
webMethods EntireX

ACI for C

Version 9.5 SP1

November 2013

This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ACI-95SP1-20140628C

Table of Contents

1 EntireX Broker ACI for C .. 1
Call Format ... 2
Broker ACI Control Block Layout .. 3
Broker ACI Control Block Definition ... 8
ACI Examples and Header Files .. 16
Creating a C User Application under IBM i .. 18

2 Writing Applications: Publish and Subscribe ... 21
Overview of Communication Models .. 22
Basic Concepts of Publish and Subscribe ... 23
API-TYPE and API-VERSION ... 26
LOGON and LOGOFF ... 27
USER-ID and TOKEN .. 27
Control Block Fields and Verbs .. 29
Implementation of Publisher and Subscriber Components 32
Blocked and Non-blocked Broker Calls ... 34
Timeout Parameters ... 36
Configuration Prerequisites for Durable Subscriptions .. 37
Data Compression .. 38
Error Handling ... 39
Using Internationalization ... 41
Using Send and Receive Buffers .. 43
Tracing .. 45
Transport Methods ... 47
Variable-length Error Text .. 50
Programmatically Turning on Command Logging ... 51
IAF Authentication ... 51

3 Writing Applications: Client and Server ... 53
Overview of Communication Models .. 55
Basic Concepts of Client and Server .. 55
API-TYPE and API-VERSION ... 57
LOGON and LOGOFF ... 57
USER-ID and TOKEN .. 58
Control Block Fields and Verbs .. 60
Implementation of Client and Server Components ... 63
Blocked and Non-blocked Broker Calls ... 64
Conversational and Non-conversational Mode ... 67
Managing Conversation Contexts .. 70
Delayed SEND Function .. 73
Timeout Parameters ... 74
Data Compression .. 76
Error Handling ... 77
Using Internationalization ... 80
Using Send and Receive Buffers .. 82

iii

Tracing .. 84
Transport Methods ... 86
Variable-length Error Text .. 89
Programmatically Turning on Command Logging ... 90
IAF Authentication ... 90

4 Writing Applications: Units of Work ... 91
What is a Unit of Work? ... 92
Control Block Fields and Verbs .. 93
Client/Server Programming for Units of Work .. 96
Client/Server Programming for a Persistent Unit of Work 98
Client/Server Restart after System Failure ... 100

5 Writing Applications: Attach Server ... 101
Implementing an Attach Server ... 102
Implementing Servers started by an Attach Server ... 105

6 Writing Applications: Command and Information Services 107
Accessing the Services .. 108
Security with Command and Information Services ... 113
Examples of Command Service .. 115

7 Writing Applications using EntireX Security .. 117
General Programming Considerations .. 118
Authentication .. 120
Authorization ... 124
Encryption .. 125

8 Broker ACI Fields .. 129
Field Formats .. 130
Field Descriptions ... 130

9 Broker ACI Functions .. 143
Overview Table ... 145
Function Descriptions .. 146
Option Descriptions ... 155
ACI Field/Function Reference Table .. 157

10 Broker UOW Status Transition .. 161
Initial UOW Status: NULL | Received ... 162
Initial UOW Status: Accepted | Delivered ... 163
Initial UOW Status: Processed | Timedout .. 164
Initial UOW Status: Cancelled | Discarded | Backedout 165
Legend for UOW Status Transition Table .. 166
Table of Column Abbreviations ... 166

11 Broker CIS Data Structures .. 167
Command Request Structure ... 169
Command Request Parameter Combinations .. 172
Common Header Structure for Response Data .. 176
Information Request Structure ... 178
Information Reply Structures ... 188

ACI for Civ

ACI for C

1 EntireX Broker ACI for C

■ Call Format .. 2
■ Broker ACI Control Block Layout .. 3
■ Broker ACI Control Block Definition .. 8
■ ACI Examples and Header Files ... 16
■ Creating a C User Application under IBM i .. 18

1

ACI-based programming is the base technology of EntireX. It uses a traditional Application Pro-
gramming Interface (API) approach for conducting client/server and peer-to-peer dialog between
distributed processes.

This chapter describes the EntireX Broker ACI from the perspective of the programming language
C.

Call Format

Calls to EntireX Broker use the following arguments:

1. The ACI control block is the first argument.

2. The send buffer is the second argument.

3. The receive buffer is the third argument.

4. The error text buffer is the last argument. It can provide a short text of the error code, if desired.
Sufficient buffer length must be supplied to allow the standard 40-byte long message to be re-
turned by EntireX Broker. For ACI version 9 and above, the error text buffer can be greater than
40 bytes as specified in the ACI field ERRTEXT-LENGTH.

You can set the send buffer and the receive buffer to null if they are not required by the selected
EntireX Broker function.

The API is called with a statement such as the following:

■ Under all platforms and with all Broker stubs see the prototype. For example:

int broker (ETBCB *, char *, char *, char *);
rc = broker(pCb, pSBuf, pRBuf, pEBuf);

■ additionally, under z/OS, you can invoke CICSETB under Administration of Broker Stubs under
z/OS, using the following EXEC CICS LINK command. The length of the COMMAREA is always
24. For example:

EXEC CICS LINK PROGRAM('CICSETB') COMMAREA(commarea) LENGTH(24)

The COMMAREA must specify an area in working storage with the following information:
■ 8-byte character field "ETBCOMM*"
■ one full word containing the address of the EntireX Broker control block
■ one full word containing the address of send buffer
■ one full word containing the address of receive buffer
■ one full word containing the address of error text buffer

ACI for C2

EntireX Broker ACI for C

If the Broker stub is used as a function, the stub returns the last four bytes of the ERROR-CODE field
in the EntireX Broker control block, i.e. the error number.

If 0 (zeros) are returned in the ERROR-CODE field in all positions of the character array, the operation
has been performed successfully. However, function results other than 0 (zeros) in all positions
do not necessarily indicate an error. See Error Handling underWriting Applications: Client and
Server | Publish and Subscribe in the ACI Programming documentation.

Broker ACI Control Block Layout

The following table shows the Broker fields in order of the physical layout of the Broker ACI
control block and provides a brief description of each field. The fields are described in more detail
under Broker ACI Fields in the ACI Programming documentation. See the actual layout for C in
Broker ACI Control Block Definition below.

Note: Header files and examples are provided as models if you want to write your own
ACI appliations (see ACI Examples and Header Files for location). The list below does not
include unused fields that are for internal purposes only. Check the included header files
for the full layout.

Notes
API
Vers.

Description /
Related InformationC DefinitionBroker ACI Field

1See API-TYPE
and

API typeETB_BYTE api_typeAPI-TYPE

1API version.ETB_BYTE api_versionAPI-VERSION
API-VERSION
underWriting
Applications:
Client and
Server | Publish
and Subscribe in
the ACI
Programming
documentation.

1SeeBroker ACI Fields in theACI
Programming documentation.

ETB_BYTE functionFUNCTION

1See OPTION under Broker ACI
Fields.

ETB_BYTE optionOPTION

11Reserved for future use.ETB_CHAR reserved1[16]

1See Using Send
and Receive

Send lengthETB_LONG send_lengthSEND-LENGTH

1Receive
length.

ETB_LONG receive_lengthRECEIVE-LENGTH
Buffers under
Writing

1Return
length.

ETB_LONG return_lengthRETURN-LENGTH Applications:

3ACI for C

EntireX Broker ACI for C

Notes
API
Vers.

Description /
Related InformationC DefinitionBroker ACI Field

Client and
Server | Publish
and Subscribe in
the ACI
Programming
documentation.

1Error text length.ETB_LONG errtext_lengthERRTEXT-LENGTH

1Broker ID. SeeUsing the Broker
ID in Applications in the ACI
Programming documentation.

ETB_CHAR broker_id[S_BROKER_ID]BROKER-ID

3, 51Service. SeeControl Block Fields
and Verbs underWriting

ETB_CHAR
server_class[S_SERVER-CLASS]
ETB_CHAR
server_name[S_SERVER-NAME]
ETB_CHAR service[S_SERVICE]

SERVER-CLASS
SERVER-NAME
SERVICE Applications: Client and Server

in the EntireX Broker ACI
Programming documentation.

1User ID. See USER-ID and
TOKEN underWriting

ETB_CHAR user_id[S_USER_ID]USER-ID

Applications: Client and Server |
Publish and Subscribe in theACI
Programming documentation.

4,51Password. See Authentication
underWriting Applications

ETB_CHAR password[S_PASSWORD]PASSWORD

using EntireX Security in the
ACI Programming
documentation.

3, 51Reconnection token. See
USER-ID and TOKEN under

ETB_CHAR token[S_TOKEN]TOKEN

Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation.

4, 51Security token. SeeWriting
Applications using EntireX

ETB_CHAR
security_token[S_securityToken]

SECURITY-TOKEN

Security in the ACI
Programming documentation.

3, 51Conversation ID. See
Conversational and

ETB_CHAR conv_id[S_CONV_ID]CONV-ID

Non-conversationalMode under
Writing Applications: Client and
Server in the EntireX Broker
ACI Programming
documentation.

3, 51Wait value. See Blocked and
Non-blocked Broker Calls under

ETB_CHAR wait[S_WAIT]WAIT

ACI for C4

EntireX Broker ACI for C

Notes
API
Vers.

Description /
Related InformationC DefinitionBroker ACI Field

Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation.

1Error code. See Error Handling
underWriting Applications:

ETB_CHAR
error_code[S_ERROR_CODE]

ERROR-CODE

Client and Server | Publish and
Subscribe in the ACI
Programming documentation.

3, 51Environment. See Using
Internationalization under

ETB_CHAR
environment[S_ENVIRONMENT]

ENVIRONMENT

Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation.

2Attempted delivery count. See
Writing Applications: Units of

ETB_LONG adcountADCOUNT

Work in the ACI Programming
documentation.

3, 52Conversation User Data. See
Writing Applications: Client and

ETB_CHAR user_data[S_USERDATA]USER-DATA

Server in the EntireX Broker
ACI Programming
documentation.

1, 3,
5

2Reserved for future use.ETB_CHAR ptime[S_PTIME]

4, 52New password. SeeWriting
Applications using EntireX

ETB_CHAR newpassword[S_PASSWORD]NEWPASSWORD

Security in the ACI
Programming documentation.

2Client User ID. See Client User
ID underWriting Applications

ETB_CHAR client_uid[S_CLIENTUID]CLIENT-UID

using EntireX Security in the
ACI Programming
documentation.

2Conversation status. See
Conversational and

ETB_BYTE conv_statCONV-STAT

Non-conversationalMode under
Writing Applications: Client and
Server in the EntireX Broker
ACI Programming
documentation.

2Persistence or non-persistence
of a UOW. SeeWriting

ETB_BYTE storeSTORE

5ACI for C

EntireX Broker ACI for C

Notes
API
Vers.

Description /
Related InformationC DefinitionBroker ACI Field

Applications: Units of Work in
the ACI Programming
documentation.

12Reserved for future use.ETB_BYTE status

3, 53SeeWriting
Applications:

UOW Status.ETB_BYTE uowStatusUOWSTATUS

3, 53UOW
lifetime.

ETB_CHAR uowTime[S_WAIT]UWTIME
Units of Work in
the ACI

3, 53UOWunique
identifier.

ETB_CHAR uowID[S_UOW_ID]UOWID Programming
documentation.

3User status.ETB_CHAR userStatus[S_U_STATUS]USTATUS

23Multiplier for
persistent

ETB_BYTE uowStatusPersistUOW-STATUS-PERSIST

status
lifetime.

13Reserved for future use.ETB_CHAR reserved2[3]

4Locale string. To be used to
override or provide codepages.

ETB_CHAR locale_string[S_LOCALE]LOCALE-STRING

See Using Internationalization
underWriting Applications:
Client and Server | Publish and
Subscribe in the ACI
Programming documentation.

24Data architecture. See ICU
Conversion under Introduction
to Internationalization.

ETB_BYTE data_archDATA-ARCH

6SeeWriting
Applications

Override
Broker

ETB_CHAR forceLogonFORCE-LOGON

using EntireXattribute
AUTOLOGON. Security in the

ACI 26Encryption
level.

ETB_BYTE encryptionLevelENCRYPTION-LEVEL
Programming
documentation

7Kernel
security.

ETB_CHAR kernelsecurityKERNELSECURITY

7Commit time. SeeWriting
Applications: Units of Work in

ETB_CHAR
commitTime[S_COMMIT_TIME]

COMMITTIME

the ACI Programming
documentation.

7Compression level. See Data
Compression underWriting

ETB_CHAR compressCOMPRESSLEVEL

Applications: Client and Server |
Publish and Subscribe in theACI
Programming documentation.

ACI for C6

EntireX Broker ACI for C

Notes
API
Vers.

Description /
Related InformationC DefinitionBroker ACI Field

18Reserved for future use.ETB_BYTE reserved3[2]

18Reserved for future use.ETB_LONG reserved4

8Add value for persistent status
lifetime. See broker attribute
UWSTAT-LIFETIME.

ETB_CHAR uwStatLifeTime[S_WAIT]UWSTAT-LIFETIME

8SeeWriting
Applications:

Topic name
for publish

ETB_CHAR topic[S_TOPIC]TOPIC

Publish andand
subscribe. Subscribe in the

ACI 8Publication
ID for

ETB_CHAR
publicationID[S_PUBLICATION_ID]

PUBLICATION-ID
Programming
documentation.publish and

subscribe.

9Returns to a server application
the unique instance number of

ETB_LONG client_idCLIENT-ID

a client application. It is
returned on receipt of a
message (RECEIVE or SEND
with WAIT).

9Log the current command. See
also Programmatically Turning

ETB_BYTE logCommandLOG-COMMAND

on Command Logging under
Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation

9Indicates the credentials type
to be used to authenticate a

ETB_BYTE credentialsTypeCREDENTIALS-TYPE

user. The default is to use user
ID and password. Enter "1" to
specify IAF authentication. See
also IAF Authentication under
Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation.

10Internal Software AG field.ETB_LONG varlist_offsetVARLIST-OFFSET

10See
LONG-BROKER-ID-LENGTH.

ETB_LONG LONG-BROKER-ID-LENGTHLONG-BROKER-ID-LENGTH

Notes:

1. Reserved for future use.

7ACI for C

EntireX Broker ACI for C

2. You must set this field to a low value (0x00) if you do not intend to use it.

3. The field is transmitted up to the first blank or low value (0x00). It is not transmitted if the first
character is a blank or a low value (0x00).

4. All trailing low values (0x00) are truncated. The field is not transmitted if the entire field is a
low value (0x00).

5. If fields are not needed for a specific command function, suppress their transmission by initial-
izing them to blanks or low value (0x00).

Broker ACI Control Block Definition

TheDeveloper's Kit provides a header filewith theACI control block definition. SeeACI Examples
and Header Files for where it is provided on your platform.

