
webMethods EntireX

EntireX Java ACI

Version 9.5 SP1

November 2013

This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ACI-95SP1-20140628JAVA

Table of Contents

Java ACI ... v
1 Using EntireX Java ACI ... 1

Introduction ... 2
Delivered ACI Examples .. 2

2 Writing Applications - EntireX Java ACI .. 3
Introduction ... 4
Required Steps ... 4

3 Writing Advanced Applications - EntireX Java ACI ... 5
Using Compression .. 6
Using EntireX Security with Java-based EntireX Applications 7
Using Integrated Authentication Framework with Java-based EntireX
Applications ... 8
Setting Transport Methods ... 8
Tracing .. 14
Using Internationalization with Java ACI .. 15

iii

iv

Java ACI

EntireX Java ACI is a Java class library that provides access to the EntireX Broker ACI for Java
programmers. It covers the whole EntireX Broker ACI which enables you to write both client and
server applications in Java. Any of these can then interact with each other and with other
applications written in other languages on the same network using EntireX Broker. The EntireX
Java ACI also contains the framework necessary for Java RPC requests.

Introduction to the EntireX Java ACI.Using

Explains how to write basic applications for client and server.Writing Applications

Explains how to write advanced applications for client and server.Writing Advanced Applications

Related Literature

■ For a description of classes, see EntireX Java ACI. The Javadoc is also provided in PDF for your
convenience.

■ Messaging with JMS
■ EntireX Java Wrapper
■ EntireX Wrapper for Enterprise JavaBeans
■ For a description of error messages seeMessage Class 0013 - EntireX Java under Error Messages
and Codes.

■ Settting up and Administering the Broker HTTP(S) Agent in theUNIX andWindows administration
documentation.

v

vi

1 Using EntireX Java ACI

■ Introduction .. 2
■ Delivered ACI Examples ... 2

1

Introduction

EntireX Java ACI is a Java class library (Java package) that provides access to the EntireX Broker
ACI for Java programmers. You can visualize it as the Java “language binding” for the EntireX
Broker ACI. In this way, it is related to, for example, the C and Natural language interfaces. It
covers the whole Broker ACI which enables you to write applications for both client/server and
publish-and-subscribe communication models.

EntireX JavaACI comes as a single Java package: com.softwareag.entirex.aci. All of the EntireX Broker
ACI functionality is wrapped in a system of collaborating classes. Thus, it should appeal equally
well to both the experienced Java programmer and to those familiar with the EntireX Broker ACI.
The package also contains the framework for RPCs.

The class library is packaged in the entirex.jar file which can be found in the classes subdirectory
of the EntireX installation.

Since EntireX Java ACI is only a thin interface layer to communicate with EntireX Broker, little
“local” knowledge is implemented in it. All essential information will be passed to and received
from EntireX Broker itself.

Documentation of the classes consists of the documentation generated by Javadoc and the docu-
mentation of the core API shipped with the JDK. This provides quick recognition for those famil-
iar with this format.

Delivered ACI Examples

The EntireX Java ACI examples in subdirectory JavaACI of the Developer's Kit are:

■ The Client.java and Server.java sources show how to write client and server applications for non-
conversational and conversational EntireX Broker communication. The Server.java examples can
be used as a prototype forwriting arbitrary, multithreaded EntireX Broker servers. This example
also shows the usage of an attach server written in Java.

■ The ChessWhite.java and ChessBlack.java sources demonstrate the usage of units of work, persist-
ence and persistent status with the Java ACI.

■ The Publisher.java and Subscriber.java sources demonstrate the publish-and-subscribe message
model. The publisher just publishes a number of messages to a topic. All subscribers receive
themessages published to a topic. The subscriber demonstrates a non-durable subscription and
the use of the PublicationListener.

To run the examples, refer to the README.TXT delivered with the examples.

