5 software~

webMethods EntireX

Broker

Version 9.5 SP1

November 2013

webMethods EntireX

This document applies to webMethods EntireX Version 9.5 SP1.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-BROKER-95SP1-20140628

Table of Contents

I Concepts and Facilities of EntireX Brokerccccocooviiiiiiiiiiiiiiic 1
1 Concept of Interoperabilitycccocooiiiiiiiiiiiii 3
Interoperability and EntireX Brokercccccoviiiiiiiiiniiiniiiiiiiin, 4
Messaging Model and Interoperabilityc.cccooeiiiiiiiii 4
Communication Models and Interoperabilitycccccoeciiiiiiiiiiiiniiininn, 7
2 CommOn USe CaASEScooivuiiiiiiiiiiiiiiiiiiic it 11
INErOAUCHON ... 12
Case 1: ACI and ACI (including Units of WOrk)cccccoeceiviiiiiiiiiniiiniiinnn. 13
Case 2: JACT and ACT ...ttt e et e e e e e 15
Case 3: ACI (via Web Server) and ACTccoocuiiiiiiiiiieiiiieeeeieeeeeieee e 17
Case 4: RPC Wrapper and RPC ..o 19
Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or
WINAOWS) .ttt ettt e et e e et e e et e e e e 22
3 General Architecture of EntireX Brokerc.cccoooveviiiiiiniiiiiiiiiiciicceeceeee 25
Introduction to EntireX Broker Architectureccccocceiviiiiiiiiiiiiiniinn, 26
EntireX Broker Communication Modelscccccccoooiiiiiiiiiiiiiiiiie, 26
Architecture of Broker Stub ... 30
Architecture of Broker Kernelccccccoooiiiiiiiiiiiiniicc 31
4 Functionality of EntireX Brokercccccoeviiiiiiiiiiiiiiiiicccecceee 35
Application Bindings (Stubs)cccoocviiiiiiiiiiiiii 36
Attach Servicescccoviiiiiiiiiiiiiiiii 37
Codepage CONVETISIONc.cocuiiiuiiiiiiiiiiiiiiiie e 37
Command and Information Servicesccccecviiviiiiiiiiiiiiiiiiiciiicceece, 38
ACCOUNEING ..oviiiiiiiiiiiiiii e 38
Data COmMPIeSSIONocviiiiiiiiiiiiiiiiicci e 38
Persistent StOreccccoooiiiiiiiiiiiiiii 39
Units of WOTKoooviiiiiiiiiiii 40
SOCUTIEY et 41
5 Broker QUIck RefErenCeuuuuiiiiiiiiiiiiieeee et 43
Functionality: Communication Models ..o, 44
ACI Syntax of Messaging Modelccccoooiiiiiiiiiiiiniiiiiiiiccceece 45
Location of Broker Kernel and Stubscccccooiiiiiii 45
Transport: Broker Stubs and APIScccooiiiiiiiiiii 47
IT Broker Atributescccoiviiiiiiiiiiiiiii 49
6 Broker Attributescoooiiiiiiiiiiiiii 51
Name and Location of Attribute Fileccccooiiiiiiiiiiiiiii 53
Attribute SyntaxXc.ooooeviiiiiiii 53
Broker-specific Attributesccocooviiiiiiiiiiiiii 55
Service-specific Attributes ..o 80
Topic-specific Attributesc.ccooiiiiiiiiiii 93
Codepage-specific Attributesccccociviiiiiiniiiiiiii 100
Adabas SVC/Entire Net-Work-specific Attributescccocooviiiiiiiinnn, 104
Security-specific Attributesccooiiviiiiiiiiii 108

Broker

TCP/IP-specific Attributesccccovviiiiiiiiiiiiii, 114
c-tree-specific Attributes ..o 118
SSL-specific Attributesccccooviiiiiiiiiiiiiii, 120
DIV-specific Atributesccooiiiiiiiiii 125
Adabas-specific Attributescccoooiiiiiiiiiiiii 125
Variable Definition Filec.cccccooiiiiiiiiiiii, 127

III Broker Command and Information Servicesccccocvvviiiiiiiiiiiiiiiiiiic, 129
7 Broker Command and Information Servicescccocoviiviiiiiiniiiiciie, 131
CIS Overview Tablecccoooiiiiiiiiiiiiiic 132
Modes of Requesting the Servicescccccceiviiiiiiiiiiiiiiiiiiiii, 133
ETBCMD: Executable Command Requestsc..ccooeeviiiiiiiiiiiiniiic, 135
ETBINFO: Returnable Information Requestscccccoeviiiiiiniiiiiiiniiinnen, 139

IV et 141
8 Sample Security Exits for Broker Securitycccoocevviiiiiniiniiiniiiincceeee, 143
Sample Security Exits as Alternative Security Solutioncccceeiniinin. 144
Major Advantages of EntireX Securitycccoocoeiiiiiiiiiiiiiii 144
Lightweight USRSECcccccooiiiiiiiiiiiiiiiiiiciiccc e 145
Implementation of Sample Security EXitsc.cccovviviiiiiiiiiiii, 146
Definition of Termscccocoiiiiiiiiiiiiiiiic 147

9 Using Sample Security Exits for Broker Securitycccooviviiiiiiniiniinnnn. 151
Overview of Security Data FIOWc..cocooiiiiiiiis 152
Prerequisites for Running EntireX Broker in a Secure Environment 153
General Security Recommendationscccoccoeviiiiiiiiiiiiii 153
Writing Security EXitscccociiiiiiiiiiiiiii 154
Security-Related Parametersc.cccooeiiiiiiiiiiiiiii 156
Programming Broker Stub EXitsccccociiiiiiiiiiiiiiiiiic 158
Layout of Security Parameter Block ETB_SECPARcccccociiviiiiiiininnn. 161
Layouts of Type-dependent Security Parameter Blocksc...c.c.o. 162
PSP 167
10 EntireX Broker Tutorialccccocuiiiiiiiiiiiiiiii 169
Introduction to Tutorial ..o 170
Calling the Tutorial Menuccccooiiiiiiiiiiiiiiicc 170
Global Defaults for the Tutorialccccoceiviiiiiiiiiiiiiiii, 171
Tutorial Commandscccccoeiiiiiiiiiiii 172
Using the Tutorial Help ... 173
Using the Example Programsccccevviiiiiiiiiiiiiiiiiiiciiicicccceeccee, 174

The Tutorial Trace Facilityccccooiviiiiiiiiii, 181

ACI Test Tool: Single Broker Requestccccoceeveiiiiiiiiiniiiiiiiciccece 183

11 Examples for EntireX Broker Tutorialccccccoviiiiiiiiiiiiiiiiiiie, 185
Non-conversational Examplesc.coccooiiiiiiiiiiii 186
Conversational Examplescccccovviiiiiiiiiiiiiiiiiiiccc 188
Special Featuresccooiiiiiiiiiiiiic 194
Getting Startedoccooiiiiiiiiii 198
Attach Manager Interfacecccoooviiiiiiiiiii 201
Non-blocked Serverccoviiiiiiiiiiiiiiii 201

v Broker

... 205
12 Introduction to Broker Administration using SMHccoocii 207
13 Managing the List of Brokers with SMHcccccocciiiiiiiiiiiii, 209

Creating a Local Broker ..o 211
Deleting a Local Brokerccccoviiiiiiiiiiiiiiiiiiiciiccccccce 211
Adding a Remote Broker Instance to System Management Hub 213
Removing a Remote Broker Instance from System Management Hub 213
Stopping All Local Brokers from System Management Hub 215
Setting the User Credentials for a Broker Instanceccccooeiiiiiiiinnn, 216
Clearing the User Credentials for a Broker Instancecccccccceeviiininnnn. 217
Setting SSL or TLS Parametersc.cccoveeiiiiiniiiiiiiiccccccecc 217
14 Configuring a Single Broker with SMHcccccooiiiiiiiiiniii 219
Starting a Local BroKerccoooooiiiiiiiiiii 220
Restarting a Local Brokerccccciiiiiiiiiiii 221
Stopping a Local BroKerccccociiiiiiiiiiiiiiiiiiiiiicccc e 222
Administering a Broker Attribute Filecccoccoooii 223
Administering a Log Fileccccoooiiiiiiiiiiii, 225
Setting the Local Broker Autostart Valuecccoccoovviiiiiiiiiiiii, 228
Enabling the SNMP PIug-inccccoooiiiiiiiiiiiiiiiiiiiccccccceecec 228
Disabling the SNMP Plug-inccccociiiiiiiiiiiiiiiiiiiiicecccc e 230
15 Using the Broker Information Service with SMHccoccooiiiiininn, 231
Administering a Broker Instancecccccoooiviiiiiiniiiiiiii 232
Filtering CHEntsc..ccoviiiiiiiiiiccc 235
Filtering Conversationsc.ccccciiiiiiiiiiiiiiiiiiiiiiic e 236
Filtering the Userccooiiiiiiiiiii 236
Filtering Participantsccccccooviiiiiiiiiiiiiiiiiiii 238
Filtering the Persistent Storeccccoccviiiiiiiiiiiiiiiiiii 239
Filtering the Publicationcccoccooiiiiiiiiii 240
Filtering the Publisherccccccoiiiiiiiiiiiiii 241
Filtering SEIVersc.ooiiviiiiiiiiiiiiiccieeceeec e 242
Filtering Servicescccooiiiiiiiiiiiiiiiiiiiiciccccce e 243
Filtering the Subscriber ..o 244
Filtering the TOPICc..cociiiiiiiiiiii 245
16 Using the Broker Command Service with SMHc.ccccoviiiiiiniiiiin 247
Connecting/Disconnecting Persistent Storeccccocovviiiiiiiiiiiiiiinne, 248
Allowing and Forbidding new UOW Messagescccccoeeivoviiiiiiiniennrennen. 249
Setting a Broker Instance's Trace Level ..o 249
Flushing a Broker Instance's Trace Bufferccccccooviiiiniiiiiniiiniinnen, 250
Flushing a Broker Instance's Trace Buffer on Errorcccocoiiininnin. 250
Producing Statistics of a Broker Instancecccococoviiiiiiiiiiii, 251
Setting the Persistent Store Trace Levelcccccooiiiiiiiiiiiiiniiiiiii, 251
Setting the Security Trace Level ... 252
Deregistering @ SeIVercccccciiiiiiiiiiiiiiiiiiic i 253
Deregistering a Serviceccccooiiiiiiiiiiiiiiiiiic 254
Purging Unit(s) of WOTKcccoiiiiiiiiiiiiiiceee e 255
Broker v

Broker

Subscribing @ USeTc.coiiiiiiiiiiiiiiciccicicccc 257
Unsubscribing @ USerccooiiiiiiiiii 258
Logging Off @ SUbSCIIDETc.coocviiiiiiiiiiiiiiiiiiii 259
Logging Off a Publisher ... 260
Enabling/Disabling Cmdlogccccooiiiiiiiiiiiiiiiiiiiiiiiciccicce 260
Switching CmdlOgccooviiiiiiiiiiic 262
Adding Cmdlog Filtercccoooiiiiiiiiiiiiiiceeece e 263
Enabling/Disabling Cmdlog Filterccccocciviiiiiiiiiiiniiiiiiii 264
Deleting Cmdlog Filter ..o, 265
.. 267
17 EntireX Broker Reportingcccooieviiiiiiiiiiiiiiiccc 269
Configuration RePortcccooiiviiiiiiiiiiiiiiiiiccc e 270
Load Module Reportccoooviiiiiiiiiiiiiice 271
Storage Report ..o 272
Persistent Store Reportcccoiiiiiiiiiiiiiiiii 275
License RePOTtcciiiiiiiiiiiii 278
18 Command Logging in EntireXccccociiiiiiiiiiiiiiiiiiiiceccen 279
Introduction to Command Loggingcccoceeviiiiiiiiiiiiiiiiiiccec 280
Command Log Filtering using System Management Hub 282
Command Log Filtering using Command-line Interface ETBCMD 284
ACI-driven Command Loggingccccoceeiiiiiiiiiiiii 287
Dual Command Log Filesccccoooiiiiiiiiiiiiiiiiiiiiiecc 287

vi

Broker

I Concepts and Facilities of EntireX Broker

EntireX Broker is a middleware infrastructure that allows application components in a distributed
processing environment to communicate with each other. EntireX Broker provides access through
two communication models - client and server and publish and subscribe - which the JMS specification
designates as messaging domains. Message queues are employed to provide verifiable delivery
of message data in asynchronous communication.

Additionally, EntireX Broker allows each application component to use a different programming
interface. As a result, your application components can achieve highly flexible interoperability in
aloosely coupled way. EntireX Broker can be used where your application components are located
on distributed machines and where different operating systems and TP monitors are used on each
machine.

Concept of Interoperability Introduces the basic concept of EntireX Broker: achieving highly
flexible interoperability of distributed application components.

Common Use Cases Provides specific examples of how your organization can achieve
flexible interoperability in a distributed processing environment.

General Architecture of EntireX Describes the components and transport mechanisms of EntireX

Broker Broker within the context of EntireX.

Functionality of EntireX Broker Provides a brief overview of the functionality provided by EntireX
Broker.

Broker Quick Reference Quick Reference to Broker features and functions.

1 Concept of Interoperability

= |nteroperability @and ENtIEX BIOKETeiiiiiiiiii it
= Messaging Model and INteroperabilityooriiiiiiii e
= Communication Models and Interoperabilityoooiiiirioii e

Concept of Interoperability

Note: After viewing this chapter, see the chapter Common Use Cases, which supplies spe-
cific business examples of the interoperability available through EntireX Broker.

Interoperability and EntireX Broker

This section introduces the basic concept of EntireX Broker: achieving highly flexible interoperab-
ility of application components in a distributed processing environment. This concept is described
from the perspectives of

" a messaging model

" communication models

" application programming interfaces

® EntireX components

in order to give you a comprehensive, high-level view of how EntireX Broker enables flexible in-
teroperability between distributed application components.

Note: Unless otherwise indicated, the communication model used in this section is client

and server, and not publish and subscribe.

Messaging Model and Interoperability

Introduction

In a distributed processing environment that uses EntireX Broker, communication occurs through
application components exchanging messages. An application component offering a service registers
it with EntireX Broker (see REGISTER); this makes the service available to other application com-
ponents able to communicate with EntireX Broker. An application component intending to access
a service issues its request through EntireX Broker, which then routes the request to the specific
application component offering the service.

The following concepts help describe how message exchange is structured in EntireX Broker:

® Synchronicity
The application initiating the request either waits for the result to return, whereby it suspends
all processing (synchronous); or it does not wait for the result to return, whereby it is freed to
do other processing (asynchronous).

4 Broker

Concept of Interoperability

* Conversationality
The request can either be a single pair of messages comprising request/reply (non-conversational);
or it can be a sequence of multiple messages which are all part of the same request (conversa-
tional).

Overview Diagram
The following diagram shows the two major concepts of EntireX Broker's messaging model: syn-

chronicity and conversationality. See ACI Syntax of Messaging Model below for a description of
the messaging syntax.

Messaging Model in webMethods EntireX

Asynchronous
[SEND; WAIT=ND; RECEIVE, WAIT=NO]

Conversational Non-Conversational Conversational Non-Conversational
[SEND CONVID=NEW] [SEND; CONVID=NONE] [SEND CONVID=NEW] [SEND; CONVID=NONE]

e e e e

J messaging model

Synchronous
[SEND; WAIT=YES, implied RECEIVE]

. ACI and other programming interfacas

Broker 5

Concept of Interoperability

ACI Syntax of Messaging Model

The table below describes the messaging terms mentioned in the diagram above from the viewpoint
of the application component initiating the request, as expressed in ACI syntax.

The ACI (Advanced Communication Interface) is the lowest level application programming interface
that interacts with EntireX Broker. The ACI is common to all of the messaging models and com-
munication models (see Communication Models and Interoperability) of EntireX.

Client and Server Publish and Subscribe
Messaging Term Client Server Publish Subscribe
[Synchronous = SEND ® RECEIVE| not applicable not applicable
% = WAIT=YES® |=m WAIT=YES
=
Z Asynchronous = SEND = RECEIVE|= SEND_PUBLICATION|= RECEIVE_PUBLICATION
” = WAIT=NO = WAIT=NO|= WAIT=NO = WAIT=NO

= WAIT=YES = WAIT=YES @

e Conversational = SEND ® RECEIVE| not applicable not applicable
g = CONV-ID=NEW
%:’ Non-conversational (= SEND = RECEIVE|= SEND_PUBLICATION
% = CONV-ID=NONE
L]
] Notes:

1. The synchronous SEND, WAIT=YES command contains an implied RECEIVE command.

2. The subscriber has the option of specifying WAIT=YES.
Example: The subscriber uses a repeat loop that issues a RECEIVE_PUBLICATION. The advantage
is that the program runs continuously, processing publications arising as random events, which
simplifies programming effort.

3. Persistence available. See Concepts of Persistent Messaging in the general administration docu-
mentation.

6 Broker

Concept of Interoperability

Communication Models and Interoperability

The EntireX Broker uses two communication models: client and server and publish and subscribe.
Client-and-server communication is used if data is to be exchanged with exactly one partner;
publish-and-subscribe communication is used if data is to be published. The ACI can be used for
both client and server and publish and subscribe.

® Client and Server
This model is based on the connection between exactly two partners: client and server. This
model covers the requirements of conversational communication and asynchronous processing.

® Publish and Subscribe
This model is implemented as an independent subsystem in the Broker, that is, an attribute de-
termines whether it is set to active or inactive.

The following diagrams shows the two types of communication model used in EntireX Broker:
client and server and publish and subscribe.

Broker 7

Concept of Interoperability

Client and Server

Client and Server Communication Model

Synchronous
[SEMDy m”—YES implied RECEIVE]

e

J messaging model

Asynchronous
[SEMND; WAIT=NO; REGEIVE, WAIT=NO]

. client and server communication

. ACI and other programming interfacas

8 Broker

Concept of Interoperability

Publish and Subscribe

Publish and Subscribe Communication Model

Asynchronous

Programming Interfaces

| messaging model

client and server communication
publisher: SEND, WAIT=NO, subscriber: RECEIVE, WAIT=[YES|NO]

|__| ACI and other programming interfaces

Publish and subscribe is normally classified as an asynchronous communication model. It is non-
conversational in terms of message flow, that is, publications between publisher(s) and subscriber(s).
The classification “asynchronous” is chosen because neither publisher nor subscriber directly de-
pends on the activities of the other. The publisher always sends publications in a non-blocked
manner.

] Note: The subscriber has the option of specifying WAIT=YES (see legend in above graphic).
Example: The subscriber uses a repeat loop thatissuesa RECEIVE PUBLICATION. The advant-
age is that the program runs continuously, processing publications arising as random events,
which simplifies programming effort.

Broker 9

10

2 Common Use Cases

® |ntroductioncoveveiiiiiis

= Case 1: ACl and ACI (including Units 0f WOTK)uvviiiiiiiiie e

m Case 2: JACland ACI

= Case 3: ACI (via Web Server) and ACHcooiiiiiiii e

= Case 4: RPC Wrapper and RPC

= Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or WINAOWS)ovviiiiiiiiiiiiiiiiccc e

11

Common Use Cases

Introduction

This section provides common use cases of the basic concept of EntireX - achieving highly flexible
interoperability of distributed application components. Each use case contains a

* business scenario
" table of interoperability, listing the major components selected for the use case
® diagram of the type of message flow resulting from the combination of these specific components

= stepped table describing the message flow depicted in the diagram.

The common use cases based on the EntireX components Broker and Developer's Kit are provided
to show the extent and limitations of the EntireX Broker.

The Developer's Kit contains a set of interfaces for using applications written in various program-
ming languages with EntireX Broker. Developer's Kit enables application components to be
“wrapped”, i.e. encapsulated, thereby allowing them to behave like an object and be plugged-and-
played as needed.

The ACI forms the layer upon which the various wrappers of the Developer's Kit logically exist.
This allows application programs to directly utilize the following industry-standard APIs that are
exposed through the Developer's Kit and EntireX Broker.

The common use cases in the table below are specific examples of how EntireX Broker provides
highly flexible interoperability of application components in a distributed processing environment.
The programming interfaces selected for the use cases below are organized by the two communic-
ation models exposed through EntireX Broker: client and server and publish and subscribe.

Case |Client Server |Typical Use

Case 1|ACI ACI To integrate applications on separate platforms. (Persistent
messaging is described.)

Case 2|JACI ACI To integrate applications on separate platforms, whereby the client's
application interface is a subset of the ACI.

Case 3|ACI (via Web server) |ACI To enable Web access to mainframe systems.

Case 4|RPC RPC To enable a UNIX or Windows application to access a Natural RPC
program.

Case |Publish Subscribe | Typical Use

Case 5|ACI ACI To enable a mainframe application to publish messages to UNIX

or Windows subscribers.

12 Broker

Common Use Cases

Case 1: ACl and ACI (including Units of Work)

This case is typically used to integrate applications on separate platforms.

Business Scenario

An insurance company sells its own products as well as those of other insurers. It is company
policy for its sales agents to give the most competitive insurance quotes possible to customers.
The front-ends used by the sales agent are provided with GUI applications on Windows. To obtain
insurance quotes from the back-end data as well as to update those data, the insurance agents

must communicate information from/to various mainframe applications written in COBOL and
PL/L

Table of Interoperability

Application |Programming EntireX

Component |Interface Component Operating System |Language Messaging Model
Client ACI Broker Windows Visual C ® Synchronous or
Server ACI z/OS COBOL, PL/1| asynchronous

= Conversational or
non-conversational

Broker 13

Common Use Cases

Message Flow: ACl and ACI

Windows z/0S
Broker Stub -4 P Eroker Kemel
A A
v v
) Broker Stub
AC| Application
A
v
Insurance Quotes
AC| Application
(COBOL or PL/I)

Description of Steps in Message Flow

.a.

.a.

Synchronous
The client program creates a request for information from a mainframe back-end and issues
a call via the Broker stub to EntireX Broker.

With conversational communication, a series of linked requests can be issued, allowing both
the client and server to retain context between commands.

. Asynchronous

® The client program wants to communicate updated information to the back-end system.
It formulates one or more messages within a unit of work (UOW) and performs an asyn-
chronous SEND from the stub to the broker.

® The Broker writes the UOW to the persistent store, enabling the client program to know
that the UOW will be processed.

Synchronous
The server application issues an ACI call via the Broker stub in order to obtain the request
from the client program.

. Asynchronous

The server application issues a RECEIVE command, now or at a later time, in order to obtain
the messages from the client program.

Synchronous
The server application processes the request and returns a message to EntireX Broker via the
Broker stub.

14

Broker

Common Use Cases

b. Asynchronous
The server program performs processing to update the data on the back-end system and,
only afterwards does it acknowledge that the message has been processed.
4. a. Synchronous
The client program receives the reply to the ACI call, allowing the request to be satisfied.

b. Asynchronous

The client program can query the status of its messages by UOWID in order to determine the
status of the back-end processing.

Case 2: JACIl and ACI

This case is typically used to integrate applications on separate platforms.

Business Scenario

An organization wants to integrate a UNIX-based stock control system with its existing mainframe-
based manufacturing planning systems.

Table of Interoperability

Architecture | Programming Interface | EntireX Component|Operating System |Language |Messaging Model

Client JACI Broker UNIX Java ® Synchronous
Server ACI z/OS Natural |= Conversational or
Non-conversational

Broker 15

Common Use Cases

Message Flow: JACI and ACI

UNIX z/0S

Description of Steps in Message Flow

1. The client program creates a request and issues a JACI call to EntireX Broker.

2. The server application issues an ACI call via the Broker stub in order to obtain the request from
the client program.

3. The server application processes the request and returns a message to EntireX Broker via the
Broker stub.

4. The client program receives the reply to the ACI call, allowing the request to be satisfied.

16 Broker

Common Use Cases

Case 3: ACI (via Web Server) and ACI

This case is typically used to enable Web access to mainframe systems.
Business Scenario

A brokerage has an application which processes orders of personal customers to buy and sell se-
curities. All incoming orders are executed on a back-end system, and some orders are executed
at a later time. The incoming orders are in the form of internet communication.

IT Environment

The brokerage uses a Web server as the point-of-entry for incoming orders. These orders are ex-
ecuted either synchronously or asynchronously on a separate back-end system. Located on the
brokerage's Web server is an application which is a client to EntireX, which functions as a proxy
and provides information to the brokerage's EIS (Enterprise Information System). Because of the
critical nature of the orders, units of work are employed to guarantee delivery of the incoming
information to the back-end system. This system is robust and can be restarted after failure without
loss of data.

Table of Interoperability

Architecture | Programming Interface | EntireX Component|Operating System [Language |Messaging Model

Client JACI Broker UNIX Java Servlet|® Synchronous or
Server ACI z/OS Natural Asynchronous

®= Conversational

Broker 17

Common Use Cases

Message Flow: ACl and WebSphere MQ

UNIX

z/0S

Description of Steps in Message Flow

1. The Web browser sends an HTTP request to the Web server.

2. The Web server instantiates a Web page containing the script (ASP).

3. The script creates a request and issues an ACI call via the Broker stub to EntireX Broker.
4

. The back-end application issues an ACI call via the Broker stub in order to obtain the request
from the script.

5. The back-end application processes the request and returns a message to EntireX Broker via
the Broker stub.

6. The script receives the reply to the ACI call, allowing the execution of the Web page to be
completed.

7. The Web server returns the information to the Web browser via HTTE, where the Web page is
displayed.

18 Broker

Common Use Cases

Case 4: RPC Wrapper and RPC

This case is typically used to enable a UNIX or Windows application to access a Natural RPC
program.

| Note: This use case is the most common within EntireX; it employs the EntireX Broker to-

gether with the Developer's Kit.
Business Scenario

An organization actively using Software AG technology - including Adabas and Natural - wants
to expand use of Software AG technology in order to build new applications accessible to clients
executing under UNIX or Windows. To achieve this, the organization runs a client written to use
RPC, which makes calls to EntireX Broker. The client, which is written in either Natural, Java or
a 3GL language, will invoke any of these three variants:

= (A)
RPC programs written in Natural and executing under Natural on z/OS (RPC is available through
Natural on z/OS);

= (B)
RPC programs written in Java and executing under the Java RPC Server on UNIX;

"= (©
3GL RPC programs executing under the C RPC Server on Windows.

Table of Interoperability

Application Component |Programming EntireX Operating System|Language * |Messaging Model
Interface Component

(A) Client RPC EntireX C Visual Basic|® Synchronous
Server RPC Broker and z/OS Natural = Conversational or

B Client RPC Developer's Wind Natural

®) en Kit mdows atura Non-conversational
Server RPC UNIX Java

©) Client RPC UNIX Java
Server RPC Windows C (=3GL)

Broker 19

Common Use Cases

Message Flow: RPC Wrapper and RPC

This diagram represents variant (A) in Table of Interoperability above.

UNIX

z/0S

1. The client application ACI application initiates an RPC request through the SDK: synchron-
ous/conversational or synchronous/non-conversational.

2. Broker stub communicates this request to the broker kernel.

3. a. Natural
The broker kernel communicates this request to Natural nucleus, which behaves like an RPC
server for Natural-written applications programs.

b. Java
Broker communicates this request to RPC server.

20 Broker

Common Use Cases

c C
Broker communicates this request to RPC server.
4. a. Natural
Natural nucleus invokes the RPC server program.
b. Java
RPC server invokes the server application program.
c C
RPC server invokes the server application program.
5. a. Natural
Natural nucleus returns the request to EntireX Broker.
b. Java
RPC server returns the request to EntireX Broker.
c C

RPC server returns the request to EntireX Broker.

6. Broker passes the request to the ACI application.

Broker 21

Common Use Cases

Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or Windows)

This case is typically used to enable a mainframe application to publish messages to UNIX or
Windows subscribers.

Business Scenario

A government department publishes details of various construction projects for which contractors
are required. Companies are then able to bid for the contracts.

IT Environment

The government application consists of two pieces: a publisher and a subscriber component. An
application running on z/OS publishes details for each new construction project. Publications are
sent asynchronously with a logical topic name in accordance with the type of construction project
required, for example freeways, minor roads, bridges. Approved contractors are given access to
the subscriber component of the application which runs under Windows. Here the contractors
can subscribe to the project types of interest and can receive details of projects for the specified
project types at their convenience.

Table of Interoperability

Architecture | Programming Interface | EntireX Component|Operating System |Language |Messaging Model

Publisher |ACI Broker z/OS Natural |® Asynchronous
Subscriber |ACI Windows Visual C

22 Broker

Common Use Cases

Message Flow: Publisher and Subscriber

Windows zI/0S8

Description of Steps in Message Flow

1. The publisher component is executed when new publication messages are to be sent, using an
ACI call via the Broker Stub to EntireX Broker.

2. EntireX Broker stores these publication messages into the persistent store, where they are
available after a system restart.

3. The subscriber component is executed asynchronously, issuing an ACI call via the Broker stub
to obtain published messages from EntireX Broker.

4. The subscriber repeats step (3) until all published messages have been received.

Broker 23

24

3 General Architecture of EntireX Broker

® [ntroduction t0 EntireX Broker ArChitECIUIEiiee e

m EntireX Broker Communication Models

= Architecture of Broker Stub
= Architecture of Broker Kernel

25

General Architecture of EntireX Broker

Introduction to EntireX Broker Architecture

Client . Kemel Server
Application Stub af Stub Application
Companent EntireX Broker Companent

This section describes the command process flows within the Broker kernel and stubs when two
application components communicate with each other using EntireX Broker. The Broker consists
of the following components:

® astub (application binding), which resides within the process space of each application compon-
ent;

® a Broker kernel, which resides in a separate process space, managing all the communication
between application components.

The details of the transport protocols remain transparent to the application components because
they reside within EntireX Broker (stubs and kernel). The EntireX Broker kernel and the location
of the transport protocols are the architectural aspects of EntireX Broker that distinguish it from
other messaging middleware.

EntireX Broker Communication Models

The EntireX Broker uses two communication models: client and server and publish and subscribe.
Client and server communication is used if data is to be sent to exactly one partner. “Publish and
subscribe” communication is used if data is to be published.

Client and Server

See Writing Applications: Client and Server in the EntireX Broker ACI Programming documentation
for details of the client and server model.

26 Broker

General Architecture of EntireX Broker

Example Scenario 1: Client and Server Messaging (Synchronous)

Scenario 1: Client and Server Messaging

SendRecelve Entirex Receive

- > Server

lignt
& N Broker Send

This is a synchronous messaging scenario: send request and wait for a response.

Broker 27

General Architecture of EntireX Broker

Example Scenario 2: Client and Server Messaging (Asynchronous)

This is

Scenario 2: Client and Server Messaging

Send | Receive
: EntireX
Client - > BT > Server

A
hJ

—_— —

Fersistent
Store
Data

an asynchronous messaging scenario: put message in service queue.

| Note: Client and server have specific meanings within the context of EntireX.

Term

Description

Client

An application component intending to access a service makes its request via EntireX Broker which
routes the request to the specific application component offering this service.

The request can be a single pair of messages comprising request/reply; or it can be a sequence of
multiple, related messages containing one or more requests and one or more replies, known as a
conversation. This enables EntireX Broker to be used for applications supporting different
programming interfaces. It also allows interoperability between types of application components
employing these different interfaces.

Server

An application component offering a service registers it with EntireX Broker. EntireX Broker makes
the registered service available to other application components capable of communicating with
EntireX Broker. The fact that a server has been registered and is available in this way defines it as
a service in terms of class/name/server within the context of EntireX.

Publish and Subscribe

See section Writing Applications: Publish and Subscribe for details of the publish-and-subscribe

model.

28

Broker

General Architecture of EntireX Broker

Scenario of Publish and Subscribe Messaging

Fublisher
Fublisher
. SEND_PUBLICATION
Publisher 4
v
RECEIVE_PUBLICATION)
<4 = » Subscriber
P _PJ RECEIVE_PUBLICATION
Persistent EntireX - | :
Store | » Broker ¥ - Subscriber
- D’Et’E i
RECEIVE_PUBLICATION)
<4 = » Subscriber
Term Description
Publisher |An application component acting as a publisher is able to send messages to a specified topic:
These messages constitute publications which are now available to the various different
subscribers. These messages are automatically kept in the persistent store if there are any
subscribers with “durable” status.
Publications are retained for a specified time limit of days, months or years until all the
subscribers have had the opportunity to receive them. After this time, or upon delivery to every
existing subscriber, the publications are removed from the system.
Subscriber | An application component which is interested in one or more specific topics notifies Broker

kernel, using the Subscribe command. This informs Broker that any publications sent to the
specified topics will be required by this subscriber and so should be retained and then forwarded
to this subscriber when this application component solicits these subscriptions. Subsequently
the subscriber can issue receive commands to solicit any outstanding subscriptions.

The subscriber can subscribe to EntireX Broker with the ALLOW-DURABLE option which means
the subscriptions are kept in the persistent store even after the Broker kernel or the application
component has been restarted.

Broker

29

General Architecture of EntireX Broker

Architecture of Broker Stub

The type of communication model described in this section and in the section Architecture of
Broker Kernel is client and server.

Overview of Broker Stub
The EntireX Broker stub is another name for Software AG's ACI (Advanced Communication Inter-

face). The stub implements an API (application programming interface) that allows programs
written in various languages to access EntireX Broker.

Overview of Broker Stub
Broker Stub ‘
TCPIP Entire Net-Work SSL
Communicator Communicator Communicator

See also Administration of Broker Stubs in the platform-specific administration documentation.

30 Broker

General Architecture of EntireX Broker

Description of Command Process Flow within Broker Stub

The following table gives a step-by-step description of a typical command process flow from and
to a Broker stub. This example describes a SEND/RECEIVE command pair.

J

Note: Publish and subscribe uses SEND_PUBLICATION instead of SEND, and
RECEIVE_PUBLICATION instead of RECEIVE.

Step

Description

The originating application program calls the stub with a SEND/WAIT=YES command. The stub builds
the necessary information structures and communicates the message to the Broker kernel. Basic
validation is performed in the stub before the command is passed to the Broker kernel.

The stub uses one of the following transport mechanisms to transmit the command to the Broker
kernel: TCP, SSL or Entire Net-Work. The application does not have to recognize the details of the
transport protocol since all transport protocol processing resides entirely within the stub.

The application is suspended while the stub waits for a response. Since the application has issued
SEND, WAIT=YES it must wait for the message to travel via the Broker kernel to the partner application
which will satisfy the request.

After the request has been satisfied and the message returns from the partner application, via the
Broker kernel, the stub will pass control back to the originating application.

Architecture of Broker Kernel

The type of communication model described in this section and in the section Architecture of
Broker Stub is client and server.

Broker 31

General Architecture of EntireX Broker

Overview of Broker Kernel

RESTART Manager

Overview of Broker Kernel
TCPP Entire Met-VWork S3L
Communicator Communicator Communicator
F 3
: >
A4
‘ Dispatcher ‘

Persistent Store
Diriver

)

TIMEQUT
Manager

32

Broker

General Architecture of EntireX Broker

Description of Command Process Flow within Broker Kernel

The following table gives a step-by-step description of a typical command process flow within
the Broker kernel. This example describes a SEND/RECEIVE command pair.

Note: Publish and subscribe uses SEND_PUBLICATION instead of SEND, and
RECEIVE_PUBLICATION instead of RECEIVE.

Step |Description

1 |The originating application program calls the Broker stub with a SEND command. The stub builds the
necessary information structures and transmits the message to the Broker kernel using TCP, SSL or
Entire Net-Work.

2 | The message is received by one of the communications subtasks running within the Broker kernel.
The communications subtask passes the message to the dispatcher.

3 |The dispatcher schedules the processing of the message within a worker task inside the Broker kernel.
Worker task processes the inbound message, performing any necessary data conversion and security
operations, and then determines the partner to which the message is to be routed. Any necessary
persistence operations are performed under control of the worker task.

5 |The outbound message is passed to the relevant communications subtasks within the Broker kernel
for transmission to the partner application component.

6 |The partner application component which hasissued a RECEIVE command via the broker stub obtains
the message from the originating application program.

7 |The partner application component then processes the message and normally makes a reply.

Notes:

1. Application components can exchange successive related message pairs. This action constitutes
a conversation.

2. Clean-up processing of timed-out commands is performed asynchronously by the Broker kernel
Timeout Manager which acts upon in-memory data structures as well as data within the per-
sistent store.

3. The communications restart manager is able to restart any communications subtasks which
may have become temporarily disabled, for example by restarting the machine's TCP/IP driver.

Broker 33

34

4 Functionality of EntireX Broker

= Application BiNAINGS (STUDS) ..o
B ATACH SEIVICES .. .eiieiiiii ettt ettt e et e e e et e e et e e e e e s
B COAEPAGE CONVEISION ...ttt ettt ettt et e ettt e e st e e e et e e et e e e et e e e e s
= Command and INFOrMation SEIVICEScoiiiiiiiiiii e
B A CCOUNEING + 1ttt
B DAta COMPIESSION ...ttt ettt e e e oottt e e e e e e ettt et e e e e e e ettt e e e e e e e e e ettt taaeeaeaaans
B PEISISTENT SHOTE ..o s
B NS OF WVOTK oottt e et e e e e e e e e e e e e e e e
B SOUITEY ettt e ettt

35

Functionality of EntireX Broker

This chapter gives an overview of the major value-added services provided by EntireX Broker.
These services relieve the administrator or application builder of the task of providing the desired
functionality.

Application Bindings (Stubs)

Application bindings allow applications developed in different programming languages and ex-
ecuting on various different platforms to be enabled by using EntireX Broker, see Architecture of
Broker Stub. Specifically, almost all 3GL, Java and Natural programs are easily enabled using
EntireX Broker. These bindings are available on all major mainframe, UNIX and Windows platforms.
In addition, the SDK provided by EntireX allows different programming interfaces to be utilized,
including COM, JMS, RPC and .NET, in addition to EntireX Broker's native programming interface,
the Broker ACL

The application binding - and SDK component, where appropriate - is the glue between the applic-
ation and the EntireX Broker kernel (see Architecture of Broker Kernel, allowing your application
to leverage all the functionality of EntireX regardless of

" programming language

" operating system

* hardware platform

" transport mechanism and

® choice of programming interfaces.

This binding capability enables various different application components to be integrated in a
loosely coupled manner.

These are the locations where EntireX Broker stubs can be installed:

36 Broker

Functionality of EntireX Broker

Installable Components of EntireX Broker

Client Environment Server Environment
Broker Middleware Broker
Client Stub Stub Server

0 0 0

biv vvv vvd

§ » Indicates access to . Applications . Middleware components . Operating
» Aany user application (provided by user) (provided by Software AG) System
on any depicted
aperating system

Attach Services

This topic does not apply to the publish-and-subscribe communication model.

EntireX Broker provides a choice of mechanisms which enable application components to be
started automatically when required.

Example: A client application requires some processing from a server application component. The
range of attach services includes starting IMS TM and CICS transactions on the mainframe, and
batch programs/processes on mainframe, UNIX and Windows.

Codepage Conversion

Software internationalization is the process of designing products and services so that they can
be adapted easily to a variety of different local languages and cultures. Codepage conversion
within the EntireX Broker facilitates the internationalization of messages: the incoming and outgoing
data is converted to the desired codepage of the platform in use.

Broker 37

Functionality of EntireX Broker

Command and Information Services

EntireX Broker includes a set of monitoring and control functions that enable you to monitor system
resource utilization and view the current activities of the clients, servers, publishers and subscribers
on the system. These services are available through a Web-based interface, in addition to a com-
mand-line tool. An interface exists to allow program access to these facilities.

Accounting

This topic does not apply to the publish-and-subscribe communication model.

EntireX Broker provides accounting information based upon the flow of message sequences (or
conversations). On z/OS, this information is written to standard accounting (SMF) records; on
other platforms it is written to a file. The information can be used for:

® application chargeback: apportioning EntireX resource consumption on the conversation and/or
the application level;

" performance measurement: analyzing application throughput (bytes, messages, etc.) to determine
overall performance;

® trend analysis: using data to determine periods of heavy and/or light resource and/or application
usage.

