5 software~

webMethods EntireX

Software AG IDL Editor

Version 9.5 SP1

November 2013

webMethods EntireX

This document applies to webMethods EntireX Version 9.5 SP1.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXIDLEDITOR-95SP1-20140628

Table of Contents

Software AG IDL EdItOrcoooiiiiiiiiiiiiiiiiiiiiicccceececcee e vii
1 Introduction to the Software AG IDL Editorcccccoiiiiiiiiiiiiiiiiiiii 1
INtrodUCtiONooviiiiiiii 2
Features of the IDL Editorccccooiiiiiiiiiiiii 2
2 Using the Software AG IDL Editorcccccooiiiiiiiiiiiiiiiiiiiiccc 5
Starting the IDL Editorcoooviiiiiiiiiiccccececc 6
IDL EditOr VIEWScoiiiiiiiiiiiiiiicciiccic s 9
Context Menu of the IDL Editorccccoooviiiiiiiiiiiiiiiiiiiiccce 15
Editing an IDL File from the Outline Viewc.ccccccoinininiiiiiiie 16
3 Software AG IDL Filecccoooiiiiiiiiiiiii 23
Introduction to the IDL Filecccccccoiiiiiiiiiiii, 24
IDL Data TYPeS ..uvviiiiiiiiiiiiiiiicc i 24
Rules for Coding IDL Filesc.ccccoiiiiiiiiiiiiiiiiccccce e 27
Rules for Coding Group and Parameter Namescccccoviiiiiiiiiiiiiiiiiiiiene 28
Rules for Coding Library, Library Alias, Program, Program Alias and Structure
INAINES ... 29
4 Software AG IDL Grammarccccoouriiiiiiiiiiiiiiiic s 31
Meta Definitionsccccoiiiiiiiiiiiiiiiiii 32
Syntax of the IDL Filec.coooiiiiiiiiiiiiiiiiiicee e 33
library-definitioncccoiiiiiiiiiiiiii 33
program-definition ..o 35
structure-definition ... 36
parameter-data-definition ... 37
simple-parameter-definitioncccoociiiiiiiiiiiiiii, 39
group-parameter-definition ... 40
structure-parameter-definition (IDL)cccccooviiiiiiiiiiiiiiiiiccece e 41
array-definitioncccooiiiiiiiiiiiiii 42
attribute-list ... 47
5 The Software AG IDL Compilercccccovuiiiiiiiiiiiiiiiiiiiiiiccccic e 49
INtroductionoooviiiiiiiii 50
Starting the IDL COmMPILETcccoiiiiiiiiiiiiiiiiiiiiic e 50
IDL Compiler Usage Examplescccoooiiiiiiiiiiiiiiiiiiicccecccccccn 52
Writing your own Wrappers and Stubs ... 52
6 Writing Template Files for Software AG IDL Compilerccccceevviiniiiiiiiiiiiiinnnnnn. 53
Coding Tempate Filesc.ccooiiiiiiiiii 54
Using Output Statements in the Template Filecccccoooiiviiiiiiiniiii 55
Inserting Comments in the Template Filec.ccccooiiiiiiiiiis 57
Using Verbatim MoOdec.coooiiiiiiiiiiiiiiiiiicieceeccec e 58
USING OPIONS ..evviiiiiiiiiiiiiiiiccc s 58
Specifiying the Name of the Output Filecccocoiiiiiiiii, 58
Redirecting the Output to Standard Outcccocoiviiiiiiiiiiii, 59
Using Template #if Preprocessing Statementsccoocooiiiiiiiiiiiiiicie, 60
Using Template #include Preprocessing Statementsccccevvviiviiiiiiniinnnnnnen. 62

Software AG IDL Editor

Using Template #trace Statementc.ocooviiiiiiiiiiiiii 62
7 Grammar for IDL Template Filesc.ccccocooiiiiiiiiiii, 65
Software AG Template File Grammarccccoviiiiiiiiiiiiiniiiiiiiceccec 67
assign_statement ... 67
assign_integer_statement ... 68
assign_string_statement ... 68
BIOCK i 69
COMPATE_EXPTESSION ..vviiiiuiiiiiiiiiiiiee ettt ettt et st e e e aaee e e e eaaeeeeeaes 69
COMPATe_STIINES ...ooiviiiiiiiiiiii s 70
COMPATE_OPETATOT ..ooiiiiiiiiiiiiiiii ittt 70
o) aku o) -] 721 <10 4 1<) o | AU R UUURURRRPRRIIN 71
definition-statementcccociiiiiiiiiiii 72
definition-of-base-type-templatec.cccooiiiiiiiiiiiii 73
definition-0f-base-typecccvviiiiiiiiiiiiiiiiii 74
definition-of-direction-templatecccociiiiiiiiiiii 75
definition-of-group-templatec..cccooiiiiiii 75
definition-of-index-templateccccooiiiiiiiiiiiii 76
definition-of-line-number-format-templatec..cccooooiini 76
definition-of-member-separator-templatecccccoeiiiiiiiiiiiiiiii, 77
definition-of-names-format-templateccccoeiiiiiiiiiiiii 77
definition-of-OutBlank-template ..o 78
definition-of-nest-level-format-templateccccooiiiiiiiiiiiiii 78
definition-of-parent-identifier-templatecccoocooiiiiiiiii 79
definition-of-parent-index-templatecccccociiiiiiiiiiiiiii, 79
definition-of-structure-templatec.cccoiiiiiiii 80
definition-of-Unbounded Array-templateccccooiiiiiiiiiniiiiiiiniiiicicceeee 80
EITOY_SEALEIMEIIE ..oiiviiiiiiiiie e et ee e et ee e e e et e e e sa e eeeaataeeesasteeeennen 81
(oG ot b I 7= 113 0 0 1 0 | N 82
file_handling_statementccccoociiiiiiiiiiiiiiiiiii 83
1 = 721116 A 1<) o | O U RO URRUPRRRIN 84
FE <) VE Ay S L= 41 (o) o NPT 84
logical_compare_OpPeratorccooeeiiiiiiiiiiiiiiceeicee e 85
loop_statementcccooiiiiiiiiiiii 85
10OP_0OVer_liDIariescccoviiiiiiiiiiiiiiiii i 86
loOP_OVer_parametersccoouiiiiiiiiiiiii e 87
lOOP_OVET_PTOGTAINSeeiiiiiiiiiiiiiiiiiiie et 87
1OOP_OVer_StrUuCUIeSceoiiiiiiiiiiiiiiicii 88
10OP_Of_WHle ..o 88
message_statement ... 89
OULPUL Lot 89
output_character_SeqUENCEccocuiiiiiiiiiiiiiiiii i 90
output_control Imscccciiiiiiiiiiiiii 91
output_control_imsonlyccccocciiiiiiiiiiiiiiii 91
output_control_IoWer_UpPPercccceeviiiiiiiiiiiiieccee 92
output_control_sanitizecccccoiiiiiiiiiiiiiiii 93

Software AG IDL Editor

Software AG IDL Editor

output_control_statementcccccoooiiiiiiiiiiii 96
output_control_verbosecccccooiiiiiiiiiiii 96
output_escape_SeqUENCEccouiiiiiiiiiiiiiiiiiiic e 97
output_formatting_SeqUEeNCEcooieiiiiiiiiii 97
output_of_variable ..ot 98
output_statement ... 99
output_substitution_SeqUENCEccccevuiiiiiiiiiiiiiiiieccce e 99
parameter_listcccooiiiiiiiiiii 103
TEEUITI_LIST oottt ettt e e e e e et e e e e e e e e e e e e aeeeeeaeseeeaaans 104
TETUTIN_STAtEIMEINE ..uiiveiiiieeiie e et e et e e e e e sate e e st eeenaens 104
StatemMent ... 105
SEIITIE e 105
string_with_expression_contentsccccocviiiiiiiiiiiiiiiiii 106
substring_statementc.cooiiiiiiii 107
UnsupportedProgram_statementccccoeoviiiiiiiiiiiiiiiiiiiiicen 108
A=V a =1 o) [T 1 Lo [0 QUSSP RUUR 109
V2=V u =1 o) (I =10 4 LT PPN 109
variable_of_type_indexed_stringccccccooviiiiiiiiiiii 110
variable_of_type_integercccooiiiiiiiiiiiiiii e 110
variable_of _type_stringccccccociiiiiiiiiiiiiiiiiiiii 111

Software AG IDL Editor Vv

vi

Software AG IDL Editor

Software AG IDL (Interface Definition Language) is a language that lets a program or object (the
client) written in one language communicate with another program written in another language
(the server). An interface definition language works by requiring a program's interfaces to be
described in an interface object or slight extension of the program that is compiled into it.

Software AG IDL is used to define an interface between the client and the server. These definitions
are contained in a Software AG IDL file. IDL compilers read IDL files and generate interface objects
or descriptions from the definitions they contain.

The Software AG IDL Editor is a syntax-aware editor for Software AG IDL files. A content outline
view enables operations on the IDL tree. Other features include syntax highlighting, content assist
and a Problems view for resolving IDL syntax errors.

Introduction This document gives an introduction and overview of features of the
IDL Editor.
Using the IDL Editor This document describes the usage of the IDL Editor; starting the

editor; views and context menu.

Software AG IDL File in the IDL Editor This document contains a descriptive introduction to IDL data files;

documentation IDL data types; rules for coding IDL files.
IDL Grammar This document explains the syntax of IDL files in a formal notation.
IDL Compiler Starting the IDL Compiler; usage examples; writing your own

wrappers and stubs.
Template Files Writing your own template files for Software AG IDL Compiler.
Grammar for IDL Template Files Grammar for IDL template files.

Vii

viii

1 Introduction to the Software AG IDL Editor

B OAUCH ON .ot
B FEAtUIES OF the IDL EalOr .. et e

Introduction to the Software AG IDL Editor

The Software AG IDL Editor is a syntax-aware editor for Software AG IDL files. A content outline
view enables operations on the IDL tree. Other features include syntax highlighting, content assist
and a Problems view for resolving IDL syntax errors.

Introduction

The IDL Editor is used for processing IDL files (files with extension “.idl”).

» To start the IDL Editor

m Select an existing IDL file and open this using the context menu, or double-click on the file.
Or:
Start the IDL Editor as any other Eclipse new wizard.

In addition to a Text view, the editor supports the following views:

Outline View
In the Outline view, the structure of the IDL file is displayed in a tree structure. The context
menu of the Outline view provides a variety of commands for manipulating the structure of
the IDL. See IDL Editor Outline View.

Properties View
The Properties view displays various attributes of the element selected in the Text view or
Outline view. You can also edit these attributes in this view. See IDL Editor Properties View.

Problems View
The Problems view describes syntax errors in the IDL file. See IDL Editor Problems View.

Features of the IDL Editor

Content Assist

Enables text-dependent completion when requested. Content assist offers a pop-up from which
you can choose one of the suggestions.

2 Software AG IDL Editor

Introduction to the Software AG IDL Editor

Syntax Highlighting
Certain parts of the IDL document are displayed with a color coding;:

® purple: IDL keywords
" brown: comments

" green: string constants.

Software AG IDL Editor 3

2 Using the Software AG IDL Editor

B SHArtiNG the IDL EAIOrooiiiei e 6
B DL EQIOI VIBWS ...ttt ettt e e e e ettt e e e e e e e e e 9
= Context Menu Of the IDL EAItOrooiiiiieee e 15
= Editing an IDL File from the OUIINE VIBWuiiiiii e 16

Using the Software AG IDL Editor

The Software AG IDL Editor is a syntax-aware editor for Software AG IDL files. A content outline
view enables operations on the IDL tree. Other features include syntax highlighting, content assist
and a Problems view for resolving IDL syntax errors.

Starting the IDL Editor

P To start the IDL Editor

= Select an existing IDL file and open this using the context menu, or double-click on the file.
Or:
Start the IDL Editor as any other Eclipse new wizard.

Select a wizard

Create a new Software G I0L file and open it in the I0L Editor

Wizards:

= Plug-in Developrient -
= Server
== Software AG
& Web Services Stack Packaging Wizard
== Enkirex
E 1oL Extractor For COBOL
H] 10L Extractor Far Matural
% 1oL Extractor For P
ﬂ! 10L Extractor For %ML Document
W I0L Extractor For 5ML Schema
[Software AG IDL File

Specify the name and the container of the new IDL file you want to create. The container is a
project or a folder in a project. If the container does not exist, it will be created interactively. Enter
the names of a first library, a first program and a first parameter to get an initial IDL file. The

names and the properties can be changed later. "myLibrary", "myProgram" and "myParameter”
are provided as default values.

6 Software AG IDL Editor

Using the Software AG IDL Editor

& Mew Software AG IDL File
Create Software AG IDL File

Create a new file with extension *.idl that can be opened by the IDL Editor,

Container: | kDemo

File Marne:

Mares of the initial elements af the IDL file

Library: | rry Likarary

Prograrm: iy Progran

Parameter: | rivy Parameter

The IDL file is then displayed in the IDL Editor. In addition to a Text view, the editor supports
the following views:

® JDIL Editor Outline View

® IDL Editor Properties View

= JDL Editor Problems View

Software AG IDL Editor 7

Using the Software AG IDL Editor

& EntireX - Demo/example.idl - Eclipse SDK

File Edit Mavigate Search Project
e Q- e
[example.idl 52

*% programs CALC,
w

ww |:C]
%

Library 'EXALMNFLE' Is
Program 'CALC' Is
Define Data Parameter

1 Cperation (A1)
1 Cperand 1 [I4)
1 Operand 2 [I4)
1 Function Result ([I4]

End-Define

Program 'FOWER' Is
Define Data Parameter
(I4)
T4

1 Cperand
1 Funmtinn Resultr

<
= Tasks |] Properties &2

Property
Aligred:
Daka Type:
Dimension 1:
Dimension 2:
Dimension 3:
Direckion:

Ik

@

In
In
In
Dut

In
nut.

Run Window Help

Copyright S3oftware 4G 1997 - ZOO06.

Walue
Mo
Alphanumeric

*% This IDL file contains the IDL definitions for the
POWER and HELLD of the RPC library EZAMPLE.

811 rights reserved.

= 08

b e i i e e e i e e i i e e i e e e e e i

ol o e ol ol o o o o o ol ol ol

Eb | -5= Entirex |3}J Java E‘:, Resource
5= qutline 53 =B
B 4% ExAmMPLE
=-4F caLc
@P COperstion (AL} In
$Operand_1 (14} In
@pOperand_Z (14} In
4P Function_Result (I4) RESUI
=-4P POWER
@pOperand (I4) In
4P Function_Result (141 RESUI
=4 HELLo
4 client (A20) In
4P mail (Ag0) InOut

< | =
&= =0
A

£

Software AG IDL Editor

Using the Software AG IDL Editor

IDL Editor Views

IDL Editor Outline View

Context Menu of the Outline View
Outline View Drag-and-Drop

IDL Editor Properties View

IDL Editor Problems View

IDL Editor Outline View

In the Outline view, the structure of the IDL file is displayed in a tree structure. The nodes are the
elements of the IDL: libraries, programs, structures and parameters. The context menu of the
Outline view provides a variety of commands for manipulating the structure of the IDL.

& EntireX - Demo/example.idl - Eclipse SDK '._||'E|E|
File Edit Mavigate Search Project Run Window Help
1 il %' : 3 P L@ ﬁﬁg Ertirex |3}J Java r[\:lResource
[eample.idl 52 = 0O E= outlire 52 =B
b e i i e e e i e e i i e e i e e e e e i E &EXHMPLE
*% This IDL file contains the IDL definitions for the = @PCP\LC

*% programs CALC, POWER and HELLD of the RPC libhrary EXZAMFLE. I:Z:||:n3rati|:|r| (aly In
** Q)Operand_l (I4) In
% (g) Copyright Software AG 1997 — 2006. All rights reserved. @pOperand_2 (14} In
= @pFunction_Result (I4) RESUI
ol o e ol ol o o o o o ol ol ol B @PPOWER
@pOperand (I4) In
Library 'EXALMNFLE' Is &Function_Result (I4) RESUI
Program 'CALC' Is =] épHELLO
Define Data Parameter @pclient (A30) In
1 Operation (A1) In @pMaiI (AS0) InOut
1 Cperand 1 [I4) In
1 Operand 2 [I4) In
1 Function Result ([I4] out
End-Define

Program 'FOWER' Is
Define Data Parameter

1 Cperand [I4) In
1 Function Result (I4] out
End-Define

Program 'HELLZ' Is
Define Data Parameter

1 Client (A30) In
1 Mail (A30) In Dut
End-Define 8
hs
< > < | =
o* : A =

Software AG IDL Editor 9

Using the Software AG IDL Editor

Context Menu of the Outline View

2% outline 532
= &b ExamPLE
=-4F caLc

P

ew 4
Grouping. ..

Direction 3

Aligred 3

Delete
Rename...

Refresh
Expand Al

Properties...

d_1 {4 In
d 2 (4) In
n_Result (14 RESULT

d (I4) In
n_Result (14) RESULT

(AE0) In
W0 Itk

Command |Description

New u

The New command applies only to single selections.

Library
Inserts a library before the selected library. Enabled only for libraries.

