
webMethods EntireX

EntireX COBOL Wrapper

Version 9.5 SP1

November 2013

This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXCOBWRAPPER-95SP1-20140628

Table of Contents

EntireX COBOL Wrapper .. vii
1 Introduction to the COBOLWrapper .. 1

Description ... 2
Generic RPC Services Module ... 3
COBOL Client Applications ... 3
COBOL Server Application .. 4
COBOL Server Interface Types .. 5

2 Using the COBOL Wrapper for the Client Side .. 11
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 12
Using the COBOL Wrapper for Batch (z/VSE, IBM i, BS2000/OSD and z/OS) 14
Using theCOBOLWrapper forCICSwithDFHCOMMAREACallingConvention
(z/OS and z/VSE) .. 18
Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE) 21
Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS) 24
Using the COBOL Wrapper for IMS (z/OS) ... 26

3 Using the COBOL Wrapper for the Server Side .. 29
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 30
Using the COBOL Wrapper for Batch (z/OS, IBM i, BS2000/OSD and z/VSE) 32
Using theCOBOLWrapper forCICSwithDFHCOMMAREACallingConvention
(z/OS and z/VSE) .. 36
Using theCOBOLWrapper for CICSwithChannel Container CallingConvention
(z/OS) .. 38
Using the COBOLWrapper for CICS with DFHCOMMAREA Large Buffer
Interface (z/OS and z/VSE) ... 43
Using the COBOL Wrapper for IMS BMP (z/OS) .. 45

4 Generate COBOL Source Files from Software AG IDL Files .. 49
Select an IDL File and Generate RPC Client or RPC Server 50
Generation Settings - Properties .. 53
Generation Settings - Preferences .. 64

5 Using the COBOL Wrapper in Command-line Mode ... 65
Command-line Options .. 66
Example Generating an RPC Client ... 69
Example Generating an RPC Server .. 70
Further Examples ... 70

6 Software AG IDL to COBOL Mapping ... 73
Mapping IDL Data Types to COBOL Data Types .. 74
Mapping Library Name and Alias ... 78
Mapping Program Name and Alias ... 78
Mapping Parameter Names ... 79
Mapping Fixed and Unbounded Arrays ... 80
Mapping Groups and Periodic Groups ... 81
Mapping Structures .. 81
Mapping the Direction Attributes IN, OUT, INOUT ... 82

iii

Mapping the ALIGNED Attribute ... 83
Calling Servers as Procedures or Functions ... 83

7 Writing Standard Call Interface Clients .. 85
Step 1: Declare and Initialize the RPC Communication Area 86
Step 2: Declare the Data Structures for RPC Stubs .. 86
Step 3: Required Settings in the RPC Communication Area 87
Step 4: Optional Settings in the RPC Communication Area 87
Step 5: Issue the RPC Request .. 88
Step 6: Examine the Error Code ... 88

8 Using the RPC Communication Area ... 89
Purpose of the RPC Communication Area .. 90
Using the RPC Communication Area with a Standard Call Interface 91
Using the RPC Communication Area with EXEC CICS LINK 93

9 Using the Generated Copybooks .. 95
IDL Interface Copybooks ... 96
COBINIT Copybook ... 96
COBEXIT Copybook .. 97

10 Using Broker Logon and Logoff .. 99
11 Using Conversational RPC .. 103
12 Using the COBOL Wrapper with Natural Security and Impersonation 107
13 Returning Application Errors from a Server to a Client .. 111

Returning Application Errors from a Server under z/OS Batch to a Client 112
Returning Application Errors from a Server under z/OS CICS to a Client 113
Returning Application Errors from a Server under z/OS IMS to a Client 115

14 Reliable RPC for COBOL Wrapper .. 117
Introduction to Reliable RPC ... 118
Writing a Client .. 119
Writing a Server .. 124
Broker Configuration ... 125

15 Server Mapping Deployment .. 127
Compatibility between Interface Type and RPC Server .. 128
Deploying a Server Mapping File .. 130

16 Using the COBOL Wrapper with EntireX Security ... 141
17 Client and Server Examples for Micro Focus (UNIX and Windows) 143

Basic RPC Client Examples - CALC, SQUARE .. 144
Basic RPC Server Examples - CALC, SQUARE ... 144
Reliable RPC Client Example - SENDMAIL .. 145
Reliable RPC Server Example - SENDMAIL .. 145

18 Client and Server Examples for z/OS Batch .. 147
Basic RPC Client Examples - CALC, SQUARE .. 148
Basic RPC Server Examples - CALC, SQUARE ... 149
Reliable RPC Client Example - SENDMAIL .. 151
Reliable RPC Server Example - SENDMAIL .. 151

19 Client and Server Examples for z/OS CICS ... 153
Basic RPC Client Examples - CALC, SQUARE .. 154

EntireX COBOL Wrapperiv

EntireX COBOL Wrapper

Basic RPC Server Examples - CALC, SQUARE ... 158
Reliable RPC Client Examples - SENDMAIL ... 159
Reliable RPC Server Example - SENDMAIL .. 161
Advanced CICS Channel Container RPC Server Example - DFHCON 162
Advanced CICS Large Buffer RPC Server Example - DFHLBUF 162

20 Client and Server Examples for z/OS IMS BMP .. 165
21 Server Examples for z/OS IMS MPP .. 167

CALC Server ... 168
SQUARE Server .. 168

22 Client and Server Examples for BS2000/OSD .. 171
Overview of Client and Server Examples for BS2000/OSD 172
Creating the Sample COBOL Client Programs .. 175
Creating the Sample COBOL Server Programs ... 176
Running the Sample COBOL Client Programs .. 176

23 Client and Server Examples for IBM i ... 179
Overview of Client and Server Examples for IBM i ... 180
Installing and Running the Client Examples for IBM i .. 181
Installing and Running the Server Examples for IBM i ... 181

24 Client and Server Examples for z/VSE Batch .. 183
Overview of Client and Server Examples for z/VSE Batch 184
Run the Client Examples for z/VSE Batch .. 185
Installing and Running the Server Examples for z/VSE Batch 185

25 Server Examples for z/VSE CICS ... 187
Overview Server Examples for z/VSE CICS ... 188
Installing and Running the Server Examples for z/VSE CICS 188

26 COBOL Wrapper Reference ... 191
The RPC Communication Area (Reference) ... 192
Generic RPC Services Modules .. 194

vEntireX COBOL Wrapper

EntireX COBOL Wrapper

vi

EntireX COBOL Wrapper

EntireX COBOLWrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

This document covers the following topics:

Introduction to the COBOLWrapper.Introduction

Step-by-step guide on how to generate interactively and build (write, compile
and link) clients and server applications with the COBOLWrapper.

Using

Programming models for Micro Focus, batch, CICS and IMS COBOL RPC
applications are introduced. This section contains the following subsections:

■ Using the COBOLWrapper for the Client Side
■ Using the COBOLWrapper for the Server Side
■ Generate COBOL Source Files from Software AG IDL Files

Using the COBOLWrapper in command-line mode.Command-line Mode

Describes the specific mapping of Software AG IDL data types, groups, arrays
and structures to the COBOL programming language.

IDL to COBOL Mapping

Introduction to reliable RPC; writing a client and a server for Reliable RPC;
Broker configuration.

Reliable RPC

This section describes the deployment of Software AG server mapping files.Server Mapping Deployment

Provides reference material for the COBOLWrapper.Reference

vii

viii

1 Introduction to the COBOL Wrapper

■ Description .. 2
■ Generic RPC Services Module .. 3
■ COBOL Client Applications ... 3
■ COBOL Server Application .. 4
■ COBOL Server Interface Types .. 5

1

EntireX COBOLWrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

Description

The COBOLWrapper provides access to RPC servers for COBOL client applications and access
to COBOL servers for any RPC client. The COBOLWrapper generation tools of the Workbench
take as input a SoftwareAG IDLfile,which describes the interface of the RPC, and generate COBOL
sources that implement the functions and data types of the interface.

The generated functions can be compiled with the COBOL compiler of your target platform.

The COBOLWrapper works as follows:

■ COBOL code is generated from the Software AG IDL file.
■ Additonally for the client side, and depending on your target operating system and environment
(e.g. Micro Focus, batch, CICS or IMS), a generic RPC services module is generated (see below).

■ If required for the server side, a so-called server-side server mapping file (SVM) is created.
■ The Software AG IDL Compiler and an appropriate template are used for the COBOL code
generation.

EntireX COBOL Wrapper2

Introduction to the COBOL Wrapper

Generic RPC Services Module

In order tominimize the amount of code generated for a specific IDL file, all service-type function-
ality that is not specific to a given IDL file required by the client interface object is generated in a
generic RPC services module.

The generic RPC services module is used by RPC clients and contains the call to the broker stub,
as well as other functions needed for RPC communicationwhere an interface object is not needed,
such as

■ broker logon and logoff
■ conversational support
■ connecting RPC clients to RPC servers via the broker
■ etc.

For more information, see Generic RPC Services Modules.

COBOL Client Applications

For a given IDL file, the Software AG IDL Compiler and a COBOL code generation template for
clients are used to generate client interface objects and copybooks. The source code generated by
the COBOLWrapper can be compiled with your target COBOL compiler. Application developers
use the generated generic RPC service module, the client interface object(s) and the copybooks to
write COBOL applications that access RPC servers.

3EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

For more information, see Using the COBOLWrapper.

COBOL Server Application

The Software AG IDL Compiler and a COBOL code generation template for servers are used to
generate a server (skeleton) for a specific IDL. Additionally, depedending on the IDL data types
and whether IDL program names are customized, a so-called server-side server-mapping file is
created. SeeWhen is an SVM File Required? and Server Mapping File (SVM).

Application developers use the generated server (skeleton) to write their own server code for each
program in the IDL. The source code is compiled and linked with your target COBOL compiler.
The server-side SVMfile needs to be deployed to the EntireX RPC Server used, see Server Mapping
Deployment.

For more information, see Using the COBOLWrapper.

EntireX COBOL Wrapper4

Introduction to the COBOL Wrapper

COBOL Server Interface Types

Depending on your requirements and generation settings, the COBOLWrapper generates a
server skeleton with one of the following interface types:

■ CICS with DFHCOMMAREA Calling Convention
■ CICS with Channel Container Calling Convention
■ CICS with DFHCOMMAREA Large Buffer Interface
■ Micro Focus with Standard Linkage Calling Convention
■ Batch with Standard Linkage Calling Convention
■ IMS BMP with Standard Linkage Calling Convention

CICS with DFHCOMMAREA Calling Convention

CICS programs using the standard DFHCOMMAREA for parameter passing.

Technically, the generated COBOL server skeleton contains

■ in the DFHCOMMAREA, the parameter structure

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

CICS with Channel Container Calling Convention

Channels and containers are IBM's approach to access more than 31 KB of data in CICS. There is
no need for coding any channel container statements because all this is generated. Thus the pro-
grammer focus can be on the application logic.

5EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

Technically, the generated COBOL server skeleton contains

■ container layouts in the linkage section
■ EXEC CICS CONTAINER statements for accessing the container on input and output

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data
inCICS. The interface is the same as thewebMethodsWMTLSRVR interface. This enables customers
to use an easy and simple interface type to access more than 31 KB of data in CICS.

Technically,

EntireX COBOL Wrapper6

Introduction to the COBOL Wrapper

■ the generated server skeleton contains in theDFHCOMMAREA layout a pointer to a large buffer
■ the parameter structure in the linkage section is accessed using COBOL's SET ADDRESS statement
using the large buffer pointer

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

Micro Focus with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Technically, the generated COBOL server skeleton contains

■ a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

■ the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

7EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Technically, the generated COBOL server skeleton contains

■ a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

■ the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

IMS BMP with Standard Linkage Calling Convention

IMS batch message processing programs (BMP) with PCB parameters are directly supported.

EntireX COBOL Wrapper8

Introduction to the COBOL Wrapper

Technically, the generated COBOL server skeleton contains

■ IMS-specific PCB pointerswithin a parameter list.

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

9EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

10

2 Using the COBOL Wrapper for the Client Side

■ Using the COBOL Wrapper for Micro Focus (UNIX and Windows) ... 12
■ Using the COBOL Wrapper for Batch (z/VSE, IBM i, BS2000/OSD and z/OS) .. 14
■ Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE) 18
■ Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE) .. 21
■ Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS) .. 24
■ Using the COBOL Wrapper for IMS (z/OS) ... 26

11

The COBOLWrapper provides access to RPC-based components from COBOL applications and
enables users to develop both clients and servers. This section introduces the various possibilities
for RPC-based client applications written in COBOL.

A step-by-step guide is provided in the sectionWriting Applications with the COBOLWrapper.
Read this section first before writing your first RPC client program.

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

In this scenario, the COBOLRPC client customer application, every generated client interface object,
generic RPC servicesmodule and the broker stub are linked together to an executable application.

Use the COBOLWrapper for Micro Focus if you need to embed the client interface object into
your application with a standard linkage calling convention.

EntireX COBOL Wrapper12

Using the COBOL Wrapper for the Client Side

To use the COBOL Wrapper for Micro Focus

1 Generate the client interface object(s) for the target operating system, for example "Windows",
and use interface type "Micro Focus with standard linkage calling convention". SeeGenerate
COBOLSource Files fromSoftwareAG IDLFiles. If required, generate the generic RPC service
moduleCOBSRVI too. SeeGenerateGenericRPCService forModuleCOBSRVI for information
on when to generate this.

2 If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRVI to the target platform where you write your application.

3 Import the modules into your Micro Focus IDE. The file names of the generated copybooks
(see Using the Generated Copybooks) are derived from the IDL program name or its alias if
present. The file names are the same as the file names of the client interface objects. They are
distinguished by their extension, ".cbl" for the client interface objects and ".cpy" for the copy-
books. If you import the generated copybooks and client interface objects into your Micro
Focus development environment, take care the copybooks are accessed correctly by the
compiler and not confused with the client interface objects. This may happen if you copy the
generated coybooks and the client interface objects into one directory. See your Micro Focus
documentation for more information.

4 Write your COBOL RPC client application. SeeWriting Applications with the COBOL
Wrapper, in particular the sectionUsing the RPC Communication Area with a Standard Call
Interface, and take into consideration the information given in Software AG IDL to COBOL
Mapping.

5 Compile and link (bind) all modules together to an executable program:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL RPC client customer application

For target operating system UNIX (i.e. the modules are generated for UNIX):

■ The broker library from the EntireXUNIX installationmust be linked to your the application,
e.g. by defining the symbol "broker" as a linker option and linking themodule broker.o from
the EntireX UNIX installation.

■ See your Micro Focus documentation for more information.

For target operating systemWindows (i.e. the modules are generated for Windows):

■ no additional compiler directives and linker options are required

6 Make sure the broker stub module can be called dynamically.

Under UNIX:

13EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

■ The broker stub shared library or object libbroker.so|sl is accessible according to the rules
of the UNIX systemused, e.g. the directory of the library is defined in the LD_LIBRARY_PATH
environment variable.

Under Windows:

■ The broker stubDLL broker.dll is accessible, for examplewith the PATH environment variable.

Using the COBOL Wrapper for Batch (z/VSE, IBM i, BS2000/OSD and z/OS)

This mode applies to z/OS, BS2000/OSD, z/VSE and IBM i.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

In this scenario, the COBOLRPC client customer application, every generated client interface object,
generic RPC servicesmodule and the broker stub are linked together to an executable application.

EntireX COBOL Wrapper14

Using the COBOL Wrapper for the Client Side

Use the COBOLWrapper for batch if you need to embed the client interface object into your ap-
plication with a standard linkage calling convention.

To use the COBOL Wrapper for batch

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use interface type "Batch with standard linkage calling convention". See Generate COBOL
Source Files from Software AG IDL Files. If required, generate the generic RPC service
moduleCOBSRVI too. SeeGenerateGenericRPCService forModuleCOBSRVI for information
on when to generate this.

2 If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRVI to the target platform where you write your application.

3 If you have generated the generic RPC service module, you may need to adapt the broker
stub that supports the required transport (TCP, SSL, NET). See Adapting the Used Broker
Stub.

4 Write your COBOL RPC client application. SeeWriting Applications with the COBOL
Wrapper, in particular the sectionUsing the RPC Communication Area with a Standard Call
Interface, and take into consideration the information given in Software AG IDL to COBOL
Mapping.

5 If necessary, use FTP to transfer the client interface object(s), if required the generic RPC service
module COBSRVI,and your application to the target platformwhere you compile your applic-
ation.

6 Using a COBOL compiler supported by COBOLWrapper, compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL RPC client customer application

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

Under BS2000/OSD:

■ The IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
SeeBS2000/OSDPrerequisites in the EntireXReleaseNotes formore information on supported
compilers.

Under IBM i:

■ Use the command CRTCBLMOD (create COBOL module) and compile all modules above
to ILE modules.

■ Use the IBM i compiler command with the options shown below:

15EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

CRTCBLMOD
OPTION(*NOMONOPRC) EXTDSOPT(*NODFRWRT) LINKLIT(*PRC)

Under all other platforms:

■ Use the standard COBOL compiler of the target platform.

7 Using the standard linker (binder) of the target platform, link (bind) the following programs:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ if required, the broker stub
■ your COBOL RPC client customer application

Under IBM i:

■ Use the IBM i command CRTPGM to bind all compiledmodules to an executable ILE program
of type *PGM.

■ To link the main program, use the following create program command with the options
shown:

CRTPGM
MODULE(*LIB/myapplication mystub1 mystub2 ..)
BNDSRVPGM(EXX/EXA) ...

where EXX is the EntireX product library and EXA the broker stub.

Under all other platforms:

■ Refer to your standard linker (binder) documentation.

8 Make sure that the correct broker stub module is used and, if linked (bound) dynamically,
that it can be called dynamically.

Under BS2000/OSD:

■ The broker stub module BKIMBTIA is located in the broker LMS load library.

Under IBM i:

■ The broker stub EXA is located by default in the EntireX product library EXX.

Under z/OS:

EntireX COBOL Wrapper16

Using the COBOL Wrapper for the Client Side

■ See the broker installation documentation and use a broker stub for batch (for example
BROKER) from the common load library EXX951.LOAD. See also Administration of Broker
Stubs under z/OS in the z/OS administration documentation.

Under z/VSE:

■ See the broker installation documentation and use a broker stub for batch (for example
BKIMB), see sublibrary EXX951.

17EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using theCOBOLWrapper for CICSwith DFHCOMMAREACallingConvention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

For the target platforms, see Generate COBOL Source Files from Software AG IDL Files.(*)

In this scenario, the generic RPC servicesmodule and the broker stub are linked together to a CICS
program. The COBOL RPC client customer application, every generated client interface object
and the generic RPC services module together with the broker stub are installed each as separate
individual CICS programs.

Use the COBOLWrapper for CICS with DFHCOMMAREA calling convention in the following
situations:

■ You want to have an EXEC CICS LINK DFHCOMMAREA interface to your client interface ob-
ject(s).

■ The restriction of the COMMAREA length suits your purposes. Because the RPC communication
area is also transferred in the COMMAREA, the effective length that can be used for IDL data
is shorter than the CICS COMMAREA length. Nearly 31 KB can be used for IDL data.

EntireX COBOL Wrapper18

Using the COBOL Wrapper for the Client Side

■ Youwish to separate the generic RPC servicemodule and the broker stub from the client interface
object(s).

■ You require a program link to the client interface object(s).

To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1 Generate the client interface object for the target operating system, for example "z/OS", and
use interface type "CICS with DFCOMMAREA calling convention". See Generate COBOL
Source Files from Software AG IDL Files. If required, generate the generic RPC service
moduleCOBSRVI too. SeeGenerateGenericRPCService forModuleCOBSRVI for information
on when to generate this.

2 If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRVI to the target platform where you write your application.

3 If you have generated the generic RPC service module and you plan to (re)install it within
CICS, you may need to adapt the broker stub that supports the required transport (TCP, SSL,
NET). See Adapting the Used Broker Stub.

4 Write your COBOL RPC client application. SeeWriting Applications with the COBOL
Wrapper, in particular the sectionUsing theRPCCommunicationAreawith EXEC CICS LINK,
and take into consideration the information given in Software AG IDL to COBOLMapping.

5 If necessary, use FTP to transfer the client interface object(s), if required the generic RPC service
module COBSRVI,and your application to the target platformwhere you compile your applic-
ation.

6 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL RPC client customer application.

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

7 Using the standard linker (binder) of the target platform, link (bind) the following programs
to separate CICS programs:

■ every generated client interface object to a CICS program
■ if required, the generic RPC service module COBSRVI together with a broker stub
■ your COBOL RPC client customer application.

8 Install every client interface object, if required the CICS RPC service module COBSRVI and
your COBOL RPC client customer application as separate CICS programs.

19EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

9 Make sure the correct broker stub is used and can be called dynamically by the CICS generic
RPC service module COBSRVIC.

Under z/OS:

■ See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX951.LOAD. See also Administration of Broker
Stubs under z/OS in the z/OS administration documentation.

Under z/VSE:

■ See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX951.

EntireX COBOL Wrapper20

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

The COBOLWrapper can be used with a call interface, even in CICS. This means you can build
an applicationwhere the COBOLRPC client customer application, every generated client interface
object, the generic RPC services module and the broker stub are linked together to an executable
application, similar to the batch scenario. SeeUsing the COBOLWrapper for Batch (z/VSE, IBM i,
BS2000/OSD and z/OS).

Using a call interface within CICS may be useful if

■ the restriction of the COMMAREA length (about 31 KB) prevents you from using theUsing the
COBOLWrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
scenario (see above)

■ you do not require a distributed program link (CICS DPL) to your client interface object(s)
■ you prefer a call interface instead of EXEC CICS LINK to your client interface objects.

21EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

To use the COBOL Wrapper with a call interface within CICS

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use the interface type "CICS with standard calling convention". SeeGenerate COBOL Source
Files from Software AG IDL Files. If required, generate the generic RPC service module
COBSRVI too. See Generate Generic RPC Service for Module COBSRVI for information on
when to generate this.

2 If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRVI to the target platform where you write your application.

3 If you have generated the generic RPC service module, you may need to adapt the broker
stub that supports the required transport (TCP, SSL, NET). See Adapting the Used Broker
Stub.

4 Write your COBOL RPC client application. SeeWriting Applications with the COBOL
Wrapper, in particular the sectionUsing the RPC Communication Area with a Standard Call
Interface, and take into consideration the information given in Software AG IDL to COBOL
Mapping.

5 If necessary, use FTP to transfer the client interface object(s), if required the generic RPC service
module COBSRVI, and your application to the target platform where you compile your ap-
plication.

6 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL RPC client customer application

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

7 Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to a CICS program, using the standard
linker (binder) of the target platform.

8 Install the program within CICS.

9 Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVI.

Under z/OS:

■ See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX951.LOAD. See also Administration of Broker
Stubs under z/OS in the z/OS administration documentation.

EntireX COBOL Wrapper22

Using the COBOL Wrapper for the Client Side

Under z/VSE:

■ See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX951.

23EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)

This mode applies to z/OS.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

The COBOLWrapper can be used with a call interface in IDMS/DC. This means you can build an
application where the COBOL RPC client customer application, every generated client interface
object, the generic RPC services module and the broker stub are linked together to an executable
application, similar to the batch scenario. SeeUsing the COBOLWrapper for Batch (z/VSE, IBM i,
BS2000/OSD and z/OS).

To use the COBOL Wrapper with a call interface within IDMS/DC

1 Generate the client interface object(s) for the target operating system "z/OS", and use the in-
terface type "IDMS/DCwith standard calling convention". SeeGenerate COBOL Source Files
from Software AG IDL Files. If required, generate the generic RPC service module COBSRVI
too. See Generate Generic RPC Service for Module COBSRVI for information on when to
generate this.

EntireX COBOL Wrapper24

Using the COBOL Wrapper for the Client Side

2 If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRVI to the target platform where you write your application.

3 If you have generated the generic RPC service module, you may need to adapt the broker
stub that supports the required transport (TCP, SSL, NET). See Adapting the Used Broker
Stub.

4 Write your COBOL RPC client application. SeeWriting Applications with the COBOL
Wrapper, in particular the sectionUsing the RPC Communication Area with a Standard Call
Interface, and take into consideration the information given in Software AG IDL to COBOL
Mapping.

5 If necessary, use FTP to transfer the client interface object(s), if required the generic RPC service
module COBSRVI, and your application to the target platform where you compile your ap-
plication.

6 Using the IDMS/DC translator for COBOL provided with your IDMS/DC installation and a
COBOL compiler supported by the COBOLWrapper, translate and compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL RPC client customer application

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

7 Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to a IDMS/DCprogram, using the standard
linker (binder) of the target platform.

8 Install the program within IDMS/DC.

9 Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVI.

Under z/OS:

■ See the broker installation documentation and use a broker stub for IDMS/DC (for example
IDMSETB) from the common load library EXX951.LOAD. See also Administration of Broker
Stubs under z/OS in the z/OS administration documentation.

25EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for IMS (z/OS)

This mode applies to z/OS IMS modes BMP and MPP.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

In this scenario, the COBOLRPC client customer application, every generated client interface object,
the generic RPC services module and the broker stub are linked together to an executable applic-
ation.

Use the COBOLWrapper for IMS if

■ you need to embed the client interface object into your IMS BMP or IMS MPP application with
a standard linkage calling convention.