EntireX Java ACI2

Using EntireX Java ACI

2 Writing Applications - EntireX Java ACI

■ Introduction .. 4
■ Required Steps ... 4

3

Introduction

Interaction with the API occurs through instantiating objects of different classes, invoking their
methods and manipulating their inner state. Not all features are necessary for all applications,
depending on whether you are writing a client or a server application. The following is a general
list of basic steps you have to perform. For details, see the examples which are delivered as part
of EntireX, Delivered ACI Examples.

Required Steps

■ Instantiate a Broker object. This is the central object you will work with. One object instance
represents one session to an EntireX Broker on your network. If youwant to workwithmultiple
EntireX Brokers orwithmultiple sessions, create one object for each session to an EntireX Broker.

■ Use the Broker object to log on the application to EntireX Broker.
■ Instantiate a BrokerService object. If you arewriting a server application, use the BrokerService
object to register your service with the EntireX Broker.

■ Declare a BrokerMessage variable. If you want to send a message, instantiate a new
BrokerMessage object, complete it with yourmessage and send it using one of the sendmethods.
Messages received from the Broker are received in a newly created BrokerMessage object.

■ Non-conversational communication is handled by the BrokerService and BrokerMessage objects.
Use the send, sendReceive and receivemethods of BrokerService for synchronous and
asynchronous non-conversational communication.Whenwriting a server, you can use the reply
method of BrokerMessage.

■ Conversational communication is handled by the Conversation and BrokerMessage objects.
■ Unit-of-work communication is handled by the UnitofWork and BrokerMessage objects.
■ Perform all your business logic processing on the message contents.
■ When finished, end your conversations, deregister your service (if you are writing a server) and
log off from EntireX Broker.

EntireX Java ACI4

Writing Applications - EntireX Java ACI

3 Writing Advanced Applications - EntireX Java ACI

■ Using Compression ... 6
■ Using EntireX Security with Java-based EntireX Applications ... 7
■ Using Integrated Authentication Framework with Java-based EntireX Applications ... 8
■ Setting Transport Methods .. 8
■ Tracing .. 14
■ Using Internationalization with Java ACI ... 15

5

Using Compression

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) may compress the messages sent to and received from the Broker. There are two ways
to enable compression:

■ Use the method setCompressionLevel() of the Broker object.
■ Use a Broker ID with the parameter compresslevel=<value>.

Using setCompressionLevel()

Add the compression level to the method setCompressionLevel() as an integer or a string argu-
ment.

You can use the constants defined in class java.util.zip.Deflater.

If the string

■ starts with Y, compression is turned on with level 6,
■ starts with N, compression is turned off (level 0).

Permitted values are the integers 0 - 9 and the corresponding strings:

level 9BEST_COMPRESSION

level 1BEST_SPEED

level 6DEFAULT_COMPRESSION

level 8DEFLATED

level 0NO_COMPRESSION

Using Broker ID

You may append the keyword COMPRESSLEVELwith one of the values above to the Broker ID.

EntireX Java ACI6

Writing Advanced Applications - EntireX Java ACI

Examples

■ localhost:1971?compresslevel=BEST_COMPRESSION

■ localhost?poolsize=4&compresslevel=9

Both examples set the compression level to 9.

Using EntireX Security with Java-based EntireX Applications

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) which require security can use the security services offered by EntireX Security. See

■ Overview of EntireX Security in the EntireX Security documentation for a general introduction
■ EntireXSecurity in the Javadoc documentation of the Java ACI, the implementation of the
EntireX Security interface of the Java ACI.

Use the methods for security that are included in the Broker object (see Broker in the Javadoc
documentation of the Java ACI). The two security alternatives are

■ using EntireX Security
■ using your own security implementation.

To use EntireX Security

■ Call one of the following methods for a Broker object:

1. useEntireXSecurity()

2. useEntireXSecurity(int encryptionLevel)

3. useEntireXSecurity(boolean autoMode)

4. useEntireXSecurity(int encryptionLevel, boolean autoMode)

You can set the encryption level with this call and you can enable the auto mode. The encryp-
tion level allows the values ENCRYPTION_LEVEL_NONE,where themessage is not encryp-
ted, ENCRYPTION_LEVEL_BROKER, where the message is encrypted on the way to the
EntireX Broker, and ENCRYPTION_LEVEL_TARGET, where the message is encrypted the
whole way to the target. The auto mode specifies that the Broker object uses the EntireX Se-
curity as needed by the EntireX Broker. If the EntireX Broker uses security, the EntireX Security
object is used by the Broker object.

