
webMethods EntireX

Broker

Version 9.5 SP1

November 2013

This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-BROKER-95SP1-20140628

Table of Contents

I Concepts and Facilities of EntireX Broker ... 1
1 Concept of Interoperability ... 3

Interoperability and EntireX Broker .. 4
Messaging Model and Interoperability ... 4
Communication Models and Interoperability ... 7

2 Common Use Cases ... 11
Introduction .. 12
Case 1: ACI and ACI (including Units of Work) .. 13
Case 2: JACI and ACI ... 15
Case 3: ACI (via Web Server) and ACI ... 17
Case 4: RPC Wrapper and RPC .. 19
Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or
Windows) ... 22

3 General Architecture of EntireX Broker .. 25
Introduction to EntireX Broker Architecture ... 26
EntireX Broker Communication Models .. 26
Architecture of Broker Stub ... 30
Architecture of Broker Kernel .. 31

4 Functionality of EntireX Broker .. 35
Application Bindings (Stubs) ... 36
Attach Services ... 37
Codepage Conversion .. 37
Command and Information Services ... 38
Accounting ... 38
Data Compression .. 38
Persistent Store ... 39
Units of Work ... 40
Security ... 41

5 Broker Quick Reference ... 43
Functionality: Communication Models ... 44
ACI Syntax of Messaging Model ... 45
Location of Broker Kernel and Stubs ... 45
Transport: Broker Stubs and APIs .. 47

II Broker Attributes .. 49
6 Broker Attributes ... 51

Name and Location of Attribute File ... 53
Attribute Syntax ... 53
Broker-specific Attributes .. 55
Service-specific Attributes .. 80
Topic-specific Attributes .. 93
Codepage-specific Attributes ... 100
Adabas SVC/Entire Net-Work-specific Attributes ... 104
Security-specific Attributes .. 108

iii

TCP/IP-specific Attributes .. 114
c-tree-specific Attributes .. 118
SSL-specific Attributes ... 120
DIV-specific Attributes ... 125
Adabas-specific Attributes ... 125
Variable Definition File ... 127

III Broker Command and Information Services ... 129
7 Broker Command and Information Services ... 131

CIS Overview Table .. 132
Modes of Requesting the Services .. 133
ETBCMD: Executable Command Requests .. 135
ETBINFO: Returnable Information Requests ... 139

IV ... 141
8 Sample Security Exits for Broker Security ... 143

Sample Security Exits as Alternative Security Solution 144
Major Advantages of EntireX Security ... 144
Lightweight USRSEC ... 145
Implementation of Sample Security Exits .. 146
Definition of Terms ... 147

9 Using Sample Security Exits for Broker Security .. 151
Overview of Security Data Flow .. 152
Prerequisites for Running EntireX Broker in a Secure Environment 153
General Security Recommendations .. 153
Writing Security Exits ... 154
Security-Related Parameters .. 156
Programming Broker Stub Exits ... 158
Layout of Security Parameter Block ETB_SECPAR .. 161
Layouts of Type-dependent Security Parameter Blocks 162

V ... 167
10 EntireX Broker Tutorial .. 169

Introduction to Tutorial .. 170
Calling the Tutorial Menu .. 170
Global Defaults for the Tutorial ... 171
Tutorial Commands .. 172
Using the Tutorial Help .. 173
Using the Example Programs ... 174
The Tutorial Trace Facility .. 181
ACI Test Tool: Single Broker Request ... 183

11 Examples for EntireX Broker Tutorial ... 185
Non-conversational Examples ... 186
Conversational Examples ... 188
Special Features .. 194
Getting Started ... 198
Attach Manager Interface ... 201
Non-blocked Server .. 201

Brokeriv

Broker

VI ... 205
12 Introduction to Broker Administration using SMH .. 207
13 Managing the List of Brokers with SMH ... 209

Creating a Local Broker .. 211
Deleting a Local Broker .. 211
Adding a Remote Broker Instance to System Management Hub 213
Removing a Remote Broker Instance from System Management Hub 213
Stopping All Local Brokers from System Management Hub 215
Setting the User Credentials for a Broker Instance .. 216
Clearing the User Credentials for a Broker Instance 217
Setting SSL or TLS Parameters ... 217

14 Configuring a Single Broker with SMH .. 219
Starting a Local Broker ... 220
Restarting a Local Broker ... 221
Stopping a Local Broker ... 222
Administering a Broker Attribute File ... 223
Administering a Log File .. 225
Setting the Local Broker Autostart Value ... 228
Enabling the SNMP Plug-in ... 228
Disabling the SNMP Plug-in .. 230

15 Using the Broker Information Service with SMH ... 231
Administering a Broker Instance ... 232
Filtering Clients .. 235
Filtering Conversations .. 236
Filtering the User .. 236
Filtering Participants .. 238
Filtering the Persistent Store .. 239
Filtering the Publication ... 240
Filtering the Publisher .. 241
Filtering Servers .. 242
Filtering Services .. 243
Filtering the Subscriber .. 244
Filtering the Topic ... 245

16 Using the Broker Command Service with SMH .. 247
Connecting/Disconnecting Persistent Store ... 248
Allowing and Forbidding new UOWMessages .. 249
Setting a Broker Instance's Trace Level .. 249
Flushing a Broker Instance's Trace Buffer .. 250
Flushing a Broker Instance's Trace Buffer on Error .. 250
Producing Statistics of a Broker Instance ... 251
Setting the Persistent Store Trace Level .. 251
Setting the Security Trace Level ... 252
Deregistering a Server .. 253
Deregistering a Service ... 254
Purging Unit(s) of Work ... 255

vBroker

Broker

Subscribing a User .. 257
Unsubscribing a User ... 258
Logging Off a Subscriber .. 259
Logging Off a Publisher ... 260
Enabling/Disabling Cmdlog ... 260
Switching Cmdlog .. 262
Adding Cmdlog Filter .. 263
Enabling/Disabling Cmdlog Filter ... 264
Deleting Cmdlog Filter ... 265

VII .. 267
17 EntireX Broker Reporting .. 269

Configuration Report ... 270
Load Module Report .. 271
Storage Report .. 272
Persistent Store Report ... 275
License Report .. 278

18 Command Logging in EntireX ... 279
Introduction to Command Logging ... 280
Command Log Filtering using System Management Hub 282
Command Log Filtering using Command-line Interface ETBCMD 284
ACI-driven Command Logging ... 287
Dual Command Log Files .. 287

Brokervi

Broker

I Concepts and Facilities of EntireX Broker

EntireX Broker is amiddleware infrastructure that allows application components in a distributed
processing environment to communicate with each other. EntireX Broker provides access through
two communicationmodels - client and server and publish and subscribe - which the JMS specification
designates as messaging domains. Message queues are employed to provide verifiable delivery
of message data in asynchronous communication.

Additionally, EntireX Broker allows each application component to use a different programming
interface. As a result, your application components can achieve highly flexible interoperability in
a loosely coupledway. EntireX Broker can be usedwhere your application components are located
on distributedmachines andwhere different operating systems and TPmonitors are used on each
machine.

Introduces the basic concept of EntireX Broker: achieving highly
flexible interoperability of distributed application components.

Concept of Interoperability

Provides specific examples of how your organization can achieve
flexible interoperability in a distributed processing environment.

Common Use Cases

Describes the components and transport mechanisms of EntireX
Broker within the context of EntireX.

General Architecture of EntireX
Broker

Provides a brief overview of the functionality provided by EntireX
Broker.

Functionality of EntireX Broker

Quick Reference to Broker features and functions.Broker Quick Reference

1

2

1 Concept of Interoperability

■ Interoperability and EntireX Broker ... 4
■ Messaging Model and Interoperability ... 4
■ Communication Models and Interoperability ... 7

3

Note: After viewing this chapter, see the chapter Common Use Cases, which supplies spe-
cific business examples of the interoperability available through EntireX Broker.

Interoperability and EntireX Broker

This section introduces the basic concept of EntireX Broker: achieving highly flexible interoperab-
ility of application components in a distributed processing environment. This concept is described
from the perspectives of

■ a messaging model
■ communication models
■ application programming interfaces
■ EntireX components

in order to give you a comprehensive, high-level view of how EntireX Broker enables flexible in-
teroperability between distributed application components.

Note: Unless otherwise indicated, the communication model used in this section is client
and server, and not publish and subscribe.

Messaging Model and Interoperability

Introduction

In a distributed processing environment that uses EntireX Broker, communication occurs through
application components exchangingmessages.An application component offering a service registers
it with EntireX Broker (see REGISTER); this makes the service available to other application com-
ponents able to communicate with EntireX Broker. An application component intending to access
a service issues its request through EntireX Broker, which then routes the request to the specific
application component offering the service.

The following concepts help describe how message exchange is structured in EntireX Broker:

■ Synchronicity
The application initiating the request either waits for the result to return, whereby it suspends
all processing (synchronous); or it does not wait for the result to return, whereby it is freed to
do other processing (asynchronous).

Broker4

Concept of Interoperability

■ Conversationality
The request can either be a single pair ofmessages comprising request/reply (non-conversational);
or it can be a sequence of multiple messages which are all part of the same request (conversa-
tional).

Overview Diagram

The following diagram shows the two major concepts of EntireX Broker's messaging model: syn-
chronicity and conversationality. See ACI Syntax of Messaging Model below for a description of
the messaging syntax.

5Broker

Concept of Interoperability

ACI Syntax of Messaging Model

The table belowdescribes themessaging termsmentioned in the diagramabove from the viewpoint
of the application component initiating the request, as expressed in ACI syntax.

TheACI (AdvancedCommunication Interface) is the lowest level applicationprogramming interface
that interacts with EntireX Broker. The ACI is common to all of the messaging models and com-
munication models (see Communication Models and Interoperability) of EntireX.

Publish and SubscribeClient and Server
Messaging Term SubscribePublishServerClient

not applicablenot applicableSynchronous ■■ RECEIVESEND (1)

■ ■WAIT=YES (1) WAIT=YES

Asynchronous (3) ■■■■ RECEIVE_PUBLICATIONSEND_PUBLICATIONRECEIVESEND

■ ■■■WAIT=NO WAIT=NOWAIT=NOWAIT=NO

■ ■WAIT=YES WAIT=YES (2)

not applicablenot applicableConversational (3) ■■ RECEIVESEND

■ CONV-ID=NEW

Non-conversational (3) ■■■ SEND_PUBLICATIONRECEIVESEND

■ CONV-ID=NONE

Notes:

1. The synchronous SEND, WAIT=YES command contains an implied RECEIVE command.

2. The subscriber has the option of specifying WAIT=YES.
Example: The subscriber uses a repeat loop that issues a RECEIVE_PUBLICATION. The advantage
is that the program runs continuously, processing publications arising as random events, which
simplifies programming effort.

3. Persistence available. See Concepts of Persistent Messaging in the general administration docu-
mentation.

Broker6

Concept of Interoperability

Communication Models and Interoperability

The EntireX Broker uses two communicationmodels: client and server and publish and subscribe.
Client-and-server communication is used if data is to be exchanged with exactly one partner;
publish-and-subscribe communication is used if data is to be published. The ACI can be used for
both client and server and publish and subscribe.

■ Client and Server
This model is based on the connection between exactly two partners: client and server. This
model covers the requirements of conversational communication and asynchronous processing.

■ Publish and Subscribe
This model is implemented as an independent subsystem in the Broker, that is, an attribute de-
termines whether it is set to active or inactive.

The following diagrams shows the two types of communication model used in EntireX Broker:
client and server and publish and subscribe.

7Broker

Concept of Interoperability

Client and Server

Broker8

Concept of Interoperability

Publish and Subscribe

Publish and subscribe is normally classified as an asynchronous communication model. It is non-
conversational in terms ofmessage flow, that is, publications between publisher(s) and subscriber(s).
The classification “asynchronous” is chosen because neither publisher nor subscriber directly de-
pends on the activities of the other. The publisher always sends publications in a non-blocked
manner.

Note: The subscriber has the option of specifying WAIT=YES (see legend in above graphic).
Example: The subscriber uses a repeat loop that issues a RECEIVE PUBLICATION. The advant-
age is that the program runs continuously, processing publications arising as randomevents,
which simplifies programming effort.

9Broker

Concept of Interoperability

10

2 Common Use Cases

■ Introduction .. 12
■ Case 1: ACI and ACI (including Units of Work) .. 13
■ Case 2: JACI and ACI .. 15
■ Case 3: ACI (via Web Server) and ACI .. 17
■ Case 4: RPC Wrapper and RPC ... 19
■ Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or Windows) ... 22

11

Introduction

This section provides common use cases of the basic concept of EntireX - achieving highly flexible
interoperability of distributed application components. Each use case contains a

■ business scenario
■ table of interoperability, listing the major components selected for the use case
■ diagramof the type ofmessage flow resulting from the combination of these specific components
■ stepped table describing the message flow depicted in the diagram.

The common use cases based on the EntireX components Broker andDeveloper's Kit are provided
to show the extent and limitations of the EntireX Broker.

The Developer's Kit contains a set of interfaces for using applications written in various program-
ming languages with EntireX Broker. Developer's Kit enables application components to be
“wrapped”, i.e. encapsulated, thereby allowing them to behave like an object and be plugged-and-
played as needed.

The ACI forms the layer upon which the various wrappers of the Developer's Kit logically exist.
This allows application programs to directly utilize the following industry-standard APIs that are
exposed through the Developer's Kit and EntireX Broker.

The common use cases in the table below are specific examples of how EntireX Broker provides
highly flexible interoperability of application components in a distributed processing environment.
The programming interfaces selected for the use cases below are organized by the two communic-
ation models exposed through EntireX Broker: client and server and publish and subscribe.

Typical UseServerClientCase

To integrate applications on separate platforms. (Persistent
messaging is described.)

ACIACICase 1

To integrate applications on separate platforms,whereby the client's
application interface is a subset of the ACI.

ACIJACICase 2

To enable Web access to mainframe systems.ACIACI (via Web server)Case 3

To enable a UNIX orWindows application to access a Natural RPC
program.

RPCRPCCase 4

Typical UseSubscribePublishCase

To enable a mainframe application to publish messages to UNIX
or Windows subscribers.

ACIACICase 5

Broker12

Common Use Cases

Case 1: ACI and ACI (including Units of Work)

This case is typically used to integrate applications on separate platforms.

Business Scenario

An insurance company sells its own products as well as those of other insurers. It is company
policy for its sales agents to give the most competitive insurance quotes possible to customers.
The front-ends used by the sales agent are providedwithGUI applications onWindows. To obtain
insurance quotes from the back-end data as well as to update those data, the insurance agents
must communicate information from/to various mainframe applications written in COBOL and
PL/I.

Table of Interoperability

Messaging ModelLanguageOperating System
EntireX
Component

Programming
Interface

Application
Component

Visual CWindowsBrokerACIClient ■ Synchronous or
asynchronousCOBOL, PL/Iz/OSACIServer

■ Conversational or
non-conversational

13Broker

Common Use Cases

Message Flow: ACI and ACI

Description of Steps in Message Flow

1. a. Synchronous
The client program creates a request for information from a mainframe back-end and issues
a call via the Broker stub to EntireX Broker.

With conversational communication, a series of linked requests can be issued, allowing both
the client and server to retain context between commands.

b. Asynchronous
■ The client program wants to communicate updated information to the back-end system.
It formulates one or more messages within a unit of work (UOW) and performs an asyn-
chronous SEND from the stub to the broker.

■ The Broker writes the UOW to the persistent store, enabling the client program to know
that the UOWwill be processed.

2. a. Synchronous
The server application issues an ACI call via the Broker stub in order to obtain the request
from the client program.

b. Asynchronous
The server application issues a RECEIVE command, now or at a later time, in order to obtain
the messages from the client program.

3. a. Synchronous
The server application processes the request and returns amessage to EntireX Broker via the
Broker stub.

Broker14

Common Use Cases

b. Asynchronous
The server program performs processing to update the data on the back-end system and,
only afterwards does it acknowledge that the message has been processed.

4. a. Synchronous
The client program receives the reply to the ACI call, allowing the request to be satisfied.

b. Asynchronous
The client program can query the status of its messages by UOWID in order to determine the
status of the back-end processing.

Case 2: JACI and ACI

This case is typically used to integrate applications on separate platforms.

Business Scenario

Anorganizationwants to integrate aUNIX-based stock control systemwith its existingmainframe-
based manufacturing planning systems.

Table of Interoperability

Messaging ModelLanguageOperating SystemEntireX ComponentProgramming InterfaceArchitecture

JavaUNIXBrokerJACIClient ■ Synchronous

Naturalz/OSACIServer ■ Conversational or

Non-conversational

15Broker

Common Use Cases

Message Flow: JACI and ACI

Description of Steps in Message Flow

1. The client program creates a request and issues a JACI call to EntireX Broker.

2. The server application issues an ACI call via the Broker stub in order to obtain the request from
the client program.

3. The server application processes the request and returns a message to EntireX Broker via the
Broker stub.

4. The client program receives the reply to the ACI call, allowing the request to be satisfied.

Broker16

Common Use Cases

Case 3: ACI (via Web Server) and ACI

This case is typically used to enable Web access to mainframe systems.

Business Scenario

A brokerage has an application which processes orders of personal customers to buy and sell se-
curities. All incoming orders are executed on a back-end system, and some orders are executed
at a later time. The incoming orders are in the form of internet communication.

IT Environment

The brokerage uses a Web server as the point-of-entry for incoming orders. These orders are ex-
ecuted either synchronously or asynchronously on a separate back-end system. Located on the
brokerage's Web server is an application which is a client to EntireX, which functions as a proxy
and provides information to the brokerage's EIS (Enterprise Information System). Because of the
critical nature of the orders, units of work are employed to guarantee delivery of the incoming
information to the back-end system. This system is robust and can be restarted after failurewithout
loss of data.

Table of Interoperability

Messaging ModelLanguageOperating SystemEntireXComponentProgramming InterfaceArchitecture

Java ServletUNIXBrokerJACIClient ■ Synchronous or
AsynchronousNaturalz/OSACIServer

■ Conversational

17Broker

Common Use Cases

Message Flow: ACI and WebSphere MQ

Description of Steps in Message Flow

1. The Web browser sends an HTTP request to the Web server.

2. The Web server instantiates a Web page containing the script (ASP).

3. The script creates a request and issues an ACI call via the Broker stub to EntireX Broker.

4. The back-end application issues an ACI call via the Broker stub in order to obtain the request
from the script.

5. The back-end application processes the request and returns a message to EntireX Broker via
the Broker stub.

6. The script receives the reply to the ACI call, allowing the execution of the Web page to be
completed.

7. The Web server returns the information to the Web browser via HTTP, where the Web page is
displayed.

Broker18

Common Use Cases

Case 4: RPC Wrapper and RPC

This case is typically used to enable a UNIX or Windows application to access a Natural RPC
program.

Note: This use case is the most common within EntireX; it employs the EntireX Broker to-
gether with the Developer's Kit.

Business Scenario

An organization actively using Software AG technology - including Adabas and Natural - wants
to expand use of Software AG technology in order to build new applications accessible to clients
executing under UNIX or Windows. To achieve this, the organization runs a client written to use
RPC, which makes calls to EntireX Broker. The client, which is written in either Natural, Java or
a 3GL language, will invoke any of these three variants:

■ (A)
RPCprogramswritten inNatural and executing underNatural on z/OS (RPC is available through
Natural on z/OS);

■ (B)
RPC programs written in Java and executing under the Java RPC Server on UNIX;

■ (C)
3GL RPC programs executing under the C RPC Server on Windows.

Table of Interoperability

Messaging ModelLanguage *Operating SystemEntireX
Component

Programming
Interface

Application Component

Visual BasicCEntireX
Broker and

RPCClient(A) ■ Synchronous

Naturalz/OSRPCServer ■ Conversational or

Non-conversational
Developer's
Kit NaturalWindowsRPCClient(B)

JavaUNIXRPCServer

JavaUNIXRPCClient(C)

C (=3GL)WindowsRPCServer

19Broker

Common Use Cases

Message Flow: RPC Wrapper and RPC

This diagram represents variant (A) in Table of Interoperability above.

1. The client application ACI application initiates an RPC request through the SDK: synchron-
ous/conversational or synchronous/non-conversational.

2. Broker stub communicates this request to the broker kernel.

3. a. Natural
The broker kernel communicates this request toNatural nucleus, which behaves like an RPC
server for Natural-written applications programs.

b. Java
Broker communicates this request to RPC server.

Broker20

Common Use Cases

c. C
Broker communicates this request to RPC server.

4. a. Natural
Natural nucleus invokes the RPC server program.

b. Java
RPC server invokes the server application program.

c. C
RPC server invokes the server application program.

5. a. Natural
Natural nucleus returns the request to EntireX Broker.

b. Java
RPC server returns the request to EntireX Broker.

c. C
RPC server returns the request to EntireX Broker.

6. Broker passes the request to the ACI application.

21Broker

Common Use Cases

Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or Windows)

This case is typically used to enable a mainframe application to publish messages to UNIX or
Windows subscribers.

Business Scenario

Agovernment department publishes details of various construction projects forwhich contractors
are required. Companies are then able to bid for the contracts.

IT Environment

The government application consists of two pieces: a publisher and a subscriber component. An
application running on z/OS publishes details for each new construction project. Publications are
sent asynchronously with a logical topic name in accordance with the type of construction project
required, for example freeways, minor roads, bridges. Approved contractors are given access to
the subscriber component of the application which runs under Windows. Here the contractors
can subscribe to the project types of interest and can receive details of projects for the specified
project types at their convenience.

Table of Interoperability

Messaging ModelLanguageOperating SystemEntireX ComponentProgramming InterfaceArchitecture

Naturalz/OSBrokerACIPublisher ■ Asynchronous

Visual CWindowsACISubscriber

Broker22

Common Use Cases

Message Flow: Publisher and Subscriber

Description of Steps in Message Flow

1. The publisher component is executed when new publication messages are to be sent, using an
ACI call via the Broker Stub to EntireX Broker.

2. EntireX Broker stores these publication messages into the persistent store, where they are
available after a system restart.

3. The subscriber component is executed asynchronously, issuing an ACI call via the Broker stub
to obtain published messages from EntireX Broker.

4. The subscriber repeats step (3) until all published messages have been received.

23Broker

Common Use Cases

24

3 General Architecture of EntireX Broker

■ Introduction to EntireX Broker Architecture ... 26
■ EntireX Broker Communication Models .. 26
■ Architecture of Broker Stub ... 30
■ Architecture of Broker Kernel ... 31

25

Introduction to EntireX Broker Architecture

This section describes the command process flows within the Broker kernel and stubs when two
application components communicate with each other using EntireX Broker. The Broker consists
of the following components:

■ a stub (application binding), which resideswithin the process space of each application compon-
ent;

■ a Broker kernel, which resides in a separate process space, managing all the communication
between application components.

The details of the transport protocols remain transparent to the application components because
they reside within EntireX Broker (stubs and kernel). The EntireX Broker kernel and the location
of the transport protocols are the architectural aspects of EntireX Broker that distinguish it from
other messaging middleware.

EntireX Broker Communication Models

The EntireX Broker uses two communicationmodels: client and server and publish and subscribe.
Client and server communication is used if data is to be sent to exactly one partner. “Publish and
subscribe” communication is used if data is to be published.

Client and Server

SeeWriting Applications: Client and Server in the EntireX Broker ACI Programming documentation
for details of the client and server model.

Broker26

General Architecture of EntireX Broker

Example Scenario 1: Client and Server Messaging (Synchronous)

This is a synchronous messaging scenario: send request and wait for a response.

27Broker

General Architecture of EntireX Broker

Example Scenario 2: Client and Server Messaging (Asynchronous)

This is an asynchronous messaging scenario: put message in service queue.

Note: Client and server have specific meanings within the context of EntireX.

DescriptionTerm

An application component intending to access a servicemakes its request via EntireX Broker which
routes the request to the specific application component offering this service.

Client

The request can be a single pair of messages comprising request/reply; or it can be a sequence of
multiple, related messages containing one or more requests and one or more replies, known as a
conversation. This enables EntireX Broker to be used for applications supporting different
programming interfaces. It also allows interoperability between types of application components
employing these different interfaces.

An application component offering a service registers it with EntireX Broker. EntireX Broker makes
the registered service available to other application components capable of communicating with

Server

EntireX Broker. The fact that a server has been registered and is available in this way defines it as
a service in terms of class/name/server within the context of EntireX.

Publish and Subscribe

See sectionWriting Applications: Publish and Subscribe for details of the publish-and-subscribe
model.

Broker28

General Architecture of EntireX Broker

DescriptionTerm

An application component acting as a publisher is able to send messages to a specified topic:
These messages constitute publications which are now available to the various different

Publisher

subscribers. These messages are automatically kept in the persistent store if there are any
subscribers with “durable” status.

Publications are retained for a specified time limit of days, months or years until all the
subscribers have had the opportunity to receive them. After this time, or upon delivery to every
existing subscriber, the publications are removed from the system.

An application component which is interested in one or more specific topics notifies Broker
kernel, using the Subscribe command. This informs Broker that any publications sent to the

Subscriber

specified topicswill be required by this subscriber and so should be retained and then forwarded
to this subscriber when this application component solicits these subscriptions. Subsequently
the subscriber can issue receive commands to solicit any outstanding subscriptions.

The subscriber can subscribe to EntireX Broker with the ALLOW-DURABLE option which means
the subscriptions are kept in the persistent store even after the Broker kernel or the application
component has been restarted.

29Broker

General Architecture of EntireX Broker

Architecture of Broker Stub

The type of communication model described in this section and in the section Architecture of
Broker Kernel is client and server.

Overview of Broker Stub

The EntireX Broker stub is another name for SoftwareAG's ACI (AdvancedCommunication Inter-
face). The stub implements an API (application programming interface) that allows programs
written in various languages to access EntireX Broker.

See also Administration of Broker Stubs in the platform-specific administration documentation.

Broker30

General Architecture of EntireX Broker

Description of Command Process Flow within Broker Stub

The following table gives a step-by-step description of a typical command process flow from and
to a Broker stub. This example describes a SEND/RECEIVE command pair.

Note: Publish and subscribe uses SEND_PUBLICATION instead of SEND, and
RECEIVE_PUBLICATION instead of RECEIVE.

DescriptionStep

The originating application program calls the stubwith a SEND/WAIT=YES command. The stub builds
the necessary information structures and communicates the message to the Broker kernel. Basic
validation is performed in the stub before the command is passed to the Broker kernel.

1

The stub uses one of the following transport mechanisms to transmit the command to the Broker
kernel: TCP, SSL or Entire Net-Work. The application does not have to recognize the details of the
transport protocol since all transport protocol processing resides entirely within the stub.

2

The application is suspended while the stub waits for a response. Since the application has issued
SEND, WAIT=YES it must wait for the message to travel via the Broker kernel to the partner application
which will satisfy the request.

3

After the request has been satisfied and the message returns from the partner application, via the
Broker kernel, the stub will pass control back to the originating application.

4

Architecture of Broker Kernel

The type of communication model described in this section and in the section Architecture of
Broker Stub is client and server.

31Broker

General Architecture of EntireX Broker

Overview of Broker Kernel

Broker32

General Architecture of EntireX Broker

Description of Command Process Flow within Broker Kernel

The following table gives a step-by-step description of a typical command process flow within
the Broker kernel. This example describes a SEND/RECEIVE command pair.

Note: Publish and subscribe uses SEND_PUBLICATION instead of SEND, and
RECEIVE_PUBLICATION instead of RECEIVE.

DescriptionStep

The originating application program calls the Broker stub with a SEND command. The stub builds the
necessary information structures and transmits the message to the Broker kernel using TCP, SSL or
Entire Net-Work.

1

The message is received by one of the communications subtasks running within the Broker kernel.
The communications subtask passes the message to the dispatcher.

2

The dispatcher schedules the processing of themessagewithin aworker task inside the Broker kernel.3

Worker task processes the inbound message, performing any necessary data conversion and security
operations, and then determines the partner to which the message is to be routed. Any necessary
persistence operations are performed under control of the worker task.

4

The outbound message is passed to the relevant communications subtasks within the Broker kernel
for transmission to the partner application component.

5

The partner application componentwhich has issued a RECEIVE commandvia the broker stub obtains
the message from the originating application program.

6

The partner application component then processes the message and normally makes a reply.7

Notes:

1. Application components can exchange successive relatedmessage pairs. This action constitutes
a conversation.

2. Clean-up processing of timed-out commands is performed asynchronously by the Broker kernel
Timeout Manager which acts upon in-memory data structures as well as data within the per-
sistent store.

3. The communications restart manager is able to restart any communications subtasks which
may have become temporarily disabled, for example by restarting themachine's TCP/IP driver.

33Broker

General Architecture of EntireX Broker

34

4 Functionality of EntireX Broker

■ Application Bindings (Stubs) .. 36
■ Attach Services ... 37
■ Codepage Conversion .. 37
■ Command and Information Services .. 38
■ Accounting ... 38
■ Data Compression ... 38
■ Persistent Store .. 39
■ Units of Work .. 40
■ Security ... 41

35

This chapter gives an overview of the major value-added services provided by EntireX Broker.
These services relieve the administrator or application builder of the task of providing the desired
functionality.

Application Bindings (Stubs)

Application bindings allow applications developed in different programming languages and ex-
ecuting on various different platforms to be enabled by using EntireX Broker, see Architecture of
Broker Stub. Specifically, almost all 3GL, Java and Natural programs are easily enabled using
EntireXBroker. These bindings are available on allmajormainframe,UNIX andWindowsplatforms.
In addition, the SDK provided by EntireX allows different programming interfaces to be utilized,
includingCOM, JMS, RPC and .NET, in addition to EntireX Broker's native programming interface,
the Broker ACI.

The application binding - and SDK component, where appropriate - is the glue between the applic-
ation and the EntireX Broker kernel (see Architecture of Broker Kernel, allowing your application
to leverage all the functionality of EntireX regardless of

■ programming language
■ operating system
■ hardware platform
■ transport mechanism and
■ choice of programming interfaces.

This binding capability enables various different application components to be integrated in a
loosely coupled manner.

These are the locations where EntireX Broker stubs can be installed:

Broker36

Functionality of EntireX Broker

Attach Services

This topic does not apply to the publish-and-subscribe communication model.

EntireX Broker provides a choice of mechanisms which enable application components to be
started automatically when required.

Example: A client application requires some processing from a server application component. The
range of attach services includes starting IMS TM and CICS transactions on the mainframe, and
batch programs/processes on mainframe, UNIX and Windows.

Codepage Conversion

Software internationalization is the process of designing products and services so that they can
be adapted easily to a variety of different local languages and cultures. Codepage conversion
within the EntireXBroker facilitates the internationalization ofmessages: the incoming and outgoing
data is converted to the desired codepage of the platform in use.

37Broker

Functionality of EntireX Broker

Command and Information Services

EntireX Broker includes a set ofmonitoring and control functions that enable you tomonitor system
resource utilization and view the current activities of the clients, servers, publishers and subscribers
on the system. These services are available through a Web-based interface, in addition to a com-
mand-line tool. An interface exists to allow program access to these facilities.

Accounting

This topic does not apply to the publish-and-subscribe communication model.

EntireX Broker provides accounting information based upon the flow of message sequences (or
conversations). On z/OS, this information is written to standard accounting (SMF) records; on
other platforms it is written to a file. The information can be used for:

■ application chargeback: apportioning EntireX resource consumption on the conversation and/or
the application level;

■ performancemeasurement: analyzing application throughput (bytes,messages, etc.) to determine
overall performance;

■ trend analysis: using data to determine periods of heavy and/or light resource and/or application
usage.

Data Compression

EntireX allows compression ofmessages passed between application components so as to consume
less network bandwidth. This is done independently of transport mechanism by compressing the
message in the application binding before it is transmitted to the EntireX Broker kernel. The
Broker kernel decompresses the message to enable security and data conversion to be applied.

The following graphic illustrates the sequencing of data compression within the stub and Broker
kernel:

Broker38

Functionality of EntireX Broker

Persistent Store

The persistent store stores units of work for client and server applications and also stores publica-
tion/subscription data for publish-and-subscribe applications.

■ Client and Server
Persistentmessage delivery ensures that messages sent between client and server (or server and
client) application components can reach their target even in the event of application or system
failures. The user application programs units of work to achieve persistent messaging. EntireX
Broker provides persistent message delivery by grouping messages into units of work (UOWs)
that are committed in one atomic operation by the sender. See also Units of Work.

■ Publish and Subscribe
Two classes of information (subscription records and the publication itself) are provided to ensure
that durable subscription status is preserved and thatmessage content remains persistent during
system failure. The publish-and-subscribe specific verbs SEND_PUBLICATION and
RECEIVE_PUBLICATION provide persistent messaging of publications, which relieves the user of
programming units of work.

Persistence is implemented centrallywithin the EntireX Broker kernel. Therefore, the consistency
of all the stored messages is guaranteed independently of the different application components
and platforms from which the messages are derived.