EntireX COBOL Wrapper26

Using the COBOL Wrapper for the Client Side

To use the COBOL Wrapper for IMS

1 Generate the client interface object(s) for the target operating system "z/OS" and use the inter-
face type "IMS BMP with standard linkage calling convention" or "IMS MMP with standard
linkage calling convention". See Generate COBOL Source Files from Software AG IDL Files.
SeeGenerate Generic RPC Service forModule COBSRVI for information onwhen to generate
this.

2 If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRVI to the target platform where you write your application.

3 If you have generated the generic RPC service module, you may need to adapt the broker
stub that supports the required transport (TCP, SSL, NET). See Adapting the Used Broker
Stub.

4 Write your COBOL RPC client application. SeeWriting Applications with the COBOL
Wrapper, in particular the sectionUsing the RPC Communication Area with a Standard Call
Interface, and take into consideration the information given in Software AG IDL to COBOL
Mapping.

5 If necessary, use FTP to transfer the client interface object(s), if required the generic RPC service
module COBSRVI, and your application to the target platform where you translate and
compile your application.

6 Using a COBOL compiler supported by the COBOLWrapper, compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL RPC client customer application.

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. Do not assign the data set with the client in-
terface objects prior in sequence to the copybooks to SYSLIB. See your compiler documentation.

7 Link (bind) all compiled modules and, if required, the broker stub, together to an executable
program, using the standard linker (binder) of the target platform.

8 Make sure the correct broker stub is used and can be called dynamically. In the common load
library EXX951.LOAD you can find broker stubs that can be used for

■ IMS BMP (for example BROKER)
■ IMS MPP (for example MPPETB)

See Administration of Broker Stubs under z/OS in the z/OS administration documentation.

27EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

28

3 Using the COBOL Wrapper for the Server Side

■ Using the COBOL Wrapper for Micro Focus (UNIX and Windows) ... 30
■ Using the COBOL Wrapper for Batch (z/OS, IBM i, BS2000/OSD and z/VSE) .. 32
■ Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE) 36
■ Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS) 38
■ Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE) 43
■ Using the COBOL Wrapper for IMS BMP (z/OS) .. 45

29

The COBOLWrapper provides access to RPC-based components from COBOL applications and
enables users to develop both clients and server. This section introduces the various possibilities
for RPC-based server applications written in COBOL and covers the following sections:

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

The Micro Focus RPC server sets up all of your server's parameters dynamically in the format re-
quired. Your server is called dynamically using standard call interfaces.

Use the COBOLWrapperfor Micro Focus to build servers for the Micro Focus RPC server.

To use the COBOL Wrapper for Micro Focus

1 Generate a server (skeleton(s)) for the target operating system, for example "Windows", and
use interface type "Micro Focus with standard linkage calling convention". See Generate
COBOL Source Files from Software AG IDL Files for details.

EntireX COBOL Wrapper30

Using the COBOL Wrapper for the Server Side

2 If a server mapping file (SVM file) is required, deploy it to the Micro Focus RPC Server, see
Server Mapping Deployment.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Import the modules into your Micro Focus IDE.

5 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

6 Compile and - if the format requires it - link (bind) and package your server(s) to one of the
following formats:

■ Micro Focus intermediate code (int) or generated code (gnt). These formats can also be
packaged into a Micro Focus library file (lbr). In this case the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the library file name. The library-name
(library-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file is ignored and not used.

■ Under Windows to a DLL, and under UNIX to a shared library (so/sl). The library-name
(library-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the executables file name, and the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match an entry point.

7 Provide your server to the Micro Focus RPC server.

■ Make sure your server(s) are accessible by the Micro Focus RPC server:
■ under UNIX, for example with the LD_LIBRARY_PATH environment variable
■ under Windows, for example with the PATH environment variable.

■ If an SVM file is used, its location can be identified by a concatenation of the program-name
and the library-name given in the IDL. See program-definition under Software AG IDL
Grammar in the IDL Editor documentation and library-definition under Software AG IDL
Grammar in the IDL Editor documentation.

Example: If a client performs an RPC request that is based on the IDL program nameCALC
and the IDL library nameEXAMPLE, the RPC serverwill dynamically try to locate logically
the SVM file EXAMPLECALC and execute program CALC. If no corresponding program
can be found, the access will fail.

31EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for Batch (z/OS, IBM i, BS2000/OSD and z/VSE)

This mode applies to z/OS, IBM i, BS2000/OSD and z/VSE.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

Currently an SVM file is generated for operating systems z/OS and z/VSE.(**)

In batch mode, the RPC server sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces.

Use the COBOLWrapper for batch to build servers for the Batch RPC server.

To use the COBOL Wrapper for batch

1 Generate a server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "Batchwith standard linkage calling convention". SeeGenerate COBOL Source
Files from Software AG IDL Files for details.

2 If an SVM file is required, deploy it to the Batch RPC Server, see Server Mapping Deployment.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

EntireX COBOL Wrapper32

Using the COBOL Wrapper for the Server Side

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

Under IBM i , consider multithreading issues:

■ Your server has to be implemented as an ILE COBOL program of type *PGM.
■ The RPC server is running in a multithreaded environment. Therefore your server must be
thread-safe. This implies that all commands and subprograms accessed in your servers
must allow multithreads.

■ Please note that some COBOL statements do not support multithreads. Using statements
that are not thread-safe (e.g. STOP RUN) can result in the RPC server ending abnormally.
Therefore the server programs have to be terminated with a thread-safe statement, for ex-
ample EXIT PROGRAM. For details, see the IBM documentation Language Restrictions under
THREAD and Preparing ILE COBOL Programs for Multithreading.

5 If necessary, use FTP to transfer your server to the target platform where you compile your
server.

6 Use a COBOL compiler supported by the COBOLWrapper to compile your server.

Under BS2000/OSD,

■ the IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
SeeBS2000/OSDPrerequisites in the EntireXReleaseNotes formore information on supported
compilers.

■ compile them as OM or LLMmodules.

Under IBM i,

■ use the IBM i command CRTCBLMOD (create bound COBOL module).
■ as an alternative, you can compile and bind in one step, see the next step below.

Under all other platforms,

■ use the standard COBOL compiler of the target platform.

7 Link (bind) your server to an executable program.Give the resulting server program the same
name as the program-name in the IDL file. See program-definition under Software AG IDL
Grammar in the IDL Editor documentation.

Under BS2000/OSD:

■ There is no need to link the servermodules with the BS2000/OSDCommonRuntime Envir-
onment (CRTE). TheCRTE is included in the server's BLSLIB chain and loaded dynamically.
If this is needed for any reason, the CRTE must be linked as a subsystem. All entries must

33EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

be hidden to prevent duplicates. Linking the CRTE statically will consume resourses and
slow down the load time of the server modules.

Under IBM i:

■ Bind it as a dynamically callable program of type *PGM using the command CRTPGM.
■ As an alternative to compiling with CRTCBLMOD (see step above) and binding with CRTPGM
separately, you can compile and bind in one step with the command CRTBNDCBL.

■ When linking/binding servers, theCRTPGMparameter ACTGRP (*CALLER)must be specified.
This guarantees that the server application runs in the same activation group as the calling
RPC server.

Under all other platforms

■ Use the standard linker (binder) of the target platform.

8 Provide your server to the Batch RPC Server.

Under IBM i

■ Put the server into a library whose name corresponds to the library name in the IDL file
(see library-definitionunder Software AG IDLGrammar in the IDL Editordocumentation).

■ If you put the server program into a library other than the library name given in the IDL
(e.g.MyLib), you must tell this to the RPC server, using the server parameter
Library=Fix(MyLib). In this case, the library name sent with the client request is ignored.

Example: If a client performs an RPC request that is based on the IDL program nameCALC
in the IDL library EXAMPLE, the remote RPC server will dynamically try to execute the
ILE program CALC in the IBM i library EXAMPLE. If no corresponding program can be
found, the access will fail.

Under all other platforms

■ Add the server to the Batch RPC Server STEPLIB chain.
■ If you are using an SVM file:

■ A concatenation of the program-name and the library-name given in the IDL is used to
locate the SVM file. See program-definition under Software AG IDL Grammar in the IDL
Editor documentation and library-definition under Software AG IDL Grammar in the
IDL Editor documentation.

Example: If a client performs an RPC request that is based on the IDL program name
CALCand the IDL library nameEXAMPLE, the RPC serverwill dynamically try to locate
logically the SVMfile EXAMPLECALCand execute programCALC. If no corresponding
program can be found, the access will fail.

EntireX COBOL Wrapper34

Using the COBOL Wrapper for the Server Side

■ If an SVM file is not used (e.g. it is not required or the server is generated with an earlier
version of EntireX without support for server mapping):
■ The library name (see library-definition under Software AG IDL Grammar in the IDL
Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name
CALC, the RPC serverwill dynamically try to execute a programCALC. If no correspond-
ing program can be found, the access will fail.

35EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using theCOBOLWrapper for CICSwith DFHCOMMAREACallingConvention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK.

Use the COBOLWrapper for CICS with DFHCOMMAREA calling convention if

■ you want to have a standard EXEC CICS LINK DFHCOMMAREA interface to your server

■ you require a distributed program link (CICS DPL) to your server
■ the DFHCOMMAREA length restriction (31 KB) suits your needs, otherwise consider the fol-
lowing interface types:
■ Using the COBOLWrapper for CICS with Channel Container Calling Convention (z/OS)
■ Using the COBOLWrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS
and z/VSE)

EntireX COBOL Wrapper36

Using the COBOL Wrapper for the Server Side

To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1 Generate the server (skeleton) for the target operating system, for example "z/OS", and use
interface type "CICSwithDFHCOMMAREAcalling convention". SeeGenerateCOBOLSource
Files from Software AG IDL Files.

2 If an SVM file is required, it has to be provided. For the CICS RPC Server or CICS ECI RPC
Server this is done bydeployment, see ServerMappingDeployment. For thewebMethods EntireX
Adapter, it is picked up automatically when the adapter connection is generated.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

5 If necessary, use FTP to transfer your server to the target platform where you compile your
server.

6 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile your server.

7 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file. See program-definition under Software AG IDL Grammar in the IDL Editor
documentation.

8 Provide your server(s) to the CICS RPC server, EntireX Adapter, or CICS ECI RPC server:

■ Install your server(s) as separate CICS program(s).
■ If you are using an SVM file :

■ A concatenation of the program-name and the library-name given in the IDL is used to
locate the SVM file. See program-definition under Software AG IDL Grammar in the IDL
Editor documentation and library-definition under Software AG IDL Grammar in the
IDL Editor documentation.

Example: If a client performs an RPC request that is based on the IDL program name
CALC and the IDL library EXAMPLE, the RPC server will dynamically try to locate lo-
gically the SVM file EXAMPLECALC and execute program CALC. If no corresponding
program can be found, the access will fail.

■ If an SVM file is not used, for example it is not required or the server is generated with a
previous version of EntireX without support for server mapping:
■ The library name (see library-definition under Software AG IDL Grammar in the IDL
Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name
CALC, the RPC serverwill dynamically try to execute a programCALC. If no correspond-
ing program can be found, the access will fail.

37EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOLWrapper for CICSwith Channel Container Calling Conven-
tion (z/OS)

This section covers the following topics:

■ Introduction
■ CICS Channel Container IDL Rules
■ Restrictions
■ Example 1: Same Container for Direction In and Out
■ Example 2: Different Container for Direction In and Out
■ Example 3: Multiple Containers
■ Example 4: Variable Number of Containers (Direction Out Only)
■ Steps

Introduction

This mode applies to z/OS.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

EntireX COBOL Wrapper38

Using the COBOL Wrapper for the Server Side

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK passing the container(s) in the defined channel to your
server. See Channel Name.

Use the COBOLWrapper for CICS with channel container calling convention if

■ you require more than 31 KB of data to transfer to your server
■ your IDL complies with CICS channel container IDL rules (see below). If your IDL does not
match these rules, consider the interface type Using the COBOLWrapper for CICS with DFH-
COMMAREA Large Buffer Interface (z/OS and z/VSE) to implement your server.

■ you want to have a standard CICS channel container interface to your server
■ you require a distributed program link (CICS DPL) to your server.

CICS Channel Container IDL Rules

The following rules apply to CICS channel container IDL:

■ A container is described with an IDL structure. See structure-definition under Software AG
IDL Grammar in the IDL Editor documentation.

■ The container name is the name of the IDL structure. A maximum of 16 characters are allowed
by CICS for container names.

■ IDL programs reference IDL structures only. No other parameters may be referenced.
■ Multiple containers can be defined, see Example 3: Multiple Containers.
■ A variable number of containers can be defined using one-dimensional IDL unbounded arrays
withmaximum (see array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation). See also Example 4: Variable Number of Containers (Direction Out Only).

Restrictions

■ IDL unbounded arrays (i.e. variable containers) for direction IN and INOUT are not supported.
■ Two and three-dimensional IDL unbounded arrays are not supported.

Example 1: Same Container for Direction In and Out

This example uses the same container for input and output. The container name is "CALC".

39EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Library 'EXAMPLE' Is
Program 'CONCALC' Is
Define Data Parameter
1 Container ('CALC') InOut

End-Define

Struct 'CALC' Is
Define Data Parameter
1 Operation (A1)
1 Operand_1 (I4)
1 Operand_2 (I4)
1 Function_Result (I4)

End-Define

Example 2: Different Container for Direction In and Out

This example uses separate containers for input and output.

Library 'DFHCON' Is
Program 'TWOC' Is /* Two Container - Separate for Input and Output
Define Data Parameter
1 ContainerIn ('CONTAINER1') In
1 ContainerOut ('CONTAINER2') Out

End-Define
Struct 'CONTAINER1' Is

Define Data Parameter
1 Just-Occupied-Space (A39000) /* 39K
1 Request (A1000/5) /* 5K
End-Define

Struct 'CONTAINER2' Is
Define Data Parameter

1 Just-Occupied-Space (A49000) /* 49K
1 Reply (A250)

End-Define

See IDL program TWOC under Advanced CICS Channel Container RPC Server Example - DFHCON.

Example 3: Multiple Containers

This example shows how more than one container is used per direction. Each container has its
own structure layout.

EntireX COBOL Wrapper40

Using the COBOL Wrapper for the Server Side

Library 'DFHCON' Is
Program 'MULTIC' Is
Define Data Parameter
1 InContainer1 ('INCONTAINER1') In
1 InContainer2 ('INCONTAINER2') In
1 InContainer3 ('INCONTAINER3') In
...

1 OutContainer1 ('OUTCONTAINER1') Out
1 OutContainer2 ('OUTCONTAINER2') Out
1 OutContainer3 ('OUTCONTAINER3') Out
...

End-Define

Struct 'INCONTAINER1' Is ...
Struct 'INCONTAINER2' Is ...
Struct 'INCONTAINER3' Is ...
...

Struct 'OUTCONTAINER1' Is ...
Struct 'OUTCONTAINER1' Is ...
Struct 'OUTCONTAINER1' Is ...
...

Example 4: Variable Number of Containers (Direction Out Only)

This example shows how to specify a range of containers. At runtime, the called RPC server creates
a variable number of containers from this range. Each container created has the same structure
layout and a container name that is formed from the structure name as prefix and the structure
index as suffix. In this example:

■ MULTIPLE container names are MULTIPLE0001 thru MULTIPLE9999.
■ OPTIONAL container name is OPTIONAL1.

Note: Make sure IDL observes the 16-character length restriction for container names given
by CICS.

Library 'DFHCON' Is
Program 'VARC' Is
Define Data Parameter
1 Input ('INPUT') In
1 Multiple ('MULTIPLE'/V9999) Out /* 0 thru 9999 times
1 Optional ('OPTIONAL'/V1) Out /* 0 or 1 times

End-Define

Struct 'INPUT' Is ...
Struct 'MULTIPLE' Is ...
Struct 'OPTIONAL' Is ...

41EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Steps

To use the COBOL Wrapper for CICS with channel container calling convention

1 Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICSwith channel container calling convention". SeeGenerate COBOLSource
Files from Software AG IDL Files.

2 Deploy the SVM file to the CICS RPC server. See Server Mapping Deployment.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

5 If necessary, use FTP to transfer your server to the target platform where you compile your
server.

6 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile your server.

7 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file (see program-definition under Software AG IDL Grammar in the IDL Editor
documentation).

8 Provide your server(s) to the CICS RPC server.

■ Install your server(s) as separate CICS program(s).
■ An SVM file is required for calling a CICS channel container. A concatenation of the
program-name and the library-name given in the IDL is used to locate the SVM file. See
program-definition under Software AG IDLGrammar in the IDL Editor documentation and
library-definition under Software AG IDL Grammar in the IDL Editor documentation.

Example: If a client performs an RPC request that is based on the IDL program nameCALC
and IDL library EXAMPLE, the RPC server will dynamically try to locate logically the SVM
file EXAMPLECALC and execute program CALC. If no corresponding program can be
found, the access will fail.

■ The RPC server uses channel name "EntireXChannel" to call the server program.

EntireX COBOL Wrapper42

Using the COBOL Wrapper for the Server Side

Using the COBOLWrapper for CICSwith DFHCOMMAREALarge Buffer Inter-
face (z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

(*)

In CICS, the RPC server sets up all your server's parameters dynamically in the format required.
Your server is called by EXEC CICS LINK. Within the DFHCOMMAREA, pointers are passed to a
large input/output buffer.

Use the COBOLWrapper for CICS with DFHCOMMAREA large buffer interface in the following
situations:

■ You need to migrate COBOL programs implemented with webMethods WMTLSRVR interface
to the CICS RPC server.

■ You require more than 31 KB of data to transfer to your server.
■ You cannot use the channel container calling convention because your IDL does not match the
applicable rules; see CICS Channel Container IDL Rules under Using the COBOLWrapper for

43EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

CICS with Channel Container Calling Convention (z/OS). There are no IDL restrictions for this
interface type - every IDL can be used.

■ You prefer this interface type rather than the channel container interface type.
■ You do not require a distributed program link (CICS DPL) to your server.

To use the COBOL Wrapper for CICS with large buffer interface

1 Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA large buffer interface". See Generate COBOL
Source Files from Software AG IDL Files.

2 Deploy the SVM file to the CICS RPC server. See Server Mapping Deployment.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

5 If necessary, use FTP to transfer your server to the target platform where you compile your
server.

6 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile your server.

7 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name the same as the program-name in the
IDLfile. See program-definitionunder Software AG IDLGrammar in the IDL Editordocument-
ation.

8 Provide your server(s) to the CICS RPC server.

■ Install your server(s) as separate CICS program(s).
■ An SVM file is required for calling CICS with DFHCOMMAREA large buffer interface
programs. A concatenation of the program-name and the library-name given in the IDL is
used to locate the SVM file. See program-definition under Software AG IDL Grammar in
the IDL Editor documentation and library-definition under Software AG IDL Grammar
in the IDL Editor documentation.

Example: If a client performs an RPC request that is based on the IDL program nameCALC
and an IDL library EXAMPLE, the RPC server will dynamically try to locate logically the
SVM file EXAMPLECALC and execute program CALC. If no corresponding program can
be found, the access will fail.

EntireX COBOL Wrapper44

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for IMS BMP (z/OS)

This mode applies to z/OS IMS mode BMP.

(*)For the target operating systems and interface types, see Generate COBOL Source Files from
Software AG IDL Files.

In IMS BMP, the IMS RPC server sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces. IMS-specific PCB
pointers can be provided as parameters in the linkage section.

Use the COBOLWrapper for IMS BMP if you need to

■ access IMS BMP programs with standard linkage calling convention
■ access IMS databases through IMS PCB pointers and to pass them via parameters in the linkage
section

■ access the IMS PCB pointer IOPCB, for example to print data or to start an asynchronous
transaction

■ use the COBOL/ DLI interface module “CBLTDLI” which requires PCB pointers in its interface.

45EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

If PCB pointers have to be provided as parameters in the COBOL linkage section of your server,
your IDL must comply with the IMS PCB Pointer IDL rules listed below. If no PCB pointers are
required, the rules can be skipped.

IMS PCB Pointer IDL Rules

■ An IMS PSB list contains the PCB pointers of your environment:
■ The IMS PSB list is a text file and can be created with any text editor.
■ Only one PCB pointer is listed per line.
■ The PCB pointer IOPCB is always the first pointer in the IMS PSB list.
■ The PCB pointers (except IOPCB) match the related PSB generation for your server.
■ The PCB pointers listed match the PCB pointers provided at runtime to the IMS RPC server
(including IOPCB) in number and sequence.

■ The IMS PSB list is assigned in the IDL properties, see Generate COBOL Source Files from
Software AG IDL Files or IDL Generation Settings - Preferences. Example:

IOPCB
DBPCB

■ PCB pointers are described in the IDL as parameters. Thus they can be accessed in your server
as any other parameter. Additionally, the following is required:
■ IDL parameters that are PCB pointers are markedwith the attribute IMS (see attribute-list
under Software AG IDL Grammar in the IDL Editor documentation).

■ IDL parameters that are PCB pointers must match a PCB pointer listed in the IMS PSB list,
otherwise the IMS RPC server does not pass them as PCB pointers at runtime. This results in
unexpected behavior. Example:

Library 'IMSDB' Is
Program ' IMSDB' Is

Define Data Parameter
1 IN-COMMAND (A3) IN /* ADD, DEL, DIS
1 IO-DATA IN OUT

2 IO-LAST-NAME (A10)
2 IO-FIRST-NAME (A10)
2 IO-EXTENSION (A10)
2 IO-ZIP-CODE (A07)

1 DBPCB IN IMS /* this is a PCB pointer
2 DBNAME (A8)
2 SEG-LEVEL-NO (A2)
2 DBSTATUS (A2)
2 FILLER1 (A20)

1 OUT-MESSAGE (A40) OUT
End-Define

EntireX COBOL Wrapper46

Using the COBOL Wrapper for the Server Side

To use the COBOL Wrapper for IMS BMP

1 Generate the server (skeleton(s)) for the target operating system “z/OS”, use interface type
“IMS BMPwith standard linkage calling convention”. If PCB pointers should be provided as
COBOL linkage section parameters for your server, set the IMS PSB list; otherwise omit the
IMS PSB list. See Generate COBOL Source Files from Software AG IDL Files.

2 If an SVM file is required, deploy it to the IMS RPC server, see Server Mapping Deployment.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
You can use the IMS-specific PCB pointers in your server as usual. Note the information given
in Software AG IDL to COBOL Mapping.

5 If necessary, use FTP to transfer your server to the target platform where you compile your
server.

6 Using a COBOL compiler supported by the COBOLWrapper, compile your server.

7 Link (bind) the server to an executable program, using the standard linker (binder) of the
target program.

■ Give the resulting server program the same name as the program in the IDL file (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation).

8 Provide the server to the IMS RPC server.

■ Add the server to the IMS RPC server STEPLIB chain.
■ If you are using an SVM file:

■ A concatenation of the program-name and the library-name given in the IDL is used to
locate the SVM file. See program-definition under Software AG IDL Grammar in the IDL
Editor documentation and library-definition under Software AG IDL Grammar in the
IDL Editor documentation.

Example: If a client performs an RPC request that is based on the IDL program name
CALCand the IDL library nameEXAMPLE, the RPC serverwill dynamically try to locate
logically the SVMfile EXAMPLECALCand execute programCALC. If no corresponding
program can be found, the access will fail.

■ If an SVM file is not used (e.g. it is not required or the RPC server is generated with an
earlier version of EntireX without server mapping support:
■ With the standard configuration for the RPC server, the library name (see
library-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL is ignored. You can change this behavior for the RPC server with the
server parameter Library.

47EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Example: If a client performs an RPC request that is based on the IDL program name
CALC, the RPC serverwill dynamically try to execute a programCALC. If no correspond-
ing program can be found, the access will fail.

EntireX COBOL Wrapper48

Using the COBOL Wrapper for the Server Side

4 Generate COBOL Source Files from Software AG IDL Files

■ Select an IDL File and Generate RPC Client or RPC Server ... 50
■ Generation Settings - Properties ... 53
■ Generation Settings - Preferences .. 64

49

This chapter describes how to generate COBOL source files from Software AG IDL files. It covers
the following topics:

Select an IDL File and Generate RPC Client or RPC Server

From the context menu, chooseGenerate COBOL from Software AG IDL >RPCClient andRPC
Server to generate the COBOL source files.

EntireX COBOL Wrapper50

Generate COBOL Source Files from Software AG IDL Files

51EntireX COBOL Wrapper

Generate COBOL Source Files from Software AG IDL Files

Note: In command-line mode, use command -cobol:client or -cobol:server. See Using
the COBOLWrapper in Command-line Mode. Note that existing files will always be over-
written.

Results for RPC client:

■ The folders client and include are created as subfolders to the IDL-SpecificOutput Folderdefined
in the Generation Settings - Properties.

■ The client folder contains the client interface objects, and optionally the generic RPC service
module. See Generic RPC Services Modules.

■ The folder include containes the associated copybooks, the RPC communication area copybook
ERXCOMM and optionally the copybooks COBINIT and COBEXIT.

Notes:

1. The generic RPC servicemodule COBSRVI is only generated if the optionGenerateGeneric RPC
Service Module COBSRVI is set, see Generate Generic RPC Service for Module COBSRVI.

2. For further information on the purpose and usage of associated copybooks, see Using the
Generated Copybooks.

3. For further information on the purpose and usage of the RPC communication area copybook
ERXCOMM , see Using the RPC Communication Area.

4. The copybooks COBINIT and COBEXIT are only generated ifCopybook has been selected asRPC
Communication Area.

Results for RPC server:

■ The folder server is created as a subfolder to the IDL-Specific Output Folder defined in the
Generation Settings - Properties. It contains the RPC server implementation skeletons.

