)DATE(C'YYYYMMDD ") 4 X X
F4 Floating point (small) |[FLOAT DEC(6) 510 |x X
FLOAT BIN(21) 2,5,10
F8 Floating point (large)|FLOAT DEC(16) 510 |x X
FLOAT BIN(53) 2,5,10
Il Integer (small) BIN FIXED(7) 12 X X
12 Integer (medium) BIN FIXED(15) X X
14 Integer (large) BIN FIXED(31) X X
Knumber Kanji GRAPHIC (number/2) 6 X X
GRAPHIC (*) 2,6

34 EntireX PL/| Wrapper

Software AG IDL to PL/I Mapping

Client | Server
Software AG IDL Description PL/I Data Type Notes |Support|Support
KV Kanji variable length |not supported
KVLnumber] Kanji variable length |GRAPHIC (number/2) VAR 6,16 |x X
with maximum GRAPHIC (*) VAR 2,6
length
L Logical BIT(1) 7,14 |x X
Nnumberl[.number2] |Unpacked decimal [PIC 13 X X
"SCnumber1)9LV(numberz)9]’
NUnumberlI[.numberZ2]|Unpacked decimal [PIC 13 X X
unsigned "Cnumber1)9LV (number2)9]"
Pnumberll.numberZ2] |Packed decimal DEC FIXED 8 X X
(numberl+numberZ, number?)
PUnumberll .number?2]|Packed decimal DEC FIXED 8,9 X X
unsigned (numberl+number?, number?)
T Time CHAR(17) 11 X X
Unumber Unicode WIDECHARCnumber) X X
uv Unicode variable not supported
length
UVnumber Unicode variable WIDECHARCnumber) VAR X X
length with
maximum length

See also the hints and restrictions valid for all language bindings under IDL Data Types under
Software AG IDL File in the IDL Editor documentation.

Notes:

1. The maximum length is restricted by the PL/I programming language, usually 32767 characters,
i.e. 32767 bytes in the IDL. A warning message is produced during the generation process if
this limit is exceeded.

. This form is an alternative PL/I mapping for the server side. It is not directly generated by the
PL/I Wrapper. The RPC Server source file can be manually modified.

. The maximum length is restricted by the PL/I programming language, usually 32767 bits, i.e.
4095 bytes in the IDL (the data type length in PL/I is a multiple of 8 of the length given in the
IDL). A warning message is produced during the generation process if this limit is exceeded.

. The format for date is compatible with the date part of the built-in PL/I DATETIME function.

. When floating-point data types are used, rounding errors can occur, so that the values of senders
and receivers might differ slightly.

. For IDL data type K and KV, graphic support - also known as DBCS support - must be switched
on in your PL/I compiler; see your compiler documentation on how to switch on graphic support.
The maximum length for graphicis restricted by the PL/I programming language, usually 16383

EntireX PL/| Wrapper 35

Software AG IDL to PL/I Mapping

graphics, i.e. 32766 bytes in the IDL (the graphic data type length in PL/I is half the length given
in the IDL, therefore the length given in the IDL must be even). A warning message is produced
during the generation process if this limit is exceeded.

7. The logical values are defined as '1'b for true and '0'b for false. We recommend using the values
ERX_TRUE and ERX_FALSE defined in the include file RPCAPI. See PL/I Wrapper Modules Delivered
as Sources on z/OS.

8. The maximum number (numberl+number?2) of digits is restricted by your PL/I environment,
usually 15 or 31 depending on the PL/I compiler in use. See your compiler documentation. The
number of digits after the decimal point (number2) is restricted by the IDL. The value range of
-127 to 128 of PL/I for number2 is not supported. See IDL Data Types under Software AG IDL File
in the IDL Editor documentation.

9. Negative values cannot be sent by clients and will be rejected on a send.

10. For servers, the “typical” platform-dependent representation of FLOAT will be used: On 5/390
systems this is "Hexadecimal floating-point".

11. The value for time has the form YYYYMMDDHHIISST00 compatible with the PL/I DATETIME
function. The fractional part of a second (hundredths and thousandths of a second) is restricted
by the IDL. See IDL Data Types under Software AG IDL File in the IDL Editor documentation.
On receive, hundredths and thousandths are set to zero, whereby on a send they are cut off.

12 For the stubless RPC Server the compiler must use a 1-byte field for the target PL/I data type.
It is not supported by the PL/I for MVS & VM V1R1.1 compiler. For PL/I Wrapper clients there
are no restrictions; any compiler can be used.

13. The maximum number of digits (numberl+number?2) is restricted by your PL/I environment,
usually 15 or 31 depending on the PL/I compiler in use. See your compiler documentation.

14. For the server side the data type L is aligned, even if no ALIGNED attribute is given in the IDL.
The data type L used by servers without alignment is not supported.

15. For the server side the data type B is aligned, even if no ALIGNED attribute is given in the IDL.
The data type B used by servers without alignment is not supported.

16. For the client side the IDL datatype may produce a warning message during compilation, which
can be ignored. Linkage and execution are possible. For the PL/I for MVS & VM V1R1.1 Compiler,
the warning message is IEL0872 'ADDR' BUILTIN FUNCTION RETURNS A POINTER TO
THE TWO-BYTE LENGTH FIELD PRECEDING THE VARYING STRING VALUE.

36 EntireX PL/| Wrapper

Software AG IDL to PL/I Mapping

Mapping Library Name and Alias

The library name is sent from a client to the server. Special characters are not replaced. The library
alias is not sent to the server. In the RPC server the library name sent may be used to locate the
target server. See Locating and Calling the Target Server in the platform-specific administration or
RPC server documentation.

Client Side

For a batch interface (TARGET=BATCH_xxx)

® the library alias as given in the library-definition of the IDL File is used to compose the name
of an include file with DECLARE ENTRY statements to describe the PL/I generated interfaces. The
generated name is <1ibrary-alias>.If no library alias is given, the library name as given in
the library definition of the IDL file is used instead. See 1ibrary-definition under Software
AG IDL Grammar in the IDL Editor documentation.

Server Side

The library name sent along with the client RPC request is not used in PL/I servers. See Locating
and Calling the Target Server in the platform-specific administration or RPC server documentation.

Mapping Program Name and Alias

The program name is sent from a client to the server. Special characters are not replaced. The
program alias is not sent to the server.

In the RPC server the program name sent is used to locate the target server. See Locating and Calling
the Target Server in the platform-specific administration or RPC server documentation.

Client Side

The program alias names as given in the program-definition under Software AG IDL Grammar
in the IDL Editor documentation of the IDL file are

* mapped to procedure or function names within the generated PL/I sources.

