5 software~

webMethods EntireX

EntireX C Wrapper

Version 9.5 SP1

November 2013

webMethods EntireX

This document applies to webMethods EntireX Version 9.5 SP1.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXCWRAPPER-95SP1-20140628

Table of Contents

1 Introduction to C WIaPPercccoiiiiiiiiiiiiiiiiiiiicc e 1
DeSCIIPHION ..ottt 2
Generic RPC C RUNEMEoooiviiiiiiiiiiiicic 3
C Client APPLCAtioNSc.coviiiiiiiiiiiieicccec e 3
C Server APPLiCAtIONcocuiiiiiiiiiiiiiiiiiiiiie e 4

2 Using the C WIaPPeTc.covuiiiiiiiiiiiicicccce e 5
Using the C Wrapper for the Client Sidecooceviiiiiiiiiiiiiiiiiccccceee, 6
Using the C Wrapper for the Server Side (z/OS, UNIX, Windows, BS2000/OSD,

IBM D) o s 10
Generate C Source Files from Software AG IDL Filesc.ccccoociiiiiiiiiniiiinn, 15

3 Using the C Wrapper in Command-line Modec.ccooiiiiiiiiiiiinii 21
Command-line OPtioNSccceeiiiiiiiiiiiiiiii e 22
Example Generating an RPC Clientcccocooiiiiiiiiiiiic 23
Example Generating an RPC Servercccocoiiiiiiiiiiiiiiiiicccics 23
Further EXamplescccooiiiiiiiiiiiiiiiicc 24

4 Using the C Wrapper in IDL Compiler Command-line Modec...ccecoeiinn, 27

5 Software AG IDL t0 C Mappingccccevvuiiiiiiiiiiiiiiiiiiccicciiecic e 29
Mapping IDL Data Types to C Data Typescccoooieiiiiiiiiiiii 30
Mapping Library Name and ALasc.cccoceeviiiiiiiiiiniiiiiiiiccccee e 34
Mapping Program Name and Aliascccccecuiiiiiiiiiiiiiiiiiiiieece 34
Mapping Parameter Namescccocoiiiiiiiiiii 35
Mapping Fixed and Unbounded Arrayscccociiviiiiiiiiiiiiiiiiiiiiiiccicceen 35
Mapping Groups and Periodic GIoupscccoceeviiiiiiiiiiiiiiiiccccc 36
Mapping SErUCUTEScccuiiiiiiiiiiiiiiiii 36
Mapping the Direction Attributes IN, OUT and INOUTcccoocvriiiininnnnnnnn. 36
Mapping the ALIGNED Attributecccccoooiiiiiiiiiiiiiiic, 37
Calling Servers as Procedures or FUNCtionsccccocceiviiiiiiiiiiiiiniiiii, 37

6 Writing a Single-threaded C RPC Client Applicationcccoocoeviiiiiiiiiiniini, 39
Step 1: Base Declarations Required by the C Wrapperccccccevciiiiiiiiiiinnnnnnn. 40
Step 2: Required Settings for the C Wrapperccccovieviiiiiiiiiii, 41
Step 3: Register with the RPC Runtimeccccooceiiiiiiiiiiiiniiiiiiicccec 41
Step 4: Issue the RPC Requestccocuiiiiiiiiiiiiiiiiiccccc 42
Step 5: Examine the Error Code ..o 42
Step 6: Deregister with the RPC Runtimeccccccovviiiiiiiiiiiiiiiie, 42

7 Writing Advanced Applications with the C Wrapperc..cccoooviiiii 43
Using the RPC RUNIMEooiiiiiiiiiiiiiiiiiiiiiciccc e 44
Examine the RPC Runtime and Interface Object Versionc.ccoeiviiiiiinnnn 45
TIACINE oo 45
Programming Multithreaded RPC Clientsccccciviiiiiiiiiiniiiiininiiiinn, 45
Natural Logon or Changing the Library Namecc.cccoooiiii, 46
Using Variable-length Data Types AV, BV, KV and UVcccccociiviiiiiininnnn 47
Using Unbounded ATTayscccocoiiiiiiiiiiiiiccec e 48
Using Conversational RPCcccooiiiiiiiiiiiiiiiiccc e 51

EntireX C Wrapper

Using RPC COMPIESSIONoovuviiiiiiiiiiiiiiiiiii i 52
Using EntireX Securityccooiiiiiiiiiiiii 53
Using Natural Securitycccooviiiiiiiiiiiiiiiiiiiiic 54
USING SSL ..o 54
Using COMPIESSIONeiiiuiiiiiiiiiiiiiiiiiiic i 55
Using Internationalization with the C Wrappercccoccooiiiiiiiiiiiiii, 55
8 Writing RPC Clients for the RPC-ACI Bridge with the C Wrapperc.cccceecuienene. 59
9 Writing Callable RPC Servers with the C Wrapperccccocciiviiiiiiiiiiiiiiiiiiiie 61
Introduction to Callable RPC Serverscccccooiiiiiiiiiiiiiiiiiiiiiiiccce, 62
Writing a Callable RPC SeIverccccoociiiiiiiiiiiiiiiiiiiicccceeec e 62
Writing the Callbackccoooiiiiii 64
Break/Stop the RPC Execution LOOPc.cooviiiiiiiiiiiiiiiiiiiiciccccccec e 66
Scalable Number of Worker Threadsccccociiiiiiiiiiiiiiiiii 66
10 Reliable RPC for C WIapPeTccciiiiiiiiiiiiiiiiiiiieiccic s 69
Introduction to Reliable RPCcccccooiiiiiiiiiiii 70
Writing @ CHEntooiiiiiii 71
Writing a Client using AUTO COMMITccccoooiiiiiiiiiiiiiiiiieccee 77
WIHNG @ SEIVET ...oooiiiiiii 78
Broker Configurationc.cccooiiiiiiiiiiiiiiiiic e 79
11 Client and Server Examples for UNIX and Windowsccccoeiiviiiiiiiiiinninnn. 81
Basic RPC Client Examples - CALC, SQUAREccccooviiiiiiiniiiiiiiiiiic 82
Basic RPC Server Examples - CALC, SQUAREcccocviiiiiiiiiiiiiiiiiiiicie, 82
Basic Callable RPC Server Examples - CALC, SQUAREccocooviiiiiiiiiiics 83
Reliable RPC Client Example - SENDMALILc.ccccoviiiiiiiiiiiiiiiiiciicineceeceee 83
Reliable RPC Server Example - SENDMALILccccoooiviiiiiiiiiiiiececceecenns 84
Advanced CICS Channel Container Server RPC Example - DFHCON 85
Advanced CICS Large Buffer RPC Server Example - DFHLBUF 85
12 Server Examples for BS2000/OSDc.cccooiiiiiiiiiiiiiiicccceee 87
OVEIVIEW .ottt ettt e 88
Creating the C RPC Sample Servercccocooiiiiiiiiiiiiiicccccccce 88
13 Server Examples fOr IBM 1ccccuiiiiiiiiiiiiiiiiiiiiiccicic e 91
14 API Function Descriptions for the C Wrappercccocovviiiiiiiiiiiiiic 93
API Function Descriptionscccocoiiiiiiiiiiiiiiiiiicic 94
API Function Descriptions for Variable-length Data Types AV, BV, KV and
UV e 130
API Function Descriptions for Unbounded Arrayscccocvvviiiiiiniiiiiinnnnnen. 143
API Function Descriptions for Reliable RPCc.cccooiiiiiiiiiiiic, 159
15 API Data Descriptions for the C Wrapperccccccocveviiiiiiiiiiiiiiiiicicecceeceeceen 171
Conventions Used for API Data Descriptionsc.ccccoovvevuiiiiiiiiiiiiciinciice 172
API Data Descriptionscccooiiiiiiiiiiiiiiiiccie 172

iv EntireX C Wrapper

1 Introduction to C Wrapper

LB =Yoo USRS PPPPPPRR
B GeNeriC RPC C RUNIIME ...t e e e e e et e e e e nneeas
B C ClIent APPIICALIONS ... eeei ettt ettt
B G SEIVEI APPLICATION ...ttt e e e e e e e e

Introduction to C Wrapper

EntireX C Wrapper provides access to RPC-based components from C applications. It enables you
to develop both client and server applications.

Description

The C Wrapper enables access to RPC servers for C client applications and access to C servers for
any RPC client. The C Wrapper generation tools of the EntireX Workbench take as input a Software
AG IDL file which describes the interface of the RPC and generates C sources that implement the
functions and data types of the interface, and (internally) the related CVM file (see CVM File) if
such a file has been generated.

Wrapper Chasad

Clignts I

RPC C i

RPC Servers ._- > p Runtime = d
EntireX Broker Wrapper « C-based

» > < > Servers |

RPC Clients RPC Server - w

The generated functions can be compiled with the C compiler of your target platform.
The C Wrapper works as follows:

" C code is generated from the Software AG IDL file and the related CVM file.

® The generic RPC C runtime implements functionality that is not specific to a given IDL file (e.g.
broker logon and logoff, marshalling and unmarshalling of data). The generated C code makes
use of the RPC C runtime functionality.

® The Software AG IDL Compiler and an appropriate template are used for the C code generation.

2 EntireX C Wrapper

Introduction to C Wrapper

Generic RPC C Runtime

In order to minimize the amount of code generated for a specific IDL, all service-type functionality
required by the client interface object or the server interface is implemented in a generic RPC C
runtime library. The generic RPC C runtime implements functions, for example:

* marshalling C data types to Software AG IDL data types

® unmarshalling Software AG IDL data types to C data types

® connecting RPC clients to RPC servers via the broker

" etc.

C Client Applications

For a given IDL file and the related CVM file, the Software AG IDL Compiler and a C code gener-
ation template for clients are used to generate client interface objects and header files. The source
code generated by the C Wrapper can be compiled with your target C compiler. Application de-
velopers use the generated interface object(s) and the header file to write C applications that access
RPC servers.

C Client IDL RPC Server
Programmer
I: > EntireX - >
b | Broker
- -4
Client Wrapper
(C RPC Stub) I IEEWE{ ’
mplementation
_—
™ ™

RPCC I
Runtime
-

For more information, see Using the C Wrapper.

EntireX C Wrapper 3

Introduction to C Wrapper

C Server Application

The Software AG IDL Compiler and a C code generation template for servers are used to generate
interface object(s) and a server (skeleton) for a specific IDL.

Application developers use the generated server (skeleton) to write their own server code for each
program in the IDL. The source code is compiled and linked with your target C compiler and
linker into interface object and server libraries. Your server library name needs to match the library
name as specified in the IDL file. The interface object library has the same name as your server

library prefixed with the letter "D".

DL
C RPC
Server
Programmer
Server Wrapper
RPC EntireX L - (C RPC Stub)
Client oy Broker > S
Implementation
-
§
For more information, see Using the C Wrapper.
4 EntireX C Wrapper

2 Using the C Wrapper

= Using the C Wrapper for the Client Side

= Using the C Wrapper for the Server Side (z/OS, UNIX, Windows, BS2000/0OSD, IBM i)cccvveviiirreennnn.. 10
= Generate C Source Files from Software AG IDL FIlEScooveeeeeee e 15

Using the C Wrapper

Using the C Wrapper for the Client Side

The C Wrapper provides access to RPC-based components from C applications and enables users
to develop both clients and server. This section introduces the various possibilities for RPC-based
client applications written in C.

= Using the C Wrapper in Single-threaded Environments (UNIX, Windows)
= Using the C Wrapper in Multithreaded Environments (UNIX, Windows)

Using the C Wrapper in Single-threaded Environments (UNIX, Windows)

This mode applies to UNIX and Windows.

Call Interface

generated -

I Call Interface

Broker Stub

@ For generation, see Generate C Source Files from Software AG IDL Files.

In this scenario, the C RPC client customer application, every generated interface object and the
RPC C runtime library (erx) are linked (bound) together to an executable application.

6 EntireX C Wrapper

Using the C Wrapper

» To use the C Wrapper in single-threaded environments

1

Generate the RPC client, see Generate C Source Files from Software AG IDL Files

® and select the Mapping Options according to your needs.
® Do not switch on the check box Multithreaded Client, see Generate RPC Client.

If necessary, use FTP to transfer your application and the interface object(s) to the target
platform where you write your application.

Write your application. See Writing a Single-threaded C RPC Client Application.

If necessary, transfer your application and the client interface object(s) to the target platform
where you compile your application, using FTP.

Using a C compiler supported by the C Wrapper and compile

* the generated client interface object(s)

® your C RPC client customer application.

Use the standard C/C++ compiler of your target platform. Please note platform-specific settings
and see also the README.TXT file of the Delivered Examples for the C Wrapper.

Using the linker (binder), link (bind)

* the compiled client interface object(s)
® your C RPC client customer application
" the broker stub

® under Windows: the RPC C runtime library delivered as a library and DLL named erx.lib
and erx.dll

® under UNIX: the RPC C runtime library delivered as a shared object or shared libary named
liberx.so or liberx.sl

Use the standard C/C++ linker of your target platform. Please note platform-specific settings
and see also the README.TXT file of the Delivered Examples for the C Wrapper.

EntireX C Wrapper 7

Using the C Wrapper

Using the C Wrapper in Multithreaded Environments (UNIX, Windows)

This mode applies to UNIX and Windows.

Call Interface

generated -

I Call Interface

Broker Stub

@ For generation, see Generate C Source Files from Software AG IDL Files.

In this scenario, the C RPC client customer application, every generated client interface object and
the RPC C runtime library (erx) are linked (bound) together to an executable application.

» To use the C Wrapper in multithreaded environments

1 Generate the RPC Client, see Generate C Source Files from Software AG IDL Files
® and select the Mapping Options according to your needs.
" and switch on the check box Multithreaded Client, see Generate RPC Client

2 If necessary, transfer your application and the client interface object(s) to the target platform
where you write your application, using FTP.

3 Write your multithreaded C RPC Client application, see Programming Multithreaded RPC
Clients.

8 EntireX C Wrapper

Using the C Wrapper

If necessary, transfer your application and the client interface object(s) to the target platform

where you compile your application, using FTP.

Using a C compiler supported by the C Wrapper, compile:

the generated client interface object(s)

your C RPC client customer application

Use the standard C/C++ compiler of your target platform. Please note platform-specific settings
and see also the README.TXT file of the Delivered Examples for the C Wrapper.

Using the linker (binder), link (bind)

the compiled client interface object(s)
your C RPC client customer application
the broker stub

under Windows: the RPC C runtime library delivered as a library and DLL named erx.lib
and erx.dll

under UNIX: the RPC C runtime library delivered as a shared object or shared libary named
liberx.so or liberx.sl.

Use the standard C/C++ linker of your target platform. Please note platform-specific settings
and see also the README.TXT file of the Delivered Examples for the C Wrapper.

EntireX C Wrapper 9

Using the C Wrapper

Using the C Wrapper for the Server Side (z/0OS, UNIX, Windows, BS2000/0SD,
IBM i)

The C Wrapper provides access to RPC-based components from C applications and enables users
to develop both clients and server. This section introduces the various possibilities for RPC-based
server applications written in C.

This section applies to the operating systems z/OS, UNIX, Windows, BS2000/OSD and IBM i.

Call Interface

generated
-

Call Interface

@ For generation, see Generate C Source Files from Software AG IDL Files.

For C, the RPC server works with server interface objects. Your server is called dynamically using
standard call interfaces.

» To use the C Wrapper

1 Generate the RPC Server, see Generate C Source Files from Software AG IDL Files, and

= select the Mapping Options according to your needs.

* The interface objects and the server (skeleton) must be generated with the same mapping
options, otherwise results will be unpredictable.

10 EntireX C Wrapper

Using the C Wrapper

| Note: For z/OS, the limitation of 8 characters per (physical) member name must be

considered when defining the IDL library (see 1ibrary-definition under Software
AG IDL Grammar in the IDL Editor documentation in the Software AG IDL file. The
client interface object will be generated with a prefix letter "D". Therefore an IDL
library name "EXAMPLE" within the IDL file results in a physical member name
"DEXAMPLE". We suggest using an IDL library name of up to 7 characters in length;
if the name is longer, you will not be able to transfer (using FTP) the generated objects
to the mainframe.

2 If necessary, use FTP to transfer your server (skeleton) and the server interface object(s) to
the target platform where you write your application.

3 Use the generated server (skeleton) and complete it by applying your application logic. To
prevent loss of implementation code when re-generating, we suggest the following before
you add any implementation code to the server (skeleton):

® rename the server from F<7ibrary>.cto <library>.c (or to any other suitable name)

= or move the server F<7ibrary>.c to a different directory (folder)

4 Ifnecessary, transfer your server and the server interface object(s) to the target platform where
you compile your application, using FTP. The objects to be transfered depend on the platform:

= z/0S
= your server and the interface objects to a PDS, CA Librarian etc.

BS2000/0SD

= your server and the interface objects to your application library. Note that the header
files delivered in the LMS library LMS.EXP951.CSRV are required.

IBM i

" your server and the interface object source files to the source file QCSRC in your applic-
ation library

" header files to the source file H of your application library.

Other Platforms

" your server and the interface objects to a suitable directory (folder).

5 With a C compiler supported by the C Wrapper, compile the following objects, depending
on the platform:

EntireX C Wrapper "

Using the C Wrapper

6

= 7/0S

" the generated interface object

" your server (including your application logic)
BS2000/0SD

* the generated interface object

= your server (including your application logic).

Use any C/C+ ILCS-enabled compiler on BS2000/OSD.
IBM i

* the generated interface object

= your server (including your application logic).

Use the standard ILE C compiler invoked by the following commands for compiling: CRTCMOD
MODULE(X) SRCFILE(..) SRCMBRC(..).

EPM-style C programs are not supported.

You can find various examples of these commands in the procedures provided with the
Delivered Examples for the C Wrapper.

Other Platforms

" the generated interface object

= your server (including your application logic).

Use the standard C/C++ compiler of your target platform. Please note platform-specific
settings and see also the README.TXT file of the Delivered Examples for the C Wrapper.

You can find various examples of these commands in the procedures provided with the
Delivered Examples for the C Wrapper.

Using the linker (binder), link (bind) the following objects, depending on the platform:

= 7/0OS

® Create dynamic-link libraries (DLLs) for the client interface objects and RPC server. See
Building and Using Dynamic-link Libraries (DLLs) in the z/OS C/C++ Programming Guide,
Order No. SC09-2362-03 or later, available through IBM and Architecture and Software
Support in IBM S/390 Parallel Enterprise Servers for IEEE Floating-Point Arithmetic - References
under http://www.research.ibm.com/journal/rd/435/abbotref.html (subscription required).

® There are various possibilities to combine the client interface objects and RPC server to-
gether and create dynamic-link libraries (DLLs). We suggest you keep the generated client
interface object DLLs separate from RPC server DLLs:

12

EntireX C Wrapper

Using the C Wrapper

® Create two larger DLLs, one containing all your client interface objects and one con-
taining all your RPC servers, and use the FIX (dd7name) configuration of the parameter
Tibrary of the Batch RPC Server.

" Create separate DLLs, one for each client interface object and each RPC server and use
the PREFIX(prefix) configuration with prefix "D", that is, PREFIX(D)-PREFIX() of the
parameter 7ibrary of the Batch RPC Server.

= UNIX

" the interface object as a shared object or shared libary. If, for example, the library name
within the Software AG IDL file is HUGO, the standard name of the dynamically callable
interface object is DHUGO. so or DHUGO. s 1. The standard name can be changed (see the
Parameter Libraries of the RPC Server).

" your server as a shared object or shared libary. If, for example, the library name within
the Software IDL file is HUGO, the standard name of the dynamically callable server is
HUGO. so or HUGO. s .

Use the standard C/C++ linker of your target platform. Please note platform-specific settings
and see also the README.TXT file of the Delivered Examples for the C Wrapper.
* Windows

" the interface object as a DLL. If, for example, the library name within the Software IDL
file is HUGO, the name standard name of the dynamically callable interface object is
DHUGO. d11. The standard name can be changed (see the Parameter Libraries of the RPC
Server).

= your server as a DLL. If, for example, the library name within the Software IDL file is
HUGQO, the standard name of the dynamically callable server is HUGO. dT1.
Use the standard C/C++ linker of your target platform. Please note platform-specific settings
and see also the README.TXT file of the Delivered Examples for the C Wrapper.
= BS2000/0SD
* the interface object as an LLM, using BINDER
" your server as an LLM, using BINDER
There is no need to link the object modules with the BS2000/OSD Common Runtime Envir-

onment (CRTE) library. The CRTE is loaded once dynamically in the corresponding worker
task of the RPC server where the server program is executed.

" IBMi

" the interface object, the RPC server (EXPRUNTIME) and the broker stub (EXA) to a service
program (type *SRVPGM)

" your server, the RPC server (EXPRUNTIME) and the broker stub (EXA) to a service program
(type *SRVPGM)

EntireX C Wrapper 13

Using the C Wrapper

Use the standard binder invoked by the following commands for binding: CRTSRVPGM
SRVPGM(X) MODULE(X Y Z)

The activation group must be ACTGRP (*CALLER). This guarantees the server application
runs in the same activation group as the RPC server.

You can find various examples of these commands in the procedures provided with the
Delivered Examples for the C Wrapper.
® Other Platforms

= Use the standard linker of your target platform.

7 Provide the interface object library and the server library accessible to the RPC server according
to the rules of your operating system.

14 EntireX C Wrapper

Using the C Wrapper

Generate C Source Files from Software AG IDL Files

This section describes how to generate C source files from Software AG IDL files. It covers the
following topics:

= Select an IDL File and Generate RPC Client or RPC Server
= Settings

= Mapping Options

= Generate RPC Client

= Generate RPC Server

Select an IDL File and Generate RPC Client or RPC Server

From the context menu, choose Generate C from Software AG IDL > RPC Client and ... > RPC
Server to generate the C source files.

EntireX C Wrapper 15

Using the C Wrapper

] Package Explorer &3 ‘Eg Hierarchy
= 'bj- Demo

[gre
Bl IRE System Library [v1.5.0]

@! example.idl

e

Open F3
Cpen Wikh

]

Show In Alt+Shift+ ¥

1= Copy Ckel+C

"2 Paste Chrl+Y
¥ Delete Delete

Build Path
Refactar Alk+Shift+T

Euy Import...
g Export...

Refresh F5
Assign Working Sets...

Walidate

Edit %ML Mapping of Software &G I0L, .,
Generate Web Service From Software &G IDL ...
Tesk Software AG I0L...

Generate DCOM From Software AG 10U
Run s

Debug As

Profile As

Team

Compare With

Replace With

Generate ... from Software AG IDL
Source

Gaenerate PLIT From Software AG I0DL
Gaenerate (MET from Software &G I0L
Generate EJB from Software &G I0L
Generate 1ava from Software &G IDL
Generake COBOL From Software AG IDL

aenerate Fram Software AG IDL

Propetrties Alk+Enter

For the RPC client

[
2

T B . A

5%~ =0

RPC Client

RPC Server

16

EntireX C Wrapper

Using the C Wrapper

* this creates for each library defined in the IDL file the client interface object and its associated
header file. All files will be stored in parallel to the IDL file.

® In command-line mode, use the command -c:client. See Using the C Wrapper in Command-
line Mode.

For the RPC server

* this creates for each library defined in the IDL file, the server interface object, its associated
header file and the server skeleton file for your server implementation. All files will be stored
in parallel to the IDL file.

® In command-line mode, use the command -c:server. See Using the C Wrapper in Command-
line Mode.

Warning:

A Take care not to overwrite an existing server implementation with a server skeleton.
We recommend you move your server implementation to a different folder, or
rename the server implementation.

For both RPC client and RPC server

® If you generate using the GUI and generated files exist from a previous generation, you are
prompted to overwrite them.

® If you generate using command-line mode, existing files are always overwritten.

" The header file created is the same for the RPC client as for the RPC server side and contains,
for example, C structure definitions for groups in the IDL file and the prototypes for your
server. Use these generated C structures in your RPC client application and server implement-
ation as required.