Caution: Take care not to overwrite an existing server implementation with a server
skeleton. We recommend moving your server implementation to a different folder.

■ If an SVM file was generated, you are promted with instructions on how to provide it to the
server:

EntireX COBOL Wrapper52

Generate COBOL Source Files from Software AG IDL Files

■ For RPC servers, you have to deploy it either by using a wizard or a manual approach, de-
pending on the specific RPC server used. See Server Mapping Deployment.

■ For the EntireX Adapter, it is picked up automatically together with the IDL file when the
adapter connection is generated. For further information, see the latest version of the EntireX
Adapter under https://empower.softwareag.com/Products/Documentation/default.asp.

Generation Settings - Properties

■ Introduction
■ Target Operating System
■ Characters Used for String Literals
■ IDL-Specific Output Folder
■ Client Interface Types
■ Customize Automatically Generated Client Names
■ Starting COBOL Level for Data Items in Generated Copybooks
■ RPC Communication Area
■ Generate Generic RPC Service for Module COBSRVI
■ Customize Automatically Generated Server Names
■ Server Interface Types
■ IMS PSB List

53EntireX COBOL Wrapper

Generate COBOL Source Files from Software AG IDL Files

■ Channel Name

Introduction

To set properities for COBOLWrapper generation, use the Propertieswizzard of the IDL file. The
target operating system (Target OS) and the Interface Type are essential. They determine if other
parameters such as RPC Communication Area provided by can be set or have to remain fixed.
The parameter IDL-Specific Output defines the location to store the source file subfolders.
Whether file extensions are generated or not depends on the operating system (Target OS).

In the following, we give a detailed description of the properties that need to be set for each type
of generation:

EntireX COBOL Wrapper54

Generate COBOL Source Files from Software AG IDL Files

■ For client and server generation:
■ Target Operating System
■ Characters Used for String Literals
■ IDL-Specific Output Folder

■ For client generation only:
■ Client Interface Types
■ Customize Automatically Generated Client Names
■ Starting COBOL Level for Data Items in Generated Copybooks
■ RPC Communication Area
■ Generate Generic RPC Service for Module COBSRVI

■ For server generation only:
■ Server Interface Types
■ Customize Automatically Generated Server Names
■ IMS PSB List
■ Channel Name

Target Operating System

Select the target operating system for which COBOL code is to be generated. See Platform Coverage
in the EntireX Release Notes for a full list of supported operating system versions.

DescriptionValue

IBM z/OS operating system.z/OS

IBM z/VSE operating system.z/VSE

Fujitsu Siemens BS2000/OSD operating system.BS2000

IBM IBM i operating system.IBM i

Microsoft Windows operating system.Windows

UNIX operating system.UNIX

55EntireX COBOL Wrapper

Generate COBOL Source Files from Software AG IDL Files

Characters Used for String Literals

With this option you can specify how string literals are specified in the generated COBOL code.
See your COBOL compiler documentation for information on how string literals are enclosed.

DescriptionValue

String literals will be enclosed in double quotes in the generated COBOL code.Quote

String literals will be enclosed in apostrophes (single quotes) in the generated COBOL code.Apostrophe

IDL-Specific Output Folder

This field specifies the folder where the COBOL files will be stored, by default in the same folder
as the IDL file. For a non-default location, enter another folder name or choose Browse....

Client Interface Types

RPC
Communication
Area UsageDescription

Target
Operating
SystemInterface Type

The RPC
communication

Use this option if you want to build a CICS RPC
client application that calls the client interface

z/OS, z/VSECICS with
DFHCOMMAREA
calling convention area is passed asobject(s) with the DFHCOMMAREA interface.

described inFollow the steps underUsing the COBOLWrapper
Using the RPCfor CICS with DFHCOMMAREA Calling

Convention (z/OS and z/VSE). Communication
Area with EXEC
CICS LINK. See
also RPC
Communication
Area.

The RPC
communication

Use this option if you want to build a CICS RPC
client application that calls the client interface

z/OS, z/VSECICS with standard
linkage calling
convention area is passedobject(s) with a standard linkage interface. Follow

with one of thethe steps under Using the COBOLWrapper for
CICS with Call Interfaces (z/OS and z/VSE). options as

described inUse this option if you want to build a batch RPC
client application that calls the client interface

z/OS, z/VSE,
BS2000/OSD,
IBM i

Batch with standard
linkage calling
convention

Using the RPC
Communication
Area with a

object(s) with a standard linkage interface. Follow
the steps under Using the COBOLWrapper for
Batch (z/VSE, IBM i, BS2000/OSD and z/OS). Standard Call

Interface. See
Use this option if you want to build an IMS RPC
client application that calls the client interface

z/OSIMS BMP with
standard linkage
calling convention

also RPC
Communication
Area.object(s) with a standard linkage interface for IMS

BMP mode. Follow the steps under Using the
COBOLWrapper for IMS (z/OS).

EntireX COBOL Wrapper56

Generate COBOL Source Files from Software AG IDL Files

RPC
Communication
Area UsageDescription

Target
Operating
SystemInterface Type

Use this option if you want to build an IMS RPC
client application that calls the client interface

z/OSIMS MPP with
standard linkage
calling convention object(s) with a standard linkage interface for IMS

MPP mode. Follow the steps under Using the
COBOLWrapper for IMS (z/OS).

Use this option if you want to build an IDMS/DC
client application that calls the client interface

z/OSIDMS/DC with
standard linkage
calling convention object(s) with a standard linkage interface for

IDMS/DC. Follow the steps under Using the
COBOLWrapper for IDMS/DC with Call
Interfaces (z/OS).

Use this option if you want to build a Micro Focus
client application that calls the client interface

UNIX,
Windows

Micro Focus with
standard linkage
calling convention object(s) with a standard linkage interface. Follow

the steps under Using the COBOLWrapper for
Micro Focus (UNIX and Windows).

Customize Automatically Generated Client Names

If you open the link Customize automatically generated Client Names on the Properties page
you can adapt the names for the COBOL client interface objects (subprograms). When you call the
page the first time, COBOL names are suggested based on the IDL program (program-definition
under Software AG IDL Grammar in the IDL Editor documentation) or IDL program alias names.
The page varies, depending on whether the target COBOL environment supports long COBOL
names or not:

■ z/OS and z/VSE
■ IBM i
■ UNIX and Windows with Micro Focus
■ BS2000/OSD

z/OS and z/VSE

Max. 8 characters (short names) are supported as COBOL names:

57EntireX COBOL Wrapper

Generate COBOL Source Files from Software AG IDL Files

Note: If your IDL file containsmore than one IDL library, the additional column IDL Library
is displayed.

IBM i

Customization of client names for IBM i is the same as for z/OS and z/VSE. See z/OS and z/VSE.

UNIX and Windows with Micro Focus

Max. 31 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

EntireX COBOL Wrapper58

Generate COBOL Source Files from Software AG IDL Files

Notes:

1. If your IDL file contains more than one IDL library, the additional column IDL Library is dis-
played.

2. With the check box Restrict the length of names to 8 characters you can flip between short
names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

BS2000/OSD

Max. 30 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

Notes:

1. If your IDL file contains more than one IDL library, the additional column IDL Library is dis-
played.

2. With the check box Restrict the length of names to 8 characters you can flip between short
names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

59EntireX COBOL Wrapper

Generate COBOL Source Files from Software AG IDL Files

Starting COBOL Level for Data Items in Generated Copybooks

With this option you can specify the starting COBOL level used in the generated copybooks for
COBOL data items.

See Using the Generated Copybooks for syntax examples.

Specify a valid COBOL level in the range 1-49. The COBOL programming language maximum of
49 subtracted by the specified level must provide enough levels to hold all IDL levels. Note that
IDL types may consume more than one COBOL level, for example:

■ IDL unboundend groups require a COBOL level for every dimension. If they are defined on
IDL level 1, an extra COBOL level is required

■ IDL unbounded arrays require a COBOL level for every dimension plus one extra COBOL level
■ some basic (scalar) IDL data types need extra COBOL levels

Notes:

1. Do not specifiy a level too deep because you may exceed the COBOL programming language
maximum of 49 and the generated copybook cannot be compiled.

2. For compatibility with Client and Server Examples for z/OS CICS, the level must be 3 or above.

3. For compatibility with all other delivered examples, the level must be 2 or above.

RPC Communication Area

The RPC communication area is used to specify parameters that are needed to communicate with
the broker and are not specific to client interface objects. These are for example the broker ID, client
parameters such as userID and password and the server address such as class/servername/service
etc.

DescriptionValue

The RPC communication area is provided as a global area to the RPC client application
and the generated client interface object(s). Formore information, see option External

External
Clause

Clause under Using the RPC Communication Area with a Standard Call Interface.
The COBOL external clause is an extension to COBOL 85 standards and might not be
supported by every COBOL compiler. Check your COBOL compiler documentation.

The RPC communication area is provided via an additional parameter between your
RPC client application and the generated client interface object(s). Formore information,

Linkage
Section

see option Linkage Section under Using the RPC Communication Area with a
Standard Call Interface and Using the RPC Communication Area with EXEC CICS
LINK.

The RPC communication area is provided inside the generated client interface object(s).
It is not visible in the RPC client application. Default values are retrieved from EntireX

Copybook

workbenchpreferences or IDL-specific properties and can be overwritten in the copybook

EntireX COBOL Wrapper60

Generate COBOL Source Files from Software AG IDL Files

DescriptionValue

COBINIT (see folder include). For more information, see option Copybook under Using
the RPC Communication Area with a Standard Call Interface.

Generate Generic RPC Service for Module COBSRVI

The generic RPC servicemoduleCOBSRVI is generated in the folder client. SeeGenericRPCServices
Modules. Use this option to control the generation of this module.

If you are using the COBOLWrapper for the first time:

■ Clear this option for interface type "CICS with DFHCOMMAREA calling convention". The
generic RPC server module will not be generated, which will speed up generation time. The
generic RPC server module is not needed because it is already installed with your z/OS and
z/VSE mainframe installation.

■ Check this option for all other interface types to generate the generic RPC server module.

If you are an experienced user of the COBOLWrapper:

■ Clear this option if you can reuse the generic RPC server module from a previous COBOL
Wrapper project. This will speed up generation time. It is important that Target Operating
System, Client Interface Types and Characters Used for String Literals are the same.

■ Check this option if you need an update of the generic RPC server module because of a newer
COBOLWrapper version (Eclipse update without mainframe installation) to generate the gen-
eric RPC server module.

Customize Automatically Generated Server Names

If you open the link Customize automatically generated Server Names on the properties page
you can, adapt the names for the COBOL server (subprograms). When you call the page the first
time, COBOLnames are suggested based on the IDLprogram (program-definitionunder Software
AG IDLGrammar in the IDL Editordocumentation) or IDL program alias names. For further details
on customizing names for the server side, see the platform-specific section under Customize Auto-
matically Generated Client Names; the information here also applies to server names:

■ z/OS and z/VSE
■ UNIX and Windows with Micro Focus
■ BS2000/OSD

Note: Customization of server names is not supported under IBM i.

If the server names (automatically generated or customized) differ from the IDL program names,
a server-side server mapping (SVM) file is required. It is generated during generation of RPC
server and has to be used in subsequent steps (deployed to an EntireX RPC Server or wrapped

61EntireX COBOL Wrapper

Generate COBOL Source Files from Software AG IDL Files

into an EntireX Adapter). See Select an IDL File and Generate RPC Client or RPC Server under
Generate COBOL Source Files from Software AG IDL Files.

Server Interface Types

Description
Target Operating
SystemInterface Type

Use this option if you want to build a CICS RPC server
application with a DFHCOMMAREA interface. Follow the

z/OS, z/VSECICS with
DFHCOMMAREA calling
convention steps under Using the COBOLWrapper for CICS with

DFHCOMMAREA Calling Convention (z/OS and z/VSE).

Use this option if you want to build a CICS RPC server
application with a channel container interface. To specify a

z/OSCICS with Channel
Container calling convention

channel name, see Channel Name. Follow the steps under
Using theCOBOLWrapper for CICSwithChannel Container
Calling Convention (z/OS).

Use this option if you want to build a CICS RPC server
application with a large buffer interface. Follow the steps

z/OS, z/VSECICS with
DFHCOMMAREA large
buffer interface under Using the COBOLWrapper for CICS with

DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE).

Use this option if you want to build a batch RPC server
application. Follow the steps under Using the COBOL
Wrapper for Batch (z/OS, IBM i, BS2000/OSD and z/VSE).

z/OS, z/VSE,
BS2000/OSD,
IBM i

Batch with standard linkage
calling convention

Use this option if you want to build an IMS RPC server
application for IMS BMPmode (no MPP) with standard call

z/OSIMS BMP with standard
linkage calling convention

interfaces. If your server uses PCB pointers, see IMS PSB
List below. Follow the steps under Using the COBOL
Wrapper for IMS BMP (z/OS).

Use this option if youwant to build aMicro Focus RPC server
application with standard linkage interface(s). Follow the

UNIX,
Windows

Micro Focus with standard
linkage calling convention

steps under Using the COBOLWrapper for Micro Focus
(UNIX and Windows).

IMS PSB List

IMSPSB List applies to the server interface type “IMS BMPwith standard linkage calling conven-
tion” only. If your server uses PCB pointers and requires that they are passed through the linkage
section, an IMS PSB list is required. Your IDLmust comply with the rules under IMS PCB Pointer
IDL Rules. If no PCB pointers are required, omit the IMS PSB list. See Server Interface Types for
more information.

EntireX COBOL Wrapper62

Generate COBOL Source Files from Software AG IDL Files

Channel Name

Channel Name applies to the server interface type "CICSwith Channel Container calling conven-
tion" only.

If a channel name is specified, the server is

■ called with the given channel name
■ generated with COBOL code to check for channel name validity.

If no channel name is specified, the server is

■ called with the "EntireXChannel" channel name
■ generated without COBOL code to check for channel name validity.

Your IDL must comply with the rules described under CICS Channel Container IDL Rules. See
Server Interface Types for more information.

63EntireX COBOL Wrapper

Generate COBOL Source Files from Software AG IDL Files

Generation Settings - Preferences

The workspace defaults for the target operating system, interface types for clients and server etc.
are set in the Preferences page of the COBOLWrapper. For a description, seeGeneration Settings
- Properties.

EntireX COBOL Wrapper64

Generate COBOL Source Files from Software AG IDL Files

5 Using the COBOL Wrapper in Command-line Mode

■ Command-line Options ... 66
■ Example Generating an RPC Client .. 69
■ Example Generating an RPC Server ... 70
■ Further Examples .. 70

65

Commands are available to generate a COBOL RPC client or COBOL RPC server from a specified
IDL file.

See also Server Mapping Deployment in Command-line Mode.

Command-line Options

■ Generate a COBOL RPC Client from IDL File
■ Generate a COBOL RPC Server from IDL File

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax.

Generate a COBOL RPC Client from IDL File

To generate a COBOL RPC client from the specified IDL file, use the following command with
options in table below:

-cobol:client

DescriptionOption

The RPC communication area. Valid values: EXTERNAL, LINKAGE, COPYBOOK. See
RPC Communication Area for more information.

-comm

External ClauseEXTERNAL

Linkage SectionLINKAGE

CopybookCOPYBOOK

For possible combinations with -target and –interface option, see below.

Folder where the COBOL files will be stored.-folder

Display this usage message.-help

Interface type, either DFHCOMMAREA or LINKAGE.

For possible combinations with -target and –comm option, see below.

-interface

Enclose string literals in quotes or apostrophes. Valid values: QUOTE, APOST. See
Characters Used for String Literals for more information.

-literal

Target operating system and environment, one of BATCH_ZOS, BATCH_VSE,
BATCH_BS2000, BATCH_I5OS, CICS_ZOS, CICS_VSE, IMS_MPP, IMS_BMP,

-target

IDMS_ZOS,MICROFOCUS_WINDOWSorMICROFOCUS_UNIX. SeeClient Interface
Types formore information. For possible combinationswith the -interface and -comm
option.

EntireX COBOL Wrapper66

Using the COBOL Wrapper in Command-line Mode

DescriptionOption

Usage for-comm-interface-target

CICS with
DFHCOMMAREA

LINKAGEDFHCOMMAREACICS_ZOS

calling convention for
z/OS.

CICS with standard
linkage calling
convention for z/OS.

LINKAGE
EXTERNAL
COPYBOOK

LINKAGE

CICS with
DFHCOMMAREA

LINKAGEDFHCOMMAREACICS_VSE

calling convention for
z/VSE.

CICS with standard
linkage calling
convention for z/VSE.

LINKAGE
EXTERNAL

LINKAGE

Batch with standard
linkage calling
convention for z/VSE.

LINKAGE
EXTERNAL

LINKAGEBATCH_VSE

Batch with standard
linkage calling

LINKAGE
EXTERNAL

LINKAGEBATCH_BS2000

convention for
BS2000/OSD.

Batch with standard
linkage calling
convention for IBM i.

LINKAGE
EXTERNAL

LINKAGEBATCH_I5OS

Batch with standard
linkage calling
convention for z/OS.

LINKAGE
EXTERNAL

LINKAGEBATCH_ZOS

IMS BMP with
standard linkage

LINKAGE
EXTERNAL
COPYBOOK

LINKAGEIMS_BMP

calling convention for
z/OS.

IMS MPP with
standard linkage

LINKAGE
EXTERNAL
COPYBOOK

LINKAGEIMS_MPP

calling convention for
z/OS.

IDMS_ZOS with
standard linkage

LINKAGE
EXTERNAL
COPYBOOK

LINKAGEIDMS_ZOS

calling convention for
z/OS.

Micro Focus with
standard calling

LINKAGE
EXTERNAL
COPYBOOK

LINKAGEMICROFOCUS_WINDOWS

67EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

DescriptionOption

Usage for-comm-interface-target

convention for
Windows.

Micro Focus with
standard calling

LINKAGE
EXTERNAL
COPYBOOK

LINKAGEMICROFOCUS_UNIX

convention for
various UNIX
operating systems.

Define the begining level for COBOL data items in generated copybooks, see Starting
COBOL Level for Data Items in Generated Copybooks. Valid values: 1-49.

-copybooklevel

Option to generate the generic RPC service module COBSRVI. See Generate Generic
RPC Service for Module COBSRVI. Valid values:
TRUE - Generate generic RPC service module.
FALSE - Do not generate the generic RPC service module.

-rpcservice

Generate a COBOL RPC Server from IDL File

To generate a COBOL RPC server from the specified IDL file, use the following command with
options in table below:

-cobol:server

DescriptionOption

A CICS channel name can be provided for the interface type 'CICS with Channel Container
calling convention'. SeeUsing the COBOLWrapper for CICSwith Channel Container Calling
Convention (z/OS). See also Channel Name.

-channel

Folder where the COBOL files will be stored.-folder

Display this usage message.-help

Interface type, one ofDFHCOMMAREA,DFHLBUFFER,DFHCHANNELor LINKAGE. See
table below for possible combinations.

-interface

Enclose string literals in quotes or apostrophes. See Characters Used for String Literals.-literal

Target operating system and environment. For possible combinations with option
-interface, see below and also Server Interface Types.

-target

Usage for-interface-target

CICS with DFHCOMMAREA calling
convention for z/OS.

DFHCOMMAREACICS_ZOS

CICSwithDFHCOMMAREA large buffer
interface for z/OS.

DFHLBUFFER

CICS with Channel Container calling
convention for z/OS.

DFHCHANNEL

EntireX COBOL Wrapper68

Using the COBOL Wrapper in Command-line Mode

DescriptionOption

Usage for-interface-target

CICS with DFHCOMMAREA calling
convention for z/VSE.

DFHCOMMAREACICS_VSE

CICSwithDFHCOMMAREA large buffer
interface for z/VSE.

DFHLBUFFER

Batch with standard linkage calling
convention for z/VSE.

LINKAGEBATCH_VSE

Batch with standard linkage calling
convention for BS2000/OSD.

LINKAGEBATCH_BS2000

Batch with standard linkage calling
convention for IBM i.

LINKAGEBATCH_I5OS

Batch with standard linkage calling
convention for z/OS.

LINKAGEBATCH_ZOS

IMS BMP with standard linkage calling
convention for z/OS. This target may
require a PSBLIST. See below.

LINKAGEIMS_BMP

Micro Focuswith standard linkage calling
convention for Windows.

LINKAGEMICROFOCUS_WINDOWS

Micro Focuswith standard linkage calling
convention for various UNIX operating
systems.

LINKAGEMICROFOCUS_UNIX

An IMS PSB list containing IMS PCB pointers can be provided for the server interface type
IMS BMP with standard linkage calling convention. See Using the COBOLWrapper for IMS
BMP (z/OS) for scenarios on PCB pointer usage. See also IMS PSB List.

-psblist

Example Generating an RPC Client

<workbench> -cobol:client /Demo/example.idl -target CICS_ZOS

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The name of the IDL file includes the project name. In the example, the project Demo is used. If
the IDL file name describes a file inside the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

69EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

If you do not specify a folder (option -folder), the generated COBOL source files (client interface
objects and the client declarations) will be stored in parallel to the IDL file, in the generated sub-
folders client and include, e.g. Demo/client and Demo/include.

Example Generating an RPC Server

<workbench> -cobol:server /Demo/example.idl -target CICS_ZOS

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The generated COBOL source files (server (skeletons))

■ will be stored in parallel to the IDL file, in the generated subfolder server, e.g. Demo/server.
■ will overwrite existing files from a previous command-line mode generation.

Caution: Take care not to overwrite an existing server implementation with a server
skeleton. We recommend you to move your server implementation to a different folder.

Further Examples

Windows

Example 1

<workbench> -cobol:client C:\Temp\example.idl -folder src -target CICS_ZOS

Uses the IDL file C:\Temp\example.idl and generates the COBOL source files to the subfolder src
of the IDL file. Slashes and backslashes are permitted in the file name. Output to standard output:

Using workspace file:\C:\myWorkspace\.
Run COBOL client wrapper with C:/Temp/example.idl and target CICS_ZOS.
Processing IDL file C:/Temp/example.idl
Store COBOL Source (1/2): C:\Temp\src/include/CALC
Store COBOL Source (2/2): C:\Temp\src/client/CALC
Exit value: 0

EntireX COBOL Wrapper70

Using the COBOL Wrapper in Command-line Mode

Example 2

<workbench> -cobol:client C:\Temp*idl -folder C:\Temp\src -target CICS_ZOS

Generates COBOL source files for all IDL files in C:\Temp.

Example 3

<workbench> -cobol:client /Demo/example.idl -target CICS_ZOS

Uses the IDL file /Demo/example.idl and generates the COBOL source files in parallel to the IDL
file, here to the project /Demo.

Example 4

<workbench> -cobol:client -help

or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

Linux

Example 1

<workbench> -cobol:client /Demo/example.idl -folder src -target CICS_ZOS

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demo/example.idl is used from file system. The generated output will be stored in
/Demo/src, the subfolder of /Demo.

Example 2

<workbench> -cobol:client /Demo/*.idl -folder src -target CICS_ZOS

Generates COBOL client interface objects for all IDL files in projectDemo (or in folder /Demo if the
project does not exist). The generated files are in /Demo/src.

71EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Example 3

<workbench> -cobol:client -help

or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

EntireX COBOL Wrapper72

Using the COBOL Wrapper in Command-line Mode

6 Software AG IDL to COBOL Mapping

■ Mapping IDL Data Types to COBOL Data Types .. 74
■ Mapping Library Name and Alias .. 78
■ Mapping Program Name and Alias .. 78
■ Mapping Parameter Names ... 79
■ Mapping Fixed and Unbounded Arrays .. 80
■ Mapping Groups and Periodic Groups ... 81
■ Mapping Structures .. 81
■ Mapping the Direction Attributes IN, OUT, INOUT .. 82
■ Mapping the ALIGNED Attribute ... 83
■ Calling Servers as Procedures or Functions .. 83

73

This chapter describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the COBOL programming language. Please note also the remarks and hints on the
IDL data types valid for all language bindings found under Software AG IDL File in the IDL Editor
documentation.

Mapping IDL Data Types to COBOL Data Types

In the table below, the following metasymbols and informal terms are used for the IDL.

■ The metasymbols"[" and "]" surround optional lexical entities.
■ The informal term number (or in some cases number1. number2) is a sequence of numeric characters,
for example 123.

Server
Support

Client
SupportNoteCOBOL Data TypeDescriptionSoftware AG IDL

xxPIC X(number)AlphanumericAnumber

not supportedAlphanumeric
variable length

AV

xxPIC X(number)Alphanumeric
variable length

AV[number]

with
maximum
length

xx12PIC X(number)BinaryB number

not supportedBinary
variable length

BV

xx12PIC X(number)Binary
variable length

BV[number]

with
maximum
length

xx1PIC 9(8)DateD

xx4USAGE COMP-1Floating point
(small)

F4

xx4USAGE COMP-2Floating point
(large)

F8

xx10PIC S9(2) COMP-5Integer (small)I1

xx9,13PIC X

xx10PIC S9(4) COMP-5Integer
(medium)

I2

xx11,13PIC S9(4) BINARY

xx10PIC S9(9) COMP-5Integer (large)I4

EntireX COBOL Wrapper74

Software AG IDL to COBOL Mapping

Server
Support

Client
SupportNoteCOBOL Data TypeDescriptionSoftware AG IDL

xx11,13PIC S9(9) BINARY

xx5PIC G(number/2) DISPLAY-1KanjiKnumber

not supportedKanji variable
length

KV

xx5PIC G(number/2 DISPLAY-1)Kanji variable
length with

KV[number]

maximum
length

xx6,7PIC XLogicalL

xx2PIC S9(number1) [V(number2)]Unpacked
decimal

Nnumber1[.number2]

xx2PIC 9(number1) [V(number2)]Unpacked
decimal
unsigned

NU number1 [.number2]

xx2PIC S9(number1) [V(number2)] PACKED-DECIMALPacked
decimal

P number1[.number2]

xx2PIC 9(number1) [V(number2)] PACKED-DECIMALPacked
decimal
unsigned

PU number1 [.number2]

xx3PIC 9(15)TimeT

xx8PIC N(number) NATIONALUnicodeUnumber

not supportedUnicode
variable length

UV

xx8PIC N(number) NATIONALUnicode
variable length

UVnumber

with
maximum
length

See also the hints and restrictions under Software AG IDL File in the IDL Editor documentation
valid for all language bindings.