® used to compose the file names of the generated output files. Therefore they must be names that
are supported by the underlying file system.

ror o

When building procedure, function and source file names, the special characters '&', '+, '-', ." and
'/" are replaced by the character underscore '_' valid for PL/I names. Other special characters used

EntireX PL/| Wrapper 37

Software AG IDL to PL/I Mapping

in the program alias name are not changed and may lead to compilation errors when compiling
the generated sources.

For a batch interface (TARGET=BATCH_xxx)

® An include file and a source file are generated for every program-definition under Software
AG IDL Grammar in the IDL Editor documentation given in the IDL. The generated names for
both are <program-alias>. When the program alias is not given in the program-definition the
program name is used instead.

For a CICS interface (TARGET=CICS_xxx)

" A source file is generated for every program-definition under Software AG IDL Grammar in
the IDL Editor documentation given in the IDL. The generated name is <program-alias>. When
the program alias is not given in the program-definition the program name is used instead.

Example:

" A program name of #HU$GO0 in the IDL results in #HU$G0_ as the procedure name for the PL/I
programming language and source file names #HUG$G0 and #HUG$GO.

Server Side
There is no program name mapping on the server side. The RPC Server for PL/I calls the server

using the program name sent along with the client RPC request. See Locating and Calling the Target
Server in the platform-specific administration or RPC server documentation.

Mapping Parameter Names

Client and Server Side

When building parameter names the special characters '&', '+, '-', . and /' allowed within names
of parameters of the IDL, are mapped to the character underline '_' valid for PL/I names. The
characters '#', '$' and '@' are allowed in PL/I and are not changed. Trailing and leading special
characters are not removed.

Example

HU&GO results in HU_GO as a valid PL/I parameter name.
&HUGO- results in _HUGO_ as a valid PL/I parameter name.

38 EntireX PL/| Wrapper

Software AG IDL to PL/I Mapping

Mapping Fixed and Unbounded Arrays

Depending whether you are using the client or the server side, there are several possibilities re-
garding arrays. See also the array-definition under Software AG IDL Grammar in the IDL Editor
documentation for the syntax on how to describe fixed arrays and unbounded arrays within the
IDL file, and refer to fixed-bound-array-index.

Client Side

* Fixed arrays within the IDL file are mapped to fixed PL/I arrays. The dimension and upper
bounds are kept.

Example: The IDL definition “MYARRAY (A5/1:10)” is mapped to the PL/I array “MYARRAY (10)
CHAR(5)”.

* Unbounded arrays with and without maximum-upper-bound are not supported by PL/I client-

side wrapping.

Example: The IDL definition “MYARRAY (A10/1:V10)” as well as “MYARRAY (A10/1:V)” is not
supported.

Server Side

* Fixed arrays within the IDL file are mapped to fixed PL/I arrays. The dimension and upper
bounds are kept.

Example: The IDL definition “MYARRAY (A5/1:10)” is mapped to the PL/I array “MYARRAY (10)
CHAR(5)”.

| Note: AnRPC server with a PL/I array defined with asterisks is supported on the server

side and is an alternative mapping to an array with fixed upper bounds of the same di-
mension.

Example: The IDL definition “MYARRAY (A5/10,10,10)” can either be mapped to the PL/I
array “MYARRY (10,10,10) CHAR(5)” or the PL/I array “MYARRAY (*,*,*) CHAR(10)”.
The RPC server source can be manually modified.

® Unbounded arrays with or without maximum-upper-bound are mapped to PL/I arrays defined
with asterisks. The dimension is kept.

Example: The IDL definitions “MYARRAY (A5/V10)” and “MYARRAY (A5/1:V)” are mapped to
the PL/I array “MYARRAY (*) CHAR(5)”.

EntireX PL/| Wrapper 39

Software AG IDL to PL/I Mapping

Mapping Groups and Periodic Groups

Client and Server Side

Groups within the IDL file are mapped to the PL/I structures or PL/I arrays of structures using
level numbers. See the group-parameter-definition under Software AG IDL Grammar in the IDL
Editor documentation for the syntax on how to describe groups within the IDL file.

Mapping Structures

Client and Server Side

Structures within the IDL file are dissolved at the location where they are used. They are mapped
to PL/I structures using level numbers like groups. See the structure-parameter-definition
(IDL) under Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to
describe structures within the IDL file.

Mapping the Direction Attributes IN, OUT, INOUT

The IDL syntax allows you to define parameters as IN parameters, OUT parameters, or IN OUT
parameters (which is the default if nothing is specified). See the attribute-1ist under Software
AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe attributes
within the IDL file and refer to the direction-attribute.

Client Side

The direction specification is reflected in the generated client interface objects as follows:

® Direction attributes do not change the PL/I call interface.

® Usage of direction attributes may be useful to reduce data traffic between RPC client and RPC
server.

= Parameters with the IN attribute are sent from the RPC client to the RPC server.

= Parameters with the OUT attribute are sent from the RPC server to the RPC client.

= Parameters with the IN and 0UT attribute are sent from the RPC client to the RPC server and
then back to the RPC client.

Only the direction information of the top-level fields (level 1) is relevant. Group fields always in-
herit the specification from their parent. A different specification is ignored.

40 EntireX PL/| Wrapper

Software AG IDL to PL/I Mapping

Server Side
The RPC Server for PL/I considers the direction attribute send from any RPC client Java, DCOM,

C, COBOL, NET, XML and PL/I. Parameters with the IN attribute are not sent back to the RPC
client.

Mapping the ALIGNED Attribute

See the attribute-11st under Software AG IDL Grammar in the IDL Editor documentation for the
syntax of attributes in the IDL file and refer to aligned-attribute.

Client Side

A PL/I client can send the parameters with the ALIGNED attribute to an RPC server. The RPC
server decides (depending on programming language and environment) whether the parameter
is aligned or not. The ALIGNED attribute is not considered in the generated PL/I client interface itself.

Server Side

The RPC Server for PL/I server considers ALIGNED parameters as needed, when the ALIGNED attribute
is sent by an RPC client Java, DCOM, C, COBOL, .NET, PL/I XML and PL/L

Calling Servers as Procedures or Functions

The IDL syntax allows definitions of procedures only. It does not have the concept of a function.
A function is a procedure which, in addition to the parameters, returns a value. Procedures and

functions are transparent between clients and server, i.e. a client using a function can call a server
implemented as a procedure and vice versa.

Client Side

It is possible to call the remote procedure as a function and not as a procedure, if you prefer it, if
it suits your interface and if the client interface objects are generated with a Batch interface
(TARGET=BATCH_xxx). An EXEC CICS LINK interface (TARGET=CICS_xxx) cannot be invoked as a
function. However, you can call a batch interface within CICS.