39Broker

Functionality of EntireX Broker

Persistent Store Types

A persistent store driver is an executable, or a load module, which implements access to the
physical persistent store. EntireX Broker allows the choice of three persistent store repositories:
Adabas (DBMS), Data In Virtual (DIV) for z/OS, and native file system. The following table gives
an overview of the persistent store options:

NotesOperating SystemDescription
Persistent
Store Type

Adabas, Software AG's ADAptable
dataBASe, is a high-performance,

UNIX, Windows,
z/OS, z/VSE

Uses Adabas database.Adabas

multithreaded, database management
system.

This persistent store option is
implemented as a VSAM linear data set.

z/OSUses IBM Data In Virtual
facility on z/OS.

DIV

c-tree© is the fast and reliable embedded
database of FairCom Corporation®.

UNIXandWindowsc-tree© is an embedded local
database that can be used as
your persistent store.

CTREE

Units of Work

This topic does not apply to the publish-and-subscribe communication model.

Units of work inform the sender of messages about their past and current status. Specifically,
UOWs are used to:

■ commit the sending of messages;
■ acknowledge the receipt of messages;
■ track the progress of sent messages at any point in time.

Units of work are also the vehicle for achieving persistentmessaging, althoughUOWs can be used
without persistence.

See also Using Units of Work in the general administration documentation.

Broker40

Functionality of EntireX Broker

Security

EntireX Security enables distributed application components running with Broker to be executed
securely. EntireX Security is located centrally in the kernel of EntireX Broker giving it an overview
of all messages sent between application components and therefore providing complete control
over the authentication and authorization of each component.

Security checks are performed using a choice of security repositories, including:

■ RACF
■ CA ACF2
■ CA Top Secret
■ UNIX and Windows security systems

The security repository chosen depends on the location of the Broker kernel. Encryption ofmessage
data - bymeans of a generic RC4-compatible algorithm or SSL - is also available to protect sensitive
information flowing between different application components. Since EntireX was designed to
operate togetherwith a security system, there is no additional application programming necessary.

This diagram depicts the location of the security components of the kernel and stubs of EntireX
Broker:

41Broker

Functionality of EntireX Broker

42

5 Broker Quick Reference

■ Functionality: Communication Models .. 44
■ ACI Syntax of Messaging Model ... 45
■ Location of Broker Kernel and Stubs ... 45
■ Transport: Broker Stubs and APIs ... 47

43

Functionality: Communication Models

The table below shows which functionality of EntireX Broker is supported by each of the two
communication models:Writing Applications: Client and Server andWriting Applications: Publish
and Subscribe.

Publish and SubscribeClient and ServerFunctionality

xxApplication bindings (stubs)

xxCommand and Information Services

xAccounting

xxData compression

xxCodepage conversion

xxPersistent store

xxSecurity

xUnits of work

Broker44

Broker Quick Reference

ACI Syntax of Messaging Model

This table provides theACI syntax used in both of EntireX Broker's communicationmodelsWriting
Applications: Client and Server andWriting Applications: Publish and Subscribe

Publish and SubscribeClient and Server
Messaging Term SubscribePublishServerClient

not applicablenot applicableSynchronous ■■ RECEIVESEND (1)

■ ■WAIT=YES (1) WAIT=YES

Asynchronous (3) ■■■■ RECEIVE_PUBLICATIONSEND_PUBLICATIONRECEIVESEND

■ ■■■WAIT=NO WAIT=NOWAIT=NOWAIT=NO

■ ■WAIT=YES WAIT=YES (2)

not applicablenot applicableConversational (3) ■■ RECEIVESEND

■ CONV-ID=NEW

Non-conversational (3) ■■■ SEND_PUBLICATIONRECEIVESEND

■ CONV-ID=NONE

Notes:

1. The synchronous SEND, WAIT=YES command contains an implied RECEIVE command.

2. The subscriber has the option of specifying WAIT=YES.
Example: The subscriber uses a repeat loop that issues a RECEIVE_PUBLICATION. The advantage
is that the program runs continuously, processing publications arising as random events, which
simplifies programming effort.

3. Persistence available. See Concepts of Persistent Messaging in the general administration docu-
mentation.

Location of Broker Kernel and Stubs

This graphic shows the locations where the broker kernel and broker stubs can be installed. See
Architecture of Broker Kernel and Architecture of Broker Stub.

45Broker

Broker Quick Reference

Broker46

Broker Quick Reference

Transport: Broker Stubs and APIs

This table gives an overview of the transport methods supported by EntireX Broker stubs.

Transport to Broker
ModuleEnvironment

Operating
System HTTP(S) (6)NET (1)SSLTCP

xxxBROKERBatch, TSO, IMS (BMP)z/OS (2)

x(3)xCOMETBCom-plete

x(3)xCICSETBCICS

xxxMPPETBIMS (MPP)
(3)xIDMSIDMS/DC (4)

xxxNATETB23Natural

xxxJava ACI in the Developer's Kit
documentation

UNIX System Services

xxbroker.soUNIX

xxxJava ACI in the Developer's Kit
documentation

xxbroker.dll (5)Windows

xxxJava ACI in the Developer's Kit
documentation

xxxBROKERBatch, Dialog (formerly
TIAM)

BS2000/OSD

xxBKIMBCMSz/VM

xEXAIBM i

xxBROKEROpenVMS

Notes:

1. NET is available for transport to a broker running under mainframe platforms only; not to a
broker running under UNIX or Windows.

2. Under z/OS you can use IBM's Application Transparent Transport Layer Security (AT-TLS) as
an alternative to direct SSL support inside the broker stub. Refer to the IBM documentation for
more information.

3. Use AT-TLS. See Note 2.

4. Tracing and transport timeout are not supported in this environment.

5. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is
identical to broker.dll.

47Broker

Broker Quick Reference

6. Via Broker HTTP(S) Agent; see Settting up and Administering the Broker HTTP(S) Agent in the
UNIX and Windows administration documentation.

See also:

■ Setting Transport Methods for Broker Stubs in the platform-specific broker stub administration
documentation

■ Setting Transport Methods underWriting Advanced Applications - EntireX Java ACI

Broker48

Broker Quick Reference

II Broker Attributes

49

50

6 Broker Attributes

■ Name and Location of Attribute File .. 53
■ Attribute Syntax .. 53
■ Broker-specific Attributes .. 55
■ Service-specific Attributes ... 80
■ Topic-specific Attributes .. 93
■ Codepage-specific Attributes ... 100
■ Adabas SVC/Entire Net-Work-specific Attributes .. 104
■ Security-specific Attributes .. 108
■ TCP/IP-specific Attributes .. 114
■ c-tree-specific Attributes .. 118
■ SSL-specific Attributes .. 120
■ DIV-specific Attributes .. 125
■ Adabas-specific Attributes ... 125
■ Variable Definition File .. 127

51

Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to
all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, publishers and subscribers as well as of the Broker itself.
You can customize the Broker environment by modifying the attribute settings.

Broker52

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

File Name/LocationPlatform

Member EXBATTR in the EntireX Broker source library.z/OS

File etbfile in directory <InstDir>/EntireX/config/etb/<BrokerName> (default) *UNIX

File <BrokerName>.atr in directory <InstDir>\EntireX\config\etb\<BrokerName> (default)
*

Windows

File ETB-ATTR in library EXX951.JOBS.BS2000/OSD

Library member ETBnnn.ATR, where ETBnnn is the assigned broker ID.z/VSE

When starting a brokermanually, name and location of the broker attribute file can be overwrit-
ten with the environment variable ETB_ATTR.

*

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value

The following rules and restrictions apply:

■ A line can contain multiple entries separated by commas.
■ Attribute names can be entered in mixed upper and lowercase.
■ Spaces between attribute names, values and separators are ignored.
■ Spaces in the attribute names are not allowed.
■ Commas and equal signs are not allowed in value notations.
■ Lines startingwith an asterisk (*) are treated as comment lines.Within a line, characters following
an * or # sign are also treated as comments.

■ The CLASS keyword must be the first keyword in a service definition.
■ Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

■ Multiple topics can be included in a single topic definition section. The attribute settings will
apply to all topics defined in the section.

53Broker

Broker Attributes

■ Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

■ Attributes specified after the topic definition (TOPIC keyword) override the default characteristics
for the topic.

■ Attribute values can contain variables of the form ${variable name} or $variable name:
■ Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

■ The variable name can contain only alphanumeric characters and the underscore (_) character.
■ The first non-alphanumeric or underscore character terminates the variable name.
■ under UNIX and Windows, the string ${variable name} is replaced with the value of the
corresponding environment variable.

■ On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

■ If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable namewill be used as the variable value.

■ If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

Broker54

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section beginswith the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem
is corrected.

Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large
values for the broker attributes that define the global resources.

Operating System

Opt/
ReqValuesAttribute

bvwuzOYES | NOABEND-LOOP-DETECTION

Stop broker if a task terminates abnormally twice, that is, the same
abend reason at the same abend location already occurred. This
attribute prevents an infinite abend loop.

YES

Use only if requested by SoftwareAGSupport. This settingmaymake
sense if a known error leads to an abnormal termination, but a hotfix

NO

solving the problem has not yet been provided. Reset to "YES" when
the hotfix has been installed.

bvwuzOYES | NOABEND-MEMORY-DUMP

Print all data pools of the broker if a task terminates abnormally. This
dump is needed to analyze the abend.

YES

If the dumphas already been sent to SoftwareAG, you can set to "NO"
to avoid the extra overhead.

NO

zONO | 128-255ACCOUNTING

bwuONO | YES
[SEPARATOR=char]

Determines whether accounting records are created.

Do not create accounting records.NO

The SMF record number to usewhenwriting the accounting records.nnn

Create accounting data.
char= separator character(s). Up to seven separator characters can
be specified using the SEPARATOR suboption, for example

YES

ACCOUNTING = (YES, SEPARATOR=;). If no separator character is
specified, the comma character will be used.

55Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See also Accounting in EntireX Broker in the z/OS administration
documentation.

bwuzO1 | 2 | 3 | 4ACCOUNTING-VERSION

Determines whether accounting records are created.

Collect accounting information. This value is supported for reasons of
compatibility with EntireX Broker 7.2.1 and below.

1

Collect extended accounting information in addition to that available
with option 1.

2

Create accounting records in layout of version 3.3

Create accounting records in layout of version 4.4

This parameter applies to z/OS, UNIX, Windows and BS2000/OSD when
ACCOUNTING is activated.

bvwuzOYES | NOAUTOLOGON

LOGON occurs automatically during the first SEND or REGISTER.YES

The application has to issue a LOGON call.NO

bvwuzR5m | n | n S | nM | n
H

BLACKLIST-PENALTY-TIME

Define the length of time a participant is placed on the
PARTICIPANT-BLACKLIST to prevent a denial-of-service attack.

Same as n S.n

Non-activity time in seconds (max. 2147483647).n S

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).n H

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

bvwuzRA32BROKER-ID

Identifies the broker to which the attribute file applies. The broker ID must
be unique per machine.

Note: The numerical section of the BROKER-ID is no longer used to determine
theDBID in the EntireX Broker kernelwith EntireNet-Work transport (NET).
To determine the DBID, use attribute NODE in the DEFAULTS=NET section of
the attribute file.

Broker56

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzR15M | n | nS | nM |
nH

CLIENT-NONACT

Define the non-activity time for clients.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A client that does not issue a broker request within the specified time limit
is treated as inactive and all resources for the client are freed.

bvwuzONO | YESCMDLOG

Command logging will not be available in the broker.NO

Command logging features will be available in the broker.YES

bvwuzO1024 | nCMDLOG-FILE-SIZE

Defines the maximum size of the file that the command log is written to, in
kilobytes. The valuemust be 1024 or higher. The default value is 1024.When
one command log file grows to this size, broker starts writing to the other
file. For more details, see Command Logging in EntireX.

bvwuzO60s | n | nS | nM| nH
|

CONTROL-INTERVAL

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby broker will check the status of the standard broker after the
elapsed CONTROL-INTERVAL time.

Same as nS.n

Interval in seconds (max. 2147483647).nS

Interval in minutes (max. 35791394).nM

Interval in hours (max. 596523).nH
The minimum value is 16 seconds. We strongly recommend the default
value (60 seconds), except for very slow machines.

bvwuzOUNLIM | nCONV-DEFAULT

Default number of conversations that are allocated for every service.

57Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION.

UNLIM

Number of conversations.n

This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.

bvwuzONO | YESDEFERRED

Disable or enable deferred processing of units of work.

Units of work cannot be sent to the service until it is available.NO

Units of work can be sent to a service that is not up and registered.
They will be processed when the service becomes available.

YES

bvwuzOYES | NODYNAMIC-MEMORY-MANAGEMENT

An initial portion of memory is allocated at broker startup based on
defined NUM-* attributes or internal default values if no NUM-*

YES

attributes have beendefined.Morememory is allocatedwithout broker
restart if there is a need to use more storage. Unused memory is
deallocated. The upper limit of memory consumption can be defined
by the attributeMAX-MEMORY. SeeDynamicMemoryManagementunder
Broker Resource Allocation in the general administration documentation.

All memory is allocated at broker startup based on the calculation
from the defined NUM-* attributes. Size ofmemory cannot be changed.
This was the known behavior of EntireX 7.3 and earlier.

NO

If you run your brokerwith attribute DYNAMIC-MEMORY-MANAGEMENT=YES,
the following attributes are not needed:

■ NUM-PUBLISHER■ CONV-DEFAULT

■ LONG-BUFFER-DEFAULT ■ NUM-SERVER

■ NUM-SERVICE-EXTENSION■ PUBLICATION-DEFAULT

■ SERVER-DEFAULT ■ NUM-SERVICE

■ NUM-SHORT[-BUFFER]■ SHORT-BUFFER-DEFAULT

■ SUBSCRIBER-DEFAULT ■ NUM-SUBSCRIBER-TOTAL

■ NUM-SUBSCRIBER■ NUM-CLIENT

■ NUM-CMDLOG-FILTER ■ NUM-TOPIC-EXTENSION

Broker58

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ NUM-TOPIC-TOTAL■ NUM-COMBUF

■ NUM-CONV[ERSATION] ■ NUM-TOPIC

■ NUM-UOW|MAX-UOWS|MUOW■ NUM-LONG[-BUFFER]

■ ■NUM-PUBLICATION NUM-WQE

Caution: However, if one of these attributes is defined, it determines the
allocation size of that particular broker resource.

bwuzONO | YESDYNAMIC-WORKER-MANAGEMENT

All worker tasks are started at broker startup. The number of worker
tasks is defined by NUM-WORKER. After this initial step, no further

NO

worker tasks can be started. This is default and simulates the behavior
of EntireX version 8.0 and earlier.

As above, the initial portion of worker tasks started at broker startup
is determined by NUM-WORKER. However, if there is a need to handle

YES

an increased workload, additional worker tasks can be started at
runtimewithout restarting broker. Conversely, if aworker task remains
unused, it is stopped. The upper and lower limit of running worker
tasks can be defined by the attributes WORKER-MIN and WORKER-MAX.

If you run broker with DYNAMIC-WORKER-MANAGEMENT=YES, the following
attributes are useful to optimize the overall processing:

■ WORKER-MAX

■ WORKER-MIN

■ WORKER-NONACT

■ WORKER-QUEUE-DEPTH

■ WORKER-START-DELAY

The attribute NUM-WORKER defines the initial number ofworker tasks started
during initialization. SeeDynamicWorkerManagement under Broker Resource
Allocation in the general administration documentation.

uONO | YESFORCE

Go down with error if IPC resources still exist.NO

Clean up the left-over IPC resources of a previous run.YES

59Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Note:

1. If broker is started twice, the second instancewill kill the first by removing
the IPC resources.

2. For BS2000/OSD, z/OS and z/VSE, see separate attribute FORCE in section
Adabas SVC/Entire Net-Work-specific Attributes.

bvwuzO1024 nHEAP-SIZE

Defines the size of the internal heap in KB. We strongly recommend using
the default value (1024 KB).

bvwuzOYES | NOICU-CONVERSION

Disable or enable ICU conversion.

ICU is loaded and available for conversion. It is a prerequisite for
SAGTCHA and SAGTRPC.

YES

ICU is not loaded and not available for conversion. SAGTCHA and
SAGTRPC cannot be used.

NO

If any of the broker service definitions uses the internationalization approach
“ICUconversion”, that is, the conversionmethods SAGTCHAandSAGTRPC
are defined by the service-specific or topic-specific attribute CONVERSION,
ICU-CONVERSIONmust be set to "YES". The internationalization approaches
“Translation”, “Translation User Exit” and “SAGTRPC User Exit” do not
require ICU conversion. If all broker service definitions use these
internationalization approaches, ICU-CONVERSION can be set to "NO".

ICU requires additional storage to run properly. If ICU conversion is not
needed, setting ICU-CONVERSION to "NO" will help to avoid unnecessary
storage consumption.

wuOYES | NOICU-SET-DATA-DIRECTORY

Disable or enable ICU custom converter usage. Not defined for mainframe
platforms.

The broker tries to locate ICU custom converters with themechanism
defined by the platform, see Building and Installing ICU Custom
Converters in the platform-specific administration documentation.

YES

Use of ICU custom converters is not possible.NO

bwuzOYES | NOIPV6

Broker60

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Establish SSL and TCP/IP transport in IPv6 and IPv4 networks
according to the TCP/IP stack configuration.

YES

Establish SSL and TCP/IP transport in IPv4 network only.NO

This attribute applies to EntireX version 9.0 and above.

bvwuzOUNLIM | nLONG-BUFFER-DEFAULT

Number of long buffers to be allocated for each service or topic.

The number of long message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-LONG-BUFFER.

UNLIM

Number of buffers.n

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

bvwuzO0 | n | nK | nM |
nG | UNLIM

MAX-MEMORY

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY-MANAGEMENT=YES has been defined.

No memory limit.0, UNLIM

Defines the maximum limit of allocated memory. If limit is
exceeded, error 671 “Requested allocation exceeds
MAX-MEMORY” is generated.

others

bvwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

bvwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a UOW (or publication).

See MAX-MESSAGE-LENGTH.MAX-MSG

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bvwuzO0 | nMAX-UOWS

Themaximumnumber ofUOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a MAX-UOWS value must be 1 or larger for the broker.

61Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The MAX-UOWS value for the service will default to the value set for the
broker. NUM-UOW is an alias of this parameter.

bvwuzONONE | UPPER |
LOWER

MESSAGE-CASE

Indicates if certain error message texts returned by the broker to its clients
or written by the broker to its log file are to be in mixed case, uppercase, or
lowercase.

No changes are made to message case.NONE

Messages are changed to uppercase.UPPER

Messages are changed to lowercase.LOWER

See NUM-UOW.MUOW

bvwuzOYES | NONEW-UOW-MESSAGES

New UOWmessages are allowed.YES

New UOWmessages are not allowed.NO

This applies to UOWwhen using Persistence and should not be used for
non-persistent UOWs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down.
You can set NEW-UOW-MESSAGES to "NO" to prevent new UOWmessages
frombeing added after a broker restart. This action allows only consumption
(not production) of UOWs to occur after broker restart. After the persistent
store capacity has been sufficiently reduced, the EntireXBroker administrator
can issue a CIS command, see ALLOW-NEWUOWMSGS under Broker CIS Data
Structures in the ACI Programming documentation. This action allows new
UOWmessages to be sent to the broker. Reset attribute NEW-UOW-MESSAGES
to "YES", which permits newUOWmessages to be produced in subsequent
broker sessions.

bvwuzO256 | nNUM-BLACKLIST-ENTRIES

Number of entries in the participant blacklist. Default value is 256 entries.
Togetherwith BLACKLIST-PENALTY-TIME and PARTICIPANT-BLACKLIST,
this attribute is used to protect a broker runningwith SECURITY=YES against
denial-of-service attacks. See Protecting a Broker against Denial-of-Service
Attacks in the platform-specific broker administration documentation.

bvwuzRnNUM-CLIENT

Number of clients that can access the broker concurrently. A value of 0 (zero)
is invalid.

Broker62

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzO1 | nNUM-CMDLOG-FILTER

Maximum number of filters that can be specified simultaneously.

Tip: We recommend you limit this value to the number of services that are
being monitored. Minimum value is 1. A value of zero is invalid when the
attribute CMDLOG is set to "YES". See Command Logging in EntireX for more
information.

bvwuzR1 - 999999NUM-COMBUF

Determines the maximum number of communication buffers available for
processing commands arriving in the broker kernel. The size of one
communication buffer is usually 16 KB split into 32 slots of 512 bytes, but it
ultimately depends on the hardware architecture of your CPU. A value of
0 (zero) is invalid.

bvwuzRn | AUTONUM-CONVERSATION or
NUM-CONV Defines the number of conversations that can be active concurrently. The

number specified should be high enough to account for both conversational
and non-conversational requests. (Non-conversational requests are treated
internally as one-conversation requests.)

Number of conversations.n

Uses theCONV-DEFAULT and the service-specificCONV-LIMITvalues
to calculate the number of conversations. The values used in the
calculation must not be set to "UNLIM".

AUTO

Note:

1. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

2. SeeWildcard Service DefinitionunderBroker Attributes in the administration
documentation.

bvwuzRn | AUTONUM-LONG-BUFFER or
NUM-LONG Defines the number of long message containers. Long message containers

have a fixed length of 4096 bytes and are used to store requests that are
larger than 2048 bytes. Storing a request of 8192 bytes, for example, would
require two long message containers.

Number of buffers.n

Uses the LONG-BUFFER-DEFAULT and the service-specific
LONG-BUFFER-LIMIT values to calculate the number of long

AUTO

63Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

message buffers. The values used in the calculation must not be set
to "UNLIM".

A value of 0 (zero) is invalid.

In non-conversationalmode, message containers are released as soon as the
client receives a reply from the server. If no reply is requested, message
containers are released as soon as the server receives the client request.

In conversationalmode, the last message received is always kept until a new
one is received.

Note:

1. If a catch-all service is defined in the service-specific section of the attribute
file, the value of AUTO is invalid.

2. SeeWildcard Service DefinitionunderBroker Attributes in the administration
documentation.

bvwuzOn | AUTONUM-PUBLICATION

Defines the number of publications that can be active concurrently.

Number of publicationsn

Uses the PUBLICATION-DEFAULT and the topic-specific
PUBLICATION-LIMIT to calculate the number of publications. The
values used in the calculation must not be set to "UNLIM"

AUTO

Note:

1. A value of 0 (zero) is invalid.

2. If a wildcard topic is defined in the topic-specific section of the attribute
file, the value of AUTO is invalid.

bvwuzOnNUM-PARTICIPANT-EXTENSION

Defines the number of participant extensions to link participants as clients
and servers.

Number of participant extensionsn

If this attribute is not set, the default value is calculated based
on NUM-CLIENT and NUM-SERVER.

not specified

Broker64

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

A value of 0 (zero) is invalid.

bvwuzOnNUM-PUBLISHER

Number of publishers that can access the broker concurrently. A value of 0
(zero) is invalid.

bvwuzRn | AUTONUM-SERVER

Defines the number of servers that can offer services concurrently using the
broker. This is not the number of services that can be registered to the broker
(see NUM-SERVICE).

Number of servers.n

Uses theSERVER-DEFAULT and the service-specificSERVER-LIMIT
values to calculate the number of servers. The values used in the
calculation must not be set to "UNLIM".

AUTO

Note:

1. Setting this value higher than the number of services allows the starting
of server replicas that provide the same service.

2. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

3. SeeWildcard Service DefinitionunderBroker Attributes in the administration
documentation.

bvwuzRnNUM-SERVICE

Defines the number of services that can be registered to the broker. This is
not the number of servers that can offer the services (see NUM-SERVER). A
value of 0 (zero) is invalid.

bvwuzOn | AUTONUM-SERVICE-EXTENSION

Defines the number of service extensions to link servers to services.

Number of service extensions.n

Uses the value specified or calculated for
NUM-SERVER + NUM-CLIENT, plus an extra cushion.

AUTO

If this attribute is not set, the default value is NUM-SERVER
multiplied by NUM-SERVICE.

not specified

The minimum value is NUM-SERVER.
The maximum value is NUM-SERVERmultiplied by NUM-SERVICE.

Caution is recommended with this attribute:

65Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ Set this attribute only if the storage resources allocated for service
extensions need to be restricted.

■ Note that the value <n> allows only the specified number of server
instances of <n> to be used.

■ Value AUTO will calculate the number of allowed server instances from
NUM-SERVER, which itself might be set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each service definition (see note below).

bvwuzRn | AUTONUM-SHORT-BUFFER or
NUM-SHORT Defines the number of short message containers. Short message containers

have a fixed length of 256 bytes and are used to store requests of no more
than 2048 bytes. To store a request of 1024 bytes, for example, would require
four short message containers.

Number of buffers.n

Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short

AUTO

message buffers. The values used in the calculation must not be set
to "UNLIM".

Note:

1. In non-conversationalmode, message containers are released as soon as
the client receives a reply from the server. If no reply is requested,message
containers are released as soon as the server receives the client request.

2. In conversationalmode, the last message received is always kept until a
new one is received.

3. If a wildcard service is defined in the service-specific section of the
attribute file, the value of AUTO is invalid.

4. SeeWildcard Service DefinitionunderBroker Attributes in the administration
documentation.

bvwuzOn | AUTONUM-SUBSCRIBER

Defines the number of subscribers that can be active concurrently.

Number of subscribers.n

Uses the SUBSCRIBER-DEFAULT and the topic-specific
SUBSCRIBER-LIMIT to calculate the number of subscribers.

AUTO

Broker66

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

A value of 0 (zero) is invalid. If a wildcard topic is defined in the
topic-specific section of the attribute file, the value of AUTO is invalid.

bvwuzOn | AUTONUM-SUBSCRIBER-TOTAL

Defines the total number of subscribers that can be durably subscribed. Their
subscription information is saved in the persistent store.

Total number of subscribers.n

Uses the value defined or calculated for NUM-SUBSCRIBER.AUTO

A value of 0 (zero) is invalid. This value must be greater than or equal to
the NUM-SUBSCRIBER value. Parameter is required if
SUBSCRIBER-STORE=PSTORE is defined.

bvwuzOnNUM-TOPIC

Defines the number of topics that can be active in the broker. A value of 0
(zero) is invalid.

bvwuzOn | AUTONUM-TOPIC-EXTENSION

Defines the number of topic extensions to link subscribers to topics.

Number of topic extensions.n

Uses the value specified for
NUM-SUBSCRIBER + NUM-PUBLISHER, plus an extra cushion.

AUTO

If this attribute is not set, the default value is NUM-SUBSCRIBER
multiplied by NUM-TOPIC.

not specified

The minimum value is NUM-SUBSCRIBER.
The maximum value is NUM-SUBSCRIBERmultiplied by NUM-TOPIC.

Caution is recommended with this attribute.

■ Set this attribute only if the storage resources allocated for topic extensions
need to be restricted.

■ Note that the value <n> allows only the specified number of topic instances
of <n> to be used.

■ Value AUTO calculates the number of allowed server instances from
NUM-SUBSCRIBER, which itself might set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each topic definition (see note below).

bvwuzOn | AUTONUM-TOPIC-TOTAL

Defines the total number of topics forwhich durable subscribers are allowed.

67Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Total number of topics that allow durable subscriptions.n

Uses the value defined for NUM-TOPIC.AUTO

This value must be greater than or equal to the NUM-TOPIC value. This
parameter is required if SUBSCRIBER-STORE=PSTORE is defined.

bvwuzO0 | nNUM-UOW

Themaximumnumber ofUOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a NUM-UOW value must be 1 or larger for the broker.
(MAX-UOWS is an alias for this attribute.)

The NUM-UOW value for the servicewill default to the value set for the broker.

bvwuzR1 | n (max. 10)NUM-WORKER

Number of worker tasks that the broker can use. The number of worker
tasks determines the number of functions (SEND, RECEIVE, REGISTER, etc.)
that can be processed concurrently. At least one worker task is required;
this is the default value.

bvwuzR1 - 32768NUM-WQE

Maximumnumber of requests that can be processed by the broker in parallel,
over all transport mechanisms.

Each broker command is assigned a worker queue element, regardless of
the transportmechanismbeing used. This element is releasedwhen the user
has received the results of the command, including the case where the
command has timed out.

bvwuzRYES | NOPARTICIPANT-BLACKLIST

Determines whether participants attempting a denial-of-service attack on
the broker are to be put on a blacklist.

Create a participant blacklist.YES

Do not create a participant blacklist.NO

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

bvwuzRA32PARTNER-CLUSTER-ADDRESS

This is the address of the load/unload broker in transport-method-style.
Transport methods TCP and SSL are supported. See Transport-method-style

Broker68

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Broker ID formore details. This attribute is required if the attribute RUN-MODE
is specified.

uzOYES | NOPOLL

In earlier EntireX versions, the maximum number of TCP/IP connections
per communicator was limited; seeMaximum TCP/IP Connections per
Communicator under Broker Resource Allocation in the general administration
documentation for platform-specific list. With attribute POLL introduced in
EntireX version 9.0, this restriction can be lifted under z/OS and UNIX.

The poll() system call is used to lift the resource restrictions with
select() in multiplexing file descriptor sets.

YES

This setting is used to run the compatibility mode in Broker. The
poll() system call is not used. The limitations described under

NO

Maximum TCP/IP Connections per Communicator under Broker Resource
Allocation in the general administration documentation apply.

bvwuzONO | HOT | COLDPSTORE

Defines the status of the persistent store at broker startup, including the
condition of persistent units of work (UOWs). With any value other than
"NO", PSTORE-TYPEmust be set.

No persistent store.NO

Persistent UOWs are restored to their prior state during
initialization.

HOT

Persistent UOWs are not restored during initialization, and the
persistent store is considered empty.

COLD

Note: For a hot or cold start, the persistent store must be available when
your broker is restarted.

bvwuzONO | YESPSTORE-REPORT

Determines whether PSTORE report is created.

Do not create the PSTORE report file.NO

Create the PSTORE report file.YES

See also Persistent Store Report under Concepts of Persistent Messaging in the
general administration documentation.

bvwuzODIV (z/OS) | CTREE
(UNIX, Windows) |

PSTORE-TYPE

Adabas (all platforms)

69Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

| FILE (UNIX,
Windows)

Describes the type of persistent store driver required.

Data in Virtual. z/OS only, and default on this platform. See
DIV-specific Attributes below and Implementing a DIV Persistent

DIV

Store underManaging the Broker Persistent Store in the z/OS
administration documentation.

c-tree database. UNIX and Windows only. See c-tree-specific
Attributes and c-tree Database as Persistent Store in the UNIX and
Windows administration documentation.

CTREE

Adabas. All platforms. See alsoAdabas-specific Attributes (below)
andManaging the Broker Persistent Store in the platform-specific
administration documentation.

ADABAS

B-Tree database. UNIX andWindows only.No longer supported.FILE

bvwuzO2 | 3 | 4PSTORE-VERSION

Determines the version of the persistent store. PSTORE=COLD is not needed
to upgrade the PSTORE to version 3. Any broker restart with
PSTORE-VERSION=3will upgrade the PSTORE version.

PSTORE-VERSION=3 is needed for ICU support. We recommended setting
PSTORE-VERSION=3.

PSTORE-VERSION=4 is needed to use the DIV PSTORE handler introduced
with version 9.0. It requires much less configuration data.

Caution:

■ If you go back to PSTORE-VERSION=2 after upgrading to
PSTORE-VERSION=3, the brokerwill only process data previously created
with version 2. No version 3 data will be accessible.

■ If you change the DIV PSTORE from version 3 to 4, perform a COLD
restart for the change to take effect, or run PSTORE UNLOAD/LOAD first.

bvwuzOn | UNLIMPUBLICATION-DEFAULT

Default number of publications that are allocated for every topic.

Number of publications.n

The number of publications is restricted only by the number of
publications globally available. Precludes the use of
NUM-PUBLICATION=AUTO.

UNLIM

Broker70

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

This value can be overridden by specifying a PUBLICATION-LIMIT for the
topic. A value of 0 (zero) is invalid.

bvwuzOn | nS | nM| nH | nD
| nY

PUBLICATION-LIFETIME

Lifetime of a publication in absolute time units. Publications are retained
by broker until they are either received by all subscribers or the publication
lifetime has expired.

Same as nS.n

Publication lifetime in seconds (max. 2147483647).nS

Publication lifetime in minutes (max. 35791394).nM

Publication lifetime in hours (max. 596523).nH

Publication lifetime in days (max. 24855).nD

Publication lifetime in years (max. 68).nY

The publication lifetime is calculated even for periods of time when broker
is stopped.

bvwuzOYES | NOPUBLISH-AND-SUBSCRIBE

Run publish and subscribe subsystem. Subsystem requires a license.

bvwuzOSTANDARD |
STANDBY |

RUN-MODE

PSTORE-LOAD |
PSTORE-UNLOAD

Determines the initial run mode of the broker.