Data Compression

EntireX allows compression of messages passed between application components so as to consume
less network bandwidth. This is done independently of transport mechanism by compressing the
message in the application binding before it is transmitted to the EntireX Broker kernel. The
Broker kernel decompresses the message to enable security and data conversion to be applied.

The following graphic illustrates the sequencing of data compression within the stub and Broker
kernel:

38 Broker

Functionality of EntireX Broker

Persistent Store

The persistent store stores units of work for client and server applications and also stores publica-
tion/subscription data for publish-and-subscribe applications.

Client and Server

Persistent message delivery ensures that messages sent between client and server (or server and
client) application components can reach their target even in the event of application or system
failures. The user application programs units of work to achieve persistent messaging. EntireX
Broker provides persistent message delivery by grouping messages into units of work (UOWs)
that are committed in one atomic operation by the sender. See also Units of Work.

Publish and Subscribe

Two classes of information (subscription records and the publication itself) are provided to ensure
that durable subscription status is preserved and that message content remains persistent during
system failure. The publish-and-subscribe specific verbs SEND_PUBLICATION and
RECEIVE_PUBLICATION provide persistent messaging of publications, which relieves the user of
programming units of work.

Persistence is implemented centrally within the EntireX Broker kernel. Therefore, the consistency
of all the stored messages is guaranteed independently of the different application components
and platforms from which the messages are derived.

Broker 39

Functionality of EntireX Broker

Persistent Store Types

A persistent store driver is an executable, or a load module, which implements access to the
physical persistent store. EntireX Broker allows the choice of three persistent store repositories:
Adabas (DBMS), Data In Virtual (DIV) for z/OS, and native file system. The following table gives
an overview of the persistent store options:

Persistent
Store Type Description Operating System Notes
Adabas Uses Adabas database. UNIX, Windows, |Adabas, Software AG's ADAptable
z/OS, z/VSE dataBASe, is a high-performance,
multithreaded, database management
system.
DIV Uses IBM Data In Virtual z/OS This persistent store option is
facility on z/OS. implemented as a VSAM linear data set.
CTREE c-tree© is an embedded local |[UNIX and Windows |c-tree© is the fast and reliable embedded
database that can be used as database of FairCom Corporation®.
your persistent store.

Units of Work

This topic does not apply to the publish-and-subscribe communication model.

Units of work inform the sender of messages about their past and current status. Specifically,
UOWs are used to:

® commit the sending of messages;
® acknowledge the receipt of messages;

" track the progress of sent messages at any point in time.

Units of work are also the vehicle for achieving persistent messaging, although UOWSs can be used
without persistence.

See also Using Units of Work in the general administration documentation.

40 Broker

Functionality of EntireX Broker

Security

EntireX Security enables distributed application components running with Broker to be executed
securely. EntireX Security is located centrally in the kernel of EntireX Broker giving it an overview
of all messages sent between application components and therefore providing complete control
over the authentication and authorization of each component.

Security checks are performed using a choice of security repositories, including;:

= RACF
= CA ACF2
® CA Top Secret

UNIX and Windows security systems

The security repository chosen depends on the location of the Broker kernel. Encryption of message
data - by means of a generic RC4-compatible algorithm or SSL - is also available to protect sensitive
information flowing between different application components. Since EntireX was designed to

operate together with a security system, there is no additional application programming necessary.

This diagram depicts the location of the security components of the kernel and stubs of EntireX
Broker:

EntireX Security

Broker Environment Client/Server Environment
Repository Enlh';)[v Middleware Client/s E:clh'e)[
B __ Secu Environment : urity
USRSECE& Stub module
SAF P aried task/ E 1 SECUEXIT
senvice (zIVSE) —p
Local [—
Securit: Kernel module
- — e
LDAP dasmon —
Local —
Securit Kernel module > Stub moduls
USRSEC SECUEXIT
LDAP -
« » Indicates access to ’— Security repository I Security components . Applications
» any user application {(operating system {provided by Software AG) {provided by user)
on any depicted or LDAP repository)

operating system Middlewars components

B Operating system || (provided by Software AG)

Broker 41

42

5 Broker Quick Reference

= Functionality;: CommuniCation MOGEIScoiiiiiiiiiie e e e

= ACI Syntax of Messaging Model ..

m Location of Broker KErnel and STUDScoovniiie e e

= Transport: Broker Stubs and APIs

43

Broker Quick Reference

Functionality: Communication Models

The table below shows which functionality of EntireX Broker is supported by each of the two
communication models: Writing Applications: Client and Server and Writing Applications: Publish

and Subscribe.

Functionality

Client and Server

Publish and Subscribe

Application bindings (stubs) X X
Command and Information Services X X
Accounting X

Data compression X X
Codepage conversion X X
Persistent store X X
Security X X
Units of work X

44

Broker

Broker Quick Reference

ACI Syntax of Messaging Model

This table provides the ACI syntax used in both of EntireX Broker's communication models Writing
Applications: Client and Server and Writing Applications: Publish and Subscribe

Client and Server Publish and Subscribe

Messaging Term Client Server Publish Subscribe
e Synchronous = SEND @ RECEIVE| not applicable not applicable
o
z = WAIT=YES® |= WAIT=YES
T
% Asynchronous ® = SEND RECEIVE|= SEND_PUBLICATION|= RECEIVE_PUBLICATION
[12]

= WAIT=NO WATT=NO|= WAIT=NO = WATT=NO

= WAIT=YES = WAIT=YES®
= Conversational = SEND RECEIVE| not applicable not applicable
g = CONV-ID=NEW
o}
Z
i3 Non-conversational (= SEND RECEIVE|® SEND_PUBLICATION
=
& = CONV-ID=NONE
o

] Notes:

1. The synchronous SEND, WAIT=YES command contains an implied RECEIVE command.

2. The subscriber has the option of specifying WAIT=YES.
Example: The subscriber uses a repeat loop that issues a RECEIVE_PUBLICATION. The advantage
is that the program runs continuously, processing publications arising as random events, which
simplifies programming effort.

3. Persistence available. See Concepts of Persistent Messaging in the general administration docu-

mentation.

Location of Broker Kernel and Stubs

This graphic shows the locations where the broker kernel and broker stubs can be installed. See
Architecture of Broker Kernel and Architecture of Broker Stub.

Broker

45

Broker Quick Reference

Client Environment

Broker
Client Stub

-

: Indicates access to

» Aany user application
on any depicted
aperating system

Applications

Middleware

Installable Components of EntireX Broker

biv vvv vvd

Server Environment

Broker
Stub

Server

Middleware components
(provided by user) . {provided by Software AG)

Operating
System

46

Broker

Broker Quick Reference

Transport: Broker Stubs and APls

This table gives an overview of the transport methods supported by EntireX Broker stubs.

Transport to Broker

Operating
System Environment Module TCP[SSL[NET ""JHTTP(S) “|
z/OS @ Batch, TSO, IMS (BMP) |BROKER X | x| x
Com-plete COMETB x [9 x
CICS CICSETB x | 91 x
IMS (MPP) MPPETB x | x X
IDMS/DC @ IDMS x | @
Natural NATETB23 X | x X
UNIX System Services Java ACI in the Developer's Kit x | x X
documentation
UNIX broker.so X | x
Java ACI in the Developer's Kit X | x X
documentation
Windows broker.dll © x | x
Java ACI in the Developer's Kit X | x X
documentation
BS2000/0OSD |Batch, Dialog (formerly BROKER X | x X
TIAM)
z/VM BKIMBCMS X X
IBM i EXA X
OpenVMS BROKER X | x
| Notes:

1. NET is available for transport to a broker running under mainframe platforms only; not to a
broker running under UNIX or Windows.

2. Under z/OS you can use IBM's Application Transparent Transport Layer Security (AT-TLS) as
an alternative to direct SSL support inside the broker stub. Refer to the IBM documentation for
more information.

3. Use AT-TLS. See Note 2.

4. Tracing and transport timeout are not supported in this environment.

5. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is
identical to broker.dll.

Broker

47

Broker Quick Reference

6. Via Broker HTTP(S) Agent; see Settting up and Administering the Broker HTTP(S) Agent in the
UNIX and Windows administration documentation.

See also:

= Setting Transport Methods for Broker Stubs in the platform-specific broker stub administration
documentation

= Setting Transport Methods under Writing Advanced Applications - EntireX Java ACI

48 Broker

I1

Broker Attributes

49

50

6 Broker Attributes

Name and Location of Attribute File
ARTDULE SYNEAX ...ttt e et e et e e et e e e ettt e e et e e et a e e
Broker-specific Attributes
= Service-specific Attributes
= Topic-specific Attributes

m Codepage-SPeCific ALIIDUIESiiii e
= Adabas SVC/Entire Net-Work-specific AtHDULEScoouviiiiiiiii e
B SecUrity-SPECIfIc AtIDULESvviiii e
B TCP/IP-SPECIfiC AtHDULES ..ot
B C-{ree-SPECIfIC ATHDULESeiii i

= SSL-specific Attributes
= DIV-specific Attributes

B Adabas-SPECIfic ARMDULESvieiiiiieee e

= Variable Definition File

51

Broker Attributes

| Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to

all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, publishers and subscribers as well as of the Broker itself.
You can customize the Broker environment by modifying the attribute settings.

52 Broker

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

Platform File Name/Location
z/OS Member EXBATTR in the EntireX Broker source library.
UNIX File etbfile in directory <InstD7ir>/EntireX/config/etb/<BrokerName> (default) *

Windows File<BrokerName>.atr in directory <InstD7ir>\EntireX\ config\etb\<BrokerName> (default)

*

BS2000/OSD |File ETB-ATTR in library EXX951.JOBS.
z/VSE Library member ETBnnn.ATR, where ETBnnn is the assigned broker ID.

* When starting a broker manually, name and location of the broker attribute file can be overwrit-
ten with the environment variable ETB_ATTR.

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value
The following rules and restrictions apply:

® A line can contain multiple entries separated by commas.

® Attribute names can be entered in mixed upper and lowercase.

" Spaces between attribute names, values and separators are ignored.
" Spaces in the attribute names are not allowed.

® Commas and equal signs are not allowed in value notations.

® Lines starting with an asterisk (*) are treated as comment lines. Within a line, characters following
an * or # sign are also treated as comments.

® The CLASS keyword must be the first keyword in a service definition.

® Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

" Multiple topics can be included in a single topic definition section. The attribute settings will
apply to all topics defined in the section.

Broker 53

Broker Attributes

" Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

Attributes specified after the topic definition (TOPIC keyword) override the default characteristics
for the topic.

Attribute values can contain variables of the form ${variable name} or $variable name:

Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

The variable name can contain only alphanumeric characters and the underscore (_) character.
The first non-alphanumeric or underscore character terminates the variable name.

under UNIX and Windows, the string $ {variable name} is replaced with the value of the
corresponding environment variable.

On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable name will be used as the variable value.

If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

54

Broker

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section begins with the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem

is corrected.

¢ Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large

values for the broker attributes that define the global resources.

Operating System
ur
Opt/ W = % o %
Attribute Values Req & = = g @
ABEND-LOOP-DETECTION YES | NO @] z u w v b

YES Stop broker if a task terminates abnormally twice, that is, the same
abend reason at the same abend location already occurred. This
attribute prevents an infinite abend loop.

NO Use only if requested by Software AG Support. This setting may make
sense if a known error leads to an abnormal termination, but a hotfix
solving the problem has not yet been provided. Reset to "YES" when
the hotfix has been installed.

ABEND-MEMORY -DUMP

YES | NO ‘O|Z‘U‘W‘V‘b

YES Print all data pools of the broker if a task terminates abnormally. This
dump is needed to analyze the abend.

NO If the dump has already been sent to Software AG, you can set to "NO"
to avoid the extra overhead.

ACCOUNTING NO | 128-255 O] z
NO | YES @) u w b
[SEPARATOR=char]
Determines whether accounting records are created.
NO Do not create accounting records.
nnn The SMF record number to use when writing the accounting records.
YES Create accounting data.
char=separator character(s). Up to seven separator characters can
be specified using the SEPARATOR suboption, for example
ACCOUNTING = (YES, SEPARATOR=;).If no separator character is
specified, the comma character will be used.
Broker 95

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
See also Accounting in EntireX Broker in the z/OS administration
documentation.
ACCOUNTING-VERSION 1121314 | 0 | z | u | w ‘ ‘ b

Determines whether accounting records are created.

1 Collect accounting information. This value is supported for reasons of
compatibility with EntireX Broker 7.2.1 and below.

2 Collect extended accounting information in addition to that available
with option 1.

3 Create accounting records in layout of version 3.

4 Create accounting records in layout of version 4.

This parameter applies to z/OS, UNIX, Windows and BS2000/OSD when
ACCOUNTING is activated.

AUTOLOGON

YES | NO ‘O|Z’u’w‘v‘b

YES LOGON occurs automatically during the first SEND or REGISTER.
NO The application has to issue a LOGON call.

BLACKLIST-PENALTY-TIME

dbmlnlnSinMIn R z u w v b
H

Define the length of time a participant is placed on the
PARTICIPANT-BLACKLIST to prevent a denial-of-service attack.

n Sameas nS.

n'S Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

BROKER-ID

A32 ‘R | z ’ u’w‘v ‘ b

Identifies the broker to which the attribute file applies. The broker ID must
be unique per machine.

Note: The numerical section of the BROKER - ID is no longer used to determine
the DBID in the EntireX Broker kernel with Entire Net-Work transport (NET).
To determine the DBID, use attribute NODE in the DEFAULTS=NET section of
the attribute file.

56

Broker

Broker Attributes

Operating System
o
Opt/ 0 x % g %
Attribute Values Req g = = @
CLIENT-NONACT I5SM I nlnS | nM | R z u w v b
nH

Define the non-activity time for clients.

n Same as rS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

A client that does not issue a broker request within the specified time limit
is treated as inactive and all resources for the client are freed.

CMDLOG

NO | YES ‘O|z’u‘w‘v‘b

NO Command logging will not be available in the broker.

YES Command logging features will be available in the broker.

CMDLOG-FILE-SIZE

1024 | n (@] z u w \% b

Defines the maximum size of the file that the command log is written to, in
kilobytes. The value must be 1024 or higher. The default value is 1024. When
one command log file grows to this size, broker starts writing to the other
file. For more details, see Command Logging in EntireX.

CONTROL-INTERVAL

60s| nlnSlnMI| nH @] z u w v b

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby broker will check the status of the standard broker after the
elapsed CONTROL- INTERVAL time.

n Same as nS.
nS Interval in seconds (max. 2147483647).
nM Interval in minutes (max. 35791394).

nH Interval in hours (max. 596523).
The minimum value is 16 seconds. We strongly recommend the default
value (60 seconds), except for very slow machines.

CONV-DEFAULT

UNLIM | n ‘O|z’u‘w‘v‘b

Default number of conversations that are allocated for every service.

Broker

of

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
UNLIM The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION.
n Number of conversations.
This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.
DEFERRED

NO | YES ‘O|z‘u‘w‘v‘b

Disable or enable deferred processing of units of work.

NO Units of work cannot be sent to the service until it is available.

YES Units of work can be sent to a service that is not up and registered.
They will be processed when the service becomes available.

DYNAMIC-MEMORY -MANAGEMENT

YES | NO ‘O|Z’u’w‘v‘b

YES An initial portion of memory is allocated at broker startup based on
defined NUM- * attributes or internal default values if no NUM-*
attributes have been defined. More memory is allocated without broker
restart if there is a need to use more storage. Unused memory is
deallocated. The upper limit of memory consumption can be defined
by the attribute MAX -MEMORY. See Dynamic Memory Management under
Broker Resource Allocation in the general administration documentation.

NO All memory is allocated at broker startup based on the calculation
from the defined NUM- * attributes. Size of memory cannot be changed.
This was the known behavior of EntireX 7.3 and earlier.

If you run your broker with attribute DYNAMIC -MEMORY -MANAGEMENT=YES,
the following attributes are not needed:

= CONV-DEFAULT = NUM-PUBLISHER

= | ONG-BUFFER-DEFAULT ® NUM-SERVER

® PUBLICATION-DEFAULT = NUM-SERVICE-EXTENSION
= SERVER-DEFAULT = NUM-SERVICE

® SHORT-BUFFER-DEFAULT = NUM-SHORT[-BUFFER]
® SUBSCRIBER-DEFAULT = NUM-SUBSCRIBER-TOTAL
= NUM-CLIENT = NUM-SUBSCRIBER

® NUM-CMDLOG-FILTER = NUM-TOPIC-EXTENSION

58

Broker

Broker Attributes

Operating System
o
Opt/ 0 » § w %
- S | 3| £ | % | 4
Attribute Values Req = =
= NUM-COMBUF = NUM-TOPIC-TOTAL

® NUM-CONVLERSATION] = NUM-TOPIC
® NUM-LONGL-BUFFER] = NUM-UOW|MAX-UQWS|MUOW
® NUM-PUBLICATION = NUM-WQE

Caution: However, if one of these attributes is defined, it determines the

allocation size of that particular broker resource.

DYNAMIC-WORKER-MANAGEMENT

NO | YES ‘O|z’u‘w‘ ‘b

NO All worker tasks are started at broker startup. The number of worker
tasks is defined by NUM-WORKER. After this initial step, no further
worker tasks can be started. This is default and simulates the behavior
of EntireX version 8.0 and earlier.

YES As above, the initial portion of worker tasks started at broker startup
is determined by NUM-WORKER. However, if there is a need to handle
an increased workload, additional worker tasks can be started at
runtime without restarting broker. Conversely, if a worker task remains
unused, it is stopped. The upper and lower limit of running worker
tasks can be defined by the attributes WORKER-MIN and WORKER-MAX.

If you run broker with DYNAMIC-WORKER-MANAGEMENT=YES, the following
attributes are useful to optimize the overall processing:

= WORKER-MAX

= WORKER-MIN

= WORKER-NONACT

= WORKER-QUEUE-DEPTH

= WORKER-START-DELAY

The attribute NUM-WORKER defines the initial number of worker tasks started

during initialization. See Dynamic Worker Management under Broker Resource
Allocation in the general administration documentation.

FORCE

s [o] [w] [|

NO Go down with error if IPC resources still exist.

YES Clean up the left-over IPC resources of a previous run.

Broker

59

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
Note:
1. If broker is started twice, the second instance will kill the first by removing
the IPC resources.
2. For BS2000/0OSD, z/OS and z/VSE, see separate attribute FORCE in section
Adabas SVC/Entire Net-Work-specific Attributes.
HEAP-SIZE 1024 n | o | z | u | w [v | b

Defines the size of the internal heap in KB. We strongly recommend using
the default value (1024 KB).

ICU-CONVERSION

YES | NO ‘O|Z‘U‘W‘V‘b

Disable or enable ICU conversion.

YES ICU is loaded and available for conversion. It is a prerequisite for
SAGTCHA and SAGTRPC.

NO ICU is not loaded and not available for conversion. SAGTCHA and
SAGTRPC cannot be used.

If any of the broker service definitions uses the internationalization approach
“ICU conversion”, that is, the conversion methods SAGTCHA and SAGTRPC
are defined by the service-specific or topic-specific attribute CONVERSION,
ICU-CONVERSION mustbe set to "YES". The internationalization approaches
“Translation”, “Translation User Exit” and “SAGTRPC User Exit” do not
require ICU conversion. If all broker service definitions use these
internationalization approaches, ICU-CONVERSION can be set to "NO".

ICU requires additional storage to run properly. If ICU conversion is not
needed, setting ICU-CONVERSION to "NO" will help to avoid unnecessary
storage consumption.

ICU-SET-DATA-DIRECTORY

wsixo [0 [[w [w] |

Disable or enable ICU custom converter usage. Not defined for mainframe
platforms.

YES The broker tries to locate ICU custom converters with the mechanism
defined by the platform, see Building and Installing ICU Custom
Converters in the platform-specific administration documentation.

NO Use of ICU custom converters is not possible.

IPV6

YES | NO ‘O|Z’u’w‘ ‘b

60

Broker

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

YES Establish SSL and TCP/IP transport in IPv6 and IPv4 networks
according to the TCP/IP stack configuration.

NO Establish SSL and TCP/IP transport in IPv4 network only.

This attribute applies to EntireX version 9.0 and above.

LONG-BUFFER-DEFAULT

UNLIM | n ‘O|z’u’w‘v‘b

Number of long buffers to be allocated for each service or topic.

UNLIM The number of long message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-LONG-BUFFER.

n Number of buffers.

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

MAX-MEMORY

OlnlnKI| nM | (@] z u w v b
nG | UNLIM

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY-MANAGEMENT=YES has been defined.

0, UNLIM No memory limit.

others Defines the maximum limit of allocated memory. If limit is
exceeded, error 671 “Requested allocation exceeds
MAX-MEMORY” is generated.

MAX-MESSAGE-LENGTH

2147483647 | n ‘O|Z‘u‘w‘v‘b

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

MAX-MESSAGES-IN-UOW

16 1 n ‘O|z‘u‘w‘v‘b

Maximum number of messages in a UOW (or publication).

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE - LENGTH.

MAX-UOWS

Qi EEEEEEEEERE

The maximum number of UOWSs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a MAX-UOWS value must be 1 or larger for the broker.

Broker

61

Broker Attributes

Attribute

Operating System

Ll

3

Opt/ 0
Values Req 8

Windows
BS2000

UNIX

The MAX-UOWS value for the service will default to the value set for the
broker. NUM-UOW is an alias of this parameter.

MESSAGE-CASE

NONE | UPPER | @) z u w A b
LOWER

Indicates if certain error message texts returned by the broker to its clients
or written by the broker to its log file are to be in mixed case, uppercase, or
lowercase.

NONE No changes are made to message case.
UPPER Messages are changed to uppercase.
LOWER Messages are changed to lowercase.

MUOW

See NUM-UQW.

NEW-UOW-MESSAGES

YES | NO (@) z u w \% b

YES New UOW messages are allowed.
NO New UOW messages are not allowed.

This applies to UOW when using Persistence and should not be used for
non-persistent UOWSs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down.
You can set NEW-UOW-MESSAGES to "NO" to prevent new UOW messages
from being added after a broker restart. This action allows only consumption
(not production) of UOWSs to occur after broker restart. After the persistent
store capacity has been sufficiently reduced, the EntireX Broker administrator
can issue a CIS command, see ALLOW-NEWUOWMSGS under Broker CIS Data
Structures in the ACI Programming documentation. This action allows new
UOW messages to be sent to the broker. Reset attribute NEW-UOW-MESSAGES
to "YES", which permits new UOW messages to be produced in subsequent
broker sessions.

NUM-BLACKLIST-ENTRIES

256 | n ‘O|Z’u‘w‘v‘b

Number of entries in the participant blacklist. Default value is 256 entries.
Together with BLACKLIST-PENALTY -TIME and PARTICIPANT-BLACKLIST,
this attribute is used to protect a broker running with SECURITY=YES against
denial-of-service attacks. See Protecting a Broker against Denial-of-Service
Attacks in the platform-specific broker administration documentation.

NUM-CLIENT

n ‘R|z‘u‘w‘v‘b

Number of clients that can access the broker concurrently. A value of 0 (zero)
is invalid.

62

Broker

Broker Attributes

Operating System
o
Opt/ 0 x % g %
Attribute Values Req g = = @
NUM-CMDLOG-FILTER 11n (@] z u w v b

Maximum number of filters that can be specified simultaneously.

Tip: We recommend you limit this value to the number of services that are

being monitored. Minimum value is 1. A value of zero is invalid when the
attribute CMDLOG is set to "YES". See Command Logging in EntireX for more
information.

NUM-COMBUF

1 -999999 |R|z|u‘w‘v‘b

Determines the maximum number of communication buffers available for
processing commands arriving in the broker kernel. The size of one
communication buffer is usually 16 KB split into 32 slots of 512 bytes, but it
ultimately depends on the hardware architecture of your CPU. A value of
0 (zero) is invalid.

NUM-CONVERSATION or
NUM-CONV

n1 AUTO ‘R|z’u’w‘v‘b

Defines the number of conversations that can be active concurrently. The
number specified should be high enough to account for both conversational
and non-conversational requests. (Non-conversational requests are treated
internally as one-conversation requests.)

n Number of conversations.

AUTO Uses the CONV-DEFAULT and the service-specific CONV - LIMIT values
to calculate the number of conversations. The values used in the
calculation must not be set to "UNLIM".

Note:

1. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

2. See Wildcard Service Definition under Broker Attributes in the administration
documentation.

NUM-LONG-BUFFER or
NUM-LONG

n | AUTO ‘R|z’u’w‘v‘b

Defines the number of long message containers. Long message containers
have a fixed length of 4096 bytes and are used to store requests that are
larger than 2048 bytes. Storing a request of 8192 bytes, for example, would
require two long message containers.

n Number of buffers.

AUTO Uses the LONG-BUFFER-DEFAULT and the service-specific
LONG-BUFFER-LIMIT values to calculate the number of long

Broker

63

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

message buffers. The values used in the calculation must not be set
to "UNLIM".

A value of 0 (zero) is invalid.

In non-conversational mode, message containers are released as soon as the
client receives a reply from the server. If no reply is requested, message
containers are released as soon as the server receives the client request.

In conversational mode, the last message received is always kept until a new
one is received.

Note:
1. If a catch-all service is defined in the service-specific section of the attribute
file, the value of AUTO is invalid.

2. See Wildcard Service Definition under Broker Attributes in the administration
documentation.

NUM-PUBLICATION

n | AUTO ‘O|z’u’w‘v‘b

Defines the number of publications that can be active concurrently.

n Number of publications

AUTO Uses the PUBLICATION-DEFAULT and the topic-specific
PUBLICATION-LIMIT to calculate the number of publications. The
values used in the calculation must not be set to "UNLIM"

Note:

1. A value of 0 (zero) is invalid.

2. If a wildcard topic is defined in the topic-specific section of the attribute
file, the value of AUTO is invalid.

NUM-PARTICIPANT-EXTENSION

n ‘O|z‘u‘w‘v‘b

Defines the number of participant extensions to link participants as clients
and servers.

n Number of participant extensions

not specified If this attribute is not set, the default value is calculated based
on NUM-CLIENT and NUM-SERVER.

64

Broker

Broker Attributes

Operating System
o
Opt/ 0 x % g %
. =
Attribute Values Req 8 5 = @
A value of 0 (zero) is invalid.
NUM-PUBLISHER n ‘ o | z ‘ u ‘ w ‘ v ‘ b

Number of publishers that can access the broker concurrently. A value of 0
(zero) is invalid.

NUM-SERVER

n |1 AUTO R z u w \% b

Defines the number of servers that can offer services concurrently using the
broker. This is not the number of services that can be registered to the broker
(see NUM-SERVICE).

n Number of servers.

AUTO Usesthe SERVER-DEFAULT and the service-specific SERVER-LIMIT
values to calculate the number of servers. The values used in the
calculation must not be set to "UNLIM".

Note:

1. Setting this value higher than the number of services allows the starting
of server replicas that provide the same service.

2. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

3. See Wildcard Service Definition under Broker Attributes in the administration
documentation.

NUM-SERVICE

n ‘R|z‘u‘w‘v‘b

Defines the number of services that can be registered to the broker. This is
not the number of servers that can offer the services (see NUM-SERVER). A
value of 0 (zero) is invalid.

NUM-SERVICE-EXTENSION

n | AUTO ‘O|z‘u‘w‘v‘b

Defines the number of service extensions to link servers to services.

n Number of service extensions.

AUTO Uses the value specified or calculated for
NUM-SERVER + NUM-CLIENT, plus an extra cushion.

not specified If this attribute is not set, the default value is NUM-SERVER
multiplied by NUM-SERVICE.

The minimum value is NUM- SERVER.
The maximum value is NUM- SERVER multiplied by NUM-SERVICE.

Caution is recommended with this attribute:

Broker

65

Broker Attributes

Attribute

Operating System

Ll

3

Opt/ 0
Values Req 8

Windows
BS2000

UNIX

B Set this attribute only if the storage resources allocated for service
extensions need to be restricted.

® Note that the value <n> allows only the specified number of server
instances of <> to be used.

= Value AUTO will calculate the number of allowed server instances from
NUM-SERVER, which itself might be set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each service definition (see note below).

NUM-SHORT-BUFFER or
NUM-SHORT

n1 AUTO ‘R|z‘u‘w‘v‘b

Defines the number of short message containers. Short message containers
have a fixed length of 256 bytes and are used to store requests of no more
than 2048 bytes. To store a request of 1024 bytes, for example, would require
four short message containers.

n Number of buffers.

AUTO Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short

message buffers. The values used in the calculation must not be set
to "UNLIM".

Note:

1. In non-conversational mode, message containers are released as soon as
the client receives a reply from the server. If no reply is requested, message
containers are released as soon as the server receives the client request.

2. In conversational mode, the last message received is always kept until a
new one is received.

3. If a wildcard service is defined in the service-specific section of the
attribute file, the value of AUTO is invalid.

4. See Wildcard Service Definition under Broker Attributes in the administration
documentation.

NUM-SUBSCRIBER

n | AUTO |O|z|u|w‘v‘b

Defines the number of subscribers that can be active concurrently.

n Number of subscribers.

AUTO Uses the SUBSCRIBER-DEFAULT and the topic-specific
SUBSCRIBER-LIMIT to calculate the number of subscribers.

66

Broker

Broker Attributes

Attribute

Operating System

Ll

3

Opt/ 0
Values Req 8

Windows
BS2000

UNIX

A value of 0 (zero) is invalid. If a wildcard topic is defined in the
topic-specific section of the attribute file, the value of AUTO is invalid.

NUM-SUBSCRIBER-TOTAL

n | AUTO |O|z|u|w‘v‘b

Defines the total number of subscribers that can be durably subscribed. Their
subscription information is saved in the persistent store.

n Total number of subscribers.
AUTO Uses the value defined or calculated for NUM-SUBSCRIBER.

A value of 0 (zero) is invalid. This value must be greater than or equal to
the NUM-SUBSCRIBER value. Parameter is required if
SUBSCRIBER-STORE=PSTORE is defined.

NUM-TOPIC

n ‘O|z‘u‘w‘v‘b

Defines the number of topics that can be active in the broker. A value of 0
(zero) is invalid.

NUM-TOPIC-EXTENSION

n | AUTO ‘O|z‘u‘w‘v‘b

Defines the number of topic extensions to link subscribers to topics.

n Number of topic extensions.

AUTO Uses the value specified for
NUM-SUBSCRIBER+ NUM-PUBLISHER, plus an extra cushion.

not specified If this attribute is not set, the default value is NUM- SUBSCRIBER
multiplied by NUM-TOPIC.

The minimum value is NUM-SUBSCRIBER.
The maximum value is NUM- SUBSCRIBER multiplied by NUM-TOPIC.

Caution is recommended with this attribute.

® Set this attribute only if the storage resources allocated for topic extensions
need to be restricted.

® Note that the value <> allows only the specified number of topic instances
of <17> to be used.

= Value AUTO calculates the number of allowed server instances from
NUM-SUBSCRIBER, which itself might set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each topic definition (see note below).

NUM-TOPIC-TOTAL

n | AUTO ‘O|Z‘U‘W‘V‘b

Defines the total number of topics for which durable subscribers are allowed.

Broker

67

Broker Attributes

Operating System
o
Opt/ w x % g %
Attribute Values Req 8 5 = @
n Total number of topics that allow durable subscriptions.
AUTO Uses the value defined for NUM-TOPIC.
This value must be greater than or equal to the NUM-TOPIC value. This
parameter is required if SUBSCRIBER-STORE=PSTORE is defined.
NUM- UOM 0ln o z [uw | w | v | b
The maximum number of UOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a NUM-UOW value must be 1 or larger for the broker.
(MAX-UOWS is an alias for this attribute.)
The NUM-UOW value for the service will default to the value set for the broker.
NUM-WORKER 11 n(max. 10) R z u w \ b
Number of worker tasks that the broker can use. The number of worker
tasks determines the number of functions (SEND, RECEIVE, REGISTER, etc.)
that can be processed concurrently. At least one worker task is required;
this is the default value.
NUM-WQE 1-32768 | R [z | u | w | v | b

Maximum number of requests that can be processed by the broker in parallel,
over all transport mechanisms.

Each broker command is assigned a worker queue element, regardless of
the transport mechanism being used. This element is released when the user
has received the results of the command, including the case where the
command has timed out.

PARTICIPANT-BLACKLIST

YES | NO | R | z | u ‘ w ‘ v ‘ b

Determines whether participants attempting a denial-of-service attack on
the broker are to be put on a blacklist.

YES Create a participant blacklist.
NO Do not create a participant blacklist.

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

PARTNER-CLUSTER-ADDRESS

A32 ‘R|z‘u‘w‘v‘b

This is the address of the load/unload broker in transport-method-style.
Transport methods TCP and SSL are supported. See Transport-method-style

68

Broker

Broker Attributes

Attribute

Operating System

w | 8
: | %

Opt/ 0
Values Req 8

Windows

UNIX

Broker ID for more details. This attribute is required if the attribute RUN-MODE
is specified.

POLL

w0 o] [e[[|

In earlier EntireX versions, the maximum number of TCP/IP connections
per communicator was limited; see Maximum TCP/IP Connections per
Communicator under Broker Resource Allocation in the general administration
documentation for platform-specific list. With attribute POLL introduced in
EntireX version 9.0, this restriction can be lifted under z/OS and UNIX.

YES The po11() system call is used to lift the resource restrictions with
select() in multiplexing file descriptor sets.

NO This setting is used to run the compatibility mode in Broker. The
pol1() system call is not used. The limitations described under
Maximum TCP/IP Connections per Communicator under Broker Resource
Allocation in the general administration documentation apply.

PSTORE

N_OIHOTICOLD‘O|z‘u‘w‘V‘b

Defines the status of the persistent store at broker startup, including the
condition of persistent units of work (UOWSs). With any value other than
"NO", PSTORE-TYPE must be set.

NO No persistent store.

HOT Persistent UOWs are restored to their prior state during
initialization.

COLD Persistent UOWSs are not restored during initialization, and the
persistent store is considered empty.

Note: For a hot or cold start, the persistent store must be available when

your broker is restarted.

PSTORE-REPORT

NO | YES |O|z|u|w‘v‘b

Determines whether PSTORE report is created.

NO Do not create the PSTORE report file.
YES Create the PSTORE report file.

See also Persistent Store Report under Concepts of Persistent Messaging in the
general administration documentation.

PSTORE-TYPE DIV (z/OS) | CTREE @) z u w Y b
(UNIX, Windows) |
Adabas (all platforms)

Broker 69

Broker Attributes

Attribute

Operating System
o
Opt/ w x % g %
Values Req S 5 = @
| FILE (UNIX,
Windows)

Describes the type of persistent store driver required.

DIV Data in Virtual. z/OS only, and default on this platform. See
DIV-specific Attributes below and Implementing a DIV Persistent
Store under Managing the Broker Persistent Store in the z/OS
administration documentation.

CTREE c-tree database. UNIX and Windows only. See c-tree-specific
Attributes and c-tree Database as Persistent Store in the UNIX and
Windows administration documentation.

ADABAS Adabas. All platforms. See also Adabas-specific Attributes (below)
and Managing the Broker Persistent Store in the platform-specific
administration documentation.

FILE B-Tree database. UNIX and Windows only. No longer supported.

PSTORE-VERSION

21314 ‘O|Z’u’w‘v‘b

Determines the version of the persistent store. PSTORE=COLD is not needed
to upgrade the PSTORE to version 3. Any broker restart with
PSTORE-VERSION=3 will upgrade the PSTORE version.

PSTORE-VERSION=3 is needed for ICU support. We recommended setting
PSTORE-VERSION=3.

PSTORE-VERSION=4 is needed to use the DIV PSTORE handler introduced
with version 9.0. It requires much less configuration data.

Caution:

= If you go back to PSTORE - VERSION=2 after upgrading to
PSTORE - VERSION=3, the broker will only process data previously created
with version 2. No version 3 data will be accessible.

= If you change the DIV PSTORE from version 3 to 4, perform a COLD
restart for the change to take effect, or run PSTORE UNLOAD/LOAD first.

PUBLICATION-DEFAULT

n | UNLIM ‘O|z’u‘w‘v‘b

Default number of publications that are allocated for every topic.

n Number of publications.

UNLIM The number of publications is restricted only by the number of
publications globally available. Precludes the use of
NUM-PUBLICATION=AUTO.

70

Broker

Broker Attributes

Attribute

Operating System

w | 8
: | %

Opt/ 0
Values Req 8

Windows

UNIX

This value can be overridden by specifying a PUBLICATION-LIMIT for the
topic. A value of 0 (zero) is invalid.

PUBLICATION-LIFETIME

nlnSInMI| nH | nD @] z u w v b
| nY

Lifetime of a publication in absolute time units. Publications are retained
by broker until they are either received by all subscribers or the publication
lifetime has expired.

n Same as nS.

nS Publication lifetime in seconds (max. 2147483647).
nM Publication lifetime in minutes (max. 35791394).
nH Publication lifetime in hours (max. 596523).

nD Publication lifetime in days (max. 24855).

nY Publication lifetime in years (max. 68).

The publication lifetime is calculated even for periods of time when broker
is stopped.

PUBLISH-AND-SUBSCRIBE |YES | NO o z | uw | w | v | b

Run publish and subscribe subsystem. Subsystem requires a license.

RUN-MODE STANDARD | @) z u w v b

STANDBY |

PSTORE-LOAD |

PSTORE-UNLOAD

Determines the initial run mode of the broker.

STANDARD Default value. Normal mode.

STANDBY Deprecated. Supported for compatibility reasons.

PSTORE-LOAD Broker will run as load broker to write Persistent Store
data to a new persistent store. See also Migrating the
Persistent Store in the general administration
documentation.

PSTORE-UNLOAD Broker will run as unload broker to read an existing
persistent store and pass the data to a broker running
in PSTORE-LOAD mode. See also Migrating the
Persistent Store in the general administration
documentation.

SECURITY NO | YES o z | u | w | v | b

Determines whether the EntireX Broker security exits are activated.

Broker

7"

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

NO The security exits are not activated.

YES The security exits are activated. If the security routines cannot be
activated, the broker will not start.

Broker trace reports the type of security which is active and from where the
security module USRSEC is loaded:

® EntireX Security
= User-written USRSEC.

SECURITY-PATH

A255 |O|z|u‘w‘ ‘b

Full path and file name of an executable file (for example, DLL for Windows
or shared library for UNIX) containing the user security exit which the kernel
will load and call. Example:

SECURITY-PATH=usersec.dl]

This assumes the DLL is in the default path. Or:

SECURITY-PATH=c:\brokerexit\yoursecu.dl]

If the path name contains spaces, enclose it in quotation marks. Example:

SECURITY-PATH="c:\Software AG\broker exit\yoursecu.dl1"

Note: This attribute is used only when implementing a user-written security

exit.

SERVER-DEFAULT

n | UNLIM (@] z u w \% b

Default number of servers that are allowed for every service.

n Number of servers.

UNLIM The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM- SERVER=AUTO.

This value can be overridden by specifying a SERVER- LIMIT for the service.
A value of 0 (zero) is invalid.

SERVICE-UPDATES

YES | NO ‘O|Z’u’w‘v‘b

Switch on/off the automatic update mode of the broker.

72

Broker

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

YES The broker reads the attribute file whenever a service registers for the
first time. This allows the broker to honor modifications in the attribute
file without a restart. The attribute file is read only when the first server
registers for a particular service; it is not reread when a second replica
is activated.

NO The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

SHORT-BUFFER-DEFAULT

UNLIM | n ‘O|z‘u‘w‘v‘b

Number of short buffers to be allocated for each service.

UNLIM The number of short message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-SHORT -BUFFER=AUTO.

n Number of buffers.

This value can be overridden by specifying a SHORT-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

SSLPORT

See PORT.

SSL-RESTART

See RESTART.

SSL-RETRY-LIMIT

See RETRY -LIMIT.

SSL-RETRY-TIME

See RETRY - TIME.

SSTORE
SSTORE-TYPE

These parameters are obsolete. The subscriber store in a secondary store is
no longer supported. We recommend you use the PSTORE persistent store
to store your subscriber data. For this, set broker-specific parameter
SUBSCRIBER-STORE=PSTORE.

STORAGE-REPORT

NO | YES |O|z|u|w‘v‘b

Create a storage report about broker memory usage.