Example. The function float sin(float x) will be called as a function and not as a procedure,
when defined in the IDL file as follows:

EntireX PL/| Wrapper 41

Software AG IDL to PL/I Mapping

Library ... is
Program 'sin' is
Define Data Parameter
1 x (F4) In
1 Function_Result (F4) Qut
End-Define

It can be invoked as:

y = sin(x);
The client template generates a PL/I function instead of a PL/I procedure if the following is true:

® A batch interface is generated, i.e. the value for the template option TARGET is set to "BATCH_xxx"
® In the interface description (IDL file) the last
" parameter's name is function_result. The name function_result is not case-sensitive.

" parameter's direction is Out. See attribute-11ist under Software AG IDL Grammar in the IDL
Editor documentation.

" parameter is a scalar variable, i.e. not an array, group or structure.
Server Side

The RPC Server for PL/Iis able to call any PL/I procedure and any PL/I function. For a PL/I function,
the returned parameter is always the last parameter.

42 EntireX PL/| Wrapper

5 Writing an RPC Client Application with the PL/| Wrapper

= Step 1: Generic Declarations Required by the PL/I Wrapper

= Step 2: Declare the (Generated) Data Structures for (Generated) Interface Objectscccoceeeiiiiieiinnnn..
= Step 3: Declare ENTRY Definitions to (Generated) Interface ObJEctSoooviiiiiiiiiiiiiiiiiceeec

= Step 4: Required Settings in the RPC Communication Area
= Step 5: Optional Settings in the RPC Communication Area
= Step 6: Issue the RPC Requestc.covvvvveiiiiiiiiiiinn.

B Step 7: EXaming the Ermor COUEuvviiiiiiiii it

43

Writing an RPC Client Application with the PL/| Wrapper

This chapter is a step-by-step guide for writing your first PL/I RPC client program.

The example given here does not use function calls as described under Using Broker Logon and
Logoff. It demonstrates an implicit broker logon (because no broker logon/logoff calls are imple-
mented), where it is required to switch on the AUTOLOGON feature in the broker attribute file.

The following steps describe how to write a PL/I RPC client program. We recommend reading
them first before writing your first RPC client program and following them if appropriate.

Step 1: Generic Declarations Required by the PL/| Wrapper

Step 1a: Embed PL/l Wrapper Preprocessor Definitions

The Preprocessor is always needed. Always embed RPCPPD and take care to set the correct values
for your environment in the PL/I Preprocessor Settings.

%include RPCPPD;
Step 1b: Declare PL/I Built-in Functions

These built-in functions are needed to communicate with the Using the Generic RPC Services
Module and the generated RPC stubs:

DECLARE STORAGE built in;
DECLARE SUBSTR built in;

Step 1c: Declare API Constants to PL/l Wrapper

This delivered include file defines constants and generic definitions to the PL/I Wrapper:

/* RPC API Interface */
%include RPCAPI;

Step 1d: Declare and Initialize the RPC Communication Area

Declare and initialize the The RPC Communication Area (Reference) in your RPC client program
as follows:

44 EntireX PL/| Wrapper

Writing an RPC Client Application with the PL/| Wrapper

/* Declare RPC communication area */
DECLARE 1 ERXCOM,
%include RPCCOM; /* RPC communication area fields */

/* Initialize RPC communication area */

ERXCOM = '';
ERXCOM.COM_VERSION = ERX_COM_VERSION_1;
ERXCOM.COM_SIZE = STORAGE(ERXCOM) ;

Step 2: Declare the (Generated) Data Structures for (Generated) Interface
Objects

For every program definition of the IDL file, the templates generate an include file that describes
the customer data of the interface as a PL/I structure. For ease of use, you can embed these structures
into your RPC client program:

/* Declare customer data to generated interface objects */
%include CALC;

/* RESULT as a local variable because of function call */
DCL RESULT BIN FIXED (31);

However, if more appropriate, you can use your own customer data structures. In this case the
PL/I data types and structures must match the interfaces of the generated interface objects, otherwise
unpredictable results may occur.

Step 3: Declare ENTRY Definitions to (Generated) Interface Objects

This step is appropriate for TARGET BATCH_xxx only. For TARGET CICS_xxx, no ENTRY declarations
are generated, because communication with the interface objects is through the CICS COMMAREA,
where ENTRY declarations are not suitable.

For TARGET BATCH_xxx, the templates generate for every library-definition of the IDL file, an include
file containing the ENTRY declarations to your client interface objects. We recommend embedding
them into your RPC client program:

/* Declare ENTRY definitions to generated interface objects */
%include EXAMPLE;

EntireX PL/| Wrapper 45

Writing an RPC Client Application with the PL/| Wrapper

Step 4: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the PL/I
Wrapper. These settings have to be applied in your RPC client program. No defaults are generated
into your interface objects:

/* assign the broker to talk with ... */
ERXCOM.COM_BROKER_ID = 'ETBOO1";

/* assign the server to talk with ... */
ERXCOM.COM_SERVER_CLASS = 'RPC';
ERXCOM.COM_SERVER_NAME = 'SRV1';

ERXCOM.COM_SERVER = 'CALLNAT";

/* assign the user id to the broker ... */
ERXCOM.COM_CLIENT_USERID = 'PLI-USER';

Step 5: Optional Settings in the RPC Communication Area

Here you specify optional settings to the RPC communication area used by the PL/I Wrapper, for
example:

ERXCOM.COM_CLIENT_PASSWORD = 'PLI-PASS"';
ERXCOM.COM_CLIENT_CODEPAGE = "ECSO0037"';
ERXCOM.COM_CLIENT_TOKEN = 'PLI-TOKEN';
ERXCOM.COM_SERVER_LIBARY = '"MYLIB';
ERXCOM.COM_SERVER_WAIT = '300S";

The client password can be given here if implicit broker logon is required in your environment.
It is provided then through the interface object call, see also Using Broker Logon and Logoff.

Step 6: Issue the RPC Request

The procedure for issuing RPC requests varies, depending on whether you are using a call interface
oran EXEC CICS LINK interface.

46 EntireX PL/| Wrapper

Writing an RPC Client Application with the PL/| Wrapper

Using the Call Interface

This interface is used in the scenarios Batch and CICS with Call Interfaces.

RESULT = CALC(P_CALC.OPERATOR,
P_CALC.OPERAND_1,
P_CALC.OPERAND_2,
ERXCOM) ;

The interface object CALC is called as PL/I function. See Calling Servers as Procedures or Functions.
Using the EXEC CICS LINK Interface
This interface is used in the scenario CICS.