Default value. Normal mode.STANDARD

Deprecated. Supported for compatibility reasons.STANDBY

Brokerwill run as load broker towrite Persistent Store
data to a new persistent store. See alsoMigrating the

PSTORE-LOAD

Persistent Store in the general administration
documentation.

Broker will run as unload broker to read an existing
persistent store and pass the data to a broker running

PSTORE-UNLOAD

in PSTORE-LOADmode. See alsoMigrating the
Persistent Store in the general administration
documentation.

bvwuzONO | YESSECURITY

Determines whether the EntireX Broker security exits are activated.

71Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The security exits are not activated.NO

The security exits are activated. If the security routines cannot be
activated, the broker will not start.

YES

Broker trace reports the type of security which is active and fromwhere the
security module USRSEC is loaded:

■ EntireX Security
■ User-written USRSEC.

bwuzOA255SECURITY-PATH

Full path and file name of an executable file (for example, DLL forWindows
or shared library forUNIX) containing the user security exit which the kernel
will load and call. Example:

SECURITY-PATH=usersec.dll

This assumes the DLL is in the default path. Or:

SECURITY-PATH=c:\brokerexit\yoursecu.dll

If the path name contains spaces, enclose it in quotation marks. Example:

SECURITY-PATH="c:\Software AG\broker exit\yoursecu.dll"

Note: This attribute is used onlywhen implementing a user-written security
exit.

bvwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO.

UNLIM

This value can be overridden by specifying a SERVER-LIMIT for the service.
A value of 0 (zero) is invalid.

bvwuzOYES | NOSERVICE-UPDATES

Switch on/off the automatic update mode of the broker.

Broker72

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The broker reads the attribute file whenever a service registers for the
first time. This allows the broker to honormodifications in the attribute

YES

filewithout a restart. The attribute file is read onlywhen the first server
registers for a particular service; it is not rereadwhen a second replica
is activated.

The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

NO

bvwuzOUNLIM | nSHORT-BUFFER-DEFAULT

Number of short buffers to be allocated for each service.

The number of short message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-SHORT-BUFFER=AUTO.

UNLIM

Number of buffers.n

This value can be overridden by specifying a SHORT-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

See PORT.SSLPORT

See RESTART.SSL-RESTART

See RETRY-LIMIT.SSL-RETRY-LIMIT

See RETRY-TIME.SSL-RETRY-TIME

These parameters are obsolete. The subscriber store in a secondary store is
no longer supported. We recommend you use the PSTORE persistent store

SSTORE
SSTORE-TYPE

to store your subscriber data. For this, set broker-specific parameter
SUBSCRIBER-STORE=PSTORE.

bvwuzONO | YESSTORAGE-REPORT

Create a storage report about broker memory usage.

Do not create the storage report.NO

Create the storage report.YES

See Storage Report under Broker Resource Allocation in the general
administration documentation.

bvwuzOOFF | BROKERSTORE

Sets the default STORE attribute for all units of work. This attribute can be
overridden by the STORE field in the Broker ACI control block.

Units of work are not persistent.OFF

73Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Units of work are persistent.BROKER

bvwuzOn | UNLIMSUBSCRIBER-DEFAULT

Default number of subscribers that are allowed for every topic.

Number of subscribersn

The number of subscribers is restricted only by the number of
subscribers globally available. Precludes the use of
NUM-SUBSCRIBER=AUTO.

UNLIM

This value can be overridden by specifying a SUBSCRIBER-LIMIT for the
topic. A value of 0 (zero) is invalid.

bvwuzONO | PSTORESUBSCRIBER-STORE

Determines whether subscriber information is stored and where.

No subscriber information is to be stored.NO

Save subscriber data in PSTORE.PSTORE

Tip: The subscriber store in a secondary store is no longer supported. We
recommend you use the PSTORE persistent store to store your subscriber
data.

See PORT.TCPPORT

bvwuzONO | YESSWAP-OUT-NEW-UOWS

Determines whether conversations with units of work remain in memory
or are swapped. See slso Swapping out New Units of Work in the general
administration documentation.

All conversations with UOWs remain in memory.NO

Conversations with UOWs (STORE=BROKER) created by a client and
finished with an EOC without being accepted by a server will be

YES

swapped out of memory. The data is persisted on PSTORE and there
is no need to keep it in memory unless a server wants to receive this
data.

Note: See service-specific attribute MIN-UOW-CONVERSATIONS-IN-MEMORY
for defining a minimum number of UOW conversations kept in memory to
improve the performance for servers receiving new UOW conversations
without waiting for swap-in of data from PSTORE. During broker restart, all
new and unassigned UOW conversations remain in PSTORE only. This
reduces the restart time significantly.

Broker74

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See also Swapping out New Units of Work in the general administration
documentation.

See RESTART.TCP-RESTART

See RETRY-LIMIT.TCP-RETRY-LIMIT

See RETRY-TIME.TCP-RETRY-TIME

bvwuzOYES | NOTOPIC-UPDATES

Switch on/off automatic update of topic defaults in the broker.

The broker reads the attribute filewhenever a topic is being subscribed
for the first time. This allows broker to honor modifications in the

YES

attribute file without a restart. The attribute file is read only when the
first subscriber subscribes to a particular topic. It is not reread when
a second subscriber subscribes to the same topic.

The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

NO

zOA255TRACE-DD

A string containing data set attributes enclosed in quotation marks. These
attributes describe the trace output file andmust be defined if you are using
using a GDG (generation data group) as output data set. See Flushing Trace
Data to a GDG Data Set under Tracing EntireX Broker.

The following keywords are supported as part of the TRACE-DD value:

■ DATACLAS

■ DCB including BLKSIZE, DSORG, LRECL, RECFM
■ DISP

■ DSN

■ MGMTCLAS

■ SPACE

■ STORCLAS

■ UNIT

Refer to your JCLReferenceManual for a complete description of the syntax.

Example:

75Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),
SPACE=(CYL,(100,10)),
STORCLAS=SMS"

bvwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running.

No tracing. Default value.0

Traces incoming requests, outgoing replies, resource usage and conversion
errors if SAGTRPC is used for CONVERSIONwith the conversion options
SUBSTITUTE-NONCONV or STOP.

1

All of trace level 1, plus all main routines executed.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus Broker ACI control block displays.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for
the change to take effect. For temporary changes to TRACE-LEVELwithout
restarting the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software
AG support.

bvwuzOTCP | SSL | NETTRANSPORT

The broker transport may be specified as any combination of one or more
of the following methods:

TCP/IP is supported.TCP

SSL or TLS is supported.SSL

EntireNet-Work is supported. This value is not supported for a broker
under UNIX or Windows.

NET

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method
will be supported by the broker.

TRANSPORT=TCP-NET specifies that both the TCP/IP andNet-Work transport
methods will be supported by the broker.

TRANSPORT=TCP-SSL-NET specifies that the TCP/IP, SSL (or TLS), and
Entire Net-Work transport methods will be supported by the broker.

Broker76

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Section TCP/IP-specific Attributes (DEFAULTS=TCP) under Broker Attributes
in the administration documentation describes the parameters for each
transport method.

bwuzOnnnnTRAP-ERROR

Where nnnn is the four-digit API error number that triggers the trace handler,
for example 0007 (Service not registered). Leading zeros are not required.
There is no default value.

See Deferred Tracing in the platform-specific Broker administration
documentation.

bwuzOnTRBUFNUM

Changes the trace to write trace data to internal trace buffers. n is the size
of the trace buffer in 64 KB units. There is no default value.

bwuzOWRAPTRMODE

Changes the trace mode. "WRAP" is the only possible value. This value
instructs broker to write the trace buffer (see TRBUFNUM) if an event occurs.
This event is triggered by amatching TRAP-ERRORduring request processing
or when an exception occurs.

See MAX-MESSAGES-IN-UOW.UMSG

See MAX-MESSAGES-IN-UOW.UOW-MSGS

bvwuzOno value | n[S] | nM
| nH | nD

UWSTAT-LIFETIME

The value to be added to the UWTIME (lifetime of associatedUOW). If a value
is entered, it must be 1 or greater; a value of 0 will result in an error. If no
value is entered, the lifetime of theUOW status informationwill be the same
as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the UOW itself
(max. 2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

The lifetime determines how much additional time the UOW status is
retained in the persistent store and is calculated from the time at which the
associated UOW enters any of the following statuses: "PROCESSED",
"TIMEOUT", "BACKEDOUT", "CANCELLED", "DISCARDED". The
additional lifetime of the UOW status is calculated only when broker is
executing. Value in UWSTAT-LIFETIME supersedes the value (if specified)
in attribute UWSTATP.

77Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Note: If no unit is specified, the default unit is seconds. The unit does not
have to be identical to the unit specified for UWTIME.

bvwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent status for
the service. The UWSTATP value is multiplied by the UWTIME value (the
lifetime of the associated UOW) to determine the length of time the status
will be retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UWTIME to determine how long a
persistent status will be retained.

1 - 254

Note: This attribute has not been supported since EntireX version 7.3. Use
UWSTAT-LIFETIME instead.

bvwuzO1D | nS | nM | nH |
nD

UWTIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

If the UOW is inactive - that is, is not processed within the time limit - it is
deleted and given a status of "TIMEOUT". This attribute can be overridden
by the UWTIME field in the Broker ACI control block.

See Timeout Considerations for EntireX Broker in the general administration
documentation.

bvwuzONO | YESWAIT-FOR-ACTIVE-PSTORE

Determines whether broker should wait for the Adabas Persistent Store to
become active.

If broker should startwith a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will stop.

NO

If broker should start with a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will retry every 10 seconds to

YES

initiate communicationswith the PSTORE. Broker will reject any user
requests until broker is able to contact the Adabas database.

Broker78

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bwuzO32 | n
(min. 1, max. 32)

WORKER-MAX

Maximum number of worker tasks the broker can use.

bwuzO1 | n (min. 1, max. 32)WORKER-MIN

Minimum number of worker tasks the broker can use.

bwuzO70S n | nS | nM | nHWORKER-NONACT

Non-activity time to elapse before a worker tasks is stopped.

Same as nS.n

Non-activity time in seconds (default 70, max. 2147483647).nS

Non-activity time in in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Caution: Avalue of 0 (zero) is invalid. If you set this value too low, additional
overhead is required for starting and stopping worker tasks. The default
and recommended value is 70S.

bwuzO1 | n (min. 1)WORKER-QUEUE-DEPTH

Number of unassigned user requests in the input queue before another
worker task gets started. The default and recommended value is 1. A higher
value will result in longer broker response times.

bwuzOinternal-value | nWORKER-START-DELAY

Delay is extended by n seconds.n

Delay after a successful worker task invocation before another worker task
can be started to handle current incoming workload. This attribute is used
to avoid the risk of recursive invocation of worker tasks, because starting a
worker task itself causes workload increase.

If no value is specified, an internal value calculated by the broker is used to
optimize dynamic worker management. This calculated value is the
maximum time required to start a worker task.

79Broker

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sectionsWildcard Service Definition under Broker
Attributes in the administration documentation and Service Update Modes below the table.

Operating System

Opt/
ReqValuesAttribute

bvwuzRA32
(case-sensitive)

CLASS

Part of the name that identifies the service together with the
SERVER and SERVICE attributes. CLASSmust be specified first,
followed immediately by SERVER and SERVICE.

Classes starting with any of the following are reserved for use by
Software AG and should not be used in customer-written
applications: BROKER, SAG, ENTIRE, ETB, RPC, ADABAS,
NATURAL. Valid characters for class name are letters a-z, A-Z,
numbers 0-9, hyphen and underscore. Do not use dollar, percent,
period or comma. See also the restriction for SERVICE attribute
names.

bzON | YCLIENT-RPC-AUTHORIZATION

Determines whether this service is subject to RPC authorization
checking.

No RPC authorization checking is performed.N

RPC library and program name are appended to the
authorization check performed by EntireX Security. Specify
"YES" only to RPC-supported services.

Y

To allow conformity with Natural Security, the
CLIENT-RPC-AUTHORIZATION parameter can optionally be
defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).

bvwuzOUNLIM | nCONV-LIMIT

Allocates a number of conversations especially for this service.

The number of conversations is restricted only by the
number of conversations globally available. Precludes

UNLIM

Broker80

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

the use of NUM-CONVERSATION=AUTO in the Broker
section of the attribute file.

Number of conversations.n

A value of 0 (zero) is invalid.
If NUM-CONVERSATION=AUTO is specified in the Broker section of
the attribute file, CONV-LIMIT=UNLIM is not allowed in the service
section. A value must be specified or the CONV-LIMIT attribute
must be suppressed entirely for the service so that the default
(CONV-DEFAULT) becomes active.

bvwuzR5M | n | nS |
nM | nH

CONV-NONACT

Non-activity time for connections.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A value of 0 (zero) is invalid. If a connection is not used for the
specified time, that is, a server or a client does not issue a broker
request that references the connection in any way, the connection
is treated as inactive and the allocated resources are freed.

bvwuzOFormat: A255

(SAGTCHA [,
TRACE =n] [,
OPTION =s] |
SAGTRPC [,

TRACE =n] [,
OPTION =s] |
name [,

TRACE =n] |
NO)

CONVERSION

Defines conversion for internationalization. See Internationalization
with EntireX andWhat is the Best Internationalization Approach to
use? under Introduction to Internationalization for help on making
decisions about the internationalization approach.

81Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Conversion using ICUConversion (1) forACI-based
Programming.

SAGTCHA

Conversion using ICUConversion (1) forRPC-based
Components and Reliable RPC.

We recommend always using SAGTRPC for RPC
data streams.ConversionwithMultibyte, Double-Byte

SAGTRPC (2)

and other Complex Codepageswill always be correct,
and Conversion with Single-byte Codepages is also
efficient because SAGTRPC detects single-byte
codepages automatically. See Conversion Details.

Name of the SAGTRPC user exit for RPC-based
components. See also Configuring SAGTRPC User

<name> (2)

ExitsunderConfiguring Broker for Internationalization
in the platform-specific administration
documentation andWriting SAGTRPC User Exits
in the platform-specific administration
documentation.

If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

NO

Only one internationalization approach can be active at one time
for a service. The CONVERSION attribute for internationalization
overrides the TRANSLATION attribute when defined for a service.
That is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

Note:

1. See also Configuring ICU Conversion under Configuring Broker
for Internationalization in the platform-specific administration
documentation.

2. SAGTRPCandSAGTRPCuser exit are not supported on z/VSE.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

No tracing0

Broker82

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

This level is an "on-error" trace. It provides
information on conversion errors only. For

Trace level
STANDARD

1

RPC calls this includes the IDL library, IDL
program and the data. Please note that if
OPTION Values for Conversion are set, errors
are ignored.

Tracing of incoming, outgoing parameters
and the payload.

Trace level
ADVANCED

2

This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

Trace level
SUPPORT

3

OPTION

See table of possible values under OPTION Values for Conversion.

bvwuzONO | YESDEFERRED

Units of work cannot be sent to the service until it is
available.

NO

Units of work can be sent to a service that is not up and
registered. The units of work will be processed when the
service becomes available.

YES

bvwuzO0 | 1 | 2ENCRYPTION-LEVEL

Enforce encryption when data is transferred between client and
server.

No encryption is enforced.0

Encryption is enforced between server and broker kernel.1

Encryption is enforced between server and broker kernel, and
also between client and broker.

2

See also ENCRYPTION-LEVEL in Broker ACI control block and
Encryption underWriting Applications using EntireX Security in the
ACI Programming documentation.

Note: The per service ENCRYPTION-LEVEL attribute is to be
specified onlywhere the broker attribute SECURITY=YES has been
specified and only if you are using EntireX Security.

bvwuzOYES | NOLOAD-BALANCING

83Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

When servers that offer a particular service are started, new
conversations will be assigned to these servers in a

YES

round-robin fashion. The first waiting server will get the
first new conversation, the second waiting server will get
the second new conversation, and so on.

A new conversation is always assigned to the first server
in the queue.

NO

bvwuzOUNLIM | nLONG-BUFFER-LIMIT

Allocates a number of long message buffers for the service.

The number of long message buffers is restricted only
by the number of buffers globally available. Precludes

UNLIM

the use of NUM-LONG-BUFFER=AUTO in the Broker
section of the attribute file.

Number of long message buffers.n

A value of 0 (zero) is invalid. If NUM-LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the service section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the service so that the default
(LONG-BUFFER-DEFAULT) becomes active.

bvwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a UOW.

bvwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the
highest positive number that can be stored in a four-byte integer.

See MAX-MESSAGE-LENGTH.MAX-MSG

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bvwuzO0 | nMAX-UOWS

The service does not accept units of work, i.e. it processes
only messages that are not part of a UOW. Using zero

0

prevents the sending of UOWs to services that are not
intended to process them.

Broker84

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Maximum number of UOWs that can be active concurrently
for the service. If you do not provide a MAX-UOWS value for

n

the service, it defaults to the MAX-UOWS setting for the broker.
If you provide a value that exceeds that of the broker, the
service MAX-UOWS is set to the broker's MAX-UOWS value and
a warning message is issued.

Specify MAX-UOWS=0 for Natural RPC Servers. This restriction
will be removed with a later release.

bvwuzO256 | nMIN-UOW-CONVERSATIONS-IN-MEMORY

Defines the minimum number of UOW conversations
(STORE=BROKER, created by a client and finished with an EOC
without being accepted by a server) kept in memory to improve
the performance for servers receiving new UOW conversations
withoutwaiting for data to be swapped in fromPSTORE. See also
Swapping out New Units of Work in the general administration
documentation.

The default value should be used if producer (client) and
consumer (server) of UOW conversations are both active at

256

the same time regardless of the speed producing or
consuming UOW conversations. It guarantees a reasonable
balance betweenmemory being used and swap-out/swap-in
activities.

Minimum number of UOW conversations kept in memory.
The value n is equal to or greater than 256.

n

Note: If broker-specific attribute SWAP-OUT-NEW-UOWS is set to
"NO", MIN-UOW-CONVERSATIONS-IN-MEMORY has no effect.

See MAX-UOWS.MUOW

bvwuzONO | YESNOTIFY-EOC

Specifies whether timed-out conversations are to be stored or
discarded.

Discard the EOC notifications if the server is not ready to
receive.

NO

Store the EOC notifications if the server is not ready to
receive and then notify the server if possible.

YES

85Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

If a server is not ready to receive an EOC notification, it can be
stored or discarded. If it is stored, the server is notified, if possible,
when it is ready to receive.

Caution: The behavior activated by this parameter can be relied
upon only during a single lifetime of the broker kernel.
Specifically, conversations containing units of work, whose
lifetime can span multiple broker kernel sessions, cannot be
assumed to show this behavior, even with NOTIFY-EOC=YES.

Alias for MAX-UOWS.NUM-UOW

bvwuzRA32
(case-sensitive)

SERVER

Part of the name that identifies the service togetherwith the CLASS
and SERVICE attributes.

CLASSmust be specified first, followed immediately by SERVER
and SERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma.

bvwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number
of servers globally available. Precludes the use of
NUM-SERVER=AUTO.

UNLIM

A value of 0 (zero) is invalid.

This value can be overridden by specifying a SERVER-LIMIT for
the service.

bvwuzOn | UNLIMSERVER-LIMIT

Allows a number of servers especially for this service.

Number of servers.n

The number of servers is restricted only by the number
of servers globally available. Precludes the use of

UNLIM

NUM-SERVER=AUTO in the Broker section of the attribute
file.

Broker86

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the
attribute file, SERVER-LIMIT=UNLIM is not allowed in the service
section. A valuemust be specified or the SERVER-LIMIT attribute
must be suppressed entirely for the service so that the default
(SERVER-DEFAULT) becomes active.

bvwuzR5M | n | nS |
nM | nH

SERVER-NONACT

Non-activity time for servers. A server that does not issue a broker
request within the specified time limit is treated as inactive and
all resources for the server are freed.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If a server registers multiple services, the highest value of all the
services registered is taken as non-activity time for the server.

bvwuzRA32
(case-sensitive)

SERVICE

Part of the name that identifies the service togetherwith the CLASS
and SERVER attributes.

CLASSmust be specified first, followed immediately by SERVER
and SERVICE.

The SERVICE attribute names "EXTRACTOR" and
"DEPLOYMENT" are reserved for Software AG internal use and
should not be used in customer-written applications. Valid
characters for service name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma. See also the restriction for CLASS attribute names.

bvwuzOUNLIM | nSHORT-BUFFER-LIMIT

Allocates a number of short message buffers for the service.

The number of short message buffers is restricted only
by the number of buffers globally available. Precludes

UNLIM

the use of NUM-SHORT-BUFFER=AUTO in the Broker
section of the attribute file.

87Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Number of short message buffers.n

If NUM-SHORT-BUFFER=AUTO is specified in the Broker section of
the attribute file, SHORT-BUFFER-LIMIT=UNLIM is not allowed
in the service section. A value must be specified or the
SHORT-BUFFER-LIMIT attribute must be suppressed entirely for
the service so that the default (SHORT-BUFFER-DEFAULT) becomes
active.

bvwuzOOFF|BROKERSTORE

Sets the default STORE attribute for all units of work sent to the
service.

Units of work are not persistent.OFF

Units of work are persistent.BROKER

This attribute can be overridden by the STORE field in the Broker
ACI control block.

bvwuzOFormat: A255

SAGTCHA |
NO | <name>

TRANSLATION

Activates translation or translation user exit for internationalization
(see TranslationUser Exit under Introduction to Internationalization).
For help on deciding the right internationalization approach for
your environment, seeWhat is the Best InternationalizationApproach
to use? under Introduction to Internationalization

Conversion routine SAGTCHA for ACI-based
Programming, RPC-based Components and Reliable
RPC.

SAGTCHA

If translation is not to be used - e.g., for binary
payload (broker messages) - either omit the
TRANSLATION attribute or specifyTRANSLATION=NO.

NO

Name of Translation User Exit. See also Configuring
Translation User Exits under Configuring Broker for

<name>

Internationalization in the platform-specific
administration documentation orWriting Translation
User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation.

Broker88

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service; that is, when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

Alias for MAX-MESSAGES-IN-UOW.UMSG

Alias for MAX-MESSAGES-IN-UOW.UOW-MSGS

bvwuzOno value | n[S]
| nM| nH| nD

UWSTAT-LIFETIME

The value to be added to the UWTIME (lifetime of associatedUOW).
If a value is entered, it must be 1 or greater; a value of 0 will result
in an error. If no value is entered, the lifetime of the UOW status
information will be the same as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the
UOW itself (max. 2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

The lifetime determines how much additional time the UOW
status is retained in the persistent store and is calculated from the
time at which the associated UOW enters any of the following
statuses: "PROCESSED", "TIMEOUT", "BACKEDOUT",
"CANCELLED", "DISCARDED". The additional lifetime of the
UOW status is calculated only when broker is executing. Value
in UWSTAT-LIFETIME supersedes the value (if specified) in
attribute UWSTATP.

Note: If no unit is specified, the default unit is seconds. The unit
does not have to be identical to the unit specified for UWTIME.

bvwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent
status for the service. The UWSTATP value is multiplied by the
UWTIME value (the lifetime of the associated UOW) to determine
the length of time the statuswill be retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UWTIME to determine how long
a persistent status will be retained.

1 - 254

89Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Note: This attribute has not been supported since EntireX version
7.3. Use UWSTAT-LIFETIME instead.

bvwuzO1D | n S | nM
| n H | nD

UWTIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

If the unit of work (UOW) is inactive, that is, not processedwithin
the time limit, it is deleted and given a status of TIMEOUT. This
attribute can be overridden by the UWTIME field in the BrokerACI
control block.

Wildcard Service Definition

The special names of CLASS = *, SERVER = * and SERVICE = * are allowed in the service-specific
section of the broker attribute file. These are known as "wildcard" service definitions. If this name
is present in the attribute file, any service that registers with the broker and does not have its own
entry in the attribute filewill inherit the attributes that apply to the first wildcard service definition
found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily
complete):

CLASS = *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS = ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV-
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

Broker90

Broker Attributes

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

■ In service updatemode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

■ In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if
■ there is a high frequency of REGISTER operations, or
■ the attribute file is rather large and results in a high I/O rate for the broker.

The disadvantage to using non-updatemode is that if specific attributes aremodified, the broker
must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters can not be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

The situations 1 and 2 above are reported to the broker log file if TRACE option for CONVERSION is
set to level 1.

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

No messageNo message.yesyesSubstitutes both
non-convertible characters

SUBSTITUTE

(receiver's codepage) and bad
input characters (sender's
codepage) with a

91Broker

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

codepage-dependent default
replacement character.

No message.Write detailed
conversion
errormessage.

yesyesIf a corresponding code point
is not available in the receiver's
codepage, the character cannot

SUBSTITUTE-NONCONV

be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.

No message.No message.yesnoSubstitutes non-convertible
characters with a

BLANKOUT

codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

Write detailed
conversion
errormessage.

Write detailed
conversion
errormessage.

yesyesSignals an error on detecting a
non-convertible or bad input
character. This is the default

STOP

behavior if no option is
specified.

Broker92

Broker Attributes

Topic-specific Attributes

The topic-specific attribute section begins with the keyword DEFAULTS=TOPIC as shown in the
sample attribute file. It contains attributes that apply to the publish and subscribe communication
model.

Operating System

Opt/
ReqValuesAttribute

bvwuzOYES | NOALLOW-DURABLE

Determines whether a subscriber is allowed to perform a durable
subscription to a topic.

Subscriber may perform durable subscription.YES

Durable subscription not allowed.NO

If users are allowed to durably subscribe to any topic, you must
specify a value for the SUBSCRIBER-STORE parameter.

bvwuzOYES | NOALLOW-USER-SUBSCRIBE

Determines if it is possible for a user to subscribe to a topic directly
(YES) or only by Administrator.

Users are allowed to subscribe to the topic.YES

Usersmust be subscribed by theAdministrator throughCIS.
See Broker Command and Information Services. The
subscribe request of users is rejected.

NO

bvwuzONO | YESAUTO-COMMIT-FOR-SUBSCRIBER

No COMMIT performed.NO

An implicit COMMIT is performed by broker when the
subscriber receives a publication, that is, the subscriber does

YES

not need the CONTROL_PUBLICATION option COMMIT after
receiving each publication.

Caution: You may lose your last message.

bvwuzOFormat: A255

(SAGTCHA
[TRACE =n]

CONVERSION

93Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

[, OPTION
=s])

Defines conversion for internationalization. See Internationalization
with EntireX. For help on making decisions about the
internationalization approach, seeWhat is the Best Internationalization
Approach to use? under Introduction to Internationalization

Conversion using ICU Conversion for ACI-based
Programming. For more information see Conversion
Details.

See alsoConfiguring ICUConversionunderConfiguring
Broker for Internationalization in the platform-specific
administration documentation.

SAGTCHA

If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

NO

Only one internationalization approach can be active at one time
for a topic. The CONVERSION attribute for internationalization
overrides the TRANSLATION attributewhen defined for a topic, that
is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

No tracing0

This level is an "on-error" trace. It provides
information on conversion errors only.

Trace level
STANDARD

1

Please note that if OPTION Values for
Conversion are set, errors are ignored.

Tracing of incoming, outgoing parameters
and the payload.

Trace level
ADVANCED

2

This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

Trace level SUPPORT3

OPTION

Broker94

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See OPTION Values for Conversion under Service-specific Attributes
above.

bvwuzOUNLIM | nLONG-BUFFER-LIMIT

Allocates a number of long message buffers for the topic.

The number of longmessage buffers is restricted only by
the number of buffers globally available. Excludes the

UNLIM

use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

Number of long message buffers.n

A value of 0 (zero) is invalid. If NUM-LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(LONG-BUFFER-DEFAULT) becomes active.

bvwuzO16 | nMAX-MESSAGES-IN-PUBLICATION

Maximum number of messages in a publication.

bvwuzO31647 | nMAX-PUBLICATION-MESSAGE-LENGTH

Maximumsize of amessage in a publication. The actual publication
size is transport-dependent.

bvwuzOn | nS | nM |
nH | nD | nY

PUBLICATION-LIFETIME

Lifetime of a publication in absolute time units. Publications are
retained by broker until they are either received by all subscribers
or the publication lifetime has expired.

Same as nS.n

Publication lifetime in seconds (max. 2147483647).nS

Publication lifetime in minutes (max. 35791394).nM

Publication lifetime in hours (max. 596523).nH

Publication lifetime in days (max. 24855).nD

Publication lifetime in years (max. 68).nY

The publication lifetime is calculated even for periods of timewhen
broker is stopped.

bvwuzOn | UNLIMPUBLICATION-LIMIT

95Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

There is no default. Maximumnumber of publications possible for
this topic. If specified, this overrides the publication default value,
which is a general maximum value per topic. If neither parameter
is specified, the total number of publications for the topic is limited
only by NUM-PUBLICATION.

Number of publications.n

The number of publications is restricted only by the
number of publications globally available. Excludes the

UNLIM

use of NUM-PUBLICATION=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If PUBLICATION-LIMIT=AUTO is
specified in the Broker section of the attribute file,
PUBLICATION-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified, or the PUBLICATION-LIMIT attribute
must be suppressed entirely for the topic so that the default
(PUBLICATION-DEFAULT) becomes active.

bvwuzO5M | n | nS |
nM | nH | nD
| nY

PUBLISHER-NONACT

Non-activity of the publisher, after which an auto-logoff is
performed and the publisher's resources are freed.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Non-activity time in days (max. 24855).nD

Non-activity time in years (max. 68).nY

If not specified, defaults to 5 minutes. This is the time after which
the publisher's internal memory structures will be cleaned up and
a subsequent logon is required.

bvwuzOUNLIM | nSHORT-BUFFER-LIMIT

Allocates a number of short message buffers for the topic.

The number of short message buffers is restricted only
by the number of buffers globally available. Excludes the

UNLIM

Broker96

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

Number of short message buffers.n

A value of 0 (zero) is invalid. If NUM-SHORT-BUFFER=AUTO is
specified in the Broker section of the attribute file,
SHORT-BUFFER-LIMIT=UNLIM is not allowed in the topics section.
A value must be specified, or the SHORT-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(SHORT-BUFFER-DEFAULT) becomes active.

These parameters are obsolete. The subscriber store in a secondary
store is no longer supported. We recommend you use the primary

SSTORE
SSTORE-TYPE

persistent store (PSTORE) to store your subscriber data. For this,
set broker-specific parameter SUBSCRIBER-STORE=PSTORE.

bvwuzOn | UNLIMSUBSCRIBER-LIMIT

There is no default. Maximum number of subscriptions possible
for this topic. If specified, this overrides the subscriber default
value, which is a general maximum value per topic. If neither
parameter is specified, the total number of subscribers for the topic
is limited only by NUM-SUBSCRIBER.

Number of subscribers.n

The number of subscribers is restricted only by the
number of subscribers globally available. Excludes the

UNLIM

use of NUM-SUBSCRIBER=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If NUM-SUBSCRIBER=AUTO is specified
in the Broker section of the attribute file,
SUBSCRIBER-LIMIT=UNLIM is not allowed in the topic section. A
valuemust be specified, or the SUBSCRIBER-LIMIT attributemust
be suppressed entirely for the topic so that the default
(SUBSCRIBER-DEFAULT) becomes active.

bvwuzO5M | n | nS |
nM | nH | nD
| nY

SUBSCRIBER-NONACT

Non-activity of the subscriber after which an auto-logoff is
performed and the publisher's resources are freed.

Same as nS.n

97Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Non-activity time in days (max. 24855).nD

Non-activity time in years (max. 68).nY

In the case of a non-durable subscriber, the user's subscription is
also cancelled. In the case of a durable subscriber, the user's
subscription is persisted, and it is not necessary for the user to issue
any subsequent SUBSCRIBE commands. The subscription of a
durable subscriber is also persisted even while broker is stopped.

If not specified, defaults to 5 minutes. This is the time after which
the subscriber's internalmemory structureswill be cleaned up and
a subsequent logon is required.

bvwuzONEVER | n |
nS | nM | nH |
nD | nY

SUBSCRIPTION-EXPIRATION

Lifetime of a user's subscription in absolute time units.
Subscriptions are retained by broker until either the user issues an
UNSUBSCRIBE command or the subscription lifetime has expired.

Subscriber will never be purged from PSTORE.NEVER

Same as nS.n

Expiration time in seconds (max. 2147483647).nS

Expiration time in minutes (max. 35791394).nM

Expiration time in hours (max. 596523).nH

Expiration time in days (max. 24855).nD

Expiration time in years (max. 68).nY

Durable subscriptions remain effective even if the user performs
the LOGOFF command or broker is stopped. The subscription
lifetime is calculated also for periods of time when broker is
stopped.