Notes:

1. The date corresponds to the format PIC 9(8). The value contained has the form YYYYMMDD. This
form corresponds to COBOL DATE functions. This is an IBM extension of COBOL85 standard.

2. Depending on your COBOL compiler and settings, the number of digits may be restricted,
which means that number1+ number2must be less than or equal to 18. Please note the number
of digits after the decimal point. See IDLData Types under Software AG IDL File in the IDL Editor
documentation.

75EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

To enable range values with more than 18 digits, depending on the operating system, the fol-
lowing compiler directive (option) is generated into the client interface objects and server
skeletons if more than 18 digits are defined in the IDL.

Under z/OS and z/VSE:
■ The compiler option ARITH(EXTEND).

Under all other operating systems or compilers:
■ No compiler option. Refer to your COBOL compiler documentation to see whether compiler
directives or options exist.

3. The time corresponds to the format PIC 9(15). The value contained has the form
YYYYMMDDHHIISST. This form corresponds to COBOL DATE/TIME functions.

4. When floating-point data types are used, rounding errors can occur, so that the values of senders
and receivers might differ slightly.

5. The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes). IDL data type K is not supported under BS2000/OSD because Fujitsu Siemens compilers
do not support DBCS.

6. To inspect the Boolean value of a data item of IDL type Logical, you can specify PIC X followed
by condition names (similar code is generated for scalar logical IDL types):

level-number data-name PIC X.
88 data-name-false value X'00'.
88 data-name-true value X'01' thru X'FF'.

Under IBM i,

The SYMBOLIC CHARACTERS clause in the SPECIAL-NAMES paragraph is not supported. The follow-
ingCOBOL statements demonstrate howyou candefine alternatively a character, named HEX-00,
with a value of hexadecimal zero to be used for comparison:

WORKING-STORAGE SECTION.
01 HEX-00-B PIC 9(4) BINARY VALUE 0.
01 HEX-00-H REDEFINES HEX-00-B.

02 FILLER PIC X.
02 HEX-00 PIC X.

7. To set the Boolean value of a Logical data item, specify the following hexadecimal values in a
one-byte data field (e.g. defined as PIC X.):
■ Case False: Move X'00' to data-name.
■ Case True: Move X'01' to data-name.

8. The length is given in Unicode code units following the Unicode standard UTF-16.

Under z/OS and IBM Compiler:

EntireX COBOL Wrapper76

Software AG IDL to COBOL Mapping

■ Unicode requires the IBM Enterprise compiler.
■ Unicode is represented in UTF-16 big-endian format (CCSID 1200).

Under BS2000/OSD:
■ Unicode requires a compiler that supports COBOL data type NATIONAL. See BS2000/OSD
Prerequisites in the EntireX Release Notes.

■ Unicode is represented in UTF-16 big-endian format.

UnderMicro Focus (UNIX and Windows):
■ Set the compiler directive NSYMBOL"NATIONAL".
■ For clients
Unicode can be represented in UTF-16 big-endian format (compiler directive
UNICODE(PORTABLE)) ormachine-dependent endianness UTF-16 big or little endian (compiler
directive UNICODE(NATIVE)).

■ For servers
Unicode can be represented in UTF-16 machine-dependent endianness (big or little endian)
format only. UNICODE(PORTABLE) is not supported.

Under all other operating systems or compilers:
■ Refer to your COBOL compiler documentation.

9. COBOL for operating systems z/OS, z/VSE, BS2000/OSDand IBM idoes not have a corresponding
data type for a compatible I1mapping. Themapping to COBOL PIC X data type should be seen
as a FILLER variable. If including an I1 data type into the interface is required, it is your respons-
ibility as application developer to process the content of this parameter provided (during receive)
and expected (during send) correctly. Negative values are given as the two's complement binary
number.

10. Supported for Micro Focus COBOL for operating systems UNIX and Windows only.

11. The value range for COBOL data type BINARY on z/OS, z/VSE, BS2000/OSD and IBM i depends
on the COBOL compiler settings:
■ With COBOL 85 standard, the mapped COBOL data type BINARY is more restrictive than the
IDL data types I2 and I4. See IDL Data Types under Software AG IDL File in the IDL Editor
documentation. This means that COBOL RPC clients cannot send (and COBOL RPC servers
cannot return) the full value range defined by the IDL types I2 and I4. On the other hand,
COBOLRPC clients and COBOLRPC serversmay receive a value range (from a non-COBOL
RPC partner) outside of the value range of your COBOL data type.

■ Without COBOL 85 standard, the value range of the COBOL data type BINARY depends on
the binary field size, thusmatches the IDLdata type exactly. In this case, there are no restriction
regarding value ranges.

■ To match the value range of IDL type I2 and I4 exactly, depending on the operating system,
the following compiler directive (option) is generated into the client interface objects and
server skeletons:

77EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Under z/OS and z/VSE:
■ the IBM compiler option TRUNC(BIN)

Under all other operating systems or compilers:
■ refer to your COBOL compiler documentation to seewhether compiler directives or options
exist.

12. COBOL does not have a corresponding data type for a compatible B/BVmapping. Thus the
mapping is to COBOL PIC X data type. EntireX RPC transports the (binary) data as it is: no
character translation or conversion will be performed.

13. Supported for operating systems z/OS, z/VSE, BS2000/OSD and IBM i only.

Mapping Library Name and Alias

Client Side

The IDL library name as specified in the IDL file (there is no 8-character limitation) is sent from a
client to the server. Special characters are not replaced. The library alias is neither sent to the
server nor used for other purposes on the COBOL client side.

Server Side

If you are using a so-called server-side server mapping file the target RPC server (COBOL subpro-
gram) is located with the help of this file. See Server Mapping File (SVM) and Locating and Calling
the Target Server in the platform-specific administration or RPC server documentation.

If you are not using an SVM file, the IDL library name as specified in the IDL file is ignored.

Mapping Program Name and Alias

Client Side

The IDL program name as specified in the IDL file (there is no 8-character limitation) is sent from
a client to the server. Special characters are not replaced. The program alias is not sent to the
server, but during wrapping it is used to derive the suggestion for the source file names of the
client interface objects (COBOL subprograms, copybooks) instead of using the IDLprogramnames,
see Customize Automatically Generated Client Names.

EntireX COBOL Wrapper78

Software AG IDL to COBOL Mapping

Server Side

If you are using a so-called server-side servermapping file, the target RPC server (COBOL subpro-
gram) is located with the help of this file. See Server Mapping File (SVM) and Locating and Calling
the Target Server in the platform-specific administration or RPC server documentation. This provides
the following advantages:

■ IDL program names do not have to match the target RPC server (COBOL subprogram) names.
■ Target RPC server names (COBOL subprogram) can be customized during wrapping, see Cus-
tomize Automatically Generated Client Names) or during the extraction process in the COBOL
Mapping Editor. See The Software AG IDL Tree Pane).

■ IDL program names are not limited to 8 characters.

The SVMfile is generated either duringwrapping (seeUsing the NaturalWrapper for the Client Side)
or during extraction (see IDL Extractor for COBOL). It is wrapped into the RPC client components
and the relevant information is sent from a client to the server. Therefore it is important to generate
or extract the target COBOLRPC (COBOL subprogram) server first, before creating any RPC client
component.

If you are not using an SVM file, the target RPC server (COBOL subprogram) must match the IDL
program name. In this case:

■ The length of the IDL program names is limited by your COBOL system (often 8 characters).
■ The set of allowed characters for IDL program names is restricted by your COBOL system and
the underlying file system.

It is your responsibility as application developer to ensure that these requirements are met.

Mapping Parameter Names

The parameter names, as given in the parameter-data-definition under Software AG IDL
Grammar in the IDL Editor documentation of the IDL file, are mapped to fields within the LINKAGE
section of the generated COBOL client interface objects and COBOL server skeletons.

When building fields within the LINKAGE section, the special characters '#', '$', '&', '+', '-', '.', '/', '@'
and '_', allowed within names of parameters, are mapped to the character hyphen '-' valid for
COBOL names. Example:

HU$GO results in HU-GO

Trailing and preceding special characters are also removed. Example:

#HUGO$ results in HUGO

79EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Subsequent special characters are replaced by one hyphen. Example:

HU$#$GO results in HU-GO

If the parameter name starts with a digit, e.g. '1', it is prefixed with the character 'P'. Example:

1HUGO results in P1HUGO

Mapping Fixed and Unbounded Arrays

Client and Server Side

■ Fixed arrays within the IDL file are mapped to fixed COBOL tables. See the array-definition
under Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to de-
scribe fixed arrays within the IDL file and refer to fixed-bound-array-index.

■ For clients on all operating systems, and for servers on the operating systems z/OS, BS2000/OSD,
z/VSE, UNIX andWindows for Micro Focus COBOL, IDL unbounded arrays with a maximum
are mapped to COBOL tables with the DEPENDING ON clause. See Tables with Variable Size -
DEPENDING ON Clause under COBOL to IDLMapping in the IDL Extractor for COBOL document-
ation. Note the following:
■ The from-value in the IDL file does not mean aminimumnumber of occurrences which have
to be always in the COBOL table, like the from-value of the COBOL DEPENDING ON clause.
Both are semantically different. The from-value in the IDL file is used to calculate themaxim-
umsize of the array by idl-upper-boundminus idl-lower-bound. See the syntax of unbounded
arrays in the IDL file, section array-definition under Software AG IDL Grammar in the IDL
Editor documentation.

■ The from-value of the DEPENDING ON clause is always mapped to 1.
■ ODOobjects for justification of the number of occurrences are generated into the client interface
objects and server skeletons.

■ When a 2/3 dimensional unbounded array is received from a partner, all vectors of the second
dimension must have the same length, i.e. the array forms a rectangle. The same applies to
the third dimension (all vectors must have the same length), the array forms a cuboid. If these
rules are violated, unexpected behavior occurs.

■ Sending a 2/3 dimensional unbounded array to a partner violating the rule above is not pos-
sible: COBOL does not allow you to set vector lengths differently.

■ For servers on the operating system IBM i, IDL unbounded arrayswith amaximumaremapped
to fixed COBOL tables. On the reply, the number of occurrences is determined by NULL value
contents. Occurrences with null values are not sent back to the calling RPC client.

■ Unbounded arrays without a maximum are not supported.

EntireX COBOL Wrapper80

Software AG IDL to COBOL Mapping

Mapping Groups and Periodic Groups

Client and Server Side

■ Groups within the IDL file are mapped to COBOL structures using level numbers. See the
group-parameter-definition under Software AG IDLGrammar in the IDL Editordocumentation
for the syntax on how to describe groups within the IDL file.

■ For clients on all operating systems and for servers on the operating systems z/OS, BS2000/OSD,
z/VSE, UNIX and Windows for Micro Focus COBOL, IDL with unbounded groups with a
maximum:
■ the same applies as for unbounded arrays, seeMapping Fixed and Unbounded Arrays
■ if unbounded groups are nested, and depending on your target COBOL compiler,

■ they may not be supported (e.g. BS2000/OSD).
■ there is a restriction on the number of indices. Most COBOL compiler support 7 indices as
a maximum.

The EntireX Workbench generates the COBOL interface objects and server (skeletons)
without considering restrictions of the target COBOL compiler. See your COBOL compiler
documentation for possibilities to work round the restrictions, for example using compiler
switches or compiler options.

■ For server on the operating system IBM i, SoftwareAG IDLunbounded groupswith amaximum
are mapped to fixed COBOL tables. On the reply the number of occurrences is determined by
NULL value contents. Occurrences with null values are not sent back to the calling RPC client.

■ Unbounded groups without a maximum are not supported.

Mapping Structures

Client and Server Side

Structures within the IDL file are dissolved at the location where they are used. They are mapped
to COBOL structures like groups. See the structure-definition under Software AG IDLGrammar
in the IDL Editor documentation for the syntax on how to describe structures within the IDL file.

81EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Mapping the Direction Attributes IN, OUT, INOUT

The IDL syntax allows you to define parameters as IN parameters, OUT parameters, or IN OUT
parameters (which is the default if nothing is specified). See the attribute-list under Software
AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe attributes
within the IDL file and refer to direction-attribute.

Client Side

This direction specification is reflected in the generated COBOL interface object as follows:

■ Direction attributes do not change the COBOL call interface because parameters are always
treated as “called by reference”.

■ Usage of direction attributes may be useful to reduce data traffic between RPC client and RPC
server.

■ Parameters with the IN attribute are sent from the RPC client to the RPC server.
■ Parameters with the OUT attribute are sent from the RPC server to the RPC client.
■ Parameters with the IN and OUT attribute are sent from the RPC client to the RPC server and
then back to the RPC client.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

See the attribute-list under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

Server Side

If you are using an SVM file, the RPC server considers the direction attribute found in the SVM
file.

If your RPC server is generated with a previous version of EntireX without an SVM file, the RPC
server considers the direction attribute sent from any RPC client, for example Java, DCOM, C,
COBOL, .NET, XML and PL/I.

EntireX COBOL Wrapper82

Software AG IDL to COBOL Mapping

Mapping the ALIGNED Attribute

See the attribute-list under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

Client and Server Side

This attribute corresponds to the SYNCHRONIZED clause. If it is specified, data will be mapped ac-
cording to the following rules:

NotesAlignmentCOBOL Data TypeSoftware AG IDL

1+4USAGE COMP-1 SYNCF4

1+8USAGE COMP-2 SYNCF8

1+2PIC S9(4) BINARY SYNCI2

1+4PIC S9(8) BINARY SYNCI4

Notes:

1. On IBM i, specify the compiler option *SYNC in the commands CRTCBLMOD or CRTBNDCBL for the
usage of the SYNCHRONIZED clause.

Calling Servers as Procedures or Functions

Client and Server Side

The COBOL 85 standard does not support a concept of functions like the programming languages
C or PL/I. Any SoftwareAG IDLprogramdefinition ismapped to a COBOLprogram. SeeMapping
Program Name and Alias.

83EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

84

7 Writing Standard Call Interface Clients

■ Step 1: Declare and Initialize the RPC Communication Area .. 86
■ Step 2: Declare the Data Structures for RPC Stubs .. 86
■ Step 3: Required Settings in the RPC Communication Area ... 87
■ Step 4: Optional Settings in the RPC Communication Area .. 87
■ Step 5: Issue the RPC Request .. 88
■ Step 6: Examine the Error Code ... 88

85

This chapter describes in six steps how to write your first COBOL RPC client program.

The following steps describe how to write a COBOL client program for the client scenarios:Micro
Focus | Batch | CICS | IMS . We recommend reading them first before writing your first RPC
client program and following them if appropriate.

The example given here does not use function calls as described under Using Broker Logon and
Logoff. It demonstrates an implicit broker logon (because no broker logon/logoff calls are imple-
mented), where it is required to switch on the AUTOLOGON feature in the broker attribute file.

Step 1: Declare and Initialize the RPC Communication Area

The RPC communication area (see Using the RPC Communication Area) is your interface (API)
to theGeneric RPC Services Modules. Declare and initialize the communication area in your RPC
client program as follows:

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA EXTERNAL.

COPY ERXCOMM.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" to COMM-VERSION.

The example given here uses option External Clause to access the RPC communication area. See
Using the RPCCommunication Areawith a Standard Call Interface. For further options to access
the RPC communication area, see RPC Communication Area.

Step 2: Declare the Data Structures for RPC Stubs

For every program definition of the IDL file, the COBOLWrapper generates a copybook with the
description of the customer's interface data as a COBOL structure. For ease of use you can include
these structures into your RPC client program. See Using the Generated Copybooks.

However, as an alternative, you can use your own customer data structures. In this case the COBOL
data types and structures must match the interfaces of the generated client interface objects, oth-
erwise unpredictable results may occur.

EntireX COBOL Wrapper86

Writing Standard Call Interface Clients

* Declare customer data to generated RPC Stubs
01 CALC-AREA.

10 PARAMETER.
15 OPERATOR PIC X.
15 OPERAND1 PIC S9(9) BINARY.
15 OPERAND2 PIC S9(9) BINARY.
15 RESULT PIC S9(9) BINARY.

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOLWrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into the client interface objects.

* assign the broker to talk with ...
MOVE "localhost:1971" to COMM-ETB-BROKER-ID.
* assign the server to talk with ...
MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.
* assign the user id to the broker ...
MOVE "ERXUSER" to COMM-USERID.
MOVE "PASSWORD" to COMM-PASSWORD.

Step 4: Optional Settings in the RPC Communication Area

Here you specify optional settings to the RPC communication area used by the COBOLWrapper,
for example:

MOVE "EXAMPLE" to COMM-LIBRARY.
MOVE "00000300" to COMM-ETB-WAIT.

For implicit broker logon, if required in your environment, the client password can be given here.
It is provided then through the client interface objects, see also Using Broker Logon and Logoff.

87EntireX COBOL Wrapper

Writing Standard Call Interface Clients

Step 5: Issue the RPC Request

Issue the RPC request with a standard COBOL program call:

CALL "CALC" USING OPERATOR OPERAND1 OPERAND2 RESULT.

Step 6: Examine the Error Code

When the RPC reply is received, check that the call was successful:

IF COMM-RETURN-CODE IS = ZERO
Perform success-handling

ELSE
Perform error-handling

END-IF.

The field COMM-RETURN-CODE in the RPC communication area contains the error provided by the
COBOLWrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper88

Writing Standard Call Interface Clients

8 Using the RPC Communication Area

■ Purpose of the RPC Communication Area .. 90
■ Using the RPC Communication Area with a Standard Call Interface ... 91
■ Using the RPC Communication Area with EXEC CICS LINK .. 93

89

The RPC communication area is not relevant for servers.

Purpose of the RPC Communication Area

TheRPC communication area ismainly used to specify parameters that are needed to communicate
with the broker and are not specific to client interface objects. In this way it defines a context for
PRC clients. Its purpose, among others, is

■ to assign the COMM-ETB-BROKER-ID and server name, see COMM-ETB-SERVER-CLASS, COMM-ETB-
SERVER-NAME and COMM-ETB-SERVICE-NAME

■ to assign the broker's COMM-ETB-USER-ID and COMM-ETB-TOKEN

■ for use with conversational RPC (see Using Conversational RPC) to hold, for example, the
conversation ID, see COMM-ETB-CONV-ID

■ for use with EntireX Security to hold the broker's COMM-ETB-PASSWORD, COMM-ETB-SECURITY-
TOKEN and others

■ to keep the results of the last RPC request, for example the error code

The RPC communication area is also the API to the generic RPC services, for example:

■ Log on to broker and log off from broker. See Using Broker Logon and Logoff.
■ Open conversation, close conversation and close conversation with commit. SeeUsing Conver-
sational RPC.

■ When using reliable RPC function calls, do reliable RPC commit, do reliable RPC rollback, get
reliable status. See Reliable RPC for COBOLWrapper.

■ Create a Natural Security token. See Using the COBOLWrapper with Natural Security and
Impersonation.

FromaCOBOLpoint of view, the RPC communication area is the copybook ERXCOMM. It is generated
in the folder include for RPC client generation, see Generate COBOL Source Files from Software
AG IDL Files.

The layout of the RPC communication area is described in section The RPC Communication Area
(Reference).

EntireX COBOL Wrapper90

Using the RPC Communication Area

Using the RPC Communication Area with a Standard Call Interface

The COBOLWrapper allows the RPC communication to be used in the following ways:

■ Option External Clause
■ Option Linkage Section
■ Option Copybook

Option External Clause

With the RPC communication area option External Clause under RPC Communication Area,
the RPC communication area is passed using the COBOL External clause to the client interface
objects. Note that this is an extension to COBOL 85 standards, which might not be supported by
every compiler.

The RPC communication area is allocated (declared) in the COBOL client application. The client
interface objects are statically linked (it is not possible to call them dynamically) to the COBOL
client application.

This kind of RPC communication area usage applies to the scenariosMicro Focus | Batch | CICS
| IMS .

Examples

For examples on how the option External Clause is used, see Step 1: Declare and Initialize the
RPC Communication Area and Step 5: Issue the RPC Request inWriting Standard Call Interface
Clients.

Option Linkage Section

With the RPC communication area option Linkage Section under RPC Communication Area,
the client interface objects are generated to pass the RPC communication area with an additional
parameter to the client interface objects.

The RPC communication area is allocated (declared) in the COBOL client application in the
working storage section. The client interface objects can be statically linked or called dynamically.
For IBM compilers, refer to documentation on the DYNAM compiler option; for other compilers,
to your compiler documentation.

This kind of RPC communication area usage applies to the scenariosMicro Focus |Batch |CICS |
IMS.

91EntireX COBOL Wrapper

Using the RPC Communication Area

Example

The example given below will pass the RPC communication area via the COBOL Linkage section
to the client interface objects. It differs in two steps from the example inWriting Standard Call
Interface Clients (which uses option External Clause):

Step 1 has no EXTERNAL attribute.

01 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" TO COMM-VERSION.

Step 5will include the RPC communication area as an extra parameter.

CALL "CALC" USING OPERATOR
OPERAND1
OPERAND2
FUNCTION-RESULT
ERX-COMMUNICATION-AREA

ON EXCEPTION
* Perform error-handling

NOT ON EXCEPTION
IF RETURN-CODE = ZERO

* Perform success-handling
ELSE

* Perform error-handling
END-IF

END-CALL.

With this example the client interface objects are generated, for example for target platform "z/OS",
client interface type "Batch with standard linkage calling convention" and RPC communication
area "Linkage Section". See Generate COBOL Source Files from Software AG IDL Files.

Option Copybook

With the RPC communication area option Copybook under RPC Communication Area, the client
interface objects are generated with an RPC communication area in their working storage section.

The RPC communication area is not visible in the client application – it is local to the client interface
objects. The client interface objects can be statically linked or called dynamically. For IBM compilers,
refer to documentation on the DYNAM compiler option and for other compilers to your compiler
documentation.

This kind of RPC communication area usage is available in z/OS operating system andMicro Focus
environments. Refer to the scenariosMicro Focus | Batch | CICS | IMS .

EntireX COBOL Wrapper92

Using the RPC Communication Area

Example

The example given belowdefines the RPC communication area inside of the client interface objects.
Two steps are different from the example inWriting Standard Call Interface Clients (which uses
option External Clause):

Step 1: Declare and Initialize the RPC Communication Area: Declare and initialize the RPC com-
munication area

This step is obsolete in the client application and is omitted there. Default values for the RPC
communication area are retrieved fromEntireXworkbench preferences or IDL-specific properties.
If required, those default values can be overwritten in the COBINIT Copybook.

Step 6: Examine the Error Code: Examine the error code

Because the RPC communication area is not used for data exchange between the client application
and the client interface objects, the COMM-RETURN-CODEfield in the RPC communication area cannot
be checked directly upon return from RPC calls. Therefore, the COBOL mechanism RETURN-CODE
special register is used to provide errors from client interface objects to the client application. For
IBM compilers, errors can be adapted in the copybook COBEXIT (see folder include).

After the RPC reply has been received, you can check if the call was successful using the
RETURN-CODE special register:

IF RETURN-CODE IS = ZERO
* Perform success-handling
ELSE
* Perform error-handling
END-IF.

Using the RPC Communication Area with EXEC CICS LINK

The RPC communication area is allocated (declared) in the COBOL client application and passed
via a parameter in the DFHCOMMAREA to the client interface objects.

This kind of RPC communication area usage aplies to the scenario Using the COBOLWrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

93EntireX COBOL Wrapper

Using the RPC Communication Area

Example

Two steps are different from the example inWriting a COBOL RPC Client Application SeeWriting
Standard Call Interface Clients.

Step 1 contains the application interface as well as the RPC communication area within one area:

01 CALC-AREA.
05 OPERATOR PIC X.
05 OPERAND1 PIC S9(8) COMP.
05 OPERAND2 PIC S9(8) COMP.
05 RESULT PIC S9(8) COMP.
05 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" TO COMM-VERSION.

Step 5 uses EXEC CICS LINK interface:

MOVE LENGTH OF CALC-AREA TO COMLEN.
EXEC CICS LINK PROGRAM("CALC") COMMAREA(CALC-AREA)

LENGTH(COMLEN) RESP(WORKRESP)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling

END-IF
ELSE

* Perform error-handling
END-IF.

With this example, the client interface objects are generated e.g. for target platform "z/OS", client
interface type "CICS with DFHCOMMAREACalling Convention", and RPC communication area
"Linkage Section". See Generate COBOL Source Files from Software AG IDL Files.