/* move RPC Communication area to DFHCOMMAREA */
P_CALC.ERXCOM = ERXCOM;

/* call CICS program */

CICS_LEN = STORAGE(P_CALC);

CICS_RESP1 = DFHRESP(NORMAL) ;

CICS_RESPZ = DFHRESP(NORMAL);

EXEC CICS LINK PROGRAM ('CALC")
RESP (CICS_RESPI)

RESP2 (CICS_RESP2)
COMMAREA (P_CALC)
LENGTH (CICS_LEN);

/* move DFHCOMMAREA to RPC Communication area */
ERXCOM = P_CALC.ERXCOM;

Step 7: Examine the Error Code

When the RPC reply is returned, check that it was successful:

IF SUBSTR(ERXCOM.COM_ERROR,1,8) 2= ERX_S_SUCCESS then
DO;

/* error handling */
1% ooo ¥/

END;

The field COM_ERROR in the RPC communication area contains the error provided in a variable
length char field. The 8-digit error number precedes the error text, and with the SUBSTR inbuilt
function you can check the error number. In addition, you can use the COM_ERROR field simply in
a PUT SKIP LIST statement for printouts.

EntireX PL/| Wrapper 47

Writing an RPC Client Application with the PL/| Wrapper

For the error messages returned, see Error Messages and Codes.

48 EntireX PL/| Wrapper

6 Using Broker Logon and Logoff

B 10G ON 0 T8 BIOKET ...t
B L 0g Off froM the BIOKET ...

= Additional Hints

49

Using Broker Logon and Logoff

Broker logon and logoff functions are provided through Generic RPC Services module. See Using
the Generic RPC Services Module.

Log on to the Broker

With the Call Interface

ERXCOM.COM_FUNCTION = "LO'; /* Broker Logon */
ERXCOM.COM_CLIENT_USERID "PLI-USER";
ERXCOM.COM_CLIENT_PASSWORD = 'PLI-PASS"';

call xxxSRVI(CERXCOM); /* see (1) below */

IF SUBSTR(ERXCOM.COM_ERROR,8) "= ERX_S_SUCCESS then

DO;

/* error handling */
7% oo0 ¥/

END;

/* begin of application Togic including calls to interface objects */

With the EXEC CICS LINK Interface

ERXCOM.COM_FUNCTION = "LO'; /* Broker Logon */
ERXCOM.COM_CLIENT_USERID = '"PLI-USER';
ERXCOM.COM_CLIENT_PASSWORD = 'PLI-PASS"';
CICS_LEN = STORAGE(ERXCOM);
CICS_RESP1 = DFHRESP(NORMAL);
CICS_RESP2 = DFHRESP(NORMAL);
/* called CICS program name depends on PP switch ERXFCTPRE */
EXEC CICS LINK PROGRAM ('xxxSRVI') /* see (1) below */
RESP (CICS_RESP1)
RESP? (CICS_RESP2)
COMMAREA (ERXCOM)
LENGTH (CICS_LEN);
IF SUBSTR(ERXCOM.COM_ERROR,8) ~= ERX_S_SUCCESS then

DO;

/* error handling */
1% ooo =/

END;

/* begin of application Togic including calls to interface objects */

@ The prefix of the program name (xxxSRV1) can be customized, see PL/I Preprocessor Settings.
The default is PLISRVI.

50 EntireX PL/| Wrapper

Using Broker Logon and Logoff

Log off from the Broker

With the Call Interface

/* end of application logic including calls to interface objects */
ERXCOM.COM_FUNCTION = 'LF'; /* Broker Logoff */

call xxxSRVI(CERXCOM); /* see (1) below */

IF SUBSTR(ERXCOM.COM_ERROR,8) ~= ERX_S_SUCCESS then

DO;

/* error handling */
1% ooo =/

END;

(1) The prefix of the program name (xxxSRVI) can be customized, see PL/I Preprocessor Settings.
The default is PLISRVI.

With the EXEC CICS LINK Interface

See Log on to the Broker above.

Additional Hints

® The COM_CLIENT_USERID field (and the COM_CLIENT_TOKEN field, when provided) must not change
from logon, during call of interface objects, until final logoff.

= If explicit logon is used, as demonstrated here, the COM_CLIENT_PASSWORD field may only be
provided for the broker logon function call.

® Thelogon call is the first call to the broker, before any application logic including interface object
calls. The logoff call should be issued as soon as RPC communication is no longer needed.

= Itis also possible to work with implicit logon, see Writing Applications with the PL/I Wrapper.

® Whenever possible we recommend using explicit logon as demonstrated here.

EntireX PL/| Wrapper 51

52

7 Using the RPC Communication Area

This chapter explains how clients use the RPC communication area. The RPC communication area
defines a context for RPC clients

The purpose of the RPC communication area includes the following:

" to assign the COM_BROKER_ID and server name, see COM_SERVER_CLASS, COM_SERVER_NAME and
COM_SERVER_SERVICE

" to assign the COM_CLIENT_USERID and COM_CLIENT_TOKEN

® for use with Conversational RPC to hold, for example, the conversation ID, see
COM_SERVER_CONVID

" for use with EntireX Security to hold the COM_CLIENT_PASSWORD, COM_CLIENT_SECTOKEN and
others

" to keep the results of the last RPC request, for example the error code
The layout of the RPC Communication Area is described in the reference section.

The PL/I Wrapper allows the RPC Communication Area to be provided as an additional parameter
for the generated RPC stubs.

53

54

8 Conversational RPC

B Using Conversational RPCuuiiiiiiiieii e e et e e e e e
= Terminating a Conversational RPC CommuNICationcccuviiiiiiiiieeiiiie e
= Closing and Committing a Conversational RPC Communicationcoeeiiiiiiiiiiiiieiee e,

95

Conversational RPC

RPC conversations are supported when communicating with an RPC server.

Itis assumed that you are familiar with the concepts of conversational RPC and non-conversational
RPC. Open and closing conversations are provided through the Generic RPC Services Module.

Using Conversational RPC

» To use conversational RPC

Open a conversation with the function Open Conversation 0C (see COM_FUNCTION under RPC
Communication Area) from Generic RPC Services module:

With the Call Interface:

ERXCOM.COM_FUNCTION = '0OC'; /* Open Conversation */

ERXCOM. COM_SERVER_LIBRARY = 'MYLIB';

call xxxSRVICERXCOM); /* see (1) below */

IF SUBSTR(ERXCOM.COM_ERROR,8) ~= ERX_S_SUCCESS then

DO;

/* error handling */

/% oo %/

END;

/* begin of application logic including calls to interface objects */

With the EXEC CICS LINK Interface:

ERXCOM.COM_FUNCTION = '0C'; /* Open Conversation */
ERXCOM. COM_SERVER_LIBRARY = "'MYLIB';
CICS_LEN = STORAGE(ERXCOM) ;
CICS_RESP1 = DFHRESP(NORMAL);
CICS_RESP2 = DFHRESP(NORMAL);
/* called CICS program name depends on PP switch ERXFCTPRE */
EXEC CICS LINK PROGRAM ('"xxxSRVI') /* see (1) below */
RESP (CICS_RESPI)
RESP2 (CICS_RESP2)
COMMAREA (ERXCOM)
LENGTH (CICS_LEN);
IF SUBSTR(ERXCOM.COM_ERROR,8) ~= ERX_S_SUCCESS then
DO;
/* error handling */
7% ooo =/
END;
/* begin of application Togic including calls to interface objects */

56

EntireX PL/| Wrapper

Conversational RPC

@ The prefix of the program name (xxxSRV1) can be customized, see PL/I Preprocessor Settings.
The defaultis PLISRVI.