NO Do not create the storage report.
YES Create the storage report.

See Storage Report under Broker Resource Allocation in the general
administration documentation.

STORE

mIBROKER‘O|Z‘u‘w‘V‘b

Sets the default STORE attribute for all units of work. This attribute can be
overridden by the STORE field in the Broker ACI control block.

OFF Units of work are not persistent.

Broker

73

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows

zIVSE
BS2000

zi0sS
UNIX

BROKER Units of work are persistent.

SUBSCRIBER-DEFAULT

n | UNLIM ‘O|z‘u‘w‘v‘b

Default number of subscribers that are allowed for every topic.

n Number of subscribers

UNLIM The number of subscribers is restricted only by the number of
subscribers globally available. Precludes the use of
NUM-SUBSCRIBER=AUTO.

This value can be overridden by specifying a SUBSCRIBER-LIMIT for the
topic. A value of 0 (zero) is invalid.

SUBSCRIBER-STORE

@|PSTORE‘O|z]u’w‘v‘b

Determines whether subscriber information is stored and where.

NO No subscriber information is to be stored.

PSTORE Save subscriber data in PSTORE.

Tip: The subscriber store in a secondary store is no longer supported. We

recommend you use the PSTORE persistent store to store your subscriber
data.

TCPPORT

See PORT.

SWAP-OUT-NEW-UOWS

NO | YES ‘O|z‘u‘w‘v‘b

Determines whether conversations with units of work remain in memory
or are swapped. See slso Swapping out New Units of Work in the general
administration documentation.

NO All conversations with UOWSs remain in memory.

YES Conversations with UOWSs (STORE=BROKER) created by a client and
finished with an EOC without being accepted by a server will be
swapped out of memory. The data is persisted on PSTORE and there
is no need to keep it in memory unless a server wants to receive this
data.

Note: See service-specific attribute MIN-UOW-CONVERSATIONS - IN-MEMORY

for defining a minimum number of UOW conversations kept in memory to
improve the performance for servers receiving new UOW conversations
without waiting for swap-in of data from PSTORE. During broker restart, all
new and unassigned UOW conversations remain in PSTORE only. This
reduces the restart time significantly.

74

Broker

Broker Attributes

Attribute

Operating System

Ll

3

Opt/ 0
Values Req 8

Windows
BS2000

UNIX

See also Swapping out New Units of Work in the general administration
documentation.

TCP-RESTART

See RESTART.

TCP-RETRY-LIMIT

See RETRY -LIMIT.

TCP-RETRY-TIME

See RETRY - TIME.

TOPIC-UPDATES

YES | NO ‘O|Z‘U‘W‘V‘b

Switch on/off automatic update of topic defaults in the broker.

YES The broker reads the attribute file whenever a topicis being subscribed
for the first time. This allows broker to honor modifications in the
attribute file without a restart. The attribute file is read only when the
first subscriber subscribes to a particular topic. It is not reread when
a second subscriber subscribes to the same topic.

NO The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

TRACE-DD A255 | o | z | | | |
A string containing data set attributes enclosed in quotation marks. These
attributes describe the trace output file and must be defined if you are using
using a GDG (generation data group) as output data set. See Flushing Trace
Data to a GDG Data Set under Tracing EntireX Broker.
The following keywords are supported as part of the TRACE - DD value:
= DATACLAS
® DCB including BLKSIZE, DSORG, LRECL, RECFM
= DISP
= DSN
= MGMTCLAS
= SPACE
= STORCLAS
= UNIT
Refer to your JCL Reference Manual for a complete description of the syntax.
Example:
Broker 75

Broker Attributes

Attribute

Operating System

Opt/ 0
Values Req 8

Windows

zIVSE
BS2000

UNIX

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),

SPACE=(CYL, (100,10)),
STORCLAS=SMS"

TRACE-LEVEL

0-4 ‘O|z’u’w‘v‘b

The level of tracing to be performed while the broker is running.

0 No tracing. Default value.

1 Traces incoming requests, outgoing replies, resource usage and conversion
errors if SAGTRPC is used for CONVERSION with the conversion options
SUBSTITUTE-NONCONV or STOP.

2 All of trace level 1, plus all main routines executed.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus Broker ACI control block displays.

If you modify the TRACE - LEVEL attribute, you must restart the broker for
the change to take effect. For temporary changes to TRACE - LEVEL without
restarting the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software
AG support.

TRANSPORT ICPISSLINET | O [z [u [w | v | b
The broker transport may be specified as any combination of one or more
of the following methods:

TCP TCP/IP is supported.

SSL SSL or TLS is supported.

NET Entire Net-Work is supported. This value is not supported for a broker
under UNIX or Windows.

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method

will be supported by the broker.

TRANSPORT=TCP-NET specifies that both the TCP/IP and Net-Work transport

methods will be supported by the broker.

TRANSPORT=TCP-SSL-NET specifies that the TCP/IP, SSL (or TLS), and

Entire Net-Work transport methods will be supported by the broker.

76 Broker

Broker Attributes

Operating System
2 =
Opt/ ® x 8 o S

Attribute Values Req 8 5 = R i
Section TCP/IP-specific Attributes (DEFAULTS=TCP) under Broker Attributes
in the administration documentation describes the parameters for each
transport method.

TRAP-ERROR nnnn o | 2z | u | w | | b
Where nnnnis the four-digit API error number that triggers the trace handler,
for example 0007 (Service not registered). Leading zeros are not required.
There is no default value.

See Deferred Tracing in the platform-specific Broker administration
documentation.

TRBUFNUM n o | 2z | u | w | | b
Changes the trace to write trace data to internal trace buffers. n is the size
of the trace buffer in 64 KB units. There is no default value.

TRMODE WRAP o | z [u | w | | b
Changes the trace mode. "WRAP" is the only possible value. This value
instructs broker to write the trace buffer (see TRBUFNUM) if an event occurs.
This event is triggered by a matching TRAP - ERROR during request processing
or when an exception occurs.

UMSG See MAX-MESSAGES-IN-UOW.

UOW-MSGS See MAX-MESSAGES-IN-UOW.

UWSTAT-LIFETIME

no value | n[S] | nM O z u w v b
| nH | nD

The value to be added to the UWTIME (lifetime of associated UOW). If a value
is entered, it must be 1 or greater; a value of 0 will result in an error. If no

value is entered, the lifetime of the UOW status information will be the same
as the lifetime of the UOW itself.

nS Number of seconds the UOW status exists longer than the UOW itself
(max. 2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).
nD Number of days (max. 24855).

The lifetime determines how much additional time the UOW status is
retained in the persistent store and is calculated from the time at which the
associated UOW enters any of the following statuses: "PROCESSED",
"TIMEOUT", "BACKEDOUT", "CANCELLED", "DISCARDED". The
additional lifetime of the UOW status is calculated only when broker is
executing. Value in UNSTAT-LIFETIME supersedes the value (if specified)
in attribute UNSTATP.

Broker

77

Broker Attributes

Operating System
o
Opt/ w x % g %

Attribute Values Req 8 5 = @
Note: If no unit is specified, the default unit is seconds. The unit does not
have to be identical to the unit specified for UNTIME.

UWSTATP 0ln o z [u | w | v | b
Contains a multiplier used to compute the lifetime of a persistent status for
the service. The UNSTATP value is multiplied by the UNTIME value (the
lifetime of the associated UOW) to determine the length of time the status
will be retained in the persistent store.

0 The status is not persistent.

1 - 254 Multiplied by the value of UNTIME to determine how long a
persistent status will be retained.

Note: This attribute has not been supported since EntireX version 7.3. Use

UWSTAT-LIFETIME instead.

UWTIME 1D I nS|I nM | nH | (@] z u w v b
nD

Defines the default lifetime for units of work for the service.

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

If the UOW is inactive - that is, is not processed within the time limit - it is

deleted and given a status of "TIMEOUT". This attribute can be overridden
by the UWTIME field in the Broker ACI control block.

See Timeout Considerations for EntireX Broker in the general administration
documentation.

WAIT-FOR-ACTIVE-PSTORE

NO | YES ‘O|z‘u‘w‘v‘b

Determines whether broker should wait for the Adabas Persistent Store to
become active.

NO Ifbroker should start witha PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will stop.

YES If broker should start with a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will retry every 10 seconds to
initiate communications with the PSTORE. Broker will reject any user
requests until broker is able to contact the Adabas database.

78

Broker

Broker Attributes

Operating System
o
Opt/ 0 » § w %
i S | 3| £ | %8 | g
Attribute Values Req 5 =
WORKER-MAX 321 n @) z u w b
(min. 1, max. 32)
Maximum number of worker tasks the broker can use.
WORKER-MIN 11 n(min.l,max.32)‘ 0 | z ‘ u ‘ w ‘ ‘ b

Minimum number of worker tasks the broker can use.

WORKER-NONACT

mnInSInMInH‘ 0 | z ‘ u ‘ w ‘

o

Non-activity time to elapse before a worker tasks is stopped.

n Same as nS.
nS Non-activity time in seconds (default 70, max. 2147483647).
nM Non-activity time in in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

Caution: A value of 0 (zero) is invalid. If you set this value too low, additional

overhead is required for starting and stopping worker tasks. The default
and recommended value is 70S.

WORKER-QUEUE-DEPTH

11 n(min. 1) l O | z | u | w ‘ ‘ b

Number of unassigned user requests in the input queue before another
worker task gets started. The default and recommended value is 1. A higher
value will result in longer broker response times.

WORKER-START-DELAY

internal-value | n l O | z | u ‘ w ‘ ‘ b

n Delay is extended by n seconds.

Delay after a successful worker task invocation before another worker task
can be started to handle current incoming workload. This attribute is used
to avoid the risk of recursive invocation of worker tasks, because starting a
worker task itself causes workload increase.

If no value is specified, an internal value calculated by the broker is used to
optimize dynamic worker management. This calculated value is the
maximum time required to start a worker task.

Broker

79

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sections Wildcard Service Definition under Broker
Attributes in the administration documentation and Service Update Modes below the table.

Operating System
o
ot | o | x | & | 4 | B
Attribute Values Req R =] = g @
CLASS A32 R z u w A\ b
(case-sensitive)

Part of the name that identifies the service together with the
SERVER and SERVICE attributes. CLASS must be specified first,
followed immediately by SERVER and SERVICE.

Classes starting with any of the following are reserved for use by
Software AG and should not be used in customer-written
applications: BROKER, SAG, ENTIRE, ETB, RPC, ADABAS,
NATURAL. Valid characters for class name are letters a-z, A-Z,
numbers 0-9, hyphen and underscore. Do not use dollar, percent,
period or comma. See also the restriction for SERVICE attribute
names.

CLIENT-RPC-AUTHORIZATION

NIY (@) z b

Determines whether this service is subject to RPC authorization
checking.

N No RPC authorization checking is performed.

Y RPC library and program name are appended to the
authorization check performed by EntireX Security. Specify
"YES" only to RPC-supported services.

To allow conformity with Natural Security, the
CLIENT-RPC-AUTHORIZATION parameter can optionally be
defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).

CONV-LIMIT

UNLIMIn‘O‘z|u‘w|V‘b

Allocates a number of conversations especially for this service.

UNLIM The number of conversations is restricted only by the
number of conversations globally available. Precludes

80

Broker

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

the use of NUM-CONVERSATION=AUTO in the Broker
section of the attribute file.

n Number of conversations.

A value of 0 (zero) is invalid.

If NUM-CONVERSATION=AUTO is specified in the Broker section of
the attribute file, CONV-LIMIT=UNLIM is not allowed in the service
section. A value must be specified or the CONV-LIMIT attribute
must be suppressed entirely for the service so that the default
(CONV-DEFAULT) becomes active.

CONV-NONACT

5MInlnSl R z u w \% b
nM | nH

Non-activity time for connections.

n Same as nS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

A value of 0 (zero) is invalid. If a connection is not used for the
specified time, that is, a server or a client does not issue a broker
request that references the connection in any way, the connection
is treated as inactive and the allocated resources are freed.

CONVERSION

Format: A255 O z u w A b

(SAGTCHA [,
TRACE =n] [,
OPTION =s]

SAGTRPC [,
TRACE =n] [,
OPTION =s]

name [,
TRACE =n]

NO)

Defines conversion for internationalization. See Internationalization
with EntireX and What is the Best Internationalization Approach to
use? under Introduction to Internationalization for help on making
decisions about the internationalization approach.

Broker

81

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

SAGTCHA Conversion using ICU Conversion " for ACI-based
Programming.

SAGTRPC @ Conversion using ICU Conversion " for RPC-based
Components and Reliable RPC.

We recommend always using SAGTRPC for RPC
data streams. Conversion with Multibyte, Double-Byte
and other Complex Codepages will always be correct,
and Conversion with Single-byte Codepages is also
efficient because SAGTRPC detects single-byte
codepages automatically. See Conversion Details.

<name>® Name of the SAGTRPC user exit for RPC-based
components. See also Configuring SAGTRPC User
Exits under Configuring Broker for Internationalization
in the platform-specific administration
documentation and Writing SAGTRPC User Exits
in the platform-specific administration
documentation.

NO If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

Only one internationalization approach can be active at one time
for a service. The CONVERSION attribute for internationalization
overrides the TRANSLATION attribute when defined for a service.
That is, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

Note:

1. See also Configuring ICU Conversion under Configquring Broker
for Internationalization in the platform-specific administration
documentation.

2. SAGTRPC and SAGTRPC user exit are not supported on z/VSE.
TRACE

If tracing is switched on, the trace output is written to the broker
log file:

0 No tracing

82

Broker

Broker Attributes

Operating System
2 =
Opt/ ® x 8 u g
Attribute Values Req 8 5 = A 4
1 Trace level This level is an "on-error" trace. It provides
STANDARD information on conversion errors only. For
RPC calls this includes the IDL library, IDL
program and the data. Please note that if
OPTION Values for Conversion are set, errors
are ignored.
2 Trace level Tracing of incoming, outgoing parameters
ADVANCED and the payload.
3 Trace level This trace level is for support diagnostics
SUPPORT and should only be switched on when
requested by Software AG support.
OPTION
See table of possible values under 0P T10N Values for Conversion.
DEFERRED NOIYES | O | z | u | w | v | b

NO Units of work cannot be sent to the service until it is
available.

YES Units of work can be sent to a service that is not up and
registered. The units of work will be processed when the
service becomes available.

ENCRYPTION-LEVEL

01112 ‘O‘z|u‘w|v‘b

Enforce encryption when data is transferred between client and
server.

0 No encryption is enforced.
1 Encryption is enforced between server and broker kernel.

2 Encryption is enforced between server and broker kernel, and
also between client and broker.

See also ENCRYPTION-LEVEL in Broker ACI control block and
Encryption under Writing Applications using EntireX Security in the
ACI Programming documentation.

Note: The per service ENCRYPTION-LEVEL attribute is to be

specified only where the broker attribute SECURITY=YES has been
specified and only if you are using EntireX Security.

LOAD-BALANCING

\@|No‘o‘z|u‘w|v‘b

Broker

83

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

YES When servers that offer a particular service are started, new
conversations will be assigned to these servers in a
round-robin fashion. The first waiting server will get the
first new conversation, the second waiting server will get
the second new conversation, and so on.

NO A new conversation is always assigned to the first server
in the queue.

LONG-BUFFER-LIMIT

UNLIMIn‘O‘z|u‘w|V‘b

Allocates a number of long message buffers for the service.

UNLIM The number of long message buffers is restricted only
by the number of buffers globally available. Precludes
the use of NUM- LONG-BUFFER=AUTO in the Broker
section of the attribute file.

n Number of long message buffers.

A value of 0 (zero) is invalid. If NUM- LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIMis notallowed in the service section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the service so that the default
(LONG-BUFFER-DEFAULT) becomes active.

MAX-MESSAGES-IN-UQOW

6in Jo [z uw][v o

Maximum number of messages in a UOW.

MAX-MESSAGE-LENGTH

2147483647 | n O z u w v b

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the
highest positive number that can be stored in a four-byte integer.

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE-LENGTH.

MAX-UOWS

017 EEEEE R

0 The service does not accept units of work, i.e. it processes
only messages that are not part of a UOW. Using zero
prevents the sending of UOWs to services that are not
intended to process them.

84

Broker

Broker Attributes

Operating System
2 o
Opt/ w bt 5 Lh s
z = b
Attribute Values Req 8 5 =] o

n Maximum number of UOWs that can be active concurrently
for the service. If you do not provide a MAX-UOWS value for
the service, it defaults to the MAX - UOWS setting for the broker.
If you provide a value that exceeds that of the broker, the
service MAX - UOWS is set to the broker's MAX-UOWS value and
a warning message is issued.

Specify MAX -UOWS=0 for Natural RPC Servers. This restriction
will be removed with a later release.

MIN-UOW-CONVERSATIONS-IN-MEMORY

256 | n ‘O‘z|u’w|v’b

Defines the minimum number of UOW conversations
(STORE=BROKER, created by a client and finished with an EOC
without being accepted by a server) kept in memory to improve
the performance for servers receiving new UOW conversations
without waiting for data to be swapped in from PSTORE. See also
Swapping out New Units of Work in the general administration
documentation.

256 The default value should be used if producer (client) and
consumer (server) of UOW conversations are both active at
the same time regardless of the speed producing or
consuming UOW conversations. It guarantees a reasonable
balance between memory being used and swap-out/swap-in
activities.

n Minimum number of UOW conversations kept in memory.
The value n is equal to or greater than 256.

Note: If broker-specific attribute SWAP-0UT-NEW-UOWS is set to
"NO", MIN-UOW-CONVERSATIONS-IN-MEMORY has no effect.

MUOW

See MAX-UQWS.

NOTIFY-EOC

N_OIYES‘O‘z|u‘w|V‘b
Specifies whether timed-out conversations are to be stored or
discarded.

NO Discard the EOC notifications if the server is not ready to
receive.

YES Store the EOC notifications if the server is not ready to
receive and then notify the server if possible.

Broker

85

Broker Attributes

Attribute

Operating System

w | 8
: | g

Opt/ w0
Values Req 8

Windows

UNIX

If a server is not ready to receive an EOC notification, it can be
stored or discarded. If it is stored, the server is notified, if possible,
when it is ready to receive.

Caution: The behavior activated by this parameter can be relied

upon only during a single lifetime of the broker kernel.
Specifically, conversations containing units of work, whose
lifetime can span multiple broker kernel sessions, cannot be
assumed to show this behavior, even with NOTIFY-EQOC=YES.

NUM-UOW

Alias for MAX-UOWS.

SERVER

A32 R z u w \% b
(case-sensitive)

Part of the name that identifies the service together with the CLASS
and SERVICE attributes.

CLASS must be specified first, followed immediately by SERVER
and SERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma.

SERVER-DEFAULT

n | UNLIM O z u w A b

Default number of servers that are allowed for every service.

n Number of servers.

UNLIM The number of servers is restricted only by the number
of servers globally available. Precludes the use of
NUM-SERVER=AUTO.

A value of 0 (zero) is invalid.

This value can be overridden by specifyinga SERVER-LIMIT for
the service.

SERVER-LIMIT

nIUNLIM‘O‘z|u’w|v’b

Allows a number of servers especially for this service.

n Number of servers.

UNLIM The number of servers is restricted only by the number
of servers globally available. Precludes the use of
NUM- SERVER=AUTO in the Broker section of the attribute
file.

86

Broker

Broker Attributes

Attribute

Operating System

Opt/ w0
Values Req 8

Windows

zVSE
BS2000

UNIX

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the
attribute file, SERVER-LIMIT=UNLIMis not allowed in the service
section. A value must be specified or the SERVER-LIMIT attribute
must be suppressed entirely for the service so that the default
(SERVER-DEFAULT) becomes active.

SERVER-NONACT

5MInlnSl R z u w \% b
nM | nH

Non-activity time for servers. A server that does not issue a broker
request within the specified time limit is treated as inactive and
all resources for the server are freed.

n Same as nS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

If a server registers multiple services, the highest value of all the
services registered is taken as non-activity time for the server.

SERVICE

A32 R z u w \% b
(case-sensitive)

Part of the name that identifies the service together with the CLASS
and SERVER attributes.

CLASS must be specified first, followed immediately by SERVER
and SERVICE.

The SERVICE attribute names "EXTRACTOR" and
"DEPLOYMENT" are reserved for Software AG internal use and
should not be used in customer-written applications. Valid
characters for service name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma. See also the restriction for CLASS attribute names.

SHORT-BUFFER-LIMIT

UNLIM | n (@) z u w v b

Allocates a number of short message buffers for the service.

UNLIM The number of short message buffers is restricted only
by the number of buffers globally available. Precludes
the use of NUM-SHORT-BUFFER=AUTO in the Broker
section of the attribute file.

Broker

87

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zZNSE
BS2000

05
LINIX

n Number of short message buffers.

If NUM-SHORT-BUFFER=AUTO is specified in the Broker section of
the attribute file, SHORT-BUFFER-LIMIT=UNLIM is not allowed
in the service section. A value must be specified or the
SHORT-BUFFER-LIMIT attribute must be suppressed entirely for
the service so that the default (SHORT-BUFFER-DEFAULT) becomes
active.

STORE

mlBROKER‘O‘z|u‘w|v‘b

Sets the default STORE attribute for all units of work sent to the
service.

OFF Units of work are not persistent.

BROKER Units of work are persistent.

This attribute can be overridden by the STORE field in the Broker
ACI control block.

TRANSLATION

Format: A255 O z u w A b

SAGTCHA |
NO | <name>

Activates translation or translation user exit for internationalization
(see Translation User Exit under Introduction to Internationalization).
For help on deciding the right internationalization approach for
your environment, see What is the Best Internationalization Approach
to use? under Introduction to Internationalization

SAGTCHA Conversion routine SAGTCHA for ACI-based
Programming, RPC-based Components and Reliable
RPC.

NO If translation is not to be used - e.g., for binary
payload (broker messages) - either omit the
TRANSLATION attribute or specify TRANSLATION=NO.

<name> Name of Translation User Exit. See also Configuring
Translation User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation or Writing Translation
User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation.

88

Broker

Broker Attributes

Operating System
g o
Opt/ 0 x 8 o g
Attribute Values Req 8 5 = A 4
The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service; that is, when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.
UMSG Alias for MAX-MESSAGES-IN-UOW.
UOW-MSGS Alias for MAX-MESSAGES-IN-UOW.

UWSTAT-LIFETIME

novalue | n[S]| O z u w v b
[nM | nH | nD

The value to be added to the UWTIME (lifetime of associated UOW).
If a value is entered, it must be 1 or greater; a value of 0 will result
in an error. If no value is entered, the lifetime of the UOW status
information will be the same as the lifetime of the UOW itself.

nS Number of seconds the UOW status exists longer than the
UOW itself (max. 2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).
nD Number of days (max. 24855).

The lifetime determines how much additional time the UOW
status is retained in the persistent store and is calculated from the
time at which the associated UOW enters any of the following
statuses: "PROCESSED", "TIMEOUT", "BACKEDOUT",
"CANCELLED", "DISCARDED". The additional lifetime of the
UOW status is calculated only when broker is executing. Value
in UNSTAT-LIFETIME supersedes the value (if specified) in
attribute UNSTATP.

Note: If no unit is specified, the default unit is seconds. The unit

does not have to be identical to the unit specified for UNTIME.

UWSTATP

017 R ERE

Contains a multiplier used to compute the lifetime of a persistent
status for the service. The UNSTATP value is multiplied by the

UWT IME value (the lifetime of the associated UOW) to determine
the length of time the status will be retained in the persistent store.

0 The status is not persistent.

1 - 254 Multiplied by the value of UWTIME to determine how long
a persistent status will be retained.

Broker

89

Broker Attributes

Operating System
2 o
Opt/ w bt 5 Lh s
z = b
Attribute Values Req 8 5 =] o

Note: This attribute has not been supported since EntireX version
7.3.Use UNSTAT - LIFETIME instead.

UWTIME 1D I nSInM O z u w A b
| nH | nD

Defines the default lifetime for units of work for the service.

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

If the unit of work (UOW) is inactive, that is, not processed within
the time limit, it is deleted and given a status of TIMEQUT. This
attribute can be overridden by the UWT IME field in the Broker ACI
control block.

Wildcard Service Definition

The special names of CLASS = *, SERVER = *and SERVICE = * are allowed in the service-specific
section of the broker attribute file. These are known as "wildcard" service definitions. If this name
is present in the attribute file, any service that registers with the broker and does not have its own

entry in the attribute file will inherit the attributes that apply to the first wildcard service definition
found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily
complete):

CLASS = *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS = ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV -
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

90 Broker

Broker Attributes

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

* Inservice update mode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

® In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if

* there is a high frequency of REGISTER operations, or
" the attribute file is rather large and results in a high I/O rate for the broker.
The disadvantage to using non-update mode is that if specific attributes are modified, the broker

must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters can not be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

The situations 1 and 2 above are reported to the broker log file if TRACE option for CONVERSION is
set to level 1.

Report Situation in Broker Log File
if TRACE Option for

OPtions Supported for CONVERSION is setto 1

Bad Input Non-convertible

Characters Characters

(Sender's (Receiver's
Value Description SAGTCHA [SAGTRPC |Codepage) Codepage)
SUBSTITUTE Substitutes both yes yes No message. |No message

non-convertible characters
(receiver's codepage) and bad
input characters (sender's
codepage) with a

Broker 91

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for
OPtions Supported for CONVERSION is setto 1
Bad Input Non-convertible
Characters Characters
(Sender's (Receiver's
Value Description SAGTCHA [SAGTRPC |Codepage) Codepage)
codepage-dependent default
replacement character.
SUBSTITUTE-NONCONV|If a corresponding code point |yes yes Write detailed |No message.
is not available in the receiver's conversion
codepage, the character cannot erTor message.

be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.

BLANKOUT

Substitutes non-convertible
characters with a
codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

no

yes

No message.

No message.

STOP

Signals an error on detecting a
non-convertible or bad input
character. This is the default
behavior if no option is
specified.

yes

yes

Write detailed
conversion
error message.

Write detailed
conversion
error message.

92

Broker

Broker Attributes

Topic-specific Attributes

The topic-specific attribute section begins with the keyword DEFAULTS=TOPIC as shown in the
sample attribute file. It contains attributes that apply to the publish and subscribe communication
model.

Operating System
ur
Opt/ n * '§ h §
. = 5 g ﬁ
Attribute Values Req R = =
ALLOW-DURABLE YES | NO @) z u w v b

Determines whether a subscriber is allowed to perform a durable
subscription to a topic.

YES Subscriber may perform durable subscription.

NO Durable subscription not allowed.

If users are allowed to durably subscribe to any topic, you must
specify a value for the SUBSCRIBER-STORE parameter.

ALLOW-USER-SUBSCRIBE YES | NO ‘ e} ‘ z | u | w ‘ v ‘ b

Determines if it is possible for a user to subscribe to a topic directly
(YES) or only by Administrator.

YES Users are allowed to subscribe to the topic.

NO Users must be subscribed by the Administrator through CIS.
See Broker Command and Information Services. The
subscribe request of users is rejected.

AUTO-COMMIT-FOR-SUBSCRIBER NO | YES | 0 ‘ z | u | w | v | b

NO No COMMIT performed.

YES An implicit COMMIT is performed by broker when the
subscriber receives a publication, that is, the subscriber does
not need the CONTROL_PUBLICATION option COMMIT after
receiving each publication.

Caution: You may lose your last message.

CONVERSION Format: A255 @) z u w v b

(SAGTCHA
[TRACE =n]

Broker 93

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g
[, OPTION
=s])

Defines conversion for internationalization. See Internationalization
with EntireX. For help on making decisions about the
internationalization approach, see What is the Best Internationalization
Approach to use? under Introduction to Internationalization

SAGTCHA Conversion using ICU Conversion for ACI-based
Programming. For more information see Conversion
Details.

See also Configuring ICU Conversion under Configuring
Broker for Internationalization in the platform-specific
administration documentation.

NO If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

Only one internationalization approach can be active at one time
for a topic. The CONVERSION attribute for internationalization
overrides the TRANSLATION attribute when defined for a topic, that
is, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

0 No tracing

1 Trace level This level is an "on-error" trace. It provides
STANDARD information on conversion errors only.
Please note that if 0PTION Values for
Conversion are set, errors are ignored.

2 Trace level Tracing of incoming, outgoing parameters
ADVANCED and the payload.

3 Tracelevel SUPPORT This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

OPTION

94

Broker

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

See OPTION Values for Conversion under Service-specific Attributes
above.

LONG-BUFFER-LIMIT

UNLIMInIO‘z|u|w|V|b

Allocates a number of long message buffers for the topic.

UNLIM The number of long message buffers is restricted only by
the number of buffers globally available. Excludes the
use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

n Number of long message buffers.

A value of 0 (zero) is invalid. If NUM- LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(LONG-BUFFER-DEFAULT) becomes active.

MAX-MESSAGES-IN-PUBLICATION

16 1 n ‘O‘z|u|w‘v‘b

Maximum number of messages in a publication.

MAX-PUBLICATION-MESSAGE-LENGTH

M|H‘O‘Z|u|W‘V’b

Maximum size of a message in a publication. The actual publication
size is transport-dependent.

PUBLICATION-LIFETIME

nlnS| nM | O z u w v b
nH | nD | nY

Lifetime of a publication in absolute time units. Publications are
retained by broker until they are either received by all subscribers
or the publication lifetime has expired.

n Same as nS.

nS Publication lifetime in seconds (max. 2147483647).
nM Publication lifetime in minutes (max. 35791394).
nH Publication lifetime in hours (max. 596523).

nD Publication lifetime in days (max. 24855).

nY Publication lifetime in years (max. 68).

The publication lifetime is calculated even for periods of time when
broker is stopped.

PUBLICATION-LIMIT

I’7|UNLIM‘O‘Z|U|W‘V‘}D

Broker

95

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

There is no default. Maximum number of publications possible for
this topic. If specified, this overrides the publication default value,
which is a general maximum value per topic. If neither parameter
is specified, the total number of publications for the topicis limited
only by NUM-PUBLICATION.

n Number of publications.

UNLIM The number of publications is restricted only by the
number of publications globally available. Excludes the
use of NUM-PUBLICATION=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If PUBLICATION-LIMIT=AUTO is
specified in the Broker section of the attribute file,
PUBLICATION-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified, or the PUBLICATION-LIMIT attribute
must be suppressed entirely for the topic so that the default
(PUBLICATION-DEFAULT) becomes active.

PUBLISHER-NONACT

5M I nlnSl @) z u w v b
nM | nH | nD
| nY

Non-activity of the publisher, after which an auto-logoff is
performed and the publisher's resources are freed.

n Same as nS.

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

nD Non-activity time in days (max. 24855).

nY Non-activity time in years (max. 68).

If not specified, defaults to 5 minutes. This is the time after which
the publisher's internal memory structures will be cleaned up and
a subsequent logon is required.

SHORT-BUFFER-LIMIT

UNLIMInIO‘z|u|w|V|b

Allocates a number of short message buffers for the topic.

UNLIM The number of short message buffers is restricted only
by the number of buffers globally available. Excludes the

96

Broker

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
ZIVSE
BS2000

zi0s
UNIX

use of NUM- LONG-BUFFER=AUTO in the Broker section of
the attribute file.

n Number of short message buffers.

A value of 0 (zero) is invalid. If NUM-SHORT-BUFFER=AUTO is
specified in the Broker section of the attribute file,
SHORT-BUFFER-LIMIT=UNLIMisnotallowed in the topics section.
A value must be specified, or the SHORT-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(SHORT-BUFFER-DEFAULT) becomes active.

SSTORE
SSTORE-TYPE

These parameters are obsolete. The subscriber store in a secondary
store is no longer supported. We recommend you use the primary
persistent store (PSTORE) to store your subscriber data. For this,
set broker-specific parameter SUBSCRIBER-STORE=PSTORE.

SUBSCRIBER-LIMIT

I’7|UNLIM‘O‘Z|U‘W‘V‘]D

There is no default. Maximum number of subscriptions possible
for this topic. If specified, this overrides the subscriber default
value, which is a general maximum value per topic. If neither
parameter is specified, the total number of subscribers for the topic
is limited only by NUM-SUBSCRIBER.

n Number of subscribers.

UNLIM The number of subscribers is restricted only by the
number of subscribers globally available. Excludes the
use of NUM-SUBSCRIBER=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If NUM- SUBSCRIBER=AUTO is specified
in the Broker section of the attribute file,
SUBSCRIBER-LIMIT=UNLIM is not allowed in the topic section. A
value must be specified, or the SUBSCRIBER- LIMIT attribute must
be suppressed entirely for the topic so that the default
(SUBSCRIBER-DEFAULT) becomes active.

SUBSCRIBER-NONACT

SM I nlnSl (@) z u w A b
nM | nH | nD
| nY

Non-activity of the subscriber after which an auto-logoff is
performed and the publisher's resources are freed.

n Same as nS.

Broker

97

Broker Attributes

Attribute

Operating System
o
Opt/ W x % g %
Values Req 8 5 = g

nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).
nH Non-activity time in hours (max. 596523).

nD Non-activity time in days (max. 24855).

nY Non-activity time in years (max. 68).

In the case of a non-durable subscriber, the user's subscription is
also cancelled. In the case of a durable subscriber, the user's
subscription is persisted, and it is not necessary for the user to issue
any subsequent SUBSCRIBE commands. The subscription of a
durable subscriber is also persisted even while broker is stopped.

If not specified, defaults to 5 minutes. This is the time after which
the subscriber's internal memory structures will be cleaned up and
a subsequent logon is required.

SUBSCRIPTION-EXPIRATION

NEVER | n | O z u w v b
nS 1 nM | nH |
nD | nY

Lifetime of a user's subscription in absolute time units.
Subscriptions are retained by broker until either the user issues an
UNSUBSCRIBE command or the subscription lifetime has expired.

NEVER Subscriber will never be purged from PSTORE.
n Same as nS.

nS Expiration time in seconds (max. 2147483647).
nM Expiration time in minutes (max. 35791394).
nH Expiration time in hours (max. 596523).

nD Expiration time in days (max. 24855).

nY Expiration time in years (max. 68).

Durable subscriptions remain effective even if the user performs
the LOGOFF command or broker is stopped. The subscription
lifetime is calculated also for periods of time when broker is
stopped.

SUBSCRIPTION-EXPIRATION is the time after which the
subscription expires. In the case of durable subscription, the
subscription is removed from the PSTORE. Broker removes expired
subscriptions only when the user is not currently active, for example

98

Broker

Broker Attributes

Attribute

Operating System

L
oy

Optl 0w
e

Values Req 8

LINIX
Windows
BS2000

when the user has issued a LOGOFF command or after the
SUBSCRIBER-NONACT has passed if no LOGOFF is issued.

If SUBSCRIBER-NONACT is specified greater than
SUBSCRIPTION-EXPIRATION, broker adjusts
SUBSCRIPTION-EXPIRATION to the value of SUBSCRIBER-NONACT.

TOPIC

A9%6 R V4 u w A\ b
(case-sensitive)

Name of the topic for publish and subscribe processing. Valid
characters for topic name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore. Do not use dollar, percent, period or comma.

TRANSLATION

Format: A255 O z u w v b

SAGTCHA |
NO | <name>

Activates translation or translation user exit for internationalization
(see Translation User Exit under Introduction to Internationalization).
See also What is the Best Internationalization Approach to use? under
Introduction to Internationalization

SAGTCHA Conversion routine SAGTCHA for AClI-based
programming, RPC-based components and for Reliable
RPC.

NO If translation is not to be used, e.g. for binary payload
(broker messages), either omit the TRANSLATION
attribute or specify TRANSLATION=NO.

<name> Name of Translation User Exit. See also Configuring
SAGTRPC User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation and Writing SAGTRPC
User Exits in the platform-specific administration
documentation.

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service, i.e. when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

Broker

99

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize the mapping of locale strings to codepages for the internation-
alization approaches ICU conversion and SAGTRPC user exit. These attributes do not apply to
other approaches. See Internationalization with EntireX for more information.

Attribute

Operating System

Opt/
Values Req

Windows

zi0sS
UNIX

DEFAULT_ASCII

zIVSE
o' | BS2000

Any ICU (@) z
converter
name or
alias. See
also
Additional
Notes
below.

c
B2
<

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker’s
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

® the calling component does not send a locale string itself, and

B the calling component is running on an ASCII platform (UNIX, Windows, etc.),
and

® one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used. See ICU Conversion under Introduction to Internationalization and
SAGTRPC User Exit under Introduction to Internationalization.

Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Defaults */
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

DEFAULT_EBCDIC_IBM

converter

Any ICU ‘ (@) ‘ z ‘ u ‘ w ‘ v ‘ b

100

Broker

Broker Attributes

Attribute

Operating System
wr
Opt/ w x % g %
Values Req & = S &
name or
alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

® the calling component does not send a locale string itself and

® the calling component is running on an IBM mainframe platform (z/OS, z/VSE
etc.) and

= one of the internationalization approaches ICU conversion or SAGTRPC user

exit is used.

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker’s Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

DEFAULT_EBCDIC_SNI

Any ICU ©) z u w v b
converter
name or
alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the locale string defaults if

® the calling component does not send a locale string itself, and

® the calling component is running on a Fujitsu EBCDIC mainframe platform
(BS2000/0SD), and

B one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

Broker

101

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zVSE
BS2000

zi0sS
UNIX

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker’s Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

locale-string

Any ICU @) z u w v
converter
name or
alias. See
also
Additional
Notes
below.

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker’s Locale String Processing under
Locale String Mapping in the internationalization documentation. This is useful:

= if the broker's locale string processing fails - i.e. leads to no codepage or to the
wrong codepage - you can explicitly assign the codepage which meets your
requirements.

® if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server, publisher or subscriber) and the value is the codepage that you
want to use in place of that locale string. In the first line of the example below, the
client or server application sends ASCII as a locale string; the broker maps this to
the codepage ISO 8859_1. In the same way EUC_JP_LINUX is mapped to
ibm-33722_P12A-1999. All other locale strings are mapped by the broker's mapping
mechanism, see Broker’s Built-in Locale String Mapping under Locale String Mapping
in the internationalization documentation. Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Codepage Assignments */
ASCII=IS08859
EUC_JP_LINUX=ibm-33722_P12A-1999
/* Customer-written ICU converters */
CP1140=myebcdic
CP0819=myascii

102

Broker

Broker Attributes

Operating System

" g
3 ﬁ

For more examples, see Bypassing Broker’s Built-in Locale String Mapping under
Locale String Mapping in the internationalization documentation and also Additional
Notes below.

Opt/ 0
Attribute Values Req 8

Windows

UNIX

Additional Notes

® Locale string matching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

= If ICU is used for the internationalization approach and if the style in not known by ICU, e.g.
ECSnnnn, _<cc> etc., the name will be mapped to a suitable ICU alias. For more details on
the mapping mechanism, see Broker’s Built-in Locale String Mapping under Locale String Mapping
in the internationalization documentation. For more details on ICU and ICU converter name
standards, see ICU Resources under Introduction to Internationalization.

= If SAGTRPC user exit is used for the internationalization approach, we recommend assigning
the codepage in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit,
see Broker’s Built-in Locale String Mapping under Locale String Mapping in the internationalization
documentation.

" See CONVERSION and CONVERSION attribute CONVERSION on this page for the internationalization
approach in use.

Broker 103

Broker Attributes

Adabas SVC/Entire Net-Work-specific Attributes

The Adabas SVC/Entire Net-Work-specific attribute section begins with the keyword DEFAULTS=NET
as shown in the sample attribute file. The attributes in this section are needed to execute the
Adabas SVC/Entire Net-Work communicator of the EntireX Broker kernel.

| Note: This section applies to mainframe platforms only. It does not apply to UNIX and

Windows.
Operating System
E =
Opt/ 0 X © & 8
Attribute Values Req C =] E e 4
ADASVC nnn R z \%
Sets the Adabas SVC number for EntireX Broker access.
The Adabas SVC is used to perform various internal functions, including
communication between the caller program and EntireX Broker.
Not supported on BS2000/OSD.

EXTENDED-ACB-SUPPORTINOIYES | O | =z | | | v | b
Determines whether extended features of Adabas version 8 (or above) are
supported.

