
webMethods EntireX

Administration under UNIX

Version 9.5 SP1

November 2013

This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ADMIN-95SP1-20140628UNIX

Table of Contents

EntireX Administration under UNIX ... ix
1 Setting up Broker Instances ... 1

Startup Daemon 'etbsrv' ... 2
Starting or Restarting the Administration Service ... 3
Setting up the TCP/IP Communication ... 3
Starting and Stopping the Default Broker ... 4
Running Broker with SSL or TLS Transport .. 4
Starting and Stopping an Additional Broker ... 5
Uniqueness Test for Broker ID ... 6
Tracing EntireX Broker ... 6
Protecting a Broker against Denial-of-Service Attacks .. 8

2 Configuring the Administration Service under UNIX ... 9
Requirements ... 10
Introduction .. 10
Saving the Data of Administration Service in a Flat File (Default) 11
Saving the Data of Administration Service in LDAP ... 11
Changing the Configuration of a Running Administration Service 12

3 Broker Attributes ... 13
Name and Location of Attribute File ... 15
Attribute Syntax ... 15
Broker-specific Attributes .. 17
Service-specific Attributes .. 42
Topic-specific Attributes .. 55
Codepage-specific Attributes ... 62
Security-specific Attributes .. 66
TCP/IP-specific Attributes .. 72
c-tree-specific Attributes .. 76
SSL-specific Attributes ... 78
DIV-specific Attributes ... 83
Adabas-specific Attributes ... 83
Variable Definition File .. 85

4 Introduction to Broker Administration using SMH .. 87
5 Managing the List of Brokers with SMH .. 89

Creating a Local Broker .. 91
Deleting a Local Broker .. 91
Adding a Remote Broker Instance to System Management Hub 93
Removing a Remote Broker Instance from System Management Hub 93
Stopping All Local Brokers from System Management Hub 95
Setting the User Credentials for a Broker Instance .. 96
Clearing the User Credentials for a Broker Instance ... 97
Setting SSL or TLS Parameters ... 97

6 Configuring a Single Broker with SMH .. 99
Starting a Local Broker ... 100

iii

Restarting a Local Broker ... 101
Stopping a Local Broker ... 102
Administering a Broker Attribute File ... 103
Administering a Log File .. 105
Setting the Local Broker Autostart Value ... 108
Enabling the SNMP Plug-in ... 108
Disabling the SNMP Plug-in .. 110

7 Using the Broker Information Service with SMH ... 111
Administering a Broker Instance ... 112
Filtering Clients .. 115
Filtering Conversations .. 116
Filtering the User .. 116
Filtering Participants .. 118
Filtering the Persistent Store .. 119
Filtering the Publication ... 120
Filtering the Publisher .. 121
Filtering Servers .. 122
Filtering Services .. 123
Filtering the Subscriber .. 124
Filtering the Topic ... 125

8 Using the Broker Command Service with SMH ... 127
Connecting/Disconnecting Persistent Store ... 128
Allowing and Forbidding new UOWMessages .. 129
Setting a Broker Instance's Trace Level .. 129
Flushing a Broker Instance's Trace Buffer .. 130
Flushing a Broker Instance's Trace Buffer on Error .. 130
Producing Statistics of a Broker Instance ... 131
Setting the Persistent Store Trace Level .. 131
Setting the Security Trace Level ... 132
Deregistering a Server .. 133
Deregistering a Service ... 134
Purging Unit(s) of Work ... 135
Subscribing a User .. 137
Unsubscribing a User ... 138
Logging Off a Subscriber .. 139
Logging Off a Publisher ... 140
Enabling/Disabling Cmdlog ... 140
Switching Cmdlog .. 142
Adding Cmdlog Filter .. 143
Enabling/Disabling Cmdlog Filter ... 144
Deleting Cmdlog Filter ... 145

9 Configuring Broker for Internationalization ... 147
Configuring Translation ... 148
Configuring Translation User Exits .. 149
Configuring ICU Conversion ... 149

Administration under UNIXiv

Administration under UNIX

Configuring SAGTRPC User Exits ... 150
Writing Translation User Exits ... 151
Writing SAGTRPC User Exits .. 154
Building and Installing ICU Custom Converters ... 159

10 Managing the Broker Persistent Store ... 163
Implementing an Adabas Database as Persistent Store ... 164
c-tree Database as Persistent Store ... 171
Migrating the Persistent Store .. 171

11 Broker Resource Allocation ... 175
General Considerations .. 176
Specifying Global Resources .. 177
Restricting the Resources of Particular Services .. 177
Specifying Attributes for Privileged Services .. 179
Maximum Units of Work .. 180
Calculating Resources Automatically .. 180
Dynamic Memory Management .. 183
Dynamic Worker Management .. 184
Storage Report .. 185
Maximum TCP/IP Connections per Communicator .. 188

12 Administering Broker Stubs .. 191
Available Stubs ... 192
Setting Transport Methods for Broker Stubs .. 192
Tracing for Broker Stubs ... 195
Application Stublog File ... 196
UNIX Commands to Set the Environment Variables ... 197
Support of Clustering in a High Availability Scenario .. 197

13 Broker Command-line Utilities ... 199
etbinfo ... 200
etbcmd .. 206

14 Administration Service Commands .. 213
Starting a Broker ... 214
Pinging a Broker ... 214
Pinging an RPC Server ... 214
Restarting a Broker ... 215
Stopping a Broker ... 215
Enabling EntireX Security .. 215
Disabling EntireX Security ... 215

15 Administering the Attach Manager under UNIX ... 217
Prerequisites ... 218
Setting up the Attach Manager .. 218
Sample Configuration File ... 223
Operating the Attach Manager under UNIX ... 225

16 Settting up and Administering the Broker TCP Agent ... 229
Common Scenarios ... 230

vAdministration under UNIX

Administration under UNIX

Indirect TCP/IP Connections by the TCP Agent to Avoid Security
Restrictions ... 231
Using the TCP Agent .. 231
Activating Tracing for the TCP Agent .. 232
Architecture of the TCP Agent ... 233

17 Settting up and Administering the Broker SSL Agent .. 235
Common Scenarios ... 236
Using the SSL Agent ... 236
Activating Tracing for the SSL Agent ... 237
Architecture of the SSL Agent .. 237

18 Settting up and Administering the Broker HTTP(S) Agent 239
HTTP(S) Tunneling with EntireX ... 240
Configuring the HTTP(S) Agent .. 241
Using Internationalization with the HTTP(S) Agent ... 243
Activating Tracing for the HTTP(S) Agent ... 243

19 Administering the EntireX RPC Server ... 245
Locating and Calling the Target Server .. 246
Setting Server Parameters for the RPC Server .. 248
Scalability of the RPC Server .. 253
Using Internationalization with the RPC Server .. 256
Using SSL or TLS with the RPC Server .. 256
Starting the RPC Server .. 257
Stopping the RPC Server .. 258
Activating Tracing for the RPC Server ... 258

20 Administering the EntireX RPC Servers using System Management Hub 259
Introduction .. 260
Adding a Local RPC Server .. 260
Adding a Remote RPC Server .. 263
Operating and Monitoring the RPC Servers using System Management Hub 264

21 Administration of the EntireX Java RPC Server .. 269
Customizing the Java RPC Server .. 270
Using Package Names with the Java RPC Server .. 273
Using Internationalization with Java RPC Server .. 274
Starting the Java RPC Server .. 275
Stopping the Java RPC Server .. 275
Application Identification .. 275

22 Administering the EntireX XML/SOAP RPC Server ... 277
Administering the EntireX XML/SOAP RPC Server .. 278
Command-line Parameters ... 279
Sample Properties File .. 281
Configuration File for the XML/SOAP RPC Server ... 281
Configuring the XML/SOAP RPC Server ... 284
XML/SOAP RPC Server with HTTP Basic Authentication 285
XML/SOAP RPC Server with UsernameToken .. 285
Using SSL or TLS with the XML/SOAP RPC Server .. 286

Administration under UNIXvi

Administration under UNIX

Java API for XML/SOAP RPC Server ... 288
Starting the XML/SOAP RPC Server .. 291
Stopping the XML/SOAP RPC Server .. 291
Running the XML/SOAP RPC Server in the Software AG Runtime 292

23 Administering the EntireX XML/SOAP Listener .. 295
Introduction .. 296
Configuring the XML/SOAP Listener .. 296
XML/SOAP Listener with HTTP Basic Authentication and UsernameToken
Authentication for EntireX Authentication .. 299
Using Internationalization with the XML/SOAP Listener 303
UNIX Commands to set the Environment Variables ... 303

24 Configuring Authorization Rules .. 305
Configuration of LDAP (Lightweight Directory Access Protocol) Server 306
Configuration of Authorization Rule Agent using System Management Hub 307

25 Administering Authorization Rules using System Management Hub 309
Adding a Rule .. 310
Adding a Service .. 311
Adding a Topic ... 312
Adding/Modifying Users ... 313

26 Hints for Special LDAP Server Products ... 315
Introduction .. 316
Hints for Microsoft Active Directory ... 316

27 Tracing webMethods EntireX .. 321
Table Summarizing Tracing for webMethods EntireX Components 322
Tracing EntireX Broker ... 323
Tracing Broker Agent ... 324
Tracing Broker Stubs .. 325
Tracing Enterprise JavaBeans ... 325
Logging Enterprise JavaBeans .. 326
Tracing EntireX Java ACI ... 327
Tracing Java RPC Server ... 327
Tracing the RPC Runtime ... 328
Tracing the RPC Server ... 329
Tracing the XML/SOAP Runtime ... 331
Tracing the EntireX RPC-ACI Bridge ... 335

28 EntireX Trace Utility .. 337
Introduction to the EntireX Trace Utility ... 338
Process Trace .. 338
Show Trace ... 345
Using the EntireX Trace Utility in Batch Mode .. 346
Usage Tips .. 347

29 Broker Shutdown Statistics .. 349
Shutdown Statistics Output ... 350
Table of Shutdown Statistics .. 350

30 Command Logging in EntireX ... 355

viiAdministration under UNIX

Administration under UNIX

Introduction to Command Logging ... 356
Command Log Filtering using System Management Hub 358
Command Log Filtering using Command-line Interface etbcmd 360
ACI-driven Command Logging ... 362
Dual Command Log Files .. 362

31 Accounting in EntireX Broker .. 365
EntireX Accounting Data Fields ... 366
Using Accounting under UNIX and Windows .. 369
Example Uses of Accounting Data ... 370

Administration under UNIXviii

Administration under UNIX

EntireX Administration under UNIX

Broker-related configuration topics.Broker Configuration

Broker add-ons: Broker stubs, command-line utilities, AttachManager.Broker Add-ons

Broker agents.Broker Agents

RPC servers, listeners and bridges.RPC Servers, Listeners and Bridges

Authorization rules.Authorization Rules

Logging, tracing and accounting.Logging and Tracing

ix

x

1 Setting up Broker Instances

■ Startup Daemon 'etbsrv' ... 2
■ Starting or Restarting the Administration Service ... 3
■ Setting up the TCP/IP Communication .. 3
■ Starting and Stopping the Default Broker ... 4
■ Running Broker with SSL or TLS Transport .. 4
■ Starting and Stopping an Additional Broker .. 5
■ Uniqueness Test for Broker ID ... 6
■ Tracing EntireX Broker ... 6
■ Protecting a Broker against Denial-of-Service Attacks .. 8

1

This chapter contains information on setting up the Broker under UNIX. It assumes that you have
successfully installed EntireX using the Software AG Installer.

Startup Daemon 'etbsrv'

This daemon runs in the background for the SystemManagementHub agents to administer broker
instances. It is installed as etbsrv in the directory /opt/softwareag/EntireX/bin.

To start the daemon

■ Enter the following command:

- /etc/init.d/sag<n>etbsrv start

where <n> is a sequential, installation-dependent number.

This ensures that etbsrv is always running and ready to receive start/stop commands from
System Management Hub agents. Note that the startup script sag<n>etbsrv sources the SAG
environment file EntireX/INSTALL/exxenv.

To stop the daemon

■ Enter the following command:

- /etc/init.d/sag<n>etbsrv stop

It is also registered to startup at boot time, therefore the installation generates additional scripts
in a location that depends on the operating system

LocationOperating System

/etc/init.dSolaris, Linux

/etcAIX

/sbin/init.dHP-UX

See alsoBroker Administration using SystemManagementHub in theUNIX administration document-
ation.

Administration under UNIX2

Setting up Broker Instances

Starting or Restarting the Administration Service

The Administration Service is started or stopped by the broker startup daemon etbsrv.

When the broker has been started successfully, the Administration Service waits for messages
from other started brokers. This wait period lasts around 90 seconds.

After this wait period, all brokers are started that have an Autostart value of "yes" that have not
already started.

When the Administration Service is restarted, it takes a maximum of 90 seconds until the current
system status is displayed correctly.

Setting up the TCP/IP Communication

Note: The recommended way to set up TCP is to define TCPPORT=nnnn and optionally TCP-
ADDRESS=x.x.x.x in the Broker attribute file (applies to broker instances other than the
default broker, which is defined during installation).

The EntireX Broker kernel uses getservbyname to determine the TCP/IP port onwhich itwill listen
for incoming connections. The specified name is the value of the BROKER-ID parameter in the
attribute file.

An entry for this value must be made either in the system-wide DNS, NIS or NIS+ database or the
local machine's /etc/services file, for example:

etbnnn yyyyy/tcp # local host

where etbnnn is the BROKER-ID and yyyyy is the intended port number. This is the same place
that local Broker stubs will obtain the port information. If getservbyname fails, then a default port
number of 1971 will be used. This is the same default port number that the stubs use.

The port number used by the Broker is displayed by the Administration tool. If more than one
instance of the Broker uses the same port number, only one of these instances can run at a time.

3Administration under UNIX

Setting up Broker Instances

Starting and Stopping the Default Broker

If check boxTurn onAutostart for default EntireXBroker is checkedduring installation, the default
broker ETB001 is started.

To start the default broker

■ Enter command:

<Installation_Dir>/EntireX/bin/defaultbroker start

To stop the default broker

■ Enter command:

<Installation_Dir>/EntireX/bin/defaultbroker stop

Note: Both commands require that you source the EntireX environment file <Installa-
tion_Dir>/EntireX/INSTALL/exxenv[.csh].

Running Broker with SSL or TLS Transport

Before starting the Broker, it must be configured to correctly use SSL or TLS as a transport mech-
anism:

■ Step 1: Modify Broker-specific Attributes
■ Step 2: Modify SSL-specific Attributes

Step 1: Modify Broker-specific Attributes

Append "-SSL" to the TRANSPORT attribute. For example:

DEFAULTS = BROKER
TRANSPORT = TCP-SSL

See also TRANSPORT.

Administration under UNIX4

Setting up Broker Instances

Step 2: Modify SSL-specific Attributes

Set the SSL or TLS attributes, for example:

DEFAULTS = SSL
KEY-STORE = /opt/softwareag/EntireX/etc/ExxAppCert.pem
KEY-PASSWD-ENCRYPTED = MyAppKey
KEY-FILE = /opt/softwareag/EntireX/etc/ExxAppKey.pem
VERIFY-CLIENT = N
PORT=1958

where 1958 is the default but can be changed to any port number.

See also SSL-specific Attributes (DEFAULTS=SSL) under Broker Attributes in the administration docu-
mentation and SSL or TLS and Certificates with EntireX.

Starting and Stopping an Additional Broker

A default broker is always created during installation. This broker is started automatically by de-
fault. See also Broker Administration using System Management Hub.

1. Create a subdirectory called ETBnnnunder $EXXDIR/etb if it does not yet exist, place the attribute
file under ETBnnn and name it etbfile.

Example:

cd $EXXDIR/etb
mkdir ETB002
cp /tmp/your attribute file ETB002/etbfile

2. The Broker can be started by executing shell script etbstart in the /opt/softwareag/EntireX/bin
directory, using the syntax:

etbstart ETBnnn

where ETBnnn is the assigned Broker ID (for example ETB001).

3. The Broker can be stopped by executing the etbcmd utility in the /opt/softwareag/EntireX/bin dir-
ectory using the syntax:

etbcmd -bbroker-id -dBROKER -cSHUTDOWN

Optional: The Broker can also be shutdown in any of the following ways:

5Administration under UNIX

Setting up Broker Instances

■ etbcmd -blocalhost:port -dBROKER -cSHUTDOWN

■ etbcmd -bipaddress:port -dBROKER -cSHUTDOWN

■ etbcmd -bmachinename:port -dBROKER -cSHUTDOWN

The port number is needed only when Broker does not run on standard port.

See also Broker Shutdown Statistics and Setting up TCP/IP Transport.

Note: The information given here is independent of hardware type and platform.

Uniqueness Test for Broker ID

To guarantee that a broker ID is unique on one machine, a named semaphore is created at initial-
ization. If this semaphore already exists for this broker ID, initialization is terminatedwithmessage
ETBE0168, “This instance of broker already running”. If as a result of an abnormal broker termin-
ation this semaphore cannot be deleted completely, you can force a restart of the Broker with
Broker attribute FORCE=YES.

Tracing EntireX Broker

This section covers the following topics:

■ Broker TRACE-LEVEL Attribute
■ Attribute File Trace Setting
■ Deferred Tracing

Broker TRACE-LEVEL Attribute

The Broker TRACE-LEVEL attribute determines the level of tracing to be performed while Broker is
running. The Broker has a master TRACE-LEVEL specified in the Broker section of the attribute file
as well as several individual TRACE-LEVEL settings that are specified in the following sections of
the attribute file. You can also modify the different TRACE-LEVEL values while Broker is running,
without having to restart the Broker kernel for the change to take effect.

For temporary changes to TRACE-LEVELwithout restarting the Broker, use the SystemManagement
Hub or the Broker command-line utility etbcmd.

Administration under UNIX6

Setting up Broker Instances

Specified in Attribute File SectionIndividual Settings

DEFAULTS=BROKERMaster trace level

DEFAULTS=ADABAS | CTREE | DIV (currently not available for DIV)Persistent store trace level

CONVERSION parameter that can be defined in DEFAULTS=BROKER | SERVICE
| TOPIC

Conversion trace level

DEFAULTS=SECURITYSecurity trace level

These individual TRACE-LEVEL values determine the level of tracing within each subcomponent.
If not specified, the master TRACE-LEVEL is used.

Attribute File Trace Setting

DescriptionTrace Level

No tracing. Default value.0

Traces incoming requests, outgoing replies, and resource usage.1

All of Trace Level 1, plus all main routines executed.2

All of Trace Level 2, plus all routines executed.3

All of Trace Level 3, plus Broker ACI control block displays.4

All of Trace Level 4, plus Adabas Persistent Store Adabas control blocks.8

Note: Trace levels 2 and above should be used onlywhen requested by SoftwareAG support.

Deferred Tracing

It is not always convenient to run with TRACE-LEVEL defined, especially when higher trace levels
are involved. Deferred tracing is triggered when a specific condition occurs - such as an ACI re-
sponse code or a Broker subtask abend. Such conditions cause the contents of the trace buffer to
be written, showing trace information leading up the specified event. If the specified event does
not occur, the Broker trace will contain only startup and shutdown information (equivalent to
TRACE-LEVEL=0). Operating the trace in this mode requires the following additional attributes in
the Broker section of the attribute file. Values for TRBUFNUM and TRAP-ERROR are only examples.

DescriptionValueAttribute

Specifies the deferred trace buffer size = 3 * 64 K.3TRBUFNUM

Indicates trace is not written until an event occurs.WRAPTRMODE

Assigns the event ACI response code 00780322 "PSI: UPDATE failed".322TRAP-ERROR

7Administration under UNIX

Setting up Broker Instances

Protecting a Broker against Denial-of-Service Attacks

An optional feature of EntireX Broker is available to protect a Broker running with SECURITY=YES
against denial-of-service attacks. An application that is running with invalid user credentials will
get a security response code. However, if the process is doing this in a processing loop, the whole
system could be affected. If PARTICIPANT-BLACKLIST is set to "YES", EntireX Broker maintains a
blacklist to handle such “attacks”. If an application causes ten consecutive security class error
codes within 30 seconds, the blacklist handler puts the participant on the blacklist. All subsequent
requests from this participant are blocked until the BLACKLIST-PENALTY-TIME has elapsed.

Server Shutdown Use Case

Here is a scenario illustrating another use of this feature that is not security-related.

An RPC server is to be shut down immediately, using Broker Command and Information Services
(CIS), and has no active request in the broker. The shutdown results in the LOGOFF of the server.
The next request that the server receives will probably result in message 00020002 "User does not
exist", which will cause the server to reinitialize itself. It was not possible to inform the server that
shutdown was meant to be performed.

With the blacklist, this is now possible. As long as the blacklist is not switched off, when a server
is shut down immediately using CIS and when there is no active request in the broker, a marker
is set in the blacklist. When the next request is received, this marker results in message 00100050
"Shutdown IMMED required", which means that the server is always informed of the shutdown.

Administration under UNIX8

Setting up Broker Instances

2 Configuring the Administration Service under UNIX

■ Requirements ... 10
■ Introduction .. 10
■ Saving the Data of Administration Service in a Flat File (Default) ... 11
■ Saving the Data of Administration Service in LDAP .. 11
■ Changing the Configuration of a Running Administration Service .. 12

9

The Administration Service controls the processes of the local brokers. The brokers are started or
stopped. The local brokers connectwith theAdministration Service and provide it with their status
and other information at an interval of 60 seconds. TheAdministration Service always has inform-
ation on the current status of all local brokers.

The Administration Service also collates the status and other information of any known remote
brokers and provides an interface with which these can be accessed.

See also Starting or Restarting the Administration Service.

Requirements

TheAdministration Service is provided in a fully functional state and is started by the installation.
It needs access to the local port 57707, and to port 57708 for remote connections. The connections
to port 57708 are SSL only. If this port is to be used, the client requires the respective SSL certificate.
If no remote access to the Administration Service is required, you can deactivate this port. To de-
activate the port, change the transport from "TCP-SSL" to "TCP". See TRANSPORT. The attribute file
is in the working directory of the Administration Service, config/etb/ETBSRV.

Introduction

It is not normally necessary to change the configuration of the Administration Service. The log
file, configuration file and SSL certificates are delivered in the EntireX directory config/etb/ETBSRV.
If an error occurs, the log file of the Administration Service can provide information on the cause
of the error. On UNIX, the log file is called etbfile.

The Administration Service requires SSL certificates to create brokers with SSL ports. During in-
stallation, the Administration Service copies the SSL certificates from the EntireX "etc" directory
to the EntireX config/etb directory if this directory does not already contain any certificates. These
certificates are for test purposes only and constitute a security risk. If you want to use SSL, replace
the certificates in the config/etb directory with your own SSL certificates.

When a broker is created, the Administration Service copies the required certificates from the
EntireX "config/etb" directory to the working directory of the newly created broker.

If the certificates are to be replaced after the installation, you also need to replace the certificates
in the working directories ETBSRV (Administration Service) and ETB001 (Default Broker) in the
EntireX directory config/etb.

The Administration Service stores data in a directory service. The name of the corresponding data
file is stored in file xds.ini in the EntireX directory config. You can also store the data of the Admin-

Administration under UNIX10

Configuring the Administration Service under UNIX

istration Service in LDAP. For this you need to adapt the entries in file xds.ini accordingly. The
section for Administration Service is headed "[CIS Management]".

Saving the Data of Administration Service in a Flat File (Default)

This is the default definition in file xds.ini:

[CIS Management]
dirservice=FLATDIR
file=C:\SoftwareAG\EntireX\etc\flat

Saving the Data of Administration Service in LDAP

Modify default definition in file xds.ini to match your enviroment.

[CIS Management]
dirService=LDAPDIR
baseDN=<DN>
host=<host>
port=<port>
protocol=<protocol>
authDN=<user>
authPass=<ldap_password>

is the base distinguished name of the directory object that is the root of all
objects for authorization rules; <DN>must not be empty

<DN>where

is the host of the LDAP server.<host>

is the port of the LDAP server. Default is 389 for TCP communication; default
port for SSL is 636

<port>

is is either "ldap" (default) for TCP communication, or "ldaps" for SSL<protocol>

For authenticated access to the LDAP server, use the keywords authDN and authPass,

is the DN of the user<user>where
is the password of this user<ldap_password>

Caution: The password is not encrypted in xds.ini

For unauthenticated access to the LDAP server, do not include these keywords authDN and authPass
in the xds.ini.

11Administration under UNIX

Configuring the Administration Service under UNIX

Example

dirService=LDAPDIR
host=myHost.myDomain
baseDN=dc=myCompany,dc=de
port=389
protocol=ldap
authDN=cn=admin,dc=myCompany,dc=de
authPass=myLdapPassword

Changing the Configuration of a Running Administration Service

If the configuration of a running Administration Service is changed from flat file to LDAP, the
Administration Service recognizes this and stores its data in LDAPwithout any further intervention.

The status of the configuration file xds.ini is checked every 60 seconds. This means it can take up
to 60 seconds for the changes to the configuration file are activated.

Administration under UNIX12

Configuring the Administration Service under UNIX

3 Broker Attributes

■ Name and Location of Attribute File .. 15
■ Attribute Syntax .. 15
■ Broker-specific Attributes .. 17
■ Service-specific Attributes ... 42
■ Topic-specific Attributes .. 55
■ Codepage-specific Attributes ... 62
■ Security-specific Attributes .. 66
■ TCP/IP-specific Attributes ... 72
■ c-tree-specific Attributes ... 76
■ SSL-specific Attributes ... 78
■ DIV-specific Attributes .. 83
■ Adabas-specific Attributes ... 83
■ Variable Definition File .. 85

13

Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to
all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, publishers and subscribers as well as of the Broker itself.
You can customize the Broker environment by modifying the attribute settings.

Administration under UNIX14

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

File Name/LocationPlatform

File etbfile in directory <InstDir>/EntireX/config/etb/<BrokerName> (default) *UNIX

When starting a brokermanually, name and location of the broker attribute file can be overwrit-
ten with the environment variable ETB_ATTR.

*

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value

The following rules and restrictions apply:

■ A line can contain multiple entries separated by commas.
■ Attribute names can be entered in mixed upper and lowercase.
■ Spaces between attribute names, values and separators are ignored.
■ Spaces in the attribute names are not allowed.
■ Commas and equal signs are not allowed in value notations.
■ Lines startingwith an asterisk (*) are treated as comment lines.Within a line, characters following
an * or # sign are also treated as comments.

■ The CLASS keyword must be the first keyword in a service definition.
■ Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

■ Multiple topics can be included in a single topic definition section. The attribute settings will
apply to all topics defined in the section.

■ Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

■ Attributes specified after the topic definition (TOPIC keyword) override the default characteristics
for the topic.

■ Attribute values can contain variables of the form ${variable name} or $variable name:

15Administration under UNIX

Broker Attributes

■ Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

■ The variable name can contain only alphanumeric characters and the underscore (_) character.
■ The first non-alphanumeric or underscore character terminates the variable name.
■ under UNIX and Windows, the string ${variable name} is replaced with the value of the
corresponding environment variable.

■ On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

■ If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable namewill be used as the variable value.

■ If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

Administration under UNIX16

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section beginswith the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem
is corrected.

Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large
values for the broker attributes that define the global resources.

Operating System

Opt/
ReqValuesAttribute

bvwuzOYES | NOABEND-LOOP-DETECTION

Stop broker if a task terminates abnormally twice, that is, the same
abend reason at the same abend location already occurred. This
attribute prevents an infinite abend loop.

YES

Use only if requested by SoftwareAGSupport. This settingmaymake
sense if a known error leads to an abnormal termination, but a hotfix

NO

solving the problem has not yet been provided. Reset to "YES" when
the hotfix has been installed.

bvwuzOYES | NOABEND-MEMORY-DUMP

Print all data pools of the broker if a task terminates abnormally. This
dump is needed to analyze the abend.

YES

If the dumphas already been sent to SoftwareAG, you can set to "NO"
to avoid the extra overhead.

NO

zONO | 128-255ACCOUNTING

bwuONO | YES
[SEPARATOR=char]

Determines whether accounting records are created.

Do not create accounting records.NO

The SMF record number to usewhenwriting the accounting records.nnn

Create accounting data.
char= separator character(s). Up to seven separator characters can
be specified using the SEPARATOR suboption, for example

YES

ACCOUNTING = (YES, SEPARATOR=;). If no separator character is
specified, the comma character will be used.

17Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See also Accounting in EntireX Broker in the z/OS administration
documentation.

bwuzO1 | 2 | 3 | 4ACCOUNTING-VERSION

Determines whether accounting records are created.

Collect accounting information. This value is supported for reasons of
compatibility with EntireX Broker 7.2.1 and below.

1

Collect extended accounting information in addition to that available
with option 1.

2

Create accounting records in layout of version 3.3

Create accounting records in layout of version 4.4

This parameter applies to z/OS, UNIX, Windows and BS2000/OSD when
ACCOUNTING is activated.

bvwuzOYES | NOAUTOLOGON

LOGON occurs automatically during the first SEND or REGISTER.YES

The application has to issue a LOGON call.NO

bvwuzR5m | n | n S | nM | n
H

BLACKLIST-PENALTY-TIME

Define the length of time a participant is placed on the
PARTICIPANT-BLACKLIST to prevent a denial-of-service attack.

Same as n S.n

Non-activity time in seconds (max. 2147483647).n S

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).n H

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

bvwuzRA32BROKER-ID

Identifies the broker to which the attribute file applies. The broker ID must
be unique per machine.

Note: The numerical section of the BROKER-ID is no longer used to determine
theDBID in the EntireX Broker kernelwith EntireNet-Work transport (NET).
To determine the DBID, use attribute NODE in the DEFAULTS=NET section of
the attribute file.

Administration under UNIX18

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzR15M | n | nS | nM |
nH

CLIENT-NONACT

Define the non-activity time for clients.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A client that does not issue a broker request within the specified time limit
is treated as inactive and all resources for the client are freed.

bvwuzONO | YESCMDLOG

Command logging will not be available in the broker.NO

Command logging features will be available in the broker.YES

bvwuzO1024 | nCMDLOG-FILE-SIZE

Defines the maximum size of the file that the command log is written to, in
kilobytes. The valuemust be 1024 or higher. The default value is 1024.When
one command log file grows to this size, broker starts writing to the other
file. For more details, see Command Logging in EntireX.

bvwuzO60s | n | nS | nM| nH
|

CONTROL-INTERVAL

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby broker will check the status of the standard broker after the
elapsed CONTROL-INTERVAL time.

Same as nS.n

Interval in seconds (max. 2147483647).nS

Interval in minutes (max. 35791394).nM

Interval in hours (max. 596523).nH
The minimum value is 16 seconds. We strongly recommend the default
value (60 seconds), except for very slow machines.

bvwuzOUNLIM | nCONV-DEFAULT

Default number of conversations that are allocated for every service.

19Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION.

UNLIM

Number of conversations.n

This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.

bvwuzONO | YESDEFERRED

Disable or enable deferred processing of units of work.

Units of work cannot be sent to the service until it is available.NO

Units of work can be sent to a service that is not up and registered.
They will be processed when the service becomes available.

YES

bvwuzOYES | NODYNAMIC-MEMORY-MANAGEMENT

An initial portion of memory is allocated at broker startup based on
defined NUM-* attributes or internal default values if no NUM-*

YES

attributes have beendefined.Morememory is allocatedwithout broker
restart if there is a need to use more storage. Unused memory is
deallocated. The upper limit of memory consumption can be defined
by the attributeMAX-MEMORY. SeeDynamicMemoryManagementunder
Broker Resource Allocation in the general administration documentation.

All memory is allocated at broker startup based on the calculation
from the defined NUM-* attributes. Size ofmemory cannot be changed.
This was the known behavior of EntireX 7.3 and earlier.

NO

If you run your brokerwith attribute DYNAMIC-MEMORY-MANAGEMENT=YES,
the following attributes are not needed:

■ NUM-PUBLISHER■ CONV-DEFAULT

■ LONG-BUFFER-DEFAULT ■ NUM-SERVER

■ NUM-SERVICE-EXTENSION■ PUBLICATION-DEFAULT

■ SERVER-DEFAULT ■ NUM-SERVICE

■ NUM-SHORT[-BUFFER]■ SHORT-BUFFER-DEFAULT

■ SUBSCRIBER-DEFAULT ■ NUM-SUBSCRIBER-TOTAL

■ NUM-SUBSCRIBER■ NUM-CLIENT

■ NUM-CMDLOG-FILTER ■ NUM-TOPIC-EXTENSION

Administration under UNIX20

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ NUM-TOPIC-TOTAL■ NUM-COMBUF

■ NUM-CONV[ERSATION] ■ NUM-TOPIC

■ NUM-UOW|MAX-UOWS|MUOW■ NUM-LONG[-BUFFER]

■ ■NUM-PUBLICATION NUM-WQE

Caution: However, if one of these attributes is defined, it determines the
allocation size of that particular broker resource.

bwuzONO | YESDYNAMIC-WORKER-MANAGEMENT

All worker tasks are started at broker startup. The number of worker
tasks is defined by NUM-WORKER. After this initial step, no further

NO

worker tasks can be started. This is default and simulates the behavior
of EntireX version 8.0 and earlier.

As above, the initial portion of worker tasks started at broker startup
is determined by NUM-WORKER. However, if there is a need to handle

YES

an increased workload, additional worker tasks can be started at
runtimewithout restarting broker. Conversely, if aworker task remains
unused, it is stopped. The upper and lower limit of running worker
tasks can be defined by the attributes WORKER-MIN and WORKER-MAX.

If you run broker with DYNAMIC-WORKER-MANAGEMENT=YES, the following
attributes are useful to optimize the overall processing:

■ WORKER-MAX

■ WORKER-MIN

■ WORKER-NONACT

■ WORKER-QUEUE-DEPTH

■ WORKER-START-DELAY

The attribute NUM-WORKER defines the initial number ofworker tasks started
during initialization. SeeDynamicWorkerManagement under Broker Resource
Allocation in the general administration documentation.

uONO | YESFORCE

Go down with error if IPC resources still exist.NO

Clean up the left-over IPC resources of a previous run.YES

21Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Note:

1. If broker is started twice, the second instancewill kill the first by removing
the IPC resources.

2. For BS2000/OSD, z/OS and z/VSE, see separate attribute FORCE in section
Adabas SVC/Entire Net-Work-specific Attributes.

bvwuzO1024 nHEAP-SIZE

Defines the size of the internal heap in KB. We strongly recommend using
the default value (1024 KB).

bvwuzOYES | NOICU-CONVERSION

Disable or enable ICU conversion.

ICU is loaded and available for conversion. It is a prerequisite for
SAGTCHA and SAGTRPC.

YES

ICU is not loaded and not available for conversion. SAGTCHA and
SAGTRPC cannot be used.

NO

If any of the broker service definitions uses the internationalization approach
“ICUconversion”, that is, the conversionmethods SAGTCHAandSAGTRPC
are defined by the service-specific or topic-specific attribute CONVERSION,
ICU-CONVERSIONmust be set to "YES". The internationalization approaches
“Translation”, “Translation User Exit” and “SAGTRPC User Exit” do not
require ICU conversion. If all broker service definitions use these
internationalization approaches, ICU-CONVERSION can be set to "NO".

ICU requires additional storage to run properly. If ICU conversion is not
needed, setting ICU-CONVERSION to "NO" will help to avoid unnecessary
storage consumption.

wuOYES | NOICU-SET-DATA-DIRECTORY

Disable or enable ICU custom converter usage. Not defined for mainframe
platforms.

The broker tries to locate ICU custom converters with themechanism
defined by the platform, see Building and Installing ICU Custom
Converters in the platform-specific administration documentation.

YES

Use of ICU custom converters is not possible.NO

bwuzOYES | NOIPV6

Administration under UNIX22

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Establish SSL and TCP/IP transport in IPv6 and IPv4 networks
according to the TCP/IP stack configuration.

YES

Establish SSL and TCP/IP transport in IPv4 network only.NO

This attribute applies to EntireX version 9.0 and above.

bvwuzOUNLIM | nLONG-BUFFER-DEFAULT

Number of long buffers to be allocated for each service or topic.

The number of long message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-LONG-BUFFER.

UNLIM

Number of buffers.n

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

bvwuzO0 | n | nK | nM |
nG | UNLIM

MAX-MEMORY

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY-MANAGEMENT=YES has been defined.

No memory limit.0, UNLIM

Defines the maximum limit of allocated memory. If limit is
exceeded, error 671 “Requested allocation exceeds
MAX-MEMORY” is generated.

others

bvwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

bvwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a UOW (or publication).

See MAX-MESSAGE-LENGTH.MAX-MSG

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bvwuzO0 | nMAX-UOWS

Themaximumnumber ofUOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a MAX-UOWS value must be 1 or larger for the broker.

23Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The MAX-UOWS value for the service will default to the value set for the
broker. NUM-UOW is an alias of this parameter.

bvwuzONONE | UPPER |
LOWER

MESSAGE-CASE

Indicates if certain error message texts returned by the broker to its clients
or written by the broker to its log file are to be in mixed case, uppercase, or
lowercase.

No changes are made to message case.NONE

Messages are changed to uppercase.UPPER

Messages are changed to lowercase.LOWER

See NUM-UOW.MUOW

bvwuzOYES | NONEW-UOW-MESSAGES

New UOWmessages are allowed.YES

New UOWmessages are not allowed.NO

This applies to UOWwhen using Persistence and should not be used for
non-persistent UOWs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down.
You can set NEW-UOW-MESSAGES to "NO" to prevent new UOWmessages
frombeing added after a broker restart. This action allows only consumption
(not production) of UOWs to occur after broker restart. After the persistent
store capacity has been sufficiently reduced, the EntireXBroker administrator
can issue a CIS command, see ALLOW-NEWUOWMSGS under Broker CIS Data
Structures in the ACI Programming documentation. This action allows new
UOWmessages to be sent to the broker. Reset attribute NEW-UOW-MESSAGES
to "YES", which permits newUOWmessages to be produced in subsequent
broker sessions.

bvwuzO256 | nNUM-BLACKLIST-ENTRIES

Number of entries in the participant blacklist. Default value is 256 entries.
Togetherwith BLACKLIST-PENALTY-TIME and PARTICIPANT-BLACKLIST,
this attribute is used to protect a broker runningwith SECURITY=YES against
denial-of-service attacks. See Protecting a Broker against Denial-of-Service
Attacks in the platform-specific broker administration documentation.

bvwuzRnNUM-CLIENT

Number of clients that can access the broker concurrently. A value of 0 (zero)
is invalid.

Administration under UNIX24

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzO1 | nNUM-CMDLOG-FILTER

Maximum number of filters that can be specified simultaneously.

Tip: We recommend you limit this value to the number of services that are
being monitored. Minimum value is 1. A value of zero is invalid when the
attribute CMDLOG is set to "YES". See Command Logging in EntireX for more
information.

bvwuzR1 - 999999NUM-COMBUF

Determines the maximum number of communication buffers available for
processing commands arriving in the broker kernel. The size of one
communication buffer is usually 16 KB split into 32 slots of 512 bytes, but it
ultimately depends on the hardware architecture of your CPU. A value of
0 (zero) is invalid.

bvwuzRn | AUTONUM-CONVERSATION or
NUM-CONV Defines the number of conversations that can be active concurrently. The

number specified should be high enough to account for both conversational
and non-conversational requests. (Non-conversational requests are treated
internally as one-conversation requests.)

Number of conversations.n

Uses theCONV-DEFAULT and the service-specificCONV-LIMITvalues
to calculate the number of conversations. The values used in the
calculation must not be set to "UNLIM".

AUTO

Note:

1. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

2. SeeWildcard Service Definition.

bvwuzRn | AUTONUM-LONG-BUFFER or
NUM-LONG Defines the number of long message containers. Long message containers

have a fixed length of 4096 bytes and are used to store requests that are
larger than 2048 bytes. Storing a request of 8192 bytes, for example, would
require two long message containers.

Number of buffers.n

Uses the LONG-BUFFER-DEFAULT and the service-specific
LONG-BUFFER-LIMIT values to calculate the number of long

AUTO

25Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

message buffers. The values used in the calculation must not be set
to "UNLIM".

A value of 0 (zero) is invalid.

In non-conversationalmode, message containers are released as soon as the
client receives a reply from the server. If no reply is requested, message
containers are released as soon as the server receives the client request.

In conversationalmode, the last message received is always kept until a new
one is received.

Note:

1. If a catch-all service is defined in the service-specific section of the attribute
file, the value of AUTO is invalid.

2. SeeWildcard Service Definition.

bvwuzOn | AUTONUM-PUBLICATION

Defines the number of publications that can be active concurrently.

Number of publicationsn

Uses the PUBLICATION-DEFAULT and the topic-specific
PUBLICATION-LIMIT to calculate the number of publications. The
values used in the calculation must not be set to "UNLIM"

AUTO

Note:

1. A value of 0 (zero) is invalid.

2. If a wildcard topic is defined in the topic-specific section of the attribute
file, the value of AUTO is invalid.

bvwuzOnNUM-PARTICIPANT-EXTENSION

Defines the number of participant extensions to link participants as clients
and servers.

Number of participant extensionsn

If this attribute is not set, the default value is calculated based
on NUM-CLIENT and NUM-SERVER.

not specified

A value of 0 (zero) is invalid.

Administration under UNIX26

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzOnNUM-PUBLISHER

Number of publishers that can access the broker concurrently. A value of 0
(zero) is invalid.

bvwuzRn | AUTONUM-SERVER

Defines the number of servers that can offer services concurrently using the
broker. This is not the number of services that can be registered to the broker
(see NUM-SERVICE).

Number of servers.n

Uses theSERVER-DEFAULT and the service-specificSERVER-LIMIT
values to calculate the number of servers. The values used in the
calculation must not be set to "UNLIM".

AUTO

Note:

1. Setting this value higher than the number of services allows the starting
of server replicas that provide the same service.

2. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

3. SeeWildcard Service Definition.

bvwuzRnNUM-SERVICE

Defines the number of services that can be registered to the broker. This is
not the number of servers that can offer the services (see NUM-SERVER). A
value of 0 (zero) is invalid.

bvwuzOn | AUTONUM-SERVICE-EXTENSION

Defines the number of service extensions to link servers to services.

Number of service extensions.n

Uses the value specified or calculated for
NUM-SERVER + NUM-CLIENT, plus an extra cushion.

AUTO

If this attribute is not set, the default value is NUM-SERVER
multiplied by NUM-SERVICE.

not specified

The minimum value is NUM-SERVER.
The maximum value is NUM-SERVERmultiplied by NUM-SERVICE.

Caution is recommended with this attribute:

27Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ Set this attribute only if the storage resources allocated for service
extensions need to be restricted.

■ Note that the value <n> allows only the specified number of server
instances of <n> to be used.

■ Value AUTO will calculate the number of allowed server instances from
NUM-SERVER, which itself might be set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each service definition (see note below).

bvwuzRn | AUTONUM-SHORT-BUFFER or
NUM-SHORT Defines the number of short message containers. Short message containers

have a fixed length of 256 bytes and are used to store requests of no more
than 2048 bytes. To store a request of 1024 bytes, for example, would require
four short message containers.

Number of buffers.n

Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short

AUTO

message buffers. The values used in the calculation must not be set
to "UNLIM".

Note:

1. In non-conversationalmode, message containers are released as soon as
the client receives a reply from the server. If no reply is requested,message
containers are released as soon as the server receives the client request.

2. In conversationalmode, the last message received is always kept until a
new one is received.

3. If a wildcard service is defined in the service-specific section of the
attribute file, the value of AUTO is invalid.

4. SeeWildcard Service Definition.

bvwuzOn | AUTONUM-SUBSCRIBER

Defines the number of subscribers that can be active concurrently.

Number of subscribers.n

Uses the SUBSCRIBER-DEFAULT and the topic-specific
SUBSCRIBER-LIMIT to calculate the number of subscribers.

AUTO

Administration under UNIX28

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

A value of 0 (zero) is invalid. If a wildcard topic is defined in the
topic-specific section of the attribute file, the value of AUTO is invalid.

bvwuzOn | AUTONUM-SUBSCRIBER-TOTAL

Defines the total number of subscribers that can be durably subscribed. Their
subscription information is saved in the persistent store.

Total number of subscribers.n

Uses the value defined or calculated for NUM-SUBSCRIBER.AUTO

A value of 0 (zero) is invalid. This value must be greater than or equal to
the NUM-SUBSCRIBER value. Parameter is required if
SUBSCRIBER-STORE=PSTORE is defined.

bvwuzOnNUM-TOPIC

Defines the number of topics that can be active in the broker. A value of 0
(zero) is invalid.

bvwuzOn | AUTONUM-TOPIC-EXTENSION

Defines the number of topic extensions to link subscribers to topics.

Number of topic extensions.n

Uses the value specified for
NUM-SUBSCRIBER + NUM-PUBLISHER, plus an extra cushion.

AUTO

If this attribute is not set, the default value is NUM-SUBSCRIBER
multiplied by NUM-TOPIC.

not specified

The minimum value is NUM-SUBSCRIBER.
The maximum value is NUM-SUBSCRIBERmultiplied by NUM-TOPIC.

Caution is recommended with this attribute.

■ Set this attribute only if the storage resources allocated for topic extensions
need to be restricted.

■ Note that the value <n> allows only the specified number of topic instances
of <n> to be used.

■ Value AUTO calculates the number of allowed server instances from
NUM-SUBSCRIBER, which itself might set to AUTO. In this case, this also
considers the value of SERVER-DEFAULT and even the individual
SERVER-LIMIT for each topic definition (see note below).

bvwuzOn | AUTONUM-TOPIC-TOTAL

Defines the total number of topics forwhich durable subscribers are allowed.

29Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Total number of topics that allow durable subscriptions.n

Uses the value defined for NUM-TOPIC.AUTO

This value must be greater than or equal to the NUM-TOPIC value. This
parameter is required if SUBSCRIBER-STORE=PSTORE is defined.

bvwuzO0 | nNUM-UOW

Themaximumnumber ofUOWs that can be concurrently active broker-wide.
The default value is 0 (zero), which means that the broker will process only
messages that are not part of a unit of work. If UOW processing is to be
done by any service, a NUM-UOW value must be 1 or larger for the broker.
(MAX-UOWS is an alias for this attribute.)

The NUM-UOW value for the servicewill default to the value set for the broker.

bvwuzR1 | n (max. 10)NUM-WORKER

Number of worker tasks that the broker can use. The number of worker
tasks determines the number of functions (SEND, RECEIVE, REGISTER, etc.)
that can be processed concurrently. At least one worker task is required;
this is the default value.

bvwuzR1 - 32768NUM-WQE

Maximumnumber of requests that can be processed by the broker in parallel,
over all transport mechanisms.

Each broker command is assigned a worker queue element, regardless of
the transportmechanismbeing used. This element is releasedwhen the user
has received the results of the command, including the case where the
command has timed out.

bvwuzRYES | NOPARTICIPANT-BLACKLIST

Determines whether participants attempting a denial-of-service attack on
the broker are to be put on a blacklist.

Create a participant blacklist.YES

Do not create a participant blacklist.NO

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker administration documentation.

bvwuzRA32PARTNER-CLUSTER-ADDRESS

This is the address of the load/unload broker in transport-method-style.
Transport methods TCP and SSL are supported. See Transport-method-style

Administration under UNIX30

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Broker ID formore details. This attribute is required if the attribute RUN-MODE
is specified.

uzOYES | NOPOLL

In earlier EntireX versions, the maximum number of TCP/IP connections
per communicator was limited; seeMaximum TCP/IP Connections per
Communicator under Broker Resource Allocation in the general administration
documentation for platform-specific list. With attribute POLL introduced in
EntireX version 9.0, this restriction can be lifted under z/OS and UNIX.

The poll() system call is used to lift the resource restrictions with
select() in multiplexing file descriptor sets.

YES

This setting is used to run the compatibility mode in Broker. The
poll() system call is not used. The limitations described under

NO

Maximum TCP/IP Connections per Communicator under Broker Resource
Allocation in the general administration documentation apply.

bvwuzONO | HOT | COLDPSTORE

Defines the status of the persistent store at broker startup, including the
condition of persistent units of work (UOWs). With any value other than
"NO", PSTORE-TYPEmust be set.

No persistent store.NO

Persistent UOWs are restored to their prior state during
initialization.

HOT

Persistent UOWs are not restored during initialization, and the
persistent store is considered empty.

COLD

Note: For a hot or cold start, the persistent store must be available when
your broker is restarted.

bvwuzONO | YESPSTORE-REPORT

Determines whether PSTORE report is created.

Do not create the PSTORE report file.NO

Create the PSTORE report file.YES

See also Persistent Store Report under Concepts of Persistent Messaging in the
general administration documentation.

bvwuzODIV (z/OS) | CTREE
(UNIX, Windows) |

PSTORE-TYPE

Adabas (all platforms)

31Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

| FILE (UNIX,
Windows)

Describes the type of persistent store driver required.

Data in Virtual. z/OS only, and default on this platform. See
DIV-specific Attributes below and Implementing a DIV Persistent

DIV

Store underManaging the Broker Persistent Store in the z/OS
administration documentation.

c-tree database. UNIX and Windows only. See c-tree-specific
Attributes and c-tree Database as Persistent Store in the UNIX and
Windows administration documentation.

CTREE

Adabas. All platforms. See alsoAdabas-specific Attributes (below)
andManaging the Broker Persistent Store in the platform-specific
administration documentation.

ADABAS

B-Tree database. UNIX andWindows only.No longer supported.FILE

bvwuzO2 | 3 | 4PSTORE-VERSION

Determines the version of the persistent store. PSTORE=COLD is not needed
to upgrade the PSTORE to version 3. Any broker restart with
PSTORE-VERSION=3will upgrade the PSTORE version.

PSTORE-VERSION=3 is needed for ICU support. We recommended setting
PSTORE-VERSION=3.

PSTORE-VERSION=4 is needed to use the DIV PSTORE handler introduced
with version 9.0. It requires much less configuration data.

Caution:

■ If you go back to PSTORE-VERSION=2 after upgrading to
PSTORE-VERSION=3, the brokerwill only process data previously created
with version 2. No version 3 data will be accessible.

■ If you change the DIV PSTORE from version 3 to 4, perform a COLD
restart for the change to take effect, or run PSTORE UNLOAD/LOAD first.

bvwuzOn | UNLIMPUBLICATION-DEFAULT

Default number of publications that are allocated for every topic.

Number of publications.n

The number of publications is restricted only by the number of
publications globally available. Precludes the use of
NUM-PUBLICATION=AUTO.