SUBSCRIPTION-EXPIRATION is the time after which the
subscription expires. In the case of durable subscription, the
subscription is removed from the PSTORE. Broker removes expired
subscriptions onlywhen the user is not currently active, for example

Broker98

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

when the user has issued a LOGOFF command or after the
SUBSCRIBER-NONACT has passed if no LOGOFF is issued.

If SUBSCRIBER-NONACT is specified greater than
SUBSCRIPTION-EXPIRATION, broker adjusts
SUBSCRIPTION-EXPIRATION to the value ofSUBSCRIBER-NONACT.

bvwuzRA96
(case-sensitive)

TOPIC

Name of the topic for publish and subscribe processing. Valid
characters for topic name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore. Do not use dollar, percent, period or comma.

bvwuzOFormat: A255

SAGTCHA |
NO | <name>

TRANSLATION

Activates translation or translation user exit for internationalization
(see Translation User Exit under Introduction to Internationalization).
See alsoWhat is the Best Internationalization Approach to use? under
Introduction to Internationalization

Conversion routine SAGTCHA for ACI-based
programming,RPC-based components and forReliable
RPC.

SAGTCHA

If translation is not to be used, e.g. for binary payload
(broker messages), either omit the TRANSLATION
attribute or specify TRANSLATION=NO.

NO

Name of Translation User Exit. See also Configuring
SAGTRPC User Exits under Configuring Broker for

<name>

Internationalization in the platform-specific
administrationdocumentation andWriting SAGTRPC
User Exits in the platform-specific administration
documentation.

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service, i.e. when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

99Broker

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize themapping of locale strings to codepages for the internation-
alization approaches ICU conversion and SAGTRPC user exit. These attributes do not apply to
other approaches. See Internationalization with EntireX for more information.

Operating System

Opt/
ReqValuesAttribute

bvwuzOAny ICU
converter

DEFAULT_ASCII

name or
alias. See
also
Additional
Notes
below.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on an ASCII platform (UNIX, Windows, etc.),
and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used. See ICU Conversion under Introduction to Internationalization and
SAGTRPC User Exit under Introduction to Internationalization.

Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Defaults */
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

bvwuzOAny ICU
converter

DEFAULT_EBCDIC_IBM

Broker100

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

name or
alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself and
■ the calling component is running on an IBM mainframe platform (z/OS, z/VSE
etc.) and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

bvwuzOAny ICU
converter
name or
alias

DEFAULT_EBCDIC_SNI

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on a Fujitsu EBCDIC mainframe platform
(BS2000/OSD), and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

101Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

vwuzOAny ICU
converter
name or

locale-string

alias. See
also
Additional
Notes
below.

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker's Locale String Processing under
Locale String Mapping in the internationalization documentation. This is useful:

■ if the broker's locale string processing fails - i.e. leads to no codepage or to the
wrong codepage - you can explicitly assign the codepage which meets your
requirements.

■ if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server, publisher or subscriber) and the value is the codepage that you
want to use in place of that locale string. In the first line of the example below, the
client or server application sends ASCII as a locale string; the broker maps this to
the codepage ISO 8859_1. In the same way EUC_JP_LINUX is mapped to
ibm-33722_P12A-1999. All other locale strings aremapped by the broker'smapping
mechanism, see Broker's Built-in Locale StringMapping under Locale StringMapping
in the internationalization documentation. Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Codepage Assignments */
ASCII=ISO8859
EUC_JP_LINUX=ibm-33722_P12A-1999
/* Customer-written ICU converters */
CP1140=myebcdic
CP0819=myascii

Broker102

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

For more examples, see Bypassing Broker's Built-in Locale String Mapping under
Locale StringMapping in the internationalization documentation and alsoAdditional
Notes below.

Additional Notes

■ Locale stringmatching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

■ If ICU is used for the internationalization approach and if the style in not known by ICU, e.g.
ECSnnnn, <ll>_<cc> etc., the name will be mapped to a suitable ICU alias. For more details on
the mappingmechanism, see Broker's Built-in Locale StringMapping under Locale StringMapping
in the internationalization documentation. For more details on ICU and ICU converter name
standards, see ICU Resources under Introduction to Internationalization.

■ If SAGTRPC user exit is used for the internationalization approach, we recommend assigning
the codepage in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit,
see Broker's Built-in Locale StringMapping under Locale StringMapping in the internationalization
documentation.

■ See CONVERSION and CONVERSION attribute CONVERSION on this page for the internationalization
approach in use.

103Broker

Broker Attributes

Adabas SVC/Entire Net-Work-specific Attributes

TheAdabas SVC/EntireNet-Work-specific attribute section beginswith the keyword DEFAULTS=NET
as shown in the sample attribute file. The attributes in this section are needed to execute the
Adabas SVC/Entire Net-Work communicator of the EntireX Broker kernel.

Note: This section applies to mainframe platforms only. It does not apply to UNIX and
Windows.

Operating System

Opt/
ReqValuesAttribute

vzRnnnADASVC

Sets the Adabas SVC number for EntireX Broker access.

The Adabas SVC is used to perform various internal functions, including
communication between the caller program and EntireX Broker.

Not supported on BS2000/OSD.

bvzONO | YESEXTENDED-ACB-SUPPORT

Determines whether extended features of Adabas version 8 (or above) are
supported.

No features of Adabas version 8 or above will be used.NO

Informs broker kernel to provide Adabas/WAL version 8 transport
capability. This parameter is required for sending/receiving more than

YES

32 KB data over Adabas [NET] transport. This value should be set only if
you have installed Adabas/WAL version 8, Adabas SVC, and included
Adabas/WAL version 8 load libraries into the steplib of broker kernel;
otherwise, unpredictable results can occur.

bvzONO | YESFORCE

Determines whether DBID table entries can be overwritten.

Overwrite of DBID table entries not permitted.NO

Overwrite ofDBID table entries permitted. This is requiredwhen theDBID
table entry is not deleted after abnormal termination.

YES

Caution: Overwriting an existing entry prevents any further communication
with the overwritten node. Use FORCE=YES only if you are absolutely sure that
no target node with that DBID is active.

Broker104

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bOFORMAT:
A8idtname

IDTNAME

|
ADABAS5B

If an ID table name is specified with the appropriate ADARUN parameter for
Entire Net-Work, Adabas or Natural, the same name must be specified here.
The ID table is used to perform various internal functions, including
communication between the caller program and the EntireX Broker. Only
supported under BS2000/OSD.

bvzO8000 | nIUBL

This parameter sets the maximum length (in bytes) of the buffer that can be
passed from the caller to EntireX Broker. Themaximum size of IUBL is the same
as the maximum value of the Adabas parameter LU (see the Adabas Operations
Manual).

IUBLmust be large enough to hold themaximumsend-length plus receive-length
required for any caller program plus any administrative overhead for Adabas
and Entire Net-Work control structures.

bvzONO | YESLOCAL

Specifies whether the broker ID is local.

Broker ID can be accessed from remote nodes.NO

The broker ID is local. It is not accessible from remote nodes.YES

bvwuzO2147483647
| n

MAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process using transport
methodNET. The default value represents the highest positive number that can
be stored in a four-byte integer.

bvzO10 | nNABS

The number of attached buffers to be used (max. 524287).

An attached buffer is an internal buffer used for interprocess communication.
An attached buffer pool equal to the NABS value multiplied by 4096 will be
allocated. This buffer pool must be large enough to hold all data (IUBL) of all
parallel calls to EntireX Broker.

The following formula can be used to calculate the value for NABS:
NABS = NCQE *IUBL / 4096.

bvzO10 | nNCQE

105Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

NCQE defines the number of command queue elements which are available for
processing commands arriving at the broker kernel overAdabas SVC /Net-Work
transportmechanism. Sufficient NCQE should be allocated to allow this transport
mechanism to processmultiple broker commands concurrently. Each command
queue element requires 192 bytes, and the element is released when either the
user (client or server) has received the results of the command, or if the command
is timed out.

Thenumber of commandqueue elements required to handle broker calls depends
on the number of parallel active broker calls that are using the transport
mechanismAdabas SVC / Entire Net-Work. For example, all broker commands
issued by any of the following application components using this transport
mechanism:

■ clients
■ servers
■ publishers
■ subscribers

bvzO1-65534NODE

Defines the unique DBID for EntireX Broker.

Used for internodeAdabas/EntireNet-Work communication. There is no default;
the value of NODEmust be a value greater than or equal to 1 or less than or equal
to 65534. If you set the parameter LOCAL=YES, you can use the samenode number
for different installations of EntireX Broker in an EntireNet-Work environment.

Please note that themaximumvalue for NODE that is allowed for EntireNet-Work
under UNIX is 255.

If NODE is specified, it overrides the DBID derived from the numeric part of
BROKER-ID.

bvzO30 | nTIME

This parameter sets the timeout value for broker calls in seconds. The results of
a broker call must be received by the caller within this time limit.

bzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method NET. It overrides the global value of trace level for all NET routines.

No tracing. Default value.0

Display invalid Adabas commands.1

Broker106

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

107Broker

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITYas shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is
specified.

Operating System

Opt/
ReqValuesAttribute

bONO | YESACCESS-SECURITY-SERVER

Determines where authentication is checked.

Authentication is checked in the broker tasks. This requires broker to be running under
TSOS in order to execute privileged security checks.

NO

Authentication is checked in the EntireX Broker Security Server for BS2000/OSD. This
does not require broker to be running under TSOS. See EntireX Broker Security Server
for BS2000/OSD in the BS2000/OSD administration documentation.

YES

zOA8APPLICATION-NAME

Specifies the name of the application to be checked if FACILITY-CHECK=YES is defined. In
RACF, for example, an application "BROKER"with read permission for user "DOE" is defined
with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASS(APPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY-CHECK for more information.

bwuzOOS | ldapUrl |
iafUrl

AUTHENTICATION-TYPE

Authentication is performed against the local operating system. Default if
SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from
the attribute file.

OS

Authentication is performed against the LDAP repository specified under
ldapUrl. Not supported under BS2000/OSD.

ldapUrl

■ For TCP, specify repository URL:

Broker108

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

AUTHENTICATION-TYPE="ldap://HostName
[:PortNumber]"

■ For SSL or TLS:

AUTHENTICATION-TYPE="ldaps://HostName
[:PortNumber]"

If no port number is specified, the default is the standard LDAP port number
389 for TCP transport. Examples for TCP and SSL (or TLS):

AUTHENTICATION-TYPE="ldap://myhost.mydomain.com"
AUTHENTICATION-TYPE="ldaps://myhost.mydomain.com:636"

Authentication is performed using Software AG's Integrated Authentication
Framework against the IAF service specified under iafUrl. Not supported under
BS2000/OSD.

The URL of the IAF service is specified using

iafUrl

AUTHENTICATION-TYPE=
"iaf://HostName[:PortNumber]?SSLParameters"

If no port number is specified, the default is port number 1958. SSL or TLS
parameters are specified in the same format as for theACI function SETSSLPARMS.
Example: AUTHENTICATION-TYPE="iaf://myhost.mydomain.com:10000?

AUTHENTICATION-TYPE=
"iaf://myhost.mydomain.com:10000?
verify_server= no&
trust_store=
/opt/softwareag/EntireX/etc/ExxCACert.pem"

On z/OS, the URL of an IAF service running on the same host may specified as

109Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

AUTHENTICATION-TYPE=
"iaf.ipc://IAFServiceID[:SVCNumber]"

Example:

AUTHENTICATION-TYPE=
"iaf.ipc://IAF075:SVC245"

wuOYES | NOAUTHORIZATIONDEFAULT

Determines whether access is granted to a specified service if the specified could not be
found listed in the repository of authorization rules.

Grant access.YES

Deny access.NO

Applies only when using EntireX Security under UNIX andWindows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

wuOA32AUTHORIZATIONRULE

List of authorization rules. Multiple sets of rules can be defined, each set is limited to 32
chars. The maximum number of AUTHORIZATIONRULE entries in the attribute file is 16.

Applies only when using EntireX Security under UNIX or Windows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

zOYES | NOCHECK-IP-ADDRESS

Determines whether the TCP/IP address of the caller is subject to a resource check.

zONA2MSG0 |
NA2MSG1 |

ERRTXT-MODULE

NA2MSG2 |
ModuleName

Specifies the name of the security error text module. Default is "NA2MSG0", English
messages. For instructions on how to customizemessages, seeBuild Language-specificMessages

Broker110

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

(Optional) under Installing EntireX Security under z/OS under z/OS in the z/OS installation
documentation.

zONO | YESFACILITY-CHECK

It is possible to check whether a particular user is at all allowed to use an application before
performing a password check. The advantage of this additional check is that when the user
is not allowed to use this application, the broker returns error 00080013 and does not try to
authenticate the user. Failing an authentication checkmay lead to the user's password being
revoked; this situation is avoided if the facility check is performed first. See attribute
APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed before
each authentication call.

bwuzONO | YESIGNORE-STOKEN

Determines whether the value of the ACI field SECURITY-TOKEN is verified on each call.

zOYES | NOINCLUDE-CLASS

Determines whether the class name is included in the resource check.

zOYES | NOINCLUDE-NAME

Determines whether the server name is included in the resource check.

zOYES | NOINCLUDE-SERVICE

Determines whether the service name is included in the resource check.

wuzOldapDnLDAP-PERSON-BASE-BINDDN

Used with LDAP authentication to specify the distinguished name where authentication
information is stored. This value is prefixedwith the user IDfield name (see below). Example:

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

wuzOOpenLDAP |
ActiveDirectory |

LDAP-REPOSITORY-TYPE

SunOneDirectory |
Tivoli | Novell |
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository type
that most closely matches your actual repository. In the case of Windows Active Directory,
the user ID is typically in the form domainName\userId.

wONO | YESLDAP-SASL-AUTHENTICATION

Specifies whether or not Simple Authentication and Security Layer (SASL) is to perform the
authentication check. In practice, this determines whether or not the password supplied by
the user is passed in plain text between the broker kernel and the LDAP server. If SASL is
activated, this implies that the password is encrypted.

111Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Password is sent to LDAP server in plain text.NO

Password is sent to LDAP server encrypted.YES

wuzOcn | uidFieldNameLDAP-USERID-FIELD

Usedwith LDAP authentication to specify the first field name of a user in the Distinguished
Name, for example:

LDAP-USERID-FIELD=uid

zO1-256MAX-SAF-PROF-LENGTH

This parameter should be increased if the length of the resource checks - that is, the length
of the profile comprising “<class>.<server>.<service>” - is greater than 80 bytes.

This parameter defaults to 80 if a value is not specified.

bwuzONO | YESPASSWORD-TO-UPPER-CASE

Determines whether the password and new password are converted to uppercase before
verification.

zORACF | ACF2 |
TOP-SECRET

PRODUCT

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

Security system ACF2 is installed.ACF2

Security system RACF is installed. Default.RACF

Security system TOP-SECRET is installed.TOP-SECRET

The default value is used if an incorrect or no value is specified.

zOYES | NOPROPAGATE-TRUSTED-USERID

Determines whether a client user ID obtained by means of the trusted user ID mechanism
is propagated to a server using the ACI field CLIENT-USERID.

zONBKSAG |
SAFClassName

SAF-CLASS

Specifies the name of the SAF class/type used to hold the EntireX-related resource profiles.

zONBKSAG |
SAFClassName

SAF-CLASS-IP

Specifies the name of the SAF class/type used when performing IP address authorization
checks.

Broker112

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzOAUTHORIZATION |
AUTHENTICATION
| ENCRYPTION

SECURITY-LEVEL

Specifies the mode of operation.

Authorization, authentication, and encryption (not under
BS2000/OSD or z/VSE).

AUTHORIZATION

Authentication and encryption.AUTHENTICATION

Encryption only.ENCRYPTION

Caution: In version 8.0, the default value for this parameter was "AUTHORIZATION".

zOYES | nameSECURITY-NODE

This parameter can be used to specify a prefix that is added to all authorization checks,
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often important to
distinguish between production, test, and development environments.

This causes the broker ID to be used as a prefix for all authorization checks.YES

This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

name

Note: By not setting this parameter, no prefix is added to the resource check (the default
behavior).

bvwuzO0 - 4TRACE-LEVEL

Trace level for EntireX Security. It overrides the global value of trace level in the attribute
file.

zOYES | NOTRUSTED-USERID

Activates the trusted user IDmechanism for broker requests arriving over the local Adabas
IPC mechanism.

bzONO | YESUSERID-TO-UPPER-CASE

Determines whether user ID is converted to uppercase before verification.

zONO | YESUNIVERSAL

Determines whether access to undefined resource profiles is allowed.

bwuzONO | YESWARN-MODE

Determines whether a resource check failure results in just a warning or an error.

113Broker

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

Operating System

Opt/
ReqValuesAttribute

bvwuzOn | nS | nM
| nH

CONNECTION-NONACT

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime in the platform-specific Stub Administration sections
of the EntireX documentation.

bvwuzO0.0.0.0 |
HostName |

HOST

IP
address

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of the
system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

bvwuzO2147483647
| n

MAX-MESSAGE-LENGTH

Broker114

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Maximummessage size that the broker kernel can process using transportmethod
TCP/IP. The default value represents the highest positive number that can be stored
in a four-byte integer.

bvwuzO1025 - 65535PORT

The TCP/IP port number on which the broker will listen for connection requests.

If specified, PORT overrides broker attribute TCPPORT.

Note: TCPPORTwill be retired with the next version.

If PORT is not specified but TCPPORT is specified, TCPPORT is used.

If TCPPORT is not specified, the broker will attempt to find its TCP/IP port number
from the TCP/IP Services file, using getservbyname. If broker cannot find its TCP/IP
port number from the TCP/IP Services file, it will use the default value of 1971.

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

bvwuzOYES | NORESTART

The broker kernel will attempt to restart the TCP/IP communicator.YES

The broker kernel will not try to restart the TCP/IP communicator.NO

If specified, RESTART overrides broker attribute TCP-RESTART.

Note: TCP-RESTARTwill be retired with the next version.

If RESTART is not specified but TCP-RESTART is specified, TCP-RESTART is used.

The RESTART setting applies to all TCP/IP communicators.

bvwuzO20 | n |
UNLIM

RETRY-LIMIT

Maximum number of attempts to restart the TCP/IP communicator.

If specified, RETRY-LIMIT overrides broker attribute TCP-RETRY-LIMIT.

Note: TCP-RETRY-LIMITwill be retired with the next version.

If RETRY-LIMIT is not specified but TCP-RETRY-LIMIT is specified,
TCP-RETRY-LIMIT is used.

The RETRY-LIMIT setting applies to all TCP/IP communicators.

115Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzO3M | n | nS
| nM | nH

RETRY-TIME

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

Same as n S.n

Wait time in seconds (max. 2147483647).n S

Wait time in minutes (max. 35791394).nM

Wait time in hours (max. 596523).n H

Minimum wait time is 1S.

If specified, RETRY-TIME overrides broker attribute TCP-RETRY-TIME.

Note: TCP-RETRY-TIMEwill be retired with the next version.

IfRETRY-TIME is not specified butTCP-RETRY-TIME is specified,TCP-RETRY-TIME
is used.

The RETRY-TIME setting applies to all TCP/IP communicators.

bvuzOYES | NOREUSE-ADDRESS

wOYES | NO

The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

YES

The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting on Windows, and we strongly
advise you do not change this value on this platform.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the TCP/IP
stack when closing connections.

NO

zOStackNameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

Broker116

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing error
responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

117Broker

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS, BS2000/OSD, z/VSE.

Operating System

Opt/
ReqValuesAttribute

wuOn | nM | nGMAXSIZE

Defines the maximum size of c-tree data files. Broker allocates one data file for control data
and another data file for message data:

Maximum size in MB.n

Maximum size in MB.nM

Maximum size in GB.nG

wuOn | nKPAGESIZE

Determines howmany bytes are available in each c-tree node. PSTORE COLD start is required
after changing this value.

Same as nKn

PAGESIZE in KB.nK

The default and minimum value is 8 KB.

If PSD Reason Code = 527 is returned during UOWwrite processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE to
a new PSTORE with an increased PAGESIZE value. SeeMigrating the Persistent Store in the
general administration documentation and define the increased PAGESIZE value for the
load broker.

wuOA255PATH

Path name of the target directory for c-tree index and data files.

wuONO | YESSYNCIO

Controls the open mode of the c-tree transaction log.

c-tree transaction log is not opened in synchronous mode. Default.NO

c-tree transaction log is opened in synchronousmode to improve data security. It may
degrade performance of PSTORE operations, but offers the highest level of data

YES

Broker118

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

security. See c-tree Database as Persistent Store in theUNIX andWindows administration
documentation.

wuO0-8TRACE-LEVEL

Trace level for c-tree persistent store. It overrides the global value of trace level in the attribute
file.

119Broker

Broker Attributes

SSL-specific Attributes

The SSL-specific attribute section begins with the keyword DEFAULTS=SSL as shown in the sample
attribute file. The attributes in this section are needed to execute the SSL communicator of the
EntireX Broker kernel. In this section, “SSL” also applies to TLS (Transport Layer Security).

Operating System

Opt/
ReqValuesAttribute

bwuzOstringCIPHER-SUITE

String that is passed to the underlying SSL implementation. SSL is a standardized
protocol that uses different cryptographic functions (hash functions, symmetric
and asymmetric encryption etc.). Some of these must be implemented in the
SSL stack; others are optional. When an SSL connection is created, both parties
agree by “handshake” on the cipher suite, that is, the algorithms and key lengths
used. In a default scenario, this information depends on what both sides are
capable of. It can be influenced by setting the attribute CIPHER-SUITE for the
SSL server side (the broker always implements the server side). Ths stubs connect
to the broker and thereby become the SSL clients.

Under UNIX and Windows, the OpenSSL implentation of the SSL server side
is used; on z/OS and BS2000/OSD it is GSK.

Example for OpenSSL:

Use RC4with standard 128-bit
key and MD5 as hash.

CIPHER-SUITE=RC4-MD5

Extreme example.CIPHER-SUITE=EXP-EDH-DSS-DES-CBC-SHA

Example for GSK:

Use DES and SHA1 with export key lengths, or
RC4 and MD5 with export key lengths, or
RC2 and MD5 with export key lengths.

CIPHER-SUITE=090306

For more information see:

■ OpenSSL
http://www.openssl.org/docs/apps/ciphers.html

Broker120

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ GSK
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?
info/apis/gsk_attribute_set_buffer.htm

bwuzOn | nS | nM | nHCONNECTION-NONACT

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled.

bwuzOhostnameHOST

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

Amaximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

zOnameKEY-LABEL

The label of the key in the RACF keyring that is used to authenticate the broker
kernel (see also TRUST-STORE parameter).

(Example: "ETBCERT")

bwuRfile nameKEY-FILE

File that contains the broker's private key (if not contained in KEY-STORE).

(Example: MyAppKey.pem)

bwuRpassword (A32)KEY-PASSWD

Password used to protect the private key. Unlocks MyAppKey.pem. Deprecated.
See KEY-PASSWD-ENCRYTPED below.

bwuRencrypted value
(A64)

KEY-PASSWD-ENCRYPTED

121Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Password used to protect the private key. Unlocks MyAppKey.pem. This attribute
replaces KEY-PASSWD to avoid a clear-text password as attribute value. If
KEY-PASSWD and KEY-PASSWD-ENCRYTPED are both supplied,
KEY-PASSWD-ENCRYTPED takes precedence.

bwuRfile nameKEY-STORE

SSL certificate; may contain the private key.

(Example: ExxAppCert.pem)

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

bwuzO1025 - 65535PORT

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the example
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

bwuzOYES | NORESTART

The broker kernel will attempt to restart the SSL communicator (this is
the default value).

YES

The broker kernel will not attempt to restart the SSL communicator.NO

bwuzO20 | n | UNLIMRETRY-LIMIT

Maximum number of attempts to restart the SSL communicator.

bwuzO3M | n | nS | nHRETRY-TIME

Wait time between suspending SSL communication due to unrecoverable error
and the next attempt to restart it.

Same as nS.n

Wait time in seconds (max.2147483647).nS

Wait time in minutes (max. 35791394).nM

Wait time in hours (max. 596523).nH

Minimum: 1S

bwuzOYES | NOREUSE-ADDRESS

Broker122

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).

YES

The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

NO

wuzOnameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method SSL or TLS. It overrides the global value of trace level for all SSL or TLS
routines.

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing
error responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

bwuzRfile name|keyringTRUST-STORE

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

Specify the RACF keyring using the following
format: [USER-ID/]RING-NAME. If no value for

z/OS

USER-ID is provided, the keyring is assumed to

123Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

be associated with the user ID that the broker
kernel is running under.

Specify the file name of the CA certificate store.
Examples: EXXCACERT.PEM,
C:\Certs\ExxCACert.pem

BS2000/OSD/Windows/UNIX

bwuzONO | YESVERIFY-CLIENT

Additional client certificate required.YES

No client certificate required (default).NO

Broker124

Broker Attributes

DIV-specific Attributes

The DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

Operating System

Opt/
ReqValuesAttribute

zRA511DIV

The VSAM Persistent Store parameters, enclosed in double quotes (""). The value can span more
than one line. See Format Parameters underManaging the Broker Persistent Store in the z/OS
administration documentation for details of the parameters. In previous versions of EntireX, these
parameters were read from the SYSIN DD during broker kernel startup.

Adabas-specific Attributes

TheAdabas-specific attribute section beginswith the keyword DEFAULTS = ADABAS. The attributes
in this section are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,
these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-
tribute.

Operating System

Opt/
ReqValuesAttribute

bvwuzO126-20000BLKSIZE

Optional blocking factor used formessage data. If not specified, brokerwill split themessage
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.

For reasons of efficiency, do not specify a BLKSIZEmuch larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.

The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.

Default value is 2000.

bvwuzR1 - 32535DBID

125Broker

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Database ID of Adabas database where the persistent store resides.

bvwuzR1 - 32535FNR

File number of broker persistent store file.

bvwuzON | YFORCE-COLD

Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

bvwuzO0-nMAXSCAN

Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

bvwuzON | YOPENRQ

Determines whether driver for Adabas persistent store is to issue an OPEN command to
Adabas.

vzR200-255SVC

Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

bvwuzO0-8TRACE-LEVEL

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

Broker126

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

■ BROKER-ID (in Broker-specific attributeBROKER-ID)
■ NODE (in Entire Net-Work-specific attribute NODE)
■ PORT (in PORT (SSL) and PORT (TCP/IP))

How you use the variable definition file will depend upon your particular needs. For instance,
some optional attributesmay require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

127Broker

Broker Attributes

128

III Broker Command and Information Services

129

130

7 Broker Command and Information Services

■ CIS Overview Table .. 132
■ Modes of Requesting the Services .. 133
■ ETBCMD: Executable Command Requests .. 135
■ ETBINFO: Returnable Information Requests ... 139

131

EntireX Broker provides two internal services: Command Service and Information Services that
can be used administer andmonitor the EntireX Broker. The command service allows you to issue
a set of Broker commands; the information services provide you with various statistics to better
administer and tune your Broker. Because these services are implemented internally, nothing has
to be started or configured. You can use these services immediately after starting EntireX Broker.

See also Broker CIS Data Structures in the ACI Programming documentation.

CIS Overview Table

EntireX Broker provides these predefined internal services:

■ Command Service
Provides a facility to issue commands against the Broker (e.g. SHUTDOWN etc.).

■ Information Services
Provides a query mechanism to obtain various types of information on the Broker, which is
helpful for administration and tuning.

Since these services are implemented internally, nothing has to be started, configured or defined
in the Broker attribute file. You can use them immediately after starting the Broker. They can be
requested as follows:

RequirementsServicesToolsMode of Request

application programUser-Written
Interface

■■ INFO request structures
■ USER-INFO

■ CMD

■ PARTICIPANT-SHUTDOWN

■ SECURITY-CMD

System Management HubGraphical User
Interface

■■ INFO none
■ USER-INFO

■ CMD

■ SECURITY-CMD

ETBINFO utilityCommand-line
Utilities

■ profile■ INFO

■ ■USER-INFO command-line
parameters

ETBCMD utility ■■ CMD command-line
parameters■ PARTICIPANT-SHUTDOWN

Broker132

Broker Command and Information Services

RequirementsServicesToolsMode of Request

■ SECURITY-CMD

System Management Hub
(batch interface argbatch)

■■ INFO command-line
parameters■ USER-INFO

■ CMD

■ SECURITY-CMD

Applicable operating systems: z/OS, UNIX and Windows.

Description of Services

INFO and USER-INFO

■ INFO is the full information service. Specify it for the full information service. All clients, servers
and conversations are listed.

■ USER-INFO is limited to your user-specific information. Specify it for limited information service.
Only the user's own resources are listed.

CMD, PARTICIPANT-SHUTDOWN and SECURITY

■ CMD is the full command service.
■ PARTICIPANT-SHUTDOWN is limited to shutting down participants.
■ SECURITY-CMD is limited to EntireX Security-related commands.

Modes of Requesting the Services

Use one of these three modes to request a service:

■ Command-line Utilities
■ Graphical User Interface
■ User-Written Interface

Themethod for requesting these services is the same as themethod for requesting any other service.
For both types of services, an application issues a SEND command with appropriate data and re-
trieves a reply. The request itself is specified within the SEND buffer; the reply - if there is one - is
specified in the RECEIVE buffer.

For Information Services requests, RECEIVE operations must be repeated until the Information
Service indicates the end of data with an EOC return message.

133Broker

Broker Command and Information Services

Command-line Utilities

Software AG provides three command-line utility programs for use with EntireX Broker. All
utility programs use command-line parameters that specify various options and information to
be built into a request. These utility programs are:

■ ETBINFO
Queries the Broker for different types of information, generating an output text stringwith basic
formatting. This text output can be further processed by script languages (or elsewhere). ETBINFO
uses data descriptions called profiles to control the type of data that is returned for a request.
ETBINFO is useful for configuring and administering EntireX Broker efficiently - e.g., howmany
users are to run concurrently and whether the number of specified message containers is large
enough.

See ETBINFO under Broker Command-line Utilities in the platform-specific administration docu-
mentation for profiles, examples and utility parameters.

■ ETBCMD
Allows you to take actions - e.g., purge a unit of work, stop a server, shut down a Broker - against
EntireX Broker.

See ETBCMD under Broker Command-line Utilities in the platform-specific administration docu-
mentation for utility parameters.

■ ARGBATCH
This is the command line utility of SMH (seeGraphical User Interface). It allows you to perform
various administrative commands over a broker. You can access Broker Command and Inform-
ation Services with a subset of all available commands.

See Description of argbatch Commands under System Management Hub for EntireX.

Version Information

■ The ETBINFO and ETBCMD CIS command-line utilities are compatible with all versions of EntireX
Broker.

■ Display keywords applying to a specific version of Broker will not be returned when a call is
made to any older version of Broker.

Broker134

Broker Command and Information Services

Graphical User Interface

SoftwareAGprovides a graphical user interface, the SystemManagementHub (SMH), for display-
ing information on the Broker and/or executing administrative functions.

Many of the capabilities of the Broker CIS can be accessed through the SMH, which is Software
AG's cross-product and cross-platform product management framework. The EntireX-specific
SMH agents are installed automatically when the EntireX software is installed under UNIX or
Windows. SMH is not installable under z/OS.

User-Written Interface

If you access the Command and Information Services through a user-written application, you
must use a defined protocol. This protocol describes the structures needed to communicate with
the service(s) so that the request is correctly interpreted by the Broker.

SeeWriting Applications: Command and Information Services in the ACI documentation and Broker
CIS Data Structures in the ACI Programming documentation.

ETBCMD: Executable Command Requests

The following command requests can be issued, using ETBCMD. All the functions listed in this table
are applicable to all three request modes; seeModes of Requesting the Services.

Note: Version numbers in this table refer to the interface version and not to the Broker ver-
sion.

CIS
Interface
VersionCommentCommand Request

3New UOWmessages are allowed.ALLOW-NEWUOWMSGS

5Remove the specified command log
filter.

CLEAR-CMDLOG-FILTER

4Connects the persistent store. See
Availability of Persistent Store in the
general administrationdocumentation.

CONNECT-PSTORE

5Disables accounting. Accounting
records are discarded until accounting
is enabled.

DISABLE-ACCOUNTING

5Disable command logging.DISABLE-CMDLOG

7Disable the
DYNAMIC-WORKER-MANAGEMENT.

DISABLE-DYN-WORKER

DYNAMIC-WORKER-MANAGEMENT=YES

135Broker

Broker Command and Information Services

CIS
Interface
VersionCommentCommand Request

must be configured in the attribute file.
The current number of active worker
tasks will not be changed until
DYNAMIC-WORKER-MANAGEMENT is
enabled again.

4Disconnects the persistent store. See
Availability of Persistent Store in the
general administrationdocumentation.

DISCONNECT-PSTORE

5Enable accounting.ENABLE-ACCOUNTING

5Enable command logging.ENABLE-CMDLOG

Enable the
DYNAMIC-WORKER-MANAGEMENTagain.