NO No features of Adabas version 8 or above will be used.

YES Informs broker kernel to provide Adabas/WAL version 8 transport
capability. This parameter is required for sending/receiving more than
32 KB data over Adabas [NET] transport. This value should be set only if
you have installed Adabas/WAL version 8, Adabas SVC, and included
Adabas/WAL version 8 load libraries into the steplib of broker kernel;
otherwise, unpredictable results can occur.

FORCE NOIYES [O | 2z | | | v | b
Determines whether DBID table entries can be overwritten.

NO Overwrite of DBID table entries not permitted.

YES Overwrite of DBID table entries permitted. This is required when the DBID
table entry is not deleted after abnormal termination.

Caution: Overwriting an existing entry prevents any further communication

with the overwritten node. Use FORCE=YES only if you are absolutely sure that

no target node with that DBID is active.

104 Broker

Broker Attributes

Operating System
ur
Opt/ W x % g %

Attribute Values Req 8 5 = @

IDTNAME FORMAT: @) b
A8 idtname
I
ADABAS5B
If an ID table name is specified with the appropriate ADARUN parameter for
Entire Net-Work, Adabas or Natural, the same name must be specified here.
The ID table is used to perform various internal functions, including
communication between the caller program and the EntireX Broker. Only
supported under BS2000/OSD.

TUBL swoln | O | z | | | v | b
This parameter sets the maximum length (in bytes) of the buffer that can be
passed from the caller to EntireX Broker. The maximum size of IUBL is the same
as the maximum value of the Adabas parameter LU (see the Adabas Operations
Manual).

IUBL must be large enough to hold the maximum send-length plus receive-length
required for any caller program plus any administrative overhead for Adabas
and Entire Net-Work control structures.

LOCAL NOIYES | O | =z | | | v | b

Specifies whether the broker ID is local.

NO Broker ID can be accessed from remote nodes.

YES The broker ID is local. It is not accessible from remote nodes.

MAX-MESSAGE-LENGTH

2147483647 O z u w v b
[n

Maximum message size that the broker kernel can process using transport
method NET. The default value represents the highest positive number that can
be stored in a four-byte integer.

NABS win | o | z | | | v | b
The number of attached buffers to be used (max. 524287).
An attached buffer is an internal buffer used for interprocess communication.
An attached buffer pool equal to the NABS value multiplied by 4096 will be
allocated. This buffer pool must be large enough to hold all data (IUBL) of all
parallel calls to EntireX Broker.
The following formula can be used to calculate the value for NABS:
NABS = NCQE *IUBL / 4096.

NCQE win | o | z | | | v | b

Broker

105

Broker Attributes

Attribute

Operating System

" g
3 %

Opt/ w0
Values Req 8

Windows

UNIX

NCQE defines the number of command queue elements which are available for

processing commands arriving at the broker kernel over Adabas SVC / Net-Work
transport mechanism. Sufficient NCQE should be allocated to allow this transport
mechanism to process multiple broker commands concurrently. Each command
queue element requires 192 bytes, and the element is released when either the

user (client or server) has received the results of the command, or if the command
is timed out.

The number of command queue elements required to handle broker calls depends
on the number of parallel active broker calls that are using the transport
mechanism Adabas SVC / Entire Net-Work. For example, all broker commands
issued by any of the following application components using this transport
mechanism:

= clients

" servers

® publishers

® gsubscribers

NODE

1-65534 @) z \% b

Defines the unique DBID for EntireX Broker.

Used for internode Adabas/Entire Net-Work communication. There is no default;
the value of NODE must be a value greater than or equal to 1 or less than or equal
to 65534. If you set the parameter LOCAL=YES, you can use the same node number
for different installations of EntireX Broker in an Entire Net-Work environment.

Please note that the maximum value for NODE that is allowed for Entire Net-Work
under UNIX is 255.

If NODE is specified, it overrides the DB1D derived from the numeric part of
BROKER-ID.

TIME

wio [o [o [[[v [

This parameter sets the timeout value for broker calls in seconds. The results of
a broker call must be received by the caller within this time limit.

TRACE-LEVEL

0-4 (@) z b

The level of tracing to be performed while the broker is running with transport
method NET. It overrides the global value of trace level for all NET routines.

0 No tracing. Default value.

1 Display invalid Adabas commands.

106

Broker

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
ZIVSE
BS2000

zi0s
UNIX

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without restarting

the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

Broker

107

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITYas shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is

specified.
Operating System
kel
Opt/ 7] = % o %
Attribute Values Req 8 5 = g @
ACCESS-SECURITY-SERVER |NO I YES @) b

Determines where authentication is checked.

NO Authentication is checked in the broker tasks. This requires broker to be running under
TSOS in order to execute privileged security checks.

YES Authentication is checked in the EntireX Broker Security Server for BS2000/OSD. This
does not require broker to be running under TSOS. See EntireX Broker Security Server
for BS2000/0SD in the BS2000/OSD administration documentation.

APPLICATION-NAME

A8 O z

Specifies the name of the application to be checked if FACILITY -CHECK=YES is defined. In
RACE, for example, an application "BROKER" with read permission for user "DOE" is defined
with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASS(CAPPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY - CHECK for more information.

AUTHENTICATION-TYPE

OS | TdapUrl | o z u w b
iafurl
(08 Authentication is performed against the local operating system. Default if

SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from
the attribute file.

IdapUrl Authentication is performed against the LDAP repository specified under
IdapUr]. Not supported under BS2000/OSD.

= For TCP, specify repository URL:

108

Broker

Broker Attributes

Operating System
o
Opt/ W x % g %
Attribute Values Req 8 5 = @
AUTHENTICATION-TYPE="1dap://HostName
[:PortNumber]"
® For SSL or TLS:
AUTHENTICATION-TYPE="1daps://HostName
[:PortNumber]"
If no port number is specified, the default is the standard LDAP port numb
389 for TCP transport. Examples for TCP and SSL (or TLS):
AUTHENTICATION-TYPE="Tdap://myhost.mydomain.com"
AUTHENTICATION-TYPE="T1daps://myhost.mydomain.com:636"
iafUrl Authentication is performed using Software AG's Integrated Authenticatior

Framework against the IAF service specified under 7afUr]. Not supported ur
BS2000/0OSD.

The URL of the IAF service is specified using

AUTHENTICATION-TYPE=
"iaf://HostName[:PortNumber]?SSLParameters"

If no port number is specified, the default is port number 1958. SSL or TLS
parameters are specified in the same format as for the ACI function SETSSLPAI
Example: AUTHENTICATION-TYPE="1af://myhost.mydomain.com:100C

AUTHENTICATION-TYPE=
"jaf://myhost.mydomain.com:100007
verify_server= no&

trust_store=
/opt/softwareag/EntireX/etc/ExxCACert.pem"

On z/OS, the URL of an IAF service running on the same host may specifiec

Broker

109

Broker Attributes

Operating System
2 =
Opt/ 0 x 8 = S
Attribute Values Req 8 5 = R i
AUTHENTICATION-TYPE=
"jaf.ipc://IAFServicelID[:SVCNumber]™"
Example:
AUTHENTICATION-TYPE=
"iaf.ipc://IAF075:SVC245"

AUTHORIZATIONDEFAULT |YES | NO | o | | u | w] |
Determines whether access is granted to a specified service if the specified could not be
found listed in the repository of authorization rules.
YES Grant access.
NO Deny access.
Applies only when using EntireX Security under UNIX and Windows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.
See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

AUTHORIZATIONRULE A32 | o | | u | ow | |

List of authorization rules. Multiple sets of rules can be defined, each set is limited to 32
chars. The maximum number of AUTHORIZATIONRULE entries in the attribute file is 16.

Applies only when using EntireX Security under UNIX or Windows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

CHECK-IP-ADDRESS

ERRTXT-MODULE

wsixo [o [o [[|]
Determines whether the TCP/IP address of the caller is subject to a resource check.
NA2MSGO | @) z

NA2MSG1 |

NA2MSG2 |

ModuleName

Specifies the name of the security error text module. Default is "NA2MSG0", English
messages. For instructions on how to customize messages, see Build Language-specific Messages

110

Broker

Broker Attributes

Attribute

Operating System

" g
3 ﬁ

Opt/ w0
Values Req 8

Windows

UNIX

(Optional) under Installing EntireX Security under z/OS under z/OS in the z/OS installatic
documentation.

FACILITY-CHECK

woives [o [o [[]]

It is possible to check whether a particular user is at all allowed to use an application be
performing a password check. The advantage of this additional check is that when the
is not allowed to use this application, the broker returns error 00080013 and does not t:
authenticate the user. Failing an authentication check may lead to the user's password b
revoked; this situation is avoided if the facility check is performed first. See attribute
APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed be

each authentication call.

IGNORE-STOKEN

NO | YES ‘O‘z‘u‘w| ‘b

Determines whether the value of the ACI field SECURITY - TOKEN is verified on each ce

INCLUDE-CLASS

wso [o [o [[[|

Determines whether the class name is included in the resource check.

INCLUDE - NAME YES | NO | O | z ‘ ‘ | ‘
Determines whether the server name is included in the resource check.
INCLUDE-SERVICE YES | NO | o | =z | | | |

Determines whether the service name is included in the resource check.

LDAP-PERSON-BASE-BINDDN

IdapDn ‘ O ’ z ‘ u ‘ w | ’

Used with LDAP authentication to specify the distinguished name where authenticati
information is stored. This value is prefixed with the user ID field name (see below). Exan

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

LDAP-REPOSITORY-TYPE

OpenLDAP | @) z u w
ActiveDirectory |
SunOneDirectory |
Tivoli | Novell |
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository
that most closely matches your actual repository. In the case of Windows Active Direc
the user ID is typically in the form domainName\userlId.

LDAP-SASL-AUTHENTICATION

o [o [[[w []

Specifies whether or not Simple Authentication and Security Layer (SASL) is to perforn
authentication check. In practice, this determines whether or not the password supplie
the user is passed in plain text between the broker kernel and the LDAP server. If SAS
activated, this implies that the password is encrypted.

Broker

M

Broker Attributes

Operating System
ES o
Opt/ @ x g 8 =
Attribute Values Req C =] = R i
NO Password is sent to LDAP server in plain text.
YES Password is sent to LDAP server encrypted.
LDAP-USERID-FIELD cn | uidFieldName ‘ 0] z ‘ u ‘ w |]

Used with LDAP authentication to specify the first field name of a user in the Distinguished
Name, for example:

LDAP-USERID-FIELD=uid

MAX-SAF-PROF-LENGTH

[0 [+ [[[]

This parameter should be increased if the length of the resource checks - that is, the length
of the profile comprising “<class>.<server>.<service>" - is greater than 80 bytes.

This parameter defaults to 80 if a value is not specified.

PASSWORD-TO-UPPER-CASE

NO | YES |O|z‘u|w| |b

Determines whether the password and new password are converted to uppercase before
verification.

PRODUCT

RACE | ACF2 | @) z
TOP-SECRET

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

ACF2 Security system ACF2 is installed.
RACF Security system RACEF is installed. Default.
TOP-SECRET Security system TOP-SECRET is installed.

The default value is used if an incorrect or no value is specified.

PROPAGATE-TRUSTED-USERID

wso | o [o [[[]

Determines whether a client user ID obtained by means of the trusted user ID mechanism
is propagated to a server using the ACI field CLIENT-USERID.

SAF-CLASS NBKSAG | @) z

SAFClassName

Specifies the name of the SAF class/type used to hold the EntireX-related resource profiles.
SAF-CLASS-IP NBKSAG | @) z

SAFClassName

Specifies the name of the SAF class/type used when performing IP address authorization
checks.

12

Broker

Broker Attributes

Operating System
o
Opt/ w0 x % g %
Attribute Values Req R = = @
SECURITY-LEVEL AUTHORIZATION | @) z u w \% b
AUTHENTICATION
| ENCRYPTION

Specifies the mode of operation.

AUTHORIZATION Authorization, authentication, and encryption (not under

BS2000/OSD or z/VSE).
AUTHENTICATION Authentication and encryption.
ENCRYPTION Encryption only.

Caution: In version 8.0, the default value for this parameter was "AUTHORIZATION"

SECURITY-NODE

YES | name O z

This parameter can be used to specify a prefix that is added to all authorization check:
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often importa
distinguish between production, test, and development environments.

YES This causes the broker ID to be used as a prefix for all authorization checks.

name This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

Note: By not setting this parameter, no prefix is added to the resource check (the defat

behavior).

TRACE-LEVEL

0 0 [2 [« [w [v [&

Trace level for EntireX Security. It overrides the global value of trace level in the attribs
file.

TRUSTED-USERID

wsvo [o [o [[[]

Activates the trusted user ID mechanism for broker requests arriving over the local Ad
IPC mechanism.

USERID-TO-UPPER-CASE

NO I YES @) z b

Determines whether user ID is converted to uppercase before verification.

UNIVERSAL NO | YES | o | z | | | |
Determines whether access to undefined resource profiles is allowed.
WARN-MODE NO | YES o | z | u | w | B

Determines whether a resource check failure results in just a warning or an error.

Broker

13

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

Operating System
o
Opt/ w0 = % g %
Attribute Values Req R 5 2 4
CONNECTION-NONACT [n | nS | nM O z u w \Y b

| nH

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

n Same as nS.
nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).

nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime in the platform-specific Stub Administration sections
of the EntireX documentation.

HOST

0.0.0.0 | @) z u w v b
HostName |
IP
address

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of the
system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

MAX-MESSAGE-LENGTH

2147483647 O z u w A\ b
[n

14

Broker

Broker Attributes

Operating System
ur
Opt/ [x § 7] %
i 3 : 3 %
Attribute Values Req 8 5 =
Maximum message size that the broker kernel can process using transport method
TCP/IP. The default value represents the highest positive number that can be stored
in a four-byte integer.
PORT 1025-65535) O | z | w [w | v [b
The TCP/IP port number on which the broker will listen for connection requests.
If specified, PORT overrides broker attribute TCPPORT.
Note: TCPPORT will be retired with the next version.
If PORT is not specified but TCPPORT is specified, TCPPORT is used.
If TCPPORT is not specified, the broker will attempt to find its TCP/IP port number
from the TCP/IP Services file, using getservbyname. If broker cannot find its TCP/IP
port number from the TCP/IP Services file, it will use the default value of 1971.
A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.
RESTART YES | NO (@) z u w v b

YES The broker kernel will attempt to restart the TCP/IP communicator.
NO The broker kernel will not try to restart the TCP/IP communicator.

If specified, RESTART overrides broker attribute TCP-RESTART.

Note: TCP-RESTART will be retired with the next version.

If RESTART is not specified but TCP-RESTART is specified, TCP-RESTART is used.

The RESTART setting applies to all TCP/IP communicators.

RETRY-LIMIT

201 nl @) z u w v b
UNLIM

Maximum number of attempts to restart the TCP/IP communicator.
If specified, RETRY-LIMIT overrides broker attribute TCP-RETRY-LIMIT.

Note: TCP-RETRY-LIMIT will be retired with the next version.

If RETRY -LIMIT is not specified but TCP-RETRY - LIMIT is specified,
TCP-RETRY-LIMIT is used.

The RETRY - LIMIT setting applies to all TCP/IP communicators.

Broker

15

Broker Attributes

Operating System
o
Opt/ w0 = % g %
Attribute Values Req R 5 2 4
RETRY-TIME 3M | nlnS O V4 u w v b

| nM | nH

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

n Sameas nS.

nS Wait time in seconds (max. 2147483647).
nM Wait time in minutes (max. 35791394).
nH Wait time in hours (max. 596523).

Minimum wait time is 1S.
If specified, RETRY - TIME overrides broker attribute TCP-RETRY - TIME.

Note: TCP-RETRY-TIME will be retired with the next version.

If RETRY - TIME isnot specified but TCP-RETRY - TIME is specified, TCP-RETRY - TIME
is used.

The RETRY - TIME setting applies to all TCP/IP communicators.

REUSE-ADDRESS

YES | NO O z u v b

YES | NO @) w

YES The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

NO The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting on Windows, and we strongly
advise you do not change this value on this platform.

Note:

This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the TCP/IP
stack when closing connections.

STACK-NAME

StackName‘ (@) ‘ V4 l | ‘ |

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

i [0 [+ [v [w] [

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

116

Broker

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zVSE
BS2000

zi0s
UNIX

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing error
responses.

2 All of trace level 1, plus errors if request entries could not be allocated.

3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG

support.

Broker

"7

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS, BS2000/0SD, z/VSE.

Operating System
o
Opt/ @ = g o g
. 4 s g @
Attribute Values Req R 5 =
MAXSIZE nlt M| nG (@) u w
Defines the maximum size of c-tree data files. Broker allocates one data file for control data
and another data file for message data:
n Maximum size in MB.
nM Maximum size in MB.
nG Maximum size in GB.
PAGESIZE nl nK (@) u w
Determines how many bytes are available in each c-tree node. PSTORE COLD start is required
after changing this value.
n Same as nK
nK PAGESIZE in KB.
The default and minimum value is 8 KB.
If PSD Reason Code = 527 is returned during UOW write processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE to
a new PSTORE with an increased PAGESIZE value. See Migrating the Persistent Store in the
general administration documentation and define the increased PAGESIZE value for the
load broker.
PATH A255 | o | | u | oW |
Path name of the target directory for c-tree index and data files.
SYNCIO NOIYES | O | | w | W |

Controls the open mode of the c-tree transaction log.

NO c-tree transaction log is not opened in synchronous mode. Default.

YES c-tree transaction log is opened in synchronous mode to improve data security. It may
degrade performance of PSTORE operations, but offers the highest level of data

118

Broker

Broker Attributes

Operating System

Opt/
Attribute Values Req

Windows

zIVSE
BS2000

zi0s
UNIX

security. See c-tree Database as Persistent Store in the UNIX and Windows administration
documentation.

TRACE-LEVEL|0-8 @) u w

Trace level for c-tree persistent store. It overrides the global value of trace level in the attribute
file.

Broker 119

Broker Attributes

SSL-specific Attributes

The SSL-specific attribute section begins with the keyword DEFAULTS=SSL as shown in the sample
attribute file. The attributes in this section are needed to execute the SSL communicator of the
EntireX Broker kernel. In this section, “SSL” also applies to TLS (Transport Layer Security).

Operating System
2 o
Opt/ w bt el i =
= = o
Attribute Values Req & 5 = = @
CIPHER-SUITE string (@] z u w b

String that is passed to the underlying SSL implementation. SSL is a standardized
protocol that uses different cryptographic functions (hash functions, symmetric
and asymmetric encryption etc.). Some of these must be implemented in the
SSL stack; others are optional. When an SSL connection is created, both parties
agree by “handshake” on the cipher suite, that is, the algorithms and key lengths
used. In a default scenario, this information depends on what both sides are
capable of. It can be influenced by setting the attribute CIPHER-SUITE for the
SSL server side (the broker always implements the server side). Ths stubs connect
to the broker and thereby become the SSL clients.

Under UNIX and Windows, the OpenSSL implentation of the SSL server side
is used; on z/OS and BS2000/0OSD it is GSK.

Example for OpenSSL:

CIPHER-SUITE=RC4-MD5 Use RC4 with standard 128-bit
key and MD5 as hash.

CIPHER-SUITE=EXP-EDH-DSS-DES-CBC-SHA Extreme example.

Example for GSK:

CIPHER-SUITE=090306 Use DES and SHA1 with export key lengths, or
RC4 and MD5 with export key lengths, or
RC2 and MD5 with export key lengths.

For more information see:

" OpenSSL
http://www.openssl.org/docs/apps/ciphers.html

120

Broker

Broker Attributes

Operating System
£ o
Opt/ ® x 8 = S
Attribute Values Req 8 5 = R i
= GSK
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?
info/apis/gsk_attribute_set_buffer.htm
CONNECTION-NONACT [n1nS | nM | nH ‘ 0 ‘ z ‘ u ‘ w ‘ | b

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

n Same as nS.

nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).
nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled.

HOST hostname ‘ O] ‘ z ’ u ‘ w ‘ | b
The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

KEY - LABEL name | o | z | | | |
The label of the key in the RACF keyring that is used to authenticate the broker
kernel (see also TRUST - STORE parameter).

(Example: "ETBCERT")

KEY-FILE file name | R | | u | ow | | b
File that contains the broker's private key (if not contained in KEY - STORE).
(Example: MyAppKey . pem)

KEY-PASSWD password (A32)] R ‘] u] w ‘ | b

Password used to protect the private key. Unlocks MyAppKey . pem. Deprecated.
See KEY-PASSWD-ENCRYTPED below.

KEY-PASSWD-ENCRYPTED

encrypted value R u w b
(A64)

Broker

121

Broker Attributes

Operating System
2 =
Opt/ ® x 8 o S
Attribute Values Req 8 5 = R i
Password used to protect the private key. Unlocks MyAppKey . pem. This attribute
replaces KEY -PASSWD to avoid a clear-text password as attribute value. If
KEY-PASSWD and KEY-PASSWD-ENCRYTPED are both supplied,
KEY-PASSWD-ENCRYTPED takes precedence.
KEY-STORE file name | R | | uw | ow | | b

SSL certificate; may contain the private key.

(Example: ExxAppCert. pem)

MAX-MESSAGE-LENGTH

2147483647 | n ‘ 0 ‘ z ‘ u ‘ w ‘ | b

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

PORT

1025 - 65535 IO‘Zlulw‘ |b

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the example
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

RESTART

YES | NO ‘ (@) ‘ z ‘ u ‘ w ‘ | b

YES The broker kernel will attempt to restart the SSL communicator (this is
the default value).

NO The broker kernel will not attempt to restart the SSL. communicator.

RETRY-LIMIT 20intoNLM | O [z | u [w | | b
Maximum number of attempts to restart the SSL communicator.
RETRY - TIME aMininsioH | O [2z | u [w | | b

Wait time between suspending SSL communication due to unrecoverable error
and the next attempt to restart it.

n Same as nS.

nS Wait time in seconds (max.2147483647).
nM Wait time in minutes (max. 35791394).
nH Wait time in hours (max. 596523).

Minimum: 1S

REUSE-ADDRESS

YES | NO ‘O‘z’u‘w‘ |b

122

Broker

Broker Attributes

Attribute

Operating System

Opt/
Values Req

Windows
zNVSE
BS2000

zZ/I0S
LINIX

YES The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).

NO The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

STACK-NAME

name ‘O‘z’u’w‘ |

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

0 o [2 [v [w] v

The level of tracing to be performed while the broker is running with transport
method SSL or TLS. It overrides the global value of trace level for all SSL or TLS
routines.

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing
eITor responses.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

TRUST-STORE

file name\keyring‘ R ‘ z ‘ u ‘ w ‘ | b

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

z/OS Specify the RACF keyring using the following
format: [USER-ID/JRING-NAME.If no value for
USER-IDis provided, the keyring is assumed to

Broker

123

Broker Attributes

Operating System
o
Opt/ 0 x % g %
Attribute Values Req g 5 = @

be associated with the user ID that the broker
kernel is running under.

BS52000/0SD/Windows/UNIX Specify the file name of the CA certificate store.

Examples: EXXCACERT.PEM,
C:\Certs\ ExxCACert.pem

VERIFY-CLIENT

NO | YES IO‘zlulw‘ |b

YES Additional client certificate required.
NO No client certificate required (default).

124

Broker

Broker Attributes

DIV-specific Attributes

The DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

Operating System
2 o
Opt/ w bt 5 Lh s
z = b
Attribute | Values Req C 5 = 2 &
DIV Abl11 R V4

The VSAM Persistent Store parameters, enclosed in double quotes (
than one line. See Format Parameters under Managing the Broker Persistent Store in the z/OS
administration documentation for details of the parameters. In previous versions of EntireX, these
parameters were read from the SYSIN DD during broker kernel startup.

"

)- The value can span more

Adabas-specific Attributes

The Adabas-specific attribute section begins with the keyword DEFAULTS = ADABAS. The attributes

in this section

are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,

these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-
tribute.
Operating System
2 =
Attribute Values Req 8 5 = A 4
BLKSIZE 126-20000 @) z u w v b
Optional blocking factor used for message data. If not specified, broker will split the message
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.
For reasons of efficiency, do not specify a BLKSIZE much larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.
The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.
Default value is 2000.
DBID 1-32535 R z u w v b
Broker 125

Broker Attributes

Operating System
o
Opt/ w0 x % 4 %

Attribute Values Req 8 5 = g @
Database ID of Adabas database where the persistent store resides.

FNR 1-3535 [R | oz [uw | w [v | b
File number of broker persistent store file.

FORCE-COLD [N I'Y | o | z | w | w | v | b
Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

MAXSCAN 0-n ©) z u w \Y b
Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

OPENRQ NIY | o | =z | w | w | v | b
Determines whether driver for Adabas persistent store is to issue an O0PEN command to
Adabas.

SVC 200255 | R |

| | |

v

Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

TRACE-LEVEL

0-8 | O ‘ z | u | w ‘ v | b

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

126

Broker

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

® BROKER-1ID (in Broker-specific attributeBROKER - ID)

" NODE (in Entire Net-Work-specific attribute NODE)

® PORT (in PORT (SSL) and PORT (TCP/IP))

How you use the variable definition file will depend upon your particular needs. For instance,

some optional attributes may require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

Broker 127

128

I I I Broker Command and Information Services

129

130

7 Broker Command and Information Services

CIS OVEIVIEBW TADIE ...t e e e et e e e e e e ettt e e e e e e e s e araeeeeas
Modes 0f ReQUESHING the SEIVICESeieiiiiiiie e
ETBCMD: Executable Command REQUESEScciiuiiiiiiiiiiiiiie e
ETBINFO: Returnable Information REQUESESeiiiiiiiiiiii e

131

Broker Command and Information Services

EntireX Broker provides two internal services: Command Service and Information Services that
can be used administer and monitor the EntireX Broker. The command service allows you to issue
a set of Broker commands; the information services provide you with various statistics to better
administer and tune your Broker. Because these services are implemented internally, nothing has
to be started or configured. You can use these services immediately after starting EntireX Broker.

See also Broker CIS Data Structures in the ACI Programming documentation.

CIS Overview Table

EntireX Broker provides these predefined internal services:

* Command Service
Provides a facility to issue commands against the Broker (e.g. SHUTDOWN etc.).

* Information Services
Provides a query mechanism to obtain various types of information on the Broker, which is
helpful for administration and tuning.

Since these services are implemented internally, nothing has to be started, configured or defined
in the Broker attribute file. You can use them immediately after starting the Broker. They can be
requested as follows:

Mode of Request Tools Services Requirements
User-Written application program = INFO " request structures
Interface = USER-INFO

= CMD

= PARTICIPANT-SHUTDOWN
® SECURITY-CMD

Graphical User System Management Hub = INFO ® none
Interface = USER-INFO
= CMD

= SECURITY-CMD

Command-line ETBINFO utility = INFO = profile
Utilities = JSER-INFO = command-line
parameters
ETBCMD utility = CMD ® command-line

= PARTICIPANT-SHUTDOWN| Parameters

132 Broker

Broker Command and Information Services

Mode of Request Tools Services Requirements

= SECURITY-CMD

System Management Hub = INFO ® command-line
(batch interface argbatch) |, ;ser-1yFo parameters
= CMD

SECURITY-CMD

Applicable operating systems: z/OS, UNIX and Windows.

Description of Services

INFO and USER-INFO

® INFO is the full information service. Specity it for the full information service. All clients, servers
and conversations are listed.

® USER-INFOislimited to your user-specific information. Specify it for limited information service.
Only the user's own resources are listed.

CMD, PARTICIPANT-SHUTDOWN and SECURITY

® CMD is the full command service.
® PARTICIPANT-SHUTDOWN is limited to shutting down participants.
® SECURITY-CMD is limited to EntireX Security-related commands.

Modes of Requesting the Services

Use one of these three modes to request a service:

= Command-line Utilities
= Graphical User Interface
= User-Written Interface

The method for requesting these services is the same as the method for requesting any other service.
For both types of services, an application issues a SEND command with appropriate data and re-
trieves a reply. The request itself is specified within the SEND buffer; the reply - if there is one - is
specified in the RECEIVE buffer.

For Information Services requests, RECEIVE operations must be repeated until the Information
Service indicates the end of data with an EOC return message.

Broker 133

Broker Command and Information Services

Command-line Utilities

Software AG provides three command-line utility programs for use with EntireX Broker. All
utility programs use command-line parameters that specify various options and information to
be built into a request. These utility programs are:

" ETBINFO
Queries the Broker for different types of information, generating an output text string with basic
formatting. This text output can be further processed by script languages (or elsewhere). ETBINFO
uses data descriptions called profiles to control the type of data that is returned for a request.
ETBINFO is useful for configuring and administering EntireX Broker efficiently - e.g., how many
users are to run concurrently and whether the number of specified message containers is large
enough.

See ETBINFO under Broker Command-line Utilities in the platform-specific administration docu-
mentation for profiles, examples and utility parameters.

= ETBCMD
Allows you to take actions - e.g., purge a unit of work, stop a server, shut down a Broker - against
EntireX Broker.

See ETBCMD under Broker Command-line Utilities in the platform-specific administration docu-
mentation for utility parameters.

" ARGBATCH
This is the command line utility of SMH (see Graphical User Interface). It allows you to perform
various administrative commands over a broker. You can access Broker Command and Inform-
ation Services with a subset of all available commands.

See Description of argbatch Commands under System Management Hub for EntireX.
Version Information

® The ETBINFO and ETBCMD CIS command-line utilities are compatible with all versions of EntireX
Broker.

® Display keywords applying to a specific version of Broker will not be returned when a call is
made to any older version of Broker.

134 Broker

Broker Command and Information Services

Graphical User Interface

Software AG provides a graphical user interface, the System Management Hub (SMH), for display-
ing information on the Broker and/or executing administrative functions.

Many of the capabilities of the Broker CIS can be accessed through the SMH, which is Software
AG's cross-product and cross-platform product management framework. The EntireX-specific
SMH agents are installed automatically when the EntireX software is installed under UNIX or
Windows. SMH is not installable under z/OS.

User-Written Interface

If you access the Command and Information Services through a user-written application, you
must use a defined protocol. This protocol describes the structures needed to communicate with
the service(s) so that the request is correctly interpreted by the Broker.

See Writing Applications: Command and Information Services in the ACI documentation and Broker
CIS Data Structures in the ACI Programming documentation.

ETBCMD: Executable Command Requests

The following command requests can be issued, using ETBCMD. All the functions listed in this table
are applicable to all three request modes; see Modes of Requesting the Services.

] Note: Version numbers in this table refer to the interface version and not to the Broker ver-

sion.
CIs
Interface
Command Request Comment Version
ALLOW-NEWUOWMSGS New UOW messages are allowed. |3
CLEAR-CMDLOG-FILTER Remove the specified command log |5
filter.
CONNECT-PSTORE Connects the persistent store. See 4
Awailability of Persistent Store in the
general administration documentation.
DISABLE-ACCOUNTING Disables accounting. Accounting 5
records are discarded until accounting
is enabled.
DISABLE-CMDLOG Disable command logging.
DISABLE-DYN-WORKER Disable the 7
DYNAMIC-WORKER-MANAGEMENT.
DYNAMIC-WORKER-MANAGEMENT=YES

Broker 135

Broker Command and Information Services

Command Request

Comment

CIS
Interface
Version

must be configured in the attribute file.
The current number of active worker
tasks will not be changed until
DYNAMIC-WORKER-MANAGEMENT is
enabled again.

DISCONNECT-PSTORE

Disconnects the persistent store. See
Availability of Persistent Store in the
general administration documentation.

ENABLE-ACCOUNTING

Enable accounting.

ENABLE-CMDLOG

Enable command logging.

Q1

ENABLE-DYN-WORKER

Enable the
DYNAMIC-WORKER-MANAGEMENT again.
DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
DYNAMIC-WORKER-MANAGEMENT has
been disabled before. Additional
worker tasks can be started again, or
stopped if not used.

FORBID-NEWUOWMSGS

New UOW messages are not allowed.

O8]

PRODUCE-STATISTICS

Output current statistics to the broker
log.

PURGE

Remove a unit of work from the
persistent store.

RESET-USER

Clear all cached security information
for the specified user ID.

RESUME

Transport ID: NET | Snn|Tnn. Resume
a suspended transport communicator.
If the communicator was not
suspended before, an error message
will be returned.

SET-CMDLOG-FILTER

Add the specified command log filter.

Q1

SHUTDOWN BROKER

Shutdown Broker immediately.

—_

CONVERSATION
{conversation-id>

Command applies to conversations without units of
work only. The security rights shutting down the
service are required for shutting down the

conversation.

IMMED

The specified conversation is
immediately removed. All messages
of the conversation are lost.

QUIESCE

An end of conversation is issued. The
conversation remains active.

136

Broker

Broker Command and Information Services

Command Request

Comment

CIS
Interface
Version

SERVER

IMMED

Shutdown server immediately. The
server must be uniquely identified
using field P-USER-ID under Broker
CIS Data Structures in the ACI
Programming documentation or
SEQNO under Broker CIS Data Structures
in the ACI Programming
documentation and will be completely
removed from the broker
environment.

The following steps will be performed:

= Error code 00100050 will be returned
to the server, if it is waiting.

= All existing conversations will be
finished with EOC.

= User will be logged off.

QUIESCE

Shutdown server but allow existing
conversations to continue.

The termination is signaled to the
server by error code 00100051. After
this, the next call issued must be a
DEREGISTER for all services
(SC=*,SN=*,SV=* if more than one

service is active).

1

SERVICE
{class/server/service>

Internal services cannot be shut down.

IMMED

Caution: All servers offering this
service will be deregistered and logged
off. The following steps will be
performed:

= Error code 00100050 will be replied
to all servers, if they are waiting.

= All existing conversations will be
finished with EOC.

= Users will be logged off.

QUIESCE

All servers offering this service are
deregistered. Shutdown servers but
allow existing conversations to
continue. The termination is signaled
to the servers by error code 00100051.

Broker

137

Broker Command and Information Services

Command Request

Comment

CIS
Interface
Version

After this, the next call issued must be
a DEREGISTER for the service.

PARTICIPANT

IMMED

Shutdown participant immediately.
The participant must be identified,
using fields P-USER-ID under Broker
CIS Data Structures in the ACI
Programming documentation, UID
under Broker CIS Data Structures in the
ACI Programming documentation
TOKEN under Broker CIS Data Structures
in the ACI Programming
documentation or SEQNO under Broker
CIS Data Structures in the ACI
Programming documentation and will
be completely removed from the
Broker environment. See Broker CIS
Data Structures in the ACI
Programming documentation.

The following steps will be performed:

= Error code 00100050 will be replied
to the participant, if it is waiting.

= All existing conversations will be
finished with EOC.

= User will be logged off.

Within EntireX Broker
nomenclature, a participant is an
application implicitly or explicitly
logged on to the Broker as a specific
user. A participant could act as
client, server, publisher or
subscriber.

QUIESCE

Shutdown participant but allow
existing conversations to continue. The
termination is signaled to the
participant by error code 00100051.

START TRANSPORT

Transport ID:
NET|Snn|Tnn

Start a transport communicator that
was previously stopped. If the
communicator was not stopped before,
an error message will be returned.

STATUS TRANSPORT

Transport ID:
NET|Snn|Tnn

Check the current status of the
transport communicator.

138

Broker

Broker Command and Information Services

CIS
Interface
Command Request Comment Version
STOP TRANSPORT Transport ID: |Stop an active or suspended transport|7
NET | Snn|Tnn|{communicator. The transport
communicator will shut down. All
transport-specific resources will be
freed. User requests receive response
code 148.
SUBSCRIBE Subscribe a user to a topic. 4
SUSPEND TRANSPORT Transport ID: |Suspend an active transport
NET | Snn|Tnn|communicator.
SWITCH-CMDLOG Force a switch of command logging |5
output files.
TRACE-FLUSH|BROKER Flush all trace data kept in internal |7
trace buffers to stderr (DD: SYSOUT).
The broker-specific attribute
TRMODE=WRAP is required.
TRACE-OFF |BROKER Set TRACE- LEVEL off in Broker. 1
PSF Set TRACE-LEVEL off in persistent |5
store.
SECURITY Set TRACE-LEVEL off in EntireX 5
Security.
TRACE-ON BROKER Set TRACE - LEVEL onin Broker. Values: |1
1121314,
PSF Set TRACE-LEVEL on in persistent 5
store. Values: 1 12 1 3 | 4.
SECURITY Set TRACE-LEVEL on in EntireX 5
Security. Values: 1 1 2 | 3 | 4.
TRAP-ERROR |BROKER Error number:|Modifies the setting of the 7
nnnn broker-specific attribute TRAP - ERROR.
UNSUBSCRIBE Unsubscribe a user from a topic. 4

ETBINFO: Returnable Information Requests

The following information requests can be returned. All the functions listed in this table are ap-
plicable to all three request modes; see Modes of Requesting the Services.

) Note: Version numbers in this table refer to the interface version and not to the Broker ver-

sion.

Broker

139

Broker Command and Information Services

Interface
Information Request|Comment Version
BROKER Global information on this Broker. No additional selection criteria are needed. |1
Other selection criteria fields are ignored.
CLIENT Information on active clients. 1
CMDLOG-FILTER |Information on command log filters. 5
CONVERSATION |Information on active conversations. 1
NET Information on the Entire Net-Work communicator. 5
POOL Information on Broker pool usage and dynamic memory management. 7
PSF Information on a unit of work's status and Information for persistent store. |2
PSFDIV Global information on the DIV persistent store. 2
PSFADA Global information on the Adabas persistent store. 3
PSFCTREE Global information on the c-tree persistent store. 5
PSFFILE Global information on the B-Tree persistent store (no longer supported). 4
PUBLICATION Information on active publications. 4
PUBLISHER Information on active publishers. 4
RESOURCE Information on Broker resource usage. 7
SECURITY Global information on EntireX Security. 5
SERVER Information on active servers. 1
SERVICE Information on active services. 1
SSL Information on the SSL communicator. 5
STATISTICS Statistics on selected Broker resources. 7
SUBSCRIBER Information on subscribers. 4
TCP Information on the TCP/IP communicator. 5
TOPIC Information on active topics. 4
USER Information on all users of Broker regardless of the user type. 7
WORKER Global information on all workers. No additional selection criteria are needed. |1

Other selection criteria fields are ignored.

WORKER_USAGE

Information on usage of worker tasks and dynamic worker management.

140

Broker

IV

= 8 Sample Security EXits for BroKer SECUNLYcoiiiiiiiiiiiiii e
= 9 Using Sample Security Exits for Broker SECUtYcoiiiiiiiiiiiiic e

141

142

8

Sample Security Exits for Broker Security

Sample Security Exits as Alternative Security SOIUHIONcooiiiiiiiiii
Major Advantages Of ENIreX SECUMILYc.uviiieiiiiei et
LIGtWEIGt USRSECottt et e e nneeas
Implementation of Sample Security EXItS ..o

Definition of Terms

143

Sample Security Exits for Broker Security

Sample security exits are a user-written security solution for use only in exceptional processing
situations. Example: If your organization wants to access its own user-written security system
when operating EntireX Broker.

| Note: See Using Sample Security Exits for Broker Security, which describes implementation

issues and how to use sample security exits on the operating where Broker executes.

See also Security Solutions in EntireX.

Sample Security Exits as Alternative Security Solution

Software AG intends security supplied by EntireX Broker to be only an alternative to EntireX Se-
curity, which is Software AG's standard security solution and shipped with EntireX. See Overview
of EntireX Security in the EntireX Security documentation. Do not mix these two security solutions:
do not use a stub secured with a sample exit against a kernel secured with EntireX Security or vice
versa.

Most organizations that use Software AG's EntireX choose EntireX Security instead of sample se-
curity exits for EntireX Broker security. If your organization is deploying distributed computer
systems encompassing mainframe, UNIX and Windows environments, you will use EntireX Se-
curity instead of sample security exits for EntireX Broker security.

Major Advantages of EntireX Security

Comprehensive Security

EntireX Security provides comprehensive security for EntireX Broker:

= user authentication
® user authorization
= application-data encryption

" supplied in object code only

144 Broker

Sample Security Exits for Broker Security

Protection of Application Systems

EntireX Security protects client and server and publish and subscribe application systems, and,
in most installations, EntireX Security operates without altering runtime applications.