UNLIM

Administration under UNIX32

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

This value can be overridden by specifying a PUBLICATION-LIMIT for the
topic. A value of 0 (zero) is invalid.

bvwuzOn | nS | nM| nH | nD
| nY

PUBLICATION-LIFETIME

Lifetime of a publication in absolute time units. Publications are retained
by broker until they are either received by all subscribers or the publication
lifetime has expired.

Same as nS.n

Publication lifetime in seconds (max. 2147483647).nS

Publication lifetime in minutes (max. 35791394).nM

Publication lifetime in hours (max. 596523).nH

Publication lifetime in days (max. 24855).nD

Publication lifetime in years (max. 68).nY

The publication lifetime is calculated even for periods of time when broker
is stopped.

bvwuzOYES | NOPUBLISH-AND-SUBSCRIBE

Run publish and subscribe subsystem. Subsystem requires a license.

bvwuzOSTANDARD |
STANDBY |

RUN-MODE

PSTORE-LOAD |
PSTORE-UNLOAD

Determines the initial run mode of the broker.

Default value. Normal mode.STANDARD

Deprecated. Supported for compatibility reasons.STANDBY

Brokerwill run as load broker towrite Persistent Store
data to a new persistent store. See alsoMigrating the

PSTORE-LOAD

Persistent Store in the general administration
documentation.

Broker will run as unload broker to read an existing
persistent store and pass the data to a broker running

PSTORE-UNLOAD

in PSTORE-LOADmode. See alsoMigrating the
Persistent Store in the general administration
documentation.

bvwuzONO | YESSECURITY

Determines whether the EntireX Broker security exits are activated.

33Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The security exits are not activated.NO

The security exits are activated. If the security routines cannot be
activated, the broker will not start.

YES

Broker trace reports the type of security which is active and fromwhere the
security module USRSEC is loaded:

■ EntireX Security
■ User-written USRSEC.

bwuzOA255SECURITY-PATH

Full path and file name of an executable file (for example, DLL forWindows
or shared library forUNIX) containing the user security exit which the kernel
will load and call. Example:

SECURITY-PATH=usersec.dll

This assumes the DLL is in the default path. Or:

SECURITY-PATH=c:\brokerexit\yoursecu.dll

If the path name contains spaces, enclose it in quotation marks. Example:

SECURITY-PATH="c:\Software AG\broker exit\yoursecu.dll"

Note: This attribute is used onlywhen implementing a user-written security
exit.

bvwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO.

UNLIM

This value can be overridden by specifying a SERVER-LIMIT for the service.
A value of 0 (zero) is invalid.

bvwuzOYES | NOSERVICE-UPDATES

Switch on/off the automatic update mode of the broker.

Administration under UNIX34

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The broker reads the attribute file whenever a service registers for the
first time. This allows the broker to honormodifications in the attribute

YES

filewithout a restart. The attribute file is read onlywhen the first server
registers for a particular service; it is not rereadwhen a second replica
is activated.

The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

NO

bvwuzOUNLIM | nSHORT-BUFFER-DEFAULT

Number of short buffers to be allocated for each service.

The number of short message buffers is restricted only by the
number of buffers globally available. Precludes the use of
NUM-SHORT-BUFFER=AUTO.

UNLIM

Number of buffers.n

This value can be overridden by specifying a SHORT-BUFFER-LIMIT for the
service. A value of 0 (zero) is invalid.

See PORT.SSLPORT

See RESTART.SSL-RESTART

See RETRY-LIMIT.SSL-RETRY-LIMIT

See RETRY-TIME.SSL-RETRY-TIME

These parameters are obsolete. The subscriber store in a secondary store is
no longer supported. We recommend you use the PSTORE persistent store

SSTORE
SSTORE-TYPE

to store your subscriber data. For this, set broker-specific parameter
SUBSCRIBER-STORE=PSTORE.

bvwuzONO | YESSTORAGE-REPORT

Create a storage report about broker memory usage.

Do not create the storage report.NO

Create the storage report.YES

See Storage Report under Broker Resource Allocation in the general
administration documentation.

bvwuzOOFF | BROKERSTORE

Sets the default STORE attribute for all units of work. This attribute can be
overridden by the STORE field in the Broker ACI control block.

Units of work are not persistent.OFF

35Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Units of work are persistent.BROKER

bvwuzOn | UNLIMSUBSCRIBER-DEFAULT

Default number of subscribers that are allowed for every topic.

Number of subscribersn

The number of subscribers is restricted only by the number of
subscribers globally available. Precludes the use of
NUM-SUBSCRIBER=AUTO.

UNLIM

This value can be overridden by specifying a SUBSCRIBER-LIMIT for the
topic. A value of 0 (zero) is invalid.

bvwuzONO | PSTORESUBSCRIBER-STORE

Determines whether subscriber information is stored and where.

No subscriber information is to be stored.NO

Save subscriber data in PSTORE.PSTORE

Tip: The subscriber store in a secondary store is no longer supported. We
recommend you use the PSTORE persistent store to store your subscriber
data.

See PORT.TCPPORT

bvwuzONO | YESSWAP-OUT-NEW-UOWS

Determines whether conversations with units of work remain in memory
or are swapped. See slso Swapping out New Units of Work in the general
administration documentation.

All conversations with UOWs remain in memory.NO

Conversations with UOWs (STORE=BROKER) created by a client and
finished with an EOC without being accepted by a server will be

YES

swapped out of memory. The data is persisted on PSTORE and there
is no need to keep it in memory unless a server wants to receive this
data.

Note: See service-specific attribute MIN-UOW-CONVERSATIONS-IN-MEMORY
for defining a minimum number of UOW conversations kept in memory to
improve the performance for servers receiving new UOW conversations
without waiting for swap-in of data from PSTORE. During broker restart, all
new and unassigned UOW conversations remain in PSTORE only. This
reduces the restart time significantly.

Administration under UNIX36

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See also Swapping out New Units of Work in the general administration
documentation.

See RESTART.TCP-RESTART

See RETRY-LIMIT.TCP-RETRY-LIMIT

See RETRY-TIME.TCP-RETRY-TIME

bvwuzOYES | NOTOPIC-UPDATES

Switch on/off automatic update of topic defaults in the broker.

The broker reads the attribute filewhenever a topic is being subscribed
for the first time. This allows broker to honor modifications in the

YES

attribute file without a restart. The attribute file is read only when the
first subscriber subscribes to a particular topic. It is not reread when
a second subscriber subscribes to the same topic.

The attribute file is read only once during broker startup. Any changes
to the attribute file will be honored only if the broker is restarted.

NO

zOA255TRACE-DD

A string containing data set attributes enclosed in quotation marks. These
attributes describe the trace output file andmust be defined if you are using
using a GDG (generation data group) as output data set. See Flushing Trace
Data to a GDG Data Set under Tracing EntireX Broker.

The following keywords are supported as part of the TRACE-DD value:

■ DATACLAS

■ DCB including BLKSIZE, DSORG, LRECL, RECFM
■ DISP

■ DSN

■ MGMTCLAS

■ SPACE

■ STORCLAS

■ UNIT

Refer to your JCLReferenceManual for a complete description of the syntax.

Example:

37Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),
SPACE=(CYL,(100,10)),
STORCLAS=SMS"

bvwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running.

No tracing. Default value.0

Traces incoming requests, outgoing replies, resource usage and conversion
errors if SAGTRPC is used for CONVERSIONwith the conversion options
SUBSTITUTE-NONCONV or STOP.

1

All of trace level 1, plus all main routines executed.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus Broker ACI control block displays.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for
the change to take effect. For temporary changes to TRACE-LEVELwithout
restarting the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software
AG support.

bvwuzOTCP | SSL | NETTRANSPORT

The broker transport may be specified as any combination of one or more
of the following methods:

TCP/IP is supported.TCP

SSL or TLS is supported.SSL

EntireNet-Work is supported. This value is not supported for a broker
under UNIX or Windows.

NET

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method
will be supported by the broker.

TRANSPORT=TCP-NET specifies that both the TCP/IP andNet-Work transport
methods will be supported by the broker.

TRANSPORT=TCP-SSL-NET specifies that the TCP/IP, SSL (or TLS), and
Entire Net-Work transport methods will be supported by the broker.

Administration under UNIX38

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Section TCP/IP-specific Attributes (DEFAULTS=TCP) under Broker Attributes
in the administration documentation describes the parameters for each
transport method.

bwuzOnnnnTRAP-ERROR

Where nnnn is the four-digit API error number that triggers the trace handler,
for example 0007 (Service not registered). Leading zeros are not required.
There is no default value.

See Deferred Tracing in the platform-specific Broker administration
documentation.

bwuzOnTRBUFNUM

Changes the trace to write trace data to internal trace buffers. n is the size
of the trace buffer in 64 KB units. There is no default value.

bwuzOWRAPTRMODE

Changes the trace mode. "WRAP" is the only possible value. This value
instructs broker to write the trace buffer (see TRBUFNUM) if an event occurs.
This event is triggered by amatching TRAP-ERRORduring request processing
or when an exception occurs.

See MAX-MESSAGES-IN-UOW.UMSG

See MAX-MESSAGES-IN-UOW.UOW-MSGS

bvwuzOno value | n[S] | nM
| nH | nD

UWSTAT-LIFETIME

The value to be added to the UWTIME (lifetime of associatedUOW). If a value
is entered, it must be 1 or greater; a value of 0 will result in an error. If no
value is entered, the lifetime of theUOW status informationwill be the same
as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the UOW itself
(max. 2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

The lifetime determines how much additional time the UOW status is
retained in the persistent store and is calculated from the time at which the
associated UOW enters any of the following statuses: "PROCESSED",
"TIMEOUT", "BACKEDOUT", "CANCELLED", "DISCARDED". The
additional lifetime of the UOW status is calculated only when broker is
executing. Value in UWSTAT-LIFETIME supersedes the value (if specified)
in attribute UWSTATP.

39Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Note: If no unit is specified, the default unit is seconds. The unit does not
have to be identical to the unit specified for UWTIME.

bvwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent status for
the service. The UWSTATP value is multiplied by the UWTIME value (the
lifetime of the associated UOW) to determine the length of time the status
will be retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UWTIME to determine how long a
persistent status will be retained.

1 - 254

Note: This attribute has not been supported since EntireX version 7.3. Use
UWSTAT-LIFETIME instead.

bvwuzO1D | nS | nM | nH |
nD

UWTIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

If the UOW is inactive - that is, is not processed within the time limit - it is
deleted and given a status of "TIMEOUT". This attribute can be overridden
by the UWTIME field in the Broker ACI control block.

See Timeout Considerations for EntireX Broker in the general administration
documentation.

bvwuzONO | YESWAIT-FOR-ACTIVE-PSTORE

Determines whether broker should wait for the Adabas Persistent Store to
become active.

If broker should startwith a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will stop.

NO

If broker should start with a PSTORE-TYPE=ADABAS and the database
is not active or is not accessible, broker will retry every 10 seconds to

YES

initiate communicationswith the PSTORE. Broker will reject any user
requests until broker is able to contact the Adabas database.

Administration under UNIX40

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bwuzO32 | n
(min. 1, max. 32)

WORKER-MAX

Maximum number of worker tasks the broker can use.

bwuzO1 | n (min. 1, max. 32)WORKER-MIN

Minimum number of worker tasks the broker can use.

bwuzO70S n | nS | nM | nHWORKER-NONACT

Non-activity time to elapse before a worker tasks is stopped.

Same as nS.n

Non-activity time in seconds (default 70, max. 2147483647).nS

Non-activity time in in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Caution: Avalue of 0 (zero) is invalid. If you set this value too low, additional
overhead is required for starting and stopping worker tasks. The default
and recommended value is 70S.

bwuzO1 | n (min. 1)WORKER-QUEUE-DEPTH

Number of unassigned user requests in the input queue before another
worker task gets started. The default and recommended value is 1. A higher
value will result in longer broker response times.

bwuzOinternal-value | nWORKER-START-DELAY

Delay is extended by n seconds.n

Delay after a successful worker task invocation before another worker task
can be started to handle current incoming workload. This attribute is used
to avoid the risk of recursive invocation of worker tasks, because starting a
worker task itself causes workload increase.

If no value is specified, an internal value calculated by the broker is used to
optimize dynamic worker management. This calculated value is the
maximum time required to start a worker task.

41Administration under UNIX

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sectionsWildcard Service Definition and Service
Update Modes below the table.

Operating System

Opt/
ReqValuesAttribute

bvwuzRA32
(case-sensitive)

CLASS

Part of the name that identifies the service together with the
SERVER and SERVICE attributes. CLASSmust be specified first,
followed immediately by SERVER and SERVICE.

Classes starting with any of the following are reserved for use by
Software AG and should not be used in customer-written
applications: BROKER, SAG, ENTIRE, ETB, RPC, ADABAS,
NATURAL. Valid characters for class name are letters a-z, A-Z,
numbers 0-9, hyphen and underscore. Do not use dollar, percent,
period or comma. See also the restriction for SERVICE attribute
names.

bzON | YCLIENT-RPC-AUTHORIZATION

Determines whether this service is subject to RPC authorization
checking.

No RPC authorization checking is performed.N

RPC library and program name are appended to the
authorization check performed by EntireX Security. Specify
"YES" only to RPC-supported services.

Y

To allow conformity with Natural Security, the
CLIENT-RPC-AUTHORIZATION parameter can optionally be
defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).

bvwuzOUNLIM | nCONV-LIMIT

Allocates a number of conversations especially for this service.

The number of conversations is restricted only by the
number of conversations globally available. Precludes

UNLIM

Administration under UNIX42

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

the use of NUM-CONVERSATION=AUTO in the Broker
section of the attribute file.

Number of conversations.n

A value of 0 (zero) is invalid.
If NUM-CONVERSATION=AUTO is specified in the Broker section of
the attribute file, CONV-LIMIT=UNLIM is not allowed in the service
section. A value must be specified or the CONV-LIMIT attribute
must be suppressed entirely for the service so that the default
(CONV-DEFAULT) becomes active.

bvwuzR5M | n | nS |
nM | nH

CONV-NONACT

Non-activity time for connections.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A value of 0 (zero) is invalid. If a connection is not used for the
specified time, that is, a server or a client does not issue a broker
request that references the connection in any way, the connection
is treated as inactive and the allocated resources are freed.

bvwuzOFormat: A255

(SAGTCHA [,
TRACE =n] [,
OPTION =s] |
SAGTRPC [,

TRACE =n] [,
OPTION =s] |
name [,

TRACE =n] |
NO)

CONVERSION

Defines conversion for internationalization. See Internationalization
with EntireX andWhat is the Best Internationalization Approach to
use? under Introduction to Internationalization for help on making
decisions about the internationalization approach.

43Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Conversion using ICUConversion (1) forACI-based
Programming.

SAGTCHA

Conversion using ICUConversion (1) forRPC-based
Components and Reliable RPC.

We recommend always using SAGTRPC for RPC
data streams.ConversionwithMultibyte, Double-Byte

SAGTRPC (2)

and other Complex Codepageswill always be correct,
and Conversion with Single-byte Codepages is also
efficient because SAGTRPC detects single-byte
codepages automatically. See Conversion Details.

Name of the SAGTRPC user exit for RPC-based
components. See also Configuring SAGTRPC User

<name> (2)

ExitsunderConfiguring Broker for Internationalization
in the platform-specific administration
documentation andWriting SAGTRPC User Exits
in the platform-specific administration
documentation.

If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

NO

Only one internationalization approach can be active at one time
for a service. The CONVERSION attribute for internationalization
overrides the TRANSLATION attribute when defined for a service.
That is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

Note:

1. See also Configuring ICU Conversion under Configuring Broker
for Internationalization in the platform-specific administration
documentation.

2. SAGTRPCandSAGTRPCuser exit are not supported on z/VSE.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

No tracing0

Administration under UNIX44

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

This level is an "on-error" trace. It provides
information on conversion errors only. For

Trace level
STANDARD

1

RPC calls this includes the IDL library, IDL
program and the data. Please note that if
OPTION Values for Conversion are set, errors
are ignored.

Tracing of incoming, outgoing parameters
and the payload.

Trace level
ADVANCED

2

This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

Trace level
SUPPORT

3

OPTION

See table of possible values under OPTION Values for Conversion.

bvwuzONO | YESDEFERRED

Units of work cannot be sent to the service until it is
available.

NO

Units of work can be sent to a service that is not up and
registered. The units of work will be processed when the
service becomes available.

YES

bvwuzO0 | 1 | 2ENCRYPTION-LEVEL

Enforce encryption when data is transferred between client and
server.

No encryption is enforced.0

Encryption is enforced between server and broker kernel.1

Encryption is enforced between server and broker kernel, and
also between client and broker.

2

See also ENCRYPTION-LEVEL in Broker ACI control block and
Encryption underWriting Applications using EntireX Security in the
ACI Programming documentation.

Note: The per service ENCRYPTION-LEVEL attribute is to be
specified onlywhere the broker attribute SECURITY=YES has been
specified and only if you are using EntireX Security.

bvwuzOYES | NOLOAD-BALANCING

45Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

When servers that offer a particular service are started, new
conversations will be assigned to these servers in a

YES

round-robin fashion. The first waiting server will get the
first new conversation, the second waiting server will get
the second new conversation, and so on.

A new conversation is always assigned to the first server
in the queue.

NO

bvwuzOUNLIM | nLONG-BUFFER-LIMIT

Allocates a number of long message buffers for the service.

The number of long message buffers is restricted only
by the number of buffers globally available. Precludes

UNLIM

the use of NUM-LONG-BUFFER=AUTO in the Broker
section of the attribute file.

Number of long message buffers.n

A value of 0 (zero) is invalid. If NUM-LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the service section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the service so that the default
(LONG-BUFFER-DEFAULT) becomes active.

bvwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a UOW.

bvwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the
highest positive number that can be stored in a four-byte integer.

See MAX-MESSAGE-LENGTH.MAX-MSG

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bvwuzO0 | nMAX-UOWS

The service does not accept units of work, i.e. it processes
only messages that are not part of a UOW. Using zero

0

prevents the sending of UOWs to services that are not
intended to process them.

Administration under UNIX46

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Maximum number of UOWs that can be active concurrently
for the service. If you do not provide a MAX-UOWS value for

n

the service, it defaults to the MAX-UOWS setting for the broker.
If you provide a value that exceeds that of the broker, the
service MAX-UOWS is set to the broker's MAX-UOWS value and
a warning message is issued.

Specify MAX-UOWS=0 for Natural RPC Servers. This restriction
will be removed with a later release.

bvwuzO256 | nMIN-UOW-CONVERSATIONS-IN-MEMORY

Defines the minimum number of UOW conversations
(STORE=BROKER, created by a client and finished with an EOC
without being accepted by a server) kept in memory to improve
the performance for servers receiving new UOW conversations
withoutwaiting for data to be swapped in fromPSTORE. See also
Swapping out New Units of Work in the general administration
documentation.

The default value should be used if producer (client) and
consumer (server) of UOW conversations are both active at

256

the same time regardless of the speed producing or
consuming UOW conversations. It guarantees a reasonable
balance betweenmemory being used and swap-out/swap-in
activities.

Minimum number of UOW conversations kept in memory.
The value n is equal to or greater than 256.

n

Note: If broker-specific attribute SWAP-OUT-NEW-UOWS is set to
"NO", MIN-UOW-CONVERSATIONS-IN-MEMORY has no effect.

See MAX-UOWS.MUOW

bvwuzONO | YESNOTIFY-EOC

Specifies whether timed-out conversations are to be stored or
discarded.

Discard the EOC notifications if the server is not ready to
receive.

NO

Store the EOC notifications if the server is not ready to
receive and then notify the server if possible.

YES

47Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

If a server is not ready to receive an EOC notification, it can be
stored or discarded. If it is stored, the server is notified, if possible,
when it is ready to receive.

Caution: The behavior activated by this parameter can be relied
upon only during a single lifetime of the broker kernel.
Specifically, conversations containing units of work, whose
lifetime can span multiple broker kernel sessions, cannot be
assumed to show this behavior, even with NOTIFY-EOC=YES.

Alias for MAX-UOWS.NUM-UOW

bvwuzRA32
(case-sensitive)

SERVER

Part of the name that identifies the service togetherwith the CLASS
and SERVICE attributes.

CLASSmust be specified first, followed immediately by SERVER
and SERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma.

bvwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number
of servers globally available. Precludes the use of
NUM-SERVER=AUTO.

UNLIM

A value of 0 (zero) is invalid.

This value can be overridden by specifying a SERVER-LIMIT for
the service.

bvwuzOn | UNLIMSERVER-LIMIT

Allows a number of servers especially for this service.

Number of servers.n

The number of servers is restricted only by the number
of servers globally available. Precludes the use of

UNLIM

NUM-SERVER=AUTO in the Broker section of the attribute
file.

Administration under UNIX48

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the
attribute file, SERVER-LIMIT=UNLIM is not allowed in the service
section. A valuemust be specified or the SERVER-LIMIT attribute
must be suppressed entirely for the service so that the default
(SERVER-DEFAULT) becomes active.

bvwuzR5M | n | nS |
nM | nH

SERVER-NONACT

Non-activity time for servers. A server that does not issue a broker
request within the specified time limit is treated as inactive and
all resources for the server are freed.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If a server registers multiple services, the highest value of all the
services registered is taken as non-activity time for the server.

bvwuzRA32
(case-sensitive)

SERVICE

Part of the name that identifies the service togetherwith the CLASS
and SERVER attributes.

CLASSmust be specified first, followed immediately by SERVER
and SERVICE.

The SERVICE attribute names "EXTRACTOR" and
"DEPLOYMENT" are reserved for Software AG internal use and
should not be used in customer-written applications. Valid
characters for service name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or
comma. See also the restriction for CLASS attribute names.

bvwuzOUNLIM | nSHORT-BUFFER-LIMIT

Allocates a number of short message buffers for the service.

The number of short message buffers is restricted only
by the number of buffers globally available. Precludes

UNLIM

the use of NUM-SHORT-BUFFER=AUTO in the Broker
section of the attribute file.

49Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Number of short message buffers.n

If NUM-SHORT-BUFFER=AUTO is specified in the Broker section of
the attribute file, SHORT-BUFFER-LIMIT=UNLIM is not allowed
in the service section. A value must be specified or the
SHORT-BUFFER-LIMIT attribute must be suppressed entirely for
the service so that the default (SHORT-BUFFER-DEFAULT) becomes
active.

bvwuzOOFF|BROKERSTORE

Sets the default STORE attribute for all units of work sent to the
service.

Units of work are not persistent.OFF

Units of work are persistent.BROKER

This attribute can be overridden by the STORE field in the Broker
ACI control block.

bvwuzOFormat: A255

SAGTCHA |
NO | <name>

TRANSLATION

Activates translation or translation user exit for internationalization
(see TranslationUser Exit under Introduction to Internationalization).
For help on deciding the right internationalization approach for
your environment, seeWhat is the Best InternationalizationApproach
to use? under Introduction to Internationalization

Conversion routine SAGTCHA for ACI-based
Programming, RPC-based Components and Reliable
RPC.

SAGTCHA

If translation is not to be used - e.g., for binary
payload (broker messages) - either omit the
TRANSLATION attribute or specifyTRANSLATION=NO.

NO

Name of Translation User Exit. See also Configuring
Translation User Exits under Configuring Broker for

<name>

Internationalization in the platform-specific
administration documentation orWriting Translation
User Exits under Configuring Broker for
Internationalization in the platform-specific
administration documentation.

Administration under UNIX50

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service; that is, when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

Alias for MAX-MESSAGES-IN-UOW.UMSG

Alias for MAX-MESSAGES-IN-UOW.UOW-MSGS

bvwuzOno value | n[S]
| nM| nH| nD

UWSTAT-LIFETIME

The value to be added to the UWTIME (lifetime of associatedUOW).
If a value is entered, it must be 1 or greater; a value of 0 will result
in an error. If no value is entered, the lifetime of the UOW status
information will be the same as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the
UOW itself (max. 2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

The lifetime determines how much additional time the UOW
status is retained in the persistent store and is calculated from the
time at which the associated UOW enters any of the following
statuses: "PROCESSED", "TIMEOUT", "BACKEDOUT",
"CANCELLED", "DISCARDED". The additional lifetime of the
UOW status is calculated only when broker is executing. Value
in UWSTAT-LIFETIME supersedes the value (if specified) in
attribute UWSTATP.

Note: If no unit is specified, the default unit is seconds. The unit
does not have to be identical to the unit specified for UWTIME.

bvwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent
status for the service. The UWSTATP value is multiplied by the
UWTIME value (the lifetime of the associated UOW) to determine
the length of time the statuswill be retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UWTIME to determine how long
a persistent status will be retained.

1 - 254

51Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Note: This attribute has not been supported since EntireX version
7.3. Use UWSTAT-LIFETIME instead.

bvwuzO1D | n S | nM
| n H | nD

UWTIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

If the unit of work (UOW) is inactive, that is, not processedwithin
the time limit, it is deleted and given a status of TIMEOUT. This
attribute can be overridden by the UWTIME field in the BrokerACI
control block.

Wildcard Service Definition

The special names of CLASS = *, SERVER = * and SERVICE = * are allowed in the service-specific
section of the broker attribute file. These are known as "wildcard" service definitions. If this name
is present in the attribute file, any service that registers with the broker and does not have its own
entry in the attribute filewill inherit the attributes that apply to the first wildcard service definition
found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily
complete):

CLASS = *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS = ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV-
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

Administration under UNIX52

Broker Attributes

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

■ In service updatemode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

■ In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if
■ there is a high frequency of REGISTER operations, or
■ the attribute file is rather large and results in a high I/O rate for the broker.

The disadvantage to using non-updatemode is that if specific attributes aremodified, the broker
must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters can not be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

The situations 1 and 2 above are reported to the broker log file if TRACE option for CONVERSION is
set to level 1.

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

No messageNo message.yesyesSubstitutes both
non-convertible characters

SUBSTITUTE

(receiver's codepage) and bad
input characters (sender's
codepage) with a

53Administration under UNIX

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

codepage-dependent default
replacement character.

No message.Write detailed
conversion
errormessage.

yesyesIf a corresponding code point
is not available in the receiver's
codepage, the character cannot

SUBSTITUTE-NONCONV

be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.

No message.No message.yesnoSubstitutes non-convertible
characters with a

BLANKOUT

codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

Write detailed
conversion
errormessage.

Write detailed
conversion
errormessage.

yesyesSignals an error on detecting a
non-convertible or bad input
character. This is the default

STOP

behavior if no option is
specified.

Administration under UNIX54

Broker Attributes

Topic-specific Attributes

The topic-specific attribute section begins with the keyword DEFAULTS=TOPIC as shown in the
sample attribute file. It contains attributes that apply to the publish and subscribe communication
model.

Operating System

Opt/
ReqValuesAttribute

bvwuzOYES | NOALLOW-DURABLE

Determines whether a subscriber is allowed to perform a durable
subscription to a topic.

Subscriber may perform durable subscription.YES

Durable subscription not allowed.NO

If users are allowed to durably subscribe to any topic, you must
specify a value for the SUBSCRIBER-STORE parameter.

bvwuzOYES | NOALLOW-USER-SUBSCRIBE

Determines if it is possible for a user to subscribe to a topic directly
(YES) or only by Administrator.

Users are allowed to subscribe to the topic.YES

Usersmust be subscribed by theAdministrator throughCIS.
See Broker Command and Information Services. The subscribe
request of users is rejected.

NO

bvwuzONO | YESAUTO-COMMIT-FOR-SUBSCRIBER

No COMMIT performed.NO

An implicit COMMIT is performed by broker when the
subscriber receives a publication, that is, the subscriber does

YES

not need the CONTROL_PUBLICATION option COMMIT after
receiving each publication.

Caution: You may lose your last message.

bvwuzOFormat: A255

(SAGTCHA
[TRACE =n]

CONVERSION

55Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

[, OPTION
=s])

Defines conversion for internationalization. See Internationalization
with EntireX. For help on making decisions about the
internationalization approach, seeWhat is the Best Internationalization
Approach to use? under Introduction to Internationalization

Conversion using ICU Conversion for ACI-based
Programming. For more information see Conversion
Details.

See alsoConfiguring ICUConversionunderConfiguring
Broker for Internationalization in the platform-specific
administration documentation.

SAGTCHA

If conversion is not to be used, either omit the
CONVERSION attribute or specify CONVERSION=NO,
for example for binary payload.

NO

Only one internationalization approach can be active at one time
for a topic. The CONVERSION attribute for internationalization
overrides the TRANSLATION attributewhen defined for a topic, that
is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

TRACE

If tracing is switched on, the trace output is written to the broker
log file:

No tracing0

This level is an "on-error" trace. It provides
information on conversion errors only.

Trace level
STANDARD

1

Please note that if OPTION Values for
Conversion are set, errors are ignored.

Tracing of incoming, outgoing parameters
and the payload.

Trace level
ADVANCED

2

This trace level is for support diagnostics
and should only be switched on when
requested by Software AG support.

Trace level SUPPORT3

OPTION

Administration under UNIX56

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

See OPTION Values for Conversion under Service-specific Attributes
above.

bvwuzOUNLIM | nLONG-BUFFER-LIMIT

Allocates a number of long message buffers for the topic.

The number of longmessage buffers is restricted only by
the number of buffers globally available. Excludes the

UNLIM

use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

Number of long message buffers.n

A value of 0 (zero) is invalid. If NUM-LONG-BUFFER=AUTO is
specified in the Broker section of the attribute file,
LONG-BUFFER-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified or the LONG-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(LONG-BUFFER-DEFAULT) becomes active.

bvwuzO16 | nMAX-MESSAGES-IN-PUBLICATION

Maximum number of messages in a publication.

bvwuzO31647 | nMAX-PUBLICATION-MESSAGE-LENGTH

Maximumsize of amessage in a publication. The actual publication
size is transport-dependent.

bvwuzOn | nS | nM |
nH | nD | nY

PUBLICATION-LIFETIME

Lifetime of a publication in absolute time units. Publications are
retained by broker until they are either received by all subscribers
or the publication lifetime has expired.

Same as nS.n

Publication lifetime in seconds (max. 2147483647).nS

Publication lifetime in minutes (max. 35791394).nM

Publication lifetime in hours (max. 596523).nH

Publication lifetime in days (max. 24855).nD

Publication lifetime in years (max. 68).nY

The publication lifetime is calculated even for periods of timewhen
broker is stopped.

bvwuzOn | UNLIMPUBLICATION-LIMIT

57Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

There is no default. Maximumnumber of publications possible for
this topic. If specified, this overrides the publication default value,
which is a general maximum value per topic. If neither parameter
is specified, the total number of publications for the topic is limited
only by NUM-PUBLICATION.

Number of publications.n

The number of publications is restricted only by the
number of publications globally available. Excludes the

UNLIM

use of NUM-PUBLICATION=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If PUBLICATION-LIMIT=AUTO is
specified in the Broker section of the attribute file,
PUBLICATION-LIMIT=UNLIM is not allowed in the topic section.
A value must be specified, or the PUBLICATION-LIMIT attribute
must be suppressed entirely for the topic so that the default
(PUBLICATION-DEFAULT) becomes active.

bvwuzO5M | n | nS |
nM | nH | nD
| nY

PUBLISHER-NONACT

Non-activity of the publisher, after which an auto-logoff is
performed and the publisher's resources are freed.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Non-activity time in days (max. 24855).nD

Non-activity time in years (max. 68).nY

If not specified, defaults to 5 minutes. This is the time after which
the publisher's internal memory structures will be cleaned up and
a subsequent logon is required.

bvwuzOUNLIM | nSHORT-BUFFER-LIMIT

Allocates a number of short message buffers for the topic.

The number of short message buffers is restricted only
by the number of buffers globally available. Excludes the

UNLIM

Administration under UNIX58

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

use of NUM-LONG-BUFFER=AUTO in the Broker section of
the attribute file.

Number of short message buffers.n

A value of 0 (zero) is invalid. If NUM-SHORT-BUFFER=AUTO is
specified in the Broker section of the attribute file,
SHORT-BUFFER-LIMIT=UNLIM is not allowed in the topics section.
A value must be specified, or the SHORT-BUFFER-LIMIT attribute
must be suppressed entirely for the topic so that the default
(SHORT-BUFFER-DEFAULT) becomes active.

These parameters are obsolete. The subscriber store in a secondary
store is no longer supported. We recommend you use the primary

SSTORE
SSTORE-TYPE

persistent store (PSTORE) to store your subscriber data. For this,
set broker-specific parameter SUBSCRIBER-STORE=PSTORE.

bvwuzOn | UNLIMSUBSCRIBER-LIMIT

There is no default. Maximum number of subscriptions possible
for this topic. If specified, this overrides the subscriber default
value, which is a general maximum value per topic. If neither
parameter is specified, the total number of subscribers for the topic
is limited only by NUM-SUBSCRIBER.

Number of subscribers.n

The number of subscribers is restricted only by the
number of subscribers globally available. Excludes the

UNLIM

use of NUM-SUBSCRIBER=AUTO in the Broker section of
the attribute file.

A value of 0 (zero) is invalid. If NUM-SUBSCRIBER=AUTO is specified
in the Broker section of the attribute file,
SUBSCRIBER-LIMIT=UNLIM is not allowed in the topic section. A
valuemust be specified, or the SUBSCRIBER-LIMIT attributemust
be suppressed entirely for the topic so that the default
(SUBSCRIBER-DEFAULT) becomes active.

bvwuzO5M | n | nS |
nM | nH | nD
| nY

SUBSCRIBER-NONACT

Non-activity of the subscriber after which an auto-logoff is
performed and the publisher's resources are freed.

Same as nS.n

59Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Non-activity time in days (max. 24855).nD

Non-activity time in years (max. 68).nY

In the case of a non-durable subscriber, the user's subscription is
also cancelled. In the case of a durable subscriber, the user's
subscription is persisted, and it is not necessary for the user to issue
any subsequent SUBSCRIBE commands. The subscription of a
durable subscriber is also persisted even while broker is stopped.

If not specified, defaults to 5 minutes. This is the time after which
the subscriber's internalmemory structureswill be cleaned up and
a subsequent logon is required.

bvwuzONEVER | n |
nS | nM | nH |
nD | nY

SUBSCRIPTION-EXPIRATION

Lifetime of a user's subscription in absolute time units.
Subscriptions are retained by broker until either the user issues an
UNSUBSCRIBE command or the subscription lifetime has expired.

Subscriber will never be purged from PSTORE.NEVER

Same as nS.n

Expiration time in seconds (max. 2147483647).nS

Expiration time in minutes (max. 35791394).nM

Expiration time in hours (max. 596523).nH

Expiration time in days (max. 24855).nD

Expiration time in years (max. 68).nY

Durable subscriptions remain effective even if the user performs
the LOGOFF command or broker is stopped. The subscription
lifetime is calculated also for periods of time when broker is
stopped.

SUBSCRIPTION-EXPIRATION is the time after which the
subscription expires. In the case of durable subscription, the
subscription is removed from the PSTORE. Broker removes expired
subscriptions onlywhen the user is not currently active, for example

Administration under UNIX60

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

when the user has issued a LOGOFF command or after the
SUBSCRIBER-NONACT has passed if no LOGOFF is issued.

If SUBSCRIBER-NONACT is specified greater than
SUBSCRIPTION-EXPIRATION, broker adjusts
SUBSCRIPTION-EXPIRATION to the value ofSUBSCRIBER-NONACT.

bvwuzRA96
(case-sensitive)

TOPIC

Name of the topic for publish and subscribe processing. Valid
characters for topic name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore. Do not use dollar, percent, period or comma.

bvwuzOFormat: A255

SAGTCHA |
NO | <name>

TRANSLATION

Activates translation or translation user exit for internationalization
(see Translation User Exit under Introduction to Internationalization).
See alsoWhat is the Best Internationalization Approach to use? under
Introduction to Internationalization

Conversion routine SAGTCHA for ACI-based
programming,RPC-based components and forReliable
RPC.

SAGTCHA

If translation is not to be used, e.g. for binary payload
(broker messages), either omit the TRANSLATION
attribute or specify TRANSLATION=NO.

NO

Name of Translation User Exit. See also Configuring
SAGTRPC User Exits under Configuring Broker for

<name>

Internationalization in the platform-specific
administrationdocumentation andWriting SAGTRPC
User Exits in the platform-specific administration
documentation.

The CONVERSION attribute for internationalization overrides the
TRANSLATION attribute when defined for a service, i.e. when
TRANSLATION and CONVERSION are both defined, TRANSLATION
will be ignored.

61Administration under UNIX

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize themapping of locale strings to codepages for the internation-
alization approaches ICU conversion and SAGTRPC user exit. These attributes do not apply to
other approaches. See Internationalization with EntireX for more information.

Operating System

Opt/
ReqValuesAttribute

bvwuzOAny ICU
converter

DEFAULT_ASCII

name or
alias. See
also
Additional
Notes
below.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on an ASCII platform (UNIX, Windows, etc.),
and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used. See ICU Conversion under Introduction to Internationalization and
SAGTRPC User Exit under Introduction to Internationalization.

Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Defaults */
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

bvwuzOAny ICU
converter

DEFAULT_EBCDIC_IBM

Administration under UNIX62

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

name or
alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself and
■ the calling component is running on an IBM mainframe platform (z/OS, z/VSE
etc.) and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

bvwuzOAny ICU
converter
name or
alias

DEFAULT_EBCDIC_SNI

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server, publisher or subscriber). See Broker's
Locale String Defaults under Locale String Mapping in the internationalization
documentation. This value is used instead of the locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on a Fujitsu EBCDIC mainframe platform
(BS2000/OSD), and

■ one of the internationalization approaches ICU conversion or SAGTRPC user
exit is used.

Example:

63Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker's Locale String Defaults under Locale
String Mapping in the internationalization documentation and also Additional
Notes below.

vwuzOAny ICU
converter
name or

locale-string

alias. See
also
Additional
Notes
below.

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker's Locale String Processing under
Locale String Mapping in the internationalization documentation. This is useful:

■ if the broker's locale string processing fails - i.e. leads to no codepage or to the
wrong codepage - you can explicitly assign the codepage which meets your
requirements.

■ if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server, publisher or subscriber) and the value is the codepage that you
want to use in place of that locale string. In the first line of the example below, the
client or server application sends ASCII as a locale string; the broker maps this to
the codepage ISO 8859_1. In the same way EUC_JP_LINUX is mapped to
ibm-33722_P12A-1999. All other locale strings aremapped by the broker'smapping
mechanism, see Broker's Built-in Locale StringMapping under Locale StringMapping
in the internationalization documentation. Example:

DEFAULTS=CODEPAGE
/* Broker Locale String Codepage Assignments */
ASCII=ISO8859
EUC_JP_LINUX=ibm-33722_P12A-1999
/* Customer-written ICU converters */
CP1140=myebcdic
CP0819=myascii

Administration under UNIX64

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

For more examples, see Bypassing Broker's Built-in Locale String Mapping under
Locale StringMapping in the internationalization documentation and alsoAdditional
Notes below.

Additional Notes

■ Locale stringmatching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

■ If ICU is used for the internationalization approach and if the style in not known by ICU, e.g.
ECSnnnn, <ll>_<cc> etc., the name will be mapped to a suitable ICU alias. For more details on
the mappingmechanism, see Broker's Built-in Locale StringMapping under Locale StringMapping
in the internationalization documentation. For more details on ICU and ICU converter name
standards, see ICU Resources under Introduction to Internationalization.

■ If SAGTRPC user exit is used for the internationalization approach, we recommend assigning
the codepage in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit,
see Broker's Built-in Locale StringMapping under Locale StringMapping in the internationalization
documentation.

■ See CONVERSION and CONVERSION attribute CONVERSION on this page for the internationalization
approach in use.

65Administration under UNIX

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITYas shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is
specified.

Operating System

Opt/
ReqValuesAttribute

bONO | YESACCESS-SECURITY-SERVER

Determines where authentication is checked.

Authentication is checked in the broker tasks. This requires broker to be running under
TSOS in order to execute privileged security checks.

NO

Authentication is checked in the EntireX Broker Security Server for BS2000/OSD. This
does not require broker to be running under TSOS. See EntireX Broker Security Server
for BS2000/OSD in the BS2000/OSD administration documentation.

YES

zOA8APPLICATION-NAME

Specifies the name of the application to be checked if FACILITY-CHECK=YES is defined. In
RACF, for example, an application "BROKER"with read permission for user "DOE" is defined
with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASS(APPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY-CHECK for more information.

bwuzOOS | ldapUrl |
iafUrl

AUTHENTICATION-TYPE

Authentication is performed against the local operating system. Default if
SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from
the attribute file.

OS

Authentication is performed against the LDAP repository specified under
ldapUrl. Not supported under BS2000/OSD.

ldapUrl

■ For TCP, specify repository URL:

Administration under UNIX66

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

AUTHENTICATION-TYPE="ldap://HostName
[:PortNumber]"

■ For SSL or TLS:

AUTHENTICATION-TYPE="ldaps://HostName
[:PortNumber]"

If no port number is specified, the default is the standard LDAP port number
389 for TCP transport. Examples for TCP and SSL (or TLS):

AUTHENTICATION-TYPE="ldap://myhost.mydomain.com"
AUTHENTICATION-TYPE="ldaps://myhost.mydomain.com:636"

Authentication is performed using Software AG's Integrated Authentication
Framework against the IAF service specified under iafUrl. Not supported under
BS2000/OSD.

The URL of the IAF service is specified using

iafUrl

AUTHENTICATION-TYPE=
"iaf://HostName[:PortNumber]?SSLParameters"

If no port number is specified, the default is port number 1958. SSL or TLS
parameters are specified in the same format as for theACI function SETSSLPARMS.
Example: AUTHENTICATION-TYPE="iaf://myhost.mydomain.com:10000?

AUTHENTICATION-TYPE=
"iaf://myhost.mydomain.com:10000?
verify_server= no&
trust_store=
/opt/softwareag/EntireX/etc/ExxCACert.pem"

On z/OS, the URL of an IAF service running on the same host may specified as

67Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

AUTHENTICATION-TYPE=
"iaf.ipc://IAFServiceID[:SVCNumber]"

Example:

AUTHENTICATION-TYPE=
"iaf.ipc://IAF075:SVC245"

wuOYES | NOAUTHORIZATIONDEFAULT

Determines whether access is granted to a specified service if the specified could not be
found listed in the repository of authorization rules.

Grant access.YES

Deny access.NO

Applies only when using EntireX Security under UNIX andWindows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

wuOA32AUTHORIZATIONRULE

List of authorization rules. Multiple sets of rules can be defined, each set is limited to 32
chars. The maximum number of AUTHORIZATIONRULE entries in the attribute file is 16.

Applies only when using EntireX Security under UNIX or Windows. Authorization rules
can be stored within a repository. When an authorization call occurs, EntireX Security uses
the values of this parameter and AUTHORIZATIONDEFAULT to perform an access check for
a particular broker instance against an (authenticated) user ID and list of rules.

See also Administering Authorization Rules using System Management Hub in the UNIX and
Windows administration documentation.

zOYES | NOCHECK-IP-ADDRESS

Determines whether the TCP/IP address of the caller is subject to a resource check.

zONA2MSG0 |
NA2MSG1 |

ERRTXT-MODULE

NA2MSG2 |
ModuleName

Specifies the name of the security error text module. Default is "NA2MSG0", English
messages. For instructions on how to customizemessages, seeBuild Language-specificMessages

Administration under UNIX68

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

(Optional) under Installing EntireX Security under z/OS under z/OS in the z/OS installation
documentation.

zONO | YESFACILITY-CHECK

It is possible to check whether a particular user is at all allowed to use an application before
performing a password check. The advantage of this additional check is that when the user
is not allowed to use this application, the broker returns error 00080013 and does not try to
authenticate the user. Failing an authentication checkmay lead to the user's password being
revoked; this situation is avoided if the facility check is performed first. See attribute
APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed before
each authentication call.

bwuzONO | YESIGNORE-STOKEN

Determines whether the value of the ACI field SECURITY-TOKEN is verified on each call.

zOYES | NOINCLUDE-CLASS

Determines whether the class name is included in the resource check.

zOYES | NOINCLUDE-NAME

Determines whether the server name is included in the resource check.

zOYES | NOINCLUDE-SERVICE

Determines whether the service name is included in the resource check.

wuzOldapDnLDAP-PERSON-BASE-BINDDN

Used with LDAP authentication to specify the distinguished name where authentication
information is stored. This value is prefixedwith the user IDfield name (see below). Example:

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

wuzOOpenLDAP |
ActiveDirectory |

LDAP-REPOSITORY-TYPE

SunOneDirectory |
Tivoli | Novell |
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository type
that most closely matches your actual repository. In the case of Windows Active Directory,
the user ID is typically in the form domainName\userId.

wONO | YESLDAP-SASL-AUTHENTICATION

Specifies whether or not Simple Authentication and Security Layer (SASL) is to perform the
authentication check. In practice, this determines whether or not the password supplied by
the user is passed in plain text between the broker kernel and the LDAP server. If SASL is
activated, this implies that the password is encrypted.

69Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Password is sent to LDAP server in plain text.NO

Password is sent to LDAP server encrypted.YES

wuzOcn | uidFieldNameLDAP-USERID-FIELD

Usedwith LDAP authentication to specify the first field name of a user in the Distinguished
Name, for example:

LDAP-USERID-FIELD=uid

zO1-256MAX-SAF-PROF-LENGTH

This parameter should be increased if the length of the resource checks - that is, the length
of the profile comprising “<class>.<server>.<service>” - is greater than 80 bytes.

This parameter defaults to 80 if a value is not specified.

bwuzONO | YESPASSWORD-TO-UPPER-CASE

Determines whether the password and new password are converted to uppercase before
verification.

zORACF | ACF2 |
TOP-SECRET

PRODUCT

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

Security system ACF2 is installed.ACF2

Security system RACF is installed. Default.RACF

Security system TOP-SECRET is installed.TOP-SECRET

The default value is used if an incorrect or no value is specified.

zOYES | NOPROPAGATE-TRUSTED-USERID

Determines whether a client user ID obtained by means of the trusted user ID mechanism
is propagated to a server using the ACI field CLIENT-USERID.

zONBKSAG |
SAFClassName

SAF-CLASS

Specifies the name of the SAF class/type used to hold the EntireX-related resource profiles.

zONBKSAG |
SAFClassName

SAF-CLASS-IP

Specifies the name of the SAF class/type used when performing IP address authorization
checks.

Administration under UNIX70

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzOAUTHORIZATION |
AUTHENTICATION
| ENCRYPTION

SECURITY-LEVEL

Specifies the mode of operation.

Authorization, authentication, and encryption (not under
BS2000/OSD or z/VSE).

AUTHORIZATION

Authentication and encryption.AUTHENTICATION

Encryption only.ENCRYPTION

Caution: In version 8.0, the default value for this parameter was "AUTHORIZATION".

zOYES | nameSECURITY-NODE

This parameter can be used to specify a prefix that is added to all authorization checks,
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often important to
distinguish between production, test, and development environments.

This causes the broker ID to be used as a prefix for all authorization checks.YES

This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

name

Note: By not setting this parameter, no prefix is added to the resource check (the default
behavior).

bvwuzO0 - 4TRACE-LEVEL

Trace level for EntireX Security. It overrides the global value of trace level in the attribute
file.

zOYES | NOTRUSTED-USERID

Activates the trusted user IDmechanism for broker requests arriving over the local Adabas
IPC mechanism.

bzONO | YESUSERID-TO-UPPER-CASE

Determines whether user ID is converted to uppercase before verification.

zONO | YESUNIVERSAL

Determines whether access to undefined resource profiles is allowed.

bwuzONO | YESWARN-MODE

Determines whether a resource check failure results in just a warning or an error.

71Administration under UNIX

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

Operating System

Opt/
ReqValuesAttribute

bvwuzOn | nS | nM
| nH

CONNECTION-NONACT

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime in the platform-specific Stub Administration sections
of the EntireX documentation.

bvwuzO0.0.0.0 |
HostName |

HOST

IP
address

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of the
system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

bvwuzO2147483647
| n

MAX-MESSAGE-LENGTH

Administration under UNIX72

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Maximummessage size that the broker kernel can process using transportmethod
TCP/IP. The default value represents the highest positive number that can be stored
in a four-byte integer.

bvwuzO1025 - 65535PORT

The TCP/IP port number on which the broker will listen for connection requests.

If specified, PORT overrides broker attribute TCPPORT.

Note: TCPPORTwill be retired with the next version.

If PORT is not specified but TCPPORT is specified, TCPPORT is used.

If TCPPORT is not specified, the broker will attempt to find its TCP/IP port number
from the TCP/IP Services file, using getservbyname. If broker cannot find its TCP/IP
port number from the TCP/IP Services file, it will use the default value of 1971.

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

bvwuzOYES | NORESTART

The broker kernel will attempt to restart the TCP/IP communicator.YES

The broker kernel will not try to restart the TCP/IP communicator.NO

If specified, RESTART overrides broker attribute TCP-RESTART.

Note: TCP-RESTARTwill be retired with the next version.

If RESTART is not specified but TCP-RESTART is specified, TCP-RESTART is used.

The RESTART setting applies to all TCP/IP communicators.

bvwuzO20 | n |
UNLIM

RETRY-LIMIT

Maximum number of attempts to restart the TCP/IP communicator.

If specified, RETRY-LIMIT overrides broker attribute TCP-RETRY-LIMIT.

Note: TCP-RETRY-LIMITwill be retired with the next version.

If RETRY-LIMIT is not specified but TCP-RETRY-LIMIT is specified,
TCP-RETRY-LIMIT is used.

The RETRY-LIMIT setting applies to all TCP/IP communicators.

73Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

bvwuzO3M | n | nS
| nM | nH

RETRY-TIME

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

Same as n S.n

Wait time in seconds (max. 2147483647).n S

Wait time in minutes (max. 35791394).nM

Wait time in hours (max. 596523).n H

Minimum wait time is 1S.

If specified, RETRY-TIME overrides broker attribute TCP-RETRY-TIME.

Note: TCP-RETRY-TIMEwill be retired with the next version.

IfRETRY-TIME is not specified butTCP-RETRY-TIME is specified,TCP-RETRY-TIME
is used.

The RETRY-TIME setting applies to all TCP/IP communicators.

bvuzOYES | NOREUSE-ADDRESS

wOYES | NO

The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

YES

The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting on Windows, and we strongly
advise you do not change this value on this platform.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the TCP/IP
stack when closing connections.

NO

zOStackNameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

Administration under UNIX74

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing error
responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

75Administration under UNIX

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS, BS2000/OSD, z/VSE.