Program

Inserts a program at the first position of the current library if a library is selected. If a progam
is selected, a new program is inserted before the selected program. The same applies if a
structure is selected. If a parameter is selected, a new program is inserted before the program
or structure containing the selected parameter.

Structure

Inserts a structure at the first position of the current library if a library is selected. If a
program is selected, the new structure is inserted before the selected program. The same
applies if a structure is selected. If a parameter is selected, a new structure is inserted before
the program or structure containing the selected parameter.

Parameter

Inserts a new parameter at the first position of the current program or structure if a program
or structure is selected. If a parameter is selected, the new parameter is inserted before the
selected parameter.

Grouping... |Inserts a group that contains the selected parameters.

Direction =

InOut
Changes the direction to InOut.

In
Changes the direction to In.

10

Software AG IDL Editor

Using the Software AG IDL Editor

Command |Description

® Out
Changes the direction to Out.

If a program is selected, the direction of all parameters in this program is changed.

Duplicate |Duplicates the selected program and creates a unique name for this program.

Aligned = On
Parameter is aligned.

= Off
Parameter is not aligned.

Delete Deletes the node.
Rename Renames the node.
Refresh Refreshes the whole tree, that is, makes it synchronized with the text in the editor.

Expand All |Opens the nodes of the tree.

Properties...|Displays the properties of the selected node.

Outline View Drag-and-Drop

Drag-and-drop operation is enabled for the tree structure of the IDL file (represented in the Outline

view). That is, you can drag an individual library, structure, program or parameter to a target

element. You cannot drag more than one object at a time.

The table below describes the permitted drag-and-drop functions, where Drag Source is the element

being dragged and the Drop Target is the element that receives the drag source.

Drop Target /| Parameter, Group |Program | Structure | Library

Drag Source

Parameter, Group X X X

Program X X X
Structure X X X
Library X

For example, a parameter can be dragged to a structure, but not to a library.

Software AG IDL Editor

11

Using the Software AG IDL Editor

IDL Editor Properties View

The Properties view displays various attributes of the element selected in the Text view or Outline
view. You can also edit these attributes in this view.

& EntireX - Demofexample.idl - Eclipse SDK _||'E|E|
File Edit Mavigate Search Project Run Window Help
D L N 2 & @ =1 | 4 Entirei |%y Java [[5Resource
[example.idl 52 = 0| 5% outline 52 =08
e e e i e e E] é‘ ExAaMPLE
*#% This IDL file contains the IDL definitions for the = &CF\LC
% programs CALC, POUER and HELLD of the RPC library EXLMPLE. @p Operation (A1) In
T @p Operand_1 (I4) In
*% [(z) Copyright Software AG 1997 - Z006. Lll rights reservec éPOperand_Z (I14) In
w @p Function_Result {I4) RESULT
e B e B ¢P POWER
ép Operand {14} In
Library 'EXLMPLE' Is @p Function_Result {I4) RESULT
Program 'CALLC' I= = @pHELLO
Define Data Parameter ép Client (AS0) In
1 Qperation (A1) In @p Mail (AS0) InCut
1 operand 1 [I4) In =
1 Operand 2 [I4) In
1 Function Result (I4) Jut
End-Define
Program 'FOWER' Is
Define Data Parameter
1 Operand [I4) In
1 Funrtinn Result (T4 nmnt !
< | *
& Tasks | = Froperties I3 | 5| ¥ =g
Property valug ~
. agedt ... o | |
Data Tywpe: Alphanumeric
Dirnension 1] B
Dimensian 2: 1]
Dimensian 3: 1]
Direckion: In -
o* Aligried:
Library and Program
Property Description
Alias Alias of the library or program.
Name Name of the library or program.

Preceding comment lines| Any comment in a preceding line or lines that applies to this line is displayed
here. You can also add here a comment to this library or program in a definition
line.

Same-line comment Any comment in the current line is displayed here. You can also add a comment
to the current line.

12 Software AG IDL Editor

Using the Software AG IDL Editor

Structure
Property Description
Name Name of the library or program.

Preceding comment lines

Any comment in a preceding line or lines that applies to this line is displayed
here. You can also add here a comment to this library or program in a definition
line.

Same-line comment

Any comment in the current line is displayed here. You can also add a comment
to the current line.

Parameter

Property Description

Aligned Specifies whether the current line contains an aligned statement.
Data Type Here you can select data types from a drop-down list.

Dimension 1

First array dimension.

Dimension 2

Second array dimension.

Dimension 3

Third array dimension.

Name

Name of the parameter.

Preceding comment lines

Any comment in a preceding line or lines that applies to this line is displayed
here. You can also add here a comment to this parameter.

Same-line comment

Any comment in the current line is displayed here. You can also add a comment
to the current line.

Size and precision

Size and precision of the parameter.

Structure reference

If a structure is referenced, its name is displayed here.

IDL Editor Problems View

The Problems view documents syntax errors in the current IDL file, depending on the filter settings
of the view. Only a document that is free of syntax errors can be displayed in the Outline view.
Additionally, the line containing the error is marked with an error symbol and flagged to the right

of the scrollbar.

Software AG IDL Editor

13

Using the Software AG IDL Editor

& EntireX - Demofexample.idl - Eclipse SDK

File Edit Mavigate Search Project Run Window Help
i & Q-

[n example.idl 52 = 8|59 outline 52 =0

o ol o o o o ol o ol ol ol o o ol o e o R B é‘ E=AMPLE

" B, = T | 74 Entirex |85 Java [75 Resource

*#% Thi=z IDL file contains the IDL definitions for the = QPC.C\LC
** prograums CALC, POWER and HELLO of the RPC likbrary EXAMPLE. @POperatinn (A1) In
LA Operand_1 {14} In
** () Copyright Software AG 1997 - 2Z006. ALll rights reserved. @pOperand_E (14 In
L @P Function_Result (14
e ol o ol ol ol ol e ol e el ol el il e ol el ol ol e e e o . B gPOWER
@p Operand (I4) In
Library 'EXLMPLE' Is @PFunction_Result 14
Program 'CLLC' Is = @pHELLO
Define Data Parameter W @pCIient (A80Y In
%] 1 (k1] In #F mal (8800 Inout
1 Operand 1 [I4) In
1 Operand 2 [I4) In

1 Function Result (I4) Out
End-Define
Program 'POWER' Is

Define Data Parameter ».
< | = < | >
(£ Prablems &3 ¥ =08
1 error, O warnings, 0 infos (Filker matched 1 of 6 items)
Description Resource Path Lacation

= B Errors {1 item)

2001 0011 Parsing error: Synkax Error: Found "(" instead of “identifier”, example.idl Demo

:0 2001 0011 Parsing error: Synkax Error: Found "(" instead of “identifier”,

14 Software AG IDL Editor

Using the Software AG IDL Editor

Context Menu of the IDL Editor

Define Data Parameter

Dperat 1 = T
]
1 Gperand_ﬂ’
1 Operand
1 Functiol
End-Define
Program 'FoOl
Define Dati opy Chrl+C
1 COperand Paste kel
1 Functio
End-Define

Program 'HE]

Cuk ChEl4-

Shift: Right
Shift: Left

Define Dati Run &s »
1 Client Debug As b
1 Mail Tearm 3
End-Define Compare With r
Replace With r
Preferences. ..
Conkent Assist Ckrl+Space —
Content Tip Ckrl+5hift+Space 1:
. Content Farmat Chrl4+Shift+F |_

In addition to standard editor commands such as Undo, Revert File, Cut, Copy, Paste, Save etc.,
the context menu of the IDL Editor view offers two additional commands for shifting an element
in the text: Shift Right to add a tab, and Shift Left to remove a tab.

Software AG IDL Editor 15

Using the Software AG IDL Editor

Editing an IDL File from the Outline View

This example describes the operation of the IDL file outline context menu. These operations allow
you to insert new IDL syntax elements without detailed knowledge of the syntax.

In this example we generate an IDL file by using the Software AG IDL File Wizard. The Outline
view is opened (if it is not open already).

& EntireX - Demo/fexample.idl - Eclipse SDK
File Edit Mavigate Search Project Run Window Help

i E Q- i E @ LR T | 74 Entirex |85 Java [75 Resource
[n *example.idl 52 = B E= cutline 52 =0
b o i e i e e i e e e e i e e e e e e e i e B &EXF\MPLE
*#% Thi=z IDL file contains the IDL definitions for the = @pCF\LC
** programs CALC, POWER and HELLD of the RPC library EXALMP @pOperatinn (A1) In
o o-4F
** () Copyright Software LG 1997 - Z006. L1l rights reser Operand_1 (I4)
L @pOperand_Z (14}
ol ol o ol ol ol ol ol ol e @PFUnCtiUn_RBSUIt (Iq.) RESULT
=-4P PowER
Library 'EXLMPLE' Is @pOperand (I4) In
Program 'CALLC' Is @PFunction_Result (I4) RESIILT
Define Data Parameter =-4F HELLD
1 Operation (A1) In @pclient (AS0) In
1 Groupl In Out @PMaiI (AB0) InCut
2 Operand 1 [I4)
2 Operand 2 [I4)

1 Function_Result (I4) Out
End-Define
Program 'FCOWER' Is

Define Data Parameter

1 Operand [I4) In
1 Function Result (I4) Out v
< >
i Tasks | =l Properties 53 | &5 | = =0
Property Yalue ~
Aligned: Mo
[raka Type: Group
Dirmension 1: a
Dirnension 2: 1}
Dirnension 3: a v
4 >

ok

We can change the name of the library for example by selecting the library and choosing Rename
in the context menu. The same applies to program and parameters.

16 Software AG IDL Editor

Using the Software AG IDL Editor

& EntireX - Demo/example.idl - Eclipse SDK _||E|E|
File Edit Mavigate Search Project Run Window Help
D, Q- @ L= ﬁ|' Enti x|?JJava [75 Resource
e : : P A 3 7 Entireil | &5]
[example.idl 53 = O 32 outline &3 =0
ol o o ol ol o ol ol el ol ol el ol el i el ol o e B &W
** This IDL file contains the IDL definitions for the = A Mew 4
** programs CALC, POWER and HELLO of the RPC library EXAMP @r
T 6
. . Direckion 3
** (o) Copyright Software AG 1997 - 2006. All rights reser &
w ¢ oned ,) RESLT
S e e i E‘ @PPC alane
Delete

St

Library 'EXANPLE' Is
Program 'CLLC' Is =4 HE

Rename... 1 RESULT

Define Data Parameter Refresh
1 Operation {a1) In Expand Al
1 Operand 1 [I4) In Properties...
1 operand 2 [I4) In
1 Function_Result (I4) Out —
End-Define
Program 'FPOVER' I=
Define Data Parameter
1 Operand [I4) In
1 Function Result (I4) out
End-Define I
< | >
] Tasks | =l Properties i3 [2|2 = =08
Property Yalue
Alias nare:
Marne: ExAMPLE

Preceding comment lines:
Same line comment:

B

Adding a New Element

Choose the New... submenu of the context menu. To add an additional library to the IDL file,
choose Library.

A Library Properties dialog is displayed, where you can enter the name of the library, the alias
and comments.

Software AG IDL Editor 17

Using the Software AG IDL Editor

& EntireX - Demo/example.idl - Eclipse SDK

File Edit MNavigate Search Project

‘0:.

| example.idl 52

=
** programs CALC,
=
= |:CJ

* %

I=

Library 'EXLMPLE'
Program 'CiLLC' Is
Define Data Parameter

1 Cperation [&1)
1 Operand 1 [I4)
1 Operand 2 [I4)
1 Function BResult (I4)
End-Define
Program 'FOWER' Is
Define Data Parameter
1 COperand [I4)
1 Function Result (I4)
End-Define
<

&2 Tasks | B Properties 53

Property
Alias name:
Mame:
Preceding comment: lines:
Same lire comment:

=

Copyright Software AG 1997 - 2006.

Run ‘Window Help

@ : o o

This IDL file contains the IDL definitions for the
FOWER and HELLO of the RPC library EXAMFP

Out

Walue

ExaMPLE

=0

oo o o o o ol ol o o il ol i e o el ol e

211 rights reser

o o o o ol o o ol e ol ol o o o

|<

B | B3 Entirex |85 2ava

5= outline 52

Program. ..
Struckure, ..

Direction 3

t (I14) RESULT

fAligned 4
=4 21
Delete In
Rename. .. b (14} RESULT
=
4 Refresh
n
Expand Al
P out
Properties...
| & |3

Select a parameter and choose Properties in the context menu. In the Parameter properties dialog

you can set all required properties.

18

Software AG IDL Editor

Using the Software AG IDL Editor

& EntireX IDL Editor X
. .
Parameter properties e
Properties of Operation #
Marne: |
Direction; | In w |
Data Type: | Alphanumeric w |
Size and Precision; | 1 |
Structure reference: | |
Dirnension 1 | 1] [Tariable Upper Bound
Dirnension 2 | ‘'ariable Upper Bound
Dirnension 3 | ‘'ariable Upper Bound
Aligried: | Mo w |
IMs: | Mo v/
RCODE: | Mo |

Inline comment: |

Preceding comment:

[0] 9 l[Cancel]

The properties of libraries, programs and structures are changed in a similar way.

Grouping

To group these two parameters, select both parameters and choose Grouping in the context menu.
This inserts a new group into the program. The new group contains the two parameters.

Software AG IDL Editor

19

Using the Software AG IDL Editor

& EntireX - Demofexample.idl - Eclipse SDK

File Edit Mavigate Search
i & Q-
[n example.idl 52

T

* %

Program 'CLLC'

1 Operation
1 Operand 1
1 Operand 2

End-Define
Program 'FOWER'

1 Operand

End-Define
<

$2 Tasks | = Properties 53

Property
Aligned;
[raka Type:
Dirmension 1:
Dirnension 2:
Dirnension 3:

ok

Project Run Window Help

F @i e

=08

e o o o o o o o i ol e o i ol ol o

*% This IDL file contains the IDL definitions for the
** programs CALC, POWER and HELLD of the RPC library EXALMP

% (o) Copyright Software AG 1997 - Z006. L1l rights reser

e ol o o o o o o o ol ol ol e o i ol o ol

Library 'EXAMNFLE' Is

Define Data Parameter

I=
(A1) In
(I4) In
(I4) In

1 Function Result (I4) Out —

I=s

Define Data Parameter

{I4) In

1 Function Result (I4) Out

|

alue
Mo
Integer
1}
1}
1}

T | 74 Entirex |85 Java [75 Resource
0= outline &3 =08
= 4 ExampLE

-4 calc
@pOperatinn (A1) In

[L
Funck

=] é) ?:;WER Grouping. ..
4" Oper: Direction »
#F Funct LT
4P HELLO | pligned »

&7 Cliert

¢P Mail Delete

Rename...

Refresh

Expand Al

Properties...

CEERSLE
A~
v

20

Software AG IDL Editor

Using the Software AG IDL Editor

& EntireX IDL Editor

. .
Parameter properties e
Properties of new group #
Narme: | Groupd| |
Direction: | In Out v |
Data Type:
Size and Precision; | 0 |
Structure reference: | |
Dirnension 1 | 1] [Tariable Upper Bound
Dirnension 2 | ‘'ariable Upper Bound
Dirnension 3 | ‘'ariable Upper Bound
Aligried: | Mo w |
IMs: | Mo v/
RCODE: | Mo |

Inline comment: |

Preceding comment:

[0] 9 l[Cancel]

In the Parameter Properties dialog box you can enter all the settings required for this group.

Software AG IDL Editor

21

Using the Software AG IDL Editor

& EntireX - Demofexample.idl - Eclipse SDK

File Edit Mavigate Search Project Run Window Help

* %

Library 'EXLMPLE' Is
Program 'CLLC' Is
Define Data Parameter

1 Operation (A1) In
1 Groupl In Out
2 Operand 1 [I4)
2 Operand 2 [I4)

1 Function_Result (I4) Out
End-Define
Program 'FCOWER' I=
Define Data Parameter
1 Operand [I4) In
1 Function Result (I4) Out

<

$2 Tasks | = Properties 53

Property alue
Aligned; Mo
[raka Type: Group
Dirmension 1: a
Dirnension 2: 1}
Dirnension 3: 1}

<
B

fﬁ T Eﬁ'] 5 % T E : ‘0;' : @ P i th o E|>|-5Entirex |3¥ Java fﬁ_—,Resource
[n *example.idl 52 = B E= cutline 52 =0
e o o o o o o o i ol e o i ol ol o B&EXF\MPLE
*#% Thi=z IDL file contains the IDL definitions for the = @pCF\LC
** programs CALC, POWER and HELLD of the RPC library EXALMP @pOperatinn (A1) In
ww (=B
** () Copyright Software LG 1997 - Z006. L1l rights reser Operand_1 (I4)

e ol o o o o o o o ol ol ol e o i ol o ol

@pOperand_Z (14}

@PFunction_Result (I4) RESIILT
=-4P PowER

@pOperand (I4) In

@PFunction_Result (I4) RESIILT
=-4F HELLD

#F Client (8300 In

47 mail (a80) InOut

v
>
BEEASL
4
bt
e

22

Software AG IDL Editor

3 Software AG IDL File

= Rules for Coding Library, Library Alias, Program, Program Alias and Structure Names

Introduction to the IDL Filecuvviiiiii e
IDL DAt TYPES .. .eeeeeeeeiiitee ettt e et e e e e
Rules for Coding IDL FIlEScciiiiiiiiiiiiee e
Rules for Coding Group and Parameter Namescooooviiiiiiiieiiiiiiiciiieeces

23

Software AG IDL File

A Software AG IDL file contains definitions of the interface between client and server. The IDL
file is used by Software AG wrappers to generate RPC clients, RPC servers and tester etc. on the
basis of these definitions.