One User=One Definition

EntireX Security allows your organization to control the use of all applications, including distributed
components, from a central point, enabling flexible control with a “one user = one definition” ap-
proach.

No User Exits to Write/Debug

There are no user exits to write and debug when using EntireX Security. Compare Sample Security
Exits for Broker Security.

Standard Security Definitions

EntireX Security enables security definitions, based on class/name/service (client and server) or
topic (publish and subscribe), to be credentialized within your SAF Security system. All definitions
are managed using existing security procedures and software.

Protected Investment in SAF-based Security Repositories

Your investment in SAF-based security repositories is protected. This includes not only the security

systems RACF, CA ACF2 and CA Top Secret, but also the infrastructure to administer security
profiles.

Lightweight USRSEC

For compatibility with previous versions (API level 3 and below), a “lightweight” security exit is
supplied in load module USRSEC in library EXX& vrs..LOAD for Broker and Broker Services under
z/OS. This “lightweight” version of USRSEC performs authentication only against RACFE, CA
ACF2 and CA Top Secret. It does not include the full functionality of the standard EntireX Security
installation of USRSEC (e.g. resource authorization, etc.). The “lightweight” version of USRSEC
does not require any security components, i.e. SECUEXIT, to be installed into the application (stub)
environment. If you are using ACI version 1 to 7 and you intend to use the “lightweight” version
of USRSEC, please ensure you do not have any security components installed into the application
(stub) environment.

Note: You cannot use the SNMP support provided by System Management Hub in conjunc-
tion with the “lightweight” version of USRSEC.

Broker 145

Sample Security Exits for Broker Security

Implementation of Sample Security Exits

Sample security exits are a user-written security solution for use only in exceptional processing
situations. The diagram below depicts the data flow which users can implement in their own user
exits for Broker security. In this example, the Broker kernel is located on z/OS.

Broker Kernel
Environment

zi0s
EBroker Kermel

A I

& 4

User-Written
Kernel Exit
USRSEC

Client / Server
Environment

Stub
[any supported
- operating system)

A I

User-Written
Stub Exit
SECUEXIT

User-Written Security Environment

] Note: Toactivate your user-written security exits, specify SECURITY=YES in the broker attribute

file.

146

Broker

Sample Security Exits for Broker Security

Description of Steps in Data Flow

1. Broker stub calls security exit SECUEXIT, if present.

2. Security exit SECUEXIT encrypts the password and optionally the application data. See Encryp-
tion / Decryption. SECUEXIT accesses the ACI control block and the SEND/RECEIVE buffers.
SECUEXIT returns call to the broker stub.

3. Broker stub communicates the call to the broker kernel.
4. Broker kernel calls security exit USRSEC for each specific event type:

" Create security context for user; authentication is usually performed in this event. See Authen-
tication.

® Destroy security context for user.

® Perform authorization for server to register a service. See Authorization.
® Perform authorization for client to send request.

® Perform encryption of application data.

® Perform decryption of application data.

® Perform optional processing if a user acquires a new physical user ID. Re-authentication can
also be performed.

® Perform optional processing if the value of a user's ACI security token changes. Re-authen-
tication can also be performed.

5. Security exit USRSEC passes call to broker kernel.
6. Broker kernel communicates the call to the broker stub of the partner application.

7. The broker stub calls SECUEXIT. SECUEXIT determines whether decryption is to be performed,
if correspondingly coded by user.

8. Security exit SECUEXIT returns call to broker stub.

Definition of Terms

= Authentication

= Authorization

= Broker and Kernel

= Broker Stub

= Encryption / Decryption

Broker 147

Sample Security Exits for Broker Security

= Exits
Authentication

Authentication verifies whether the identity specified by the user ID in the ACI control block is
the actual identity. Authentication is usually performed by checking the user's ID and password
against a security system. The details of this check are specific to the specific operating system
and security system.

Authentication is not needed with every call. It is required when the user's security context is
created within the Broker kernel; it is also required, optionally, if the user's physical user ID or
ACI security token changes.

Authorization

Authorization can be performed when:

" aclient issues a request to a service in the case of the first SEND command in a conversation, or
of each SEND command if CONV-ID=NONE;

" aserver registers a service to the Broker;
Broker and Kernel

It is the location of the Broker kernel that determines the point at which the authentication and
authorization checks can be performed. Authentication and Authorization can be performed in
the kernel exit USRSEC. Encryption/decryption can be performed in the kernel exit USRSEC (as well
as in the stub exit SECUEXIT).

See List of Components per Platform under Platform Coverage in the EntireX Release Notes for where
Broker kernel is supported.

Broker Stub

In EntireX Broker, a module that implements the ACI (Advanced Communication Interface) is
commonly referred to as broker stub or stub. Stubs are installed on the client and the server side.

See Platform Coverage in the EntireX Release Notes for where Broker stubs are supported.

148 Broker

Sample Security Exits for Broker Security

Encryption / Decryption

Encryption is the process by which the information or data being sent back and forth between two
computers (including the password submitted when logging on) is encoded, shielding it from
view by unauthorized persons. With EntireX, the algorithms for encryption/decryption must be
present in both the Broker stubs and in the Broker kernel.

In the case of user-written security exits, encryption/decryption must be implemented in:

® the stub security exits (SECUEXIT or ETBUPRE / ETBUEVA);
* the kernel security exit (USRSEC).

See Encryption of Application Data under Overview of EntireX Security in the EntireX Security docu-
mentation.

Exits

® Kernel Exit USRSEC
USRSEC is the name of the security exit which is invoked if SECURITY=YES is specified in the
attribute file.

In the case of user-written security exits, this exit will include functionality for authentication,
authorization and encryption/decryption.

See Platform Coverage in the EntireX Release Notes for where Broker kernel is supported.

® Stub Exit SECUEXIT
SECUEXIT is the stub security exit for use with the Broker C-based stub. This module is executed
during a Broker command if SECUEXIT is present in the path of execution.

In the case of user-written security exits, this exit will include functionality for encryption/de-
cryption.

® Stub exit ETBUPRE /ETBUEVA
ETBUPRE / ETBUEVA are the stub security exits for use with the Broker Assembler stub. These
modules are executed during a Broker command if they are linked to the Assembler stub.

Broker 149

150

9 Using Sample Security Exits for Broker Security

= Overview of Security Data FIOWooiiriiiiiii e
= Prerequisites for Running EntireX Broker in a Secure Environmentccooiiiiiiiiiiiiie e
= General Security RECOMMENAALIONSvviiiiiiiii e

= Writing Security Exits

B Security-Related Parameterscooiiiiiiiiii e
= Programming BroKer STUD EXItSooiiiiiiiiiiii e
= |ayout of Security Parameter Block ETB_SECPARccouiiiiiiiiieiii e
= | ayouts of Type-dependent Security Parameter BIOCKSoooiiiiiiiiiiiiiiiiiiicecce e

151

Using Sample Security Exits for Broker Security

This page describes implementation issues and how to use sample security exits in EntireX Broker.
It assumes you are familiar with EntireX Broker from both an administrative and an application
perspective, and with the ACI programming interface in particular. See Introduction to ACI-based

Programming.

Overview of Security Data Flow

The diagram shows a data flow for sample security exits, with Broker Kernel located, for example,

on z/OS. See also Description of Steps in Data Flow.

Broker Kernel
Environment

zi0s
Eroker Kernel

A I

User-Written
Kernel Exit
USRSEC

Client /! Server
Environment

Stub
[any supported
- operating system)

A I

User-Written
Stub Exit
SECUEXIT

User-Written Security Environment

152

Broker

Using Sample Security Exits for Broker Security

Prerequisites for Running EntireX Broker in a Secure Environment

To run EntireX Broker in a secure environment, the following prerequisites must be met:

® The security system in the EntireX Broker kernel must be activated by setting SECURITY=YES in
the broker attribute file.

® The security routines must be accessible to the Broker. The method you use to achieve this de-
pends on the operating system where your user-written USRSEC is implemented.

| Note: EntireX Broker will not start if SECURITY=YES is specified but the security routines

cannot be activated.

General Security Recommendations

If you run a secure environment, we recommend you performing an explicit LOGON with the
AUTOLOGON=NO definition in the attribute file. All security violations are logged to the EntireX Broker
log file.

= |Implementing the Kernel Security Exit under z/OS

= |mplementing Security for Broker Stubs under z/OS

= |mplementing Security Exits for Broker Stubs on UNIX

= |Implementing Security Exits for Broker Stubs on Windows

Implementing the Kernel Security Exit under z/0OS

» To implement the kernel security exit under z/0S

1 Write the exits USRSEC. The code must always be reentrant and reusable.

2 The kernel security exit USRSEC is loaded automatically during startup of Broker. Use module
and entry name USRSEC for this exit. A security module sample source is delivered with the
ETB source library.

3 Under z/OS, link the exit as reentrant and reusable.

4 Ensure that the security exit is accessible in the Broker STEPLIB.

Broker 153

Using Sample Security Exits for Broker Security

Implementing Security for Broker Stubs under z/0S

» To implement security exits for Broker stubs under z/0S

1 Write the stub security exits ETBUPRE and ETBUEVA. The code must always be reentrant, except
for batch, where the code must be reusable.

2 Link these exits ETBUPRE and ETBUEVA to the stub of the target application. The stub contains
weak externals for both entries.

Implementing Security Exits for Broker Stubs on UNIX

» To implement security exits for Broker stubs under UNIX

1 Write your own usrsec.c and secuexit.c, based on the samples delivered with EntireX.

2 Build your own secuexit.s[o|1] and usrsec.s[o1], using the provided makefiles. (A sample
makefile, makexa, is provided.)

3 Ensure that usrsec.s[o11] is made available to the Broker kernel at execution time. The attribute
file parameter SECURITY - PATH must be used to specify the location of usrsec.s[o1].

4 Ensure that secuexit.s[o!1] is made available to the application in the same directory as the
Broker stub.

Implementing Security Exits for Broker Stubs on Windows

» To implement security exits for Broker stubs under Windows

1 Write your own usrsec.c and secuexit.c, based on the samples delivered with EntireX.

2 Build your own secuexit.dll and usrsec.dll, using the provided makefiles.

Writing Security Exits

This section describes how to write your own security exits. It describes the interfaces, indicates
what can be modified and what has to be done within an exit. It also provides some helpful tips.

This section covers the following topics:

= Requirements

154 Broker

Using Sample Security Exits for Broker Security

= Error Checking for Incomplete Security Installation
Requirements

You must provide the following functions:

® The Preparation exit etbupre() and the Evaluation exit etbueva () for the Broker stub. These
two functions are linked statically to the Broker stub routines.

® The Kernel exit usrsec() which is loaded by the kernel. This exit is more generic than the other
two. It is called with the function that has been performed and a function-dependent Broker
ACI control block that provides all the necessary information. This function is loaded dynamically
by EntireX Broker during startup. One parameter of the kernel exit is the function that is per-
formed.

The functions map to the exit type is as follows:

Exit Type Function Function to perform

Authentication exit|ETB_SEC_LOGON |Checks authentication for the user.

ETB_SEC_LOGOFF |Release user-specific information if necessary.
ETB_SEC_NEWPUID |Application call with different physical USER ID.
ETB_SEC_NEWST |Application call with a different SECURITY TOKEN
Authorization exit |ETB_SEC_SEND Check whether user is allowed to use the addressed service.
ETB_SEC_REGISTER |Check whether the user is allowed to offer that service.
Encryption exit ETB_SEC_ENCRYPT |Encrypt the given data.

ETB_SEC_DECRYPT |Decrypt the given data.

In the following text, “encryption” or “authentication” exit refers to the functions listed above.
Error Checking for Incomplete Security Installation

With ACI_VERSION=4 or above, the security configuration of the caller's stub is checked against the
security configuration of the broker kernel. The request will be rejected with the error message
00200379 - API: Inconsistent Security Installation, if security

" is present in the stub and it is not present in the kernel;

or

" is not present in the stub and it is present in the kernel.

| Note: If you have written your own security - instead of using Security Solutions in EntireX

- and it is implemented only on the kernel, you will have to add a dummy security exit to
the stub.

Broker 155

Using Sample Security Exits for Broker Security

Security-Related Parameters

The following security-related parameters are provided. These are fields in the Broker ACI Fields
in the ACI Programming documentation:

= USER-ID

= PASSWORD

= SECURITY-TOKEN

= CLIENT-UID

= ERROR-CODE

= ERROR-TEXT

= KERNELSECURITY
= ENCRYPTION-LEVEL

USER-ID

The USER ID is defined by the application. It is available in all ACI exits as well as in the kernel
exits, except the encryption and decryption exits. Theoretically the preparation exit can be used
to retrieve the login name by an operating system specific mechanism. This would allow a user
identification without the application being involved. See the description of the USER-ID field in
the Broker ACI control block.

PASSWORD

The PASSWORD is defined by the application. It is available in all ACI and kernel exits except the
encryption exit. The PASSWORD, if provided by the application in plain text, should be encrypted
in the Preparation exit before sending it across insecure network connections. If the PASSWORD is
needed in the application again, it must be decrypted after receipt in the Evaluation exit. The au-
thentication exit must ensure that the PASSWORD is properly decrypted if necessary before sending
it to an external security system.

The EntireX Broker provides minimal encryption of the PASSWORD field, that is, the field is not
transmitted in plain text. If your environment requires absolute security, however, you will need
to provide both Broker stub and EntireX Broker kernel exits to perform encryption and decryption.
See the description of the PASSWORD field in the Broker ACI control block.

156 Broker

Using Sample Security Exits for Broker Security

SECURITY-TOKEN

The SECURITY TOKEN can be created by the application and sent to EntireX Broker. That allows for
a kind of credential algorithm. The security token is passed to all kernel exits and can therefore
contain security information which is also important for the authorization and encryption exits.
The SECURITY TOKEN can be altered in the authentication exit to provide a context token for that
application and that session. It is transmitted back to the application and can then be used in all
subsequent calls. For each subsequent call, the EntireX Broker checks whether the SECURITY TOKEN
is identical to the one returned from the last call to the authentication exit, which could be the
ETB_SEC_LOGON, the ETB_SEC_NEWPUI or the ETB_SEC_NEWST function. After an ETB_SEC_LOGOFF
call, a subsequent call is always a ETB_SEC_LOGON call. See the description of the SECURITY - TOKEN
field in the Broker ACI control block.

CLIENT-UID

CLIENT-UID is returned to a server application after a RECEIVE and contains the user ID of the
sending client. This allows for further security checks (logging, separate checks, etc.). See the de-
scription of the CLIENT-UID field in the Broker ACI control block.

ERROR-CODE

All security-related ERROR CODEs start with the ERROR CLASS 0008. The following four digits in the
ERROR CODE can be assigned by any exit if a security violation occurs. These digits only reach the
application if the current operation is aborted by the security exit with a security violation, i.e. an
appropriate return code. See ERROR-CODE under Broker ACI Fields.

ERROR-TEXT

The security exits can also pass an error message back to the application. This error text must not
be longer than 40 bytes.

KERNELSECURITY
See KERNELSECURITY under Broker ACI Fields.
ENCRYPTION-LEVEL

See ENCRYPTION-LEVEL under Broker ACI Fields or Encryption under Writing Applications using EntireX
Security in the ACI Programming documentation.

Broker 157

Using Sample Security Exits for Broker Security

Programming Broker Stub Exits

The exits in the stub have the following interface:

= Preparation Exit

= Evaluation Exit

= Programming the Kernel Exit Routine

Preparation Exit
Synopsis

int etbupre (ETBCB
void *pSendBuf

*pEtbCh,

s

void *pReserved,
char *pErrText)

Parameter Format Direction | Description
Address of ETBCB Pointer to ETBCB /O ETBCB's user_id and password are used to generate
control block. the credential which will be saved in field

security_token for function LOGON.

Address of send buffer |void pointer 1/O Send buffer supplied by caller, only available for
function SEND, length of send buffer is member of
ETBCB.

Reserved void pointer I Must be NULL.

Address of error text |char pointer ®) The error text is an array of 40 characters containing
the error text that will be returned by the stub
routine.

Return value

0 (okay) or non-zero (error)

The real error code must be written to the Broker control block as an 8-byte character array (without
trailing 0 byte!) . The error class 0008 (security / encryption error class) is reserved for all errors in
function etbupre. The error number is user-defined. Additionally, the error text can be returned

to the user in the error text array.

158

Broker

Using Sample Security Exits for Broker Security

Required Actions in the Exit

If no data encryption is desired, no action is required.

Recommended Actions in the Exit

" Generate a credential if function is LOGON and move it to the field security_token.

® Encrypt the send buffer if function is SEND. The encryption process must not change the length

of the buffer.

The exit gets control for each function of ACI version 2 and above. The exit must exist.

Evaluation Exit

Synopsis

int etbueva (ETBCB *pEtbChb,
void *pRecBufEncr,
void *pReserved,
char *pErrText)

Parameters
Parameter Format Direction | Description
Address of ETBCB Pointer to ETBCB 1/O0 ETBCB's security token is used for data decryption.
control block.
Address of receive void pointer I/O Receive buffer provided by EntireX Broker.
buffer. Only available for functions RECEIVE and SEND
WAIT=x (implicit receive).
Length of receive buffer is member of ETBCB.
Reserved void pointer I Must be NULL.
Address of error text | char pointer @) The error text is an array of 40 characters

containing the error text which will be returned
by the stub routine.

Broker

159

Using Sample Security Exits for Broker Security

Return Value

0 (okay) or non-zero (error)

The real error code must be written to the Broker control block as an 8-byte character string (without
trailing O bytes!). The error class 0008 (security / encryption error class) is reserved for all errors
in function etbueva. The error number is user-defined.

In addition, the error text can be returned to the user.
Required Actions in the Exit

If no data decryption is wanted, no action is required.
Recommended Actions in the Exit

® Decrypt the receive buffer if functions are RECEIVE or SEND with WAIT. The decryption process
must not change the length of the buffer.

The exit gets control for each function of ACI Version 2 and above. The exit must exist.
Use of a Single Send/Receive Buffer

A single send/receive buffer is used to perform encryption in place. This means that encrypted
data is provided in the send buffer. After the completion of a send/nowait command, the application
should ignore the contents of the send buffer, i.e. the encrypted data.

Programming the Kernel Exit Routine

All authentication, authorization, encryption and decryption exits are combined within one exit

module named USRSEC. The various security checks are indicated by a type parameter in the CALL
interface. USRSEC is provided with EntireX Broker as the default security exit. It is invoked if SE-

CURITY=YES is set in the attribute file. Prior to EntireX, the USRSEC exit was available only with the
SAF Gateway security package.

The general syntax of this user exit is defined as follows:

160 Broker

Using Sample Security Exits for Broker Security

Synopsis

long usrsec (ETB_SECPAR *pParSec,
void *pVarious,
char *pErrText,
char *pWorkArea,
long 1WorkArea)

Parameters

Parameter Format Direction | Description

Address of security parameter |Pointer to structure I Contains the security type flag.

block ETB_SECPAR

Addpress of type-dependent |void pointer I See control block structures

security parameter block ETB_SECPAR_<type>.

Addpress of error text char pointer @) The error text is an array of 40 characters
containing the error text which will be
returned to the user.

Address of work area char pointer ®) Volatile work area.

Length of work area long integer value I Size of the work area in number of bytes.

Return Value

0 (okay) or user-defined error number

Error class 0008 (security / encryption error class) and the error number will be returned to the
user. In addition, the error text can be returned to the user.

Layout of Security Parameter Block ETB_SECPAR

typedef struct _ETB_SECPAR

{
unsigned long vers; /* I: interface version number)

Jfdefine ETB_SEC_VERSION_1 (1) /* ETBCB versionl (no stub exits)*/
ffidefine ETB_SEC_VERSION_2 (2) /* ETBCB version2 (stub exits) =

unsigned Tong type; /* 1: security type =
Jfdefine ETB_SEC_LOGON (1) /* user authentication (LOGON))
ffdefine ETB_SEC_LOGOFF (2) /* destroy user env (LOGOFF) =
Jfdefine ETB_SEC_REGISTER (3) /* authorization for REGISTER %/
jidefine ETB_SEC_SEND (4) /* authorization for SEND */
fidefine ETB_SEC_ENCRYPT (5) /* encrypt message (RECEIVE) &y
Jfdefine ETB_SEC_DECRYPT (6) /* decrypt message (SEND) &y

Broker 161

Using Sample Security Exits for Broker Security

char id[3]; /* 1:ID e.g. WOl for worker task 1 */

void *pNetAddr
} ETB_SECPAR;

/* I: pointer to

network address %)

Parameter |Direction |Description

address.

version |l The interface version number.

type I Unsigned long type.

char id I Identifier for the task.

pNetAddr|I Pointer to the network address. A TCP/IP address contains 0001 in the first two bytes,

followed by the actual address in the next four bytes. If the pointer is 0000, there is no

Layouts of Type-dependent Security Parameter Blocks

This section describes the following security parameter blocks:

® DECRYPT
= LOGOFF
= LOGON
" NEWST

" REG

= SEND

typedef struct _ETB_SECPAR_

/* decrypt message of sender
{

unsigned char *pSecTok;
unsigned char *pBufECry;
unsigned char *pBufDCry;
long *pl1BufECry;

long *pl1BufDCry;

} ETB_SECPAR_DECRYPT;

typedef struct _ETB_SECPAR_

/* encrypt message for receiver
{

unsigned char *pSecTok;
unsigned char *pBufDCry;
unsigned char *pBufECry;

long *pl1BufDCry;

*/

/*
/*
/*
/*
/*

*/

/*
/*
/*
/*

— — O =

— O =

Security Token
Encrypted buffer
Decrypted buffer
length of encrypted

: length of decrypted

Security Token
Decrypted buffer
Encrypted buffer
length of decrypted

=
=
=
buffer*/
buffer*/

=
)
=
buffer*/

162

Broker

Using Sample Security Exits for Broker Security

long *plBufECry;
} ETB_SECPAR_ENCRYPT;

typedef struct _ETB_SECPAR_

/* destroy security environment
{

char *pUid;

unsigned char *pSecTok;
unsigned Tong *pnSecHndl;

} ETB_SECPAR_LOGOFF;

typedef struct _ETB_SECPAR_

/* user authentication
{

char *pUid;
unsigned char
unsigned char
unsigned char
unsigned long *pnCode;
unsigned Tong *pnSecHndl;
} ETB_SECPAR_LOGON;

*pPasswd;
*pNewPasswd;
*pSecTok;

typedef struct _ETB_SECPAR_
/* reauthentication due to new

{
char *pUid;
unsigned char
unsigned char

&
unsigned
unsigned
unsigned long *pnCode;
unsigned Tong *pnSecHndl;

} ETB_SECPAR_LOGON;

*pPasswd;
*pNewPasswd;

char
char

*pSecTok01d;
*pSecTokNew;

typedef struct _ETB_SECPAR_
/* reauthentication due to new

{
char *pUid;
unsigned char
unsigned char
unsigned char
unsigned char
unsigned Tong *pnCode;
unsigned Tong *pnSecHndl;

} ETB_SECPAR_LOGON;

*pPasswd;

*pNewPasswd;
*pSecTok01d;
*pSecTokNew;

/~k
/*
/*
/*
/*
/*

/*

/*
/*
/*

/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*

QO -

/* 1/0: Tength of encrypted buffer*/

/
/
/

*

phy

Sec.

— o o =

1/0:

=

* I: UserlID

* I: Security Token
* [: Security handle
=

UserID

Password (encoded)
New Password (encoded)

. Security Token

Character set of user
Security handle

/

sical user ID

UserID
Password (encoded)

New Password (encoded)

New security token
Character set of user
: Security handle

&y
Tok.

UserID
Password (encoded)

New Password (encoded)

*/
*/
*/

*/
*/
*/

*/

*/

*/

*/

*/
*/

Previously used security token */

*/
*/
*/

*/

*/
*/
*/

Previously used security token */

New security token
Character set of user
Security handle

*/
*/
*/

Broker

163

Using Sample Security Exits for Broker Security

typedef struct _ETB_SECPAR_

/* REGISTER authorization =/

{

char *pUid; 7% 13 UserID *f
unsigned char *pSecTok; J% g Security Token =/
char *pSrvCls; g% g Server Class *f
char *pSrvName; 7% g Server Name)
char *pService; /% 1s Service =)
unsigned Tong *pnSecHndl; 7% 13 Security handle =

} ETB_SECPAR_REG;

typedef struct _ETB_SECPAR_

/* SEND authorization =Y

{

char *pUid; 7% lg UserlID w
unsigned char *pSecTok; /% g Security Token &Y/
char *pSrvCls; 7% g Server Class w
char *pSrvName; g% 13 Server Name =)
char *pService; 7% g Service)
unsigned Tong *pnSecHndl; J% 13 Security handle)

} ETB_SECPAR_SEND;

Required/ Recommended Actions in the Exit (depending on Security Type)

Security Type Required Action Recommended Action Note

ETB_SEC_ENCRYPT |Copy decrypted to Encrypt receive data if needed. The size of the
encrypted buffer and set buffer cannot
the length of encrypted be changed in
buffer. This is necessary this exit.
because exit is called
whether the receive data
has to be encrypted or not.

ETB_SEC_DECRYPT |Copy encrypted to Decrypt receive data if needed. The size of the
decrypted buffer and set buffer cannot
the length of decrypted be changed in
buffer. This is necessary this exit.
because exit is called
irrespective of whether
send data is encrypted or
not.

ETB_SEC_LOGON Decrypt the password and check

combination of user ID and password
against the security system. Generate a
context token according to the credentials
of the user and EntireX Broker. Create a
164 Broker

Using Sample Security Exits for Broker Security

Security Type Required Action Recommended Action Note
security handle for a user session (e.g.
ACEE on z/OS).

ETB_SEC_LOGOFF [None Delete the security handle of the user
session.

ETB_SEC_NEWPUID |None An application has changed the physical

user ID between two calls. If necessary, a
new security token can be created.

ETB_SEC_NEWST None For some reason, the security token of an
application has changed and no longer
matches the original. The security token
should be recalculated and approved or
the application should be rejected.

ETB_SEC_REGISTER|None Check whether user_id is authorized to
offer the requested SERVICE (check
security_token data if necessary).

ETB_SEC_SEND None Check whether user_id is authorized to
offer the requested SERVICE (check
security_token data if necessary).

Broker 165

166

V

B 10 EntireX BroKer TULOHALveveiiiiiee oot e e re e e e e e e 169
= 11 Examples for EntireX Broker TULOMAlvvvviiiiiiiiiiiii e 185

167

168

10 EntireX Broker Tutorial

B [NErOdUCHON 10 TUIOTIAL .. eeeee ettt e e e e e e e e e s et eaaeeee s 170
B Calling the TULOMIAI MENU ...ttt e et e e e e e e e 170
= Global Defaults for the TULOMAlooiiiiii e 171
B TULOMAl COMMEANAS ...ttt e e e ettt e e e e e e ettt e e e e e e e e ettt eeeaeaeaaans 172
B USING the TULOTIAI HEID +.vvvveeeieeeeeeeee ettt ettt et et et e taaaaeraaaaeeees 173
= Using the EXamPple PrOGramseeioiiiiiieeoite et 174
® The TUtorial TraCe FACIHILYvvvvvvvrisiiiiisie ettt ettt e e et et e aaaeteaareaeaeeees 181
= ACI Test Tool: Single Broker REQUESTcouuiiiieiiiie e 183

169

EntireX Broker Tutorial

EntireX Broker is delivered with a Natural tutorial. This tutorial is written in the programming
language Natural but is useful even if you are using another programming language. Natural is
required for installation of the tutorial.

Introduction to Tutorial

The Natural tutorial shows you how to actively use EntireX Broker by

* allowing you to specify values for the fields in the ACI, which allows you to issue all types of
requests and test use of EntireX Broker. See ACI Test Tool: Single Broker Request.

® allowing you to measure throughput and response time of EntireX Broker. See Stress Mode.

= offering several example client and appropriate server programs for programming language
Natural; see Examples for EntireX Broker Tutorial. All programs can be displayed, edited and
executed. Help texts are available for each program to explain the purpose of the program, in-
dicate typical usage, and illustrate the logical program flow.

Under UNIX and Windows, use the Natural SYSOBJH utility to install the EntireX Broker Tutorial
(the Natural-based tutorial application SYSETB that is provided with EntireX). See Object Handler
in the Natural Tools and Utilities documentation for more information.

Calling the Tutorial Menu

To activate the online tutorial, log on to library SYSETB in your Natural environment and issue the
MENU command. This displays the online tutorial menu, which consists of a list of the client and
server example programs:

18:54:34 ***x ENTIREX BROKER TUTORIAL *** 07-11-15
VERSION 8.0

Client Server

———————————————— NON CONVERSATIONAL EXAMPLES --------------------~----
EXCLO1ICP EXCLO1SP Single Requests without Reply

EXCLO3CP EXCLO3SP Single Requests with Reply

---------------- Conversational Examples ----------------------------
EXCNOICP EXCNOILSP Long running Service - Non-blocked Client

EXCNO2CP EXCNO2SP Transfer messages from Server to Client

EXCNO4CP EXCNO4SP Transfer messages from Client to Server

EXCNO5CP EXCNO5SP Server with multiple parallel Conversations
---------------- Special FEALUFES ===================s====s====s======
EXDMO1CP EXDMO1SP Send messages with HOLD - delayed delivery

EXDMO2CP EXDM0O2SP Remove Service while Conversations exist

EXDMO3CP EXDMO3SP Server for multiple Services

---------------- Customized Client/Server computing -----------------

170 Broker

EntireX Broker Tutorial

__ EXRQO1-P EXRQO1-P Single Broker Requests
__ NATEXICP NATEX1SP Model to write Client/Server programs API Version 1
__ NATEX2CP NATEX2SP Model to write Client/Server programs API Version>1

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP GLOB EXIT UP DOWN

The example programs are grouped according to the following types:

® Non-conversational Examples
® Conversational Examples
® Special Features

® Getting Started

Meaning of the information in the columns:

Column |Source

Client {Name of the client program

Server |Name of the server program followed by a description of the example.

Function keys available from the main menu:

PF Key [Function | Description

Pr9 |HELP |A general help is displayed.

PF2 |GLOB |Prompts for global defaults to be used for the current session.

PF3 EXIT |Leave the online tutorial.

prF7 |UP Scroll up.
PF8 DOWN |Scroll down.

Global Defaults for the Tutorial

The following pop-up window is displayed when you press PF2 from the tutorial main menu:

18:54:34 **%% ENTIREX BROKER TUTORIAL *** 07-11-15
VERSION 8.0
Clie R e A
----- I Please modify defaults or press ENTER to continue ... ! ---
__ EXCLO ! !
__ EXCLO I Broker ID ETBXXxx !
==os ! Server Class .. ETB [===
__ EXCNO I Server Name ... Tutorial !
EXCNO I Broker Stub ... BROKER !

Broker 171

EntireX Broker Tutorial

__ EXCNO ' User ID ILGWBU !

__ EXCNO ! Token !
----- ! Node Node: MVS/ESA Name put into send data ! ---

__ EXDMO I Msg Length 64 Length of send/receive data !

__ EXDMO ' Wait Time 45S Time blocked SEND/RECEIVE [===

_ EXDMO ! SDPA Version .. 51, 2, 3, 4, 5, 6. !
----- ! Locale String.. !

__ EXRQO ! Arch Byte (rarely used) !

_ NATEX ! Force Logon ... ' " or 'N' or "Y' !

_ NATEX ! Encrypt Level.. " ' or '1' or '2' !

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP GLOB EXIT UP DOWN

The following global default settings can be modified and will be valid for the current session:

Default Meaning

Broker ID ID of the Broker in use.

Server Class |Server class in use for every example.

Server Name |Server name in use for every example.

User ID User ID in use when running an example.
Token Token in use when running an example.
Node Node name put into send data.

Msg Length |Message length used for the SEND-LENGTH and RECEIVE-LENGTH.
Wait Time Timeout value used for blocked SEND and RECEIVE calls.

SDPA version | Version of Broker control block (formerly SDPA) to select usage of old or new EntireX Broker
Interface layout.

Tutorial Commands

From the tutorial menu you can execute, list and edit example programs. You can also display
several help texts on each program.

You can perform a function by entering the appropriate line command in the input field preceding
the client program name. To display a list of available line commands, enter an asterisk in the input
field preceding the client program name.

The table below lists the available line commands:

172 Broker

EntireX Broker Tutorial

Command | Meaning

XC Execute client program.

XS Execute server program.

SH Shut down server.

H Help for the example as a whole.
HC Help for client program.

HS Help for server program.

LC List (display) client program.
LS List (display) server program.
EC Edit client program.

ES Edit server program.

The examples are also documented in Examples for EntireX Broker Tutorial.

Using the Tutorial Help

The tutorial help facility provides help texts for each client and server example program. To display
the online help text, issue the appropriate line command, H, HC or HS, for the selected example on
the online tutorial menu.

The following screen shows the online help for the server of the example “Single Requests without
Reply” (line command HS):

19:08:25 *x% ENTIREX BROKER Tutorial *** 03-05-15
Server: Single Requests without Reply

Descr. : This server establishes a service which is able to collect
simple messages from clients that require no reply.
A REGISTER is necessary to inform the Broker of the availability
of the service. The DEREGISTER, issued as the Tast action, informs
the Broker of the unavailability of the service served by this
server.
The server wants to wait for a client message and therefore uses
a blocked RECEIVE, that is, a RECEIVE with W=nS is issued to the

Broker.
Coding : LOGON ------ > logon to Broker
REGISTER ====== > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for message
until
DEREGISTER ------ > deregister service
LOGOIFF ====== > logoff from Broker

Broker 173

EntireX Broker Tutorial

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP EXIT Expml Cln Srv

The following functions are available from the help screen. You can execute a function by pressing
the appropriate PF key:

PF Key [Function | Description

PF1 |HELP |Display general help.

PF3 |EXIT |Leave the help screen.

PF9 |EXMPL |Display general help screen specific to example.

PF10 |CLN Display client help screen specific to example.

PF11 |SRV Display server help screen specific to example.

Note: You can use PF10 and PF11 to toggle between the client and server help screens.

Using the Example Programs

Use of the example “client/server programs” is the same for each example. You need to start two
sessions in order to “play” with EntireX Broker, one by executing the server program and the
other by executing the client program.

As the first session, start the server by entering XS in the input field preceding the program name,
for example in the line for Single Requests without Reply. This displays the following startup
parameter pop-up window:

9:11:38 *** ENTIREX BROKER TUTORIAL *** 07-11-15
VERSION 8.0
Client Server

28 EXCLUICR fresscccocccssscsscccscoccocoocosnaccacoooocoooconEonoon A

__ EXCLO3CP ! Please enter values or press ENTER to continue ... !
,,,,,,,, | |

__ EXCNOICP ! Mode 1 1=Step 2=Stress 3=Silent

__ EXCNO2CP ! !

__ EXCNO4CP ! Server Class . ETB

__ EXCNO5CP ! Server Name .. Tutorial
-------- I Service NcNoReply [=c=-=

__ EXDMOICP ! !

__ EXDMO2CP ! User ID ILGWBU

__ EXDMO3CP ! Token !
________ | |

__ EXRQO1-P ! Msg Length ... 64

__ NATEX1CP ! I'n 1
NATEXZCP Feccccc=ccccccccccccccmccccccccooooooooocecococnnoooooaa + n>1

174 Broker

EntireX Broker Tutorial

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP GLOB EXIT UP DOWN

The fields in this window are listed in logical groups. The first group controls the execution of the
example and contains the mode parameter; for clients, end criteria to stop the execution is also
displayed. Valid mode parameters are Step Mode, Stress Mode, Silent Mode. The other fields show
some global defaults which you can overwrite for this particular client/server run. Note, however,
that the Broker ID and Wait Time values can only be modified in the Global Defaults window (see
above).

When using an example for the first time, you are recommended to select Step mode.
Step Mode

In this mode, the example is executed step by step. This means that every broker call is displayed
on your screen and must be explicitly issued by pressing Pr5. Upon return, the response from the
broker is displayed in the Errtxt field together with the next meaningful broker call, ready for ex-
ecution. You can always view previous Broker calls using the trace facility (PF4), which provides
“before and after” images of every call issued to the broker.

If you select Step Mode and press ENTER, a screen similar to the following is displayed for every
example:

Press PF5 to issue Request ...

19:13:53 **%*x ENTIREX BROKER TUTORIAL *** 03-05=15
Server: Single Requests without Reply
Errtxt
Send Data
Rcve Data
Type/Vers 1 /5
Broker ID .. ETBxxx Send Len 64
Function ..* LOGON Rcve Len 64
Option* Errtx Len 40
Wait % Rtrn Len 0
Class ETB User ID ILGWBU
Name Tutorial Token
Service NcNoReply Password
Conv ID ...* New Password .
User Data .. Sec Token
Conv Stat .. Environment ..
Client UID ...

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Strss

Exit Trace Exec

SBuff RBuff

Broker

175

EntireX Broker Tutorial

The following functions are available from this screen. You can execute a function by pressing the
appropriate PF key:

PF Key [Function | Description

PF1 HELP |Display the help screen on the example program. See Using the Tutorial Help.

PF2 |STRSS |Change execution mode to Stress.

PF3 EXIT |Leave sample program.

PF4 |TRACE |Invoke the The Tutorial Trace Facility.
PF5 |EXEC |Issue broker call.

PF10 |SBUFF |See Display/Modify Send Buffer.

PF11 |RBUFF |See Display/Reset Receive Buffer.

Stress Mode

In this mode, the example is executed without further user interaction. Every Broker call issued
is also displayed on the screen to allow you to see the activity of the client or server. Execution
terminates in different ways:

* For clients:
Further end criteria (such as number of messages and number of conversations) are supplied
in the startup parameter window of the client example. When the specified values are reached,
processing stops.

" For servers:
Servers run until they are shut down by a special shut down message sent to the server (SH
command from the tutorial main menu).

When execution in Stress mode is stopped, the following summary of client/server activity is dis-
played:

Waiting for Request ...
20:54:37 *%% ENTIREX BROKER TUTORIAL *** 03-05-15
Server: Single Requests without Reply

00200216 API: Invalid BROKER-ID !

|

|

! OP System .. MVS Load Count Max !
! T System ., Ct¢€s 0 ============ ======== ======== !
! Speed/Mode . 191.850 / 2 Messages

! Msg Length . 64 Conv !
! ETB Calls .. 1 Parallel CID !
| |
! Time/Call Count Ave Min Max Time elapsed Absolute Relative !
|l s e e o -2 ——— -2 o —c - o —- - S ———m— = ———mm———m— == ———m—— == == === == = |
! Send non-blk Total 0.0 100 % !
! Send blocked Executing .. 0.0 83.5 % !

176 Broker

EntireX Broker Tutorial

! Rcve non-blk Waiting ‘
! Rcve blocked Transport . 0.0 16.4 % !
! EQC coooococ Partner ... 0.0 bl
L Unde coccooe !
! Register ... !
! Deregister . !
R e T LT +
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Strss Exit Trace Exec Buff RBuff
Meaning of the fields:
Field Meaning
0P System Underlying operating system.
TP System Underlying transaction monitor.
Speed Indication of the performance of the environment, relative to the corresponding
value of other environments.
Mode Execution mode of the example.
Msg Length of messages sent/received.
ETB Number of calls issued to the broker.
Load
Messages/Count Number of messages sent/received.
Messages/Max Number of messages used as criteria to stop execution.
Conv/Count Number of conversations conducted.
Conv/Max Number of conversations used as criteria to stop execution.

Parallel CID/Count

Highest number of parallel conversations reached.

Parallel CID/Max

Maximum number of parallel conversations allowed.

Time/Call

Send non-blk/Count

Number of non-blocked SEND calls issued.

Send non-blk/Ave

Average elapsed time for a non-blocked SEND call.

Send non-blk/Min

Shortest elapsed time for a non-blocked SEND call.

Send non-bTk/Max

Longest elapsed time for a non-blocked SEND call.

Send blocked Same as above for blocked SEND calls.