/*

* Product : EntireX Broker
* Copyright : (c) Copyright Software AG 1997 - 2012. All rights reserved.
* Version : 9.0
* File : ETBCDEF.H
* File Version : $Revision: 1.2 $
* Description : C language ACI control block definitions.
*
*/

#ifndef ETBCDEF__H_
#define ETBCDEF__H_

#ifdef __cplusplus
extern "C" {
#endif

/* --- Type Definitions --- */

#define ETB_BYTE unsigned char /* 1 byte unsigned integer */
#define ETB_CHAR char /* 1 byte character */
#define ETB_LONG int /* 4 byte signed integer */
#define ETB_SHORT short /* 2 byte signed integer */

/* --- EntireX Broker API Type Constants (api_type) ----------------- */

#define API_TYPE1 ((ETB_BYTE) 0x01)
#define API_TYPE2 ((ETB_BYTE) 0x02)
#define API_TYPE4 ((ETB_BYTE) 0x04)
#define API_TYPE8 ((ETB_BYTE) 0x08)

ACI for C8

EntireX Broker ACI for C

/* --- EntireX Broker API Version Constants (api_version) ----------- */

#define API_VERS1 ((ETB_BYTE) 1)
#define API_VERS2 ((ETB_BYTE) 2)
#define API_VERS3 ((ETB_BYTE) 3)
#define API_VERS4 ((ETB_BYTE) 4)
#define API_VERS5 ((ETB_BYTE) 5)
#define API_VERS6 ((ETB_BYTE) 6)
#define API_VERS7 ((ETB_BYTE) 7)
#define API_VERS8 ((ETB_BYTE) 8)
#define API_VERS9 ((ETB_BYTE) 9)
#define API_VERS10 ((ETB_BYTE) 10)
#define API_VERS_HIGHEST API_VERS10

/* --- EntireX Broker API API Function Constants (function) --------- */

#define FCT_SEND ((ETB_BYTE) 1)
#define FCT_RECEIVE ((ETB_BYTE) 2)
#define FCT_UNDO ((ETB_BYTE) 4)
#define FCT_EOC ((ETB_BYTE) 5)
#define FCT_REGISTER ((ETB_BYTE) 6)
#define FCT_DEREGISTER ((ETB_BYTE) 7)
#define FCT_VERSION ((ETB_BYTE) 8)
#define FCT_LOGON ((ETB_BYTE) 9)
#define FCT_LOGOFF ((ETB_BYTE) 10)
#define FCT_SET ((ETB_BYTE) 11)
#define FCT_GET ((ETB_BYTE) 12)
#define FCT_SYNCPOINT ((ETB_BYTE) 13)
#define FCT_KERNELVERS ((ETB_BYTE) 14)
#define FCT_LOCTRANS ((ETB_BYTE) 15)
#define FCT_SETSSLPARMS ((ETB_BYTE) 16)
#define FCT_SEND_PUBLICATION ((ETB_BYTE) 17)
#define FCT_RECEIVE_PUBLICATION ((ETB_BYTE) 18)
#define FCT_SUBSCRIBE ((ETB_BYTE) 19)
#define FCT_UNSUBSCRIBE ((ETB_BYTE) 20)
#define FCT_CONTROL_PUBLICATION ((ETB_BYTE) 21)
#define FCT_REPLY_ERROR ((ETB_BYTE) 22)

/* --- EntireX Broker API Option Constants (option) ----------------- */

#define OPT_OFF ((ETB_BYTE) 0)
#define OPT_MSG ((ETB_BYTE) 1)
#define OPT_HOLD ((ETB_BYTE) 2)
#define OPT_IMMED ((ETB_BYTE) 3)
#define OPT_QUIESCE ((ETB_BYTE) 4)
#define OPT_EOC ((ETB_BYTE) 5)
#define OPT_CANCEL ((ETB_BYTE) 6)
#define OPT_LAST ((ETB_BYTE) 7)
#define OPT_NEXT ((ETB_BYTE) 8)
#define OPT_PREVIEW ((ETB_BYTE) 9)
#define OPT_COMMIT ((ETB_BYTE) 10)
#define OPT_BACKOUT ((ETB_BYTE) 11)

9ACI for C

EntireX Broker ACI for C

#define OPT_SYNC ((ETB_BYTE) 12)
#define OPT_ATTACH ((ETB_BYTE) 13)
#define OPT_DELETE ((ETB_BYTE) 14)
#define OPT_EOCCANCEL ((ETB_BYTE) 15)
#define OPT_QUERY ((ETB_BYTE) 16)
#define OPT_SETUSTATUS ((ETB_BYTE) 17)
#define OPT_ANY ((ETB_BYTE) 18)
#define OPT_TERMINATE ((ETB_BYTE) 19)
#define OPT_DURABLE ((ETB_BYTE) 20)
#define OPT_CHECKSERVICE ((ETB_BYTE) 21)

/* --- EntireX Broker Environment Constants (environment) ----------- */

#define ETB_ENVIRONMENT_NO_CONVERSION "NONE"

/* --- EntireX Broker Conversation Status Constants (conv_stat) ----- */

#define CONVSTAT_NEW ((ETB_BYTE) 1)
#define CONVSTAT_OLD ((ETB_BYTE) 2)
#define CONVSTAT_NONE ((ETB_BYTE) 3)

/* --- EntireX Broker Store Constants (store) ----------------------- */

#define STORE_OFF ((ETB_BYTE) 1)
#define STORE_BROKER ((ETB_BYTE) 2)

/* --- EntireX Broker Status Constants (status) --------------------- */

#define STAT_OFF ((ETB_BYTE) 1)
#define STAT_STORED ((ETB_BYTE) 2)
#define STAT_DELIVERY_ATTEMP ((ETB_BYTE) 3)
#define STAT_DELIVERED ((ETB_BYTE) 4)
#define STAT_PROCESSED ((ETB_BYTE) 5)
#define STAT_DEAD ((ETB_BYTE) 6)

/* --- EntireX Broker UOW Status Constants (uowStatus) -------------- */

#define RECV_NONE ((ETB_BYTE) 0)
#define RECEIVED ((ETB_BYTE) 1)
#define ACCEPTED ((ETB_BYTE) 2)
#define DELIVERED ((ETB_BYTE) 3)
#define BACKEDOUT ((ETB_BYTE) 4)
#define PROCESSED ((ETB_BYTE) 5)
#define CANCELLED ((ETB_BYTE) 6)
#define TIMEOUT ((ETB_BYTE) 7)
#define DISCARDED ((ETB_BYTE) 8)
#define RECV_FIRST ((ETB_BYTE) 9)
#define RECV_MIDDLE ((ETB_BYTE) 10)
#define RECV_LAST ((ETB_BYTE) 11)
#define RECV_ONLY ((ETB_BYTE) 12)

/* --- EntireX Broker Locale String Constants (locale_string) ------- */

ACI for C10

EntireX Broker ACI for C

#define ETB_CODEPAGE_USE_PLATFORM_DEFAULT "LOCAL"

/* --- EntireX Broker Architecture Constants (data_arch) ------------ */

#define ACODE_HIGH_ASCII_IBM ((ETB_BYTE) 1)
#define ACODE_LOW__ASCII_IBM ((ETB_BYTE) 2)
#define ACODE_HIGH_EBCDIC_IBM ((ETB_BYTE) 3)
#define ACODE_LOW__EBCDIC_IBM ((ETB_BYTE) 4)
#define ACODE_HIGH_ASCII_VAX ((ETB_BYTE) 5)
#define ACODE_LOW__ASCII_VAX ((ETB_BYTE) 6)
#define ACODE_HIGH_EBCDIC_VAX ((ETB_BYTE) 7)
#define ACODE_LOW__EBCDIC_VAX ((ETB_BYTE) 8)
#define ACODE_HIGH_ASCII_IEEE ((ETB_BYTE) 9)
#define ACODE_LOW__ASCII_IEEE ((ETB_BYTE) 10)
#define ACODE_HIGH_EBCDIC_IEEE ((ETB_BYTE) 11)
#define ACODE_LOW__EBCDIC_IEEE ((ETB_BYTE) 12)
#define ACODE_HIGHEST_VALUE ((ETB_BYTE) 12)

/* --- EntireX Broker Force Logon Constants (forceLogon) ------------ */

#define FORCE_LOGON_NO ((ETB_CHAR) 'N')
#define FORCE_LOGON_YES ((ETB_CHAR) 'Y')
#define FORCE_LOGON_S ((ETB_CHAR) 'S')

/* --- EntireX Broker Encryption Level Constants (encryptionLevel) -- */

#define ENCLEVEL_NONE ((ETB_BYTE) 0)
#define ENCLEVEL_TO_BROKER ((ETB_BYTE) 1)
#define ENCLEVEL_TO_TARGET ((ETB_BYTE) 2)

/* --- EntireX Broker Kernel Security Constants (kernelSecurity) ---- */

#define KERNEL_SECURITY_NO ((ETB_CHAR) 'N')
#define KERNEL_SECURITY_YES ((ETB_CHAR) 'Y')
#define KERNEL_SECURITY_USER ((ETB_CHAR) 'U')
#define KERNEL_SECURITY_LIGHT ((ETB_CHAR) 'L')

/* --- EntireX Broker Compression Level Constants (compress) -------- */

#define COMPRESS_LEVEL_0 ((ETB_CHAR) '0')
#define COMPRESS_LEVEL_1 ((ETB_CHAR) '1')
#define COMPRESS_LEVEL_2 ((ETB_CHAR) '2')
#define COMPRESS_LEVEL_3 ((ETB_CHAR) '3')
#define COMPRESS_LEVEL_4 ((ETB_CHAR) '4')
#define COMPRESS_LEVEL_5 ((ETB_CHAR) '5')
#define COMPRESS_LEVEL_6 ((ETB_CHAR) '6')
#define COMPRESS_LEVEL_7 ((ETB_CHAR) '7')
#define COMPRESS_LEVEL_8 ((ETB_CHAR) '8')
#define COMPRESS_LEVEL_9 ((ETB_CHAR) '9')
#define COMPRESS_LEVEL_NO ((ETB_CHAR) 'N')
#define COMPRESS_LEVEL_YES ((ETB_CHAR) 'Y')

11ACI for C

EntireX Broker ACI for C

/* --- EntireX Broker Credentials Type Constants (credentialsType) -- */

#define CREDENTIALS_TYPE_UID_PWD ((ETB_BYTE) 0)
#define CREDENTIALS_TYPE_IAF ((ETB_BYTE) 1)

/*--*/
/* The first 4 bytes of the first reserved field (reserved) can be */
/* used to specify a stub trace level */
/*--*/

#define STUBLOG_EYECATCHER_ARRAY 'T', 'L', '='
#define STUBLOG_OFF '0'
#define STUBLOG_LEVEL0 STUBLOG_OFF
#define STUBLOG_LEVEL1 '1'
#define STUBLOG_LEVEL2 '2'
#define STUBLOG_LEVEL3 '3'
#define STUBLOG_LEVEL4 '4'

/* --- EntireX Broker API Size of fields ---------------------------- */

#define S_ADAPTERR ((ETB_CHAR) 8)
#define S_APPLICATION_NAME ((ETB_CHAR) 64)
#define S_APPLICATION_TYPE ((ETB_CHAR) 8)
#define S_BROKER_ID ((ETB_CHAR) 32)
#define S_CLIENTUID ((ETB_CHAR) 32)
#define S_COMMIT_TIME ((ETB_CHAR) 17)
#define S_CONV_ID ((ETB_CHAR) 16)
#define S_ENVIRONMENT ((ETB_CHAR) 32)
#define S_ERROR_CODE ((ETB_CHAR) 8)
#define S_ERROR_CLASS ((ETB_CHAR) 4)
#define S_ERROR_NUMBER ((ETB_CHAR) 4)
#define S_LOCALE ((ETB_CHAR) 40)
#define S_MSGID ((ETB_CHAR) 32)
#define S_MSGTYPE ((ETB_CHAR) 16)
#define S_NODENAME ((ETB_CHAR) 32)
#define S_PASSWORD ((ETB_CHAR) 32)
#define S_PLATFORM ((ETB_CHAR) 8)
#define S_PRODUCT_VERSION ((ETB_CHAR) 16)
#define S_PTIME ((ETB_CHAR) 8)
#define S_PUBLICATION_ID ((ETB_CHAR) 16)
#define S_PUID ((ETB_CHAR) 28)
#define S_SECURITY_TOKEN ((ETB_CHAR) 32)
#define S_SERVER_CLASS ((ETB_CHAR) 32)
#define S_SERVER_NAME ((ETB_CHAR) 32)
#define S_SERVICE ((ETB_CHAR) 32)
#define S_T_NAME ((ETB_CHAR) 8)
#define S_TOKEN ((ETB_CHAR) 32)
#define S_TOPIC ((ETB_CHAR) 96)
#define S_TXT ((ETB_CHAR) 40)
#define S_U_STATUS ((ETB_CHAR) 32)
#define S_UOW_ID ((ETB_CHAR) 16)

ACI for C12

EntireX Broker ACI for C

#define S_USER_ID ((ETB_CHAR) 32)
#define S_USRDATA ((ETB_CHAR) 16)
#define S_VERS ((ETB_CHAR) 8)
#define S_WAIT ((ETB_CHAR) 8)
#define S_BROKER_URL ((ETB_SHORT) 512)

/*--*/
/* ETBCB: EntireX Broker API Control Block Definition */
/* (The current size is 880 bytes) */
/*--*/

typedef struct
{

ETB_BYTE api_type; /* v1: Type of ETBCB */
ETB_BYTE api_version; /* v1: For compatibility */
ETB_BYTE function; /* v1: Function */
ETB_BYTE option; /* v1: Option */
ETB_CHAR reserved[16]; /* v1: Reserved for future use */
ETB_LONG send_length; /* v1: Length of data to send */
ETB_LONG receive_length; /* v1: Maximum receive length */
ETB_LONG return_length; /* v1: Length of received data */
ETB_LONG errtext_length; /* v1: Errortext buffer length */
ETB_CHAR broker_id[S_BROKER_ID]; /* v1: Target broker id */
ETB_CHAR server_class[S_SERVER_CLASS]; /* v1: Part of service name */
ETB_CHAR server_name[S_SERVER_NAME]; /* v1: Part of service name */
ETB_CHAR service[S_SERVICE]; /* v1: Part of service name */
ETB_CHAR user_id[S_USER_ID]; /* v1: User id of caller */
ETB_CHAR password[S_PASSWORD]; /* v1: Password of caller */
ETB_CHAR token[S_TOKEN]; /* v1: Special purposes */
ETB_CHAR security_token[S_SECURITY_TOKEN];/* v1: Security purposes */
ETB_CHAR conv_id[S_CONV_ID]; /* v1: Conversational/non-conv. */
ETB_CHAR wait[S_WAIT]; /* v1: Blocked/non-blocked */
ETB_CHAR error_code[S_ERROR_CODE]; /* v1: Error class/number */
ETB_CHAR environment[S_ENVIRONMENT]; /* v1: Translation purposes */
ETB_LONG adcount; /* v2: Attempted deliv. count */
ETB_CHAR user_data[S_USRDATA]; /* v2: User data field */
ETB_CHAR msg_id[S_MSGID]; /* v2: Not used by Broker */
ETB_CHAR msg_type[S_MSGTYPE]; /* v2: Not used by Broker */
ETB_CHAR ptime[S_PTIME]; /* v2: Not used by Broker */
ETB_CHAR newpassword[S_PASSWORD]; /* v2: New password of caller */
ETB_CHAR adapt_err[S_ADAPTERR]; /* v2: Adapter error */
ETB_CHAR client_uid[S_CLIENTUID]; /* v2: Userid for security */
ETB_BYTE conv_stat; /* v2: Conversation status */
ETB_BYTE store; /* v2: Flag for saving data */
ETB_BYTE status; /* v2: Not used by Broker */
ETB_BYTE uowStatus; /* v2: UOW's status */
ETB_CHAR uowTime[S_WAIT]; /* v3: Lifetime of UOW in secs */
ETB_CHAR uowID[S_UOW_ID]; /* v3: UOW ID */
ETB_CHAR userStatus[S_U_STATUS]; /* v3: User Status */
ETB_BYTE uowStatusPersist; /* v3: UOW Status persist flag */
ETB_CHAR reserved2[3]; /* v3: Alignment */
ETB_CHAR locale_string[S_LOCALE]; /* v4: Callers set_locale (ECS) */

13ACI for C

EntireX Broker ACI for C

ETB_BYTE data_arch; /* v4: For future use */
ETB_CHAR forceLogon; /* v6: Force logon */
ETB_BYTE encryptionLevel; /* v6: End-to-end encryption */
ETB_CHAR kernelsecurity; /* v7: Security indicator */
ETB_CHAR commitTime[S_COMMIT_TIME]; /* v7: UOW commit time */
ETB_CHAR compress; /* v7: Compression level */
ETB_BYTE reserved3[2]; /* v7: Alignment */
ETB_LONG reserved4; /* v7: Reserved for future use */
ETB_CHAR uwStatLifeTime[S_WAIT]; /* v8: UowStatusLifetime:adder */
ETB_CHAR topic[S_TOPIC]; /* v8: Topic name */
ETB_CHAR publicationID[S_PUBLICATION_ID]; /* v8: Publication ID */
ETB_CHAR partner_broker_id[S_BROKER_ID]; /* v9: Partner broker id */
ETB_LONG reserved_etbcb_v73_1; /* v9: Reserved for future use */
ETB_LONG reserved_etbcb_v73_2; /* v9: Reserved for future use */
ETB_LONG reserved_etbcb_v73_3; /* v9: Reserved for future use */
ETB_LONG client_id; /* v9: Unique client identifier */
ETB_CHAR reserved_etbcb_v73_4[32]; /* v9: Reserved for future use */
ETB_BYTE logCommand; /* v9: Broker command logging */
ETB_BYTE credentialsType; /* v9: Credentials type */
ETB_CHAR reserved_etbcb_v73_5[32]; /* v9: Reserved for future use */
ETB_BYTE reserved5[2]; /* v9: Alignment */
ETB_LONG varlist_offset; /*v10: Variable list offset */
ETB_LONG long_broker_id_length; /*v10: Length long broker id */

} ETBCB;

/*--*/
/* ATMCB: Attach Manager Control Block */
/*--*/

typedef struct
{

ETB_SHORT atm_version; /* Version of structure */
ETB_SHORT atm_NotUsed; /* Alignment */
ETB_LONG atm_nAttach; /* # of failed Server lookups */
ETB_LONG atm_nServer; /* # of Registered Servers */
ETB_LONG atm_nPendConv; /* # of Pending Conversations */
ETB_LONG atm_nActvConv; /* # of Active Conversations */
ETB_CHAR atm_server_class[S_SERVER_CLASS];/* Class to attach */
ETB_CHAR atm_server_name[S_SERVER_NAME]; /* Server name to attach */
ETB_CHAR atm_service[S_SERVICE]; /* Service name to attach */