Settings
Use the properties of the IDL file - initialized from the C Wrapper preference page when used for

the first time - to manipulate the mapping between Software AG IDL and the C source. A multith-
readed client can be enforced.

EntireX C Wrapper 17

Using the C Wrapper

Client settings

& Properties for example.idl

|typs filter text | EntireX C Wrapper
Restnurce The C “Wrapper properties are used For generating warious types of C codes, e.g.
Entire: client and server,
Entirex .MET W e
- "'f"F Ciaenerate client | C:Generate server
Wranpe
EntireX, COBOL Wrapper Map IDL B, PU, M and MU Fields ko double
Entirek Cusktom \Wrapper Map IDL & fields to C skyle skrings (null berminated)

Entires DCOM Wrapper
Entirex EJB Wrapper

Entireix Java ‘Wrapper
Entirel PLIT Wrapper

Entirey Web Service Wrapper
Run/Debug Setkings

Map IDL U fields to wide char strings (null terminated)
[] rultithreaded client

[Reskore Defaulks] [apply]

3] [(04 H Cancel]

18 EntireX C Wrapper

Using the C Wrapper

Server settings

& Properties for example.idl

|tw:ue Filker bext | EntireX C YWrapper
RE-"?':"-'”:E The C Wrapper properties are used Far generating various types of C codes, 2.0,
Entirex client and server,
Entires .MET “Wrapper

C:Generate client | Ciaenerate server

Enkires C Wrapper

Entires COBOL Wrapper Map IDL P, PU, M and MU fields ta double

Entirex Custom Wrapper Map IDL & fields to C style strings (null terminated)
Entires DCOM Wrapper

Map IDL U fields to wide char strings (null terminated)
Entirex EJB Wrapper

Entireix Java ‘Wrapper
Entirel PLIT Wrapper

Entirey Web Service Wrapper
Run/Debug Setkings

[Reskore Defaulks] [apply]

@ [(04 H Cancel]

Mapping Options

Select the mapping options according to your needs. All mapping options are available for RPC
clients and RPC server.

Option Description

Map IDL N, P, NU and |If the check box is checked, the IDL data types N, NU, P and PU are mapped to the
PU fields to double C data type double.

If the check box is not checked, the IDL data type:

® N and NU are mapped to the C data type unsigned charl..] withunpacked
(mainframe Natural, COBOL, PL/I style) contents.

® P and PU are mapped to the C data type unsigned char[..] with packed
(mainframe Natural, COBOL, PL/I style) contents.

Map IDL A fields to C |If the check box is marked, the IDL data type A is mapped to a C style string (C
style strings (null data type charl[.. + 1] with null termination). This is recommended and comfortable
terminated) for C programmers and is intended to be used with the C str. .. functions. This
mapping does not allow use of trailing blanks and null values to send/receive.

EntireX C Wrapper 19

Using the C Wrapper

Option Description
If the check box is not marked, the IDL data type A is mapped to the C data type
unsigned char|..] without null termination (mainframe Natural, COBOL, PL/I
style). This allows the use of trailing blanks, null values and is intended to be used
with the C mem. . . functions.
Map IDL U fields to If the check box is marked, the IDL data type U is mapped to a C style wide character
wide char strings (null |string (C data type wchar_t[.. + 1] with null termination). This is
terminated) recommended and comfortable for C programmers and is intended to be used

with the Cwcs. .. functions. This mapping does not allow use of trailing wide
character blanks (Unicode character x3000) and null values (x0000) to send/receive.

If the check box is not marked, the IDL data type U is mapped to the C data type
unsigned wchar_t[..]withoutnull termination (mainframe Natural, COBOL,
PL/I style). This allows the use of trailing blanks, null values and is intended to
be used with the C mem. . . functions.

If the settings for the client side need to be different from the settings for the server side, generate
the RPC client in a directory other than the RPC server directory.

Generate RPC Client

Select the Multithreaded Client option according to your needs.

Option Description

Multithreaded |If the check box is not marked, the generated client interface object(s) can be used in
Client single-threaded client environments. Use this option if you want to build an RPC client
application as described under Using the C Wrapper in Single-threaded Environments
(UNIX, Windows).

If the check box is marked, the generated client interface object(s) are thread-safe and can
be used in multithreaded client environments. Use this option if you want to build an
RPC client application as described under Using the C Wrapper in Multithreaded
Environments (UNIX, Windows).

Generate RPC Server

If you want to build an RPC server application, follow the instructions given under Using the C
Wrapper for the Server Side (z/OS, UNIX, Windows, BS2000/0SD, IBM 1i).

20

EntireX C Wrapper

3 Using the C Wrapper in Command-line Mode

Command-line Options
Example Generating an RPC Client
Example Generating an RPC Server
Further Examples

21

Using the C Wrapper in Command-line Mode

Commands are available to generate an RPC client or RPC server from a specified IDL file.

Command-line Options

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax. The
table below shows the command-line options for the C Wrapper if the Workbench is used. Default
values are underlined.

Task

Command

Option

Value

Description

Generate
RPC
client
from the
specified
IDL file.

-c:client

-DATA_CONV_NP

011

Mapping of IDL type P, PU, N and NU fields.

0 The IDL data types are mapped to C data type unsigned
char[..] with packed or unpacked (mainframe Natural,
COBOL, PL/I style) contents.

1 The IDL data types are mapped to C data type double.

See Mapping Options for more information.

-DATA_CONV_A

Mapping of IDL type A fields.

0 Map IDL data type A to the C data type unsigned charf..]
without null termination (mainframe Natural, COBOL,
PL/I style).

1 Map IDL data type A to C style strings.

See Mapping Options for more information.

-DATA_CONV_U

Mapping of IDL type U fields.

0 Map IDL data type U to the C data type unsigned
wchar_t[..] without null termination (mainframe Natural,
COBOL, PL/I style).

1 Map IDL data type U to wide char strings.

See Mapping Options for more information.

-CONTEXT

Multithread client.

0 Off. The generated client interface objects can be used in
single-threaded client environments.

1 On. The generated client interface objects are thread-safe
and can be used in multithreaded client environments.

See Generate RPC Client for more information.

-help

Display this usage message.

Generate
RPC
server

-ciserver

-DATA_CONV_NP

011

Mapping of IDL type N, P, NU and PU fields, for more

information see above.

22

EntireX C Wrapper

Using the C Wrapper in Command-line Mode

Task Command |Option Value | Description
from the -DATA_CONV_A |0 | 1 |Mapping of IDL type A fields, for more information see
specified above.
IDL file. -DATA_CONV_U |0 | 1 |Mapping of IDL type U fields, for more information see
above.
-help Display this usage message.

Note: The commands -"C:Generate client" and -"C:Generate server" are deprecated.

Use c:client and c:server instead.

Example Generating an RPC Client

<workbench> -c:client /Demo/example.idl -DATA_CONV_A 1

where <workbench>is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The generated C source files (client interface object and its associated header file)

* will be stored in parallel to the IDL file, for example in project Demo.

* will overwrite existing files from a previous command-line mode generation.

Example Generating an RPC Server

<workbench> -c:server /Demo/example.idl -DATA_CONV_A 1

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The generated C source files (server interface object and its associated header file)

® will be stored in parallel to the IDL file, for example in project Demo

* will overwrite existing files from a previous command-line mode generation.

Warning:

A Take care not to overwrite an existing server implementation with a server skeleton.
We recommend you move your server implementation to a different folder, or
rename the server implementation.

EntireX C Wrapper 23

Using the C Wrapper in Command-line Mode

Further Examples

Windows
Example 1

<workbench> -c:client C:\Temp\example.id]l

Uses the IDL file C:\ Temp \example.idl and generates the C source files (CEXAMPLE.c and
CEXAMPLE.h) in parallel to the IDL file. Slashes and backslashes are permitted in the file name.
Output to standard output:

Using workspace file:/C:/myWorkspace/.
Exit value: 0O

Example 2

<workbench> -c:client -help

or

<workbench> -help -c:client

Both show a short help for the C Wrapper.

Linux
Example 1

<workbench> -c:client /Demo/example.id]l

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demo/example.idl is used from file system. The generated output (CEXAMPLE.c and
CEXAMPLE.h) will be stored in /Demo, parallel to the IDL file.

24 EntireX C Wrapper

Using the C Wrapper in Command-line Mode

Example 2

<workbench> -c:client -help

or

<workbench> -help -c:client

Both show a short help for the C Wrapper.

EntireX C Wrapper

25

26

4 Using the C Wrapper in IDL Compiler Command-line Mode

The table below shows the command-line options for the C Wrapper if the IDL Compiler is used.
Default values are underlined. Options can be valid for client and server side, see column Client
and Server.

Option Client |Server|Value | Description

-DCONTEXT Yes |No |0 |1 |Multithreaded Client.

0 Off. The generated client interface objects can be used in
single-threaded client environments.

1 On. The generated client interface objects are thread-safe and can
be used in multithreaded client environments.

See Generate RPC Client for more information.
-DDATA_CONV_A |Yes |Yes |01 |Mapping of IDL type A fields.

0 Map IDL data type A to the C data type unsigned char|..] without
null termination (mainframe Natural, COBOL, PL/I style).

1 Map IDL data type A to C style strings
See Mapping Options for more information.

-DDATA_CONV_NP|Yes |Yes |0 |1 |Mapping of IDL type P, PU, N and NU fields.

0 The IDL data types are mapped to C data type unsigned charf..]
with packed or unpacked (mainframe Natural, COBOL, PL/I style)
contents.

1 The IDL data types are mapped to C data type double.

See Mapping Options for more information.

-DDATA_CONV_U |Yes |Yes |01 |Mapping of IDL type U fields.

0 Map IDL Data type U to the C data type unsigned wchar_t[..]
without null termination (mainframe Natural, COBOL, PL/I style).

27

Using the C Wrapper in IDL Compiler Command-line Mode

Option Client |Server|Value | Description

1 Map IDL Data type U to wide char strings.

See Mapping Options for more information.

See also Starting the IDL Compiler in the IDL Editor documentation and IDL Compiler Usage Examples
in the IDL Editor documentation.

Example Generating an RPC Client

erxidl -t client.tpl -DDATA_CONV_A=1 -DDATA_CONV_U=1 example.id]

The generated C source files (client interface object and its associated header file) will be stored
in parallel to the IDL file.

Example Generating an RPC Server

erxidl -t server.tpl -DDATA_CONV_A=1 -DDATA_CONV_U=1 example.idl

The generated C source files (server interface object and its associated header file) will be stored
in parallel to the IDL file.

28 EntireX C Wrapper

5 Software AG IDL to C Mapping

Mapping IDL Data Types to C Data Types ..
Mapping Library Name and Alias
Mapping Program Name and Alias
Mapping Parameter Names
Mapping Fixed and Unbounded Arrays
Mapping Groups and Periodic Groups
Mapping Structurescccceevvvvvveeen.n.

= Mapping the Direction Attributes IN, OUT and INOUTcvuiiiiiiieiee e

= Mapping the ALIGNED Attribute

= Calling Servers as Procedures or Functions

29

Software AG IDL to C Mapping

This chapter describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the C programming language. Please note also the remarks and hints on the IDL data
types valid for all language bindings found in the IDL file.

Mapping IDL Data Types to C Data Types

In the table below, the following metasymbols and informal terms are used for the IDL.

® The metasymbols [and] surround optional lexical entities.

® The informal term number (or in some cases number.number) is a sequence of numeric characters,

for example 123.

Software AG IDL Description C Data Type Note
Anumber Alphanumeric{unsigned char [number] 1,3
char [number + 1] 1,3
AV Alphanumeric|ERX_HVDATA 4
variable length
AVnumber Alphanumeric|ERX_HVDATA 4,3
variable length
with
maximum
length
Bnumber Binary unsigned char [number] 3
BV Binary ERX_HVDATA 4
variable length
BVnumber Binary ERX_HVDATA 4
variable length
with
maximum
length
D Date unsigned char [ERX_GET_PACKED_LEN(7)] 3,5,6,11,13,14
F4 Floating point |f1oat 10
(small)
F8 Floating point |double 10
(large)
I1 Integer (small)|signed char
12 Integer signed short
(medium)
14 Integer (large) |[signed Tlong
Knumber Kanji unsigned char [number] 3
30 EntireX C Wrapper

Software AG IDL to C Mapping

Software AG IDL Description C Data Type Note
KV Kanji variable |ERX_HVDATA 4
length
KVnumber Kanji variable |ERX_HVDATA 3,4
length with
maximum
length
L Logical unsigned char 7
Nnumber(.number] |Unpacked double 8,10
decimal unsigned charlnumber + number] 8
NUnumberl . number]|Unpacked double 8,10
ded'mal unsigned charlnumber + number] 8
unsigned
Pnumber(.number] |Packed doubTe 6,9,10
decimal unsigned 6,9
char[ERX_GET_PACKED_LEN(number + number)]
PUnumberl .number]|Packed doubTe 6,9,106,9
deCi_mal unsigned 6,9
unsigned char[ERX_GET_PACKED_LEN(number + number)]
T Time unsigned char[ERX_GET_PACKED_LEN(13)] 5,6,12,13,15
Unumber Unicode wchar_t[number] 2,16
wchar [number + 1] 2,16
uv Unicode ERX_HVDATA 416
variable length
UVnumber Unicode ERX_HVDATA 4,16
variable length
with
maximum
length

See also the hints and restrictions valid for all language bindings under IDL Data Types under
Software AG IDL File in the IDL Editor documentation.

] Notes:

1. Itis possible to map the data type to the C data type unsigned char[..] withoutnull termination
(mainframe Natural, COBOL, PL/I style) or C style string (C data type char[.. + 1] withnull
termination). The mapping is controlled with the Mapping Options when you generate source
files from IDL. See Generate C Source Files from Software AG IDL Files.

2. Itis possible to map the data type to the C data type wchar_t[..] without null termination
(mainframe Natural, COBOL, PL/I style) or to a C style wide character string (C data type
wchar_t[.. + 1] withnull termination). The mapping is controlled with the Mapping Options

EntireX C Wrapper

31

Software AG IDL to C Mapping

when you generate source files from IDL. See Generate C Source Files from Software AG IDL
Files.

The field length is given in bytes.

The data type ERX_HVDATA is an RPC-specific data type in the header file erxVData.h for handling
variable-length data types. See API Function Descriptions for Variable-length Data Types AV,
BV, KV and UV.

Date and Time values are mapped in mainframe-style packed format.

Packed format is an internal representation of numbers with a specified number of digits used
in mainframe environments. ERX_GET_PACKED_LENGTH is a macro within the header file erx.h
used to evaluate the length of a field in bytes with packed contents.

The binary value zero is treated as FALSE. Contents other than a binary zero are treated as TRUE.

It is possible to map the data type to double or unpacked. The format unpacked is an internal
representation for numbers with a specified number of digits used in mainframe environments
(Natural, COBOL, PL/I). The mapping is controlled with the Mapping Options when you gen-
erate source files from IDL. See Generate C Source Files from Software AG IDL Files.

It is possible to map the data type to doub1le or packed. The format packed is an internal repres-
entation for numbers with a specified number of digits used in mainframe environments
(Natural, COBOL, PL/I). The mapping is controlled with the Mapping Options when you gen-
erate source files from IDL. See Generate C Source Files from Software AG IDL Files.

10. When floating-point data types are used, rounding errors can occur, so that the values of senders

11.

and receivers might differ slightly.

Count of days AD (anno domini, after the birth of Christ). The valid range is from 1.1.0001 up
to0 28.11.2737. Mapping of the number to the date in the complete range from 1.1.0001 on, follows
the Julian and Gregorian calendar, taking into consideration the following rules:

1. Years that are evenly divisible by 4 are leap years.
2. Years that are evenly divisible by 100 are not leap years unless rule 3, below, is true.
3. Years that are evenly divisible by 400 are leap years.

4. Before the year 1582 AD, rule 1 from the Julian calendar is used. After the year 1582 AD,
rules 1, 2 and 3 of the Gregorian calendar are used.

See the following table for the relation of the packed number to a real date:

Date / Range of Dates Value / Range of Values

1.1.0000 0 (special value - no date)
undefined dates 1 - 364 (do not use)

1.1.0001 365

1.1.1970 719527 (start of C-time functions)
28.11.2737 999999 (maximum date)

32

EntireX C Wrapper

Software AG IDL to C Mapping

12 Count of tenth of seconds AD (anno domini, after the birth of Christ). The valid range is from
1.1.0001 00:00:00.0 up to 16.11.3168 9:46:39 plus 0.9 seconds. See the following table for the relation
of the packed number to a real time:

Time / Range of Times Value / Range of Values

1.1.0000 00:00:00.0 0 (special value - no time)

undefined times 1 - 315359999

1.1.0001 00:00:00.0 315360000

1.1.1970 00:00:00.0 621671328000 (start of C-time functions)

13. The relation between the packed number of a Date and Time data type is as follows:

tenths of a second per day =24*60*60*10 = 864000

number of time = number of date * 864000

315360000 =365 * 864000 1.1.0001 00:00:00.0
621671328000 = 719527 * 864000 1.1.1970 00:00:00.0
number of date =number of time / 864000

365 = 315360000 / 864000 1.1.0001

719527 = 621671328000 / 864000 1.1.1970

14. The no date value is the internal state of a #DATE (Natural type D) variable after a RESET #DATE
is executed within Natural programs. This internal state is not a valid date. The no date value
can be transferred as the invalid date 1.1.0 from RPC clients to servers and vice versa. C
Wrapper supports Natural no date value. C Wrapper passes 0 to the C application when no
date is received. With the same value of 0, the C application can send no date to its partner
(client or server).

15. The no time value is the internal state of a #TIME (Natural type T) variable after a RESET #TIME
is executed within Natural programs. This internal state is not a valid time. The no time value
can be transferred as the invalid time 1.1.0 0:00:00.0 from RPC clients to servers and vice versa.
C Wrapper supports Natural no time value. C Wrapper passes 0 to the C application when no
time is received. With the same value of 0, the C application can send no time to its partner
(client or server).

16. The length is given in Unicode code units following the Unicode standard of your environment.
This can be UTF-16 (Windows and some UNIX environments) or UTF-32 (some other UNIX
environments).

EntireX C Wrapper 33

Software AG IDL to C Mapping

Mapping Library Name and Alias

The library name as specified in the IDL file is sent from a client to the server. Special characters
are not replaced. The library alias is not sent to the server.

In the RPC server, the IDL library name sent may be used to locate the target server. See Locating
and Calling the Target Server in the platform-specific administration or RPC server documentation.

The library name as given in the IDL file is used to compose the names of the generated output
files. See 1ibrary-definition under Software AG IDL Grammar in the IDL Editor documentation.
Therefore the allowed characters are restricted by the underlying file system.

For the server interface object, the name is composed with a prefix Das D77ibrary-name.c and for
the server as 7ibrary-name.c. For the client interface object the name is composed with a prefix
CasClibrary name.c.For both interface objects the same header file C7ibrary-name.h is also
used. When the name of the generated sources is built, lower and uppercase characters are con-
sidered and the special characters '#, '$', '&', '+, -, ", /' and '@ used in the name for libraries are
replaced by the character underscore '_'. Other special characters used in the library name are not

changed and may lead to problems with your underlying file system.

Aliases for the library name in the IDL file are not supported in C Wrapper language binding. See
Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation.

Examples:

® A library name of #HU$G0. results in C_HU_GO_.c and C_HU_GO_.h as the client interface object
file name for the generated source.

® A library name of #HU$G0. results in D_HU_GO_.c and C_HU_GO_.h as the server interface object
file name for the generated source.

Mapping Program Name and Alias

The program name is sent from a client to the server. Special characters are not replaced. The
program alias is not sent to the server.

In the RPC server, the IDL program name sent is used to locate the target server. See Locating and
Calling the Target Server in the platform-specific administration or RPC server documentation.

The program names as given in the IDL file are mapped to functions within the generated C
sources. See program-definitionunder Software AG IDL Grammar in the IDL Editor documentation.
When building function names, lower and uppercase characters are considered and the special
characters '#,'$', '&', '+', -, ", '/' and '@" are replaced by the character underscore '_' valid for C

34 EntireX C Wrapper

Software AG IDL to C Mapping

names. Other special characters used in the program name are not changed and may lead to
compilation errors when compiling the generated sources.

Aliases for the program name in the program-definition under Software AG IDL Grammar in the
IDL Editor documentation are not supported in C Wrapper language binding.

Example

" A parameter name of #HU$GO. results in _HU_GO_ as the function name for the C programming
language.

Mapping Parameter Names

The parameter names as given in the IDL file are mapped to parameters of the generated C func-
tions. See parameter-data-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. When building parameters, lower and uppercase characters are considered and the

special characters '#', '$', '&', '+, '-', ", '/ and '@" are replaced by the character underscore '_' valid
for C names.

® Examples:
A parameter name of #HU$GO. resultsin _HU_GO_ as the parameter name for the C programming
language.

Mapping Fixed and Unbounded Arrays

* Fixed arrays within the IDL file are mapped to fixed C arrays. The upper bound given in the
IDL file is decremented by 1 because C arrays always start with the lower bound 0. For example
the number (12/5) in the IDL file will be mapped to signed short number [4].

Seethe array-definitionunder Software AG IDL Grammar in the IDL Editor documentation for
the syntax on how to describe fixed arrays within the IDL file and refer to
fixed-bound-array-index.

® Unbounded arrays within the IDL file are mapped to the ERX_HARRAY data type found in the

header file erxArray.h. See Using Unbounded Arrays for more information.

Seethe array-definitionunder Software AG IDL Grammar in the IDL Editor documentation for
the syntax of unbounded arrays within the IDL file and refer to unbounded-array-index.

EntireX C Wrapper 35

Software AG IDL to C Mapping

Mapping Groups and Periodic Groups

Groups within the IDL file are mapped to the C data type struct. See the
group-parameter-definition under Software AG IDL Grammar in the IDL Editor documentation
for the syntax on how to describe groups within the IDL file.

Mapping Structures

Structures within the IDL file are mapped to the C data type struct like groups. See
structure-definition under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe structures within the IDL file.

Mapping the Direction Attributes IN, OUT and INOUT

The IDL syntax allows you to define parameters as IN parameters, OUT parameters, or IN 0UT
parameters (which is the default if nothing is specified). This direction specification is reflected in
the generated C interface object as follows:

" Parameters with the IN attribute are sent from the RPC client to the RPC server. When the
parameter is a simple parameter (that is, no fixed or unbounded array, no group and no structure)
the parameter is provided with the method call by value. Complex parameters such as fixed
and unbounded arrays, groups and structures are provided with the call by reference method.

® Parameters with the OUT attribute are sent from the RPC server to the RPC client. They are always
provided with the call by reference method.

= Parameters with the IN and 0UT attribute are sent from the RPC client to the RPC server and
then back to the RPC client. They are always provided with the call by reference method.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

See the attribute-11st under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction attribute.

36 EntireX C Wrapper

Software AG IDL to C Mapping

Mapping the ALIGNED Attribute

The ALIGNED Attribute is not relevant for the programming language C. However, a C client
can send the ALIGNED attribute to an RPC server where it might be needed.

See the attribute-11st under Software AG IDL Grammar in the IDL Editor documentation for the
syntax of attributes in the IDL file and refer to the aligned attribute.

Calling Servers as Procedures or Functions

The IDL syntax allows definitions of procedures only. It does not have the concept of a function.
A function is a procedure which, in addition to the parameters, returns a value. Procedures and

functions are transparent between clients and server. This means a client using a function can call
a server implemented as a procedure and vice versa.

It is possible to call the remote procedure as a function and not as a procedure, if you prefer it and
if it suits your interface.

Example

The function float sin(float x) will be called as a function - and not as a procedure - when
defined in the IDL file as follows:

Library ... is
Program 'sin' is
Define Data Parameter
1 x (F4) In
1 Function_Result (F4) Qut
End-Define

it can be invoked as :

y = sin(x);

When you generate source files from IDL (see Generate C Source Files from Software AG IDL
Files), a C function instead of a C procedure is generated if the following is true for the interface
description in the IDL file:

® Thelast parameter's nameis function_result. Thename function_result is not case-sensitive.