® The Open Conversation requires a library to be set in the RPC communication area field
COM_SERVER_LIBRARY. See The RPC Communication Area (Reference).

= After a successful Open Conversation, the broker's conversation ID is stored within the
RPC communication area field COM_SERVER_CONVID. See The RPC Communication Area
(Reference). The conversation ID

is used during calls to interface objects and also needed for closing the conversation.

is cleared if the end of conversation is forced by the broker or the RPC server. This happens
if an error with message class 0003 occurs. See Message Class 0003 - EntireX ACI - Conver-
sation Ended under Error Messages and Codes.

is not cleared and remains for any other error returned to be able to continue the conver-
sation.

2 Issue your RPC requests as is done within non-conversational mode, using the generated in-
terface objects.

= Different interface objects can participate in the same RPC conversation.

® RPC conversations and simple non-conversational RPC requests can not be handled in
parallel using the same RPC communication area without saving and restoring some fields.

= If you need to handle RPC conversations in parallel, or simple non-conversational RPC re-
quests within an ongoing RPC conversation, use multiple RPC communication areas or
save and restore the following fields:

COM_BROKER_ID (if another broker)
COM_SERVER_CLASS (if another class)
COM_SERVER_NAME (if another name)
COM_SERVER (if another service)
COM_SERVER_LIBRARY (if another library)
COM_SERVER_CONVID

and possibly others, for example user ID, token and password if needed

EntireX PL/| Wrapper 57

Conversational RPC

Terminating a Conversational RPC Communication

Terminate an RPC conversation unsuccessfully with the function Close Conversation CB (see
COM_FUNCTION under RPC Communication Area) from Generic RPC Services module:

With the Call Interface:

ERXCOM.COM_FUNCTION = 'CB'; /* Close Conversation */
call xxxSRVI(CERXCOM); /* see (1) below */
IF SUBSTR(ERXCOM.COM_ERROR,8) ~= ERX_S_SUCCESS then

DO;

/* error handling */
1% o0 %

END;

/* begin of application Togic including calls to interface objects */

@ The prefix of the program name (xxxSRV1) can be customized, see PL/I Preprocessor Settings.
The defaultis PLISRVI.

With the EXEC CICS LINK Interface:

See Using Conversational RPC above.

Closing and Committing a Conversational RPC Communication

Close the RPC conversation successfully with the function Close Conversation and Commit CE
(see COM_FUNCTION under RPC Communication Area) from Generic RPC Services module:

With the Call Interface:

ERXCOM.COM_FUNCTION = 'CE'; /* Close Conversation and Commit */
call xxxSRVI(CERXCOM); /* see (1) below */
IF SUBSTR(CERXCOM.COM_ERROR,8) ~= ERX_S_SUCCESS then

DO;

/* error handling */
1% oo =/

END;

/* begin of application lTogic including calls to interface objects */

@ The prefix of the program name (xxxSRVI) can be customized, see PL/I Preprocessor Settings.
The default is PLISRVI.

58 EntireX PL/| Wrapper

Conversational RPC

With the EXEC CICS LINK Interface:

See Open Conversation above.

EntireX PL/| Wrapper 59

60

9

Using Natural Security

Natural Security is only relevant when communicating with Natural RPC Servers.

» To communicate with a Natural RPC Server running under Natural Security

1

Set the flag COM_CLIENT_NATSECURITY to "ERX_TRUE". If set to "ERX_FALSE" (or other values),
communication with a Natural RPC Server that is secured with Natural Security is not possible.

The flag must be set prior to issuing any interface object calls. It is not needed for broker
communication (see Using Broker Logon and Logoff), but it is also harmful if set.

The Natural Security user ID is inherited from the broker's user ID field COM_CLIENT_USERID
of the RPC Communication Area if no user ID is provided in the field COM_CLIENT_RPCUSERID.
The Natural Security user ID can always be provided (overwritten) in the field
COM_CLIENT_RPCUSERID if different from the broker's user ID.

The same mechanism (inheritance and override) as described above for the user ID is available
for the COM_CLIENT _PASSWORD and COM_CLIENT_RPCPASSWORD of the RPC communication area.

61

62

10 Using Trace

= Using Trace in Batch, CICS with Call Interfaces, and IMS

m Using Trace in CICScooiiiiiiiiiice e

63

Using Trace

This chapter describes use of the trace function in batch, CICS with call interfaces, IMS and in
CICS for the PL/I Wrapper.

Using Trace in Batch, CICS with Call Interfaces, and IMS

» To build a trace version for the scenarios Batch and CICS with Call Interfaces

1 Setthe preprocessor switch ERXTRACE in file RPCPPS (PL/I Preprocessor Settings) to"YES" before
you compile the generated interface objects and provided sources (see corresponding step in
scenarios Batch and CICS with Call Interfaces).

2 Compile and link the Trace Functions module (PLISRVT) to your application.

Using Trace in CICS

For the scenario Using the PL/I Wrapper for CICS you can trace every interface object and the
Generic RPC Services module individually. Interface objects with trace and without trace can co-
exist.

» To trace generated interface objects

1 Setthe preprocessor switch ERXTRACE in file RPCPPS (PL/I Preprocessor Settings) to"YES" before
you translate and compile the following: (see corresponding step in scenario CICS)
* the interface object you want to trace

* the Specific RPC Functions module (PLISRVS) you link into the interface object you want
to trace

2 Compile the Trace Functions module (PLISRVT).

3 Link the Trace Functions module (PLISRVT) to the interface object you want to trace.

Compile and link interface objects you do not want to trace with ERXTRACE set to "NO".

» To trace the Using the Generic RPC Services Module

1 Setthe preprocessor switch ERXTRACE in file RPCPPS (PL/I Preprocessor Settings) to "YES" before
you translate and compile (see corresponding step in scenario CICS) the CICS Generic RPC
Services module (PLISRVIC) and the Trace Functions module (PLISRVT).

2 Link the Trace Functions module (PLISRVT) to the CICS Generic RPC Services module
(PLISRVIC).

64 EntireX PL/| Wrapper

11 Using Internationalization with the PL/l Wrapper

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

The PL/I Wrapper does not convert your application data (in RPC IDL type A, K, AV and KV
fields) before it is sent to the broker. The application's data is shipped as given by the RPC client
program.