Operating System

Opt/
ReqValuesAttribute

wuOn | nM | nGMAXSIZE

Defines the maximum size of c-tree data files. Broker allocates one data file for control data
and another data file for message data:

Maximum size in MB.n

Maximum size in MB.nM

Maximum size in GB.nG

wuOn | nKPAGESIZE

Determines howmany bytes are available in each c-tree node. PSTORE COLD start is required
after changing this value.

Same as nKn

PAGESIZE in KB.nK

The default and minimum value is 8 KB.

If PSD Reason Code = 527 is returned during UOWwrite processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE to
a new PSTORE with an increased PAGESIZE value. SeeMigrating the Persistent Store in the
general administration documentation and define the increased PAGESIZE value for the
load broker.

wuOA255PATH

Path name of the target directory for c-tree index and data files.

wuONO | YESSYNCIO

Controls the open mode of the c-tree transaction log.

c-tree transaction log is not opened in synchronous mode. Default.NO

c-tree transaction log is opened in synchronousmode to improve data security. It may
degrade performance of PSTORE operations, but offers the highest level of data

YES

Administration under UNIX76

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

security. See c-tree Database as Persistent Store in theUNIX andWindows administration
documentation.

wuO0-8TRACE-LEVEL

Trace level for c-tree persistent store. It overrides the global value of trace level in the attribute
file.

77Administration under UNIX

Broker Attributes

SSL-specific Attributes

The SSL-specific attribute section begins with the keyword DEFAULTS=SSL as shown in the sample
attribute file. The attributes in this section are needed to execute the SSL communicator of the
EntireX Broker kernel. In this section, “SSL” also applies to TLS (Transport Layer Security).

Operating System

Opt/
ReqValuesAttribute

bwuzOstringCIPHER-SUITE

String that is passed to the underlying SSL implementation. SSL is a standardized
protocol that uses different cryptographic functions (hash functions, symmetric
and asymmetric encryption etc.). Some of these must be implemented in the
SSL stack; others are optional. When an SSL connection is created, both parties
agree by “handshake” on the cipher suite, that is, the algorithms and key lengths
used. In a default scenario, this information depends on what both sides are
capable of. It can be influenced by setting the attribute CIPHER-SUITE for the
SSL server side (the broker always implements the server side). Ths stubs connect
to the broker and thereby become the SSL clients.

Under UNIX and Windows, the OpenSSL implentation of the SSL server side
is used; on z/OS and BS2000/OSD it is GSK.

Example for OpenSSL:

Use RC4with standard 128-bit
key and MD5 as hash.

CIPHER-SUITE=RC4-MD5

Extreme example.CIPHER-SUITE=EXP-EDH-DSS-DES-CBC-SHA

Example for GSK:

Use DES and SHA1 with export key lengths, or
RC4 and MD5 with export key lengths, or
RC2 and MD5 with export key lengths.

CIPHER-SUITE=090306

For more information see:

■ OpenSSL
http://www.openssl.org/docs/apps/ciphers.html

Administration under UNIX78

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

■ GSK
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?
info/apis/gsk_attribute_set_buffer.htm

bwuzOn | nS | nM | nHCONNECTION-NONACT

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled.

bwuzOhostnameHOST

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

Amaximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

zOnameKEY-LABEL

The label of the key in the RACF keyring that is used to authenticate the broker
kernel (see also TRUST-STORE parameter).

(Example: "ETBCERT")

bwuRfile nameKEY-FILE

File that contains the broker's private key (if not contained in KEY-STORE).

(Example: MyAppKey.pem)

bwuRpassword (A32)KEY-PASSWD

Password used to protect the private key. Unlocks MyAppKey.pem. Deprecated.
See KEY-PASSWD-ENCRYTPED below.

bwuRencrypted value
(A64)

KEY-PASSWD-ENCRYPTED

79Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Password used to protect the private key. Unlocks MyAppKey.pem. This attribute
replaces KEY-PASSWD to avoid a clear-text password as attribute value. If
KEY-PASSWD and KEY-PASSWD-ENCRYTPED are both supplied,
KEY-PASSWD-ENCRYTPED takes precedence.

bwuRfile nameKEY-STORE

SSL certificate; may contain the private key.

(Example: ExxAppCert.pem)

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

bwuzO1025 - 65535PORT

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the example
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

bwuzOYES | NORESTART

The broker kernel will attempt to restart the SSL communicator (this is
the default value).

YES

The broker kernel will not attempt to restart the SSL communicator.NO

bwuzO20 | n | UNLIMRETRY-LIMIT

Maximum number of attempts to restart the SSL communicator.

bwuzO3M | n | nS | nHRETRY-TIME

Wait time between suspending SSL communication due to unrecoverable error
and the next attempt to restart it.

Same as nS.n

Wait time in seconds (max.2147483647).nS

Wait time in minutes (max. 35791394).nM

Wait time in hours (max. 596523).nH

Minimum: 1S

bwuzOYES | NOREUSE-ADDRESS

Administration under UNIX80

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).

YES

The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

NO

wuzOnameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bwuzO0 - 4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method SSL or TLS. It overrides the global value of trace level for all SSL or TLS
routines.

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing
error responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout restarting
the broker, use System Management Hub or ETBCMD.

Trace levels 2, 3, and 4 should be used only when requested by Software AG
support.

bwuzRfile name|keyringTRUST-STORE

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

Specify the RACF keyring using the following
format: [USER-ID/]RING-NAME. If no value for

z/OS

USER-ID is provided, the keyring is assumed to

81Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

be associated with the user ID that the broker
kernel is running under.

Specify the file name of the CA certificate store.
Examples: EXXCACERT.PEM,
C:\Certs\ExxCACert.pem

BS2000/OSD/Windows/UNIX

bwuzONO | YESVERIFY-CLIENT

Additional client certificate required.YES

No client certificate required (default).NO

Administration under UNIX82

Broker Attributes

DIV-specific Attributes

The DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

Operating System

Opt/
ReqValuesAttribute

zRA511DIV

The VSAM Persistent Store parameters, enclosed in double quotes (""). The value can span more
than one line. See Format Parameters underManaging the Broker Persistent Store in the z/OS
administration documentation for details of the parameters. In previous versions of EntireX, these
parameters were read from the SYSIN DD during broker kernel startup.

Adabas-specific Attributes

TheAdabas-specific attribute section beginswith the keyword DEFAULTS = ADABAS. The attributes
in this section are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,
these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-
tribute.

Operating System

Opt/
ReqValuesAttribute

bvwuzO126-20000BLKSIZE

Optional blocking factor used formessage data. If not specified, brokerwill split themessage
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.

For reasons of efficiency, do not specify a BLKSIZEmuch larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.

The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.

Default value is 2000.

bvwuzR1 - 32535DBID

83Administration under UNIX

Broker Attributes

Operating System

Opt/
ReqValuesAttribute

Database ID of Adabas database where the persistent store resides.

bvwuzR1 - 32535FNR

File number of broker persistent store file.

bvwuzON | YFORCE-COLD

Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

bvwuzO0-nMAXSCAN

Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

bvwuzON | YOPENRQ

Determines whether driver for Adabas persistent store is to issue an OPEN command to
Adabas.

vzR200-255SVC

Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

bvwuzO0-8TRACE-LEVEL

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

Administration under UNIX84

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

■ BROKER-ID (in Broker-specific attributeBROKER-ID)
■ NODE (in Entire Net-Work-specific attribute NODE)
■ PORT (in PORT (SSL) and PORT (TCP/IP))

How you use the variable definition file will depend upon your particular needs. For instance,
some optional attributesmay require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

85Administration under UNIX

Broker Attributes

86

4 Introduction to Broker Administration using SMH

Before you log in to the SystemManagement Hub for the first time, see Initial Login Considerations
in the System Management Hub for EntireX documentation. See also Startup Daemon 'etbsrv' in
the UNIX administration documentation.

EntireX Broker instances are administered from the EntireX Broker System Management Hub
node. The EntireX Broker node is located below the EntireX node in the SystemManagementHub
tree view. When the EntireX Broker node is expanded, all of the brokers that are known to the
current System Management Hub host are listed. The list consists of all the broker instances con-
figured on the host running the SystemManagement Hub (“local” brokers) and broker instances
configured on other hosts that the user has defined to the System Management Hub (“remote”
brokers). The node of a broker instance can be expanded if its broker is currently running. Below
the node you can see the list of all Command and Information Services. The broker stub nodes
allow a detailed runtime administration of the broker.

Note: The list of the known brokers is maintained by a special administrative service. The
SMHagents communicatewith it or directlywith the listed brokers to perform all necessary
actions. For more information see Configuring the Administration Service.

87

88

5 Managing the List of Brokers with SMH

■ Creating a Local Broker .. 91
■ Deleting a Local Broker .. 91
■ Adding a Remote Broker Instance to System Management Hub .. 93
■ Removing a Remote Broker Instance from System Management Hub .. 93
■ Stopping All Local Brokers from System Management Hub .. 95
■ Setting the User Credentials for a Broker Instance ... 96
■ Clearing the User Credentials for a Broker Instance ... 97
■ Setting SSL or TLS Parameters ... 97

89

See also Administration Service Messages under Error Messages and Codes.

Administration under UNIX90

Managing the List of Brokers with SMH

Creating a Local Broker

To create a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 From the context menu, choose Create Local Broker.

3 Enter Broker ID, TCP Port Number, and SSL Port Number. The valid port number range is
1024 - 65535.

4 Select a transport method.

5 ChooseOK.

When a local broker is added using SMH, a working directory is created for the new broker in the
EntireX directory config/etb. This directory contains an attribute file, and the SSL certificates from
the EntireX directory config/etb are also copied to this directory. If the broker is to use its own SSL
certificates, these must be replaced or the attribute file modified accordingly.

The attributes of the new broker are checked. If, for example, a broker already exists with the
specified port, a corresponding error message is given.

Deleting a Local Broker

To delete a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be deleted.

3 From the context menu, chooseDelete Broker.

4 ChooseOK.

91Administration under UNIX

Managing the List of Brokers with SMH

Administration under UNIX92

Managing the List of Brokers with SMH

Adding a Remote Broker Instance to System Management Hub

To add a remote broker instance to System Management Hub

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 From the context menu, choose Add Remote Broker.

3 In the field Broker Name, enter a valid name. Permitted characters are A-Z, a-z, 0-9.

4 In the field Broker ID, enter the ID of an existing broker. Permitted formats: host:port[:pro-
tocol], protocol://host:port[?sslparameters].

5 ChooseOK.

FunctionAdd Remote Broker creates a directory for a remote broker. The working directories for
a remote broker start with "RB". This directory contains an attribute filewith theURL of the remote
broker. This directory will also be used for tranferring the log and attribute files to or from the
remote broker. If the broker can only be addressed using the SSL protocol, the SSL certificates
should also be stored in this directory. When a remote broker is added, the default SSL certificates
from the EntireX config/etb directory are copied to the working directory of the remote broker. If
this broker is to use other certificates, replace them manually.

Removing a Remote Broker Instance from System Management Hub

To remove a remote broker instance from System Management Hub

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the remote broker instance to be removed.

3 From the context menu, choose Remove Definition.

4 ChooseOK.

93Administration under UNIX

Managing the List of Brokers with SMH

Administration under UNIX94

Managing the List of Brokers with SMH

Stopping All Local Brokers from System Management Hub

To stop all local brokers from System Management Hub

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 From the context menu, choose Stop All Brokers.

3 Choose the stop mode.

4 ChooseOK to confirm deregistration.

95Administration under UNIX

Managing the List of Brokers with SMH

Setting the User Credentials for a Broker Instance

Before a remote broker instance or instance of a local broker that uses LDAP authentication can
be administered, user credentials (user ID and password) must be set.

To set user credentials

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance.

3 From the context menu, choose Set User Credentials.

4 Enter a User ID and Password that are valid for the broker instance.

5 ChooseOK.

6 ChooseOKwhen the success message is displayed.

Administration under UNIX96

Managing the List of Brokers with SMH

Clearing the User Credentials for a Broker Instance

Once a remote broker instance has been administered, the user credentials should be cleared.

To clear user credentials

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance.

3 From the context menu, choose Clear User Credentials. A confirmation screen will appear.

4 ChooseOK or Cancel.

5 ChooseOKwhen the success message is displayed.

Setting SSL or TLS Parameters

To edit a broker SSL file

1 Select the EntireX Broker node below thewebMethods EntireX node in SystemManagement
Hub.

2 Select the broker name to be administered.

3 Choose SSL Parameters.

4 Make your changes.

5 Choose Save.

97Administration under UNIX

Managing the List of Brokers with SMH

98

6 Configuring a Single Broker with SMH

■ Starting a Local Broker ... 100
■ Restarting a Local Broker .. 101
■ Stopping a Local Broker .. 102
■ Administering a Broker Attribute File .. 103
■ Administering a Log File .. 105
■ Setting the Local Broker Autostart Value ... 108
■ Enabling the SNMP Plug-in ... 108
■ Disabling the SNMP Plug-in ... 110

99

Starting a Local Broker

To start a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be started.

3 From the context menu, choose Start Broker.

Note: Before you start a local Broker, make sure that the Broker's etbsrv service or daemon
is running and try again. See Broker Instance Created Automatically during Installation under
Post-installation Steps under UNIX and Startup Daemon 'etbsrv' in the UNIX administration
documentation.

A broker process is started in its working directory. The started broker establishes a connection
to the local Administration Service and provides information such as the used and activated ports.
The information is updated every 60 seconds. If an attribute file is modified after a broker has
been started, this does not result in incorrect information. If a broker is started manually by a
local user and the attribute file is not in theworking directory under the EntireX directory config/etb,
the broker can be administered only to a limited extent. It is only possible to stop this broker. Each
local broker is displayed by the Administration Service in SMH. The brokers that were started
manually have the status "Running: unmanaged Broker with restricted access" in SMH. If the
broker is to be administered without restrictions, the working directory and attribute file must be
located under the EntireX directory config/etb.

Administration under UNIX100

Configuring a Single Broker with SMH

Restarting a Local Broker

To restart a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Restart Broker.

101Administration under UNIX

Configuring a Single Broker with SMH

Stopping a Local Broker

To stop a local broker

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Stop Broker.

4 ChooseOK.

Administration under UNIX102

Configuring a Single Broker with SMH

Administering a Broker Attribute File

This section covers the following topics:

■ Editing an Attribute File
■ Uploading an Attribute File
■ Downloading an Attribute File

Editing an Attribute File

To edit a broker attribute file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

Note: There is another vertical scrollbar for the editor itself. Scroll the horizontal
scrollbar to the right in order to see it. In addition, you can use Ctrl Home and Ctrl End to
get the first and the last pages, respectively.

4 Edit your changes.

5 Choose Save.

6 Choose Restart for the changes to take effect.

103Administration under UNIX

Configuring a Single Broker with SMH

Uploading an Attribute File

To upload a broker attribute file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

4 Choose Upload.

5 Choose Browse and select the local attribute file.

As a result, the upload starts automatically followed by a message "Upload completed!".

Administration under UNIX104

Configuring a Single Broker with SMH

Downloading an Attribute File

To download a broker attribute file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Edit Attribute File.

4 ChooseDownload.

In the ensuing dialog box, choose Save.

Administering a Log File

This section covers the following topics:

■ Showing a Log File
■ Downloading a Log File

Showing a Log File

To show a broker log file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, choose Show Log File.

Note: There is another vertical scrollbar for the editor itself. Scroll the horizontal
scrollbar to the right in order to see it. In addition, you can use Ctrl Home and Ctrl End to
get the first and the last pages, respectively.

105Administration under UNIX

Configuring a Single Broker with SMH

4 Choose Close.

Administration under UNIX106

Configuring a Single Broker with SMH

Downloading a Log File

To download a broker log file

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 From the context menu, chooseDownload Log File.

A message "Download file from host" appears and after it a hyperlink labeledDownload.

4 Follow the hyperlink Download.

5 Use the ensuing dialog box to save the log file on the local machine.

107Administration under UNIX

Configuring a Single Broker with SMH

Setting the Local Broker Autostart Value

The autostart value of a broker instance determines whether it will be started when the computer
is restarted.

To set the Autostart value

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker name to be administered.

3 If the broker instance is currently started automatically, only theTurn offAutostart command
is visible; if the broker instance is currently not started automatically, the Turn on Autostart
command is visible.

4 Choose either Turn on Autostart or Turn off Autostart.

Enabling the SNMP Plug-in

Before a broker can be administered by SNMP, the SNMP plug-in must be enabled. In addition,
the SNMP Plug-in credentials (user ID and password) must be set.

To enable the SNMP plug-in

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker.

3 From the context menu, choose Enable SNMP.

4 Enter a user ID and password that are valid for the broker instance.

5 Choose Verify to check if a logon to the broker is okay with the SNMP plug-in credentials,
or clickOK to save the SNMP plug-in credentials without any verification.

6 Choose Closewhen the Success message is displayed.

Administration under UNIX108

Configuring a Single Broker with SMH

109Administration under UNIX

Configuring a Single Broker with SMH

Disabling the SNMP Plug-in

To disable the SNMP plug-in

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker.

3 From the context menu, chooseDisable SNMP.

4 Choose Closewhen the Success message is displayed.

Administration under UNIX110

Configuring a Single Broker with SMH

7 Using the Broker Information Service with SMH

■ Administering a Broker Instance ... 112
■ Filtering Clients ... 115
■ Filtering Conversations ... 116
■ Filtering the User ... 116
■ Filtering Participants ... 118
■ Filtering the Persistent Store .. 119
■ Filtering the Publication ... 120
■ Filtering the Publisher ... 121
■ Filtering Servers .. 122
■ Filtering Services ... 123
■ Filtering the Subscriber ... 124
■ Filtering the Topic .. 125

111

Administering a Broker Instance

To administer a broker instance

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 If the broker instance is a remote broker instance (running on another node), see Setting the
User Credentials for a Broker Instance.

4 Expand the broker instance node to view and administer the properties for the following ob-
jects:

Filter ResultsSummary ViewInformation Reply StructureObject

BROKER-OBJECTBroker

WORKER-OBJECTWorker

xxSERVICE-OBJECTService

xxCLIENT-SERVER-PARTICIPANT-OBJECTServer

xxCLIENT-SERVER-PARTICIPANT-OBJECTClient

xCLIENT-SERVER-PARTICIPANT-OBJECTParticipant

xCONVERSATION-OBJECTConversation

xxPSF-OBJECTPersistent Store

PSFDIV-OBJECTPersistent Store DIV

PSFADA-OBJECTPersistent Store Adabas

PSFFILE-OBJECTPersistent Store File

PSFCTREE-OBJECTPersistent Store c-tree

xTOPIC-OBJECTTopic

xxSUBSCRIBER-OBJECTSubscriber

xxPUBLISHER-OBJECTPublisher

xPUBLICATION-OBJECTPublication

CMDLOG_FILTER-OBJECTCmdlog Filter

SECURITY-OBJECTSecurity

TCP-OBJECTTCP

SSL-OBJECTSSL

NET-OBJECTNet-Work

POOL-USAGE-OBJECTPool-Usage

RESOURCE-USAGE-OBJECTResource-Usage

STATISTICS-OBJECTStatistics

Administration under UNIX112

Using the Broker Information Service with SMH

Filter ResultsSummary ViewInformation Reply StructureObject

xxUSER-OBJECTUser

WORKER-USAGE-OBJECTWorker-Usage

Notes

■ For a summary view, expand the node and select the required object:

■ For detailed information, select an item from the summary view:

■ The items can be filtered. For an example, see Filtering Services.

113Administration under UNIX

Using the Broker Information Service with SMH

Administration under UNIX114

Using the Broker Information Service with SMH

Filtering Clients

To filter clients

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Client subtree.

3 Select Client.

4 From the context menu, choose Filter.

5 Enter the data for UserID or Token that you would like to filter.

6 ChooseOK.

115Administration under UNIX

Using the Broker Information Service with SMH

Filtering Conversations

To filter conversations

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Client subtree.

3 Select Conversation.

4 From the context menu, choose Filter.

5 Enter the data for UserID or Token that you would like to filter.

6 ChooseOK.

Filtering the User

To filter the user

1 Select the EntireX Broker node below the EntireX node in System Management.

2 Select the Broker instance on which the user is present.

Note: The broker must be running in order to display the User subtree.

3 Select the user.

4 From the context menu, choose Filter.

Administration under UNIX116

Using the Broker Information Service with SMH

5 Enter the data for User ID and Token that you would like to filter.

6 ChooseOK.

117Administration under UNIX

Using the Broker Information Service with SMH

Filtering Participants

To filter participants

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Client subtree.

3 Select Participant.

4 From the context menu, choose Filter.

5 Enter the data for UserID or Token that you would like to filter.

6 ChooseOK.

Administration under UNIX118

Using the Broker Information Service with SMH

Filtering the Persistent Store

To filter the persistent store

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the unit of work is present. The persistent store attributes
(such as PSTORE, PSTORE-TYPE, STORE, DEFERRED, and UWSTATP etc.) must be configured and
the broker must be running in order to display the Persistent Store.

3 Select the Persistent Store node to display a summary list of units of work.

Note: Amessage box will pop up if the table is larger than 3,000 rows. You may prefer
to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

4 Choose Filter.

5 Click the check boxes forReceived,Accepted,Delivered,BackedOut,Processed,Cancelled,
Timed Out orDiscarded that you would like to filter.

6 ChooseOK.

119Administration under UNIX

Using the Broker Information Service with SMH

Filtering the Publication

To filter the publication

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the publication is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be published for a
topic in order to display the data for the publication.

3 Select Publication.

4 From the context menu, choose Filter.

5 Enter the data for Topic, User ID or Token and Publication ID.

6 ChooseOK.

Administration under UNIX120

Using the Broker Information Service with SMH

Filtering the Publisher

To filter the publisher

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the publisher is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be published for a
topic in order to display the data for the publisher.

3 Select Publisher.

4 From the context menu, choose Filter.

5 Enter the data for User ID and Token that you would like to filter.

6 ChooseOK.

121Administration under UNIX

Using the Broker Information Service with SMH

Filtering Servers

To filter servers

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Server subtree.

3 Select Server.

4 From the context menu, choose Filter.

5 Enter the data for UserID,Token,Server Class,Server Name or Service.

6 ChooseOK.

Administration under UNIX122

Using the Broker Information Service with SMH

Filtering Services

To filter services

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Click on the “+” sign of the broker name to be administered.

Note: The broker must be running in order to display the Service subtree.

3 Select Service.

4 From the context menu, choose Filter.

5 Enter the data for Server Class, Server Name and Service.

6 ChooseOK.

123Administration under UNIX

Using the Broker Information Service with SMH

Filtering the Subscriber

To filter the subscriber

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the subscriber is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the subscriber.

3 Select Subscriber.

4 From the context menu, choose Filter.

5 Enter the data for Topic, User ID, Token; select Subscription Type, Active Subscriber and
Swapped Out that you would like to filter.

6 ChooseOK.

Administration under UNIX124

Using the Broker Information Service with SMH

Filtering the Topic

To filter the topic

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the topic is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the topic.

3 Select Topic.

4 From the context menu, choose Filter.

5 Enter the data for the Topic that you would like to filter.

6 ChooseOK.

125Administration under UNIX

Using the Broker Information Service with SMH

126

8 Using the Broker Command Service with SMH

■ Connecting/Disconnecting Persistent Store ... 128
■ Allowing and Forbidding new UOW Messages ... 129
■ Setting a Broker Instance's Trace Level .. 129
■ Flushing a Broker Instance's Trace Buffer ... 130
■ Flushing a Broker Instance's Trace Buffer on Error ... 130
■ Producing Statistics of a Broker Instance .. 131
■ Setting the Persistent Store Trace Level ... 131
■ Setting the Security Trace Level ... 132
■ Deregistering a Server .. 133
■ Deregistering a Service ... 134
■ Purging Unit(s) of Work ... 135
■ Subscribing a User ... 137
■ Unsubscribing a User ... 138
■ Logging Off a Subscriber ... 139
■ Logging Off a Publisher ... 140
■ Enabling/Disabling Cmdlog .. 140
■ Switching Cmdlog .. 142
■ Adding Cmdlog Filter .. 143
■ Enabling/Disabling Cmdlog Filter .. 144
■ Deleting Cmdlog Filter .. 145

127

Connecting/Disconnecting Persistent Store

To connect or disconnect a Persistent Store

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 To connect a persistent store, select Connect PStore.

4 To disconnect a persistent store, selectDisconnect PStore.

As a result, a confirmation screen will appear.

5 ChooseOK or Cancel.

Administration under UNIX128

Using the Broker Command Service with SMH

Allowing and Forbidding new UOW Messages

To allow or forbid a Broker instance to accept new unit-of-work messages

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 To allow new unit-of-work messages, select Allow new UOWMSGs.

4 To forbid new unit-of-work messages, select Forbid new UOWMSGs.

As a result, a confirmation screen will appear.

5 ChooseOK or Cancel.

Setting a Broker Instance's Trace Level

To set a broker instance's trace level

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Select a Trace Level between 1 and 4 or off.

5 ChooseOK.

129Administration under UNIX

Using the Broker Command Service with SMH

Flushing a Broker Instance's Trace Buffer

To flush a broker instance's trace buffer

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Trace Levelmust be between 1 and 4. Press Flush to confirm.

Flushing a Broker Instance's Trace Buffer on Error

To flush a broker instance's trace buffer

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Trace Levelmust be between 1 and 4. Enter a number between 1 and 9999 in the Error
Number field and press Flush on Error.

Administration under UNIX130

Using the Broker Command Service with SMH

Producing Statistics of a Broker Instance

To produce statistics of a broker instance

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Choose Trace Settings.

4 Trace Levelmust be between 1 and 4. Press Produce Statistics.

Setting the Persistent Store Trace Level

To set the persistent store trace level

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Select a subnode of Persistent Store (either Persistent Store ADA or Persistent Store CTree).

4 Choose Set Trace Level.

5 Select a Trace Level between 1 and 4 or off.

6 ChooseOK.

131Administration under UNIX

Using the Broker Command Service with SMH

Setting the Security Trace Level

To set the security trace level

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance to be administered.

3 Select Security.

4 Set the security trace level by selecting a value between 1 and 4 in the Set the Trace Level
box.

5 ChooseOK.

Administration under UNIX132

Using the Broker Command Service with SMH

Deregistering a Server

To deregister a server

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the server is running.

3 Select the Server node to display a summary list of servers.

4 From the columnDeregister Server, choose icon Shut Down Server.

5 Choose the deregistration mode.

For deregister immediately, a server process will only be terminated if the server status is
wait.

6 Confirm the deregistration by choosingOK.

133Administration under UNIX

Using the Broker Command Service with SMH

Deregistering a Service

To deregister a service

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the server is running.

3 Select the Service node to display a summary list of servers.

4 From the columnDeregister Service, choose iconDeregister Service.

5 Choose the deregistration mode.

6 Confirm the deregistration by choosingOK.

Administration under UNIX134

Using the Broker Command Service with SMH

Purging Unit(s) of Work

To purge a unit of work

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the unit of work is present.

3 Select the Persistent Store node to display a summary list of units of work.

Note: Amessage box will pop up if the table is larger than 3,000 rows. You may prefer
to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

4 Choose Purge.

5 ChooseOK.

To purge all units of work

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the units of work are present.

3 Select the Persistent Store node to display a summary list of units of work.

Note: Amessage box will pop up if the table is larger than 3,000 rows. You may prefer
to apply a filter to your UOW table. See the filter command in the command menu. It
might take several minutes to display all of the contents if you choose not to use the
filter.

135Administration under UNIX

Using the Broker Command Service with SMH

4 Choose Purge All UOWs at the bottom of the table. A confirmation message will appear.

5 ChooseOK or Cancel.

All units of work will be purged. The number of purged UOWs is reported in a screen similar to
the one below.

Administration under UNIX136

Using the Broker Command Service with SMH

Subscribing a User

To subscribe a user

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the topic (or subscriber) is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, and the Broker must be running in order to display the topic (or
subscriber).

3 Select Topic (or Subscriber).

4 From the context menu, choose Subscribe.

5 If you are on theTopic node, enter the data forUser ID andToken; if you are on theSubscriber
node, specify the topic that you would like to subscribe to.

6 ChooseOK.

137Administration under UNIX

Using the Broker Command Service with SMH

Unsubscribing a User

To unsubscribe a user

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the topic (or subscriber) is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, and the Broker must be running in order to display the topic (or
subscriber).

3 Select Topic (or Subscriber).

4 From the context menu, choose Unsubscribe.

5 If you are on theTopic node, enter the data forUser ID andToken; if you are on theSubscriber
node, specify the topic that you would like to unsubscribe from.

6 ChooseOK.

Administration under UNIX138

Using the Broker Command Service with SMH

Logging Off a Subscriber

To log off a subscriber

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the Broker instance on which the subscriber is present.

Note: Pub/Sub must be enabled in the Broker attribute file, a license file for Pub/Sub
must be installed, the Broker must be running, and a user must be subscribed to a
topic in order to display the data for the subscriber.

3 Select Subscriber.

4 From the context menu, choose Logoff.

5 Choose the logoff mode.

6 ChooseOK.

139Administration under UNIX

Using the Broker Command Service with SMH

Logging Off a Publisher

To log off a publisher

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Publisher is present.

Note: Pub/Sub must be enabled in the broker attribute file, a license file for Pub/Sub
must be installed, the broker must be running, and a user must be published from a
topic in order to display the data for the Publisher.

3 Select Publisher.

4 Choose Logoff.

5 Choose the logoff mode.

6 ChooseOK.

7 After a Publisher is shut down successfully, it will be removed from the list.

Enabling/Disabling Cmdlog

To enable/disable cmdlog

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

Administration under UNIX140

Using the Broker Command Service with SMH

4 Choose Enable Cmdlog orDisable Cmdlog.

141Administration under UNIX

Using the Broker Command Service with SMH

Switching Cmdlog

To switch cmdlog

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Switch Cmdlog.

Administration under UNIX142

Using the Broker Command Service with SMH

Adding Cmdlog Filter

To add a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Add Cmdlog Filter.

5 Enter the data for user ID and Class/Server/Service or Topic you would like to filter.

6 ChooseOK to add a Cmdlog filter to the list.

143Administration under UNIX

Using the Broker Command Service with SMH

Enabling/Disabling Cmdlog Filter

To enable/disable a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 Choose Enable Cmdlog Filter orDisable Cmdlog Filter.

Administration under UNIX144

Using the Broker Command Service with SMH

Deleting Cmdlog Filter

To delete a cmdlog filter

1 Select the EntireX Broker node below the EntireX node in SystemManagement.

2 Select the broker instance on which the Cmdlog filter is present. Cmdlog must be enabled in
the broker attribute file and the broker must be running.

3 From the context menu, choose Cmdlog Filter.

4 ChooseDelete Cmdlog Filter to remove a Cmdlog filter from the list.

145Administration under UNIX

Using the Broker Command Service with SMH

146

9 Configuring Broker for Internationalization

■ Configuring Translation ... 148
■ Configuring Translation User Exits .. 149
■ Configuring ICU Conversion .. 149
■ Configuring SAGTRPC User Exits ... 150
■ Writing Translation User Exits .. 151
■ Writing SAGTRPC User Exits ... 154
■ Building and Installing ICU Custom Converters .. 159

147

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

This chapter explains in detail how to configure the broker for the various internationalization
approaches, how to write a translation user exit and how to write a SAGTRPC user exit.

See alsoWhat is the Best Internationalization Approach to use? under Introduction to Internationalization

Configuring Translation

To configure translation

■ In the Broker attribute file, set the service-specific or topic-specific broker attribute TRANSLATION
to "SAGTCHA" as the name of the translation routine. Example:

TRANSLATION=SAGTCHA

Administration under UNIX148

Configuring Broker for Internationalization

Configuring Translation User Exits

To configure translation user exits

As a prerequisite, the user-written translation routine shared library/object must be accessible to
the Broker worker threads.

1 Copy the user-written translation routine shared library/object into the EntireX bin directory.

2 In the Broker attribute file, set the service-specific or topic-specific broker attribute TRANSLATION
to the name of the user-written translation routine. Example:

TRANSLATION=libmytrans.s[o|l]

or

1. Place the user-written translation routine shared library/object in a directory of your choice.
Spaces in the path name are not allowed.

2. In the Broker attribute file, set the service-specific or topic-specific broker attribute TRANSLATION
to the full path name of the directory of the user-written translation routine. Example:

TRANSLATION=../mydir/mytrans/libmytrans.s[o|l]

Configuring ICU Conversion

To configure ICU conversion

1 In the Broker attribute file, set the service-specific or topic-specific broker attribute CONVERSION.
Examples:

1. ICU Conversion with SAGTCHA for ACI-based Programming:

CONVERSION=(SAGTCHA,TRACE=1,OPTION=SUBSTITUTE)

2. ICU Conversion with SAGTRPC for RPC-based Components and Reliable RPC:

149Administration under UNIX

Configuring Broker for Internationalization

CONVERSION=(SAGTRPC,TRACE=2,OPTION=STOP)

We recommend always using SAGTRPC for RPC data streams. Conversion with Multibyte,
Double-Byte and other Complex Codepageswill always be correct, andConversion with Single-byte
Codepages is also efficient because SAGTRPCdetects single-byte codepages automatically. See
Conversion Details.

2 Optionally configure a CONVERSION OPTION to tune error behavior tomeet your requirements;
see OPTION Values for Conversion.

3 For the Broker attribute, check if ICU conversion is possible, that is, the attribute ICU-CONVER-
SION is either

■ not defined, its default is YES
■ set to YES

To configure locale string defaults (optional)

■ If the broker's locale string defaults do notmatch your requirements (see Broker's Locale String
Defaultsunder Locale StringMapping in the internationalizationdocumentation),we recommend
you assign suitable locale string defaults for your country and region, see the respective at-
tribute in Codepage-specific Attributes (DEFAULTS=CODEPAGE) under Broker Attributes in the ad-
ministration documentation for how to customize the broker's locale string defaults.

To customize mapping of locale strings (optional)

■ If the built-in locale string mapping mechanism does not match your requirements, you can
assign specific codepages to locale strings. See Broker's Built-in Locale String Mapping under
Locale String Mapping in the internationalization documentation and locale-string for in-
formation on customizing the mapping of locale strings to codepages.

Configuring SAGTRPC User Exits

The user-written SAGTRPC user exit shared library/object must be accessible to the Broker
worker threads.

To configure SAGTRPC user exits

1 Copy the user-written SAGTRPCuser exit shared library/object into the EntireX bin directory.

2 In the Broker attribute file, set the service-specific or topic-specific broker attribute CONVERSION
to the name of your SAGTRPC user exit. Example:

Administration under UNIX150

Configuring Broker for Internationalization

CONVERSION=(libmytrans.s[o|l],TRACE=1)

or

1. Place the user-written translation routine shared library/object in a directory of your choice.

2. In the Broker attribute file, set the service-specific or topic-specific broker attribute CONVERSION
to the full path name of the directory of the SAGTRPC user exit. Example:

CONVERSION=../mydir/mytrans/libmytrans.s[o|l]

To configure locale string defaults

■ If the broker's locale string defaults do not match your requirements, we recommend you
assign suitable locale string defaults for your country and region. See the appropriate attribute
under Codepage-specific Attributes (DEFAULTS=CODEPAGE) under Broker Attributes in the admin-
istration documentation for information on customizing broker's locale string defaults, and
also Locale String Mapping in the internationalization documentation.

To customize mapping of locale strings

■ If the broker's built-in locale string mechanism does not match your requirements, you can
assign specific codepages to locale strings. See Broker's Built-in Locale String Mapping under
Locale StringMapping in the internationalization documentation and the appropriate attribute
under Codepage-specific Attributes (DEFAULTS=CODEPAGE) under Broker Attributes in the admin-
istration documentation for information on customizing broker's locale string defaults.

Writing Translation User Exits

This section covers the following topics:

■ Introduction
■ Structure of the TRAP Control Block

151Administration under UNIX

Configuring Broker for Internationalization

■ Using the TRAP Fields

Introduction

EntireXBroker provides an interface to enable user-written translation routines in the programming
language C. It contains three parameters:

■ The address of the TRAP control block (TRAP = Translation Routine / Area for Parameters).
■ The address of a temporarywork area. It is aligned to fullword / long integer boundary (divisible
by 4). The work area can only be used for temporary needs and is cleared after return.

■ A fullword (long integer) that contains the length of the work area.

Note: Names for user-written translation routines starting with "SAG" are reserved for
Software AG usage and must not be used, e.g. "SAGTCHA" and "SAGTRPC".

Structure of the TRAP Control Block

The C structure TR_TRAP covers the layout of the control block.

typedef struct _TR_TRAP /* I / O */
{

unsigned long tr_type; /* TRAP type: TRAP_TYPE inp */
#define TR_TYPE 2 /* TRAP type ETB 121 */

long tr_ilen; /* Input buffer length inp */
unsigned char *tr_ibuf; /* Ptr to input buffer inp */
long tr_olen; /* Output buffer length inp */
unsigned char *tr_obuf; /* Ptr to output buffer inp */
long tr_dlen; /* Len of data returned: out */

/* Minimum of tr_ilen */
/* and tr_olen */

unsigned long tr_shost; /* Senders host inp */
#define TR_LITTLE_ENDIAN 0 /* little endian */
#define TR_BIG_ENDIAN 1 /* big endian */

unsigned long tr_scode; /* Senders character set inp */
#define SEBCIBM ((1L << 5)|(1L << 1)) /* 0x22 EBCDIC (IBM) */
#define SEBCSNI ((1L << 6)|(1L << 1)) /* 0x42 EBCDIC (SNI) */
#define SA88591 (1L << 7) /* 0x80 ASCII */

unsigned long tr_rhost; /* Receivers host (see tr_shost) inp */
unsigned long tr_rcode; /* Receivers char set (see tr_scode) inp */
unsigned long tr_bhost; /* BROKER host (see tr_shost) inp */
unsigned long tr_bcode; /* BROKER char set (see tr_scode) inp */
unsigned long tr_senva; /* Senders ENVIRONMENT field set: inp */

#define OFF 0 /* ENVIRONMENT field not set */
#define ON 1 /* ENVIRONMENT field set */

unsigned long tr_renva; /* Receivers ENVIRONMENT field set: inp */
/* see tr_senva */

#define S_ENV 32 /* size of ENVIRONMENT field */
char tr_senv[S_ENV];/* Senders ENVIRONMENT field inp */

Administration under UNIX152

Configuring Broker for Internationalization

char tr_renv[S_ENV];/* Receivers ENVIRONMENT field inp */
} TR_TRAP;

The file usrtcha.c is an example of the translation user exit. It is delivered in the Broker user exit
directory. See Directories as Used in EntireX in the general administration documentation.

Using the TRAP Fields

The tr_dlen must be supplied by the user-written translation routine. It tells the Broker the length
of themessage of the translation. In our example its value is set to theminimum length of the input
and output buffer.

All other TRAP fields are supplied by the Broker and must not be modified by the user-written
translation routine.

The incoming message is located in a buffer pointed to by tr_ibuf. The length (not to be exceeded)
is supplied in tr_ilen. The character set information from the send buffer can be taken from tr_scode.

The outgoingmessagemust bewritten to the buffer pointed to by tr_obuf. The length of the output
buffer is given in the field tr_olen. The character set is specified in tr_rcode. If the addresses given
in tr_ibuf and tr_obuf point to the same location, it is not necessary to copy the data from the input
buffer to the output buffer.

The environment fields tr_senva and tr_renva are provided to handle site-dependent character
set information. For the SEND and/or RECEIVE functions, you can specify data in the ENVIRONMENT
field of the Broker ACI control block. This data is translated into the codepage of the platform
where EntireX Broker is running (see field tr_bcode) and is available to the tr_senv or tr_renv field
in the TRAP control block. tr_senva or tr_renva are set to ON if environmental data is available.

The sample source USRTCHA contains a section to handle the ENVIRONMENT value *NONE. The trans-
lation will be skipped if *NONE is supplied by the sender or receiver. Any values given in the API
field ENVIRONMENTmust correspond to the values handled in the translation routine.

153Administration under UNIX

Configuring Broker for Internationalization

Writing SAGTRPC User Exits

This section covers the following topics:

■ Introduction
■ Structure of the User Exit Control Block
■ Using the User Exit Interface Fields
■ Character Set and Codepage

Introduction

EntireX Broker provides an interface to SAGTRPC user exit routines written in the programming
language C. The interface contains three parameters:

■ The address of the UE (user exit) control block.
■ The address of a temporarywork area. It is aligned to a fullword / long-integer boundary (divis-
ible by 4). The work area can only be used temporarily and is cleared after return.

■ A fullword (long integer) that contains the length of the work area.

Note: Names for conversion routines starting with "SAG" are reserved for Software AG
usage and must not be used, e.g. "SAGTCHA" and "SAGTRPC".

Structure of the User Exit Control Block

The C structure UECB shows the layout of the user exit control block.

typedef struct _UECB
{

unsigned long eVersion;
#define USRTRPC_VERSION_1 1

char * pInputBuffer;
unsigned long uInputLen;
char * pOutputBuffer;
unsigned long uOutputLen;
unsigned long uReturnedLen;

unsigned long shost;
#define USRTRPC_LITTLE_ENDIAN 0 /* little endian */
#define USRTRPC_BIG_ENDIAN 1 /* big endian */

unsigned long scode;
#define USRTRPC_SEBCIBM ((1L << 5)|(1L << 1)) /* 0x22 EBCDIC (IBM) */
#define USRTRPC_SEBCSNI ((1L << 6)|(1L << 1)) /* 0x42 EBCDIC (SNI) */
#define USRTRPC_SA88591 (1L << 7) /* 0x80 ASCII */

Administration under UNIX154

Configuring Broker for Internationalization

unsigned long rhost;
/* see shost */

unsigned long rcode;
/* see scode */

unsigned long bhost;
/* see shost */

unsigned long bcode;
/* see scode */

unsigned long uCpSender;
unsigned long uCpReceiver;
unsigned long uCpBroker;

char eFunction;
#define USRTRPC_FCT_CONVERT 'C'
#define USRTRPC_FCT_GETLENGTH 'L'

char eDirection;
#define USRTRPC_DIR_SENDER_TO_BROKER '1'
#define USRTRPC_DIR_SENDER_TO_RECEIVER '2'
#define USRTRPC_DIR_BROKER_TO_RECEIVER '3'

char sFormat[2];
#define ERX_USERDATA "01" /* UserId, Lib, Pgm, etc. from Header

(truncatable) */
#define ERX_METADATA "02" /* Header Data (non-truncatable) */
#define ERX_FRMTDATA "03" /* Format Buffer (non-truncatable) */
#define ERX_SB_ELEMENT "04" /* String Buffer */
#define ERX_VB_METADATA "05" /* Value Buffer Array Occurences,

String Length */
#define ERX_PREVIEW "99" /* Previewing FB and VB, etc... */

/* Convert data lazy. Do not care on */
/* length changes and truncation. */

#define ERX_FRMT_A "A " /* Data Type A */
#define ERX_FRMT_AV "AV" /* Data Type AV */
#define ERX_FRMT_B "B " /* Data Type B */
#define ERX_FRMT_BV "BV" /* Data Type BV */
#define ERX_FRMT_D "D " /* Data Type D */
#define ERX_FRMT_F4 "F4" /* Data Type F4 */
#define ERX_FRMT_F8 "F8" /* Data Type F8 */
#define ERX_FRMT_I1 "I1" /* Data Type I1 */
#define ERX_FRMT_I2 "I2" /* Data Type I2 */
#define ERX_FRMT_I4 "I4" /* Data Type I4 */
#define ERX_FRMT_K "K " /* Data Type K */
#define ERX_FRMT_KV "KV" /* Data Type KV */
#define ERX_FRMT_L "L " /* Data Type L */
#define ERX_FRMT_N "N " /* Data Type N */
#define ERX_FRMT_P "P " /* Data Type P */
#define ERX_FRMT_T "T " /* Data Type T */
#define ERX_FRMT_U "U " /* Data Type U */
#define ERX_FRMT_UV "UV" /* Data Type UV */

155Administration under UNIX

Configuring Broker for Internationalization

char szErrorText[40];

} UECB;

The file usrtrpc.c is an example of the SAGTRPC User Exit. It is delivered in the Broker User Exit
Directory. See Directories as Used in EntireX in the general administration documentation.

Using the User Exit Interface Fields

Theuser exit provides two separate functions, Convert and GetLength. The field eFunction indicates
the function to execute.

Errors

Both functions can send an error, using register 15 in the range 1 to 9999 to SAGTRPC together
with an error text in the field szErrorText.

■ A value of 0 returned in register 15 means successful response.
■ Error 9999 is reserved for output buffer overflow. See Convert Function.
■ When an error occurs, the conversion of the message will be aborted and the error text will be
sent to the receiver (client or server). The error is prefixed with the error class 1011. SeeMessage
Class 1011 - User-definable SAGTRPC Conversion Exit under Error Messages and Codes.

Example:

The user exit returns 1 in register 15 and the message “Invalid Function” in szErrorText. The re-
ceiver gets the error message 10110001 Invalid Function.

Convert Function

This function has to be executed when the contents of eFunctionmatch the definition
USRTRPC_FCT_CONVERT.

uReturnedLenmust be supplied by SAGTRPC's user-written conversion exit. Its value must be
set to the length of the output buffer.

All other interface fields are supplied by the Broker and must not be modified by SAGTRPC's
user-written conversion exit.

The incoming data is located in a buffer pointed to by pInputBuffer. uInputLen defines the length.

The outgoing converted message must be written to the buffer pointed to by pOutputBuffer. The
field tr_olen defines the maximum length available.

For variable length data such as AV and KV, an output buffer overflow can occur if the message
size increases after conversion or the receiver's receive buffer is too small. In this case error 9999

Administration under UNIX156

Configuring Broker for Internationalization

“output buffer overflow”must be returned, which calls the GetLength Function for the remaining
fields.

GetLength Function

The GetLength function evaluates the needed length of the output buffer after conversion. An ac-
tual conversionmust not be performed. The length neededmust be returned in the field uOutputLen.

The GetLength function is called for remaining fields after the Convert function returned the error
9999 “output buffer overflow”.

The purpose of this function is to evaluate the length needed by the receiver's receive buffer. This
length is returned to the receiver in the ACI field RETURN-LENGTH. The receiver can then use the
Broker ACI function RECEIVEwith the option LAST together with a receive buffer large enough to
reread the message.

Character Set and Codepage

The character-set information used is the same as in the user-written translation routine and is
taken from scode (for the sender), rcode (for the receiver) and bcode (for the Broker). The character-
set information depends on the direction information given in the field eDirection. See the fol-
lowing table:

To Character SetFrom Character SeteDirection

bcodescodeUSRTRPC_DIR_SENDER_TO_BROKER

rcodescodeUSRTRPC_DIR_SENDER_TO_RECEIVER

rcodebcodeUSRTRPC_DIR_BROKER_TO_RECEIVER

Alternatively, the codepage as derived from the locale string mapping process is provided in
uCpSender (sender codepage), uCpReceiver (receiver codepage) and uCpBroker (Broker codepage),
and can be used to find the correct conversion table. See the following table and also Locale String
Mapping in the internationalization documentation.

To CodepageFrom CodepageeDirection

uCpBrokeruCpSenderUSRTRPC_DIR_SENDER_TO_BROKER

uCpReceiveruCpSenderUSRTRPC_DIR_SENDER_TO_RECEIVER

uCpReceiveruCpBrokerUSRTRPC_DIR_BROKER_TO_RECEIVER

157Administration under UNIX

Configuring Broker for Internationalization

Software AG IDL Data Types to Convert

The field sFormat provides the SAGTRPC user-written conversion exit with the information on
the IDL data types to convert. Each data type can be handled independently.

NotesData to be convertedsFormat

1, 3, 4IDL data type AFMTA

4, 5IDL data type AVFMTAV

1, 2, 7IDL data type BFMTB

1, 2, 7IDL data type BVFMTBV

1, 2, 7IDL data type DFMTD

1, 2, 7IDL data type F4FMTF4

1, 2, 7IDL data type F8FMTF8

1, 2, 7IDL data type I1FMTI1

1, 2, 7IDL data type I2FMTI2

1, 2, 7IDL data type I4FMTI4

1, 3, 4IDL data type KFMTK

4, 5IDL data type KVFMTKV

1, 2, 7IDL data type LFMTL

1, 2, 7IDL data type NFMTN

1, 2, 7IDL data type PFMTP

1, 2, 8IDL data type TFMTT

1, 2, 7IDL data type UFMTU

1, 2, 7IDL data type UVFMTUV

1, 3, 4RPC user data such as user ID, library, program...FMTUSER

1, 2, 7RPC metadataFMTMETA

1, 2, 7RPC format bufferFMTFB

4, 5, 7RPC metadata variable lengthFMTSB

4, 6, 7Preview dataFMTPRE

Notes:

1. Field length is constant.

2. The field content length must not increase or decrease during conversion. If this happens, the
user exit should produce an error.

3. If the field content length decreases during the conversion, suitable padding characters (normally
blanks) have to be used.
If the field content length increases during conversion and exceeds the field length, the contents
must be truncated or, alternatively, the conversion can be aborted and an error produced.

Administration under UNIX158

Configuring Broker for Internationalization

4. If the contents are truncated, character boundaries are the responsibility of the user exit. Complete
valid characters after conversion have to be guaranteed. This may be a complex task for code-
pages described under Conversion with Multibyte, Double-Byte and other Complex Codepages. For
Conversion with Single-byte Codepages it is simple because the character boundaries are the same
as the byte boundaries.

5. The field length can decrease or increase during the conversion up to the output buffer length.
The new field length must be returned in uReturnedLen. If the output buffer in the Convert
function is too small, error 9999 must be returned to the caller.

6. The field buffer should continue to be converted until the output buffer is full or the input
buffer has been processed. If the field content length increases or truncations occur, no error
should be produced. If the field content length decreases, there should be no padding. The new
field length should simply be returned to the caller.

7. Codepages used for RPCdata streamsmustmeet several requirements. SeeCodepage Requirements
for RPCData StreamConversions underWhat is the Best Internationalization Approach to use? under
Introduction to Internationalization. If these are not met, the codepage cannot be used to convert
RPC data streams.

To compile and link the SAGTRPC User Exit

■ See the README.TXT in the Broker User Exit Directory under Directories as Used in EntireX in
the general administration documentation.

Building and Installing ICU Custom Converters

User-written ICU custom-converters can be used forACI-based Programming,RPC-based Components,
and Reliable RPC.