ENABLE-DYN-WORKER

DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
DYNAMIC-WORKER-MANAGEMENT has
been disabled before. Additional
worker tasks can be started again, or
stopped if not used.

3NewUOWmessages are not allowed.FORBID-NEWUOWMSGS

5Output current statistics to the broker
log.

PRODUCE-STATISTICS

2Remove a unit of work from the
persistent store.

PURGE

5Clear all cached security information
for the specified user ID.

RESET-USER

Transport ID: NET|Snn|Tnn. Resume
a suspended transport communicator.

RESUME

If the communicator was not
suspended before, an error message
will be returned.

5Add the specified command log filter.SET-CMDLOG-FILTER

1Shutdown Broker immediately.BROKERSHUTDOWN

7Command applies to conversations without units of
work only. The security rights shutting down the

CONVERSATION
<conversation-id>

service are required for shutting down the
conversation.

The specified conversation is
immediately removed. All messages
of the conversation are lost.

IMMED

An end of conversation is issued. The
conversation remains active.

QUIESCE

Broker136

Broker Command and Information Services

CIS
Interface
VersionCommentCommand Request

1Shutdown server immediately. The
server must be uniquely identified

IMMEDSERVER

using field P-USER-ID under Broker
CIS Data Structures in the ACI
Programming documentation or
SEQNOunderBroker CISData Structures
in the ACI Programming
documentation andwill be completely
removed from the broker
environment.
The following stepswill be performed:

■ Error code 00100050will be returned
to the server, if it is waiting.

■ All existing conversations will be
finished with EOC.

■ User will be logged off.

Shutdown server but allow existing
conversations to continue.
The termination is signaled to the
server by error code 00100051. After

QUIESCE

this, the next call issued must be a
DEREGISTER for all services
(SC=*,SN=*,SV=* if more than one
service is active).

7Internal services cannot be shut down.SERVICE
<class/server/service> Caution: All servers offering this

servicewill be deregistered and logged
IMMED

off. The following steps will be
performed:

■ Error code 00100050 will be replied
to all servers, if they are waiting.

■ All existing conversations will be
finished with EOC.

■ Users will be logged off.

All servers offering this service are
deregistered. Shutdown servers but

QUIESCE

allow existing conversations to
continue. The termination is signaled
to the servers by error code 00100051.

137Broker

Broker Command and Information Services

CIS
Interface
VersionCommentCommand Request

After this, the next call issuedmust be
a DEREGISTER for the service.

4Shutdown participant immediately.
The participant must be identified,

IMMEDPARTICIPANT

using fields P-USER-ID under Broker
CIS Data Structures in the ACI
Programming documentation, UID
under Broker CISData Structures in the
ACI Programming documentation
TOKENunderBroker CISData Structures
in the ACI Programming
documentation or SEQNOunderBroker
CIS Data Structures in the ACI
Programmingdocumentation andwill
be completely removed from the
Broker environment. See Broker CIS
Data Structures in the ACI
Programming documentation.
The following stepswill be performed:

■ Error code 00100050 will be replied
to the participant, if it is waiting.

■ All existing conversations will be
finished with EOC.

■ User will be logged off.

Within EntireX Broker
nomenclature, a participant is an
application implicitly or explicitly
logged on to the Broker as a specific
user. A participant could act as
client, server, publisher or
subscriber.

Shutdown participant but allow
existing conversations to continue. The

QUIESCE

termination is signaled to the
participant by error code 00100051.

7Start a transport communicator that
was previously stopped. If the

Transport ID:
NET|Snn|Tnn

TRANSPORTSTART

communicatorwas not stoppedbefore,
an error message will be returned.

7Check the current status of the
transport communicator.

Transport ID:
NET|Snn|Tnn

TRANSPORTSTATUS

Broker138

Broker Command and Information Services

CIS
Interface
VersionCommentCommand Request

7Stop an active or suspended transport
communicator. The transport

Transport ID:
NET|Snn|Tnn

TRANSPORTSTOP

communicator will shut down. All
transport-specific resources will be
freed. User requests receive response
code 148.

4Subscribe a user to a topic.SUBSCRIBE

7Suspend an active transport
communicator.

Transport ID:
NET|Snn|Tnn

TRANSPORTSUSPEND

5Force a switch of command logging
output files.

SWITCH-CMDLOG

7Flush all trace data kept in internal
trace buffers to stderr (DD:SYSOUT).

BROKERTRACE-FLUSH

The broker-specific attribute
TRMODE=WRAP is required.

1Set TRACE-LEVEL off in Broker.BROKERTRACE-OFF

5Set TRACE-LEVEL off in persistent
store.

PSF

5Set TRACE-LEVEL off in EntireX
Security.

SECURITY

1SetTRACE-LEVEL on in Broker. Values:
1 | 2 | 3 | 4.

BROKERTRACE-ON

5Set TRACE-LEVEL on in persistent
store. Values: 1 | 2 | 3 | 4.

PSF

5Set TRACE-LEVEL on in EntireX
Security. Values: 1 | 2 | 3 | 4.

SECURITY

7Modifies the setting of the
broker-specific attribute TRAP-ERROR.

Error number:
nnnn

BROKERTRAP-ERROR

4Unsubscribe a user from a topic.UNSUBSCRIBE

ETBINFO: Returnable Information Requests

The following information requests can be returned. All the functions listed in this table are ap-
plicable to all three request modes; seeModes of Requesting the Services.

Note: Version numbers in this table refer to the interface version and not to the Broker ver-
sion.

139Broker

Broker Command and Information Services

Interface
VersionCommentInformation Request

1Global information on this Broker. No additional selection criteria are needed.
Other selection criteria fields are ignored.

BROKER

1Information on active clients.CLIENT

5Information on command log filters.CMDLOG-FILTER

1Information on active conversations.CONVERSATION

5Information on the Entire Net-Work communicator.NET

7Information on Broker pool usage and dynamic memory management.POOL

2Information on a unit of work's status and Information for persistent store.PSF

2Global information on the DIV persistent store.PSFDIV

3Global information on the Adabas persistent store.PSFADA

5Global information on the c-tree persistent store.PSFCTREE

4Global information on the B-Tree persistent store (no longer supported).PSFFILE

4Information on active publications.PUBLICATION

4Information on active publishers.PUBLISHER

7Information on Broker resource usage.RESOURCE

5Global information on EntireX Security.SECURITY

1Information on active servers.SERVER

1Information on active services.SERVICE

5Information on the SSL communicator.SSL

7Statistics on selected Broker resources.STATISTICS

4Information on subscribers.SUBSCRIBER

5Information on the TCP/IP communicator.TCP

4Information on active topics.TOPIC

7Information on all users of Broker regardless of the user type.USER

1Global information on all workers. No additional selection criteria are needed.
Other selection criteria fields are ignored.

WORKER

7Information on usage of worker tasks and dynamic worker management.WORKER_USAGE

Broker140

Broker Command and Information Services

IV
■ 8 Sample Security Exits for Broker Security .. 143
■ 9 Using Sample Security Exits for Broker Security .. 151

141

142

8 Sample Security Exits for Broker Security

■ Sample Security Exits as Alternative Security Solution .. 144
■ Major Advantages of EntireX Security .. 144
■ Lightweight USRSEC ... 145
■ Implementation of Sample Security Exits .. 146
■ Definition of Terms ... 147

143

Sample security exits are a user-written security solution for use only in exceptional processing
situations. Example: If your organization wants to access its own user-written security system
when operating EntireX Broker.

Note: SeeUsing Sample Security Exits for Broker Security, which describes implementation
issues and how to use sample security exits on the operating where Broker executes.

See also Security Solutions in EntireX.

Sample Security Exits as Alternative Security Solution

Software AG intends security supplied by EntireX Broker to be only an alternative to EntireX Se-
curity, which is Software AG's standard security solution and shipped with EntireX. SeeOverview
of EntireX Security in the EntireX Security documentation. Do notmix these two security solutions:
do not use a stub securedwith a sample exit against a kernel securedwith EntireX Security or vice
versa.

Most organizations that use Software AG's EntireX choose EntireX Security instead of sample se-
curity exits for EntireX Broker security. If your organization is deploying distributed computer
systems encompassing mainframe, UNIX and Windows environments, you will use EntireX Se-
curity instead of sample security exits for EntireX Broker security.

Major Advantages of EntireX Security

Comprehensive Security

EntireX Security provides comprehensive security for EntireX Broker:

■ user authentication
■ user authorization
■ application-data encryption
■ supplied in object code only

Broker144

Sample Security Exits for Broker Security

Protection of Application Systems

EntireX Security protects client and server and publish and subscribe application systems, and,
in most installations, EntireX Security operates without altering runtime applications.

One User=One Definition

EntireX Security allows your organization to control the use of all applications, including distributed
components, from a central point, enabling flexible control with a “one user = one definition” ap-
proach.

No User Exits to Write/Debug

There are no user exits towrite and debugwhen using EntireX Security. Compare Sample Security
Exits for Broker Security.

Standard Security Definitions

EntireX Security enables security definitions, based on class/name/service (client and server) or
topic (publish and subscribe), to be credentializedwithin your SAF Security system.All definitions
are managed using existing security procedures and software.

Protected Investment in SAF-based Security Repositories

Your investment in SAF-based security repositories is protected. This includes not only the security
systems RACF, CA ACF2 and CA Top Secret, but also the infrastructure to administer security
profiles.

Lightweight USRSEC

For compatibility with previous versions (API level 3 and below), a “lightweight” security exit is
supplied in loadmoduleUSRSEC in library EXX&vrs..LOAD for Broker andBroker Services under
z/OS. This “lightweight” version of USRSEC performs authentication only against RACF, CA
ACF2 andCATop Secret. It does not include the full functionality of the standard EntireX Security
installation of USRSEC (e.g. resource authorization, etc.). The “lightweight” version of USRSEC
does not require any security components, i.e. SECUEXIT, to be installed into the application (stub)
environment. If you are using ACI version 1 to 7 and you intend to use the “lightweight” version
of USRSEC, please ensure you do not have any security components installed into the application
(stub) environment.

Note: You cannot use the SNMP support provided by SystemManagementHub in conjunc-
tion with the “lightweight” version of USRSEC.

145Broker

Sample Security Exits for Broker Security

Implementation of Sample Security Exits

Sample security exits are a user-written security solution for use only in exceptional processing
situations. The diagram below depicts the data flowwhich users can implement in their own user
exits for Broker security. In this example, the Broker kernel is located on z/OS.

Note: To activate your user-written security exits, specify SECURITY=YES in the broker attribute
file.

Broker146

Sample Security Exits for Broker Security

Description of Steps in Data Flow

1. Broker stub calls security exit SECUEXIT, if present.

2. Security exit SECUEXIT encrypts the password and optionally the application data. See Encryp-
tion / Decryption. SECUEXIT accesses the ACI control block and the SEND/RECEIVE buffers.
SECUEXIT returns call to the broker stub.

3. Broker stub communicates the call to the broker kernel.

4. Broker kernel calls security exit USRSEC for each specific event type:
■ Create security context for user; authentication is usually performed in this event. SeeAuthen-
tication.

■ Destroy security context for user.
■ Perform authorization for server to register a service. See Authorization.
■ Perform authorization for client to send request.
■ Perform encryption of application data.
■ Perform decryption of application data.
■ Perform optional processing if a user acquires a new physical user ID. Re-authentication can
also be performed.

■ Perform optional processing if the value of a user's ACI security token changes. Re-authen-
tication can also be performed.

5. Security exit USRSEC passes call to broker kernel.

6. Broker kernel communicates the call to the broker stub of the partner application.

7. The broker stub calls SECUEXIT. SECUEXIT determines whether decryption is to be performed,
if correspondingly coded by user.

8. Security exit SECUEXIT returns call to broker stub.

Definition of Terms

■ Authentication
■ Authorization
■ Broker and Kernel
■ Broker Stub
■ Encryption / Decryption

147Broker

Sample Security Exits for Broker Security

■ Exits

Authentication

Authentication verifies whether the identity specified by the user ID in the ACI control block is
the actual identity. Authentication is usually performed by checking the user's ID and password
against a security system. The details of this check are specific to the specific operating system
and security system.

Authentication is not needed with every call. It is required when the user's security context is
created within the Broker kernel; it is also required, optionally, if the user's physical user ID or
ACI security token changes.

Authorization

Authorization can be performed when:

■ a client issues a request to a service in the case of the first SEND command in a conversation, or
of each SEND command if CONV-ID=NONE;

■ a server registers a service to the Broker;

Broker and Kernel

It is the location of the Broker kernel that determines the point at which the authentication and
authorization checks can be performed. Authentication and Authorization can be performed in
the kernel exit USRSEC. Encryption/decryption can be performed in the kernel exit USRSEC (as well
as in the stub exit SECUEXIT).

See List of Components per Platform under Platform Coverage in the EntireX Release Notes for where
Broker kernel is supported.

Broker Stub

In EntireX Broker, a module that implements the ACI (Advanced Communication Interface) is
commonly referred to as broker stub or stub. Stubs are installed on the client and the server side.

See Platform Coverage in the EntireX Release Notes for where Broker stubs are supported.

Broker148

Sample Security Exits for Broker Security

Encryption / Decryption

Encryption is the process bywhich the information or data being sent back and forth between two
computers (including the password submitted when logging on) is encoded, shielding it from
view by unauthorized persons. With EntireX, the algorithms for encryption/decryption must be
present in both the Broker stubs and in the Broker kernel.

In the case of user-written security exits, encryption/decryption must be implemented in:

■ the stub security exits (SECUEXIT or ETBUPRE / ETBUEVA);
■ the kernel security exit (USRSEC).

See Encryption of Application Data under Overview of EntireX Security in the EntireX Security docu-
mentation.

Exits

■ Kernel Exit USRSEC
USRSEC is the name of the security exit which is invoked if SECURITY=YES is specified in the
attribute file.

In the case of user-written security exits, this exit will include functionality for authentication,
authorization and encryption/decryption.

See Platform Coverage in the EntireX Release Notes for where Broker kernel is supported.
■ Stub Exit SECUEXIT
SECUEXIT is the stub security exit for usewith the Broker C-based stub. Thismodule is executed
during a Broker command if SECUEXIT is present in the path of execution.

In the case of user-written security exits, this exit will include functionality for encryption/de-
cryption.

■ Stub exit ETBUPRE /ETBUEVA
ETBUPRE / ETBUEVA are the stub security exits for use with the Broker Assembler stub. These
modules are executed during a Broker command if they are linked to the Assembler stub.

149Broker

Sample Security Exits for Broker Security

150

9 Using Sample Security Exits for Broker Security

■ Overview of Security Data Flow .. 152
■ Prerequisites for Running EntireX Broker in a Secure Environment .. 153
■ General Security Recommendations .. 153
■ Writing Security Exits .. 154
■ Security-Related Parameters ... 156
■ Programming Broker Stub Exits .. 158
■ Layout of Security Parameter Block ETB_SECPAR .. 161
■ Layouts of Type-dependent Security Parameter Blocks ... 162

151

This page describes implementation issues and how to use sample security exits in EntireX Broker.
It assumes you are familiar with EntireX Broker from both an administrative and an application
perspective, and with the ACI programming interface in particular. See Introduction to ACI-based
Programming.

Overview of Security Data Flow

The diagram shows a data flow for sample security exits, with Broker Kernel located, for example,
on z/OS. See also Description of Steps in Data Flow.

Broker152

Using Sample Security Exits for Broker Security

Prerequisites for Running EntireX Broker in a Secure Environment

To run EntireX Broker in a secure environment, the following prerequisites must be met:

■ The security system in the EntireX Broker kernel must be activated by setting SECURITY=YES in
the broker attribute file.

■ The security routines must be accessible to the Broker. The method you use to achieve this de-
pends on the operating system where your user-written USRSEC is implemented.

Note: EntireX Broker will not start if SECURITY=YES is specified but the security routines
cannot be activated.

General Security Recommendations

If you run a secure environment, we recommend you performing an explicit LOGON with the
AUTOLOGON=NOdefinition in the attribute file. All security violations are logged to the EntireX Broker
log file.

■ Implementing the Kernel Security Exit under z/OS
■ Implementing Security for Broker Stubs under z/OS
■ Implementing Security Exits for Broker Stubs on UNIX
■ Implementing Security Exits for Broker Stubs on Windows

Implementing the Kernel Security Exit under z/OS

To implement the kernel security exit under z/OS

1 Write the exits USRSEC. The code must always be reentrant and reusable.

2 The kernel security exit USRSEC is loaded automatically during startup of Broker. Use module
and entry name USRSEC for this exit. A security module sample source is delivered with the
ETB source library.

3 Under z/OS, link the exit as reentrant and reusable.

4 Ensure that the security exit is accessible in the Broker STEPLIB.

153Broker

Using Sample Security Exits for Broker Security

Implementing Security for Broker Stubs under z/OS

To implement security exits for Broker stubs under z/OS

1 Write the stub security exits ETBUPRE and ETBUEVA. The codemust always be reentrant, except
for batch, where the code must be reusable.

2 Link these exits ETBUPRE and ETBUEVA to the stub of the target application. The stub contains
weak externals for both entries.

Implementing Security Exits for Broker Stubs on UNIX

To implement security exits for Broker stubs under UNIX

1 Write your own usrsec.c and secuexit.c, based on the samples delivered with EntireX.

2 Build your own secuexit.s[o|l] and usrsec.s[o|l], using the provided makefiles. (A sample
makefile, makexa, is provided.)

3 Ensure that usrsec.s[o|l] ismade available to the Broker kernel at execution time. The attribute
file parameter SECURITY-PATHmust be used to specify the location of usrsec.s[o|l].

4 Ensure that secuexit.s[o|l] is made available to the application in the same directory as the
Broker stub.

Implementing Security Exits for Broker Stubs on Windows

To implement security exits for Broker stubs under Windows

1 Write your own usrsec.c and secuexit.c, based on the samples delivered with EntireX.

2 Build your own secuexit.dll and usrsec.dll, using the provided makefiles.

Writing Security Exits

This section describes how to write your own security exits. It describes the interfaces, indicates
what can be modified and what has to be done within an exit. It also provides some helpful tips.

This section covers the following topics:

■ Requirements

Broker154

Using Sample Security Exits for Broker Security

■ Error Checking for Incomplete Security Installation

Requirements

You must provide the following functions:

■ The Preparation exit etbupre() and the Evaluation exit etbueva() for the Broker stub. These
two functions are linked statically to the Broker stub routines.

■ The Kernel exit usrsec()which is loaded by the kernel. This exit is more generic than the other
two. It is called with the function that has been performed and a function-dependent Broker
ACI control block that provides all the necessary information. This function is loadeddynamically
by EntireX Broker during startup. One parameter of the kernel exit is the function that is per-
formed.

The functions map to the exit type is as follows:

Function to performFunctionExit Type

Checks authentication for the user.ETB_SEC_LOGONAuthentication exit

Release user-specific information if necessary.ETB_SEC_LOGOFF

Application call with different physical USER ID.ETB_SEC_NEWPUID

Application call with a different SECURITY TOKENETB_SEC_NEWST

Check whether user is allowed to use the addressed service.ETB_SEC_SENDAuthorization exit

Check whether the user is allowed to offer that service.ETB_SEC_REGISTER

Encrypt the given data.ETB_SEC_ENCRYPTEncryption exit

Decrypt the given data.ETB_SEC_DECRYPT

In the following text, “encryption” or “authentication” exit refers to the functions listed above.

Error Checking for Incomplete Security Installation

With ACI_VERSION=4 or above, the security configuration of the caller's stub is checked against the
security configuration of the broker kernel. The request will be rejected with the error message
00200379 - API: Inconsistent Security Installation, if security

■ is present in the stub and it is not present in the kernel;

or
■ is not present in the stub and it is present in the kernel.

Note: If you have written your own security - instead of using Security Solutions in EntireX
- and it is implemented only on the kernel, you will have to add a dummy security exit to
the stub.

155Broker

Using Sample Security Exits for Broker Security

Security-Related Parameters

The following security-related parameters are provided. These are fields in the Broker ACI Fields
in the ACI Programming documentation:

■ USER-ID
■ PASSWORD
■ SECURITY-TOKEN
■ CLIENT-UID
■ ERROR-CODE
■ ERROR-TEXT
■ KERNELSECURITY
■ ENCRYPTION-LEVEL

USER-ID

The USER ID is defined by the application. It is available in all ACI exits as well as in the kernel
exits, except the encryption and decryption exits. Theoretically the preparation exit can be used
to retrieve the login name by an operating system specific mechanism. This would allow a user
identification without the application being involved. See the description of the USER-ID field in
the Broker ACI control block.

PASSWORD

The PASSWORD is defined by the application. It is available in all ACI and kernel exits except the
encryption exit. The PASSWORD, if provided by the application in plain text, should be encrypted
in the Preparation exit before sending it across insecure network connections. If the PASSWORD is
needed in the application again, it must be decrypted after receipt in the Evaluation exit. The au-
thentication exit must ensure that the PASSWORD is properly decrypted if necessary before sending
it to an external security system.

The EntireX Broker provides minimal encryption of the PASSWORD field, that is, the field is not
transmitted in plain text. If your environment requires absolute security, however, you will need
to provide both Broker stub and EntireX Broker kernel exits to perform encryption and decryption.
See the description of the PASSWORD field in the Broker ACI control block.

Broker156

Using Sample Security Exits for Broker Security

SECURITY-TOKEN

The SECURITY TOKEN can be created by the application and sent to EntireX Broker. That allows for
a kind of credential algorithm. The security token is passed to all kernel exits and can therefore
contain security information which is also important for the authorization and encryption exits.
The SECURITY TOKEN can be altered in the authentication exit to provide a context token for that
application and that session. It is transmitted back to the application and can then be used in all
subsequent calls. For each subsequent call, the EntireX Broker checkswhether the SECURITY TOKEN
is identical to the one returned from the last call to the authentication exit, which could be the
ETB_SEC_LOGON, the ETB_SEC_NEWPUI or the ETB_SEC_NEWST function. After an ETB_SEC_LOGOFF
call, a subsequent call is always a ETB_SEC_LOGON call. See the description of the SECURITY-TOKEN
field in the Broker ACI control block.

CLIENT-UID

CLIENT-UID is returned to a server application after a RECEIVE and contains the user ID of the
sending client. This allows for further security checks (logging, separate checks, etc.). See the de-
scription of the CLIENT-UID field in the Broker ACI control block.

ERROR-CODE

All security-related ERROR CODEs start with the ERROR CLASS 0008. The following four digits in the
ERROR CODE can be assigned by any exit if a security violation occurs. These digits only reach the
application if the current operation is aborted by the security exit with a security violation, i.e. an
appropriate return code. See ERROR-CODE under Broker ACI Fields.

ERROR-TEXT

The security exits can also pass an error message back to the application. This error text must not
be longer than 40 bytes.

KERNELSECURITY

See KERNELSECURITY under Broker ACI Fields.

ENCRYPTION-LEVEL

See ENCRYPTION-LEVELunderBroker ACI Fields orEncryptionunderWritingApplications using EntireX
Security in the ACI Programming documentation.

157Broker

Using Sample Security Exits for Broker Security

Programming Broker Stub Exits

The exits in the stub have the following interface:

■ Preparation Exit
■ Evaluation Exit
■ Programming the Kernel Exit Routine

Preparation Exit

Synopsis

int etbupre (ETBCB *pEtbCb,
void *pSendBuf,
void *pReserved,
char *pErrText)

DescriptionDirectionFormatParameter

ETBCB's user_id andpassword are used to generate
the credential which will be saved in field
security_token for function LOGON.

I/OPointer to ETBCB
control block.

Address of ETBCB

Send buffer supplied by caller, only available for
function SEND, length of send buffer is member of
ETBCB.

I/Ovoid pointerAddress of send buffer

Must be NULL.Ivoid pointerReserved

The error text is an array of 40 characters containing
the error text that will be returned by the stub
routine.

Ochar pointerAddress of error text

Return value

0 (okay) or non-zero (error)

The real error codemust bewritten to the Broker control block as an 8-byte character array (without
trailing 0 byte!) . The error class 0008 (security / encryption error class) is reserved for all errors in
function etbupre. The error number is user-defined. Additionally, the error text can be returned
to the user in the error text array.

Broker158

Using Sample Security Exits for Broker Security

Required Actions in the Exit

If no data encryption is desired, no action is required.

Recommended Actions in the Exit

■ Generate a credential if function is LOGON and move it to the field security_token.
■ Encrypt the send buffer if function is SEND. The encryption process must not change the length
of the buffer.

The exit gets control for each function of ACI version 2 and above. The exit must exist.

Evaluation Exit

Synopsis

int etbueva (ETBCB *pEtbCb,
void *pRecBufEncr,
void *pReserved,
char *pErrText)

Parameters

DescriptionDirectionFormatParameter

ETBCB's security token is used for data decryption.I/OPointer to ETBCB
control block.

Address of ETBCB

Receive buffer provided by EntireX Broker.
Only available for functions RECEIVE and SEND
WAIT=x (implicit receive).
Length of receive buffer is member of ETBCB.

I/Ovoid pointerAddress of receive
buffer.

Must be NULL.Ivoid pointerReserved

The error text is an array of 40 characters
containing the error text which will be returned
by the stub routine.

Ochar pointerAddress of error text

159Broker

Using Sample Security Exits for Broker Security

Return Value

0 (okay) or non-zero (error)

The real error codemust bewritten to the Broker control block as an 8-byte character string (without
trailing 0 bytes!). The error class 0008 (security / encryption error class) is reserved for all errors
in function etbueva. The error number is user-defined.

In addition, the error text can be returned to the user.

Required Actions in the Exit

If no data decryption is wanted, no action is required.

Recommended Actions in the Exit

■ Decrypt the receive buffer if functions are RECEIVE or SENDwith WAIT. The decryption process
must not change the length of the buffer.

The exit gets control for each function of ACI Version 2 and above. The exit must exist.

Use of a Single Send/Receive Buffer

A single send/receive buffer is used to perform encryption in place. This means that encrypted
data is provided in the send buffer. After the completion of a send/nowait command, the application
should ignore the contents of the send buffer, i.e. the encrypted data.

Programming the Kernel Exit Routine

All authentication, authorization, encryption and decryption exits are combined within one exit
module named USRSEC. The various security checks are indicated by a type parameter in the CALL
interface. USRSEC is provided with EntireX Broker as the default security exit. It is invoked if SE-
CURITY=YES is set in the attribute file. Prior to EntireX, the USRSEC exit was available only with the
SAF Gateway security package.

The general syntax of this user exit is defined as follows:

Broker160

Using Sample Security Exits for Broker Security

Synopsis

long usrsec (ETB_SECPAR *pParSec,
void *pVarious,
char *pErrText,
char *pWorkArea,
long lWorkArea)

Parameters

DescriptionDirectionFormatParameter

Contains the security type flag.IPointer to structure
ETB_SECPAR

Address of security parameter
block

See control block structures
ETB_SECPAR_<type>.

Ivoid pointerAddress of type-dependent
security parameter block

The error text is an array of 40 characters
containing the error text which will be
returned to the user.

Ochar pointerAddress of error text

Volatile work area.Ochar pointerAddress of work area

Size of thework area in number of bytes.Ilong integer valueLength of work area

Return Value

0 (okay) or user-defined error number

Error class 0008 (security / encryption error class) and the error number will be returned to the
user. In addition, the error text can be returned to the user.

Layout of Security Parameter Block ETB_SECPAR

typedef struct _ETB_SECPAR
{
unsigned long vers; /* I: interface version number */

#define ETB_SEC_VERSION_1 (1) /* ETBCB version1 (no stub exits)*/
#define ETB_SEC_VERSION_2 (2) /* ETBCB version2 (stub exits) */

unsigned long type; /* I: security type */
#define ETB_SEC_LOGON (1) /* user authentication (LOGON) */
#define ETB_SEC_LOGOFF (2) /* destroy user env (LOGOFF) */
#define ETB_SEC_REGISTER (3) /* authorization for REGISTER */
#define ETB_SEC_SEND (4) /* authorization for SEND */
#define ETB_SEC_ENCRYPT (5) /* encrypt message (RECEIVE) */
#define ETB_SEC_DECRYPT (6) /* decrypt message (SEND) */

161Broker

Using Sample Security Exits for Broker Security

char id[3]; /* I:ID e.g. W01 for worker task 1 */
void *pNetAddr /* I: pointer to network address */

} ETB_SECPAR;

DescriptionDirectionParameter

The interface version number.Iversion

Unsigned long type.Itype

Identifier for the task.Ichar id

Pointer to the network address. A TCP/IP address contains 0001 in the first two bytes,
followed by the actual address in the next four bytes. If the pointer is 0000, there is no
address.

IpNetAddr

Layouts of Type-dependent Security Parameter Blocks

This section describes the following security parameter blocks:

■ DECRYPT
■ LOGOFF
■ LOGON
■ NEWST
■ REG
■ SEND

typedef struct _ETB_SECPAR_

/* decrypt message of sender */
{
unsigned char *pSecTok; /* I: Security Token */
unsigned char *pBufECry; /* I: Encrypted buffer */
unsigned char *pBufDCry; /* O: Decrypted buffer */
long *plBufECry; /* I: length of encrypted buffer*/
long *plBufDCry; /* I/O: length of decrypted buffer*/

} ETB_SECPAR_DECRYPT;

typedef struct _ETB_SECPAR_

/* encrypt message for receiver */
{
unsigned char *pSecTok; /* I: Security Token */
unsigned char *pBufDCry; /* I: Decrypted buffer */
unsigned char *pBufECry; /* O: Encrypted buffer */
long *plBufDCry; /* I: length of decrypted buffer*/

Broker162

Using Sample Security Exits for Broker Security

long *plBufECry; /* I/O: length of encrypted buffer*/
} ETB_SECPAR_ENCRYPT;

typedef struct _ETB_SECPAR_

/* destroy security environment */
{
char *pUid; /* I: UserID */
unsigned char *pSecTok; /* I: Security Token */
unsigned long *pnSecHndl; /* I: Security handle */
} ETB_SECPAR_LOGOFF;

typedef struct _ETB_SECPAR_

/* user authentication */
{
char *pUid; /* I: UserID */
unsigned char *pPasswd; /* I: Password (encoded) */
unsigned char *pNewPasswd; /* I: New Password (encoded) */
unsigned char *pSecTok; /* I/O: Security Token */
unsigned long *pnCode; /* I: Character set of user */
unsigned long *pnSecHndl; /* O: Security handle */
} ETB_SECPAR_LOGON;

typedef struct _ETB_SECPAR_

/* reauthentication due to new */
/* physical user ID */

{
char *pUid; /* I: UserID */
unsigned char *pPasswd; /* I: Password (encoded) */
unsigned char *pNewPasswd; /* I: New Password (encoded)
*/
unsigned char *pSecTokOld; /* I: Previously used security token */
unsigned char *pSecTokNew; /* I/O: New security token */
unsigned long *pnCode; /* I: Character set of user */
unsigned long *pnSecHndl; /* I/O: Security handle */
} ETB_SECPAR_LOGON;

typedef struct _ETB_SECPAR_

/* reauthentication due to new */
/* Sec. Tok. */

{
char *pUid; /* I: UserID */
unsigned char *pPasswd; /* I: Password (encoded) */
unsigned char *pNewPasswd; /* I: New Password (encoded) */
unsigned char *pSecTokOld; /* I: Previously used security token */
unsigned char *pSecTokNew; /* I/O: New security token */
unsigned long *pnCode; /* I: Character set of user */
unsigned long *pnSecHndl; /* I/O: Security handle */
} ETB_SECPAR_LOGON;

163Broker

Using Sample Security Exits for Broker Security

typedef struct _ETB_SECPAR_

/* REGISTER authorization */
{
char *pUid; /* I: UserID */
unsigned char *pSecTok; /* I: Security Token */
char *pSrvCls; /* I: Server Class */
char *pSrvName; /* I: Server Name */
char *pService; /* I: Service */
unsigned long *pnSecHndl; /* I: Security handle */

} ETB_SECPAR_REG;

typedef struct _ETB_SECPAR_

/* SEND authorization */
{
char *pUid; /* I: UserID */
unsigned char *pSecTok; /* I: Security Token */
char *pSrvCls; /* I: Server Class */
char *pSrvName; /* I: Server Name */
char *pService; /* I: Service */
unsigned long *pnSecHndl; /* I: Security handle */

} ETB_SECPAR_SEND;

Required/ Recommended Actions in the Exit (depending on Security Type)

NoteRecommended ActionRequired ActionSecurity Type

The size of the
buffer cannot

Encrypt receive data if needed.Copy decrypted to
encrypted buffer and set

ETB_SEC_ENCRYPT

be changed in
this exit.

the length of encrypted
buffer. This is necessary
because exit is called
whether the receive data
has to be encrypted or not.