} ETB_ATMCB;

/* --------------- EntireX Broker API ------------------------------- */

#if((__MVS__ && (defined(__IBMC__) || defined(__IBMCPP__))) || __VSE__)
#pragma map(broker, "BROKER")
#endif

#if defined(__SNI)
define broker BROKER
extern ETB_LONG BROKER(ETBCB*, ETB_CHAR*, ETB_CHAR*, ETB_CHAR*);

ACI for C14

EntireX Broker ACI for C

#elif defined(_WIN32)
extern ETB_LONG __cdecl broker(ETBCB*, ETB_CHAR*, ETB_CHAR*, ETB_CHAR*);

#else
extern ETB_LONG broker(ETBCB*, ETB_CHAR*, ETB_CHAR*, ETB_CHAR*);
#endif

typedef ETB_LONG
#if defined(_WIN32)
(__cdecl *PFBROKER)
#else
(*PFBROKER)
#endif
(ETBCB*, ETB_CHAR*, ETB_CHAR*, ETB_CHAR*);

#if defined(_WIN32)
define ETB_SHARED_LIBRARY_A "broker.dll"
define ETB_SHARED_LIBRARY_W L"broker.dll"
if defined(UNICODE)
define ETB_SHARED_LIBRARY ETB_SHARED_LIBRARY_W
else
define ETB_SHARED_LIBRARY ETB_SHARED_LIBRARY_A
endif

#elif(defined(__hpux) && !defined(__ia64))
define ETB_SHARED_LIBRARY "broker.sl"

#elif defined(__SNI)
define ETB_SHARED_LIBRARY "BROKER2 "
define ETB_BATCH_LOAD_MODULE "BROKER "

#elif(__MVS__)
define ETB_SHARED_LIBRARY "BROKER2 "
define ETB_BATCH_LOAD_MODULE "BROKER "
define ETB_CICS_LOAD_MODULE "CICSETB "

#elif(__VSE__)
define ETB_BATCH_LOAD_MODULE "BKIMB "
define ETB_CICS_LOAD_MODULE "BKIMC "

#elif(__VMS)
define ETB_SHARED_LIBRARY "broker.exe"

#else
define ETB_SHARED_LIBRARY "broker.so"
#endif

#if(defined(__SNI) || __MVS__ || __VSE__)
define ETB_ENTRY_POINT "BROKER"
#else
define ETB_ENTRY_POINT "broker"
#endif

15ACI for C

EntireX Broker ACI for C

#ifdef __cplusplus
}
#endif

#endif

ACI Examples and Header Files

When you begin to write your first EntireX Broker ACI program, you can use the client and server
examples listed below as models for your own implementation. If the examples are not available
on your platform, transfer them - using FTP, for example - from a platformwhere they are delivered.

Depending on your platform for C, you will find the files with the examples, include files, etc. in
the following locations:

NotesLocationHeader Files / ExamplesPlatform

5, 6See member ETBCDEF in the mainframe source
library EXX951.SRCE.

Broker ACI control block header filez/OS

5, 6See member ETBCINF in the mainframe source
library EXX951.SRCE.

Broker Command and Info Services
control block header file

5, 6SeememberBCOC in themainframe source library
ETBvrs.SRCE.

Client example

5, 6SeememberBCOS in themainframe source library
ETBvrs.SRCE.

Server example

3, 4See etbcdef.h in: includeBroker ACI control block header fileUNIX

3, 4See etbcinf.h in: includeBroker Command and Info Services
control block header file

3, 4See convClt.c in examples/ACI/conversational/C/ and
nconvClt.c in examples/ACI/nonConversational/C/.

Client example

3, 4See convSrv.c in examples/ACI/conversational/C/
and nconvSrv.c in
examples/ACI/nonConversational/C/.

Server example

2See etbcdef.h in: include.Broker ACI control block header fileWindows

2See etbcinf.h in: include.Broker Command and Info Services
control block header file

2See convClt.c in examples\ACI\conversational\C\
and nconvClt.c in
examples\ACI\nonConversational\C\.

Client example

2See convSrv.c in examples\ACI\conversational\C
and nconvSrv.c in
examples\ACI\nonConversational\C.

Server example

ACI for C16

EntireX Broker ACI for C

NotesLocationHeader Files / ExamplesPlatform

See element ETBCDEF.H in the LMS library
EXX951.LIB.

Broker ACI control block header fileBS2000/OSD

See element ETBCINF.H in the LMS library
EXX951.LIB.

Broker Command and Info Services
control block

10See member PL1DEF of the z/VMMACLIB
EXX951.MACLIB.

Broker ACI control block header filez/VM

10See member PL1DEF of the z/VMMACLIB
EXX951.MACLIB.

Broker Command and Info Services
control block

1, 7See member ETBCDEF in include source file
H_EXA.

Broker ACI control block header fileIBM i

1, 7See member ETBCINF in include source file
H_EXA.

Broker Command and Info Services
control block

1See member CRT_CMOD in source file EXASRC.Sample procedure for compiling

1, 9See member BCOC of type C in source file
EXASRC.

Client example

1, 8See the CL member EXABCOC in source file
EXASRC.

Procedure to call client example

1, 8See the CL member EXABCOCSEC in source file
EXASRC.

Procedure to call Client examplewith
Security parameters

1, 9See member BCOS of type C in source file
EXASRC.

Server example

1, 8See the CL member EXABCOS in source file
EXASRC.

Procedure to call server example

1, 8See the CL member EXABCOSSEC in source file
EXASRC.

Procedure to call server examplewith
Security parameters

Notes:

1. See Installing EntireX under IBM i.

2. See Post-installation Steps under Windows.

3. For information on exxdir, see Shell Environment Settings under Post-installation Steps under
UNIX.

4. See Post-installation Steps under UNIX.

5. See Installing EntireX under z/OS in the z/OS installation documentation.

6. For information on vrs, see Contents of Mainframe Installation Medium in the z/OS installation
documentation.

7. Rename file H_EXA to H before use it.

8. By default, these CL procedures call the C-type of the client and server programs - i.e, BCOC and
BCOS. Modify the procedures to adjust the Broker ID, Broker Version and Security parameters.

17ACI for C

EntireX Broker ACI for C

Compile the sources and bind the createdmodules to executable *PGMprograms. For compilation,
use the procedure CRT_CMOD. For binding, use the procedure EXABNDPGM. All sample programs
include the ACI Broker control block definitions ETBCDEF during compilation.

9. See also Verifying the Installation of the Broker Stubs in the IBM i installation documentation.

10. See Installing Broker Stubs under z/VM.

Creating a C User Application under IBM i

On the IBM i system, the broker stub is implemented as an object of type *SRVPGM (Service Program).
This object type has the advantage that its program code can be shared by several programs. It
exists as an object on its own and can therefore be easily replaced without rebinding the user's
application, when a newer version becomes available.

The service program EXA supplied by Software AG contains all the functions necessary for con-
trolling and communicating with the remote broker. To create an executable Broker application
on IBM i, you need to develop, in any ILE-enabled programming language, at least one main
module to which the EXA service program is bound.

■ For compilation, use the command CRTCMODwith the options:

...DEFINE (CE_TAS400 TCP_IP '_MULTI_THREADED')

...SYSIFCOPT (*NOIFSIO)...

■ For binding, use the command CRTPGMwith the option:

...BNDSRVPGM(*LIBL/EXA) ...

Example:

The following steps show how to create a server application using the program BCOS. See ACI
Examples and Header Files.

Step 1: Set the Environment

The library EXX must be located in the *LIBL list.

To set the library list, you can use the command:

ACI for C18

EntireX Broker ACI for C

CHGCURLIB CURLIB(EXX)

Step 2: Compile the User Program

To compile BCOS, use the command CRTCMODwith options similar to the following:

MODULE(BCOS) SRCFILE(*CURLIB/EXASRC) OUTPUT(*PRINT) DEFINE(CE_TAS400
TCP_IP '_MULTI_THREADED') SYSIFCOPT(*NOIFSIO)

Or, use the sample procedure CRT_CMOD

If the program has been successfully compiled, the module BCOSwill be created.

Step 3: Bind EXA to the User Program

Toproduce an executable program, bind the user program BCOS to the service program EXA supplied
by Software AG. Use the command CRTPGM similar to the following:

CRTPGM PGM(EXX/BCOS) MODULE(*PGM) ENTMOD(*PGM)
BNDSRVPGM(EXX/EXA) BNDDIR(*NONE) OPTION(*GEN *WARN *DUPVAR)
DETAIL(*EXTENDED)

Or, use the sample procedure EXABNDPGM.

If the programs have been bound successfully, the object BCOSwith type *PGMwill be created.

19ACI for C

EntireX Broker ACI for C

20

2 Writing Applications: Publish and Subscribe

■ Overview of Communication Models ... 22
■ Basic Concepts of Publish and Subscribe ... 23
■ API-TYPE and API-VERSION .. 26
■ LOGON and LOGOFF .. 27
■ USER-ID and TOKEN .. 27
■ Control Block Fields and Verbs .. 29
■ Implementation of Publisher and Subscriber Components ... 32
■ Blocked and Non-blocked Broker Calls .. 34
■ Timeout Parameters .. 36
■ Configuration Prerequisites for Durable Subscriptions ... 37
■ Data Compression ... 38
■ Error Handling .. 39
■ Using Internationalization .. 41
■ Using Send and Receive Buffers .. 43
■ Tracing .. 45
■ Transport Methods .. 47
■ Variable-length Error Text .. 50
■ Programmatically Turning on Command Logging ... 51
■ IAF Authentication ... 51

21

This chapter describes how to implement and program publish-and-subscribe applications - em-
ploying durable subscription techniques - with EntireX Broker. Publish-and-subscribe communic-
ation is used if data is to be published in order to make it available to one or more subscribers.
This communication model is implemented as an independent subsystem in EntireX Broker, that
is, it can be activated by setting attributes or left inactive.

For ease of use, we recommend you use the aids and techniques below in the order given.

See also Concepts of Persistent Messaging in the general administration documentation.

Overview of Communication Models

There are two communication models in EntireX Broker: publish and subscribe and client and
server.

■ Publish and Subscribe
This communication model is used if data is to be published to multiple recipients. It is an al-
ternative to client and server and is implemented as an independent subsystem in EntireX
Broker.

■ Client and Server
This communication model is based on a logical connection between exactly two partners: a
client and a server. It covers these communication requirements conversationally and non-
conversationally, and synchronously and asynchronously. SeeWriting Applications: Client and
Server in the EntireX Broker ACI Programming documentation.

ACI for C22

Writing Applications: Publish and Subscribe

Basic Concepts of Publish and Subscribe

■ Topic
■ Publication
■ Subscription
■ Publisher
■ Subscriber
■ Durability of Subscriptions
■ Subscription Expiration

Topic

A topic is a logical grouping of publications relating to one subject area, which is defined in the
Broker Attributes in the administration documentation. Topics reflect subject areas, for example
current news, stock quotations, weather, online chat, sales systems. Data can be published to a
topic only if there are current subscribers to this topic.

Note: For EntireXBroker, the term “topic” is analogous to the term “service”. Topic represents
the grouping of related information flows for the publish-and-subscribe communication
model, as service does for the client-and-server model.

23ACI for C

Writing Applications: Publish and Subscribe

Publication

A publication is a message or set of messages that are created atomically by one publisher and are
available to all current subscribers to the topic. Messages for publication are queued to the topic
on a first-in, first-out basis.

Each publication is assigned a unique PUBLICATION-ID by EntireX Broker when the publication
is created. The PUBLICATION-ID is returned to the publisher on the first SEND_PUBLICATION command
issued when creating a new publication. The PUBLICATION-ID is also returned to the subscriber
on the first RECEIVE_PUBLICATION command used to receive each new publication. Publisher and
subscriber must include the PUBLICATION-ID for all subsequent commands relating to the same
publication.

Subscription

A subscription identifies a user's intention to receive publications for a specified topic. An active
subscription requires the user to have issued a SUBSCRIBE commandwithout issuing a subsequent
UNSUBSCRIBE command. Only publications created after the time of subscription can be read by
the subscriber. Conversely, publications created after the UNSUBSCRIBE command, or after the
subscription has expired, cannot be received by the subscriber, even if the subscription is renewed
at a later time. The time period of the subscription determineswhich publications can be delivered
to the subscriber. SeeDurability of Subscriptions under Basic Concepts of Publish and Subscribe under
Writing Applications: Publish and Subscribe in the ACI Programming documentation.

Publisher

A publisher is a user participating in publish and subscribe that creates publications for one or
more topics. It is possible for a publisher to create publications only if there is currently at least
one subscription to the topic. This prevents superfluous data from being assigned to the topic.

Subscriber

A subscriber is a user participating in publish and subscribe that can read publications from one
or more topics.

Durability of Subscriptions

The behavior of a subscription when the subscriber logs off or broker shuts down is determined
by an option specified in the original subscription command.

■ Durable Subscription

EntireX Broker enables publish-and-subscribe applications to executewith durable subscriptions
by maintaining the user's subscription status on disk. This ensures that - in the case of a system
failure - subscriber information will automatically be recovered, allowing applications to be re-
started without any loss of data.

ACI for C24

Writing Applications: Publish and Subscribe

If DURABLE is specified within the SUBSCRIBE command, users need only subscribe once to a
topic. The subscription is retained after the user issues a LOGOFF command or if the subscriber
has timed out. Similarly, the subscription remains if the broker is restarted. All publications
necessary to satisfy subscription requirements are also retained. If a subscriber no longerwishes
to subscribe to a topic, the subscriber must issue an UNSUBSCRIBE command; otherwise the
subscription remains valid until the subscription expiration time has passed.Durable subscription
requires the administrator to configure the persistent store. See Concepts of Persistent Messaging
in the general administration documentation. In addition, the topicmust be specified as durable
in the Broker Attributes in the administration documentation.

Durable subscription comprises:
■ a list of subscribers and topics to which subscribers have durably subscribed;
■ information about the last publication received.

A user has to subscribe only once to a topic. The persistent status remains after the broker is
restarted. A subscriber signals its intention to receive publications by issuing a SUBSCRIBE
command and specifying the topic of interest. If the administrator has specified this topic in the
broker's attribute file with a characteristic of ALLOW-DURABLE, users will be able to subscribe
durably to the topic.

■ Non-durable Subscription

Publish-and-subscribe applications can also employ non-durable subscription techniques, if
desired. Publications (messages sent from publishers to subscribers) can be either durable or
non-durable.

If durable is not specified in the subscribe command, the subscription is valid only until one of
the following events occurs, afterwhich subscription is terminated and publication can no longer
be retrieved:
■ the user issues a LOGOFF command;
■ Broker is restarted;
■ the subscriber non-activity time value has passed;

or
■ the subscription expiration time has passed.

The time at which the SUBSCRIBE command is issued is significant to the user's subscription. Only
publications created after this point in time can be read by the subscriber. Conversely, publications
created after either the time at which the UNSUBSCRIBE command was issued or the subscription
has expired cannot be received by the subscriber, even if the subscription is renewed at a later
time. The time period of the subscription determines which publications are delivered.

It is possible for a publisher to create publications only if there is currently at least one subscription
to the topic. This feature prevents superfluous data from being assigned to the topic.

25ACI for C

Writing Applications: Publish and Subscribe

Subscription Expiration

A topic is specified in the broker's attribute file with a characteristic of SUBSCRIPTION-EXPIRATION
time. This is the time period for which the user's subscription remains in effect. After the time
period has elapsed, the user's subscription is terminated and the subscription is removed by the
broker.

API-TYPE and API-VERSION

Both the API-TYPE and the API-VERSION fields must always be provided.

DescriptionBit PatternValue

The standard value for API-TYPE is 1 (x'01') and usable with all Broker stubs in all
environments.

Note: If any of the following conditions exist, youmust install theAdabasCICS linkmodule
with the definition PARMTYP=ALL, using the ADAGSETmacro.

(x'01')1

1. If you are using NET transport with CICSETB stub with send or receive buffers greater
than 32 KB.

2. If you are using NET transport with CICSETB stub and your application does not have
a TWA.

CertainBroker functionality requires aminimum API-VERSION. Usingpublish and subscribe requires
API-VERSION 8 or higher. For the highest available version of Broker, see API-VERSION. The send
buffer and the receive buffer are passed as parameters to the EntireXBroker. Both buffers can occupy
the same location.

See Broker ACI Control Block Layout in the EntireX language-specific ACI documentation.