This section covers the following topics:

■ Writing a User-written ICU Converter
■ Compiling a User-written ICU Converter

159Administration under UNIX

Configuring Broker for Internationalization

■ Installing a User-written ICU Converter

Writing a User-written ICU Converter

ICU uses algorithmic conversion, non-algorithmic conversion and combinations of both. See ICU
Conversion under Introduction to Internationalization. Non-algorithmic converters defined by the
UCM format are the easiest way to define user-written ICU converters. See UCM Format under
ICU Resources under Introduction to Internationalization.

To write a (non-algorithmic) user-written ICU converter

■ Define the ICU converter file in UCM format using a text editor to meet your requirements.

Note: For further explanation of theUCMfile format, see ICUResourcesunder Introduc-
tion to Internationalization.

Writing algorithmic and partially algorithmic converters can be complex. However, they can be
installed into EntireX in the same way as the table-driven, non-algorithmic ones. A description of
how to write algorithmic and partially algorithmic converters is beyond the scope of this docu-
mentation; please see the ICU documentation and other sources specified under ICU Resources
under Introduction to Internationalization.

Compiling a User-written ICU Converter

To compile the user-written ICU converter

■ Compile the converter source files (extension .ucm) into binary converter files (extension
".cnv") using the ICU tool makeconv. Example:

makeconv -v myebcdic.ucm

Note: EntireX delivers the ICU tool makeconv in the EntireX bin directory.

This produces a binary converter file named myebcdic.cnv.

Caution: The binary format "cnv" depends on the endianness (big/little endian) and
character set family (ASCII/EBCDIC) of the computerwhere it is produced. For example,
a binary converter file produced on a machine with big endianes cannot be executed
on amachine with little endian (and vice versa) or character set family EBCDIC cannot
be executed on a machine with character set family ASCII (and vice versa). It is highly
recommended to compile the converter source file(s) on the same target platformwhere
the broker runs - otherwise unpredictable result may occur.

Administration under UNIX160

Configuring Broker for Internationalization

Installing a User-written ICU Converter

To install the user-written ICU converter

1 Check if the subdirectory var exists in the Software AG common directory referenced by the
environment variables $SAG and $COMMON. If not create the subdirectory var. Example:

$SAG/$COMMON/var

2 Check if the subdirectory icudt<icu-version><endianness> exists in the subdirectory var of
the SoftwareAGcommondirectory referenced by the environment variables $SAG and $COMMON.
If not, create the subdirectory var, where:

■ <icu-version>is the ICU version used, for example 32.
■ <endianness> is either "b" (big-endian)or "l" (little-endian). Examples:

$SAG/$COMMON/var/icudt32l
$SAG/$COMMON/var/icudt32b

Notes:

1. The subdirectory and its naming are given by ICU standard. It is not invented by Software
AG.

2. See the Release Notes to determine the ICU version used by the broker you are running
and form the correct subdirectory name, otherwise the user-written ICU converter will not
be located.

3. Take care to use the correct endianness given by the machine the broker is running on,
otherwise the user-written ICU converter will not be located.

4. There are also other approaches supported by ICU to locate converters. These approaches
are (also) ICU version dependent. However, Software AG recommends the mechanism
described above. See the ICU website for more information under ICU Resources under
Introduction to Internationalization.

3 Copy the user-written ICU converter binary file (extension "cnv") to the SoftwareAG common
directory referenced by the environment variables $SAG and $COMMONin the subdirectory
icudt<icu-version><endianness>(see 1 and 2 above). Examples:

161Administration under UNIX

Configuring Broker for Internationalization

$SAG/$COMMON/var/icudt32l/myebcdic.cnv
$SAG/$COMMON/var/icudt32l/myascii.cnv

4 If the converter name is not sent as the locale string by your application, customize themapping
of locale strings by assigning the user-written ICU converter (codepage) to locale strings in
the Broker attribute file, see locale-string for how to customize themapping of locale strings
to codepages. Example:

DEFAULTS=CODEPAGE
/* Customer-written ICU converter */
CP1140=myebcdic
CP0819=myascii

5 For the Broker attribute, check whether ICU conversion is possible, that is, the attribute ICU-
CONVERSION is

■ not defined, its default is "YES"
■ set to "YES"

6 For the Broker attribute, check whether use of ICU custom converters is possible, that is, the
attribute ICU-SET-DATA-DIRECTORY is either

■ not defined, its default is "YES"
■ (is) set to "YES"

Administration under UNIX162

Configuring Broker for Internationalization

10 Managing the Broker Persistent Store

■ Implementing an Adabas Database as Persistent Store ... 164
■ c-tree Database as Persistent Store .. 171
■ Migrating the Persistent Store .. 171

163

The persistent store is used for storing unit-of-work messages and publish-and-subscribe data to
disk. This means message and status information can be recovered after a hardware or software
failure to the previous commit point issued by each application component.

Under UNIX, the broker persistent store can be implemented with:

■ the Adabas database of Software AG
■ the c-tree (C) Copyright database of FairCom Corporation (R)

Note: If you were previously using the local file system of the machine where the Broker
kernel executes, you will need to migrate to a supported persistent store. This persistent
store option is no longer supported. To migrate your persistent store, please see the steps
outlined inMigrating the Persistent Store.

See also Concepts of Persistent Messaging in the general administration documentation.

Implementing an Adabas Database as Persistent Store

■ Introduction
■ Adabas Persistent Store Parameters
■ Configuring and Operating the Adabas Persistent Store
■ Adabas DBA Considerations

Introduction

EntireX provides an Adabas persistent driver. This enables Broker unit of work (UOW) messages
and their status to be stored in an Adabas file. It is designed toworkwith Adabas databases under
z/OS, UNIX, Windows, BS200/OSD and z/VSE, and can be used where the database resides on a
different machine to Broker kernel. For performance reasons, we recommend using Broker on the
same machine as the Adabas database.

Adabas Persistent Store Parameters

Parameters are supplied using the Adabas-specific Attributes (DEFAULTS=ADABAS) under Broker At-
tributes in the administration documentation. See excerpt from the broker attribute file:

DEFAULTS=BROKER
STORE = BROKER
PSTORE-TYPE = ADABAS
PSTORE = COLD

DEFAULTS=ADABAS
DBID = dbid
FNR = fnr

Administration under UNIX164

Managing the Broker Persistent Store

Configuring and Operating the Adabas Persistent Store

Selecting the Adabas Persistent Store Driver

The Adabas Persistent Store driver module is contained within the regular Broker load library or
binaries directory. The module adapsi is activated by specifying the PSTORE-TYPE parameter as
shown above.

Use the supplied script persistence.fdu in the bin directory to create a persistent store file in your
Adabas database. This script uses the Adabas FDT definition found in file persistence.fdt in the etc
directory.

The script persistence.fdu can be executed like this:

persistence.fdu <dbid> <fnr>

Note: You can customize the supplied script and FDT file in accordance with your site re-
quirements. See the Adabas Utilitiesmanual where necessary, specifically ADAFDU (File
Definition Utility).

To run the script file

1 Ensure that you execute the script file on the samemachine that the target Adabas is running
on. (The database can be either active or inactive at the time you execute it.)

2 Ensure that Adabas environment variables (such as ACLDIR, ADATOOLS, ADABIN and ADALNK)
are set up. These environment variables are set by sourcing the corresponding environment
scripts. See your Adabas documentation for details.

3 Set your working directory to the one where the fdt file is located.

4 Execute the fdt file, passing it two parameters. (The first one is the DBID, where persistent
store file is to be created; the second is the file number.)

5 Option: If the DBID is less than 3 characters long, include leading zeros. For example:

persistence.fdu 001 19

Result: Creation of file number 19 in database 1.

165Administration under UNIX

Managing the Broker Persistent Store

Defining an Adabas FDT for EntireX File

ADACMP FNDEF='01,WK,21,A,DE'
ADACMP FNDEF='01,WJ,126,B,MU'
ADACMP FNDEF='01,WI,126,B,DE,NU'
ADACMP FNDEF='01,WL,96,A,DE,NU'
ADACMP FNDEF='01,WP,96,A,DE,NU'

Restrictions

If a HOT start is performed, the Broker kernel must be executed on the same platform on which
also the previous Broker executed. This is because some portions of the persistent data are stored
in the native character set and format of the Broker kernel. It is also necessary to start Broker with
the same Broker ID as the previous Broker executed.

If a COLD start is executed a check is made to ensure the Broker ID and platform information
found in the persistent store file is consistentwith the Broker being started (provided the persistent
store file is not empty). This is done to prevent accidental deletion of data in the persistent store
by a different Broker ID. If you intend to COLD start Broker and to utilize a persistent store file
which has been used previously by a different Broker ID, youmust supply the additional PSTORE-
TYPE parameter FORCE-COLD=Y.

Recommendations

■ Perform regular backup operations on your Adabas database. The persistent store driver writes
C1 checkpoint records at each start up and shut down of Broker.

■ For performance reasons, execute Broker on the same machine as Adabas.

Broker Checkpoints in Adabas

During startup, Broker writes the following C1 checkpoint records to the Adabas database. The
time, date and job name are recorded in theAdabas checkpoint log. This enables Adabas protection
logs to be coordinated with Broker executions. This information can be read from Adabas, using
the ADAREP utility with option CPLIST:

AdabasBroker Execution TypeBroker Execution Name

Normal Cold StartBroker Cold StartETBC

Normal Hot StartBroker Hot StartETBH

Normal TerminationBroker TerminationETBT

Administration under UNIX166

Managing the Broker Persistent Store

Adabas DBA Considerations

■ BLKSIZE : Adabas Persistent Store Parameter for Broker
■ Table of Adabas Parameter Settings
■ Estimating the Number of Records to be Stored
■ Estimating the Number of Records to be Stored
■ Tips on Transports, Platforms and Versions
■ Copying the Persistent Store from/to another Adabas File or Database

BLKSIZE : Adabas Persistent Store Parameter for Broker

Caution should be exercised when defining the block size (BLKSIZE) parameter for the Adabas
persistent store. This determines how much UOWmessage data can be stored within a single
Adabas record. Therefore, do not define a much larger block size than the size of the maximum
unit of work being processed by Broker. (Remember to add 41 bytes for each message in the unit
of work.) The advantage of having a good fit between the unit of work and the block size is that
fewer records are required for each I/O operation.

It is necessary to consider the following Adabas parameters and settings when using Adabas for
the persistent store file:

Table of Adabas Parameter Settings

DescriptionTopic

Allow sufficient Adabas user queue (UQ) elements each time you start Broker.
The Broker utilizes a number of user queue elements equal to the number of

Allowing Sufficient
Adabas UQ Elements

worker tasks (NUM-WORKER), plus two. Adabas timeout parameter (TNAE)
determines how long the user queue elementswill remain. This can be important
if Broker is restarted after an abnormal termination, and provisionmust bemade
for sufficient user queue elements in the event of restarting Broker.

Use either theAdabas utility ADAOPR or theAdabasDBAworkbench to clean-up
any user queue element belonging to the previous Broker job.

Considerationmust be given to the Adabas hold queue parameters NISNHQ and
NH. These must be sufficiently large to allow Adabas to add/update/delete the
actual number of records within a single unit of work.

Example: where there are 100 message within a unit of work and the average
message size is 10,000 bytes, the total unit of work size is 1 MB. If, for example,

Setting Size of Hold
Queue Parameters

a 2 KB block size (default BLKSIZE=2000) is utilized by the Adabas persistent
store driver, there will be 500 distinct records within a single Adabas commit
(ET) operation, and provision must be made for this to occur successfully.

Consideration must be given to the Adabas transaction time (TT) parameter for
cases where a large number of records is being updated within a single unit of
work.

Setting Adabas TT
Parameter

167Administration under UNIX

Managing the Broker Persistent Store

DescriptionTopic

Sufficient logical work pool (LWP) size must be defined so that the Adabas
persistent store can update and commit the units of work. Adabas must be able
to accommodate this in addition to any other processing for which it is used.

Defining LWP Size

If Broker kernel is executed on a separate machine to the Adabas nucleus, with
a different architecture and codepage, thenwe recommend running the Adabas

Executing Broker Kernel
and Adabas Nucleus on
Separate Machines nucleus with the UEC (universal conversion) option in order to ensure that

Adabas C1 checkpoints are legible within the Adabas checkpoint log.

ThisAdabas option can be applied to theAdabas file to reduce by approximately
50% the amount of space consumed in the indexes.

Setting
INDEXCOMPRESSION=YES

If you anticipate havingmore than 16million recordswithin the persistent store
file, you must use 4-byte ISNs when defining the Adabas file for EntireX.

4-byte ISNs

Specification ofAdabas LP
Parameter

Caution: This parameter must be specified large enough to allow the largest
UOW to be stored in Adabas.

If this is not large enough, Broker will detect an error (response 9; subresponse
- 4 bytes - X'0003',C'LP') and Brokerwill not be able towrite any further UOWs.

See the description of the LP parameter underADARUN Parameters in theDBA
Reference Summary of the Adabas z/OS documentation.

Estimating the Number of Records to be Stored

To calculate the Adabas file size it is necessary to estimate the number of records being stored. As
an approximate guide, there will be one Adabas record (500 bytes) for each unprocessed unit of
work, plus also n records containing the actual message data, which depends on the logical block
size and the size of the unit of work. In addition, there will be one single record (500 bytes) for
each unit of work having a persisted status.

Always allow ample space for the Adabas persistent store file since the continuous operation of
Broker relies of the availability of this file to store and retrieve information.

Note: If the Adabas file space is exceeded, Broker will automatically terminate, and it will
be necessary either to increase the space available to the file using Adabas utilities or to
perform a Broker HOT start with NEW-UOW-MESSAGES=NO to allow units of work to be con-
sumed before normal operation can continue.

Administration under UNIX168

Managing the Broker Persistent Store

Estimating the Number of Records to be Stored

In this example there are 100,000 Active UOW records at any one time. Each of these is associated
with two message records containing the message data. UOW records are 500 bytes in length.
Each message record contains 2,000 bytes. In addition, there are 500,000 UOW status records
residing in the persistent store, for which the UOWhas already been completely processed. These
are 500 bytes long.

Note: The actual size of the data stored within the UOWmessage records is the sum of all
the messages within the UOW, plus a 41-byte header for each message. Therefore, if the
average message length is 59 bytes, the two 2,000 bytes, messagesrecords, could contain n
= 4,000 / (59+41), or 40 messages. Adabas is assumed to compress the message data by 50%
in the example (this can vary according to the nature of the message data).

3-byte ISNs and RABNs are assumed in this example. A device type of 8393 is used; therefore, the
ASSO block size is 4,096, and DATA block size is 27,644. Padding factor of 10% is specified.

The following example calculates the space needed for Normal Index (NI), Upper Index (UI),
Address Converter (AC) and Data Storage (DS).

Required SpaceCalculation Factors

■■ = number UOW records: 0.1 + 0.5 million

+ number message records: 0.2 million

Number entries for descriptor WK

(21-byte unique key)

■ = 800,000 * (3 + 21 + 2)■ NI Space for descriptor WK
■ (3-byte ISN) ■ = 20,800,000 bytes

■■ = 5,648 blocks(4,092 ASSO block 10% padding)

■ = 5,648 * (21 + 3 + 3 + 1)■ UI Space for descriptor WK
■ (3-byte ISN + 3-byte RABN) ■ = 158,140 bytes

■■ = 43 blocks(4,092 ASSO block 10% padding)

■■ = number processed UOW records: 0.5
million

Number entries for descriptor WI

(8-byte unique key)

■ = 500,000 * (3 + 8 + 2)■ NI Space for descriptor WI
■ (3-byte ISN) ■ = 6,500,000 bytes

■■ = 1,765 blocks(4,092 ASSO block 10% padding)

■ = 17,649 * (8 + 3 + 3 + 1)■ UI Space for descriptor WI
■ (3-byte ISN and 3 byte RABN) ■ = 26,475 bytes

■■ = 8 blocks(4,092 ASSO block 10% padding)

169Administration under UNIX

Managing the Broker Persistent Store

Required SpaceCalculation Factors

■■ = number UOW records 0.1 + 0.5 millionNumber entries for descriptor WL

(96 byte key)

■ = 600,000 * (3 + 96 + 2)■ NI Space for descriptor WL
■ (3-byte ISN) ■ = 60,600,000 bytes

■■ = 16,455 blocks(4,092 ASSO block 10% padding)

■ = 164,548 * (96 + 3 + 3 + 1)■ UI Space for descriptor WL
■ (3-byte ISN and 3 byte RABN) ■ = 16,948,517 bytes

■■ = 461 blocks(4,092 ASSO block 10% padding)

■ = (800,000 + 1) * 3 / 4092■ Address Converter space
■ ■(4,092 ASSO block) = 587 blocks

■■ = 0.2 million * 2000 * 0.5 = 200,000,000 bytesData storage for message data

(2,000-byte records compressedby 50%)

■■ = 0.6 million * 500 * 0.5 = 150,000,000 byteData storage for UOW data

(2,000-byte records compressedby 50%)

■■ = 14,068 blocksCombined space required for data

(27,644 DATA block 10% padding)

Total Required SpaceEntity Requiring Space

= 23,868 blocksNormal Index (NI)

= 512 blocksUpper Index (UI)

= 14,068 blocksData Storage (DS)

= 587 blocksAddress Converter (AC)

Tips on Transports, Platforms and Versions

■ Entire Net-Work
If you intend to use Adabas persistent store through Entire Net-Work, see the Entire Net-Work
documentation for installation and configuration details.

■ Adabas Versions
Adabas persistent store can be used on all Adabas versions currently released and supported
by Software AG.

Administration under UNIX170

Managing the Broker Persistent Store

■ Prerequisite Versions of Entire Net-Work with Adabas
See theAdabas and EntireNet-Work documentation to determine prerequisite versions of Entire
Net-Work to use with Adabas at your site.

Copying the Persistent Store from/to another Adabas File or Database

The DBA can perform an UNLOAD of the Adabas file in which the persistent store is located (this
must be done when Broker is not running). This allows the persistent store to be LOADed into
another Adabas file, in the same or in another Adabas database. Broker can then be restarted
(PSTORE=HOT) with the attributes specifying the new location of the persistent store file. See
Table of Adabas Parameter Settings above. See separate Adabas documentation for details of
Adabas utilities for UNLOAD and LOAD operations.

The persistent store file can only be reloaded into another Adabas database running on the same
platform type as the Adabas database from which it was unloaded.

c-tree Database as Persistent Store

EntireX provides a c-tree © persistent driver based on the c-tree© User API of the FairCom Cor-
poration ®. This driver manages a fast and reliable embedded local database.

In order to operate EntireX using the c-tree persistent store option, youmust assign Broker attribute
PSTORE-TYPE=CTREE. No other attributes are required. However, several attributes are supported
to set additional optional attributes for the c-tree store. See c-tree-specific Attributes (DEFAULTS=CTREE)
under Broker Attributes in the administration documentation for details.

Migrating the Persistent Store

The contents of EntireX Broker's persistent store can bemigrated to a new persistent store in order
to change the PSTORE type or to use the same type of PSTORE with increased capacity.

The migration procedure outlined here requires two Broker instances started with a special
RUN-MODE parameter. One Broker unloads the contents of the persistent store and transmits the
data to the other Broker, which loads data into the new PSTORE. Therefore, for the purposes of
this discussion, we will refer to an unload Broker and a load Broker.

This procedure is based on Broker-to-Broker communication to establish a communication link
between two Broker instances. It does not use any conversion facilities, since the migration pro-
cedure is supported for homogeneous platforms only.

■ Configuration

171Administration under UNIX

Managing the Broker Persistent Store

■ Migration Procedure

Configuration

The migration procedure requires two Broker instances started with the RUN-MODE parameter.
The unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD

These commands instruct the Broker instances to perform the PSTORE migration.

Note: The attribute PARTNER-CLUSTER-ADDRESSmust be defined in both Broker instances to
specify the transport address of the load Broker. The unload Broker must know the address
of the load broker, and the load Brokermust in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on
host HOST2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to estab-
lish port 1972.

For ETB001, attribute PARTNER-CLUSTER-ADDRESS = HOST2:1972:TCP is set, and for ETB002, attribute
PARTNER-CLUSTER-ADDRESS = HOST1:1971:TCP is set to establish the Broker-to-Broker communic-
ation between the two Broker instances.

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE
on the unloader side, you must set the attribute PSTORE = HOT. To load the data into the new
PSTORE on the loader side, you must set the attribute PSTORE = COLD. The load process requires
an empty PSTORE at the beginning of the load process.

Note: Use caution not to assign PSTORE = COLD to your unload Broker instance, as this
startup process will erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different per-
sistent stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end
of the migration process, a second report can be run on the resulting new persistent store. These
two reports can be compared to ensure that all contents were migrated properly. To run these re-
ports, set the attribute PSTORE-REPORT=YES. See PSTORE for detailed description, especially for the
file assignment.

Administration under UNIX172

Managing the Broker Persistent Store

Migration Procedure

The migration procedure is made up of three steps.

Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to
perform an initial compatibility check. This validation is performed by Broker according to platform
architecture type and Broker version number. The handshake ensures a correctly configured
partner cluster address and ensures that the user did not assign the same PSTORE to both Broker
instances. If a problem is detected, an error message will be issued and both Broker instances will
stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and
transmits the data to the load Broker instance. The load Broker instance writes the unchanged raw
data to the new PSTORE. A report is created if PSTORE-REPORT=YES is specified, and a valid output
file for the report is specified.

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare
the amount of migrated data. The result of this check is reported by the unload Broker instance
and the load Broker instance before they shut down.

When a Broker instances is started in RUN-MODE = PSTORE-LOAD or RUN-MODE = PSTORE-UNLOAD,
the Broker instances only allow Administration requests. All other user requests are prohibited.

Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica.
No filtering of unnecessary information will be performed, for example, UOWs in received
state. The master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE
attribute to PSTORE=HOT. Do not start your broker with the new persistence store using PSTORE
= COLD; this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your Broker in a normal run-mode, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate
Broker instances; otherwise, applicationswould receive the same data twice. Once themigration
process is completed satisfactorily, and is validated, the old PSTORE contents should be dis-
carded.

173Administration under UNIX

Managing the Broker Persistent Store

174

11 Broker Resource Allocation

■ General Considerations .. 176
■ Specifying Global Resources ... 177
■ Restricting the Resources of Particular Services .. 177
■ Specifying Attributes for Privileged Services .. 179
■ Maximum Units of Work .. 180
■ Calculating Resources Automatically ... 180
■ Dynamic Memory Management .. 183
■ Dynamic Worker Management ... 184
■ Storage Report .. 185
■ Maximum TCP/IP Connections per Communicator ... 188

175

The EntireX Broker is a multithreaded application and communicates among multiple tasks in
memory pools. If you do not need to restrict thememory expansion of EntireX Broker, we strongly
recommend you enable the dynamicmemorymanagement in order to handle changingworkload
appropriately. See Dynamic Memory Management under Broker Resource Allocation in the general
administrationdocumentation below. If dynamicmemorymanagement is disabled, non-expandable
memory is allocated during startup to store all internal control blocks and the contents ofmessages.

General Considerations

Resource considerations apply to both the global and service-specific levels:

■ Dynamic assignment of global resources to services that need them prevents the return of a
“Resource Shortage” code to an applicationwhen resources are available globally. It also enables
the EntireX Broker to runwith fewer total resources, although it does not guarantee the availab-
ility of a specific set of resources for a particular service.

■ Flow control ensures that individual services do not influence the behavior of other services by
accident, error, or simply overload. This means that you can restrict the resource consumption
of particular services in order to shield the other services.

In order to satisfy both global and service-specific requirements, the EntireX Broker allows you
to allocate resources for each individual service or define global resourceswhich are then allocated
dynamically to any service that needs them.

The resources in question are the number of conversations, number of servers, plus units of work
and the message storage, separated in a long buffer of 4096 bytes and short buffer of 256 bytes.
These resources are typically the bottleneck in a system, especially when you consider that non-
conversational communication is treated as the special case of “conversationswith a singlemessage
only” within the EntireX Broker.

Global resources are defined by the parameters in the Broker section of the attribute file. The
number of conversations allocated to each service is defined in the service-specific section of the
attribute file. Because the conversations are shared by all servers that provide the service, a larger
number of conversations should be allocated to services that are provided by more than one
server. The number of conversations required is also affected by the number of clients accessing
the service in parallel.

Administration under UNIX176

Broker Resource Allocation

Specifying Global Resources

You can specify a set of global resourceswith no restrictions onwhich service allocates the resources:

■ Specify the global attributes with the desired values.
■ Donot specify any additional restrictions. That is, do not provide values for the following Broker-
specific attributes:

LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
CONV-DEFAULT
SERVER-DEFAULT

■ Also, do not provide values for the following server-specific attributes:

LONG-BUFFER-LIMIT
SERVER-LIMIT
SHORT-BUFFER-LIMIT
CONV-LIMIT

Example

The following example defines global resources. If no additional definitions are specified, resources
are allocated and assigned to any server that needs them.

NUM-CONVERSATION=1000
NUM-LONG-BUFFER=200
NUM-SHORT-BUFFER=2000
NUM-SERVER=100

Restricting the Resources of Particular Services

You can restrict resource allocation for particular services in advance:

■ Use CONV-LIMIT to limit the resource consumption for a specific service.
■ Use CONV-DEFAULT to provide a default limit for services for which CONV-LIMIT is not defined.

Example

In the following example, attributes are used to restrict resource allocation:

177Administration under UNIX

Broker Resource Allocation

DEFAULTS=BROKER
NUM-CONVERSATION=1000
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, CONV-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ Memory for a total of 1000 conversions is allocated (NUM-CONVERSATION=1000).
■ Service A (CLASS A,SERVER A,SERVICE A) is limited to 100 conversation control blocks used
simultaneously (CONV-LIMIT=100). The application that wants to start more conversations
than specified by the limit policy will receive a “Resource shortage” return code. This return
code should result in a retry of the desired operation a little later, when the resource situation
may have changed.

■ Service B (CLASS B,SERVER B,SERVICE B) is allowed to try to allocate as many resources as neces-
sary, provided the resources are available and not occupied by other services. The number of
conversations that may be used by this service is unlimited (CONV-LIMIT =UNLIM).

■ Service C (CLASS C,SERVER C,SERVICE C) has no explicit value for the CONV-LIMIT attribute. The
number of conversation control blocks that it is allowed to use is therefore limited to the default
value which is defined by the CONV-DEFAULT Broker attribute.

The same scheme applies to the allocation of message buffers and servers:

■ In the following example, long message buffers are allocated using the keywords NUM-LONG-
BUFFER, LONG-BUFFER-DEFAULT and LONG-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-LONG-BUFFER=2000
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, LONG-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ In the following example, short message buffers are allocated using the keywords NUM-SHORT-
BUFFER, SHORT-BUFFER-DEFAULT and SHORT-BUFFER-LIMIT:

Administration under UNIX178

Broker Resource Allocation

DEFAULTS=BROKER
NUM-SHORT-BUFFER=2000
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SHORT-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ In the following example, servers are allocated using the keywords NUM-SERVER, SERVER-DEFAULT
and SERVER-LIMIT:

DEFAULTS=BROKER
NUM-SERVER=2000
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SERVER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Specifying Attributes for Privileged Services

If privileged services (services with access to unlimited resources) exist, specify "UNLIMITED"
for the attributes CONV-LIMIT, SERVER-LIMIT, LONG-BUFFER-LIMIT and SHORT-BUFFER-LIMIT in the
service-specific section of the attribute file.

For example:

DEFAULTS=SERVICE
CONV-LIMIT=UNLIM
LONG-BUFFER-LIMIT=UNLIM
SHORT-BUFFER-LIMIT=UNLIM
SERVER-LIMIT=UNLIM

To ensure a resource reservoir for peak load of privileged services, define more resources than
would normally be expected by specifying larger numbers for the Broker attributes that control
global resources:

179Administration under UNIX

Broker Resource Allocation

NUM-SERVER
NUM-CONVERSATION
CONV-DEFAULT
LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
SERVER-DEFAULT

Maximum Units of Work

The maximum number of units of work (UOWs) that can be active concurrently is specified in the
Broker attribute file. The MAX-UOWS attribute can be specified for the Broker globally as well as
for individual services. It cannot be calculated automatically. If a service is intended to process
UOWs, a MAX-UOWS value must be specified.

If message processing only is to be done, specifyMAX-UOWS=0 (zero). The Broker (or the service)
will not accept units of work, i.e., it will process only messages that are not part of a UOW. Zero
is used as the default value for MAX-UOWS in order to prevent the sending of UOWs to services
that are not intended to process them.

Calculating Resources Automatically

To ensure that each service runs without impacting other services, allow the EntireX Broker to
calculate resource requirements automatically:

■ Ensure that the attributes that define the default total for the Broker and the limit for each service
are not set to UNLIM.

■ Specify AUTO for the Broker attribute that defines the total number of the resource.
■ Specify a suitable value for the Broker attribute that defines the default number of the resource.

The total number required will be calculated from the number defined for each service. The re-
sources that can be calculated this way are Number of Conversations, Number of Servers, Long
Message Buffers and Short Message Buffers.

Avoid altering the service-specific definitions at runtime. Doing so could corrupt the conversation
consistency. Applicationsmight receive amessage such as “NUM-CONVERSATIONS reached” although
the addressed service does not serve as many conversations as defined. The same applies to the
attributes that define the long and short buffer resources.

Automatic resource calculation has the additional advantage of limiting the amount of memory
used to run the EntireX Broker. Over time, you should be able to determine which services need
more resources by noting the occurrence of the return code “resource shortage, please retry”. You
can then increase the resources for these services. To avoid disruption to the user, you could instead

Administration under UNIX180

Broker Resource Allocation

allocate a relatively large set of resources initially and then decrease the values using information
gained from the Administration Monitor application.

Number of Conversations

To calculate the total number of conversations automatically, ensure that the CONV-DEFAULT Broker
attribute and the CONV-LIMIT service-specific attribute are not set to UNLIM anywhere in the at-
tribute file. Specify NUM-CONVERSATION=AUTO and an appropriate value for the CONV-DEFAULTBroker
attribute. The total number of conversations will be calculated using the value specified for each
service.

For example:

DEFAULTS=BROKER
NUM-CONVERSATION=AUTO
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

■ Service A and Service C both need 200 conversations (the default value). Service B needs 100
conversations (CONV-LIMIT=100).

■ Because NUM-CONVERSATIONS is defined asAUTO, the broker calculates a total of 500 conversations
(200 + 200 + 100).

■ NUM-CONVERSATIONS=AUTO allows the number of conversations to be flexible without requiring
additional specifications. It also ensures that the broker is startedwith enough resources tomeet
all the demands of the individual services.

■ "AUTO" and "UNLIM" aremutually exclusive. If CONV-DEFAULT or a single CONV-LIMIT is defined
as UNLIM, the EntireX Broker cannot determine the number of conversations to use in the cal-
culation, and the EntireX Broker cannot be started.

Number of Servers

To calculate the number of servers automatically, ensure that the SERVER-DEFAULT Broker attribute
and the SERVER-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute
file. Specify NUM-SERVER=AUTO and an appropriate value for the SERVER-DEFAULT Broker attribute.
The total number of server buffers will be calculated using the value specified for each service.

For example:

181Administration under UNIX

Broker Resource Allocation

DEFAULTS=BROKER
NUM-SERVER=AUTO
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Long Message Buffers

To calculate the number of long message buffers automatically, ensure that the LONG-BUFFER-DE-
FAULT Broker attribute and the LONG-BUFFER-LIMIT service-specific attribute are not set to UNLIM
anywhere in the attribute file. Specify NUM-LONG-BUFFER=AUTO and an appropriate value for the
LONG-BUFFER-DEFAULTBroker attribute. The total number of longmessage bufferswill be calculated
using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-LONG-BUFFER=AUTO
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Short Message Buffers

To calculate the number of short message buffers automatically, ensure that the SHORT-BUFFER-
DEFAULT Broker attribute and the SHORT-BUFFER-LIMIT service-specific attribute are not set to
UNLIM anywhere in the attribute file. Specify NUM-SHORT-BUFFER=AUTO and an appropriate value
for the SHORT-BUFFER-DEFAULT Broker attribute. The total number of short message buffers will
be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=AUTO
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

Administration under UNIX182

Broker Resource Allocation

Dynamic Memory Management

Dynamicmemorymanagement is a feature to handle changingBrokerworkloadwithout any restart
of the Broker task. It increases the availability of the Broker by using various memory pools for
various Broker resources and by being able to use a variable number of pools for the resources.

If more memory is needed than currently available, another memory pool is allocated for the
specific type of resource. If a particular memory pool is no longer used, it will be deallocated.

The following Broker attributes can be omitted if DYNAMIC-MEMORY-MANAGEMENT=YES has been
defined:

■ NUM-CLIENT

■ NUM-CMDLOG-FILTER

■ NUM-COMBUF

■ NUM-CONV[ERSATION]

■ NUM-LONG[-BUFFER]

■ NUM-PUBLICATION

■ NUM-PUBLISHER

■ NUM-SERVER

■ NUM-SERVICE

■ NUM-SERVICE-EXTENSION

■ NUM-SHORT[-BUFFER]

■ NUM-SUBSCRIBER

■ NUM-SUBSCRIBER-TOTAL

■ NUM-TOPIC

■ NUM-TOPIC-EXTENSION

■ NUM-TOPIC-TOTAL

■ NUM-UOW|MAX-UOWS|MUOW

■ NUM-WQE

If youwant statistics on allocation anddeallocation operations in Broker, you can configure Broker
to create a storage report with the attribute STORAGE-REPORT. See Storage Report below.

Note: To ensure a stabile environment, some pools of Broker are not deallocated automatic-
ally. The first pools of type COMMUNICATION, CONVERSATION, CONNECTION, HEAP, PARTICIPANT,
PARTICIPANT EXTENSION, SERVICE ATTRIBUTES, SERVICE, SERVICE EXTENSION, TIMEOUT
QUEUE, TRANSLATION, WORK QUEUE are excluded from the automatic deallocation even when

183Administration under UNIX

Broker Resource Allocation

they have not been used for quite some time. Large pools cannot be reallocated under some
circumstances if the level of fragmentation in the address space has been increased in the
meantime.

Dynamic Worker Management

Dynamic worker management is a feature to handle the fluctuating broker workload without re-
starting the Broker task. It adjusts the number of running worker tasks according to current
workload. The initial portion of worker tasks started at Broker startup is still determined by NUM-
WORKER.

If more workers are needed than currently available, another worker task is started. If a worker
task is no longer needed, it will be stopped.

The following Broker attributes are used for the configuration if DYNAMIC-WORKER-MANAGEMENT=YES
has been defined:

■ WORKER-MAX

■ WORKER-MIN

■ WORKER-NONACT

■ WORKER-QUEUE-DEPTH

■ WORKER-START-DELAY

The following two attributes are very performance-sensitive:

■ Attribute WORKER-QUEUE-DEPTH defines the number of unassigned user requests in the input
queue before a new worker task is started.

■ Attribute WORKER-START-DELAY defines the time between the last worker task startup and the
next check for another possible worker task startup. It is needed to consider the time for activ-
ating a worker task.

Both attributes depend on the environment, in particular the underlying operating system and
the hardware. The goal is to achieve high-performance user request processing without starting
too many worker tasks.

A good starting point to achieve high performance is not to change the attributes and to observe
the performance of the application programs after activating the dynamic worker management.

If broker attribute DYNAMIC-WORKER-MANAGEMENT=YES is set, operator commands are available under
z/OS to deactivate and subsequently reactivate dynamic worker management.

The following section illustrates the two different modes of dynamic worker management:

Administration under UNIX184

Broker Resource Allocation

■ Scenario 1

DYNAMIC-WORKER-MANAGEMENT=YES
NUM-WORKER = 5
WORKER-MIN = 1
WORKER-MAX = 32

Broker is started with 5 worker tasks and then dynamically varies the number of worker tasks
within the range from WORKER-MIN=1 to WORKER-MAX=32due to DYNAMIC-WORKER-MANAGEMENT=YES.

■ Scenario 2

DYNAMIC-WORKER-MANAGEMENT=NO
NUM-WORKER = 5
WORKER-MIN = 1
WORKER-MAX = 32

Broker is startedwith 5worker tasks. The WORKER-MIN/MAX attributes are ignored due to DYNAMIC-
WORKER-MANAGEMENT=NO.

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocatememory pools. This section details how to create the report and provides a sample report.

■ Creating a Storage Report
■ Platform-specific Rules
■ Sample Storage Report

See also Broker-specific attribute STORAGE-REPORT.

Creating a Storage Report

Use Broker's global attribute STORAGE-REPORTwith the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

185Administration under UNIX

Broker Resource Allocation

Platform-specific Rules

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument -r, the token following argu-
ment -rwill be used as the file name.

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1 ↩

 ↩

Identifier Address Size Total Date ↩
 Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 ↩
12:28:58.768 Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 ↩
12:28:58.769 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 18239256 bytes 2009-06-26 ↩
12:28:58.769 Allocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 19001308 bytes 2009-06-26 ↩
12:28:58.769 Allocated
BROKER POOL 0x27072010 61540 bytes 19062848 bytes 2009-06-26 ↩
12:28:58.775 Allocated
CONVERSATION POOL 0x27082010 368964 bytes 19431812 bytes 2009-06-26 ↩
12:28:58.775 Allocated
CONNECTION POOL 0x270DD010 233668 bytes 19665480 bytes 2009-06-26 ↩
12:28:58.779 Allocated
LONG MESSAGES POOL 0x27117010 4395204 bytes 24060684 bytes 2009-06-26 ↩
12:28:58.782 Allocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 27764560 bytes 2009-06-26 ↩
12:28:58.806 Allocated
PARTICIPANT POOL 0x278D2010 134244 bytes 27898804 bytes 2009-06-26 ↩
12:28:58.827 Allocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 27935800 bytes 2009-06-26 ↩
12:28:58.829 Allocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 27962524 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 28094192 bytes 2009-06-26 ↩
12:28:58.829 Allocated
SERVICE POOL 0x27925010 54372 bytes 28148564 bytes 2009-06-26 ↩
12:28:58.830 Allocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 28181464 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 28268732 bytes 2009-06-26 ↩
12:28:58.831 Allocated
TRANSLATION POOL 0x27952010 179300 bytes 28448032 bytes 2009-06-26 ↩

Administration under UNIX186

Broker Resource Allocation

12:28:58.832 Allocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 28624356 bytes 2009-06-26 ↩
12:28:58.834 Allocated
WORK QUEUE POOL 0x279AA010 391268 bytes 29015624 bytes 2009-06-26 ↩
12:28:58.835 Allocated
BLACKLIST POOL 0x27A0A010 42084 bytes 29057708 bytes 2009-06-26 ↩
12:28:58.838 Allocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 29401856 bytes 2009-06-26 ↩
12:28:58.839 Allocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 29531476 bytes 2009-06-26 ↩
12:28:58.841 Allocated
TOPIC POOL 0x26FB6068 2952 bytes 29534428 bytes 2009-06-26 ↩
12:28:58.842 Allocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 29565280 bytes 2009-06-26 ↩
12:28:58.842 Allocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 29599172 bytes 2009-06-26 ↩
12:28:58.843 Allocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 29618712 bytes 2009-06-26 ↩
12:28:58.843 Allocated
COMMUNICATION POOL 0x25FB5010 16781380 bytes 12837332 bytes 2009-06-26 ↩
12:30:58.514 Deallocated
ACCOUNTING POOL 0x26FB7010 762052 bytes 12075280 bytes 2009-06-26 ↩
12:30:58.515 Deallocated
BROKER POOL 0x27072010 61540 bytes 12013740 bytes 2009-06-26 ↩
12:30:58.516 Deallocated
CONVERSATION POOL 0x27082010 368964 bytes 11644776 bytes 2009-06-26 ↩
12:30:58.518 Deallocated
CONNECTION POOL 0x270DD010 233668 bytes 11411108 bytes 2009-06-26 ↩
12:30:58.519 Deallocated
LONG MESSAGES POOL 0x27117010 4395204 bytes 7015904 bytes 2009-06-26 ↩
12:30:58.520 Deallocated
SHORT MESSAGES POOL 0x27549010 3703876 bytes 3312028 bytes 2009-06-26 ↩
12:30:58.526 Deallocated
PROXY QUEUE POOL 0x278FD010 26724 bytes 3285304 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
SUBSCRIPTION POOL 0x27A15010 344148 bytes 2941156 bytes 2009-06-26 ↩
12:30:58.530 Deallocated
TOPIC ATTRIBUTES POOL 0x27A6A010 129620 bytes 2811536 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC POOL 0x26FB6068 2952 bytes 2808584 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TOPIC EXTENSION POOL 0x27A8A010 30852 bytes 2777732 bytes 2009-06-26 ↩
12:30:58.531 Deallocated
TIMEOUT QUEUE POOL 0x2793C010 87268 bytes 2690464 bytes 2009-06-26 ↩
12:30:58.532 Deallocated
UNIT OF WORK POOL 0x2797E010 176324 bytes 2514140 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
WORK QUEUE POOL 0x279AA010 391268 bytes 2122872 bytes 2009-06-26 ↩
12:30:58.533 Deallocated
BLACKLIST POOL 0x27A0A010 42084 bytes 2080788 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PSTORE SUBSCRIBER POOL 0x27A92010 33892 bytes 2046896 bytes 2009-06-26 ↩

187Administration under UNIX

Broker Resource Allocation

12:30:58.534 Deallocated
PSTORE TOPIC POOL 0x27A9B010 19540 bytes 2027356 bytes 2009-06-26 ↩
12:30:58.534 Deallocated
PARTICIPANT POOL 0x278D2010 134244 bytes 1893112 bytes 2009-06-26 ↩
12:49:25.817 Deallocated
PARTICIPANT EXTENSION POOL 0x278F3010 36996 bytes 1856116 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE ATTRIBUTES POOL 0x27904010 131668 bytes 1724448 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE POOL 0x27925010 54372 bytes 1670076 bytes 2009-06-26 ↩
12:49:25.818 Deallocated
SERVICE EXTENSION POOL 0x27933010 32900 bytes 1637176 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
TRANSLATION POOL 0x27952010 179300 bytes 1457876 bytes 2009-06-26 ↩
12:49:25.819 Deallocated
HEAP POOL 0x25EB4010 1050692 bytes 407184 bytes 2009-06-26 ↩
12:49:25.820 Deallocated
KERNEL POOL 0x25E48010 407184 bytes 0 bytes 2009-06-26 ↩
12:49:25.820 Deallocated

DescriptionHeader

Name of the memory pool.Identifier

Start address of the memory pool.Address

Size of the memory pool.Size

Total size of all obtained memory pools.Total

Date and time of the action.Date, Time

The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated .
Deallocated: memory pool is deallocated.

Action

Maximum TCP/IP Connections per Communicator

This table shows the maximum number of TCP/IP connections per communicator:

Maximum Number of TCP/IP Connections per CommunicatorPlatform

2,048AIX

2,048BS2000/OSD

2,048HP-UX

4,096Linux

65,356Solaris

4,096Windows

16,384z/OS

Administration under UNIX188

Broker Resource Allocation

Maximum Number of TCP/IP Connections per CommunicatorPlatform

2,048z/VSE

With the Broker-specific attribute POLL these restrictions can be lifted under z/OS and UNIX. See
POLL.

See also MAX-CONNECTIONSunder TCP-OBJECT (Struct INFO_TCP)under InformationReply Structures
in the Broker CIS documentation.

Note for UNIX

Under UNIX, you can use the following command to display the maximum number of open files
in the operating system shell.

ulimit -n

This value should be greater than the expected number of TCP/IP connections.

189Administration under UNIX

Broker Resource Allocation

190

12 Administering Broker Stubs

■ Available Stubs ... 192
■ Setting Transport Methods for Broker Stubs .. 192
■ Tracing for Broker Stubs ... 195
■ Application Stublog File .. 196
■ UNIX Commands to Set the Environment Variables .. 197
■ Support of Clustering in a High Availability Scenario ... 197

191

Available Stubs

The following table lists available stubs and gives an overview of available features and supported
transport methods.

More InformationCompressionTransport MethodsLanguageStub

See Java ACI in the Developer's Kit
documentation.

YesTCP /SSLJavaJaci

See below.YesTCP / SSLCbroker.s[o|l]

Setting Transport Methods for Broker Stubs

The Broker stub can use TCP/IP and SSL. In this section, “SSL” refers to both Secure Sockets Layer
(SSL) and Transport Layer Security (TLS)

■ Using TCP/IP as Transport Method for the Broker Stub
■ Using SSL or TLS as Transport Method for the Broker Stub
■ Setting the Timeout for the Transport Method
■ Limiting the TCP/IP Connection Lifetime
■ Modifying the Hosts and Services Tables

Using TCP/IP as Transport Method for the Broker Stub

To use TCP/IP

1 Optional: set the timeout, see Setting the Timeout for the Transport Method.

2 The Broker stub requires the IP address and the TCP port number (if the Broker's default TCP
port number 1971 cannot be used) for each BROKER-ID. Either add an entry in the Domain
Name System (DNS) or modify your local hosts and services tables. SeeModifying the Hosts
and Services Tables.

You can check whether the Broker has already been added to your DNS with the command:

Administration under UNIX192

Administering Broker Stubs

ping <broker-id>

for example: ping ETB001. If a message such as “...is alive” or “Reply from ...” is displayed
(the text displayed varies depending on your ping implementation), the name is known to
your DNS and the host where the Broker is running is reachable. However, this does not ne-
cessarily mean that the Broker is active.

Using SSL or TLS as Transport Method for the Broker Stub

Note: The SETSSLPARMS function must contain the subparameter VERIFY_SERVER=N, unless
the commonname of the server certificatematches the Broker name.Otherwise, the connec-
tion will be refused.

Example:

TRUST_STORE=/opt/softwareag/EntireX/etc/ExxCACert.pem&VERIFY_SERVER=N

To use Secure Sockets Layer

1 To operatewith Secure Sockets Layer, certificates need to be provided andmaintained. Software
AG provides default certificates, but we strongly recommend that you create your own, for
example, with the OpenSSL toolkit. The certificates must be installed locally with the EntireX
Broker Stub.

2 Set the value SSL as part of the Broker ID (see the field BROKER-ID in the ACI control block,
see also Using the Broker ID in Applications in the ACI Programming documentation) and set
the SSL parameters (see Setting SSL or TLS Parameters). Example: localhost:1958:SSL.

The SSL parameters can be specified with the FCT_SETSSLPARMS call type for ACI programs,
or they can be appended with a “?” to the broker ID (Java stub).

3 The Broker stub requires the IP address and the SSL port number for each BROKER-ID. Either
add an entry to the Domain Name System (DNS) or modify your local hosts and services
tables. SeeModifying the Hosts and Services Tables.

The default port number is 1958.

You can check whether the Broker has already been added to your DNS with the following
command:

193Administration under UNIX

Administering Broker Stubs

ping <broker-id>

for example: ping ETB001. If a message such as “...is alive” or “Reply from ...” is displayed
(the text displayed varies depending on your ping implementation), the name is known to
your DNS and the host where the Broker is running is reachable. However, this does not ne-
cessarily mean that the Broker is active.

Setting SSL or TLS Parameters

Enter the SSL parameters as follows: <keyword>=<value>. Parameters are separated by “&”.

Example code:

/opt/softwareag/EntireX/examples/ACI/conversational/C/convSvr -blocalhost:1958:SSL ↩
-cACLASS -sASERVER -vASERVICE -x
"VERIFY_SERVER=N&TRUST_STORE=/opt/softwareag/EntireX/etc/ExxCACert.pem"

Caution: If stub tracing level is > 1, unencrypted contents of the send/receive buffers are
exposed in the trace.

For information on the parameters see Running Broker with SSL or TLS Transport in the platform-
specific administration documentation.

Setting the Timeout for the Transport Method

The timeout settings of the transport layers are independent of the broker's timeout settings, which
are set by the application in the WAIT field of the broker ACI control block.

If the transport layer is interrupted, communication between the Broker and the stub (i.e. client
or server application) is interrupted as well. To prevent a client from waiting for a Broker reply
indefinitely, set a timeout value for the transport method. The actual timeout for the procedure is
then the Broker timeout (which is set by the application in the WAIT of the broker ACI control
block) plus this value.

To set a transport timeout value

■ Set the environment variable ETB_TIMEOUT:

DescriptionTransport Timeout Value

Infinite wait for the application.0

Transport method waits additional time in seconds. A negative
value is treated as ETB_TIMEOUT=0 (infinite wait).

n

Transport method waits additional 20 seconds.No environment variable defined

See also UNIX Commands to Set the Environment Variables.

Administration under UNIX194

Administering Broker Stubs

Limiting the TCP/IP Connection Lifetime

With transport methods TCP/IP and SSL, the broker stub establishes one or more TCP/IP connec-
tions to the brokers specifiedwith BROKER-ID. These connections can be controlled by the transport-
specific CONNECTION-NONACT attribute on the broker side, but also by the transport-specific envir-
onment variable ETB_NONACT on the stub side. If ETB_NONACT is not 0, it defines the non-activity
time (in seconds) of active TCP/IP connections to any broker. See ETB_NONACT.Whenever the broker
stub is called, it checks for the elapsed non-activity time and will close connections with a non-
activity time greater than the value defined with ETB_NONACT.

DescriptionTransport Non-activity Value

Infinite lifetime until application is stopped.0

Transport connections with non-activity time greater than nwill be closed.n (seconds)

Transport connections with non-activity time greater than 300s (default) will be
closed.

Nothing set

Modifying the Hosts and Services Tables

The Hosts and Services tables are plain text files in directory /etc.

To add an entry to the hosts table

■ Add a line similar to the following to the local hosts file:

100.100.1.1 ETB226 # ETB test host name

To add an entry to the services table

■ Add lines similar to the following to the local services file:

ETB226 18492/tcp # ETB test host name
ETB411 21234/tcp # ETB production host name

Tracing for Broker Stubs

The Broker stub provides an option for writing trace files. The trace file is created in the current
directory. The name is <pid>.etbwhere pid is the process ID. Remember to switch off tracing to
prevent trace files fromfilling up your disk. If youwant towrite the trace file to a different location,
set environment variable ETB_STUBLOGPATH to the desired path.

195Administration under UNIX

Administering Broker Stubs

To switch on tracing

■ Set the environment variable ETB_STUBLOG.

DescriptionTrace Level
Trace
Value

No tracing.NONE0

Traces initialization, errors, and all ACI request/reply strings.STANDARD1

Used primarily by system engineers, traces everything from level 1 and provides
additional information - for example the Broker ACI control block - as well as
information from the transports.