The PL/I Wrapper programmer is responsible for providing a suitable codepage. If a codepage is
provided it must also be a codepage supported by the broker, depending on the internationalization
approach, and it must follow the rules described under Locale String Mapping in the international-
ization documentation.

The codepage is assigned to the RPC communication area in the field COM_CLIENT_CODEPAGE as
described in Step 5: Optional Settings in the RPC Communication Area.

ERXCOM.COM_CLIENT_CODEPAGE = "ECS937";

65

66

12 Client and Server Examples for z/OS CICS

= Basic RPC Client Example - CALC
= Basic RPC Server Example - CALC

67

Client and Server Examples for z/OS CICS

This chapter describes the examples provided for the PL/I Wrapper for CICS.

All examples here can be found in the EntireX examples/RPC directory under UNIX and Windows.

Basic RPC Client Example - CALC

For CICS on operating system z/OS, the CALCCLT client is built with a PL/I Wrapper interface
type "CICS with call interfaces". For this purpose, the PL/I Wrapper target platform is set to "Batch
for z/OS" ("Batch" because of the call interface).

Please note there is an additional interface type for CICS, "CICS for z/OS", see Target Platform
under Generating PL/I Source Files from Software AG IDL Files. An example of this is not yet
available.

Name Type Data Set Description Notes
CALC PL/I source code |[EXP951.QCPL |Client interface object for IDL program CALC. 1
CALCCLT |PL/I source code|EXP951.QCPL | A client application calling the remote procedure (RPC |2
service) CALC, with associated example.idl.

CALCDFH|CICS CSD EXP951.QCPL|CSD Definition for RPC client CALCCLT.
CALCIBM|JCL EXP951.QCPL|Job (JCL) to build the RPC client CALCCLT. 3
CALCMAP EXP951.QCPL|CICS Map definition for RPC clients CALCCLT.
CALC PL/I copybook |EXP951.QIPL |Client interface object copybook for IDL program CALC. |1
CALCMAP|PL/I copybook |EXP951.QIPL |Description of input and output fields of map CALCMAP.
EXAMPLE |PL/I copybook |EXP951.QIPL |Client interface object entry points. 1
RPCPPS |PL/I copybook |EXP951.QIPL |PL/I Wrapper Preprocessor Switches and Settings.

| Notes:

1. Client interface objects are delivered with the z/OS installation, but not delivered under UNIX
or Windows. Use the EntireX Workbench to generate the client interface objects under UNIX
or Windows.

2. Application built according to the client-side build instructions under Using the PL/I Wrapper
for CICS with Call Interfaces.

3. The JCL must be adapted according to your needs.

For more information see the readme file in EntireX directory examples/RPC/basic/example/PLICli-
ent/zosCICS under UNIX or Windows.

68 EntireX PL/| Wrapper

Client and Server Examples for z/OS CICS

Basic RPC Server Example - CALC

For CICS on operating system z/OS, the CALC server is built with PL/I Wrapper target platform
setting "CICS for z/OS". For more information on target platforms, see Target Platform under
Generating PL/I Source Files from Software AG IDL Files.

Name Type Data Set Description Notes

CALC PL/I source code |[EXP951.QVPL |A server application providing the remote procedure |1
CALC (RPC service), with associated example.id]l.

CALCDFH|CICS CSD EXP951.QVPL |CSD Definition for remote procedure CALC (RPC service).

CALCIBM|JCL EXP951.QVPL |Job (JCL) to build the remote procedure CALC (RPC 2
service).

] Notes:

1. Application built according to the server-side build instructions under Using the PL/I Wrapper

for CICS.

2. The JCL must be adapted according to your needs.

For more information see the readme file in EntireX directory examples/RPC/basic/example/PLIServ-
er/zosCICS under UNIX or Windows.

EntireX PL/| Wrapper

69

70

13 Client and Server Examples for z/OS Batch

= Basic RPC Client Example - CALC
= Basic RPC Server Example - CALC

7"

Client and Server Examples for z/OS Batch

This chapter describes the examples provided for the PL/I Wrapper.

All examples here can be found in the EntireX examples/RPC directory under UNIX and Windows.

Basic RPC Client Example - CALC

For batch on operating system z/OS the CALC client is built with PL/I Wrapper target platform
setting "Batch for z/OS". See Target Platform under Generating PL/I Source Files from Software
AG IDL Files.

Name Type Data Set Description Notes

CALC PL/I source code| EXP951.PCPL |Client interface object for IDL program CALC 1

CALCCLT|PL/I source code |[EXP951.PCPL|A client application calling the remote procedure (RPC |2
service) CALC, with associated example.idl.

CALCIBM|JCL EXP951.PCPL (Job (JCL) to build the RPC client CALCCLT.
CALCRUN|JCL EXP951.PCPL (Job (JCL) to execute the RPC client CALCCLT.

CALC PL/I copybook |EXP951.PIPL |Client interface object copybook for IDL program CALC.
EXAMPLE|PL/I copybook |EXP951.PIPL |client interface object entry points

RPCPPS |PL/I copybook |EXP951.PIPL |PL/l Wrapper Preprocessor Switches and Settings.

== W W

] Notes:

1. Client interface objects are delivered with the z/OS installation, but not delivered on UNIX or
Windows. Use the EntireX Workbench to generate the client interface objects on UNIX or
Windows

2. Application built according to the client-side build instructions under Using the PL/I Wrapper
for Batch Mode (z/OS and z/VSE).

3. The JCL must be adapted according to your needs.

For more information see the readme file in EntireX directory examples/RPC/basic/example/PLICIi-
ent/zosBatch under UNIX or Windows.

72 EntireX PL/| Wrapper

Client and Server Examples for z/OS Batch

Basic RPC Server Example - CALC

For batch on operating system z/OS, the CALC server is built with PL/I Wrapper target platform
setting "Batch for z/OS". For more information on target platforms, see Target Platform under
Generating PL/I Source Files from Software AG IDL Files.

Name Type

Data Set Description

Notes
CALC PL/I source code |[EXP951.PVPL | A server application providing the remote procedure CALC|1
(RPC service), with associated example.idl.
CALCIBM|JCL EXP951.PVPL|Job (JCL) to build the remote procedure CALC (RPC 2
service).

‘J Notes:

1. Application built according to the server-side build instructions under Using the PL/I Wrapper
for Batch Mode (z/OS and z/VSE).

2. The JCL must be adapted according to your needs.

For more information see the readme file in EntireX directory examples/RPC/basic/example/PLIServ-
er/zosBatch under UNIX or Windows.

EntireX PL/| Wrapper

73

74

14 Client and Server Examples for z/OS IMS BMP

There are no special IMS BMP examples delivered.