Both the API-TYPE and API-VERSION fields must be set correctly to ensure that Broker returns the
correct value in ACI field ERROR-CODE. Otherwise, depending on your programming language
and environment, a return code may not always be given.

See Call Format in the language-specific EntireX ACI documentation.

ACI for C26

Writing Applications: Publish and Subscribe

LOGON and LOGOFF

The LOGON broker function is required in order to use the publish-and-subscribe programming
model in your application. We recommend that the application issue a LOGOFF function call for
the following reasons:

■ LOGOFFwill notify the broker to clean up in-memory resources held for your program, making
them available for other users of the broker.

■ Without LOGOFF, the user's in-memory resources will time out in accordance with the broker
attributes PUBLISHER-NONACT and SUBSCRIBER-NONACT. Depending on the values set by the ad-
ministrator, this may not occur for some time.

Logon example for programming language Natural:

/* Logon to Broker/LOGON
MOVE #FCT-LOGON TO #ETBCB.#FUNCTION
/*
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Logoff example for programming language Natural:

/* Logoff to Broker/LOGOFF
MOVE #FCT-LOGOFF TO #ETBCB.#FUNCTION
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

USER-ID and TOKEN

■ Identifying the Caller
■ Restarting after System Failure with Durable Subscription
■ Managing the Security Token

Identifying the Caller

USER-ID identifies the caller and is required for all functions except VERSION. The USER-ID is
combinedwith an internal ID orwith the TOKEN field, if supplied, in order to guarantee uniqueness,
for example where more than one application component is executing under a single USER-ID.

Brokers identify callers as follows:

■ When the ACI field TOKEN is supplied:

The ACI field USER-ID, together with the TOKEN, is used to identify the user. Using TOKEN allows
the application to reconnect with a different process or thread without losing the existing con-

27ACI for C

Writing Applications: Publish and Subscribe

versation. When a new call is issued under the same USER-ID from a different location but with
the same TOKEN, the caller is reconnected to the previous context.

Note: The ability to reconnect to the previous context is vital if restart capabilities of ap-
plications are required. The combination of USER-ID and TOKENmust be unique to the
Broker. It is not possible to have the same USER-ID and TOKEN combination duplicated.

■ When the ACI field TOKEN is not supplied:

The USER-ID is combinedwith an internally generated ID. It is possible to use the same USER-ID
in different threads or processes. All threads and processes are distinct Broker users.

Restarting after System Failure with Durable Subscription

Caution: USER and TOKENmust be specified by all publisher and subscriber applications
where publication and subscription data is held in the persistent store.

The Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER-ID, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

Specification of USER and TOKEN is necessary for reconnection with the correct user context after
Broker has been stopped and restarted. This specification is also necessary to enable effective use
of publish and subscribe, including recovery from system failures.

Managing the Security Token

If you are using EntireX Security, the applicationmustmaintain the content of the SECURITY-TOKEN
field and not change this field on subsequent calls.

ACI for C28

Writing Applications: Publish and Subscribe

Control Block Fields and Verbs

■ Basic Functionality of Broker API
■ ACI Syntax
■ Key ACI Field Names
■ Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the basic functionality of the API. There are five distinct functions in the
Broker ACI which are relevant to publish and subscribe:

■ CONTROL_PUBLICATION
The function CONTROL_PUBLICATION is used by both the publisher and the subscriber. The pub-
lisher uses CONTROL_PUBLICATION,OPTION=COMMIT to commit the publication it is creating; the
subscriber uses CONTROL_PUBLICATION,OPTION=COMMIT to acknowledge the receipt of the public-
ation it is receiving.

■ RECEIVE_PUBLICATION
The function RECEIVE_PUBLICATION is used by the subscriber to receive all or part of a publication.
The field PUBLICATION-ID defines the behavior of this function.
RECEIVE_PUBLICATION,PUBLICATION-ID=NEW signals the subscriber's readiness to obtain the next
available newpublication,whereas the value PUBLICATION-ID=nnn specifies that the nextmessage
within an existing publication is being requested. After all messages have been received, the
publication is acknowledged, using the function CONTROL_PUBLICATION,OPTION=COMMIT.

■ SEND_PUBLICATION
The function SEND_PUBLICATION is used by the publisher to produce a publication. The field
PUBLICATION-ID defines the behavior of this function. The publisher uses
SEND_PUBLICATION,PUBLICATION-ID=NEW to create a new publication. The value
PUBLICATION-ID=nnn indicates that a subsequent message within the same publication is being
sent, which can be necessary when creating large publications. A publication is completed with
the function SEND_PUBLICATION,OPTION=COMMIT orwith the function call CONTROL_PUBLICATION,
using the option COMMIT.

■ SUBSCRIBE
The function SUBSCRIBE registers a user with the broker as a subscription for a certain topic.
Specifying SUBSCRIBE,OPTION=DURABLE determines that the subscription is to be durable. Other-
wise the subscription is non-durable.

■ UNSUBSCRIBE
The function UNSUBSCRIBE covers the opposite functionality: a subscription is cancelled or dis-
solved.

The participants in publish-and-subscribe are identified by ACI fields USER-ID and TOKEN.

29ACI for C

Writing Applications: Publish and Subscribe

ACI Syntax

Fields in EntireX Broker Control BlockFunction

CONTROL_PUBLICATION API = 8
, BROKER-ID = BROKER-ID
, USER-ID = user_id
, TOKEN = token
, OPTION = { BACKOUT |
CANCEL |
COMMIT |
LAST |
QUERY |
SETUSTATUS }
[, PUBLICATION-ID = pub_id]
[, USTATUS = user_status]

RECEIVE_PUBLICATION API = 8
, BROKER-ID = BROKER-ID
, USER-ID = user_id
, TOKEN = token
, WAIT = NO | YES | wait_value
, PUBLICATION-ID = pub_id | NEW | OLD | ANY
, TOPIC = topic_name

SEND_PUBLICATION API = 8
, BROKER-ID = BROKER-ID
, USER-ID = user_id
, TOKEN = token
[, OPTION = COMMIT]
, PUBLICATION-ID = pub_id | NEW
, TOPIC = topic_name
[, USTATUS = user_status]

SUBSCRIBE API = 8
, BROKER-ID = BROKER-ID
, USER-ID = user_id
, TOKEN = token
, TOPIC = topic_name
[, OPTION = DURABLE]

UNSUBSCRIBE API = 8
, BROKER-ID = BROKER-ID
, USER-ID = user_id
, TOKEN = token
, TOPIC = topic_name

ACI for C30

Writing Applications: Publish and Subscribe

Key ACI Field Names

The following table lists key ACI field names used to implement applications that use the publish-
and-subscribe communication model. The other fields are available to identify partner programs,
specify buffer lengths, convey error codes, etc.

See Broker ACI Fields in the ACI Programming documentation for all fields.

DescriptionACI Field Name

Function code for one of the verbs (see table below).FUNCTION

Indication of specific broker behavior, depending on the function.OPTION

Identifier to obtain and specify the publication. Indicates a specific publication. The
publication ID value is an internally generated identifier (containing alphanumeric

PUBLICATION-ID

characters) for the publication. We recommend that application programmers make no
assumptions about the content, layout or meaning of any part of the PUBLICATION-ID
field.

Identifies the name of the publication's topic.TOPIC

Value to specify blocking or non-blocking command.WAIT

Key Verbs for FUNCTION Field

The following table lists the most important verbs for the field FUNCTION.

See Broker ACI Functions in the EntireX Broker ACI Programming documentation for all functions.

DescriptionVerb

Publisher uses this to commit and subscriber uses this to acknowledge
publications.

CONTROL_PUBLICATION

Retrieves publication from the broker.RECEIVE_PUBLICATION

Sends publication to the broker.SEND_PUBLICATION

Informs the broker of the existence of a subscriber to a topic.SUBSCRIBE

Informs the broker that the subscriber wishes to unsubscribe.UNSUBSCRIBE

31ACI for C

Writing Applications: Publish and Subscribe

Implementation of Publisher and Subscriber Components

■ Single Message Publication
■ Multiple Message Publication

Single Message Publication

This example illustrates a publisher creating single-message publications that are retrieved by one
or more subscriber applications. The publisher and subscriber operate asynchronously of each
other. There is no reply from the subscriber in this communication model.

This example, which uses durable subscription, shows the typical structure of a subscriber applic-
ation that has previously subscribed to a topic and is now retrieving the publications issued to
that topic. Subscription occurs either during one-time processing provided by the subscriber ap-
plication, or it is performed explicitly by an administrator. See Broker Command and Information
Services.

The subscriber performs RECEIVE_PUBLICATION commands in a loop specifying WAIT=YES, which
makes it possible to process publications as they occur. If none are received during the specified
wait period, the server executes another iteration of the loop and repeats thewait until a publication
is received.

The RECEIVE_PUBLICATION command specifies PUBLICATION-ID=NEW to receive all newpublications
arriving from thepublisher. This example assumes single-messagepublicationswhichdonot require
acknowledgment of receipt since AUTO-COMMIT-FOR-SUBSCRIBER=YESwas specified in the topic-
specific attributes for the topic NYSE in this case.

LOGON USER-ID=SB1,TOKEN=TKSB1
Repeat
 ↩
RECEIVE_PUBLICATION,PUBLICATION-ID=NEW,WAIT=YES,TOPIC=NYSE,USER-ID=SB1,TOKEN=TKSB1
 If (Error-Class = 0 and Error-Number = 0)
 /* something received: process request*/

 End-if /* otherwise nothing received */
End-repeat
LOGOFF USER-ID=SB1,TOKEN=TKSB1

Apublisher issues a SEND_PUBLICATION command to send publications containing a singlemessage
to a topic. The publisher's SEND_PUBLICATION commands are performed with WAIT=NO, and
PUBLICATION-ID=NEW is assigned each time.

ACI for C32

Writing Applications: Publish and Subscribe

SEND_PUBLICATION,PUBLICATION-ID=NEW,WAIT=NO,OPTION=COMMIT,TOPIC=NYSE,USER-ID=PB1,TOKEN=TKPB1

Multiple Message Publication

This example, which uses durable subscription, shows a publisher creating multiple-message
publications that are retrieved by one ormore subscriber applications. The publisher and subscriber
operate asynchronously of each other; there is no reply from the subscriber in this communication
model. In this example, one or more publishers in a stock exchange system send current stock
exchange quotations. The subscriber accesses the system at irregular intervals and receives all
publications currently available.

This example illustrates the typical structure of a subscriber application that has previously sub-
scribed to a topic and is now retrieving all available publications for a specified topic. Subscription
has already occurred either during one-time processing within the subscriber application, or it is
performed explicitly by an administrator. See Command-line Utilities under Broker Command and
Information Services.

The subscriber performs RECEIVE_PUBLICATION commands in the outer loop, specifying
PUBLICATION-ID=NEW in order to receive the first available publication. The inner loop allows re-
mainingmessages within the same publication to be retrieved, after which CONTROL_PUBLICATION
acknowledges receipt of the publication. The outer loop is then repeated to obtain the next available
publication in conjunction with the inner loop until all available publications are processed.

The RECEIVE_PUBLICATION command specifies PUBLICATION-ID=NEW to receive all newpublications.
In this case, the subscriber explicitly acknowledges receipt of the publication, using the
CONTROL_PUBLICATION function, since it is assumed AUTO-COMMIT-FOR-SUBSCRIBERwasnot specified
in the topic-specific attributes for the topic NYSE in this case.

LOGON USER-ID=SB1,TK=TKSB1
While publications available
 RECEIVE_PUBLICATION PUBLICATION-ID=NEW,TOPIC=NYSE,WAIT=YES,USER-ID=SB1,TOKEN=TKSB1
 While data on publication
 RECEIVE_PUBLICATION ↩
PUBLICATION-ID=publication-id,TOPIC=NYSE,WAIT=NO,USER-ID=SB1,TOKEN=TKSB1
 End-while
 CONTROL_PUBLICATION OPTION=COMMIT,PUBLICATION-ID=publication-id,TOPIC=NYSE
End-while
LOGOFF USER-ID=SB1,TOKEN=TKSB1

A publisher issues a SEND_PUBLICATION command to send a publication containing multiple
messages. The publisher's SEND_PUBLICATION command is performed with WAIT=NO and
PUBLICATION-ID=NEW. Remainingmessages belonging to this publication are sent to the broker by
specifying the generated PUBLICATION-IDwithin each subsequent SEND_PUBLICATION command.
Thesemessages are committed by issuing the CONTROL_PUBLICATION command,which also specifies
the generated PUBLICATION-ID.

33ACI for C

Writing Applications: Publish and Subscribe

LOGON USER-ID=PB1,TK=TKPB1
SEND_PUBLICATION PUBLICATION-ID=NEW,TOP=NYSE,USER-ID=PB1,TOKEN=TKPB1
While data
 SEND_PUBLICATION PUBLICATION-ID=publication-id,USER-ID=PB1,TOKEN=TKPB1
End-while
CONTROL_PUBLICATION ↩
OPTION=COMMIT,PUBLICATION-ID=publication-id,USER-ID=PB1,TOKEN=TKPB1
LOGOFF USER-ID=PB1,TOKEN=TKPB1

Blocked and Non-blocked Broker Calls

■ Non-blocked Command: WAIT=NO
■ Blocked Command: WAIT=YES or WAIT=n

In the publish-and-subscribe communication model, the term “blocked call” refers only to the
broker RECEIVE_PUBLICATION command used by subscriber applications. The SEND_PUBLICATION
command is always “non-blocking”, such that WAIT=NOmust be specified. A publisher application
sends a publication via EntireX Broker for a specified topic without waiting for any subscribers
to receive the publication.

A subscriber application component can use the control block field WAIT in the following ways to
determine whether broker will automatically generate a WAIT in order for the command to be
either received or satisfied by the partner application:

Non-blocked Command: WAIT=NO

RECEIVE_PUBLICATION allows a subscriber application to request a publication for a specified
topic. If there are no publications currently available, an ACI response code is returned, indicating
that no publications are currently available for the designated topic. See Error Messages and Codes.
Similarly, a response code also indicates that there are no further messages to be received within
the same publication, where PUBLICATION-ID=nnn has been specified to retrieve continuation
segments of the same publication. This technique is used by subscriber applications only.

Example: Subscriber

The subscriber application component requests the next new publication, which is returned if
available. If there is no publication available, the subscriber receives a return code immediately,
indicating no publications are available at this time. There is no waiting, and the application per-
forms this command periodically under control of the application logic, as shown here:

ACI for C34

Writing Applications: Publish and Subscribe

RECEIVE-PUBLICATION,PUBLICATION-ID=NEW,WAIT=NO,TOPIC=NYSE,USER-ID=SB1,TOKEN=TKSB1
... application code to process publication

Blocked Command: WAIT=YES or WAIT=n

Allows a subscriber application to solicit a publication to be returned for the specified topic. The
calling application is automatically placed in a WAIT state until there is a publication available for
the specified topic. If no publication is available during the specifiedwaiting time, anACI response
code is returned to the application, indicating that no publications are currently available for the
designated topic. See Error Messages and Codes. Similarly, a response code also indicates that there
are no further messages to be received within the same publication if PUBLICATION-ID=nnn has
been specified in order to retrieve continuation segments of the same publication. This technique
is used by subscriber applications only.

Example: Subscriber

The subscriber application component requests the next new publication, which is returned if
available. If there is no publication available, the subscriber enters a WAIT state for the specified
(or default) time period, during which it is eligible to receive any new publications that arrive in
this time. At the end of the specified (or default) time period, the subscriber receives a return code
if no publications were available. The following example shows this process being repeated indef-
initely within a loop:

Repeat
RECEIVE-PUBLICATION,PUBLICATION-ID=NEW,WAIT=YES,TOPIC=NYSE,USER-ID=SB1,TOKEN=TKSB1
... application code to process publication

End-repeat

35ACI for C

Writing Applications: Publish and Subscribe

Timeout Parameters

■ Timeout Behavior
■ Types of Non-activity Time
■ Recommendations

Timeout Behavior

EntireX Broker provides a number of timeout mechanisms that allow you to control wait times
flexibly, optimize resource usage, and configure efficient communication.

■ The PUBLISHER-NONACT and SUBSCRIBER-NONACT attributes are non-activity timeout parameters
which can be specified independently of each other to control the timeout behavior of publisher
and subscriber application components. If an application component issues no commands to
the broker for the specified time period, the broker logs the user off automatically, cleaning up
related in-memory resources. See LOGON and LOGOFF underWriting Applications: Publish and
Subscribe in theACI Programmingdocumentation. If the subscriber did not issue a durable ALLOW-
DURABLE command, the user's subscription will also be removed after this time.

■ The SUBSCRIPTION-EXPIRATION attribute determines the lifetime of a user's durable subscription.
Durable subscriptions are retained by the broker until either the subscriber issues an UNSUBSCRIBE
command or the subscription lifetime has expired.