ADVANCED2

This is full tracing through the stub, including detailed traces of control blocks,message
information, etc.

SUPPORT3

To switch off tracing

■ Delete the environment variable ETB_STUBLOG or set it to 0.

See also UNIX Commands to Set the Environment Variables.

Application Stublog File

Logging works for both TCP and SSL. Tracing is controlled by the environment variable
ETB_STUBLOG.

csh or tcsh users use:

setenv ETB_STUBLOG tracelevel

bsh, ksh or bash users use:

ETB_STUBLOG=tracelevel; export ETB_STUBLOG

Possible values for tracelevel:

DescriptionTrace Level
Trace
Value

No tracing.NONE0

Traces initialization, errors, and all ACI request/reply strings.STANDARD1

Used primarily by system engineers, traces everything from level 1 and provides
additional information - for example the Broker ACI control block - as well as
information from the transports.

ADVANCED2

Administration under UNIX196

Administering Broker Stubs

DescriptionTrace Level
Trace
Value

This is full tracing through the stub, including detailed traces of control blocks,message
information, etc.

SUPPORT3

If you start your applicationwith this environment variable set, a log file is created in the directory
where your application is started. The name of the log file is pid.etb

csh or tcsh users use:

unsetenv ETB_STUBLOG

bsh, ksh or bash users use:

unset ETB_STUBLOG

UNIX Commands to Set the Environment Variables

Example of ETB_TRANSPORT:

delete the environment variable:set the environment variable:Shell

unsetenv ETB_TRANSPORTsetenv ETB_TRANSPORT valueC Shell

unset ETB_TRANSPORTETB_TRANSPORT=value
export ETB_TRANSPORT

Bourne or Korn Shell

Support of Clustering in a High Availability Scenario

EntireX Broker supports clustering in a high-availability scenario, using the environment variable
ETB_SOCKETPOOL. SeeEnvironment Variables in EntireX in the general administration documentation.
This section covers the following topics:

■ Introduction
■ Exceptions
■ Default

See also High Availability in EntireX.

197Administration under UNIX

Administering Broker Stubs

Introduction

A TCP/IP connection established between stub and broker is not exclusively assigned to a partic-
ular thread. With multithreaded applications, two or more threads may use the same connection.
On the other hand, if a connection is busy, another new one is created to exchange data.

In order to access the same broker instance in a clustering environment, an affinity between ap-
plication thread and TCP/IP connection is needed to always use the same connection within an
application thread. Therefore, an environment variable is evaluated to control the handling of
TCP/IP connections.

If environment variable ETB_SOCKETPOOL is set to "OFF" (ETB_SOCKETPOOL=OFF), an affinity between
threads and TCP/IP connections is established. All requests to one particular broker will use the
same TCP/IP connection. ETB_SOCKETPOOL controls all TCP/IP connections.

Exceptions

Broker attribute CONNECTION-NONACT is used by the broker to close TCP/IP connections after the
elapsed non-activity time. Omit this attribute to keep the TCP/IP connection alive.

Default

ETB_SOCKETPOOL=ON is the default setting. In this case, an established broker connection can be
used by any thread if the connection is not busy.

Administration under UNIX198

Administering Broker Stubs

13 Broker Command-line Utilities

■ etbinfo ... 200
■ etbcmd .. 206

199

EntireX Broker provides internal services: Command Services and Information Services, which
can be used to administer andmonitor the EntireXBroker. Because these services are implemented
internally, nothing has to be started or configured. You can use these services immediately after
starting EntireX Broker.

etbinfo

Queries the Broker for different types of information, generating an output text string with basic
formatting. This text output can be further processed by script languages. etbinfo uses data de-
scriptions called profiles to control the type of data that is returned for a request. etbinfo is useful
for monitoring and administering EntireX Broker efficiently, for example howmany users can run
concurrently and whether the number of specified message containers is large enough.

Although basic formatting of the output is available, it is usually formatted by script languages
or other means external to the Broker.

■ Running the Command-line Utility
■ Command-line Parameters
■ Command-line Parameters from File
■ Profile
■ Format String

Running the Command-line Utility

In a UNIX environment, run the command-line utility with etbinfo. If the environment variable
LOGNAME is not set, you must use the -x option (see below) to provide a user ID if the Broker is
running with EntireX Security. etbinfo is located in directory /opt/softwareag/EntireX/bin.

Command-line Parameters

The table below explains the command-line parameters. The format string and profile parameters
are described in detail following the table. All entries in the Option column are case-sensitive.

Explanation
Req/
OptCommand-line ParameterOption

Broker identifier, for example localhost:1971:TCP.Rbrokerid-b

Class as selection criterion.Oclass-c

Comma-separated variable output, suitable for input into a spreadsheet
or other analysis tool. Any format string specified by means of format
string or profile command-line parameters is ignored.

Ocsvoutput-C

Administration under UNIX200

Broker Command-line Utilities

Explanation
Req/
OptCommand-line ParameterOption

Possible values:Robject-d

Provides Info onObject

Broker.BROKER

Client.CLIENT

Command log filter.CMDLOG-FILTER

Conversation.CONVERSATION

Entire Net-Work transport.NET

Participant.PARTICIPANT

Broker pool usage.POOL-USAGE

Unit-of-work status.PSF

Adabas persistent store.PSFADA

c-tree persistent store.PSFCTREE

DIV persistent store.PSFDIV

FILE persistent store.PSFFILE

Publication.PUBLICATION

Publisher.PUBLISHER

Broker resource usage.RESOURCE-USAGE

EntireX Security.SECURITY

Server.SERVER

Service.SERVICE

SSL transport.SSL

Broker statistics.STATISTICS

Subscriber.SUBSCRIBER

TCP transport.TCP

Topic.TOPIC

Participant (short).USER

Worker.WORKER

Worker usage.WORKER-USAGE

Receiver's class name. This selection criterion is valid only for object
PSF.

Orecv class-e

Format string how you expect the output. See Profile.OFormat String-f

Receiver's service name. This selection criterion is valid only for object
PSF.

Orecv service-g

Prints help information.Ohelp-h

Conversation ID as selection criterion. Only valid for object
CONVERSATION.

Oconvid-i

201Administration under UNIX

Broker Command-line Utilities

Explanation
Req/
OptCommand-line ParameterOption

Conversation's type.Oconv type-I

Receiver's server name. This selection criterion is valid only for object
PSF.

Orecv server-j

Receiver's token. This selection criterion is valid only for object PSF.Orecv token-k

The amount of information displayed:Olevel-l

All information.FULL

User-specific information.SHORT

Receiver's user ID. This selection criterion is valid only for object PSF.Orecv userid-m

Server name. This selection criterion is valid only for the objects SERVER,
SERVICE or CONVERSATION.

Oserver name-n

Here you can specify a file that defines the layout of the output. There
are default files you can modify or you can use your own. The default
files are:

Ofile-p

NETCONVCLOGFLTCLIENTBROKER

PSFDIVPSFCTREEPSFADAPSFPOOL

SECURITYRESOURCEPUBSHRPUBLICPSFFILE

SUBSCBRSTATISSSLSERVICESERVER

WKRUSAGEWORKERUSERTOPICTCP
See Profile.

Physical user ID. This selection criterion is valid only for objects CLIENT,
SERVER, CONVERSATION, SUBSCRIBER, PUBLISHER or PUBLICATION.

Note: Must be a hex value.

Opuserid-q

Publication ID. This selection criterion is valid only for object
PUBLICATION.

Opublication id-P

Refresh information after seconds.Osec-r

Service. This selection criterion is valid only for objects SERVER,
SERVICE or CONVERSATION.

Oservice-s

When using SSL transport.O"sslparms"-S

This selection criterion is valid only for objects CLIENT, SERVER,
SERVICE, CONVERSATION, SUBSCRIBER, PUBLISHER, PUBLICATION or
TOPIC.

Otoken-t

Topic name. This selection criterion is valid only for objects
PUBLICATION, SUBSCRIBER, PUBLISHER, or TOPIC.

Otopic-T

User ID. This selection criterion is only valid for the display types
CLIENT, SERVER, SERVICE, CONVERSATION, SUBSCRIBER, PUBLISHER,
PUBLICATION or TOPIC.

Ouserid-u

Administration under UNIX202

Broker Command-line Utilities

Explanation
Req/
OptCommand-line ParameterOption

Subscriber's subscription type. This selection criterion is valid only for
object SUBSCRIBER.

Osubscr type-U

Unit of work status. This selection criterion is valid only for object PSF.OUOW status-v

Unit of work ID. This selection criterion is valid only for object PSF.OUOW ID-w

User ID. For security purposes.Ouserid-x

Password. For security purposes.Opassword-y

Used with userid to uniquely identify a caller to Command and
Information Services.

Otoken-z

Command-line Parameters from File

etbinfo supports an alternative method of passing command-line parameters.

If the environment variable INF_ATTR is set, the content is interpreted as a file name. If no command-
line parameters are given, the command etbinfo evaluates the content of the file. Example:

-blocalhost:3930:TCP
-dBROKER

Profile

If you do not use the profile option or a format string, your output will be an unformatted list with
all columns of that display type. To display specific columns, specify a profile that includes only
those columns.

The following default sample profiles include all the columns defined for each display type:

■ SERVICE■ PSFCTREE■ BROKER
■ CLIENT ■ SSL■ PSFDIV

■ PSFFILE■ CLOGFLT ■ STATIS
■ SUBSCBR■ PUBLIC■ CONV

■ NET ■ TCP■ PUBSHR
■ RESOURCE■ POOL ■ TOPIC

■ USER■ SECURITY■ PSF
■ ■ WKRUSAGE■PSFADA SERVER

■ WORKER

203Administration under UNIX

Broker Command-line Utilities

You can either delete the columns not required or copy the default profile and modify the order
of the columns. Ensure that the column names have a leading “%”. Column names can be written
in one line or on separate lines. The output is always written side by side.

Location of Profiles

OnUNIX, the profiles are contained in directory /opt/softwareag/EntireX/etc and are named broker.pro,
client.pro etc.

Example 1

Profile for object SERVICE: SERVICE.

etbinfo -b ETB001 -d SERVICE -p service.pro -l FULL

The following list is displayed:

SAG ETBCIS INFO
1 0 16 86400 0 31647 0 00 00 00 00 0 0

SAG ETBCIS USER-INFO
2 0 16 86400 0 31647 0 00 00 00 00 0 0

SAG ETBCIS CMD
6 0 16 86400 0 31647 0 00 00 00 00 0 0

Example 2

Your own profile: MYPROF

etbinfo -b ETB001 -d SERVICE -p my_service.pro

Note: In this case, my_service.pro contains:%4.4SERVERCLASS %SERVERNAME

The following list is displayed:

ACLA ASERVER
BCLA BSERVER
CCLA CSERVER

Administration under UNIX204

Broker Command-line Utilities

Sample Profiles for etbinfo

You can find the sample profiles for etbinfo in your /opt/softwareag/EntireX/config directory.

Format String

The format string, if specified, will override the use of a profile. The format string is built like a
printf() in C language. The string must be enclosed in quotation marks. You can specify the
columns by using a “%” and the column name. The column name must contain letters only. Nu-
meric characters are not allowed. You can specify the length of column output by using a format
precision, as in the ANSI-C printf() function. The column name must be followed by a blank.
For example:

etbinfo -b ETB001 - BROKER -f "%12.12CPLATNAME %NUM-SERVER %NUM-CLIENT"

which gives, for example:

MVS/SP 7.04 30 100

You can also use an arbitrary column separator, which can be any character other than “%”. You
can use \n for a new line in the output and \t for a tabulator in the format string or profile. For
example:

etbinfo -b ETB001 -d SERVER -f "UserID: %5.5USER-ID Token: %5.5TOKEN"

which gives:

UserID: HUGO Token: MYTOK
UserID: EGON Token:
UserID: HELMU Token: Helmu

If you want to structure your output a little more, you can operate with the \n or \t character. For
example:

etbinfo -b ETB001 -d SERVICE -f "Class:%5.5SERVER-CLASS \n\tName:%5.5SERVER-NAME ↩
\n\tService:%5.5SERVICE"

which produces:

Class:DATAB
Name:DB10
Service:Admin

Class:PRINT
Name:LPT1
Service:PRINT

...

205Administration under UNIX

Broker Command-line Utilities

etbcmd

Allows the user to take actions - for example purge a unit of work, stop a server, shut down a
Broker - against EntireX Broker.

■ Running the Command-line Utility
■ Command-line Parameters
■ Command-line Parameters from File
■ List of Commands and Objects
■ Examples

Running the Command-line Utility

In a UNIX environment, run the command-line utility with etbcmd. If the environment variable
LOGNAME is not set, you must use the -x option (see below) to provide a user ID if the Broker
is running with EntireX Security. etbcmd is located in the directory /opt/softwareag/EntireX/bin.

Command-line Parameters

The table below explains the command-line parameters. All entries in theOption column are case-
sensitive.

Explanation
Req/
OptParameterOptionCommand-line Parameter

Broker ID.Re.g. ETB001-bbrokerid

Command to be performed. See List
of Commands and Objects below.

R-ccommand ■ ALLOW-NEWUOWMSGS

■ CLEAR-CMDLOG-FILTER

■ CONNECT-PSTORE

■ DISABLE-ACCOUNTING

■ DISABLE-CMDLOG-FILTER

■ DISABLE-CMDLOG

■ DISABLE-DYN-WORKER

■ DISCONNECT-PSTORE

■ ENABLE-ACCOUNTING

■ ENABLE-CMDLOG-FILTER

■ ENABLE-CMDLOG

■ ENABLE-DYN-WORKER

■ FORBID-NEWUOWMSGS

■ PING

Administration under UNIX206

Broker Command-line Utilities

Explanation
Req/
OptParameterOptionCommand-line Parameter

■ PRODUCE-STATISTICS

■ PURGE

■ RESET-USER

■ RESUME

■ SET-CMDLOG-FILTER

■ SHUTDOWN

■ START

■ STATUS

■ STOP

■ SUBSCRIBE

■ SUSPEND

■ SWITCH-CMDLOG

■ TRACE-FLUSH

■ TRACE-OFF

■ TRACE-ON

■ TRAP-ERROR

■ UNSUBSCRIBE

The object type to be operated on.
See List of Commands and Objects
below.

Within EntireXBroker nomenclature,
a participant is an application

R-dobject type ■ BROKER

■ CONVERSATION

■ PARTICIPANT

■ PSF

■ SUBSCRIBER implicitly or explicitly logged on to
the Broker as a specific user. A■ SECURITY
participant could act as client, server,
publisher or subscriber.

■ SERVER

■ SERVICE

■ SUBSCRIBER

■ TRANSPORT

Error number being trapped.Oerrornumber-e

Exclude attach servers from service
shutdown.

O-E

Prints help information.O-hhelp

Service triplet.Oclass/server/service-nclass/server/service

Command option.O-ooption ■ IMMED

207Administration under UNIX

Broker Command-line Utilities

Explanation
Req/
OptParameterOptionCommand-line Parameter

■ QUIESCE

■ LEVELn, where n=1-8

Physical User ID. For SERVER and
PARTICIPANT objects only. Thismust
be a hex value.

Opuserid-ppuserid

When using SSL transport.OSSL parameters-ssslparms

Sequence number of participant.Osequence number-Sseqno

Token. For PARTICIPANT and
SUBSCRIBER objects only.

Otoken-ttoken

Topic name. For SUBSCRIBER object
only.

Otopic-Ttopic

Unit of work ID. For PSF object only.Ouowid-uuowid

User ID. For PARTICIPANT and
SUBSCRIBER objects only.

Ouserid-Uuserid

User ID for security purposes.Ouserid-xsecuserid

One of the following:
COM|NET|SSL|Snn|TCP|Tnn. See
table below.

OTransport ID-Xtransportid

Password for security purposes.Opassword-ysecpassword

Transport ID Values

This table explains the possible values for parameter transportid:

ExplanationTransport ID

all communicatorsCOM

NET transport communicatorNET

all SSL communicatorsSSL

SSL communicator 1S00

SSL communicator 2S01

SSL communicator 3S02

SSL communicator 4S03

SSL communicator 5S04

all TCP/IP communicatorsTCP

TCP/IP communicator 1T00

TCP/IP communicator 2T01

TCP/IP communicator 3T02

Administration under UNIX208

Broker Command-line Utilities

ExplanationTransport ID

TCP/IP communicator 4T03

TCP/IP communicator 5T04

209Administration under UNIX

Broker Command-line Utilities

Command-line Parameters from File

etbcmd supports an alternative method of passing command-line parameters.

If the environment variable CMD_ATTR is set, the content is interpreted as a file name. If no command-
line parameters are given, the command etbcmd evaluates the content of the file. Example:

-blocalhost:3930:TCP
-cPRODUCE-STATISTICS
-dBROKER

List of Commands and Objects

This table lists the available commands and the objects to which they can be applied.

Object

Command

xALLOW-NEWUOWMSGS

xCLEAR-CMDLOG-FILTER

xCONNECT-PSTORE

xDISABLE-ACCOUNTING

xDISABLE-CMDLOG-FILTER

xDISABLE-CMDLOG

xDISCONNECT-PSTORE

xENABLE-ACCOUNTING

xENABLE-CMDLOG-FILTER

xENABLE-CMDLOG

xFORBID-NEWUOWMSGS

xPING

xPRODUCE-STATISTICS

xPURGE

xRESET-USER

xSET-CMDLOG-FILTER

xxxxxSHUTDOWN

xSUBSCRIBE

xSWITCH-CMDLOG

Administration under UNIX210

Broker Command-line Utilities

Object

Command

xxxTRACE-OFF

xxxTRACE-ON

xUNSUBSCRIBE

Examples

DescriptionExample

Displays ETBCMD help text.etbcmd -h

Turns Broker tracing off.etbcmd -b etb001 -d BROKER -c
TRACE-OFF

Sets Broker trace level to 2.etbcmd -b etb001 -d BROKER -c TRACE-ON
-o LEVEL2

Performs Broker shutdown.etbcmd -b etb001 -d BROKER -c SHUTDOWN

Shutdown service
CLASS=ACLASS,SERVER=ASERVER,SERVICE=ASERVICE.

etbcmd -b etb001 -d SERVICE -c
SHUTDOWN -o IMMED -n
ACLASS/ASERVER/ASERVICE See also SHUTDOWN SERVICE under Broker Command and

Information Services for more information on shutdown
options.

Create list of servers and shutdown specific server in two
steps (first step uses etbinfo). See also SHUTDOWN SERVER
under Broker Command and Information Services.

1. Determine a list of all servers with sequence numbers.etbinfo -b etb001 -d SERVER -l FULL
-f"%USER-ID %SEQNO"

2. Shutdown server with sequence number 32.etbcmd -b etb001 -d SERVER -c SHUTDOWN
-o IMMED -S32

Performs an EntireX ping against the Broker.etbcmd -b etb001 -d BROKER -c PING

Disconnects the Broker PSTORE.etbcmd -b etb001 -d PSF -c
DISCONNECT-PSTORE

Connects the Broker PSTORE.etbcmd -b etb001 -d PSF -c
CONNECT-PSTORE

Purges a unit of work.etbcmd -b etb001 -d PSF -c PURGE -u
100000000U00001A

Allows new units of work to be stored.etbcmd -b etb001 -d PSF -c
ALLOW-NEWUOWMSGS

211Administration under UNIX

Broker Command-line Utilities

DescriptionExample

Disallows new units of work to be stored.etbcmd -b etb001 -d PSF -c
FORBID-NEWUOWMSGS

Subscribes subscriber to topic NYSE.etbcmd -b etb001 -d SUBSCRIBER -c
SUBSCRIBE -U U1 -t t1 -T NYSE

Unsubscribes subscriber from topic NYSE.etbcmd -b etb001 -d SUBSCRIBER -c
UNSUBSCRIBE -U U1 -t t1 -T NYSE

Administration under UNIX212

Broker Command-line Utilities

14 Administration Service Commands

■ Starting a Broker ... 214
■ Pinging a Broker .. 214
■ Pinging an RPC Server ... 214
■ Restarting a Broker .. 215
■ Stopping a Broker .. 215
■ Enabling EntireX Security .. 215
■ Disabling EntireX Security ... 215

213

The administration service monitors and controls all local brokers; remote brokers can also be
monitored. The administration service is addressed via the System Management Hub or the ad-
ministration service command-line utility etbsrv. To run the commands from utility etbsrv,
System Management Hub is not required. This feature was designed to be used in a clustering
environment, but can also be used in a standard environment.

Starting a Broker

Use command BROKER START to start a specified broker:

etbsrv BROKER START "ETB001"

Pinging a Broker

Use command BROKER PING to display the status of a specified local or remote broker. Return code
0means the broker is running; any other valuemeans the broker has stopped. SeeComponent Return
Codes in EntireX under Error Messages and Codes. Example:

BROKER PING "ETB001"

Enter the command without specifying a broker to display the status of all brokers.

The information is the same as displayed using System Management Hub.

Pinging an RPC Server

Use command BROKER PINGRPC <brokerid> <class/server/service> to display the status of
a specified RPC server. Return code 0 means the RPC server is running; any other value means
the RPC server has stopped. SeeComponent Return Codes in EntireX under ErrorMessages and Codes.
Example:

BROKER PINGRPC "ETB001" "SAG/ETBCIS/RPCCIS"

The information is the same as displayed using System Management Hub.

Administration under UNIX214

Administration Service Commands

Restarting a Broker

Use command BROKER RESTART to stop and restart a specified broker. Example:

BROKER RESTART "ETB001"

Stopping a Broker

Use command BROKER STOP to stop a local broker. Example:

etbsrv BROKER STOP "ETB001"

Enabling EntireX Security

Activate security with command etbsrv SECURITY ENABLE; once activated, security can only be
deactivated with command SECURITY DISABLE.

To enable automatic scripts to execute administration service commands without having to enter
a password, set the option TRUSTED-USER=YESwhen administration service security is activated.

etbsrv SECURITY ENABLE TRUSTED-USER=YES

Disabling EntireX Security

Disable security with command etbsrv SECURITY DISABLE.

215Administration under UNIX

Administration Service Commands

216

15 Administering the Attach Manager under UNIX

■ Prerequisites .. 218
■ Setting up the Attach Manager ... 218
■ Sample Configuration File ... 223
■ Operating the Attach Manager under UNIX ... 225

217

EntireX includes an Attach Manager (ATM) for UNIX and Windows. This is used to start servers
if a client requests a particular service from the Broker, but a server for that service is not active.

Prerequisites

The Attach Manager needs the following:

■ An active task registered at the Broker. As of EntireX 8.1 SP2, the ATM task is automatically
launched on each computer where EntireX is installed (the default ATM). But it is also possible
to skip this automatic launch and start the ATMmanually.

■ A list of services the ATM is responsible for, and information on how to start the corresponding
server for a particular service. The Attach Manager can start only processes that are local to
where it is running, that is, the process that is attachedwill be run from the command line. There
is no restriction, however, on what the started command-line process does, including starting
a remote process on another system that will REGISTER as the server that satisfies the attach re-
quest.

■ A configuration file that contains the service list the ATM is responsible for, information on how
to start the corresponding server and additional configuration parameter to control the ATM
functionality.

Setting up the Attach Manager

If you do not need the ATM for your own services, you do not need to perform any configuration
for the ATM. A default configuration file AtmDefault.cfg.txt comes with the EntireX installation
and contains the necessary configuration to start the EntireX sample servers. The file is located in
the EntireX config directory. In the current version of EntireX, the ATM is not launched automat-
ically by default. If you want to activate an automatic launch, just rename the configuration file
AtmDefault.cfg.txt to AtmDefault.cfgWith the next reboot ATM is then launched automatically.

The Attach Manager is located in the bin subdirectory under the installed EntireX directory. The
name of the executable is exxatm.exe. If you need to start an ATMmanually for any reason, start
it using this executable. You can start multiple ATMs, for example to run them under different
accounts. But all ATM instances should share the same configuration file. The configuration file
is organized in so-called sections to support multiple ATM instances. Without further command
line arguments, the ATM uses the default section within the default configuration file. SeeOper-
ating the Attach Manager for possible command line arguments.

The syntax of the text-based configuration file is simple and is very similar to a Windows INI file.

Administration under UNIX218

Administering the Attach Manager under UNIX

DescriptionSyntax Element

Lines beginning with a semicolon are comment lines.;

Lines that contain text in square brackets are section headers.[]

Lines that are of the form Keyword=Value are keyword lines.Keyword=Value

Note: Any of the values of the keywords in the configuration file can be set as environment
variables.

There are three differen types of sections in the configuration file:

■ The ATM section to configure a particular ATM instance. The ATM section with the name
"Default" is the default section. If no section with the name "Default" is found, the first ATM
section in the file is the default section. EachATM section contains the configuration parameters
of the corresponding ATM instance and has one related Service List section, which refers to the
services that this ATM supports. Each ATM section needs exactly one ATM server attaching
the related servers if requested.

■ The Service List section contains a list of names of Service sections. The name of the Service List
section is the name of the related ATM section appended by "_Services".

■ The Service section configures a service, which consists of the service name and how to start
the corresponding server.

The general structure of the configuration file is the following:

[Default]
; The parameters of the Default ATM
[Default_Services]
SERVICE1=
SERVICE2=
[SERVICE1]
; The parameters for SERVICE1
[SERVICE2]
; The parameters for SERVICE1

Parameters of the ATM Section

These sections define the Attach Manager itself and contain the keywords indicated in this table.
There can be up to 16 of these sections.

219Administration under UNIX

Administering the Attach Manager under UNIX

NotesExampleFormatDefinition and ValueKeyword

BrokerID=
server1:1971:TCP

A32The Broker that ATM will
communicate with and

BrokerID=

answer attach requests. Any
valid ACI BROKERID value
is allowed.

SSLParms=
VERIFY_ SERVER=
N&TRUST_STORE=
C:\\Temp
\\ExxCACert.pem

A512Secure Sockets Layer
Parameters for Brokers that
use SSL Transport.

SSLParms=

ServerClass=
System

A32

[for all keywords]

The
CLASS/SERVER/SERVICE
names that can be used by

ServerClass=

ServerName=

Service=
ServerName=
DefaultMain

ATM to send commands to
ATM. (See details of this
feature.)
The
CLASS/SERVER/SERVICE

Service=
Command

name needs to be defined in
the Broker Attributes in the
administration
documentation.

UserID=atmanA32The User ID of the ATM.UserID=

Token=atm
Token={GeneratedToken}

A32The Token of the ATM (used
for unique identification of

Token=

the User ID). There is a
special value of
{GeneratedToken}whichwill
generate a unique 32-byte
value for the ATM.

Password=atmanA32Password for the User ID.Password=

WaitTime=5M
Default: 60S

A8
[identical to
Broker control

During the specified time, the
Attach Manager waits for a
response. After expiration of

WaitTime=

block WAIT
parameter]

the time, theAttachManager
receives a timeout. This is
used as theWAIT time on the
ATM's RECEIVE call.

RecvLength=12000
Default: 8000

I4

[identical to
Broker control

Size of the buffer that is
available for receiving orders.

RecvLength=

block
RECEIVE-LENGTH
parameter]

Administration under UNIX220

Administering the Attach Manager under UNIX

NotesExampleFormatDefinition and ValueKeyword

HistoryFile=%TEMP%\
Default.his

Valid path name
for dependent

File name for logging orders
that have been received for

HistoryFile=

platform. See
example.

restarting. If this keyword is
not specified, no file is
written. This can be any valid
file name.

File is
newly

HistoryFileMode=ww or a+tWhen starting the Attach
Manager, you can decide

HistoryFileMode=

opened forhere whether the current file
is to be overwritten or not. writing;

the old file
is deleted.

Writing of
the old file

HistoryFileMode=a+t

is
continued.

LogFile=%TEMP%\
Default1.log

Valid path name
for dependent

Log information is logged
here about the current status

LogFile=

platform. See
example.

of the AttachManager. If this
keyword is not specified, no
file is written.

File is
newly

LogFileMode=ww or a+tWhen starting the Attach
Manager, the administrator

LogFileMode=

opened forcan decide whether the
writing;current file is to be

overwritten or not.
The file can get very large.

the old file
is deleted.

Writing of
the old file

LogFileMode=a+t

is
continued.

Sleep=120I4If theAttachManager cannot
register successfully during

Sleep=

startup, or if a connection is
broken, the Attach Manager
waits this specified time in
seconds and then tries again.
You can limit the number of
connection attempts, using
the keyword Retries=n.

Default
value is 0.

Retries=0I4If registration fails, the
number of subsequent

Retries=

registration attempts can be
limited. the keyword Sleep
determines the wait time

221Administration under UNIX

Administering the Attach Manager under UNIX

NotesExampleFormatDefinition and ValueKeyword

before a new registration
attempt. Setting Retries=0
deactivates this functionality.

Values:

0: Attach Manager
restarts. The configuration
file is read anew.

See example.When set to 1, the ATM can
be stoppedwhen a command
is sent to it to shut down. If it
is set to zero, it will restart
automatically.

ShutdownBy
UserRequest=

1: Attach Manager
terminates itself.

Parameters of the Service List Section

This section names the Service sections that will be used to define the services that will be attached.
The prefix of the name of the section must match a specific instance of the AttachManager(n) sec-
tions.

Example: Assume there are three services to be attached. They can be logically defined as follows:

Default_Services]
payroll=
inventory=
qualitycontrol=

Therefore, there will be three optional sections following: [payroll], [inventory], and
[qualitycontrol].

Parameters of the Service Section

There can be any number of Service sections attached to an ATM by means of its corresponding
Service List section. The Service sections are used to define the actual commands thatwill be issued
by ATM to attach servers to respond to Broker requests

The following are the keywords that can be used:

ExampleFormatDefinitionKeyword

ServerClass=ACLASSA32The CLASS/SERVER/SERVICE
name of the service to be attached.

ServerClass=

ServerName= ServerName=ASERVER

Service= Service=ASERVICE

Min=3I4The minimum number of servers
that should be active.

Min=

Administration under UNIX222

Administering the Attach Manager under UNIX

ExampleFormatDefinitionKeyword

Max=7I4The maximum number of servers
that should be active.

Max=

Increment=1I4The number that should be started
when a request is made, up to the
number indicated by Max=

Increment=

Command=c:\server\bcos32.exeSpecifies (a) the fully
qualified path to the

Command-line command to be
issued that will start the service.

Command=

location of the
executable to be run
and (b) the options for
that executable. See
example.

Example from table above: If there are no instances of the service ACLASS:ASERVER;ASERVICE
REGISTERED, the command indicated in the Command= keyword will be issued three times.

Sample Configuration File

Note: A sample configuration file is provided in the /configdirectory of EntireX. This sample
defines twoATMs:Default andAttachManager2. The defaultATMsupports only the services
related to Default.

[Default]
;
; Specify the broker to which the Attach Manager attaches and
; the channel on which the Attach Manager listens for command
; requests.
;
BrokerID=localhost:1971:TCP
ServerClass=System
ServerName=DefaultMain
Service=Command
UserID=%USERNAME%
Token={GeneratedToken}
Password=Hugo
WaitTime=30s
RecvLength=12000

; Activities will be written to the history file (optional)
HistoryFile=%TEMP%\Default.his
HistoryFileMode=a+t

; Log messages will be written to the log file (optional)
LogFile=%TEMP%\Default.log
; Append to an existing file

223Administration under UNIX

Administering the Attach Manager under UNIX

;LogFileMode=a+t
; Create a new file
LogFileMode=w

Sleep=10
Retries=0

ShutdownByUserRequest=1

;
;
; Default's services
;
[Default_Services]
AServer=
BServer=
;
[AServer]
ServerClass=ACLASS
ServerName=ASERVER
Service=ASERVICE
Min=2
Max=3
Increment=1
Command=bcos32 -c<ServerClass> -s<ServerName> -v<Service> -b<BrokerID> -i500
;
[BServer]
ServerClass=BCLASS
ServerName=BSERVER
Service=BSERVICE
Min=1
Max=1
Increment=1
Command=bcos32 -c<ServerClass> -s<ServerName> -v<Service> -b<BrokerID> -i750
[AttachManager2]
;
; Specify the broker to which the Attach Manager attaches and
; the channel on which the Attach Manager listens for command
; requests.
;
BrokerID=localhost:1971:TCP
ServerClass=System
ServerName=AttachManager2Main
Service=Command
UserID=%USERNAME%
Token={GeneratedToken}
Password=Hugo
WaitTime=30s
RecvLength=12000

; Activities will be written to the history file (optional)
HistoryFile=%TEMP%\AttachManager2.his

Administration under UNIX224

Administering the Attach Manager under UNIX

HistoryFileMode=a+t

; Log messages will be written to the log file (optional)
LogFile=%TEMP%\AttachManager2.log
; Append to an existing file
;LogFileMode=a+t
; Create a new file
LogFileMode=w

Sleep=10

ShutdownByUserRequest=1
;
; AttachManager2's services
;
[AttachManager2_Services]
CServer=
;
[CServer]
ServerClass=CCLASS
ServerName=CSERVER
Service=CSERVICE
Min=1
Max=1
Increment=1
Command=bcos32 -c<ServerClass> -s<ServerName> -v<Service> -b<BrokerID> -i1000

Operating the Attach Manager under UNIX

Under normal circumstances, no manual operation is not necessary if the default ATM satisfies
your needs.However, if you need to runmultipleATMs in your environment, this section describes
how to perform the necessary operations.

■ Starting the Attach Manager
■ Stopping the Attach Manager
■ Logging the Attach Manager

225Administration under UNIX

Administering the Attach Manager under UNIX

■ Attach Manager Processing

Starting the Attach Manager

To start an Attach Manager

■ Either from the bin directory of EntireX (or from any directory if the bin directory is in the
PATH), enter the following command:

exxatm -F<full-path of Configuration file> -N<AttachManager1> -N<AttachManager2> ↩
...

Notes:

1. With the -N argument you specify theATM section forwhich theAttachManager is responsible
for. If this argument is omitted the attach manager is responsible for the default section.

2. With the -F argument you specify the location of the configuration file. If this argument is
omitted, the Attach Manager uses the default configuration file. All ATM instances should use
the same configuration file, so we recommend you use the default file for the default ATM.

3. The Attach Manager writes output to stdout. If you start the Attach Manager as a background
process, stdout must be redirected to a file.

Stopping the Attach Manager

To stop an Attach Manager

■ Use the System Management Hub to stop any Attach Manager.

Each ATM corresponds to an particular broker and registers a command service definedwith
the configuration variables ServerClass/ServerName/Service in the ATM section. Select the
service and pressDeregister to terminate the ATM.

Logging the Attach Manager

The ATM log file is defined by the ATM configuration parameter LogFile. If the Attach Manager
is launched automatically, it writes additional log information to file exxatm.out in the EntireX
subdirectory config\etb\ETBSRV.

In addition to the ATM log file, a history file is defined by the ATM configuration parameter
HistoryFile. For each order to launch a service, the ATMwrites a record into the history file. The
history record has the following format:

■ date and time

Administration under UNIX226

Administering the Attach Manager under UNIX

■ the service name as defined in the ATM config file
■ server name, server class and service
■ number of active replicates (this number is greater than 0 only if all running replicates are busy
while a new client requests the service

■ number of server lookups, that is, the number of clients requesting a new replicate of the server;
this is greater than 1 only if two clients request a service in parallel

■ replicate increment as defined in the ATM config file
■ number of replicates actually launched; this differs from the increment only if the highwatermark
is exceeded

227Administration under UNIX

Administering the Attach Manager under UNIX

Attach Manager Processing

Key

■ Step 1: AttachManager registerswith Broker, indicating that it will attach named services. These
are called attach-managed services.

■ Step 2: Client requests a service that is attach-managed. Server may or may not be active. If it
is not, a server will be started (attached).

■ Step 3: Attach request comes from the Broker.
■ Step 4: Attach Manager issues command to start the server application.
■ Step 5: Server application issues a LOGON to the Broker, then issues REGISTER and RECEIVE. It
gets message from client, processes the message, and responds.

■ Step 6: Response from server is received by the client application.

Administration under UNIX228

Administering the Attach Manager under UNIX

16 Settting up and Administering the Broker TCP Agent

■ Common Scenarios .. 230
■ Indirect TCP/IP Connections by the TCP Agent to Avoid Security Restrictions .. 231
■ Using the TCP Agent .. 231
■ Activating Tracing for the TCP Agent ... 232
■ Architecture of the TCP Agent .. 233

229

The Broker TCP Agent is a gateway to the Broker whenever direct TCP/IP communication with
the Broker is not possible.

Under UNIX, use the delivered script /opt/softwareag/EntireX/bin/brokeragent.bsh to start the agent.

Common Scenarios

The most common scenarios for using the TCP Agent are where the Java security manager does
not allow direct communication with the Broker. For example, an un-trusted Java applet can only
open a TCP/IP connection to a Broker which is running on the same machine as the Web server.

Although in most cases the TCP Agent will be used from a Broker application written in Java, the
TCPAgent can also be used fromnon-Java applications as long as the Broker stubs support TCP/IP.

Administration under UNIX230

Settting up and Administering the Broker TCP Agent

Indirect TCP/IP Connections by the TCP Agent to Avoid Security Restrictions

The TCPAgentmust be usedwhen the Java client cannot open a TCP/IP connection to the EntireX
Broker due to security or firewall settings. The most prominent case is the Java sandbox model,
which permits a Java applet to open only TCP/IP connections to the machine where the Web
server resides. If the EntireX Broker is running on a different machine, a TCP Agent has to be run
on the Web server machine.

Using the TCP Agent

Class Name and Parameters

The TCP Agent is a standalone Java application. The class name which contains the mainmethod
is com.softwareag.entirex.ba.BrokerAgent.

Specify the following parameters in the order given in this table when the TCP Agent listens on
a TCP/IP port:

ExplanationParameter

Valid values: ON or OFF. Default: OFF.
A dump of the buffers is written to standard output for diagnostic purposes.

1. Trace Option

The port number the TCP Agent uses for incoming requests from Broker
applications. This port number must be specified as part of the Broker ID in
the Broker application.

2. Port Number

The TCP Agent sends all requests to this Broker using any legal Broker ID
as in EntireX Java. The TCP Agent will use direct TCP/IP communication if

3. Broker Address

the address is of the form Hostname, Hostname:Number, or if it starts with
tcpip://

The port number the TCP Agent uses for incoming commands.4. PortNumber for commands
(optional)

231Administration under UNIX

Settting up and Administering the Broker TCP Agent

Starting the TCP Agent

Under UNIX, the EntireX distribution kit comes with a shell script to start the TCPAgent. Change
the port number and the Broker address in the script /opt/softwareag/EntireX/bin/brokeragent.bsh.

Activating Tracing for the TCP Agent

Set the parameter Trace Option to "ON". See Class Name and Parameters.

Administration under UNIX232

Settting up and Administering the Broker TCP Agent

Architecture of the TCP Agent

The architecture of the TCP Agent is shown in the following picture:

233Administration under UNIX

Settting up and Administering the Broker TCP Agent

234

17 Settting up and Administering the Broker SSL Agent

■ Common Scenarios .. 236
■ Using the SSL Agent .. 236
■ Activating Tracing for the SSL Agent .. 237
■ Architecture of the SSL Agent .. 237

235

The Broker SSLAgent is a gateway to the Broker whenever direct SSL or TLS communicationwith
the Broker is not possible.

UnderUNIX, use the delivered script /opt/softwareag/EntireX/bin/sslbrokeragent.bsh to start the agent.

Common Scenarios

The most common scenarios for using the SSL Agent are where direct SSL communication to the
Broker is not possible or it is not required by the network architecture.

Although in most cases the SSL Agent will be used from a Broker application written in Java, the
SSL Agent can also be used from non-Java applications as long as the Broker stubs support SSL.

Using the SSL Agent

Class Name and Parameters

The SSL Agent is a standalone Java application. The class name is
com.softwareag.entirex.ba.SSLBrokerAgent.

Specify the following parameters in the order given in this table when the SSL Agent listens on
an SSL port:

ExplanationParameter

Valid values: ON or OFF. Default: OFF.
A dump of the buffers is written to standard output for diagnostic purposes.

1. Trace Option

The port number the TCP Agent uses for incoming requests from Broker
applications. Specify this port number as part of the broker ID in the broker
application.

2. Port Number

SSL parameters when the SSL Agent runs as an SSL server. SSL requires a (server)
certificate with a private key. Specify with key_store=filename the file name of
a Java keystore that contains the private key.
SSL client authentication canbe requestedwith the parameterverify_client=yes.
In this case, specify with trust_store=filename the file name of a Java keystore

3. SSL Parameters

containg the list of trusted certificate authorities that issued the client's certificate.
The complete list of parameters could be
key_store=keystore&verify_client=yes&trust_store=castore.
Examples:
key_store=ExxJavaAppCert.jks trust_store=ExxCACert.jks.

The password which protects the private key. If the value -prompt is specified the
password is read from standard input.

4. Password

Administration under UNIX236

Settting up and Administering the Broker SSL Agent

ExplanationParameter

The SSL Agent sends all requests to this Broker using any legal Broker ID as in
EntireX Java. The SSL Agent will use SSL communication if the address starts with
ssl://.

5. Broker Address

The port number the SSL Agent uses for incoming commands from the System
Management Hub.

6. Port Number for
commands

Starting the SSL Agent

Under UNIX, the EntireX distribution kit comes with a shell script to start the SSL Agent. Change
the port number, the Broker address and the SSL parameters in script /opt/softwareag/En-
tireX/bin/sslbrokeragent.bsh.

Activating Tracing for the SSL Agent

Set the parameter Trace Option to "ON". See Class Name and Parameters.

Architecture of the SSL Agent

The architecture of the SSL Agent is shown in the following picture:

237Administration under UNIX

Settting up and Administering the Broker SSL Agent

Administration under UNIX238

Settting up and Administering the Broker SSL Agent

18 Settting up and Administering the Broker HTTP(S) Agent

■ HTTP(S) Tunneling with EntireX ... 240
■ Configuring the HTTP(S) Agent .. 241
■ Using Internationalization with the HTTP(S) Agent .. 243
■ Activating Tracing for the HTTP(S) Agent ... 243

239

The Broker HTTP(S) Agent is a Java-based component that implements a Java servlet for servlet-
enabledWeb servers. It builds the bridge between aWeb server and EntireX Broker in the intranet.
This component was formerly referred to as “Tunnel Servlet”.

HTTP(S) Tunneling with EntireX

Introduction

When communicating with EntireX Broker over the internet, direct access to the EntireX Broker's
TCP/IP port is necessary. This access is often restricted by proxy servers or firewalls.With EntireX,
Java-based communication components can pass communication data via HTTP or HTTPS. This
means a running EntireX Broker in the intranet is made accessible by aWeb server without having
the need to open additional TCP/IP ports on your firewall (HTTP tunneling). HTTP or HTTPS
tunneling can also be used for Java RPC.

How the Communication Works

The EntireX JavaACI is able to send and receive data via anHTTP protocol controlled by construct-
or com.softwareag.entirex.aci.Broker. See How to Enable HTTP Support in a Java Component
underWriting Advanced Applications - EntireX Java ACI.

The EntireX Java component com.softwareag.entirex.aci.TunnelServlet.class implements
a Java servlet for servlet-enabledWeb servers. It builds the bridge betweenWeb server and EntireX
Broker in the intranet.

Administration under UNIX240

Settting up and Administering the Broker HTTP(S) Agent

The figure above shows how the communication works. In this scenario, a Java client program
communicates via HTTP and EntireX Broker with an EntireX server. By using a Broker ID starting
with http:// (passing the URL of the installed HTTP(S) Agent) each Broker request is sent to aWeb
server, which immediately processes the HTTP(S) Agent, passes the contents to EntireX Broker,
receives the response and sends it back via HTTP. For the two partners (client and server) it is
transparent that they are communicating through theWeb. Java server programs can also commu-
nicate via HTTP if necessary.

Configuring the HTTP(S) Agent

To use the HTTP(S) Agent you need a servlet-enabled Web server. See Prerequisites for EntireX
RPC in the respective section of the Release Notes.

241Administration under UNIX

Settting up and Administering the Broker HTTP(S) Agent

DescriptionParameter

The broker you want to address (syntax: as Broker ID in Java).broker

log Default. Servlet writes logging information to its standard
output.

Yes

No log is created.No

In the following, “tunnel” is used as the agent name.

To adapt the HTTP(S) Agent

The following steps describe the deployment with the Web archive entirex.jar in detail. You can
test theHTTP(S) Agentwith http://<host>:<port>/entirex/tunnel, where entirex is the name
of the Web application.

1 Create the new subfolders in the Web application directory of your Web server, e.g. tunnel,
tunnel/WEB-INF, tunnel/WEB-INF/lib.

2 Copy the entirex.jar into tunnel/WEB-INF/lib.

3 Create a file named web.xml in the folder tunnel/WEB-INFwith the following content:

<web-app>
<servlet>
<servlet-name>tunnel</servlet-name>
<servlet-class>com.softwareag.entirex.aci.TunnelServlet</servlet-class>
<init-param>

<param-name>broker</param-name>
<param-value>yourbroker</param-value>

</init-param>
<init-param>

<param-name>log</param-name>
<param-value>yes</param-value>

</init-param>
</servlet>
<servlet-mapping>
<servlet-name>tunnel</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>
</web-app>

4 Restart your Web server and test the installation by calling the HTTP(S) Agent in your Web
browser. TheURL is: http://<yourhost>/tunnel. If the agent is installed properly, an information
page is displayed.

5 Run the Java ACI client/server example or the Java RPC example delivered with EntireX and
use the agent's URL for client or server or both.

Administration under UNIX242

Settting up and Administering the Broker HTTP(S) Agent

Using Internationalization with the HTTP(S) Agent

Internationalization is transparent for the HTTP(S) Agent. The client sending the EntireX ACI re-
questwithHTTPover theWeb server through theHTTP(S)Agent fully controls Internationalization.
No configuration is necessary for the HTTP(S) Agent.

Activating Tracing for the HTTP(S) Agent

To switch on tracing for the HTTP(S) Agent

■ Set the system property entirex.trace to one of the values 1, 2, or 3. See Tracing under
Writing Advanced Applications - EntireX Java ACI.

To switch on logging

■ Set the configuration parameter log=yes.

This logs the parameters from the HTTP header, the HTTP messages and error messages to
the logging facility of the Web server.

243Administration under UNIX

Settting up and Administering the Broker HTTP(S) Agent

244

19 Administering the EntireX RPC Server

■ Locating and Calling the Target Server ... 246
■ Setting Server Parameters for the RPC Server .. 248
■ Scalability of the RPC Server ... 253
■ Using Internationalization with the RPC Server .. 256
■ Using SSL or TLS with the RPC Server .. 256
■ Starting the RPC Server .. 257
■ Stopping the RPC Server .. 258
■ Activating Tracing for the RPC Server .. 258

245

TheUNIXRPCServer enables you to call shared objects/libraries as servers. The preferred language
to implement servers under UNIX is C.

See also Administering the EntireX RPC Servers using System Management Hub in the UNIX admin-
istration documentation.

Locating and Calling the Target Server

The library and program names that come from the client are used to locate the target server. This
two-level concept (library and program) has to be mapped in some way to the RPC Server envir-
onment. The target servers and their stubs are implemented as UNIX shared libraries/objects.
UNIX shared libraries/objects also have a two-level concept. The library and program names that
come from the client are mapped as follows:

■ The library name is used to form the file names of the target server shared library/object and
stub shared library/object.

■ The program name is used to form the entry point names for the target server shared library/ob-
ject and stub shared library/object.

The stub shared library/object as well as the target server shared library/object must be accessible
through the standard UNIX shared library/object load mechanism.

To locate the target server, the Possible Values for Libraries is also used as a kind of search se-
quence. The default for the library parameter is set PREFIX(D) - PREFIX() to be compatible with
server stubs and target servers written according to C Wrapper.

Under normal circumstances it is not necessary to change the library parameter. There may, nev-
ertheless, be occasion to do so:

■ Changing the platform default of the library parameter gives you control and independence
over the library name that comes from the client.

■ By changing it to a setting of FIX(DMYLIB) - FIX(MYLIB) and renaming the server stub and
target server built according to EntireX C Wrapper to DMYLIB andMYLIB, you can tailor all or
part of the target servers to these libraries regardless of what the client sends.

■ Changing the platform default can also make sense when Natural is the client environment,
since it always sends SYSTEM as the library name.

Administration under UNIX246

Administering the EntireX RPC Server

Example

Assume the following situations:

■ A client sends Example as the library name and CALC as the program name.
■ A stub shared library/object with DExample.so|sl built with the delivered makefile Server.mak
or a corresponding one exists and can be accessed through the standardUNIX shared library/ob-
ject load mechanism.

■ A target server shared library/object with the name Example.so|sl built with the delivered
makefile Server.mak or a corresponding one exists and can be accessed through the standard
UNIX shared library/object load mechanism.

■ The default value for UNIX of PREFIX(D) - PREFIX() for the library parameter is not changed.

Search for Stub Shared Library/Object

The RPC Server under UNIX searches for a stub shared library/object with:

1. An entry point derived from the program name that comes from the client by adding a prefix
D. For our example the entry point is DCALC. This prefix has nothing to do with any library
parameter configuration and is always D.

2. Names formed by the instructions of the library parameter from left to right. The first library
parameter PREFIX(D)means: take the library name that comes from the client and add the
prefix. For our example above, the shared library/object name is DExample.so|sl.

If in step 1 such a shared library/object can be located through the normal shared library/object
load mechanism, it is taken as the stub; otherwise the next shared library/object name is formed
using the next library parameter entry (step 2). If all library parameter entries have been worked
off and the stub is not located, an error is returned to the client.

For our example above, the stub DExample.so|sl is found with the first library parameter entry.

Search for Target Server Shared Library/Object

The RPC Server under UNIX searches for the target server shared library/object with:

1. An entry point using the program name that comes from the client request directly. For our
example above, the entry point is CALC.

2. Names formed by the instructions of the library parameter from left to right. The first library
parameter PREFIX(D)means: take the library that comes from the client and add the prefix. For
our example above, the shared library/object name is DExample.so|sl.

If in step 1 such a shared library/object can be located through the normal UNIX shared library/ob-
ject loadmechanism, it is taken as the target server; otherwise the next shared library/object name
is formed using the next library parameter entry (step 2). If all library parameter entries have been
worked off and the target server is not located, an error is returned to the client.

247Administration under UNIX

Administering the EntireX RPC Server

For our example above, the target server Example.so|sl is found with the second library parameter
entry.