EntireX COBOL Wrapper94

Using the RPC Communication Area

9 Using the Generated Copybooks

■ IDL Interface Copybooks .. 96
■ COBINIT Copybook ... 96
■ COBEXIT Copybook .. 97

95

IDL Interface Copybooks

The IDL interface copybooks (see folder include) are theAPI of the COBOL client application using
client interface objects. We recommend you generate the IDL interface copybooks with a starting
level greater than one. See Starting COBOL Level for Data Items in Generated Copybooks. This
allows you to

■ embed (include) the generated copybook into other existing COBOL structures:

1 MYGROUP.
10 . . .
10 . . .
10 MYIDL.
COPY MYIDL.

■ specify usage clauses such as EXTERNAL, GLOBAL etc. to the IDL:

1 MYIDL1 GLOBAL.
COPY MYIDL1.

■ use multiple generated copybooks with duplicate parameter names on IDL level 1 in the same
COBOL program:

1 MYIDL1.
COPY MYIDL1.

1 MYIDL2.
COPY MYIDL2.

If the IDL contains IDL unbounded arrays, the copybook starting level is ignored; the level used
is always "1".

COBINIT Copybook

The COBINIT copybook (see folder include) is generated if option Copybook forRPCCommunication
Area is selected. Its purpose is to set communication parameters such as COMM-ETB-BROKER-ID,
COMM-ETB-SERVER-NAME etc. into the RPC Communication Area. See The RPC Communication
Area (Reference). If the counterpart of your RPC client application is aNatural RPC server running
with Natural Security, or an RPC server running with impersonation (see Impersonation in the re-
spective RPC Server documentation), the security token can be generated. See Using the COBOL
Wrapper with Natural Security and Impersonation.

EntireX COBOL Wrapper96

Using the Generated Copybooks

COBEXIT Copybook

The COBEXIT copybook (see folder include) is generated if option Copybook forRPCCommunication
Area is selected. Its purpose is to check and map error codes. COBOL statements that have been
commented out are generated into the copybook as an example.

97EntireX COBOL Wrapper

Using the Generated Copybooks

98

10 Using Broker Logon and Logoff

This chapter explains how clients built with the COBOLWrapper use explicit broker logon and
logoff functions.

It is assumed that you are familiar with the concepts of explicit and implicit broker logon. To use
explicit broker logon and logoff you need the following components:

■ the Generic RPC Services Modules are provided to log on to and log off from the broker
■ the The RPC Communication Area (Reference)

To log on to the Broker

1 Log on to the brokerwith the function Logon LO provided by the generic RPC servicesmodule.

In the scenariosMicro Focus, Batch, CICS and IMSwith the Call Interface:

...
* Broker Logon
MOVE "2000" TO COMM-VERSION.
MOVE "LO" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.
* Call the broker
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
...
NOT ON EXCEPTION
...
END-CALL.
* begin of application logic
...

Or:

99

In the scenarioUsing the COBOLWrapper for CICSwithDFHCOMMAREACalling Conven-
tion (z/OS and z/VSE)with the EXEC CICS LINK Interface:

...
* Broker Logon
MOVE "2000" TO COMM-VERSION.
MOVE "LO" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.
* Call the broker
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling

END-IF
ELSE
* Perform error-handling
END-IF.
* begin of application logic
...

2 Issue your RPC requests as without using explicit logon and logoff.

Notes:

1. The logon call is the first call to the broker, before any RPC call.

2. The COMM-ETB-USER-ID field (and the COMM-ETB-TOKEN field, where provided) must not change
from logon, through all calls of client interface objects, until final logoff.

3. If EntireX Security is to be used, see Using the COBOLWrapper with EntireX Security.

To log off from the Broker

■ Log off from the broker with the function Logoff LF provided by the generic RPC services
module with the Call Interface

EntireX COBOL Wrapper100

Using Broker Logon and Logoff

...
* end of application logic including calls to generated interface objects
* Broker Logoff
MOVE "2000" TO COMM-VERSION.
MOVE "LF" TO COMM-FUNCTION.
* Call the broker
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
. . .
NOT ON EXCEPTION
. . .
END-CALL.
...

Or:

with the EXEC CICS LINK Interface (see Logon above).

The logoff call should be issued as soon as RPC communication is no longer needed.

101EntireX COBOL Wrapper

Using Broker Logon and Logoff

102

11 Using Conversational RPC

This chapter explains how clients built with the COBOLWrapper use conversational RPC.

RPC conversations are supported when communicating with an RPC server. It is further assumed
that you are familiar with the concepts of conversational RPC and non-conversational RPC. To
use conversational RPC, you need the following components:

■ the Generic RPC Services Modules are provided to open, close or abort conversations;
■ the The RPC Communication Area (Reference)

To use conversational RPC

1 Open a conversation with the function Open Conversation OC provided by the generic RPC
services module.

In the scenariosMicro Focus, Batch CICS and IMSwith the Call Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "OC" TO COMM-FUNCTION.
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
. . .
NOT ON EXCEPTION
. . .
END-CALL.

Or:

In the scenarioUsing the COBOLWrapper for CICSwithDFHCOMMAREACalling Conven-
tion (z/OS and z/VSE)with the EXEC CICS LINK Interface:

103

MOVE "2000" TO COMM-VERSION.
MOVE "OC" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling

END-IF
ELSE
* Perform error-handling
END-IF.

2 Issue yourRPC requests aswithin non-conversationalmodeusing the generated client interface
objects. Different client interface objects can participate in the same RPC conversation.

To abort conversational RPC communication

■ Abort an unsuccessful RPC conversation with the function Close Conversation CB provided
by the generic RPC services module

In the scenariosMicro Focus, Batch, CICS and IMSwith the Call Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "CB" TO COMM-FUNCTION.
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
. . .
NOT ON EXCEPTION
. . .
END-CALL.

Or:

In the scenarioUsing the COBOLWrapper for CICSwithDFHCOMMAREACalling Conven-
tion (z/OS and z/VSE)with the EXEC CICS LINK Interface:

EntireX COBOL Wrapper104

Using Conversational RPC

MOVE "2000" TO COMM-VERSION.
MOVE "CB" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling

END-IF
ELSE
* Perform error-handling
END-IF.

To close and commit a conversational RPC communication

■ Close the RPC conversation successfully with the function Close Conversation and Commit
CE provided by the generic RPC services module

In the scenariosMicro Focus, Batch, CICS and IMSwith the Call Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "CE" TO COMM-FUNCTION.
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
. . .
NOT ON EXCEPTION
. . .
END-CALL.

Or:

In the scenarioUsing the COBOLWrapper for CICSwithDFHCOMMAREACalling Conven-
tion (z/OS and z/VSE)with the EXEC CICS LINK Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "CE" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN

105EntireX COBOL Wrapper

Using Conversational RPC

* Perform success-handling
ELSE

* Perform error-handling
END-IF

ELSE
* Perform error-handling
END-IF.

EntireX COBOL Wrapper106

Using Conversational RPC

12 Using the COBOL Wrapper with Natural Security and

Impersonation

This chapter explains how clients built with the COBOLWrapper can communicate with Natural
RPC Servers running under Natural Security and RPC servers running with impersonation. See
Impersonation in the respective RPC Server documentation.

This chapter assumes that you are familiarwith the concepts ofNatural Security and impersonation.
To communicate with such a server you will need the following components:

■ the Generic RPC Services Modules, which are provided to create and get a security token,
■ the RPC Communication Area

To authenticate against Natural Security or impersonated RPC server

1 Specify a user ID, password and optional Natural library in the RPC communication area:

* Client information : bytes 101-300
10 COMM-USERID.

15 COMM-USERID1 PIC X(8).
15 COMM-USERID2 PIC X(8).

10 COMM-PASSWORD PIC X(8).
10 COMM-LIBRARY PIC X(8).
10 COMM-SECURITY-TOKEN-LENGTH PIC 9(4) BINARY.
10 COMM-SECURITY-TOKEN PIC X(100).
10 FILLER PIC X(66).

2 Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

In the scenariosMicro Focus, Batch, CICS and IMSwith the Call Interface:

■ For RPC Communication Area setting Linkage and External:

107

MOVE "2000" TO COMM-VERSION.
MOVE "CT" TO COMM-FUNCTION.

* Set user ID and password in RPC Communication Area
MOVE "NAT-USER" TO COMM-USERID.
MOVE "NAT-PWD" TO COMM-PASSWORD.

* Additional for Natural Security set library in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
. . .
NOT ON EXCEPTION
. . .
END-CALL.

■ For RPC Communication Area setting Copybook. Add the following COBOL Statements to
the COBINIT copybook:

MOVE "CT" TO COMM-FUNCTION.
* Set user ID and password in RPC Communication Area
MOVE "NAT-USER" TO COMM-USERID.
MOVE "NAT-PWD" TO COMM-PASSWORD.
* Additional for Natural Security set library in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA

See also Using the Generated Copybooks.

Or:

In the scenarioUsing the COBOLWrapper for CICSwithDFHCOMMAREACalling Conven-
tion (z/OS and z/VSE)with the EXEC CICS LINK Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "CT" TO COMM-FUNCTION.
* Set user ID and password in RPC Communication Area
MOVE "NAT-USER" TO COMM-USERID.
MOVE "NAT-PWD" TO COMM-PASSWORD.
* Additional for Natural Security set library in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling

EntireX COBOL Wrapper108

Using the COBOL Wrapper with Natural Security and Impersonation

END-IF
ELSE
* Perform error-handling
END-IF.

After successful return from the generic RPC services module, the security fields in the RPC
communication area are properly set, so they can be used in subsequent RPC requests to a secure
RPC server, such as:

■ Natural RPC server running with Natural Security
■ RPC server running with impersonation. See Impersonation in the respective RPC Server docu-
mentation.

109EntireX COBOL Wrapper

Using the COBOL Wrapper with Natural Security and Impersonation

110

13 Returning Application Errors from a Server to a Client

■ Returning Application Errors from a Server under z/OS Batch to a Client .. 112
■ Returning Application Errors from a Server under z/OS CICS to a Client ... 113
■ Returning Application Errors from a Server under z/OS IMS to a Client ... 115

111

Application error codes enable the RPC server to return customer-invented errors back to the RPC
client in a standardized way without defining an error code field in the IDL.

Returning Application Errors from a Server under z/OS Batch to a Client

The RETURN-CODE special register (an IBM extension to the COBOL programming language) is
used by your RPC server to report an error.

Upon return, the value contained in the RETURN-CODE special register is detected by the Batch RPC
server and sent back to the RPC client instead of the application's data.

For IBM compilers the RETURN-CODE special register has the implicit definition:

RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

Special registers are reserved words that name storage areas generated by the compiler. Their
primary use is to store information produced through specific COBOL features. Each such storage
area has a fixed name, andmust not be definedwithin the program. See your compiler document-
ation for more information.

The following rules apply to application error codes:

■ The value range for application errors is 1-9999. No other values are allowed.
■ On the RPC client side, the error is prefixed with the error class 1002 “Application User Error”
and presented as error 1002nnnn.

■ No application data is sent back to the RPC client in case of an error.
■ It is not possible to return an error text to the RPC client.

Example

. . .
IF error occurred THEN

MOVE <error-number> TO RETURN-CODE
GO TO MAIN-EXIT

END-IF.
. . .

MAIN-EXIT.
EXIT PROGRAM.

END PROGRAM RETCODE.

Note: To enable this feature, configure the Batch RPC server with RETURN_CODE=YES.

EntireX COBOL Wrapper112

Returning Application Errors from a Server to a Client

Returning Application Errors from a Server under z/OS CICS to a Client

Using EXEC CICS ABEND ABCODE

This approach applies to the following CICS scenarios:

■ Using the COBOLWrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and
z/VSE)

■ Using the COBOLWrapper for CICS with Channel Container Calling Convention (z/OS)
■ Using the COBOLWrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and
z/VSE)

The CICS feature EXEC CICS ABEND ABCODE(myabend) may be used to indicate application error
codes. According to IBM CICS standards, ABEND codes starting with the letter A are reserved for
CICS itself and should not be used in your RPC server.

TheCICSRPCServer follows these IBMCICS standards and sends back the RPCprotocolmessage

1. 10010018 Abnormal termination during program execution. This is returnedwhen an ABEND
code starting with the letter "A" is received from CICS, which is a CICS ABEND.

2. 10010045 CICS ABEND myabend was issued. This is returnedwhen an ABEND code starting with
a letter other than "A" is received from CICS, which is an application error situation forced by
your RPC server.

Using RETURN-CODE Special Register

This approach applies to the following CICS scenarios:

■ Using the COBOLWrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and
z/VSE)

■ Using the COBOLWrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and
z/VSE)

CICS applications that use theDFHCOMMAREAas communication area (EXEC CICS LINK applic-
ations) may return error codes if the LINKed application has a Cmain entry and if this application
is running in the same CICS (non-DPL program) as the CICS RPC Server. Under these circum-
stances, IBM's Language Environment for C provides the application return code to EIBRESP2,
where it can be detected by the CICS RPC Server.

The following provided modules need to be linked to your application.

■ ERXRCSRV, a C main module that calls the intermediate COBOL subroutine RCCALL and catches
the error from your RPC server and provides it to the CICS RPC Server. Thismodule is available

113EntireX COBOL Wrapper

Returning Application Errors from a Server to a Client

as source in the source data set EXP951.SRCE as well as precompiled in the load data set
EXP951.LD00, so a C compiler is not needed.

■ RCCALL, a COBOL subroutine calling your RPC server. This module is available as source in the
CICS example server data set EXP951.DVCO.

A step-by-step description is given below, but for ease of use we recommend using the job RCIGY.
See below.

To set up your server to be able to return application errors manually

1 Change the CALL statement of the RCCALL program below which your RPC server is called
instead of “MyCobol” below

IDENTIFICATION DIVISION.
PROGRAM-ID. RCCALL.

**
*
* CICS RPC Server
*
* Returning Application Errors from RPC Server to RPC Client
*
* This program calls your target COBOL Server.
*
* For further information and explanation refer to
* - "Writing Applications with the COBOL Wrapper"
* in the delivered documentation.
*
* $Revision: n.n $
*
*
* Copyright (C) 1997 - 20nn Software AG, Darmstadt, Germany
* and/or Software AG USA, Inc., Reston, VA, United States of
* America, and/or their licensors.
*
**

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.

01 DFHCOMMAREA.
10 DFHCOMM-DUMMY PIC X.

PROCEDURE DIVISION USING DFHCOMMAREA.

EntireX COBOL Wrapper114

Returning Application Errors from a Server to a Client

MAIN SECTION.
CALL "my-cobol" USING DFHEIBLK DFHCOMMAREA.

MAIN-EXIT.
EXIT PROGRAM.

END PROGRAM RCCALL.

2 In your RPC server, do not use EXEC CICS RETURN, because this prevents the return of the
application error code to the CICSRPC server. If you are using aCOBOLRPC server generated
with the COBOLWrapper, comment out or remove this line.

3 Compile the RCCALL program with a COBOL compiler supported by the COBOLWrapper.

4 Link the compiled RCCALL program, the delivered ERXRCSRVmodule and your RPC server
together to a CICS program to be called by the CICS RPC Server. See also Using the COBOL
Wrapper for the Server Side for supported CICS scenarios.

To set up your server to be able to return application errors using job RCIGY

■ Execute RCIGY as provided in the CICS example source data set EXP951.DVCO.

This enhanced job will

1. modify RCCALL as needed (step 1 from the manual approach, see above),

2. add the modified RCCALL code to your COBOL input source (step 2 from the manual ap-
proach, see above),

3. linkedits with ERXRCSRV (step 3 from the manual approach, see above).

Returning Application Errors from a Server under z/OS IMS to a Client

Follow the rules under Returning Application Errors from a Server under z/OS Batch to a Client
and Using the COBOLWrapper for IMS BMP (z/OS).

Note: To enable this feature, configure the IMS RPC server with RETURN_CODE=YES.

115EntireX COBOL Wrapper

Returning Application Errors from a Server to a Client

116

14 Reliable RPC for COBOL Wrapper

■ Introduction to Reliable RPC .. 118
■ Writing a Client .. 119
■ Writing a Server .. 124
■ Broker Configuration .. 125

117

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becomingmore andmore important. Reliablemessaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

■ Reliable RPC allows asynchronous calls (“fire and forget”)
■ Reliable RPC is supported by most EntireX wrappers
■ Reliable RPC messages are stored in the Broker's persistent store until a server is available
■ Reliable RPC clients are able to request the status of the messages they have sent

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX COBOLWrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

■ AUTO_COMMIT

■ CLIENT_COMMIT

EntireX COBOL Wrapper118

Reliable RPC for COBOL Wrapper

While AUTO_COMMIT commits eachRPCmessage implicitly after sending it, a series of RPCmessages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

The following steps describe how towrite a COBOL reliable RPC client programwith the scenario
Using the COBOLWrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and
z/VSE) and Linkage access to RPC communication.

Reliable RPC requires an explicit broker logon. See Using Broker Logon and Logoff.

Step 1: Declare the Data Structures for RPC Client Interface Objects

For every program definition in the Software AG IDL file, the templates will generate a copybook
file that describes the customer data of the interface as a COBOL structure. For ease of use, the
copybook can be embedded into the RPC client program.

However, if more appropriate, customer data structures can be used. In this case the COBOL data
types and structures must match the interfaces of the generated client interface objects, otherwise
unpredictable results will occur.

* Declare the customer data of the generated RPC interface
01 SENDMAIL.

02 SM-COMA.
03 SM-TOADDRESS PIC X(60).
03 SM-SUBJECT PIC X(20).
03 SM-TEXT PIC X(100).

Step 2: Declare and Initialize the RPC Communication Area

The RPC communication area must be declared and initialized in your RPC client program as
follows:

* Declare RPC communication area
02 ERX-COMMUNICATION-AREA.

COPY ERXCOMM.
.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" to COMM-VERSION.

119EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOLWrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into your client interface objects:

* assign the broker to talk with
MOVE "localhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with
MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.

* assign the user ID for Broker logon
MOVE "ERXUSER" to COMM-USERID.
MOVE "PASSWORD" to COMM-PASSWORD.

Step 4a: Perform a Broker Logon

MOVE "LO" TO COMM-FUNCTION.
EXEC CICS LINK

PROGRAM ("COBSRVI")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)

END-EXEC.

Step 4b: Examine the Error Code

Check whether the logon call was successful or not.

Step 5: Enable Reliable RPC with CLIENT_COMMIT

Before reliable RPC can be used, the reliable statemust be set to either ERX_RELIABLE_CLIENT_COMMIT
or ERX_RELIABLE_AUTO_COMMIT.

■ "C" - CLIENT_COMMIT
■ "A" - AUTO_COMMIT

EntireX COBOL Wrapper120

Reliable RPC for COBOL Wrapper

* Set the reliable RPC mode
MOVE "C" TO COMM-RELIABLE-STATE.

Step 6a: Send the RPC Message

The RPC message is sent using the EXEC CICS LINK interface.

* Send the RPC message
MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("SENDMAIL")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (SENDMAIL)
LENGTH (LENGTH OF SENDMAIL)

END-EXEC.

Step 6b: Examine the Error Code

When the RPC message is returned, it needs to be checked whether it was successful or not:

IF COMM-RETURN-CODE IS = ZERO
Perform success-handling

ELSE
Perform error-handling

END-IF.

The field COMM-RETURN-CODE in the RPC communication area contains the error provided
by the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

Note: After successful call (Step 6a) the UOWID is available in the RPC communication area
field COMM-ETB-UOW-ID. See The RPC Communication Area (Reference).

Step 7a: Check the Reliable RPC Message Status

To determine that reliable RPC messages are delivered, the reliable RPC message status can be
queried. See Understanding UOW Status under Using Persistence and Units of Work in the general
administration documentation and Broker UOW Status Transition under Concepts of Persistent
Messaging in the general administration documentation for more information.

121EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK
PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

Note: After successful call the UOW status is available in the RPC communication area field
COMM-RELIABLE-STATUS. See The RPC Communication Area (Reference).

Step 7b: Examine the Error Code

Check whether the check status call was successful or not.

Step 8: Send a Second RPC Message

Send a second reliable RPC message. See Step 6a and Step 6b.

Step 9: Check the Reliable RPC Message Status

Check the reliable RPC message before the commit call. See Step 7a and Step 7b.

Step 10a: Commit both Reliable RPC Messages

Now both reliable RPC messages are committed. This will deliver all reliable RPC messages to
the server if it is available.

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RC" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK
PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

EntireX COBOL Wrapper122

Reliable RPC for COBOL Wrapper

Step 10b: Examine the Error Code

Check whether the commit call was successful or not.

Step 11: Send a Third RPC Message

Send a third reliable RPC message. See Step 5a and Step 5b.

Step 12: Check the Reliable RPC Message Status

Check the reliable RPC message before the rollback call. See Step 6.

Step 13a: Roll Back the Third RPC Message

Roll back the current reliable RPC message.

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RR" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

Step 13b: Examine the Error Code

When the rollback call is returned, checkwhether it was successful or not. If the rollback call failed,
an explicit EOC needs to be sent:

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

123EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

Step 14a: Perform a Broker Logoff

MOVE "LF" TO COMM-FUNCTION.
EXEC CICS LINK

PROGRAM ("COBSRVI")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)

END-EXEC.

Step 14b: Examine the Error Code

Check whether the logoff call was successful or not.

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it returns an error code greater than zero. This causes the transaction (unit
of work inside the Broker) to be cancelled, and the error code is written to the user status field of
the unit of work. For writing reliable RPC servers, see Using the COBOLWrapper for the Server
Side.

To execute a reliable RPC service with an RPC server:

■ the parameter logonmust be set to "YES", see
■ Configuring the RPC Server under Administering the Batch RPC Server
■ Configuring the RPC Server under Administering the EntireX RPC Server under z/OS IMS
■ Configuring the RPC Server under Administering the Micro Focus RPC Server
■ Configuring the BS2000/OSD Batch RPC Server underAdministering the BS2000/OSD Batch RPC
Server

■ the parameter LOGNmust be set to "YES", see Configuring the RPC Server.

EntireX COBOL Wrapper124

Reliable RPC for COBOL Wrapper

Broker Configuration

ABroker configurationwith PSTORE is recommended. This enables the Broker to store themessages
formore than one Broker session. Thesemessages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of themessages and the status information can be configuredwith the attributes
UWTIME and UWSTAT-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW, MAX-UOWS and MAX-
UOW-MESSAGE-LENGTHmay be used in addition to configure the units of work. See Broker Attributes
in the administration documentation.

The result of the generic RPC function call "RS" - get reliable status depends on the configuration
of the unit of work status lifetime in the EntireX Broker configuration. See COMM-FUNCTION. If the
status is not stored longer than the message, the function call returns the error code 00780305 (no
matching UOW found).

125EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

126

15 Server Mapping Deployment

■ Compatibility between Interface Type and RPC Server .. 128
■ Deploying a Server Mapping File .. 130

127

A server mapping file (SVM) enables the RPC server to correctly support special COBOL syntax
such as REDEFINEs, JUSTIFIED, SYNCHRONIZE and OCCURS DEPENDING ON clauses, LEVEL-88 fields,
etc. If one of these elements is used, the EntireX Workbench automatically extracts an SVM file in
addition to the IDL (interface definition language), or an SVM file is generated by the COBOL
Wrapper for a server skeleton. The SVMfile is used at runtime tomarshal and unmarshal the RPC
data stream.

To make an SVM file available at runtime for the RPC server used, it has to be deployed. See
Handling SVM Files in the respective sections of the documentation. As another prerequisite, the
RPC server or EntireX Adapter must support the interface type of the COBOL server. This chapter
covers the following topics:

Compatibility between Interface Type and RPC Server

To call a server successfully, the RPC server used must support the interface type of the COBOL
server. In this context, there are two scenarios, where you need to select an appropriate interface
type:

■ Scenario I: Calling an existing COBOL server (BS2000/OSD | Micro Focus):

within extraction stettings, see Step 4: Define the Extraction Settings and Start Extraction in the IDL
Extractor for COBOL documentation.

■ Scenario II: Writing a new COBOL server (BS2000/OSD | Micro Focus):

within the COBOLWrapper IDL properties, see Server Interface Types.

The table below gives an overview of possible combinations of an interface type and a supporting
RPC server:

EntireX COBOL Wrapper128

Server Mapping Deployment

Supported by

Interface Type

RPC Server

ExtractorWrapper

z/VSE
BS2000/
OSDUNIX/Windowsz/OS

BatchCICSBatch
IMS

Connect
Micro
FocusECIIMSBatchCICS

xxxyesyesCICS with DFHCOMMAREA
calling convention

xxyesyesCICS with DFHCOMMAREA
large buffer interface

xyesyesCICS with Channel Container
calling convention

xxxxyesyesBatch with standard linkage
calling convention

xyesyesMicro Focus with standard
linkage calling convention

xyesyesIMS BMPwith standard linkage
calling convention

xyesnoIMSMPPmessage interface (IMS
Connect)

129EntireX COBOL Wrapper

Server Mapping Deployment

Deploying a Server Mapping File

To deploy a server mapping, you can either use a wizard or copy the file manually to a target
container. The approach depends on the RPC server used. For instance, not all RPC servers support
both deployment by using a wizard and manual deployment. The table below gives an overview
of supported approaches for available RPC servers and the webMethods EntireX Adapter for In-
tegration Server, and provides further instructions for various forms of manual deployment:

Manual DeploymentWizardRPC Server

Copy the SVM file to the folder specified by
cics.mapping.folder. See Configuring the CICS ECI Side.