The method useEntireXSecuritymust be called before the first call of logon, which must
use a password. The security object cannot change during a session with the EntireX Broker.

7EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

To use your own security implementation

■ Implement the interface BrokerSecurity. This implementation must have an accompaning
security exit for the EntireX Broker. SeeUsing Sample Security Exits for Broker Security. Call the
methods setSecuritywith the security object and set encryption level or auto mode in the
same way as the useEntireXSecuritymethods.

An example of EntireX Security can be found in theClient.java source in the JavaACI examples.
Set the constant field SECURITY to true, support a password to the logon method and compile
the source.

Using Integrated Authentication Framework with Java-based EntireX Applic-
ations

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) which require security can use the security services offered by IAF.

The methods for IAF are included in the Broker object (see Broker in the Javadoc documentation
of the Java ACI). If the Broker is set up for IAF, the client application can get the IAF token after
logon with the method Broker.getIAFToken. The token is a byte[256] array. The content is not
visible to the client. The client can use the token as-is only and must not change it. The token re-
turned by Broker.getIAFToken can be used to authenticate the client to other products using IAF.

On the other hand, a token obtained from someother product can be usedwith Broker.setIAFToken
to authenticate with the Broker.

The client should delete the token after Broker.logoffwith Broker.setIAFToken(null).

Setting Transport Methods

■ Socket Parameters for TCP and SSL Communication
■ Using SSL
■ Using HTTP(S) Tunneling

EntireX Java ACI8

Writing Advanced Applications - EntireX Java ACI

■ Setting the Transport Timeout

Socket Parameters for TCP and SSL Communication

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) up to version 5.3.1 use one socket connection for each instance of the Broker class.

Starting with EntireX version 6.1.1, a pool of socket connections is managed by the EntireX Java
runtime.

Socket connections are

■ assigned dynamically to instances of Broker objects
■ closed automatically when they are not used for a certain period of time.

Controlling Socket Pooling

The behavior of the socket pooling can be controlled by twoparameters (poolsize and pooltimeout)
specified as part of the Broker ID. They are used for both TCP and SSL communications.

You can

■ specify the maximum number of socket connections which are kept in the socket pool
■ disable socket pooling
■ control the automatic closing of socket connections

To specify the maximum number of socket connections

■ Specify the parameter poolsize as part of the Broker ID.

If the number entered is reached, further Broker calls going through a Broker instance will
be delayed until a socket becomes available. If a multithreaded application uses blocking
sendReceive or Receive calls with a longer waiting time, the poolsize parameter must be at
least equal to the number of threads. Starting with EntireX version 7.1.1.60, the value of
entirex.timeout (in seconds) is used to terminate the wait time for free sockets. If all sockets
in the pool are in use, the calls will be delayed at the most by the period of time specified by
this timeout. Afterwards, the call returns with error code 0013 0333. This is to prevent applic-
ations from hanging up if all sockets are in use and never become available due to network
problems.

The default for poolsize is 32. The default can be changed with a Java system property. Set
the property entirex.socket.poolsize to specify a different value. Values that are not nu-
meric or less than 1 are ignored.

9EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

To disable socket pooling

■ Set the parameter poolsize (as part of the Broker ID) to "0".

The behavior is then identical to that of the pre-6.1.1 versions of EntireX.

To control the automatic closing of socket connections

■ Specify the parameter pooltimeout (as part of the Broker ID).

If a socket connection has not been used for the specified number of seconds, it will be closed
automatically.

The default for pooltimeout is 300 seconds.

Example of a maximum number of 10 socket connections and a timeout of 60 seconds:

Broker broker = new Broker("yourbroker?poolsize=10&pooltimeout=60","userID");

Using SSL

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) can use Secure Sockets Layer (SSL) or Transport Layer Security (TLS) as the transport
medium. In this section, “SSL” refers to both SSL and TLS. Java-based clients or servers are always
SSL clients. The SSL server can be either the EntireX Broker or the EntireX Broker Agent. SSL
transport will be chosen if the Broker ID starts with the string ssl://.