® The last parameter's direction is Out. See attribute-1ist under Software AG IDL Grammar in
the IDL Editor documentation.

® The last parameter is a scalar variable, that is, not an array.

EntireX C Wrapper 37

Software AG IDL to C Mapping

® The last parameter is of type and length:

Software AG IDL Description Note
I1 Integer (small) 2

12 Integer (medium) 2

14 Integer (large) 2

Al Alphanumeric with length 1 |2

B1 Binary with length 1 2

L Logical 2
Nnumber [.number] |Unpacked decimal 1,2
Pnumber [.number] |Packed decimal 1,2

NUnumber [.number]

Unpacked decimal unsigned

1,2

PUnumber [.number]

Packed decimal unsigned

1,2

] Notes:

1. The data types must be mapped to double. See Mapping Options when you generate C source
files from Software AG IDL files.

2. The type of the function returned is defined by Mapping IDL Data Types to C Data Types.

38

EntireX C Wrapper

6 Writing a Single-threaded C RPC Client Application

= Step 1: Base Declarations Required by the C Wrappervviviiiiiiiiiiiicee e
= Step 2: Required Settings for the C WIapPeTvviiiiiiicee e

= Step 3: Register with the RPC R
= Step 4: Issue the RPC Request
= Step 5: Examine the Error Code
= Step 6: Deregister with the RPC

UNEIIE e e e

RUNEIME e,

39

Writing a Single-threaded C RPC Client Application

This chapter describes in six steps how to write your first C client program.

The example given here demonstrates how to write a single-threaded C RPC client application. It
demonstrates an implicit broker logon (because no broker logon/logoff calls are implemented),
where it is required to switch on the AUTOLOGON feature in the broker attribute file.

The following steps describe how to write a single-threaded C client program. We recommend
reading them first before writing your first RPC client program and following them where appro-
priate.

Step 1: Base Declarations Required by the C Wrapper

Step 1a: Include the Generated Header File

Define the generated client header file. This header file includes the RPC runtime header file erx.h
and defines structures and prototypes for your RPC requests.

/* include generated header file */
ffinclude "example.h"

Step 1b: Define Global Variables to Communicate with the Client Interface Objects

For single-threaded clients you have to declare in your main program the following global variables,
used for communication with the interface objects:

/* Needed global variables for the CLIENT interface object */

ERXCallId ERXCallld;
ERXeReturnCode ERXrc;
ERX_ERROR_INFO ERXErrorInfo;
ERX_Server_ADRESS ERXServer;

ERX_CLIENT_IDENTIFICATION ERXClient;

40 EntireX C Wrapper

Writing a Single-threaded C RPC Client Application

Step 2: Required Settings for the C Wrapper

Step 2a: Identify the User with a Broker User ID

For implicit broker logon, if required in your environment, the client password can be given here.
It is provided then through the interface object call.

/* set client identification */

memset(&ERXClient, 0, sizeof(ERXClient));
strcpy((char*) ERXClient.szUserId, "ERX-USER");
strcpy((char*) ERXClient.szPassword, "ERX_PASS");

Step 2b: Set the Broker and Service to be Called

Your application will wait a maximum of 55 seconds for a server response. If the server does not
answer within this period, the broker gives your program control again with an error code 00740074.

ERXServer.Medium = ERX_TM_BROKER;
ERXServer.ulTimeQut = 55;

/* set Broker-Id, server-name, class-name and service-name */

strcpy((char*) ERXServer.Address.BROKER.szEtbidName, "ETBOO1");
strcpy((char*) ERXServer.Address.BROKER.szServerName, "SRVI");
strcpy((char*) ERXServer.Address.BROKER.szClassName, "RPC");

strcpy((char*) ERXServer.Address.BROKER.szServiceName, "CALLNAT");

Step 3: Register with the RPC Runtime

As a general rule, before using the RPC runtime you have to register it. After registration, the RPC
runtime holds information on a per-thread basis. See Using the RPC Runtime for more information.

/* register to the RPC runtime */
ERXrc = ERXRegister(ERX_V81);
If (ERX_FAILED(C ERXrc))

{

/* code for error handling */

}

EntireX C Wrapper 41

Writing a Single-threaded C RPC Client Application

Step 4: Issue the RPC Request

The RPC interface object CALC is called as C function (see Calling Servers as Procedures or
Functions).

/* do the remote procedure call */
result = CALC(C '+', 123456, 78910);

Step 5: Examine the Error Code

When a return from the RPC request has been received, check whether the call was successful
with the macro ERX_FAILED.

if(ERX_FAILED(ERXrc))

{

/* code for error handling */
}

Detailed information about an error can be retrieved with the function ERXGetLastError. For the
error messages returned, see Error Messages and Codes.

Step 6: Deregister with the RPC Runtime

As a general rule, after using the RPC runtime you should unregister from it. This will free all re-
sources held by the RPC runtime for the caller. See Using the RPC Runtime for more information.

/* unregister to the RPC runtime */
ERXUnregister();

42 EntireX C Wrapper

7 Writing Advanced Applications with the C Wrapper

m UsING the RPC RUNIIME ...
= Examine the RPC Runtime and Interface Object VErSIONcooiviiiiiiiiiii e
LI 1 T OO PO PPPPPPRR
= Programming Multithreaded RPC ClIENTSoiiiiiiiiiiiii s
= Natural Logon or Changing the Library Namecoooiiiiiiiiiiiii e
= Using Variable-length Data Types AV, BV, KV and UVcuiiiiiiiicee e
LU T Wl o o0 gL =T I = PP
= Using Conversational RPCuiiiiiiiii e
B USING RPC COMPIESSION ...tttk e et ee e
B USING ENHIEX SECUMIEY ..vvvviiti ittt e e e e e e et e e e e e e e e st baaaaeeee s
USING NGLUFAI SECULY ...t
USING SO ittt e e e e et e e
USING COMPIESSION ..ttt ettt et et e ettt e e et e e e e e e et e e
Using Internationalization with the C WIapperooiiiiiiiiie e

43

Writing Advanced Applications with the C Wrapper

Using the RPC Runtime

As a general rule, before using the EntireX RPC runtime, a program/thread must be registered
with it using the FRXRegister function. Hence ERXRegister must be the first call to the EntireX
RPC runtime and £RXUnregister the last. The number of registrations and unregistrations should
be symmetric for every thread, otherwise the thread's resources that are held by the EntireX RPC
runtime will not be freed. However, successful unregistration of the last thread within a process
will free all EntireX RPC runtime resources.

Each thread of a process has to register separately with the EntireX RPC runtime. After registration
the EntireX RPC runtime maintains on a per-thread basis
" codepage settings, see ERXSetCodepage and Using Internationalization with the C Wrapper.

" broker security settings, see ERXSetBrokerSecurity, ERXSetSecurityTokenand Using EntireX
Security

® the RPC conversation context, if any RPC conversation is ongoing, see ERXConnect and Using
Conversational RPC

® the last error, which can be retrieved using ERXGetLastError
The following limitations and restrictions also apply:

® Up to 256 threads can be registered in parallel within a process.
® Multiple registration up to 32,767 per thread before unregistration is possible but not recommen-
ded.

All functions provided by the EntireX RPC runtime to handle the variable-length data types and
unbounded arrays can be used without registration.

® Functions to handle variable-length data types are defined in the header file erxvdata.h and are
prefixed with "erxVData".

* Functions to handle unbounded arrays are defined in the header file erxarray.h and are prefixed
with "erxArray".

44 EntireX C Wrapper

Writing Advanced Applications with the C Wrapper

Examine the RPC Runtime and Interface Object Version

The EntireX C Wrapper API provides an interface to examine the version of the RPC Runtime, see
ERXGetVersion.

Examine the Interface Object Version

If you generate interface objects according to the instructions given in Using the C Wrapper for
the Client Side, a function to examine the interface object version on a per-library basis is also
generated:

int ERX_CALL_DECLARATION GetVersionEXAMPLEStub(
char *pMessage,
size_t uMessagelength

)

Calling this function will provide you with the version and patch level under which the interface
object was generated.

Example

EntireX C Wrapper Version=9.0.0, Patch Level=0

Tracing

There are several possibilities to trace the EntireX C Wrapper. See Tracing webMethods EntireX in
the platform-specific administration documentation.

Programming Multithreaded RPC Clients

The EntireX C Wrapper runtime supports RPC clients in multithreaded environments. Every
thread can establish its own RPC and broker context for communication, which is separate from
every other thread's context, see also Using the RPC Runtime.

The functions £RXSetContext and ERXGetContext together with client interface objects generated
using the instructions given in Using the C Wrapper in Multithreaded Environments (UNIX,
Windows) assist in programming multithreaded RPC clients.

The ERXSetContext function can be executed prior to any business logic to provide the RPC and
broker context individually on a per-thread basis. ERXSetContext saves the context information
in a structure ERX_CONTEXT_BLOCK. The client interface object picks up the context from the calling

EntireX C Wrapper 45

Writing Advanced Applications with the C Wrapper

thread using the reverse function ERXGetContext. Hence legacy applications may not be changed
to transport this information.

Additional Notes:

® Tousethe ERXSetContext and ERXGetContext functions, client interface objects must be generated
with the check box Multithreaded Client switch. See Generate C Source Files from Software
AG IDL Files.

® A maximum of 256 threads are supported in parallel.

" The ERXSetContext function can be called multiple times (within the same thread). This also
makes it possible to change RPC and broker context with each RPC request.

* Nothing needs to be considered for servers. EntireX RPC servers support multithreading without
any further activities.

Natural Logon or Changing the Library Name

The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is spe-
cified in the IDL file (see 1ibrary-definition under Software AG IDL Grammar in the IDL Editor
documentation). When the RPC is executed, this library name can be overwritten.

» To overwrite the library, an EntireX C Wrapper client must do the following:

1 Set the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure (see
ERX_SERVER_ADDRESS under API Data Descriptions).

2 Specify the correct library in the ERX_SA_BROKER_LIBRARY structure in the szLibraryName
parameter.

» To force the library to be considered by Natural RPC Server

m Setthe parameter cNaturallLogonto"ERX_NATURAL LOGON_YES"in the ERX_SA_BROKER_LIBRARY
structure.

@ Caution: Natural and EntireX RPC servers behave differently regarding the library name.

See Natural Logon or Changing the Library Name.

46 EntireX C Wrapper

Writing Advanced Applications with the C Wrapper

Using Variable-length Data Types AV, BV, KV and UV

The following functions are used to send and receive the variable-length data types (IDL data
types AV, BV, KV and UV). All variable-length data is controlled by so-called VData instances. A
VData instance is a handle (pointer) to a memory location encapsulated in the erxVData. . . functions
in the EntireX RPC runtime.

A VData instance has the following type definition:

typedef void * ERX_HVDATA; /* Handle of VData instance */

See the following overview of VData functions.

Task Function

Allocate a new VData instance erxlV/DataAllocBytes
erxVDataAllocString
erxlVDataAllocWideString

Remove a VData instance erxVDataFree

Get the contents held by a VData instance |erxVDataGetByteAddress
erxVDataGetlLength
erxlVDataGetString
erxlVDataGetWideString

Assign new contents to the VData instance|erxVDataCopy
erxlVDataReAllocBytes
erxVDataReAllocString
erxlVDataReAllocWideString
erxVDataReset

Usage with EntireX RPC Client

Before issuing the RPC request, allocate all VData instances including the instances for direction
out (which is returned by the RPC server only), see attribute-1ist under Software AG IDL
Grammar in the IDL Editor documentation.

» To allocate and create VData instances

1 For the directions in and inout, use erxVDataAllocBytes (IDL data type BV and KV),
erxVDataAllocString (IDL data type AV) or erxVDataAllocWideString (IDL data type UV)
with the appropriate parameters to allocate the VData instances.

2 For the direction out use erxVDataAllocBytes(NULL,0) (IDL data type BV and KV),
erxVDataAllocString(NULL) (IDL data type AV) or erxVDataAllocWideString(L"") (IDL

EntireX C Wrapper 47

Writing Advanced Applications with the C Wrapper

data type UV)to create an empty VData instance, which will contain the data returned by the
server.

Following the RPC request, you can examine the server reply.

» To examine the server reply

m UsethefunctionserxVDataGetString (IDL datatype AV), erxVDataGetWideString (IDL data
type UV) and erxVDataGetlLength, erxVDataGetByteAddress (IDL data type BV and KV).

» To remove VData instances

= Use the function erxVDataFree if they are no longer needed.
Usage with EntireX RPC Server

When your implemented server is called, all VData instances are allocated by the RPC C runtime
and RPC Server. The data sent by the client can be examined in the server program (in the same
way the client does upon server reply). The RPC Server and the RPC C runtime will remove the
VData instances if they are no longer needed. Do not remove any VData instances in server programs
yourself!

» To examine the client data

m UsethefunctionserxVDataGetString (IDL datatype AV), erxVDataGetWideString (IDL data
type UV) and erxVDataGetlLength, erxVDataGetByteAddress (IDL data type BV and KV).

» To assign data to be returned
m Use the functions erxVDataReAllocBytes (IDL data type BV and KV),

erxVDataReAllocWideString (IDL datatype UV)and erxVDataReAllocString (IDL data type
AV).

Using Unbounded Arrays

The following functions are used to send and receive unbounded array data types of EntireX RPC
(data types defined with V in the indices). All unbounded arrays are controlled by so-called arrays
instances. An arrays instance is a handle (pointer) to a memory location encapsulated by the EntireX
RPC Runtime.

An array instance has the following type definition:

48 EntireX C Wrapper

Writing Advanced Applications with the C Wrapper

typedef void * ERX_HARRAY; /* Handle of Array instance */

See the following overview of functions for use with unbounded arrays.

Task Function

Allocate a new array instance erxArrayAlloc

Remove an array instance erxArrayFree

Get the contents of an array instance erxArrayGetElement

Assign new contents to an array instance |erxArrayCopy
erxArrayReset
erxArraySetElement

Get the characteristics of an array instance |erxArrayGetAttributes
erxArrayGetBounds
erxArrayGetDimension
erxArrayGetElementlLength
erxArrayGetTypeCode

Change upper bounds of an array instance|erxArrayRedimAll
erxArrayRedimVector

Usage with EntireX RPC Client

Before calling the client interface object (that is, before issuing the remote procedure call) allocate
all array instances and create instances for out data. You cannot change any type, attribute, length
or dimension. When the instances are created, only the upper bounds can be changed.

For the directions in and inout, use erxArrayAlloc with appropriate parameters to allocate an
array instance. For the direction out, create an array instance of correct type, attributes, length and
dimension with all upper bounds set to 0. This is an empty array instance with no elements. Upon
return it will contain the elements assigned by the server.

EntireX RPC supports unbounded arrays which must not necessarily be a square (when 2-dimen-
sional) or a cube (when 3-dimensional). Any vector within any dimension could have different
upper bound settings. Such an array could be created in two ways:

" Start with an empty array and set the upper bounds of the first dimension with
erxArrayRedimVector. Subseqgeuently loop through this dimension and set any vector of the
second dimension using also erxArrayRedimVector. If it is a 3-dimensional array, do the same
with the third dimension.

® Create a square (2-dimensional) or cube (3-dimensional) with erxArrayAlloc or
erxArrayRedimAl1 and subsequently deform the array with erxArrayRedimVector.

Data to be sent can be assigned using the function erxArraySetElement as long as the index is
within the current upper bounds. Otherwise an error will occur. Because any vector of any dimen-
sion could have different upper bound settings, the upper bounds must be examined separately
for every vector. See the following code fragment:

EntireX C Wrapper 49

Writing Advanced Applications with the C Wrapper

int i,j,k;
ERX_HARRAY hArray;
ERX_ARRAY_INDEX uArraylIndex[3];
for (i=0;i<erxArrayGetBounds(hArray, (unsigned int)1,NULL);i++)
{
uArraylIndex[0] = i;
for (j=0;j<erxArrayGetBounds(hArray, (unsigned int)2,uArraylndex);j++)
{
uArraylIndex[1] = j;
for (k=0;k<erxArrayGetBounds(hArray, (unsigned int)3,uArraylndex);k++)
{
Data = ...;

UArraylIndex[2] = k;
rc = erxArraySetElement(
hArray,
uArraylIndex,
&Data

}

To examine the data received from the server the same scheme can be used:

int i,3,k;
ERX_HARRAY hArray;
ERX_ARRAY_INDEX uArrayIndex[3];
for (i=0;i<erxArrayGetBounds(hArray, (unsigned int)1,NULL);i++)
{
UArraylIndex[0] = i;
for (j=0;j<erxArrayGetBounds(hArray, (unsigned int)2,uArraylIndex);j++)
{
UArrayIndex[1] = j;
for (k=0;k<erxArrayGetBounds(hArray, (unsigned int)3,uArraylndex);k++)
{
UArraylIndex[2] = k;
rc = erxArrayGetkElement(
hArray,
uArrayIndex,
&Data

. = Data;

50 EntireX C Wrapper

Writing Advanced Applications with the C Wrapper

Remove previously created array instances (if they are no longer needed) with the function
erxArrayFree.

Usage with EntireX RPC Server

When the server is called, all array instances are allocated by the EntireX RPC Runtime and EntireX
RPC Server.

The data sent by the client can be examined in the server program the same way the client examines
data upon server reply.

The upper bounds of the array instance can be changed with the erxArrayRedimA11 or
erxArrayRedimVector function before setting any return data:

® When you use the erxArrayRedimA11 function, the result will be an array in the form of a vector
(1-dimensional), a square (2-dimensional) or a cube (3-dimensional). Thus all vectors of a dimen-
sion have the same upper bounds. Subsequently with the erxArrayRedimVector the square or
cube can be deformed.

® You can also remove all elements of the unbounded array. This results in an unbounded array
with no elements when setting the bounds parameter of erxArrayRedimAl1 to "0". Afterwards
you can set the upper bounds of the first dimension with erxArrayRedimVector. Subseqeuently
loop through this dimension and set any vector of the second dimension also using
erxArrayRedimVector. If it is a 3-dimensional array, do the same with the third dimension. You
cannot change any type, attribute, length or dimension. Only upper bounds can be changed.

Data to be returned can be assigned using the function erxArraySetElement the same way the
client does before send.

/), Important: Do not remove any array instances in server programs.

Using Conversational RPC

It is assumed that you are familiar with the concepts of conversational and non-conversational
RPC. See Common Features of Wrappers and RPC-based Components.

» To use conversational RPC
1 Open a conversation with the ERXConnect function call (see ERXConnect). Save the server ad-
dress ERX_SERVER_ADDRESS and reuse it for the complete RPC conversation.

2 Issue your RPC requests as within non-conversational mode using the generated interface
objects. Different interface objects can participate in the same RPC conversation.

EntireX C Wrapper 51

Writing Advanced Applications with the C Wrapper

» To abort a conversational RPC communication

= Abort an RPC conversation unsuccessfully with the function call £rRXDisconnect.

» To close and commit a conversational RPC communication

m Close the RPC conversation successfully with the function call ERXDisconnectCommit.

(Caution: Natural and EntireX RPC servers behave differently when ending an RPC

convsersation.

See Conversational RPC.

Using RPC Compression

EntireX and Natural RPC support a feature called RPC compression to reduce network data sizes.
We recommend switching RPC compression on. See RPC Compression.

» To switch compression on

1 Set the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure (see
ERX_SERVER_ADDRESS under API Data Descriptions).

2 Set the cCompression field within the ERX_SA_BROKER_LIBRARY structure to
"ERX_COMPRESSTON_YES™".

» To switch compression off

1 When using the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure, set
the cCompression field within the ERX_SA_BROKER_LIBRARY structure to "ERX_COMPRESSTON_NO".

2 When using the medium ERX_TM_BROKER in the ERX_SERVER_ADDRESS structure, compression
is off.

52 EntireX C Wrapper

Writing Advanced Applications with the C Wrapper

Using EntireX Security

EntireX C Wrapper Applications which require security can use the security services offered by
EntireX Security. See Security Solutions in EntireX for a general overview.

» To use EntireX Security

1

J

Specity a user ID and password in the parameters szUserId and szPassword of the
ERX_CLIENT_IDENTIFICATION structure.

Set security with the function £RXSetBrokerSecurity to force a secure call to a broker running
with EntireX Security. You can use the same values as for broker ACI field KERNELSECURITY.
See KERNELSECURITY. The function works together with any broker kernel version that supports
EntireX Security, regardless of the ACI version used.

Note: The broker's security token is maintained inside the EntireX RPC Runtime on a per-

thread basis, see Using the RPC Runtime. If you are communicating with more than one
broker in a single thread:

® you have to save the broker's security token provided in the ERX_CLIENT_IDENTIFICATION
structure after an ERXLogon function call

® you have to provide the correct previously saved Broker's security token with the
ERXSetSecurityTokenfunction to the RPC Runtime before calling one of the following functions:

ERXCall

ERXConnect
ERXDisconnect
ERXDisconnectCommit
ERXLogon

ERXLogoff
ERXTerminateServer
ERXIsServing
ERXWait

Other functions are executed locally and do not communicate with the Broker, the Broker's se-
curity token is not required.

EntireX C Wrapper 53

Writing Advanced Applications with the C Wrapper

Using Natural Security

A Natural RPC Server may run under Natural Security to protect RPC requests. See Natural Security.

» To authenticate a EntireX C Wrapper client against Natural Security

1

Specify a user ID and password in the parameters szUserld and szPassword of the
ERX_CLIENT_IDENTIFICATION structure.

If different user IDs and/or passwords are used for EntireX Security and Natural Security,
use the parameters szRpcUserIdor szRpcPassword to provide the user IDs and/or passwords
for Natural Security.

» To force an EntireX C Wrapper Client to log on to a specific Natural library

1 Set the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure.

2 Specify the correct Natural library in the ERX_SA_BROKER_LIBRARY structure in the
szLibraryName parameter.

3 Setthe parameter cNaturallLogonto "ERX_NATURAL LOGON_YES"inthe ERX_SA_BROKER_LIBRARY
structure. See also Natural Logon or Changing the Library Name in this document.

Using SSL

For an introduction to SSL and TLS, see SSL or TLS and Certificates with EntireX.

» To use SSL or TLS

1 See Running Broker with SSL or TLS Transport in the platform-specific administration docu-
mentation for information on how to set up your environment.

2 Provide the SSL or TLS parameters on the pSSLParameter parameter in the
ERX_CLIENT_IDENTIFICATION structure.

54 EntireX C Wrapper

Writing Advanced Applications with the C Wrapper

Using Compression

EntireX C Wrapper Applications may compress the messages sent to and received from the broker.

» To use compression

m Specify a compression level in the ERX_CLIENT _IDENTIFICATIONstructure. Possible compression
levels are identical to the broker ACI field COMPRESSION. See COMPRESSLEVEL.

Using Internationalization with the C Wrapper

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

The RPC runtime does not convert your application data (in RPCIDL type A, K, AV and KV fields)
before it is sent to the Broker. The application's data is shipped as given by the application.

The EntireX RPC runtime running under the Windows operating system

® assumes by default that the data is given in the encoding of the Windows ANSI codepage con-
figured for your system and

® sends the Windows ANSI codepage configured for your system as part of the locale string to
tell the Broker the encoding of the data if communicating with a Broker version 7.2.n and above.
If you want to adapt the Windows ANSI codepage, refer to the Regional Settings in the Windows
Control Panel and your Windows documentation.

The EntireX RPC runtime running under the UNIX operating system

® does not send a codepage to the Broker as part of the locale string but

" assumes that the Broker's locale string defaults match. If they do not match, you will have to
provide the codepage explicitly with the function £ERXSetCodepage.

The C Wrapper programmer is responsible for providing suitable locale strings. See ERXSetCodepage
under API Function Descriptions. With the function ERXSetCodepage:

® override or provide a codepage in the locale string sent to the broker. If a codepage is provided
it must also be a codepage supported by the broker, depending on the internationalization ap-
proach, and it must follow the rules described under Locale String Mapping in the international-
ization documentation.