The IDL file can be edited by the IDL Editor provided by plug-ins for Eclipse.

This document contains a descriptive introduction to IDL files. The syntax of IDL files in a formal
notation is given under Software AG IDL Grammar.

Introduction to the IDL File

The IDL's syntax looks similar to a Software AG Natural parameter data definition statement.

Library 'EXAMPLE' Is
Program 'CALC' Is
Define Data Parameter

1 Operator (A1) In
1 Operand_1 (I4) In
1 Operand_2 (I4) In
1 Function_Result (I4) Qut
End-Define

The syntax is described in a formal notation under Software AG IDL Grammar.

IDL Data Types

The table below uses the following metasymbols and informal terms for the IDL.

® The metasymbols [and] surround optional lexical entities.

® Theinformal term number (or in some cases number. number) is a sequence of numeric characters,
for example 123.

Type and Length Description Example See Notes
Anumber Alphanumeric A100 1,2,7,17,20
AV Alphanumeric variable length AV 1,2,7,17,20
AVnumber Alphanumeric variable length with maximum AV100 1,2,7,17,20
length

Bnumber Binary B10 1,2,15

BV Binary variable length BV 1,2,15
BVnumber Binary variable length with maximum length BV128 1,2,15

D Date D 3,4,13

24 Software AG IDL Editor

Software AG IDL File

Type and Length Description Example See Notes

F4 Floating point (small) F4 11,13, 16

F8 Floating point (large) F8 12,13, 16

I Integer (small) I 8

12 Integer (medium) 12 9

14 Integer (large) 14 10

Knumber Kanji K20 1,2,7,17,18,20
KV Kanji variable length KV 1,2,7,17,18, 20
KVnumber Kanji variable length with maximum length KV200 1,2,7,17,18, 20
L Logical L 3,14
Nnumber[.number] |Unpacked decimal N8 or N8.2 6,13
NUnumber[.number]|Unpacked decimal unsigned NU2 or NU6.2|6, 13
Pnumber[.number] |Packed decimal P12 or P10.3 |6, 13
PUnumber[.number] |Packed decimal unsigned PU3 or PU4.2 (6,13

T Time T 3,513
Unumber Unicode U100 2,19

(MY Unicode variable length [OAY 2,19
UVnumber Unicode variable length with maximum length ~ |UV200 2,19

Note that equivalents of the data types are not necessarily supported in every target programming
language environment. Also, value ranges of the mapped data type can differ. See Mapping Software
AG IDL Data Types in the respective Wrapper or language-specific documentation.

Notes:

1. There is, however, an absolute limit (1 GB) which cannot be exceeded.

2. The maximum length you can specify depends on your hardware and software configuration
(apart from this product).

3. The length is implicit and must not be specified.
4. The supported range is from 1.1.0001 up to 31.12.9999. Dates BC (before the birth of Christ) are

not supported.

It is also possible to transfer 1.1.0000 as a value. This is a special value (because there is no year
0) and denotes “no date” is given. The no date value is the internal state of a #DATE variable

(Natural type D) after a RESET #DATE is executed within Natural programs. The target language
environment determines how 'no date’ is handled.

See the notes under data type D in the section Mapping Software AG IDL Data Types to the target
language environment C | Java | .NET.

5. The data type T has two different meanings:

Software AG IDL Editor

25

Software AG IDL File

" A time-only meaning, which transfers a time without a date. The time-only meaning always
uses the invalid date 1.1.000 for the date part. The time part has a value range from 00:00:00.0
to 23:59:59.9. This time-only meaning is not supported.

" A timestamp meaning, consisting of a date and time.

The supported range is from 1.1.0001 0:00:00.0 up to 31.12.9999 23:59:59.9. Dates BC (before
the birth of Christ) are not supported.

It is also possible to transfer 1.1.0000 0:00:00.0 as a value. This is a special value (because there
is no year 0) and denotes “no time” is given. The “no time” value is the internal state of a
#TIME (Natural type T) variable after a RESET #TIME is executed within Natural programs.
The target language environment determines how “no time” is handled.

See the notes under data type T in the section Mapping Software AG IDL Data Types to the
target language C | Java | .NET.

6. The term number[. number] describes the number as it is: The first number is the number of digits
before the decimal point and the second number is the number of digits after the decimal point.
The total number of digits (before and after the decimal point) must not exceed 29. The number
of digits after the decimal point must not exceed 7.

7. The length is given in bytes, not in number of characters.

8. The valid integer range is from -128 up to +127.

9. The valid integer range is from -32768 up to +32767.

10. The valid integer range is from -2147483648 up to +2147483647.

11. The following term restricts the valid range which can be transferred from -n.nnnnnn+Enn up
to +n.nnnnnn+Enn. A mantissa of 7 decimal digits and an exponent of 2 decimal digits.

12 The following term restricts the valid range which can be transferred from -
n.nnnnnnnnnnnnnnn+Enn up to +n.nnnnnnnnnnnnnnn+Enn. A mantissa of 16 decimal digits
and an exponent of 2 decimal digits.

13. The real valid range and precision can be restricted by the mapping to the target language en-
vironment.

14. Valid values are TRUE and FALSE.
15. The length is given in bytes.

16. When using floating-point values, rounding errors can occur when converting to the target
language environment. Thus, values from sender and receiver might differ slightly.

17. In environments where multibyte, double-byte or other complex codepages are used, alphanu-
meric data may increase or decrease during conversion. Thus, to match the field length restriction
given by the IDL types A and AV with maximum length, data must be truncated, otherwise
unpredictable results will occur. The most popular internationalization approach ICU Conversion
under Introduction to Internationalization with CONVERSION=SAGTRPC takes care of data increase/de-
crease.

26 Software AG IDL Editor

Software AG IDL File

We recommend always using SAGTRPC for RPC data streams. Conversion with Multibyte, Double-
Byte and other Complex Codepages will always be correct, and Conversion with Single-byte Codepages
is also efficient because SAGTRPC detects single-byte codepages automatically. See Conversion
Details.

See also Configuring ICU Conversion under Configuring Broker for Internationalization in the plat-
form-specific administration documentation.

18 In environments that use EBCDIC stateful codepages, encoded with escape technique (SI/SO
bytes), and where the most popular internationalization approach ICU Conversion under Intro-
duction to Internationalization with CONVERSION=SAGTRPC is used, the IDL types K and KV fields
allow you to transfer double-byte data without SO and SI bytes. This feature is designed for
use in Asian countries. For more information see Conversion with Multibyte, Double-Byte and
other Complex Codepages.

19. The length is given in 2-byte Unicode code units following the Unicode standard. UTF-16. The
maximum length is restricted to 805306367 2-byte code units.

Depending on your target environment and target programming language, the mapping may
follow a different Unicode standard, for example UTF-32.

20.If SAGTRPC User Exit under Introduction to Internationalization is used as the internationalization
approach, the handling of the different IDL types depends on the implementation of the
SAGTRPC user exit. This is your responsibility as user. See Writing SAGTRPC User Exits in the
platform-specific administration documentation.

Rules for Coding IDL Files

1. Statements and their lexical entities can begin in any column and are separated by any number
of whitespace characters: blank, new line carriage return, horizontal tab, and form feed.

2. The maximum line length allowed in an IDL file is 256 characters.
3. Comments can be entered in the following ways:

= If the entire line is to be used for a user comment, enter an asterisk or a slash and an asterisk
in columns 1 and 2 of the line:

* USER COMMENT
/* USER COMMENT

® If only the latter part of a line is to be used for a user comment, enter an asterisk or slash as-
terisk.

Software AG IDL Editor 27

Software AG IDL File

1 NAME (A20) * USER COMMENT
1 NUMBER (Al5) /* USER COMMENT

Rules for Coding Group and Parameter Names

Group and parameter names

1.

can be defined with the following characters:

" characters: a to z

® characters: Ato Z

= digits: 0 to 9 (a digit must not be the first character)
" special characters: - _$# & @ +/

other characters are not allowed.
are limited to a maximum length of 31 characters

are not allowed to be the same as a valid type-length specification.

For example:

1 PI (P1) In Out

is invalid and will cause an error because the name P1 is identical to the type-length P1.

must adhere to the rules of the target programming language, for example to permitted special
characters or reserved keywords.

cannot be defined as the following reserved names:

ALIGNED, CALLNAT, DATA, DEFINE, END-DEFINE, IMS, IN, INOUT, IS, LIBRARY, OUT, PARAMETER,
PROGRAM, RCODE, STRUCT, VERSION.

must be unique and must not conflict with those of the target programming language, see the
following portion of an IDL file

Define Data Parameter
1 AA (12)
1 AA (I14)
1 Tong (I4)
End-define

and the output generated with the client.tpl as the template for target language C:

28

Software AG IDL Editor

Software AG IDL File

short int AA;
long AA; /*erroneous, double declaration*/
long long; /*erroneous, double declaration*/

The ambiguous declaration of AA and 1ong is passed unchecked and the stub will be generated.
As you can see, this is not valid C syntax.

Rules for Coding Library, Library Alias, Program, Program Alias and Structure
Names

The following rules apply to library, library alias, program, program alias and structure names:

1.

Names are restricted by length. Library, library alias, program and program alias are restricted
to a maximum length of 128 characters. A structure name is restricted to a maximum length of
31 characters.

Names must adhere to the rules of the target programming language, for example regarding
permitted special characters or reserved keywords.

Names should not start with the prefix "SAG". The prefix "SAG" is used within the delivered IDL
files. See Change RPC Password by Wrappers and RPC Clients and Command and Info Services IDLs
under RPC Programming for more information.

. Names must be unique and different within the IDL file after conversion of the name to

lowercase or uppercase characters. You cannot use the same name for a library, library alias,
program, program alias and structure

Example: The following names are not allowed within an IDL file:

® MYLIBRARY and MyLibrary

" CALCand Calc

® MYSTRUCTURE and mystructure

Software AG IDL Editor 29

30

4 Software AG IDL Grammar

B MEta DEfiNItIONS ... e 32
B SYNEAX OF thE IDL FlE ..vvvviieicee e 33
B [IDrary-GefiNIIONooi i e 33
B program-AEFINIION 35
B SHUCIUE-AEfINITION ... 36
m parameter-data-adefinitionoo i e 37
= simple-parameter-definitioncooiiiiiii e 39
B group-parameter-Aefinitionoiiii i 40
= structure-parameter-definition (IDL)ooiiiiiiii e 41
B ATAY-GEfiNITION L. et e e e e e e 42
B AT DUL- LISt e e 47

31

Software AG IDL Grammar

A Software AG IDL file contains definitions of the interface between client and server. The IDL
file is used by Software AG wrappers to generate RPC clients, RPC servers and tester etc. on the
basis of these definitions.

The IDL file can be edited by the IDL Editor provided by plug-ins for Eclipse.

This chapter explains the syntax of IDL files in a formal notation. A more descriptive introduction
to IDL files is given in the chapter Software AG IDL File in the IDL Editor documentation.

Meta Definitions

The following metasymbols are used to define the IDL:

The metasymbols [and] surround optional lexical entities.

The metasymbols { and } surround optional lexical entities which may be repeated a number of
times.

The metasymbol ::= separates the lexical entity to be defined (on the left) from the definition (on
the right).

The metasymbol | separates lexical entities on the definition side (on the right) meaning all
terms are valid to define the lexical entity to be defined (on the left).

The following basic terms are used to describe the IDL:

The informal term number is a sequence of numeric digits e.g. 123.

The informal term stringis a sequence of characters. It can contain any character except enclosing
apostrophes.

Examples are: 'DARMSTADT' '#FRANKFURT' '&MUNICH'.

Any terms in uppercase, special characters such as apostrophe, colon (other than the metasymbols
above) are terminal lexical entities and must be entered as is.

The term identifier is a sequence of

® characters: a to z

® characters: A to Z

= digits: 0 to 9 (a digit must not be the first character)
" special characters: - _$# & @ +/

32

Software AG IDL Editor

Software AG IDL Grammar

Syntax of the IDL File

Syntax

Software AG IDL|::= library-definition { library-definition }

Description

® The IDL may contain any number of 1ibrary-definitions.

® One library-definition must be contained in an IDL file.

library-definition

A library-definition is the grouping of servers (remote procedures).

Syntax

library-definition|::= LIBRARY 'library-name' [:'library-alias'] IS { interface }

library-name string

library-alias string

interface

program-definition | structure-definition

Description

library-definition|A Tlibrary-definition isvalid until the next 1ibrary-definition orend of
file.

Tibrary-name ® The Tibrary-name is used to generate RPC components. How this takes place
(e.g. to form a source file name, class name etc.) depends on the target
programming language. The wrappers will adapt the Tibrary-name to the
requirements of the target programming language when special characters occur
inthe Tibrary-name.

See Mapping Library Name and Alias in the respective Wrapper documentation.

= The 1ibrary-name is also sent (without modifying any special characters) from
the RPC client component to the RPC server. In the RPC server the
library-name may be used to locate the target server.

See Locating and Calling the Target Server in the platform-specific administration
or RPC server documentation.

Software AG IDL Editor 33

Software AG IDL Grammar

Certain rules apply to Tibrary-name. See Rules for Coding Library, Library
Alias, Program, Program Alias and Structure Names.

library-alias

Alias of the 1ibrary-name.

The purpose of an alias is to allow a different name on the RPC client side from
the name on the RPC server side. This is helpful when integrating a system with
a short name (e.g. CICS, z/OS, Natural, where up to 8 characters are allowed, or
IBM i, where up to 10 characters are allowed) on one side and on the other side
an environment with fewer restrictions (UNIX, Windows, Java).

The 1ibrary-alias may be used as aname in the target programming language
to form the generated RPC client and RPC server components instead of the
library-name.Howthe 1ibrary-alias isused to generate components (e.g.
to form a source file name, class name etc.) depends on the target programming
language.

See Mapping Library Name and Alias in the respective Wrapper documentation.

The Tibrary-alias is always used as is (it is not adapted by the IDL Editor
and the Workbench wrappers when special characters occur within the
library-alias asitis for the 1ibrary-name), i.e. the user is responsible for
a valid target programming language name.

The 1ibrary-alias is not sent to the target RPC server. The 1ibrary-name
is always sent instead.

Certain rules apply to Tibrary-name. See Rules for Coding Library, Library
Alias, Program, Program Alias and Structure Names.

interface

A program-definitionor structure-definition concludes the
library-definition.

Any number of program-definitions or structure-definitions canbe
embeddedina library-definition.

Example (without alias usage)

Library 'ServerLibrary' Is

Example (with alias usage)

Library 'ServerLibrary': 'AliasServerlLibrary' Is

34

Software AG IDL Editor

Software AG IDL Grammar

program-definition

A program-definition describes the parameters of servers (remote procedures).

Syntax

program-definition|:

:= PROGRAM 'program-name' [:'program-alias'] IS
parameter-data-definition

program-name

::= string

program-alias

::= string

Description

program-definition

A program-definition isvalid until the next program-definition,
structure-definition, Tibrary-definition or end of file.

Any program-definition must be embeddedina Iibrary-definition.

Any number ofprogram-definitionscan be embedded in a
library-definition.

Oneparameter-data-definitionmustconcludetheprogram-definition.

program-name

The program-name is used to generate RPC components. How this takes place
(e.g. how to form a source file name, method, function or program name etc.)
depends on the target programming language. The IDL Editor and the integrated
Workbench wrappers will adapt the program-name to the requirements of the
target programming language when special characters occur in the
program-name.

See Mapping Program Name and Alias in the respective Wrapper documentation.

The program-name is also sent (without modifying any special characters) from
the RPC client component to the RPC server. In the RPC server the
program-name is used to locate the target server.

See Locating and Calling the Target Server in the platform-specific administration
or RPC server documentation.

Certain rules apply to program-name. See Rules for Coding Library, Library
Alias, Program, Program Alias and Structure Names.

program-alias

Alias of the program-name.

The purpose of an alias is to allow a different name on the RPC client side from
the name on the RPC server side. This is helpful when integrating a system with
a short name (e.g. CICS, z/OS, Natural, where up to 8 characters are allowed, or

Software AG IDL Editor

35

Software AG IDL Grammar

IBM i, where up to 10 characters are allowed) on one side and on the other side
an environment with fewer restrictions (Window, UNIX, Java).

The program-alias may be used as aname in the target programming language
to form the generated RPC client and RPC server components instead of the
program-name. How the program-alias is used to generate components (e.g.
to form a source file name, method, function or program name etc.) depends on
the target programming language.

See Mapping Program Name and Alias in the respective Wrapper documentation.