Example of a typical Broker ID for SSL:

Broker broker = new Broker("ssl://yourbroker:10000?trust_store=castore","userID");

If no port number is specified, port 1958 will be used as the default port. The trust_store para-
meter is mandatory. It specifies the file name of a Java keystore that must contain the list of trusted
certificate authorities for the certificate of the SSL server. If the server requests a client certificate
(the parameter verify_client=yes is defined in the configuration of the SSL server) two additional
parameters have to be specified as part of the Broker ID:

Broker broker = new ↩
Broker("ssl://yourbroker:10000?trust_store=castore&key_store=keystore&key_passwd=pwd","userID");

Again, key_store is the file name of a Java keystore. This keystore must contain the private key of
the SSL client. The password that protects the private key is specified with key_passwd. The am-
persand (&) character cannot appear in the password.

EntireX Java ACI10

Writing Advanced Applications - EntireX Java ACI

By default a check ismade that the certificate of the SSL server is issued for the hostname specified
in the Broker ID. In the example above, the common name of the subject entry in the server's cer-
tificatemust be identical to yourbroker. This checking can be disabled by specifying the parameter
verify_server=no in the Broker ID.

Using HTTP(S) Tunneling

When communicating with EntireX Broker over the internet, direct access to the EntireX Broker's
TCP/IP port is necessary. This access is often restricted by proxy servers or firewalls. Java-based
EntireX applications (including applications using classes generated by the JavaWrapper) can pass
communication data viaHTTP orHTTPS. Thismeans that a running EntireXBroker in the intranet
ismade accessible by aWeb serverwithout having to open additional TCP/IP ports on your firewall
(HTTP tunneling).

This section covers the following topics:

■ How the Communication Works
■ How to Enable HTTP Support in a Java Component
■ How to Enable HTTPS Support in a Java Component

How the Communication Works

The EntireX JavaACI is able to send and receive data via anHTTP protocol controlled by construct-
or com.softwareag.entirex.aci.Broker. SeeHow to EnableHTTPSupport in a JavaComponent.

The EntireX Java component com.softwareag.entirex.aci.TunnelServlet.class implements
a Java servlet for servlet-enabledWeb servers. It builds the bridge betweenWeb server and EntireX
Broker in the intranet.

11EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

The figure above shows how the communication works. In this scenario, a Java client program
communicates via HTTP and EntireX Broker with an EntireX server. By using a Broker ID starting
with "http://" (passing the URL of the installed HTTP(S) Agent (formerly referred to as Tunnel
Servlet)) each Broker request is sent to a Web server, which immediately processes the HTTP(S)
Agent, passes the contents to EntireX Broker, receives the answer and sends it back via HTTP. For
the two partners (client and server) it is transparent that they are communicating through the
Web. Java server programs can also communicate via HTTP if necessary.

For the configuration, see Settting up and Administering the Broker HTTP(S) Agent in the UNIX and
Windows administration documentation.

How to Enable HTTP Support in a Java Component

To enable HTTP support for a Java-based component

■ Pass the URL of your HTTP(S) Agent installation as Broker ID to your Broker objects.

For Example:

EntireX Java ACI12

Writing Advanced Applications - EntireX Java ACI

import com.softwareag.entirex.aci.Broker;

...
// "http://www.yourhost.com/servlets/tunnel" is the URL to reach your broker ↩
over HTTP

Broker broker = new Broker("http://www.yourhost.com/servlets/tunnel","userID");
...

// other code not affected
...

TheHTTP(S) Agent optionally accepts parameters as part of the URL. It is possible to define values
for Broker and log that override the corresponding values in the configuration of the HTTP(S)
Agent.