EntireX C Wrapper 95

Writing Advanced Applications with the C Wrapper

force a locale string to be sent if communicating with Broker version 7.1.x and below. Under
the Windows operating system, use the value "LOCAL" to send the default Windows ANSI
codepage as the locale string to the broker.

| Note: The codepage setting is maintained inside the EntireX RPC Runtime on a per-thread

basis. See Using the RPC Runtime. If you are using more than one codepage in a single
thread, you have to provide the correct codepage before calling one of the following EntireX
RPC Runtime functions:

ERXCall

ERXConnect

ERXDisconnect

ERXDisconnectCommit

ERXTerminateServer

ERXIsServing

ERXWait

Other functions do not require a codepage.

If no locale string is provided by the C Wrapper programmer, an administrator can also force a
locale string to be sent with the environment variable ERX_CODEPAGE.

When setting the codepage with the environment variable ERX_CODEPAGE:

The ERX_CODEPAGE environment variable is ignored if the application programmer has already
provided a codepage.

The value of the ERX_CODEPAGE environment variable must be the name of the system's default
codepage. Under Windows, simply apply the value "LOCAL" to specify the default Windows
ANSI codepage.

The codepage specified must be one that is supported by the Broker, depending on the Broker's
internationalization approach. See Locale String Mapping in the internationalization documentation
for information on how the broker derives the codepage from the locale string.

Before starting the application, set the locale string with the environment variable ERX_CODEPAGE.

Example:

56

EntireX C Wrapper

Writing Advanced Applications with the C Wrapper

ERX_CODEPAGE=LOCAL

EntireX C Wrapper 57

58

8 Writing RPC Clients for the RPC-ACI Bridge with the C
Wrapper

The RPC-ACI Bridge enables RPC-based client applications to be used with ACI servers.

» To write a C client

» Follow the instructions under Using the C Wrapper for the Client Side.

The RPC-ACI Bridge reports errors from the RPC server side and the ACI side to the RPC clients.
Errors from the ACI side include errors by the Broker for ACI.

The RPC-ACI Bridge reports the same error classes and error codes for the RPC server side as the
Java RPC Server. The RPC-ACI Bridge reports errors of the ACI side in a client-specific way as
error 10010007 (internal error of the RPC protocol). The detailed message of the error has the form
RPCACIBridge: < text >, where text indicates the cause of the error. See Message Class 1018 -
EntireX RPC-ACI Bridge under Error Messages and Codes for additional information.

59

60

9 Writing Callable RPC Servers with the C Wrapper

B [ntroduction t0 Callable RPC SEIVEIScvee i
m Writing @ Callable RPC SEIVETiiiiiiieeeee et e s

= Writing the Callback

= Break/Stop the RPC EXECULION LOOPeiiiieiiiiiiiee ettt e e e
= Scalable NUMDEr of WOTKEE TRIEATScovvr et

61

Writing Callable RPC Servers with the C Wrapper

The callable RPC server interface enables you to write your own RPC Server. This offers the pos-
sibility to integrate RPC servers into third-party systems, as well as to call target servers in pro-

gramming languages other than C by wrapping them. The programming language for writing a
callable RPC Server is C.

Introduction to Callable RPC Servers

The callable RPC server consists of a function containing a loop for recurring RPC execution using
a callback technique for user interaction. The function performs all of the necessary communication
with the broker such as logon and logoff, service registration, receive and send. The behavior of
the callable RPC server can be configured with a server configuration file.

Writing a Callable RPC Server

The main part of the callable RPC server is the C Wrapper runtime function ERXServingCallback.
This function manages Broker communication as well as the marshalling and unmarshalling of
RPC requests using callbacks. The function consists of a loop for RPC execution using callback
technique for user interaction. The behavior of ERXServingCallback is driven by a configuration
file where you set the necessary broker parameters etc. See Setting Server Parameters for the RPC
Server in the UNIX and Windows administration documentation. In the example below, the name
of the configuration file is passed as a parameter to the callable RPC server and given to the
ERXServingCallback function.

The callback function £RX_Callback_SERVER_CALL is called when an RPC request has to be executed.
Implement a call to your target server within this callback event. See Writing the Callback. The
interface of the unmarshalled data given to the callback is compatible with the generated server
interface objects for the programming language C. See Software AG IDL to C Mapping. Upon return
from the callback function, the same applies to parameters replied to the client.

ERXServingCallback requires registration of the events before getting control of them. Use
ERXRegisterEvent with the Event ID ERX_EVENT_SERVER_CALL to register the callback function
ERX_Callback_SERVER_CALL for this purpose.

The criteria to break/stop the RPC execution loop and give control back to the caller can be con-
figured with the configuration file parameter endworkers. See Setting Server Parameters for the RPC
Server in the UNIX and Windows administration documentation. The example below implements
a single RPC worker thread within the main function which is ended by a shutdown from outside.
Hence use endworkers=never as the setting for the configuration file parameter endworkers for
the example below. This ensures the RPC execution loop is not stopped by broker timeouts or
after an RPC request is executed, etc. Use one of the usual ways to stop RPC servers on your
platform to stop the callable RPC server. See Break/Stop the RPC Execution Loop for more inform-
ation.

62 EntireX C Wrapper

Writing Callable RPC Servers with the C Wrapper

As a general rule before using the RPC C runtime at all, every worker thread must be registered
with it using the ERXRegisterfunction. ERXRegister is therefore the first call to the RPC C runtime
and £RXUnregister the last. See Using the RPC Runtime.

Example

void main(int argc, char *argv[1)

{

int bRuntimeRegistered = 0;
char myConfigurationFile[512] = "..\\server\\server.cfg";
void * myParms = NULL;

ERXeReturnCode rc = ERX_S_SUCCESS;
ERX_ERROR_INFO ErrorInfo;
memset (&ErrorInfo, '\0',sizeof(Errorinfo));

/* Treat the input Parameter */

if(argc == 2)

{

strncpy(myConfigurationFile, argv[1 1, 512);
}
printf("\nEntireX callable RPC server is running:\n"
" Configuration File: %s\n",

myConfigurationFile);

/* Register to EntireX RPC Runtime */
rc = ERXRegister(ERX_CURRENT_VERSION);
if (ERX_FAILED(rc))
{
PrintReturnCode(rc,&ErrorInfo);
goto done; /* ===> %/
}
bRuntimeRegistered = 1;

/* Register the Callback Event */
rc = ERXRegisterEvent (ERX_EVENT_SERVER_CALL,
myERX_Callback_SERVER_CALL);
if (ERX_FAILED(rc))
{
PrintReturnCode(rc,&Errorinfo);
goto done; /* ===> */

/* Execute the Callable RPC Server */

rc = ERXServingCallback(myConfigurationFile,
myParms,
(ERX_CF_NOTHING)

)

PrintReturnCode(rc,&ErrorInfo);

done:

if (bRuntimeRegistered == 1)

EntireX C Wrapper 63

Writing Callable RPC Servers with the C Wrapper

{
ERXUnregister();
}
return;
}

Refer to Delivered Examples for the C Wrapper to locate the example within your installation.

Writing the Callback

This very simple example of a callback implementation uses the szLibraryName and szProgramName
from the ERX_CALL_INFORMATION_BLOCK to select requests for the library named EXAMPLE and the
programs named CALC and SQUARE in a hard-wired fashion. Other RPC requests are rejected with
appropriate error messages. The library and program names correspond to the names given in
the IDL file of the calling client.

The focus here is not to show how functions can be called dynamically. Dynamic calling depends
on the possibilities of your implementation platform and support by the programming languages
in use.

The interface of the unmarshalled data given to the callback is compatible with the generated
server interface objects for the programming language C. See Software AG IDL to C Mapping.
Upon return from the callback function, the same applies to parameters expected by and replied
to the client.

® For the IDL data type A, null terminated strings are supplied and expected (corresponding to
DATA_CONV_A=1).

® For the IDL data types N and P double is supplied and expected (corresponding to
DATA_CONV_NP=1).

Returning Errors

With the structure £RX_ERROR_INFORMATION either success or failure must always be returned.

User-specific Data

The callable RPC server supports a concept of user-specific data. With this feature it is possible to
pass a pointer through the ERXServingCallback function directly into the callback. The pointer
myParms, second parameter of the ERXServingCallback in the example above, is available “as is”
in the callback here in the first parameter as pointer pUserInfo. It can be used, for example, to
provide a pointer to a memory location with user-specific data.

64 EntireX C Wrapper

Writing Callable RPC Servers with the C Wrapper

Example

void myERX_Callback_SERVER_CALL

(

}

void
ERX_CLIENT_IDENTIFICATION
ERX_CALL_INFORMATION_BLOCK
void

ERX_ERROR_INFO

* % X o o

ERXeReturnCode

pUserInfo,
pClientInformation,
pCallInformation,
pParameterArea,
pReturninfo

rc = ERX_S_SUCCESS;

printf("\nThis is Callback_SERVER_CALL, serving for %s,%s \n",
pCallInformation->Callee.szLibraryName,
pCallInformation->Callee.szProgramName) ;

if (strcmp(pCallInformation->Callee.szLibraryName,"EXAMPLE") == 0)

{

if (strcmp(pCallInformation->Callee.szProgramName,"CALC") == 0)

{
S_CALC
/* Execute Function */

*pParm = (S_CALC *) pParameterArea;

pParm->function_result = CALC(pParm->operation,
pParm->operand_1,
pParm->operand_2);

}

else if (strcmp(pCalllInformation->Callee.szProgramName, "SQUARE")== 0)

{
S_SQUARE

/* Execute Function */

*pParm = (S_SQUARE *) pParameterArea;

SQUARE(pParm->operand, &(pParm->result));

}
else

{
rc = ERX_E_RPC_CALLEE_NOT_FOUND;

rc = ERX_E_RPC_LIBRARY_NOT_FOUND;

pReturnInfo->rc = rc;
return;

See Delivered Examples for the C Wrapper to locate the example within your installation.

EntireX C Wrapper

65

Writing Callable RPC Servers with the C Wrapper

Break/Stop the RPC Execution Loop

The RPC execution loop should normally run continuously until the RPC server is shut down
from outside. With the setting of the configuration file parameter endworkers you can configure
when the RPC execution loop is stopped and control is given back to the caller. See Setting Server
Parameters for the RPC Server in the UNIX and Windows administration documentation.

The following table explains the endworkers parameter.

Value |Explanation

N |Never

The callable RPC server's function ERXServingCallback breaks/stops the RPC execution loop only
if a normal shut down of the RPC server takes place. This setting makes sense with a simple callable
RPC server (see Writing a Callable RPC Server).

T Timeout
The callable RPC server's function ERXServingCallback breaks/stops the RPC execution loop if

= a normal shutdown of the RPC server takes place.

= the time specified by the timeout server parameter has elapsed and no further new RPC request
or RPC conversation was active. See Setting Server Parameters for the RPC Server in the UNIX and
Windows administration documentation.

This setting makes sense when working with a scalable number of worker threads. See Scalable
Number of Worker Threads.

I Immediately

The callable RPC server's function ERXServingCallback breaks/stops the RPC execution loop if
® anormal shut down of the RPC server takes place.

® immediately after execution of an RPC request or complete RPC conversation.

With this setting you receive control in your callable RPC server after every RPC request or RPC

conversation. See Writing a Callable RPC Server. You can, for example, use this setting for logging
purposes and put a repeat loop around the ERXServingCallback function.

Scalable Number of Worker Threads

This section provides some hints on how to implement a callable RPC server with a scalable
number of worker threads. This is a more complex server with the ability to clone worker threads
to satisfy a high load of client requests.

® Implement a main function registering as an attach server by the broker using REGISTER,
OPTION=ATTACH. When this server receives attach service requests for clients waiting to be served,

66 EntireX C Wrapper

Writing Callable RPC Servers with the C Wrapper

start a suitable number of worker threads. See Implementing an Attach Server under Writing Ap-
plications: Attach Server in the ACI Programming documentation.

® Implement a callable RPC server and its callback to be attached in a thread as described under
Writing a Callable RPC Server and Writing the Callback.

" Use endworkers=timeout for the configuration file parameter endworkers, if you wish to
* implement a server that does not exit after the first conversation

® reduce the number of servers when they are no longer needed

Use endworkers=immed if you wish to

* implement a server that handles only one client for one conversation

See Implementing Servers started by an Attach Server under Writing Applications: Attach Server in the
ACI Programming documentation for more details.

EntireX C Wrapper 67

68

10 Reliable RPC for C Wrapper

® |ntroduction 10 Reliable RPC ... 70
LT To I O 11T o | PSPPSR 4
= Writing a Client using AUTO COMMITeeiieiiiie et 77
B WIIHING @ SEBIVET .ottt 78
B Broker CONfIGUIAtIONiiiiii i e e 79

69

Reliable RPC for C Wrapper

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becoming more and more important. Reliable messaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

Reliable RPC allows asynchronous calls (“fire and forget”)

Reliable RPC is supported by most EntireX wrappers

Reliable RPC messages are stored in the Broker's persistent store until a server is available

Reliable RPC clients are able to request the status of the messages they have sent

Persistent
Store

.‘ [

RPC
with UOW : v

RPC | EntireX
Client < Broker

Error Status
RFC
with UOW

b

RPC
Server

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX C Wrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

= AUTO_COMMIT
" CLIENT_COMMIT

70 EntireX C Wrapper

Reliable RPC for C Wrapper

While AUTO_COMMIT commits each RPC message implicitly after sending it, a series of RPC messages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

This section shows a reliable RPC client for CLIENT_COMMIT mode. All methods for reliable RPC
are defined in erx.h. The methods applicable to reliable RPC as described under API Function
Descriptions for Reliable RPC are:

" ERXGetReliableState
" ERXSetReliableState
" ERXReliableCommit

" ERXReliableRollback
" ERXGetReliablelD

® ERXGetReliableStatus

The example below is included as source in directory examples/ReliableRPC/CClient.

Step 1: Base Declarations Required by the C Wrapper

Step 1a: Include the Generated Header File

Define the generated client header file. This header file includes the RPC runtime header file erx.h
and defines structures and prototypes for your RPC messages.

/* include generated header file */
#include "cmail.h"

Step 1b: Define Global Variables to Communicate with the Client Interface Objects

/* Required global variables for the CLIENT interface */

ERXeReturnCode ERXrc;
ERX_CLIENT_IDENTIFICATION ERXClient;
ERX_SERVER_ADDRESS ERXServer;
ERX_SERVER_ADDRESS ERXServerDefault;
ERXCallId ERXCall1ID;
ERX_ERROR_INFO ERXErrorInfo;

EntireX C Wrapper 71

Reliable RPC for C Wrapper

Step 2: Required Settings for the C Wrapper

Step 2a: Identify the User with a Broker User ID

For implicit broker logon, if required in your environment, the client password can be given here.

It is provided then through the RPC interface object call.

/* set client identification */

memset(&ERXClient, 0, sizeof(ERXClient));
strcpy((char*) ERXClient.szUserId, "ERX-USER");
strcpy((char*) ERXClient.szPassword, "ERX_PASS");

Step 2b: Set the Broker and Service to be Called

Your application will wait a maximum of 55 seconds for a server response. If the server does not
answer within this period, the broker gives your program control again with an error code 00740074.

ERXServer.Medium = ERX_TM_BROKER_LIBRARY;
ERXServer.ulTimeQut = 55;

/* set Broker-Id, server-name, class-name and service-name */

strcpy((char*) ERXServer.Address.BROKER.szEtbidName,
strcpy((char*) ERXServer.Address.BROKER.szServerName,
strcpy((char*) ERXServer.Address.BROKER.szClassName,
strcpy((char*) ERXServer.Address.BROKER.szServiceName,

Step 3: Register with the RPC Runtime

"ETBOOL"
"SRV1");
"RPC");
"CALLNAT"

)

)

As a general rule, you have to register the RPC runtime before you use it. After registration, the
RPC runtime holds information on a per-thread basis. See also Using the RPC Runtime.

/* register to the RPC runtime */

ERXrc = ERXRegister(ERX_CURRENT_VERSION);
If (ERX_FAILED(ERXrc))

{

/* code for error handling */

}

72

EntireX C Wrapper

Reliable RPC for C Wrapper

Step 4: Broker Logon
We logon by EntireX Broker.

/* Logon to EntireX Broker Middleware */

ERXrc = ERXLogon(&ERXClient,
ERXServer.Address.BROKER_Library.szEtbidName);

if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 5: Set Reliable-State

Before reliable RPC can be used, the reliable state must be set to either ERX_RELIABLE_CLIENT_COMMIT
or ERX_RELIABLE_AUTO_COMMIT

/* Set reliable RPC state to client commit */

ERXrc = ERXSetReliableState(ERX_RELIABLE_CLIENT_COMMIT);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 6: Send the RPC Message

The RPC interface object SENDMAIL is called as a C procedure. See Calling Servers as Procedures
or Functions.

/* do the remote procedure call */
SENDMAIL(C gTo, gSubject, gText);

Step 7: Get the Reliable RPC Message ID

Get the reliable RPC message ID before you commit any reliable RPC messages, otherwise the
reliable ID will be lost and checking for the RPC message status will not be possible.

/* Get the reliable ID */

ERXrc = ERXGetReliableID(&ERXServer, pReliablelD);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

EntireX C Wrapper 73

Reliable RPC for C Wrapper

Step 8: Check the Reliable RPC Message Status

After the reliable RPC message ID has been got, you can query the status of the reliable RPC
message. This is a separate call independent of any reliable RPC messages, so we use the default
server connection (ERXServerDefault). Valid reliable RPC message states can be found in header
file etbcdef.h. See Broker ACI Control Block Definition in the ACI for C documentation.

See Using Persistence and Units of Work in the general administration documentation, Understanding
UOW Status under Using Persistence and Units of Work in the general administration documentation
and Broker UOW Status Transition under Concepts of Persistent Messaging in the general administration
documentation for more information.

/* Check the reliable RPC message status */

ERXrc = ERXGetReliableStatus(&ERXClient,
&ERXServerDefault,
pReliablelD,
pReliableStatus);

if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 9: Send a Second RPC message
Send a second reliable RPC message.

/* do the remote procedure call */
SENDMAIL(gTo, gSubject, gText);

Step 10: Commit Both Reliable RPC Messages

Now we commit both reliable RPC messages. This will deliver all reliable RPC messages to the
server if it is available.

/* Commit all made reliable RPC messages */
ERXrc = ERXReliableCommit(&ERXServer);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

74 EntireX C Wrapper

Reliable RPC for C Wrapper

Step 11: Reset ERX_SERVER_ADDRESS

For reliable RPC, the ERX_SERVER_ADDRESS will be overwritten by the RPC runtime, so it is necessary
to reset the ERX_SERVER_ADDRESS structure with the required values.

/*

* After a ERXReliableCommit we have to use a new server connection
* 5o we restore our default server connection for further calls.
/)

memcpy (&ERXServer, &ERXServerDefault, sizeof(ERX_SERVER_ADDRESS));

Step 12: Check the Reliable RPC Message Status

To determine that reliable RPC messages are delivered, we query the reliable RPC message status
again. See also Step 8 above.

Step 13: Send a Third RPC message

Send a third reliable RPC message.

/* do the remote procedure call */
SENDMAIL(C gTo, gSubject, gText);

Step 14: Get the Reliable RPC Message ID
Get the reliable RPC message ID. See also Step 7.

/* Get the reliable ID */

ERXrc = ERXGetReliableID(&ERXServer, pReliablelD);
if(ERX_FAILED(CERXrc))

{

/* code for error handling */

}

Step 15: Check the Reliable RPC Message Status
After the reliable RPC message ID has been got, query the status of the reliable RPC message again.

/* Check the reliable RPC message status */

ERXrc = ERXGetReliableStatus(&ERXClient,
&ERXServerDefault,
pReliablelD,
pReliableStatus);

if(ERX_FAILED(ERXrc))

{

EntireX C Wrapper 75

Reliable RPC for C Wrapper

/* code for error handling */
}

Step 16: Roll back the Third Message
Roll back the current reliable RPC message.

/* Roll back Message 3 */

ERXrc = ERXReliableRollback(&ERXServer);
if(ERX_FAILED(ERXrc))

{

/* code for error handling */

}

Step 17: Check the Reliable RPC Message Status

After rolling back the reliable RPC message, query the status of the reliable RPC message.

/* Get the reliable RPC message status */
ERXrc = ERXGetReliableStatus(&ERXClient,

&ERXServerDefault,

pReliablelD,

pReliableStatus);

if(ERX_FAILEDCERXrc))

{

/* code for error handling */
}

Step 18: Broker Logoff

Log off from EntireX Broker.

/* Logoff from EntireX Broker Middleware */
ERXrc = ERXLogoff(&ERXClient,

ERXServerDefault.Address.BROKER_Library.szEtbidName);

if (ERX_FAILED(ERXrc))

{

/* code for error handling */
}

76

EntireX C Wrapper

Reliable RPC for C Wrapper

Step 19: Deregister with the RPC Runtime

As a general rule, after using the RPC runtime you should unregister from it. This will free all re-
sources held by the RPC runtime for the caller. See Using the RPC Runtime for more information.

/* unregister to the RPC runtime */
ERXUnregister();

Writing a Client using AUTO COMMIT

This section gives some hints for reliable RPC AUTO_COMMIT mode. It is not a complete example

and shows only the correct order of reliable RPC method calls. The reliable ID to check the message
status must be retrieved immediately after the reliable RPC message is sent and before any other
RPC runtime calls - otherwise the reliable ID is lost and retrieving the message status is not possible.

/* Initialize pERXServer */

/*

* After initializing pERXServer with your connection settings (broker ID,
* server-name, calss-name, service-name) create a copy of it

* (pERXDefaultServer). Use this copy to resolve the reliable status after
* a reliable RPC message.

=

memcpy (pERXServer, pERXDefaultServer, sizeof(ERX_SERVER_ADDRESS));

/* Set reliable state to AUTO_COMMIT */
ERXSetReliableState(ERX_RELIABLE_AUTO_COMMIT);

/* reliable RPC message 1 */

SENDMATIL(gTo, gSubject, gText);

/~k

* The reliable ID must be resolved directly
* after a reliable RPC message

2/

ERXGetReliableID(pERXServer, pReliablelID);

/* Resolve the reliable status */

EntireX C Wrapper 7

Reliable RPC for C Wrapper

ERXGetReliableStatus(pERXClient, pERXDefaultServer, pReliablelD,
pReliableStatus);

/* For a second AUTO_COMMIT RPC message, use a new server connection */
memcpy (pERXServer, pERXDefaultServer, sizeof(ERX_SERVER_ADDRESS));

/* reliable RPC message 2 */

SENDMATIL(gTo, gSubject, gText);

/*

* The reliable ID must be resolved directly
* after a reliable RPC message

*/

ERXGetReliableID(pERXServer, pReliablelID);

/* Resolve the reliable status */
ERXGetReliableStatus(pERXClient, pERXDefaultServer, pReliablelD,
pReliableStatus);

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it returns an error code different to 0000000. This causes a cancel of the
transaction (unit of work inside the Broker) and the error code is written to the user status field
of the unit of work.

For writing reliable RPC servers, see Using the C Wrapper for the Server Side (z/OS, UNIX, Win-
dows, B52000/0SD, IBM 1i).

To execute a reliable RPC service with an RPC server, the parameter 10gon must be set to "YES",
see

® Configuring the BS2000/OSD Batch RPC Server under Administering the BS2000/0OSD Batch RPC
Server

= Setting Server Parameters for the RPC Server in the UNIX and Windows administration document-
ation

78 EntireX C Wrapper

Reliable RPC for C Wrapper

Broker Configuration

A Broker configuration with PSTORE is recommended. This enables the Broker to store the messages
for more than one Broker session. These messages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
teature. The lifetime of the messages and the status information can be configured with the attributes
UWTIME and UWSTAT - LIFETIME. Other attributes such as MAX-MESSAGES- IN-UQW, MAX-UOWS and MAX -
UOW-MESSAGE- LENGTH may be used in addition to configure the units of work. See Broker Attributes
in the administration documentation.