■ The PUBLICATION-LIFETIME attribute determines how long publications are retained by the
broker until they are either received by all subscribers or the publication lifetime has expired.

■ The WAITfield in theACI control block is significant only to the subscriber application component.
The program is placed into a WAIT state for a specified time when issuing the
RECEIVE_PUBLICATION command, allowing data or a reply to be received before control is passed
to the calling program. Placing the program into a WAIT state during a broker command is referred
to as making a blocked command. A non-blocked command is executed if WAIT=NO is specified.
See Blocked and Non-blocked Broker Calls underWriting Applications: Publish and Subscribe in the
ACI Programming documentation. The SEND_PUBLICATION command is always issued with
WAIT=NO.

Types of Non-activity Time

There is interplay between the non-activity times specified in the attribute file for the attributes

■ PUBLISHER-NONACT

■ SUBSCRIBER-NONACT

■ CLIENT-NONACT

■ SERVER-NONACT

ACI for C36

Writing Applications: Publish and Subscribe

where an application component performsmore than one of these roles. In this case themaximum
non-activity time associatedwith the userwill take precedence. This factmust be consideredwhere
an application component implements both publish and subscribe and client and server.

Recommendations

The following recommendations apply to developing publish-and-subscribe applications:

■ If the subscriber issues blocked RECEIVE_PUBLICATION commands,make the WAIT time adjustable.
The WAIT value can be read as a startup parameter from the user-written INI or CFG file, or any
other parameter data set or set of environment variables, depending on the platform.

■ When using non-durable subscriptions, ensure the specified SUBSCRIBER-NONACT time is not
exceeded by the subscriber between issuing commands to the broker; otherwise the user will
be automatically logged off, and the user's subscription will be removed during a period of in-
activity. SeeDurability of Subscriptions under Basic Concepts of Publish and Subscribe underWriting
Applications: Publish and Subscribe in the ACI Programming documentation

Note: When blocking RECEIVE_PUBLICATION commands, the SUBSCRIBER-NONACT value
is overridden by the WAIT time (if this is greater).

■ If there are no availablemessages for the duration of a blocked RECEIVE_PUBLICATION command,
response code 00740074 is returned to the subscriber. The subscriber can reissue the
RECEIVE_PUBLICATION command repeatedly until the next publication becomes available. See
also Blocked Command: WAIT=YES or WAIT=n.

■ If there are no available messages when issuing a non-blocked RECEIVE_PUBLICATION, the
command returns response code 00030488. See also Non-blocked Command: WAIT=NO.

■ If there are no further messages available when issuing a RECEIVE_PUBLICATION, the command
returns response code 00740480.

■ Ensure that the PUBLISHER-NONACT time is not exceeded by the publisher between issues of
SEND_PUBLICATION commands; otherwise the user will be automatically logged off, and any
unfinished or uncommitted publications will be lost.

Configuration Prerequisites for Durable Subscriptions

A subscription can be durable or non-durable. See Durability of Subscriptions under Basic Concepts
of Publish and Subscribe underWriting Applications: Publish and Subscribe in the ACI Programming
documentation. Durable subscriptions require additional configuration steps. Since subscriber
information for durable subscriptions must also be present after a broker is restarted, a persistent
store is required (PSTORE). See also Concepts of Persistent Messaging in the general administration
documentation. This allows Adabas (all platforms), file system (UNIX and Windows) and DIV
(z/OS) to be utilized for storing both publication information and, optionally, subscription inform-
ation.

37ACI for C

Writing Applications: Publish and Subscribe

If you use the persistent store for subscriber information under Adabas, see Configuring and Oper-
ating the Adabas Persistent Store in the platform-specific administration documentation. If you are
using persitent store type DIV or the local file system, no additional PSTORE configuration is re-
quired. See alsoBroker-specificAttributesunderBroker Attributes in the administration documentation
for other related parameters.

NUM-TOPIC-TOTAL = 4
NUM-SUBSCRIBER-TOTAL = 8
SUBSCRIBER-STORE =PSTORE

Note: The topic attribute definitions must specify ALLOW DURABLE=YES. Otherwise durable
subscription requests are rejected.

Data Compression

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
senders and receivers. This helps to reduce response time during transmissions aswell as improve
the overall network throughput, especially with low bandwidth connections.

Compression is performed only on the buffers used to send and receive data. The application has
the option of setting the level of compression/decompression for data transmission. The compression
level can be set to achieve either no compression or a range of compression/decompression. See
Data Compression in EntireX Broker in the general administration documentation. Application
components can set compression individually to Broker.

zlib is a general-purpose software implementing data compression across a variety of platforms.
The functions used within EntireX Broker represent a subset of those available within the zlib
software. The compression algorithms are implemented through the open source software zlib.
It may occur that the data buffer does not compress during a data transmission; if it does not
compress, a logged warning message will appear in 00200450 and in the stub.

Technique

The Broker ACI control block contains a field that is used to set the compression level. This field
determines for any send/receive transmissionwhether the data buffer will be compressed/decom-
pressed. See ACI control block field COMPRESSLEVEL.

ACI for C38

Writing Applications: Publish and Subscribe

http://www.zlib.net/

Error Handling

After every broker operation, the application must check the ERROR-CODE. It consists of a combin-
ation of

■ error class (first four digits) and
■ error number (last four digits)

While the error number describes the exact situation, the error class often determines how the
program will proceed after returning from the EntireX Broker operation. From the programmer's
point of view, therefore, the error class may be more important than the particular error number.

For more information, see Error Messages and Codes.

Programming Techniques

We recommend trapping the error classes in a “case” statement, for example, a DECIDE in Natural
or a switch statement in C.

All error classes - for example user and configuration errors - leading to the same action (that is,
reporting or logging the situation and aborting issuing broker calls), can be handled together in
the NONE VALUE or default case.

Example for C Progamming Language

int i, iErrorCode, iErrorClass, iErrorNumber, ret_val;
char szErrorTextBuffer[S_TXT + 1];.....

/* prepare error code field and error text buffer */
memset(pETBCB->error_code,'0',sizeof(pETBCB->error_code));
memset(szErrorTextBuffer,'\0',sizeof(szErrorTextBuffer));

/* call the broker */
ret_val = broker(pETBCB,pSendBuffer,pReceiveBuffer,szErrorTextBuffer);

/* evaluate error class from error code field */
iErrorClass = 0;
for(i = 0; i < 4; ++i)
{

iErrorClass *= 10;
iErrorClass += pETBCB->error_code[i] - '0';

}

if (iErrorClass == 0 && ret_val != 0)
{

printf("Wrong API_TYPE and/or API_VERSION\n");

39ACI for C

Writing Applications: Publish and Subscribe

}
else
{

/* evaluate error number from error code field */
iErrorNumber = 0;
for(i = 4; i < 8; ++i)
{

iErrorNumber *= 10;
iErrorNumber += pETBCB->error_code[i] - '0';

}

/* evaluate error code as integer value */
iErrorCode = (iErrorClass * 10000) + iErrorNumber;

/* handle error */
switch (iErrorClass)
{

case 0: /* Successful Response */
....
break;

case 2: /* User does not exist */
....
break;

case 3: /* Conversation ended */
....
break;

case 7: /* Service not registered */
....
break;

case 74: /* Wait Timeout occurred */
....
break;

....

default:
printf("EntireX Broker Error occurred.\n");
printf("%8.8u %s",iErrorCode,szErrorTextBuffer);
break;

}
}

ACI for C40

Writing Applications: Publish and Subscribe

Using Internationalization

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

This section covers the following topics:

■ General Information
■ Providing Locale Strings
■ Using the ENVIRONMENT Field with the Translation User Exit

General Information

The broker stub does not convert your application data before it is sent to the broker. The applic-
ation's data is shipped as given.

For the internationalization approaches ICU conversion and SAGTRPC user exit, valid locale
strings are required for conversion to behave correctly.

Providing Locale Strings

Under the Windows operating system:

■ The broker stub assumes by default that the data is given in the encoding of theWindows ANSI
codepage configured for your system. If you are using at least API-VERSION 8 and communicating
with a broker version 7.2.n or above, a codepage identifier of this Windows ANSI codepage is
also automatically transferred as part of the locale string to tell the broker how the data is en-
coded.

■ If you want to adapt the Windows ANSI codepage, see the Regional Settings in the Windows
Control Panel and your Windows documentation.

Under all other operating systems:

■ The broker stub does not automatically send a codepage identifier to the broker as part of the
locale string.

■ The broker stub assumes the broker's locale string defaults match. If they do not match, provide
the codepage explicitly. See Broker's Locale String Defaults under Locale String Mapping in the in-
ternationalization documentation.

With the ACI control block field LOCALE-STRING:

■ You can override or provide a codepage in the locale string sent to the broker. If a codepage is
provided, it must follow the rules described under Locale String Mapping in the internationaliz-
ation documentation.

41ACI for C

Writing Applications: Publish and Subscribe

■ You can force a locale string to be sent if communicating with broker version 7.1.x and below.
UnderWindows you can use the abstract codepage name. SeeUsing the Abstract Codepage Name
LOCAL under Locale String Mapping in the internationalization documentation.

■ API version 4 or above is required to override the locale string.

The encoding in which your application gives the data to the broker stub and the locale string

■ must always match, i.e. the codepage derived after the broker's built-in locale string mapping
processmust be the same as the encoding of the data provided. See Broker's Built-in Locale String
Mapping under Locale String Mapping in the internationalization documentation.

■ must be a codepage supported by the broker, depending on the internationalization approach;

otherwise, unpredictable results will occur.

Example for Assembler

MVC S$LOCALE,=C'ECS037' MOVE CP
....

Examples for C

1. Using a specific codepage

/* prepare the locale-string with a codepage */
memset (pETBCB->locale_string,' ',sizeof(pETBCB->locale_string));
strncpy(pETBCB->locale_string,"ECS0819",sizeof(pETBCB->locale_string));
....

2. Using the platform's default codepage (Windows only)

/* prepare the locale-string with a codepage */
memset (pETBCB->locale_string,' ',sizeof(pETBCB->locale_string));
strncpy(pETBCB->locale_string,
ETB_CODEPAGE_USE_PLATFORM_DEFAULT,sizeof(pETBCB->locale_string));
....

Example for COBOL

MOVE 'ECS037' TO LOCALE-STRING.
....

ACI for C42

Writing Applications: Publish and Subscribe

Examples for Natural

MOVE 'ECS037' TO #SDPA-API.#LOCALE_STRING.
....

Using the ENVIRONMENT Field with the Translation User Exit

Using the internationalization approach translation user exit, an ACI programmer can provide ad-
ditional information to their translation exit through the ENVIRONMENT field, allowing flexible
translation behavior in accordance with application requirements. The field cannot be used for
any other internationalization approaches and must be empty if a method other than translation
user exit is used. See Translation User Exit under Introduction to Internationalization.

Example

Assume a broker service or topic has a user-written translation routine called ABCTRAN, which
is capable of performing several types of data conversion, for example EBCDIC-ASCII translation,
byte swapping, and mixed data types. The user translation routine may need to know the data
formats used by both partners. The ENVIRONMENT field can be used to pass this information from
the application to the translation routine in Broker kernel.

Technique

MOVE 'MYCODEPAGE' TO #ETBCB.#ENVIRONMENT
...
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Using Send and Receive Buffers

Introduction

The send buffer and the receive buffer are passed as parameters to the EntireX Broker. Both buffers
can occupy the same location. SeeCall Format in the language-specific EntireXACI documentation.

The length of the data to be sent is given in the ACI field SEND-LENGTH. If the SEND-LENGTH is
greater than the send buffer during data transmission, you could accidentally send the data that
is physically located in memory behind your send buffer to the designated Broker.

The RECEIVE-LENGTH is required with the RECEIVE and RECEIVE_PUBLICATION functions and with
SEND functions waiting for a reply. The length of the receive buffer is specified in the ACI field
RECEIVE-LENGTH. If the RECEIVE-LENGTH is greater than the receive buffer during data reception,
you can overwrite the data physically located behind the receive buffer being used.

43ACI for C

Writing Applications: Publish and Subscribe

If the data to be returned is less than RECEIVE-LENGTH, the rest of the receive buffer remains un-
changed and is not padded with trailing blanks or other characters. The ACI field RETURN-LENGTH
contains the length of the data actually returned. The RECEIVE-LENGTH field is not changed upon
return.

Note: With Adabas version 8, the maximum size of message data is no longer limited to
approximately 32 KB. If Adabas version 8 is not used, these same limits still apply under
z/OS.

Error Cases

Conversion and translation of data can increase the amount of data and thus require a buffer of a
larger size than provided. It may also be impossible to determine the size required in advance.
EntireX provides a feature to reread the data in such cases:

Using API version 2 and above, if the amount of data to be returned is greater than the
RECEIVE-LENGTH, the exact length needed is given in the ACI field RETURN-LENGTH together with
an error code, depending on the internationalization approach. See Internationalizationwith EntireX.
Note the following:

For translation and translation user exit:

■ The error code is 00200094.
■ The data up to the length of the receive buffer is translated. The rest is truncated.

for ICU conversion and SAGTRPC user exit:

■ The error code is 00200377.
■ No data is returned in the receive buffer.

To obtain the entire message, increase the size of the receive buffer and issue an additional Broker
ACI function RECEIVE or RECEIVE_PUBLICATIONwith the option "LAST".

Using API version 5 and above, it is also possible for a client to reread a truncatedmessage in non-
conversational mode, by issuing an additional Broker ACI function RECEIVE or
RECEIVE_PUBLICATIONwith the option "LAST" aswell as the CONV-ID returned from theACI control
block. No EOC is needed after RECEIVE.

ACI for C44

Writing Applications: Publish and Subscribe

Transport Methods

The maximum length possible for send and receive buffers is affected by the transport method
used.

If using this transport method, ...
Maximum Receive /
Send Buffer SizeTransport Method

2,147,482,111 BTCP/IP ■ the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

30,545 BEntire
Net-Work

■ the send and receive buffer sizes are affected by the setting of the
Net-Work parameter IUBL for all involved platforms (see the
Net-Work documentation for more information);

■ the send and receive buffer sizes are affected by the Adabas
SVC/Entire Net-Work-specific attribute IUBL for Broker running
under z/OS;

■ the maximum send and receive buffer size is around 30,545 bytes.

Note: Under z/OS with Adabas version 8, the value for NET is the
same as for TCP and SSL.

2,147,482,111 BSSL ■ the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

Tracing

Trace information showing the commands help the application programmer debug applications
and solve problems. Tracing can be obtained for the application (stub trace) and for the Broker
kernel (kernel trace). The stub trace shows the Broker functions issued by your application,
whereas the Broker kernel trace will contain all Broker functions issued by all applications using
the Broker.

Setting the Broker attribute TRACE-LEVEL=1 provides traces containing just the Broker functions
processed by the Broker kernel without additional diagnostics. It is only necessary to set the trace
value higher when generating traces for Software AG support.

45ACI for C

Writing Applications: Publish and Subscribe

Stub Trace

Tracing is available for all stubs onUNIX andWindows. For the stubs forwhich tracing is available
on z/OS, see table under Administration of Broker Stubs under z/OS in the z/OS administration doc-
umentation.

To set the stub trace, see Tracing for Broker Stubs in the platform-specific administration document-
ation.

Kernel Trace

Tracing is available for Broker on all platforms. For z/OS, see Administration of Broker Stubs under
z/OS in the z/OS administration documentation.

To set the kernel trace, see Tracing webMethods EntireX in the platform-specific administration
documentation.

ACI for C46

Writing Applications: Publish and Subscribe

Transport Methods

Overview of Supported Transports

This table gives an overview of the transport methods supported by EntireX Broker stubs.

Transport to Broker
ModuleEnvironment

Operating
System HTTP(S) (6)NET (1)SSLTCP

xxxBROKERBatch, TSO, IMS (BMP)z/OS (2)

x(3)xCOMETBCom-plete

x(3)xCICSETBCICS

xxxMPPETBIMS (MPP)
(3)xIDMSIDMS/DC (4)

xxxNATETB23Natural

xxxJava ACI in the Developer's Kit
documentation

UNIX System Services

xxbroker.soUNIX

xxxJava ACI in the Developer's Kit
documentation

xxbroker.dll (5)Windows

xxxJava ACI in the Developer's Kit
documentation

xxxBROKERBatch, Dialog (formerly
TIAM)

BS2000/OSD

xxBKIMBCMSz/VM

xEXAIBM i

xxBROKEROpenVMS

Notes:

1. NET is available for transport to a broker running under mainframe platforms only; not to a
broker running under UNIX or Windows.

2. Under z/OS you can use IBM's Application Transparent Transport Layer Security (AT-TLS) as
an alternative to direct SSL support inside the broker stub. Refer to the IBM documentation for
more information.