The size of the
buffer cannot

Decrypt receive data if needed.Copy encrypted to
decrypted buffer and set

ETB_SEC_DECRYPT

be changed in
this exit.

the length of decrypted
buffer. This is necessary
because exit is called
irrespective of whether
send data is encrypted or
not.

Decrypt the password and check
combination of user ID and password

ETB_SEC_LOGON

against the security system. Generate a
context token according to the credentials
of the user and EntireX Broker. Create a

Broker164

Using Sample Security Exits for Broker Security

NoteRecommended ActionRequired ActionSecurity Type

security handle for a user session (e.g.
ACEE on z/OS).

Delete the security handle of the user
session.

NoneETB_SEC_LOGOFF

An application has changed the physical
user ID between two calls. If necessary, a
new security token can be created.

NoneETB_SEC_NEWPUID

For some reason, the security token of an
application has changed and no longer

NoneETB_SEC_NEWST

matches the original. The security token
should be recalculated and approved or
the application should be rejected.

Check whether user_id is authorized to
offer the requested SERVICE (check
security_token data if necessary).

NoneETB_SEC_REGISTER

Check whether user_id is authorized to
offer the requested SERVICE (check
security_token data if necessary).

NoneETB_SEC_SEND

165Broker

Using Sample Security Exits for Broker Security

166

V
■ 10 EntireX Broker Tutorial ... 169
■ 11 Examples for EntireX Broker Tutorial ... 185

167

168

10 EntireX Broker Tutorial

■ Introduction to Tutorial .. 170
■ Calling the Tutorial Menu ... 170
■ Global Defaults for the Tutorial ... 171
■ Tutorial Commands .. 172
■ Using the Tutorial Help ... 173
■ Using the Example Programs ... 174
■ The Tutorial Trace Facility ... 181
■ ACI Test Tool: Single Broker Request .. 183

169

EntireX Broker is delivered with a Natural tutorial. This tutorial is written in the programming
language Natural but is useful even if you are using another programming language. Natural is
required for installation of the tutorial.

Introduction to Tutorial

The Natural tutorial shows you how to actively use EntireX Broker by

■ allowing you to specify values for the fields in the ACI, which allows you to issue all types of
requests and test use of EntireX Broker. See ACI Test Tool: Single Broker Request.

■ allowing you to measure throughput and response time of EntireX Broker. See Stress Mode.
■ offering several example client and appropriate server programs for programming language
Natural; see Examples for EntireX Broker Tutorial. All programs can be displayed, edited and
executed. Help texts are available for each program to explain the purpose of the program, in-
dicate typical usage, and illustrate the logical program flow.

Under UNIX andWindows, use the Natural SYSOBJH utility to install the EntireX Broker Tutorial
(the Natural-based tutorial application SYSETB that is provided with EntireX). See Object Handler
in the Natural Tools and Utilities documentation for more information.

Calling the Tutorial Menu

To activate the online tutorial, log on to library SYSETB in your Natural environment and issue the
MENU command. This displays the online tutorial menu, which consists of a list of the client and
server example programs:

18:54:34 *** ENTIREX BROKER TUTORIAL *** 07-11-15
VERSION 8.0

Client Server
-------- -------- NON CONVERSATIONAL EXAMPLES ------------------------

__ EXCL01CP EXCL01SP Single Requests without Reply
__ EXCL03CP EXCL03SP Single Requests with Reply

-------- -------- Conversational Examples ----------------------------
__ EXCN01CP EXCN01SP Long running Service - Non-blocked Client
__ EXCN02CP EXCN02SP Transfer messages from Server to Client
__ EXCN04CP EXCN04SP Transfer messages from Client to Server
__ EXCN05CP EXCN05SP Server with multiple parallel Conversations

-------- -------- Special Features -----------------------------------
__ EXDM01CP EXDM01SP Send messages with HOLD - delayed delivery
__ EXDM02CP EXDM02SP Remove Service while Conversations exist
__ EXDM03CP EXDM03SP Server for multiple Services

-------- -------- Customized Client/Server computing -----------------

Broker170

EntireX Broker Tutorial

__ EXRQ01-P EXRQ01-P Single Broker Requests
__ NATEX1CP NATEX1SP Model to write Client/Server programs API Version 1
__ NATEX2CP NATEX2SP Model to write Client/Server programs API Version>1

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP GLOB EXIT UP DOWN

The example programs are grouped according to the following types:

■ Non-conversational Examples
■ Conversational Examples
■ Special Features
■ Getting Started

Meaning of the information in the columns:

SourceColumn

Name of the client programClient

Name of the server program followed by a description of the example.Server

Function keys available from the main menu:

DescriptionFunctionPF Key

A general help is displayed.HELPPF9

Prompts for global defaults to be used for the current session.GLOBPF2

Leave the online tutorial.EXITPF3

Scroll up.UPPF7

Scroll down.DOWNPF8

Global Defaults for the Tutorial

The following pop-up window is displayed when you press PF2 from the tutorial main menu:

18:54:34 *** ENTIREX BROKER TUTORIAL *** 07-11-15
VERSION 8.0

Clie +--+
----- ! Please modify defaults or press ENTER to continue ... ! ---

__ EXCL0 ! !
__ EXCL0 ! Broker ID ETBxxx !

---- ! Server Class .. ETB ! ---
__ EXCN0 ! Server Name ... Tutorial !
__ EXCN0 ! Broker Stub ... BROKER !

171Broker

EntireX Broker Tutorial

__ EXCN0 ! User ID ILGWBU !
__ EXCN0 ! Token !

----- ! Node Node: MVS/ESA Name put into send data ! ---
__ EXDM0 ! Msg Length 64 Length of send/receive data !
__ EXDM0 ! Wait Time 45S Time blocked SEND/RECEIVE ! ---
__ EXDM0 ! SDPA Version .. 5 1, 2, 3, 4, 5, 6. !

----- ! Locale String.. !
__ EXRQ0 ! Arch Byte (rarely used) !
__ NATEX ! Force Logon ... ' ' or 'N' or 'Y' !
__ NATEX ! Encrypt Level.. ' ' or '1' or '2' !

+--+

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP GLOB EXIT UP DOWN

The following global default settings can be modified and will be valid for the current session:

MeaningDefault

ID of the Broker in use.Broker ID

Server class in use for every example.Server Class

Server name in use for every example.Server Name

User ID in use when running an example.User ID

Token in use when running an example.Token

Node name put into send data.Node

Message length used for the SEND-LENGTH and RECEIVE-LENGTH.Msg Length

Timeout value used for blocked SEND and RECEIVE calls.Wait Time

Version of Broker control block (formerly SDPA) to select usage of old or newEntireX Broker
Interface layout.

SDPA version

Tutorial Commands

From the tutorial menu you can execute, list and edit example programs. You can also display
several help texts on each program.

You can perform a function by entering the appropriate line command in the input field preceding
the client programname. To display a list of available line commands, enter an asterisk in the input
field preceding the client program name.

The table below lists the available line commands:

Broker172

EntireX Broker Tutorial

MeaningCommand

Execute client program.XC

Execute server program.XS

Shut down server.SH

Help for the example as a whole.H

Help for client program.HC

Help for server program.HS

List (display) client program.LC

List (display) server program.LS

Edit client program.EC

Edit server program.ES

The examples are also documented in Examples for EntireX Broker Tutorial.

Using the Tutorial Help

The tutorial help facility provides help texts for each client and server example program. To display
the online help text, issue the appropriate line command, H, HC or HS, for the selected example on
the online tutorial menu.

The following screen shows the online help for the server of the example “Single Requestswithout
Reply” (line command HS):

19:08:25 *** ENTIREX BROKER Tutorial *** 03-05-15
Server: Single Requests without Reply

Descr. : This server establishes a service which is able to collect
simple messages from clients that require no reply.
A REGISTER is necessary to inform the Broker of the availability
of the service. The DEREGISTER, issued as the last action, informs
the Broker of the unavailability of the service served by this
server.
The server wants to wait for a client message and therefore uses
a blocked RECEIVE, that is, a RECEIVE with W=nS is issued to the
Broker.

Coding : LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for message
until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

173Broker

EntireX Broker Tutorial

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP EXIT Expml Cln Srv

The following functions are available from the help screen. You can execute a function by pressing
the appropriate PF key:

DescriptionFunctionPF Key

Display general help.HELPPF1

Leave the help screen.EXITPF3

Display general help screen specific to example.EXMPLPF9

Display client help screen specific to example.CLNPF10

Display server help screen specific to example.SRVPF11

Note: You can use PF10 and PF11 to toggle between the client and server help screens.

Using the Example Programs

Use of the example “client/server programs” is the same for each example. You need to start two
sessions in order to “play” with EntireX Broker, one by executing the server program and the
other by executing the client program.

As the first session, start the server by entering XS in the input field preceding the program name,
for example in the line for Single Requests without Reply. This displays the following startup
parameter pop-up window:

9:11:38 *** ENTIREX BROKER TUTORIAL *** 07-11-15
VERSION 8.0

Client Server
-------- -------- NON CONVERSATIONAL EXAMPLES ------------------------

xs EXCL01CP +---+
__ EXCL03CP ! Please enter values or press ENTER to continue ... !

-------- ! ! ----
__ EXCN01CP ! Mode 1 1=Step 2=Stress 3=Silent !
__ EXCN02CP ! !
__ EXCN04CP ! Server Class . ETB !
__ EXCN05CP ! Server Name .. Tutorial !

-------- ! Service NcNoReply ! ----
__ EXDM01CP ! !
__ EXDM02CP ! User ID ILGWBU !
__ EXDM03CP ! Token !

-------- ! ! ----
__ EXRQ01-P ! Msg Length ... 64 !
__ NATEX1CP ! ! n 1
__ NATEX2CP +---+ n>1

Broker174

EntireX Broker Tutorial

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP GLOB EXIT UP DOWN

The fields in this window are listed in logical groups. The first group controls the execution of the
example and contains the mode parameter; for clients, end criteria to stop the execution is also
displayed. Validmode parameters are StepMode, StressMode, SilentMode. The other fields show
some global defaults which you can overwrite for this particular client/server run. Note, however,
that the Broker ID andWait Time values can only be modified in the Global Defaults window (see
above).

When using an example for the first time, you are recommended to select Step mode.

Step Mode

In this mode, the example is executed step by step. This means that every broker call is displayed
on your screen and must be explicitly issued by pressing PF5. Upon return, the response from the
broker is displayed in the Errtxt field together with the next meaningful broker call, ready for ex-
ecution. You can always view previous Broker calls using the trace facility (PF4), which provides
“before and after” images of every call issued to the broker.

If you select Step Mode and press ENTER, a screen similar to the following is displayed for every
example:

Press PF5 to issue Request ...
19:13:53 *** ENTIREX BROKER TUTORIAL *** 03-05-15

Server: Single Requests without Reply

Errtxt
Send Data .. __
Rcve Data ..

Type/Vers .. 1 / 5
Broker ID .. ETBxxx Send Len 64
Function ..* LOGON___________ Rcve Len 64
Option* ________________ Errtx Len 40
Wait* ________ Rtrn Len 0

Class ETB_____________ User ID ILGWBU__________________________
Name Tutorial________ Token ________________________________
Service NcNoReply_______ Password ________________________________
Conv ID ...* ________________ New Password . ________________________________
User Data .. ________________ Sec Token ________________________________
Conv Stat .. Environment .. ________________________________

Client UID ...

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Strss Exit Trace Exec SBuff RBuff

175Broker

EntireX Broker Tutorial

The following functions are available from this screen. You can execute a function by pressing the
appropriate PF key:

DescriptionFunctionPF Key

Display the help screen on the example program. See Using the Tutorial Help.HELPPF1

Change execution mode to Stress.STRSSPF2

Leave sample program.EXITPF3

Invoke the The Tutorial Trace Facility.TRACEPF4

Issue broker call.EXECPF5

See Display/Modify Send Buffer.SBUFFPF10

See Display/Reset Receive Buffer.RBUFFPF11

Stress Mode

In this mode, the example is executed without further user interaction. Every Broker call issued
is also displayed on the screen to allow you to see the activity of the client or server. Execution
terminates in different ways:

■ For clients:
Further end criteria (such as number of messages and number of conversations) are supplied
in the startup parameter window of the client example. When the specified values are reached,
processing stops.

■ For servers:
Servers run until they are shut down by a special shut down message sent to the server (SH
command from the tutorial main menu).

When execution in Stress mode is stopped, the following summary of client/server activity is dis-
played:

Waiting for Request ...
20:54:37 *** ENTIREX BROKER TUTORIAL *** 03-05-15

Server: Single Requests without Reply
+--+
! !
! 00200216 API: Invalid BROKER-ID !
! OP System .. MVS Load Count Max !
! TP System .. CICS ------------ -------- -------- !
! Speed/Mode . 191.850 / 2 Messages ... !
! Msg Length . 64 Conv !
! ETB Calls .. 1 Parallel CID !
! !
! Time/Call Count Ave Min Max Time elapsed Absolute Relative !
! ------------ ------ ------- ------- ------- ------------ -------- -------- !
! Send non-blk Total 0.0 100 % !
! Send blocked Executing .. 0.0 83.5 % !

Broker176

EntireX Broker Tutorial

! Rcve non-blk Waiting !
! Rcve blocked Transport . 0.0 16.4 % !
! EOC Partner ... 0.0 % !
! Undo !
! Register ... !
! Deregister . !
+---+

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Strss Exit Trace Exec Buff RBuff

Meaning of the fields:

MeaningField

System Underlying operating system.OP

System Underlying transaction monitor.TP

Indication of the performance of the environment, relative to the corresponding
value of other environments.

Speed

Execution mode of the example.Mode

Length of messages sent/received.Msg

Number of calls issued to the broker.ETB

Load

Number of messages sent/received.Messages/Count

Number of messages used as criteria to stop execution.Messages/Max

Number of conversations conducted.Conv/Count

Number of conversations used as criteria to stop execution.Conv/Max

Highest number of parallel conversations reached.Parallel CID/Count

Maximum number of parallel conversations allowed.Parallel CID/Max

Time/Call

Number of non-blocked SEND calls issued.Send non-blk/Count

Average elapsed time for a non-blocked SEND call.Send non-blk/Ave

Shortest elapsed time for a non-blocked SEND call.Send non-blk/Min

Longest elapsed time for a non-blocked SEND call.Send non-blk/Max

Same as above for blocked SEND calls.Send blocked

Same as above for non-blocked RECEIVE calls.Rcve non-blk

Same as above for blocked RECEIVE calls.Rcve blocked

Same as above for EOC calls.EOC

Same as above for UNDO calls.Undo

Same as above for REGISTER calls.Register

Same as above for DEREGISTER calls.Deregister

Time elapsed

177Broker

EntireX Broker Tutorial

MeaningField

Elapsed time in seconds between start and end for the run.Total/Absolute

Percentage of time between start and end for the run.Total/Relative

Elapsed time in seconds when example is executing.Executing/Absolute

Percentage of time when example is executing.Executing/Relative

Time needed for transport plus execution time required by the partner.Waiting

Elapsed time in seconds used for transport services. Transport means EntireX
Broker and all other media involved such as SVCs, link routines, Entire Net-work,
TCP/IC.

Transport/Absolute

Percentage of time used for transport services.Transport/Relative

Elapsed time in seconds needed by the partner to execute the call. This is relevant
only to blocked SEND calls, as this is the only call involving a partner.

Partner/Absolute

Percentage of time needed by the partner to execute the call. This is relevant only
to blocked SEND calls, as this is the only call involving a partner.

Partner/Relative

Note:
Total/Relative=(Executing/Relative)+(Transport/Relative)+Partner/Relative=100%

The waiting period of the different call types consists of the following times:

Blocked RECEIVE

For blocked RECEIVEs, the elapsed time is calculated from the following:

1. The time when the RECEIVE call was routed from the server to the broker.

2. A time of no activity during which there was no client request to be processed. This value may
be high.

3. The time when an incoming client request was routed from the broker to the server.

Broker178

EntireX Broker Tutorial

Blocked SEND

For blocked SENDs, the elapsed time is calculated from the following:

1. The time when the SEND call was routed from the client to the broker.

2. A time of no activity during which there was no server ready to process the request. This value
may be high.

3. The time when the client request was routed from the broker to the server.

4. The time when the request was processed by the server.

5. The time when the response was routed from the server to the broker.

6. The time when the answer was routed from the broker back to the client.

All Other EntireX Broker Calls

For all other calls to the broker, the elapsed time is calculated from the following:

1. The time when the call was routed from the participant to the broker.

2. The time when the call was processed by the broker.

3. The time when the call was routed from the broker back to the participant.

179Broker

EntireX Broker Tutorial

Silent Mode

In this mode, the same applies as for Stress mode, except that nomap I/Os are performed between
broker calls. It is therefore not possible to view activities while the client and server example is
running.

Broker180

EntireX Broker Tutorial

The Tutorial Trace Facility

The trace facility is activated by pressing the appropriate PF key after starting an example program.
With the trace option on, “before and after” images of the last ten requests issued to the broker
are made visible. When the trace option is selected, the most recent request is always displayed:

Use PF7 / PF8 to scroll to older / more recent requests. Scroll right with PF11 to display a second
screen page for every request.

21:00:07 *** ENTIREX BROKER TUTORIAL *** 03-05-15
------------ Image after call --------------- Image before call - 0 First
Type/Vers .. 1 / 5 1 / 5
Errtext 00000000 Successful response
------------ -------------------------------- --------------------------------
Broker ID .. ETB233 ETB233
Class ETB ETB
Name Tutorial Tutorial
Service NcNoReply NcNoReply
Fct LOGON LOGON
Option
Wait
Conv ID
Conv Status.
User Data ..
Client UID .
------------ -------------------------------- --------------------------------
Send Data .. 0000000000326891781
Rcve Data ..
------------ -------------------------------- --------------------------------

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Up Down Left Right

The following functions are available from this screen You can execute a function by pressing the
appropriate PF key:

181Broker

EntireX Broker Tutorial

DescriptionFunctionPF Key

Display a help screen on the example program.HELPPF1

Leave trace.EXITPF3

Scroll to older requests.UPPF7

Scroll to more recent requests.DOWNPF8

Scroll to first screen page.LEFTPF10

Scroll to second screen page.RIGHTPF11

Display/Modify Send Buffer

Selecting this option by pressing PF10 after starting the example from the tutorial menu displays
the send buffer contents in hexadecimal and character format:

21:01:28 *** ENTIREX BROKER TUTORIAL *** 03-05-15
Display/Modify Send Buffer

00016 0000000000081804 F0F0F0F0F0F0F0F0F0F0F0F8F1F8F0F4 Send Len .. 64
00032 070_____________ F0F7F040404040404040404040404040
00048 ________________ 40404040404040404040404040404040
00064 ________________ 40404040404040404040404040404040
00080 ________________ 40404040404040404040404040404040
00096 ________________ 40404040404040404040404040404040
00112 ________________ 40404040404040404040404040404040
00128 ________________ 40404040404040404040404040404040
00144 ________________ 40404040404040404040404040404040
00160 ________________ 40404040404040404040404040404040
00176 ________________ 40404040404040404040404040404040
00192 ________________ 40404040404040404040404040404040
00208 ________________ 40404040404040404040404040404040
00224 ________________ 40404040404040404040404040404040
00240 ________________ 40404040404040404040404040404040
00256 ________________ 40404040404040404040404040404040
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Top Up Down Bot Posit Reset

Use PF6 to PF9 to scroll up or down as needed. Positioning to a specific offset is possible by pressing
PF10. You can overwrite the send buffer contents in the character-oriented column. The send buffer
is cleared with PF12.

Meaning of the information in the columns from left to right:

Broker182

EntireX Broker Tutorial

MeaningColumn

Send buffer offset decimal.1

Send buffer contents displayed in character format.2

Send buffer contents displayed in hexadecimal format.3

The following functions are available from this screen. You can execute a function by pressing the
appropriate PF key:

DescriptionFunctionPF Key

Display a help screen on the example program.HELPPF1

Leave send buffer display.EXITPF3

Position to first page.TOPPF6

Scroll one up page.UPPF7

Scroll down one page.DOWNPF8

Position to last page.BOTPF9

Position to a specified offset in the send buffer.POSITPF10

Set the send buffer to low values.RESETPF12

Display/Reset Receive Buffer

Selecting this option by pressing PF11 after starting the example from the tutorial menu displays
the receive buffer contents in hexadecimal and character format in the same way as for the send
buffer. See See Display/Modify Send Buffer.

ACI Test Tool: Single Broker Request

This screen is an ACI test tool. An interface is provided which allows you to fill the broker ACI
yourself and therefore issue all types of ACI requests in any sequence. You can use it

■ for test purposes of EntireX Broker;
■ for studying EntireX Broker functions and functionality;
■ as counterpart of any client or server written in any programming language.

If you execute this program, (line command XC or XS), the user interface presents the broker ACI
directly, which you can fill:

183Broker

EntireX Broker Tutorial

Press PF5 to issue Request ...
19:46:24 *** ENTIREX BROKER TUTORIAL *** 03-05-15

: Single Broker Requests

Errtxt
Send Data .. __
Rcve Data ..

Type/Vers .. 1 / 5
Broker ID .. ETBxxx Send Len 0
Function ..* ________________ Rcve Len 0
Option* ________________ Errtx Len 40
Wait* ________ Rtrn Len 0

Class ETB_____________ User ID ILGWBU__________________________
Name Tutorial________ Token ________________________________
Service Request_________ Password ________________________________
Conv ID ...* ________________ New Password . ________________________________
User Data .. ________________ Sec Token ________________________________
Conv Stat .. Environment .. ________________________________
Client UID ...

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Trace Exec Reg Dreg Send Rcve SBuff RBuff Reset

Press PF6 to PF9 to assign default values to the broker ACI for the selected function. A field help is
available for fields marked with an asterisk (mark the field with the cursor and press PF1).

To issue a request to the broker, press PF5.

The following functions are available from this screen. You can execute a function by pressing the
appropriate PF key:

DescriptionFunctionPF Key

Display a help screen on this example program. If you press PF1with the cursor on a field
marked with an asterisk (*), a help window for the field is displayed.

HELPPF1

Leave the program.EXITPF3

Invoke tracing of requests. See The Tutorial Trace Facility.TRACEPF4

Route a request to the broker.EXECPF5

Assign defaults for REGISTER function to the ACI.REGPF6

Assign defaults for DEREGISTER function to the ACI.DREGPF7

Assign defaults for SEND function to the ACI.SENDPF8

Assign defaults for RECEIVE function to the ACI.RCVEPF9

See Display/Modify Send BufferSBUFFPF10

See Display/Reset Receive Buffer:RBUFFPF11

Set the ACI to low values.RESETPF12

Broker184

EntireX Broker Tutorial

11 Examples for EntireX Broker Tutorial

■ Non-conversational Examples .. 186
■ Conversational Examples .. 188
■ Special Features ... 194
■ Getting Started .. 198
■ Attach Manager Interface .. 201
■ Non-blocked Server ... 201

185

This chapter documents the examples provided in theOnline Tutorial for EntireX Broker. The purpose
of each example is outlined, the objective of the client and server parts of the example is explained,
and the logical program flow is illustrated. This should help you implement similar functionality
using any of the supported programming languages. TheOnline Tutorial containsNatural example
code to demonstrate these examples.

Non-conversational Examples

■ Example 1: Single Request without Reply
■ Example 2: Single Request with Reply

Example 1: Single Request without Reply

This example shows a client sending simple messages that do not require a reply from a server,
for example feeding statistical performance data into a network-wide performancemonitor. Since
no reply is expected, the client does not have to wait for an answer and therefore issues a non-
blocked SEND call to the broker. The established communication is non-conversational.

Such a client could be used as a trigger for a netmanagement server from all servers in the network.

Client

The client issues simplemessages to a serverwithout expecting a reply. Because no reply is required
(the server will not return any response), the client issues a SENDwithout wait (W=NO). This type
of call is called non-blocked, and control is returned to the caller immediately. The client specifies
non-conversational communication using "NONE" in the CONV-ID field of the ACI control block.

Server

The server establishes a service which is able to collect simple messages from clients that do not
require a reply. A REGISTER is necessary to inform the Broker of the availability of the service. The
DEREGISTER, issued as the last action, informs the Broker of the unavailability of the service served
by this server.

The server wants to wait for a client message and therefore uses a blocked RECEIVE - that is, a
RECEIVEwith W=nS is issued to the Broker.

Broker186

Examples for EntireX Broker Tutorial

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=NO,CID=NONE ------> forward message to server
until ...
LOGOFF -----> logoff from Broker

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for message
until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

Example 2: Single Request with Reply

This example shows a client sending requests that require a reply from a server, for example a
database access. Traditional remote procedure calls (RPCs) are also referred in this way. Since a
reply is expected, the client uses a blocked SEND to issue the request to the server and wait for the
reply. This is the equivalent of an implicit receive. The established communication is non-conver-
sational.

Client

The client issues requests and expects a reply from the server. Because a reply is required and no
conversation is built, a blocked SEND (W=nS) must be used. If the wait time elapses before the
reply is received, there is no chance (in non-conversational mode) of getting the reply. However,
you can retrieve the reply later in conversational mode by issuing a subsequent RECEIVE.

Server

The server establishes a service that is able to receive requests and return a reply to the client. Al-
though the communication is non-conversational, the server gets a conversation ID with the in-
coming request. This ID must be retrieved and used when sending back the reply to the client.

The servermust issue the RECEIVE call with CID=NEW in order to prevent unnecessary “Conversation
ID timeout” messages.

187Broker

Examples for EntireX Broker Tutorial

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=nS,CID=NONE ------> send and wait for reply
until ...
LOGOFF -----> logoff from Broker
__

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for request
SEND,W=NO,CID=1234 ------> reply to client

until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

Conversational Examples

■ Example 3: Long Running Service - Non-blocked Client
■ Example 4: Transfer Messages from Server to Client
■ Example 5: Transfer Messages from Client to Server
■ Example 6: Server with Multiple Parallel Conversations

Example 3: Long Running Service - Non-blocked Client

This example shows a client dealing with a long-running service. The server process is initiated
with a non-blocked SEND request. Later on, the client checks the processing status with a non-
blocked RECEIVE request. However, the client retains control in all broker calls and is never blocked.
The established communication is conversational. This example applies to any background pro-
cessing in which the client should retain control.

Client

The client issues a non-blocked SEND to initiate a conversation with the desired service. With the
subsequent non-blocked RECEIVE requests, the process is checked to see if it is still running or has
finished.

Broker188

Examples for EntireX Broker Tutorial

Server

The server provides a servicewhich takes some time to finish. It demonstrates a non-blocked client
example. The long running processing is simulated by a wait of 30 seconds done with a blocked
RECEIVE to a dummy WAIT service.

189Broker

Examples for EntireX Broker Tutorial

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=NO,CID=NEW ------> initiate process/conversation
repeat

RECEIVE,W=NO,CID=1234 ------> check for process status
decide on ERROR-CLASS

VALUE 0 successful response - retrieve reply
VALUE 3 processing ended
VALUE 74 wait some time and retry

until ...
until ...
LOGOFF ----> logoff from Broker
__

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for new conversation
wait 30 seconds - simulate long running processing
SEND,OP=EOC,W=NO,CID=1234 -----> reply and EOC

until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

Example 4: Transfer Messages from Server to Client

This example shows a client retrieving a large amount of data from a server within a conversation,
for example a GET <file> command of a file transfer system. The transfer of messages/data to the
client is done by the server with non-blocked SENDs. This is important because the server canwork
independently from the client, that is, forward the data/messages to the client and is then quickly
free to process the next conversation. The established communication is conversational.

Client

The client receives a large amount of data/messages from a server. The SEND initiates a conversation
with the desired service. Following the RECEIVE, the client retrieves data/messages from the con-
nected server until the conversation is ended by the server.

Broker190

Examples for EntireX Broker Tutorial

Server

The server is able to send a large amount of data/messages to the client. The data/messages are
transferred with non-blocked (W=NO) SENDs. The last transfer terminates the conversation with a
non-blocked SEND and option EOC.

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=nS,CID=NEW ------> initiate conversation
repeat

RECEIVE,W=nS,CID=1234 ------> receive data/message
decide on ERROR-CLASS

VALUE 0 successful response
VALUE 3 conversation ended

until ...
until ...
LOGOFF -----> logoff from Broker

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for new conversation
SEND,W=NO,CID=1234 ------> acknowledge conversation
repeat

SEND,W=NO,CID=1234 ------> transfer data/message
until end of data
SEND,OP=EOC,W=NO,CID=1234 -----> last data/message and EOC

until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

Example 5: Transfer Messages from Client to Server

This example shows a client transferring a large amount of data to a server using conversational
communication, for example, a PUT <file> command of a file transfer system. Once the conver-
sation is established, the server depends on the client's activity, because the client always sends
the messages/data and finishes the conversation, thus tying the server to one conversation for a
long time. Thismight in some circumstances be unacceptable. The situation can be improvedwhen
multiple servers for this service are started simultaneously.

191Broker

Examples for EntireX Broker Tutorial

Client

The client transfers a large amount of data/messages to the server. The first blocked SEND initiates
a conversationwith the server. The server acknowledges the conversationwith a reply. Subsequent
non-blocked SENDs then transfer the data/messages to the server. The last transfer terminates the
conversation with a non-blocked SEND and option EOC.

Server

The server retrieves a large amount of data from the client. The server depends on the client at
the second RECEIVE for the data/messages, because the call is blocked.

Coding

Client
LOGON -----> logon to Broker
repeat

SEND,W=nS,CID=NEW ------> initiate conversation
repeat

SEND,W=NO,CID=1234 ------> transfer data/message
until ...
SEND,OP=EOC,W=NO,CID=1234 ------> last data/message and EOC

until ...
LOGOFF ----> logoff from Broker
__

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for new conversation
SEND,W=NO,CID=1234 ------> acknowledge conversation
repeat

RECEIVE,W=nS,CID=1234 ------> receive data/message
until ...

until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

Broker192

Examples for EntireX Broker Tutorial

Example 6: Server with Multiple Parallel Conversations

This example shows a server which is able to process multiple conversations in parallel. To build
such a server, the states of active conversations must be maintained in order to know where pro-
cessing continues when the next request/message for the conversation is retrieved. Be aware that
this can lead to complicated programs (multiplexing servers in environments where it is not
feasible to have one server process per client).

A simpler andmore convenientway to build a server environmentwhich is able to processmultiple
conversations is to start replicates of the server. However, multiplexing serversmay be appropriate
in environments with restricted resources (for example, limited number of tasks).

The established communication is conversational.

Client

This client is used to demonstrate a server which is able to process multiple conversations in par-
allel. The first blocked SEND initiates the conversation. The server always acknowledges the con-
versation with a reply to the client. With the subsequent calls, requests/replies are transferred
within the established conversation. The conversation is terminated by issuing an EOC.

Server

The server processesmultiple conversations in parallel. At the RECEIVEwith CID=ANY, client requests
are retrieved, which belong either to existing or new conversations. All known conversations are
stored in an array. When conversations finish, these entries are freed. When the last entry is used,
CID=OLD is issued, preventing the retrieval of new conversations.

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=nS,CID=NEW ------> initiate conversation
repeat

SEND,W=nS,CID=1234 ------> ongoing conversation
until ...
EOC,CID=1234 ------> end of conversation

until ...
LOGOFF -----> logoff from Broker

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=ANY/OLD ------> OLD if max parallel reached
decide on ERROR-CLASS

VALUE 0 successful response

193Broker

Examples for EntireX Broker Tutorial

SEND,W=NO,CID=1234 ------> new or ongoing conversation
VALUE 3 conversation ended

until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

Special Features

■ Example 7: Send Messages with HOLD - Delayed Delivery
■ Example 8: Remove Service while Conversations Exist
■ Example 9: Server for Multiple Services

Example 7: Send Messages with HOLD - Delayed Delivery

This example demonstrates the HOLD facility of EntireX Broker. Data/messages are set in hold by
the SENDwith the option HOLD. This prevents the partner from retrieving the data/messages until
a SENDwithout the HOLD option is issued. Held data/messages are always under control of the
sender until they are released.With the function UNDO, the sender can remove held data/messages.

The HOLD option is useful if a packet of data has to be delivered that does not fit in one request.
Either the whole request packet has to be shipped, or nothing (minimum transaction support).
The established communication is conversational. To set data/messages in hold only makes sense
in conversational communications.

Client

This client demonstrates the hold mechanism used by the server. The data/messages are set in
hold by the server and releasedwith the last data/message sent. The client does not recognize this.

Server

The server sends data using the HOLD facility. Data is set in hold with SEND and option HOLD.

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=nS,CID=NEW ------> initiate conversation
repeat

RECEIVE,W=nS,CID=1234 ------> receive data/messages
decide on ERROR-CLASS

VALUE 0 successful response
VALUE 3 conversation ended

until ...