The result of the procedure £RXGetReliableStatus depends on the configuration of the unit of
work status lifetime in the EntireX Broker configuration. If the status is not stored longer than the
message, the procedure returns the error code 00780305 (no matching UOW found).

EntireX C Wrapper 79

80

11 Client and Server Examples for UNIX and Windows

= Basic RPC Client Examples - CALC, SQUAREcooiiiiiiiii e, 82
= Basic RPC Server Examples - CALC, SQUAREcooiiiiiiiiiiic e 82
= Basic Callable RPC Server Examples - CALC, SQUAREcooiiiiiiiiiiie e 83
= Reliable RPC Client Example - SENDMAILooiiiii e 83
= Reliable RPC Server Example - SENDMAILoooiiiiiiiiie e 84
= Advanced CICS Channel Container Server RPC Example - DFHCON ..ot 85
= Advanced CICS Large Buffer RPC Server Example - DFHLBUFcccvvviiiiiiiiiic e 85

81

Client and Server Examples for UNIX and Windows

This chapter describes the examples provided for the C Wrapper. All examples here can be found
in the EntireX examples/RPC directory under UNIX and Windows.

Basic RPC Client Examples - CALC, SQUARE

For C environments, the CALC and SQUARE clients are built with the C Wrapper.

Name Type Description Notes
client.c |C source file|A client application calling two remote procedures (RPC services), CALC |1
and SQUARE, with associated example.idl.
client.mak |makefile A build script for generating, compiling and linking. 2
makefile |makefile A build script for generating, compiling and linking. 3
| Notes:

1. Application built according to the client-side build instructions under Writing a Single-threaded
C RPC Client Application.

2. Under Windows only.
3. Under UNIX only.

For more information see the readme file in EntireX directory examples/RPC/basic/example/CClient
under UNIX or Windows.

Basic RPC Server Examples - CALC, SQUARE

For C environments, the CALC and SQUARE servers are built with the C Wrapper.

Name Type Description Notes
EXAMPLE.C|C source file| A server application providing two remote procedures (RPC services), |1
CALC and SQUARE, with associated example.idl.
makefile makefile A build script for generating, compiling and linking. 2
server.mak |makefile A build script for generating, compiling and linking. 3
| Notes:

1. Application built according to the server-side build instructions. See Using the C Wrapper for
the Server Side (z/OS, UNIX, Windows, BS2000/OSD, IBM 1i).

2. Under UNIX only.

82

EntireX C Wrapper

Client and Server Examples for UNIX and Windows

3. Under Windows only.

For more information see the readme file in EntireX directory examples/RPC/basic/example/CServer
under UNIX or Windows.

Basic Callable RPC Server Examples - CALC, SQUARE

For C environments, the CALC and SQUARE servers are built with the C Wrapper.

Name Type Description Notes
callableserver.bat |start script |A start script for the Callable C Server. 1
callableserver.bsh |start script |A start script for the Callable C Server. 2
callableserver.c C source file| A server application providing two remote procedures (RPC 3,4

services), CALC and SQUARE, with associated example.idl.
callableserver.mak |makefile A build script for generating, compiling and linking. 1
makefile makefile A build script for generating, compiling and linking. 2
Notes:

1. Under Windows only.
2. Under UNIX only.
3. Application built according to

= the server-side build instructions, see Using the C Wrapper for the Server Side (z/OS, UNIX,
Windows, BS2000/OSD, IBM 1)

® Writing Callable RPC Servers, see Writing Callable RPC Servers with the C Wrapper
4. This example requires that the Basic RPC Server Examples - CALC, SQUARE are built first.

For more information see the readme file in EntireX directory examples/RPC/basic/example/ CServer-
Callable under UNIX or Windows.

Reliable RPC Client Example - SENDMAIL

For C environments, the SENDMAIL client is built with the C Wrapper.

EntireX C Wrapper 83

Client and Server Examples for UNIX and Windows

Name Type Description Notes

mailclient.c |C source file | A client application calling the reliable remote procedure (RPC service), |1
SENDMAIL, with associated mail.idl.

mailclient.mak {makefile A build script for generating, compiling and linking. 2
makefile makefile A build script for generating, compiling and linking. 3
Notes:

1. Application built according to
® the client-side build instructions under Writing a Single-threaded C RPC Client Application
® Reliable RPC for C Wrapper

2. Under Windows only.

3. Under UNIX only.

For more information see the readme file in EntireX directory examples/RPC/reliable/ CClient under
UNIX or Windows.

Reliable RPC Server Example - SENDMAIL

For C environments, the SENDMAIL server is built with the C Wrapper.

Name Type Description Notes

MAIL.C C source file| A server application providing the reliable remote procedure (RPC |1
service) SENDMAIL, with associated mail.idl.

makefile makefile A build script for generating, compiling and linking. 2

mailserver.mak |makefile A build script for generating, compiling and linking. 3

Notes:

1. Application built according to

*® the server-side build instructions under Using the C Wrapper for the Server Side (z/OS, UNIX,
Windows, BS2000/OSD, IBM 1)

® Reliable RPC for C Wrapper
2. Under UNIX only.
3. Under Windows only.

For more information see the readme file in EntireX directory examples/RPC/reliable/ CServer under
UNIX or Windows.

84 EntireX C Wrapper

Client and Server Examples for UNIX and Windows

Advanced CICS Channel Container Server RPC Example - DFHCON

This example is provided as a client counterpart for easy testing of the CICS Channel Container
interface supported by EntireX RPC technology, see Using the COBOL Wrapper for CICS with
Channel Container Calling Convention (z/OS) in the COBOL Wrapper documentation. The client is
built in the same way as the Basic RPC Client Examples - CALC, SQUARE above. From a C
Wrapper point of view, no new features are introduced.

Name Type Description Notes
containerclient.c |C source file | A client application calling the remote procedure (RPC service) |1
TWOC, with associated CICSChannelContainer.idl.
containerclient.mak |makefile A build script for generating, compiling and linking. 2
makefile makefile A build script for generating, compiling and linking. 3

] Notes:

1. Application built according to the client-side build instructions under Writing a Single-threaded
C RPC Client Application.

2. Under Windows only.
3. Under UNIX only.

For more information see the readme file in EntireX directory examples/RPC/advanced/CICSgreat-
er32K/ChannelContainer/CClient under UNIX or Windows.

Advanced CICS Large Buffer RPC Server Example - DFHLBUF

This example is provided as a client counterpart for easy testing of the CICS Large Buffer interface
supported by EntireX RPC technology, see Using the COBOL Wrapper for CICS with DFHCOM-
MAREA Large Buffer Interface (z/OS and z/VSE) in the COBOL Wrapper documentation. The client
is built in the same way as the Basic RPC Client Examples - CALC, SQUARE above. From a C
Wrapper point of view, no new features are introduced.

Name Type Description Notes

—_

largebufferclient.c |C source file |A client application calling the remote procedure (RPC service)
LBUF, with associated CICSLargeBuffer.idl.

largebufferclient.mak |[makefile A build script for generating, compiling and linking. 2
makefile makefile A build script for generating, compiling and linking. 3
| Notes:

EntireX C Wrapper 85

Client and Server Examples for UNIX and Windows

1. Application built according to the client-side build instructions under Writing a Single-threaded
C RPC Client Application.

2. Under Windows only.
3. Under UNIX only.

For more information see the readme file in EntireX directory examples/RPC/advanced/CICSgreat-
er32K/LargeBuffer/CClient under UNIX or Windows.

86 EntireX C Wrapper

12 Server Examples for BS2000/0SD

B OVEIVIEW v

= Creating the C RPC Sample Server

87

Server Examples for BS2000/0SD

This chapter describes the examples provided for the C Wrapper for BS2000/OSD.

Overview

The following C RPC Server example is delivered for BS2000/OSD:

The EXAMPLE server module contains the server-side implementation of the procedure SQUARE and

the function CALC.

Element Type |LMS Library Comment Notes
CREATE-EXAMPLE-SERVER J EXP951.CSRYV |S-procedure to generate the C RPC sample

server. It uses RUN-CPLUS-COMPILER.
RUN-CPLUS-COMPILER J EXP951.CSRYV |S-procedure to run the CPLUS compiler.
EXAMPLE.C S |EXP951.CSRV |C RPC sample server program source. 1
DEXAMPLE.C S |EXP951.CSRV |C RPC sample server stub source. 1
ERX.HERXVDATA.HERXARRAY.H|S |EXP951.CSRV |RPC runtime header files.
ETBCDEF.H S |EXP951.CSRV |C language ACI control block definitions.

Notes:

1. When compiling the C server example sources, the compiler may issue warnings. These warnings

can be ignored.

Creating the C RPC Sample Server

» To create the server EXAMPLE

1 Parametrize S-procedure CREATE-EXAMPLE-SERVER, if needed.

Procedure Parameter | Description

Default

EXP-SRV-LIB C RPC Server examples library | EXP951.CSRV

For more details, see also the procedure headers in the delivered job control.

Enter the following command:

88

EntireX C Wrapper

Server Examples for BS2000/0SD

/CALL-PROCEDURE *LIB(LIB=EXP951.CSRV,ELE=CREATE-EXAMPLE-SERVER)

2 Enter the following command:

This procedure calls the CPLUS Compiler to generate the corresponding object modules stored
as L-elements in EXP-SRV-LIB (the default is EXP951.CSRV).

There is no need to link the object modules with the BS2000/OSD Common Runtime Environment
(CRTE) library. The CRTE is loaded once dynamically in the corresponding worker task of the
RPC server where the server program is executed. The C RPC example server corresponds with
the delivered CALC and SQUARE COBOL clients.

EntireX C Wrapper 89

90

13 Server Examples for IBM i

The CL sample CRT_C_SRV displayed below is provided in the library EXAMPLE of the IBM i install-
ation kit. It demonstrates how to:

® compile the interface object (for example DEXAMPLE in our sample),

® compile a server (for example EXAMPLE in our sample) and

" bind the RPC server and the broker stub (EXA) to both of them

PGM

DCL VAR(&SRCFILE) TYPE(*CHAR) LEN(10) VALUE(QCSRC)
/* ___ */

MONMSG MSGID(CZMO613 CPF4102) EXEC(GOTO CMDLBL(ERRXT))

CRTCMOD MODULE(DEXAMPLE) +
SRCFILE(*CURLIB/&SRCFILE) +
QUTPUT(*PRINT) OPTION(*SHOWINC *EXPMAC) +
DBGVIEW(*ALL) SYSIFCOPT(*NOIFSIO)

CRTSRVPGM SRVPGM(DEXAMPLE) MODULE(*CURLIB/DEXAMPLE) +
EXPORT(*ALL) ACTGRP(*CALLER) +
TEXT('C Server Generated Stub') +
BNDSRVPGM(*LIBL/EXPRUNTIME EXA) +
OPTION(*GEN *WARN *NODUPVAR *RSLVREF +
*NODUPPROC) DETAIL(*EXTENDED) +
ALWUPD(*YES) ALWLIBUPD(*YES) ALWRINZ(*YES)

CRTCMOD MODULECEXAMPLE) +
SRCFILE(*CURLIB/&SRCFILE) +
OUTPUT(*PRINT) OPTION(*SHOWINC *EXPMAC) +
DBGVIEW(*ALL) SYSIFCOPT(*NOIFSIO)

CRTSRVPGM SRVPGM(EXAMPLE) MODULE(*CURLIB/EXAMPLE) +
EXPORT(*ALL) ACTGRP(*CALLER) +
TEXT('C Server Implementation File') +
BNDSRVPGM(*LIBL/EXPRUNTIME EXA) +

N

Server Examples for IBM i

OPTION(*GEN *WARN *NODUPVAR *RSLVREF +
*NODUPPROC) DETAIL(*EXTENDED) +
ALWUPD(*YES) ALWLIBUPD(*YES) ALWRINZ(*YES)

GOTO CMDLBL(DONE)
ERRXT: SNDPGMMSG MSG('Compile failed')
DONE: ENDPGM

92

EntireX C Wrapper

14 API Function Descriptions for the C Wrapper

B AP] FUNCHON DESCIIPHIONS ...ttt e e e ettt e e e e e e e a e e e e e e e e 94
= API Function Descriptions for Variable-length Data Types AV, BV, KV and UVccccoeiiiiiiieiiiiieee, 130
= API Function Descriptions for Unbounded AfTaYSooiiiiiieiiiiie e 143
= AP| Function Descriptions for Reliable RPC 159

93

API Function Descriptions for the C Wrapper

This chapter describes the API Functions available for the C Wrapper.

API Function Descriptions

The API for the RPC C runtime is defined in the following header file:

#include <erx.h>

94

EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXCall

Remote Procedure Call - Conversationless or Conversational.

Syntax

extern ERXeReturnCode ERXAPI ERXCall(
ERX_CLIENT_IDENTIFICATION ERXPTR *pClient,
const ERX_SERVER_ADDRESS ERXPTR *pServer,

ERXCallId ERXPTR *pCallld,
const ERX_CALL_INFORMATION_BLOCK ERXPTR *pCallInfoBlock,
void ERXPTR *(ERXPTR pParameterBlock)[],
const ERXeControlFlags fFlags);
Description

This performs a remote procedure call. It is used for both connectionless and connection-oriented
calls:

* Connectionless Calls
The server is identified by the &Server parameter

ERXCall(&Client,&Server,&Callld,&CIB,&Parameter,ERX_CF_NOTHING|ERX_CF_STRUCTURED) ;

® Connection-oriented Calls
The server is identified by referring to an established connection: &Server_Connection parameter
returned by an ERXConnect call, as follows:

ERX_SERVER_ADDRESS Server_Connection

ERXConnect (&Client,&Server,&Server_Connection);
ERXCal1(NULL, &Address,&Cal11d,&CIB,&Parameter, ERX_CF_NOTHING|ERX_CF_STRUCTURED) ;

ERXDisconnectCommit (&Address) ;

We suggest using ERX_TM_BROKER_LIBRARY as the medium of the server address (see
ERX_SERVER_ADDRESS). Appropriate values must be provided for all fields. See also ErRXConnect.

The called procedure is identified by the call information block (see £RX_CALL_INFORMATION_BLOCK),
which contains its name and location (library). The call information block also points to an array
of parameter definitions (ERX_PARAMETER_DEFINITION_V3). The parameter definition contains the
type, size, count of indices, occurrences in the respective dimensions, the addresses of the para-
meters, etc. The pParameterBlock array contains the pointers to each parameter's data.

The Software AG IDL Compiler (with the template files client.tpl and server.tpl) generates interface
objects in which the parameter data is grouped in consecutive storage. This is referred to as

EntireX C Wrapper 95

API Function Descriptions for the C Wrapper

structured mode and is indicated by specifying the ERX_CF_STRUCTURED flag as part of the fFlags
ERXCall. In structured mode, only one address, the address of the structure, is passed in the
pParameterBlock array. That is, the pParameterBlock array only has one entry.

For information on the messages, see Error Messages and Codes.

Parameters

pClient
in out: The client's identification, see ERX _CLIENT_IDENTIFICATION

pServer
in: The address of the server, see ERX_SERVER_ADDRESS

pCallld
out: The Cal11Id returned to the caller, used in asynchronous communication to receive the

reply with the ERXWait API call.

pCallInfoBlock
in: The description of the program to call and its parameter definition, see
ERX_CALL_INFORMATION_BLOCK

pParameterBlock
in out: The array of pointers to the actual parameter data.

fFlags
in: ERX_CF_STRUCTURED, i.e. the parameters are collected in one data structure.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

00020002 ERX_ETB_USER_DOES_NOT_EXIST
0003nnnn ERX_ETB_CONVERSATION_ENDED
00070007 ERX_ETB_SERVICE_NOT_AVAILABLE
00740074 ERX_ETB_WAIT_TIMEOUT

02150148 ERX_ETB_BROKER_NOT_AVATILABLE

Related Functions

ERXConnect
ERXDisconnect
ERXDisconnectCommit

96 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERX_Callback_SERVER_CALL

Syntax

void ERX_Callback_SERVER_CALL (
void *pUserInfo,
ERX_CLIENT_IDENTIFICATION *pClientInformation,
ERX_CALL_INFORMATION_BLOCK *pCallInformation,
void *pParameterArea,
ERX_ERROR_INFO *pReturninfo

Jg =

Description

This callback function (see Writing the Callback) is called by the Callable RPC Server (see Writing

Callable RPC Servers with the C Wrapper). Success or failure is returned wiith the structure
ERX_ERROR_INFO.

Parameters

*pUserInfo
in: User specific data. The data is provided “as is” in the function ERXServingCallback. It can
be used to provide a pointer to a memory location with user specific data in the callback.
*pClientInformation
in: The client's identification such as user ID, etc., see ERX_CLIENT _IDENTIFICATION.

*pCalllnformation

in: The description of the library and program to call and its parameter definition, see
ERX_CALL_INFORMATION_BLOCK

*pParameterArea

in: IDL in and inout Parameters from the client. Upon return IDL out and inout parameters

are replied back to the client. Parameters are provided and expected in a contiguous memory
location.

*pReturnInfo
in: Returning success or errors from the callback function. Possible Return Codes to give back
are: ERX_E_RPC_LIBRARY_NOT_FOUND
ERX_E_RPC_CALLEE_NOT_FOUND
ERX_E_RPC_OUT_OF_MEMORY
ERX_E_RPC_ABNORMAL_TERMINATION
ERX_S_SUCCESS

Related Functions

ERXRegisterEvent
ERXServingCallback

EntireX C Wrapper 97

API Function Descriptions for the C Wrapper

ERXConnect

Establish a conversation to the named server.

Syntax

extern ERXeReturnCode ERXAPI ERXConnect(
ERX_CLIENT_IDENTIFICATION ERXPTR *pClient,
const ERX_SERVER_ADDRESS ERXPTR *pServer,
ERX_SERVER_ADDRESS ERXPTR *pAddress
)

Description

Establishes an RPC conversation (connection) to the named server.

The information supplied covers the identification of the client, for example user ID and password,
and the server address.

We suggest using ERX_TM_BROKER_LIBRARY as the medium of the server address. Appropriate
values must be provided for all fields.

See Using Conversational RPC for more information.

For information on the messages, see Error Messages and Codes.

Parameters

pClient
in out: The client's identification, see ERX_CLIENT _IDENTIFICATION.

pServer
in: The address of the server, see ERX_SERVER_ADDRESS.

pAddress
out: The connection ID returned to the caller. The pointers pServer and pAddress must not be
the same. Otherwise an error will occur.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

00020002 ERX_ETB_USER_DOES_NOT_EXIST
00070007 ERX_ETB_SERVICE_NOT_AVAILABLE
00740074 ERX_ETB_WAIT_TIMEOUT

02150148 ERX_ETB_BROKER_NOT_AVAILABLE

98 EntireX C Wrapper

API Function Descriptions for the C Wrapper

Related Functions

ERXDisconnect
ERXDisconnectCommit

EntireX C Wrapper 99

API Function Descriptions for the C Wrapper

ERXDisconnect

Give up the conversation with Backout.

Syntax

extern ERXeReturnCode ERXAPI ERXDisconnect(
ERX_SERVER_ADDRESS ERXPTR *pAddress

)

Description

Aborts the specified RPC conversation (connection). In contrast to £RXDisconnectCommit, calling
this function leads to an abnormal, unsuccessful end of the RPC Conversation. See Using Conver-

sational RPC for more information.

For information on the messages, see Error Messages and Codes.

Parameters

pAddress

in: The pointer to the connection to the RPC Server that is to be aborted. The connection ID
contained in the ERX_SERVER_ADDRESS data structure was retrieved by a previous ERXConnect

call.

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

00020002 ERX_ETB_USER_DOES_NOT_EXIST
00070007 ERX_ETB_SERVICE_NOT_AVAILABLE
00740074 ERX_ETB_WAIT_TIMEOUT

02150148 ERX_ETB_BROKER_NOT_AVAILABLE

Related Functions

ERXConnect
ERXDisconnectCommit

100

EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXDisconnectCommit

Give up the conversation with Commit.

Syntax

extern ERXeReturnCode ERXAPI ERXDisconnectCommit(
ERX_SERVER_ADDRESS ERXPTR *pAddress

)

Description

Close the specified RPC conversation (connection). In contrast to ERXDisconnect, calling this
function leads to a normal, successful end of the RPC Conversation. See Using Conversational
RPC for more information.

For information on the messages, see Error Messages and Codes.

Parameters

pAddress
in: The pointer to the connection to the RPC Server to close. The connection ID contained in
the ERX_SERVER_ADDRESS data structure was retrieved by a previous ERXConnect call.

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

00020002 ERX_ETB_USER_DOES_NOT_EXIST
00070007 ERX_ETB_SERVICE_NOT_AVAILABLE
00740074 ERX_ETB_WAIT_TIMEOUT

02150148 ERX_ETB_BROKER_NOT_AVAILABLE

Related Functions

ERXConnect
ERXDisconnect

EntireX C Wrapper 101

API Function Descriptions for the C Wrapper

ERXGetBrokerSecurity

Get the currrent setting of broker kernel security value.

Syntax

extern ERXeReturnCode ERXAPI ERXGetBrokerSecurity(
* pKernelSecurity

char
)

Description

With this function you retrieve the current settings for security set by a previously issued
ERXSetBrokerSecurity function call maintained internally by the RPC C runtime on a per-thread
basis. See Using EntireX Security for more information. For information on the messages, see Error

Messages and Codes.

Parameters

pKernelSecurity
in

Return Codes
Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXSetBrokerSecurity

102

EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXGetCodepage

Get the currrent setting of the codepage.

Syntax

extern ERXeReturnCode ERXAPI ERXGetCodepage(
char szCodepage [ERX_MAX_CODEPAGE_LENGTH + 1]
)

Description

With this function you retrieve the current settings for the locale string set by a previously issued
ERXSetCodepage function call maintained internally by the RPC C runtime on a per-thread basis.
See Using Internationalization with the C Wrapper for more information. For information on the
messages, see Error Messages and Codes.

Parameters
szCodepage
in

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXSetCodepage

EntireX C Wrapper 103

API Function Descriptions for the C Wrapper

ERXGetContext

Get the current assigned context.

Syntax

extern ERXeReturnCode ERXAPI ERXGetContext(
ERX_CONTEXT_BLOCK ERXPTR ** ppContextBlock

U

Description

This function supports RPC clients in multithreaded environments. It is used to retrieve (thread-
safe) RPC and broker context information, which was supplied by a preceding ERXSetContext
call. See Programming Multithreaded RPC Clients.

For information on the messages, see Error Messages and Codes.

Parameters

ppContextBlock
in out: Pointer to context block, see ERX_CONTEXT_BLOCK

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXSetContext

104 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXGetlAFToken
Get the IAF token.
Syntax
extern ERXeReturnCode ERXAPI ERXGetIAFToken(
char STIAFToken[ERX_TAF_TOKEN_LENGTH]
)
Description

With this function you can programmatically get the IAF Token.

Parameters

sIAFToken
out

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXSetIAFToken

EntireX C Wrapper 105

API Function Descriptions for the C Wrapper

ERXGetLastError

Get Information on Return Codes.

Syntax

extern ERXeReturnCode ERXAPI ERXGetlLastError(
ERX_ERROR_INFO ERXPTR *pErrorInfo

)

Description

Retrieve information about the error that occurred last (the status of the last executed RPC C
runtime function). When an API function is called, the error information is reset and, in case of
error, the applicable information is placed in the error information structure. Exceptions to this
rule are the functions ERXRegister and ERXUnregister, which only return the ERXeReturnCode.
If ERXGetLastError itself is erroneous, the error information structure will be empty. For inform-
ation on the messages, see Error Messages and Codes.

Parameters

pErrorInfo
out: A pointer to the data structure receiving the error information, see £RX_ERROR_INFORMATION.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetMessage

106 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXGetMessage

Get Message Text.