3. Use AT-TLS. See Note 2.

4. Tracing and transport timeout are not supported in this environment.

47ACI for C

Writing Applications: Publish and Subscribe

5. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is
identical to broker.dll.

6. Via Broker HTTP(S) Agent; see Settting up and Administering the Broker HTTP(S) Agent in the
UNIX and Windows administration documentation.

See also:

■ Setting Transport Methods for Broker Stubs in the platform-specific broker stub administration
documentation

■ Setting Transport Methods underWriting Advanced Applications - EntireX Java ACI

TCP/IP

TCP is not available for all Broker stubs and all environments (see table above).

SeeUsing TCP/IP as Transport Method for the Broker Stub in Setting Transport Methods for Broker Stubs
in the platform-specific broker stub administration documentation, which describes how to set
up TCP transport.

Application programs using TCP/IP as the transport specify the target Broker ID in terms of a host
name (or IP address) together with the port number onwhich the Broker TCP/IP communications
driver is listening. Example: An application communicating through TCP/IP would specify on
each command the Broker ID

IBM1:3932:TCP

where the host on which the Broker kernel executes is known to TCP as IBM1 and is listening on
port 3932.

Entire Net-Work

Communication through Entire Net-Work is available for all Broker stubs when communicating
with a Broker kernel on z/OS through Entire Net-Work. Applications can also utilize Entire Net-
Work communication to obtain local interprocess communicationwith a z/OSBroker kernel running
on the same machine as the application. This can provide a considerable performance benefit.
Local interprocess communication is achieved through the Adabas SVC mechanism.

Application programs using EntireNet-Work as the transport specify the target Broker ID in terms
of the target Entire Net-Work ID of the Broker kernel. For example, an application communicating
through Entire Net-Work would specify on each command the Broker ID:

ACI for C48

Writing Applications: Publish and Subscribe

ETB001::NET

This can be abbreviated to the following for the Assembler stubs executing on z/OS (BROKER,
CICSETB, COMETB, MPPETB):

ETB001

where the Entire Net-Work ID of the Broker kernel is 001.

SSL and TLS

Application programs using Secure Sockets Layer (SSL) or Transport Layer Security (TLS) as the
transport must specify the SSL settings to the broker stub before any communication with the
Broker can take place. There are variousmethods of setting SSL or TLS transport. See SETSSLPARMS
andRunning Broker with SSL or TLSTransport in the platform-specific administration documentation.

Example: An application communicating through SSL or TLS would specify on each command
the Broker ID:

MYPC:1958:SSL

where the host on which the Broker kernel executes is known to SSL or TLS as MYPC and is
listening on port 1958.

Transport Examples

■ For programming language C under Windows:

strcpy(pSBuf, "TRUST_STORE=c:\\certs\\CaCert.pem&VERIFY_SERVER=N");
EtbCb.send_length = strlen(pSBuf);
EtbCb.errtext_length = 40;
EtbCb.function = FCT_SETSSLPARMS
rc = broker (etbcb, pSBuf, (char *) 0, pEBuf);

■ For programming language Natural under z/OS:

MOVE 'TRUST_STORE=UID/KEYRING' TO #SSL-BUFF
MOVE 80 TO #ETBCB.#SEND-LENGTH MOVE 40 TO #ETBCB.#ERRTEXT-LENGTH
MOVE #FCT-SSLP TO #ETBCB.#FUNCTION
MOVE 'IBMHOST:1958:SSL' TO #ETBCB.#BROKER-ID
...
CALL 'BROKER' #ETBAPI #SSL-BUFF #RECV-BUFF #ERR-TXT

See table above for how SSL or TLS is supported depending on broker stub and platform.

For information on Secure Sockets Layer, see SSL or TLS and Certificates with EntireX.

49ACI for C

Writing Applications: Publish and Subscribe

Considerations for Writing Applications

■ The ACI field WAIT allows the application to place the sending or receiving program in a WAIT
state for a specified time; data or a reply will therefore be received before control is passed to
the calling program.When a WAIT value is specified for a SEND / RECEIVE or RECEIVE_PUBLICATION
function, the calling applicationwaits until the specified time has elapsed or a notification event
occurs.

■ WAIT=YESmakes additional handling necessary in the Broker stub, whereby YES is replaced by
the maximum integer value. We recommend you specify a finite value instead of YES.

■ If frequent outages are expected in the network connections, it is useful to set the transport
timeout to n seconds. After n seconds, the Broker stub terminates the TCP connection, if there
is no response from the other side (the Broker kernel). This will help free up the network on the
application side. In the case of applications for which the WAIT value is specified in the ACI
control block (that is, blocking applications), the actual timeout value is the total of the transport
timeout plus WAIT time.

■ TCP/IP only:
■ The Broker ID can contain either an IP address or a hostname. If a hostname is used, it should
be a valid entry in the domain name server.

■ A LOGOFF call to the Broker kernel will only logically disconnect the application from the
Broker kernel. The physical TCP/IP connection is not released until the application terminates.

Restrictions with API Versions 1 and 2

The following maximum message sizes apply to all transport methods:

■ ACI version 1: 32167 bytes
■ ACI version 2: 31647 bytes

Variable-length Error Text

In previous ACI versions, Broker kernel always returned 40 bytes of error text, space-padded if
necessary. For ACI version 9 and above, variable length error text can nowbe returned if requested.
With ACI 9 and above, error text up to the requested length is returned via a new section in the
ACI reply. For any previous ACI versions, ETXL is not sent, and the error text is returned by the
traditional method.

Note that the error text will continue to be traced in the stub and kernel trace and kernel command
log.

See Broker ACI Fields in the ACI Programming documentation.

ACI for C50

Writing Applications: Publish and Subscribe

Programmatically Turning on Command Logging

You can trigger command logging for EntireX components that communicatewith Broker by setting
the field LOG-COMMAND in the ACI control block.

All functions with LOG-COMMAND programmatically set in the ACI string field will have their com-
mands logged, regardless of any filter settings. Because the LOG-COMMAND option will override any
command-log filter settings, remember to reset the LOG-COMMAND field if subsequent requests do
not need to be logged.

IAF Authentication

With ACI field CREDENTIALS-TYPE you can specify that the token specified in the IAF token field
is used to authenticate the user. If this field is left blank, user ID and password will be used as
before.

51ACI for C

Writing Applications: Publish and Subscribe

52

3 Writing Applications: Client and Server

■ Overview of Communication Models ... 55
■ Basic Concepts of Client and Server ... 55
■ API-TYPE and API-VERSION .. 57
■ LOGON and LOGOFF .. 57
■ USER-ID and TOKEN .. 58
■ Control Block Fields and Verbs .. 60
■ Implementation of Client and Server Components .. 63
■ Blocked and Non-blocked Broker Calls .. 64
■ Conversational and Non-conversational Mode ... 67
■ Managing Conversation Contexts ... 70
■ Delayed SEND Function ... 73
■ Timeout Parameters .. 74
■ Data Compression ... 76
■ Error Handling .. 77
■ Using Internationalization .. 80
■ Using Send and Receive Buffers .. 82
■ Tracing .. 84
■ Transport Methods .. 86
■ Variable-length Error Text .. 89
■ Programmatically Turning on Command Logging ... 90
■ IAF Authentication ... 90

53

This chapter describes how to implement and program client and server applicationswith EntireX
Broker.

See alsoWriting Applications: Attach Server in the ACI Programming documentation andWriting
Applications: Units of Work in the ACI Programming documentation.

ACI for C54

Writing Applications: Client and Server

Overview of Communication Models

There are two communication models in EntireX Broker: client and server and publish and sub-
scribe.

■ Client and Server
This communication model is based on a logical connection between exactly two partners: a
client and a server. It covers the communication requirements conversational and non-conver-
sational, and synchronous and asynchronous.

■ Publish and Subscribe
This communication model is used if data is to be published to multiple recipients. It is an al-
ternative to client and server and is implemented as an independent subsystem in EntireX
Broker. SeeWriting Applications: Publish and Subscribe in the ACI Programming documentation.

Basic Concepts of Client and Server

■ Client-and-Server Application Components
■ Conversationality
■ Synchronicity

Client-and-Server Application Components

In the client-and-server communication model there are two partner application components: a
requesting partner (the client) and the partner satisfying the request (the server). The client iden-
tifies the required service through the names of the SERVER-CLASS, SERVER-NAME and SERVICEwith
which the partner has registered.

EntireX Broker allowsmultiple server application components to register the same service in order
to satisfy processing requirements. In conversational requests, the client and the server are bound
to each other for the duration of the conversation. In addition, a server application component can
satisfy more than one request type after registering several class, server and service names.

An application component is not restricted to a single role as either client or server; it can perform
the role of both client and server. It can thereforemake requests for processingwhile also satisfying
requests from other partner application components.

55ACI for C

Writing Applications: Client and Server

Conversationality

The EntireX Broker allows both non-conversational and conversational communication in order
to meet the different requirements of connections between distributed application components.

■ Non-conversational
In this communication type, each request comprises a singlemessage from the client that requires
at most one reply from a server. Since there is only one SEND / RECEIVE cycle per request, each
request can be satisfied individually by any of a number of server replicas.

■ Conversational
In this communication type, the request contains a series of relatedmessages, initiated by a client,
which occur between client and server. Since there is a series of SEND / RECEIVE commands for
each request, the same replica of a servermust process all relatedmessageswithin a conversation.

Using EntireX Broker, an application may have more than one conversation active at the same
time with the same partner or with different partners. Conversational and non-conversational
modes can also be used simultaneously. The requiredmode of communication is always controlled
by the application component that initiates the communication, that is, the client side.

Synchronicity

EntireX Broker makes possible both synchronous and asynchronous communication. EntireX
Broker enables application components to combine synchronous and asynchronous communication
as needed by the application. The terms synchronous and asynchronous correspond to the terms
“blocked” and “non-blocked”. See Blocked and Non-blocked Broker Calls underWriting Applications:
Client and Server in the EntireX Broker ACI Programming documentation.

■ Synchronous
The application component initiating the request waits for the processing to be completed by
the partner application component before continuing. EntireX Broker provides the application
with facilities towait automatically for the partner application to complete processing and reply
to the requesting application partner.

■ Asynchronous
The application component initiating the request does notwait for the processing to be completed
and continues to executewithout needing to receive a reply from the partner application. EntireX
Broker provides the application with facilities to continue processing and obtain the partner's
reply at a later time, if needed.

ACI for C56

Writing Applications: Client and Server

API-TYPE and API-VERSION

Both the API-TYPE and the API-VERSION fields must always be provided.

DescriptionBit PatternValue

The standard value for API-TYPE is 1 (x'01') and usable with all Broker stubs in all
environments.

Note: If any of the following conditions exist, youmust install theAdabasCICS linkmodule
with the definition PARMTYP=ALL, using the ADAGSETmacro.

(x'01')1

1. If you are using NET transport with CICSETB stub with send or receive buffers greater
than 32 KB.

2. If you are using NET transport with CICSETB stub and your application does not have
a TWA.

CertainBroker functionality requires aminimum API-VERSION. Usingpublish and subscribe requires
API-VERSION 8 or higher. For the highest available version of Broker, see API-VERSION. The send
buffer and the receive buffer are passed as parameters to the EntireXBroker. Both buffers can occupy
the same location.

See Broker ACI Control Block Layout in the EntireX language-specific ACI documentation.

Both the API-TYPE and API-VERSION fields must be set correctly to ensure that Broker returns the
correct value in ACI field ERROR-CODE. Otherwise, depending on your programming language
and environment, a return code may not always be given.

See Call Format in the language-specific EntireX ACI documentation.

LOGON and LOGOFF

The LOGON and LOGOFFBroker functions are optionalwhenusing the client-and-server programming
model in your application. However, we recommend that the application issues LOGON and LOGOFF
function calls for the following reasons:

■ LOGOFFwill notify the Broker to clean up in-memory resources held for your program, making
them available to other users of the Broker.

■ Without LOGOFF, the user's in-memory resources will time out in accordance with the Broker
attributes CLIENT-NONACT and SERVER-NONACT. Depending on the values set by the administrator,
this may not occur for some time.

Example for programming language Natural:

57ACI for C

Writing Applications: Client and Server

/* Logon to Broker/LOGON
MOVE #FCT-LOGON TO #ETBCB.#FUNCTION
/*
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Logoff example for programming language Natural:

/* Logoff to Broker/LOGOFF
MOVE #FCT-LOGOFF TO #ETBCB.#FUNCTION
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

USER-ID and TOKEN

■ Identifying the Caller
■ Restarting after System Failure
■ Managing the Security Token

Identifying the Caller

USER-ID identifies the caller and is required for all functions except VERSION. The USER-ID is
combinedwith an internal ID orwith the TOKEN field, if supplied, in order to guarantee uniqueness,
for example where more than one application component is executing under a single USER-ID.

Brokers identify callers as follows:

■ When the ACI field TOKEN is supplied:

The ACI field USER-ID, together with the TOKEN, is used to identify the user. Using TOKEN allows
the application to reconnect with a different process or thread without losing the existing con-
versation. When a new call is issued under the same USER-ID from a different location but with
the same TOKEN, the caller is reconnected to the previous context.

Note: The ability to reconnect to the previous context is vital if restart capabilities of ap-
plications are required. The combination of USER-ID and TOKENmust be unique to the
Broker. It is not possible to have the same USER-ID and TOKEN combination duplicated.

■ When the ACI field TOKEN is not supplied:

The USER-ID is combinedwith an internally generated ID. It is possible to use the same USER-ID
in different threads or processes. All threads and processes are distinct Broker users.

ACI for C58

Writing Applications: Client and Server

Restarting after System Failure

Caution: USER and TOKENmust be specified by all publisher and subscriber applications
where publication and subscription data is held in the persistent store.

The Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER-ID, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

Specification of USER and TOKEN is necessary for reconnection with the correct user context after
Broker has been stopped and restarted. This specification is also necessary to enable effective use
of publish and subscribe, including recovery from system failures.

Managing the Security Token

If you are using EntireX Security, the applicationmustmaintain the content of the SECURITY-TOKEN
field and not change this field on subsequent calls.

59ACI for C

Writing Applications: Client and Server

Control Block Fields and Verbs

■ Basic Functionality of Broker API
■ ACI Syntax
■ Key ACI Field Names
■ Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the basic functionality of the Broker API. The following functions in the
Broker API are fundamental to client-and-server processing. For full set of verbs relating to UOW
processing, see Control Block Fields and Verbs underWriting Applications: Units of Work in the ACI
Programming documentation.

■ DEREGISTER
The function DEREGISTER is used by a server to indicate its intention to terminate its role as a
server for the named SERVER-CLASS, SERVER-CLASS and SERVER-CLASS. The server can terminate
its role as server for all class, server and service names for which it is registered, using a single
DEREGISTER command.

■ EOC
The function EOC is used by either partner to terminate one or more active conversations.

■ RECEIVE
The function RECEIVE is used by the server to obtain new requests from a client, and in the case
of conversations, to obtain subsequent related messages from the same client. This function is
also used by clients that issue asynchronous requests and wish to obtain the server's reply at a
later time. The field CONV-ID defines the behavior of this function. RECEIVE,CONV-ID=NEW signals
the server's readiness to obtain the next available new request, whereas the value CONV-ID=nnn
indicates that the next messagewithin an existing conversation is being requested by the server.
The client uses RECEIVE,CONV-ID=nnn to obtain asynchronously a reply from the server for an
existing conversation.

■ REGISTER
The function REGISTER is used by a component of an application to identify its intention to become
a server and satisfy requests issued to the named SERVER-CLASS, SERVER-CLASS and SERVER-CLASS.

■ SEND
The functionSEND is used by the client either tomake a new request or to send subsequent related
messages within a conversation. This function is also used by servers, after satisfying a request,
or during the course of a conversation, to reply to the client. The field CONV-ID defines the beha-
vior of this function. The client uses SEND,CONV-ID=NEW to initiate a new request and the value
CONV-ID=nnnwhen sending subsequent related messages in a conversation. The server always
uses SEND,CONV-ID=nnnwhen replying to a client, where nnn indicates the identity of the existing
conversation. The same syntax is used for both conversational and non-conversational modes.

ACI for C60

Writing Applications: Client and Server

ACI Syntax

Fields in EntireX Broker Control BlockFunction

DEREGISTER API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *
[, OPTION = QUIESCE | IMMED]

EOC API = 2 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
[, OPTION = CANCEL]
, CONV-ID = conv_id | ANY
[, SERVER-CLASS = class_name]
[, SERVER-NAME = server_name]
[, SERVICE = service_name]

RECEIVE API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
, WAIT = n | YES | NO
, CONV-ID = conv_id | NEW | OLD | ANY
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *

REGISTER API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
, SERVER-CLASS = class_name
, SERVER-NAME = server_name
, SERVICE = service_name
[, OPTION = ATTACH]

SEND API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
[, OPTION = DEFERRED]
, WAIT = n | YES | NO
, CONV-ID = conv_id | NEW
, SERVER-CLASS = class_name

61ACI for C

Writing Applications: Client and Server

Fields in EntireX Broker Control BlockFunction

, SERVER-NAME = server_name
, SERVICE = service_name

Key ACI Field Names

The following table lists keyACI field names for implementing applications that use the client/server
communication model. The other fields are available to identify partner programs, specify buffer
lengths, convey error codes, etc.