The program-alias is always used as is (it is not adapted by the IDL Editor
and the wrappers when special characters occur within the program-alias as
it is for the program-name), i.e. the user is responsible for a valid target
programming language name.

The program-alias isnotsent to the target server. The program-name is always
sent instead.

Certain rules apply to program-alias. See Rules for Coding Library, Library
Alias, Program, Program Alias and Structure Names.

Example (without alias usage):

Library 'ServerLibrary' Is
gram 'ServerName' Is

Pro

Example (with alias usage):

Library

'ServerlLibrary': 'AliasServerLibrary' Is

Program

'ServerName' : 'AliasServerName' Is

structure-definition

A structure-definition describes a user-defined type for reusability, referenced in a
structure-parameter-definition (IDL).

36

Software AG IDL Editor

Software AG IDL Grammar

Syntax

structure-definition|::= STRUCT 'structure-name' IS
parameter-data-definition

structure-name ::= string

Description

structure-definition|® A structure-definition isvalid until the next program-definition,
structure-definition, Tibrary-definition orend of file.

® Anystructure-definitionmustbeembeddedinalibrary-definition.

® Any number of structure-definitions can be embedded in a
library-definition.

= One parameter-data-definition mustconclude the
structure-definition.

B Structures are mapped to various concepts depending on the target
programming language. See Mapping Structures in the respective Wrapper
documentation.

structure-name ® The structure-name used for reference.

= Certainrules apply to structure-name. See Rules for Coding Library, Library
Alias, Program, Program Alias and Structure Names.

Example

Library 'ServerLibrary': "AliasServerlLibrary' Is
Struct 'Person' Is

parameter-data-definition

The parameter-data-definition describes the parameters of a server when it is embedded in a
program-definition. It describes a user-defined type when it is embedded in a
structure-definition.

Software AG IDL Editor 37

Software AG IDL Grammar

Syntax

parameter-data-definition|::= DEFINE DATA PARAMETER
simple-parameter-definition

| group-parameter-definition |
structure-parameter-definition

{ simple-parameter-definition

| group-parameter-definition |
structure-parameter-definition }
END-DEFINE

Description

parameter-data-definition|® The parameter-data-definition consists of a starting token

sequence (Define Data Parameter) and an ending token sequence
(End-Define).

B Any number of simple-parameter-definition,
group-parameter-definitionand
structure-parameter-definition can be embedded in a
parameter-data-definition.

= Atleastone simple-parameter-definition,
group-parameter-definitionor
structure-parameter-definition must exist (at level 1) without
the attribute-Tist.

B Theparameter-data-definitionmustconclude the corresponding
program-definitionorstructure-definition.

B There can only be one parameter-data-definition for each
program-definitionorstructure-definition.

Example of a Program:

Library 'ServerLibrary' Is
Program 'ServerName' Is
Define Data Parameter

End-Define

38 Software AG IDL Editor

Software AG IDL Grammar

Example of a Structure:

Library 'ServerLibrary': 'AliasServerlLibrary' Is
Struct 'Person' Is
Define Data Parameter

End-Define

simple-parameter-definition

The construct simple-parameter-definition describes the syntax of a simple parameter, i.e. not
a group (groups are described in a group-parameter-definition), not a reference to a structure
(referencing a structure is described in structure-parameter-definition (IDL)).

Syntax

simple-parameter-definition|::= Tevel parameter-name
(type-lengthl[/array-definition])
[attribute-Tist]

level = number

parameter-name identifier

type-Tength See IDL Data Types.
Description
Tevel = Level number is a 1 or 2-digit number in the range from 01 to 99 (the leading 0 is

optional) used in conjunction with parameter grouping.

B Parameters assigned a level number of 02 or greater are considered to be members
of the immediately preceding group that has been assigned a lower level number.

= Do not skip level numbers when assigning the level numbers for group members.

parameter-name|® The name of the parameter. The parameter-name is used as name in the target
programming language. It is adapted by the IDL Editor and the wrappers to the
requirements of the target programming language.

See Mapping Parameter Names in the respective Wrapper documentation.

® Certain rules apply to parameter-name. See Rules for Coding Group and Parameter
Names.

type-Tength The type and length of the parameter. See IDL Data Types.

Software AG IDL Editor 39

Software AG IDL Grammar

Example

1 PERSON-
1 PERSON-

ID (N10)
NAME (A100)

group-parameter-definition

The construct group-parameter-definition describes the syntax of a group.

Syntax

group-parameter-definition|::= level group-name [(/array-definition)]
[attribute-1ist]

level = number

group-name = identifier

Description

level

See simple-parameter-definition.

group-name

® The name of the group.

= The definition of a group enables references to a series of parameters (can also be only 1
parameter) by using the group name.
This provides a convenient and efficient method of referencing a series of consecutive
parameters.

® A group may contain other groups, structures (structure-parameter-definition)or
parameters (simple-parameter-definition)as group members.

= Certain rules apply to group-name. See Rules for Coding Group and Parameter Names.

® Groups are mapped to various concepts depending on the target programming language.

See Mapping Groups and Periodic Groups in the respective Wrapper documentation.

40

Software AG IDL Editor

Software AG IDL Grammar

Example

1 PERSON /* this is the group */
2 PERSON-ID (N10Q) /* this is a group member */
2 PERSON-NAME (A100) /* this is also a group member */

structure-parameter-definition (IDL)

The construct structure-parameter-definition describes the syntax of a reference to a structure.

Syntax

structure-parameter-definition|::= level parameter-name
(structure-referencel/array-definition])
[attribute-Tist]

level ::= number

parameter-name ::= identifier

structure-reference ::= "structure-name'

Description

level See simple-parameter-definition.

parameter-name See simple-parameter-definition.

structure-reference|® structure-name of the referenced structure.

The referenced structure-name must be surrounded by quotation marks.

Structures are mapped to various concepts depending on the target
programming language. See Mapping Structures in the respective Wrapper
documentation.

® Certain rules apply to structure-name. See Rules for Coding Library, Library
Alias, Program, Program Alias and Structure Names.

Software AG IDL Editor 41

Software AG IDL Grammar

Example

STRUCT 'Person' Is /* this defines the structure person */
Define Data Parameter

1 PERSON

2 PERSON-ID (N10)

2 PERSON-NAME (A100)

End-Define

1 FATHER ('Person') /* this references the structure */

1 MOTHER ('Person') /* this references the structure */
1 CHILDS ('Person'/10) /* this references the structure */

array-definition

Arrays can have either fixed upper bounds or variable upper bounds, so-called unbounded arrays.

Syntax

array-definition ::= fixed-bound-array | unbounded-array

fixed-bound-array ::= [fixed-bound-array-index [,fixed-bound-array-index
[,fixed-bound-array-index]1]

unbounded-array ::= [unbounded-array-index [,unbounded-array-index
[,unbounded-array-index11]

fixed-bound-array-index|::= [lower-bound:] upper-bound

unbounded-array-index ::= [1:] VImaximum-upper-bound]

lower-bound 1= number

upper-bound ;1= number

maximum-upper-bound 1= number

Description

array-definition = Arrays with a fixed size of elements are fixed bound arrays.
= Arrays with a variable number of elements are so called unbounded arrays.
® Arrays are one, two or three-dimensional.

fixed-bound-array ® Almost all programming languages have a concept of arrays with a fixed

size of elements.

See Mapping Fixed and Unbounded Arrays in the respective Wrapper
documentation.

42 Software AG IDL Editor

Software AG IDL Grammar

unbounded-array ® Unbounded arrays are not supported in all programming languages.

® See Mapping Fixed and Unbounded Arrays in the respective Wrapper
documentation.

fixed-bound-array-index|® Ifan array-index is of the format [Tower-bound: Jupper-bound it
describes an array with fixed bounds.

unbounded-array-index |® Ifanarray-index isof the format [1:]V[maximum-upper-bound] it
describes an unbounded array with variable bounds.

= The Tower-bound value is always 1 but can be omitted.

Tower-bound ® The Tower-bound value is optional.

= If the Tower-bound is not given, the default is 1.

upper-bound ® The upper-bound value must be entered.

® The upper-bound value must be greater than or equal to the
Tower-bound.

maximum-upper-bound ® The maximum-upper-bound value is optional.

® [t defines a limit which cannot be exceeded.

Example of Arrays with Fixed Bounds

1 NAMES (A100/10) /* 1 dimensional array */
1 TUPLES (A100/10,10) /* 2 dimensional array */
1 TRIPLES (I1/1:20,1:20,1:20) /* 3 dimensional array */

Example of Arrays with Variable Upper-bounds

1 NAMES (A100/V) /* 1 dimensional array */
1 TUPLES (A100/V,V) /* 2 dimensional array */
1 TRIPLES (I1/1:V,1:V,1:V) /* 3 dimensional array */

Software AG IDL Editor 43

Software AG IDL Grammar

Example of Arrays with Variable Upper-bounds and Maximum

1 NAMES (A100/V10) /* 1 dimensional array */
1 TUPLES (A100/V10,V10) /* 2 dimensional array */
1 TRIPLES (I1/1:V20,1:V20,1:V20) /* 3 dimensional array */

o

Caution: Mixed arrays with fixed upper bounds and variable upper bounds are not supported.
(I2/1:V,20,V) is not permitted.
(I2/V10,30) is not permitted.

Mixed arrays with variable upper bounds with maximum and without maximum are not
supported.

(I2/V10,V20,V) is not permitted.

44

Software AG IDL Editor

Software AG IDL Grammar

Three-dimensional Array with Fixed Bounds

(AVI2,3,4)

Var(2,3,4)

Var(2,3,1)

Dim2

Software AG IDL Editor 45

Software AG IDL Grammar

Three-dimensional Array with Variable Upper Bounds

Dim 1 Dim 2 Dim 3 var(3,1,1)
: var(3.1.2)
(AVIV,V.,V) var(3,1,3)

_ Dim3 var{3.2.1)
5 EJII’TIE var(3.2.2)
m : : var(3.2,3)

[1]2]3; e

var(3,3.1)
war(3,3.2)
var(3,3.3)
var(3.3.4)
var(3,3.5)

var(3.4.1)
var(3.4.2)
var(3,4.3)
var(3,4.4)
var(3.4.5)
war(3.4.6)

var{2,1.2)

var(2,2.1)
var(2,2 2)
var(2,2.3)
var(2,2.4)

var(2,3,1)
wan(2,3.2)
var(2,3.3)

var(1,1.,1)
var(1,1.2)
var(1,1,3)
var(1,1.4)

var(1,2,1)
van(1,2.2)
var(1,2.3)

In the illustration above, the vectors of the second dimension have different lengths. The first
vector has a length of 4, the second a length of 3 and the third a length of 2. The same is true for
the third dimension with vector length of (3,4,5,6) (2,4,3) and (4,3).

Please note this kind of an unbounded array is not possible if you are using the COBOL Wrapper.
In COBOL, all vectors in a dimension have the same length. A 2-dimensional array forms a rectangle

46 Software AG IDL Editor

Software AG IDL Grammar

and a 3-dimensional array forms a cuboid, see Mapping Fixed and Unbounded Arrays in the COBOL
Wrapper documentation.

attribute-list

Attributes describe further parameter properties to correctly map the parameter to the target
platform or to optimize the parameter transfer.

Syntax

attribute-Tist ::= [aligned-attribute 1 [direction-attribute 1 [
ims-attribute]

aligned-attribute ::= ALIGNED

direction-attribute|::= IN | OUT | IN OUT | INOUT

ims-attribute c:= IMS

Description

aligned-attribute |® The aligned attribute (mainly) belongs to the server and describes a different
alignment from the compiler's default of the server interface.

® The aligned attribute is relevant for the programming languages COBOL and
PL/I in the RPC server environments batch, CICS and IMS.

® Programming languages other than COBOL and PL/I do not consider it in the
interface of the generated servers.

= RPC Clients send the aligned attribute within the RPC data stream to the RPC
server, where it is considered (the related parameter is aligned) by the RPC
server, if relevant.

u See Mapping the al1gned Attribute in the respective Wrapper documentation
for information on whether your client environment supports sending aligned
attributes.

direction-attribute|The direction attribute optimizes parameter transfer.

® In data is passed from client to server.
® Qut data is passed from server to client.
® In Out data is passed in both directions.

® The direction of group members is inherited from the parent group. Thus only
the direction information of the top-level fields (level 1) is relevant. Group
fields always inherit the specification from their parent.

= A different specification given with the group members is ignored.

Software AG IDL Editor 47

Software AG IDL Grammar

® The direction of members of a structure-definition isinherited from the
structure-parameter-definition. Thusonly the direction information of
the structure-parameter-definition (structure reference) is relevant.
Structure fields always inherit the specification from their reference.

= A different specification given with the structure members is ignored.
® When no direction is specified, In Out is used as the default.

= See Mapping the Direction Attributes IN, OUT, INOUT in the respective Wrapper
documentation.

ims-attribute

The ims-attribute marks PCB (Program Communication Block) parameters for
the target platform IMS (IBM's Information Management System).

® The ims-attributes are considered when servers for the target platform IMS
are generated with the COBOL Wrapper and the PL/I Wrapper.

® The ims-attributes are obsolete for clients and other wrappers than COBOL
and PL/I and are ignored.

® The ims-attribute is only relevant on top-level fields (level 1). Group fields
always inherit the specification from their parent, thus a different specification
is ignored.

Example of aligned-attribute

1 PERSON_ID (NU12) A

LIGNED

Example of direction-attribute

1 PERSON_ID (NU12) I
1 PERSON_NAME (A100)

Example of ims-attribute

1 PERSON_ID
1 PERSON_NAME
1 DBPCB
2 DBNAME
2 SEG-LEVEL-NO
2 DBSTATUS
2 FILLER

N
ouT

(NU12) IN OUT
(A100) IN QUT
IMS

(A8)

(A2)

(A2)

(A20)

48

Software AG IDL Editor

5 The Software AG IDL Compiler

B INEFOTUCTION ...ttt et et
B Starting the IDL COMPIIEEeeiee et e e e e e st e e e e s
= DL Compiler USAge EXAMPIESoeiiiiiieeeiiiii ettt
= Writing your oWn Wrappers @nd STUDScoouiiiiiiiiiii e

49

The Software AG IDL Compiler

The Software AG IDL Compiler generates interface objects, skeletons and wrappers. It uses a
Software AG IDL file and a template file that controls the generated output.

Introduction

The IDL Compiler is used to generate stubs, skeletons and wrappers from two specific input files:

= the IDL file (extension .idl), which describes the interface between client and server.

* the template file (extension .tpl), which controls the generated output files and their contents.
In principle the template describes the target programming language.

The IDL Compiler first reads through the IDL file and builds tables and structures that form an
internal representation of the interface. If there is a related client-side server mapping file, it is
also read implicitly (see CVM File). The IDL Compiler then loops through this internal represent-
ation and uses the template file to generate its output, the source code for the target programming
language.

The following wrappers use the IDL Compiler as their generation tool:

EntireX DCOM Wrapper
EntireX C Wrapper
EntireX .NET Wrapper
EntireX COBOL Wrapper
EntireX PL/I Wrapper

The IDL Compiler and the template files for the target programming languages above are fully
integrated in the EntireX Workbench. For automation purposes, the IDL Compiler can also be started
at the command prompt.

Starting the IDL Compiler

» To start the IDL Compiler

= Atacommand prompt, enter

50 Software AG IDL Editor

The Software AG IDL Compiler

Java -classpath "%ProgramFiles%\software
ag\entirex\classes\exxidlcompiler.jar;%ProgramFilesk\software
ag\entirex\classes\saglic.jar" "-Dsagcommon=%CommonProgramFiles%\Software AG"
com/softwareag/entirex/idlcompiler/TplParser -t template file [-Doption=value]
[-Fbasename] [-Ppreprocessor variable] [-ooutput-directory] [-Ttrace-level]
[-deprecated] -idl id1file.id]l

Parameter

Description

-help

Displays help using the command-line options.

-Doption=value

Passes the option to the templates.

See also Using Options.

-Fbasename Indicates that the output file base name follows. It is used as given - thus it
should be provided without a path and extension. Only relevant if supported
by the template used. Default is the base name of the 7d7 -7 e without path
and extension. See Specifiying the Name of the Output File.

-ttemplate Name of the initial template file.

-Ppreprocessor Specifies a preprocessor variable that can be controlled in template files with

variable #ifdef, #elif, #else, and be closed by #endif. Only relevant if supported by the

template used. See Using Template i f Preprocessing Statements.

-ooutput-directory

Specifies the directory for the output file. See Specifiying the Name of the Output
File.

-Ttrace-level

Trace information is entered as comment lines into the generated output.

Trace level Description

0 NO trace output will be created. This is the default trace
level.

1 Generates only template file name and the line number in
the output file. This trace level helps to identify the specific
line in the template file.

2 This is the full tracing mode for the template file. Every
action of the IDL Compiler will be displayed.

3 Additional traces for preparation of the output statement
will be created.

-deprecated

Deprecated mode allows compilation of templates for statements already
deprecated. Each deprecated statement will create a warning.

-idlidl-file

Name of the IDL file. Multiple IDL files can be provided.