Rcve non-blk Same as above for non-blocked RECETVE calls.
Rcve blocked Same as above for blocked RECETVE calls.

EOC Same as above for EQC calls.

Undo Same as above for UNDO calls.

Register Same as above for REGISTER calls.

Deregister

Same as above for DEREGISTER calls.

Time elapsed

Broker

177

EntireX Broker Tutorial

Field

Meaning

Total/Absolute

Elapsed time in seconds between start and end for the run.

Total/Relative

Percentage of time between start and end for the run.

Executing/Absolute

Elapsed time in seconds when example is executing.

Executing/Relative

Percentage of time when example is executing.

Waiting

Time needed for transport plus execution time required by the partner.

Transport/Absolute

Elapsed time in seconds used for transport services. Transport means EntireX
Broker and all other media involved such as SVCs, link routines, Entire Net-work,
TCP/IC.

Transport/Relative

Percentage of time used for transport services.

Partner/Absolute

Elapsed time in seconds needed by the partner to execute the call. This is relevant
only to blocked SEND calls, as this is the only call involving a partner.

Partner/Relative

Percentage of time needed by the partner to execute the call. This is relevant only
to blocked SEND calls, as this is the only call involving a partner.

] Note:

Total/Relative=(Executing/Relative)+(Transport/Relative)+Partner/Relative=100%

The waiting period of the different call types consists of the following times:

Blocked RECEIVE

For blocked RECEIVEs, the elapsed time is calculated from the following;:

1. The time when the RECEIVE call was routed from the server to the broker.

2. A time of no activity during which there was no client request to be processed. This value may

be high.

3. The time when an incoming client request was routed from the broker to the server.

RECEIVE with 1
WAIT

EntireX

Broker

Request received -4 3

178

Broker

EntireX Broker Tutorial

Blocked SEND

For blocked SENDs, the elapsed time is calculated from the following:

1. The time when the SEND call was routed from the client to the broker.

N

A time of no activity during which there was no server ready to process the request. This value
may be high.

The time when the client request was routed from the broker to the server.
The time when the request was processed by the server.

The time when the response was routed from the server to the broker.

AL O

The time when the answer was routed from the broker back to the client.

_ Server RECEIVE
SEND with WAIT

Request recaived

Repl
Reply ad

All Other EntireX Broker Calls

For all other calls to the broker, the elapsed time is calculated from the following:

1. The time when the call was routed from the participant to the broker.
2. The time when the call was processed by the broker.

3. The time when the call was routed from the broker back to the participant.

All requests
without WAIT

Request received

Broker 179

EntireX Broker Tutorial

Silent Mode

In this mode, the same applies as for Stress mode, except that no map I/Os are performed between
broker calls. It is therefore not possible to view activities while the client and server example is
running.

180 Broker

EntireX Broker Tutorial

The Tutorial Trace Facility

The trace facility is activated by pressing the appropriate PF key after starting an example program.
With the trace option on, “before and after” images of the last ten requests issued to the broker
are made visible. When the trace option is selected, the most recent request is always displayed:

Use PF7 / PF8 to scroll to older / more recent requests. Scroll right with Pr11 to display a second
screen page for every request.

21:00:07 *** ENTIREX BROKER TUTORIAL *** 03-05-15
------------ Image after call --------------- Image before call - 0 First
Type/Vers .. 1 / 5 1 /5

Errtext 00000000 Successful response

Broker ID .. ETB233 ETB233

Class ETB ETB

Name Tutorial Tutorial
Service NcNoReply NcNoReply
Fct LOGON LOGON

Conv ID
Conv Status.
User Data

Client UID .

Send Data .. 0000000000326891781
Rcve Data

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Up Down Left Right

The following functions are available from this screen You can execute a function by pressing the
appropriate PF key:

Broker 181

EntireX Broker Tutorial

PF Key [Function | Description

PF1 HELP |Display a help screen on the example program.
PF3 EXIT |Leave trace.

PF7 |UP Scroll to older requests.

PF8 |DOWN |Scroll to more recent requests.

PF10 |LEFT |Scroll to first screen page.

PF11 |RIGHT |Scroll to second screen page.

Display/Modify Send Buffer

Selecting this option by pressing PF10 after starting the example from the tutorial menu displays
the send buffer contents in hexadecimal and character format:

21:01:

28

***% ENTIREX BROKER TUTORIAL ***
Display/Modify Send Buffer

00016 0000000000081804 FOFOFOFOFOFOFOFOFOFOFOF8F1F8FOF4

00032
00048
00064
00080
00096
00112
00128
00144
00160
00176
00192
00208
00224
00240
00256

Enter-

070

FOF7F040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

40404040404040404040404040404040

PF1-
Help

==PF2===PF3J===PFl===PF5===PFG===PF7 ===PFB===PFY=
Exit Top Up Down Bot

Send Len ..

Posit

03-05-15

64

==PFLO==PFLll==PF12==-
Reset

Use PF6 to PF9 to scroll up or down as needed. Positioning to a specific offset is possible by pressing
PF10. You can overwrite the send buffer contents in the character-oriented column. The send buffer
is cleared with PF12.

Meaning of the information in the columns from left to right:

182

Broker

EntireX Broker Tutorial

Column|Meaning

1 Send buffer offset decimal.

2 Send buffer contents displayed in character format.

3 Send buffer contents displayed in hexadecimal format.

The following functions are available from this screen. You can execute a function by pressing the
appropriate PF key:

PF Key [Function | Description

PF1 [HELP |Display a help screen on the example program.

PF3 |EXIT |Leave send buffer display.

PF6 | TOP Position to first page.

PF7 |UP Scroll one up page.

PF8 |DOWN |Scroll down one page.

PF9 |BOT Position to last page.

PF10 |POSIT |Position to a specified offset in the send buffer.

PF12 |RESET |Set the send buffer to low values.

Display/Reset Receive Buffer
Selecting this option by pressing PF11 after starting the example from the tutorial menu displays

the receive buffer contents in hexadecimal and character format in the same way as for the send
buffer. See See Display/Modify Send Buffer.

ACI Test Tool: Single Broker Request

This screen is an ACI test tool. An interface is provided which allows you to fill the broker ACI
yourself and therefore issue all types of ACI requests in any sequence. You can use it

= for test purposes of EntireX Broker;

* for studying EntireX Broker functions and functionality;

" as counterpart of any client or server written in any programming language.

If you execute this program, (line command XC or XS), the user interface presents the broker ACI
directly, which you can fill:

Broker 183

EntireX Broker Tutorial

Press PF5 to issue Request ...
19:46:24 **%x ENTIREX BROKER TUTORTIAL *** 03=-05=15
: Single Broker Requests

Errtxt
Send Data
Rcve Data

Type/Vers .. 1 / 5

Broker ID .. ETBxxx Send Len 0
Function ..* Rcve Len 0
Option* Errtx Len 40
Wait % Rtrn Len 0
Class ETB User ID TLGWBU
Name Tutorial Token
Service Request Password
Conv ID ...~* New Password .
User Data .. Sec Token

Conv Stat .. Environment ..
Client UID ...

Enter=PFl===PF2===PF3===PFl===PF5===PFE===PF7===PF8===PF9===PFL0==PF1l==PF12===
Help Exit Trace Exec Reg Dreg Send Rcve SBuff RBuff Reset

Press PF6 to PF9 to assign default values to the broker ACI for the selected function. A field help is
available for fields marked with an asterisk (mark the field with the cursor and press PF1).

To issue a request to the broker, press PFs.

The following functions are available from this screen. You can execute a function by pressing the
appropriate PF key:

PF Key [Function | Description

PF1 [HELP |Display a help screen on this example program. If you press PF1 with the cursor on a field
marked with an asterisk (*), a help window for the field is displayed.

PF3 |EXIT |Leave the program.

PF4 |TRACE |Invoke tracing of requests. See The Tutorial Trace Facility.

PF5 EXEC |Route a request to the broker.

PF6 |REG Assign defaults for REGISTER function to the ACL
PF7 |DREG |Assign defaults for DEREGISTER function to the ACL
PF8 |SEND |Assign defaults for SEND function to the ACI.

PF9 |RCVE |Assign defaults for RECEIVE function to the ACL
PF10 |SBUFF |See Display/Modify Send Buffer

PF11 |RBUFF |See Display/Reset Receive Buffer:

PF12 |RESET |Set the ACI to low values.

184 Broker

11 Examples for EntireX Broker Tutorial

® NON-CONVErSational EXAMPIESvvviieieeieiiiiit ettt e et e e e s aeea e 186
B Conversational EXAMPIEScoouiuiiiiiiiiii e e 188
B SPECIAI FEATUIMES ...ttt e 194
B GEtliNG SEAMEA ... 198
B Attach Manager INTEITACEvvieiiii e 201
B NON-DIOCKEA SEIVET ...t e ettt e e e e e et ee e e e e e e e 201

185

Examples for EntireX Broker Tutorial

This chapter documents the examples provided in the Online Tutorial for EntireX Broker. The purpose
of each example is outlined, the objective of the client and server parts of the example is explained,
and the logical program flow is illustrated. This should help you implement similar functionality
using any of the supported programming languages. The Online Tutorial contains Natural example
code to demonstrate these examples.

Non-conversational Examples

= Example 1: Single Request without Reply
= Example 2: Single Request with Reply

Example 1: Single Request without Reply

This example shows a client sending simple messages that do not require a reply from a server,
for example feeding statistical performance data into a network-wide performance monitor. Since
no reply is expected, the client does not have to wait for an answer and therefore issues a non-
blocked SEND call to the broker. The established communication is non-conversational.

Such a client could be used as a trigger for a net management server from all servers in the network.
Client

The client issues simple messages to a server without expecting a reply. Because no reply is required
(the server will not return any response), the client issues a SEND without wait (W=N0). This type
of call is called non-blocked, and control is returned to the caller immediately. The client specifies
non-conversational communication using "NONE" in the CONV-ID field of the ACI control block.

Server

The server establishes a service which is able to collect simple messages from clients that do not
require a reply. A REGISTER is necessary to inform the Broker of the availability of the service. The
DEREGISTER, issued as the last action, informs the Broker of the unavailability of the service served
by this server.

The server wants to wait for a client message and therefore uses a blocked RECEIVE - that is, a
RECEIVE with W=nS is issued to the Broker.

186 Broker

Examples for EntireX Broker Tutorial

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=NO,CID=NONE ------ > forward message to server
until
LOGOFF ----- > logoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for message
until
DEREGISTER ------ > deregister service
LOGOFF ====== > logoff from Broker

Example 2: Single Request with Reply

This example shows a client sending requests that require a reply from a server, for example a
database access. Traditional remote procedure calls (RPCs) are also referred in this way. Since a
reply is expected, the client uses a blocked SEND to issue the request to the server and wait for the
reply. This is the equivalent of an implicit receive. The established communication is non-conver-
sational.

Client

The client issues requests and expects a reply from the server. Because a reply is required and no
conversation is built, a blocked SEND (W=nS) must be used. If the wait time elapses before the
reply is received, there is no chance (in non-conversational mode) of getting the reply. However,
you can retrieve the reply later in conversational mode by issuing a subsequent RECEIVE.

Server

The server establishes a service that is able to receive requests and return a reply to the client. Al-
though the communication is non-conversational, the server gets a conversation ID with the in-
coming request. This ID must be retrieved and used when sending back the reply to the client.

The server must issue the RECEIVE call with CID=NEW in order to prevent unnecessary “Conversation
ID timeout” messages.

Broker 187

Examples for EntireX Broker Tutorial

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=nS,CID=NONE ------ > send and wait for reply
until
LOGOFF ----- > logoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for request
SEND,W=NO,CID=1234 ------ > reply to client
until
DEREGISTER ------ > deregister service
LOGOFF ------ > logoff from Broker

Conversational Examples

= Example 3: Long Running Service - Non-blocked Client
Example 4: Transfer Messages from Server to Client
Example 5: Transfer Messages from Client to Server
Example 6: Server with Multiple Parallel Conversations

Example 3: Long Running Service - Non-blocked Client

This example shows a client dealing with a long-running service. The server process is initiated
with a non-blocked SEND request. Later on, the client checks the processing status with a non-
blocked RECEIVE request. However, the client retains control in all broker calls and is never blocked.
The established communication is conversational. This example applies to any background pro-
cessing in which the client should retain control.

Client

The client issues a non-blocked SEND to initiate a conversation with the desired service. With the
subsequent non-blocked RECEIVE requests, the process is checked to see if it is still running or has
finished.

188 Broker

Examples for EntireX Broker Tutorial

Server

The server provides a service which takes some time to finish. It demonstrates a non-blocked client
example. The long running processing is simulated by a wait of 30 seconds done with a blocked
RECEIVE to a dummy WAIT service.

Broker 189

Examples for EntireX Broker Tutorial

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=NQ,CID=NEW ------ > initiate process/conversation
repeat
RECEIVE,W=NO,CID=1234 ------ > check for process status

decide on ERROR-CLASS
VALUE 0 successful response - retrieve reply
VALUE 3 processing ended
VALUE 74 wait some time and retry

until

until

LOGOFF ----> logoff from Broker

Server

LOGON ------ > logon to Broker

REGISTER ------ > offer service

repeat
RECEIVE,W=nS,CID=NEW ------ > wait for new conversation
wait 30 seconds - simulate long running processing
SEND,OP=EQC,W=N0O,CID=1234 ----- > reply and EOC

until

DEREGISTER ====== > deregister service

LOGOFF ====== > logoff from Broker

Example 4: Transfer Messages from Server to Client

This example shows a client retrieving a large amount of data from a server within a conversation,
for example a GET <file>command of a file transfer system. The transfer of messages/data to the
clientis done by the server with non-blocked SENDs. This is important because the server can work
independently from the client, that is, forward the data/messages to the client and is then quickly
free to process the next conversation. The established communication is conversational.

Client

The client receives a large amount of data/messages from a server. The SEND initiates a conversation
with the desired service. Following the RECEIVE, the client retrieves data/messages from the con-
nected server until the conversation is ended by the server.

190 Broker

Examples for EntireX Broker Tutorial

Server

The server is able to send a large amount of data/messages to the client. The data/messages are
transferred with non-blocked (W=N0) SENDs. The last transfer terminates the conversation with a
non-blocked SEND and option EOC.

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=nS,CID=NEW ------ > initiate conversation
repeat
RECEIVE,W=nS,CID=1234 ------ > receive data/message

decide on ERROR-CLASS
VALUE 0 successful response
VALUE 3 conversation ended

until
until
LOGOFF ----- > logoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for new conversation
SEND,W=NO,CID=1234 ------ > acknowledge conversation
repeat
SEND,W=NO,CID=1234 ------ > transfer data/message
until end of data
SEND, OP=EOC,W=NO,CID=1234 ----- > last data/message and EOC
until
DEREGISTER ------ > deregister service
LOGQFF ====== > logoff from Broker

Example 5: Transfer Messages from Client to Server

This example shows a client transferring a large amount of data to a server using conversational
communication, for example, a PUT <file> command of a file transfer system. Once the conver-
sation is established, the server depends on the client's activity, because the client always sends
the messages/data and finishes the conversation, thus tying the server to one conversation for a
long time. This might in some circumstances be unacceptable. The situation can be improved when
multiple servers for this service are started simultaneously.

Broker 191

Examples for EntireX Broker Tutorial

Client

The client transfers a large amount of data/messages to the server. The first blocked SEND initiates
a conversation with the server. The server acknowledges the conversation with a reply. Subsequent
non-blocked SENDs then transfer the data/messages to the server. The last transfer terminates the
conversation with a non-blocked SEND and option EOC.

Server

The server retrieves a large amount of data from the client. The server depends on the client at
the second RECEIVE for the data/messages, because the call is blocked.

Coding
Client
LOGON ----- > logon to Broker
repeat
SEND,W=nS,CID=NEW ------ > initiate conversation
repeat
SEND,W=NO,CID=1234 ------ > transfer data/message
until
SEND, OP=EOC,W=NO,CID=1234 ------ > last data/message and EOC
until
LOGOFF ----> logoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for new conversation
SEND,W=NO,CID=1234 ------ > acknowledge conversation
repeat
RECEIVE,W=nS,CID=1234 ------ > receive data/message
until
until
DEREGISTER ------ > deregister service
LOGOFF ------ > logoff from Broker

192 Broker

Examples for EntireX Broker Tutorial

Example 6: Server with Multiple Parallel Conversations

This example shows a server which is able to process multiple conversations in parallel. To build
such a server, the states of active conversations must be maintained in order to know where pro-
cessing continues when the next request/message for the conversation is retrieved. Be aware that
this can lead to complicated programs (multiplexing servers in environments where it is not
feasible to have one server process per client).

A simpler and more convenient way to build a server environment which is able to process multiple
conversations is to start replicates of the server. However, multiplexing servers may be appropriate
in environments with restricted resources (for example, limited number of tasks).

The established communication is conversational.
Client

This client is used to demonstrate a server which is able to process multiple conversations in par-
allel. The first blocked SEND initiates the conversation. The server always acknowledges the con-
versation with a reply to the client. With the subsequent calls, requests/replies are transferred
within the established conversation. The conversation is terminated by issuing an EOC.

Server

The server processes multiple conversations in parallel. At the RECEIVE with CID=ANY, client requests
are retrieved, which belong either to existing or new conversations. All known conversations are
stored in an array. When conversations finish, these entries are freed. When the last entry is used,
CID=0LD is issued, preventing the retrieval of new conversations.

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=nS,CID=NEW ------ > initiate conversation
repeat
SEND,W=nS,CID=1234 ------ > ongoing conversation
until
EOC,CID=1234 ------ > end of conversation
until
LOGOFF ----- > logoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=nS,CID=ANY/QLD ------ > OLD if max parallel reached

decide on ERROR-CLASS
VALUE 0 successful response

Broker 193

Examples for EntireX Broker Tutorial

SEND,W=NO,CID=1234 ------ > new or ongoing conversation
VALUE 3 conversation ended
until
DEREGISTER ------ > deregister service
LOGOFF ------ > logoff from Broker

Special Features

= Example 7: Send Messages with HOLD - Delayed Delivery
= Example 8: Remove Service while Conversations Exist
= Example 9: Server for Multiple Services

Example 7: Send Messages with HOLD - Delayed Delivery

This example demonstrates the HOLD facility of EntireX Broker. Data/messages are set in hold by
the SEND with the option HOLD. This prevents the partner from retrieving the data/messages until
a SEND without the HOLD option is issued. Held data/messages are always under control of the

sender until they are released. With the function UNDO, the sender can remove held data/messages.

The HOLD option is useful if a packet of data has to be delivered that does not fit in one request.
Either the whole request packet has to be shipped, or nothing (minimum transaction support).
The established communication is conversational. To set data/messages in hold only makes sense
in conversational communications.

Client

This client demonstrates the hold mechanism used by the server. The data/messages are set in
hold by the server and released with the last data/message sent. The client does not recognize this.

Server

The server sends data using the HOLD facility. Data is set in hold with SEND and option HOLD.

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=nS,CID=NEW ------ > initiate conversation
repeat
RECEIVE,W=nS,CID=1234 ------ > receive data/messages

decide on ERROR-CLASS
VALUE 0 successful response
VALUE 3 conversation ended
until

194 Broker

Examples for EntireX Broker Tutorial

until
LOGOFF ------ > logoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ====== > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for new conversation
SEND,W=NO,CID=1234 ------ > acknowledge conversation
repeat
SEND,OP=HOLD,W=NO,CID=1234 ------ > set data in hold
until
if error
UNDQ ====== > remove accumulated data
endif
SEND,OP=EOC,W=N0O,CID=1234 ----- > release data in hold
until
DEREGISTER ----> deregister service
LOGOFF ------ > logoff from Broker

Example 8: Remove Service while Conversations Exist

This example demonstrates a server that deregisters while conversations still exist. The conversa-
tions continue. With the option QUIESCE used on the DEREGISTER function, servers are able to remove
their services in a smooth way. Established conversations are allowed to continue until ended
with EOC by any partner. This mechanism is needed to shut down a server without aborting existing
conversations.

New conversations are not accepted for servers that have removed their services and will be con-
nected by the broker to other servers if available, or else rejected.

The established communication is conversational.
Client

The client establishes a conversation with a blocked SEND. After retrieving an acknowledgment
from the server, subsequent requests/replies are transferred within this conversation. However,
the service is deregistered while the conversation continues.

Broker 195

Examples for EntireX Broker Tutorial

Server

After a new conversation is retrieved, the server removes the service in a smooth way by issuing
a DEREGISTER with option QUIESCE. The established conversation continues until ended by the
client.

Coding
Client
LOGON ------ > logon to Broker
SEND,W=nS,CID=NEW ------ > initiate conversation
repeat
SEND,W=nS,CID=1234 ---> ongoing after deregistration
until
EOC,CID=1234 ----------- > end of conversation
LOGOFF ----- > logoff from Broker
Server
LOGON ------ > logon to Broker
repeat
REGISTER ------ > offer service
RECEIVE,W=nS,CID=NEW ------ > wait for new conversation
DEREGISTER,OP=QUIESCE ------ > deregister service
SEND,W=NO,CID=1234 ------ > acknowledge new conversation
repeat
RECEIVE,W=nS,CID=1234 ------ > ongoing conversation
SEND,W=NO,CID=1234 ------ > reply to client
until 3 conversation ended
until
LOGOFF ------ > logoff from Broker

Example 9: Server for Multiple Services

This example demonstrates a server offering multiple services. It is possible to issue a RECEIVE to
the broker and specify the service name with an asterisk(*) in any of the fields SERVER-CLASS,
SERVER-NAME and SERVICE. This enables clients to wait for multiple services with one RECEIVE. The
services waited for must all be previously registered. The asterisk(*) notation can also be used in
DEREGISTER calls.

This feature is useful for alias service names or multipurpose servers. For example, a server might
be able to retrieve data from a database, to add data and to remove data. A way to implement this
is to register three different services.

The established communication is non-conversational.

196 Broker

Examples for EntireX Broker Tutorial

Client

This client demonstrates a server which is able to offer multiple services. The name of the service

the message is routed to is alternately switched between Service 1 and Service 2.
Server

The server demonstrates how to offer multiple services. With the REGISTER call, two services are
established. With the RECEIVE call using the asterisk notation for the service (SV=*), the server can
process any request for any of the services it has registered. The actual service name to which the
request belongs is returned in the SERVER-CLASS, SERVER-NAME and SERVICE fields by the Broker.
This allows the server to offer multiple services with a single RECEIVE call.

With the DEREGISTER call, all previously registered services are removed using the asterisk notation
for the service name (SV=%).

Coding

Client

LOGON ------ > logon to Broker

repeat
SEND,SV=SV1,W=nS,CID=NONE ------ > send to first service
SEND,SV=SV2,W=nS,CID=NONE ------ > send to second service

until

LOGOFF ----- > logoff from Broker

Server

LOGON ------ > logon to Broker

REGISTER,SV=SVl ------ > offer first service

REGISTER,SV=SV2 ------ > offer second service

repeat
RECEIVE,SV=*,W=nS,CID=NEW ------ > wait for any service
SEND,W=NO,CID=1234 ------ > reply to client

until

DEREGISTER,SV=* ------ > deregister all services

LOGOFF ----- > logoff from Broker

Broker 197

Examples for EntireX Broker Tutorial

Getting Started

= Example 10: ACI Test Tool: Single Broker Requests
= Example 11: Model to write Client/Server Programs API Version 1
= Example 12: Model to write Client/Server programs API Version 2

Example 10: ACI Test Tool: Single Broker Requests

This screen is an ACI test tool. An interface is provided which allows you to fill the broker ACI
yourself and therefore issue all types of ACI requests in any sequence. You can use it

= for test purposes of EntireX Broker;
* for studying EntireX Broker functions and functionality;

" as counterpart of any client or server written in any programming language.
Example 11: Model to write Client/Server Programs API Version 1

This example shows a simple client/server communication. It implements Single requests with Reply
(see also this example in the tutorial). The client issues a simple request and waits for a reply from
the server.

The established communication is non-conversational.

The programs for this example do not need any other Natural object (maps, data areas etc.) for
execution.

You can copy the programs to any Natural library and use them as models to write your own cli-
ent/server programs.

Client

This client issues requests and expects a reply from the server. Because a reply is required and no
conversation is built, a blocked SEND (W=nS) must be used (see also the example Single Requests
with Reply in the tutorial).

You can copy this program to any Natural library and use it as model to write your own client
programs.

198 Broker

Examples for EntireX Broker Tutorial

Server

This server establishes a service which is able to collect simple messages from clients that do not
require a reply. Although the communication is non-conversational the server gets a conversation
ID with the incoming request. This ID must be used when sending back the reply to the client (see
also the example Single Requests with Reply in the tutorial). You can copy this program to any
Natural library and use it as a model to write your own server programs.

Coding

Client
repeat

SEND,W=nS,CID=NONE ------ > send and wait for reply
until

Server
REGISTER ------ > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for request
SEND,W=NO,CID=1234 ------ > reply to client
until
DEREGISTER ====== > deregister service

Example 12: Model to write Client/Server programs API Version 2

This example shows a simple client/server communication. It implements Single requests with Reply
(see also this example in the tutorial). The client issues a simple request and waits for a reply from
the server.

The established communication is non-conversational.

The programs for this example do not need any further Natural object (maps, data areas etc.) for
execution.

You can copy the programs to any Natural library and use them as models to write your own cli-
ent/server programs.

Broker 199

Examples for EntireX Broker Tutorial

Client

This client issues requests and expects a reply from the server. Because a reply is required and no
conversation is built, a blocked SEND (W=nS) must be used (see also the example Single Requests
with Reply in the tutorial).

You can copy this program to any Natural library and use it as model to write your own client
programs.

Server

This server establishes a service which is able to collect simple messages from clients that do not
require a reply. Although the communication is non-conversational the server gets a conversation
ID with the incoming request. This ID must be used when sending back the reply to the client (see
also the example Single Requests with Reply in the tutorial). You can copy this program to any
Natural library and use it as a model to write your own server programs.

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=nS,CID=NONE ------ > send and wait for reply
until
LOGOFF ----- > logoff from Broker
Server
LOGON ========= > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=nS,CID=NEW ------ > wait for request
SEND,W=NO,CID=1234 -------- > reply to client
until
DEREGISTER ----> deregister service
LOGOFF -------- > logoff from Broker

200 Broker

Examples for EntireX Broker Tutorial

Attach Manager Interface

Example 13: Demonstration of the Attach Manager Interface

An Attach Manager is a server that is able to start server. If no server is found for a client request,
the Broker informs the Attach Manager to start the desired server. To be informed by the Broker,
the Attach Manager must previously register all servers for which it is responsible using the option
ATTACH.

Coding
LOGON ------ > logon to Broker
REGISTER ======================= > Attach Manager main service
REGISTER,OP=ATTACH,SV=SV1l ------ > attachable service
repeat
RECEIVE,W=nS,CID=NEW --------- > wait for any service
until
DEREGISTER,SV=* ------ > deregister all services
LOGOFF ----- > logoff from Broker

Non-blocked Server

= Example 14: Single Requests without Reply - A Polling Server
= Example 15: Single Requests with Reply - A Polling Server

Example 14: Single Requests without Reply - A Polling Server

Demonstration of Attach Manager Interface:

This example shows a server collecting simple messages from clients that do not require a reply.
The server polls for a message at the RECEIVE, i.e. the RECEIVE is not blocked. This enables the
server to do other work, even if no message is available for processing. The client uses a non-
blocked SEND because no reply is expected from the server. The communication is non-conversa-
tional.

Broker 201

Examples for EntireX Broker Tutorial

Example

A Server collecting cyclic statistical data from various input media, e.g. mainframe console, job
management systems, databases and client messages from the broker.

Client

This client issues simple messages to a server without expecting a reply. Because no reply is required
- the server will not return any response - the client issues a SEND without wait (W=N0). This type
of call is called non-blocked because it is not blocked and control is returned immediately to the
caller. With a value of "NONE" in the CONV-ID field of the ACI control block the client specifies
non-conversational communication.

Server

This example shows a server collecting simple messages from clients that do not require a reply.
The server polls for a message at the RECEIVE, i.e. the RECEIVE is not blocked. This enables the
server to do other work, even if no message is available for processing. The client uses a non-
blocked SEND since no reply is expected from the server. The communication is non-conversational.

A Server collecting cyclic statistical data from various input media, e.g. mainframe console, job
management systems, databases and client messages from the broker.

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=NO,CID=NONE ------ > forward message to server
until
LOGOFF ----> Togoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=NO,CID=NEW ------ > poll for message

decide on ERROR-CLASS
VALUE 0 successfull response
VALUE 74 no message available - so free for other work

until
DEREGISTER ------ > deregister service
LOGOFF ------ > logoff from Broker

202 Broker

Examples for EntireX Broker Tutorial

Example 15: Single Requests with Reply - A Polling Server

This example shows a client sending requests/messages and expecting a reply from the server.

The established communication is non-conversational. Because a reply is expected, the client uses
a blocked SEND call to the broker. The server polls for a request at the RECEIVE, i.e. the RECEIVE is
non-blocked. This enables the server to do other work, even if no request is available for processing.

Client

This client issues requests/messages and expects a reply from the server. Because a reply is required
and no conversation is built, a blocked SEND (W=nS) must be used. If the wait time elapses before
the reply is received, there is no chance in non-conversational mode of getting the reply. However,
you can do this in conversational mode by issuing a subsequent RECEIVE.

Server
This server establishes a service that is able to receive requests/messages and return a reply to the

client. The server works non-blocked at the RECEIVE, thatis, a RECEIVE with W=NO is issued to the
Broker. Because of this non-blocked call, control is retained, allowing the server to do other work.

Coding
Client
LOGON ------ > logon to Broker
repeat
SEND,W=nS,CID=NONE ------ > send and wait for reply
until
LOGOFF ----- > logoff from Broker
Server
LOGON ------ > logon to Broker
REGISTER ------ > offer service
repeat
RECEIVE,W=NO,CID=NEW ------ > poll for request/message

decide on ERROR-CLASS
VALUE 0 successfull response
SEND,W=NO,CID=1234 ------ > reply to client
VALUE 74 no message available - so free for other work

until
DEREGISTER ====== > deregister service
LOGQFF ====== > logoff from Broker

Broker 203

204

VI

12 Introduction to Broker Administration using SMH
13 Managing the List of Brokers with SMH
14 Configuring a Single Broker with SMH
15 Using the Broker Information Service with SMH
16 Using the Broker Command Service with SMH .

205

206

12 Introduction to Broker Administration using SMH

Before you log in to the System Management Hub for the first time, see Initial Login Considerations
in the System Management Hub for EntireX documentation. See also Startup Daemon ‘etbsrv’ in
the UNIX administration documentationBroker Service ‘etbsrv’ under Post-installation Steps under
Windows.

EntireX Broker instances are administered from the EntireX Broker System Management Hub
node. The EntireX Broker node is located below the EntireX node in the System Management Hub
tree view. When the EntireX Broker node is expanded, all of the brokers that are known to the
current System Management Hub host are listed. The list consists of all the broker instances con-
figured on the host running the System Management Hub (“local” brokers) and broker instances
configured on other hosts that the user has defined to the System Management Hub (“remote”
brokers). The node of a broker instance can be expanded if its broker is currently running. Below
the node you can see the list of all Command and Information Services. The broker stub nodes
allow a detailed runtime administration of the broker.

-

= T3] webMethads Entire 8,2 EntireX Broker

- L% Entirei Eroker
* =0 ETBOOL o Broker Name o Broker ID o Status o Type o
+ o ETBOOZ
¥ Eﬁg hostD?: 1972 =gi ETBEOOL host01:1971 Running Local
+ [E: Authorization Rules <o ETBOOZ Stopped Local
* @ Lacation Transparency ‘E@ host0z:1972 Stopped Remaote
+ 3 dava Message Service
: Kl o
+ 7 RPC Server

] Note: The list of the known brokers is maintained by a special administrative service. The

SMH agents communicate with it or directly with the listed brokers to perform all necessary
actions. For more information see Configuring the Administration Service.

207

208

13 Managing the List of Brokers with SMH

B Creating @ LOCAI BrOKEToooiiiiiiiiie e 211
B Deleting @ LOCAI BIOKEToii ittt e et e e e e e e e 211
= Adding a Remote Broker Instance to System Management HUDccoooiiiiiiii e, 213
= Removing a Remote Broker Instance from System Management HUDcccoeiii 213
= Stopping All Local Brokers from System Management HUD ... 215
= Setting the User Credentials for @ Broker INStancecooouviiiiiii i 216
= Clearing the User Credentials for @ Broker INStaNCEccvvvvviiiiiiiiiiie e 217
B Setting SSL OF TLS ParameterSvvviiieiiii it 217

209

Managing the List of Brokers with SMH

See also Administration Service Messages under Error Messages and Codes.

210 Broker

Managing the List of Brokers with SMH

Creating a Local Broker

» To create a local broker

1 Select the EntireX Broker node below the EntireX node in System Management.
2 From the context menu, choose Create Local Broker.

3 Enter Broker ID, TCP Port Number, and SSL Port Number. The valid port number range is
1024 - 65535.

4 Select a transport method.

5 Choose OK.

=[] webMethods Entirex 8.2
= Ly Entirex Brake EEJNE

+ o ETBO0L g Broker ergons ¥
0 fame
+ g ETBO0Z
& Stop all Brokers
+ 25 hostoz:1 T, TCP Port 1973
+ (g} Authorization Add to View 35LPort 22223
+ LE; Location Trar Remove from Yiew Transport] TCP-55L v |*
*- [Java Messag, E5' add to Browser Favorices
+ LT RPC Server
r &

When a local broker is added using SMH, a working directory is created for the new broker in the
EntireX directory config/etb. This directory contains an attribute file, and the SSL certificates from
the EntireX directory config/etb are also copied to this directory. If the broker is to use its own SSL
certificates, these must be replaced or the attribute file modified accordingly.

The attributes of the new broker are checked. If, for example, a broker already exists with the
specified port, a corresponding error message is given.

Deleting a Local Broker

» To delete a local broker

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker name to be deleted.

3 From the context menu, choose Delete Broker.

4

Choose OK.

Broker 211

Managing the List of Brokers with SMH

D webMethods Entire 8.2

= g Entirex Broker Delete Broker

+ =i ETEOOL Are you sure you wank to delete 'ETEOOZ'?
+ o ETBO [Start Broker
+ Eg hostC 5% = B

o
Edit Attribute File

P/ Turn on Autostark

+ [_n‘;’?_‘ Authatiza

+ @ Location ©

+ I—_JI Java Mes e
. CCI RPC Sy Lol S5L Parameters
=g Technical Add bo View
Lﬁ Wersi Remaove from Yiew
[windh
|§=E| Entire
[} 1ava Refresh
|:_§ License Information

Add to Browser Favorites

Lo

212 Broker

Managing the List of Brokers with SMH

Adding a Remote Broker Instance to System Management Hub

» To add a remote broker instance to System Management Hub

1 Select the EntireX Broker node below the EntireX node in System Management.

2 From the context menu, choose Add Remote Broker.

3 In the field Broker Name, enter a valid name. Permitted characters are A-Z, a-z, 0-9.
4

In the field Broker ID, enter the ID of an existing broker. Permitted formats: host:port[:pro-
tocol], protocol://host:port[?sslparameters].

5 Choose OK.

=[] webMethiods Entirex 5.2 Al
— b Entirel Brok f_ﬁ Create L

ol 1 /ol Rem 0 NirnizerRemoteBroker *
+ g ETBODZ
Stop all Brokers Broker .

+ 7% hostoz: L] 1d hostig: 5005 *

+-[&} huthorizatio Add ko Yiew
I Remove from View

+ g Location Tra —
¥ “ _

J
Java Messag # Add to Browser Favaorites
+ LT RPC Server

=BG, Technical Ini %) Refresh
¥ Versions
P Windows Settings
|5 Enkires SMH Environment
-J Java Properties
g License Information ﬂ

Function Add Remote Broker creates a directory for a remote broker. The working directories for
a remote broker start with "RB". This directory contains an attribute file with the URL of the remote
broker. This directory will also be used for tranferring the log and attribute files to or from the
remote broker. If the broker can only be addressed using the SSL protocol, the SSL certificates
should also be stored in this directory. When a remote broker is added, the default SSL certificates
from the EntireX config/etb directory are copied to the working directory of the remote broker. If
this broker is to use other certificates, replace them manually.

Removing a Remote Broker Instance from System Management Hub

» To remove a remote broker instance from System Management Hub

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the remote broker instance to be removed.

3 From the context menu, choose Remove Definition.
4

Choose OK.

Broker 213

Managing the List of Brokers with SMH

= D webMethods Entires 8.2 ﬂ S
G Entes Broker Remove Definition
*+ =i ETEOO1 Are you sure you wank bo remove the definition For ‘host02:1972'7
+ g ETBO0Z

+ 0 hostoz: 19
+ GI:‘ Authorization |
+ (] Location Trans Add ta View
+ 4 Java Message Remave Fraom Yiew
* CG RRC Server Add ko Browser Favorites

=g Technical Infor
Wersions Rl

B Windows Settings
|§=E| Entirex SMH Environment

Java Properties

5 License Information

L

214 Broker

Managing the List of Brokers with SMH

Stopping All Local Brokers from System Management Hub

» To stop all local brokers from System Management Hub

Select the EntireX Broker node below the EntireX node in System Management.

1

2 From the context menu, choose Stop All Brokers.
3 Choose the stop mode.
4

Choose OK to confirm deregistration.

= £ webmMsthads Entirex 5.2 j
- % Entire, Broker 3;-_@ Create Local Broker
+ =i ETEOOL 4@ Add Remate Broker Choose action regardsing the connected servers:
+ o ETBOOZ & Stop all Brokers (®) ignare connected servers

+ 7% ETBO03
+ g ETesECol Add to View

+ =§ hastoz: 16 Remove from View
=

() dereqister all connected servers

+ @ Location Tran:
A
+ 3 Java Message % Refresh

Broker

215

Managing the List of Brokers with SMH

Setting the User Credentials for a Broker Instance

Before a remote broker instance or instance of a local broker that uses LDAP authentication can
be administered, user credentials (user ID and password) must be set.

» To set user credentials

Select the EntireX Broker node below the EntireX node in System Management.
Select the broker instance.

From the context menu, choose Set User Credentials.

Enter a User ID and Password that are valid for the broker instance.

Choose OK.

N G B W N =

Choose OK when the success message is displayed.

=[5 webMethods EntireX &.2 j
= % EntireX Broker

*+ = ETHOUL User ID *

+ g ETEOOZ

* % E 3‘,& Remove Definikion

Password

+

| = St User Credentials

. Enable SHMP
+ @Locat %= Enave
5 Java Add to Wiew
+ L@ Rpce Remove from view

B ECh\; E5 add ko Browser Favarites

i (2] Refresh
E'_ Entirex SMH Environment
=) Java Properties

Lo

216 Broker

Managing the List of Brokers with SMH

Clearing the User Credentials for a Broker Instance

Once a remote broker instance has been administered, the user credentials should be cleared.

» To clear user credentials

O = W N =

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker instance.

From the context menu, choose Clear User Credentials. A confirmation screen will appear.
Choose OK or Cancel.

Choose OK when the success message is displayed.

Setting SSL or TLS Parameters

» To edit a broker SSL file

O &=~ W BN

+ Lé!;: Authorization
+ LE Location Tran:

Select the EntireX Broker node below the webMethods EntireX node in System Management
Hub.

Select the broker name to be administered.
Choose SSL Parameters.
Make your changes.

Choose Save.

T webMethods Entires: 8.2 j
=g Entiret Broker

+ g ETEOOL Pif;meters YERIFY_SERVER=KEY-STORE=...:\SoftwarefG|Entire configletblETBO0Z\KEY-STORE pem *
+ =g ETBO0Z e Start Broker
* % ETBSECO! l(&_ﬁ Delete Broker

+ B hostOZLE =] £t st File [o |

fr' Turn on Autostark

é‘ 55L Parameters

3 1ava Message

+ 7] RPC Server add ta View
=[G Technical Info Remove from View

i versions
T Windows
[:E'_ Entires: 5t %] Refresh

i=) Java Properties j

FE Add o Browser Favorites

Broker 217

218

14 Configuring a Single Broker with SMH

B Starting @ LOCAI BIOKETeiiiiiie et 220
B Restarting @ LOCAl BrOKEE ... it 221
B StOPPING @ LOCAI BIOKET ... ettt 222
= Administering @ Broker ARTDULE Fileooiiiiii 223
B AAMINISIENING @ LOG FIIE «..vvv e 225
= Setting the Local Broker AUOSEart ValUeoooiiiiiiiic e 228
B Enabling the SNIMP PIUG-IN ...ouviiiiiecceec e 228
® Disabling the SNMP PIUG-INooiiiiii e 230

219

Configuring a Single Broker with SMH

Starting a Local Broker

» To start a local broker

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker name to be started.