Setting Server Parameters for the RPC Server

■ Configuration File Syntax
■ Table of Server Parameters
■ Possible Values for Endworkers
■ Possible Values for Libraries

Configuration File Syntax

■ Comments must be on a separate line.
■ Comment lines can begin with '*', '/' and ';'.
■ Empty lines are ignored.
■ Headings in square brackets [topic] are ignored.
■ Keywords are not case-sensitive.

Table of Server Parameters

NotesDescription
Req.
Opt.Value

Configuration File
Parameter Syntax (UNIX,
Windows, IBM i)

Corresponds to the
BROKER-ID field of

Broker ID used by the
server.

Rstringbrokerid=localhost

the Broker ACI
control block.

Corresponds to the
SERVER-CLASS field

Server class used by the
server.

Rcase-sensitive, up to 32 charactersclass=RPC

of the Broker ACI
control block.

See Using
Internationalization

This field exposes the
Broker ACI field

Ocodepage=

underWritingLOCALE-STRING as a
Applications: Clientparameter to users of

the RPC server. and Server in the
EntireX Broker ACI
Programming
documentation.

SeeData Compression
in EntireX Broker in

Enforce compression
when data is

O0-9 or Y | Ncompresslevel=0

Administration under UNIX248

Administering the EntireX RPC Server

NotesDescription
Req.
Opt.Value

Configuration File
Parameter Syntax (UNIX,
Windows, IBM i)

the general
administration
documentation.

transferred between
broker and server.

Corresponds to the
ENCRYPTION-LEVEL

Enforce encryption
when data is

O0 | 1 | 2encryptionlevel=0

field of the Brokertransferred between
client and server. ACI control block.

See also Broker
Attributes in the
administration
documentation.

Corresponds to the
API-VERSION field

Determines the Broker
API to use.

Onetb_apivers= 0

of the Broker ACI
control block. We
recommend either
not configuring the
API Version or
setting it to 0. This
allows the EntireX
Broker and the
EntireX RPC server
to autodetect the best
API version to use.
For compatibility
with older Brokers,
the API version can
be set manually.

Specify NO for
compatibility with

YES executes the Broker
functions

OYES | NOlogon=YES

EntireX Broker prior
to Version 4.1.1.

LOGON/LOGOFF. NO
does not.

Corresponds to the
SERVER-NAME field

Server Name used by
the server.

Rcase-sensitive, up to 32 charactersservername=SRV1

of the Broker ACI
control block.

Corresponds to the
SERVICE field of the

Service used by the
server.

Rcase-sensitive, up to 32 charactersservice=CALLNAT

Broker ACI control
block.

If greater than zero,
starts the RPC server

Oany digit within range 0 to 99999smhport=0

with a separate SMH
communication task

249Administration under UNIX

Administering the EntireX RPC Server

NotesDescription
Req.
Opt.Value

Configuration File
Parameter Syntax (UNIX,
Windows, IBM i)

and listen port
<smhport> to the local
TCP/IP system.

SeeUsing SSL or TLS
with theRPCServer.

Set the SSL parameters.Ossl_file=

Corresponds to the
WAIT field in the

Timeout in seconds,
used by the server to

Ontimeout=60

Broker ACI controlwait for Broker
requests. block. See also

Scalability of the
RPC Server.

Corresponds to the
USER-ID field of the

Used to identify the
server to the broker.

Rcase-sensitive, up to 32 charactersuserid=ERX-SRV

Broker ACI control
block.

Corresponds to the
PASSWORD field of

Password for Broker
logon.

Ocase-sensitive, up to 32 characterspassword=

the Broker ACI
control block.

See Scalability of the
RPC Server.

Defines the behavior of
worker tasks on

OSee Possible Values for
Endworkers

endworkers=
timeout

completion of client
requests.

See Scalability of the
RPC Server.

Minimum number of
parallel worker threads
started.

Onminworkers= 1

See Scalability of the
RPC Server.

Maximum number of
parallel worker threads
started.

Onmaxworkers=10

See Activating
Tracing for the RPC
Server.

Select the trace level for
this server.

ONone | Standard | Advancedtracelevel=None

See Activating
Tracing for the RPC
Server.

The name of the
destination file for trace
output.

ODefault:
tracedest=ERXTracennn.log,
where nnn is from 001 to 005.

tracedest=

See Possible Values
for Libraries and

Specifies criteria to
locate target servers
and any stubs.

Olibrary = PREFIX(D) -
PREFIX()

library=

Locating andCalling
the Target Server.

Thismayoccurwhen
the RPC Server is

Number of restart
cycles the RPC Server

Onrestartcycles=15

started prior to thewill try to connect to

Administration under UNIX250

Administering the EntireX RPC Server

NotesDescription
Req.
Opt.Value

Configuration File
Parameter Syntax (UNIX,
Windows, IBM i)

the Broker. A restart
cycle will be repeated

Broker or when the
Broker is shut down

every before the RPC
Server is shut down.<timeout> +60 seconds.

When the number of
cycles is reached and a
connection to the
Broker is not possible,
the RPC Server stops.

Possible Values for Endworkers

The server is able to adjust the number of worker threads to the current number of client requests.
This is configured with the parameter endworkers and several others. See Scalability of the RPC
Server for information on how the various parameters work together and what combinations can
be specified.

ExplanationValue

NeverN
The number of worker threads is fixed. No additional worker threads are started. Minworkers
determines the number of workers started.

Timeout is usedT
The number ofworker threads ranges between the minworkers and maxworkers settings, depending
on the number of currently active client requests. Until maxworkers has been reached, the server
tries to maintain enough free worker threads to accept all incoming clients.

The server stops all worker threads not used in the time specified by the timeout server parameter
(see timeout), except for the number of workers specified in minworkers.

ImmediatelyI
The number ofworker threads ranges between the minworkers and maxworkers settings, depending
on the number of client requests currently active. Until maxworkers has been reached, the server
tries to maintain enough free worker threads to accept all incoming clients.

The server stops a thread immediately as soon as it has finished its conversation. When the number
of active workers falls below the number of workers specified in minworkers, a new thread will be
started.

251Administration under UNIX

Administering the EntireX RPC Server

Possible Values for Libraries

The library parameter defines how the RPC Server locates the target server and any stubs on the
platform.

The following coding rules apply to the library parameter:

■ Up to five library entries can be specified as a sequence.
■ Library entries are separated by a hyphen “-”.
■ Library entries are used from left to right by the RPC Server.

The meaningful combinations vary per platform and the type of target server:

DescriptionConfigurationType of Target Server
Operating
System

The library sent with the client request is
ignored. The configured library library
is used to locate the target server.

FIX(library)
F(library)

Target servers in ILE COBOL
compatible withMapping IDL
Data Types to COBOL Data Types

IBM i

in the COBOLWrapper
documentation
or
Target servers ILE RPG
compatiblewith Software AG IDL
to RPG Mapping under Using
EntireX RPC for RPG under IBM i
or
Target servers ILECL compatible
with Software AG IDL to CL
Mapping under Using EntireX
RPC for CL under IBM i.

The library name sent with the client
request is ignored. The programname sent

FIX() or F()Target servers and their stubs
compatible with EntireX C
Wrapper.

UNIX
Windows

with the client request is used to locate the
target server.

IBM i

The library sent with the client request is
ignored. The configured library library

FIX(library)
or
F(library) is used to locate the target server and any

stubs on the platform.

The library name sent with the client
request is used to locate the target server
and any stubs on the platform.

PREFIX() or P()

The library name sent with the client
request is prefixed with the value in

PREFIX(prefix)
or
P(prefix) “prefix” before locating the target server

and any stubs on the platform.

Administration under UNIX252

Administering the EntireX RPC Server

Example: library = PREFIX(D) - PREFIX()

The default for the library parameter is set to satisfy the environment specifics best. Under normal
circumstances it is not necessary to change the library parameter.

For an explanation of the approach to locating the target server on your platform, see Locating
and Calling the Target Server.

Scalability of the RPC Server

■ Parameters
■ Configuration Examples
■ Suggested Configuration on First Usage

Parameters

The RPC server can be configured to adjust the number of worker threads to the current number
of client requests. When more clients are active, more worker threads are needed to achieve the
best throughput. Depending on the configuration, worker threads are started on demand and
stopped as soon as they are no longer needed.

This mechanism can be configured with the following parameters:

timeoutmaxworkersminworkersendworkersConfiguration

EntireX RPC
Server under
operating
system:

Not used with this
configuration.

Unused.Determines
the number

Never.Fixed number of
workers.

UNIX
Windows

of workers
started.

IBM i

Not used with this
configuration.

The upper
limit of

Determines
the

Immediately.Scaling number of
workers between

UNIX
Windows

workers
started.

minimum
number of

minworkers and
maxworkerswithout
any idle time.

IBM i

workers
started. The idle time for workers

can be configured, i.e. a
Timeout.Scaling number of

workers between
UNIX
Windows

worker is stopped when,minworkers andIBM i
for the period defined bymaxworkerswith

configurable idle time. timeout, no client request
has to be served and the
minimum number of

253Administration under UNIX

Administering the EntireX RPC Server

timeoutmaxworkersminworkersendworkersConfiguration

EntireX RPC
Server under
operating
system:

workers has not been
reached.

Configuration Examples

■ Configuration 1: Medium Lifespan of Worker Threads
■ Configuration 2: Shortest Lifespan of Worker Threads
■ Configuration 3: Fixed Number of Workers

Configuration 1: Medium Lifespan of Worker Threads

■ endworkers=T (timeout)
■ timeout=600

■ minworkers=1

■ maxworkers=10

The endworkers parameter determines the condition under which a worker will be stopped. The
value is the period of time specified by the parameter timeout (600 seconds, i.e. 10minutes). Active
workers will be stopped if no client requests arrive within the timeout period, except for the
number of threads specified in minworkers.

Minworkers specifies theminimumnumber of workers that must be available to handle incoming
client requests. The server is started (manually) and the first worker (minworkers=1) waits for client
requests. When the first client request arrives, a second worker is started. This ensures that there
will be at least one free worker (minworkers=1) to handle the next incoming client request.

When the first client request has been worked off (in conversational mode when the conversation
has been ended, and in non-conversational modewhen the request has been answered), there will
be twoworkers active. For the next incoming client request (second request) no additional worker
will be started because the secondworker is still free. A third worker will only be started if a third
client request arrives before the second request has been finished, in which case there will be three
active workers, and so on.

The maxworkersparameter specifies themaximumnumber of activeworker tasks permitted (default
is 10).

Administration under UNIX254

Administering the EntireX RPC Server

Configuration 2: Shortest Lifespan of Worker Threads

■ endworkers=I (immediately)
■ timeout=600

■ minworkers=1

■ maxworkers=10

In this example the endworkers parameter has been set to "I" (immediately). This setting will stop
worker threads immediatelywhen client requests are completed, except for the number of threads
specified in minworkers. All other behavior is the same as for Configuration 1: Medium Lifespan
of Worker Threads.

Configuration 3: Fixed Number of Workers

■ endworkers=N (never)
■ timeout=600

■ minworkers=10

■ maxworkers=

This configuration determines a fixed number of workers. The maxworkers parameter is ignored
and the endworkers parameter is set to "N" (never). All worker threads are started immediately
with the server and will never stop. This method is useful in minimizing system resources.

Suggested Configuration on First Usage

When you first start using Micro Focus RPC Server, we suggest the following settings for scaling
the server:

■ endworkers=T (timeout)
■ the timeout parameter can be set, for example, to 2 minutes (timeout=120).
■ low value for minworkers is suggested (e.g. minworkers=2)
■ the maxworkers setting depends on the expected maximum number of clients active in parallel
(e.g. maxworkers=10)

255Administration under UNIX

Administering the EntireX RPC Server

Using Internationalization with the RPC Server

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

The RPC Server running under UNIX

■ does not, by default, send a codepage as part of the locale string to the broker
■ assumes that the broker's locale string defaults match; see Broker's Locale String Defaults under
Locale String Mapping in the internationalization documentation. If they do not match, provide
the codepage explicitly.

When setting the codepage manually with the parameter codepage, the following rules apply:

■ You can provide a codepage in the locale string sent to the broker. If a codepage is provided, it
must follow the rules described under Locale String Mapping in the internationalization docu-
mentation.

■ The RPC server itself does not convert your application data (contained in RPC IDL type A, K,
AV andKVfields) received from the broker before giving them to your server application. Under
normal circumstances, it is not possible to configure a codepage other than the codepage used
in your environment for file and terminal IO. If this is not adhered to, unpredictable results may
occur.

■ The codepage used must also be a codepage supported by the broker, depending on the inter-
nationalization approach.

■ Before starting the RPC Server, set the locale string with the parameter codepage.

Example:

codepage=LOCAL

Using SSL or TLS with the RPC Server

There are two ways of specifying SSL or TLS, depending on the complexity of the parameters:

■ as part of the Broker ID for short parameters, the simplest way
■ using the SSL file, a text file containing more complex parameters.

For more information, see SSL or TLS and Certificates with EntireX.

Administration under UNIX256

Administering the EntireX RPC Server

Specifying the SSL or TLS Parameters as Part of the Broker ID

The simplest way to specify SSL or TLS parameters is to add them to the Broker ID.

Example:

ssl://ETB001?TRUSTSTORE=whatever

Specifying the SSL or TLS Parameters in a Separate File

For complex SSL or TLS parameters there is the SSL file, a text file containing the parameters.

The SSL_FILE keyword points to this text file.

To specify the SSL or TLS parameters in the SSL file

1 Set the parameters as described underRunning Broker with SSL or TLS Transport in the platform-
specific administration documentation.

2 Prefix/suffix the Broker ID with the SSL key.

Example:

brokerid=SSL://ETB001
.
.
ssl_file=C:\mySSLdirectory\mySSLParms.txt

Starting the RPC Server

Before starting the EntireX RPC server, ensure that all shared libraries/objects (server stubs and
server) can be accessed using the search path.

To start the EntireX RPC server

■ Use

257Administration under UNIX

Administering the EntireX RPC Server

RPCserver CFG=<name> [-option]&

where <name> determines the configuration file in use. Option: -s[ilent]: Run server in silent
mode, that is: no terminal input will be required (e.g. acknowledge error messages). The job
will terminate automatically. Recommended for background jobs.

Note: For reasons of compatibilitywith versions before 5.1.1, the previous command to start
the server

RPCserver <Brokerid> <Class> <ServerName> <Service>

will continue to be supported. However, a server started with this call will use the default para-
meters as listed in the table above. Parameters other than Broker ID, Class, ServerName, Service
require the CFG= form of the server start command.

Stopping the RPC Server

To stop the EntireX RPC Server

■ Use the function Deregister a Service or Deregister a Server of the SystemManagement Hub.
This method ensures that the deregistration from the Broker is correct.

See also EntireX RPC Server Return Codes under Error Messages and Codes.

Activating Tracing for the RPC Server

To switch on tracing for the RPC Server

■ Set the parameters tracelevel and tracedestination, see Table of Server Parameters.

To evaluate the return codes, see Error Messages and Codes.

See also Tracing the RPC Server.

Administration under UNIX258

Administering the EntireX RPC Server

20 Administering the EntireX RPC Servers using System

Management Hub
■ Introduction .. 260
■ Adding a Local RPC Server ... 260
■ Adding a Remote RPC Server .. 263
■ Operating and Monitoring the RPC Servers using System Management Hub ... 264

259

The System Management Hub RPC server agent provides a user-friendly interface for managing
and monitoring the EntireX RPC servers.

The System Management Hub is Software AG's cross-product and cross-platform product man-
agement framework. This section assumes that you are familiar with the System Management
Hub software. The basic concepts of this product, its installation and the System Management
Hub features common to all Software AG products are described in the separate SystemManage-
ment Hub documentation.

Introduction

The RPC server agent distinguishes between two kinds of RPC server, based on their locations:

■ Local
A local RPC server needs to run on amachinewhere the SMH is installed. In addition to starting
and stopping RPC servers, the RPC agent provides support for editing the configuration file
and monitoring the server data.

■ Remote
Remote RPC server functionality is only available for RPC server platforms where the SMH is
not available, such as z/OS and IBM i. For remote RPC servers the System Management Hub
RPC server agent provides monitoring functionality only. Starting and stopping RPC servers
and editing an RPC server's configuration file are not supported.

Adding a Local RPC Server

To add a local RPC server

1 Select the root node of the RPC server tree in the tree-view frame.

2 From the context menu, choose Add Local. The following dialog window will be displayed.

Administration under UNIX260

Administering the EntireX RPC Servers using System Management Hub

Server

This name will be displayed in the RPC server tree.

SMH Control Port

Set an SMH Control Port for the RPC server configuration port. This TCP/IP port must be unused
on your machine and unique to the RPC server settings. This port is required for intercommunic-
ation between the RPC server and the RPC server agent. The C RPC Server as well as the Java
RPC-based server has a corresponding parameter in the configuration/property file. The SMH
Control Port option in the Add Local RPC Server dialog will be used as command-line parameter
while starting the RPC Server.

Since the command-line parameters have higher priority, the configuration/property file settings
will be ignored if command-line parameters are used. See Customizing the Java RPC Server in the
UNIX and Windows administration documentation and Setting Server Parameters for the RPC
Server in the UNIX and Windows administration documentation.

Properties, Configuration

Enter the full path name of your RPC server's configuration file and/or property file. The System
ManagementHub agent requires this file name to open it in the editor. See alsoCommand Functions
for LocalRPCServersunderOperating andMonitoring theRPCServers using SystemManagement
Hub. For example: the EntireX XML/SOAP RPC Server requires a configuration file as well as a
property file. It is useful to enter both names to edit and view these files. The edit command buttons
will only be available if the corresponding field is filled. See EntireX\config directory for some
examples of configuration and property files.

Note: Use an absolute path for the file name. See alsoWorking Directory.

Start Script

The start script will be called when the RPC server is started.

The SMH RPC server agent uses the execute script in the Start Script line to start the RPC server.
Only a batch or command script file under Windows and a shell script file under UNIX to start
the RPC server, where other settings will be made, such as the CLASSPATH setting for the Java
server or Configuration file settings for the C RPC Server, are allowed. Some example files are
provided in the directory <EntireX installation Directory>\SMH\scripts.

The SMH RPC server agent only allows files with the file extensions in the table below to start
scripts. Other file extensions will cause a starting error. If the file extension is changed, the RPC
server agent does not check the contents of the file to determine whether the file format matches
the file extension.

261Administration under UNIX

Administering the EntireX RPC Servers using System Management Hub

File ExtensionOperating System

Windows .bat
.cmd

UNIX .sh
.csh
.bsh
.ksh

The start script option may only contain the name of the batch or shell script for starting the RPC
Server. If additional parameters are required, use the Start Option line to submit these to the start
script.

This start script line will be extended with the parameter -smhport port number (from the SMH
Control Port option) as the first parameter when starting the RPC server.

Note: Use an absolute path for the file name. See alsoWorking Directory.

Start Options

The start options will be connected to the start script as a start parameter.

For example: use the start option cfg=path\server.cfg to start the rpcserver with a configuration
file. The entries on the Configuration and Property files will not be used automatically as start
parameters.

For the corresponding start parameters of the RPC Server, see Customizing the Java RPC Server in
the UNIX and Windows administration documentation and Setting Server Parameters for the RPC
Server in the UNIX and Windows administration documentation.

Note: If the path includes blank spaces, the entire option must be enclosed in quotation
marks. All path names used must be absolute path names. The RPC server agent does not
try to resolve relative path names.

Logging

If the Logging option has been entered, the Start script line will be extendedwith a pipe to redirect
the standard out and standard error to these files. These log files can be viewed with the SMH's
built-in viewer.

Administration under UNIX262

Administering the EntireX RPC Servers using System Management Hub

Working Directory

Theworking directorywill be set by theRPCAgentwhen the start script is called. Relative filenames
in the option Properties, Configuration, Start script and Loggingwill be extendedwith theworking
directory while saving. If the working directory line is empty, the path of the SMH service (Win-
dows) / daemons (UNIX) will be used as default.

Save

After confirming the settings for the new RPC Server Item with Save, the server is ready for use
with the System Management Hub.

Adding a Remote RPC Server

Remotely configured servers can only run on platforms where SMH is not available. Therefore
the RPC server needs to be started and stopped by the owner of the RPC server. The RPC server
does not have themonitoring functionality enabled automatically. It must be startedwith the start
parameter -smhport unique tpc/ip port to enable the monitoring functionality.

To add a remote RPC server

1 Select the root node of the RPC server tree in the tree-view frame.

2 From the contextmenu, chooseAddRemote. The followingdialogwindowwill be displayed.

Server

This name will be displayed in the RPC server tree.

263Administration under UNIX

Administering the EntireX RPC Servers using System Management Hub

Host

This is the network name or the IP address of the host system where RPC server runs.

SMH Control Port

System Management Hub Control port on which the RPC server listens. The owner of the server
must configure the RPC server on this TCP/IP port. Please see the corresponding RPC server
documentation. See alsoCustomizing the Java RPCServer in theUNIX andWindows administration
documentation and Setting Server Parameters for the RPC Server in the UNIX andWindows admin-
istration documentation.

Note: The hostname and TCP/IP portwill not be checked for validation. The user is respons-
ible for the input in these fields. If the same hostname and port are used for server entries
twice or more, the same status will be displayed for each server.

Operating and Monitoring the RPC Servers using System Management Hub

The System Management Hub RPC server agent distinguishes between local and remote RPC
servers. The functionality changes depending on the location. For local RPC servers, the System
ManagementHubGUI environment provides full control. For remoteRPC servers, onlymonitoring
functionality is provided.

This section covers the following topics:

■ Select Root Node of the RPC Server
■ Select an RPC Server
■ Command Functions for Local RPC Servers
■ Command Functions for Remote RPC Servers
■ Tracing Hints
■ Batch Interface

Select Root Node of the RPC Server

Once the root node of the RPC server has been selected, the RPC server agent retrieves the following
information and displays it in a table. This information is available for both locally and remotely
monitored RPC servers regardless of the RPC server type. See SNMP Support for EntireX in the
SystemManagementHub documentation and SNMP Interface in the separate SystemManagement
Hub documentation.

Administration under UNIX264

Administering the EntireX RPC Servers using System Management Hub

NoteDescriptionProperty

Name of the Server.
This is the name of the server in the SMH interface which was entered when the RPC Server
was added.

Server

1,2Status of the server.
Running, Down, Retry.

Status

Start-time of the server.Started

Current number of worker threads.Worker

Worker threads high watermark.High

3Host name / JES job name.Name

4Network address.Address

Notes:

1. The status may be “Init” and “Shutdown” for the XML Servers. The status “Down” will be
generated in the System Management Hub RPC server agent if communication with the RPC
server is not available.

2. Status

DescriptionStatus

The server is running normally.Running

The server is not running or the RPC server was started without the System Management
Hub control port option. The SystemManagement Hub RPC server agent cannot connect to
the RPC Server.

Down

The RPC Server has no connection to the Broker and is trying to connect or reconnect.Retry

The RPC server is just starting and is not yet ready on the RPC interface.Init

The RPC server is just shutting down and will be down in a moment.Shutdown

Any error that could not be recovered and leads to shutdown of the server, for example:
0021 0043: ATTR: Service definition not found.

Error

3. This display depends on the RPC Server and the platform where the server is running. On
UNIX andWindows (local servers) only the Hostnamewill be displayed. Under IBM i, the RPC
Server will also display the JES job name if available.

4. This display shows the IP or Net-Work address of the RPC Server where the server is running.

265Administration under UNIX

Administering the EntireX RPC Servers using System Management Hub

Select an RPC Server

Each RPC server has a common, scalable part and a server-specific part. Therefore the property
information may differ for each server type.

For local servers, the top of the display in the right-hand panel is generated by the System Man-
agement Hub RPC server agent and represents the input made when the RPC server was added.
For remote RPC servers, the first three lines are generated by the System Management Hub RPC
server agent and also represent the input made when the RPC server was added.

The subsequent empty line separates the information generated by SystemManagementHubRPC
server agent from the retrieved information.

See also EntireX RPC Servers.

Each RPC server may also have subtables which depend on the RPC Server type and the platform
where the RPC server is running. If the RPC servers have subtables, the RPC server node is ex-
pandable and shows a “+” (plus sign) in front of the node name.

Command Functions for Local RPC Servers

Once a local RPC server has been selected in the SMH tree view, the following RPC Server control
commands will be available:

DescriptionFunction

Opens a dialog window tomodify the selected RPC server settings which were made
when the local RPC server was added to the SMH environment. (See note below.)

Modify

Removes the name of the selected RPC server from the RPC server tree. No files will
be removed with this action. (See note below.)

Delete

Starts the selected RPC server. This function calls the entry from the Start script input
line. (See note below.)

Start

Sends a terminate command to the selected RPC server. (See note below.)Stop

Opens the properties file of the selected RPC serverwhichwas entered in the Property
File line. (See note below.)

Edit Properties

Opens the configuration file of the selected RPC server which was entered in the
Configuration File line. (See note below.)

Edit Configuration

Opens the file which was entered in the Start script line for the selected RPC server,
if this file was an editable file. (See note below.)

Edit Start Procedure

Opens a dialog window to select the trace level and sends a change trace level
command with the selected trace level to the RPC server.

Tracelevel

Note: The SystemManagement Hub employs the multi-user concept. If more than one user
modifies, deletes or edits the same RPC Server Item at the same time, the data of the user
who saves last will overwrite the modifications of any previous user(s). Start and Stop

Administration under UNIX266

Administering the EntireX RPC Servers using System Management Hub

commandsmay also be used bymultiple users.We recommendusing the Refresh command
to update the status of the RPC Server before starting or stopping it.

Command Functions for Remote RPC Servers

Once a remote RPC server has been selected in the SMH tree view, the following RPC Server
control commands are available:

DescriptionFunction

Opens a dialog window to modify the selected RPC server settings which were made when the
remote RPC server was added to the SMH environment. (See note below.)

Modify

Removes the name of the selectedRPC server from the RPC server tree. No fileswill be removed
with this action. (See note below.)

Delete

Opens a dialog window to select the trace level and sends a change trace level command with
the selected trace level to the RPC server.

Tracelevel

The commands Start and Stop for the RPC server are not available for remotely managed RPC
servers. The System Management Hub RPC server agent provides only monitoring functionality
for this kind of server; it does not provide the Edit and View Configuration functions or the Start
Batch Files function.

Note: The SystemManagement Hub employs the multi-user concept. If more than one user
modifies, deletes or edits the same RPC Server Item at the same time, the data of the user
who saves last will overwrite the modifications of any previous user(s).

Tracing Hints

UNIX

The trace will work under UNIX as usual.

Windows

If the C RPC Server under Windows was used, the trace destination may change. If the TraceDes-
tination option was not defined in the configuration file, the C RPC Server under Windows will
write its trace file for the user SAGUSER. The SystemManagement Hubwill start the RPC Servers
on behalf of the user SAGUSER.

Formore information on the tracing location, see table entry Trace File/Location on the correspond-
ing RPC server. The table entry will only be available if the RPC server is running.

See also Activating Tracing for the RPC Server in the respective sections of the documentation.

267Administration under UNIX

Administering the EntireX RPC Servers using System Management Hub

Batch Interface

The RPC server agent supports the System Management Hub's batch interface. The table below
contains the corresponding batch commands.

NoteBatch CommandTask

show rpcserverlistList all defined RPC servers on the managed host.

show rpcserver name=<rpc server name>Show detailed information on the <rpc server>

1start rpcserver name=<rpc server name>Start the <rpc server>

1stop rpcserver name=<rpc server name>Stop the <rpc server>

Note:

Only local RPC server can be started or stoppedwith this command. Attempts to start and stop
remote RPC servers will fail.

(1)

Example:

Assume that your RPC Server is defined with the node name “RPC Server1” in your SMH envir-
onment. Enter the argbatch commandwith the followingparameters to execute the batch command.

argbatch show rpcserver user=[userid] password=[passwd] target=[managed host name]
"product=webMethods EntireX 8.1" "name=RPC Server1"

Note: argbatch is part of the System Management Hub software. It is located in the bin
directory of the System Management Hub installation.

SeeThe SystemManagementHub Batch Interface in the SystemManagementHub for EntireXdocument-
ation.

Administration under UNIX268

Administering the EntireX RPC Servers using System Management Hub

21 Administration of the EntireX Java RPC Server

■ Customizing the Java RPC Server .. 270
■ Using Package Names with the Java RPC Server .. 273
■ Using Internationalization with Java RPC Server .. 274
■ Starting the Java RPC Server .. 275
■ Stopping the Java RPC Server ... 275
■ Application Identification ... 275

269

The EntireX Java RPC Server is an RPC server which runs Java server interface objects generated
from your IDL files. This server can register an Attach Service to start several services with the
same server address on demand.

Each of these services can process one call at a time. The Java RPC Server is started by a script,
which you may customize. Parameters for the server are configured in a Java properties file.

Customizing the Java RPC Server

■ Introduction
■ The Properties File
■ Example
■ Properties and Command-line Options

Introduction

The script files that start the Java RPC Server allow command-line options as described in the table
below. Alternatively, you can use System properties or a property file. The command-line option
has the highest priority; the System property has second priority, and the entries of a property file
have third priority.

The Java RPC Server can adjust the number of worker threads to the number of parallel requests.
Use the properties entirex.server.fixedservers, entirex.server.maxservers and
entirex.server.minservers to configure this scalability. If entirex.server.fixedservers=yes,
the number of servers specified in entirex.server.minservers is started and the server can
process this number of parallel requests. If entirex.server.fixedservers=no, the number of
worker threads balances between what is specified in entirex.server.minservers and what is
specified in entirex.server.maxservers. This is done by a so-called attach server thread. At
startup, the number of worker threads is the number specified in entirex.server.minservers.
A newworker thread starts if the Broker hasmore requests than there are worker threadswaiting.
If more than the number specified in entirex.server.minservers are waiting for requests, a
worker thread stops if its receive call times out. The timeout period is configured with
entirex.server.waitserver.

Administration under UNIX270

Administration of the EntireX Java RPC Server

The Properties File

The default name of the properties file is entirex.server.properties. It can be changed by as-
signing an arbitrary file name with a path to a Java system property with the name
entirex.server.properties. The file is searched for in the directory of the start script.

An example for the properties file is in subfolder config of the installation folder.

Example

Under UNIX:

java -Dentirex.server.properties=rpcserver.properties -classpath <entirex.jar with ↩
path>:<path to your server
stubs> com.softwareag.entirex.aci.RPCServer

Properties and Command-line Options

ExplanationDefault Value
Command-line
OptionName

See Using Package Names with the Java
RPC Server.

entirex.rpcserver.
packagename.entirex.
rpcserver.
packagename.
<libraryname>=packagename
<libraryname>=
packagename

Broker IDlocalhost-brokerentirex.server.brokerid

The codepage the server uses. Permitted
values are the name of the codepages the

-codepageentirex.server.
codepage

JVM supports. See Customizing the Java
RPC Server for details.

0 (no
compression)

-compresslevelentirex.server.
compresslevel

Permitted values (you can enter the text or
the numeric value):

9BEST_COMPRESSION

1BEST_SPEED

-1, mapped
to 6

DEFAULT_COMPRESSION

8DEFLATED

0NO_COMPRESSION

0N

8Y

271Administration under UNIX

Administration of the EntireX Java RPC Server

ExplanationDefault Value
Command-line
OptionName

This class is used for custom initialization
and shutdown of the server. In addition, this

-customclassentirex.server.
customclass

class allows handling when closing a
conversation and handling the termination
of a worker thread. See
ServerImplementation in the Javadoc
documentation of the Java ACI for more
information.

Encryption level (if Broker is version 6.1.1 or
higher. Valid values: 0,1,2).

0-encryptionentirex.server.
encryptionlevel

Can be used in a user-written translation exit
of the Broker. See BrokerService,

entirex.server.
environment

setEnvironment(java.lang.String)
(EntireX Java ACI) in the Javadoc
documentation of the Java ACI.

If no, use attach server to manage worker
threads, otherwise runminimumnumber of
server threads.

noentirex.server.
fixedservers

Path and name of the trace output file.
Environment variables in the name are

-logfileentirex.server.
logfile

resolved only if used as command-line
option.

Maximum number of worker threads.32entirex.server.
maxservers

Minimum number of server threads.1entirex.server.
minservers

The port where the server listens for
commands from the System Management

0-smhportentirex.server.
monitorport

Hub (SMH). If this port is 0, no port is used
and management by the SMH is disabled.

The name of the server.entirex.server.
name

The password for secured access to the
Broker. For Java 1.4 and above, the password

-passwordentirex.server.
password

is encrypted and written to the property
entirex.server.password.e.
To change the password, set the new
password in the properties file (default is
entirex.server.properties).
To disable password encryption, set
entirex.server.passwordencrypt=no.
Default for this property is yes.
Password encryption is not available for Java
1.3 and below.

Administration under UNIX272

Administration of the EntireX Java RPC Server

ExplanationDefault Value
Command-line
OptionName

The file name of the property file.entirex.server.
properties

-propertyfileentirex.server.
properties

Number of restart attempts if the Broker is
not available. This can be used to keep the

15-restartcyclesentirex.server.
restartcycles

Java RPC Server running while the Broker
is down for a short time.

no/yes/auto/Name of BrokerSecurity object.no-securityentirex.server.
security

Server addressRPC/SRV1
/CALLNAT

-serverentirex.server.
serveraddress

Name of the file where start and stop of
worker threads is logged. Used by the
Windows RPC Service.

-serverlogentirex.server.
serverlog

The user ID for the Broker for RPC. See
entirex.server.password .

JavaServer-userentirex.server.
userid

Verbose output to standard output yes/no.no-verboseentirex.server.
verbose

Wait timeout for the attach server thread.600Sentirex.server.
waitattach

Wait timeout for the worker threads.300Sentirex.server.
waitserver

TCP/IP transport timeout. See Setting the
Transport Timeout underWriting Advanced
Applications - EntireX Java ACI.

20entirex.timeout

Trace level (1,2,3).0-traceentirex.trace

Using Package Names with the Java RPC Server

A package name can be specified when the server is generated.

The Java RPC Server can handle server programswith package names if the package name of each
library is configured in the properties of the server. For each library the property
entirex.rpcserver.packagename.<library> has the value of the package.

Example for the library Example (as in example.idl):

entirex.rpcserver.packagename.example=my.package

The library name must be lowercase.

273Administration under UNIX

Administration of the EntireX Java RPC Server

Using Internationalization with Java RPC Server

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

With the parameter codepage for the Java RPC Server you can

■ override the encoding used for the payload sent to / received from the broker. Instead of using
the default encoding of the JVM, the given encoding is used. Using thismethod does not change
the default encoding of your JVM.

■ force a locale string to be sent if communicating with broker version 7.1.x and below. You can
use the abstract codepage name LOCAL to send the default encoding of the JVM to the broker.
SeeUsing the Abstract Codepage Name LOCAL under Locale String Mapping in the internationaliz-
ation documentation.

EntireX Java components use the codepage configured for the Java virtualmachine (JVM) to convert
the Unicode (UTF-16) representation within Java to the multibyte or single-byte encoding sent to
or received from the broker by default. This codepage is also transferred as part of the locale string
to tell the broker the encoding of the data if communicatingwith a broker version 7.2.x and above.

To change the default, see your JVM documentation. On some JVM implementations, it can be
changed with the file.encoding property. On some UNIX implementations, it can be changed
with the LANG environment variable.

Which encodings are valid depends on the version of your JVM. For a list of valid encodings, see
SupportedEncodings in your Java documentation. The encodingmust also be a supported codepage
of the broker, depending on the internationalization approach.

Administration under UNIX274

Administration of the EntireX Java RPC Server

Starting the Java RPC Server

To start the Java RPC Server

■ Use a shell script in the subfolder bin of the installation directory.

On UNIX, the shell script is named jrpcserver.bsh.

If the Java interpreter is not called "java", change the call to "java".

■ You can set the environment variable JAVA_HOME for the location of the Java interpreter.
■ Set the classpath to "entirex.jar" and the path to the generated proxies.
■ The Java RPC Server accepts parameters. See column Command-line options in table above.

Stopping the Java RPC Server

To stop the Java RPC Server

■ Use the functionDeregister a Service orDeregister a Server of the SystemManagementHub.
This method ensures that the deregistration from the Broker is correct.

Application Identification

The application identification is sent from the RPC server to the Broker. It is visible with Broker
Command and Info Services.

The identification consists of four parts: name, node, type, and version. These four parts are sent
with each Broker call and are visible in the trace information.

For the Java RPC Server these values are:

ValueIdentification Part

ANAME=Java RPC ServerApplication name:

ANODE=<host name>Node name:

ATYPE=JavaApplication type:

AVERS=8.2.0.0Version:

275Administration under UNIX

Administration of the EntireX Java RPC Server

276

22 Administering the EntireX XML/SOAP RPC Server

■ Administering the EntireX XML/SOAP RPC Server ... 278
■ Command-line Parameters .. 279
■ Sample Properties File .. 281
■ Configuration File for the XML/SOAP RPC Server .. 281
■ Configuring the XML/SOAP RPC Server .. 284
■ XML/SOAP RPC Server with HTTP Basic Authentication ... 285
■ XML/SOAP RPC Server with UsernameToken ... 285
■ Using SSL or TLS with the XML/SOAP RPC Server .. 286
■ Java API for XML/SOAP RPC Server .. 288
■ Starting the XML/SOAP RPC Server ... 291
■ Stopping the XML/SOAP RPC Server .. 291
■ Running the XML/SOAP RPC Server in the Software AG Runtime ... 292

277

With the XML/SOAP RPC Server you can process XML-based server calls from EntireX RPC cli-
ents/Natural RPC clients. The EntireXRPC client communicateswith the XML-based server, using
the XML/SOAP RPC Server.

Administering the EntireX XML/SOAP RPC Server

The XML/SOAP RPC Server uses the following, in the following order of priority:

1. Command-line Parameters
The command-line parameters have the highest priority.

2. Properties File
The properties file is located in theworking directory by default. It should define parser settings
and the location of the configuration file. The default name of the properties file is entirex.xm-
lrpcserver.properties. Furthermore it may contain several properties for the server (see the table
below).

3. Configuration File
The configuration file (XML format) has the lowest priority. It contains a list of target servers,
including themapping file associatedwith them andmay contain information about the broker
if not already given in the command-line or property file.

If the properties file does not specify the location and name of the configuration file, the config-
uration file in the working directory is used.

Additionally, Java Systemproperties are available to administer the XML/SOAPRPC Server. These
properties are independent of the administration possibilities listed above.

DefaultValuesDescriptionJava System Property

truetrue, falseEnable/disable HTTP persistencehttp.keepAlive

5Integer > 0Define the maximum number of HTTP connection to a host.

Note: Requires http.keepAlive=true

http.maxConnections

Administration under UNIX278

Administering the EntireX XML/SOAP RPC Server

Command-line Parameters

ExplanationDefault ValueCommand-line OptionName

Broker IDlocalhost-brokerentirex.server.brokerid

The codepage the server uses. Permitted
values are the names of the codepages the

-codepageentirex.server.codepage

JVM supports. Use the value LOCAL when
the default codepage of the JVM should be
used. See Using Internationalization with
EntireX XML Components underWriting
Advanced Applications with the XML/SOAP
Wrapper for details.

0 (no compression)-compresslevelentirex.server.
compresslevel

Permitted values (you can enter the text or
the numeric value):

9BEST_COMPRESSION

1BEST_SPEED

-1, mapped to 8DEFAULT_COMPRESSION

8DEFLATED

0NO_COMPRESSION

0N

8Y

The file locations of deployed XMM and
WSDL files are written as relative paths in

falseentirex.server.development.
relativepaths

configuration file of the XML/SOAP RPC
Server.

Can be used in a user-written translation
exit of the Broker. See BrokerService,

entirex.server.environment

setEnvironment(java.lang.String)
(EntireX Java ACI) in the Javadoc
documentation of the Java ACI.

If no, use attach server to manage worker
threads, otherwise run minimum number
of server threads.

noentirex.server.fixedservers

Path and name of the trace output file.
Environment variables in the name are

-logfileentirex.server.logfile

resolved only if used as a command-line
option.

Maximum number of worker threads.32entirex.server.maxservers

Minimum number of server threads.1entirex.server.minservers

279Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

ExplanationDefault ValueCommand-line OptionName

The port where the server listens for
commands from the System Management

0-smhportentirex.server.monitorport

Hub (SMH). If this port is 0, no port is used
and the management by the SMH is
disabled.

The name of the server.entirex.server.name

The password for secured access to the
Broker. For Java 1.4 and above, the password

-passwordentirex.server.password

is encrypted and written to the property
entirex.server.password.e. To change
the password, set the new password in the
properties file (default is
entirex.server.properties). Todisable
password encryption, set
entirex.server.passwordencrypt=no.
Default for this property is yes. For Java 1.3
and below, password encryption is not
available.

The file name of the property file.entirex.
xmlrpcserver.
properties

-propertyfileentirex.sdk.xml.runtime.
propertyfile

Location and name of configuration file.entirex.
xmlrpcserver.
configuration.xml

-configurationfileentirex.sdk.xml.runtime.
configurationfile

Number of restart attempts if the Broker is
not available. This can be used to keep the

15-restartcyclesentirex.server.
restartcycles

Java RPC Server running while the Broker
is down for a short time.

no/yes/auto/Name of BrokerSecurity object.no-securityentirex.server.security

Server address.RPC/SRV1/CALLNAT-serverentirex.server.
serveraddress

Name of the file where start and stop of
worker threads is logged. Used by the
Windows RPC Service.

-serverlogentirex.server.serverlog

The user ID for the Broker for RPC. See
entirex.server.password .

JavaServer-userentirex.server.userid

Verbose output to standard output yes/no.no-verboseentirex.server.verbose

Wait timeout for the attach server thread.600Sentirex.server.waitattach

Wait timeout for the worker threads.300Sentirex.server.waitserver

TCP/IP transport timeout. See Setting the
Transport Timeout underWriting Advanced
Applications - EntireX Java ACI.

20entirex.timeout

Trace level (1,2,3).0-traceentirex.trace

Administration under UNIX280

Administering the EntireX XML/SOAP RPC Server

ExplanationDefault ValueCommand-line OptionName

Location and name of stream parser factory
class.

com.ctc.wstx.stax.
WstxInputFactory

-jaxp.saxparserfactoryentirex.sdk.xml.runtime.
xmlparserfactory

Enables or disables the usage of character
references. Defined value = yes,no.

noentirex.sdk.xml.runtime.
useCharacterReference

Define the protocol used for fault document
generation if no fault document is defined.
Defined values = soap, xml.

soapentirex.sdk.xml.runtime.
defaultFaultDocumentFormat

Sample Properties File

The following is a sample properties file entirex.xmlrpcserver.properties:

Example server configuration
#
parameter for xml stream parser
entirex.sdk.xml.runtime.xmlparserfactory=com.ctc.wstx.stax.WstxInputFactory
xmlruntime configuration file
entirex.sdk.xml.runtime.configurationfile=entirex.xmlrpcserver.configuration.xml
#
Basic properties
entirex.server.brokerid=localhost
entirex.server.serveraddress=RPC/XMLSERVER/CALLNAT
entirex.server.userid=XMLRPCServer

Configuration File for the XML/SOAP RPC Server

■ Introduction
■ Sample Configuration File
■ TargetServer Block

Introduction

The configuration file for the EntireX XML/SOAP RPC Server is written in XML format.

The document frame is:

281Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

<?xml version="1.0" encoding="UTF-8" ?>
<EntireX xmlns="http://namespaces.softwareag.com/entirex/xml/runtime/configuration" ↩
version="7.2.1" >
 <XmlRuntime Version="1">
 <!-- information for XML/SOAP RPC Server-->
 </XmlRuntime>
</EntireX>

The default name of the configuration file is entirex.xmlrpcserver.configuration.xml.

The XMLRPCServer information contains two information blocks, one for the EntireX Broker in-
formation and one for a list of target servers.

Sample Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<EntireX

xmlns="http://namespaces.softwareag.com/entirex/xml/runtime/configuration"
version="8.0">
<XmlRuntime Version="1">

<BrokerInfo>
<BrokerId>localhost:1971/</BrokerId>
<ServerAddress>RPC/SRV1/CALLNAT</ServerAddress>
<Logical_BrokerId></Logical_BrokerId>
<Logical_Service></Logical_Service>
<Logical_SetName></Logical_SetName>
<Options/>
</BrokerInfo>

<TargetServer name="http://localhost:1973/MyService">
<xmms>

<exx-xmm name="c:\mydir\xmmfiles\XmmExample.xmm"
soapVersion="1.1"
wsdl="c:/mywsdl.wsdl" service="myservice"
port="myserviceSOAP11Port" repository="c:\myrepository"\>

</xmms>
</TargetServer>

</XmlRuntime>
<EntireX>

Administration under UNIX282

Administering the EntireX XML/SOAP RPC Server

TargetServer Block

The section <TargetServer>

■ specifies a Web service address (currently only http(s) is possible)
■ contains the IDL-XML mapping files (XMM)
■ allows specification of basic authentication with a fixed user/password within the tag <Target-
Server>:

Description
Req/
OptAttribute

ObasicAuthentication

Activate the basic authentication.
If attributes user and password are set, these credentials are
used for basic authentication.
Otherwise the current credentials of the calling client are used.
To set the basic authentication credentials on client side, the

true

Natural logon must be enabled. User-specific credentials can
be overwritten by setting RPC user ID and RPC password in
the client application.

Deactivate basic authentication. All other parameters in this
table are ignored.

false

Name of default user for basic authentication.Ouser

Password of default user for basic authentication.Opassword

Specifies how the password is encrypted. Possible values:Opassword-encryption

Default.plainText

base64

The XML/SOAP RPC Server encrypts the password and
sets this value.

encrypt

HTTP connection timeout in seconds.RhttpConnectionTimeout

See Reference - HTTP and Java Interface in the XML/SOAPWrapper documentation for explanation
of attributes.

The section <xmm> contains the optional attributes for SOAP mapping.

283Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

DescriptionAttribute

Specifies a SOAP version: 1.1 (default) or SOAP 1.2.soapVersion

The location of WSDL file, using a WSDL file the target address is retrieved fromWSDL
file.

wsdl

The service name in WSDL file.service

The port name in WSDL file.port

The repository directory used forWS-* features. See SoftwareAGCommonWeb Services
Stack client repository.

repository

Valid values: PasswordText | PasswordDigest.

Prerequisites: Attribute repositorymust be defined and module rampartmust be
engaged. See also XML/SOAP RPC Server with UsernameToken.

usernameToken

The list of target servers (based on the target server entries starting with tag TargetServer and
have a mandatory HTTP address) is assigned to the attribute name. Each TargetServer entry can
have a list of XMMs for this server.

Caution: It is not allowed to use one XMM in more than one TargetServer entry inside one
configuration file. Using different XMMs with a common definition results in unexpected
behavior of XML/SOAP RPC Server.

Configuring the XML/SOAP RPC Server

To configure the XML/SOAP RPC Server

1 Specify the file entirex.xmlrpcserver.properties in the directory where the XML/SOAP RPC
Server is started.

2 Specify the JAXP parameters. This step is optional if these parameters are already specified
in your environment.

3 Specify the location of the configuration file.

4 Specify the configuration file: entirex.xmlrpcserver.configuration.xml.

5 For specifying features such as WS-Policy, see also configuration of Software AG Common
Web Services Stack.

Tip: If you are using the XML/SOAP RPC Server with an HTTP server located outside the
firewall, set the following Java properties:

■ http.proxyHost
■ http.proxyPort
■ https.proxyHost

Administration under UNIX284

Administering the EntireX XML/SOAP RPC Server

■ https.proxyPort
■ http.nonProxyHosts
■ https.nonProxyHosts
■ http.proxyUser
■ https.proxyUser
■ http.proxyPassword
■ https.proxyPassword

XML/SOAP RPC Server with HTTP Basic Authentication

TheXML/SOAPRPCServer uses basic authentication for aWeb service if the configuration contains
the attribute basicAuthentication block in <TargetServer>. Basic authentication is used for all
calls associated with defined XMM files for the <TargetServer>.

Basic authentication can be usedwith fixed credentials or credentials set from the client application:

■ If <TargetServer> contains attributes user and password, these settings are used for basic authen-
tication.

■ Otherwise the client application must provide the credentials: Enable Natural logon and set
RPC user ID and RPC password.

See Configuration File for the XML/SOAP RPC Server.

XML/SOAP RPC Server with UsernameToken

The XML/SOAP RPC Server uses UsernameToken security for a Web service if the configuration
contains the attribute usernameToken in <xmm>. The XML/SOAP RPC Server supports two kinds
of UsernameToken:

■ PasswordText
■ PasswordDigest

The XML/SOAP RPC Server configuration must define the repository, for example:

285Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

<exx-xmm name="AService.xmm" soapVersion="1.1"
repository="myrepository" usernameToken="PasswordText" />

The repository must contain module rampart. In the configuration file (axis2.xml) the rampart
module must be engaged (<module ref="rampart"/>) and the phase PreSecurity can be empty
(<phase name="PreSecurity" />).

In the client application, the Natural logonmust be set. Additionally the client application should
set RPC user ID and RPC password.

See Configuration File for the XML/SOAP RPC Server.

Using SSL or TLS with the XML/SOAP RPC Server

Using HTTPS with XML/SOAP RPC Server requires setting Java properties and changing the
protocol from http to https in the configuration file. This section covers the following topics:

■ SSL or TLS Settings
■ Sample Start Script
■ Configuration File Settings

See also Configuration File for the XML/SOAP RPC Server.

SSL or TLS Settings

To configure SSL communication for the JRE

■ Set the following properties:

■ -Djavax.net.ssl.keyStore=<filename-without-blanks>
Here we keep the certificate and the private signing key of our client application, which is
the EntireX XML/SOAP RPC Server.

■ -Djavax.net.ssl.keyStorePassword=<you-should-know-it>
The password that protects the keystore.

■ -Djavax.net.ssl.keyStoreType=pkcs12
If not jks (default).

■ -Djavax.net.ssl.trustStore=<filename-without-blanks>
Here we keep the trusted certificate of the Web service host or the certificate of its signing
(issuing) certificate authority.

Administration under UNIX286

Administering the EntireX XML/SOAP RPC Server

■ -Djavax.net.ssl.trustStorePassword=<you-should-know-it>
The password that protects the truststore.

■ -Djavax.net.ssl.trustStoreType=
If not jks (default).

For more information about Java and SSL, see your Java documentation (JSSE documentation).