Syntax

extern int ERXGetMessage(
ERXeReturnCode rc,

char *szMsg,
unsigned int ulMsg
)
Description

The function ERXGetMessage delivers the message text of the error codes in the following error
classes. See also Error Messages and Codes:

" Message Class 0001 - RPC C Runtime under Error Messages and Codes

® Message Class 1000 - RPC C Runtime System under Error Messages and Codes

" Message Class 1001 - RPC Protocol under Error Messages and Codes

® Message Class 1003 - Conversion under Error Messages and Codes

" Message Class 1004 - IDL Compiler under Error Messages and Codes

® Message Class 1005 - RPC Server under Error Messages and Codes

" Message Class 1006 - DCOM Wrapper under Error Messages and Codes

" Message Class 1008 - EntireX License under Error Messages and Codes

Message texts from other error classes cannot be retrieved with this function. Use ERXGetMessage

only to access errors from the error classes listed above. To always retrieve the correct error message
after an C Wrapper API function call (ERX call), use the function ERXGetLastMessage.

Parameters

rc
in: ID of the message text to retrieve.

szMsg
out: Pointer to message text buffer.

ulMsg
in: Length of message text buffer.
Return Codes

Value Meaning
int==0 OK

EntireX C Wrapper 107

API Function Descriptions for the C Wrapper

Value Meaning
int!=0 something has failed.

Related Functions

ERXGetlLastError

108 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXGetSecurityToken

Get the current setting of the Security Token.

Syntax

extern ERXeReturnCode ERXAPI ERXGetSecurityToken(
char szSecurityToken
[ERX_MAX_securityToken_LENGTH + 1]
);

Description

Returns the current value of the Broker's Security Token maintained internally by the RPC C
runtime on a per-thread basis. See Using EntireX Security for more information.

For information on the messages, Error Messages and Codes.

Parameters

szSecurityToken
out: The security token returned

Return Codes
Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXSetSecurityToken

EntireX C Wrapper

109

API Function Descriptions for the C Wrapper

ERXGetTraceLevel

Get the current trace level setting of the RPC C runtime and the broker stub.

Syntax

extern ERXeReturnCode ERXAPI ERXGetTracelevel(
long *puTracelevel
)

Description

With this function you can retrieve the current trace level setting of the RPC C runtime and the
broker stub.

Parameters

puTraceLevel
out

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXSetTracelevel

110 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXGetVersion

Determine Version of RPC C runtime.

Syntax

extern int ERXGetVersion(
char *pMessage,
size_t uMessagelength
);

Description

Determine version of RPC C runtime. See Examine the RPC Runtime and Interface Object Version

for more information.

Parameters

pMessage
in out: Pointer to buffer for version string.

uMessageLength
in: Length of buffer

Return Codes

Value Meaning

int==0 OK

int!=0 something has failed.

EntireX C Wrapper

M

API Function Descriptions for the C Wrapper

ERXIsServing

Ping the Server.

Syntax

extern ERXeReturnCode ERXAPI ERXIsServing(
ERX_CLIENT_IDENTIFICATION ERXPTR *pClient,

ERX_SERVER_ADDRESS ERXPTR *pAddress,
ERX_IS_SERVING ERXPTR *pIsServing
)
Description

Check whether the server is available. Before issuing ERXIsServing you must provide the following:

= the client identification
" the server address
" a pointer to the message area

" the length of the message area

For information on the messages, see Error Messages and Codes.

Parameters

pClient
in out: Pointer to the client identification, see ERX_CLIENT_IDENTIFICATION.

pAddress
in: Pointer to the server address, see ERX_SERVER_ADDRESS.

pIsServing
in out: Pointer to ERX_IS_SERVING structure.
Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

00020002 ERX_ETB_USER_DOES_NOT_EXIST
0003nnnn ERX_ETB_CONVERSATION_ENDED
00070007 ERX_ETB_SERVICE_NOT_AVAILABLE
00740074 ERX_ETB_WAIT_TIMEOUT

02150148 ERX_ETB_BROKER_NOT_AVAILABLE

112 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXLogoff

Logoff by Broker and EntireX Security, i.e. free Broker resources.

Syntax

extern ERXeReturnCode ERXAPI ERXLogoff(
ERX_CLIENT_IDENTIFICATION ERXPTR *pClient,
char szEtbidName [ERX_BROKER_ETBID_NAME_LENGTH + 11
)

Description

Logs off from the Broker, frees the resources within the Broker and makes them available to other
users. For information on the messages, see Error Messages and Codes.

Parameters

pClient
in out: The client's identification, see ERX _CLIENT _IDENTIFICATION

szEtbidName
in: Identification of the Broker. Correponds to the BROKER-ID field of the Broker ACI control
block.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED
00020002 ERX_ETB_USER_DOES_NOT_EXIST
02150148 ERX_ETB_BROKER_NOT_AVAILABLE

Related Functions

ERXLogon

EntireX C Wrapper 13

API Function Descriptions for the C Wrapper

ERXLogon

Logon by EntireX Broker and EntireX Security.
Syntax

extern ERXeReturnCode ERXAPI ERXLogon(
ERX_CLIENT_IDENTIFICATION ERXPTR *pClient,
char szEtbidName
[ERX_BROKER_ETBID_NAME_LENGTH + 1]
)

Description

Logon to Broker.

This function allows the client or server application to logon to Broker, which allocates the necessary
structures to handle the new participant. If the Broker is running in a secure environment, ERXLogon
performs the authentication process. Whether ERXLogon is required depends on the customization
of the Broker. See AUTOLOGON in the Broker attribute file and cForcelLogon in the
ERX_CLIENT_IDENTIFICATION structure.

We suggest using ERXLogon and ERXLogoff to logon/logoff to/from Broker.

For information on the messages, see Error Messages and Codes.

Parameters

pClient
in out: The client's identification, see ERX_CLIENT_IDENTIFICATION

szEtbidName
in: Identification of the Broker. Correponds to the BROKER-ID field of the Broker ACI control
block.

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED
02150148 ERX_ETB_BROKER_NOT_AVAILABLE

Related Functions

ERXLogoff

114 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXRegister

Prepare use of RPC C runtime.

Syntax

extern ERXeReturnCode ERXAPI ERXRegister(
const unsigned Tong ulVersionRequested
)

Description

Register with RPC C runtime. Any thread within a process requiring RPC C runtime must register
with it. When the RPC C runtime is no longer needed, any registered thread should unregister itself
(see ERXUnregister). See Using the RPC Runtime for more information. For information on the
messages see Error Messages and Codes.

Parameters

ulVersionRequested
in: The RPC C runtime version to be used. (See ERX_CURRENT_VERSION in erx.h for the most recent
version). If the version is not supported, an error will occur.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010007 ERX_E_ALREADY_REGISTERED

Related Functions

ERXUnregister

EntireX C Wrapper 115

API Function Descriptions for the C Wrapper

ERXRegisterEvent

Syntax

extern ERXeReturnCode ERXAPI ERXRegisterEvent(
const long Eventld,
void (* Callback)()

)

Description

The function registers events to the RPC C runtime used by the callable RPC Server during execution
of the ERXServingCallback function. All events must be registered prior to the execution of the
ERXServingCallback function. The following events are supported:

Event ID Callback Prototype

Description

ERX_EVENT_SERVER_CALL|ERX_Callback_SERVER_CALL

Event for calling the server.

See Writing the Callback for more information. For information on the messages, see Error Messages

and Codes.

Parameters

EventID
in: Event to register

(* Callback)()
in: Callback function belonging to the event

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERX_Callback_SERVER CALL
ERXServingCallback

116

EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXReset

Reset a parameter block.

Syntax

extern ERXeReturnCode ERXAPI ERXReset(
const ERX_CALL_INFORMATION_BLOCK ERXPTR *pCallInfoBlock,

void ERXPTR *(ERXPTR pParameterBlock)[I,
ERXeParameterDirection eDirection,
const ERXeControlFlags fFlags

)

Description

Reset the specified program parameters:

Software AG IDL |Value

A, AV, K, KV |blank
B,BV, I F 0

D 1.1.1582

T 0:00, the date portion is reset as type D
N +0

P +0

For information on the messages, see Error Messages and Codes.

Parameters

pCallInfoBlock
in: The pointer to the description of the program and its parameter definition, see
ERX _CALL_INFORMATION_BLOCK.

pParameterBlock
in out: The array of pointers to the actual parameter data.

eDirection
in: Type of parameters to be reset, input and/or output parameters. For ERX_IN_PARM, parameters
with the IN attribute; for ERX_OUT_PARM parameters with the OUT attribute; for ERX_INOUT_PARM,
all parameters are reset.

fFlags
in: ERX_CF_STRUCTURED, i.e. the parameters are collected in one data structure.

EntireX C Wrapper 17

API Function Descriptions for the C Wrapper

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXCall

118

EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXServingCallback

Syntax

extern ERXeReturnCode ERXAPI ERXServingCallback(
char *pConfigurationFile,
void *pUserInfo,
const ERXeControlFlags fFlags

)

Description

This function implements the main function of the Callable RPC Server, see Writing the Callback.
For information on the messages, see Error Messages and Codes.

Parameters

*pConfigurationFile
in: Location consisting of path and file name of the configuration file in relative and absolute

notation.

*pUserInfo
in: User-specific data. The data is provided “as is” and can be used to provide a pointer to a

memory location with user-specific data in callback functions.

fFlags
in: For future use.
Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED
00100050 ERX_ETB_SHUTDOWN_IMMED
02150148 ERX_ETB_BROKER_NOT_AVAILABLE

Related Functions

ERX_Callback SERVER CALL

EntireX C Wrapper 119

API Function Descriptions for the C Wrapper

ERXSetBrokerSecurity

Set the broker kernel security value.

Syntax

extern ERXeReturnCode ERXAPI ERXSetBrokerSecurity(
char cKernelSecurity

)

Description

This function exposes the Broker ACI field KERNELSECURITY as a method to users of C Wrapper.
The security settings are maintained internally by the RPC C runtime on a per-thread basis. See
Using EntireX Security for more information.

For information on the messages, see Error Messages and Codes.

Parameters

cKernelSecurity
in

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetBrokerSecurity

120 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXSetCodepage
Set the codepage.
Syntax
extern ERXeReturnCode ERXAPI ERXSetCodepage(
char szCodepage [ERX_MAX_CODEPAGE_LENGTH + 1]
)s
Description

This function exposes the Broker ACI field LOCALE-STRING as a method to users of C Wrapper.
The codepage is maintained internally by the RPC Runtime on a per-thread basis, see Using Inter-
nationalization with the C Wrapper.

For information on the messages, see Error Messages and Codes.
Parameters
szCodepage

in

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetCodepage

EntireX C Wrapper 121

API Function Descriptions for the C Wrapper

ERXSetContext

Set a context (thread-safe RPC information).

Syntax

extern ERXeReturnCode ERXAPI ERXSetContext(
ERX_CONTEXT_BLOCK ERXPTR * pContextBlock
)

Description

This function supports RPC clients in multithreaded environments. It is used to set (thread-safe)
RPC and broker context information, see Programming Multithreaded RPC Clients. For information
on the messages, see Error Messages and Codes.

Parameters

pContextBlock
in: Pointer to context block, see ERX_CONTEXT_BLOCK

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetContext

122 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXSetlAFToken
Set the IAF token.
Syntax
extern ERXeReturnCode ERXAPI ERXSetIAFToken(
char STIAFToken[ERX_TAF_TOKEN_LENGTH]
)
Description

With this function you can programmatically set the IAF Token.

Parameters

sIAFToken
in

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetIAFToken

EntireX C Wrapper 123

API Function Descriptions for the C Wrapper

ERXSetSecurityToken

Get the current setting of the Security Token.

Syntax

extern ERXeReturnCode ERXAPI ERXSetSecurityToken(
char szSecurityToken[ERX_MAX_securityToken_LENGTH + 11);

Description

Sets the Broker Security Token. The security settings are maintained internally by the RPC C
runtime on a per-thread basis. See Using EntireX Security for more information.

For information on the messages, see Error Messages and Codes.

Parameters

szSecurityToken
in: The security token to set.

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetSecurityToken

124 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXSetTraceLevel

Set the trace level of the RPC C runtime and the broker stub's trace.

Syntax

extern ERXeReturnCode ERXAPI ERXSetTracelevel(
long uTracelevel
)

Description

With this function you can programmatically set the trace level of the RPC C runtime and the
broker stub's trace. Use the provided defines in the erx.h header file for assigning trace levels:

ftdefine ERX_TRACE_NONE (0L)
jtdefine ERX_TRACE_LEVEL1 (1L)
ftdefine ERX_TRACE_LEVEL2 (2L)
jtdefine ERX_TRACE_LEVEL3 (3L)
ftdefine ERX_TRACE_LEVEL4 (4L)

Parameters

uTraceLevel
in

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetTracelevel

EntireX C Wrapper 125

API Function Descriptions for the C Wrapper

ERXTerminateServer

Terminate running Server.

Syntax

extern ERXeReturnCode ERXAPI ERXTerminateServer(
ERX_CLIENT_IDENTIFICATION ERXPTR *pClient,

ERX_SERVER_ADDRESS ERXPTR *pAddress,
ERX_TERMINATE_SERVER ERXPTR *pTerminateServer
) s
Description

Shut down the running server. Before issuing ERXTerminateServer you must provide the following:

= the client identification

" the server address

the shutdown command

" a pointer to a message area

the length of the message area
See description of the ERX_SERVER_ADDRESS and control block.

For information on the messages, see Error Messages and Codes.

Parameters

pClient
in out: Pointer to the client identification, see ERX_CLIENT_IDENTIFICATION.

pAddress
in: Pointer to the server address, see ERX_SERVER_ADDRESS.

pTerminateServer
in out: Pointer to terminate structure, see ERX_TERMINATE_SERVER.
Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

00020002 ERX_ETB_USER_DOES_NOT_EXIST
0003nnnn ERX_ETB_CONVERSATION_ENDED
00070007 ERX_ETB_SERVICE_NOT_AVAILABLE

126 EntireX C Wrapper

API Function Descriptions for the C Wrapper

Value = Meaning
00740074 ERX_ETB_WAIT_TIMEOUT

02150148 ERX_ETB_BROKER_NOT_AVAILABLE

Related Functions

ERXCall

EntireX C Wrapper 127

API Function Descriptions for the C Wrapper

ERXUnregister

RPC C runtime is not needed anymore, i.e. free local resources.

Syntax

extern ERXeReturnCode ERXAPI ERXUnregister(void);

Description

Unregister from RPC C runtime. When a thread no longer needs the RPC C runtime, it must unre-
gister itself from the runtime. See Using the RPC Runtime. For information on the messages, see
Error Messages and Codes.

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXRegister

128 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXWait
Wait for the completion of asynchronous non-conversational call.
Syntax
extern ERXeReturnCode ERXAPI ERXWait(
ERXCallld Callld,
const ERX_CALL_INFORMATION_BLOCK ERXPTR *pCallInfoBlock,
void ERXPTR *(ERXPTR pParameterBlock)[]
)
Description

Wait for an incoming request. Only applicable to connection-oriented processing.

For information on the messages, see Error Messages and Codes.

Parameters

Callld
in: The Cal11d returned by a previous ERXCall.

pCallInfoBlock
in: Pointer to the description of the program and its parameter definition, see
ERX_CALL_IDENTIFICATION.

pParameterBlock[]
in out: The array of pointers to the actual parameter data.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010008 ERX_E_NOT_REGISTERED

00020002 ERX_ETB_USER_DOES_NOT_EXIST
0003nnnn ERX_ETB_CONVERSATION_ENDED
00070007 ERX_ETB_SERVICE_NOT_AVAILABLE
00740074 ERX_ETB_WAIT_TIMEOUT

02150148 ERX_ETB_BROKER_NOT_AVAILABLE

EntireX C Wrapper 129

API Function Descriptions for the C Wrapper

API Function Descriptions for Variable-length Data Types AV, BV, KV and
uv

The API of the RPC C runtime for variable-length data is defined in the following header file:

f#include <erxvdata.h>

130 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxVDataAllocBytes

Allocates a new VData instance and copies ulLen bytes from pSource into it. Intended for use with
the IDL data types AV, BV, KV and UV together with the C programming language mem. . . func-
tions. See Using Variable-length Data Types AV, BV, KV and UV. Any allocated VData instance
must be freed with erxVDataFree if no longer used.

Syntax
extern ERX_HVDATA erxVDataAllocBytes(void *pSource, size_t ulen);
Parameters

pSource
in: A pointer to uLen bytes to copy.

uLen
in: Number of bytes to copy from pSource location.

Return Values

Points to a copy of the VData instance. No VData instance is allocated and null is returned in the
following case:

* Insufficient memory
An empty VData instance (which holds an empty data area) is allocated in the following cases:

® A null pointer is passed for pSource.

" A value of zero is passed for ulLen.

Related Functions

erxlV/DataFree
erxl/DataGetByteAddress
erxlVDataGetlLength
erxVDataReAllocBytes

EntireX C Wrapper 131

API Function Descriptions for the C Wrapper

erxVDataAllocString

Allocates a new VData instance, and copies the string from pSource into it. Intended for use with
the IDL data types AV and KV together with the C programming language str. .. functions. See
Using Variable-length Data Types AV, BV, KV and UV. Any allocated VData instance must be
freed with erxVDataFree if no longer used.

Syntax

extern ERX_HVDATA erxVDataAllocString(char *pSource);

Parameters

pSource
in: A pointer to a string to copy

Return Values

Points to a copy of the VData instance. No VData instance is allocated and null is returned in the
following case:

* Insufficient memory

An empty VData instance, which holds an empty (null-terminated) string, is allocated in the fol-
lowing case:

® A null pointer is passed for pSource

Related Functions

erxlVDataFree
erxlVDataReAllocString

132 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxVDataAllocWideString

Allocates anew VData instance, copies the wide character string from the passed pSource location
into it. Intended for use with the IDL data type UV together with the C programming language
wes. .. functions. See Using Variable-length Data Types AV, BV, KV and UV. Any allocated VData
instance must be freed with erxVDataFree if no longer used.

Syntax

extern ERX_HVDATA erxVDataAllocWideString(wchar_t *pSource);

Parameters

pSource
in: A pointer to a wide character string to copy.

Return Values

Points to a copy of the VData instance. No VData instance is allocated and null is returned in the
following case:

* Insufficient memory exists

An empty VData instance, which holds an empty (null-terminated) string) is allocated in the fol-
lowing case:

® A null pointer is passed for pSource

Related Functions

erxlV/DataFree
erxVDataReAllocWideString

EntireX C Wrapper 133

API Function Descriptions for the C Wrapper

erxVDataCopy

Copies an existing source VData instance to an existing target VData instance. Can be used for all
IDL data types AV, BV and KV and UV. See Using Variable-length Data Types AV, BV, KV and
uv.

Syntax

extern ERX_HVDATA erxVDataCopy(ERX_HVDATA hVDataTo, ERX_HVDATA hVDataFrom);

Parameters

hVDataTo
Handle of existing VData target instance.

hVDataFrom

Handle of existing VData source instance.

Return Values

Points to the target VData instance. The VData instance is not copied and null is returned in the
following cases:

® Aninvalid handle is passed for hVDataTo

® An invalid handle is passed for hVDataFrom

Related Functions

erxlVDataAllocBytes
erxVDataAllocString
erxVDataAllocWideString
erxlVDataReAllocBytes
erxlVDataReAllocString
erxVDataReAllocWideString

134 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxVDataFree

Frees all the memory used by a VData instance of IDL data types AV, BV, KV and UV. See Using
Variable-length Data Types AV, BV, KV and UV.

Syntax

extern void erxVDataFree(ERX_HVDATA hVData);

Parameters

hVData
in: Handle of existing VData instance to free the resources.

Return Values

None.

Related Functions

erxlVDataAllocBytes
erxlVDataAllocString
erxlVDataAllocWideString

EntireX C Wrapper 135

API Function Descriptions for the C Wrapper

erxVDataGetByteAddress

Get the address of binary data held by a VData instance of IDL data types AV, BV, KV and UV.
Intended for use with the function erxVDataGetLength together with the C programming language
mem. . . functions. See Using Variable-length Data Types AV, BV, KV and UV.

Syntax
extern void * erxVDataGetByteAddress(ERX_HVDATA hVData);

Parameters

hVData
in: Handle of VData instance from which to retrieve the address of the data

Return Values

Returns the address of the data held by the VData instance. A null pointer is returned in the follow-
ing case:

" An invalid handle is passed
A pointer to an undefined area is returned in the following case:
® The VData instance is empty.

Related Functions

erxVDataAllocBytes
erxVDataGetlLength
erxlVDataReAllocBytes

136 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxVDataGetLength

Get the length in bytes of the data held by a VData instance of IDL data types AV, BV, KV and UV.
Intended for use with the function erxVDataGetByteAddress together with the C programming
language mem. . . functions. See Using Variable-length Data Types AV, BV, KV and UV.

Syntax

extern size_t erxVDataGetlLength(ERX_HVDATA hVData);

Parameters

hVData
in: Handle of VData instance from which to retrieve the length.

Return Values

Number of bytes or length of string (excluding the terminating null or terminating wide-character
null) held by the VData instance. Zero is returned in the following cases:

" An invalid handle is passed.
® The VData instance is empty.

Related Functions

erxlVDataAllocBytes
erxVDataGetByteAddress
erxlVDataReAllocBytes

EntireX C Wrapper 137

API Function Descriptions for the C Wrapper

erxVDataGetString

Get the address of the string held by a VData instance of IDL data types AV and KV. It will always
have the address of a valid null-terminated string. The returned string can be used in conjunction
with Clanguage str. .. functions. See Using Variable-length Data Types AV, BV, KV and UV.

Syntax
extern char * erxVDataGetString(ERX_HVDATA hVData);

Parameters

hVData
in: Handle of VData instance from which to retrieve the string address.

Return Values

Returns a pointer to the address of the string held by the VData instance. A null pointer is returned
in the following case:

" An invalid handle is passed.
A pointer to an empty string is returned in the following case:
® The VData instance is empty.

Related Functions

erxVDataAllocString
erxVDataReAllocString

138 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxVDataGetWideString

Get the address of the wide character string held by a VData instance of IDL data type UV. It will
be guaranteed always to have the address of a valid null-terminated wide character string. The
returned wide character string can be used in conjuction with C programming language wcs. . .
functions. See Using Variable-length Data Types AV, BV, KV and UV.

Syntax
extern wchar_t * erxVDataGetWideString(ERX_HVDATA hVData);

Parameters

hVData
Handle to VData instance to get the wide character string address from.

Return Values

Returns a pointer to the address of the wide character string held by the VData instance. A null
pointer is returned in the following case:

® An invalid handle is passed
A pointer to an empty wide character string is returned in the following case:
® The VData instance is empty

Related Functions

erxVDataAllocWideString
erxlVDataReAllocWideString

EntireX C Wrapper 139

API Function Descriptions for the C Wrapper

erxVDataReAllocBytes

Assign new binary data to an existing VData instance. The function copies ulLen bytes from pSource
into the VData instance. Note that the address of the data held by the VData instance may have
changed upon return. The location of the VData instance itself will always remain fixed. Intended
for use with IDL data types AV, BV, KV and UV together with the C programming language
mem. .. functions. See Using Variable-length Data Types AV, BV, KV and UV.

Syntax

extern void * erxVDataReAllocBytes(
ERX_HVDATA hVData,
void *pSource,
size_t ulen);

Parameters

hVData
in: Handle of existing VData instance.

pSource
in: A pointer to uLen bytes to copy, or null to set the VData instance empty.

uLen
in: Number of bytes to copy from pSource location. Zero will set the VData instance empty.

Return Values

Returns a pointer to the data held by the VData instance. A null pointer is returned in the following
case:

® an invalid handle is passed
A pointer to empty data is returned in the following cases:

® Insufficient memory exists to hold the new value
® A null pointer is passed for pSource

® Zero is passed for uLen.