Software AG IDL Editor

51

The Software AG IDL Compiler

IDL Compiler Usage Examples

Calling the IDL Compiler under UNIX

The following applies to the UNIX Bourne, Korn and C shell.

$JAVA_HOME/java -Dsagcommon=/opt/softwareag/EntireX\common\conf
-Dentirex.home=$EXXDIR -classpath
$EXXDIR/classes/exxidlcompiler.jar:$EXXDIR/classes/saglic.jar
com/softwareag/entirex/idlcompiler/TplParser -t $EXXDIR/template/client.tpl -id]l
aaclient.idl

An erxidl.bsh shell script file is provided with a preconfigured invocation of the IDL Compiler. In
addition, the "-deprecated" mode is set as default in this shell script file.

erxidl.bsh -t ...\EntireX\templatelclient.tpl -idl aaclient.idl

Calling the IDL Compiler under Windows

java -classpath "%ProgramFiles%\software
ag\entirex\classes\exxidlcompiler.jar;%ProgramFiles%\software
ag\entirex\classes\saglic.jar" "-Dsagcommon=%CommonProgramFiles%\Software AG"
com/softwareag/entirex/idlcompiler/TplParser -t ...\EntireX\templatelclient.tpl
-id1 aaclient.idl

An erxidl.bat batch file for the Windows command shell is provided with a preconfigured invocation
of the IDL Compiler. In addition, the "-deprecated" mode is set as default in this batch file.

erxidl -t ...\EntireX\template\client.tpl -idl aaclient.idl

Writing your own Wrappers and Stubs

Additional programming languages can be adopted with user-written templates (see Writing
Template Files for Software AG IDL Compiler). The syntax for IDL template files in a formal
notation is presented in the section Grammar for IDL Template Files.

Integration with the IDL Editor can be accomplished using the plug-in technique provided (see
Using EntireX Custom Wrappers).

52 Software AG IDL Editor

6 Writing Template Files for Software AG IDL Compiler

= Coding Tempate FileSvvvveeeeiiiiiiiinnnnn.

= Using Output Statements in the Template File

= |nserting Comments in the Template File
= Using Verbatim Modecoocvvveiinnnne.
m Using Optionsooovvvviieiieieiiiiiiiieeee,
= Specifiying the Name of the Output File
= Redirecting the Output to Standard Out

= Using Template #if Preprocessing Statements

= Using Template #include Preprocessing Statementscccviiiiiiiiiiiii e

= Using Template #trace Statement

53

Writing Template Files for Software AG IDL Compiler

An IDL template file contains the rules that the Software AG IDL Compiler uses - together with
the IDL file - to generate interface objects, skeletons and wrappers for a programming language.
The Developer's Kit provides several templates for various programming languages.

@ Caution: The information in this section is intended for users who wish to write their own

template files. Do not change the delivered template files.

This document provides an introduction on how to write template files. The syntax for IDL Template
Files in a formal notation is presented in the document Grammar for IDL Template Files.

Coding Tempate Files

It is the combination of control and output statements (see control_statement, output_statement
and Using Output Statements in the Template File) that provides the full definition of the target
programming-language source code.

Usually a template file has definition-statement grouped together at the beginning; these are
followed by loop_statements:

; type definitions
susing A "char %name%index"

; loop libraries
%1ibrary
{

; loop programs
sprogram
{

; loop parameters
Zname

{

}

54 Software AG IDL Editor

Writing Template Files for Software AG IDL Compiler

Using Output Statements in the Template File

Output statements (see output_statement) provide the actual templates of the target-language
source code. Output statements are text strings enclosed in double quotes.

These text strings may contain output_substitution_sequence, output_formatting_sequence,
output_escape_sequence and output_of_variable.

Substitution Sequences

Substitution sequences are identified by a preceding % and are substituted by their actual contents
during generation.

Example: "This is a text string. The library name is %library. \n"

The IDL Compiler provides substitution sequences for the current library name, program name,
parameter name, type, etc. Some substitution sequences can only be accessed in their corresponding
loop statement. For example a %program substitution sequence is only valid within an active
program loop (see Toop_over_programs). See output_substitution_sequence for a list of valid
substitution sequences and description.

Formatting Sequences

Formatting sequences are identified by a preceding \
Example: "\n is a Formatting sequence"

See output_formatting_sequence for a list of valid formatting sequences
Escape Sequences

Escape sequences are identified by a preceding \ \

The escape character is used to change the meaning of special characters (&, ? and # etc.) back to
their normal meaning. Special characters are used to access variables (see output_of_variable).

Example:"\\&".

See also output_escape_sequence and Using Verbatim Mode.

Software AG IDL Editor 55

Writing Template Files for Software AG IDL Compiler

Variables

The output of variables is forced when the special characters &, ? or # occur before the variable
name (see variable_name) in output statements (see Using Output Statements in the Template
File)

Example: "?A is the output of a variable"

See also output_of_variable
Generating Programming-language-specific Type Definitions

The substitution sequence %type is usually used in a parameter loop (loop_over_parameters) to
generate programming-language-specific type definitions. Before the parameter loop all IDL data
types (with definition-of-base-type-template statements) and the dimension information
(with definition-of-index-template statements) must be specified.

Example
IDL data type I2 can be specified as follows in a C program:

%using %index "" "[%1_index]" "[%1_index]1[%2_index]"
"[%1_index][%2_index][%3_index]"
susing I2 "short %Zname%index;"

%using %index is the control_statement for the dimension information

(definition-of-index-template). How the following strings are used depends on the dimension
of the parameter. The first empty string is used for scalar parameters, the second for 1-dimensional
parameters, the third for 2-dimensional parameters and the fourth for 3-dimensional parameters.

%using 12 is the control_statement for the IDL data type I2 (see
definition-of-base-type-template), “short %oname%index” is the output_statement for this
data type. %name and %index are substitution sequences. %name will be replaced by the variable
name and %index will be replaced by any dimension information.

If an input IDL file contained the following parameter definitions:

1 Field-1 (I2)
1 Field-2 (I12/1:8)
1 Field-3 (I2/1:4,4:7)

then, based on the above template specifications, all references to the %type substitution sequences
in any output_statement would be replaced by

56 Software AG IDL Editor

Writing Template Files for Software AG IDL Compiler

short Field_1;
short Field_2[81;
short Field 3[41[4];

Generating Programming-language-specific Names
Special characters within some substitution sequences e.g. %library, %program and %name can

be changed during generation to provide valid names for the target programming language. The
IDL Compiler supports generation of names for the programming languages C, C# and COBOL

(see output_control_Tlower_upper and output_control_sanitize).

Target Programming Language Class Names Function Names |Variable or Parameter Names
C programming language not applicable %UpperCase- |%UpperCase-
%LowerCase+ |%LowerCase+
%Sanitize+ %Sanitize+
C# programming language %UpperCase- %UpperCase-
%LowerCase- %LowerCase-

%SanitizePascalCased+ %SanitizeCamelCased+

%SanitizeCobol+
%UpperCase+
%LowerCase-

COBOL programming language |not applicable

The default programming language when you do not code any output_control_lower_upper and
output_control_sanitize statements in your template is C.

Inserting Comments in the Template File

Comments

",y

® are identified by a “;” in a line and

" are terminated by the end of line.

For example:

; This is a comment
; So is this.

"output text followed by a comment" ; here is the comment

Whereas this is an output statement:

Software AG IDL Editor 57

Writing Template Files for Software AG IDL Compiler

"an output text with a semicolon ;

Using Verbatim Mode

If your output is going to contain many special characters, you may enter verbatim mode. Then
all characters are written to the output as typed. The only sequences recognized in this mode are
the escape sequences (see output_escape_sequence).

To enter verbatim mode
® use the command %verbose+ (see output_control_verbose).

Example: In verbatim mode, you enter "&" to insert an ampersand.

Using Options

The IDL Compiler supports options within templates.
You can pass them with the parameter -D to the IDL Compiler (see Starting the IDL Compiler).
Options

" can be used in output statements (see output_of_variable)

" can be used in logical condition criteria (see compare_strings)in %if (see 7 f_statement) and
%while (see Toop_of while) statements

" are case-sensitive, i.e. hugo and HUGO are distinct options

Specifiying the Name of the Output File

The name of the output file is controlled by the %file statement.

If the %Format substitution sequence in a file (%file) statement is used, the base name can be
provided with the IDL Compiler parameter -F (see Starting the IDL Compiler).

If no base name is provided with the -F IDL Compiler parameter, the base name of the IDL file
without path and extension is used as the default of the substitution sequence %Format.

See the following excerpt from a template file:

58 Software AG IDL Editor

Writing Template Files for Software AG IDL Compiler

%file "ChF.c"
When the IDL Compiler is called with
® erxidl -t client.tpl .. \MyDirectory\example.id]

an output file with the default base name Cexample.c of the IDL file is created
= erxidl -t client.tpl -Ftest example.idl

an output file with the name Ctest.c is created

See also the IDL Compiler option -o (see Starting the IDL Compiler) on how to specify the directory
for the output file.

Redirecting the Output to Standard Out

The output can be redirected to standard out with an environment variable (see Using Options),
e.g. NOOPEN. This is optional.

See the following excerpt from a template file:

51T "$(NOOPEN)" <> "1" %file "C%library.c" ;
When the IDL Compiler is called with
= erxidl -t client.tpl -D NOOPEN=1 example.idl

the output is redirected to standard out

= erxidl -t client.tpl example.id]

the output is directed to the file Cexample.c as specified in the template.

Software AG IDL Editor 59

Writing Template Files for Software AG IDL Compiler

Using Template #if Preprocessing Statements

The IDL Compiler supports #ifdef, ffe1if, ffelse and #endi f preprocessing statements similar
to the C compiler preprocessor.

You can use preprocessor variables with the option -D (see Starting the IDL Compiler).

Additional rules for #if preprocessing statements are:

If #elif is used, it must follow #ifdef.

If #else is used it must follow either #ifdef of #elif.

#endif must always close the #ifdef statement.

Embedded preprocessor statements or logical concatenation of definitions are not allowed.

See the following excerpt from a template file:

JHi fdef Definition_1
"/* codes of -PDefinition_1 */\n"
%name
{
}
#elif Definition_2
"/* codes of -PDefinition_2 */\n"
%name
{
}
felse
"/* codes of neither Definition_1 nor Definition_2 */\n"
%name
{
}
ffendif
When the IDL Compiler is called with
= erxidl -t template_file -PDefinition_1

the template statements "/* codes of -PDefinition_1 */\n" between the #ifdef and first #elif
statement are interpreted.

60 Software AG IDL Editor

Writing Template Files for Software AG IDL Compiler

= erxidl -t template_file -PDefinition_2

the template statements "/* codes of -PDefinition_2 */\n" between the first #elif and second #elif
statement are interpreted.

= erxid]l -t template_file

the template statements "/* codes of neither Definition_1 nor Definition_2 */\n" between the
#else and #endif statement are interpreted.

See the following preprocessing statements with invalid syntax:
= .o

= tifdef (MY_VERSION) ; brackets are not allowed
" fendif
= #ifdef MY_VERSION | | HIS_VERSION ; logical OR is not allowed

= fendif
= tifdef (MY_VERSION)

= #ifdef (MY_NEW_VERSION) ; embedded #ifdef is not allowed

Software AG IDL Editor 61

Writing Template Files for Software AG IDL Compiler

Using Template #include Preprocessing Statements

The IDL Compiler supports #inc1ude preprocessing statements similar to the C compiler prepro-
cessor. All statements in the included template file are simply embedded.

To find included template files, use the IDL Compiler option - I and add a list of directories that
form a search path (see Starting the IDL Compiler).

*® First the IDL Compiler searches for templates in the directory of the initial template.

® When no template is found in the directory of the initial template, all directories specified with
- I are searched in the order of occurrence

Additional rules for #include preprocessing statements are:

" A maximum of 32 templates can be included in a generation process.

An included template file can include further template files.

" Recursive inclusion of template files is not permitted.

All variables can be accessed in all included template files as well as in the starting (root) template.
The compiler searches for included templates.

See the following excerpt from a template file:

f#include "template.tpl"

Using Template #trace Statement

The IDL Compiler supports the f#trace trace-Tlevel statement to enable and disable template
tracing within a certain block of the template. The usage of trace-Tevel is the same as the com-
mand-line option "-T".

See also compiler option "-T "under Starting the IDL Compiler for trace level values.

62 Software AG IDL Editor

Writing Template Files for Software AG IDL Compiler

Example

ftrace 2 ; enable tracing on trace level
%compute i "0"
%while "&i" < "10"
{
scompute i "&1 + 1"
}

f#Ftrace 0 ; disable

Software AG IDL Editor

63

64

7 Grammar for IDL Template Files

Software AG Template File Grammarcooiiiiiiiiii e 67
ASSIgN S A EMENT e e e e e e e eas 67
assign_integer_statementoooiriii 68
asSIgN_SNG_StateMENt ... i e 68
0] G PSR TSPPPPPPRR 69
COMPAE_EXPIESSION ...t teeeeee ettt et e e et e ettt et e e e e e e ettt e e e e e e e ekttt et e e e e e e e s bbbttt e e eeeeen e tbantteeeeeaaaans 69
COMIPAIE _SHINGS i 70
COMPATE_OPETAION ...ttt e ettt ettt e e e e et e e e ettt e e e et e e e e ettt e e e e et e e e e e saa e e e e enstsaeeeenees 70
(oo a1 (O IS = L (L AL ST 71
AefiNItION-STAIEMENT ... e 72
definition-0f-hase-type-temPIate ... 73
AEfiNIION-0f-DASE-IYPE ... e 74
definition-0f-direCHON-LEMPIALEeiiiiee e 75
definition-0f-group-temMPIATEooiiiiii e e 75
definition-of-INAEX-tEMPIALEooiiiie e 76
definition-of-line-number-format-template ... 76
definition-of-member-separator-teMPpIateoooiiiiiiiii e 77
definition-of-names-format-template ..o 77
definition-0f-OUtBIaNK-teMPIALEcooiiiiii e 78
definition-of-nest-level-format-templateovviiiiii e 78
definition-of-parent-identifier-templateccoviiiiiii i 79
definition-of-parent-indeX-teMPIateooii i 79
definition-of-StruCtUre-tempPlate ..o 80
definition-of-UnboundedArray-temPplatevviiiiiiiiii e 80
L Lo TS r= 1 (=T 111 | T 81
BXECUIE ST MBI .. et ittt e e e e e 82
file_handling_StatemMENt ... e 83
1S =1 G101 L T 84
Tl _BXIENSION e 84
|0GICaAl_COMPAIE_OPEIAION ... vt ee e ettt ettt e e et e e e e e e e ettt e e e e e e e e e eaeeens 85
0T o] = (=Y 41 O PP P PRSP PPPPPPPP 85
[00P_OVEI_lIDIAMES ... 86

65

Grammar for IDL Template Files

[00P_OVEI_PAFAMELEIS ..iiiiiiiiiiiieee e 87
[OOP_OVEL_PIOGIAMSvieeeee ettt e e e e e ettt e et e e e e e ettt e e e e e e ettt e e e e e e e e s sttt e e e e e e e e e tbnenaeeeeeaenes 87
Lol o= Y (VoA (1] (=TSSP 88
IOOP_OF WHIIE ..ttt e e et et e e e e e e 88
MESSAgE_SIAtEMENTo 89
OUBPUL e 89
output_character_SEQUENCEccooiiiii i 90
OULPUL_CONEIOI_IMS e 91
OUEPUL_CONEIOIIMSONIY ..ottt e e e e e e e et e e e e e e e sttt aeaeeaeaans 91
OULPUL_CONErOI_IOWET _UPPET <. e 92
OUEPUL_CONEIOI_SANILIZE ... eeei i et e e e a e e e e e e 93
OULPUL_CONErOI_STAIEMENT ... e sttt 96
OULPUL_CONEIOI_VEIDOSE ...oviiiiieieccee e 96
OULPUL_ESCAPE_SEAUENCEeeieiieieiee ettt 97
OULPUL_fOrmMatting_SEQUENCEviiiiiie i e e 97
OUEPUL_OF VAMIADIE ..ot e e 98
OULPUL_SEALEIMENT ... e e et e e e e e e e e e e 99
OULPUL_SUDSHITULION_SEQUEINCE ...ttt s 99
PAFAMETET_LISE ... 103
PRI ISt o e e 104
1O TE Y = LT AL=T 1L T 104
S MM L 105
] LT RO OO P PP PTPPP 105
StriNg_With_eXPreSSION_CONLENESciiiiiiiiii et e e e e e e e e 106
SUDSHING _StalEMENt ... 107
UnsupportedProgram_statementooiiiiiii s 108
(T LA o) T T Lo [PP PRTTRR 109
VaNADIE NAME <. 109
variable_of_type_iNAEXEA_SIHNGc..viiiiiiiiii e 110
Variable_Of tYPE INTEGET ..uveiiiii i 110
variable_0f_tYPE_SHNG ...ooi e 111

66 Software AG IDL Editor

Grammar for IDL Template Files

An IDL template file contains the rules that the Software AG IDL Compiler uses - together with
the IDL file - to generate interface objects, skeletons and wrappers for a programming language.
The Developer's Kit provides several templates for various programming languages.