NoCICS ECI RPC server (Windows
and UNIX)

Use FTP and IDCAMS. See ServerMappingDeployment to z/OS,
using FTP and IDCAMS.

YesCICS RPC server (z/OS)

Use FTP and IDCAMS. See ServerMappingDeployment to z/OS,
using FTP and IDCAMS.

YesBatch RPC server (z/OS)

NoYesBatch RPC server (BS2000/OSD)

NoYesMicro Focus RPC server (Windows
and UNIX)

Copy the SVM file to the folder specified by property
ims.mapping.folder. See Configuring the IMS Connect Side in
the IMS Connect RPC Server documentation.

NoIMSConnect RPC server (Windows
and UNIX)

Use FTP and IDCAMS. See ServerMappingDeployment to z/OS,
using FTP and IDCAMS.

YesIMS RPC server (z/OS)

No. Do not change the location of the generated SVM file. It has
to be kept in the same folder as the IDL file and will be picked

NowebMethods EntireX Adapter for
Integration Server

up automatically together with the IDL file when an adapter
connection for IMS Connect or CICS ECI is generated. For more
information, see the EntireX Adapter documentation under
webMethods >Mainframe Integration on the SoftwareAGProduct
Documentationwebsite.

The remainder of this section focuses on the major approaches:

■ Server Mapping Deployment Wizard
■ Server Mapping Deployment Wizard Preferences
■ Server Mapping Deployment in Command-line Mode

EntireX COBOL Wrapper130

Server Mapping Deployment

http://documentation.softwareag.com
http://documentation.softwareag.com

■ Server Mapping Deployment to z/OS, using FTP and IDCAMS

Server Mapping Deployment Wizard

Deploying with the wizard requires an active RPC server. Also, the Deployment Service of the
RPC server must be properly configured. See the platform-specific documentation for more in-
formation:

■ z/OS, see Deployment Service in the respective RPC server documentation.
■ UNIX or Windows for Micro Focus COBOL, see Deployment Service in the Micro Focus RPC
Server .

■ BS2000/OSD, see Deployment Service in the BS2000/OSD Batch RPC Server documentation.
■ z/VSE, see the separate 7.2.3 documentation.

Caution: The codepage (locale string) of the RPC server used during deployment must be
the same as the one used with running RPC clients issuing RPC requests.

To deploy a server mapping with the wizard, follow the steps below:

■ Step 1: Start the Wizard
■ Step 2a: Create a New Deployment Environment
■ Step 2b: Define the Connection to the Deployment Service and Deploy

131EntireX COBOL Wrapper

Server Mapping Deployment

■ Step 3: Select an Existing Deployment Environment and Deploy

Step 1: Start the Wizard

To start the servermappingdeploymentwizard, select an SVMfile and chooseDeploy/Synchronize
Server Mapping... from the context menu.

To continue, pressNext together with one of the following choices:

EntireX COBOL Wrapper132

Server Mapping Deployment

■ If you enter the servermapping deploymentwizard the first timewith no predefineddeployment
environment preferences (see IDL Extractor for COBOLPreferences in the IDLExtractor for COBOL
documentation), continue with Step 2a: Create a New Deployment Environment below.

■ If deployment environments are already defined, you may also continue with Step 3: Select an
Existing Deployment Environment and Deploy below.

Step 2a: Create a New Deployment Environment

If no deployment environments are defined, you only have the option to create a new deployment
environment.

To proceed:

1. Select Create a new deployment environment.

2. PressNext and continue with Step 2b: Define the Connection to the Deployment Service and
Deploy.

133EntireX COBOL Wrapper

Server Mapping Deployment

Step 2b: Define the Connection to the Deployment Service and Deploy

Use this page to define a connection to the deployment service of the RPC server.

Enter the required fields:

1. Broker Parameters Broker ID and Server Address, which will have the default format. The last
part (broker service) of the server address must always be "DEPLOYMENT".

2. The EntireX Authentication parameters describe the settings for the broker. These parameters
apply if the broker is running with EntireX Security. SeeWhich EntireX Security Solution.

3. The RPC Server Authentication parameters describe the settings for the RPC server. These
parameters apply if the RPC server is running with security, for example a Natural RPC Server
running with Natural Security.

4. The given Timeout value must be in the range from 1 to 9999 seconds (default: 60).

Press Finish to deploy. Deployment of the server mapping is successful if the wizard ends. No
confirmation message is given.

EntireX COBOL Wrapper134

Server Mapping Deployment

Step 3: Select an Existing Deployment Environment and Deploy

Use this page to select the deployment environment (i.e. the RPC server) to which you want to
deploy.

Check the optionChoose an existing deployment environment and select a deployment environ-
ment from the list. Press Finish to deploy. Deployment is successful if the wizard ends. No con-
firmation message is given.

Server Mapping Deployment Wizard Preferences

In the preferences for the servermappingdeploymentwizard youdefinedeployment environments,
a connection to the Deployment Service of the RPC server. SeeDeployment Service in the respective
RPC server documentation. The following sections are offered:

■ Create a new Deployment Environment
■ Edit an Existing Deployment Environment
■ Remove an Existing Deployment Environment

The deployment environment is managed from the deployment environment Preferences page.
The deployment environments can be created, edited and removed. The deployment environment
will be used for the selection lists in the Server Mapping Deployment Wizard. To manage these
deployment environments, open the Preferences page:

135EntireX COBOL Wrapper

Server Mapping Deployment

Create a new Deployment Environment

To create a new deployment environment

■ Press Insert.

EntireX COBOL Wrapper136

Server Mapping Deployment

Edit an Existing Deployment Environment

To edit an existing deployment environment

■ Select the table row and press Edit. If multiple entries are selected, the first entry is used.

137EntireX COBOL Wrapper

Server Mapping Deployment

For more information on the input fields on this page, see Step 2b: Define the Connection to the
Deployment Service and Deploy under Server Mapping Deployment Wizard.

Remove an Existing Deployment Environment

To remove an existing deployment environment

■ Select the table row and press Remove. Multiple selections are possible.

Server Mapping Deployment in Command-line Mode

The command -deploy:cobol is provided to deploy servermapping files (SVMs) using the EntireX
Workbench in command-line mode. See Using the EntireX Workbench in Command-line Mode for
general information.

To undeploy previously deployed server mapping entries on the server side, remove the SVM file
and execute the command -deploy:cobolwith the IDL file only.

EntireX COBOL Wrapper138

Server Mapping Deployment

Command-line Options

DescriptionOptionCommandTask

Target environment. Name of the COBOL deployment
environment or an RPC server description.

-environment-deploy:cobolDeploy
SVM
files. User used for broker authentication (optional).-brokeruser

Password used for broker authentication (optional).-brokerpassword

User used for RPC server authentication (optional).-rpcuser

Password used for RPC server authentication (optional).-rpcpassword

Note: Run the command from the directory containing the IDL file and the corresponding
SVM file. If no SVM file is found, the previously deployed server mapping entries related
to the IDL file will be removed on the server side (undeployed).

Example

-deploy:cobol /SVMDeployTests/idls/basicodo.idl /SVMDeployTests/idls/basicdt.idl ↩
/SVMDeployTests/idls/basicarr.idl
 -environment ibm2:3980@RPC/RPCALL/DEPLOYMENT
 -brokeruser EXXUSR1
 -brokerpassword EXX$PWD1

139EntireX COBOL Wrapper

Server Mapping Deployment

Server Mapping Deployment to z/OS, using FTP and IDCAMS

This approach is available for z/OS only.

To deploy a server mapping using FTP and IDCAMS

1 Allocate a target sequential file on mainframe with the following specifications for DCB:

DCB=(DSORG=PS,RECFM=V,LRECL=16384,BLKSIZE=16388)

2 Allow write access and usage of IDCAMS tools to the VSAM file mentioned above.

3 Transfer the SVM file to the target host, using FTP. You have to switch to text mode and the
codepage of the FTP service must be the same as the codepage (locale string) of the RPC
server used.

4 Install the server mapping into the VSAM SVM cluster with the IDCAMS job below.

Note: If you omit the keyword REPLACE or define NOREPLACE in the SYSIN data
stream instead, existing servermappings are not overwritten. This protects SVMrecords
from being overwritten by duplicates.

//EXPSVMR JOB (,,,999),ENTIREX,NOTIFY=&SYSUID,MSGLEVEL=(1,1),
// CLASS=K,MSGCLASS=X,REGION=0M,COND=(0,LT)
//*---*
//* FILL THE SVM VSAM CLUSTER *
//*---*
//IMPORT EXEC PGM=IDCAMS
//RECORDS DD DISP=SHR,DSN=EXP.SVM.TARGET.SEQ.RECORDS
//SVM DD DISP=SHR,DSN=EXP.SVM.KSDS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REPRO -
REPLACE -
INFILE(RECORDS) -
OUTFILE(SVM)

EntireX COBOL Wrapper140

Server Mapping Deployment

16 Using the COBOL Wrapper with EntireX Security

This chapter explains how clients built with the COBOLWrapper use EntireX Security.

To use EntireX Security you need the following components:

■ Generic RPC Services Modules
■ The RPC Communication Area (Reference)

To use EntireX Security

1 Set the COMM-ETB-PASSWORD and set COMM-KERNEL-SECURITY to "Y". SeeTheRPCCommunication
Area (Reference).

2 Log on to the brokerwith the function Logon LOprovided by the generic RPC servicesmodule
as described under Using Broker Logon and Logoff.

■ In the scenariosMicro Focus (UNIX and Windows), Batch, CICS with Call Interfaces and IMS
in the COBOLWrapper documentation with the Call Interface:

...
* Broker Logon
MOVE "2000" TO COMM-VERSION.
MOVE "LO" TO COMM-FUNCTION.

* Set Broker userid in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USERID.

* Set Broker password/kernelsecurity to use EntireX Security
MOVE "COB-PASS" TO COMM-ETB-PASSWORD.
MOVE "Y" TO COMM-KERNEL-SECURITY.

* Call the broker
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION

141

...
NOT ON EXCEPTION
...
END-CALL.
* begin of application logic
...

■ In the scenario Using the COBOLWrapper for CICS with DFHCOMMAREA Calling
Convention (z/OS and z/VSE)with the EXEC CICS LINK interface:

...
* Broker Logon
MOVE "2000" TO COMM-VERSION.
MOVE "LO" TO COMM-FUNCTION.

* Set Broker userid in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USERID.

* Set Broker password/kernelsecurity to use EntireX Security
MOVE "COB-PASS" TO COMM-ETB-PASSWORD.
MOVE "Y" TO COMM-KERNEL-SECURITY.

* Call the broker
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling

END-IF
ELSE
* Perform error-handling
END-IF.

* begin of application logic
...

3 Issue your RPC requests as without using an explicit logon and logoff.

4 For logoff, see Using Broker Logon and Logoff.

EntireX COBOL Wrapper142

Using the COBOL Wrapper with EntireX Security

17 Client and Server Examples for Micro Focus (UNIX and

Windows)
■ Basic RPC Client Examples - CALC, SQUARE .. 144
■ Basic RPC Server Examples - CALC, SQUARE ... 144
■ Reliable RPC Client Example - SENDMAIL ... 145
■ Reliable RPC Server Example - SENDMAIL .. 145

143

This chapter describes the examples provided for the COBOLWrapper for Micro Focus. All ex-
amples here can be found in the EntireX directory examples/RPC under UNIX and Windows.

Basic RPC Client Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE clients are built with COBOLWrapper
"Micro Focus with standard linkage calling convention" interface type. See Client Interface Types
for more information.

NotesDescriptionTypeName

1A client application calling the remote procedure (RPC service)
CALC, with associated example.idl.

COBOL source codeCALCCLT.cbl

1A client application calling the remote procedure (RPC service)
SQUARE, with associated example.idl.

COBOL source codeSQRECLT.cbl

Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

Formore information, see the readme file in EntireX directory examples/RPC/basic/example/CobolCli-
ent/MicroFocus under UNIX or Windows.

Basic RPC Server Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE servers are built with COBOLWrapper
"Micro Focus with standard linkage calling convention" interface type. See Server Interface Types
for more information.

NotesDescriptionTypeName

1A server application providing the remote procedureCALC (RPC
service), with associated example.idl.

COBOL source codeCALC.cbl

1A server application providing the remote procedure SQUARE
(RPC service), with associated example.idl.

COBOL source codeSQUARE.cbl

Notes:

1. Application built according to the server-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

EntireX COBOL Wrapper144

Client and Server Examples for Micro Focus (UNIX and Windows)

Formore information, see the readmefile in EntireX directory examples/RPC/basic/example/CobolServ-
er/MicroFocus under UNIX or Windows.

Reliable RPC Client Example - SENDMAIL

ForMicro Focus environments, the SENDMAIL client is built with COBOLWrapper "Micro Focus
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

NotesDescriptiontypeName

1A client application calling the reliable remote procedure (RPC
service), SENDMAIL, with associated mail.idl.

COBOL source codeSENDCLT.cbl

Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows) See also Reliable RPC for COBOLWrapper.

Formore information see the readme file in EntireX directory examples/RPC/reliable/CobolClient/Mi-
croFocus under UNIX or Windows.

Reliable RPC Server Example - SENDMAIL

ForMicro Focus environments, the SENDMAIL server is built with COBOLWrapper "Micro Focus
with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

NotesDescriptionTypeName

1a server application providing the reliable remote procedure
(RPC service) SENDMAIL, with associated mail.idl.

COBOL source codeSENDCLT.cbl

Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for the Client Side. See also Reliable RPC for COBOLWrapper.

Formore information see the readme file in EntireX directory examples/RPC/reliable/CobolServer/Mi-
croFocus under UNIX or Windows.

145EntireX COBOL Wrapper

Client and Server Examples for Micro Focus (UNIX and Windows)

146

18 Client and Server Examples for z/OS Batch

■ Basic RPC Client Examples - CALC, SQUARE .. 148
■ Basic RPC Server Examples - CALC, SQUARE ... 149
■ Reliable RPC Client Example - SENDMAIL ... 151
■ Reliable RPC Server Example - SENDMAIL .. 151

147

This chapter describes the examples provided for theCOBOLWrapper for z/OSBatch.All examples
here can be found in the EntireX directory examples/RPC under UNIX andWindows. They are also
available for z/OS, if this is installed. See Extract the EntireX RPC Examples from their Container Data
Set in the z/OS installation documentation.

Basic RPC Client Examples - CALC, SQUARE

This section covers the following examples:

■ CALC Client
■ SQUARE Client

CALC Client

For z/OS Batch, the CALC client is built with COBOLWrapper "Batch with standard linkage
calling convention" interface type. See Client Interface Types for more information.

NotesDescriptionData SetTypeName

1Client interface object for IDL program CALC.EXP951.CCCOCOBOL source codeCALC

2A client application calling the remote procedure
(RPC service) CALC, with associated example.idl.

EXP951.CCCOCOBOL source codeCALCCLT

3Job (JCL) to build the RPC client CALCCLT.EXP951.CCCOJCLCALCIGY

3Job (JCL) to execute the RPC client CALCCLT.EXP951.CCCOJCLCALCRUN

1Client interface object copybook for IDL program
CALC.

EXP951.CICOCOBOL copybookCALC

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

2. Application built according to the client-side build instructions, seeUsing the COBOLWrapper
for Batch (z/VSE, IBM i, BS2000/OSD and z/OS).

3. Adapt the JCL to your needs.

For more information refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosBatch under UNIX or Windows.

EntireX COBOL Wrapper148

Client and Server Examples for z/OS Batch

SQUARE Client

For batch under operating system z/OS, the SQUARE client is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

1A client application calling the remote procedure
(RPC service) SQUARE,with associated example.idl.

EXP951.CCCOCOBOL source codeSQRECLT

2Job (JCL) to build the RPC client SQRECLT.EXP951.CCCOJCLSQREIGY

2Job (JCL) to execute the RPC client SQRECLT.EXP951.CCCOJCLSQRERUN

3Client interface object for IDL program SQUARE.EXP951.CCCOCOBOL source codeSQUARE

3Client interface object copybook for IDL program
SQUARE.

EXP951.CICOCOBOL copybookSQUARE

Notes:

1. Application built according to the client-side build instructions, seeUsing the COBOLWrapper
for Batch (z/VSE, IBM i, BS2000/OSD and z/OS).

2. Adapt the JCL to your needs.

3. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

Formore information, see the readme file in EntireX directory examples/RPC/basic/example/CobolCli-
ent/zosBatch under UNIX or Windows.

Basic RPC Server Examples - CALC, SQUARE

This section covers the following examples:

■ CALC Server

149EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

■ SQUARE Server

CALC Server

For batch under operating system z/OS, the CALC server is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

1A server application providing the remote
procedure CALC (RPC service), with associated
example.idl.

EXP951.CVCOCOBOL source codeCALC

2Job (JCL) to build the remote procedureCALC (RPC
service).

EXP951.CVCOJCLCALCIGY

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, IBM i, BS2000/OSD and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosBatch under UNIX or Windows.

SQUARE Server

For batch on operating system z/OS, the SQUARE server is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

2Job (JCL) to build the remote procedure SQUARE
(RPC service)

EXP951.CVCOJCLSQREIGY

1a server application providing the remote procedure
SQUARE (RPC service), with associated example.idl

EXP951.CVCOCOBOLsource codeSQUARE

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for Batch (z/VSE, IBM i, BS2000/OSD and z/OS).

2. Adapt the JCL to your needs.

EntireX COBOL Wrapper150

Client and Server Examples for z/OS Batch

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosBatch under UNIX or Windows.

Reliable RPC Client Example - SENDMAIL

For batch on operating system z/OS, the SENDMAIL client is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

1A client application calling the reliable remote
procedure (RPC service), SENDMAIL, with
associated mail.idl.

EXP951.CCCOCOBOL source codeSENDCLT

2Job (JCL) to build the RPC client SENDCLT.EXP951.CCCOJCLSENDIGY

3Client interface object for IDL program
SENDMAIL.

EXP951.CCCOCOBOL source codeSENDMAIL

2Job (JCL) to execute the RPC client SENDCLT.EXP951.CCCOJCLSENDRUN

3Client interface object copybook for IDL program
SENDMAIL.

EXP951.CICOCOBOL copybookSENDMAIL

Notes:

1. Application built according to the client-side build instructions, seeUsing the COBOLWrapper
for Batch (z/VSE, IBM i, BS2000/OSD and z/OS). See also Reliable RPC for COBOLWrapper.

2. Adapt the JCL to your needs.

3. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

For more information, refer to the readme file in EntireX directory examples/RPC/reliable/CobolCli-
ent/zosBatch under UNIX or Windows.

Reliable RPC Server Example - SENDMAIL

For batch on operating system z/OS, the SENDMAIL server is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

151EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

NotesDescriptionData SetTypeName

1Job (JCL) to build the remote procedure
SENDMAIL(RPC service).

EXP951.CVCOJCLSENDIGY

2A server application providing the reliable remote
procedure (RPC service) SENDMAIL, with
associated mail.idl.

EXP951.CVCOCOBOL source
code

SENDMAIL

Notes:

1. Adapt the JCL to your needs.

2. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, IBM i, BS2000/OSD and z/VSE). See also Reliable RPC for COBOLWrapper.

Formore information, refer to the readme file in EntireX directory examples/RPC/reliable/CobolServ-
er/zosBatch under UNIX or Windows.

EntireX COBOL Wrapper152

Client and Server Examples for z/OS Batch

19 Client and Server Examples for z/OS CICS

■ Basic RPC Client Examples - CALC, SQUARE .. 154
■ Basic RPC Server Examples - CALC, SQUARE ... 158
■ Reliable RPC Client Examples - SENDMAIL ... 159
■ Reliable RPC Server Example - SENDMAIL .. 161
■ Advanced CICS Channel Container RPC Server Example - DFHCON .. 162
■ Advanced CICS Large Buffer RPC Server Example - DFHLBUF ... 162

153

This chapter describes the examples provided for the COBOLWrapper for z/OSCICS.All examples
here can be found in the EntireX directory examples/RPC under UNIX andWindows. They are also
available for z/OS, if this is installed. See Extract the EntireX RPC Examples from their Container Data
Set in the z/OS installation documentation.

Basic RPC Client Examples - CALC, SQUARE

This section covers the following examples:

■ CALC Client using DFHCOMMAREA
■ CALC Client using Call Interface
■ SQUARE Client using DFHCOMMAREA
■ SQUARE Client using Call Interface

CALC Client using DFHCOMMAREA

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

CSD Definition for RPC client CALC1CLT.EXP951.DCCOCICS CSDCALC1DFH

2Job (JCL) to build the RPC client CALC1CLT.EXP951.DCCOJCLCALC1IGY

CICS Map definition for RPC client and
CALC1CLT.

EXP951.DCCOCICS MapCALC1MAP

1Client interface object for IDL program CALC1,
alias of CALC.

EXP951.DCCOCOBOL source codeCALC1

3An RPC client application calling the remote
procedure (RPC service) CALC.

EXP951.DCCOCOBOL source codeCALC1CLT

Description of input and output fields of map
CALC1MAP.

EXP951.DICOCOBOL copybookCALC1MAP

1Client interface object copybook for IDL program
CALC1, alias of CALC.

EXP951.DICOCOBOL copybookCALC1

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

2. Adapt the JCL to your needs.

3. Application

EntireX COBOL Wrapper154

Client and Server Examples for z/OS CICS

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL file exampleWithPgmAlias.idl, delivered under UNIX and Windows in
EntireX directory examples/RPC/basic/example/CobolClient/zosCICS/DFHCOMMAREA.

c. client interface object name CALC1 different from remote procedure name CALC (RPC ser-
vice).

d. CALC1CLT and client interface objects CALC1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/DFHCOMMAREA under UNIX or Windows.

CALC Client using Call Interface

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICSwith standard linkage calling convention". SeeClient Interface Types for more inform-
ation.

NotesDescriptionData SetTypeName

1Client interface object for IDL program CALC.EXP951.DCCOCOBOL source codeCALC

2An RPC client application calling the remote
procedure (RPC service) CALC.

EXP951.DCCOCOBOL source codeCALCCLT

CSD Definition for RPC client CALCCLT.EXP951.DCCOCICS CSDCALCDFH

3Job (JCL) to build the RPC client CALCCLT.EXP951.DCCOJCLCALCIGY

CICS Map definition for RPC client CALCCLT.EXP951.DCCOCICS MapCALCMAP

1Client interface object copybook for IDL program
CALC.

EXP951.DICOCOBOL copybookCALC

Description of input and output fields of map
CALCMAP.

EXP951.DICOCOBOL copybookCALCMAP

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

2. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with Call Interfaces (z/OS and z/VSE)

b. associated with IDL file example.idl

c. CALCCLT uses CICS Map definition CALCMAP

d. CALCCLT and client interface object CALC are linked together

e. CALCCLT installed as single CICS program

155EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

3. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/Callinterface under UNIX or Windows.

SQUARE Client using DFHCOMMAREA

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

CSD Definition for RPC client SQRE1CLT.EXP951.DCCOCICS CSDSQRE1DFH

2Job (JCL) to build the RPC client SQRE1CLT.EXP951.DCCOJCLSQREI1GY

CICS Map definition for RPC clients SQRE1CLT.EXP951.DCCOCICS MapSQRE1MAP

1Client interface object for IDL program SQRE1,
alias of SQUARE.

EXP951.DCCOCOBOL source codeSQRE1

3An RPC client application calling the remote
procedure (RPC service) SQUARE.

EXP951.DCCOCOBOL source codeSQRE1CLT

Description of input and output fields of map
SQRE1MAP.

EXP951.DICOCOBOL copybookSQRE1MAP

1Client interface object copybook for IDL program
SQRE1, alias of SQUARE.

EXP951.DICOCOBOL copybookSQRE1

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

2. Adapt the JCL to your needs.

3. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL exampleWithPgmAlias.idl.

c. client interface object name SQRE1 different from remote procedure name SQUARE (RPC
service).

d. SQRE1CLT and client interface object SQRE1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/DFHCOMMAREA under UNIX or Windows.

EntireX COBOL Wrapper156

Client and Server Examples for z/OS CICS

SQUARE Client using Call Interface

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICSwith standard linkage calling convention". SeeClient Interface Types for more inform-
ation.

NotesDescriptionData SetTypeName

2An RPC client application calling the remote
procedure (RPC service) SQUARE.

EXP951.DCCOCOBOL source codeSQRECLT

CSD Definition for RPC client SQRECLT.EXP951.DCCOCICS CSDSQREDFH

3Job (JCL) to build the RPC client SQRECLT.EXP951.DCCOJCLSQREIGY

CICS Map definition for RPC client SQRECLT.EXP951.DCCOCICS MapSQREMAP

1Client interface object for IDL program SQUARE.EXP951.DCCOCOBOL source codeSQUARE

Description of input and output fields of map
SQREMAP.

EXP951.DICOCOBOL copybookSQREMAP

1Client interface object copybook for IDL program
SQUARE.

EXP951.DICOCOBOL copybookSQUARE

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

2. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with Call Interfaces (z/OS and z/VSE).

b. associated with IDL file example.idl.

c. SQRECLT uses CICS Map definition SQREMAP.

d. SQRECLT and client interface object SQUARE are linked together.

e. SQRECLT installed as single CICS program.

3. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/CallInterface under UNIX or Windows.

157EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

Basic RPC Server Examples - CALC, SQUARE

This section covers the following examples:

■ CALC Server
■ SQUARE Server

CALC Server

For CICS under operating system z/OS, the CALC server is built with COBOLWrapper "CICS
with DFHCOMMAREA calling convention" interface type. See Server Interface Types for more
information.

NotesDescriptionData SetTypeName

1A server application providing the remote
procedure CALC (RPC service), with associated
example.idl.

EXP951.DVCOCOBOL source codeCALC

CSD Definition for remote procedure CALC (RPC
service).

EXP951.DVCOCICS CSDCALCDFH

2Job (JCL) to build the remote procedureCALC (RPC
service).

EXP951.DVCOJCLCALCIGY

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosCICS under UNIX or Windows.

SQUARE Server

For CICS under operating system z/OS, the SQUARE server is built with COBOLWrapper "CICS
with DFHCOMMAREA calling convention" interface type. See Client Interface Types for more
information.

EntireX COBOL Wrapper158

Client and Server Examples for z/OS CICS

NotesDescriptionData SetTypeName

CSDDefinition for remoteprocedure SQUARE (RPC
service).

EXP951.DVCOCICS CSDSQREDFH

2Job (JCL) to build the remote procedure SQUARE
(RPC service).

EXP951.DVCOJCLSQREIGY

1Aserver applicationproviding the remote procedure
SQUARE (RPC service),with associated example.idl.

EXP951.DVCOCOBOLsource codeSQUARE

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosCICS under UNIX or Windows.

Reliable RPC Client Examples - SENDMAIL

■ SENDMAIL Client using DFHCOMMAREA
■ SENDMAIL Client using Call Interface

SENDMAIL Client using DFHCOMMAREA

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

CSD Definition for RPC client SEND1CLT.EXP951.DCCOCICS CSDSEND1DFH

1Job (JCL) to build the RPC client SEND1CLT.EXP951.DCCOJCLSEND1IGY

CICS Map definition for RPC client SEND1CLT.EXP951.DCCOCICS MapSEND1MAP

2Client interface object for IDL program SEND1,
alias of SENDMAIL.

EXP951.DCCOCOBOL source codeSEND1

3An RPC client application calling the reliable
remote procedure (RPC service) SEND1, alias of
SENDMAIL.

EXP951.DCCOCOBOL source codeSEND1CLT

Description of input and output fields of map
SEND1MAP.

EXP951.DICOCOBOL copybookSEND1MAP

2Client interface object copybook for IDL program
SEND1, alias of SENDMAIL.

EXP951.DICOCOBOL copybookSEND1

159EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

Notes:

1. Adapt the JCL to your needs.

2. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

3. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE). See also Reliable RPC for
COBOLWrapper

b. associated with IDL file mailWithPgmAlias.idl

c. uses CICS Map definition SEND1MAP

d. client interface object name SEND1different from remote procedure name SENDMAIL (RPC
service)

e. SEND1CLT and client interface objects SEND1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/reliable/CobolCli-
ent/zosCICS/DFHCOMMAREA under UNIX or Windows.

SENDMAIL Client using Call Interface

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICSwith standard linkage calling convention". See Server Interface Types formore inform-
ation.

NotesDescriptionData SetTypeName

1An RPC client application calling the reliable
remote procedure (RPC service) SENDMAIL.

EXP951.DCCOCOBOL source codeSENDCLT

CSD Definition for RPC client SENDCLT.EXP951.DCCOCICS CSDSENDDFH

2Job (JCL) to build the RPC client SENDCLT.EXP951.DCCOJCLSENDIGY

3Client interface object for IDL program
SENDMAIL.

EXP951.DCCOCOBOL source codeSENDMAIL

CICS Map definition for RPC client SENDCLT.EXP951.DCCOCICS MapSENDMAP

3Client interface object copybook for IDL program
SENDMAIL.

EXP951.DICOCOBOL copybookSENDMAIL

Description of input and output fields of map
SENDMAP.

EXP951.DICOCOBOL copybookSENDMAP

Notes:

1. Application

EntireX COBOL Wrapper160

Client and Server Examples for z/OS CICS

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with Call Interfaces (z/OS and z/VSE). See also Reliable RPC for COBOLWrapper

b. associated with IDL file mail.idl

c. uses CICS map definition SENDMAP

d. SENDCLT and client interface object SENDMAIL are linked together

e. installed as single CICS program.

2. Adapt the JCL to your needs.

3. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the EntireX Workbench.

For more information, refer to the readme file in EntireX directory examples/RPC/reliable/CobolCli-
ent/zosCICS/CallInterface under UNIX or Windows.

Reliable RPC Server Example - SENDMAIL

For CICS on operating system z/OS, the SENDMAIL server is built with COBOLWrapper "CICS
with DFHCOMMAREA calling convention" interface type. See Server Interface Types for more
information.

NotesDescriptionData SetTypeName

CSD Definition for remote procedure SENDMAIL
(RPC service).

EXP951.DVCOCICS CSDSENDDFH

1Job (JCL) to build remote procedure SENDMAIL
(RPC service).

EXP951.DVCOJCLSENDIGY

2a server application providing the reliable remote
procedure SENDMAIL (RPC service), with
associated mail.idl.

EXP951.DVCOCOBOL source
code

SENDMAIL

Notes:

1. Application built according to the server-side build instructions. SeeUsing the COBOLWrapper
for CICSwith DFHCOMMAREACalling Convention (z/OS and z/VSE). See alsoReliable RPC
for COBOLWrapper.

2. Adapt the JCL to your needs.

Formore information, refer to the readme file in EntireX directory examples/RPC/reliable/CobolServ-
er/zosCICS under UNIX or Windows.

161EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

Advanced CICS Channel Container RPC Server Example - DFHCON

For CICS on operating system z/OS, the TWOC server is built with COBOLWrapper "CICS with
Channel Container calling convention" interface type. See Server Interface Types for more inform-
ation.

NotesDescriptionData SetTypeName

1A server application providing the remote
procedure TWOC (RPC service), with associated
CICSChannelContainer.idl.

EXP951.DVCOCOBOL source
code

TWOC

CSDDefinition for remote procedure TWOC (RPC
service).

EXP951.DVCOCICS CSDTWOCDFH

2Job (JCL) to build remote procedure TWOC (RPC
service).

EXP951.DVCOJCLTWOCIGY

1. Application built according to the server-side build instructions. SeeUsing the COBOLWrapper
for CICS with Channel Container Calling Convention (z/OS).

2. Adapt the JCL to your needs.

For more information, see the readme file in EntireX directory examples/RPC/advanced/CICSgreat-
er32K/ChannelContainer/CobolServer/zosCICS under UNIX or Windows.

Advanced CICS Large Buffer RPC Server Example - DFHLBUF

For CICS on operating system z/OS, the LBUF server is built with COBOLWrapper "CICS with
DFHCOMMAREA large buffer interface" interface type. See Server Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

1A server application providing the remote
procedure LBUF (RPC service), with associated
CICSLargeBuffer.idl.

EXP951.DVCOCOBOL source codeLBUF

CSD Definition for remote procedure LBUF (RPC
service).

EXP951.DVCOCICS CSDLBUFDFH

2Job (JCL) to build remote procedure LBUF (RPC
service).

EXP951.DVCOJCLLBUFIGY

Notes:

EntireX COBOL Wrapper162

Client and Server Examples for z/OS CICS

1. Application built according to the server-side build instructions. SeeUsing the COBOLWrapper
for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/advanced/CIC-
Sgreater32K/LargeBuffer/CobolServer/zosCICS under UNIX or Windows.

163EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

164

20 Client and Server Examples for z/OS IMS BMP

No special IMS BMP examples are delivered.

The delivered client examples for z/OS batch can be used as a basis for use in BMPmode, but they
have to be adapted.

The delivered server examples for z/OS batch can also be used in BMP mode. See Client and
Server Examples for z/OS Batch. Using IMS PCB pointers to access IMS databases in this context
is described in IMS PCB Pointer IDL Rules under Using the COBOLWrapper for IMS BMP
(z/OS).

165

166

21 Server Examples for z/OS IMS MPP

■ CALC Server .. 168
■ SQUARE Server .. 168

167

This chapter describes examples provided for COBOLon operating systemz/OSwith the TP system
IMS for anMP region. All examples here can be found in the EntireX directory examples/RPCunder
UNIX and Windows. They are also available for z/OS if installed. See Extract the EntireX RPC Ex-
amples from their Container Data Set in the z/OS installation documentation. This document covers
the following topics:

CALC Server

The CALC server is an IMS message processing program (MPP) for the TP system IMS under
operating system z/OS. It is accessible with IMS Connect using IMS Connect RPC Server or the
EntireX Adapter.

NotesDescriptionData SetTypeName

A server application providing the remote
procedure CALC (RPC service) with associated
example.idl.

EXP951.MVCOCOBOL source codeCALC

1Job (JCL) to build the remote procedure CALC
(RPC service).

EXP951.MVCOJCLCALCIGY

1IMSfirst stage generation definition for TNCALCP
transaction.

EXP951.MVCOIMS definitionCALCSTG

Notes:

1. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosIMSMPP under UNIX or Windows.

SQUARE Server

The SQUARE server is an IMS message processing program (MPP) for the TP system IMS under
operating system z/OS. It is accessible with IMS Connect using the IMS Connect RPC Server or the
EntireX Adapter.

EntireX COBOL Wrapper168

Server Examples for z/OS IMS MPP

NotesDescriptionData SetTypeName

A server application providing the remote
procedure SQUARE (RPC service), with associated
example.idl.

EXP951.MVCOCOBOL source codeSQUARE

1Job (JCL) to build the remote procedure SQUARE
(RPC service).

EXP951.MVCOJCLSQREIGY

1IMS first stage generation definition for TNSQREP
transaction.

EXP951.MVCOIMS definitionSQRESTG

Notes:

1. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosIMSMPP under UNIX or Windows.

169EntireX COBOL Wrapper

Server Examples for z/OS IMS MPP

170

22 Client and Server Examples for BS2000/OSD

■ Overview of Client and Server Examples for BS2000/OSD ... 172
■ Creating the Sample COBOL Client Programs ... 175
■ Creating the Sample COBOL Server Programs .. 176
■ Running the Sample COBOL Client Programs ... 176

171

This chapter describes the examples provided for the COBOLWrapper for BS2000/OSD.

Overview of Client and Server Examples for BS2000/OSD

The following examples are delivered for BS2000/OSD:

■ CALC Example
■ SQUARE Example
■ SENDMAIL Reliable RPC Example
■ Notes

All examples here can be found in the EntireX directory examples/RPC under UNIX andWindows.
If EntireX is installed under BS2000/OSD, the examples are also available on this platform.

CALC Example

Client

NotesCommentLMS LibraryTypeElement

2S-procedure to generate the CALC COBOL sample
client application. It makes use of
RUN-COBOL-COMPILER and BIND-CALC-CLIENT.

EXP951.COBCJCREATE-CALC-CLIENT

S-procedure to bind theCALCCOBOLsample client
application.

EXP951.COBCJBIND-CALC-CLIENT

2S-procedure to run the COBOL2000 / COBOL85
compiler.

EXP951.COBCJRUN-COBOL-COMPILER

S-procedure to run theCALCCOBOL sample client
application.

EXP951.COBCJRUN-CALC-CLIENT

1Mainprogramsource of theCALCCOBOLexample.EXP951.COBCSCALCCLT.COB

1COBOL RPC client interface object.EXP951.COBCSCALC.COB

1COBOL RPC interface copybook.EXP951.COBCSCALC

1Generic RPC service.EXP951.COBCSCOBSRVI.COB

1Layout of the RPC communication area. See The
RPC Communication Area (Reference).

EXP951.COBCSERXCOMM

Adabas ADALNK IDTNAME parameter required
when using the NET transport method. It is shared
by all clients.

EXP951.COBCSCLIENT-ADAPARM

CALC client input parameters.EXP951.COBCSCLIENT-INPARM-CALC

EntireX COBOL Wrapper172

Client and Server Examples for BS2000/OSD

Server

NotesCommentLMS LibraryTypeElement

2S-procedure to generate theCALCCOBOLexample
server. It makes use of RUN-COBOL-COMPILER.

EXP951.COBSJCREATE-CALC-SERVER

2S-procedure to run the COBOL2000 / COBOL85
compiler.

EXP951.COBSJRUN-COBOL-COMPILER

1Server program source of CALC COBOL example.EXP951.COBSSCALC.COB

SQUARE Example

Client

NotesCommentLMS LibraryTypeElement

2S-procedure to generate the SQUARE COBOL
sample client application. It uses

EXP951.COBCJCREATE-SQUARE-CLIENT

RUN-COBOL-COMPILER and
BIND-SQUARE-CLIENT.

S-procedure to bind the SQUARE COBOL sample
client application.

EXP951.COBCJBIND-SQUARE-CLIENT

2S-procedure to run the COBOL2000 / COBOL85
compiler.

EXP951.COBCJRUN-COBOL-COMPILER

S-procedure to run the SQUARE COBOL sample
client application.

EXP951.COBCJRUN-SQUARE-CLIENT

1Mainprogramsource ofSQUARECOBOLexample.EXP951.COBCSSQRECLT.COB

1COBOL RPC client interface object.EXP951.COBCSSQUARE.COB

1COBOL RPC interface copybook.EXP951.COBCSSQUARE

1Generic RPC service.EXP951.COBCSCOBSRVI.COB

1Layout of the RPC communication area. See The
RPC Communication Area (Reference).

EXP951.COBCSERXCOMM

Adabas ADALNK IDTNAME parameter required
when using the NET transport method. It is
shared by all clients

EXP951.COBCSCLIENT-ADAPARM

SQUARE client input parameters.EXP951.COBCSCLIENT-INPARM-SQUARE

173EntireX COBOL Wrapper

Client and Server Examples for BS2000/OSD

Server

NotesCommentLMS LibraryTypeElement

2S-procedure to generate the SQUARE COBOL
sample server. It uses RUN-COBOL-COMPILER.

EXP951.COBSJCREATE-SQUARE-SERVER

2S-procedure to run the COBOL2000 / COBOL85
compiler.

EXP951.COBSJRUN-COBOL-COMPILER

1Server program source of the SQUARE COBOL
example.

EXP951.COBSSSQUARE.COB

SENDMAIL Reliable RPC Example

Client

NotesCommentLMS LibraryTypeElement

2S-procedure to generate the SENDMAIL reliable RPC
COBOL sample client application. It uses
RUN-COBOL-COMPILER and BIND-MAIL-CLIENT.

EXP951.COBCJCREATE-MAIL-CLIENT

S-procedure to bind the SENDMAIL reliable RPC
COBOL sample client application.

EXP951.COBCJBIND-MAIL-CLIENT

2S-procedure to run the COBOL2000 / COBOL85
compiler.

EXP951.COBCJRUN-COBOL-COMPILER

S-procedure to run the SENDMAIL reliable RPC
COBOL sample client application.

EXP951.COBCJRUN-MAIL-CLIENT

1Main program source of the SENDMAIL reliable RPC
COBOL example.

EXP951.COBCSMAILCLT.COB

1COBOL RPC client interface object.EXP951.COBCSSENDMAIL.COB

1COBOL RPC interface copybook.EXP951.COBCSSENDMAIL

1Generic RPC service.EXP951.COBCSCOBSRVI.COB

1Layout of the RPC communication area. See The
RPC Communication Area (Reference).

EXP951.COBCSERXCOMM

Adabas ADALNK IDTNAME parameter required
when using the NET transport method. It is shared
by all clients.

EXP951.COBCSCLIENT-ADAPARM

SENDMAIL reliable RPC client input parameters.EXP951.COBCSCLIENT-INPARM-MAIL

EntireX COBOL Wrapper174

Client and Server Examples for BS2000/OSD

Server

NotesCommentLMS LibraryTypeElement

2S-procedure to generate the SENDMAIL reliable RPC
COBOL sample server. It makes use of
RUN-COBOL-COMPILER.

EXP951.COBSJCREATE-MAIL-SERVER

2S-procedure to run the COBOL2000 / COBOL85
compiler.

EXP951.COBSJRUN-COBOL-COMPILER

1Server program source of the SENDMAIL reliable RPC
COBOL example.

EXP951.COBSSSENDMAIL.COB

Notes

1. When compiling the COBOL client and server sample source programs, the compilermay issue
warnings depending on the compiler used. These warnings can be ignored.

2. The default configuration expects a COBOL2000 environment. Depending on your installation
itmight be necessary to change the COMPILERparameterwithin the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOL85 syntax.

Creating the Sample COBOL Client Programs

To create the CALC, SQUARE and SENDMAIL clients, parametrize S-procedures CREATE-CALC-CLIENT,
CREATE-SQUARE-CLIENT and CREATE-MAIL-CLIENT in EXP951.COBC and choose the compiler installed
on your system.

For more details, see also see the procedure headers in the delivered job control.

Enter the following commands:

DefaultDescriptionProcedure Parameter

EXP951.COBCCOBOL client examples libraryEXP-COB-CLT

COBOL2000The COBOL compiler to be used: COBOL2000 or COBOL85COMPILER

For more details, see also see the procedure headers in the delivered job control.

Enter the following commands:

175EntireX COBOL Wrapper

Client and Server Examples for BS2000/OSD

/CALL-PROCEDURE *LIB(LIB=EXP951.COBC,ELE=CREATE-CALC-CLIENT)
/CALL-PROCEDURE *LIB(LIB=EXP951.COBC,ELE=CREATE-SQUARE-CLIENT)
/CALL-PROCEDURE *LIB(LIB=EXP951.COBC,ELE=CREATE-MAIL-CLIENT)

These procedures call the COBOL compiler and binder to generate corresponding L-elements
stored in the EXP-COB-CLT library (the default is EXP951.COBC).

Creating the Sample COBOL Server Programs

To create the CALC, SQUARE and SENDMAIL server programs, parametrize S-procedures
CREATE-CALC-SERVER, CREATE-SQUARE-SERVER and CREATE-MAIL-SERVER in EXP951.COBS and choose
the compiler installed on your system.

DefaultDescriptionProcedure Parameter

EXP951.COBSCOBOL server examples libraryEXP-SRV-LIB

COBOL2000The COBOL compiler to be used: COBOL2000 or COBOL85COMPILER

For more details, see also see the procedure headers in the delivered job control.

Enter the following commands:

/CALL-PROCEDURE *LIB(LIB=EXP951.COBS,ELE=CREATE-CALC-SERVER)
/CALL-PROCEDURE *LIB(LIB=EXP951.COBS,ELE=CREATE-SQUARE-SERVER)
/CALL-PROCEDURE *LIB(LIB=EXP951.COBS,ELE=CREATE-MAIL-SERVER)

These procedures call the COBOLCompiler to generate three corresponding objectmodules stored
as R-elements in EXP-SRV-LIB (the default is EXP951.COBS).

There is no need to link the object modules with the BS2000/OSDCommon Runtime Environment
(CRTE) library. The CRTE is loaded once dynamically in the corresponding worker task of the
RPC server where the server program is executed.

Running the Sample COBOL Client Programs

Running the CALC client is described below. Running the SQUARE and the SENDMAIL clients is similar.

To run the CALC client

1 Adapt S-element CLIENT-INPARM-CALC in EXP951.COBC.

EntireX COBOL Wrapper176

Client and Server Examples for BS2000/OSD

* *
* Example CALC Client Input Parameter *
* *
BROKERID <ipaddr>:<port>:TCP *
* BROKERID ETB<nnnnn>::NET *
* USERID <userid> *
* PASSWORD <password> *
CLASS RPC *
SERVER SRV1 *
SERVICE CALLNAT *
LOGON *
CALC + 00012345 00067890 *
CALC - 00067890 00012345 *
CALC * 00001234 00005678 *
CALC / 00005678 00001234 *
CALC % 00005678 00001234 *
LOGOFF *
END

Set up BROKERID in one of two formats, depending on the transport method:

■ TCP Transport Method
<ip>:<port>:TCP

is the address or DNS host name,ipwhere

is the port number that EntireX Broker is listening on, andport

is the protocol name.TCP

■ NET Transport Method
ETB<nnnnn>::NET

is the ID under which EntireX Broker is connected to the Adabas ID table andnnnnnwhere

is the protocol name.NET

2 Adapt S-element CLIENT-ADAPARM.

If "NET" is chosen as transport method, specify the name of the ID table to which the broker
is connected:

177EntireX COBOL Wrapper

Client and Server Examples for BS2000/OSD

ADALNK IDTNAME=ADAxxxxx

is any uppercase value.xxxxxwhere

This parameter is shared between all sample clients.

3 Make sure the RPC server runs as COBOL RPC server (refer to the RPC-CONFIG S-element
in library EXP951.JOBS) and library EXP951.COBS is included as PROGRAM-LIB in the start up
procedure START-RPC-SERVER.

4 Enter the following command to run the CALC COBOL example client:

/CALL-PROCEDURE *LIB(LIB=EXP951.COBC,ELE=RUN-CALC-CLIENT)

CALCCLT : START
OPEN IN: -------- : <00>

: BROKERID : ETB001
: CLASS : RPC
: SERVER : SRV1
: SERVICE : CALLNAT

CALCCLT : BROKER LOGON.
CALC called successfully: 000012345 + 000067890 = 000080235
CALC called successfully: 000067890 - 000012345 = 000055545
CALC called successfully: 000001234 * 000005678 = 007006652
CALC called successfully: 000005678 / 000001234 = 000000004
CALC called successfully: 000005678 % 000001234 = 000000742
CALCCLT : BROKER LOGOFF.
CLOSE IN: -------- : <00>
CALCCLT : LEAVE

EntireX COBOL Wrapper178

Client and Server Examples for BS2000/OSD

23 Client and Server Examples for IBM i

■ Overview of Client and Server Examples for IBM i .. 180
■ Installing and Running the Client Examples for IBM i ... 181
■ Installing and Running the Server Examples for IBM i ... 181

179

This chapter describes the examples provided for the COBOLWrapper for z/OS Batch.

Overview of Client and Server Examples for IBM i

The following examples are delivered for IBM i in the library EXAMPLE of the Developer's Kit
for IBM i.

NotesDescriptionWindows File NameSource fileModule

1COBOL client display file (source)- not delivered here -QCBLLESRCCALCMENU

1COBOL client dialog program (source)- not delivered here -QCBLLESRCCALCMAIN

1client interface object (generated)- not delivered here -QCBLLESRCCCALC

1generic RPC service module- not delivered here -QCBLLESRCRPCSRVI

2RPC server calc (source)- not delivered here -QCBLLESRCCALC

Module

The name of the delivered module.

Source file

The name of the source file where the modules are delivered.

Windows File Name

IBM i examples are not delivered in the Windows installation

Description

The purpose of the module

Notes:

1. The client application is built by the sourcemembers: CALCMENU, CALCMAIN, CCALC and
RPCSRVI. You can find the associated IDL file example.idl in the Windows installation.

2. The server application.

EntireX COBOL Wrapper180

Client and Server Examples for IBM i

Installing and Running the Client Examples for IBM i

To run the client examples for IBM i

1 The EntireX product library EXXmust be in your library list. It contains the Broker ACI service
program EXA.

2 Confirm that the broker and the RPC server are active.

3 Start the client application CALCCLIENT that you built, see Using the COBOLWrapper for
Batch (z/VSE, IBM i, BS2000/OSD and z/OS).

4 A menu similar to the following will be displayed:

Calculator Menu

Operation: + (type + - * / to calculate or
type . to terminate)

Operand 1: _____

Operand 2: _____

Result: ___________

Broker-ID: localhost:1971 Server: SRV1

Specify the ID of the remote Broker and the name of the server that provides the CALC program.
Specify the numbers youwant to compute and press ENTER. If the Broker connection fails, youwill
get an appropriate error message.

Installing and Running the Server Examples for IBM i

To install and run the server examples for IBM i

1 For IBM i, the delivered program CALC in QCBLLESRC source file must be provided to the
RPC server under IBM i.

2 Confirm that the broker is active.

3 Start the RPC server under IBM i.

181EntireX COBOL Wrapper

Client and Server Examples for IBM i

182

24 Client and Server Examples for z/VSE Batch

■ Overview of Client and Server Examples for z/VSE Batch .. 184
■ Run the Client Examples for z/VSE Batch ... 185
■ Installing and Running the Server Examples for z/VSE Batch ... 185

183

Overview of Client and Server Examples for z/VSE Batch

The following examples are delivered for z/VSE Batch, where “File” refers to the name of the de-
livered file, “sublibrary” to the version (v), release (r) and service pack (s) :

NotesDescriptionSublibraryFile

1, 2JCL to compile the calc client example.EXP951CALCCLT.J

1, 2JCL for running the calc client example.EXP951RUNCLT.J

2Calc client example (source).EXP951CALCCLT.C

2Calc client interface objects (generated).EXP951CCALC.C

2Calc client example (executable).EXP951CALCCLT.PHASE

1, 3CALC server compile and LNKEDT JCL.EXP951BCOBCALC.J

3,6CALC sample server source.EXP951BCOBCALC.C

3,6CALC sample server executable.EXP951CALC.PHASE

1, 4HELLO server compile and LNKEDT JCL.EXP951BCOBHELO.J

4,6HELLO sample server source.EXP951BCOBHELO.C

4,6HELLO sample server executable.EXP951HELLO.PHASE

1, 5POWER server compile and LNKEDT JCL.EXP951BCOBPOWR.J

5,6POWER sample server source.EXP951BCOBPOWR.C

5,6POWER sample server executable.EXP951POWER.PHASE

Notes:

1. Adapt the JCL to your needs.

2. The CALCLT client example is built with the source CALCCLT.C, the generated calc client in-
terface object CCALC and its copybook. It is delivered as executable CALCCLT.PHASE ready
for use. It is built according to the client-side build instructions.