The delivered client examples for z/OS batch can be used as a basis for use in BMP mode, but they
have to be adapted.

The delivered server examples for z/OS batch can also be used in BMP mode. See Client and
Server Examples for z/OS Batch. Using IMS PCB pointers to access IMS databases in this context
is described under Using the PL/I Wrapper for IMS BMP.

75

76

15 PL/I Wrapper Reference

= The RPC Communication Area (Reference)

= PL/| Wrapper Modules Delivered as Sources on z/OS

77

PL/l Wrapper Reference

The RPC Communication Area (Reference)

This section provides the programmer with reference material on the RPC Communication Area.
The RPC communication area is used to specify parameters which are needed to communicate
with the broker and are not specific to interface objects. These are, for example, the broker ID, client
parameters such as user ID, password and the server address such as class/servername/service
etc.

The RPC communication area is provided in include file RPCCOM.

Req.
Opt.
RPC Communication Area Field |Explanation Auto |In Out|Notes
COM_EYECATCHER Internal use only - not for customer use. - - 1
COM_VERSION Version of RPC Communication Area. Req. |I 2
COM_SIZE Size of RPC Communication Area. Req. |I 2
COM_FUNCTION LO - Logon to broker. Opt |1 3
LF - Logoff from broker. Opt |1 3
0C - Open Conversation. Opt |I 4
CB - Close Conversation. Opt |1 4
CE - Close Conversation and Commit. Opt |I 4
COM_ERROR Error code and error text returned by PL/I Wrapper. - O 5
COM_BROKER_ID Broker ID used. Corresponds to the BROKER-ID field of |Req. |I 6
the control block.
COM_SERVER_CLASS Class Name of the RPC server. Use "RPC" for Natural RPC|Req. I 6
Server. Corresponds to the SERVER-CLASS field of the ACI
control block.
COM_SERVER_NAME Server Name of the RPC server. Corresponds to the Req. |I 6
SERVER-NAME field of the ACI control block.
COM_SERVER_SERVICE Service Name of the RPC server. Use "CALLNAT" for Natural |Req. |I 6
RPC Server. Corresponds to the SERVICE field of the ACI
control block.
COM_SERVER_LIBRARY Library sent to the RPC server. The library specified here |Opt |1 7,4
overrides any library information specified in the IDL file,
see library-definition.
COM_SERVER_CONVID Conversation ID if in an RPC Conversation. Corresponds | Auto |- 4
to the CONV-ID field of the ACI control block.
COM_SERVER_WAIT Gives the time-out value for the transport system in Opt |I 7
seconds. Corresponds to the WAIT field of the ACI control
block.

78 EntireX PL/| Wrapper

PL/I Wrapper Reference

Req.
Opt.
RPC Communication Area Field |Explanation Auto (In Out|Notes
COM_CLIENT_USERID Broker user identification. Corresponds to the USER-ID |Req. |I 6,3
field of the ACI control block.
COM_CLIENT_TOKEN Token used by the broker to identify the caller. Opt |1 7,3
Corresponds to the TOKEN field of the ACI control block.
COM_CLIENT_PASSWORD Password to be transmitted to the broker to check Opt |1 7,3
authentication. Corresponds to the PASSWORD field of the
ACI control block.
COM_CLIENT_SECTOKEN Broker security token. Received also from broker and Auto|l 8
assigned to this field for further use. Corresponds to the
SECURITY -TOKEN field of the control block.
COM_CLIENT_RPCUSERID |RPC user ID, provided to Natural Security. Opt |1 7,9
COM_CLIENT_RPCPASSWORD|RPC password provided to Natural Security. Opt |1 7,9
COM_CLIENT_CODEPAGE Corresponds to the LOCALE-STRING field of the ACI Opt |1 10
control block.
COM_CLIENT_BROKERLOGON|Internal use only - not for customer use. - - 1
COM_CLIENT_NATSECURITY |Flag signaling a Natural Security ticket has to be provided |Opt |I 7,9
with interface object calls.
COM_DATA_FILLED Internal use only - not for customer use. - - 1
COM_DATA_MAXLEN Internal use only - not for customer use. - - 1
COM_DATA_NCHUNK Number of chunks allocated as a minimum, used by Opt |1 7,10
memory allocation.
COM_DATA_SCHUNK Size of a chunk, used by memory allocation. Opt |1 7,10
COM_TRACE_LEVEL Internal use only - not for customer use. - - 11
COM_TRACE_FCTLVL Internal use only - not for customer use. - - 1
COM_TRACE_INDENT Internal use only - not for customer use. - - 1
COM_DATA Internal use only - not for customer use. - - 1

RPC Communication Area field

Name of the field in the RPC communication area.

Explanation

Explanation of the purpose of the field.

Req. Opt. Auto

Indicates for input fields whether they have to be given by the RPC application (required) or may
be given (optional). Fields marked with Auto are managed internally by the interface objects and
the Using the Generic RPC Services Module themselves.

EntireX PL/| Wrapper

79

PL/l Wrapper Reference

In Out

Indicates whether the field is an input field (to be given by the RPC application), or an output field
(returned to your RPC application).

2

. Used internally by PL/I Wrapper. The field must not be modified by your application program

10.
11

Notes:

- otherwise unexpected behavior may occur.
For more information, see Step 1d: Declare and Initialize the RPC Communication Area.
For more information, see Using Broker Logon and Logoff.

RPC conversations are supported if communicating with an RPC server. They are not supported
if communicating with XI Adapters. For more information, see Conversational RPC.

For more information, see Step 7: Examine the Error Code under Writing an RPC Client Applic-
ation with the PL/I Wrapper.

For more information, see Step 4: Required Settings in the RPC Communication Area under
Writing an RPC Client Application with the PL/I Wrapper.

For more information, Step 6: Issue the RPC Request under Writing an RPC Client Application
with the PL/I Wrapper.

If EntireX Security is used, the field must not be modified by your application program - otherwise
unexpected behavior may occur.

Natural Security is only relevant when communication with Natural RPC Server. For more in-
formation, see Using Natural Security.

For more information, see Using Internationalization with the PL/I Wrapper.

Send and Receive buffers for the broker are allocated in blocks, whereby the required number
of blocks is determined by the interface object automatically. The default size of a block (4096
byte) can be altered with the field COM_DATA_SCHUNK whereby the needed number is adjusted
automatically by the interface object then. With the field COM_DATA_NCHUNK a minimum number
of blocks allocated is defined, which is used if the calculation by the interface object gives a
lower number than the minimum. The default minimum number (4 blocks) can be altered with
the field COM_DATA_NCHUNK. Normally it is not required to alter COM_DATA_SCHUNK and
COM_DATA_NCHUNK fields.