To enforce logging of the HTTP(S) Agent

■ Type, e.g. the following:

Broker broker = new ↩
Broker("http://www.yourhost.com/servlets/tunnel?log=yes","userID");

How to Enable HTTPS Support in a Java Component

To use HTTPS instead of HTTP

■ Replace "http://" by "https://" at the beginning of the Broker ID.

Using HTTPS requires a Web server with SSL support enabled. Check your Web server's
documentation for information on how to configure SSL support.

Many Java implementations do not support HTTPS. If this is the case, your application will
receive a BrokerException with error code 00130325.

Setting the Transport Timeout

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) can set a transport timeout to abort socket connections when not receiving any reply.

To specify a TCP or SSL transport timeout

1 Use the system property entirex.timeout.

The default is 20 seconds.

13EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

A numeric value of 1 or greater indicates the transport timeout in seconds.

Setting the value to 0 results in a potentially infinite wait (i.e. until the Broker returns a reply
or the socket connection is closed).

If the Broker call is a send call with wait or a receive call, the transport timeout is added to
the Broker wait time specified as part of the Broker call.

The value of entirex.timeout is used as a timeout for waiting for free sockets in the socket
pools. If the application does not get a free socket during this timeout period, an exception
will be thrown.

2 Use the static method Broker.setTransportTimeout(int timeout) in your application.

Thismethod sets the socket timeout value in seconds. It is used for TCP/IP, but notwithHTTP.
The timeout value is used for new sockets, it does not change the timeout for sockets in use.

To query the current setting, use the method Broker.getTransportTimeout().

Tracing

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) can use tracing to log program flow and locate problems.

To specify the trace level

■ Use the setTrace(int) of class Broker in the Javadoc documentation of the Java ACI.

Or:

Use the Java system property entirex.trace. The system property uses the same values as
the setTracemethod call.

ExplanationTrace level

no tracing, default.0

trace all Broker calls and other major actions1

dump the send and receive buffer2

dump the buffers sent to the Broker and received from the Broker3

EntireX Java ACI14

Writing Advanced Applications - EntireX Java ACI

Using Internationalization with Java ACI

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

EntireX Java components use the codepage configured for the Java virtualmachine (JVM) to convert
the Unicode (UTF-16) representation within Java to the multibyte or single-byte encoding sent to
or received from the broker by default. This codepage is also transferred as part of the locale string
to tell the broker the encoding of the data if communicatingwith a broker version 7.2.x and above.

To change the default, see your JVM documentation. On some JVM implementations, it can be
changed with the file.encoding property. On some UNIX implementations, it can be changed
with the LANG environment variable.

Which encodings are valid depends on the version of your JVM. For a list of valid encodings, see
Supported Encodings in your Java documentation. The encodingmust also be a supported codepage
of the broker, depending on the internationalization approach.

With the setCharacterEncoding(enc)method of the BrokerService in the Javadoc documentation
of the Java ACI you can

■ override the encoding used for the payload sent to / received from the broker. Instead of using
the default JVM encoding, the given encoding is used. Using this method does not change the
default encoding of your JVM.

■ force a locale string to be sent if communicating with broker version 7.1.x and below. Use the
value LOCAL to send the default encoding of the JVM to the broker. See Using the Abstract
Codepage Name LOCAL under Locale String Mapping in the internationalization documentation.

15EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

16

	EntireX Java ACI
	Table of Contents
	Java ACI
	1 Using EntireX Java ACI
	Introduction
	Delivered ACI Examples

	2 Writing Applications - EntireX Java ACI
	Introduction
	Required Steps

	3 Writing Advanced Applications - EntireX Java ACI
	Using Compression
	Using setCompressionLevel()
	Using Broker ID
	Examples

	Using EntireX Security with Java-based EntireX Applications
	Using Integrated Authentication Framework with Java-based EntireX Applications
	Setting Transport Methods
	Socket Parameters for TCP and SSL Communication
	Controlling Socket Pooling

	Using SSL
	Using HTTP(S) Tunneling
	How the Communication Works
	How to Enable HTTP Support in a Java Component
	How to Enable HTTPS Support in a Java Component

	Setting the Transport Timeout

	Tracing
	Using Internationalization with Java ACI