@ Caution: The information in this section is intended for users who wish to write their own

template files. Do not change the delivered template files.

This document explains the syntax of the template files in a formal notation. For an introduction
on how to write template files, see Writing Template Files for Software AG IDL Compiler.

Software AG Template File Grammar

Syntax

{ statement }
Description

A template contains the rules which the IDL Compiler uses with the IDL file. The template is the
lexical entity to start with.

Example

See under the lexical entity statement.

assign_statement

Syntax

assign_string_statement | assign_integer_statement

Software AG IDL Editor 67

Grammar for IDL Template Files

Description

These statements are used

" to assign strings to variable_of_type_stringand variable_of_type_indexed_string,

" to compute values and assign them to variable_of_type_integer.
Example

See the lexical entities assign_string _statement or assign_integer_statement.

assign_integer_statement

Syntax

%compute variable_of_type_integer string_with_expression_contents
Description

Compute the expressionin string_with_expression_contents and assign the result to
variable_of_type_integer.

Example

scompute a "&b * (%Zbefore + %after) / %elength"

assign_string_statement

Syntax

%assign variable_of_type_string string |
%assign variable_of_type_indexed_string string

68 Software AG IDL Editor

Grammar for IDL Template Files

Description
Assign the string contents to variable_of _type_stringor variable_ of_type_indexed_string

Example

%assign A "Assign this string to variable A" %assign A[5] "Assign this
string to occurrence 5 of variable A"

block

Syntax

"{' statement [block 1 '}'
Description

A block is a sequence of statements.
Example

See the lexical entity statement.

compare_expression

Syntax

compare_strings [logical_compare_operator compare_strings]
Description

The Togical_compare_operator performs a logical operation of two compare_strings. See the
description of 1ogical_compare_operator and compare_strings for specific information.

Software AG IDL Editor 69

Grammar

for IDL Template Files

Example

%if "&i
{
"the va
}
%if "&i
{
"the va
}

" > ll3ll && “&k" < Il20ll

riable i is greaterer than three AND the variable k is less than twenty"

"o lllll || |l&_ill > Il3ll

riable i is one OR is greater than three"

compare_strings

Syntax

string [compare_operator 1 string

Description

Compare two strings for a logical condition. The condition can be TRUE or FALSE.

Example

See lexical entity compare_operator.

compare_operator

Syntax
Operator| Meaning
equal to(default)
= equal to
< not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to
70 Software AG IDL Editor

Grammar for IDL Template Files

Description

The logical operators are used in the lexical entity compare_strings.

Example

equal to (default) "ATA"
equal to "A"="7A"
not equal to "A" <> "7A"
less than "A"<"?A"
less than or equal to |"A"<="?A"
greater than "A">"A"
greater than or equal to|"A" >="?A"

control_statement

Syntax

assign_statement | definition-statement | file_handling_statement | if_statement <
| Toop_statement |
output_control_statement

Description
control_statements determine the processing logic of a template. They do not create output.
Example

See lexical entities:

B assign_statement

® definition-statement

® file_handling_statement
® jf_statement

® Joop_statement

® output_control_statement

Software AG IDL Editor 71

Grammar for IDL Template Files

definition-statement

Syntax

definition-of-base-type-template |
definition-of-direction-template |
definition-of-group-template |
definition-of-index-template |
definition-of-line-number-format-template |
definition-of-member-separator-template |
definition-of-names-format-template |
definition-of-nest-level-format-template |
definition-of-parent-identifier-template |
definition-of-parent-index-template |
definition-of-structure-template |
definition-of-UnboundedArray-template.

Description
definition_statements give directives to the IDL Compiler. They do not create output.
Example

See lexical entities:

® definition-of-base-type-template

® definition-of-direction-template

® definition-of-group-template

® definition-of-index-template

® definition-of-line-number-format-template
® definition-of-member-separator-template
® definition-of-names-format-template

® definition-of-nest-level-format-template
® definition-of-parent-identifier-template
® definition-of-parent-index-template

® definition-of-structure-template

® definition-of-UnboundedArray-template

72 Software AG IDL Editor

Grammar for IDL Template Files

definition-of-base-type-template

Syntax

susing definition-of-base-type output-statement
Description

All references to the output_substitution_sequence %type in a loop_over_parameters are in the
output as specified in output_statement. Default output-statement is " (empty).

Example

A |%using A "unsigned char %name%index[%elLength]"
AV [%using AV "ERX_HVDATA Z%name%index"

B |%using B "unsigned char %name%index[%elLength]"

BV |[%using BV "ERX_HVDATA %name%index"

D |%using D "unsigned char %name%index[ERX_GET_PACKED_LEN(7)1"
F4 |%using F4 "float %name%index"

F8 |%using F8 "double %name%index"

I1 |%using I1 "signed char %name%index"

12 |%using 12 "short %name%index;"

14 |%using I4 "long %name%index;"

K |%using K "unsigned char %name%index[%elLength]"
KV [%ZusingKV "ERX_HVDATA %name%index"

L |%using L "unsigned char %name%index"

%using N "unsigned char %name%index[%before+%after]"”

NU|%using NU "unsigned char %name%index[%before+%after]”
P |%using P "unsigned char" %name%index[ERX_GET_PACKED_LEN(%before+%after)]"
PU |%using PU "unsigned char %name%index[ERX_GET_PACKED_LEN(%before+%after)]"

T |%using T "unsigned char
%name%index[ERX_GET_PACKED_LEN(13)]1"

Software AG IDL Editor 73

Grammar for IDL Template Files

definition-of-base-type

Syntax

AIAVIBIBVIDIF4IF8IMIINRIMKIKIKVILININUIPIPUIT

Description

For a description of the definition-of-base-type see IDL Data Types.

A |Reference to IDL data type Alphanumeric.
AV |Reference to IDL data type Alphanumeric variable length
B |Reference to IDL data type Binary.
BV |Reference to IDL data type Binary variable length.
D |Reference to IDL data type Date.
F4 |Reference to IDL data type Floating point (small).
F8 |Reference to IDL data type Floating point (large).
I1 |Reference to IDL data type Integer (small).
12 |Reference to IDL data type Integer (medium).
I4 |Reference to IDL data type Integer (large).
K |Reference to IDL data type Kanji.
KV |Reference to IDL data type Kanji variable length.
L |Reference to IDL data type Logical.
Reference to IDL data type Unpacked decimal.
NU |Reference to IDL data type Unpacked decimal unsigned.
P |Reference to IDL data type Packed decimal.
PU |Reference to IDL data type Packed decimal unsigned.
T |Reference to IDL data type Time.
74 Software AG IDL Editor

Grammar for IDL Template Files

definition-of-direction-template

Syntax

susing %direction output-statement output-statement output-statement

Description

All references to the output_substitution_sequence %direction in a loop_over_parameters are in
the output as specified in output-statement. If a parameter is of direction IN, the first output-
statement will be used, the second output-statement will be used for direction OUT and the third

for INOUT (see attribute-list). Default output-statement is "" """ (empty).

Example

susing %direction "In" "Qut" "In Out"

definition-of-group-template

Syntax

susing G output-statement output-statement
Description

If the parameter is a group (see group-parameter-definition)in a loop_over_parameters, all
references to the output_substitution_sequence %type will be written into the output as specified
in the output-statements. The first output-statement is the group prefix, typically the data type of
the target programming language. The second output-statement is the group suffix which usually
indicates the end of the group. Default output-statement is ™" (empty).

Software AG IDL Editor 75

Grammar for IDL Template Files

Example

%using G "struct {" "%outBlank} %name;"

definition-of-index-template

Syntax

susing %index output-statement output-statement output-statement output-statement
Description

All references to the output_substitution_sequence %index in a loop_over_parameters will be
written into the output as specified in the output-statements. According to the IDL (see
array-definition), up to 3 dimensions are supported. The first output-statement is for scalar
parameters, the second output-statement for 1-dimensional arrays, the third output-statement for
2-dimensional arrays and the fourth output-statement for 3-dimensional arrays. Default output-

statement is "" (empty).
Example
%using %index "" "[%1_index]" "[%2_index][%1_index]"

"[%3_index][%2_index][%1_index]"

definition-of-line-number-format-template

Syntax

susing %ZNumberline output-statement
Description
All references to the output_substitution_sequence %LibCount, %ProgCount and %NameCount

are written into the output as specified in the output-statements. The output-statement uses the
C printf format notation. Default output-statement is %u.

76 Software AG IDL Editor

Grammar for IDL Template Files

Example

susing %NumberlLine "%.4u"

definition-of-member-separator-template

Syntax

»using %Zmember output-statement
Description

Specify a template for a fully qualified name of parameters. All references to the output_substitu-
tion_sequence %member in a loop_over_parameters are written into the output as specified in
the output-statements. The IDL Compiler builds an internal tree hierarchy of parameters, structures
and groups. If a parameter has a parent, it will be inserted before the fully qualified name. If a
parameter has no parent, the output-statement will not be used. Default output-statement is ""

(empty).

Example

susing %member "Zname%Index."

definition-of-names-format-template

Syntax

susing %Format output-statement
Description

Specify a template for library, program or parameter name strings. All references to the output_sub-
stitution_sequence %QOutputLevel in aloop_over_parameters are written into the output as specified
in the output-statements. The output-statement uses the C printf format notation. Default output-
statement is %s.

Software AG IDL Editor 77

Grammar for IDL Template Files

Example

susing %Format "%s.ext"

definition-of-OutBlank-template

Syntax

susing %outBlank output-statement

Description

The output-statement definition replaces the blank (default), which will be used with the %outBlank
statement. The statement will not be interpreted and will be used as it is. You cannot write an ex-
pression (string_with_expression_contents) or a variable (variable_of_type_string string) in this
output statement. See the table entry definition-of-0OutBlank-template in the section

output_substitution_sequence for futher information.

Example

»using %outBTlank "\t"

definition-of-nest-level-format-template

Syntax

susing %0utputlevel output-statement
Description

Specify a template for nesting level strings. The nesting level is the depth where a parameter is
specified. All references to the output_substitution_sequence %OutputLevel in a
loop_over_parameters are written into the output as specified in the output-statements. The output-
statement uses the C printf format notation. Default output-statement is %using.

78 Software AG IDL Editor

Grammar for IDL Template Files

Example

susing %0utputlLevel "Zu"

definition-of-parent-identifier-template

Syntax

»using %Xparent output-statement output-statement

Description

Specify a template for the parent. All references to the output_substitution_sequence %Xparent
in a loop_over_parameters are written into the output as specified in the output-statements. If a
parameter has no parent and the second output-statement is not empty, the second output-statement

is used, otherwise, the first. The first output-statement uses the C printf format notation. Default
is “%u” "" (second statement is empty).
Example

susing %Xparent "%d" "ERX_NO_PARENT_V2"

definition-of-parent-index-template

Syntax

susing %Index output-statement output-statement output-statement output-statement
Description

Specify a template for a parameter's parent index. The IDL Compiler builds an internal tree hier-
archy of parameters, structures and groups. A parameter's immediate parent in this hierarchy can
be an array. All references to the output_substitution_sequence %Index in a loop_over_parameters
are written into the output source code as specified in the output-statements. The output-statement
describes the syntax for defining arrays of up to 3 dimensions as defined by the IDL (see
array-definition). The Output_substitution_sequence %Index (uppercase I) is very similar to
the output_substitution_sequence %index (defined with definition-of-index-template), butis
useful only for building member names using output_substitution_sequence %member. Default
output-statement is "" (empty).

Software AG IDL Editor 79

Grammar for IDL Template Files

Example

%tusing %Index "" "[0]" "[0JCO]" "[O0]LOILO]"

»using zmember "%Index."

definition-of-structure-template

Syntax

susing S output-statement

Description

If the parameter is a structure (see structure-parameter-definition (IDL))in a
loop_over_parameters, all references to the output_substitution_sequence %type will be written
into the output as specified in the output-statements. “INCLUDE AS GROUP” specified as the
output-statement will embed all parameters (see parameter-data-definition) of the structure

as if they were a group.

Example

susing S "INCLUDE AS GROUP"

definition-of-UnboundedArray-template

Syntax

susing UnboundedArray output-statement
susing UnboundedArray ""

80 Software AG IDL Editor

Grammar for IDL Template Files

Description

If the parameter is an unbounded array (see array-definition)in aloop_over_parameters, all
references to the output_substitution_sequence %type will be written into the output as specified
in the output-statements statement, i.e. the settings of the definition-of-base-type are overwrit-
ten. The first form overwrites the settings of the definition-of-base-type. The second form switches

back to the definition-of-base-type settings.

Example

%using UnboundedArray "ERX_HARRAY"

error_statement

Syntax

%error output_character_sequence
Description

Use the error_statement to exit your template with an error message. The execution of the template
will be stopped at this stetement and the error message will be given to the caller. The %error
statement can be used in the main template and in subtemplates as well. The execution of the
whole template compiling process will be stopped regardless of the type of template it is used in.

Example

%if "$(TARGET)" <> "COBOL" && "$(TARGET)" <> "BATCH"
{

herror "TARGET not supported."
}

Software AG IDL Editor 81

Grammar for IDL Template Files

execute statement

Syntax

%execute output-statement [(parameter_list)] [return (return_Tist)]
Description

Use the %execute statement to include another template file in the current template file like a
subprogram. You can outsource often-used code to an external template file. The executed template
file usesa NEW CLEAN environment context. Only the %library, %program, %x_struct, %name,
%LibCount, %ProgCount and %NameCount are known in the executed template file. No other
variables or idl parameters (output_substitution_sequence) are defined in the executed template
file. You must for example have a %name loop (loop_over_parameters) to have access to an idl
parameter (output_substitution_sequence). All changes in the executed files will be lost after
calling the include file and will have no effect in the calling template.

The %execute statement can be called with a list of parameters (parameter_list). The parameter_list
needs to be set in brackets. This list of parameters will be copied into the variables in the executed
file in the following order: ?A, ?B, ?C, ..., for example a list of parameters in the %execute statement
("AA" "BB" "CC" "DD"). These parameters will be available in the following variables: "?A" =>
"AA","?B"=>"BB", "?C"=>"CC", "?D"=>"DD".

The %execute statement can have a "return" statement to return a list of parameters (return_list),
aswell. This return_11st has tobe returned with the return_statement. The count of the expected
and the returned parameter must be the same and the type of the parameters must match. For
example, if the expected return parameterisa variable_of_type_string, the return parameter
type mustbe a variable_of_type_string and if the expected return parameter is a
variable_of_type_integer, the return parameter type must be avariable_of_type_integer.

Example 1

hexecute "subprog.tpl" ("?A" "&i" "10")

%execute "subprog.tpl" ("?Z" "%0utputlevel" "subprog" "10") return ("?C" "&f")

82 Software AG IDL Editor

Grammar for IDL Template Files

Example 2

File main.tpl

%assign A "Test variable A"
%assign B "Test variable B"
%assign C "Length of A and B is"

%compute 1 "#fA" ; length of the variable A
%compute j "#B" ; length of the variable B
hexecute "calc.tpl"™ ("?2C" "&i" "&j") return ("?7Z")

"?Z\n" ; print the returned variable

; the ouput should be "Length of A and B is 30"

File calc.tpl

; the execute parameters are in the following variables

; ?A => the ?C of the main template
; ?B => the &i of the main template
; ?2C => the &j of the main template
scompute a "?B + ?C"

kassign T "7A &a"

sreturn ("?2T7")

file_handling_statement

"Length of A and B is"
|115Il
Il15ll

Syntax

%file [output-statement]

Description

Use the %file statement to direct the output to a specific file. Only one file can be open at a time.
If no file is open, all output goes to STDOUT by default. If output-statement is left blank, the file
currently open is closed. All open files are implicitly closed if either a new open file statement is
encountered or the IDL Compiler terminates.

Example

%file "%1ibrary.MAK" ; open a file

sfile "" ; close the file

Software AG IDL Editor

83

Grammar for IDL Template Files

if statement

Syntax

%1f compare_expression statement [if-elif-extension] [%else statement]

Description

If compare_expressionis TRUE, then interpret statement. If compare_expression is FALSE and

if there is an if-elif-extension, interpret the if-elif-extension.

If all compare_expressions in all if-elif-extensions are FALSE and if there is an else block, interpret

the statement in the else block.

Example

%if "%typehindex" ""
"\

%elif "%index" ""
"(%type)\n"

%else
"(%typesindex)\n"

if elif extension

Syntax

%elif compare_expression statement [if-elif-extension]

Description

If compare_expressionis TRUE, then interpret the statement. If compare_expression is FALSE

and if there is an if-elif-extension, interpret the if-elif-extension.

84

Software AG IDL Editor

Grammar for IDL Template Files

Example

See lexical entity 77 _statement.

logical_compare_operator

Syntax

&& |logical-AND operator

I'l |logical-OR operator

Description

The logical operators perform logical-AND (&é&) and logical-OR (| |) operations. The logical-
AND operator has a higher piority than the logical-OR operator.

Example

See the lexical entity compare_expression.

loop_statement

Syntax

loop_over_libraries | Toop_over_parameters | loop_over_programs ©
Toop_over_structures | lToop_of_while

Description
Loop sequences instruct the IDL Compiler to loop through all occurrences of libraries (see

library-definition), programs (see program-definition), structures (see structure-definition)
and parameters (see parameter-data-definition).