3 From the context menu, choose Start Broker.

] Note: Before you start a local Broker, make sure that the Broker's etbsrv service or daemon

is running and try again. See Broker Service ‘etbsrv’ under Post-installation Steps under Win-
dows.See Broker Instance Created Automatically during Installation under Post-installation Steps
under UNIX and Startup Daemon ’etbsrv” in the UNIX administration documentation.

A broker process is started in its working directory. The started broker establishes a connection
to the local Administration Service and provides information such as the used and activated ports.
The information is updated every 60 seconds. If an attribute file is modified after a broker has
been started, this does not result in incorrect information. If a broker is started manually by a
local user and the attribute file is not in the working directory under the EntireX directory config/etb,
the broker can be administered only to a limited extent. It is only possible to stop this broker. Each
local broker is displayed by the Administration Service in SMH. The brokers that were started
manually have the status "Running: unmanaged Broker with restricted access" in SMH. If the
broker is to be administered without restrictions, the working directory and attribute file must be
located under the EntireX directory config/etb.

220 Broker

Configuring a Single Broker with SMH

Restarting a Local Broker

» To restart a local broker

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker name to be administered.

3 From the context menu, choose Restart Broker.

Broker 221

Configuring a Single Broker with SMH

Stopping a Local Broker

» To stop a local broker

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker name to be administered.

3 From the context menu, choose Stop Broker.
4

Choose OK.

222 Broker

Configuring a Single Broker with SMH

Administering a Broker Attribute File

This section covers the following topics:

= Editing an Attribute File
= Uploading an Attribute File
= Downloading an Attribute File

Editing an Attribute File

» To edit a broker attribute file

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

J Note: There is another vertical scrollbar for the editor itself. Scroll the horizontal

scrollbar to the right in order to see it. In addition, you can use Ctrl Home and Ctrl End to

get the first and the last pages, respectively.

4 Edit your changes.
5 Choose Save.
6 Choose Restart for the changes to take effect.

=[] webMethods Entire""St — ‘J
L] *
=g Entiress Broker g FP IS
+ g ETBODL ;& Restart Broker

*

* EntireX Broker Attribute File +8.2 *

*

+ iy ETBOOZ _8,_§ Delete Broker
A=l [Ecit Attribute File

DEFAULTS = ERCKER

+ 7% host0z:197 [=] Show Log File EROEER-ID
+ (8} Authorization F 5] Dowrload Log Fll DYNAMIC-MEMORY—-MANAGEMENT
y . b * DYNAMIC-WORKER-MANAGEMENT
+ ®j Location Trans| pel Disable SHMP HAY_HENORY
¥ [JavaMessage | g8 1race settings HAX-MESSAGE-LENGTH
wlgrecserver om - * PSTORE
=[G Technical Infar = * PSTORE-TYPE
= . . * PUBLISH-AND-SUBSCRIEE
ﬂ Versions Add to View % SECURITY
[f windows 5 Remove from View * STORE
EE-—' Entires SM Add ko Browser Favorites * EE?EE?;EEE:STORE

E} Java Prope

Y QKN

ETEOOL
YES
YES
UHLIK
102400
COLD
FILE
YES
YES
BROKER

PSTORE
n

T 1

Broker

223

Configuring a Single Broker with SMH

Uploading an Attribute File

» To upload a broker attribute file

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker name to be administered.

1
2
3 From the context menu, choose Edit Attribute File.
4 Choose Upload.

5

Choose Browse and select the local attribute file.

=[] webMethods Entirex 8.2 j Attribute File for 'ETBO01" 7
= Ligg Entirex Broker B
rowse:
+ o ETBO0L - : - P
+ oy ETBOOZ Host File Marne Y SoftwareAG)Entirel| confighetb ETBO01\ETEOOL . &ty

+] E? ETESECO17 Orveririte Hosk File
+ 50 hastOz:1972
+ [_GP Authorization Rules Status
+ @ Location Transparency

+ 1 Java Message Service
+ E? RPC Server “
=65 Technical Information

G ersions

“J Windows Settings

lr:=_ EntireX SMH Enviranment

=) Java Propetties j

As a result, the upload starts automatically followed by a message "Upload completed!".

224 Broker

Configuring a Single Broker with SMH

Downloading an Attribute File

» To download a broker attribute file

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

4

Choose Download.

In the ensuing dialog box, choose Save.

=[5 webMethods EntireX 8.2 j , _Blmlai***** j
* = *
= Ligg Entires: Broker x - x
+ = ETEOO1 * File Download P§| *
+ % ETEODZ 3636 36 36 36 36 3 36 I I 33 — 36 36 36 36 3
+ ‘Eg ETBSECOL7 DEFAULTS = ER |[t)‘l?] you want to save this file, or find a program online to open
+ 7% hostoz: 1972 EROEER-ID i
+-[&Y Autharization Rules DYHAMIC-HEHN] Mame: ETBOOL.atr
= i *® DYNAMIC-WOR Type: Unknown File Type, 2,25KE
+ ®i Locakion Transparehcy MAY-HEMORT .
+ 27 Java Message Service MAY—MESSAGE From: localhost
+ 7| RPC Server * PSTORE
= i i * PSTORE-TYFE "
L) '[Echnlca.l Infarmation « PUBLISH-ZND Find] [Save] [Cancel
_& Wersions * SECURITY
/I windows Settings * STORE
E__.—" Entire? SMH Environment * EE?EE?-%EEE: iy “while files from the Internet can be uzeful, some files can potentially 2
|*=) Java Properties j 4 . g harm your computer. If you do not trust the source, do not find a j »
= program to open this file or save this file. What's the risk?
item Management = 4 | m

Administering a Log File

This section covers the following topics:

= Showing a Log File
= Downloading a Log File

Showing a Log File

» To show a broker log file

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker name to be administered.

3 From the context menu, choose Show Log File.

J Note: There is another vertical scrollbar for the editor itself. Scroll the horizontal

scrollbar to the right in order to see it. In addition, you can use Ctrl Home and Ctrl End to
get the first and the last pages, respectively.

Broker 225

Configuring a Single Broker with SMH

4 Choose Close.

=[] webMethods Entir =~ ﬂ HEAP-SIZE. 1j
= G Entirex Broke. P Broker LONG-BUFFER-DEFAULT. n
erannt 2 Restart Broker MAY-EXTENSION-DATA-LENGTH. 0
to MAX-MEMORY i
+ g ETBO02 | 2% Delete Broker MAX-MESSAGE-LEMGTH. 1
+ Eaﬁ ETESECO El Edit Attribute File géé;gggﬁéggg-m—uow 11{
+ B8 hostozi1 NUM—CLIENT.ooooooooo 0
+-[&} autharization El Download Log File NUM-COMBUF. a
+ Location Tran [g HUM-CONVERSATION. 1]
. % o deg Disable SR NUM-SERVER 0
& % 7@ Trace Settings NUM-SERVICE. 0
+ () RPC Sarver | o) WIM-SERVICE-EXTENSION 0
= 7 Broker Sett
- g Technical o] Broker setings HUM-TIOW 0
Yersions Add [Ri=T HITH_TIORLTER 1
Windows Remove from Yiew
i cl
Entirex Add to Browser Favorites = Back m -
=) Java Prog = j 4 | ‘ K

226 Broker

Configuring a Single Broker with SMH

Downloading a Log File

» To download a broker log file

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker name to be administered.

3 From the context menu, choose Download Log File.

A message "Download file from host" appears and after it a hyperlink labeled Download.

4 Follow the hyperlink Download.

2] webMethiods Entire!”

= % Entire Broker
+ o ETBODL
+ g ETEONZ
+ 7k ETBSECOIS
+ F host0z:19:
+ [_e?_ Authorization
+ @ Location Trans|
+) Java Message
+ E’t'“ RPC Server
=[G Technical Infar
[versions
[windows 5
5 Entires sm
E} Java Prope

Stop Broker

2% Restart Broker
%y Delete Broker
5] Edit Attribute File
5_.| Show Log File

#: Disable SNMP

ﬁ Trace Settings

8? EBroker Settings
Add to View

Remove From Yiew

EE Add to Browser Favorites

Download of the log file of 'ETBOD1" b
Server File Marne: C3oftwaresclEntires| confighetb ETB001ETBO01 log

Get as Type

Status Downlaading file Fram hast ...

Received bytes 0 from 27301

Dovnload here!

5 Use the ensuing dialog box to save the log file on the local machine.

Broker

227

Configuring a Single Broker with SMH

Setting the Local Broker Autostart Value

The autostart value of a broker instance determines whether it will be started when the computer
is restarted.

» To set the Autostart value

Select the EntireX Broker node below the EntireX node in System Management.
Select the broker name to be administered.

If the broker instance is currently started automatically, only the Turn off Autostart command
is visible; if the broker instance is currently not started automatically, the Turn on Autostart
command is visible.

Choose either Turn on Autostart or Turn off Autostart.

Enabling the SNMP Plug-in

Before a broker can be administered by SNMP, the SNMP plug-in must be enabled. In addition,
the SNMP Plug-in credentials (user ID and password) must be set.

» To enable the SNMP plug-in

1
2
3
4
5

Select the EntireX Broker node below the EntireX node in System Management.
Select the broker.

From the context menu, choose Enable SNMP.

Enter a user ID and password that are valid for the broker instance.

Choose Verify to check if a logon to the broker is okay with the SNMP plug-in credentials,
or click OK to save the SNMP plug-in credentials without any verification.

Choose Close when the Success message is displayed.

228

Broker

Configuring a Single Broker with SMH

=[] webMethods Entirey -~ ‘] . .
l__—l G Entire Broker Stop Broker Set SHNMP Plugin Credentials
o]
+ i ETBODL .;E Restart Broker - .
+ oy ETBOOZ §,_§ Dilete Broker
Password

+ 25 ETRsECO17 5] Edit Attribute File

+ 5% host02:197 (5] Show Log File
e) S oo [o< |
+ @ Location Trans
+ [Java Message
* Cﬁ RPC Server
=[G, Technical Inforn
Yersions Add bo View

ﬁ Trace Settings
EBroker Settings

Windows Se Remave From View

i Enirsx SHH Add to Browser Favorites
=) 1 Py
I_J ava Fropel =

Broker 229

Configuring a Single Broker with SMH

Disabling the SNMP Plug-in

» To disable the SNMP plug-in

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker.

3 From the context menu, choose Disable SNMP.

4

Choose Close when the Success message is displayed.

230 Broker

15 Using the Broker Information Service with SMH

Administering @ BroKer INSIANCEuviiiiiiii e 232
FIEETING CHENTS .. ettt e e e e e ettt e e e et e e e e et e e e e nneeeas 235
Filtering CONVEISALIONSeeiiiiiii ettt ettt e et e et e e et e e e ennneeas 236
FIEEIING ThE USET ...ttt 236
Filtering PartiCipantsooooiiii i 238
Filtering the Persistent STOrecooiiiiiiii e 239
Filtering the PUDIICAtioNoooiiii i 240
Filtering the PUDISNETeiie et 241
FIEEIING SEIVEIS ...ttt ettt 242
FIBIING SEIVICES ...ttt et e e e e st e e e e e e e s st aeeeas 243
Filtering the SUDSCHIDETeii e 244
FIering the TOPIC .oeee e 245

231

Using the Broker Information Service with SMH

Administering a Broker Instance

» To administer a broker instance

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker instance to be administered.

If the broker instance is a remote broker instance (running on another node), see Setting the
User Credentials for a Broker Instance.

Expand the broker instance node to view and administer the properties for the following ob-

jects:

Object Information Reply Structure Summary View | Filter Results
Broker BROKER-0BJECT

Worker WORKER-0BJECT

Service SERVICE-OBJECT X X
Server CLIENT-SERVER-PARTICIPANT-0BJECT X X
Client CLIENT-SERVER-PARTICIPANT-0BJECT X X
Participant CLIENT-SERVER-PARTICIPANT-0BJECT X

Conversation CONVERSATION-OBJECT X

Persistent Store

PSF-0BJECT

Persistent Store DIV

PSFDIV-0BJECT

Persistent Store Adabas

PSFADA-OBJECT

Persistent Store File

PSFFILE-OBJECT

Persistent Store c-tree

PSFCTREE-OBJECT

Topic TOPIC-0BJECT X
Subscriber SUBSCRIBER-OBJECT X X
Publisher PUBLISHER-OBJECT X X
Publication PUBLICATION-OBJECT X
Cmdlog Filter CMDLOG_FILTER-OBJECT

Security SECURITY-0BJECT

TCP TCP-0BJECT

SSL SSL-0BJECT

Net-Work NET-0BJECT

Pool-Usage POOL-USAGE-0BJECT

Resource-Usage

RESOURCE-USAGE-OBJECT

Statistics

STATISTICS-O0BJECT

Broker

Using the Broker Information Service with SMH

= 3] webMethods Entirex 8.2
= % Entirer Broker
= oy ETEOO1

% Broker

g Wiorker

[:-:lg Service

O Server

'8 Client

DE Participant

[: Conversation
|7 Cmdlog Filter
TP
Pool Usage
Resource Usage
‘“Worker Usage

2l

=

Sarvice Details

Property

Server Class

Server Mame

Service

Translation

Active Servers
Conversations (ackive)
Conversations (high)
Conversation timeout

Long Buffers [ackive)

® For detailed information, select an item from the summary view:

o ¥alue
SAG
ETECIS
INFC

1
1
7
0d 0oh 00m 35s
1

® The items can be filtered. For an example, see Filtering Services.

Object Information Reply Structure Summary View | Filter Results
User USER-OBJECT X X
Worker-Usage WORKER-USAGE-0BJECT
Notes
® For a summary view, expand the node and select the required object:
= T3 webMethads EntireX 8.2 = . Pl
- g Entire Broker Service
= w5 ETEOOL 020
:% Eroker i ~
gy, Worker Class/Server/Service p DeregisterService p Activeservers g Attachmanagers p Active cony
E«‘:& z:::: SAGIETECIS/INFD 1 0 1
7 Cliant SAGIETECIS/USER-TMFO 1 i 0
B2 Participart SAGEETECIS/CMD 1 i 0
[5 Corwersation SAGETBCISIPARTICIFANT- 1] i]
= Cmdlog Filter SHUTDOW
[SAGIETBCIS/SECURITY-CMD 1 i i
Paal Usage SAGIETECIS/RPCCIS 1 i 0
S:Sijcz Usage RPCIRPCCIS/CALLMAT 1] 2
E=h orker Usage j 7 | ﬂ L

Broker

233

Using the Broker Information Service with SMH

= D webMethods Entirel 8.2
= Ligg Entire Broker

= =i ETEOO!
% Eroker
gy Worker
LFIE Service
C"_, Server
'al Clisnt
DE Participant
[: Conversation
igﬂ Crndlog Filker

Pool Usage
Resource Usage
Worker Usage

Service

Class/Server,/Service
SAGETECISTMED
SAGETBCIS/IISER-TMFO
SAGETECIS/CMD

SAGIETECIS/PARTICIPAMNT-
SHUTDO

SAGIETECIS/SECURITY-CMD
SAGETECIS/RPCCIS

RPCIRPCCISICALLMAT
4

O Deregister Service

Active servers

1
1
1

o Attach managers

o
o
o

o Active convy

1
o
o

234

Broker

Using the Broker Information Service with SMH

Filtering Clients

» To filter clients

—_

Select the EntireX Broker node below the EntireX node in System Management.

2 Click on the “+” sign of the broker name to be administered.

| Note: The broker must be running in order to display the Client subtree.

3 Select Client.
4 From the context menu, choose Filter.
5 Enter the data for UserID or Token that you would like to filter.
6 Choose OK.
=+ T3] webMethads Entire), 8.2 ﬂ
= Ligg Entire Eroker
== ;TUUI User ID
=i Broker
._5 ‘Warker Token
L_E:l; Service
C; SErver Mote: " is allowed as a wildcard in all Figlds,
00 petic
[:E' E‘::f: Add to View
I”v‘u TCP E&' Add to Browser Favorices
['»] Poal Us
]| Resoun__&"__ ie_Fresh

::, Worker Usage

=

Broker 235

Using the Broker Information Service with SMH

Filtering Conversations

» To filter conversations

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Click on the “+” sign of the broker name to be administered.

| Note: The broker must be running in order to display the Client subtree.

3 Select Conversation.
4 From the context menu, choose Filter.
5 Enter the data for UserID or Token that you would like to filter.
6 Choose OK.
<[webiMsthods Entire 8.2 El =
=g Entirex Broker

et ETROC Corvversation 1D
= Filker
User ID - Server
Add to View

Remave Fram View Token - Server
FE add to Browser Favorites Server Class
Server Mame
|%| Refresh
% Conversation Service
=P Cmdlog Filker Conversation Conversational 3
; T
T TCP ¥PE
[««] Pool Usage 1
|| Resource Usage Mote: "*is allowed as a wildcard in &l fields,
~
vy Worker Usage
1 g j ﬂ

Filtering the User

» To filter the user

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the Broker instance on which the user is present.
| Note: The broker must be running in order to display the User subtree.
3 Select the user.
4 From the context menu, choose Filter.

236 Broker

Using the Broker Information Service with SMH

5 Enter the data for User ID and Token that you would like to filter.
6 Choose OK.

= gt ETBOOL =l ;
5 proker Filter for User

gy Worker User I

LFIE Service

C"_, Server Token

"a Clignt

B2 Participart Moke: *'is sllowed as & wildcard in all Fields.
[: Conversation

TCF

Res Remove from Yiew
il Add to Browser Favorites

Skal
= Refresh

Lse

Broker 237

Using the Broker Information Service with SMH

Filtering Participants

» To filter participants

N U1 =~ W

Select the EntireX Broker node below the EntireX node in System Management.

Click on the “+” sign of the broker name to be administered.

| Note: The broker must be running in order to display the Client subtree.

Select Participant.

From the context menu, choose Filter.

Enter the data for UserID or Token that you would like to filter.
Choose OK.

=[] webMethods Entirex 8.2 j
= Ligg Entire Broker
=" ETBO0L User ID

% Eroker

gy Warker

Qﬁ! Service

C; Server Mote: " is allowed as a wildcard i all fields,
'8 Client

[3 Corver

@ 1cp Remave From View
[E] Pocl Us 5 add to Browser Favarites

el Resoun
Refresh
:, Worker __lﬁL_

Taken

238

Broker

Using the Broker Information Service with SMH

Filtering the Persistent Store

» To filter the persistent store

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the unit of work is present. The persistent store attributes
(such as PSTORE, PSTORE-TYPE, STORE, DEFERRED, and UWSTATP etc.) must be configured and
the broker must be running in order to display the Persistent Store.

3 Select the Persistent Store node to display a summary list of units of work.

| Note: A message box will pop up if the table is larger than 3,000 rows. You may prefer

to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

4 Choose Filter.

5 Click the check boxes for Received, Accepted, Delivered, Backed Out, Processed, Cancelled,
Timed Out or Discarded that you would like to filter.

6 Choose OK.
T3] webmethods Entirex 8.2 2l
=Ly Entirex Braker
*+ ooy ETBOOL LICHY state - Received O
* = ETBOZ UOMW state - Accepted
- £TB003)
B Eroker LICAY state - Deliversd O
gy wiarker LG stabe - Backed Out
Ll Service UOM state - Processed
(0 server IO stabe - Cancelled O
& Client LU state - Timed Qut O
state - Timed Qu
B8 Participart
= onersation LG state - Discarded
Remove from View P
bscriber
#A Add to Browser Favorites plisher
2| Refresh blication
TP |

Broker 239

Using the Broker Information Service with SMH

Filtering the Publication

» To filter the publication

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the Broker instance on which the publication is present.
) Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be published for a
topic in order to display the data for the publication.
3 Select Publication.
4 From the context menu, choose Filter.
5 Enter the data for Topic, User ID or Token and Publication ID.
6 Choose OK.
+ oy ETBO0Z 2l
- £ ETEO03
S Braker
i Worker
@3 Service
CF Server
‘8 Client
98 participant
é E:’:I;;: Mote: * is allowed as a wildcard in all fields,
EE Persist: Add to Yiew
_\.z', Tapic Remove fram Yiew
3 subscr EE' Add to Browser Favorites “
3 Publish
.| Publica %) Refresh
e ToR j
240 Broker

Using the Broker Information Service with SMH

Filtering the Publisher

» To filter the publisher

—_

Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the publisher is present.

) Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub

must be installed, the Broker must be running, and a user must be published for a
topic in order to display the data for the publisher.

3 Select Publisher.
4 From the context menu, choose Filter.
5 Enter the data for User ID and Token that you would like to filter.
6 Choose OK.
+ gy ETBOZ =
= £ ETBOOE
%? Broker User ID
Gy Witk
L;;l; Service Token
' Server
'8 Client: Moke: "+ is allowed as & wildcard in all Fields,
o Convel
5 Persist Add ko iew
_\.4 Topic | E5' Add to Browser Favorites
gsﬂ:i:;‘@ Refresh
[Publication
a
7 TCP j

Broker 241

Using the Broker Information Service with SMH

Filtering Servers

» To filter servers

N U1 =~ W

Select the EntireX Broker node below the EntireX node in System Management.

Click on the “+” sign of the broker name to be administered.

| Note: The broker must be running in order to display the Server subtree.

Select Server.
From the context menu, choose Filter.
Enter the data for UserID, Token,Server Class,Server Name or Service.

Choose OK.

+ gy ETBOOZ 2l
- £ ETBO03

% Biroker User ID
gy Worker

Toks
@Service oren

= Server Class

=l Clien!) Server Mame
B0 partic Add ko View

2 Comw Remave From Yigw
= persic E5 add to Browser Favorites

E. Fersi: = Mote: " is allowed as a wildcard in &ll fields,
_\.4 Topic #J Refresh

3 subscriber
_3 Fublisher

B TP j

Service

242

Broker

Using the Broker Information Service with SMH

Filtering Services

» To filter services

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Click on the “+” sign of the broker name to be administered.

| Note: The broker must be running in order to display the Service subtree.

Select Service.
From the context menu, choose Filter.
Enter the data for Server Class, Server Name and Service.

Choose OK.

N U1 =~ W

+ g ETBO02 2l
- o ETB003

5%5 Broker Server Class
gy, Worker

i Server Mame
@ Service -
, |
C; Server Service

"= Client Add to Yiew

oo i Remave From Yiew
o Particip Mote: "* is allowed as a wildcard in all fields,

& Convey EE Add to Browser Favorites
Q Persist
%,
EEl Persist #/ Refresh
_\,4 Topic _
3_ Subscriber
_3 Publisher “
[Publication _

o TCP ~

Broker 243

Using the Broker Information Service with SMH

Filtering the Subscriber

» To filter the subscriber

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the subscriber is present.

) Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub

must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the subscriber.

3 Select Subscriber.
4 From the context menu, choose Filter.

5 Enter the data for Topic, User ID, Token; select Subscription Type, Active Subscriber and
Swapped Out that you would like to filter.

6 Choose OK.
=
+ oy ETBO0Z
- £ ETBO03
= Broker Topic
5 Warker
= e User ID
@Serwce = Filter
(] Server| [Subscribe Taken
'8, Client ¥ Unsubscribe Subscription Type R
B0 popic
“:‘ Partid Add to Yiew Active Subscriber w
= Conver
X Remave From View
Q Persist
E Persist {7 Add to Browser Favorites Moke: "+ is sllowed as a wildcard in all Fields,
=
T
e %] Refresh
1 SUBSCFic o
_3 Publisher
1 Pubcaton [o |
B TCP ~

244 Broker

Using the Broker Information Service with SMH

Filtering the Topic

» To filter the topic

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the topic is present.

) Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub

must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the topic.

Select Topic.

From the context menu, choose Filter.

Enter the data for the Topic that you would like to filter.
Choose OK.

N U1 =~ W

+ g ETEO0Z 2l
- £ ETBO0Z

% Broker Topic " is allowed as a wildcard)

e Vior

Q:lg Sery | = Subscribe

'8 Clier

DE Part

5 Com

=] Pers &' Add to Browser Favorites
El P

Er;‘ ers. |&| Refresh

L5 Topi.

3_ Subscriber

_3 Publisher

[Publication

B TCP j

Add to View

Remove From Yisw

Broker 245

246

16 Using the Broker Command Service with SMH

= Connecting/Disconnecting Persistent SOrecooiiiiiiiiiiiiii 248
= Allowing and Forbidding New UOW MESSAQEScceiuvriiieiiiiiieeiiiiie e ettt 249
= Setting a Broker INStance's TraCe LEVEcooiiiiiiiiiii e 249
= Flushing a Broker Instance's Trace BUFfErooiiiiiiiiiii e 250
= Flushing a Broker Instance's Trace BUffer On EFTOrccuvvviviiiiiiii e 250
= Producing Statistics of @ BroKer INStaNCeoooiiiiiiiii 251
m Setting the Persistent Store Trace LEVEvvvviiiiiiii e 251
= Setting the Security TraCe LEVEIcoiiiiiiiiiie s 252
B DEregiSEriNG @ SEIVET ... ittt 253
B DErEGIStEIING @ SEIVICEviiiiiii ittt e e e e e e e e e e e e e e e e e aa e 254
B PUrging Unit(S) OF WOTK ... 255
B SUDSCHDING @ USBE ...ttt e e e e e e s 257
B UNSUDSCIIDING @ USET ...ttt 258
B 1 0gQing Off @ SUDSCIIDETeiiiiiiiiie e 259
B L0gging Off @ PUDIISNEN ... 260
= Enabling/Disabling CmAIOgcouiieieiie e 260
B SWItCHING CMAIOG ... e e e e e 262
B AAAING CMAIOG FIIET ... 263
= Enabling/Disabling CmdIog FIltercoiiiiiiie e 264
® Deleting CMAIOG FIlEErt 265

247

Using the Broker Command Service with SMH

Connecting/Disconnecting Persistent Store

» To connect or disconnect a Persistent Store

1
2
3
4

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker instance to be administered.

To connect a persistent store, select Connect PStore.

To disconnect a persistent store, select Disconnect PStore.

As a result, a confirmation screen will appear.

Choose OK or Cancel.

webMethods Entir Stop Broker ﬂ

- i Entirex Broke @ Fiaskart Broker
- i ETBOOL

B Eroke %y Delete Broker
= \'\zok =| Edit attribute File
o ark

@! Servi %| Show Log File

L serve §| Download Log File

8, Clienl g Enable SMMP

B8 partic "@ Trace Settings

[3 Corv €% Forbid Mew LW MSGs

El persi iscanneck PSkore
_g Ferst 22 Broker Settings
&b Cm

oTep Add to Yiew
[E]poclt Remove From Yiews

| Reso @ add to Browser Favorites j

Do ywou want ko disconnect Persistent Stare?

248

Broker

Using the Broker Command Service with SMH

Allowing and Forbidding new UOW Messages

» To allow or forbid a Broker instance to accept new unit-of-work messages

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker instance to be administered.

3 To allow new unit-of-work messages, select Allow new UOW MSGs.

4

To forbid new unit-of-work messages, select Forbid new UOW MSGs.

As a result, a confirmation screen will appear.

5 Choose OK or Cancel.

F2) webMethods Entire B stop Broker ﬂ
= Ligg EntireX Broker @ Restart Broker

— =i ETBOO0L 2(’& Delate Broker Do you wank ba Forbid new UOW MSGs?

=3 Eroke =
= “:U =] Edit Attribute File
S Worl

[servic f] Shaw Lag File —
CE Serve = Download Lag File “ _
'8 Client #5- Enable SMMP

EE Partic Trace Settings
I HE. Forbid Mew LOW MSGs
[persis Q, Disconneck PStore

B8 Persis 277 Broker Settings

= Cmdic

@ Top Add ko Yiew

[M] Paal L Remaove from Yiew

]| Resou g5 ndd to Browser Favorites ‘|

Setting a Broker Instance's Trace Level

» To set a broker instance's trace level

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker instance to be administered.

1

2

3 Choose Trace Settings.

4 Select a Trace Level between 1 and 4 or off.
5

Choose OK.

Broker 249

Using the Broker Command Service with SMH

= 5] webMethods EntireX 8.2 j
=g Entires: Broker
- =g ETEOO! B Stop Broker

=05 Broket Dby pocrart Broker Choose trace level or burn tracing off.

s Work %y Delete Broker
& Trace
G seve 2 or o |

| AT e
CH serve _J Off
._: Cliert =| Show Log File é
92 patici =| Dowrload Log Fil 5
Send im|4 e trace file,
2 Comve #5 Enable SMMP 1

[SEESER 8 Trace Settings

& Persisl {“é Forbid Mew UOW M3Gs
= cmdio E, Disconneck Pakare

B TCP S? EBroker Settings

[A- Paol U Send the trace buffer ta the trace file when the spedfied errar accurs,
Add Eo View

a)| Resou Errar Flush
2, warke Removve From Yiew Mumber on Brror
75| Statist #54 add o Browser Favorites
& User - o

" |%] Refresl

=g ETBO0Z Produce and send statistics information to the trace file,
+ 20 ETEO03
+ 5% ETESECOL7 Statistics

+ 50 hostoz: 1972
* L_é:. Authorization Rules
* @ Location Transparentcy
+ 1 Java Message Service Close
+ Ef' RPC Server

|
|

Flushing a Broker Instance's Trace Buffer

» To flush a broker instance's trace buffer

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker instance to be administered.

3 Choose Trace Settings.
4

Trace Level must be between 1 and 4. Press Flush to confirm.

Flushing a Broker Instance's Trace Buffer on Error

» To flush a broker instance's trace buffer

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker instance to be administered.

3 Choose Trace Settings.
4

Trace Level must be between 1 and 4. Enter a number between 1 and 9999 in the Error
Number field and press Flush on Error.

250 Broker

Using the Broker Command Service with SMH

Producing Statistics of a Broker Instance

» To produce statistics of a broker instance

1
2
3
4

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker instance to be administered.

Choose Trace Settings.

Trace Level must be between 1 and 4. Press Produce Statistics.

Setting the Persistent Store Trace Level

» To set the persistent store trace level

1 Select the EntireX Broker node below the EntireX node in System Management.
2 Select the broker instance to be administered.
3 Select a subnode of Persistent Store (either Persistent Store ADA or Persistent Store CTree).
4 Choose Set Trace Level.
5 Select a Trace Level between 1 and 4 or off.
6 Choose OK.
B webMathods Entiret 8.2 d
=I kg Entire Broker
= ETBO0L 1 -
S Broker
Warker
5 Serie [o |
L Server
'8 Client
:'E Parkicipant
2 Conversation
@ Persistent Store
3 Set P Store Trace Level sishenk Stare CTree
- dlog Fileer
Add ko Yisw b
Remove from Yiew il Usage
F5' Add o Browser Favorites ource Usage
&) Refresh rker Usage
tistics
a LUser j
Broker 251

Using the Broker Command Service with SMH

Setting the Security Trace Level

» To set the security trace level

1
2
3
4

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker instance to be administered.

Select Security.

Set the security trace level by selecting a value between 1 and 4 in the Set the Trace Level

box.

Choose OK.

T3 webMethods Entirelt 5.2 j

=1 Ligg Entirel Broker

+ =p ETBOO!
= =y ETBO0Z

:% Broker

g Worker

[—‘:5 Service

O server

‘8 Client

B8 Participant
[5 Conversation
‘__:.‘o Securit

g8 Set S

@ a5 Add o Yisw
Paal L Remove from Yiew
Resour Add to Browser Favarites

(g Worker
Statisti 8 el

a User j

Set the Security Trace Level for ETB002

Off

-

252

Broker

Using the Broker Command Service with SMH

Deregistering a Server

» To deregister a server

Select the EntireX Broker node below the EntireX node in System Management.

Select the broker instance on which the server is running.

1

2

3 Select the Server node to display a summary list of servers.

4 From the column Deregister Server, choose icon Shut Down Server.
5

Choose the deregistration mode.

For deregister immediately, a server process will only be terminated if the server status is
wait.

6 Confirm the deregistration by choosing OK.

=+ T3] webMethods Entirelt 8.2 j
- L3 Entiret Broker
= =g ETBOOL RNl 'y

=0 Broker
_ﬁ Wiorker Server Details p DeregisterServer g UserID p UsersToken @ UsersStatus @p Class/Server;
Lﬁ% e Wiew Server I AMLRPCServer ‘whalking (5) RPC/AMLSERYEF
5 Server N
8] Client Wiew Server I RPCServer “waiting {5) RPC/SMLSERYEF
DE Participant 4 ‘ ﬂ

Broker 253

Using the Broker Command Service with SMH

Deregistering a Service

» To deregister a service

Select the EntireX Broker node below the EntireX node in System Management.
Select the broker instance on which the server is running.

Select the Service node to display a summary list of servers.

From the column Deregister Service, choose icon Deregister Service.

Choose the deregistration mode.

N O = W N =

Confirm the deregistration by choosing OK.

= E& webMethods Entirex 8.2 j
=g Entires: Broker
= ETEDOT y
- = ko Q)
£t Broker
_ﬁ Worker Class/Server/Service @ Deregister Service @ Active servers p Attach managers @ Active convers
(s Servies SAG/ETECIS/INFG 1 0 2
CF Server
T8 Client SAGIETBCIS/UISER-TMFO 1 a a
98 Participant SAGIETECISCMD: 1 il il
= Conersation SAGETBCISIPARTICIPANT- 1 o o
[Persistent Store SHUTDOWT
[Persistert Store CTres SAGIETECISISECURITY-CMD 1 0 0
=5 Cindlog Fiter SAG/ETBCIS/RPCCIS 1 o g
e ToR
RPCIRPCOCISCALLMAT 1 o o
['»] Fool Usage -
51| Resource Usage RPCIMLSERVERMCALLNAT Ly 2 1 o
-
=k Worker Usage i | Deregisker Service j
(7%) Statistics
& User j

254 Broker

Using the Broker Command Service with SMH

Purging Unit(s) of Work

» To purge a unit of work

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the unit of work is present.

3 Select the Persistent Store node to display a summary list of units of work.

4 Choose Purge.
5 Choose OK.

2] webMethods Entirex 5.2
- L Entiret Broker
g ETBOOL

=g Braker
g Worker
L‘Ew; Service
U server

'8 Client
B8 Participanit

2 Conversation
g Persistent Store
[Persistent Store CTres
7 Cmdlog Filker
B TP
[«] Pool Usage
]| Resource Usage
2\, Worker Usage
5| Skatistics

8 user

» To purge all units of work

5
o
I= =1 |1 af 2 = =l
uow ID O Purge UDYW o UOW Status
1000000001 000001 - Cancelled (6}
1000000001000002, Cancelled [
— Purge LIOW
1000000001 000003 - Cancelled (6)
1000000001 000004 - Cancelled (6)
1000000001 000005 - Cancelled (6)
1000000001 000005 - Cancelled (6}
1000000001 000007 - Cancelled (6}
1000000001 00000 - Cancelled (6}
1000000001 000003 - Cancelled (6}
1000000001 000008 - Cancelled (6}
~| 1000000001 000008 1 Canceled (6)

[z0

o Conversation ID
100000000 1000004
1000000001 000005
100000000 1000006
100000000 1000007
100000000 1000008
100000000 1000003
100000000 1000004
100000000 1000008
100000000 100000
100000000 1000000
100000000 1000008

o Messages Number

N

30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the units of work are present.

3 Select the Persistent Store node to display a summary list of units of work.

o TotalM

Note: A message box will pop up if the table is larger than 3,000 rows. You may prefer

to apply a filter to your UOW table. See the filter command in the command menu. It

might take several minutes to display all of the contents if you choose not to use the
filter.

Note: A message box will pop up if the table is larger than 3,000 rows. You may prefer

to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

Broker

255

Using the Broker Command Service with SMH

4
5

Choose Purge All UOWs at the bottom of the table. A confirmation message will appear.

Choose OK or Cancel.

= [2 webMethods Entirex 8.2
=1 L Entirey Broker

= g ETEOO!

5 Broker

iy WWarker

@5 Service

C"_, Server

' Client

“g Farticipant

[: Zonversation
=] Persistert: Store
@ Persistent Store CTree
|=F Cmdlog Filter
TCR

Pool Usage

Resource Usage
Warker Usage
Statistics

a User

System Management >

-:J 1000000001000003
1000000001 000004
1000000001000008
100000000100000C
1000000001 000000
100000000100000E
100000000100000F
1000000001000005
100000000100000H
1000000001 00000
1000000001000003
100000000100000k
<

Caniellad (£) 1000000001 00000C

Cancelled (6) 1000000001 000000

Cancelled (6] 1000000001 00000E 1
Canicelled (6) 1000000001 00000F 1
Canicelled (6) 1000000001 000006 1
Canielled (6) 1000000001 00000H 1
Cancellzd (6) 1000000001 000007 1
Cancelled (6) 1000000001000007 1
Canielled (6) 1000000001 00000k, 1
Cancelled (6) 1000000001 000001 1
Cancelled (6] 1000000001 000000 1
Cancellzd (6) 1000000001 000008 1

Purge All UOWs

Purge all units of work

30000 ﬂ

30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000

All units of work will be purged. The number of purged UOWs is reported in a screen similar to
the one below.

webMethods Entirel 8.2
= % Entirei Broker

= =i ETBOOL

% Eroker
iy Warker
[Service
C"_, Server

‘8 Client

DE Participant

[3 Corversation

g Persistent Stare

= Persistent Store CTree

Persistent Store

797 out of 797 UOWs were purged From broker 'ETEOOL

256

Broker

Using the Broker Command Service with SMH

Subscribing a User

» To subscribe a user

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the topic (or subscriber) is present.

) Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub

must be installed, and the Broker must be running in order to display the topic (or
subscriber).

3 Select Topic (or Subscriber).
4 From the context menu, choose Subscribe.

5 Ifyou are on the Topic node, enter the data for User ID and Token; if you are on the Subscriber
node, specify the topic that you would like to subscribe to.

6 Choose OK.
=+ T3] webMethods Entirex 5.2 ﬂ
- Ligg; Entirelx Broker
+ o ETEOO1 Tepic N
+ o ETBO0Z Lser .
= £ ETRO03]
=i Broker Token *
gy, Worker
2, F vice
o [o |
B subscribe

Unsubseribe

ticipant
Add to View wersation

Remove From Yiew sistent Store
& Add to Browser Favoritss sistent Store DIV

aic

|%| Refresh sscriber

Broker 257

Using the Broker Command Service with SMH

Unsubscribing a User

» To unsubscribe a user

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the topic (or subscriber) is present.

) Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, and the Broker must be running in order to display the topic (or

subscriber).

3 Select Topic (or Subscriber).

4 From the context menu, choose Unsubscribe.

5 Ifyou are on the Topic node, enter the data for User ID and Token; if you are on the Subscriber
node, specify the topic that you would like to unsubscribe from.

6 Choose OK.

=[] webMethods Entires 8.2 ﬂ
- Ligy Entirel Broker
+ oo ETBO0L
+ g ETRO0Z
=% ETBO0S
S0 Broker
dare Wiarker
e Filker “ire
= Subscribe “ver
i Unsubscribe znk
“ticipant
rersation

Add to Yiew
Rermave from Wiew

-sistent Stare

2% Add to Browser Favoribes “sistent: Store DIY
aic
|%| Refresh

. —-2scriber

258

Broker

Using the Broker Command Service with SMH

Logging Off a Subscriber

» To log off a subscriber

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the subscriber is present.

) Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub

must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the subscriber.

Select Subscriber.

From the context menu, choose Logoff.
Choose the logoff mode.

Choose OK.