Sample Start Script

set CLASSPATH=.;.\classes\entirex.jar;..\WS-Stack\lib\wsstack-client.jar

set PROXYSETTINGS=-Dhttps.proxySet=true
-Dhttps.proxyHost=sslproxy.mydomain
-Dhttps.proxyPort=443
-Dhttps.nonProxyHosts="localhost"

set SSL=-Djavax.net.ssl.keyStore=C:\myKeystore.p12
-Djavax.net.ssl.keyStorePassword=myKeystorePassword
-Djavax.net.ssl.keyStoreType=pkcs12
-Djavax.net.ssl.trustStore=C:\myTrustStore.jks
-Djavax.net.ssl.trustStorePassword=myTruststorePassword

java -classpath %CLASSPATH% %SSL% %PROXYSETTING% ↩
com.softwareag.entirex.xml.rt.XMLRPCServer

For the changes that are required to the start script, see your Java documentation (JSSE document-
ation).

Configuration File Settings

Specify the fully qualified host name as TargetServer. The host name has tomatch theCN (Common
Name) item of the host certificate.

<?xml version="1.0" encoding="iso-8859-1" ?>
<EntireX
xmlns="http://namespaces.softwareag.com/entirex/xml/runtime/configuration" ↩
version="8.0"
>
 <XmlRuntime Version="1">
 <BrokerInfo>
 <BrokerId>localhost:1971</BrokerId>
 <ServerAddress>RPC/XMLSRV1/JAVA</ServerAddress>
 </BrokerInfo>
 <TargetServer name="https://targethost:8080/entirex/xmlrt">
 <xmms>
 <exx-xmm name="yourFile1.xmm" />
 <exx-xmm name="yourFile2.xmm" />
 </xmms>

287Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

 </TargetServer>
 </XmlRuntime>
</EntireX>

Java API for XML/SOAP RPC Server

The Java API for XML/SOAP RPC Server is a functional extension to the XML/SOAP RPC Server.
It allows you to direct the calls to a Java object instead of a Web service (via HTTP(s)). The usage
of Java API for XML/SOAP RPC Server is similar to what is known for the XML/SOAP RPC
Server. It only differs in the start script and a new (additional) keyword in the configuration file.
See Configuring the XML/SOAP RPC Server above.

■ Properties File
■ Configuration File
■ Implementation of the Java API for XML/SOAP RPC Server
■ Start Script

Properties File

The property file is the same as the Sample Properties File for the XML/SOAP RPC Server.

Configuration File

The Java API for XML/SOAP RPC Server also uses the same configuration file as the XML/SOAP
RPC Server.

The services (programs) directed to the Java interface of the XML/SOAP RPC Server have to use
a special keyword “xmlrpcServerClass” as the value of the attribute “Targetserver”. A mixture of
targetserver with Java and http-interface is also possible.

Example:

Administration under UNIX288

Administering the EntireX XML/SOAP RPC Server

<?xml version="1.0" encoding="UTF-8" ?>
<EntireX
xmlns="http://namespaces.softwareag.com/entirex/xml/runtime/configuration"
version="8.3"
>
<XmlRuntime Version="1">
<BrokerInfo>
<BrokerId>localhost:1971</BrokerId>
<ServerAddress>RPC/SRV1/CALLNAT</ServerAddress>
</BrokerInfo>
<TargetServer name="xmlrpcServerClass">
<xmms>
<exx-xmm name="java-service1.xmm" />
<exx-xmm name="java-service2.xmm" />
<exx-xmm name="java-service3.xmm" />
</xmms>
</TargetServer>
<TargetServer name="http://myWebService">
<xmms>
<exx-xmm name="http-service1.xmm" />
<exx-xmm name="http-service2.xmm" />
</xmms>
</TargetServer>
</XmlRuntime>
</EntireX>

289Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

Implementation of the Java API for XML/SOAP RPC Server

The Java API for XML/SOAP RPC Server requires a user-written Java class initializing the
XML/SOAP RPC Server and implementing the XMLRPCServerInterface.

Example:

import java.util.Properties;
import com.softwareag.entirex.xml.rt.XMLRPCServerInterface;
import com.softwareag.entirex.xml.rt.XMLRPCServer;
public class MyXMLRPCServer implements XMLRPCServerInterface
{
 public MyXMLRPCServer ()
 {
 XMLRPCServer xmlRpcServer = new XMLRPCServer();
 // register your implementation of XMLRPCServerInterface
 xmlRpcServer. registerXMLRPCServerClass ((XMLRPCServerInterface) this);
 // start XML/SOAP RPC Server with arguments (same as command line)
 xmlRpcServer.start(new String[0]);
 }

 // mandatory method invoke (from XMLRPCServerInterface)
 // - thread synchronization must be done by application if required
 // - properties object contains property "charset" (as used in xml-declaration)
 // and property "java.charset" - the corresponding Java codepage
 // - Exception thrown from this method is mapped to error class 2000 and error ↩
number 200,
 // with exception information in errortext

 public byte[] invoke(byte[] requestDocument, Properties properties)
 throws Exception
 {
 byte[] response = null;
 // TODO <insert application code here>
 return response;
 }

 public static void main(String[] args)
 {
 MyXMLRPCServer myServer = new MyXMLRPCServer ();
 }
}

Administration under UNIX290

Administering the EntireX XML/SOAP RPC Server

Start Script

TheXML/SOAPRPCServerwith Java interfacemust be started by implementingXMLRPCServer-
Interface as in this example:

java -classpath "%PARSER%;%CLASSPATH%" MyXMLRPCServer

Starting the XML/SOAP RPC Server

To start the XML/SOAP RPC Server

■ Use the shell script jxmlrpcserver in the subfolder bin of the installation directory.

Or:

At the command prompt, enter:

java com.softwareag.entirex.xml.rt.XMLRPCServer

If the Java interpreter is not called "java", change the call to "java".

■ You can set the environment variable JAVA_HOME for the location of the Java interpreter.
■ Set the classpath to entirex.jar and the path to the generated proxies.
■ The XML/SOAP RPC Server accepts two unnamed parameters, the Broker ID and the server
address. Default values are localhost:1971 and RPC/SRV1/CALLNAT.

Stopping the XML/SOAP RPC Server

To stop the XML/SOAP RPC Server

■ Use the function Deregister a Service or Deregister a Server of the SystemManagement Hub.
This method ensures that the deregistration from the Broker is correct.

291Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

Running the XML/SOAP RPC Server in the Software AG Runtime

This section covers the following topics:

■ Introduction
■ Configuration
■ Deactivating an XML/SOAP RPC Server Permanently
■ Starting and Stopping the XML/SOAP RPC Server using JMX (Java Management Extensions)
■ Starting and Stopping the XML/SOAP RPC Server under UNIX

See alsoXML/SOAP RPC Server in the Software AG Runtime under Frequently Asked Questions (FAQ)
and Troubleshooting in the XML/SOAPWrapper documentation.

Introduction

The SoftwareAGCommonPlatform is a Java runtime environment based on theOSGi framework.
It provides a standard platform on which to run Software AG products and the enterprise applic-
ations you develop around those products. The SoftwareAGCommonPlatformprovides common
infrastructure for user authentication, event handling, and the execution of Web applications. In-
frastructure components that the Software AG Common Platform provide include Software AG
Security Infrastructure, Software AGWeb Server based on Apache Tomcat, and Web Services
Stack.

The Software AG Runtime is an installable instance of the Software AG Common Platform that
functions as a stand-alone Tomcat server and a container for Web applications. EntireX uses the
Software AG Runtime to host the EntireX XML/SOAP Listener and XML/SOAP RPC Server.

The SoftwareAGWeb Server based onApache Tomcat is one of the basic infrastructure components
provided by the Software AGCommon Platform. It provides HTTP/HTTPS services, a JSP engine,
and a servlet container. Unlike a typical Tomcat implementation, the Software AGWeb Server is
OSGi-based and supports both .WAR-based and .WAB-based web applications.

During startup, the Software AGWeb Server (service name: Software AG Runtime), including the
EntireX bundle, looks in the EntireX profile for file <Installation home>/EntireX/etc/EXX/workspace/en-
tirex.servers.properties. This file defines anXML/SOAPRPCServer aswithin entirex.xmlrpcserver.prop-
erties and entirex.xmlrpcserver.configuration.xml located in the EntireX installation in subdirectory
config by default.

Administration under UNIX292

Administering the EntireX XML/SOAP RPC Server

Configuration

The file entirex.servers.properties defines the servers to be started. It is only read during startup of
the Software AG Runtime. Set the following properties for each defined server:

DescriptionProperty Name

Must be "XMLRPCServer".server.<n>.kind

Path to properties file (Java notation).server.<n>.propertiesFile

Path to configuration file (Java notation).server.<n>.configurationFile

where <n> is a number identifying the server

Example of entirex.servers.properties:

server.1.kind=XMLRPCServer
server.1.propertiesFile=c:/SoftwareAG/EntireX/config/entirex.xmlrpcserver.properties
server.1.configurationFile=c:/SoftwareAG/EntireX/config/entirex.xmlrpcserver.configuration.xml
server.2.kind=XMLRPCServer
server.2.propertiesFile=c:/SoftwareAG/EntireX/config/entirex.myxmlrpcserver.properties
server.2.configurationFile=c:/SoftwareAG/EntireX/config/entirex.myxmlrpcserver.configuration.xml

Deactivating an XML/SOAP RPC Server Permanently

To stop any XML/SOAP RPC Server permanently (including the default XML/SOAP RPC Server),
rename the configuration file entirex.servers.properties under EntireX\etc\exx\workspace,
for example to entirex.servers.properties.bak.

Starting and Stopping the XML/SOAP RPC Server using JMX (Java Management Extensions)

To start and stop an XML/SOAP RPC Server, open a JMX tool, for example the Java Monitoring
andManagement Console (jconsole), located in the Java bin directory (sample path: C:\Software-
AG\jvm\w64_160\bin\jconsole.exe). The tool should be connected to the Software AG Runtime
JMX port remotely. The default number of this port is 8044 and is defined in <Installation home>/
profiles/CTP/configuration/config.ini.

Switch to tab MBeans and select item com.softwareag.entirex.runtime.rpcserver. The following oper-
ations are available:

DescriptionOperation

To start a registered and non-running XML/SOAP RPC Server. The parameter is the
service name (e.g. RPC/XMLSERVER/CALLNAT).

startServer

To stop a running XML/SOAP RPC Server. The parameter is the service name (e.g.
RPC/XMLSERVER/CALLNAT).

stopServer

Returns the list of service names of all configured XML/SOAP RPC Servers.registeredServer

293Administration under UNIX

Administering the EntireX XML/SOAP RPC Server

DescriptionOperation

Returns the list of service names of running configured XML/SOAP RPC Servers.runningServer

Returns the list of service names of non-running configured XML/SOAP RPC Servers.nonRunningServer

Starting and Stopping the XML/SOAP RPC Server under UNIX

Under UNIX, the Software AG Runtime can be stopped and started, using the following scripts:

<SuiteInstallDir>/profiles/CTP/bin/sagctp<nn>.sh stop
<SuiteInstallDir>/profiles/CTP/bin/sagctp<nn>.sh start

where <nn> represents the product version number.

Administration under UNIX294

Administering the EntireX XML/SOAP RPC Server

23 Administering the EntireX XML/SOAP Listener

■ Introduction .. 296
■ Configuring the XML/SOAP Listener .. 296
■ XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authen-
tication ... 299
■ Using Internationalization with the XML/SOAP Listener ... 303
■ UNIX Commands to set the Environment Variables .. 303

295

The EntireXXML/SOAPListener is part of the EntireXXML/SOAPRuntime. It plugs the generated
AAR file, including XMM files, into Web servers and so enables the EntireX XML/SOAP Runtime
to send and receive XML documents using HTTP/HTTPS to/from a Web server. This component
was formerly referred to as “XML Servlet”.

Introduction

The EntireX XML/SOAP Listener requires a servlet-enabled Web server with an installation of
Software AG CommonWeb Services Stack (WSS). See the separateWeb Services Stack document-
ation. Client programs can access the XML/SOAP Runtime through HTTP/HTTPs interfaces
provided in programming environments.

Configuring the XML/SOAP Listener

■ Publishing the XML/SOAP Listener Initialization Parameters
■ XML/SOAP Listener Initialization Parameters
■ EntireX XML Init File
■ External Configuration File for EntireX Web Services

Publishing the XML/SOAP Listener Initialization Parameters

The initialization parameters are set using the packaging wizard.

XML/SOAP Listener Initialization Parameters

DescriptionParameterName in Web Services
Wrapper

Sets the value of the default wait time field to the
argument (see setDefaultWaittime of class

exx-default-waittimeDefault wait time

BrokerService in the Javadoc documentation of the
Java ACI).

Interval in which the servlet checks and frees unused
resources. The default is 60 seconds.

exx-sweeptimeServlet internal
sweep time

Enable/disable the character reference for the XML
payload.

exx-use-characterreferenceEnable character
reference

The parameter indicates whether a non-conversational
call is finalized with a logoff call to free Broker resource
(default), or by means of timeout.

The default value for this parameter is
"nonConv-with-logoff", which defines that a

exx-mepBehavior of
non-conversation
calls

Administration under UNIX296

Administering the EntireX XML/SOAP Listener

DescriptionParameterName in Web Services
Wrapper

non-conversational call will finish with an additional
logoff call (two calls per message). Set exx-mep to
"nonConv-without-logoff" to specify that a
non-conversational call will finishwithout logoff call (one
call per message); Broker will clean up resources by
means of timeout.

EntireX XML Init File

The EntireX init file is generated by the packaging wizard that is called from the context menu of
Software AG IDL or XMM files. It contains the XML/SOAP Listener initialization parameters.

External Configuration File for EntireX Web Services

■ Introduction
■ Using an External Configuration File
■ Example of an External Configuration File

Introduction

With an external configuration file you can redefine settings of some of the parameters for an En-
tireX Web service archive without modifying the EntireX Web service archive itself. This means
you can use the same EntireX web service archive in different environments.

Using an External Configuration File

To use an external configuration file

1 Define a name and a location for the external configuration file.

In the parameter section of file axis2.xml, define a parameter "EntireX-XML-Listener" within
a parameter "services". For the attribute "location" in parameter "services", specify an
absolute or relative path to the external configuration file. File axis2.xml can be found in the
conf directory or folder of the Web Services Stack Web application.

<parameter name="EntireX-XML-Listener">
<parameter name="services" location="<path for file

overwriting settings of EntireX services>" />
</parameter>

Notes:

1. The path separator is a slash.

297Administration under UNIX

Administering the EntireX XML/SOAP Listener

2. For determining the location of file axis2.xml, see Configuration >Web Services Stack Runtime
> Runtime Configuration in the Web Services Stack documentation, also available under
webMethods Product Documentation on the Software AG Documentationwebsite.

3. The value of the location can contain operating system variables, for example
location="$EXXDIR/config/myconfig.xml".

2 Define services in the external configuration file.

External configuration files are XMLdocumentswith a root element "serviceGroup". A service
group is defined as a sequence of one or more services.

To identify the service you are defining, specify an identifier for the attribute "name", for in-
stance <service name= "service100">.

Tomake common settings, that is, settings for all services, use an asterix as identifier (<service
name= "*">. Note that an individual setting can override a common setting.

EntireX web service parameters that can be set are defined as su-elements of "service". See
the table below.

DescriptionParameter

The broker ID to use.<exx-brokerID>

The service name is the triple set of server class/server name/service.<exx-service>

The user ID specified here is used for calling the broker.<exx-userID>

The user ID specified here is used for calling the broker.<exx-password>

Specifies how the password is encrypted in the configuration file.
Encryption is performed automatically when the configuration file
is read for the first time.

<exx-password-encryption>

Possible values: true|false.<exx-use-security>

Possible values: 0|1|2.<exx-encryption-level>

The RPC user ID specified here is used for Natural Security<exx-rpc-userID>

The RPC Password specified here is used for Natural Security.<exx-rpc-password>

Enable/Disable the Natural Security (true|false).<exx-natural-security>

The Natural library to use.<exx-natural-library>

Administration under UNIX298

Administering the EntireX XML/SOAP Listener

http://documentation.softwareag.com/

Example of an External Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<serviceGroup>

<!-- Optional section for all EntireX services -->
<service name="*">

<exx-brokerID>host:1234</exx-brokerID>
<exx-service>RPC/SRV1/CALLNAT</exx-service>

</service>

<!-- service100 overwrites the service address -->
<service name="service100">

<exx-service>RPC/SRV2/CALLNAT</exx-service>
</service>

<!-- service101 adds library setting -->
<service name="service101">

<exx-natural-library>MYLIB</exx-natural-library>
</service>

</serviceGroup>

XML/SOAP Listener with HTTP Basic Authentication and UsernameToken
Authentication for EntireX Authentication

The XML/SOAP Listener allows you to use the user credentials from the incoming request by
means of Basic Authentication or UsernameToken. The same credentials are used for EntireX Broker
authentication and (Natural) RPCServer authentication. Thismeans youneed tomake some settings
for the EntireX Web service in Web Service Wizard and Configuration Editor.

Note: UsernameToken is part ofWS-Security. SeeWS-Security UsernameToken Specification.
See also Example: Setting up an EntireX Client to Consume a Secured Web Service in the IDL
Extractor for WSDL documentation.

The priority of credentials settings is as follows:

1. exx-userID, exx-password, exx-rpc-userID, exx-rpc-password (highest priority)

2. UsernameToken

3. Basic Authentication (lowest priority)

To use the XML/SOAP Listener with Basic Authentication and UsernameToken Authentication

1 Select an IDL file or XMM file.

2 ChooseGenerate Web Service from Software AG....

299Administration under UNIX

Administering the EntireX XML/SOAP Listener

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf

3 Disable check box Use Defaults.

4 Enable at leastGeneral service parameters....

5 If using EntireX Security or Natural Security, enable Set connection and security... too.

Administration under UNIX300

Administering the EntireX XML/SOAP Listener

6 PressNext.

7 Enable the required authentication. In this example, both possibilities of web service authen-
tication are enabled.

8 PressNext.

9 The page with XMM settings appears if it was selected before (step 5). Enable the required
security (EntireX Security and/or Natural Logon).

301Administration under UNIX

Administering the EntireX XML/SOAP Listener

10 PressNext and follow the wizard.

11 After generating the web service archive (extension "aar"), open the generated AAR file with
the Configuration Editor (e.g. with double click).

For more information on the Configuration Editor see Configuring Web Services.

Administration under UNIX302

Administering the EntireX XML/SOAP Listener

Using Internationalization with the XML/SOAP Listener

The XML/SOAP Listener supports both conversion and translation. See Internationalization with
EntireX for more information.

UNIX Commands to set the Environment Variables

Example of ETB_TRANSPORT:

delete the environment variable:set the environment variable:Shell

unsetenv ETB_TRANSPORTsetenv ETB_TRANSPORT valueC Shell

unset ETB_TRANSPORTETB_TRANSPORT=value
export ETB_TRANSPORT

Bourne or Korn Shell

303Administration under UNIX

Administering the EntireX XML/SOAP Listener

304

24 Configuring Authorization Rules

■ Configuration of LDAP (Lightweight Directory Access Protocol) Server ... 306
■ Configuration of Authorization Rule Agent using System Management Hub ... 307

305

An authorization rule is used to perform an access check for a particular Broker instance against
an (authenticated) user ID and list of rules. Checks are performed on a UNIX or Windows Broker
kernel, using standard EntireX Security on these platforms. Authorization rules can be stored
within a repository. When an authorization call occurs, the security exit performs checks based
on the values of Broker attributes AUTHORIZATIONDEFAULT and AUTHORIZATIONRULE.

See also Administering Authorization Rules using System Management Hub

Configuration of LDAP (Lightweight Directory Access Protocol) Server

General Considerations for all LDAP Server Products

An LDAP server is a prerequisite (based on LDAPv3); it is not installed with EntireX.

Tested LDAP servers include IBM Secureway Directory, Microsoft Active Directory. For the in-
stallation of the LDAP server, see the respective product documentation.All servers have to support
the attribute types sag-key, sag-value and the object-class sag-xds. They are defined in the fol-
lowing schema.

attributetypes:
(1.2.276.0.12.2.1.1
NAME 'sag-key'
DESC 'User Defined Attribute'
SYNTAX '1.3.6.1.4.1.1466.115.121.1.26')

attributetypes:
(1.2.276.0.12.2.1.2
NAME 'sag-value'
DESC 'User Defined Attribute'
SYNTAX '1.3.6.1.4.1.1466.115.121.1.5')

objectclasses:
(1.2.276.0.12.2.3.1
NAME 'sag-xds'
DESC 'User Defined ObjectClass'
SUP 'top'
MUST (objectclass $ sag-key)
MAY (aci $ sag-value))

We recommend setting up a separate branch in the directory for authorization rules. The distin-
guished name of this branch is the value of the configuration setting baseDN. See Configuration
of Authorization Rule Agent using System Management Hub below.

Administration under UNIX306

Configuring Authorization Rules

Configuration of Authorization Rule Agent using System Management Hub

■ Configuration File xds.ini
■ xds.ini with the LDAP Server
■ xds.ini with a Flat File Directory

Configuration File xds.ini

Edit file xds.ini to configure the EntireX authorization rule agent, which is a plug-in of the System
Management Hub. xds.ini is the configuration of the directory access for authorization rules. This
file is needed on each computer that is a managed host for the SystemManagement Hub or where
authorization rules are used.

The syntax of this file is the syntax of Windows .ini files. For authorization rules, all lines in the
section [Authorization Rules] are used. Each line has the format <key>=<value>, where <value>
is the contents of the line after the first '='. The keys are not case-sensitive. Lines starting with ';'
are comments.

Under UNIX, xds.ini is located in /opt/softwareag/EntireX/config.

Note: If you use read access, an LDAP server with authentication, and only one LDAP user
(account), the xds.ini is the same on all computers accessing the same directory. Then you
can deploy xds.ini with a deployment tool.

xds.ini with the LDAP Server

The section for authorization rules looks as follows:

[Authorization Rules]
dirService=LDAPDIR
baseDN=<DN>
host=<host>
port=<port>
protocol=<protocol>
authDN=<user>
authPass=<ldap_password>

is the base distinguished name of the directory object that is the root of all
objects for authorization rules; <DN>must not be empty

<DN>where

is the host of the LDAP server.<host>

is the port of the LDAP server. Default is 389 for TCP communication; default
port for SSL is 636

<port>

is is either "ldap" (default) for TCP communication, or "ldaps" for SSL<protocol>

307Administration under UNIX

Configuring Authorization Rules

For authenticated access to the LDAP server, use the keywords authDN and authPass,

is the DN of the user<user>where
is the password of this user<ldap_password>

Caution: The password is not encrypted in xds.ini

For unauthenticated access to the LDAP server, do not include these keywords authDN and authPass
in the xds.ini.

Example

dirService=LDAPDIR
host=myHost.myDomain
baseDN=dc=myCompany,dc=de
port=389
protocol=ldap
authDN=cn=admin,dc=myCompany,dc=de
authPass=myLdapPassword

xds.ini with a Flat File Directory

If a flat file directory is used, the section for authorization rules looks as follows:

[Authorization Rules]
dirservice=FLATDIR
file=C:\SoftwareAG\EntireX\config\flat

Under UNIX, the file is created by the SystemManagement Hub if it does not exist. The file must
have at least write permission. The folder for the file must exist. It is not recommended sharing
this file over the network for writing.

Administration under UNIX308

Configuring Authorization Rules

25 Administering Authorization Rules using System

Management Hub
■ Adding a Rule ... 310
■ Adding a Service ... 311
■ Adding a Topic .. 312
■ Adding/Modifying Users .. 313

309

An authorization rule is used to perform an access check for a particular Broker instance against
an (authenticated) user ID and list of rules. Checks are performed on a UNIX or Windows Broker
kernel, using standard EntireX Security on these platforms. Authorization rules can be stored
within a repository. When an authorization call occurs, the security exit performs checks based
on the values of Broker attributes AUTHORIZATIONDEFAULT and AUTHORIZATIONRULE.

In the System Management Hub, the Authorization Rules agent is found directly under EntireX,
which itself is found under a particularmanaged hostwhere EntireX version 6.1 or above has been
installed.

Before you log in to the SystemManagement Hub for the first time, see Initial Login Considerations
in the System Management Hub for EntireX documentation. See also System Management Hub for
EntireX | Configuring Authorization Rules.

Adding a Rule

To add a new authorization rule

1 Click on the "+" next to Authorization Rules in the tree view of the SystemManagement Hub
window. If no rule has been defined, an empty rule, "DefaultRule", is created. You can
modify this default rule, or create a new rule and delete the default.

2 SelectAuthorizationRules in the tree view. From the contextmenu, chooseAddAuthorization
Rule. A screen similar to the one below appears.

3 Enter the name of the rule in the field provided. This field corresponds to Broker attribute
AUTHORIZATIONRULE.

4 ChooseOK.

This new rulewill appear in the tree view in the left frame of the SystemManagementHubwindow.
If necessary, click the "+" next toAuthorization Rules in the tree view. You can now add a service
to the rule created.

Administration under UNIX310

Administering Authorization Rules using System Management Hub

Adding a Service

To add a service

1 Select a rule in the tree view of the System Management Hub.

2 From the context menu, choose Add Service. A screen similar to the one below appears.

3 Enter the information required for the fields Class Name, Server Name, Service Name. These
fields correspond to the service-specific Broker attributes CLASS, SERVER,SERVICE.

4 ChooseOK to confirm.

As a result, the following screen appears:

5 Enter the users required for the new Service (see Adding/Modifying Users).

6 Click OK to confirm.

311Administration under UNIX

Administering Authorization Rules using System Management Hub

Adding a Topic

To add a topic

1 Select a rule in the tree view of the System Management Hub.

2 From the context menu, choose Add Topic. A screen similar to the one below appears.

3 Enter the information required for the filed Topic Name. This field corresponds to topic-spe-
cific Broker attribute TOPIC.

4 ChooseOK to confirm.

As a result, the following screen appears:

5 Enter the users required for the new Service (see Adding/Modifying Users).

6 Click OK to confirm.

Administration under UNIX312

Administering Authorization Rules using System Management Hub

Adding/Modifying Users

To modify users

1 Select a service or topic in the tree view of the System Management Hub.

2 From the context menu, chooseModify User. If a service was selected, a screen similar to the
following appears:

3 If a topic was selected, a screen similar to the following appears:

4 Enter a user ID in the single-line field provided and clickAdd for the desired user type (client,
server, publisher or subscriber).

313Administration under UNIX

Administering Authorization Rules using System Management Hub

Or:

Remove a user from an existing list by selecting the user and clicking Remove User.

5 When the user list is complete, chooseOK to confirm.

Note: User names are not case-sensitive. Use asterisk notation to define a range of users.
For example: user ID "USA*" represents all userswhose ID startswith "USA" (including
user "USA").

Administration under UNIX314

Administering Authorization Rules using System Management Hub

26 Hints for Special LDAP Server Products

■ Introduction .. 316
■ Hints for Microsoft Active Directory .. 316

315

Introduction

The LightweightDirectoryAccess Protocol (LDAP) enables a user to locate resources on a corporate
intranet or on the public internet. Those resources can be files or devices as well as organizations
and individuals. LDAP is smaller than the Directory Access Protocol (DAP) from which it was
derived (hence “lightweight”).

In EntireX, LDAP technology is used for authorization rules.

Hints for Microsoft Active Directory

To deploy the sagxds schema on Microsoft Active Directory, do not use the Microsoft Active Directory tools
for editing the schema. Use the following step-by-step instructions:

1 Make a backup of the system state. Changes to the schema of Microsoft Active Directory are
irreversible without a backup of the system state.

2 You must enable UPDATE schema.

1. To make the Schema Master available, enter the following at a command prompt:

regsvr32.exe schmmgmt.dll

2. Enter: MMC.

3. From Console menu item select: add/remove snap-in.

4. Choose: Add.

5. Choose: Active Directory Schema from Actionmenu item of Active Directory Schema,
select:Operations Master.

6. Choose “The schema may be modified on this domain controller”.

3 Copy the following text to the file sagxds.ldif

Add sag-value attribute

dn: CN=sag-value,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: add
adminDisplayName: sag-value
attributeID: 1.2.276.0.12.2.1.2
attributeSyntax: 2.5.5.10
cn: sag-value
isSingleValued: FALSE

Administration under UNIX316

Hints for Special LDAP Server Products

lDAPDisplayName: sag-value
distinguishedName: CN=sag-value,CN=Schema,CN=Configuration,DC=<your domains name>
objectCategory:
 CN=Attribute-Schema,CN=Schema,CN=Configuration,DC=<your domains name>
objectClass: attributeSchema
oMSyntax: 4
name: sag-value

Add sag-key attribute
Active Directory requires the naming attribute(RDN) to be a syntax of ↩
DirectoryString

dn: CN=sag-key,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: add
adminDisplayName: sag-key
attributeID: 1.2.276.0.12.2.1.1
attributeSyntax: 2.5.5.12
cn: sag-key
isMemberOfPartialAttributeSet: TRUE
isSingleValued: TRUE
lDAPDisplayName: sag-key
distinguishedName: CN=sag-key,CN=Schema,CN=Configuration,DC=<your domains name>
objectCategory:
 CN=Attribute-Schema,CN=Schema,CN=Configuration,DC=<your domains name>
objectClass: attributeSchema
oMSyntax: 64
name: sag-key
searchFlags: 1

Update the schema

DN:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

Add sag-xds class

dn: CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: add
adminDescription: sag-xds
adminDisplayName: sag-xds
cn: sag-xds
defaultObjectCategory:
 CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
governsID: 1.2.276.0.12.2.3.1
lDAPDisplayName: sag-xds
mayContain: sag-value
mustContain: sag-key
distinguishedName: CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
objectCategory: CN=Class-Schema,CN=Schema,CN=Configuration,DC=<your domains name>

317Administration under UNIX

Hints for Special LDAP Server Products

objectClass: classSchema
objectClassCategory: 1
possSuperiors: container
name: sag-xds
rDNAttID: sag-key
subClassOf: top

Update the schema

DN:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

Modify sag-xds class
make sag-xds a possSuperior. This means a sag-xds class can contain other ↩
sag-xds classes.

dn: CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: modify
add: possSuperiors
possSuperiors: sag-xds
-

Update the schema

DN:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

4 Replace all instances of dc= <yourdomainname>withyourdomainname, i.e.dc=myunit,dc=my-
company,dc=com

5 Run it with the command:

ldifde -s <your server> -b <account> <domain> <password> -i -f sagxds.ldif

6 Add containers which represent the base DN of the logical Broker IDs and logical services.
These containers determine the value of base DN in xds.ini. Example (for two containers):

Administration under UNIX318

Hints for Special LDAP Server Products

dn: CN=<your container 1>,DC=<your domain name>
changetype: add
cn: <your container 1>
objectclass: container

dn: CN=<your container2>,<your container 1>,DC= <your domain name>
changetype: add
cn: <your container 2>
objectclass: container

7 With the utilities for Microsoft Active Directory, set the permissions to read and to modify
the containers.

319Administration under UNIX

Hints for Special LDAP Server Products

320

27 Tracing webMethods EntireX

■ Table Summarizing Tracing for webMethods EntireX Components ... 322
■ Tracing EntireX Broker .. 323
■ Tracing Broker Agent .. 324
■ Tracing Broker Stubs .. 325
■ Tracing Enterprise JavaBeans .. 325
■ Logging Enterprise JavaBeans ... 326
■ Tracing EntireX Java ACI .. 327
■ Tracing Java RPC Server .. 327
■ Tracing the RPC Runtime .. 328
■ Tracing the RPC Server .. 329
■ Tracing the XML/SOAP Runtime ... 331
■ Tracing the EntireX RPC-ACI Bridge .. 335

321

This chapter describes the various techniques available for troubleshooting, tracing and logging
with EntireX components.

Table Summarizing Tracing for webMethods EntireX Components

Tracing TechniqueUse Tracing Technique forEntireX Component

Tracing Broker StubsTransport-related problems
Requests to, replies from the Broker or Broker Agent

Broker ActiveX
Control

Tracing Broker StubsTransport-related problems
Requests to, replies from the Broker or Broker Agent

EntireX Broker ACI
under Windows

Tracing Broker AgentTransport-related problems
Requests to, replies from the Broker or Broker Agent

EntireX Broker Agent

Tracing EntireX BrokerProcessing within the Broker
Requests to, replies from clients/server

EntireX Broker under
UNIX

Tracing Broker StubsTransport-related problems
Requests to, replies from the Broker or Broker Agent

DCOMWrapper

Tracing the RPC RuntimeRPC-related problems on the client side
Requests to, replies from RPC Servers
Requests to, replies from the Broker

Tracing EntireX Java ACITransport-related problems
Requests to, replies from the Broker or Broker Agent

EntireX Java ACI

Tracing EntireX Java ACITransport-related problems
Requests to, replies from the Broker or Broker Agent

Java Wrapper

Tracing Enterprise JavaBeansTransport-related problems
Requests to, replies from the Broker or Broker Agent

Wrapper for EJB

Logging Enterprise JavaBeansLog information to the application server the
JavaBean is executing in

Tracing Java RPC ServerTransport-related problems
Requests to, replies from the Broker or Broker Agent

EntireX Java RPC
Server

EntireX IDL Tester

Tracing Broker StubsTransport-related problems
Requests to, replies from the Broker or Broker Agent

.NET Wrapper

Tracing the RPC RuntimeRPC-related problems on the client side
Requests to, replies from RPC servers
Requests to, replies from the Broker

Tracing Broker StubsTransport-related problems
Requests to, replies from the Broker or Broker Agent

C Wrapper

Tracing the RPC RuntimeRPC-related problems on the client side
Requests to, replies from RPC servers
Requests to, replies from the Broker

Administration under UNIX322

Tracing webMethods EntireX

Tracing TechniqueUse Tracing Technique forEntireX Component

Tracing the RPC ServerRPC-related problems on the server side
Requests to, replies from RPC clients
Requests to, replies from the Broker

EntireX RPC Server
under UNIX

Tracing Broker StubsTransport-related problems
Requests to, replies from the Broker or Broker Agent

Tracing EntireX Java ACITransport-related problems
Requests to, replies from the Broker or Broker Agent

Broker HTTP(S)
Agent

Tracing the XML/SOAP
Runtime

For XML/SOAP RPC Server-related problems.EntireX XML/SOAP
RPC Server

Tracing EntireX Java ACITransport-related problems
Requests to, replies from the Broker or Broker Agent

EntireX XML Tester

Tracing the XML/SOAP
Runtime

For XML/SOAP Listener-related problems.EntireX XML/SOAP
Listener

Tracing EntireX Java ACITransport-related problems
Requests to, replies from the Broker or Broker Agent

Tracing the XML/SOAP
Runtime

For XML/SOAPWrapper-related problems.XML/SOAPWrapper

Tracing EntireX Java ACITransport-related problems
Requests to, replies from the Broker or Broker Agent

Tracing the EntireX RPC-ACI
Bridge

EntireX RPC-ACI
Bridge

Tracing EntireX Broker

To switch on tracing

■ Set the attribute TRACE-LEVEL in the Broker attribute file

■ for minimal trace output to "1"
■ for detailed trace output to "2"
■ for full trace output to "3"

To switch off tracing

■ Set the attribute TRACE-LEVEL in the Broker attribute file to 0:

323Administration under UNIX

Tracing webMethods EntireX

TRACE-LEVEL=0

Or:

Omit the TRACE-LEVEL attribute.

To display the trace file (under UNIX)

■ In System Management Hub, select EntireX n.n.n, then EntireX Broker, then the Broker ID
you are interested in, then choose Show Log File.

Trace Output

The trace file, BrokerID.LOG, is written to the Broker Directory under Directories as Used in EntireX
in the general administration documentation directory.

Related Information

EntireX Broker Return Codes under Error Messages and Codes

Tracing Broker Agent

To switch on tracing

■ Set the parameter Trace Option to ON. For the complete table of parameters, see Using the
SSL Agent and Using the TCP Agent.

To switch off tracing

■ Set the parameter Trace Option to OFF.

Or:

Omit the parameter Trace Option.

Administration under UNIX324

Tracing webMethods EntireX

Trace Output

The trace output will be written to STDOUT.

If the Broker Agent is started with the SystemManagement Hub, the trace output is written to the
subfolder etc of the EntireX main directory. The file name is BrokerAgent.<agent name>.log.

Tracing Broker Stubs

To switch on tracing for the broker stub

■ Before starting the client application, set the environment variable ETB_STUBLOG.

■ for minimal trace output to "1"
■ for detailed trace output to "2"
■ for full trace output to "3".

If the trace level is greater than 1, unencrypted contents of the send/receive buffersmay be exposed
in the trace.

Trace output is written to SYSOUT.

To switch off tracing for the broker stub

■ Set the environment variable to NONE or delete it.

Tracing Enterprise JavaBeans

To switch on tracing

■ Set entry name Trace (see Environment Entries to Control EJB under Controlling Applications -
EntireX Wrapper for Enterprise JavaBeans)

■ for minimal trace output to "1"
■ for detailed trace output to "2"
■ for full trace output to "3".

325Administration under UNIX

Tracing webMethods EntireX

To switch off tracing

■ Set entry name Trace to "0".

Or:

Omit the entry name Trace.

Trace Output

The trace output will be written to STDOUT.

To change the directory and name of the trace destination

■ Set the entry name Logfile to a valid file name, depending on your operating system.

Logging Enterprise JavaBeans

To switch on logging

■ Set entry name Verbose to true. (See Environment Entries to Control EJB under Controlling Ap-
plications - EntireX Wrapper for Enterprise JavaBeans.)

To switch off logging

■ Set entry name Verbose to false.

Or:

Omit the entry name Verbose.

Log Output

The log output will be written to STDOUT.

Administration under UNIX326

Tracing webMethods EntireX

Tracing EntireX Java ACI

The EntireX Java ACI provides a system property for tracing.

To switch on tracing

1 When starting the Java virtual machine, set the Java system property entirex.trace

■ for minimal trace output to "1"
■ for detailed trace output to "2"
■ for full trace output to "3".

2 The programming interface of the EntireX Java ACI allows you to set the trace value by the
Java application using the EntireX Java ACI, see Tracing underWriting Advanced Applications
- EntireX Java ACI. There may also be other methods to provide the trace value. See your ap-
plication documentation.

To switch off tracing

■ Set the Java system property entirex.trace to 0 when starting the Java virtual machine

Or:

Omit the Java system property entirex.tracewhen starting the Java virtual machine.

Trace Output

The trace output will be written to STDOUT.

Tracing Java RPC Server

To switch on tracing

■ When starting the Java virtual machine, set the Java system property entirex.trace

■ for minimal trace output to "1"
■ for detailed trace output to "2"
■ for full trace output to "3".

See Customizing the Java RPC Server.

327Administration under UNIX

Tracing webMethods EntireX

To switch off tracing

■ Set the Java system property entirex.trace to "0" when starting the Java virtual machine.

Or:

Omit the Java system property entirex.tracewhen starting the Java virtual machine.

Trace Output

The trace output will be written to STDOUT.

Tracing the RPC Runtime

To switch on tracing

■ Before starting the client application, set the environment variable ERX_TRACELEVEL to

■ STANDARD for minimal trace output
■ ADVANCED for detailed trace output
■ SUPPORT for full trace output.

To switch off tracing

■ Set the environment variable to NONE or delete it.

Trace Output

By default the trace file, ERXTrace.nnn.log, will be written to the trace directory.

The value nnn can be in the range from 001 to 005.

To change the trace destination

■ Set the environment variable ERX_TRACEFILE to the desired destination, which can consist of

file names, folder names and variables for file names, folder names, process ID, thread ID,
range.

The variables are:

Administration under UNIX328

Tracing webMethods EntireX

DescriptionOperating SystemVariable

environment variableWindows%...%

environment variableUNIX$(...)

process IDUNIX, Windows@PID

thread IDUNIX, Windows@TID

mmust be greater than n, range is from 0 - 999UNIX, Windows@RANGE[n,m]

The user's home directory. The variable will be
resolved by Windows shell functions.

Windows@CSIDL_PERSONAL

The Application Data Directory under Directories as
Used in EntireX in the general administration

Windows@CSIDL_APPDATA

documentation. The variable will be resolved by
Windows shell functions.

The Application Data Directory under Directories as
Used in EntireX in the general administration

Windows@CSIDL_LOCAL_APPDATA

documentation. The variable will be resolved by
Windows shell functions.

Related Information

Environment Variables in EntireX in the general administration documentation

Tracing the RPC Server

To switch on tracing

■ Set the TraceLevel parameter in the server configuration file to

■ STANDARD for minimal trace output
■ ADVANCED for detailed trace output
■ SUPPORT for full trace output.

See Setting Server Parameters for the RPC Server.

Tracing can also be switched on and offwith the environment variable ERX_TRACELEVEL. The settings
in the configuration file override the environment variable.

To switch off tracing

■ Set the TraceLevel parameter in the server configuration file to NONE.

329Administration under UNIX

Tracing webMethods EntireX

Trace Output

By default the trace file, ERXTrace.nnn.log, will be written to the trace directory.

The value nnn can be in the range from 001 to 005.

To change the trace destination

■ Set the parameter TraceDestination in the server configuration file to the desired destination.
See Setting Server Parameters for the RPC Server.

The variables are:

DescriptionOperating SystemVariable

environment variableWindows%...%

environment variableUNIX$(...)

process IDUNIX, Windows@PID

thread IDUNIX, Windows@TID

mmust be greater than n, range is from 0 - 999UNIX, Windows@RANGE[n,m]

The User's Home Directory. The variable will be
resolved by Windows shell functions.

Windows@CSIDL_PERSONAL

The Application Data Directory under Directories as
Used in EntireX in the general administration

Windows@CSIDL_APPDATA

documentation. The variable will be resolved by
Windows shell functions.

The Application Data Directory under Directories as
Used in EntireX in the general administration

Windows@CSIDL_LOCAL_APPDATA

documentation. The variable will be resolved by
Windows shell functions.

Related Information

EntireX RPC Server Return Codes under Error Messages and Codes

Administration under UNIX330

Tracing webMethods EntireX

Tracing the XML/SOAP Runtime

This section provides information on tracing the following components:

■ EntireX XML/SOAP RPC Server
■ EntireX XML/SOAP Listener
■ EntireX XML/SOAPWrapper

The following topics are covered:

■ Enabling Tracing
■ Disabling Tracing
■ Configuring a Trace File for the XML/SOAP Listener
■ Configuring a Trace File for the XML/SOAP Wrapper or the XML/SOAP RPC Server
■ Trace Parameters
■ Component Names

Enabling Tracing

There are two ways to switch on tracing mode:

■ Using a Property File
■ Using Trace Parameters of the Java Virtual Machine

Using a Property File

To switch on tracing mode using a property file

1 Copy the trace property file entirex.trace.standard to one of the following locations:

■ the working directory of your client application;
■ the user's home directory;
■ any other location.

2 Rename the copied file entirex.trace.properties.

3 Customize entirex.trace.properties as described in Trace Parameters.

4 If entirex.trace.properties is within the current directory of your client application or your user
home directory, it will be located automatically.

Otherwise, specify the fully qualified or relative file name when starting the Java virtual ma-
chine for your client applicationusingproperty entirex.sdk.default.trace.propertiesfile,
example:

331Administration under UNIX

Tracing webMethods EntireX

java -Dentirex.sdk.default.trace.propertiesfile ↩
="/MyDirName/entirex.trace.properties" MyClient

Using Trace Parameters of the Java Virtual Machine

To switch on tracing mode by specifying the trace parameters of the Java virtual machine

■ Submit the trace parameters when you start the Java virtual machine for the application to
be traced. See Trace Parameters. Note that parameter specifications submitted overwrite set-
tings in the property file.

Disabling Tracing

To switch off tracing

■ Delete or rename the trace property file if it is located in the working directory or in the user's
home directory.

Or:

Specify level=NONEwhen invoking the Java virtual machine :

java -Dentirex.sdk.default.trace.level = NONE MyClient

Configuring a Trace File for the XML/SOAP Listener

We recommend to add the following parameter in file conf/axis2.xml located in the Software AG
Common Web Services Stack installation:

<parameter name="exx-trace-propertiesfile">file:////path of trace.properties ↩
file</parameter>

Example:

<parameter ↩
name="exx-trace-propertiesfile">MyDirName/entirex.trace.properties</parameter>

Notes:

1. If a relative path is specified, the file is located in directory WEB-INF/conf/ in the Web Services
Stack web application file that contains the property.

Administration under UNIX332

Tracing webMethods EntireX

2. In the parameter section of the file axis2.xml, the value of the parameter
exx-trace-propertiesfile can contain definitions of operating system variables, for example
location="$EXXDIR/config/entirex.trace.properties".

Configuring a Trace File for the XML/SOAP Wrapper or the XML/SOAP RPC Server

See Enabling Tracing.

Note: If the XML/SOAP RPC Server is running as a daemon, enable tracing by adding a
Java system property to the start script or by copying file entirex.trace.properties to
the same directory as the start script.

Trace Parameters

The following table provides an overview on trace parameters, their respective values, and how
to submit them as arguments when invoking the Java virtual machine for the component to be
traced.

DescriptionSyntaxParameter

Provide the location of the entirex.trace.properties file.
Only used when the component is started.

Note: A sample trace property file named
entirex.trace.standardwith predefined trace settings is

entirex.sdk.component
name.trace.propertiesfile=
absolute or relative path
including the properties
file

propertiesfile

contained in the directory ../EntireX/config. This file is a
model and must be renamed to the valid name when
used.

You can specify the following trace levels:entirex.sdk.component
name.trace.level = tracelevel

level

DescriptionLevelKeyword

Tracing is switch offNo tracingNONE

Trace invocation of a
component.

UserSTANDARD

For support anddiagnostics.
Expert knowledge of the
component is required.

ExpertADVANCED

Full trace output. Otherwise,
as above.

ExpertSUPPORT

Default is the working directory.entirex.sdk.component
name.trace.directory = absolute
or relative path

directory

Specify where tracing data is written to:entirex.sdk.component
name.trace.filename =
FILE|STDOUT|STDERR

filename

DestinationKeyword

333Administration under UNIX

Tracing webMethods EntireX

DescriptionSyntaxParameter

ConsoleSTDOUT
(Default)

ConsoleSTDERR

File name is generated internally:
exx.sdk.component name.threadName.

FILE

backupNo.log , where backupNo is in
the range from ".000" to ".009". Note that
the number of files created depends on
maximumsize. If more than 10 files are
required, the oldest backup file is
overwritten.

entirex.sdk.component
name.trace.threadoriented = true
| false

threadoriented
DescriptionKeyword

Thread-oriented: trace data is distributed
over multiple files (one file per thread)

YES

Trace data is written to one file.NO (Default)

Maximum number of characters per row. If this limit is
exceeded, the remaining letters arewritten to a new line.

entirex.sdk.component
name.trace.rowlength =
maximum_characters_per_row

rowlength

Maximum size of the log file. If this limit is exceeded,
the log file is renamed and the remaining data iswritten

entirex.sdk.component
name.trace.maximumsize =
max_file_size

maximumsize

to a new log file, see filename. Note that this
specification has an effect only if filename is set to
"FILE".

Time period after which the log file is closed. If this time
limit has exceeded, the log file is renamed and the

entirex.sdk.component
name.trace.timeframe = number
of day

timeframe

remaining data (if any) is written to a new log file. Note
that this specification has an effect only if filename is
set to "FILE". You can specify the following timeframes:

DescriptionKeyword

Number of hours1-9+H

Number of days1-9+D

If no time frame is defined, only one log file is used until
tracing is stopped.
Example: If timeframe has been set to 30D, the current
log file is closed and renamed at midnight every thirty
days, and tracing is continued with a new log file.

Administration under UNIX334

Tracing webMethods EntireX

Component Names

Trace properties given in the trace property file might have to be restricted by componentname.
The following components are available:

DescriptioncomponentnameEntireX Component

The trace property is not restricted to a specific EntireX component.default

The trace property belongs to the EntireX XML/SOAPRuntime only.xml.runtimeXML/SOAP Runtime

Tracing the EntireX RPC-ACI Bridge

To trace Broker calls

1 Use the system property entirex.trace=[0|1|2|3].

This trace does not separate the calls to the Broker for RPC from those to the Broker for ACI.
The trace levels are:

■ 0 to switch off tracing.
■ 1 to trace Broker calls.
■ 2 to trace Broker calls and the payload.
■ 3 to trace Broker calls and all buffers including the payload.

2 Redirect the trace to a filewith the property entirex.server.logfile. Set this to the file name
of the log file.

335Administration under UNIX

Tracing webMethods EntireX

336

28 EntireX Trace Utility

■ Introduction to the EntireX Trace Utility ... 338
■ Process Trace ... 338
■ Show Trace .. 345
■ Using the EntireX Trace Utility in Batch Mode .. 346
■ Usage Tips ... 347

337

Introduction to the EntireX Trace Utility

Broker traces, as well as traces produced from applications communicating with the Broker (so-
called "stub traces"), contain a lot of details of the particular Broker calls. However, their layout
is different and not easy to understand. The EntireX Trace Utility reads these Broker kernel as well
as stub traces and produces a file with a common layout, where one line corresponds to a Broker
call. The file layout is a standard CSV file (comma-separated values).

The request (Broker call sent from the stub to the kernel) and the corresponding reply (response
sent back from the kernel to the stub) are merged together and presented as one logical Broker
call in one row of the output file. Line numbers in the trace file and times for the request and reply
are provided. It is also possible to specify filters so only the specified subset of the Broker calls are
extracted. Since the Broker trace file contains all activities from both clients and servers and since
it is possible to filter the calls, an end-to-end analysis of a conversation is simple to analyze.

The EntireX Trace Utility is divided into two separate elements: Process Trace and Show Trace.

Process Trace

Process Trace is used to process the information contained in the Broker trace file, saving the re-
quested output to a simple text file.

■ Using the Tool
■ Output Field Options
■ Error Messages

Using the Tool

To open the EntireX Trace Utility under UNIX

■ Run the script traceutility.bsh located under /opt/softwareag/EntireX/bin.

To process the trace information

■ Follow the instructions on the following screens.

File Selection

The following window is displayed.

Administration under UNIX338

EntireX Trace Utility

Thedark gray display section - thewizardwindow - shows youwhich step is required. File Selection
has a large green dot, so the input and output files are required.

Options

In the display section Options is green.

SeeOutput Field Options for information on Full, Standard and Overview.

339Administration under UNIX

EntireX Trace Utility

SeeOptions underUsing the EntireX Trace Utility in BatchMode for information on type of trace
file and error codes not to display.