See Broker ACI Fields in the ACI Programming documentation for all fields.

ExplanationACI Field Name

A client uses these fields to identify the service that it requires. A server uses this to offer
a service.

SERVER-CLASS

Identifier to obtain and specify the conversation. Also used to determine communication
mode: conversational or non-conversational. See Conversationality.

CONV-ID

Function code for one of the verbs (see Key Verbs for FUNCTION Field).FUNCTION

Indication of specific Broker behavior, depending on the function.OPTION

Time value to specify blocking or non-blocking of the conversation. See Blocked and
Non-blocked Broker Calls underWriting Applications: Client and Server in the EntireX Broker
ACI Programming documentation.

WAIT

Key Verbs for FUNCTION Field

The following table lists the most important verbs for the FUNCTION field.

See Broker ACI Functions in the EntireX Broker ACI Programming documentation for a complete
list of functions.

DescriptionVerb

Inform the EntireX Broker that a service is available.REGISTER

Retrieve request from partner.RECEIVE

Send reply to the partner.SEND

Terminate one or more conversations.EOC

Remove the availability of the service.DEREGISTER

ACI for C62

Writing Applications: Client and Server

Implementation of Client and Server Components

This example implements a simple non-conversational server and the appropriate client. The
server is able to receive a request from the client and send back a reply. See Conversationality.

The following EntireX Broker functions are used to implement the server component:

ExplanationFunction

Log on the application to EntireX Broker.LOGON

Inform EntireX Broker about the availability of a service.REGISTER

Retrieve request from partner.RECEIVE

Commit the sending or acknowledgment receipts of a UOW and examine status.SYNCPOINT

Send reply to the partner.SEND

Remove the availability of the service.DEREGISTER

Log off the application from EntireX Broker.LOGOFF

The program flow of the client component is:

LOGON USER-ID=user-id
SEND SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
LOGOFF USER-ID=user-id

The program flow of the server component is:

LOGON
REGISTER SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
repeat

RECEIVE SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
(individual request processing: reply to client for each message)
SEND CONV-ID=n

end-repeat
DEREGISTER SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
LOGOFF

The example above illustrates the structure of a typical server program. It consists of a server re-
gistration and a loopwith RECEIVE / SEND cycles. This RECEIVE / SEND loop is normally interrupted
by shutdown messages from administration programs.

The appropriate client component needs three functions:

63ACI for C

Writing Applications: Client and Server

ExplanationFunction

Log on the application to EntireX Broker.LOGON

Send request to partner.SEND

Log off the application from EntireX Broker.LOGOFF

The service offered by the server above is used by issuing a SEND operation within the client
component of the application.

Both server and client perform a LOGON as the first call and LOGOFF as the last call. This enables se-
curity checks and saves resources in EntireX Broker.

Blocked and Non-blocked Broker Calls

The application can use the EntireX Broker control block field WAIT to determine whether Broker
will automatically generate a WAIT in order for the command to be received or satisfied by the
partner application.

■ Non-blocked Command: WAIT=NO
■ Blocked Command: WAIT=YES or WAIT=n
■ Examples: WAIT
■ Examples: Programming Language Natural

Non-blocked Command: WAIT=NO

■ SEND
An application sends a message via Broker to a partner application. The caller does not wait for
the partner application to RECEIVE the message or to process it. The application subsequently
performs RECEIVE commands if it intends to retrieve messages from the partner. This technique
is frequently used by server applications when replying to clients after satisfying their requests;
it can also be used by client applications that do not want to wait for the request to be serviced,
such aswhen using units ofwork (seeWritingApplications: Units ofWork in theACI Programming
documentation).

■ RECEIVE
Allows an application to ask for a message to be returned from the partner application. If the
partner application has not yet communicated anymessages to Broker using the SEND command,
an ACI response code is given to the application, indicating nomessages are currently available
either for the designated class/server/service or for the conversation (if an existing conversation
was established). This technique can be used by both client and server application components,
especially in a multithreading context, where more than one communication thread is being
maintained, or when programming units of work (seeWriting Applications: Units of Work in the
ACI Programming documentation).

ACI for C64

Writing Applications: Client and Server

Blocked Command: WAIT=YES or WAIT=n

■ SEND
An application sends a request via Broker to a partner application. The calling application is
automatically put into a WAIT state until the partner application has performed a RECEIVE oper-
ation to obtain the request and then processes it before issuing a reply, using the SEND command.
Unlike the case where WAIT=NO, an inherent RECEIVE is generated to return the partner's reply.
This technique is used by client applications only.

■ RECEIVE
An application asks for a message to be returned from the partner application. The calling ap-
plication is automatically put into a WAIT state until the partner application has provided the
necessary message through issuing a SEND command. If no messages are available during the
specifiedwaiting time, anACI response code is given to the application, indicating nomessages
were available for the designated class/server/service or for the conversation (if an existing
conversation was established). This technique is frequently used by server applications when
waiting for messages to arrive from clients; it can also be used by client applications if the SEND
and RECEIVE commands are programmed separately.

Examples: WAIT

The EntireX Broker allows both server and client applications to specify a WAIT time with the SEND
or RECEIVE function. WAIT is a field in the ACI control block (see Broker ACI Fields in the ACI Pro-
gramming documentation). If a WAIT time is specified, the application is suspended until a reply
is received or the timeout value has elapsed. If a timeout occurs, the EntireX Broker returns an
error code to the calling program. If no WAIT time is specified, the application continues processing
and collects the reply later.

Server applications typically use the WAITfieldwith a RECEIVE function in order towait for requests.
WAIT is not typically used with server SEND functions, allowing the server to continue processing
instead of waiting for a request. For example:

LOGON
REGISTER service
repeat

RECEIVE,CONV-ID=NEW,WAIT=nS
(individual processing)
SEND,CONV-ID=n,WAIT=NO

end-repeat
DEREGISTER service
LOGOFF

Client applications use the WAIT field with a SEND function in non-conversational communication
if they require a reply. Because the mode is non-conversational, no conversation ID is returned to
the client. The client must therefore wait for the reply from the server.

65ACI for C

Writing Applications: Client and Server

LOGON
SEND,CONV-ID=NONE,WAIT=nS
LOGOFF

A RECEIVE function with no WAIT time can be used to check if requests or data/messages are
available for processing. Control is returned to the caller even if no request or data/message is
available to satisfy the caller's operation. Appropriate error codes are returned when nothing is
available.

LOGON
RECEIVE,CONV-ID=n,WAIT=NO
LOGOFF

The application can use the EntireX Broker control block field WAIT in the following ways to de-
terminewhether Brokerwill automatically generate a WAIT in order for the command to be received
or satisfied by the partner application.

Examples: Programming Language Natural

■ Blocked Broker Calls
■ Example 1: Single Request without Reply under Examples for EntireX Broker Tutorial
■ Example 2: Single Request with Reply under Examples for EntireX Broker Tutorial

■ Non-blocked Broker Calls
■ Example 3: Long Running Service - Non-blocked Client under Examples for EntireX Broker Tutorial
■ Example 14: Single Requests without Reply - A Polling Server under Examples for EntireX Broker
Tutorial

■ Example 15: Single Requests with Reply - A Polling Server under Examples for EntireX Broker Tu-
torial

Note: See Examples for EntireX Broker Tutorial.

ACI for C66

Writing Applications: Client and Server

Conversational and Non-conversational Mode

Themode of communication is always controlled by the component of the distributed application
that initiates communication. In the client and server model, this is the client side. When starting
a communication, the CONV-ID field of the ACI control block is used to signal the communication
mode to the Broker as follows:

■ CONV-ID=NONE
Coded on the service-requesting side (client program), it denotes non-conversational mode.
EntireX Broker assigns a unique conversation ID to the communication that the client does not
need to know.

■ CONV-ID=NEW
Coded in the client program, it denotes conversational mode. The EntireX Broker assigns a
unique conversation ID to the communication, which is retrieved by the server and client pro-
gram. This conversation ID must be specified in subsequent calls by both sides to refer to this
conversation, until the conversation is ended by either side.

The server always retrieves the unique conversation ID and uses it when sending back the reply
to the client. If no reply is required in non-conversationalmode, the server ignores the conversation
ID.

Non-conversational Mode

When implementing a non-conversational communication, the CONV-ID field is used by the server
as follows:

LOGON
REGISTER service
repeat

RECEIVE,CONV-ID=NEW
(individual processing)
SEND,CONV-ID=n

end-repeat
DEREGISTER service
LOGOFF

The client's SEND function is supplemented as follows:

67ACI for C

Writing Applications: Client and Server

LOGON
SEND,CONV-ID=NONE
LOGOFF

Conversational Mode

When implementing conversational communication, the server uses the CONV-ID field as follows:

LOGON
REGISTER service
repeat

RECEIVE,CONV-ID=NEW
repeat

(individual processing)
SEND,CONV-ID=n
RECEIVE,CONV-ID=n

end-repeat until conversation ended
end-repeat
DEREGISTER service
LOGOFF

The conversation is ended whenMessage Class 0003 - EntireX ACI - Conversation Ended under Error
Messages and Codes is received. See Error Handling underWriting Applications: Client and Server in
the EntireX Broker ACI Programming documentation.

The client's SEND function is supplemented as follows:

LOGON
SEND,CONV-ID=NEW
SEND,CONV-ID=n
SEND,CONV-ID=n
EOC,CONV-ID=n
LOGOFF

EOC Reason

The reason for an EOCmight be of interest to the partner of the conversation. EntireX Broker enables
you to define the CANCEL option for an EOC function to indicate an abortive end of conversation.
You can also distinguish between a timeout and a regular EOC on the basis of the error number.
The error class is alwaysMessage Class 0003 - EntireXACI - Conversation EndedunderErrorMessages
and Codes; the error number specifies the actual circumstances.

ACI for C68

Writing Applications: Client and Server

Examples: Programming Language Natural

■ Non-conversational communication
■ Example 1: Single Request without Reply under Examples for EntireX Broker Tutorial
■ Example 2: Single Request with Reply under Examples for EntireX Broker Tutorial

■ Conversational communication
■ Example 4: Transfer Messages from Server to Client under Examples for EntireX Broker Tutorial
■ Example 5: Transfer Messages from Client to Server under Examples for EntireX Broker Tutorial

Note: See Examples for EntireX Broker Tutorial.

69ACI for C

Writing Applications: Client and Server

Managing Conversation Contexts

It is possible to program a server application to handle several clients simultaneously and thus
many conversations in parallel. Such a server is also capable of providing several different services
and this technique can be used to reduce the number of different server applications executing on
your machine. This increases throughput without wasting resources on a new service replica. The
following features make it easier to implement a server that supports multiple conversations:

■ Conversation Status
■ Conversation User Data
■ Stored EOC

Conversation Status

The Broker ACI control block contains a field named CONV-STAT. This is filled by Broker after a
RECEIVE command. The following values are possible:

DescriptionValue

This is a new conversation. If the server needs to allocate a user-specific area, for example, this can
be done without a comparison being made against existing conversations.

NEW

This message is a conversationless message. It is probably not necessary to create a user context,
since the next request of this user is completely independent of this one, which is a requirement of

NONE

conversationless communication. The implementation of mixed servers (conversational and
non-conversational) is easier if it is known whether a message is conversational or not.

Themessage belongs to an existing conversation. The server can refer to the conversation user data
to find the partner context. See Conversation User Data.

OLD

Conversation User Data

Servers capable of serving multiple clients simultaneously are either stateless (servicing non-con-
versational requests) or they have to store conversation-related data for each user. This conversation-
related context data is typically stored by the server application in a dynamicmemory area.When
a message is received, the user context related to that conversation must be located. This can be
done by implementing a mapping structure in the application that can be indexed by the conver-
sation ID, which returns the related context data.

Additionally, conversation-related contexts can be maintained by the Broker on behalf of the
server applicationusing the USER-DATAfield in theACI control block. Broker remembers information
stored in the USER-DATA field when executing the SEND command. This data is returned to the ap-
plication on subsequent RECEIVE commands executed within the same conversation. Therefore,
your application is able to store information in USER-DATAwhen executing SEND commands and
retrieve it on RECEIVE commands. The data in USER-DATA is considered binary and is untouched
by the Broker.

ACI for C70

Writing Applications: Client and Server

Note: The USER-DATA is never transmitted from client to server or vice versa. Both sides of
a conversation can store different USER-DATA, and both sides always receive their own data.

This USER-DATA helpswith context areas as follows. A server application encounters a new conver-
sation with the CONV-STAT API field. The user area is created and, typically, a first application
confirmation is sent back to the client. Along with this SEND function, the server specifies the
pointer to the user context - or the index into a context array, or whatever is available - into the
USER-DATA. Whenever another request/message comes from that client via this conversation, this
pointer/index is returned to the application, and the server has the context of the client application
immediately, without having to scan a list of known conversations. Example:

71ACI for C

Writing Applications: Client and Server

* example of State-ful server program which utilizes
* USER-DATA to maintain application specific context
* information between successive messages within
* conversations with clients.

REGISTER #SERVER-CLASS #SERVER-NAME #SERVICE

DO FOREVER
RECEIVE #CONV-ID=ANY
DECIDE ON FIRST VALUE #ERROR-CODE
/* ============================
/* NICE RETURN CODE
VALUE '0'

DECIDE ON FIRST VALUE #CONV-ID
/* ========================
/* NEW CONVERSATION
VALUE 'NEW'

#REQUEST-IN = #RECEIVE-BUFFER
... PROCESS NEW REQUEST FROM CLIENT AND

REPLY TO CLIENT ASKING BROKER TO REMEMBER
ACCOUNT NUMBER SO CLIENT DOESN'T HAVE TO
TRANSMIT THIS WITH EVERY MESSAGE

#ACCOUNT-NR = REQUEST-IN.ACCOUNT-NR
SEND #CONV-ID #SEND-DATA #USER-DATA

/* ========================
/* EXISTING CONVERSATION
NONE VALUE

/* NEXT MESSAGE IN CONVERSATION RECEIVED
/* AND ACCOUNT NUMBER REMEMBERED BY BROKER
#ACCOUNT-NR = #USER-DATA
#REQUEST-IN = #RECEIVE-BUFFER
... DO SOME PROCESSING BASED ON REQUEST AND

ACCOUNT NUMBER REMEMBERED BY BROKER FOR
THIS CONVERSATION CONTEXT

... REPLY TO CLIENT AS APPROPRIATE AND
END CONVERSATION SOONER OR LATER

SEND #CONV-ID #SEND-DATA #USER-DATA
END-DECIDE

VALUE '00740074' /* RECEIVE TIME-OUT
ESCAPE BOTTOM

NONE VALUE /* REAL BROKER ERROR
... DEAL WITH A REAL BROKER ERROR

END-DECIDE
DOEND /* END FOREVER LOOP

DEREGISTER

ACI for C72

Writing Applications: Client and Server

Stored EOC

Servers that handle multiple conversations in parallel normally have to maintain a user context
related to every conversation as described above. However, this context is typically allocated dy-
namically, and is therefore released after the conversation has ended. Not knowingwhen a partic-
ular conversation has finished would result in orphan contexts. To avoid this, the Broker offers
the NOTIFY-EOC option, which is a service-specific attribute defined in the Broker Attributes in the
administration documentation.

This means that the EOC notification, even for timed-out conversations, is kept until the server re-
ceives it. This is useful for servers serving multiple conversations, since they are always informed
about the end of a particular conversation and can therefore release all internal resources of a
particular user context.

Specification of NOTIFY-EOC=YES can consume substantial system resources; as a result, a shortage
of conversations for a service may occur. To avoid this shortage, a server must issue RECEIVE re-
quests not restricted to any conversation, which gives the Broker the chance to report timed-out
conversations. This does not of coursemean that only RECEIVE functionswith CONVERSATION-ID=ANY
are valid, but from time to time such an unrestricted RECEIVE function should be issued.

Delayed SEND Function

To allow maximum flexibility in communication, the EntireX Broker provides a simple means of
delaying the delivery of messages: allowing delivery of related messages in one logical block. If,
for some reason, the messages that belong to a block cannot all be sent, all the messages in the lo-
gical block can optionally be deleted.

The mechanisms by which the EntireX Broker does this are the HOLD option on the SEND function
and the UNDO function. Messages sent with HOLD status are not delivered until a message without
the HOLD option is sent on the same conversation.