Broker194

Examples for EntireX Broker Tutorial

until ...
LOGOFF ------> logoff from Broker

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for new conversation
SEND,W=NO,CID=1234 ------> acknowledge conversation
repeat

SEND,OP=HOLD,W=NO,CID=1234 ------> set data in hold
until ...
if error

UNDO ------> remove accumulated data
endif
SEND,OP=EOC,W=NO,CID=1234 -----> release data in hold

until ...
DEREGISTER ----> deregister service
LOGOFF ------> logoff from Broker

Example 8: Remove Service while Conversations Exist

This example demonstrates a server that deregisters while conversations still exist. The conversa-
tions continue.With the option QUIESCEused on the DEREGISTER function, servers are able to remove
their services in a smooth way. Established conversations are allowed to continue until ended
with EOC by any partner. Thismechanism is needed to shut down a serverwithout aborting existing
conversations.

New conversations are not accepted for servers that have removed their services and will be con-
nected by the broker to other servers if available, or else rejected.

The established communication is conversational.

Client

The client establishes a conversation with a blocked SEND. After retrieving an acknowledgment
from the server, subsequent requests/replies are transferred within this conversation. However,
the service is deregistered while the conversation continues.

195Broker

Examples for EntireX Broker Tutorial

Server

After a new conversation is retrieved, the server removes the service in a smooth way by issuing
a DEREGISTERwith option QUIESCE. The established conversation continues until ended by the
client.

Coding

Client
LOGON ------> logon to Broker
SEND,W=nS,CID=NEW ------> initiate conversation
repeat

SEND,W=nS,CID=1234 ---> ongoing after deregistration
until ...
EOC,CID=1234 -----------> end of conversation
LOGOFF -----> logoff from Broker
__
Server
LOGON ------> logon to Broker
repeat

REGISTER ------> offer service
RECEIVE,W=nS,CID=NEW ------> wait for new conversation
DEREGISTER,OP=QUIESCE ------> deregister service
SEND,W=NO,CID=1234 ------> acknowledge new conversation
repeat

RECEIVE,W=nS,CID=1234 ------> ongoing conversation
SEND,W=NO,CID=1234 ------> reply to client

until 3 conversation ended
until ...
LOGOFF ------> logoff from Broker

Example 9: Server for Multiple Services

This example demonstrates a server offering multiple services. It is possible to issue a RECEIVE to
the broker and specify the service name with an asterisk(*) in any of the fields SERVER-CLASS,
SERVER-NAME and SERVICE. This enables clients towait formultiple serviceswith one RECEIVE. The
services waited for must all be previously registered. The asterisk(*) notation can also be used in
DEREGISTER calls.

This feature is useful for alias service names or multipurpose servers. For example, a server might
be able to retrieve data from a database, to add data and to remove data. A way to implement this
is to register three different services.

The established communication is non-conversational.

Broker196

Examples for EntireX Broker Tutorial

Client

This client demonstrates a server which is able to offer multiple services. The name of the service

the message is routed to is alternately switched between Service 1 and Service 2.

Server

The server demonstrates how to offer multiple services. With the REGISTER call, two services are
established. With the RECEIVE call using the asterisk notation for the service (SV=*), the server can
process any request for any of the services it has registered. The actual service name to which the
request belongs is returned in the SERVER-CLASS, SERVER-NAME and SERVICE fields by the Broker.
This allows the server to offer multiple services with a single RECEIVE call.

With the DEREGISTER call, all previously registered services are removed using the asterisk notation
for the service name (SV=*).

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,SV=SV1,W=nS,CID=NONE ------> send to first service
SEND,SV=SV2,W=nS,CID=NONE ------> send to second service

until ...
LOGOFF -----> logoff from Broker

Server
LOGON ------> logon to Broker
REGISTER,SV=SV1 ------> offer first service
REGISTER,SV=SV2 ------> offer second service
repeat

RECEIVE,SV=*,W=nS,CID=NEW ------> wait for any service
SEND,W=NO,CID=1234 ------> reply to client

until ...
DEREGISTER,SV=* ------> deregister all services
LOGOFF -----> logoff from Broker

197Broker

Examples for EntireX Broker Tutorial

Getting Started

■ Example 10: ACI Test Tool: Single Broker Requests
■ Example 11: Model to write Client/Server Programs API Version 1
■ Example 12: Model to write Client/Server programs API Version 2

Example 10: ACI Test Tool: Single Broker Requests

This screen is an ACI test tool. An interface is provided which allows you to fill the broker ACI
yourself and therefore issue all types of ACI requests in any sequence. You can use it

■ for test purposes of EntireX Broker;
■ for studying EntireX Broker functions and functionality;
■ as counterpart of any client or server written in any programming language.

Example 11: Model to write Client/Server Programs API Version 1

This example shows a simple client/server communication. It implements Single requests with Reply
(see also this example in the tutorial). The client issues a simple request and waits for a reply from
the server.

The established communication is non-conversational.

The programs for this example do not need any other Natural object (maps, data areas etc.) for
execution.

You can copy the programs to any Natural library and use them as models to write your own cli-
ent/server programs.

Client

This client issues requests and expects a reply from the server. Because a reply is required and no
conversation is built, a blocked SEND (W=nS)must be used (see also the example Single Requests
with Reply in the tutorial).

You can copy this program to any Natural library and use it as model to write your own client
programs.

Broker198

Examples for EntireX Broker Tutorial

Server

This server establishes a service which is able to collect simple messages from clients that do not
require a reply. Although the communication is non-conversational the server gets a conversation
IDwith the incoming request. This IDmust be used when sending back the reply to the client (see
also the example Single Requests with Reply in the tutorial). You can copy this program to any
Natural library and use it as a model to write your own server programs.

Coding

Client
repeat

SEND,W=nS,CID=NONE ------> send and wait for reply
until ...

Server
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for request
SEND,W=NO,CID=1234 ------> reply to client

until ...
DEREGISTER ------> deregister service

Example 12: Model to write Client/Server programs API Version 2

This example shows a simple client/server communication. It implements Single requests with Reply
(see also this example in the tutorial). The client issues a simple request and waits for a reply from
the server.

The established communication is non-conversational.

The programs for this example do not need any further Natural object (maps, data areas etc.) for
execution.

You can copy the programs to any Natural library and use them as models to write your own cli-
ent/server programs.

199Broker

Examples for EntireX Broker Tutorial

Client

This client issues requests and expects a reply from the server. Because a reply is required and no
conversation is built, a blocked SEND (W=nS)must be used (see also the example Single Requests
with Reply in the tutorial).

You can copy this program to any Natural library and use it as model to write your own client
programs.

Server

This server establishes a service which is able to collect simple messages from clients that do not
require a reply. Although the communication is non-conversational the server gets a conversation
IDwith the incoming request. This IDmust be used when sending back the reply to the client (see
also the example Single Requests with Reply in the tutorial). You can copy this program to any
Natural library and use it as a model to write your own server programs.

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=nS,CID=NONE ------> send and wait for reply
until ...
LOGOFF -----> logoff from Broker

Server
LOGON ---------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=nS,CID=NEW ------> wait for request
SEND,W=NO,CID=1234 --------> reply to client

until ...
DEREGISTER ----> deregister service
LOGOFF --------> logoff from Broker

Broker200

Examples for EntireX Broker Tutorial

Attach Manager Interface

Example 13: Demonstration of the Attach Manager Interface

An Attach Manager is a server that is able to start server. If no server is found for a client request,
the Broker informs the Attach Manager to start the desired server. To be informed by the Broker,
the AttachManagermust previously register all servers forwhich it is responsible using the option
ATTACH.

Coding

LOGON ------> logon to Broker
REGISTER -----------------------> Attach Manager main service
REGISTER,OP=ATTACH,SV=SV1 ------> attachable service
repeat

RECEIVE,W=nS,CID=NEW ---------> wait for any service
until ...
DEREGISTER,SV=* ------> deregister all services
LOGOFF -----> logoff from Broker

Non-blocked Server

■ Example 14: Single Requests without Reply - A Polling Server
■ Example 15: Single Requests with Reply - A Polling Server

Example 14: Single Requests without Reply - A Polling Server

Demonstration of Attach Manager Interface:

This example shows a server collecting simple messages from clients that do not require a reply.
The server polls for a message at the RECEIVE, i.e. the RECEIVE is not blocked. This enables the
server to do other work, even if no message is available for processing. The client uses a non-
blocked SEND because no reply is expected from the server. The communication is non-conversa-
tional.

201Broker

Examples for EntireX Broker Tutorial

Example

A Server collecting cyclic statistical data from various input media, e.g. mainframe console, job
management systems, databases and client messages from the broker.

Client

This client issues simplemessages to a serverwithout expecting a reply. Because no reply is required
- the server will not return any response - the client issues a SENDwithout wait (W=NO). This type
of call is called non-blocked because it is not blocked and control is returned immediately to the
caller. With a value of "NONE" in the CONV-ID field of the ACI control block the client specifies
non-conversational communication.

Server

This example shows a server collecting simple messages from clients that do not require a reply.
The server polls for a message at the RECEIVE, i.e. the RECEIVE is not blocked. This enables the
server to do other work, even if no message is available for processing. The client uses a non-
blocked SEND since no reply is expected from the server. The communication is non-conversational.

A Server collecting cyclic statistical data from various input media, e.g. mainframe console, job
management systems, databases and client messages from the broker.

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=NO,CID=NONE ------> forward message to server
until ...
LOGOFF ----> logoff from Broker

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat
RECEIVE,W=NO,CID=NEW ------> poll for message
decide on ERROR-CLASS

VALUE 0 successfull response
VALUE 74 no message available - so free for other work

until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

Broker202

Examples for EntireX Broker Tutorial

Example 15: Single Requests with Reply - A Polling Server

This example shows a client sending requests/messages and expecting a reply from the server.
The established communication is non-conversational. Because a reply is expected, the client uses
a blocked SEND call to the broker. The server polls for a request at the RECEIVE, i.e. the RECEIVE is
non-blocked. This enables the server to do otherwork, even if no request is available for processing.

Client

This client issues requests/messages and expects a reply from the server. Because a reply is required
and no conversation is built, a blocked SEND (W=nS)must be used. If the wait time elapses before
the reply is received, there is no chance in non-conversational mode of getting the reply. However,
you can do this in conversational mode by issuing a subsequent RECEIVE.

Server

This server establishes a service that is able to receive requests/messages and return a reply to the
client. The server works non-blocked at the RECEIVE, that is, a RECEIVEwith W=NO is issued to the
Broker. Because of this non-blocked call, control is retained, allowing the server to do other work.

Coding

Client
LOGON ------> logon to Broker
repeat

SEND,W=nS,CID=NONE ------> send and wait for reply
until ...
LOGOFF -----> logoff from Broker
__

Server
LOGON ------> logon to Broker
REGISTER ------> offer service
repeat

RECEIVE,W=NO,CID=NEW ------> poll for request/message
decide on ERROR-CLASS

VALUE 0 successfull response
SEND,W=NO,CID=1234 ------> reply to client

VALUE 74 no message available - so free for other work
until ...
DEREGISTER ------> deregister service
LOGOFF ------> logoff from Broker

203Broker

Examples for EntireX Broker Tutorial

204

VI
■ 12 Introduction to Broker Administration using SMH .. 207
■ 13 Managing the List of Brokers with SMH .. 209
■ 14 Configuring a Single Broker with SMH ... 219
■ 15 Using the Broker Information Service with SMH ... 231
■ 16 Using the Broker Command Service with SMH .. 247

205

206

12 Introduction to Broker Administration using SMH

Before you log in to the SystemManagement Hub for the first time, see Initial Login Considerations
in the System Management Hub for EntireX documentation. See also Startup Daemon 'etbsrv' in
the UNIX administration documentationBroker Service 'etbsrv' under Post-installation Steps under
Windows.

EntireX Broker instances are administered from the EntireX Broker System Management Hub
node. The EntireX Broker node is located below the EntireX node in the SystemManagementHub
tree view. When the EntireX Broker node is expanded, all of the brokers that are known to the
current System Management Hub host are listed. The list consists of all the broker instances con-
figured on the host running the SystemManagement Hub (“local” brokers) and broker instances
configured on other hosts that the user has defined to the System Management Hub (“remote”
brokers). The node of a broker instance can be expanded if its broker is currently running. Below
the node you can see the list of all Command and Information Services. The broker stub nodes
allow a detailed runtime administration of the broker.

Note: The list of the known brokers is maintained by a special administrative service. The
SMHagents communicatewith it or directlywith the listed brokers to perform all necessary
actions. For more information see Configuring the Administration Service.

207

208

13 Managing the List of Brokers with SMH

■ Creating a Local Broker .. 211
■ Deleting a Local Broker ... 211
■ Adding a Remote Broker Instance to System Management Hub .. 213
■ Removing a Remote Broker Instance from System Management Hub .. 213
■ Stopping All Local Brokers from System Management Hub .. 215
■ Setting the User Credentials for a Broker Instance .. 216
■ Clearing the User Credentials for a Broker Instance .. 217
■ Setting SSL or TLS Parameters .. 217

209

See also Administration Service Messages under Error Messages and Codes.

Broker210

Managing the List of Brokers with SMH

Creating a Local Broker

To create a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 From the context menu, choose Create Local Broker.

3 Enter Broker ID, TCP Port Number, and SSL Port Number. The valid port number range is
1024 - 65535.

4 Select a transport method.

5 ChooseOK.

When a local broker is added using SMH, a working directory is created for the new broker in the
EntireX directory config/etb. This directory contains an attribute file, and the SSL certificates from
the EntireX directory config/etb are also copied to this directory. If the broker is to use its own SSL
certificates, these must be replaced or the attribute file modified accordingly.

The attributes of the new broker are checked. If, for example, a broker already exists with the
specified port, a corresponding error message is given.

Deleting a Local Broker

To delete a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be deleted.

3 From the context menu, chooseDelete Broker.

4 ChooseOK.

211Broker

Managing the List of Brokers with SMH

Broker212

Managing the List of Brokers with SMH

Adding a Remote Broker Instance to System Management Hub

To add a remote broker instance to System Management Hub

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 From the context menu, choose Add Remote Broker.

3 In the field Broker Name, enter a valid name. Permitted characters are A-Z, a-z, 0-9.

4 In the field Broker ID, enter the ID of an existing broker. Permitted formats: host:port[:pro-
tocol], protocol://host:port[?sslparameters].

5 ChooseOK.

FunctionAdd Remote Broker creates a directory for a remote broker. The working directories for
a remote broker start with "RB". This directory contains an attribute filewith theURL of the remote
broker. This directory will also be used for tranferring the log and attribute files to or from the
remote broker. If the broker can only be addressed using the SSL protocol, the SSL certificates
should also be stored in this directory. When a remote broker is added, the default SSL certificates
from the EntireX config/etb directory are copied to the working directory of the remote broker. If
this broker is to use other certificates, replace them manually.

Removing a Remote Broker Instance from System Management Hub

To remove a remote broker instance from System Management Hub

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the remote broker instance to be removed.

3 From the context menu, choose Remove Definition.

4 ChooseOK.

213Broker

Managing the List of Brokers with SMH

Broker214

Managing the List of Brokers with SMH

Stopping All Local Brokers from System Management Hub

To stop all local brokers from System Management Hub

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 From the context menu, choose Stop All Brokers.

3 Choose the stop mode.

4 ChooseOK to confirm deregistration.

215Broker

Managing the List of Brokers with SMH

Setting the User Credentials for a Broker Instance

Before a remote broker instance or instance of a local broker that uses LDAP authentication can
be administered, user credentials (user ID and password) must be set.

To set user credentials

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance.

3 From the context menu, choose Set User Credentials.

4 Enter a User ID and Password that are valid for the broker instance.

5 ChooseOK.

6 ChooseOKwhen the success message is displayed.

Broker216

Managing the List of Brokers with SMH

Clearing the User Credentials for a Broker Instance

Once a remote broker instance has been administered, the user credentials should be cleared.

To clear user credentials

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance.

3 From the context menu, choose Clear User Credentials. A confirmation screen will appear.

4 ChooseOK or Cancel.

5 ChooseOKwhen the success message is displayed.

Setting SSL or TLS Parameters

To edit a broker SSL file

1 Select the EntireX Broker node below thewebMethods EntireX node in SystemManagement
Hub.

2 Select the broker name to be administered.

3 Choose SSL Parameters.

4 Make your changes.

5 Choose Save.

217Broker

Managing the List of Brokers with SMH

218

14 Configuring a Single Broker with SMH

■ Starting a Local Broker ... 220
■ Restarting a Local Broker .. 221
■ Stopping a Local Broker .. 222
■ Administering a Broker Attribute File .. 223
■ Administering a Log File .. 225
■ Setting the Local Broker Autostart Value ... 228
■ Enabling the SNMP Plug-in ... 228
■ Disabling the SNMP Plug-in ... 230

219

Starting a Local Broker

To start a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be started.

3 From the context menu, choose Start Broker.

Note: Before you start a local Broker, make sure that the Broker's etbsrv service or daemon
is running and try again. See Broker Service 'etbsrv' under Post-installation Steps under Win-
dows.See Broker Instance Created Automatically during Installation under Post-installation Steps
under UNIX and Startup Daemon 'etbsrv' in the UNIX administration documentation.

A broker process is started in its working directory. The started broker establishes a connection
to the local Administration Service and provides information such as the used and activated ports.
The information is updated every 60 seconds. If an attribute file is modified after a broker has
been started, this does not result in incorrect information. If a broker is started manually by a
local user and the attribute file is not in theworking directory under the EntireX directory config/etb,
the broker can be administered only to a limited extent. It is only possible to stop this broker. Each
local broker is displayed by the Administration Service in SMH. The brokers that were started
manually have the status "Running: unmanaged Broker with restricted access" in SMH. If the
broker is to be administered without restrictions, the working directory and attribute file must be
located under the EntireX directory config/etb.

Broker220

Configuring a Single Broker with SMH

Restarting a Local Broker

To restart a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Restart Broker.

221Broker

Configuring a Single Broker with SMH

Stopping a Local Broker

To stop a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Stop Broker.

4 ChooseOK.

Broker222

Configuring a Single Broker with SMH

Administering a Broker Attribute File

This section covers the following topics:

■ Editing an Attribute File
■ Uploading an Attribute File
■ Downloading an Attribute File

Editing an Attribute File

To edit a broker attribute file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

Note: There is another vertical scrollbar for the editor itself. Scroll the horizontal
scrollbar to the right in order to see it. In addition, you can use Ctrl Home and Ctrl End to
get the first and the last pages, respectively.

4 Edit your changes.

5 Choose Save.

6 Choose Restart for the changes to take effect.

223Broker

Configuring a Single Broker with SMH

Uploading an Attribute File

To upload a broker attribute file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

4 Choose Upload.

5 Choose Browse and select the local attribute file.

As a result, the upload starts automatically followed by a message "Upload completed!".

Broker224

Configuring a Single Broker with SMH

Downloading an Attribute File

To download a broker attribute file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

4 ChooseDownload.

In the ensuing dialog box, choose Save.

Administering a Log File

This section covers the following topics:

■ Showing a Log File
■ Downloading a Log File

Showing a Log File

To show a broker log file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Show Log File.

Note: There is another vertical scrollbar for the editor itself. Scroll the horizontal
scrollbar to the right in order to see it. In addition, you can use Ctrl Home and Ctrl End to
get the first and the last pages, respectively.

225Broker

Configuring a Single Broker with SMH

4 Choose Close.

Broker226

Configuring a Single Broker with SMH

Downloading a Log File

To download a broker log file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, chooseDownload Log File.

A message "Download file from host" appears and after it a hyperlink labeledDownload.

4 Follow the hyperlink Download.

5 Use the ensuing dialog box to save the log file on the local machine.

227Broker

Configuring a Single Broker with SMH

Setting the Local Broker Autostart Value

The autostart value of a broker instance determines whether it will be started when the computer
is restarted.

To set the Autostart value

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 If the broker instance is currently started automatically, only theTurn offAutostart command
is visible; if the broker instance is currently not started automatically, the Turn on Autostart
command is visible.

4 Choose either Turn on Autostart or Turn off Autostart.

Enabling the SNMP Plug-in

Before a broker can be administered by SNMP, the SNMP plug-in must be enabled. In addition,
the SNMP Plug-in credentials (user ID and password) must be set.

To enable the SNMP plug-in

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker.

3 From the context menu, choose Enable SNMP.

4 Enter a user ID and password that are valid for the broker instance.

5 Choose Verify to check if a logon to the broker is okay with the SNMP plug-in credentials,
or clickOK to save the SNMP plug-in credentials without any verification.

6 Choose Closewhen the Success message is displayed.

Broker228

Configuring a Single Broker with SMH

229Broker

Configuring a Single Broker with SMH

Disabling the SNMP Plug-in

To disable the SNMP plug-in

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker.

3 From the context menu, chooseDisable SNMP.

4 Choose Closewhen the Success message is displayed.

Broker230

Configuring a Single Broker with SMH

15 Using the Broker Information Service with SMH

■ Administering a Broker Instance ... 232
■ Filtering Clients ... 235
■ Filtering Conversations ... 236
■ Filtering the User ... 236
■ Filtering Participants ... 238
■ Filtering the Persistent Store .. 239
■ Filtering the Publication ... 240
■ Filtering the Publisher ... 241
■ Filtering Servers .. 242
■ Filtering Services ... 243
■ Filtering the Subscriber ... 244
■ Filtering the Topic .. 245

231

Administering a Broker Instance

To administer a broker instance

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 If the broker instance is a remote broker instance (running on another node), see Setting the
User Credentials for a Broker Instance.

4 Expand the broker instance node to view and administer the properties for the following ob-
jects:

Filter ResultsSummary ViewInformation Reply StructureObject

BROKER-OBJECTBroker

WORKER-OBJECTWorker

xxSERVICE-OBJECTService

xxCLIENT-SERVER-PARTICIPANT-OBJECTServer

xxCLIENT-SERVER-PARTICIPANT-OBJECTClient

xCLIENT-SERVER-PARTICIPANT-OBJECTParticipant

xCONVERSATION-OBJECTConversation

xxPSF-OBJECTPersistent Store

PSFDIV-OBJECTPersistent Store DIV

PSFADA-OBJECTPersistent Store Adabas

PSFFILE-OBJECTPersistent Store File

PSFCTREE-OBJECTPersistent Store c-tree

xTOPIC-OBJECTTopic

xxSUBSCRIBER-OBJECTSubscriber

xxPUBLISHER-OBJECTPublisher

xPUBLICATION-OBJECTPublication

CMDLOG_FILTER-OBJECTCmdlog Filter

SECURITY-OBJECTSecurity

TCP-OBJECTTCP

SSL-OBJECTSSL

NET-OBJECTNet-Work

POOL-USAGE-OBJECTPool-Usage

RESOURCE-USAGE-OBJECTResource-Usage

STATISTICS-OBJECTStatistics

Broker232

Using the Broker Information Service with SMH

Filter ResultsSummary ViewInformation Reply StructureObject

xxUSER-OBJECTUser

WORKER-USAGE-OBJECTWorker-Usage

Notes

■ For a summary view, expand the node and select the required object:

■ For detailed information, select an item from the summary view:

■ The items can be filtered. For an example, see Filtering Services.

233Broker

Using the Broker Information Service with SMH

Broker234

Using the Broker Information Service with SMH

Filtering Clients

To filter clients

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Client subtree.

3 Select Client.

4 From the context menu, choose Filter.

5 Enter the data for UserID or Token that you would like to filter.

6 ChooseOK.

235Broker

Using the Broker Information Service with SMH

Filtering Conversations

To filter conversations

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Client subtree.

3 Select Conversation.

4 From the context menu, choose Filter.

5 Enter the data for UserID or Token that you would like to filter.

6 ChooseOK.

Filtering the User

To filter the user

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the user is present.

Note: The broker must be running in order to display the User subtree.

3 Select the user.

4 From the context menu, choose Filter.

Broker236

Using the Broker Information Service with SMH

5 Enter the data for User ID and Token that you would like to filter.

6 ChooseOK.

237Broker

Using the Broker Information Service with SMH

Filtering Participants

To filter participants

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Client subtree.

3 Select Participant.

4 From the context menu, choose Filter.

5 Enter the data for UserID or Token that you would like to filter.

6 ChooseOK.

Broker238

Using the Broker Information Service with SMH

Filtering the Persistent Store

To filter the persistent store

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the unit of work is present. The persistent store attributes
(such as PSTORE, PSTORE-TYPE, STORE, DEFERRED, and UWSTATP etc.) must be configured and
the broker must be running in order to display the Persistent Store.

3 Select the Persistent Store node to display a summary list of units of work.

Note: Amessage box will pop up if the table is larger than 3,000 rows. You may prefer
to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

4 Choose Filter.

5 Click the check boxes forReceived,Accepted,Delivered,BackedOut,Processed,Cancelled,
Timed Out orDiscarded that you would like to filter.

6 ChooseOK.

239Broker

Using the Broker Information Service with SMH

Filtering the Publication

To filter the publication

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the publication is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be published for a
topic in order to display the data for the publication.

3 Select Publication.

4 From the context menu, choose Filter.

5 Enter the data for Topic, User ID or Token and Publication ID.

6 ChooseOK.

Broker240

Using the Broker Information Service with SMH

Filtering the Publisher

To filter the publisher

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the publisher is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be published for a
topic in order to display the data for the publisher.

3 Select Publisher.

4 From the context menu, choose Filter.

5 Enter the data for User ID and Token that you would like to filter.

6 ChooseOK.

241Broker

Using the Broker Information Service with SMH

Filtering Servers

To filter servers

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Server subtree.

3 Select Server.

4 From the context menu, choose Filter.

5 Enter the data for UserID,Token,Server Class,Server Name or Service.

6 ChooseOK.

Broker242

Using the Broker Information Service with SMH

Filtering Services

To filter services

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Service subtree.

3 Select Service.

4 From the context menu, choose Filter.

5 Enter the data for Server Class, Server Name and Service.

6 ChooseOK.

243Broker

Using the Broker Information Service with SMH

Filtering the Subscriber

To filter the subscriber

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the subscriber is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the subscriber.

3 Select Subscriber.

4 From the context menu, choose Filter.

5 Enter the data for Topic, User ID, Token; select Subscription Type, Active Subscriber and
Swapped Out that you would like to filter.

6 ChooseOK.

Broker244

Using the Broker Information Service with SMH

Filtering the Topic

To filter the topic

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the topic is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the topic.

3 Select Topic.

4 From the context menu, choose Filter.

5 Enter the data for the Topic that you would like to filter.

6 ChooseOK.

245Broker

Using the Broker Information Service with SMH

246

16 Using the Broker Command Service with SMH

■ Connecting/Disconnecting Persistent Store ... 248
■ Allowing and Forbidding new UOW Messages ... 249
■ Setting a Broker Instance's Trace Level .. 249
■ Flushing a Broker Instance's Trace Buffer ... 250
■ Flushing a Broker Instance's Trace Buffer on Error ... 250
■ Producing Statistics of a Broker Instance .. 251
■ Setting the Persistent Store Trace Level ... 251
■ Setting the Security Trace Level ... 252
■ Deregistering a Server .. 253
■ Deregistering a Service ... 254
■ Purging Unit(s) of Work ... 255
■ Subscribing a User ... 257
■ Unsubscribing a User ... 258
■ Logging Off a Subscriber ... 259
■ Logging Off a Publisher ... 260
■ Enabling/Disabling Cmdlog .. 260
■ Switching Cmdlog .. 262
■ Adding Cmdlog Filter .. 263
■ Enabling/Disabling Cmdlog Filter .. 264
■ Deleting Cmdlog Filter .. 265

247

Connecting/Disconnecting Persistent Store

To connect or disconnect a Persistent Store

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 To connect a persistent store, select Connect PStore.

4 To disconnect a persistent store, selectDisconnect PStore.

As a result, a confirmation screen will appear.

5 ChooseOK or Cancel.

Broker248

Using the Broker Command Service with SMH

Allowing and Forbidding new UOW Messages

To allow or forbid a Broker instance to accept new unit-of-work messages

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 To allow new unit-of-work messages, select Allow new UOWMSGs.

4 To forbid new unit-of-work messages, select Forbid new UOWMSGs.

As a result, a confirmation screen will appear.

5 ChooseOK or Cancel.

Setting a Broker Instance's Trace Level

To set a broker instance's trace level

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Select a Trace Level between 1 and 4 or off.

5 ChooseOK.

249Broker

Using the Broker Command Service with SMH

Flushing a Broker Instance's Trace Buffer

To flush a broker instance's trace buffer

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Trace Levelmust be between 1 and 4. Press Flush to confirm.

Flushing a Broker Instance's Trace Buffer on Error

To flush a broker instance's trace buffer

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Trace Levelmust be between 1 and 4. Enter a number between 1 and 9999 in the Error
Number field and press Flush on Error.

Broker250

Using the Broker Command Service with SMH

Producing Statistics of a Broker Instance

To produce statistics of a broker instance

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Trace Levelmust be between 1 and 4. Press Produce Statistics.

Setting the Persistent Store Trace Level

To set the persistent store trace level

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Select a subnode of Persistent Store (either Persistent Store ADA or Persistent Store CTree).

4 Choose Set Trace Level.

5 Select a Trace Level between 1 and 4 or off.

6 ChooseOK.

251Broker

Using the Broker Command Service with SMH

Setting the Security Trace Level

To set the security trace level

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Select Security.

4 Set the security trace level by selecting a value between 1 and 4 in the Set the Trace Level
box.

5 ChooseOK.

Broker252

Using the Broker Command Service with SMH

Deregistering a Server

To deregister a server

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the server is running.

3 Select the Server node to display a summary list of servers.

4 From the columnDeregister Server, choose icon Shut Down Server.

5 Choose the deregistration mode.

For deregister immediately, a server process will only be terminated if the server status is
wait.

6 Confirm the deregistration by choosingOK.

253Broker

Using the Broker Command Service with SMH

Deregistering a Service

To deregister a service

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the server is running.

3 Select the Service node to display a summary list of servers.

4 From the columnDeregister Service, choose iconDeregister Service.

5 Choose the deregistration mode.

6 Confirm the deregistration by choosingOK.

Broker254

Using the Broker Command Service with SMH

Purging Unit(s) of Work

To purge a unit of work

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the unit of work is present.

3 Select the Persistent Store node to display a summary list of units of work.

Note: Amessage box will pop up if the table is larger than 3,000 rows. You may prefer
to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

4 Choose Purge.

5 ChooseOK.

To purge all units of work

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the units of work are present.

3 Select the Persistent Store node to display a summary list of units of work.

Note: Amessage box will pop up if the table is larger than 3,000 rows. You may prefer
to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

255Broker

Using the Broker Command Service with SMH

4 Choose Purge All UOWs at the bottom of the table. A confirmation message will appear.

5 ChooseOK or Cancel.

All units of work will be purged. The number of purged UOWs is reported in a screen similar to
the one below.

Broker256

Using the Broker Command Service with SMH

Subscribing a User

To subscribe a user

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the topic (or subscriber) is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, and the Broker must be running in order to display the topic (or
subscriber).

3 Select Topic (or Subscriber).

4 From the context menu, choose Subscribe.

5 If you are on theTopic node, enter the data forUser ID andToken; if you are on theSubscriber
node, specify the topic that you would like to subscribe to.

6 ChooseOK.

257Broker

Using the Broker Command Service with SMH

Unsubscribing a User

To unsubscribe a user

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the topic (or subscriber) is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, and the Broker must be running in order to display the topic (or
subscriber).

3 Select Topic (or Subscriber).

4 From the context menu, choose Unsubscribe.

5 If you are on theTopic node, enter the data forUser ID andToken; if you are on theSubscriber
node, specify the topic that you would like to unsubscribe from.

6 ChooseOK.

Broker258

Using the Broker Command Service with SMH

Logging Off a Subscriber

To log off a subscriber

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the subscriber is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the subscriber.

3 Select Subscriber.

4 From the context menu, choose Logoff.

5 Choose the logoff mode.

6 ChooseOK.

259Broker

Using the Broker Command Service with SMH

Logging Off a Publisher

To log off a publisher

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Publisher is present.

Note: Pub/Sub must be enabled in the broker attribute file, a license file for Pub/Sub
must be installed, the broker must be running, and a user must be published from a
topic in order to display the data for the Publisher.

3 Select Publisher.

4 Choose Logoff.

5 Choose the logoff mode.

6 ChooseOK.

7 After a Publisher is shut down successfully, it will be removed from the list.

Enabling/Disabling Cmdlog

To enable/disable cmdlog

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

Broker260

Using the Broker Command Service with SMH

4 Choose Enable Cmdlog orDisable Cmdlog.

261Broker

Using the Broker Command Service with SMH

Switching Cmdlog

To switch cmdlog

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Switch Cmdlog.

Broker262

Using the Broker Command Service with SMH

Adding Cmdlog Filter

To add a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Add Cmdlog Filter.