N U1 =~ W

=T webMethods Entire 8.2 d
—Ligg Entire Broker
+ g ETROO1
+ g ETBO0Z
g EPETBUDS User ID @ Log Off Subscriber B Subscribe B Unsubscribe @ Topic o Token @ UserStatus @ Activ
=i Broker
i Wrker

Lig$o i

10Dec2s-
wsew :!“ = o topicftastlfnameg;;ég?:
Lf'-"g Service 0o0oAZ0
] Server Ll Log OFf Subscriber | ﬂ

'8 Client

98 Participant

Mok wwaiking (00 0

2 Conversation

[Persistent Stare
E Persistent Store DIV
_é Topic
3| subscriber

3 Publisher

[Publication

B TP ~|

Broker 259

Using the Broker Command Service with SMH

Logging Off a Publisher

» To log off a publisher

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the Publisher is present.

) Note: Pub/Sub must be enabled in the broker attribute file, a license file for Pub/Sub

must be installed, the broker must be running, and a user must be published from a
topic in order to display the data for the Publisher.

Select Publisher.
Choose Logoff.

Choose the logoff mode.
Choose OK.

NN O s W

After a Publisher is shut down successfully, it will be removed from the list.

2| webMethods Entire: 8.2 j
= Ligg Entirel Broker

+ i ETEOOL

+ g ETBO0Z

] ‘=3? ETEO03 UserID g LogOff Publisher g Token o User Status o Publications Number o
o Broker
iy Worker J
[l Service
5 Serwer
8] Cliert

B8 Participant

[0

usgr & 10Dec28-074146-000001-0000AZ1 Mok waiting (0 o

i

= Conversation

g Persistent Store
E Persistent Store DIV
é Topic
3] subscriber

"3 Publisher

[Publication

S TCP ~|

Enabling/Disabling Cmdiog

» To enable/disable cmdlog

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

260 Broker

Using the Broker Command Service with SMH

4

Choose Enable Cmdlog or Disable Cmdlog.

=+ [webMethods EntireX 8.2 ~l

= % Entirel Broker Cmd|09 Fi |ter
- oo ETBOOL

% Broker
#5 Add Cmdlog Fiker ker
F. Disable Cmdlog

Mo infarmation was Found,

*—‘: Switch Crdlog ="

Add to Yiew icipant
Remove from Wiew versation
Add to Browser Favorkes 1=0ort St0re
sistent Skore CTree

|%| Refresh llog Filter

Broker

261

Using the Broker Command Service with SMH

Switching Cmdlog

» To switch cmdlog

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Switch Cmdlog.

= [webMethads Entire) 8.2 d
-1 Ligg Entirelx Broker
=g ETEOO1
S Broker
%= ndd Crndlag Filker £
5 Disable Cmdlog =
-s Switch Cmdlog i

Mo inFormation was found,

Add ko Wiew

ipank
Remnove From Wiew srsation

EE' add to Browser Favorites tent Store
tent Store CTree

7
%) Refresh g Filter

262 Broker

Using the Broker Command Service with SMH

Adding Cmdlog Filter

» To add a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.
3 From the context menu, choose Cmdlog Filter.
4 Choose Add Cmdlog Filter.
5 Enter the data for user ID and Class/Server/Service or Topic you would like to filter.
6 Choose OK to add a Cmdlog filter to the list.
= [webMethods Entirex: 5.2 j
= Ligg Entire Broker
= = ETBO0L User Il userl *
S T =5 Srcker Class|Server[Service
DisabCIog = Tepic topic00L
“= Switch Cmdlog ?r
oV - b
Remave from Wiew ersation

' Add to Browser Favorites ptent Store
stent Stare CTree

[Refresh a0 Filker

Broker 263

Using the Broker Command Service with SMH

Enabling/Disabling Cmdlog Filter

» To enable/disable a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Enable Cmdlog Filter or Disable Cmdlog Filter.

=[] webmMethods Entirex &.2 j
—--Ligg Entire Broker
=g ETBONT
S Broker

[0 g

_ﬁ ‘Warker Enable/Disable Cmdlog Filter p Delete CmdlogFilter p UserID p Class/Server/Service p Topic |
Cas
Lo Service ® userl topic001

[server . | Enable/Disable Crndlog Filker | ﬂ

'8 Client

B8 Participant
= Conversation
[Persistent Store
g Persistent Store CTree
=7 Cndlog Filker

264 Broker

Using the Broker Command Service with SMH

Deleting Cmdlog Filter

» To delete a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Delete Cmdlog Filter to remove a Cmdlog filter from the list.

=[] webmMethods Entirex &.2 ~
—--Ligg Entire Broker
=+ ETBO01 [k)
=g Broker
_ﬁ ‘worker Enable/Disable Cmdlog Filter o Delete CmdlogFilker o UserID o Class/Server/Service o Topic |

G s
L'ﬁ srviee K userl topicO0l
I Server

sl gt 2l Dielete Filter | |

B8 Participant
= Conversation
[Persistent Store
g Persistent Store CTree
=7 Cndlog Filker

Broker 265

266

VII

m 17 EntireX BroKer REPOMINGvviiiei it 269
= 18 Command Logging in ENLIFEXooiiiieeiiii ettt 279

267

268

17 EntireX Broker Reporting

B CONfIGUIAtioN REPOI ..ottt e e e e et e e e e e e e e e e 270
B 10ad MOAUIE REPOM e 271
L1 (0= To =l (=T oo 4 APPSR UPPSRPPPR 272
B PersiSteNt STOrE REPOM ..ot e e 275
B LICENSE REPOM ...t 278

269

EntireX Broker Reporting

This chapter details the reporting options of EntireX Broker.

Configuration Report

EntireX Broker reads configuration information from an attribute file during startup. In order to
reduce the number of different attribute files, you may define a global attribute file and specify
the individual settings within a variable definitions file. Thus unique attributes like BROKER-1D
and PORT are kept as part of the variable definitions file, while other parameters such as service
definitions can be shared among a group of Broker instances. This feature is described in detail
in Variable Definition File under Broker Attributes in the administration documentation.

In the past there was a one-to-one relationship between Brokers and attribute files. To determine
your Broker configuration, you could reference your attribute file. Now that you may create a
global attribute file and substitute parameters at startup, it may not be clear what configuration
was used to start your Broker. To see the exact configuration used at startup, you can now view
the configuration report for each Broker. The configuration report will display exactly which values
were used for each attribute at startup.

Here is a sample configuration report:

EntireX 8.0.0.12 Configuration Report 2007-10-02 08:56:23 Page 1

Variable definitions file:
1: BID = ETB191

2: N = 113
3: P = HOT
4. PCA = Tocalhost:3938:SSL
5: PT = ADABAS
6: RM = STANDARD
7: SP = 3939
8: TP = 3930
9: TR = SSL-TCP-NET
Entirex 8.0.0.0 Configuration Report 2007-10-02 08:56:23 Page 2

Attribute file:

1 PR R R R R e b R R e b R R e e b b R e b b e e b b e S b b R e e b R e e b i S e b b S e b b e S b b S e e b b b 4

2: * *
Jg = EntireX Broker Attribute File %
4: * *
5: P i b b b b b i i b b b b b S b b b b b b b b i b i b b b o b i e b b b b b i b i b b b b L i b b b b o b o b b b b b b
6:

7: P B b b i i b b b b b b g G]Oba] Sect-ion P i e i B i b i b b B b b b b i b b b b i i i b b b b b b
8:

9: DEFAULTS = BROKER

10: ABEND-MEMORY - DUMP = NO

11: ACCOUNTING = NO

12: AUTOLOGON = YES

270 Broker

EntireX Broker Reporting

13: BROKER-ID = ${BID}
- - - - Substitution: ${BID} = ETB191
14: CLIENT-NONACT = 15M

The contents of the variable definitions file and the contents of the attribute file are copied to this
configuration report. In addition, all variables in the attribute file will be appended by another
line reporting the effective value for the variable. Thus, it's possible to keep track of the substitution
procedure.

On UNIX and Windows, a file called CONFIG.REPORT is created in the current working directory
of Broker. The environment variable ETB_CONFIG_REPORT may contain an alternative location.
However, on z/OS, DDNAME ETBCREP is required to assign an output file for this report. Any failure
will trigger a diagnostic message in the Broker log.

Load Module Report

The Load Module Report is created during startup of EntireX Broker on z/OS. All modules in all
data sets concatenated to the STEPLIB chain for Broker execution are listed.

Operating System: z/0S 06.00

Node Name: DAEF
IPL Date: 2007-10-02
IPL Time: 07:19:21
CPU Model: 2096
EntireX 8.0.0.12 Load Module Report 2007-10-02 08:56:23 Page 1
Total Module Date Time VRSPP Build number Alias Level CurNo
Steplib Tevel 0: SAG.EXB731.LO0OAD
1 ADAACK NO 0 1
2 ADABSP NO 0 2
3 ADACDC NO 0 3
4 ADACLU NO 0 4
5 ADACLX NO 0 5
6 ADACMO NO 0 6
7 ADACMP NO 0 7
8 ADACMR NO 0 8
9 ADACMU NO 0 9
10 ADACNS NO 0 10
11 ADACNYV NO 0 11
156 ETBCMD 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 156
157 ETBINFO 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 157
158 ETBMISC NO 0 158
159 ETBNATTR 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 159
160 ETBNUC 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 160

Broker 271

EntireX Broker Reporting

This report provides STEPLIB level, date, and time stamps if a certain pattern is used for the
module structure. DDNAME ETBMREP must be assigned to get this report.

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocate memory pools. This section details how to create the report and provides a sample report.

= Creating a Storage Report
= Platform-specific Rules
= Sample Storage Report

See also Broker-specific attribute STORAGE - REPORT.
Creating a Storage Report

Use Broker's global attribute STORAGE - REPORT with the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

Platform-specific Rules

z/OS
DDNAME ETBSREP assigns the report file. Format RECFM=FB, LRECL=121 is used.
UNIX and Windows

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument - r, the token following argu-
ment - r will be used as the file name.

BS2000/0SD

LINK-NAME ETBSREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

z/VSE

Logical unit SYS015 and logical file name ETBSREP are used. Format RECORD- FORMAT=FB,
RECORD-LENGTH=121 is used.

272 Broker

EntireX Broker Reporting

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00

Identifier
Time
KERNEL POOL
12:28:58.768 Allocated
HEAP POOL
12:28:58.769 Allocated
COMMUNICATION POOL
12:28:58.769 Allocated
ACCOUNTING POOL
12:28:58.769 Allocated
BROKER POOL
12:28:58.775 Allocated
CONVERSATION POOL
12:28:58.775 Allocated
CONNECTION POOL
12:28:58.779 Allocated
LONG MESSAGES POOL
12:28:58.782 Allocated
SHORT MESSAGES POOL
12:28:58.806 Allocated
PARTICIPANT POOL
12:28:58.827 Allocated

Action

STORAGE Report

Address

0x25E48010

0x25EB4010

0x25FB5010

0x26FB7010

0x27072010

0x27082010

0x270DD010

0x27117010

0x27549010

0x278D2010

PARTICIPANT EXTENSION POOL 0x278F3010

12:28:58.829 Allocated
PROXY QUEUE POOL
12:28:58.829 Allocated
SERVICE ATTRIBUTES POOL
12:28:58.829 Allocated
SERVICE POOL
12:28:58.830 Allocated
SERVICE EXTENSION POOL
12:28:58.831 Allocated
TIMEOUT QUEUE POOL
12:28:58.831 Allocated
TRANSLATION POOL
12:28:58.832 Allocated
UNIT OF WORK POOL
12:28:58.834 Allocated
WORK QUEUE POOL
12:28:58.835 Allocated
BLACKLIST POOL
12:28:58.838 Allocated
SUBSCRIPTION POOL

0x278FD0O10

0x27904010

0x27925010

0x27933010

0x2793C010

0x27952010

0x2797E010

0x279AA010

0x27A0A010

0x27A15010

2009-06-26 12:28:58

Size

407184 bytes
1050692 bytes
16781380 bytes
762052 bytes
61540 bytes
368964 bytes
233668 bytes
4395204 bytes
3703876 bytes
134244 bytes
36996 bytes
26724 bytes
131668 bytes
54372 bytes
32900 bytes
87268 bytes
179300 bytes
176324 bytes
391268 bytes
42084 bytes

344148 bytes

Page

Total

407184

1457876

18239256

19001308

19062848

19431812

19665480

24060684

27764560

27898804

27935800

27962524

28094192

28148564

28181464

28268732

28448032

28624356

29015624

29057708

29401856

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

bytes

1

Date

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

Broker

273

EntireX Broker Reporting

12:28:58.839 Allocated
TOPIC ATTRIBUTES POOL
12:28:58.841 Allocated
TOPIC POOL

12:28:58.842 Allocated
TOPIC EXTENSION POOL
12:28:58.842 Allocated
PSTORE SUBSCRIBER POOL
12:28:58.843 Allocated
PSTORE TOPIC POOL
12:28:58.843 Allocated
COMMUNICATION POOL
12:30:58.514
ACCOUNTING POOL
12:30:58.515
BROKER POOL
12:30:58.516
CONVERSATION POOL
12:30:58.518
CONNECTION POOL
12:30:58.519
LONG MESSAGES POOL
12:30:58.520
SHORT MESSAGES POOL
12:30:58.526
PROXY QUEUE POOL
12:30:58.530
SUBSCRIPTION POOL
12:30:58.530
TOPIC ATTRIBUTES POOL
12:30:58.531
TOPIC POOL
12:30:58.531
TOPIC EXTENSION POOL
12:30:58.531
TIMEOUT QUEUE POOL
12:30:58.532
UNIT OF WORK POOL
12:30:58.533
WORK QUEUE POOL
12:30:58.533
BLACKLIST POOL
12:30:58.534
PSTORE SUBSCRIBER POOL
12:30:58.534
PSTORE TOPIC POOL
12:30:58.534
PARTICIPANT POOL
12:49:25.817

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

Deallocated

0x27A6A010

0x26FB6068

0x27A8A010

0x27A92010

0x27A9B010

0x25FB5010

0x26FB7010

0x27072010

0x27082010

0x270DD010

0x27117010

0x27549010

0x278FD010

0x27A15010

0x27A6A010

0x26FB6068

0x27A8A010

0x2793C010

0x2797E010

0x279AA010

0x27A0A010

0x27A92010

0x27A9B010

0x278D2010

PARTICIPANT EXTENSION POOL 0x278F3010

12:49:25.818
SERVICE ATTRIBUTES POOL

Deallocated

0x27904010

129620 bytes
2952 bytes
30852 bytes
33892 bytes
19540 bytes

16781380 bytes

762052 bytes
61540 bytes

368964 bytes

233668 bytes

4395204 bytes
3703876 bytes

26724 bytes

344148 bytes
129620 bytes
2952 bytes
30852 bytes
87268 bytes

176324 bytes

391268 bytes
42084 bytes
33892 bytes
19540 bytes

134244 bytes
36996 bytes

131668 bytes

29531476 bytes
29534428 bytes

29565280 bytes

29599172 bytes
29618712 bytes
12837332 bytes
12075280 bytes
12013740 bytes
11644776 bytes
11411108 bytes
7015904 bytes
3312028 bytes
3285304 bytes

2941156 bytes

2811536 bytes
2808584 bytes
2777732 bytes
2690464 bytes

2514140 bytes

2122872 bytes
2080788 bytes
2046896 bytes
2027356 bytes
1893112 bytes
1856116 bytes

1724448 bytes

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

2009-06-26

274

Broker

EntireX Broker Reporting

12:49:25.818 Deallocated

SERVICE POOL 0x27925010 54372 bytes 1670076 bytes 2009-06-26 «
12:49:25.818 Deallocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 1637176 bytes 2009-06-26 «
12:49:25.819 Deallocated
TRANSLATION POOL 0x27952010 179300 bytes 1457876 bytes 2009-06-26 «
12:49:25.819 Deallocated
HEAP POOL 0x25EB4010 1050692 bytes 407184 bytes 2009-06-26 «
12:49:25.820 Deallocated
KERNEL POOL 0x25E48010 407184 bytes 0 bytes 2009-06-26 «

12:49:25.820 Deallocated

Header Description

Identifier |[Name of the memory pool.

Address |Start address of the memory pool.

Size Size of the memory pool.

Total Total size of all obtained memory pools.

Date, Time |Date and time of the action.

Action The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated .
Deallocated: memory pool is deallocated.

Persistent Store Report

You can create an optional report file that provides details about all records added to or deleted
from the persistent store. This section details how to create the report and provides a sample report.

= Configuration
= Sample Report

Configuration

To create a persistent store report, use Broker's global attribute PSTORE-REPORT with the value YES.

When the attribute value YES is supplied, all created or deleted persistent records will be reported
if the output mechanism is available.

If the value NO is specified, no report will be created.

The report file is created using the following rules:

Broker 275

EntireX Broker Reporting

BS2000/0SD

LINK-NAME ETBPREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

UNIX

Broker creates a file with the name PSTORE.REPORT in the current working directory. The file
name PSTORE.REPORT.LOAD will be used if Broker is started with RUN-MODE = PSTORE - LOAD.

The file name PSTORE.LOAD.UNLOAD will be used if Broker is started with RUN-MODE =
PSTORE-UNLOAD.

If the environment variable ETB_PSTORE_REPORT is supplied, the file name specified in the envir-
onment variable will be used.

If Broker receives the command-line argument - p, the token following argument -p will be used
as the file name.

Windows

Same as UNIX.

z/0S

DDNAME ETBPREP assigns the report file. Format RECFM=FB, LRECL=121 is used.
z/VSE

Logical unit SYS003 and logical file name ETBPREP are used. Format RECORD- FORMAT = FB, RECORD -
LENGTH =121 is used.

Sample Report

The following is an excerpt from a sample PSTORE report.

EntireX 8.0.0.00 PSTORE Report 2008-02-21 17:18:38 Page 1
Identifier Elements Total length Record Type Date Time ©
Action

100000000D000016 5 1148 Conversation 2008-02-21 17:18:57.190 <«
Created

100000000D000017 5 1148 Conversation 2008-02-21 17:18:57.654 <
Created

100000000D000018 5 1148 Conversation 2008-02-21 17:18:58.122 <«
Created

100000000D000019 5 1148 Conversation 2008-02-21 17:18:58.590 <
Created

100000000D00001A 5 1148 Conversation 2008-02-21 17:18:59.054 <«

276 Broker

EntireX Broker Reporting

Created
100000000D00001B
Created
100000000D00001C
Created
100000000D00001D
Created
100000000D00001E
Created
100000000C000001
Deleted
100000000C000002
Deleted
100000000C000003
Deleted
100000000C000004
Deleted
100000000C000005
Deleted
100000000C000006
Deleted

The following fields are provided in the report:

" Identifier provides the UOWID (record ID).

1148

1148

1148

1148

Conversation

Conversation

Conversation

Conversation

Conversation

Conversation

Conversation

Conversation

Conversation

Conversation

2008-02-

2008-02-

2008-02-

2008-02-

2008-02-

2008-02-

2008-02-

2008-02-

2008-02-

2008-02-

21

21

21

21

21

21

21

21

21

21

17:18:59.518

17:18:59.982

17:19:00.538

17:19:01.002

17:19:30.676

17:19:31.675

17:19:32.675

17:19:33.675

17:19:34.675

17:19:35.675

" Elements gives the number of messages per UOW when creating or loading records.

" Total Length gives the size of the raw record when creating or loading records.

" Record Type describes the type of the data. Following types are currently supported:

" Cluster: a special record for synchronization purposes

® Conversation: a unit of work as part of a conversation

" Master: a special record to manage the persistent store

® Publication:arecord containing a publication for a durable topic

® Subscription:arecord containing subscriber data (if SUBSCRIBER-STORE = PSTORE) is defined

= Date and time of the action

" Action describes the action of Broker. The following actions are currently supported:

B Created: record is created

B Deleted: record is deleted

® Loaded: record is loaded (Broker instance with RUN-MODE = PSTORE - LOAD)

® Unloaded: record is unloaded (Broker instance with RUN-MODE = PSTORE - UNLOAD)

Broker

277

EntireX Broker Reporting

License Report

The License Report is created during broker startup on the respective platform. It contains the
contents of the license file itself and some machine data.

z/0S

DDNAME ETBLREP must be assigned to get this report. See Step 2: Edit the Broker Startup Procedure
in the z/OS installation documentation.

BS2000/0SD

LINK-NAME ETBLREP must be assigned to get this report.

278 Broker

18 Command Logging in EntireX

= |ntroduction t0 COMMANA LOGGINGveeeiiiiiiieiiiie et 280
= Command Log Filtering using System Management HUD ... 282
= Command Log Filtering using Command-line Interface ETBCMDcccoeiiiiiiiiiiiiiiiie e 284
= ACI-driven Command LOGGINGeeiueieieiiiiii ettt 287
B Dual Command LOG FlES ... 287

279

Command Logging in EntireX

Command logging is a feature to assist in debugging Broker ACI applications. A command in this
context represents one user request sent to the Broker and the related response of Broker.

Command logging is a feature that writes the user requests and responses to file in a way it is
already known with Broker trace and TRACE-LEVEL=1. But command logging works completely
independent from trace, and data is written to a file only if defined command trace filters detect
a match.

Broker stub applications send commands or requests to the Broker kernel, and the Broker kernel
returns a response to the requesting application. Developers who need to resolve problems in an
application need access to those request and response strings inside the Broker kernel. That's
where command logging comes in. With command logging, request and response strings from or
to an application are written to a file that is separate from the Broker trace file.

Introduction to Command Logging

This section provides an introduction to command logging in EntireX and offers examples of how
command logging is implemented. It covers the following topics:

= Qverview

= Command Log Files

= Defining Filters

= Programmatically Turning on Command Logging

Overview

Command logging is similar to a Broker trace that is generated when the Broker attribute TRACE -
LEVEL is set to 1. Broker trace and command logging are independent of each other, and therefore
the configuration of command logging is separate from Broker tracing.

The following Broker attributes are involved in command logging:

Attribute Description

CMDLOG Set this to "N" if command logging is not needed.

CMDLOG-FILE-SIZE |A numeric value indicating the maximum size of command log file in KB.

NUM-CMDLOG- FILTER|The maximum number of filters that can be set.

In addition to CMDLOG=YES, the Broker needs the assignment of the dual command logging files
during startup. If these assignments are missing, Broker will set CMDLOG=NO. See also Broker Attributes
in the administration documentation.

280 Broker

Command Logging in EntireX

Command Log Files

The Broker keeps a record of commands (request and response strings) in a command log file.

At Broker startup, you will need to supply two command log file names and paths. Only one file
is open at a time, however, and the Broker writes commands (requests and responses) to this file.

Under UNIX and Windows, the startup options -y and -z are evaluated by executable etbnuc.
These options are used to specify the command log file names. Startup script/service assign these
files by default.

Under z/OS, the file requirements are two equally sized, physical sequential files defined with a
record length of 121 bytes, i.e.

DCB=(LRECL=121,RECFM=FB,BLKSIZE=nnnn). We recommend you allocate files with a single
(primary) extent only. For example SPACE=(CYL, (30,0)). The minimum file size is approximately
3 cylinders of 3390 device. Alternatively, the dual command log files can be allowed in USS HFS
file system.

When the size of the active command log file reaches the KB limit set by CMDLOG-FILE-SIZE, the
file is closed and the second file is opened and becomes active. When the second file also reaches
the KB limit set by CMDLOG-FILE-SIZE, the first file is opened and second file is closed. Existing
log data in a newly opened file will be lost.

Defining Filters

In command logging, a filter is used to store and identify a class, server, or service, as well as a
topic name and user ID.

Use the System Management Hub to define a filter. Under UNIX and z/OS you can also use com-
mand line tool etbcmd. During processing, the Broker evaluates the class, server, service, topic,
and user ID associated with each incoming request and compares them with the same parameters
specified in the filters. If there is a match, the request string and response string of the request is
printed out to the command log file.

Programmatically Turning on Command Logging

Applications using ACI version 9 or above have access to the new field L0G-COMMAND in the ACI
control block.

If this field is set, the accompanying request and the Broker's response to this request is logged to
the command log file.

Note: Programmatic command logging ignores any filters set in the kernel.

Broker 281

Command Logging in EntireX

Command Log Filtering using System Management Hub

= Setting up your Environment
= Adding a Filter
= Managing Filters

Setting up your Environment
In order to process filters using System Management Hub, Broker attribute CMDLOG must be set to

"YES" and the log files must be defined. See Command Log Files above. If this is the case, the
CmdlogFilter node will be visible in the SMH tree.

282 Broker

Command Logging in EntireX

System Management Hub

add Crmdlog Filter

Disable Crndlog :%
Refresh

@?-l Administrators
= % EntireX Communicatar 7.3
Ei Lacation Transparency
5% Authorization Rules
= % Entirex Broker
= = ETBO01
B¥ Braker
ket Worker
& Senice
58 Server
= Client
@ Conwersation
£ Persistent Store
.l Fersistent Store CTree
= Topic
32 Subscriber
=% Publisher
B Pyhlication
B Crdiog ilter
= ETEOOZ2
=% sles100-1:1971:TCP

Broker

283

Command Logging in EntireX

Adding a Filter

» To add a filter

1 Inthe SMH tree view, select the CmdlogFilter node and, with the context menu, choose Add
Cmdlog Filter.

2 Inthe Add Cmdlog Filter screen, add values for User ID, Class/Server/Service or Topic.
Confirm with OK.

Managing Filters

The following Cmdlog Filter screen shows four filters. Use this screen to

= delete a filter
= disable a filter
= enable a disabled filter

wop

Delete Button = Enable/Disahle Button = UserID = Class/Server/Service & Topic = Enabled =
USER_1 SAG/ETBCISISAGCCYS ¥
USER_1 SAG/ETBCIS/SAGCIVE iy
USER_1 RCP/SAGCCYA/CALLNAT N
USER_1 RPC/SAGCIVE/CALLNAT ¥

ltems 1104 of 4
Note: You cannot change the values for User ID, Class/Server/Service or Topic in the Cmdlog

Filter screen. Instead, delete the command log filter and add a new one with the required
values.

Command Log Filtering using Command-line Interface ETBCMD

The examples assume that Broker has been started with the attribute CMDLOG=Y.

= Setting Filters
= Deleting Filters

2

(o)

4 Broker

Command Logging in EntireX

= Disabling and Enabling a Filter

Setting Filters

Filters need to be set before running the stub applications whose commands are to be logged.

UNIX

Command

Description

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE

This command sets filters on
ACLASS/ASERVER/ASERVICE. All ACI calls issued by
all users to this service will be logged.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE -Usaguserl

This command set filters on
ACLASS/ASERVER/ASERVICE anduserID saguserl.
All ACI calls to this service as well as those issued by
saguserl will be logged.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-TNYSE -Usaguserl

This command set filters on topic NYSE and user ID
saguserl. All ACI calls to this topic as well as those
issued by saguserl will be logged.

z/OS
Command Description
//ETBCMD EXEC PGM=ETBCMD, This command sets filters on

// PARM=("'/-blocalhost:1970:TCP «
-cSET-CMDLOG-FILTER -xuser '
// '-dBROKER «

-nACLASS/ASERVER/ASERVICE")

ACLASS/ASERVER/ASERVICE. All ACI callsissued
by all users to this service will be logged.

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP <
-cSET-CMDLOG-FILTER -xuser ',

-Usaguserl")

// '-dBROKER -nACLASS/ASERVER/ASERVICE «

This command sets filters on
ACLASS/ASERVER/ASERVICE and user ID
saguserl. All ACI calls to this service as well as
those issued by saguserl will be logged.

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP «
-cSET-CMDLOG-FILTER -xuser ',

// '-dBROKER -TNYSE -Usaguserl')

This command sets filters on topic NY SE and user
ID saguserl. All ACI calls to this topic as well as
those issued by saguserl will be logged.

| Note: If more than one service or topic is set as a filter, all ACI calls sent to any of these

services or topics will be logged. Identical filters cannot be set. Attempts to set a second
filter that matches an existing filter will be rejected. Similarly, the maximum number of filters
that can be added is defined in NUM-CMDLOG- FILTER. If the maximum number of filters is
already being used, delete an existing filter to make room for a new filter.

Broker

285

Command Logging in EntireX

Deleting Filters

The following provides an example of how to delete an existing filter on a service.

» To delete afilter

= Enter the following command.

Under UNIX:

etbcmd -d BROKER -b Tocalhost:1970:TCP -c CLEAR-CMDLOG-FILTER <
-nACLASS/ASERVER/ASERVICE -U saguserl

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cCLEAR-CMDLOG-FILTER -xuser ',
/7 '-dBROKER -nACLASS/ASERVER/ASERVICE")

If the filter does not exist, the command will return an error.
Disabling and Enabling a Filter

Filters can be set and still be disabled (made inactive).

» To disable a filter

= Enter the following command.

Under UNIX:

etbcmd -blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -dBROKER -xuser <
-nACLASS/ASERVER/ASERVICE -Usaguserl

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -xuser ',
// '-dBROKER -nACLASS/ASERVER/ASERVICE -Usaguserl')

| Note: A disabled filter will not bring down the count of filters in use.

» To enable a filter

= Enter the following command to enable the disabled filter.

286 Broker

Command Logging in EntireX

Under UNIX:

etbcmd -blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -dBROKER -xuser <«
-nACLASS/ASERVER/ASERVICE -Usaguserl

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -xuser '
// '-dBROKER -nACLASS/ASERVER/ASERVICE -Usaguserl')

ACl-driven Command Logging

EntireX components that communicate with Broker can trigger command logging by setting the
field LOG-COMMAND in the ACI control block.

When handling ACI functions with command log turned on, Broker will not evaluate any filters.
Application developers must remember to reset the LOG-COMMAND field if subsequent requests are
not required to be logged.

Dual Command Log Files

Broker's use of two command log files prevents any one command log file from becoming too
large.

When starting a Broker with command log support, you must therefore specify two file names
and paths - one for each of the two command log files. The sample startup script installed with
the product uses the variables ETB_CMDLOG1 and ETB_CMDLOGZ as the default command log file
names.

Under UNIX, the startup script uses file names CMDLOGR1 and CMDLOGR2.

Under Windows, the keys ETB_CMDLOG1 and ETB_CMDL0G2 are entered in the Registry with values
CMDLOGR1 and CMDLOGR?.

At startup, Broker initializes both files and keeps one of them open. Command log statements are
printed to the open file until the size of this file reaches the value specified in the Broker attribute
CMDLOG-FILE-SIZE. This value must be specified in KB.

When the size of the open file exceeds the value specified in the Broker attribute CMDLOG-FILE-
SIZE, Broker closes this file and opens the other, dormant file. Because the Broker closes a log file

Broker 287

Command Logging in EntireX

only when unable to print out a complete log line, the size of a full file may be smaller than CMDLOG-
FILE-SIZE.

» To switch log files on demand, using etbcmd | ETBCMD

An open command log file can be forcibly closed even before the size limit is reached. Enter
the following command.

Under UNIX:

etbcmd -blocalhost:1970:TCP -cSWITCH-CMDLOG -dBROKER -xuser

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cSWITCH-CMDLOG -xuser ",
// '-dBROKER")

The command above will close the currently open file and open the one that has been dormant.

288

Broker

	Broker
	Table of Contents
	I Concepts and Facilities of EntireX Broker
	1 Concept of Interoperability
	Interoperability and EntireX Broker
	Messaging Model and Interoperability
	Introduction
	Overview Diagram
	ACI Syntax of Messaging Model

	Communication Models and Interoperability
	Client and Server
	Publish and Subscribe

	2 Common Use Cases
	Introduction
	Case 1: ACI and ACI (including Units of Work)
	Business Scenario
	Table of Interoperability
	Message Flow: ACI and ACI
	Description of Steps in Message Flow

	Case 2: JACI and ACI
	Business Scenario
	Table of Interoperability
	Message Flow: JACI and ACI
	Description of Steps in Message Flow

	Case 3: ACI (via Web Server) and ACI
	Business Scenario
	IT Environment
	Table of Interoperability
	Message Flow: ACI and WebSphere MQ
	Description of Steps in Message Flow

	Case 4: RPC Wrapper and RPC
	Business Scenario
	Table of Interoperability
	Message Flow: RPC Wrapper and RPC

	Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or Windows)
	Business Scenario
	IT Environment
	Table of Interoperability
	Message Flow: Publisher and Subscriber
	Description of Steps in Message Flow

	3 General Architecture of EntireX Broker
	Introduction to EntireX Broker Architecture
	EntireX Broker Communication Models
	Client and Server
	Example Scenario 1: Client and Server Messaging (Synchronous)
	Example Scenario 2: Client and Server Messaging (Asynchronous)

	Publish and Subscribe

	Architecture of Broker Stub
	Overview of Broker Stub
	Description of Command Process Flow within Broker Stub

	Architecture of Broker Kernel
	Overview of Broker Kernel
	Description of Command Process Flow within Broker Kernel

	4 Functionality of EntireX Broker
	Application Bindings (Stubs)
	Attach Services
	Codepage Conversion
	Command and Information Services
	Accounting
	Data Compression
	Persistent Store
	Persistent Store Types

	Units of Work
	Security

	5 Broker Quick Reference
	Functionality: Communication Models
	ACI Syntax of Messaging Model
	Location of Broker Kernel and Stubs
	Transport: Broker Stubs and APIs

	II Broker Attributes
	6 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definition
	Service Update Modes
	OPTION Values for Conversion

	Topic-specific Attributes
	Codepage-specific Attributes
	Adabas SVC/Entire Net-Work-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Variable Definition File

	III Broker Command and Information Services
	7 Broker Command and Information Services
	CIS Overview Table
	Description of Services
	INFO and USER-INFO
	CMD, PARTICIPANT-SHUTDOWN and SECURITY

	Modes of Requesting the Services
	Command-line Utilities
	Version Information

	Graphical User Interface
	User-Written Interface

	ETBCMD: Executable Command Requests
	ETBINFO: Returnable Information Requests

	IV
	8 Sample Security Exits for Broker Security
	Sample Security Exits as Alternative Security Solution
	Major Advantages of EntireX Security
	Comprehensive Security
	Protection of Application Systems
	One User=One Definition
	No User Exits to Write/Debug
	Standard Security Definitions
	Protected Investment in SAF-based Security Repositories

	Lightweight USRSEC
	Implementation of Sample Security Exits
	Description of Steps in Data Flow

	Definition of Terms
	Authentication
	Authorization
	Broker and Kernel
	Broker Stub
	Encryption / Decryption
	Exits

	9 Using Sample Security Exits for Broker Security
	Overview of Security Data Flow
	Prerequisites for Running EntireX Broker in a Secure Environment
	General Security Recommendations
	Implementing the Kernel Security Exit under z/OS
	Implementing Security for Broker Stubs under z/OS
	Implementing Security Exits for Broker Stubs on UNIX
	Implementing Security Exits for Broker Stubs on Windows

	Writing Security Exits
	Requirements
	Error Checking for Incomplete Security Installation

	Security-Related Parameters
	USER-ID
	PASSWORD
	SECURITY-TOKEN
	CLIENT-UID
	ERROR-CODE
	ERROR-TEXT
	KERNELSECURITY
	ENCRYPTION-LEVEL

	Programming Broker Stub Exits
	Preparation Exit
	Synopsis
	Return value
	Required Actions in the Exit
	Recommended Actions in the Exit

	Evaluation Exit
	Synopsis
	Parameters
	Return Value
	Required Actions in the Exit
	Recommended Actions in the Exit
	Use of a Single Send/Receive Buffer

	Programming the Kernel Exit Routine
	Synopsis
	Parameters
	Return Value

	Layout of Security Parameter Block ETB_SECPAR
	Layouts of Type-dependent Security Parameter Blocks
	Required/ Recommended Actions in the Exit (depending on Security Type)

	V
	10 EntireX Broker Tutorial
	Introduction to Tutorial
	Calling the Tutorial Menu
	Global Defaults for the Tutorial
	Tutorial Commands
	Using the Tutorial Help
	Using the Example Programs
	Step Mode
	Stress Mode
	Blocked RECEIVE
	Blocked SEND

	All Other EntireX Broker Calls
	Silent Mode

	The Tutorial Trace Facility
	Display/Modify Send Buffer
	Display/Reset Receive Buffer

	ACI Test Tool: Single Broker Request

	11 Examples for EntireX Broker Tutorial
	Non-conversational Examples
	Example 1: Single Request without Reply
	Client
	Server
	Coding

	Example 2: Single Request with Reply
	Client
	Server
	Coding

	Conversational Examples
	Example 3: Long Running Service - Non-blocked Client
	Client
	Server
	Coding

	Example 4: Transfer Messages from Server to Client
	Client
	Server
	Coding

	Example 5: Transfer Messages from Client to Server
	Client
	Server
	Coding

	Example 6: Server with Multiple Parallel Conversations
	Client
	Server
	Coding

	Special Features
	Example 7: Send Messages with HOLD - Delayed Delivery
	Client
	Server
	Coding

	Example 8: Remove Service while Conversations Exist
	Client
	Server
	Coding

	Example 9: Server for Multiple Services
	Client
	Server
	Coding

	Getting Started
	Example 10: ACI Test Tool: Single Broker Requests
	Example 11: Model to write Client/Server Programs API Version 1
	Client
	Server
	Coding

	Example 12: Model to write Client/Server programs API Version 2
	Client
	Server
	Coding

	Attach Manager Interface
	Example 13: Demonstration of the Attach Manager Interface
	Coding

	Non-blocked Server
	Example 14: Single Requests without Reply - A Polling Server
	Example
	Client
	Server
	Coding

	Example 15: Single Requests with Reply - A Polling Server
	Client
	Server
	Coding

	VI
	12 Introduction to Broker Administration using SMH
	13 Managing the List of Brokers with SMH
	Creating a Local Broker
	Deleting a Local Broker
	Adding a Remote Broker Instance to System Management Hub
	Removing a Remote Broker Instance from System Management Hub
	Stopping All Local Brokers from System Management Hub
	Setting the User Credentials for a Broker Instance
	Clearing the User Credentials for a Broker Instance
	Setting SSL or TLS Parameters

	14 Configuring a Single Broker with SMH
	Starting a Local Broker
	Restarting a Local Broker
	Stopping a Local Broker
	Administering a Broker Attribute File
	Editing an Attribute File
	Uploading an Attribute File
	Downloading an Attribute File

	Administering a Log File
	Showing a Log File
	Downloading a Log File

	Setting the Local Broker Autostart Value
	Enabling the SNMP Plug-in
	Disabling the SNMP Plug-in

	15 Using the Broker Information Service with SMH
	Administering a Broker Instance
	Filtering Clients
	Filtering Conversations
	Filtering the User
	Filtering Participants
	Filtering the Persistent Store
	Filtering the Publication
	Filtering the Publisher
	Filtering Servers
	Filtering Services
	Filtering the Subscriber
	Filtering the Topic

	16 Using the Broker Command Service with SMH
	Connecting/Disconnecting Persistent Store
	Allowing and Forbidding new UOW Messages
	Setting a Broker Instance's Trace Level
	Flushing a Broker Instance's Trace Buffer
	Flushing a Broker Instance's Trace Buffer on Error
	Producing Statistics of a Broker Instance
	Setting the Persistent Store Trace Level
	Setting the Security Trace Level
	Deregistering a Server
	Deregistering a Service
	Purging Unit(s) of Work
	Subscribing a User
	Unsubscribing a User
	Logging Off a Subscriber
	Logging Off a Publisher
	Enabling/Disabling Cmdlog
	Switching Cmdlog
	Adding Cmdlog Filter
	Enabling/Disabling Cmdlog Filter
	Deleting Cmdlog Filter

	VII
	17 EntireX Broker Reporting
	Configuration Report
	Load Module Report
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Persistent Store Report
	Configuration
	Sample Report

	License Report

	18 Command Logging in EntireX
	Introduction to Command Logging
	Overview
	Command Log Files
	Defining Filters
	Programmatically Turning on Command Logging

	Command Log Filtering using System Management Hub
	Setting up your Environment
	Adding a Filter
	Managing Filters

	Command Log Filtering using Command-line Interface ETBCMD
	Setting Filters
	Deleting Filters
	Disabling and Enabling a Filter

	ACI-driven Command Logging
	Dual Command Log Files