Related Functions

erxVDataAllocBytes
erxVDataGetByteAddress

140 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxVDataReAllocString

Assign a new string to an existing VData instance of IDL data types AV and KV. The function
copies the string from pSource into the VData instance. Note that the address of the data held by
the VData instance may have changed upon return. The location of the VData instance itself will
always remain fixed. Intended for use with IDL data type AV and KV together with the C pro-
gramming language str. .. functions. See Using Variable-length Data Types AV, BV, KV and UV.

Syntax

extern char * erxVDataReAllocString(
ERX_HVDATA hVData,
char *pSource);

Parameters

hVData
in: Handle of existing VData instance.

pSource
in: A pointer to the string to copy, or null to set the VData instance to an empty string.

Return Values

Returns a pointer to the data held by the VData instance. A null pointer is returned in the following
case:

® An invalid handle is passed
A pointer to a null string is returned in following cases:

* Insufficient memory exists to hold the new value

® A null pointer is passed for pSource

Related Functions

erxVDataAllocString
erxVDataGetString

EntireX C Wrapper 141

API Function Descriptions for the C Wrapper

erxVDataReAllocWideString

Copies the wide character string from the passed pSource location into the VData instanceof IDL
data type UV. Be aware that the address to the data held by the VData instance can be changed
upon return. The location of the VData instance itself will always stay fixed. Intended for use with
the IDL data type UV together with the C programming language wcs. . . functions. See Using
Variable-length Data Types AV, BV, KV and UV.

Syntax

extern wchar_t * erxVDataReAllocWideString(ERX_HVDATA hVData, wchar_t *pSource);

Parameters

hVData
Handle to VData instance to put the wide character string into.

pSource
A pointer to the string to put, or null to set the VData instance to an empty wide character
string.

Return Values

Returns a pointer to the data held by the VData instance. A null pointer is returned in the following
case:

® Aninvalid handle is passed
A pointer to a null wide character string is returned in the following cases:

* Insufficient memory exists to hold the new value

® A null pointer is passed for pSource

Related Functions

erxVDataAllocWideString
erxVDataGetWideString

142 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxVDataReset

Sets an existing VData instance to empty (a null string for IDL data types AV and KV; a null wide-
character string for IDL data type UV; and zero length for IDL data type BV). See Using Variable-
length Data Types AV, BV, KV and UV.

Syntax

extern void erxVDataReset (ERX_HVDATA hVData);

Parameters

in hVData
Handle of existing VData instance.

Return Values

None.

Related Functions
erxlVDataGetWideString

erxVDataGetString
erxlVDataGetlLength

API Function Descriptions for Unbounded Arrays

The API of the RPC C runtime for unbounded arrays is defined in the following header file:

#include <erxarray.h>

EntireX C Wrapper 143

API Function Descriptions for the C Wrapper

erxArrayAlloc

Allocates a new array instance of the given dimensions to be used as a so-called unbounded array.
Array elements are initialized with their correct null value or zero corresponding to their IDL data
type provided by the ERXeTypeCode. See Using Unbounded Arrays. Any allocated array instance
must be freed with erxArrayFree if no longer used.

Syntax
extern ERX_HARRAY erxArrayAlloc(ERXeTypeCode usType,
ERXeAttributes usAttributes,
uLength,
unsigned int uDimension,
ERX_ARRAY_INDEX uArrayBound[1) ;
Description
Note
usType uLength usAttributes
ERX_TYPE_A 1-1GB ERX_ATTR_STRING, 1
ERX_ATTR_MF_ALPHA
ERX_TYPE_AV 0 2
ERX_TYPE_B 1-1GB 1
ERX_TYPE_BV 0 2
ERX_TYPE_D 0 2
ERX_TYPE_F 4,8
ERX_TYPE_G 1-1GB 3
ERX_TYPE_I 1,2,4
ERX_TYPE_K 1-1GB 1
ERX_TYPE_KV 0 2
ERX_TYPE_L 0 2
ERX_TYPE_N 1-29 ERX_ATTR_DOUBLE, 4
ERX_ATTR_UNPACKED
ERX_TYPE_NU 1-29 ERX_ATTR_DOUBLE, 4
ERX_ATTR_UNPACKED
ERX_TYPE_P 1-29 ERX_ATTR_DOUBLE, 4
ERX_ATTR_PACKED
ERX_TYPE_PU 1-29 ERX_ATTR_DOUBLE, 4
ERX_ATTR_PACKED
ERX_TYPE_S 1-1GB
ERX_TYPE_T 0 2
144 EntireX C Wrapper

API Function Descriptions for the C Wrapper

Note
usType uLength usAttributes
ERX_TYPE_U ERX_ATTR_STRING, 1
ERX_ATTR_MF_ALPHA
ERX_TYPE_UV 0 2
Note:

1. When mapped to ERX_ATTR_MF_ALPHA the length is exactly the length given in the IDL file. When
mapped to ERX_ATTR_STRING the length is the length + 1 given in the Software AG IDL file for the
terminating null character or terminating wide-character null.

2. The length is implicitly defined by the IDL data type.

3. A Group or structure is normally associated with a struct typedef. The length to specifiy is the value
of the sizeof () operator applied to the struct.

4. When mapped to ERX_ATTR_UNPACKED or ERX_ATTR_PACKED the length to specify relates to the IDL
data type. The number of digits before and after the decimal point must be added. Example: For 5.2
specify 7. When mapped to ERX_ATTR_DOUBLE the length is implicit and thus obsolete.

Parameters

usType
The IDL data type stored in the array instance. See the description above.

usAttributes
The description above lists valid values for IDL data types. The values must exactly match the
mapping options used when the RPC client is generated. See Generate C Source Files from
Software AG IDL Files.

uLength
Depending on the data type (see table above) the length is required.

uDimension
Number of dimensions. The dimension must be at least 1. Up to 3 dimensions are allowed.
The lower bound is always 0.

uArrayBound
Pointer to a vector containing the number of elements for each dimension. The number of
vector elements must correspond to the number of array dimensions. The left (most significant)
dimension is uArrayBound[0].

Return Values

Points to the created copy of the array instance. No array instance is allocated and null is returned
in the following cases:

* Insufficient memory exists

® The IDL data type provided by the ERXeTypeCode is invalid

EntireX C Wrapper 145

API Function Descriptions for the C Wrapper

" missing uLength depending on the data type
" uDimension is zero

" uArrayBound is invalid

Related Functions

erxArrayFree

146 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxArrayCopy

Copies an existing source array instance to an existing target array instance. Source and target
array instance must exist, otherwise an error is returned. The contents of the target array instance
are overwritten by the contents of the source instance. See Using Unbounded Arrays.

Syntax

extern ERXeReturnCode erxArrayCopy(ERX_HARRAY hArrayTo, ERX_HARRAY hArrayFrom);

Parameters

phArrayTo
Points to the target array instance created previously by erxARrayAlloc.

hArrayFrom
Points to the source array instance created previously by erxArrayAlloc.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010005 Out of Memory
00010028 Illegal Type
00010079 Invalid Unbounded Array

Related Functions

erxArrayAlloc

EntireX C Wrapper 147

API Function Descriptions for the C Wrapper

erxArrayFree

Frees all the memory used by the array instance. See Using Unbounded Arrays.

Syntax

extern ERXeReturnCode erxArrayFree(ERX_HARRAY hArray);

Parameters

hArray
Points to an array instance created by erxArrayAlloc.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010079 Invalid Unbounded Array

Related Functions

erxArrayAlloc

148 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxArrayGetAttributes

Returns all attributes defined for the array instance during allocation with erxArrayAlloc. See
Using Unbounded Arrays.

Syntax

extern ERXeAttributes erxArrayGetAttributes(ERX_HARRAY hArray);

Parameters

hArray
Points to an array instance created by erxArrayAlloc.

Return Values

The attributes defined for the array instance.

Related Functions

erxArrayAlloc
erxArrayGetElementlLength
erxArrayGetTypeCode

EntireX C Wrapper 149

API Function Descriptions for the C Wrapper

erxArrayGetBounds

Returns the array bound for a vector (the number of elements which can be stored in and retrieved
from a given vector of an array instance). See Using Unbounded Arrays.

Syntax

extern ERX_ARRAY_INDEX erxArrayGetBounds(ERX_HARRAY hArray,
unsigned int uDimension,
ERX_ARRAY_INDEX uArrayIndex[1);

Parameters

hArray

Points to an array instance created by erxArrayAlloc.

uDimension
The dimension for which to set the array bound.

uArrayIndex
Pointer to a vector of indices defining an array position. The left-most (most significant) dimen-
sion is uArrayIndex[0].

Return Values

The array bound for a given dimension. Zero is returned in the following cases:

" hArray is invalid
® uDimension is invalid or outside the current dimensions
® the unbounded array or specified vector has no elements

" uArraylIndexisinvalid

Related Functions

erxArrayGetDimension
erxArrayRedimAll
erxArrayRedimVector

150 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxArrayGetDimension

Returns the number of dimensions of the array instance. See Using Unbounded Arrays.

Syntax

extern unsigned int erxArrayGetDimension(ERX_HARRAY hArray);

Parameters

hArray
Points to an array instance created by erxArrayAlloc.

Return Values

The number of dimensions of the unbounded array instance. Zero is returned in the following
case:

" hArray isinvalid

Related Functions

erxArrayGetBounds
erxArrayRedimAll
erxArrayRedimVector

EntireX C Wrapper 151

API Function Descriptions for the C Wrapper

erxArrayGetElement

Retrieves a single element of the array instance. The caller must provide a storage area of the correct
size to receive the data. See Using Unbounded Arrays.

Syntax

extern ERXeReturnCode erxArrayGetElement (ERX_HARRAY hArray,
ERX_ARRAY_INDEX uArrayIndex[],
void * pData);

Parameters

hArray

Points to an array instance created by erxArrayAlloc.

uArrayIndex
Pointer to a vector of indices defining an array position. The number of vector elements must
correspond to the number of array dimensions. The left-most (most significant) dimension is
uArrayIndex[0].

pData
Pointer where to put the data stored in the given array position.
Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010079 Invalid Unbounded Array
00010084 Unbounded Array indices out of bounds
00010085 Invalid Data for Unbounded Array

Related Functions

erxArrayReset
erxArraySetElement

152 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxArrayGetElementLength

Retrieves the explicit logical length of the IDL data type of the array instance defined during alloc-
ation with erxArrayAlloc. See Using Unbounded Arrays.

Syntax

extern size_t erxArrayGetElementlLength(ERX_HARRAY hArray);

Parameters

hArray
Points to an array instance created by erxArrayAlloc.

Return Values

The explicit logical length of the IDL data type of the array instance. Zero is returned in the follow-
ing cases:

® the IDL data type has no explicit logical length, for example for the types L,D and T.
" hArray is invalid

Related Functions

erxArrayAlloc

erxArrayGetAttributes
erxArrayGetTypeCode

EntireX C Wrapper 153

API Function Descriptions for the C Wrapper

erxArrayGetTypeCode

Returns the IDL data type of the array instance defined during allocation with erxArrayAlloc.
See Using Unbounded Arrays.

Syntax

extern ERXeTypeCode erxArrayGetTypeCode(ERX_HARRAY hArray);

Parameters

hArray
Points to an array instance created by erxArrayAlloc.

Return Values

The IDL data type of the array instance. ERX_TYPE_UNKNOWN is returned in the following case:
" hArray isinvalid

Related Functions

erxArrayAlloc
erxArrayGetAttributes
erxArrayGetElementlLength

154 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxArrayRedimAll

Changes all bounds of the array instance. The cardinality (number of dimensions) cannot be

changed. For a 2 or 3-dimensional array, the result will be a square or a cube. See Using Unbounded

Arrays.

Syntax

extern ERXeReturnCode erxArrayRedimAlT1(ERX_HARRAY hArray,
ERXeArrayPreserve ePreserveData,
ERX_ARRAY_INDEX uNewArrayBound[1) ;

Parameters

hArray

Points to an array instance created by erxArrayAlloc.

ePreserveData
Determines whether the redimensioned array is to be initialized with null or whether the
contents are to be kept (when elements exist in the old and new array). Valid values are:
ERX_PRESERVE_NO, ERX_PRESERVE_YES

uNewArrayBound
Pointer to a vector containing the number of elements for each dimension. The number of
vector elements must correspond to the number of array dimensions. The left-most (most
significant) dimension is uNewArrayBound[0].

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010005 Out of Memory

00010079 Invalid Unbounded Array

00010084 Unbounded Array indices out of bounds
00010086 Invalid Preserve flag for Unbounded Array

Related Functions

erxArrayGetBounds
erxArrayGetDimension
erxArrayRedimVector

EntireX C Wrapper

155

API Function Descriptions for the C Wrapper

erxArrayRedimVector

Changes the specified bounds of the given vector of the array instance. For 2 and 3-dimensional
arrays, the result can be a deformed array (that is, not a square or cube). See Using Unbounded
Arrays.

Syntax

extern ERXeReturnCode erxArrayRedimVector (ERX_HARRAY hArray,
ERXeArrayPreserve ePreserveData,
unsigned int uDimension,
ERX_ARRAY_INDEX uArrayIndex[],
ERX_ARRAY_INDEX uNewBound) ;

Parameters

hArray

Points to an array instance created by erxArrayAlloc.

ePreserveData
Determines whether the redimensioned vector (when it is the last dimension) is to be initialized
with null or whether the contents are to be kept (when elements exist in the old and new array).
New elements are always initialized with null. Valid values are:ERX_PRESERVE_NO,
ERX_PRESERVE_YES

uDimension
The dimension for which to set new vector bound.

uArrayIndex
Pointer to a vector of indices defining an array position. The left-most (most significant) dimen-
sionis uArrayIndex[0].

uNewBound
The number of elements to redimension the vector with.
Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010005 Out of Memory

00010079 Invalid Unbounded Array

00010084 Unbounded Array indices out of bounds
00010086 Invalid Preserve flag for Unbounded Array
00010087 Invalid Dimension

156 EntireX C Wrapper

API Function Descriptions for the C Wrapper

Related Functions

erxArrayGetBounds
erxArrayGetDimension
erxArrayRedimAll

EntireX C Wrapper 157

API Function Descriptions for the C Wrapper

erxArrayReset

Sets all elements of the array instance to null value or zero corresponding to the IDL data type
given when the array was created. See Using Unbounded Arrays.

Syntax

extern ERXeReturnCode erxArrayReset (ERX_HARRAY hArray);

Parameters

hArray
Points to an array instance created by erxArrayAlloc.

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010079 Invalid Unbounded Array

Related Functions

erxArrayGetElement
erxArraySetElement

158 EntireX C Wrapper

API Function Descriptions for the C Wrapper

erxArraySetElement

Stores the data element at a given location in the array instance. See Using Unbounded Arrays.

Syntax

extern ERXeReturnCode erxArraySetElement (ERX_HARRAY hArray,
ERX_ARRAY_INDEX UArrayIndex[],
void * pData);

Parameters

hArray

Points to an array instance created by erxArrayAlloc.

uArrayIndex
Pointer to a vector of indices defining an array position. The number of vector elements must

correspond to the number of array dimensions. The left-most (most significant) dimension is
uArrayIndex[0].

pData
Pointer to the data set into the given array position.

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010079 Invalid Unbounded Array
00010084 Unbounded Array indices out of bounds
00010085 Invalid Data for Unbounded Array

Related Functions

erxArrayGetElement
erxArrayReset

API Function Descriptions for Reliable RPC

EntireX C Wrapper 159

API Function Descriptions for the C Wrapper

ERXGetReliableState

Get the current reliable RPC state.

Syntax

extern ERXeReturnCode ERXAPI ERXGetReliableState(
unsigned Tong *pulReliableState

) <

Description

Get the current reliable RPC state. For a list of possible states with description, see
ERXSetReliableState.

Parameters

pulReliableState
out: The current reliable RPC state
Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010009 ERX_E_PARAMETER_ERROR
00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXSetReliableState

160 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXSetReliableState

Set the reliable RPC state.

Syntax

extern ERXeReturnCode ERXAPI ERXSetReliableState(

unsigned Tong
)

Description

ulReliableState

Set the current reliable RPC state to enable/disable reliable RPC.

State

Description

ERX_RELIABLE_OFF

The ERX_RELIABLE_OFF state represents the “normal” RPC.

ERX_RELIABLE_AUTO_COMMIT

The ERX_RELIABLE_AUTO_COMMIT puts each RPC request in a single
reliable RPC message and commits each message automatically. To
query the status of the sent reliable RPC message, you first have to
resolve the reliable ID with ERXGetReliablelD. With the retrieved
reliable ID you can query the status of the reliable RPC message with
ERXGetReliableStatus at any time. See also Writing a Client using
AUTO COMMIT.

ERX_RELIABLE_CLIENT_COMMIT

On ERX_RELIABLE_CLIENT_COMMIT the client application can send a
sequence of reliable RPC messages and can commit them whenever it
is required. For this purpose ERXReliableCommit is offered. The client
application also has the option to roll back the sequence of reliable RPC
messages by using ERXReliableRollback.

See also Writing a Client.

Parameters

ulReliableState

in: The reliable RPC state to set the values to

Return Codes

Value Meaning
00000000 ERX_S_SUCCESS

00010009 ERX_E_PARAMETER_ERROR
00010008 ERX_E_NOT_REGISTERED

EntireX C Wrapper

161

API Function Descriptions for the C Wrapper

Related Functions

ERXGetReliableState

162 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXReliableCommit
Commits a sequence of reliable RPC messages.
Syntax
extern ERXeReturnCode ERXAPI ERXReliableCommit(
ERX_SERVER_ADDRESS ERXPTR *pAddress
b <
Description

Commits a sequence of reliable RPC messages in mode ERX_RELIABLE_CLIENT_COMMIT. See
ERXSetReliableState.

Parameters

pAddress
in: The server address to send the commit to.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010009 ERX_E_PARAMETER_ERROR
00010010 ERX_E_CONTROL_BLOCK_NOT_FOUND
00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXReliableRollback

EntireX C Wrapper 163

API Function Descriptions for the C Wrapper

ERXReliableRollback
Rolls back a sequence of reliable RPC messages.
Syntax
extern ERXeReturnCode ERXAPI ERXReliableRollback(
ERX_SERVER_ADDRESS ERXPTR *pAddress
b <
Description

Rolls back a sequence of reliable RPC messages in mode ERX_RELIABLE_CLIENT_COMMIT. See
ERXSetReliableState.

Parameters

pAddress
in: The server address to which to send the rollback.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010009 ERX_E_PARAMETER_ERROR
00010010 ERX_E_CONTROL_BLOCK_NOT_FOUND
00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXReliableCommit

164 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXGetReliablelD
Get the reliable ID of the current reliable RPC message or message sequence.
Syntax
extern ERXeReturnCode ERXAPI ERXGetReliableID(
ERX_SERVER_ADDRESS ERXPTR *pAddress,
ETB_CHAR ERXPTR *pReliablelD
)3 ©
Description

Get the current reliable ID. The reliable ID is required to get the status of reliable RPC messages,
see LRXGetReliableStatus.

In the case of ERX_RELIABLE_CLIENT_COMMIT, this method must be called before ERXReliableCommit
or ERXReliableRollback is invoked, otherwise you might get the error 00010010.

In the case of ERX_RELIABLE_AUTO_COMMIT, this method must be called directly after the RPC
message is sent and before any other RPC runtime calls, otherwise the reliable ID is lost and you
cannot retrieve the message status.

Parameters

pAddress
in: The server address which was used for the interface object call.

pReliableID
out: The reliable ID of the current reliable RPC message.

A\ Important: The pointer pReliableID must point to a field defined like ETB_CHAR

szReliableID[16+1], otherwise unpredictable results occur.

Return Codes
Value = Meaning
00000000 ERX_S_SUCCESS

00010003 ERX_E_UNKNOWN_MEDIUM

00010009 ERX_E_PARAMETER_ERROR
00010010 ERX_E_CONTROL_BLOCK_NOT_FOUND
00010008 ERX_E_NOT_REGISTERED

EntireX C Wrapper 165

API Function Descriptions for the C Wrapper

Related Functions

ERXGetReliableStatus

166 EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXGetReliableStatus

Get the status of the reliable RPC messages.

Syntax

extern ERXeReturnCode ERXAPI ERXGetReliableStatus(
ERX_CLIENT_IDENTIFICATION ERXPTR *pClient,

ERX_SERVER_ADDRESS ERXPTR *pAddress,

ETB_CHAR ERXPTR *pReliablelD,

ETB_BYTE *pReliableStatus

) ©
Description

Get the status of the reliable RPC messages given by the reliable ID. by given Reliable ID.

Status can be one of the values listed under ACI Fields used for Units of Work under Using Persistence
and Units of Work in the general administration documentation.

Parameters

pClient
in: Client information.

pAddress
in: Server information.

pReliableID

/\ Important: in: The reliable ID of the reliable RPC messages. The pointer pReliableID

must point to a field defined like ETB_CHAR szReliableID[16+1], otherwise unpredict-
able results occur.

pReliableStatus

A\ Important: out: the status of the requested reliable RPC message (identified by the given
reliable ID). pReliableStatus points to a field of one byte.

Status can be one of the values listed under ACI Fields used for Units of Work under Using Per-
sistence and Units of Work in the general administration documentation.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010003 ERX_E_UNKNOWN_MEDIUM

EntireX C Wrapper 167

API Function Descriptions for the C Wrapper

Value Meaning
00010009 ERX_E_PARAMETER_ERROR

00010008 ERX_E_NOT_REGISTERED

Related Functions

ERXGetReliablelD

168

EntireX C Wrapper

API Function Descriptions for the C Wrapper

ERXControl

Control of RPC C runtime.

Syntax

extern ERXeReturnCode ERXAPI ERXControl
(
const ERXCalllId Callld,
ERXeControlCommand eCmd
)

Description

For future use.

Parameters

Callld
in: ERXCal11Id.

eCmd
in: command to use.

Return Codes

Value = Meaning
00000000 ERX_S_SUCCESS

00010009 ERX_E_PARAMETER_ERROR
00010010 ERX_E_CONTROL_BLOCK_NOT_FOUND
00010008 ERX_E_NOT_REGISTERED

Related Functions

None.

EntireX C Wrapper 169

170

15 API Data Descriptions for the C Wrapper

= Conventions Used for APl Data DESCrPHONSvvvviiiieeiiiiiiiiie e e e

= AP| Data Descriptions

171

API Data Descriptions for the C Wrapper

This chapter describes the client API data structures available for the C Wrapper and covers the

following topics:

Conventions

Used for API Data Descriptions

The following naming conventions are used to describe the EntireX RPC API data structures:

Naming Convention|Data Type

ul XXXXX unsigned long

UsSXXXXX unsigned short

UXXXXX unsigned ... (predefined types such as ptrdiff_t)
SZXXXXX zero terminated string

PXXXXX pointer to ...

API Data Descriptions

ERX_CLIENT_IDENTIFICATION

typedef struct tagERX_CLIENT_IDENTIFICATION
{
char szUserld [ERX_MAX_USERID_LENGTH + 1 1;
char szPassword [ERX_MAX_PASSWORD_LENGTH + 1 1;
char szToken [ERX_MAX_TOKEN_LENGTH + 1 7T;
char szSecurityToken [ERX_MAX_securityToken_LENGTH + 1 71;
char szNewPassword [ERX_MAX_PASSWORD_LENGTH + 1 1;
char szRpcUserld [ERX_MAX_USERID_LENGTH + 1 1;
char szRpcPassword [ERX_MAX_PASSWORD_LENGTH + 1 7;
char cForcelogon;

unsigned char ukEncryptionlLevel;

char

*pSSLParameter;

unsigned char uCompressionlLevel;
} ERX_CLIENT_IDENTIFICATION;

Field Description

szUserld Mandatory. EntireX Broker user identification. Corresponds to the USER- 1D field
of the ACI control block. Also used by EntireX Security.

szPassword Used when EntireX Security is used. Corresponds to the PASSWORD field of the ACI
control block.

szNewPassword Used when EntireX Security is used. Corresponds to the NEWPASSWORD field of the
ACI control block.