The defaults of Process Trace are:

■ use automatic detection of trace file type
■ return the standard amount of output
■ save the output fields separated with commas (as this format is needed to be able to view the
output in Show Trace)

■ display all errors found in the trace file.

The default separator character is ",", you can change this character.

Filters

For the Standard and Full output options you can set filters to reduce the amount of information
written to the output file, to create a more focused collection of information.

You can set filters for the Conversation ID (for example: 000000000041596), the Broker service (for
example: int/catsbeb3/internet) and the User (for example: S_94).

The User filter does not correspond to the User ID or Physical User ID from the trace, but a gener-
ated value from Process Trace. This filter can only be used after already analyzing an output file
and deciding which User to filter for.

If more than one filter is specified only those entries which satisfy all conditions will be displayed.

Administration under UNIX340

EntireX Trace Utility

To generate the output file

■ Choose Finish.

At this point any errors from processing the trace file are shown.

To display the results from the processing

■ Choose Show.

To leave the program

■ Choose Exit.

To process another trace file

■ Choose Process Trace from the menu bar.

A new processing wizard is started.

341Administration under UNIX

EntireX Trace Utility

Output Field Options

You may select between three levels of output to be written to the output file:

Output FieldsOption

Phys Userid, Userid, Token, User, ServiceOverview

Thread, Req, Reply, Phys Userid, Userid, Token, User, Function, Error, Service, Convid, Uowid,
Uowstatus, Slen, Retl, Cuid

Standard

Thread, Req, Reply, Phys Userid, Userid, Token, User, Function, Error, Service, Convid, Uowid,
Uowstatus, Slen, Retl, Cuid, Time1, Time2, Api, Rlen, Cstat, Charset, SecurityToken, Security,
TimeDiff, ReplyTime, Seqid, AppName, Node, Stub, Library, Program, Brokerid

Full

Description of the columns in the CSV file (comma-separated values).

Note: Output which is the result of stub trace files does not contain entires for all columns.

ExplanationColumn

The name of the Java thread executing the Broker call. Only available for trace files produces
by the EntireX Java runtime.

Thread

The line number in the trace file where the request part of the Broker call starts. 0 if the
request cannot be found in the trace file.

Req

The line number in the trace file where the reply part of the Broker call starts. 0 if the reply
cannot be found in the trace file.

Reply

The physical user ID (Unique ID) which is displayed as a binary value in the Broker trace,
nicely formatted. In case of a C stub trace file, the real physical user ID is not available;
instead of this the thread ID is used to construct a replacement for the physical user ID.

Phys.User ID

The user ID of the Broker call.User ID

The token of the Broker call.Token

An artificial identifier for a user session (using physical user ID, user ID, and token). This
is a unique number prefixed with either C- or S- . The latter will be used if the caller can
be identified (using the available data in the trace) as a server application.

User

The Broker function. If an option is specified it is appended to the function name. If a wait
timeout is specified for the send or receive function it is appended.

Function

Error class, error number and error text. Error 0000 0000 is not displayed. The text "Successful
response" is not displayed.

Error

The service address in the form class/server/service.Service

The conversation ID prefixed with *. If the conversation ID in the reply is different from
the one in the request, the one from the reply is used.

Convid

The unit of work ID prefixed with *. If the unit of work ID in the reply is different from the
one in the request, the one from the reply is used.

Uowid

The unit of work statusUowstatus

The send length, i.e. the length of the data sent to the Broker.Slen

Administration under UNIX342

EntireX Trace Utility

ExplanationColumn

The return length, i.e. the length of the data returned from the application.Retl

The client user ID (only for servers).Cuid

The time of the request entry in the trace file.Time1

The time of the reply entry in the trace file.Time2

The API version.Api

The (maximum) receive length specified in the send/receive call.Rlen

The conversation status (only for servers).Cstat

The character used by the caller. Typical values are ascii, ebcdic siemens. If a value
for the locale string has been specified, it is added using / as a separator.

Charset

SecurityToken An interpretation of the security token of the request part. If the reply also contains a
security token it is added using / as a separator. The interpretation of the prefixes is as
follows:

The security token cannot be identified as a security token
valid for EntireX Security

unknown

The send/receive data is encrypted.enc

A password is specified in the callpwd

A new password is specified in the call.newpwd

The security token has been built by an EntireX stub.stub

The security token has been processed by the Broker, the
part which distinguishes security tokens is added.

server

Some security-relevant control block fields of the call. If Forcelogon is enabled "fl:" is
displayed. If encryption level has been specified either "broker" or "target" is displayed. If

Security

a password has been specified an artificial password is displayed. If in addition a new
password has been specified, it is added using / as a separator. The artificial password is
displayed as "pwd" followed by a number (starting with 0).

The elapsed time between the request and the reply (Time2 - Time1).TimeDiff

Server response time (difference in time between the server receiving a request and sending
the reply).

ReplyTime

The internal sequence ID of the Broker call. Only available for Broker version 7.3 or higher.Seqid

Name of the application communicating with the Broker. Only available if API version 9
or greater is used.

AppName

Node name of the application which is communicating with the Broker, e.g. the TCP/IP
hostname. Only available if API version 9 or greater is used.

Node

Stub name and version used by the application communicating with the Broker. Only
available if API version 9 or greater is used.

Stub

Library name if Broker call is an RPC call. Only available for RPC clients, or for server
version 8.0 or higher.

Library

Program name if Broker call is an RPC call. Only available for RPC clients, or for server
version 8.0 or higher.

Program

The Broker ID of the Broker call.Brokerid

343Administration under UNIX

EntireX Trace Utility

Error Messages

The utility will only produce a meaningful result if the trace file is not corrupt. When transferring
a trace from a mainframe, make sure all columns of the trace file are transferred, otherwise the
utility might report errors (e.g. 2, 4 or 9). It is also possible that no errors are reported but the res-
ulting CSV file has columns which contain invalid data.

ExplanationMessageNumber

Text of a Java exception thrown at runtime.{0}1

Will be displayed amaximumof 5 times. Output for Security
Token, Password, and New Password may be corrupted.

Trace has incomplete entry for
Binpart, expected length = {0}, actual
length = {1}

2

Typical reason: columns in the trace file were lost when
copying the trace from the mainframe.

Trace file is corrupt.Physical user ID {0} has wrong length3

Will be displayed a maximum of 5 times. Output for any
valuemay be corrupted. Typical reason: columns in the trace
file were lost when copying the trace from the mainframe.

Trace has incomplete entry for Key or
Reply string

4

This is an error condition similar to the Broker error 0037
0197.

More then one request per user: {0}5

Trace file is corrupt.does not include prefix6

Trace file is corrupt.does not include unique ID7

Trace file is corrupt.does not include reply or key8

Output for any value may be corrupt.Trace output might be incomplete
and/or erroneous

9

Problem with trace or output file.Problem with file {0}10

The Java runtime does not have enough memory to process
the trace file. Increase the memory or delete unnecessary
sections in the trace file.

Not enoughmemory to process trace,
try increasing -Xmx or split trace

11

The sequence ID of the request and the reply do not match.
This may happen if the trace file is incomplete or corrupted.

SeqID "{0}" does not match "{1}"12

Otherwise contact Software AG support and provide the
trace file.

The text of a Broker error message found in the trace file is
displayed. All non-zero return codes and the result of

Found: {0}13

KERNELVERSION calls are displayed. This can be configured
using a tool parameter.

Administration under UNIX344

EntireX Trace Utility

Show Trace

Show Trace enables you to display the values of a CSV file in a table (CSV=comma-separated
values).

The first row of the file is used as the headers for the file.

Sorting the Information

The information in the tables can be sorted by descending or ascending order. The sorting is done
alphabetically, not numerically.

To sort the information in a column by ascending order

■ Click on the header of the column.

To sort the information in a column by descending order

■ Use SHIFT and click on the header of the column.

Loading and Saving a CSV File

You can load and save a CSV file using the options located in the File menu.

345Administration under UNIX

EntireX Trace Utility

Using the EntireX Trace Utility in Batch Mode

The EntireX Trace Utility is a graphical tool to process and display trace information. If the UNIX
system does not have a graphical display (X-Windows), the EntireX Trace Utility can still be used
as a command-line tool to process trace information.

To use the EntireX Trace Utility in batch mode

■ Enter the following command in the command line:

java -jar exxutil.jar [-option] filename [
output file

]

or

java -Xms64m -Xmx256m -jar exxutil.jar [-option] filename [
output file

]

This specifies an initial and maximummemory allocation pool for the Java runtime (with Java 1.3
the defaults are 2 MB and 64 MB).

The exxutil.jar file is located in the classes subdirectory of the EntireX installation. filename is the
name of the trace file. The output will be written to the file specified with the parameter output
file or, if no name is specified there, output will be written to the file filename.csv.

Options

DescriptionOption

to display the version information-version

to generate an overview-short

to generate the full output-long

the separator character used in the resulting CSV file, default is ","-sep char

-type type By default the EntireX Trace Utility tries to infer the type of the trace file from the
contents. If this is not possible (output shows "Processed 0 Broker calls") the type can
be explicitly specified as follows:

The trace has beenwritten by the EntireX Java runtime.java

The trace has beenwritten by the C-based Broker stub.cstub

Administration under UNIX346

EntireX Trace Utility

DescriptionOption

The trace has been written by the .NET ACI stub.dotnet

The trace has been written by the Broker kernel.broker

The trace has been written by the Direct RPC
component of webMethods EntireX Adapter.

directrpc

The utility displays all Broker errors found in the trace. To prevent this either all errors
or a set of specified errors can be excluded from the display. To prevent the display of

-noshow param

all errors specify "all" as parameter. To prevent the display of specific errors specifiy the
8 digit error class and number.Multiple errors can be specified separated by ":". Examples:
-noshow 00020002:00070007 or -noshow "0074 0074".

For the default and long display, filters can be specified:

DescriptionOption

to get entries for a particular user-user < user >

for a particular conversation ID-conversation < convid >

for a particular service-service

If more than one filter is specified, only those entrieswhich satisfy all conditionswill be displayed.

Example

java -jar exxutil.jar -long -sep ";" trace.txt

will generate all columns in a file trace.txt using ";" as separator character, the result will be in the
file trace.txt.csv.

Usage Tips

Invalid or Incomplete Data in the Resulting CSV File

The utility will only produce a meaningful result if the trace file is not corrupt. When transferring
a trace from a mainframe, make sure that all columns of the trace file are transferred. Otherwise
the utility might report errors, e.g. error 2, 4 or 9. It may also happen that no errors are reported
but the resulting CSV file has columns which contain invalid data.

347Administration under UNIX

EntireX Trace Utility

Open the CSV File in Microsoft Excel

The CSV file can usually be opened in Microsoft Excel by double-clicking on the file name in the
Windows Explorer. If the data is not displayed correctly, the separator character used by the utility
(default is ",") does not match the list separator character used by Windows. Use the -sep option
to specify a different separator character. To check the list separator used by Windows, go to
Control Panel > Regional Options > Numbers.

Alternatively you may use the import functionality of Microsoft Excel. Open a spreadsheet, use
Data > Get External Data > Import Text File. After selecting the file name (change default file
type *.txt) the Text Import Wizard starts, which allows you to specify the delimiter (separator)
character.

Displaying and Analyzing the CSV File in Microsoft Excel

The following are some tips how to use Microsoft Excel as a tool for displaying and analyzing the
CSV file. They refer to Microsoft Excel 2000.

Formatting the spreadsheet: use CTRL A to select all data, change the font size e.g. to 8, then use
Format > Column > AutoFit Selection to format all columns. Make the first line a "header line":
select the 2nd line, useWindow > Freeze Panes. Now, when scrolling through the entries the
header line always stays on top.

Enable filtering: select the 1st line, useData > Filter > AutoFilter. Now you have a drop-down box
on each header entry that allows you to select a subset of the Broker calls.

Sorting Order

You can sort the entries in the generated CSV file using the Reply column. Thus the ordering cor-
responds to the time when the Broker kernel sends back the reply for the Broker call. Calls where
no reply can be found in the trace appear at the end. If you use the Request column as the sorting
criteria, the Broker calls will be ordered corresponding to the time when the Broker call arrives at
the Broker kernel.

Administration under UNIX348

EntireX Trace Utility

29 Broker Shutdown Statistics

■ Shutdown Statistics Output .. 350
■ Table of Shutdown Statistics .. 350

349

Shutdown Statistics Output

After a successful Broker execution, shutdown statistics and related information are produced.
This output is written in the following sequence:

1. The diagnostic message ETBD0444 is written into the Broker trace log.

2. The output - i.e. statistics, internals and user-specified parameters - is written into the end of
the Broker trace log file at shutdown.

Table of Shutdown Statistics

See Legend below for explanation of output type.

DescriptionDisplay Field
Output
Type

Identifies the Broker kernel towhich the attribute file applies. See
BROKER-ID.

Broker IDU

The version of the Broker kernel currently running.VersionI

The platform family for which this Broker kernel was built.Generated platform familyI

The platform on which this Broker kernel is currently running.Runtime platformI

The date and time when this Broker kernel started.Start timeI

The restart count indicates howmany times the Broker kernel has
been started with the persistent store. Therefore, after a cold start

Restart countS

(PSTORE=COLD), the restart countwill be 1. Then, after subsequent
hot starts (PSTORE=HOT), the restart count will be 2 or greater.

The value for the trace setting for this Broker kernel. See
TRACE-LEVEL.

Trace levelU

The number of worker tasks for this Broker kernel. See
NUM-WORKER.

Worker tasksU

The value ofMAX-MEMORY or 0 if not defined. See MAX-MEMORY.MAX-MEMORYU

Size of the allocated memory, in bytes.Memory allocatedS

Highest size of allocated memory in bytes since Broker started.Memory allocated HWMS

Value of NUM-SERVICE or 0 if not defined. See NUM-SERVICE.NUM-SERVICEU

The number of services currently active for this Broker kernel.Services activeS

Value of NUM-CLIENT or 0 if not defined. See NUM-CLIENT.NUM-CLIENTU

The number of clients currently active for this Broker kernel.Clients activeS

The highwatermark for the number of clients active for this Broker
kernel.

Clients active HWMS

Administration under UNIX350

Broker Shutdown Statistics

DescriptionDisplay Field
Output
Type

Value of NUM-SERVER or 0 if not defined. See NUM-SERVER.NUM-SERVERU

The number of servers currently active for this Broker kernel.Servers activeS

The high watermark for the number of servers active for this
Broker kernel.

Servers active HWMS

Value of NUM-CONVERSATION or 0 if not defined. See
NUM-CONVERSATION.

NUM-CONVERSATIONU

The number of conversations currently active for this Broker
kernel.

Conversations activeS

The high watermark for the number of conversations active for
this Broker kernel.

Conversations active HWMS

Value of NUM-LONG-BUFFER or 0 if not defined. See
NUM-LONG-BUFFER.

NUM-LONG-BUFFERU

The number of long message buffers currently in use for this
Broker kernel.

Long buffers activeS

The highwatermark for the number of longmessage buffers used
for this Broker kernel.

Long buffers active HWMS

Value of NUM-SHORT-BUFFER or 0 if not defined. See
NUM-SHORT-BUFFER.

NUM-SHORT-BUFFERU

The number of short message buffers currently in use for this
Broker kernel.

Short buffers activeS

The highwatermark for the number of shortmessage buffers used
for this Broker kernel.

Short buffers active HWMS

Value of NUM-TOPIC or 0 if not defined. See NUM-TOPIC.NUM-TOPICU

The number of topics currently active for this Broker kernel.Topics activeS

Value of NUM-PUBLISHER or 0 if not defined.NUM-PUBLISHERU

The number of publishers currently active for this Broker kernel.Publishers activeS

The high watermark for the number of publishers active for this
Broker kernel.

Publishers active HWMS

Value of NUM-SUBSCRIBER or 0 if not defined. See
NUM-SUBSCRIBER.

NUM-SUBSCRIBERU

The number of subscribers currently active for this Broker kernel.Subscribers activeS

The high watermark for the number of subscribers active for this
Broker kernel.

Subscribers active HWMS

Value of NUM-PUBLICATION or 0 if not defined. See
NUM-PUBLICATION.

NUM-PUBLICATIONU

The number of publications currently active for this Broker kernel.Publications activeS

The highwatermark for the number of publications active for this
Broker kernel.

Publications active HWMS

351Administration under UNIX

Broker Shutdown Statistics

DescriptionDisplay Field
Output
Type

The type of persistent store used by this Broker kernel. See
PSTORE-TYPE.

Persistent store typeU

Indicateswhether units ofwork are persistent or not in this Broker
kernel. See STORE.

UOW persistenceU

Indicates the status of the persistent store at Broker startup. See
PSTORE.

Persistent store startupU

Themultiplier to compute the lifetime of the persistent status. See
UWSTATP.

Persistent status lifetimeU

Indicates whether or not deferred units of work are allowed. See
DEFERRED.

Deferred UOWs allowedU

The maximum number of units of work that can be active
concurrently for this Broker kernel. See MAX-UOWS.

Maximum allowed UOWsU

The maximum number of messages allowed in a unit of work.
See MAX-MESSAGES-IN-UOW.

Maximum messages per UOWU

Indicates the default lifetime for a unit of work. See UWTIME.UOW lifetime in secondsU

Indicates the maximum message size that can be sent. See
MAX-UOW-MESSAGE-LENGTH.

Maximum message lengthU

Indicates whether or not new units of work are allowed in this
Broker kernel. See NEW-UOW-MESSAGES.

New UOWmessages allowedU

The number of units ofwork currently active in this Broker kernel.UOWs activeS

The number of the last unit of work in this Broker kernel.Current UOWS

Indicates the status of accounting records in this Broker kernel.
See ACCOUNTING.

AccountingU

If applicable, the SSL port number on which this Broker kernel
will listen for connection requests. See SSLPORT.

SSL port *U

If applicable, the TCP port number on which this Broker kernel
will listen for connection requests. See TCPPORT.

TCP port *U

Marks the beginning of the section of summary statistics for all
the function calls.

Number of function callsI

The number of Broker DEREGISTER function calls since startup.DEREGISTERS

The number of Broker EOC function calls since startup.EOCS

The number of Broker KERNELVERS function calls since startup.KERNELVERSS

The number of Broker LOGOFF function calls since startup.LOGOFFS

The number of Broker LOGON function calls since startup.LOGONS

The number of Broker RECEIVE function calls since startup.RECEIVES

The number of Broker REGISTER function calls since startup.REGISTERS

The number of Broker SEND function calls since startup.SENDS

The number of Broker SYNCPOINT function calls since startup.SYNCPOINTS

Administration under UNIX352

Broker Shutdown Statistics

DescriptionDisplay Field
Output
Type

The number of Broker UNDO function calls since startup.UNDOS

The number of Broker CONTROL_PUBLICATION function calls
since startup.

CONTROL_PUBLICATIONS

The number of Broker RECEIVE_PUBLICATION function calls
since startup.

RECEIVE_PUBLICATIONS

The number of Broker SEND_PUBLICATION function calls since
startup.

SEND_PUBLICATIONS

The number of Broker SUBSCRIBE function calls since startup.SUBSCRIBES

The number of Broker UNSUBSCRIBE function calls since startup.UNSUBSCRIBES

The number of Broker REPLY_ERROR function calls since startup.REPLY_ERRORS

Marks the beginning of the section of summary statistics for all
the worker tasks.

Worker task statisticsI

The identifier of the worker task.Worker numberI

The status of the worker task at shutdown.StatusI

The number of Broker calls handled by the worker task since
startup.

of callsS

The number of seconds theworker task has been idle since startup.Idle time in secondsS

* Does not apply to z/OS.

Legend

Origin of ValueValueDescription
Output
Type

Determined by Software AG EntireX.StaticInternal InformationI

Determined by Broker activity during execution.VariableShutdown StatisticS

Specified by Broker administrator before or, if allowable,
during execution.

VariableUser-Specified ParameterU

353Administration under UNIX

Broker Shutdown Statistics

354

30 Command Logging in EntireX

■ Introduction to Command Logging ... 356
■ Command Log Filtering using System Management Hub ... 358
■ Command Log Filtering using Command-line Interface etbcmd ... 360
■ ACI-driven Command Logging ... 362
■ Dual Command Log Files .. 362

355

Command logging is a feature to assist in debugging Broker ACI applications. A command in this
context represents one user request sent to the Broker and the related response of Broker.

Command logging is a feature that writes the user requests and responses to file in a way it is
already known with Broker trace and TRACE-LEVEL=1. But command logging works completely
independent from trace, and data is written to a file only if defined command trace filters detect
a match.

Broker stub applications send commands or requests to the Broker kernel, and the Broker kernel
returns a response to the requesting application. Developers who need to resolve problems in an
application need access to those request and response strings inside the Broker kernel. That's
where command logging comes in. With command logging, request and response strings from or
to an application are written to a file that is separate from the Broker trace file.

Introduction to Command Logging

This section provides an introduction to command logging in EntireX and offers examples of how
command logging is implemented. It covers the following topics:

■ Overview
■ Command Log Files
■ Defining Filters
■ Programmatically Turning on Command Logging

Overview

Command logging is similar to a Broker trace that is generated when the Broker attribute TRACE-
LEVEL is set to 1. Broker trace and command logging are independent of each other, and therefore
the configuration of command logging is separate from Broker tracing.

The following Broker attributes are involved in command logging:

DescriptionAttribute

Set this to "N" if command logging is not needed.CMDLOG

A numeric value indicating the maximum size of command log file in KB.CMDLOG-FILE-SIZE

The maximum number of filters that can be set.NUM-CMDLOG-FILTER

In addition to CMDLOG=YES, the Broker needs the assignment of the dual command logging files
during startup. If these assignments aremissing, Brokerwill set CMDLOG=NO. See alsoBroker Attributes
in the administration documentation.

Administration under UNIX356

Command Logging in EntireX

Command Log Files

The Broker keeps a record of commands (request and response strings) in a command log file.

At Broker startup, you will need to supply two command log file names and paths. Only one file
is open at a time, however, and the Broker writes commands (requests and responses) to this file.

Under UNIX and Windows, the startup options -y and -z are evaluated by executable etbnuc.
These options are used to specify the command log file names. Startup script/service assign these
files by default.

When the size of the active command log file reaches the KB limit set by CMDLOG-FILE-SIZE, the
file is closed and the second file is opened and becomes active. When the second file also reaches
the KB limit set by CMDLOG-FILE-SIZE, the first file is opened and second file is closed. Existing
log data in a newly opened file will be lost.

Defining Filters

In command logging, a filter is used to store and identify a class, server, or service, as well as a
topic name and user ID.

Use the SystemManagement Hub to define a filter. Under UNIX and z/OS you can also use com-
mand line tool etbcmd. During processing, the Broker evaluates the class, server, service, topic,
and user ID associated with each incoming request and compares themwith the same parameters
specified in the filters. If there is a match, the request string and response string of the request is
printed out to the command log file.

Programmatically Turning on Command Logging

Applications using ACI version 9 or above have access to the new field LOG-COMMAND in the ACI
control block.

If this field is set, the accompanying request and the Broker's response to this request is logged to
the command log file.

Note: Programmatic command logging ignores any filters set in the kernel.

357Administration under UNIX

Command Logging in EntireX

Command Log Filtering using System Management Hub

■ Setting up your Environment
■ Adding a Filter
■ Managing Filters

Setting up your Environment

In order to process filters using SystemManagement Hub, Broker attribute CMDLOGmust be set to
"YES" and the log files must be defined. See Command Log Files above. If this is the case, the
CmdlogFilter node will be visible in the SMH tree.

Administration under UNIX358

Command Logging in EntireX

359Administration under UNIX

Command Logging in EntireX

Adding a Filter

To add a filter

1 In the SMH tree view, select the CmdlogFilter node and, with the context menu, chooseAdd
Cmdlog Filter.

2 In the Add Cmdlog Filter screen, add values for User ID, Class/Server/Service or Topic.
Confirm withOK.

Managing Filters

The following Cmdlog Filter screen shows four filters. Use this screen to

■ delete a filter
■ disable a filter
■ enable a disabled filter

Note: You cannot change the values for User ID, Class/Server/Service or Topic in theCmdlog
Filter screen. Instead, delete the command log filter and add a new one with the required
values.

Command Log Filtering using Command-line Interface etbcmd

The examples assume that Broker has been started with the attribute CMDLOG=Y.

■ Setting Filters
■ Deleting Filters

Administration under UNIX360

Command Logging in EntireX

■ Disabling and Enabling a Filter

Setting Filters

Filters need to be set before running the stub applications whose commands are to be logged.

DescriptionCommand

This command sets filters on
ACLASS/ASERVER/ASERVICE. All ACI calls issued by
all users to this service will be logged.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE

This command set filters on
ACLASS/ASERVER/ASERVICE anduser ID saguser1.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE -Usaguser1 All ACI calls to this service as well as those issued by

saguser1will be logged.

This command set filters on topic NYSE and user ID
saguser1. All ACI calls to this topic as well as those
issued by saguser1will be logged.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-TNYSE -Usaguser1

Note: If more than one service or topic is set as a filter, all ACI calls sent to any of these
services or topics will be logged. Identical filters cannot be set. Attempts to set a second
filter thatmatches an existing filterwill be rejected. Similarly, themaximumnumber of filters
that can be added is defined in NUM-CMDLOG-FILTER. If the maximum number of filters is
already being used, delete an existing filter to make room for a new filter.

Deleting Filters

The following provides an example of how to delete an existing filter on a service.

To delete a filter

■ Enter the following command.

etbcmd -d BROKER -b localhost:1970:TCP -c CLEAR-CMDLOG-FILTER ↩
-nACLASS/ASERVER/ASERVICE -U saguser1

If the filter does not exist, the command will return an error.

361Administration under UNIX

Command Logging in EntireX

Disabling and Enabling a Filter

Filters can be set and still be disabled (made inactive).

To disable a filter

■ Enter the following command.

etbcmd -blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -dBROKER -xuser ↩
-nACLASS/ASERVER/ASERVICE -Usaguser1

Note: A disabled filter will not bring down the count of filters in use.

To enable a filter

■ Enter the following command to enable the disabled filter.

etbcmd -blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -dBROKER -xuser ↩
-nACLASS/ASERVER/ASERVICE -Usaguser1

ACI-driven Command Logging

EntireX components that communicate with Broker can trigger command logging by setting the
field LOG-COMMAND in the ACI control block.

When handling ACI functions with command log turned on, Broker will not evaluate any filters.
Application developers must remember to reset the LOG-COMMAND field if subsequent requests are
not required to be logged.

Dual Command Log Files

Broker's use of two command log files prevents any one command log file from becoming too
large.

When starting a Broker with command log support, you must therefore specify two file names
and paths - one for each of the two command log files. The sample startup script installed with
the product uses the variables ETB_CMDLOG1 and ETB_CMDLOG2 as the default command log file
names.

Under UNIX, the startup script uses file names CMDLOGR1 and CMDLOGR2.

Administration under UNIX362

Command Logging in EntireX

At startup, Broker initializes both files and keeps one of them open. Command log statements are
printed to the open file until the size of this file reaches the value specified in the Broker attribute
CMDLOG-FILE-SIZE. This value must be specified in KB.

When the size of the open file exceeds the value specified in the Broker attribute CMDLOG-FILE-
SIZE, Broker closes this file and opens the other, dormant file. Because the Broker closes a log file
onlywhen unable to print out a complete log line, the size of a fullfilemay be smaller than CMDLOG-
FILE-SIZE.

To switch log files on demand, using etbcmd

■ An open command log file can be forcibly closed even before the size limit is reached. Enter
the following command.

etbcmd -blocalhost:1970:TCP -cSWITCH-CMDLOG -dBROKER -xuser

The command abovewill close the currently open file and open the one that has been dormant.

363Administration under UNIX

Command Logging in EntireX

364

31 Accounting in EntireX Broker

■ EntireX Accounting Data Fields .. 366
■ Using Accounting under UNIX and Windows ... 369
■ Example Uses of Accounting Data .. 370

365

This chapter describes the accounting records for Broker that can be used for several purposes,
including:

■ application chargeback
for apportioning EntireX resource consumption on the conversation and/or the application level;

■ performance measurement
for analyzing application throughput (bytes, messages, etc.) to determine overall performance;

■ trend analysis
for using data to determine periods of heavy and/or light resource and/or application usage.

EntireX Accounting Data Fields

In the EntireX Accounting record, there are various types of data available for consumption by
applications that process the accounting data:

DescriptionType of Field
Accounting
VersionField Name

The time this record was written to
the accounting file in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Record Write Time

Broker ID from attribute file.A321EntireX Broker ID

Version information, v.r.s.p, where:A81EntireX Version

v = version
r = release
s = service pack
p = patch level

for example 8.1.2.00

Platform where EntireX is running.A321Platform of Operation

Time EntireX was initialized in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1EntireX Start Time

It is always C for conversation. Future
Types will have a different value in
this field.

A11Accounting Record Type

USER-ID ACI field from the client in
the conversation.

A321Client User ID

TOKEN field from the ACI from the
client.

A321Client Token

The physical user ID of the client, set
by EntireX.

A561Client Physical ID

Administration under UNIX366

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

Communication used by Client:I11Client Communication Type

1 = Net-Work
2 = TCP/IP
3 = APPC
4 = WebSphere MQ
5 = SSL

Number of Requests made by client.I41Client Requests Made

Number of bytes sent by client.I41Client Sent Bytes

Number of bytes received by client.I41Client Received Bytes

Number of messages sent by client.I41Client Sent Messages

Number of messages received by
client.

I41Client Received Messages

Number of UOWs sent by client.I41Client Sent UOWs

Number of UOWs received by client.I41Client UOWs Received

Completion code client receivedwhen
conversation ended.

I41Client Completion Code

USER-ID ACI field from the server in
the conversation.

A321Server User ID

TOKEN field from the ACI from the
server.

A321Server Token

The physical user ID of the server, set
by EntireX.

A561Server Physical ID

Communication used by Server:I11Server Communication Type

1 = Entire Net-Work
2 = TCP/IP
3 = APPC
4 = WebSphere MQ
5 = SSL

Number of requests made by server.I41Server Requests Made

Number of bytes sent by server.I41Server Sent Bytes

Number of bytes received by server.I41Server Received Bytes

Number of messages sent by server.I41Server Sent Messages

Number of messages received by
server.

I41Server Received Messages

Number of UOWs sent by server.I41Server Sent UOWs

Number of UOWs received by server.I41Server Received UOWs

Completion code server received
when conversation ended.

I41Server Completion Code

367Administration under UNIX

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

CONV-ID from ACI.A161Conversation ID

SERVER-CLASS from ACI.A321Server Class

SERVER-NAME from ACI.A321Server Name

SERVICE from ACI.A321Service Name

Will be N if CONV-ID=NONE is
indicated in application.

A11CID=NONE Indicator

Will be R if a conversation was
restarted after a Broker shutdown.

A11Restarted Indicator

Time conversation began in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Conversation Start Time

Time conversation was cleaned up in
YYYYMMDDHHMMSS format.

A14 Timestamp in
"YYYYMMDDHHMMSS"
format

1Conversation End Time

Number ofmicroseconds of CPU time
used by the conversation

I41Conversation CPU Time

Actual identity of client derived from
authenticated user ID.

A322Client Security Identity

Node name of machine where client
application executes.

A322Client Application Node

Stub type used by client application.A82Client Application Type

Name of the executable that called the
broker. Corresponds to the Broker

A642Client Application Name

Information Service field
APPLICATION-NAME in the ACI
Programming documentation.

Mechanism by which authentication
is performed for client.

I12Client Credentials Type

Actual identity of server derived from
authenticated user ID.

A322Server Security Identity

Node name of machine where server
application executes.

A322Server Application Node

Stub type used by server application.A82Server Application Type

Name of the executable that called the
broker. Corresponds to the Broker

A642Server Application Name

Information Service field
APPLICATION-NAME in the ACI
Programming documentation.

Mechanism by which authentication
is performed for server.

I12Server Credentials Type

Administration under UNIX368

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

RPC Library referenced by Client
when sending the only/first request
message of the conversation.

A1283Client RPC Library

RPC Program referenced by Client
when sending the only/first request
message of the conversation.

A1283Client RPC Program

RPC Library referenced by Server
when sending the only/first response
message of the conversation.

A1283Server RPC Library

RPC Program referenced by Server
when sending the only/first response
message of the conversation.

A1283Server RPC Program

IPv4 address of the client.A164Client IPv4 Address

IPv4 address of the server.A164Server IPv4 Address

Application version of the client.A164Client Application Version

Application version of the server.A164Server Application Version

IPv6 address of the client.A465Client IPv6 Address

IPv6 address of the server.A465Server IPv6 Address

Note: Accounting fields of any version greater than 1 are created only if the attribute AC-
COUNTING-VERSION value is greater than or equal to the corresponding version. For example:
accounting fields of version 2 are visible only if ACCOUNTING-VERSION=2 or higher is specified.

Using Accounting under UNIX and Windows

■ Broker Attribute File Settings
■ Retrieving Accounting Data

Broker Attribute File Settings

ACCOUNTING = NO | YES | (YES, SEPARATOR=Separator Characters) (Default is NO)

Set this parameter to "NO" (i.e., do not create accounting data) or "YES" to create accounting data.
Up to seven separator characters can specified using the SEPARATOR suboption, for example
ACCOUNTING= (YES, SEPARATOR=;). If no separator character is specified, the comma character
will be used.

369Administration under UNIX

Accounting in EntireX Broker

Retrieving Accounting Data

The accounting file will be located in the Broker's installed directory. The file's name is based on
the ETB_LOG environment variable and the current date and time (for uniqueness). Example: If
ETB_LOG is set to BROKER1.LOG, the accounting data file will be named BROKER1_YYYYMMDDH-
HMMSS.csv. If ETB_LOG is not set, the Broker's ID will be used, with an extension of CSV (e.g.
ETB048_YYYYMMDDHHMMSS.csv). See Environment Variables in EntireX in the general administration
documentation.

Example Uses of Accounting Data

■ Chargeback
■ Trend Analysis
■ Tuning for Application Performance

Chargeback

Customers can use the EntireX accounting data to perform chargeback calculations for resource
utilization in a data center. Suppose EntireX Broker is being used to dispatch messages for three
business departments: Accounts Receivable, Accounts Payable, and Inventory. At the end of each
month, the customer needs to determine howmuchof the operation andmaintenance cost of EntireX
Broker should be assigned to these departments. For a typical month, assume the following is
true:

Average PercentagePercentageMessages SentPercentageAmount of DataDepartment

22.52040002550 MBAccts Payable

253060002040 MBAccts Receivable

52.5501000055110 MBInventory

The use of Broker resources here is based upon both the amount of traffic sent to the Broker (bytes)
as well as how often the Broker is called (messages). The average of the two percentages is used
to internally bill the departments, so 52.5% of the cost of running EntireX Broker would be paid
by the Inventory Department, 25% by the Accounts Receivable Department, and 22.5% by the
Accounts Payable Department.

Administration under UNIX370

Accounting in EntireX Broker

Trend Analysis

The Accounting Data can also be used for trend analysis. Suppose a customer has several point-
of-sale systems in several stores throughout the United States that are tied into the corporate in-
ventory databasewith EntireX. The stubswould be running at the stores, and the sales datawould
be transmitted to the Broker, whichwould hand it off to the appropriate departments in inventory.
If these departments wish to ascertain when the stores are busiest, they can use the accounting
data to monitor store transactions. Assume all of the stores are open every day from 9 AM to 10
PM.

Maximum Weekend
Transactions in any Store

Average Weekend
Transactions per Store

Maximum Weekday
Transactions in any
Store

Average: Weekday
Transactions per Store

Local Time

8328.2277.39 AM

10229.33111.210 AM

11337.94814.611 AM

9834.810656.212 noon

9534.26525.61 PM

10238.55217.22 PM

9942.72312.13 PM

8843.23418.34 PM

9345.24726.25 PM

10540.68738.26 PM

11039.28329.67 PM

8528.67818.68 PM

6217.55511.29 PM

The owner of the stores can examine the data and make decisions based upon the data here. For
example, on weekdays, he or she can see that there is little business until lunchtime, when the
number of transactions increase. It then decreases during lunch hour; then there is another increase
from 5 PM to 8 PM, after people leave work. Based on this data, the owner might investigate
changing the store hours onweekdays to 10 AM to 9 PM. On the weekend the trends are different,
and the store hours could be adjusted aswell, although there is amore regular customer flow each
hour on the weekends.

371Administration under UNIX

Accounting in EntireX Broker

Tuning for Application Performance

Assume that a customer has two applications that perform basic request/response messaging for
similar sized messages. The applications consist of many Windows PC clients and Natural RPC
Servers on UNIX. An analysis of the accounting data shows the following:

Average Client Messages
Received per Conversation

Average Server Messages
Received per ConversationServiceServerClassApplication Type

10.2910.30SERVICE1SERVER1CLASS1Application 1:

8.9810.30SERVICE2SERVER2CLASS2Application 2:

A further analysis of the accounting data reveals that there are a lot of non-zero response codes
in the records pertaining to Application 2, and that a lot of these non-zero responses indicate
timeouts. With that information, the customer can address the problem by modifying the server
code, or by adjusting the timeout parameters for SERVER2 so that it can have more time to get a
response from the Service.

Administration under UNIX372

Accounting in EntireX Broker

	Administration under UNIX
	Table of Contents
	EntireX Administration under UNIX
	1 Setting up Broker Instances
	Startup Daemon 'etbsrv'
	Starting or Restarting the Administration Service
	Setting up the TCP/IP Communication
	Starting and Stopping the Default Broker
	Running Broker with SSL or TLS Transport
	Step 1: Modify Broker-specific Attributes
	Step 2: Modify SSL-specific Attributes

	Starting and Stopping an Additional Broker
	Uniqueness Test for Broker ID
	Tracing EntireX Broker
	Broker TRACE-LEVEL Attribute
	Attribute File Trace Setting
	Deferred Tracing

	Protecting a Broker against Denial-of-Service Attacks

	2 Configuring the Administration Service under UNIX
	Requirements
	Introduction
	Saving the Data of Administration Service in a Flat File (Default)
	Saving the Data of Administration Service in LDAP
	Changing the Configuration of a Running Administration Service

	3 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definition
	Service Update Modes
	OPTION Values for Conversion

	Topic-specific Attributes
	Codepage-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Variable Definition File

	4 Introduction to Broker Administration using SMH
	5 Managing the List of Brokers with SMH
	Creating a Local Broker
	Deleting a Local Broker
	Adding a Remote Broker Instance to System Management Hub
	Removing a Remote Broker Instance from System Management Hub
	Stopping All Local Brokers from System Management Hub
	Setting the User Credentials for a Broker Instance
	Clearing the User Credentials for a Broker Instance
	Setting SSL or TLS Parameters

	6 Configuring a Single Broker with SMH
	Starting a Local Broker
	Restarting a Local Broker
	Stopping a Local Broker
	Administering a Broker Attribute File
	Editing an Attribute File
	Uploading an Attribute File
	Downloading an Attribute File

	Administering a Log File
	Showing a Log File
	Downloading a Log File

	Setting the Local Broker Autostart Value
	Enabling the SNMP Plug-in
	Disabling the SNMP Plug-in

	7 Using the Broker Information Service with SMH
	Administering a Broker Instance
	Filtering Clients
	Filtering Conversations
	Filtering the User
	Filtering Participants
	Filtering the Persistent Store
	Filtering the Publication
	Filtering the Publisher
	Filtering Servers
	Filtering Services
	Filtering the Subscriber
	Filtering the Topic

	8 Using the Broker Command Service with SMH
	Connecting/Disconnecting Persistent Store
	Allowing and Forbidding new UOW Messages
	Setting a Broker Instance's Trace Level
	Flushing a Broker Instance's Trace Buffer
	Flushing a Broker Instance's Trace Buffer on Error
	Producing Statistics of a Broker Instance
	Setting the Persistent Store Trace Level
	Setting the Security Trace Level
	Deregistering a Server
	Deregistering a Service
	Purging Unit(s) of Work
	Subscribing a User
	Unsubscribing a User
	Logging Off a Subscriber
	Logging Off a Publisher
	Enabling/Disabling Cmdlog
	Switching Cmdlog
	Adding Cmdlog Filter
	Enabling/Disabling Cmdlog Filter
	Deleting Cmdlog Filter

	9 Configuring Broker for Internationalization
	Configuring Translation
	Configuring Translation User Exits
	Configuring ICU Conversion
	Configuring SAGTRPC User Exits
	Writing Translation User Exits
	Introduction
	Structure of the TRAP Control Block
	Using the TRAP Fields

	Writing SAGTRPC User Exits
	Introduction
	Structure of the User Exit Control Block
	Using the User Exit Interface Fields
	Errors
	Convert Function
	GetLength Function

	Character Set and Codepage
	Software AG IDL Data Types to Convert

	Building and Installing ICU Custom Converters
	Writing a User-written ICU Converter
	Compiling a User-written ICU Converter
	Installing a User-written ICU Converter

	10 Managing the Broker Persistent Store
	Implementing an Adabas Database as Persistent Store
	Introduction
	Adabas Persistent Store Parameters
	Configuring and Operating the Adabas Persistent Store
	Selecting the Adabas Persistent Store Driver
	Defining an Adabas FDT for EntireX File
	Restrictions
	Recommendations
	Broker Checkpoints in Adabas

	Adabas DBA Considerations
	BLKSIZE : Adabas Persistent Store Parameter for Broker
	Table of Adabas Parameter Settings
	Estimating the Number of Records to be Stored
	Estimating the Number of Records to be Stored
	Tips on Transports, Platforms and Versions
	Copying the Persistent Store from/to another Adabas File or Database

	c-tree Database as Persistent Store
	Migrating the Persistent Store
	Configuration
	Migration Procedure

	11 Broker Resource Allocation
	General Considerations
	Specifying Global Resources
	Restricting the Resources of Particular Services
	Specifying Attributes for Privileged Services
	Maximum Units of Work
	Calculating Resources Automatically
	Dynamic Memory Management
	Dynamic Worker Management
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Maximum TCP/IP Connections per Communicator
	Note for UNIX

	12 Administering Broker Stubs
	Available Stubs
	Setting Transport Methods for Broker Stubs
	Using TCP/IP as Transport Method for the Broker Stub
	Using SSL or TLS as Transport Method for the Broker Stub
	Setting the Timeout for the Transport Method
	Limiting the TCP/IP Connection Lifetime
	Modifying the Hosts and Services Tables

	Tracing for Broker Stubs
	Application Stublog File
	UNIX Commands to Set the Environment Variables
	Support of Clustering in a High Availability Scenario
	Introduction
	Exceptions
	Default

	13 Broker Command-line Utilities
	etbinfo
	Running the Command-line Utility
	Command-line Parameters
	Command-line Parameters from File
	Profile
	Location of Profiles
	Sample Profiles for etbinfo

	Format String

	etbcmd
	Running the Command-line Utility
	Command-line Parameters
	Command-line Parameters from File
	List of Commands and Objects
	Examples

	14 Administration Service Commands
	Starting a Broker
	Pinging a Broker
	Pinging an RPC Server
	Restarting a Broker
	Stopping a Broker
	Enabling EntireX Security
	Disabling EntireX Security

	15 Administering the Attach Manager under UNIX
	Prerequisites
	Setting up the Attach Manager
	Parameters of the ATM Section
	Parameters of the Service List Section
	Parameters of the Service Section

	Sample Configuration File
	Operating the Attach Manager under UNIX
	Starting the Attach Manager
	Stopping the Attach Manager
	Logging the Attach Manager
	Attach Manager Processing
	Key

	16 Settting up and Administering the Broker TCP Agent
	Common Scenarios
	Indirect TCP/IP Connections by the TCP Agent to Avoid Security Restrictions
	Using the TCP Agent
	Class Name and Parameters
	Starting the TCP Agent

	Activating Tracing for the TCP Agent
	Architecture of the TCP Agent

	17 Settting up and Administering the Broker SSL Agent
	Common Scenarios
	Using the SSL Agent
	Class Name and Parameters
	Starting the SSL Agent

	Activating Tracing for the SSL Agent
	Architecture of the SSL Agent

	18 Settting up and Administering the Broker HTTP(S) Agent
	HTTP(S) Tunneling with EntireX
	Introduction
	How the Communication Works

	Configuring the HTTP(S) Agent
	Using Internationalization with the HTTP(S) Agent
	Activating Tracing for the HTTP(S) Agent

	19 Administering the EntireX RPC Server
	Locating and Calling the Target Server
	Example
	Search for Stub Shared Library/Object
	Search for Target Server Shared Library/Object

	Setting Server Parameters for the RPC Server
	Configuration File Syntax
	Table of Server Parameters
	Possible Values for Endworkers
	Possible Values for Libraries

	Scalability of the RPC Server
	Parameters
	Configuration Examples
	Configuration 1: Medium Lifespan of Worker Threads
	Configuration 2: Shortest Lifespan of Worker Threads
	Configuration 3: Fixed Number of Workers

	Suggested Configuration on First Usage

	Using Internationalization with the RPC Server
	Using SSL or TLS with the RPC Server
	Specifying the SSL or TLS Parameters as Part of the Broker ID
	Specifying the SSL or TLS Parameters in a Separate File

	Starting the RPC Server
	Stopping the RPC Server
	Activating Tracing for the RPC Server

	20 Administering the EntireX RPC Servers using System Management Hub
	Introduction
	Adding a Local RPC Server
	Server
	SMH Control Port
	Properties, Configuration
	Start Script
	Start Options
	Logging
	Working Directory
	Save

	Adding a Remote RPC Server
	Server
	Host
	SMH Control Port

	Operating and Monitoring the RPC Servers using System Management Hub
	Select Root Node of the RPC Server
	Select an RPC Server
	Command Functions for Local RPC Servers
	Command Functions for Remote RPC Servers
	Tracing Hints
	UNIX
	Windows

	Batch Interface

	21 Administration of the EntireX Java RPC Server
	Customizing the Java RPC Server
	Introduction
	The Properties File
	Example
	Properties and Command-line Options

	Using Package Names with the Java RPC Server
	Using Internationalization with Java RPC Server
	Starting the Java RPC Server
	Stopping the Java RPC Server
	Application Identification

	22 Administering the EntireX XML/SOAP RPC Server
	Administering the EntireX XML/SOAP RPC Server
	Command-line Parameters
	Sample Properties File
	Configuration File for the XML/SOAP RPC Server
	Introduction
	Sample Configuration File
	TargetServer Block

	Configuring the XML/SOAP RPC Server
	XML/SOAP RPC Server with HTTP Basic Authentication
	XML/SOAP RPC Server with UsernameToken
	Using SSL or TLS with the XML/SOAP RPC Server
	SSL or TLS Settings
	Sample Start Script
	Configuration File Settings

	Java API for XML/SOAP RPC Server
	Properties File
	Configuration File
	Implementation of the Java API for XML/SOAP RPC Server
	Start Script

	Starting the XML/SOAP RPC Server
	Stopping the XML/SOAP RPC Server
	Running the XML/SOAP RPC Server in the Software AG Runtime
	Introduction
	Configuration
	Deactivating an XML/SOAP RPC Server Permanently
	Starting and Stopping the XML/SOAP RPC Server using JMX (Java Management Extensions)
	Starting and Stopping the XML/SOAP RPC Server under UNIX

	23 Administering the EntireX XML/SOAP Listener
	Introduction
	Configuring the XML/SOAP Listener
	Publishing the XML/SOAP Listener Initialization Parameters
	XML/SOAP Listener Initialization Parameters
	EntireX XML Init File
	External Configuration File for EntireX Web Services
	Introduction
	Using an External Configuration File
	Example of an External Configuration File

	XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authentication
	Using Internationalization with the XML/SOAP Listener
	UNIX Commands to set the Environment Variables

	24 Configuring Authorization Rules
	Configuration of LDAP (Lightweight Directory Access Protocol) Server
	General Considerations for all LDAP Server Products

	Configuration of Authorization Rule Agent using System Management Hub
	Configuration File xds.ini
	xds.ini with the LDAP Server
	xds.ini with a Flat File Directory

	25 Administering Authorization Rules using System Management Hub
	Adding a Rule
	Adding a Service
	Adding a Topic
	Adding/Modifying Users

	26 Hints for Special LDAP Server Products
	Introduction
	Hints for Microsoft Active Directory

	27 Tracing webMethods EntireX
	Table Summarizing Tracing for webMethods EntireX Components
	Tracing EntireX Broker
	Trace Output
	Related Information

	Tracing Broker Agent
	Trace Output

	Tracing Broker Stubs
	Tracing Enterprise JavaBeans
	Trace Output

	Logging Enterprise JavaBeans
	Log Output

	Tracing EntireX Java ACI
	Trace Output

	Tracing Java RPC Server
	Trace Output

	Tracing the RPC Runtime
	Trace Output
	Related Information

	Tracing the RPC Server
	Trace Output
	Related Information

	Tracing the XML/SOAP Runtime
	Enabling Tracing
	Using a Property File
	Using Trace Parameters of the Java Virtual Machine

	Disabling Tracing
	Configuring a Trace File for the XML/SOAP Listener
	Configuring a Trace File for the XML/SOAP Wrapper or the XML/SOAP RPC Server
	Trace Parameters
	Component Names

	Tracing the EntireX RPC-ACI Bridge

	28 EntireX Trace Utility
	Introduction to the EntireX Trace Utility
	Process Trace
	Using the Tool
	Output Field Options
	Error Messages

	Show Trace
	Sorting the Information
	Loading and Saving a CSV File

	Using the EntireX Trace Utility in Batch Mode
	Options
	Example

	Usage Tips
	Invalid or Incomplete Data in the Resulting CSV File
	Open the CSV File in Microsoft Excel
	Displaying and Analyzing the CSV File in Microsoft Excel
	Sorting Order

	29 Broker Shutdown Statistics
	Shutdown Statistics Output
	Table of Shutdown Statistics

	30 Command Logging in EntireX
	Introduction to Command Logging
	Overview
	Command Log Files
	Defining Filters
	Programmatically Turning on Command Logging

	Command Log Filtering using System Management Hub
	Setting up your Environment
	Adding a Filter
	Managing Filters

	Command Log Filtering using Command-line Interface etbcmd
	Setting Filters
	Deleting Filters
	Disabling and Enabling a Filter

	ACI-driven Command Logging
	Dual Command Log Files

	31 Accounting in EntireX Broker
	EntireX Accounting Data Fields
	Using Accounting under UNIX and Windows
	Broker Attribute File Settings
	Retrieving Accounting Data

	Example Uses of Accounting Data
	Chargeback
	Trend Analysis
	Tuning for Application Performance