12 For future use.

80

EntireX PL/| Wrapper

PL/I Wrapper Reference

PL/l Wrapper Modules Delivered as Sources on z/0S

Among the generated PL/I sources and include files, the following PL/I modules are delivered .
Some of them are PL/I sources, some of them are PL/I include files.

Module Data Set Description Notes
PLIDEF |EXP951.INCL |Broker ACI control block for PL/I, referenced by the Generic RPC Services|1,5
Modules

RPCAPI |EXP951.INCL|Generic RPC services interfaces 4
RPCCOM |EXP951.INCL |[RPC communication area 3
RPCDEF |EXP951.INCL |Used internally by stubs and other parts 1
RPCPPD |EXP951.INCL |Preprocessor definitions 1
RPCSRVI |EXP951.INCL |Generic RPC services used internally 1,5
RPCSRVS |EXP951.INCL |Specific RPC functions used internally 1,6
RPCSRVSB|EXP951.INCL |Specific RPC functions used internally 1
PLISRVIB|EXP951.SRCE |Batch generic RPC services 1,2,5
PLISRVIC|EXP951.SRCE |CICS generic RPC services 1,2,5
PLISRVS |EXP951.SRCE |Specific RPC functions 1,2,6
PLISRVT |EXP951.SRCE |Trace functions module 1,2,7

Module
Name of the delivered module.
Data Set

In the table vrs represents the version, release and service pack. You will also find the module on
DVD in the folder PL/I.

EXP951.QIPL - CICS RPC example include data set for PL/I.

The CICS RPC example include data set for PL/I may be delivered as a patch with a different name,
EXP951.Qlnn, where nn is the patch level number. Make sure you install the highest patch level
available.

EXP951.PIPL - Batch RPC example include data set for PL/I.

The Batch RPC example include data set for PL/I may be delivered as a patch with a different
name, EXP951.PInn, where nn is the patch level number. Make sure you install the highest patch
level available.

EXP951.INCL - Generic RPC include data set.

EntireX PL/| Wrapper 81

PL/l Wrapper Reference

The Generic RPC include data set may be delivered as a patch with a different name, EXP951.INnn,
where nn is the patch level number. Make sure you install the highest patch level available.

EXP951.SRCE - Generic RPC source data set.

The Generic RPC source data set may be delivered as a patch with a different name, EXP951.50nn,
where nn is the patch level number. Make sure you install the highest patch level available.

Description
Purpose of the module.

] Notes:

This file is not for direct customer usage. Do not modify it.

The prefix of the linkage name can be customized, see PL/I Preprocessor Settings.
For more information, see The RPC Communication Area (Reference).

For more information, see Step 1c: Declare API Constants to PL/I Wrapper.

For a short description, see Using the Generic RPC Services Module.

SRR S e

The specific RPC functions module contains the logic to build the RPC request stream and in-
terpret the reply from the RPC server. It does not contain the call to the broker stub.

7. The trace module contains functions and procedures to build a trace version of the PL/I Wrapper,
see Using Trace.

82 EntireX PL/| Wrapper

	EntireX PL/I Wrapper
	Table of Contents
	EntireX PL/I Wrapper
	1 Introduction to the PL/I Wrapper
	Description
	Generic RPC Services Module
	PL/I Client Applications
	PL/I Server Application

	2 Using the PL/I Wrapper
	Using the PL/I Wrapper for the Client-side
	Using the PL/I Wrapper for Batch Mode (z/OS and z/VSE)
	Using the PL/I Wrapper for CICS
	Using the PL/I Wrapper for CICS with Call Interfaces
	Using the Generic RPC Services Module
	Hints for Compiling and Linking (Binding)
	PL/I Preprocessor Settings

	Using the PL/I Wrapper for the Server Side
	Using the PL/I Wrapper for Batch Mode (IMS, z/OS and z/VSE)
	Using the PL/I Wrapper for CICS
	Using the PL/I Wrapper for IMS BMP
	Hints for Compiling and Linking (Binding)

	Generating PL/I Source Files from Software AG IDL Files
	Selecting an IDL File and Generating an RPC Client or RPC Server
	Settings
	Target Platform

	3 Using the PL/I Wrapper in Command-line Mode
	Command-line Options
	Example Generating an RPC Client
	Example Generating an RPC Server
	Further Examples
	Windows
	Example 1
	Example 2
	Example 3
	Example 4

	Linux
	Example 1
	Example 2
	Example 3

	4 Software AG IDL to PL/I Mapping
	Mapping IDL Data Types to PL/I Data Types
	Mapping Library Name and Alias
	Client Side
	Server Side

	Mapping Program Name and Alias
	Client Side
	Server Side

	Mapping Parameter Names
	Client and Server Side

	Mapping Fixed and Unbounded Arrays
	Client Side
	Server Side

	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes IN, OUT, INOUT
	Client Side
	Server Side

	Mapping the ALIGNED Attribute
	Client Side
	Server Side

	Calling Servers as Procedures or Functions
	Client Side
	Server Side

	5 Writing an RPC Client Application with the PL/I Wrapper
	Step 1: Generic Declarations Required by the PL/I Wrapper
	Step 1a: Embed PL/I Wrapper Preprocessor Definitions
	Step 1b: Declare PL/I Built-in Functions
	Step 1c: Declare API Constants to PL/I Wrapper
	Step 1d: Declare and Initialize the RPC Communication Area

	Step 2: Declare the (Generated) Data Structures for (Generated) Interface Objects
	Step 3: Declare ENTRY Definitions to (Generated) Interface Objects
	Step 4: Required Settings in the RPC Communication Area
	Step 5: Optional Settings in the RPC Communication Area
	Step 6: Issue the RPC Request
	Using the Call Interface
	Using the EXEC CICS LINK Interface

	Step 7: Examine the Error Code

	6 Using Broker Logon and Logoff
	Log on to the Broker
	With the Call Interface
	With the EXEC CICS LINK Interface

	Log off from the Broker
	With the Call Interface
	With the EXEC CICS LINK Interface

	Additional Hints

	7 Using the RPC Communication Area
	8 Conversational RPC
	Using Conversational RPC
	Terminating a Conversational RPC Communication
	Closing and Committing a Conversational RPC Communication

	9 Using Natural Security
	10 Using Trace
	Using Trace in Batch, CICS with Call Interfaces, and IMS
	Using Trace in CICS

	11 Using Internationalization with the PL/I Wrapper
	12 Client and Server Examples for z/OS CICS
	Basic RPC Client Example - CALC
	Basic RPC Server Example - CALC

	13 Client and Server Examples for z/OS Batch
	Basic RPC Client Example - CALC
	Basic RPC Server Example - CALC

	14 Client and Server Examples for z/OS IMS BMP
	15 PL/I Wrapper Reference
	The RPC Communication Area (Reference)
	PL/I Wrapper Modules Delivered as Sources on z/OS