3. The RPC server BCOBCALC.C is delivered as executable CALC.PHASE ready for use. You can
compile and link the example with job BCOBCALC.J.

4. The RPC server BCOBHELO.C is delivered as executable HELLO.PHASE ready for use. You
can compile and link the example with job BCOBHELO.J.

5. The RPC server BCOBPOWR.C is delivered as executable POWER.PHASE ready for use. You
can compile and link the example with job BCOBPOWR.J.

6. The server is built according to the server-side build instructions. See Using the COBOL
Wrapper for Batch (z/VSE, IBM i, BS2000/OSD and z/OS) for more information.

EntireX COBOL Wrapper184

Client and Server Examples for z/VSE Batch

Run the Client Examples for z/VSE Batch

To install and run the client examples for batch

1 Confirm that the broker and the RPC server are active.

2 Use the delivered JCL RUNCLT.J in sublibrary EXP951. Adapt the JCL to your needs.

Installing and Running the Server Examples for z/VSE Batch

To install and run the server examples for batch

1 If necessary, include the sublibrary in which the server programs reside into your RPC server
LIBDEF chain.

2 Confirm that the broker is active.

3 Start the Batch RPC server.

185EntireX COBOL Wrapper

Client and Server Examples for z/VSE Batch

186

25 Server Examples for z/VSE CICS

■ Overview Server Examples for z/VSE CICS .. 188
■ Installing and Running the Server Examples for z/VSE CICS .. 188

187

Overview Server Examples for z/VSE CICS

The following examples are delivered for z/VSE Batch, where “File” refers to the name of the de-
livered file, “sublibrary” to the version (v), release (r) and service pack (s) :

NotesDescriptionSublibraryFile

1, 2CICS COBOL precompile, COBOL compile and LNKEDT JCLEXP951CCOBCALC.J

2, 5CALC sample server sourceEXP951CCOBCALC.C

1, 3CICS COBOL precompile, COBOL compile and LNKEDT JCLEXP951CCOBHELO.J

3, 5HELLO sample server sourceEXP951CCOBHELO.C

1, 4CICS COBOL precompile, COBOL compile and LNKEDT JCLEXP951CCOBPOWR.J

4, 5POWER sample server sourceEXP951CCOBPOWR.C

Notes:

1. Adapt the JCL to your needs.

2. The RPC server CCOBCALC.C and CCOBHELO.C source is compiled and linked with the job
CCOBCALC.J.

3. The RPC server CCOBPOWR.C source is compiled and linked with the job CCOBPOWR.J.

4. The RPC server CCOBPOWR.J source is compiled and linked with the job CCOBPOWR.J.

5. The example is built according to the server-side build instructions. See Using the COBOL
Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

Installing and Running the Server Examples for z/VSE CICS

To install and run the server examples for CICS

As a prerequisite, the phases CALC, POWER and HELLO need to be defined to you CICS envir-
onment.

1 Build the CICS server program phases CALC, POWER and HELLO.

Caution: Be aware that the delivered CALC, POWER and HELLO phases for use in
batch can be overwritten.

Note: See Update the CICS Tables under Installing the EntireX RPC Servers under z/OS in
the z/OS installation documentation.

EntireX COBOL Wrapper188

Server Examples for z/VSE CICS

2 Confirm that the broker is active.

3 Start the CICS RPC Server.

189EntireX COBOL Wrapper

Server Examples for z/VSE CICS

190

26 COBOL Wrapper Reference

■ The RPC Communication Area (Reference) .. 192
■ Generic RPC Services Modules .. 194

191

The RPC Communication Area (Reference)

The RPC communication area is used to specify parameters that are needed to communicate with
the broker and are not specific to client interface objects. These are, for example, the Broker ID,
client parameters such as user ID, password and the server address such as class/servername/service
etc. See the table below for a complete listing.

Notes:

1. See below the table for an explanation of column headings.

2. The RPC communication area is provided with the generated copybook ERXCOMM in the folder
include for RPC client generation. See Generate COBOL Source Files from Software AG IDL
Files.

3. See sectionUsing the RPC Communication Area for the usage of the RPC communication area.

Notes
In/
Out

Opt/
Req
AutoExplanationRPC Communication Area Field

---Label.ERXCOMM-HEADER

---Label.COMM-REQUEST

-IRVersion of RPC communication area. Possible values:
2000.

COMM-VERSION

1IOLO - log on to the BrokerCOMM-FUNCTION

1LF - log off from the Broker

3OC - open conversation

3CE - close conversation with commit

3CB - close conversation with backout

4CT - create Natural Security token

6RC - do reliable RPC commit

6RR - do reliable RPC rollback

6RS - get reliable status

6EC - end of conversation

-O-Message class and message code returned by COBOL
Wrapper.

COMM-RETURN-CODE

-O-Message text provided by COBOLWrapper (long
versions).

COMM-MESSAGE-TEXT-EX

-O-Message text provided by COBOLWrapper (short
versions).

COMM-MESSAGE-TEXT

---Label.ERXCOMM-AREA1

EntireX COBOL Wrapper192

COBOL Wrapper Reference

Notes
In/
Out

Opt/
Req
AutoExplanationRPC Communication Area Field

---Label.COMM-USERID

4IOUser ID (8 characters) used for Natural Security tokens.COMM-USERID1

-IOUser ID extension.COMM-USERID2

4IOPassword used for Natural Security tokens.COMM-PASSWORD

4IOLibrary information used by Natural Security token.COMM-LIBRARY

4O-Length of Natural Security token.COMM-SECURITY-TOKEN-LENGTH

-O-Natural Security token.COMM-SECURITY-TOKEN

3I/OAControl variable internally used by generic RPC services
and client interface objects. If set to Y, RPC requests will
use COMM-ETB-CONV-ID for conversationality.

COMM-IN-CONVERSATION

6I/OAControl variable internally used by generic RPC services
and client interface objects for reliable RPC. If set to Y,
RPC requests will use COMM-ETB-UOW-ID for reliability.

COMM-IN-ACTIVE-UOW

6I/ORControl variable used by the application to determine
whether standardRPC requests or reliable RPCmessages
are used. Valid values:

COMM-RELIABLE-STATE

normal RPC requests' ' (blank)

reliable RPC in AUTO-COMMITmodeA

reliable RPC in CLIENT-COMMITmodeC

6OResult of a “get reliable status” call to generic RPC
services, see field COMM-FUNCTION above. Values
correspond to broker ACI field UOWSTATUS.

COMM-RELIABLE-STATUS

-IRCorresponds to Broker ACI field BROKER-ID.COMM-ETB-BROKER-ID

-IRCorresponds to Broker ACI field SERVER-CLASS.COMM-ETB-SERVER-CLASS

-IRCorresponds to Broker ACI field SERVER-NAME.COMM-ETB-SERVER-NAME

-IRCorresponds to Broker ACI field SERVICE.COMM-ETB-SERVICE-NAME

1,2IOCorresponds to Broker ACI field USER-ID.COMM-ETB-USER-ID

1,2IOCorresponds to Broker ACI field PASSWORD.COMM-ETB-PASSWORD

-I/OOCorresponds to Broker ACI field TOKEN.COMM-ETB-TOKEN

-I/OACorresponds to Broker ACI field SECURITY-TOKEN.COMM-ETB-SECURITY-TOKEN

3I/OACorresponds to Broker ACI field CONV-ID.COMM-ETB-CONV-ID

-IOCorresponds to Broker ACI field WAIT. Default: 60
seconds.

COMM-ETB-WAIT

-IOCorresponds to Broker ACI field API-VERSION.
Default=4.

COMM-ETB-APIVERS

6I/OOCorresponds to Broker ACI field UOWID.COMM-ETB-UOW-ID

193EntireX COBOL Wrapper

COBOL Wrapper Reference

Notes
In/
Out

Opt/
Req
AutoExplanationRPC Communication Area Field

6I/OACorresponds to Broker ACI field STORE.COMM-ETB-STORE

RPC Communication Area field
Name of the filed in the RPC communication area.

Explanation
Explanation of the purpose of the field.

Req. Opt. Auto
Indicates for input fields whether they have to be given by the RPC application (required) or
may be given by the user (optional). Fields markedwith "Auto" are managed internally by the
Generic RPC Services Modules themselves.

In Out
Indicates whether the field is an input field (to be given by the RPC application) or an output
field (returned to your RPC application).

Notes:

1. See Using Broker Logon and Logoff.

2. Optional if broker does not require security, required if broker is secured.

3. RPC conversations are supported when communicating with an RPC server. For more inform-
ation, see Using Conversational RPC.

4. Natural Security is only relevant if communicating with a Natural RPC server. See Using the
COBOLWrapper with Natural Security and Impersonation.

5. See Reliable RPC for COBOLWrapper.

Generic RPC Services Modules

This section covers the following topics:

■ Introduction
■ Generic RPC Services Modules Usage
■ Delivered Modules for z/OS
■ Delivered Modules for z/VSE
■ Delivered Modules for BS2000/OSD
■ Delivered Modules for IBM i

EntireX COBOL Wrapper194

COBOL Wrapper Reference

■ Adapting the Used Broker Stub

Introduction

The generic RPC services module COBSRVI is required for RPC clients.

■ It can be optionally generated during RPC client generation in the folder client in the container
folder. Section Generate Generic RPC Service for Module COBSRVI under Generate COBOL
Source Files from Software AG IDL Files explains how to generate the RPC service module
COBSRVI.

■ It contains functions needed for RPC communication where a client interface object(s) is not
needed. Refer to the functions documented with the RPC communication area field
COMM-FUNCTION underTheRPCCommunicationArea (Reference) for a list of provided functions.

■ It manages internal states held inside the RPC communication area for conversational RPC, re-
liable RPC etc. See The RPC Communication Area (Reference).

■ From a COBOL programmer's point of view, it is always called with the COBOL program name
COBSRVI, even for the delivered mainframe sources COBSRVIB, COBSRVIC and COBSRVID.

■ It contains the call to the broker stub.

Generic RPC Services Modules Usage

The delivered modules on mainframe platforms are mainly for a quick demonstration of the de-
livered examples. The best approach is to use the modules generated by the EntireX Workbench,
for the following reasons:

■ The modules delivered on mainframe platforms may be out-of-date.
■ You can set generation options, for example String Literal (seeCharacters Used for String Liter-
als), individually as required.

Installation Linkage UsageDescription
Source to
be UsedScenariosEnvironment

Linked to your client
application or can be
called dynamically.

This module has a call
interface to your COBOL
RPC client application.

COBSRVIBBatch. SeeUsing theCOBOL
Wrapper for Batch (z/VSE,
IBM i, BS2000/OSD and
z/OS).

z/OS and
z/VSE

Installed only once
within CICS as a CICS

This module has an EXEC
CICS LINK interface to

COBSRVICCICS with DFHCOMMAREA
calling convention. See

program and shared byyour COBOL RPC client
application.

Using the COBOLWrapper
for CICS with all COBOL RPC client

applications.DFHCOMMAREA Calling
Convention (z/OS and
z/VSE).

195EntireX COBOL Wrapper

COBOL Wrapper Reference

Installation Linkage UsageDescription
Source to
be UsedScenariosEnvironment

Linked to your client
application or can be
called dynamically.

This module has a call
interface to your COBOL
RPC client application.

COBSRVIDCICSwith call interfaces. See
Using the COBOLWrapper
for CICS with Call
Interfaces (z/OS and z/VSE).

Linked to your client
application or can be
called dynamically.

This module has a call
interface to your COBOL
RPC client application.

COBSRVIBIMS. See Using the COBOL
Wrapper for IMS (z/OS).

z/OS IMS

Linked to your client
application or can be
called dynamically.

This module has a call
interface to your COBOL
RPC client application.

Not
delivered.

IDMS/DC with call
interfaces. See Using the
COBOLWrapper for

z/OS
IDMS/DC

Generate it with the EntireX
Workbench.

IDMS/DC with Call
Interfaces (z/OS).

Linked to your client
application or can be
called dynamically.

This module has a call
interface to your COBOL
RPC client application.

COBSRVIBatch. SeeUsing theCOBOL
Wrapper for Batch (z/VSE,
IBM i, BS2000/OSD and
z/OS).

BS2000/OSD

Linked to your client
application or can be
called dynamically.

This module has a call
interface to your COBOL
RPC client application. Do

RPCSRVIBatch. SeeUsing theCOBOL
Wrapper for Batch (z/VSE,
IBM i, BS2000/OSD and
z/OS).

IBM i

not use thismodule; it is out
of date. Generate it as
COBSRVIwith the EntireX
Workbench.

Delivered Modules for z/OS

NotesDescriptionData SetModule

2Batch generic RPC services with call interface.EXP951.SRCECOBSRVIB

2CICS generic RPC services with EXEC CICS LINK interface.EXP951.SRCECOBSRVIC

2CICS generic RPC services with call interface.EXP951.SRCECOBSRVID

2JCL to compile the CICS generic RPC services module COBSRVICwith
EXEC CICS LINK interface.

EXP951.SRCECOBIGYIC

1RPC communication area.EXP951.INCLERXCOMM

3C main module for application errors.EXP951.SRCEERXRCSRV

3Ready-to-use ERXRCSRVmodule for application errors.EXP951.LD00ERXRCSRV

2JCL to compile the CICS generic RPC servicemodule COBSRVICwith EXEC
CICS LINK interface.

EXP951.JOBSEXPCOBCL

Module
Name of the delivered module.

EntireX COBOL Wrapper196

COBOL Wrapper Reference

vrs
Version, release and service pack.

EXP951.INCL
Generic RPC include data set. The generic RPC include data set may be delivered as a patch
with a different name EXP951.INnn, where nn is the patch level number. Make sure you install
the highest patch level available. The data set is required to SYSLIB input for the COBOL
compiler.

EXP951.SRCE
Generic RPC source data set. The generic RPC source data set may be delivered as a patch
with a different name EXP951.S0nn, where nn is the patch level number. Make sure you install
the highest patch level available. The data set is required to SYSLIB input for the COBOL
compiler.

Notes:

1. See The RPC Communication Area (Reference).

2. See Generic RPC Services Modules Usage.

3. See Returning Application Errors from a Server under z/OS CICS to a Client.

Delivered Modules for z/VSE

NotesDescriptionSublibraryFile

1RPC Communication area.EXP951ERXCOMM

2, 3Batch generic RPC services with call interface (source).EXP951COBSRVIB.C

2, 3Batch generic RPC services with call interface (object).EXP951COBSRVIB.OBJ

2, 3CICS generic RPC services with EXEC CICS LINK interface (source).EXP951COBSRVIC.C

2, 3CICS generic RPC services with EXEC CICS LINK interface (object).EXP951COBSRVIC.OBJ

2, 3CICS generic RPC services with call interface (source).EXP951COBSRVID.C

2, 3CICS generic RPC services with call interface (object).EXP951COBSRVID.OBJ

File
Name of the delivered file.

Sublibrary
Name of the delivered sublibrary.

Description
Purpose of the file.

Notes:

1. See The RPC Communication Area (Reference).

197EntireX COBOL Wrapper

COBOL Wrapper Reference

2. See Generic RPC Services Modules Usage.

3. We recommend you use module COBSRVI generated by the EntireX Workbench instead of the
modules COBSRVIB, COBSRVIC and COBSRVID delivered with your z/VSE installation. The reason
for this is that the EntireX Workbench is updated much more frequently. Section Generate
Generic RPC Service forModule COBSRVI underGenerate COBOLSource Files from Software
AG IDL Files explains how to generate the RPC service module.

Delivered Modules for BS2000/OSD

NotesDescriptionData SetModule

1RPC communication area.EXP951.COBCERXCOMM

2, 3Batch generic RPC services with call interface.EXP951.COBCCOBSRVI.COB

Notes:

1. See The RPC Communication Area (Reference).

2. See Generic RPC Services Modules Usage

3. We recommend you use module COBSRVI generated by the EntireX Workbench instead of the
delivered module. The reason for this is that the EntireX Workbench is updated much more
frequently. SectionGenerateGenericRPCService forModule COBSRVIunderGenerate COBOL
Source Files from Software AG IDL Files explains how to generate the RPC service module.

Delivered Modules for IBM i

NotesDescriptionSource fileModule

1RPC communication area.QCBLLESRCERXCOMM

2, 3Batch generic RPC services with call interface.QCBLLESRCRPCSRVI

Notes:

1. See The RPC Communication Area (Reference).

2. See Generic RPC Services Modules Usage

3. Do not use module RPCSRVI delivered with your IBM i installation. It does not support all the
features described here, for example reliable RPC. Use module COBSRVI generated by the En-
tireX Workbench instead. Section Generate Generic RPC Service for Module COBSRVI under
Generate COBOL Source Files from Software AG IDL Files explains how to generate the RPC
service module.

EntireX COBOL Wrapper198

COBOL Wrapper Reference

Adapting the Used Broker Stub

Because multiple broker stubs may be offered per operating system and environments, it may be
necessary to adapt the COBSRVI module to the correct broker stub that supports the required
transport (TCP, SSL,NET). To do this,modify theCOBOL subprogram DOBROKER inside the COBSRVI
source file with a broker stub that meets your requirements.

For availability and information on broker stubs, see Administration of Broker Stubs under z/OS |
UNIX | Windows | BS2000/OSD | IBM i.

Caution: Do not make any modifications other than changing the broker stub name, and do
not modify the COBOL subprogram COBSRVI inside the same COBSRVI program source.
Unexpected behavior will occur.

199EntireX COBOL Wrapper

COBOL Wrapper Reference

200

	EntireX COBOL Wrapper
	Table of Contents
	EntireX COBOL Wrapper
	1 Introduction to the COBOL Wrapper
	Description
	Generic RPC Services Module
	COBOL Client Applications
	COBOL Server Application
	COBOL Server Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface
	Micro Focus with Standard Linkage Calling Convention
	Batch with Standard Linkage Calling Convention
	IMS BMP with Standard Linkage Calling Convention

	2 Using the COBOL Wrapper for the Client Side
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)
	Using the COBOL Wrapper for Batch (z/VSE, IBM i, BS2000/OSD and z/OS)
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)
	Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)
	Using the COBOL Wrapper for IMS (z/OS)

	3 Using the COBOL Wrapper for the Server Side
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)
	Using the COBOL Wrapper for Batch (z/OS, IBM i, BS2000/OSD and z/VSE)
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)
	Introduction
	CICS Channel Container IDL Rules
	Restrictions
	Example 1: Same Container for Direction In and Out
	Example 2: Different Container for Direction In and Out
	Example 3: Multiple Containers
	Example 4: Variable Number of Containers (Direction Out Only)
	Steps

	Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
	Using the COBOL Wrapper for IMS BMP (z/OS)

	4 Generate COBOL Source Files from Software AG IDL Files
	Select an IDL File and Generate RPC Client or RPC Server
	Generation Settings - Properties
	Introduction
	Target Operating System
	Characters Used for String Literals
	IDL-Specific Output Folder
	Client Interface Types
	Customize Automatically Generated Client Names
	z/OS and z/VSE
	IBM i
	UNIX and Windows with Micro Focus
	BS2000/OSD

	Starting COBOL Level for Data Items in Generated Copybooks
	RPC Communication Area
	Generate Generic RPC Service for Module COBSRVI
	Customize Automatically Generated Server Names
	Server Interface Types
	IMS PSB List
	Channel Name

	Generation Settings - Preferences

	5 Using the COBOL Wrapper in Command-line Mode
	Command-line Options
	Generate a COBOL RPC Client from IDL File
	Generate a COBOL RPC Server from IDL File

	Example Generating an RPC Client
	Example Generating an RPC Server
	Further Examples
	Windows
	Example 1
	Example 2
	Example 3
	Example 4

	Linux
	Example 1
	Example 2
	Example 3

	6 Software AG IDL to COBOL Mapping
	Mapping IDL Data Types to COBOL Data Types
	Mapping Library Name and Alias
	Client Side
	Server Side

	Mapping Program Name and Alias
	Client Side
	Server Side

	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes IN, OUT, INOUT
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	7 Writing Standard Call Interface Clients
	Step 1: Declare and Initialize the RPC Communication Area
	Step 2: Declare the Data Structures for RPC Stubs
	Step 3: Required Settings in the RPC Communication Area
	Step 4: Optional Settings in the RPC Communication Area
	Step 5: Issue the RPC Request
	Step 6: Examine the Error Code

	8 Using the RPC Communication Area
	Purpose of the RPC Communication Area
	Using the RPC Communication Area with a Standard Call Interface
	Option External Clause
	Option Linkage Section
	Option Copybook

	Using the RPC Communication Area with EXEC CICS LINK
	Example

	9 Using the Generated Copybooks
	IDL Interface Copybooks
	COBINIT Copybook
	COBEXIT Copybook

	10 Using Broker Logon and Logoff
	11 Using Conversational RPC
	12 Using the COBOL Wrapper with Natural Security and Impersonation
	13 Returning Application Errors from a Server to a Client
	Returning Application Errors from a Server under z/OS Batch to a Client
	Returning Application Errors from a Server under z/OS CICS to a Client
	Using EXEC CICS ABEND ABCODE
	Using RETURN-CODE Special Register

	Returning Application Errors from a Server under z/OS IMS to a Client

	14 Reliable RPC for COBOL Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Step 1: Declare the Data Structures for RPC Client Interface Objects
	Step 2: Declare and Initialize the RPC Communication Area
	Step 3: Required Settings in the RPC Communication Area
	Step 4a: Perform a Broker Logon
	Step 4b: Examine the Error Code
	Step 5: Enable Reliable RPC with CLIENT_COMMIT
	Step 6a: Send the RPC Message
	Step 6b: Examine the Error Code
	Step 7a: Check the Reliable RPC Message Status
	Step 7b: Examine the Error Code
	Step 8: Send a Second RPC Message
	Step 9: Check the Reliable RPC Message Status
	Step 10a: Commit both Reliable RPC Messages
	Step 10b: Examine the Error Code
	Step 11: Send a Third RPC Message
	Step 12: Check the Reliable RPC Message Status
	Step 13a: Roll Back the Third RPC Message
	Step 13b: Examine the Error Code
	Step 14a: Perform a Broker Logoff
	Step 14b: Examine the Error Code

	Writing a Server
	Broker Configuration

	15 Server Mapping Deployment
	Compatibility between Interface Type and RPC Server
	Deploying a Server Mapping File
	Server Mapping Deployment Wizard
	Step 1: Start the Wizard
	Step 2a: Create a New Deployment Environment
	Step 2b: Define the Connection to the Deployment Service and Deploy
	Step 3: Select an Existing Deployment Environment and Deploy

	Server Mapping Deployment Wizard Preferences
	Create a new Deployment Environment
	Edit an Existing Deployment Environment
	Remove an Existing Deployment Environment

	Server Mapping Deployment in Command-line Mode
	Command-line Options
	Example

	Server Mapping Deployment to z/OS, using FTP and IDCAMS

	16 Using the COBOL Wrapper with EntireX Security
	17 Client and Server Examples for Micro Focus (UNIX and Windows)
	Basic RPC Client Examples - CALC, SQUARE
	Basic RPC Server Examples - CALC, SQUARE
	Reliable RPC Client Example - SENDMAIL
	Reliable RPC Server Example - SENDMAIL

	18 Client and Server Examples for z/OS Batch
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client
	SQUARE Client

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	Reliable RPC Client Example - SENDMAIL
	Reliable RPC Server Example - SENDMAIL

	19 Client and Server Examples for z/OS CICS
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client using DFHCOMMAREA
	CALC Client using Call Interface
	SQUARE Client using DFHCOMMAREA
	SQUARE Client using Call Interface

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	Reliable RPC Client Examples - SENDMAIL
	SENDMAIL Client using DFHCOMMAREA
	SENDMAIL Client using Call Interface

	Reliable RPC Server Example - SENDMAIL
	Advanced CICS Channel Container RPC Server Example - DFHCON
	Advanced CICS Large Buffer RPC Server Example - DFHLBUF

	20 Client and Server Examples for z/OS IMS BMP
	21 Server Examples for z/OS IMS MPP
	CALC Server
	SQUARE Server

	22 Client and Server Examples for BS2000/OSD
	Overview of Client and Server Examples for BS2000/OSD
	CALC Example
	Client
	Server

	SQUARE Example
	Client
	Server

	SENDMAIL Reliable RPC Example
	Client
	Server

	Notes

	Creating the Sample COBOL Client Programs
	Creating the Sample COBOL Server Programs
	Running the Sample COBOL Client Programs

	23 Client and Server Examples for IBM i
	Overview of Client and Server Examples for IBM i
	Installing and Running the Client Examples for IBM i
	Installing and Running the Server Examples for IBM i

	24 Client and Server Examples for z/VSE Batch
	Overview of Client and Server Examples for z/VSE Batch
	Run the Client Examples for z/VSE Batch
	Installing and Running the Server Examples for z/VSE Batch

	25 Server Examples for z/VSE CICS
	Overview Server Examples for z/VSE CICS
	Installing and Running the Server Examples for z/VSE CICS

	26 COBOL Wrapper Reference
	The RPC Communication Area (Reference)
	Generic RPC Services Modules
	Introduction
	Generic RPC Services Modules Usage
	Delivered Modules for z/OS
	Delivered Modules for z/VSE
	Delivered Modules for BS2000/OSD
	Delivered Modules for IBM i
	Adapting the Used Broker Stub