172 EntireX C Wrapper

API Data Descriptions for the C Wrapper

Field

Description

szToken

Optional. Token used by the EntireX Broker to identify the caller. See TOKEN field
of the ACI control block.

szSecurityToken

Security token generated by EntireX Security and EntireX Broker after successful
security validation. Do not overwrite or change it. Corresponds to the
SECURITY-TOKEN field of the ACI control block.

szRpcUserld Optional. Additional user identification for EntireX/Natural RPC server. Used by
Natural Security, for example. If this field is empty, szUserId is used.

szRpcPassword Optional. Additional password for EntireX/Natural RPC server. Used by Natural
Security, for example. If this field is empty, szPassword is used.

cForcelogon Mandatory. Determines whether explicit logon or auto-logon is used by the caller.

Corresponds to the FORCE-LOGON field of the ACI control block.

uEncryptionLevel

Optional Encryption level used by EntireX Security. Corresponds to the
ENCRYPTION-LEVEL field of the ACI control block.

*pSSLParameter

Secure Sockets Layer Settings are provided here as a null-terminated string. See
Running Broker with SSL or TLS Transport in the platform-specific administration
documentation for more information.

uCompressionlLevel

Optional. Corresponds to the COMPRESSLEVEL field of the ACI control block.

ERX_SERVER_ADDRESS

typedef struct
{

tagERX_SERVER_ADDRESS

ERXeMedium Medium;

unsigned long
union

{

ERX_SA_BROKER

ulTimeOut;

BROKER;

ERX_SA_BROKER_LIBRARY BROKER_Library;
ERX_SA_CONNECTION Connection;

} Address;

b ERX_SERVER_ADDRESS;

Field Description

Medium Mandatory.

Selects an RPC server.

The following types are supported:

ERX_TM_BROKER (for backward compatibility)

ERX_TM_BROKER_LIBRARY

ERX_TM_CONNECTION

This type of medium is used for the connection-oriented (conversational) RPC. After successful
ERXConnect (that is, after opening the conversation), the RPCs are invoked using

EntireX C Wrapper

173

API Data Descriptions for the C Wrapper

Field Description

ERX_TM_CONNECTION. Any open conversation must be closed with ERXDisconnectCommit
or aborted with ERXDisconnect

ulTimeOut [Mandatory.
Gives the timeout value for the transport system in seconds.
Corresponds to the WAIT field of the ACI control block.

Note: Zero is not a valid value.

Address

Depending on the Medium field, the Address union holds the necessary information to address

a server:
BROKER
szEtbidName Mandatory.
Broker ID used. Corresponds to the BROKER- 1D field of the ACI control block.
szClassName Mandatory.

Class Name of the EntireX/Natural RPC server. Use RPC for Natural RPC Server.
Corresponds to the SERVER-CLASS field of the ACI control block.

szServerName

Mandatory.
Server Name of the EntireX/Natural RPC server. Corresponds to the SERVER - NAME
field of the ACI control block.

szServiceName

Mandatory.
Service Name of the EntireX/Natural RPC server. Use CALLNAT for Natural RPC
Server. Corresponds to the SERVICE field of the ACI control block.

BROKER_LIBRARY

szEtbidName Mandatory.
Broker ID used. Corresponds to the BROKER-ID field of the ACI control block.
szClassName Mandatory.

Class Name of the EntireX/Natural RPC server. Use RPC for Natural RPC Server.
Corresponds to the SERVER-CLASS field of the ACI control block.

szServerName

Mandatory.
Server Name of the EntireX/Natural RPC server. Corresponds to the SERVER-NAME
field of the ACI control block.

szServiceName

Mandatory.
Service Name of the EntireX/Natural RPC server. Use CALLNAT for Natural RPC
Server. Corresponds to the SERVICE field of the ACI control block.

szLibraryName

Mandatory.
Library sent to the EntireX/Natural RPC server by the client.

The library specified here overrides any library information specified in the IDL
file, see Tibrary-definition under Software AG IDL Grammar in the IDL Editor
documentation.

174

EntireX C Wrapper

API Data Descriptions for the C Wrapper

BROKER

cCompression Mandatory.
Switches on compression to transfer EntireX RPC Requests. Valid values:
® plank -NoCompression. Use ERX_COMPRESSION_NO to disable compression.

® 2 -Transfer IN fields from client to server; OUT fields from server to client; INOUT
fields in both directions. Use ERX_COMPRESSION_YES to specify compression.

cNaturalLogon B Y - If the server is a Natural RPC Server, a Natural logon will be performed to
the library specified above. This flag also causes the szRpcUserId and
szRpcPassword fields to be transferred in encrypted form to the Natural RPC
Server and is used by Natural Security. Use ERX_NATURAL LOGON_YES to enable
a logon to Natural.

= If the server is an EntireX RPC server under z/OS (batch), the serving task will
be authenticated with the user ID/password supplied with
szUserld/szPassword of ERX_CLIENT_IDENTIFICATION structure above.

= If the server is an EntireX RPC server under z/OS (CICS), a new serving task
will be created (EXEC CICS START TRAN(esrv) USERID(szUserId))towork
with the userid which is passed in szC11ient field of
ERX_CLIENT_IDENTIFICATION structure above.

® N - No Natural Logon processing is executed. Use ERX_NATURAL_LOGON_NO to
disable Natural Logon processing.

Connection

Contains internal information for EntireX runtime.

Caution: Do not modify

ERX_CALL_IDENTIFICATION

typedef struct tagERX_CALL_IDENTIFICATION

{
char szLibraryName [ERX_MAX_LIBRARY_NAME_LENGTH + 1 1;
char szProgramName [ERX_MAX_PROGRAM_NAME_LENGTH + 1 1;
unsigned long ulVersion;

} ERX_CALL_IDENTIFICATION;

Field Description

szLibraryName |The name of the library where the program to be called resides. The format depends on
the environment. For a mainframe Natural server, for example, the name of the library
must be uppercase.

szProgramName |The name of the program to be called. The format depends on the environment. For a
mainframe Natural server, for example, the name of the program must be uppercase.

ulVersion Reserved for future use, should be set to zero.

EntireX C Wrapper 175

API Data Descriptions for the C Wrapper

ERX_PARAMETER_DEFINITION_V3

typedef struct tagERX_PARAMETER_DEFINITION
{
char szParameterName [ERX_MAX_PARAMETER_NAME_LENGTH + 1 1;
ERXeTypeCode usType;
ERXeAttributes usAttributes;
size_t uElementlength;
ERX_OBJECT_SIZE uSize
unsigned Tong uParent;
unsigned long uOccurrence [ERX_MAX_INDICES 17;

ERX_POINTER_DIFFERENCE uBase;
ERX_POINTER_DIFFERENCE ubDelta [ERX_MAX_INDICES 1;

void

*pCallInfoBlock;

} ERX_PARAMETER_DEFINITION_V3;

Field

Description

szParameterName

The name of the parameter.

usType

The data type including parameter type direction and index count. See IDL Data Types
under Software AG IDL File in the IDL Editor documentation.
Bits:

FEDCBA9876543210
UUUUUUTTTTTTDDNN

U: Unused

T: Type Code

ERX_TYPE_A, STRING FIXED LENGTH
ERX_TYPE_AV, STRING VARIABLE LENGTH
ERX_TYPE_K, KANJI FIXED LENGTH
ERX_TYPE_KV, KANJI VARIABLE LENGTH
ERX_TYPE_L, LOGICAL

ERX_TYPE_I, INTEGER

ERX_TYPE_N, UNPACKED DECIMAL
ERX_TYPE_NU, UNPACKED DECIMAL UNSIGNED
ERX_TYPE_P, PACKED DECIMAL
ERX_TYPE_PU, PACKED DECIMAL UNSIGNED
ERX_TYPE_F, FLOAT

ERX_TYPE_T, DATE & TIME
ERX_TYPE_D, DATE

ERX_TYPE_B, BINARY FIXED LENGTH
ERX_TYPE_BV, BINARY VARIABLE LENGTH
ERX_TYPE_G, GROUP

ERX_TYPE_S, STRUCTURES

ERX_TYPE_U, UNICODE FIXED LENGTH
ERX_TYPE_UV, UNICODE VARIABLE LENGTH
D: Parameter Direction

ERX_IN_PARM

176

EntireX C Wrapper

API Data Descriptions for the C Wrapper

Field Description

ERX_OUT_PARM
ERX_INOUT_PARM
N: Index Count (0 .. 3) All other bits must be zero.

usAttributes Attributes can be combined by OR when they are not exclusive, such as
ERX_ATTR_STRING and ERX_ATTR_MF_ALPHA. Foralistof Attributes see the
following table.

uElementlLength |Information on the logical length of the parameter. For ERX_TYPE_A, for example, A10
in the IDL file has a uETementLength of 11 when mapped to string with
ERX_ATTR_STRING. Ithas a uETementlLength of 10 when mapped with
ERX_ATTR_MF_ALPHA.

uSize The physical size of the parameter in bytes.

ulccurrence The count of elements in each dimension in ascending order.

For unbounded arrays: when set presents a possible maximum. Unbounded arrays
with value zero have no maximum.

uBase The address of the base of the parameter.

uDelta The difference for each dimension between following elements in ascending order.
uCallInfoBlock |Pointerto CallInfoBlock for structures ERX_TYPE_S.

Attributes
Attribute Description
ERX_ATTR_ARRAY_V1 |First dimension of array is unbounded. Attribute evaluated by Software AG IDL
Compiler.
ERX_ATTR_ARRAY_VZ |Second dimension of array is unbounded. Attribute evaluated by Software AG IDL
Compiler.
ERX_ATTR_ARRAY_V3 |Third dimension of array is unbounded. Attribute evaluated by Software AG IDL
Compiler.

ERX_ATTR_ALIGNED |The parameter is aligned on the server side. The attribute is evaluated by the
Software AG IDL Compiler. Used by EntireX RPC server on CICS.

ERX_ATTR_DOUBLE |The parameter is mapped to C data type double. Valid for:

= ERX_TYPE_P
= ERX_TYPE_PU
= ERX_TYPE_N
= ERX_TYPE_NU

The mapping can be forced by a template by adding 32768 to the 3 TypeAttribute
macro of the Software AG IDL Compiler.

EntireX C Wrapper 177

API Data Descriptions for the C Wrapper

Attribute

Description

ERX_ATTR_PACKED

The parameter is mapped to C data type charl. ..] contained in IBM mainframe
packed format. Valid for:

® ERX_TYPE_P
= ERX_TYPE_PU

Default mapping for P and PU data types; used when nothing is added to the
sTypeAttribute.

ERX_ATTR_UNPACKED

The parameter is mapped to C data type charl. ..] contained in IBM mainframe
packed format. Valid for:

® ERX_TYPE_N
= ERX_TYPE_NU

Default mapping for N and NU data types; used when nothing is added to the
hTypeAttribute.

ERX_ATTR_STRING

The parameter is mapped to a null terminated string. Valid for
® ERX_TYPE_A

The mapping can be forced by a template by adding 16384 to the %TypeAttribute
macro of the Software AG IDL Compiler.

ERX_ATTR_MF_ALPHA

The parameter is mapped to C data type charl. . .] - but withouta NULL
terminator. Valid for:

= ERX_TYPE_A

Default attribute for A data types; is used when nothing is added to the
%TypeAttribute.

ERX_ATTR_NOTHING

Use when none of the mappings described above apply.

ERX_CALL_INFORMATION_BLOCK

typedef struct
{

tagERX_CALL_INFORMATION_BLOCK

ERX_CALL_IDENTIFICATION Callee;
unsigned short uParameterCount;
ERX_PARAMETER_DEFINITION_V3 *pParmDef;

} ERX_CALL_INFORMATION_BLOCK;

178

EntireX C Wrapper

API Data Descriptions for the C Wrapper

Field Description

Callee The identification of the program to be called, see ERX_CALL_IDENTIFICATION

uParameterCount|The total count of the parameters (the number of entries in the parameter definition
array).

pParmDef A pointer to the parameter definition array. See ERX_PARAMETER _DEFINITION_V3_V3

ERX_ERROR_INFORMATION

typedef struct tagERX_ERROR_INFO
{

ERXeReturnCode CE:

char szMessage[256 1;

} ERX_ERROR_INFO;

Field Description

rc The last return code returned. See Error Messages and Codes.

szMessage |Error message. Text associated with the last return code issued.

ERX_IS_SERVING

typedef struct tagERX_IS_SERVING
{

char *pMessage;

int uMessagelength;

} ERX_IS_SERVING;

Field Description

pMessage Pointer to the provided buffer for server's "alive” message.

uMessagelength|Length of the provided buffer.

ERX_TERMINATE_SERVER

typedef enum

{
ERX_SHUTDOWN_IMMED_ALL = 1,
ERX_SHUTDOWN_ANYONE = 2

} ERXeShutdownCommand;

typedef struct tagERX_TERMINATE_SERVER

{
ERXeShutdownCommand eShutdownCommand;
char *pMessage;

EntireX C Wrapper 179

API Data Descriptions for the C Wrapper

int

uMessagelength;

} ERX_TERMINATE_SERVER;

Field

Description

eShutdownCommand

The shutdown method to be used.

= ERX_SHUTDOWN_IMMED_ALL
Using EntireX Broker Command Service. Using this method forces all instances of
RPC servers (Java, Natural, UNIX, Windows, CICS, etc.) to be shut down.

= ERX_SHUTDOWN_ANYONE
Directly to EntireX RPC Server. If multiple instances of RPC servers (Java, Natural,
UNIX, Windows, CICS, etc.) are registered under the same class/server/service
name at the broker, only one single RPC server instance is shut down. There is no
control over which instance is shut down. To shut down all RPC server instances,
you have to repeat the function until no more RPC server instances are registered.

This method is compatible with the method from versions of EntireX RPC prior to
EntireX 5.3.1.

pMessage

Pointer to the provided buffer for server's “completion” message.

uMessagelength

Length of the provided bulffer.

ERX_CONTEXT_BLOCK

typedef struct tagERX_CONTEXT_BLOCK

{

ERXCallId ERXCallld;
ERXeReturnCode ERXrc;
ERX_ERROR_INFO ERXErrorInfo;
ERX_SERVER_ADDRESS ERXServer;

ERX_CLIENT _IDENTIFICATION ERXClient;
} ERX_CONTEXT_BLOCK;

Field Description

ERXCall1ld The Cal11d returned by a caller

ERXrc EntireX RPC Error Code. See Error Messages and Codes.

ERXErrorInfo|EntireX RPC Error information, see ERX _ERROR_INFORMATION.

ERXServer The server address, see ERX_SERVER_ADDRESS.

ERXClient The client identification, see ERX_CLIENT_IDENTIFICATION.

180

EntireX C Wrapper

API Data Descriptions for the C Wrapper

ERX_SVM_VERSION_1

fidefine ERX_SVM_VERSION_1 (unsigned long) 1
typedef struct tagERX_SVM_VI
{

unsigned long version;

char *pProtocol;
char *pSM;
char *pFA;
char *pVA;
char * pSA;
b ERX_SVM_V1;
Field Description

version |Version of this control block. Initialitze with ERX_SVM_VERSION_1.

pProtocol |RPC protocol version from the related client-side server mapping file (CVM file) evaluated
by the Software AG IDL Compiler and provided in the output_substitution_sequence
in the IDL Editor documentation %2SVMRpcProtocol.

pSM Pointer to the meta data part of the related CVM file evaluated by the IDL Compiler and
provided in the output_substitution_sequence in the IDL Editor documentation
%SVMMetaData.

pFA Pointer to the format area of the related CVM file evaluated by the IDL Compiler and provided

intheoutput_substitution_sequence intheIDL Editor documentation %SYMFormatArea.

pSA Pointer to the string area of the related CVM file evaluated by the IDL Compiler and provided
intheoutput_substitution_sequence intheIDL Editor documentation %SYMStringArea.

EntireX C Wrapper 181

182

	EntireX C Wrapper
	Table of Contents
	1 Introduction to C Wrapper
	Description
	Generic RPC C Runtime
	C Client Applications
	C Server Application

	2 Using the C Wrapper
	Using the C Wrapper for the Client Side
	Using the C Wrapper in Single-threaded Environments (UNIX, Windows)
	Using the C Wrapper in Multithreaded Environments (UNIX, Windows)

	Using the C Wrapper for the Server Side (z/OS, UNIX, Windows, BS2000/OSD, IBM i)
	Generate C Source Files from Software AG IDL Files
	Select an IDL File and Generate RPC Client or RPC Server
	Settings
	Mapping Options
	Generate RPC Client
	Generate RPC Server

	3 Using the C Wrapper in Command-line Mode
	Command-line Options
	Example Generating an RPC Client
	Example Generating an RPC Server
	Further Examples
	Windows
	Example 1
	Example 2

	Linux
	Example 1
	Example 2

	4 Using the C Wrapper in IDL Compiler Command-line Mode
	5 Software AG IDL to C Mapping
	Mapping IDL Data Types to C Data Types
	Mapping Library Name and Alias
	Mapping Program Name and Alias
	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes IN, OUT and INOUT
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	6 Writing a Single-threaded C RPC Client Application
	Step 1: Base Declarations Required by the C Wrapper
	Step 1a: Include the Generated Header File
	Step 1b: Define Global Variables to Communicate with the Client Interface Objects

	Step 2: Required Settings for the C Wrapper
	Step 2a: Identify the User with a Broker User ID
	Step 2b: Set the Broker and Service to be Called

	Step 3: Register with the RPC Runtime
	Step 4: Issue the RPC Request
	Step 5: Examine the Error Code
	Step 6: Deregister with the RPC Runtime

	7 Writing Advanced Applications with the C Wrapper
	Using the RPC Runtime
	Examine the RPC Runtime and Interface Object Version
	Examine the Interface Object Version

	Tracing
	Programming Multithreaded RPC Clients
	Natural Logon or Changing the Library Name
	Using Variable-length Data Types AV, BV, KV and UV
	Usage with EntireX RPC Client
	Usage with EntireX RPC Server

	Using Unbounded Arrays
	Usage with EntireX RPC Client
	Usage with EntireX RPC Server

	Using Conversational RPC
	Using RPC Compression
	Using EntireX Security
	Using Natural Security
	Using SSL
	Using Compression
	Using Internationalization with the C Wrapper

	8 Writing RPC Clients for the RPC-ACI Bridge with the C Wrapper
	9 Writing Callable RPC Servers with the C Wrapper
	Introduction to Callable RPC Servers
	Writing a Callable RPC Server
	Example

	Writing the Callback
	Returning Errors
	User-specific Data
	Example

	Break/Stop the RPC Execution Loop
	Scalable Number of Worker Threads

	10 Reliable RPC for C Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Step 1: Base Declarations Required by the C Wrapper
	Step 1a: Include the Generated Header File
	Step 1b: Define Global Variables to Communicate with the Client Interface Objects

	Step 2: Required Settings for the C Wrapper
	Step 2a: Identify the User with a Broker User ID
	Step 2b: Set the Broker and Service to be Called

	Step 3: Register with the RPC Runtime
	Step 4: Broker Logon
	Step 5: Set Reliable-State
	Step 6: Send the RPC Message
	Step 7: Get the Reliable RPC Message ID
	Step 8: Check the Reliable RPC Message Status
	Step 9: Send a Second RPC message
	Step 10: Commit Both Reliable RPC Messages
	Step 11: Reset ERX_SERVER_ADDRESS
	Step 12: Check the Reliable RPC Message Status
	Step 13: Send a Third RPC message
	Step 14: Get the Reliable RPC Message ID
	Step 15: Check the Reliable RPC Message Status
	Step 16: Roll back the Third Message
	Step 17: Check the Reliable RPC Message Status
	Step 18: Broker Logoff
	Step 19: Deregister with the RPC Runtime

	Writing a Client using AUTO COMMIT
	Writing a Server
	Broker Configuration

	11 Client and Server Examples for UNIX and Windows
	Basic RPC Client Examples - CALC, SQUARE
	Basic RPC Server Examples - CALC, SQUARE
	Basic Callable RPC Server Examples - CALC, SQUARE
	Reliable RPC Client Example - SENDMAIL
	Reliable RPC Server Example - SENDMAIL
	Advanced CICS Channel Container Server RPC Example - DFHCON
	Advanced CICS Large Buffer RPC Server Example - DFHLBUF

	12 Server Examples for BS2000/OSD
	Overview
	Creating the C RPC Sample Server

	13 Server Examples for IBM i
	14 API Function Descriptions for the C Wrapper
	API Function Descriptions
	ERXCall
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERX_Callback_SERVER_CALL
	Syntax
	Description
	Parameters
	Related Functions

	ERXConnect
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXDisconnect
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXDisconnectCommit
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetBrokerSecurity
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetCodepage
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetContext
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetIAFToken
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetLastError
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetMessage
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetSecurityToken
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetTraceLevel
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetVersion
	Syntax
	Description
	Parameters
	Return Codes

	ERXIsServing
	Syntax
	Description
	Parameters
	Return Codes

	ERXLogoff
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXLogon
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXRegister
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXRegisterEvent
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXReset
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXServingCallback
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXSetBrokerSecurity
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXSetCodepage
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXSetContext
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXSetIAFToken
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXSetSecurityToken
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXSetTraceLevel
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXTerminateServer
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXUnregister
	Syntax
	Description
	Return Codes
	Related Functions

	ERXWait
	Syntax
	Description
	Parameters
	Return Codes

	API Function Descriptions for Variable-length Data Types AV, BV, KV and UV
	erxVDataAllocBytes
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataAllocString
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataAllocWideString
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataCopy
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataFree
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataGetByteAddress
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataGetLength
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataGetString
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataGetWideString
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataReAllocBytes
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataReAllocString
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataReAllocWideString
	Syntax
	Parameters
	Return Values
	Related Functions

	erxVDataReset
	Syntax
	Parameters
	Return Values
	Related Functions

	API Function Descriptions for Unbounded Arrays
	erxArrayAlloc
	Syntax
	Description
	Parameters
	Return Values
	Related Functions

	erxArrayCopy
	Syntax
	Parameters
	Return Codes
	Related Functions

	erxArrayFree
	Syntax
	Parameters
	Return Codes
	Related Functions

	erxArrayGetAttributes
	Syntax
	Parameters
	Return Values
	Related Functions

	erxArrayGetBounds
	Syntax
	Parameters
	Return Values
	Related Functions

	erxArrayGetDimension
	Syntax
	Parameters
	Return Values
	Related Functions

	erxArrayGetElement
	Syntax
	Parameters
	Return Codes
	Related Functions

	erxArrayGetElementLength
	Syntax
	Parameters
	Return Values
	Related Functions

	erxArrayGetTypeCode
	Syntax
	Parameters
	Return Values
	Related Functions

	erxArrayRedimAll
	Syntax
	Parameters
	Return Codes
	Related Functions

	erxArrayRedimVector
	Syntax
	Parameters
	Return Codes
	Related Functions

	erxArrayReset
	Syntax
	Parameters
	Return Codes
	Related Functions

	erxArraySetElement
	Syntax
	Parameters
	Return Codes
	Related Functions

	API Function Descriptions for Reliable RPC
	ERXGetReliableState
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXSetReliableState
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXReliableCommit
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXReliableRollback
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetReliableID
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXGetReliableStatus
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	ERXControl
	Syntax
	Description
	Parameters
	Return Codes
	Related Functions

	15 API Data Descriptions for the C Wrapper
	Conventions Used for API Data Descriptions
	API Data Descriptions
	ERX_CLIENT_IDENTIFICATION
	ERX_SERVER_ADDRESS
	Address

	ERX_CALL_IDENTIFICATION
	ERX_PARAMETER_DEFINITION_V3
	Attributes

	ERX_CALL_INFORMATION_BLOCK
	ERX_ERROR_INFORMATION
	ERX_IS_SERVING
	ERX_TERMINATE_SERVER
	ERX_CONTEXT_BLOCK
	ERX_SVM_VERSION_1