Software AG IDL Editor 85

Grammar for IDL Template Files

Example

See lexical entities:

® Joop_over_libraries
® Joop_over_parameters
® Joop_over_programs
® Joop_over_structures

® Joop_of_while

loop_over_libraries

Syntax

%1ibrary statement
Description

This loop statement instructs the IDL Compiler to loop through all occurrences of libraries (see
library-definition).

Example

%library
{

}

86 Software AG IDL Editor

Grammar for IDL Template Files

loop_over_parameters

Syntax

hname statement

Description

This loop statement instructs the IDL Compiler to loop through all occurrences of parameters (see
parameter-data-definition). Aloop over parameters must be placed ina 7oop_over_programs

or /oop_over_structures.

Example

sname
{

}

loop_over_programs

Syntax

sprogram statement
Description

This loop statement instructs the IDL Compiler to loop through all occurrences of programs (see
program-definition). Aloop over programs must be placed ina 7oop_over_Tlibraries.

Example

sprogram
{

}

Software AG IDL Editor 87

Grammar for IDL Template Files

loop_over_structures

Syntax

%x_struct statement
Description

This loop statement instructs the IDL Compiler to loop through all occurrences of structures (see
structure-definition). Aloop over structures must be placed ina 7oop_over_libraries or
loop_over_programs.Ina Toop_over_Ilibraries all structures in the library (see
library-definition)areaccessed.Inaloop_over_programs all structures in the current program
(see program-definition) are accessed.

Example

%structure
{

}

loop_of while

Syntax

%while compare_expression statement
Description

Loop while compare_stringsis TRUE.

88 Software AG IDL Editor

Grammar for IDL Template Files

Example

%compute i "0"
swhile "&i" < "10"
{

hcompute i "&1 + 1"
}

message_statement

Syntax

smessage output_character_sequence
Description

Use the message_statement to notify the template user with a message. The output_character_se-
quence will report as the message on the console.

Example

51t "kelength" > "32766"

{
smessage "Maximum length for %type usually 32766"

}

output

Syntax

output_character_sequence | output_escape_sequence | output_formatting_sequence| <
output_of_variable |
output_substitution_sequence

Software AG IDL Editor 89

Grammar for IDL Template Files

Description

See lexical entities:

® output_character_sequence
® output_escape_sequence

® output_formatting _sequence
® output_of_variable

® output_substitution_sequence
Example

See lexical entities:

® output_character_sequence
® output_escape_sequence

® output_formatting _sequence
® output_of_variable

® output_substitution_sequence

output_character_sequence

Description
Simple sequences of characters not matching other output such as output_escape_sequence,
output_formatting_sequence, output_of_variableor output_substitution_sequence form a

character sequence.

Example

"This is a character sequences in an output statement."

90 Software AG IDL Editor

Grammar for IDL Template Files

output_control_ims

Syntax

ZIMS+ | %IMS- | %IMS
Description

The IMS flag. If this flag is set, the parameter in the loop_over_parameters, that are marked with
the IMS attribute in the IDL file will also be taken into consideration. If this flag is off, all parameters
that are marked with the IMS attribute will be ignored. If + or - are not specified, the flag will be
toggled. The default is off.

Example

%IMS+
%library
{
sprogram
{
sname
{
"%name"

}

output_control_imsonly

Syntax

%IMSONLY+ | % IMSONLY - | % IMSONLY

Software AG IDL Editor 91

Grammar for IDL Template Files

Description

The IMSONLY flag. If this flag is set, parameters in the loop_over_parameters that are not marked
with the IMS attribute in the IDL file will be ignored. If this flag is off, the loop_over_parameters
will work as usual. If + or - are not specified, the flag will be toggled. The default is off.

Example

%IMSONLY+
%library
{
hprogram
{
sname
{

"%name - this parameter has an ims attribute
}

output_control_lower_upper

Syntax

(Defaults are underlined.)

%UpperCase+ | %ZUpperCase- | %UpperCase

%UpperCasePgm+ | ZUpperCasePam- | %UpperCasePgm

%lowerCaset | %LowerCase- | %LowerCase

Description

UpperCase Name Uppercase flag. If this flag is set, %name substitution_sequences written to the
output will be converted to uppercase. If no + or - is specified, the flag will be toggled.
The default is off.

UpperCasePgm |Program Uppercase flag. If this flag is set, %program substitution_sequences written to
the output will be converted to uppercase. If no + or - is specified, the flag will be toggled.
The default is off.

LowerCase Name Lowercase flag. If this flag is set, %name substitution_sequences written to the
output will be converted to lowercase. If no + or - is specified, the flag will be toggled. The
default is on.

92 Software AG IDL Editor

Grammar for IDL Template Files

Example

UpperCase %UpperCase+ ; set name uppercase flag on
%UpperCase- ; set name uppercase flag off
%UpperCase ; toggle name uppercase flag

UpperCasePgm | %UpperCasePgm+ ; set program uppercase flag on
%UpperCase- ; set program uppercase flag off
%UpperCase ; toggle program uppercase flag

LowerCase %LowerCase+ ; set name lowercase flag on
%LowerCase- ; set name lowercase flag off
%LowerCase ; toggle name lowercase flag

output_control_sanitize

Syntax

(Defaults are underlined.)

%Sanitize+ | %Sanitize- | %Sanitize %SanitizeCamelCased+ <

| %SanitizeCamelCased- |

%SanitizeCamelCased %SanitizeCobol+ | ZSanitizeCobol- | %SanitizeCobol <
%SanitizePascalCased+ |

%SanitizePascalCased- | %SanitizePascalCased

Description

Sanitize Sanitize flag for C programming language. If this flag is set, %x_struct, %u_struct,

%name, %program and %library substitution sequences written to the output
will be forced to follow C conventions. The special characters '#', '$', '&’, '+, -, ",
'/' and '@' in parameter names permitted in the IDL file will be converted to
underscores '_' to produce valid C names. If + or - are not specified, the flag will

be toggled. The default is on.

SanitizeCamelCased

Sanitize flag for C# programming language. If this flag is set, %x_struct,
%u_struct,%name, %program and %library substitution sequences written to the
output will be forced to follow camel cased naming conventions as they are used
in C#. The special characters '#', '$', '&', '+', -, .", '/, '@ and '_' in parameter names
permitted in the IDL file will be removed. The character following the special
character will be converted to uppercase and all other characters to lowercase.
The very first character within %name, %program, and %library substitution
sequences will be converted to lowercase. %UpperCase- and %LowerCase- must
be set also to have CamelCased names. If + or - are not specified, the flag will be
toggled. The default is off.

Software AG IDL Editor

93

Grammar for IDL Template Files

SanitizeCobol

Sanitize flag for COBOL programming language. If this flag is set, x_struct,
%u_struct, %name, %program and %library substitution sequences written to the
output will be forced to follow COBOL conventions. The special characters '#', '$’,
‘&', '+, ", '/, '@ and "_' in parameter names permitted in the IDL file will be
converted to hyphen '-' to produce valid COBOL names. . If a parameter name
starts with a digit, e.g. '1', it is prefixed with the character 'P'". If + or - are not
specified, the flag will be toggled. The default is off.

SanitizeDCOMWrapper

Sanitize flag for DCOM Wrapper. If this flag is set, %x_struct, %u_struct, %name,
%oprogram and %library substitution sequences written to the output will be
forced to follow DCOM conventions. The special characters '#', '$', '&', '+, -, .., /'
and '@' in parameter names permitted in the IDL file will be converted to
underscores '_' to produce valid DCOM names. All preceding underscores in
parameter names are deleted. If a parameter name starts with a digit, e.g. '1', it is
prefixed with the character 'P". If + or - are not specified, the flag will be toggled.
The default is on.

SanitizePascalCased

Sanitize flag for C# programming language. If this flag is set, %x_struct,
%u_struct,%name, %program and %library substitution sequences written to the
output will be forced to follow Pascal-cased naming conventions as they are used
in C#. The special characters '#','$', '&', '+','-, ", '/, '@ and '_' in parameter names
permitted in the IDL file will be removed. The character following the special
character will be converted to uppercase and all other characters to lowercase.
The very first character in the %name, %program, and %library substitution
sequences will be converted to uppercase. %UpperCase- and %LowerCase- must
be set also to have PascalCased names. If + or - are not specified, the flag will be
toggled. The default is off.

SanitizePLI

Sanitize flag for the PL/I programming language. If this flag is set, %x_struct,
%u_struct, %name, %program and %library substitution sequences written to the
output will be forced to follow PL/I conventions. The special character ‘&', '+, -,
""and '/" in parameter names permitted in the IDL file will be converted to
underscores '_' to produce valid PL/I names. If + or - are not specified, the flag

will be toggled. The default is off.

Example

Sanitize

%Sanitize+ |set Sanitize flag for C variable
names on

%Sanitize- |set Sanitize flag for C variable
names off

%Sanitize |toggle Sanitize flag for C variable
names

SanitizeCamelCased

%SanitizeCamelCased+ |set Sanitize flag for
C# parameter
names on

94

Software AG IDL Editor

Grammar for IDL Template Files

%tSanitizeCamelCased- |set Sanitize flag for
C# parameter
names off

%SanitizeCamelCased |toggle Sanitize flag
for C# parameter

names
SanitizeCobol %SanitizeCobol+ |set Sanitize flag for
COBOL variable names on
%SanitizeCobol - |set Sanitize flag for
COBOL variable names
off
%SanitizeCobol toggle Sanitize flag for
COBOL variable names
SanitizeDCOMWrapper | %SanitizeDCOMWrapper+ |set Sanitize flag
for DCOM names
on
%SanitizeDCOMWrapper- |set Sanitize flag
for DCOM names
off
%SanitizeDCOMWrapper |toggle Sanitize
flag for DCOM
names
SanitizePascalCased %SanitizePascalCased+ set Sanitize flag
for C# member
names on
%SanitizePascalCased- |set Sanitize flag
for C# member
names off
%SanitizePascalCased toggle Sanitize
flag for C#
member names
SanitizePLI %SanitizePLI+ |set Sanitize flag for PL/I

member names on

%SanitizePLI - |set Sanitize flag for PL/I
member names off

%SanitizePLI toggle Sanitize flag for PL/I
member names

Software AG IDL Editor

95

Grammar for IDL Template Files

output_control_statement

Syntax

output_control_lower_upper | output_control_sanitize |
output_control_verbose

Description
Use the flags to force upper/lowercase conversions, C, C# or COBOL language conventions or, for

example, for comments to be written into the output. The default setting when you do not code
any output_control_statements are forced to follow the C programming language convention.

Example

See under the lexical entities:

® output_control_Tlower_upper
® output_control_sanitize

® output_control_verbose

output_control_verbose

Syntax

%sverbose+ | %verbose- | %verbose
Description
Verbose flag. If this flag is set, template file output-statements will be written to the output without

being interpreted, e.g. the substitution_sequences are output as is and not replaced by their
meaning. If + or - are not specified, the flag will be toggled. The default is off.

96 Software AG IDL Editor

Grammar for IDL Template Files

Example

sverbose+

"/* This is file %program.c */"

"/* Please do not modify this file */"
sverbose

output_escape_sequence

Syntax

A\

Description
The escape character is used to change the meaning of the special characters &, ? and # back to

their normal meaning. Special characters access variables using the output_of_variable lexical
entity. With escape characters it is possible to insert a plain & by typing : \ \ &.

Example

"This string contains an ampersand \\&."

output_formatting_sequence

Syntax

Sequence |Meaning

\n Newline
\r Carriage return
\t Horizontal tab

\ddd ASCII character in octal notation, e.g. \ 012 for the new line

\xdd ASCII character in hex notation, e.g. \x09 for the horizontal tab

Software AG IDL Editor 97

Grammar for IDL Template Files

Description

Formatting sequences are output control characters such as newline, backspace, etc. For characters
in hexadecimal notation, the IDL Compiler ignores all leading zeros. It establishes the end of the
hex-specified escape character when it encounters either the first non-hex character or more than
two hex characters not including leading zeros. In the latter case, it reports an error and ignores

all characters beyond the second one.

Example

"This string ends on this Tine.\n"

output_of_variable

Syntax

??variable_of_type_indexed_string | ## variable_of_type_indexed_string
| &variable_of_type_integer | ?variable_of_type_string | <
ffvariable_of_type_string | $(...)

Description

This form of accessing variables can be used in output_statements. If it is used, the variable content
is written to the output.

Example

&a substitutes the integer variable with its number.

?A substitutes the string variable with its contents.

??A[0] substitutes the indexed string variable with its contents.

#A substitutes the string variable with an integer of the length of its contents.
##B[%OutputLevel] [substitutes the indexed string variable with an integer of the length of its contents.
$(TEMP) substitutes the option variable with its contents.

98 Software AG IDL Editor

Grammar for IDL Template Files

output_statement

Syntax

{ output }
Description
output is a string consisting of an output_character_sequence, output_escape_sequence,
output_formatting_sequence, output_of_variableor an output_substitution_sequencein

any order.

Example

"This is simple output."

output_substitution_sequence

Syntax

Sequence Meaning

Y%after Inserts the digits after the decimal point of the current parameter (see
simple-parameter-definition)into the output.

This substitution sequence can only be used in an active Toop_over_parameters,
and if the current parameter is of data type N, NU, P, PU. Using it with other data
types will lead to an error

%Alias If a library alias name is used, inserts the library alias name of the current library
(see Iibrary-definition)into the output. If no alias is provided, the library name
(contents of %library) is provided in the %Alias substitution sequence. This
substitution sequence can only be used in an active Toop_over_libraries.

Y%before Inserts the digits before decimal point of the current parameter (see
simple-parameter-definition)into the output.

This substitution sequence can be used only in an active 7oop_over_parameters,
and if the current parameter is of data type N, NU, P, PU. Using it with other data
types will lead to an error.

%Count Inserts the output's current line number. The format is controlled by the
definition-of-names-format-template.

Software AG IDL Editor 99

Grammar for IDL Template Files

Sequence

Meaning

%direction

Inserts the direction of the current parameter (see parameter-data-definition)
into the output as specified with definition-of-direction-template. This
substitution sequence can only be used in an active Toop_over_parameters.

%eLength

Inserts the logical length of the current parameter (see
simple-parameter-definition)intothe output. This substitution sequence can
only be used in active Toop_over_parameters. The logical length according to
the Software AG IDL data type is as follows:

for type A K,B,LEU logical length as set in the IDL file
for type AVKV,BV,UV maximum logical length as set in the IDL file

for type L Type L has no explicit logical length in the Software
AG IDL file. However, the length is always set to 1.

for type N,NU,B,PU Digits before and after decimal point in encoded form
as given in the Software AG IDL file. Use the macro
ERX_GET_DIGITS (see erx.h) to get the digits before
the decimal point. Use the macro
ERX_GET_DECIMALS (see erx.h) to get the number
of digits after the decimal point.

for type T Type T has no explicit logical length in the Software
AG IDL file. However, the length is always set to 12.

for type D Type D has no explicit logical length in the Software
AG IDL file. However, the length is always set to 6.

Yfile

Inserts the current filename into the output.

%Format

Inserts into the output the base name as given by the -F parameter on start of the
The Software AG IDL Compiler. If no -F parameter is provided during start of the
IDL Compiler, the base name of the idl-file without path and extension is inserted
into the output.

%index

Inserts the index of the current parameter (see parameter-data-definition)into
the output as specified with definition-of-parent-index-template. This substitution
sequence can only be used in an active /oop_over_parameters.

%LibCount

Inserts the total number of libraries (see / ibrary-definition)as givenin the IDL
file into the output. The format is controlled by the
definition-of-line-number-format-template.

%library

Inserts the current library name (see /7brary-definition)into the output. The
inserted library name is controlled by output_control_statement. This
substitution sequence can only be used in an active Toop_over_libraries.

%member

Inserts the fully qualified member name: (parent...parent...child) into the output.
The member name is controlled by definition-of-member-separator-template. This
substitution sequence can only be used in an active Toop_over_parameters.

%Method

If a program alias is used, inserts the program alias name of the current program
(see program-definition)into the output. If no alias is provided, the program
name (contents of %program) is provided. This substitution sequence can only be
used in an active 1oop_over_programs.

100

Software AG IDL Editor

Grammar for IDL Template Files

Sequence

Meaning

Y%name

Inserts the current parameter name (see parameter-data-definition)into the
output. The parameter name is controlled by output_control_statement. This
substitution sequence can only be used in an active Toop_over_parameters.

%NameCount

Inserts the total number of parameters (see parameter-data-definition) of the
current program (see program-definition)into the output. The format is controlled
by the definition-of-line-number-format-template. This substitution sequence can
only be used in an active Toop_over_programs.

%outBlank

Writes n blanks (n = nesting level of parameter) into the output according to the
level of the current parameter (see parameter-data-definition). Thissubstitution
sequence can only be used in an active /oop_over_parameters. You can replace
the blank with another output statement by using (%using %outBlank
output-statement).