5 Enter the data for user ID and Class/Server/Service or Topic you would like to filter.

6 ChooseOK to add a Cmdlog filter to the list.

263Broker

Using the Broker Command Service with SMH

Enabling/Disabling Cmdlog Filter

To enable/disable a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Enable Cmdlog Filter orDisable Cmdlog Filter.

Broker264

Using the Broker Command Service with SMH

Deleting Cmdlog Filter

To delete a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 ChooseDelete Cmdlog Filter to remove a Cmdlog filter from the list.

265Broker

Using the Broker Command Service with SMH

266

VII
■ 17 EntireX Broker Reporting .. 269
■ 18 Command Logging in EntireX .. 279

267

268

17 EntireX Broker Reporting

■ Configuration Report .. 270
■ Load Module Report ... 271
■ Storage Report .. 272
■ Persistent Store Report ... 275
■ License Report .. 278

269

This chapter details the reporting options of EntireX Broker.

Configuration Report

EntireX Broker reads configuration information from an attribute file during startup. In order to
reduce the number of different attribute files, you may define a global attribute file and specify
the individual settings within a variable definitions file. Thus unique attributes like BROKER-ID
and PORT are kept as part of the variable definitions file, while other parameters such as service
definitions can be shared among a group of Broker instances. This feature is described in detail
in Variable Definition File under Broker Attributes in the administration documentation.

In the past there was a one-to-one relationship between Brokers and attribute files. To determine
your Broker configuration, you could reference your attribute file. Now that you may create a
global attribute file and substitute parameters at startup, it may not be clear what configuration
was used to start your Broker. To see the exact configuration used at startup, you can now view
the configuration report for each Broker. The configuration reportwill display exactlywhich values
were used for each attribute at startup.

Here is a sample configuration report:

EntireX 8.0.0.12 Configuration Report 2007-10-02 08:56:23 Page 1

Variable definitions file:
1: BID = ETB191
2: N = 113
3: P = HOT
4: PCA = localhost:3938:SSL
5: PT = ADABAS
6: RM = STANDARD
7: SP = 3939
8: TP = 3930
9: TR = SSL-TCP-NET

EntireX 8.0.0.0 Configuration Report 2007-10-02 08:56:23 Page 2

Attribute file:
1: ***
2: * *
3: * EntireX Broker Attribute File *
4: * *
5: ***
6:
7: ******************** Global section ***********************************
8:
9: DEFAULTS = BROKER
10: ABEND-MEMORY-DUMP = NO
11: ACCOUNTING = NO
12: AUTOLOGON = YES

Broker270

EntireX Broker Reporting

13: BROKER-ID = ${BID}
- - - - Substitution: ${BID} = ETB191

14: CLIENT-NONACT = 15M

The contents of the variable definitions file and the contents of the attribute file are copied to this
configuration report. In addition, all variables in the attribute file will be appended by another
line reporting the effective value for the variable. Thus, it's possible to keep track of the substitution
procedure.

On UNIX and Windows, a file called CONFIG.REPORT is created in the current working directory
of Broker. The environment variable ETB_CONFIG_REPORTmay contain an alternative location.
However, on z/OS, DDNAME ETBCREP is required to assign an output file for this report. Any failure
will trigger a diagnostic message in the Broker log.

Load Module Report

The Load Module Report is created during startup of EntireX Broker on z/OS. All modules in all
data sets concatenated to the STEPLIB chain for Broker execution are listed.

Operating System: z/OS 06.00
Node Name: DAEF
IPL Date: 2007-10-02
IPL Time: 07:19:21
CPU Model: 2096

EntireX 8.0.0.12 Load Module Report 2007-10-02 08:56:23 Page 1
Total Module Date Time VRSPP Build number Alias Level CurNo

Steplib level 0: SAG.EXB731.LOAD
1 ADAACK NO 0 1
2 ADABSP NO 0 2
3 ADACDC NO 0 3
4 ADACLU NO 0 4
5 ADACLX NO 0 5
6 ADACMO NO 0 6
7 ADACMP NO 0 7
8 ADACMR NO 0 8
9 ADACMU NO 0 9

10 ADACNS NO 0 10
11 ADACNV NO 0 11

...
156 ETBCMD 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 156
157 ETBINFO 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 157
158 ETBMISC NO 0 158
159 ETBNATTR 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 159
160 ETBNUC 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 160

271Broker

EntireX Broker Reporting

This report provides STEPLIB level, date, and time stamps if a certain pattern is used for the
module structure. DDNAME ETBMREPmust be assigned to get this report.

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocatememory pools. This section details how to create the report and provides a sample report.

■ Creating a Storage Report
■ Platform-specific Rules
■ Sample Storage Report

See also Broker-specific attribute STORAGE-REPORT.

Creating a Storage Report

Use Broker's global attribute STORAGE-REPORTwith the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

Platform-specific Rules

z/OS

DDNAME ETBSREP assigns the report file. Format RECFM=FB, LRECL=121 is used.

UNIX and Windows

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument -r, the token following argu-
ment -rwill be used as the file name.

BS2000/OSD

LINK-NAME ETBSREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

z/VSE

Logical unit SYS015 and logical file name ETBSREP are used. Format RECORD-FORMAT=FB,
RECORD-LENGTH=121 is used.

Broker272

EntireX Broker Reporting

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1 ↩

 ↩

Identifier Address Size Total Date ↩
 Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 ↩
12:28:58.768 Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 ↩
12:28:58.769 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 18239256 bytes 2009-06-26 ↩
12:28:58.769 Allocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 19001308 bytes 2009-06-26 ↩
12:28:58.769 Allocated
BROKER POOL 0x27072010 61540 bytes 19062848 bytes 2009-06-26 ↩
12:28:58.775 Allocated
CONVERSATION POOL 0x27082010 368964 bytes 19431812 bytes 2009-06-26 ↩
12:28:58.775 Allocated
CONNECTION POOL 0x270DD010 233668 bytes 19665480 bytes 2009-06-26 ↩
12:28:58.779 Allocated
LONG MESSAGES POOL 0x27117010 4395204 bytes 24060684 bytes 2009-06-26 ↩
12:28:58.782 Allocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 27764560 bytes 2009-06-26 ↩
12:28:58.806 Allocated
PARTICIPANT POOL 0x278D2010 134244 bytes 27898804 bytes 2009-06-26 ↩
12:28:58.827 Allocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 27935800 bytes 2009-06-26 ↩
12:28:58.829 Allocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 27962524 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 28094192 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE POOL 0x27925010 54372 bytes 28148564 bytes 2009-06-26 ↩
12:28:58.830 Allocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 28181464 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 28268732 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TRANSLATION POOL 0x27952010 179300 bytes 28448032 bytes 2009-06-26 ↩
12:28:58.832 Allocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 28624356 bytes 2009-06-26 ↩
12:28:58.834 Allocated
WORK QUEUE POOL 0x279AA010 391268 bytes 29015624 bytes 2009-06-26 ↩
12:28:58.835 Allocated
BLACKLIST POOL 0x27A0A010 42084 bytes 29057708 bytes 2009-06-26 ↩
12:28:58.838 Allocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 29401856 bytes 2009-06-26 ↩

273Broker

EntireX Broker Reporting

12:28:58.839 Allocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 29531476 bytes 2009-06-26 ↩
12:28:58.841 Allocated
TOPIC POOL 0x26FB6068 2952 bytes 29534428 bytes 2009-06-26 ↩
12:28:58.842 Allocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 29565280 bytes 2009-06-26 ↩
12:28:58.842 Allocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 29599172 bytes 2009-06-26 ↩
12:28:58.843 Allocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 29618712 bytes 2009-06-26 ↩
12:28:58.843 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 12837332 bytes 2009-06-26 ↩
12:30:58.514 Deallocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 12075280 bytes 2009-06-26 ↩
12:30:58.515 Deallocated
BROKER POOL 0x27072010 61540 bytes 12013740 bytes 2009-06-26 ↩
12:30:58.516 Deallocated
CONVERSATION POOL 0x27082010 368964 bytes 11644776 bytes 2009-06-26 ↩
12:30:58.518 Deallocated
CONNECTION POOL 0x270DD010 233668 bytes 11411108 bytes 2009-06-26 ↩
12:30:58.519 Deallocated
LONG MESSAGES POOL 0x27117010 4395204 bytes 7015904 bytes 2009-06-26 ↩
12:30:58.520 Deallocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 3312028 bytes 2009-06-26 ↩
12:30:58.526 Deallocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 3285304 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 2941156 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 2811536 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC POOL 0x26FB6068 2952 bytes 2808584 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 2777732 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 2690464 bytes 2009-06-26 ↩
12:30:58.532 Deallocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 2514140 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
WORK QUEUE POOL 0x279AA010 391268 bytes 2122872 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
BLACKLIST POOL 0x27A0A010 42084 bytes 2080788 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 2046896 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 2027356 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PARTICIPANT POOL 0x278D2010 134244 bytes 1893112 bytes 2009-06-26 ↩
12:49:25.817 Deallocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 1856116 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 1724448 bytes 2009-06-26 ↩

Broker274

EntireX Broker Reporting

12:49:25.818 Deallocated
SERVICE POOL 0x27925010 54372 bytes 1670076 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 1637176 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
TRANSLATION POOL 0x27952010 179300 bytes 1457876 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
HEAP POOL 0x25EB4010 1050692 bytes 407184 bytes 2009-06-26 ↩
12:49:25.820 Deallocated
KERNEL POOL 0x25E48010 407184 bytes 0 bytes 2009-06-26 ↩
12:49:25.820 Deallocated

DescriptionHeader

Name of the memory pool.Identifier

Start address of the memory pool.Address

Size of the memory pool.Size

Total size of all obtained memory pools.Total

Date and time of the action.Date, Time

The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated .
Deallocated: memory pool is deallocated.

Action

Persistent Store Report

You can create an optional report file that provides details about all records added to or deleted
from the persistent store. This section details how to create the report and provides a sample report.

■ Configuration
■ Sample Report

Configuration

To create a persistent store report, use Broker's global attribute PSTORE-REPORTwith the value YES.

When the attribute value YES is supplied, all created or deleted persistent records will be reported
if the output mechanism is available.

If the value NO is specified, no report will be created.

The report file is created using the following rules:

275Broker

EntireX Broker Reporting

BS2000/OSD

LINK-NAME ETBPREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

UNIX

Broker creates a file with the name PSTORE.REPORT in the current working directory. The file
name PSTORE.REPORT.LOADwill be used if Broker is started with RUN-MODE = PSTORE-LOAD.

The file name PSTORE.LOAD.UNLOADwill be used if Broker is started with RUN-MODE =
PSTORE-UNLOAD.

If the environment variable ETB_PSTORE_REPORT is supplied, the file name specified in the envir-
onment variable will be used.

If Broker receives the command-line argument -p, the token following argument -pwill be used
as the file name.

Windows

Same as UNIX.

z/OS

DDNAME ETBPREP assigns the report file. Format RECFM=FB, LRECL=121 is used.

z/VSE

Logical unit SYS003 and logical file nameETBPREP are used. Format RECORD-FORMAT = FB, RECORD-
LENGTH = 121 is used.

Sample Report

The following is an excerpt from a sample PSTORE report.

EntireX 8.0.0.00 PSTORE Report 2008-02-21 17:18:38 Page 1

Identifier Elements Total length Record Type Date Time ↩
Action
100000000D000016 5 1148 Conversation 2008-02-21 17:18:57.190 ↩
Created
100000000D000017 5 1148 Conversation 2008-02-21 17:18:57.654 ↩
Created
100000000D000018 5 1148 Conversation 2008-02-21 17:18:58.122 ↩
Created
100000000D000019 5 1148 Conversation 2008-02-21 17:18:58.590 ↩
Created
100000000D00001A 5 1148 Conversation 2008-02-21 17:18:59.054 ↩

Broker276

EntireX Broker Reporting

Created
100000000D00001B 5 1148 Conversation 2008-02-21 17:18:59.518 ↩
Created
100000000D00001C 5 1148 Conversation 2008-02-21 17:18:59.982 ↩
Created
100000000D00001D 5 1148 Conversation 2008-02-21 17:19:00.538 ↩
Created
100000000D00001E 5 1148 Conversation 2008-02-21 17:19:01.002 ↩
Created
100000000C000001 0 0 Conversation 2008-02-21 17:19:30.676 ↩
Deleted
100000000C000002 0 0 Conversation 2008-02-21 17:19:31.675 ↩
Deleted
100000000C000003 0 0 Conversation 2008-02-21 17:19:32.675 ↩
Deleted
100000000C000004 0 0 Conversation 2008-02-21 17:19:33.675 ↩
Deleted
100000000C000005 0 0 Conversation 2008-02-21 17:19:34.675 ↩
Deleted
100000000C000006 0 0 Conversation 2008-02-21 17:19:35.675 ↩
Deleted

The following fields are provided in the report:

■ Identifier provides the UOWID (record ID).
■ Elements gives the number of messages per UOWwhen creating or loading records.
■ Total Length gives the size of the raw record when creating or loading records.
■ Record Type describes the type of the data. Following types are currently supported:

■ Cluster: a special record for synchronization purposes
■ Conversation: a unit of work as part of a conversation
■ Master: a special record to manage the persistent store
■ Publication: a record containing a publication for a durable topic
■ Subscription: a record containing subscriber data (if SUBSCRIBER-STORE = PSTORE) is defined

■ Date and time of the action
■ Action describes the action of Broker. The following actions are currently supported:

■ Created: record is created
■ Deleted: record is deleted
■ Loaded: record is loaded (Broker instance with RUN-MODE = PSTORE-LOAD)
■ Unloaded: record is unloaded (Broker instance with RUN-MODE = PSTORE-UNLOAD)

277Broker

EntireX Broker Reporting

License Report

The License Report is created during broker startup on the respective platform. It contains the
contents of the license file itself and some machine data.

z/OS

DDNAME ETBLREPmust be assigned to get this report. See Step 2: Edit the Broker Startup Procedure
in the z/OS installation documentation.

BS2000/OSD

LINK-NAME ETBLREPmust be assigned to get this report.

Broker278

EntireX Broker Reporting

18 Command Logging in EntireX

■ Introduction to Command Logging ... 280
■ Command Log Filtering using System Management Hub ... 282
■ Command Log Filtering using Command-line Interface ETBCMD .. 284
■ ACI-driven Command Logging ... 287
■ Dual Command Log Files .. 287

279

Command logging is a feature to assist in debugging Broker ACI applications. A command in this
context represents one user request sent to the Broker and the related response of Broker.

Command logging is a feature that writes the user requests and responses to file in a way it is
already known with Broker trace and TRACE-LEVEL=1. But command logging works completely
independent from trace, and data is written to a file only if defined command trace filters detect
a match.

Broker stub applications send commands or requests to the Broker kernel, and the Broker kernel
returns a response to the requesting application. Developers who need to resolve problems in an
application need access to those request and response strings inside the Broker kernel. That's
where command logging comes in. With command logging, request and response strings from or
to an application are written to a file that is separate from the Broker trace file.

Introduction to Command Logging

This section provides an introduction to command logging in EntireX and offers examples of how
command logging is implemented. It covers the following topics:

■ Overview
■ Command Log Files
■ Defining Filters
■ Programmatically Turning on Command Logging

Overview

Command logging is similar to a Broker trace that is generated when the Broker attribute TRACE-
LEVEL is set to 1. Broker trace and command logging are independent of each other, and therefore
the configuration of command logging is separate from Broker tracing.

The following Broker attributes are involved in command logging:

DescriptionAttribute

Set this to "N" if command logging is not needed.CMDLOG

A numeric value indicating the maximum size of command log file in KB.CMDLOG-FILE-SIZE

The maximum number of filters that can be set.NUM-CMDLOG-FILTER

In addition to CMDLOG=YES, the Broker needs the assignment of the dual command logging files
during startup. If these assignments aremissing, Brokerwill set CMDLOG=NO. See alsoBroker Attributes
in the administration documentation.

Broker280

Command Logging in EntireX

Command Log Files

The Broker keeps a record of commands (request and response strings) in a command log file.

At Broker startup, you will need to supply two command log file names and paths. Only one file
is open at a time, however, and the Broker writes commands (requests and responses) to this file.

Under UNIX and Windows, the startup options -y and -z are evaluated by executable etbnuc.
These options are used to specify the command log file names. Startup script/service assign these
files by default.

Under z/OS, the file requirements are two equally sized, physical sequential files defined with a
record length of 121 bytes, i.e.
DCB=(LRECL=121,RECFM=FB,BLKSIZE=nnnn). We recommend you allocate files with a single
(primary) extent only. For example SPACE=(CYL,(30,0)). Theminimumfile size is approximately
3 cylinders of 3390 device. Alternatively, the dual command log files can be allowed in USS HFS
file system.

When the size of the active command log file reaches the KB limit set by CMDLOG-FILE-SIZE, the
file is closed and the second file is opened and becomes active. When the second file also reaches
the KB limit set by CMDLOG-FILE-SIZE, the first file is opened and second file is closed. Existing
log data in a newly opened file will be lost.

Defining Filters

In command logging, a filter is used to store and identify a class, server, or service, as well as a
topic name and user ID.

Use the SystemManagement Hub to define a filter. Under UNIX and z/OS you can also use com-
mand line tool etbcmd. During processing, the Broker evaluates the class, server, service, topic,
and user ID associated with each incoming request and compares themwith the same parameters
specified in the filters. If there is a match, the request string and response string of the request is
printed out to the command log file.

Programmatically Turning on Command Logging

Applications using ACI version 9 or above have access to the new field LOG-COMMAND in the ACI
control block.

If this field is set, the accompanying request and the Broker's response to this request is logged to
the command log file.

Note: Programmatic command logging ignores any filters set in the kernel.

281Broker

Command Logging in EntireX

Command Log Filtering using System Management Hub

■ Setting up your Environment
■ Adding a Filter
■ Managing Filters

Setting up your Environment

In order to process filters using SystemManagement Hub, Broker attribute CMDLOGmust be set to
"YES" and the log files must be defined. See Command Log Files above. If this is the case, the
CmdlogFilter node will be visible in the SMH tree.

Broker282

Command Logging in EntireX

283Broker

Command Logging in EntireX

Adding a Filter

To add a filter

1 In the SMH tree view, select the CmdlogFilter node and, with the context menu, chooseAdd
Cmdlog Filter.

2 In the Add Cmdlog Filter screen, add values for User ID, Class/Server/Service or Topic.
Confirm withOK.

Managing Filters

The following Cmdlog Filter screen shows four filters. Use this screen to

■ delete a filter
■ disable a filter
■ enable a disabled filter

Note: You cannot change the values for User ID, Class/Server/Service or Topic in theCmdlog
Filter screen. Instead, delete the command log filter and add a new one with the required
values.

Command Log Filtering using Command-line Interface ETBCMD

The examples assume that Broker has been started with the attribute CMDLOG=Y.

■ Setting Filters
■ Deleting Filters

Broker284

Command Logging in EntireX

■ Disabling and Enabling a Filter

Setting Filters

Filters need to be set before running the stub applications whose commands are to be logged.

UNIX

DescriptionCommand

This command sets filters on
ACLASS/ASERVER/ASERVICE. All ACI calls issued by
all users to this service will be logged.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE

This command set filters on
ACLASS/ASERVER/ASERVICE anduser ID saguser1.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE -Usaguser1 All ACI calls to this service as well as those issued by

saguser1will be logged.

This command set filters on topic NYSE and user ID
saguser1. All ACI calls to this topic as well as those
issued by saguser1will be logged.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-TNYSE -Usaguser1

z/OS

DescriptionCommand

This command sets filters on
ACLASS/ASERVER/ASERVICE. AllACI calls issued
by all users to this service will be logged.

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP ↩
-cSET-CMDLOG-FILTER -xuser ',
// '-dBROKER ↩
-nACLASS/ASERVER/ASERVICE')

This command sets filters on
ACLASS/ASERVER/ASERVICE and user ID
saguser1. All ACI calls to this service as well as
those issued by saguser1will be logged.

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP ↩
-cSET-CMDLOG-FILTER -xuser ',
// '-dBROKER -nACLASS/ASERVER/ASERVICE ↩
-Usaguser1')

This command sets filters on topic NYSE and user
ID saguser1. All ACI calls to this topic as well as
those issued by saguser1will be logged.

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP ↩
-cSET-CMDLOG-FILTER -xuser ',
// '-dBROKER -TNYSE -Usaguser1')

Note: If more than one service or topic is set as a filter, all ACI calls sent to any of these
services or topics will be logged. Identical filters cannot be set. Attempts to set a second
filter thatmatches an existing filterwill be rejected. Similarly, themaximumnumber of filters
that can be added is defined in NUM-CMDLOG-FILTER. If the maximum number of filters is
already being used, delete an existing filter to make room for a new filter.

285Broker

Command Logging in EntireX

Deleting Filters

The following provides an example of how to delete an existing filter on a service.

To delete a filter

■ Enter the following command.

Under UNIX:

etbcmd -d BROKER -b localhost:1970:TCP -c CLEAR-CMDLOG-FILTER ↩
-nACLASS/ASERVER/ASERVICE -U saguser1

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cCLEAR-CMDLOG-FILTER -xuser ',
// '-dBROKER -nACLASS/ASERVER/ASERVICE')

If the filter does not exist, the command will return an error.

Disabling and Enabling a Filter

Filters can be set and still be disabled (made inactive).

To disable a filter

■ Enter the following command.

Under UNIX:

etbcmd -blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -dBROKER -xuser ↩
-nACLASS/ASERVER/ASERVICE -Usaguser1

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -xuser ',
// '-dBROKER -nACLASS/ASERVER/ASERVICE -Usaguser1')

Note: A disabled filter will not bring down the count of filters in use.

To enable a filter

■ Enter the following command to enable the disabled filter.

Broker286

Command Logging in EntireX

Under UNIX:

etbcmd -blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -dBROKER -xuser ↩
-nACLASS/ASERVER/ASERVICE -Usaguser1

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -xuser ',
// '-dBROKER -nACLASS/ASERVER/ASERVICE -Usaguser1')

ACI-driven Command Logging

EntireX components that communicate with Broker can trigger command logging by setting the
field LOG-COMMAND in the ACI control block.

When handling ACI functions with command log turned on, Broker will not evaluate any filters.
Application developers must remember to reset the LOG-COMMAND field if subsequent requests are
not required to be logged.

Dual Command Log Files

Broker's use of two command log files prevents any one command log file from becoming too
large.

When starting a Broker with command log support, you must therefore specify two file names
and paths - one for each of the two command log files. The sample startup script installed with
the product uses the variables ETB_CMDLOG1 and ETB_CMDLOG2 as the default command log file
names.

Under UNIX, the startup script uses file names CMDLOGR1 and CMDLOGR2.

Under Windows, the keys ETB_CMDLOG1 and ETB_CMDLOG2 are entered in the Registry with values
CMDLOGR1 and CMDLOGR2.

At startup, Broker initializes both files and keeps one of them open. Command log statements are
printed to the open file until the size of this file reaches the value specified in the Broker attribute
CMDLOG-FILE-SIZE. This value must be specified in KB.

When the size of the open file exceeds the value specified in the Broker attribute CMDLOG-FILE-
SIZE, Broker closes this file and opens the other, dormant file. Because the Broker closes a log file

287Broker

Command Logging in EntireX

onlywhen unable to print out a complete log line, the size of a fullfilemay be smaller than CMDLOG-
FILE-SIZE.

To switch log files on demand, using etbcmd | ETBCMD

■ An open command log file can be forcibly closed even before the size limit is reached. Enter
the following command.

Under UNIX:

etbcmd -blocalhost:1970:TCP -cSWITCH-CMDLOG -dBROKER -xuser

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cSWITCH-CMDLOG -xuser ',
// '-dBROKER')

The command abovewill close the currently open file and open the one that has been dormant.

Broker288

Command Logging in EntireX

	Broker
	Table of Contents
	I Concepts and Facilities of EntireX Broker
	1 Concept of Interoperability
	Interoperability and EntireX Broker
	Messaging Model and Interoperability
	Introduction
	Overview Diagram
	ACI Syntax of Messaging Model

	Communication Models and Interoperability
	Client and Server
	Publish and Subscribe

	2 Common Use Cases
	Introduction
	Case 1: ACI and ACI (including Units of Work)
	Business Scenario
	Table of Interoperability
	Message Flow: ACI and ACI
	Description of Steps in Message Flow

	Case 2: JACI and ACI
	Business Scenario
	Table of Interoperability
	Message Flow: JACI and ACI
	Description of Steps in Message Flow

	Case 3: ACI (via Web Server) and ACI
	Business Scenario
	IT Environment
	Table of Interoperability
	Message Flow: ACI and WebSphere MQ
	Description of Steps in Message Flow

	Case 4: RPC Wrapper and RPC
	Business Scenario
	Table of Interoperability
	Message Flow: RPC Wrapper and RPC

	Case 5: Publisher (Natural Mainframe) and Subscriber (UNIX or Windows)
	Business Scenario
	IT Environment
	Table of Interoperability
	Message Flow: Publisher and Subscriber
	Description of Steps in Message Flow

	3 General Architecture of EntireX Broker
	Introduction to EntireX Broker Architecture
	EntireX Broker Communication Models
	Client and Server
	Example Scenario 1: Client and Server Messaging (Synchronous)
	Example Scenario 2: Client and Server Messaging (Asynchronous)

	Publish and Subscribe

	Architecture of Broker Stub
	Overview of Broker Stub
	Description of Command Process Flow within Broker Stub

	Architecture of Broker Kernel
	Overview of Broker Kernel
	Description of Command Process Flow within Broker Kernel

	4 Functionality of EntireX Broker
	Application Bindings (Stubs)
	Attach Services
	Codepage Conversion
	Command and Information Services
	Accounting
	Data Compression
	Persistent Store
	Persistent Store Types

	Units of Work
	Security

	5 Broker Quick Reference
	Functionality: Communication Models
	ACI Syntax of Messaging Model
	Location of Broker Kernel and Stubs
	Transport: Broker Stubs and APIs

	II Broker Attributes
	6 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definition
	Service Update Modes
	OPTION Values for Conversion

	Topic-specific Attributes
	Codepage-specific Attributes
	Adabas SVC/Entire Net-Work-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Variable Definition File

	III Broker Command and Information Services
	7 Broker Command and Information Services
	CIS Overview Table
	Description of Services
	INFO and USER-INFO
	CMD, PARTICIPANT-SHUTDOWN and SECURITY

	Modes of Requesting the Services
	Command-line Utilities
	Version Information

	Graphical User Interface
	User-Written Interface

	ETBCMD: Executable Command Requests
	ETBINFO: Returnable Information Requests

	IV
	8 Sample Security Exits for Broker Security
	Sample Security Exits as Alternative Security Solution
	Major Advantages of EntireX Security
	Comprehensive Security
	Protection of Application Systems
	One User=One Definition
	No User Exits to Write/Debug
	Standard Security Definitions
	Protected Investment in SAF-based Security Repositories

	Lightweight USRSEC
	Implementation of Sample Security Exits
	Description of Steps in Data Flow

	Definition of Terms
	Authentication
	Authorization
	Broker and Kernel
	Broker Stub
	Encryption / Decryption
	Exits

	9 Using Sample Security Exits for Broker Security
	Overview of Security Data Flow
	Prerequisites for Running EntireX Broker in a Secure Environment
	General Security Recommendations
	Implementing the Kernel Security Exit under z/OS
	Implementing Security for Broker Stubs under z/OS
	Implementing Security Exits for Broker Stubs on UNIX
	Implementing Security Exits for Broker Stubs on Windows

	Writing Security Exits
	Requirements
	Error Checking for Incomplete Security Installation

	Security-Related Parameters
	USER-ID
	PASSWORD
	SECURITY-TOKEN
	CLIENT-UID
	ERROR-CODE
	ERROR-TEXT
	KERNELSECURITY
	ENCRYPTION-LEVEL

	Programming Broker Stub Exits
	Preparation Exit
	Synopsis
	Return value
	Required Actions in the Exit
	Recommended Actions in the Exit

	Evaluation Exit
	Synopsis
	Parameters
	Return Value
	Required Actions in the Exit
	Recommended Actions in the Exit
	Use of a Single Send/Receive Buffer

	Programming the Kernel Exit Routine
	Synopsis
	Parameters
	Return Value

	Layout of Security Parameter Block ETB_SECPAR
	Layouts of Type-dependent Security Parameter Blocks
	Required/ Recommended Actions in the Exit (depending on Security Type)

	V
	10 EntireX Broker Tutorial
	Introduction to Tutorial
	Calling the Tutorial Menu
	Global Defaults for the Tutorial
	Tutorial Commands
	Using the Tutorial Help
	Using the Example Programs
	Step Mode
	Stress Mode
	Blocked RECEIVE
	Blocked SEND

	All Other EntireX Broker Calls
	Silent Mode

	The Tutorial Trace Facility
	Display/Modify Send Buffer
	Display/Reset Receive Buffer

	ACI Test Tool: Single Broker Request

	11 Examples for EntireX Broker Tutorial
	Non-conversational Examples
	Example 1: Single Request without Reply
	Client
	Server
	Coding

	Example 2: Single Request with Reply
	Client
	Server
	Coding

	Conversational Examples
	Example 3: Long Running Service - Non-blocked Client
	Client
	Server
	Coding

	Example 4: Transfer Messages from Server to Client
	Client
	Server
	Coding

	Example 5: Transfer Messages from Client to Server
	Client
	Server
	Coding

	Example 6: Server with Multiple Parallel Conversations
	Client
	Server
	Coding

	Special Features
	Example 7: Send Messages with HOLD - Delayed Delivery
	Client
	Server
	Coding

	Example 8: Remove Service while Conversations Exist
	Client
	Server
	Coding

	Example 9: Server for Multiple Services
	Client
	Server
	Coding

	Getting Started
	Example 10: ACI Test Tool: Single Broker Requests
	Example 11: Model to write Client/Server Programs API Version 1
	Client
	Server
	Coding

	Example 12: Model to write Client/Server programs API Version 2
	Client
	Server
	Coding

	Attach Manager Interface
	Example 13: Demonstration of the Attach Manager Interface
	Coding

	Non-blocked Server
	Example 14: Single Requests without Reply - A Polling Server
	Example
	Client
	Server
	Coding

	Example 15: Single Requests with Reply - A Polling Server
	Client
	Server
	Coding

	VI
	12 Introduction to Broker Administration using SMH
	13 Managing the List of Brokers with SMH
	Creating a Local Broker
	Deleting a Local Broker
	Adding a Remote Broker Instance to System Management Hub
	Removing a Remote Broker Instance from System Management Hub
	Stopping All Local Brokers from System Management Hub
	Setting the User Credentials for a Broker Instance
	Clearing the User Credentials for a Broker Instance
	Setting SSL or TLS Parameters

	14 Configuring a Single Broker with SMH
	Starting a Local Broker
	Restarting a Local Broker
	Stopping a Local Broker
	Administering a Broker Attribute File
	Editing an Attribute File
	Uploading an Attribute File
	Downloading an Attribute File

	Administering a Log File
	Showing a Log File
	Downloading a Log File

	Setting the Local Broker Autostart Value
	Enabling the SNMP Plug-in
	Disabling the SNMP Plug-in

	15 Using the Broker Information Service with SMH
	Administering a Broker Instance
	Filtering Clients
	Filtering Conversations
	Filtering the User
	Filtering Participants
	Filtering the Persistent Store
	Filtering the Publication
	Filtering the Publisher
	Filtering Servers
	Filtering Services
	Filtering the Subscriber
	Filtering the Topic

	16 Using the Broker Command Service with SMH
	Connecting/Disconnecting Persistent Store
	Allowing and Forbidding new UOW Messages
	Setting a Broker Instance's Trace Level
	Flushing a Broker Instance's Trace Buffer
	Flushing a Broker Instance's Trace Buffer on Error
	Producing Statistics of a Broker Instance
	Setting the Persistent Store Trace Level
	Setting the Security Trace Level
	Deregistering a Server
	Deregistering a Service
	Purging Unit(s) of Work
	Subscribing a User
	Unsubscribing a User
	Logging Off a Subscriber
	Logging Off a Publisher
	Enabling/Disabling Cmdlog
	Switching Cmdlog
	Adding Cmdlog Filter
	Enabling/Disabling Cmdlog Filter
	Deleting Cmdlog Filter

	VII
	17 EntireX Broker Reporting
	Configuration Report
	Load Module Report
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Persistent Store Report
	Configuration
	Sample Report

	License Report

	18 Command Logging in EntireX
	Introduction to Command Logging
	Overview
	Command Log Files
	Defining Filters
	Programmatically Turning on Command Logging

	Command Log Filtering using System Management Hub
	Setting up your Environment
	Adding a Filter
	Managing Filters

	Command Log Filtering using Command-line Interface ETBCMD
	Setting Filters
	Deleting Filters
	Disabling and Enabling a Filter

	ACI-driven Command Logging
	Dual Command Log Files