%OutputLevel

Inserts the level of the parameter (see parameter-data-definition)into the
output. This substitution sequence can only be used in an active
Toop_over_parameters.

%ProgCount

Inserts the total number of programs (see program-definition)in the current
library into the output. The format is controlled by the
definition-of-line-number-format-template. This substitution sequence can only be
used in an active Toop_over_libraries.

Y%program

Inserts the current program (see program-definition)name into the output. The
output is controlled by output_control_statement. This substitution sequence
can only be used in an active Toop_over_programs.

%type

Inserts the parameter type (see parameter-data-definition)into the output.
The parameter type is controlled by definition-of-base-type-template,
definition-of-group-template, definition-of-Unbounded Array-template and
definition-of-structure-template. This substitution sequence can only be used in an
active 1oop_over_parameters.

%size (deprecated,
should no longer be
used!)

The %size substitution sequence is deprecated and should no longer be used. Use
%eLength substitution sequence instead. Using %size will lead to an error.

%TypeAttributes

The substitution sequence %TypeAttributes produces a 2-byte bitmask indicating
= for arrays (see simple-parameter-definition) whether dimensions are fixed
or unbounded (see array-definition),

B the aligned attribute (see attribute-117st) for all types of parameters.
The bitmask displays the following:

® If an array and the 1st dimension is unbounded then bit 0 is ON rightmost.
® If an array and the 2nd dimension is unbounded then bit 1 is ON.
® If an array and the 3rd dimension is unbounded then bit 2 is ON.

= If the aligned attribute is set then bit 3 is ON.

Software AG IDL Editor

101

Grammar for IDL Template Files

Sequence Meaning

For users of the EntireX RPC C Runtime the bitmask corresponds directly to the
ERXeAttributes defined for the ERX_PARAMETER_DEFINITION_V3. (see erx.h)
This substitution sequence can only be used in an active /oop_over_parameters.

Y%u_struct Inserts the name of the referenced structure (see structure-definition)into the
output. The inserted name is controlled by output_control_statement. This
substitution sequence can only be used in an active /oop_over_parameters and
only when the current parameter uses a structure as its type definition (see
structure-parameter-definition (IDL)).

Y%x_struct Inserts the name of the structure (see structure-definition)into the output.
The inserted name is controlled by output_control_statement. This substitution
sequence can only be used in an active /oop_over_parameters.

%Xparent Inserts the parameter's parent into the output. This substitution sequence can only
be used in an active 1oop_over_parameters.

%0_index Inserts the number of indices of the current parameter (see
parameter-data-definition)into the output. This substitution sequence can
only be used in an active Toop_over_parameters.

%1_index Inserts the count of elements in dimension 1 of the current parameter (see
parameter-data-definition)into the output. The substitution sequence should
be used for 1-dimensional parameters only (this can be checked with the %0_index
substituion sequence). This substitution sequence can only be used in an active
Toop_over_parameters.

%2_index Inserts the count of elements in dimension 2 of the current parameter (see
parameter-data-definition)intothe output. The substitution sequence should
be used for 2-dimensional parameters only (this can be checked with the %0_index
substituion sequence).This substitution sequence can only be used in an active
Toop_over_parameters.

%3_index Inserts the count of elements in dimension 3 of the current parameter (see
parameter-data-definition)into the output. The substitution sequence should
be used for 3-dimensional parameters only (this can be checked with the %0_index
substituion sequence). This substitution sequence can only be used in an active
Toop_over_parameters.

%SameLineComment|Inserts the text of the comment line of the current parameter from the IDL file. Use
the parameter properties of the IDL Editor to set this comment line in the IDL file.

%SVMMetaData Inserts the metadata part contained in a related client-side server mapping file (see
CVM File) of the current IDL program into the output. This substitution sequence
can only be used in an active Toop_over_programs.If there is no related CVM file,
an empty string is inserted

%SVMFormatArea |Inserts the format area contained in a related CVM file of the current IDL program
into the output. This substitution sequence can only be used in an active
lToop_over_programs. If there is no related CVM file, an empty string is inserted

%SVMValueArea Inserts the value area contained in a related CVM file of the current IDL program
into the output. This substitution sequence can only be used in an active
Toop_over_programs. If there is no related CVM file, an empty string is inserted

102 Software AG IDL Editor

Grammar for IDL Template Files

Sequence Meaning

%SVMString Area Inserts the string area contained in a related CVM file of the current IDL program
into the output. This substitution sequence can only be used in an active
lToop_over_programs. If there is no related CVM file, an empty string is inserted

%SVMRpcProtocol |Inserts the RPC protocol version contained in a related CVM file of the current IDL
program into the output. This substitution sequence can only be used in an active
lToop_over_programs. If there is no related CVM file, an empty string is inserted

Description
Substitution sequences are substituted by their actual contents during generation.

Example

"This is a substitution sequence containing the library: %library."

parameter_list

Syntax

(parameter_list)

Description

The parameter_list is an unnumbered count of parameters. This list of parameters needs to be set
in brackets. Each parameter needs to be set in quotation marks and will be interpreted before using.
Parameters will be separated by blanks. The parameter_list can be defined as an empty list, in

which case the return_list needs to be defined only with the brackets "()".

Example

("param" "10" "?A" "&i" "%0_index" "%0Outputlevel™)

Software AG IDL Editor 103

Grammar for IDL Template Files

return_list

Syntax

(return_list)

Description

The return_list is an unnumbered count of parameters. This list of return parameters needs to be
set in brackets. Each return parameter needs to be set in quotation marks. Parameters will be
separated by blanks. Only variable_of_type_string and variable_of_type_integer are allowed in
this list. variable_of_type_indexed_string is not allowed. It is also not allowed to use any constant
string. The return_list can be defined as an empty list, in which case the return_list needs to be

defined only with the brackets "()".

Example

("?A" "?Z" ll&.i" u&nu)

return_statement

Syntax

sreturn (parameter_list)
Description

The return_statement will be used to return "return parameters" from an executed subtemplate.
No statements after the return_statement will be executed. The subtemplate will return to the
main template with this statement. If the return_statement has been placed in the main template,
the execution of the template will be stopped as normal at this point.

104 Software AG IDL Editor

Grammar for IDL Template Files

Example

sreturn ("param" "10" "?A" "&i" "%0_index" "%Qutputlevel")

statement

Syntax

block | control_statement | output_statement
Description

These are the 3 basic types of statements used in a template. A block is a sequence of statements.
Output_statements create the output. Control_statements determine the processing logic.

Example

See under the lexical entities control_statement and output_statement.

string

Syntax

{ output }
Description
Any kind of output can be used to form a string. A string is used to form the condition criteria in

a compare_strings lexical entity used e.g. in if_statement and Toop_of_while. A string is not
written to the output.

Software AG IDL Editor 105

Grammar for IDL Template Files

Example

"String with contents of variable $A"

string_with_expression_contents

Syntax

{ output }
Description

Any kind of output can be used to form String_with_expression_contents. However, this kind of
string must adhere to the rules of an expression. A string_with_expression_rules is not written to
the output.

Supported mathematical operations are:

+addition

- subtraction

* multiplication

/ division

mod modulo operation; computes the remainder after dividing its first operand by its second

Supported bit operations are:
and bitwise AND operation
or bitwise OR operation

xor bitwise XOR operation

Precedence of operators:
1 %

+, -

xor, and, or

You may control the precedence of the operation with brackets.

106 Software AG IDL Editor

Grammar for IDL Template Files

Example

scompute a "%0utputlevel + 1"

scompute b "%QutputlLevel * 10"

scompute c "%TypeAttribute mod 3"
scompute d "(%TypeAttribute and 7) * 10"
%compute e "%TypeAttribute or 1"
scompute f "%TypeAttribute xor 3"

substring_statement

Syntax

%substring variable_of_type_string string from_position length |
%substring variable_of_type_indexed_string string from_position length |

Description

Extract from the source variable string the substring from_position up to the length to
variable_of_type_stringor variable_of_type_ indexed_string.

The parameters from_position and length are of variable_of _type_integer.Itis not possible to
usea string_with_expression_contents for from_positon and length. For length, the constant
"all" or "ALL" can be used to extract the rest of the source string starting from from_position. The
first position of the source string is 0.

If length is longer as the length of the substring to extract, the available substring from from_pos-
ition to the end of the string will be assigned (same as using the constant "all" for length). If the
from_position is been higher as the length of the string, an empty string will be assigned. If the
value of from_position or length is lower than 0, an error will occur.

Example

scompute £ "0"

%compute 1 "32 + 10"

%substring A "These are all characters before position 42 and these are all <
characters after position 42" "&f" "&1"

scompute f "&f + &1"

%compute 1 "100"

%substring A[1] "These are all characters before position 42 and these are all <«
characters after position 42" "&f" "&1"

After execution, the variable A contains the string “These are all characters before position 42”
and variable A[1] contains the string “ and this are all characters after position 42”.

Software AG IDL Editor 107

Grammar for IDL Template Files

UnsupportedProgram_statement

Syntax

sUnsupportedProgram output_character_sequence
Description

Use the UnsupportedProgram_statement to notify the IDL Compiler that the current program in
the current library is not supported and needs to be ignored in further processing. The template
writer can inform the template user of the reason why this program is not supported with the
output_character_sequence. Usually the template writer will mark a program as unsupported if
the program contains unsupported data type in the IDL definition for the target programming
language. The output_character_sequence will report as a message on the console.

This statement must be embedded in loop_over_libraries and loop_over_programs. Furthermore
it cannot be used if a file was already open using file_handling_statement.

Example

%using K "K"
%1ibrary
{
sprogram
{
sname
{
O/D.if ll%typell = "K"
{
hcompute z "%elength /2"
hcompute z "&z *2"
»if "&z" <> "%elength"
{
#UnsupportedProgram "Length for %type fields must be even."
}

108 Software AG IDL Editor

Grammar for IDL Template Files

variable index

Syntax

string_with_expression_contents

Description

Any variable_index follows the rules of a string_with_expression_rules. Additionally, the result
of the expression is restricted to the range 0 - 8, i.e. indices must be in the range of 0 - 8. The vari-

able_index is not written to the output.

Example

ll2ll
"%0utputlLevel"
"&A + 1"

variable name

Syntax
The variable name canbe A -Z and a - z.
Description

Variable names are not case-sensitive. variable_of_type_integer, variable_of_type_string and
variable_of_type_indexed_string are distinct variables.

Example

T o W >

Software AG IDL Editor 109

Grammar for IDL Template Files

variable_of type_indexed_string

Syntax

variable-namel[variable_index]
Description
variable_of_type_indexed_string are always correctly initialized to blanks.

Example

ALO]
B[%0utputlevel]

variable_of_type_integer

Syntax

variable-name
Description
variable_of_type_integer are initialized to zero.

Example

o 9 W >

110 Software AG IDL Editor

Grammar for IDL Template Files

variable_of type_string

Syntax

variable-name
Description
variable_of_type_string are always initialized to blanks.

Example

T o W >

Software AG IDL Editor 111

12

	Software AG IDL Editor
	Table of Contents
	Software AG IDL Editor
	1 Introduction to the Software AG IDL Editor
	Introduction
	Features of the IDL Editor
	Content Assist
	Syntax Highlighting

	2 Using the Software AG IDL Editor
	Starting the IDL Editor
	IDL Editor Views
	IDL Editor Outline View
	Context Menu of the Outline View
	Outline View Drag-and-Drop
	IDL Editor Properties View
	IDL Editor Problems View

	Context Menu of the IDL Editor
	Editing an IDL File from the Outline View
	Adding a New Element
	Grouping

	3 Software AG IDL File
	Introduction to the IDL File
	IDL Data Types
	Rules for Coding IDL Files
	Rules for Coding Group and Parameter Names
	Rules for Coding Library, Library Alias, Program, Program Alias and Structure Names

	4 Software AG IDL Grammar
	Meta Definitions
	Syntax of the IDL File
	Syntax
	Description

	library-definition
	Syntax
	Description
	Example (without alias usage)
	Example (with alias usage)

	program-definition
	Syntax
	Description
	Example (without alias usage):
	Example (with alias usage):

	structure-definition
	Syntax
	Description
	Example

	parameter-data-definition
	Syntax
	Description
	Example of a Program:
	Example of a Structure:

	simple-parameter-definition
	Syntax
	Description
	Example

	group-parameter-definition
	Syntax
	Description
	Example

	structure-parameter-definition (IDL)
	Syntax
	Description
	Example

	array-definition
	Syntax
	Description
	Example of Arrays with Fixed Bounds
	Example of Arrays with Variable Upper-bounds
	Example of Arrays with Variable Upper-bounds and Maximum
	Three-dimensional Array with Fixed Bounds
	Three-dimensional Array with Variable Upper Bounds

	attribute-list
	Syntax
	Description
	Example of aligned-attribute
	Example of direction-attribute
	Example of ims-attribute

	5 The Software AG IDL Compiler
	Introduction
	Starting the IDL Compiler
	IDL Compiler Usage Examples
	Calling the IDL Compiler under UNIX
	Calling the IDL Compiler under Windows

	Writing your own Wrappers and Stubs

	6 Writing Template Files for Software AG IDL Compiler
	Coding Tempate Files
	Using Output Statements in the Template File
	Substitution Sequences
	Formatting Sequences
	Escape Sequences
	Variables
	Generating Programming-language-specific Type Definitions
	Example
	Generating Programming-language-specific Names

	Inserting Comments in the Template File
	Using Verbatim Mode
	Using Options
	Specifiying the Name of the Output File
	Redirecting the Output to Standard Out
	Using Template #if Preprocessing Statements
	Using Template #include Preprocessing Statements
	Using Template #trace Statement

	7 Grammar for IDL Template Files
	Software AG Template File Grammar
	Syntax
	Description
	Example

	assign_statement
	Syntax
	Description
	Example

	assign_integer_statement
	Syntax
	Description
	Example

	assign_string_statement
	Syntax
	Description
	Example

	block
	Syntax
	Description
	Example

	compare_expression
	Syntax
	Description
	Example

	compare_strings
	Syntax
	Description
	Example

	compare_operator
	Syntax
	Description
	Example

	control_statement
	Syntax
	Description
	Example

	definition-statement
	Syntax
	Description
	Example

	definition-of-base-type-template
	Syntax
	Description
	Example

	definition-of-base-type
	Syntax
	Description

	definition-of-direction-template
	Syntax
	Description
	Example

	definition-of-group-template
	Syntax
	Description
	Example

	definition-of-index-template
	Syntax
	Description
	Example

	definition-of-line-number-format-template
	Syntax
	Description
	Example

	definition-of-member-separator-template
	Syntax
	Description
	Example

	definition-of-names-format-template
	Syntax
	Description
	Example

	definition-of-OutBlank-template
	Syntax
	Description
	Example

	definition-of-nest-level-format-template
	Syntax
	Description
	Example

	definition-of-parent-identifier-template
	Syntax
	Description
	Example

	definition-of-parent-index-template
	Syntax
	Description
	Example

	definition-of-structure-template
	Syntax
	Description
	Example

	definition-of-UnboundedArray-template
	Syntax
	Description
	Example

	error_statement
	Syntax
	Description
	Example

	execute_statement
	Syntax
	Description
	Example 1
	Example 2

	file_handling_statement
	Syntax
	Description
	Example

	if_statement
	Syntax
	Description
	Example

	if_elif_extension
	Syntax
	Description
	Example

	logical_compare_operator
	Syntax
	Description
	Example

	loop_statement
	Syntax
	Description
	Example

	loop_over_libraries
	Syntax
	Description
	Example

	loop_over_parameters
	Syntax
	Description
	Example

	loop_over_programs
	Syntax
	Description
	Example

	loop_over_structures
	Syntax
	Description
	Example

	loop_of_while
	Syntax
	Description
	Example

	message_statement
	Syntax
	Description
	Example

	output
	Syntax
	Description
	Example

	output_character_sequence
	Description
	Example

	output_control_ims
	Syntax
	Description
	Example

	output_control_imsonly
	Syntax
	Description
	Example

	output_control_lower_upper
	Syntax
	Description
	Example

	output_control_sanitize
	Syntax
	Description
	Example

	output_control_statement
	Syntax
	Description
	Example

	output_control_verbose
	Syntax
	Description
	Example

	output_escape_sequence
	Syntax
	Description
	Example

	output_formatting_sequence
	Syntax
	Description
	Example

	output_of_variable
	Syntax
	Description
	Example

	output_statement
	Syntax
	Description
	Example

	output_substitution_sequence
	Syntax
	Description
	Example

	parameter_list
	Syntax
	Description
	Example

	return_list
	Syntax
	Description
	Example

	return_statement
	Syntax
	Description
	Example

	statement
	Syntax
	Description
	Example

	string
	Syntax
	Description
	Example

	string_with_expression_contents
	Syntax
	Description
	Example

	substring_statement
	Syntax
	Description
	Example

	UnsupportedProgram_statement
	Syntax
	Description
	Example

	variable_index
	Syntax
	Description
	Example

	variable_name
	Syntax
	Description
	Example

	variable_of_type_indexed_string
	Syntax
	Description
	Example

	variable_of_type_integer
	Syntax
	Description
	Example

	variable_of_type_string
	Syntax
	Description
	Example