Example

This example illustrates the logical program flow of a client program that sends several messages
on the same conversation, making delivery of the messages dependent on some condition. If the
logical block of messages cannot be delivered (triggering an error condition), all messages in the
logical block already sent can be deleted:

73ACI for C

Writing Applications: Client and Server

SEND,CONV-ID=NEW,OPTION=HOLD
.... /* individual processing
SEND,CONV-ID=n,WAIT=NO,OPTION=HOLD
.... /* individual processing
SEND,CONV-ID=n,WAIT=NO,OPTION=HOLD
.... /* individual processing
if <error> then /* error condition

UNDO,CONV-ID=n,OPTION=HOLD
else

SEND,CONV-ID=n,WAIT=NO
end-if
.... /* individual processing
EOC

Example: Programming Language Natural

■ Example 7: SendMessages with HOLD - Delayed Delivery under Examples for EntireX Broker Tutorial

Timeout Parameters

■ Timeout Behavior
■ Types of Non-activity Time
■ Recommendations
■ Unit of Work Lifetime
■ Unit of Work Status Lifetime

Timeout Behavior

EntireX Broker provides a number of timeout mechanisms that allow you to control WAIT times
flexibly, optimize resource usage, and configure efficient communication.

■ The CLIENT-NONACT, SERVER-NONACT and CONV-NONACT attributes are non-activity timeout para-
meters that can be specified independently of each other to govern the three elements involved
in a conversation: the requesting client, the registered server, and the conversation thatwill exist
between them.

■ The WAIT field in the Broker ACI control block allows you to place the sending or receiving
program in a WAIT state for a specified time to allow data or a reply to be received before control
is passed to the calling program. Placing the program into a WAIT state during a Broker command
is referred to as issuing a blocked command. A non-blocked command is executed if WAIT=NO
is specified. See Blocked and Non-blocked Broker Calls underWriting Applications: Client and Server
in the EntireX Broker ACI Programming documentation.

There is interplay between the WAIT values of your SEND and RECEIVE calls and the settings of the
non-activity parameters in the Broker attribute file. See the WAIT field.

ACI for C74

Writing Applications: Client and Server

Types of Non-activity Time

There is interplay between the non-activity times specified in the attribute file for the attributes

■ PUBLISHER-NONACT

■ SUBSCRIBER-NONACT

■ CLIENT-NONACT and
■ SERVER-NONACT

where an application component performsmore than one of these roles. In this case, themaximum
non-activity time associatedwith the userwill take precedence. This factmust be consideredwhere
an application component implements both publish and subscribe and client and server.

Recommendations

The following recommendations apply to developing client and server applications:

■ Make the Broker WAIT time used for blocked SEND / RECEIVE calls in the application (both servers
and clients) adjustable. This means that WAIT values must be read as a startup parameter from
a user-supplied INI or CFG file, or any other parameter data set or set of environment variables,
depending on the platform in use.

■ On the client side, avoid high values for the WAIT time, which may lead to communication
problems.

■ When the WAIT time is lower than CONV-NONACT attribute, the caller will receive 00740074 error
messages. Since the lifetime of the conversation exceeds the WAIT time specified for the command,
the application can retry with the Broker function RECEIVE, and option LAST is possible.

■ When the WAIT time is higher than CONV-NONACT attribute, the caller will receive 00030003 error
messages. Since the lifetime of the conversation is less than the WAIT time specified for the
command, it is not possible for the application to retry because any messages relating to the
current conversation have already been cleaned up.

See also Timeout Considerations for EntireX Broker in the general administration documentation.

Unit of Work Lifetime

The UWTIME parameter in the Broker Attributes in the administration documentation specifies the
lifetime for a persistent UOW. The UOW exists until it has been successfully processed or until it
is explicitly cancelled or backed out. If a UOW times out before being processed, or before any
other explicit action is taken, its status changes to TIMEOUT. The status may or may not be retained
in the persistent store, depending on the value of UOW status lifetime as described below. The
default UOW lifetime for the Broker is defined by the UWTIME attribute. It can be overridden by
the application in the UWTIME field of the ACI control block.

The UOW lifetime for the units of work is calculated only while Broker is executing.

75ACI for C

Writing Applications: Client and Server

Unit of Work Status Lifetime

This can be specified through either of the following two exclusive attribute settings. The default
value zero implies the UOW status lifetime is zero, which means the status of the UOWSTATUS is
not retained after one of the following events occurs: UOW is processed; UOW times out; UOW
is backed out; UOW is cancelled. Status lifetime can be specified through either of the following
two parameters in the Broker Attributes in the administration documentation:

■ UWSTATP (ACI_VERSION 3 or above)

This attribute contains a multiplier used to compute the lifetime of the status of a UOW. See
Writing Applications: Units of Work in the ACI Programming documentation. The UWSTATP value
is multiplied by the UWTIME value (the lifetime of the associated UOW) to determine howmuch
additional time the UOW status is retained in the persistent store. The lifetime is calculated to
start when any of the above events occurs and ends when the lifetime value expires. It can be
overridden by the application in the UOW-STATUS-PERSIST field in the ACI control block.

■ UWSTAT-LIFETIME (ACI_VERSION 8 or above)

This attribute specifies the value to be added to the UWTIME (lifetime of the associated UOWSTATUS)
to compute the length of time the UOW status is persisted. The UOW status lifetime begins at
the time at which the associatedUOWenters any of the following statuses: PROCESSED, TIMEOUT,
BACKEDOUT, CANCELLED, DISCARDED. Specifying unit of work status lifetime in this way excludes
specifying it as a multiplier value through the attribute UWSTATP.

The status lifetime for the unit of work is calculated only while Broker is executing.

Note: The values described here as UWSTATP and UWSTAT-LIFETIME can also be assigned as
global Broker attributes or as a per-service attribute. However, the value specified by the
application in the ACI control block overrides the Broker (or service) attributes. See Broker
ACI Fields in the ACI Programming documentation.

Data Compression

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
senders and receivers. This helps to reduce response time during transmissions aswell as improve
the overall network throughput, especially with low bandwidth connections.

Compression is performed only on the buffers used to send and receive data. The application has
the option of setting the level of compression/decompression for data transmission. The compression
level can be set to achieve either no compression or a range of compression/decompression. See
Data Compression in EntireX Broker in the general administration documentation. Application
components can set compression individually to Broker.

ACI for C76

Writing Applications: Client and Server

zlib is a general-purpose software implementing data compression across a variety of platforms.
The functions used within EntireX Broker represent a subset of those available within the zlib
software. The compression algorithms are implemented through the open source software zlib.
It may occur that the data buffer does not compress during a data transmission; if it does not
compress, a logged warning message will appear in 00200450 and in the stub.

Technique

The Broker ACI control block contains a field that is used to set the compression level. This field
determines for any send/receive transmissionwhether the data buffer will be compressed/decom-
pressed. See ACI control block field COMPRESSLEVEL.

Error Handling

After every broker operation, the application must check the ERROR-CODE. It consists of a combin-
ation of

■ error class (first four digits) and
■ error number (last four digits)

While the error number describes the exact situation, the error class often determines how the
program will proceed after returning from the EntireX Broker operation. From the programmer's
point of view, therefore, the error class may be more important than the particular error number.

For more information, see Error Messages and Codes.

Programming Techniques

We recommend trapping the error classes in a “case” statement, for example, a DECIDE in Natural
or a switch statement in C.

All error classes - for example user and configuration errors - leading to the same action (that is,
reporting or logging the situation and aborting issuing broker calls), can be handled together in
the NONE VALUE or default case.

77ACI for C

Writing Applications: Client and Server

http://www.zlib.net/

Example for C Progamming Language

int i, iErrorCode, iErrorClass, iErrorNumber, ret_val;
char szErrorTextBuffer[S_TXT + 1];.....

/* prepare error code field and error text buffer */
memset(pETBCB->error_code,'0',sizeof(pETBCB->error_code));
memset(szErrorTextBuffer,'\0',sizeof(szErrorTextBuffer));

/* call the broker */
ret_val = broker(pETBCB,pSendBuffer,pReceiveBuffer,szErrorTextBuffer);

/* evaluate error class from error code field */
iErrorClass = 0;
for(i = 0; i < 4; ++i)
{

iErrorClass *= 10;
iErrorClass += pETBCB->error_code[i] - '0';

}

if (iErrorClass == 0 && ret_val != 0)
{

printf("Wrong API_TYPE and/or API_VERSION\n");
}
else
{

/* evaluate error number from error code field */
iErrorNumber = 0;
for(i = 4; i < 8; ++i)
{

iErrorNumber *= 10;
iErrorNumber += pETBCB->error_code[i] - '0';

}

/* evaluate error code as integer value */
iErrorCode = (iErrorClass * 10000) + iErrorNumber;

/* handle error */
switch (iErrorClass)
{

case 0: /* Successful Response */
....
break;

case 2: /* User does not exist */
....
break;

case 3: /* Conversation ended */
....
break;

ACI for C78

Writing Applications: Client and Server

case 7: /* Service not registered */
....
break;

case 74: /* Wait Timeout occurred */
....
break;

....

default:
printf("EntireX Broker Error occurred.\n");
printf("%8.8u %s",iErrorCode,szErrorTextBuffer);
break;

}
}

79ACI for C

Writing Applications: Client and Server

Using Internationalization

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

This section covers the following topics:

■ General Information
■ Providing Locale Strings
■ Using the ENVIRONMENT Field with the Translation User Exit

General Information

The broker stub does not convert your application data before it is sent to the broker. The applic-
ation's data is shipped as given.

For the internationalization approaches ICU conversion and SAGTRPC user exit, valid locale
strings are required for conversion to behave correctly.

Providing Locale Strings

Under the Windows operating system:

■ The broker stub assumes by default that the data is given in the encoding of theWindows ANSI
codepage configured for your system. If you are using at least API-VERSION 8 and communicating
with a broker version 7.2.n or above, a codepage identifier of this Windows ANSI codepage is
also automatically transferred as part of the locale string to tell the broker how the data is en-
coded.

■ If you want to adapt the Windows ANSI codepage, see the Regional Settings in the Windows
Control Panel and your Windows documentation.

Under all other operating systems:

■ The broker stub does not automatically send a codepage identifier to the broker as part of the
locale string.

■ The broker stub assumes the broker's locale string defaults match. If they do not match, provide
the codepage explicitly. See Broker's Locale String Defaults under Locale String Mapping in the in-
ternationalization documentation.

With the ACI control block field LOCALE-STRING:

■ You can override or provide a codepage in the locale string sent to the broker. If a codepage is
provided, it must follow the rules described under Locale String Mapping in the internationaliz-
ation documentation.

ACI for C80

Writing Applications: Client and Server

■ You can force a locale string to be sent if communicating with broker version 7.1.x and below.
UnderWindows you can use the abstract codepage name. SeeUsing the Abstract Codepage Name
LOCAL under Locale String Mapping in the internationalization documentation.

■ API version 4 or above is required to override the locale string.

The encoding in which your application gives the data to the broker stub and the locale string

■ must always match, i.e. the codepage derived after the broker's built-in locale string mapping
processmust be the same as the encoding of the data provided. See Broker's Built-in Locale String
Mapping under Locale String Mapping in the internationalization documentation.

■ must be a codepage supported by the broker, depending on the internationalization approach;

otherwise, unpredictable results will occur.

Example for Assembler

MVC S$LOCALE,=C'ECS037' MOVE CP
....

Examples for C

1. Using a specific codepage

/* prepare the locale-string with a codepage */
memset (pETBCB->locale_string,' ',sizeof(pETBCB->locale_string));
strncpy(pETBCB->locale_string,"ECS0819",sizeof(pETBCB->locale_string));
....

2. Using the platform's default codepage (Windows only)

/* prepare the locale-string with a codepage */
memset (pETBCB->locale_string,' ',sizeof(pETBCB->locale_string));
strncpy(pETBCB->locale_string,
ETB_CODEPAGE_USE_PLATFORM_DEFAULT,sizeof(pETBCB->locale_string));
....

Example for COBOL

MOVE 'ECS037' TO LOCALE-STRING.
....

81ACI for C

Writing Applications: Client and Server

Examples for Natural

MOVE 'ECS037' TO #SDPA-API.#LOCALE_STRING.
....

Using the ENVIRONMENT Field with the Translation User Exit

Using the internationalization approach translation user exit, an ACI programmer can provide ad-
ditional information to their translation exit through the ENVIRONMENT field, allowing flexible
translation behavior in accordance with application requirements. The field cannot be used for
any other internationalization approaches and must be empty if a method other than translation
user exit is used. See Translation User Exit under Introduction to Internationalization.

Example

Assume a broker service or topic has a user-written translation routine called ABCTRAN, which
is capable of performing several types of data conversion, for example EBCDIC-ASCII translation,
byte swapping, and mixed data types. The user translation routine may need to know the data
formats used by both partners. The ENVIRONMENT field can be used to pass this information from
the application to the translation routine in Broker kernel.

Technique

MOVE 'MYCODEPAGE' TO #ETBCB.#ENVIRONMENT
...
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Using Send and Receive Buffers

Introduction

The send buffer and the receive buffer are passed as parameters to the EntireX Broker. Both buffers
can occupy the same location. SeeCall Format in the language-specific EntireXACI documentation.

The length of the data to be sent is given in the ACI field SEND-LENGTH. If the SEND-LENGTH is
greater than the send buffer during data transmission, you could accidentally send the data that
is physically located in memory behind your send buffer to the designated Broker.

The RECEIVE-LENGTH is required with the RECEIVE and RECEIVE_PUBLICATION functions and with
SEND functions waiting for a reply. The length of the receive buffer is specified in the ACI field
RECEIVE-LENGTH. If the RECEIVE-LENGTH is greater than the receive buffer during data reception,
you can overwrite the data physically located behind the receive buffer being used.

ACI for C82

Writing Applications: Client and Server

If the data to be returned is less than RECEIVE-LENGTH, the rest of the receive buffer remains un-
changed and is not padded with trailing blanks or other characters. The ACI field RETURN-LENGTH
contains the length of the data actually returned. The RECEIVE-LENGTH field is not changed upon
return.

Note: With Adabas version 8, the maximum size of message data is no longer limited to
approximately 32 KB. If Adabas version 8 is not used, these same limits still apply under
z/OS.

Error Cases

Conversion and translation of data can increase the amount of data and thus require a buffer of a
larger size than provided. It may also be impossible to determine the size required in advance.
EntireX provides a feature to reread the data in such cases:

Using API version 2 and above, if the amount of data to be returned is greater than the
RECEIVE-LENGTH, the exact length needed is given in the ACI field RETURN-LENGTH together with
an error code, depending on the internationalization approach. See Internationalizationwith EntireX.
Note the following:

For translation and translation user exit:

■ The error code is 00200094.
■ The data up to the length of the receive buffer is translated. The rest is truncated.

for ICU conversion and SAGTRPC user exit:

■ The error code is 00200377.
■ No data is returned in the receive buffer.

To obtain the entire message, increase the size of the receive buffer and issue an additional Broker
ACI function RECEIVE or RECEIVE_PUBLICATIONwith the option "LAST".

Using API version 5 and above, it is also possible for a client to reread a truncatedmessage in non-
conversational mode, by issuing an additional Broker ACI function RECEIVE or
RECEIVE_PUBLICATIONwith the option "LAST" aswell as the CONV-ID returned from theACI control
block. No EOC is needed after RECEIVE.

83ACI for C

Writing Applications: Client and Server

Transport Methods

The maximum length possible for send and receive buffers is affected by the transport method
used.

If using this transport method, ...
Maximum Receive /
Send Buffer SizeTransport Method

2,147,482,111 BTCP/IP ■ the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

30,545 BEntire
Net-Work

■ the send and receive buffer sizes are affected by the setting of the
Net-Work parameter IUBL for all involved platforms (see the
Net-Work documentation for more information);

■ the send and receive buffer sizes are affected by the Adabas
SVC/Entire Net-Work-specific attribute IUBL for Broker running
under z/OS;

■ the maximum send and receive buffer size is around 30,545 bytes.

Note: Under z/OS with Adabas version 8, the value for NET is the
same as for TCP and SSL.

2,147,482,111 BSSL ■ the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

Tracing

Trace information showing the commands help the application programmer debug applications
and solve problems. Tracing can be obtained for the application (stub trace) and for the Broker
kernel (kernel trace). The stub trace shows the Broker functions issued by your application,
whereas the Broker kernel trace will contain all Broker functions issued by all applications using
the Broker.

Setting the Broker attribute TRACE-LEVEL=1 provides traces containing just the Broker functions
processed by the Broker kernel without additional diagnostics. It is only necessary to set the trace
value higher when generating traces for Software AG support.

ACI for C84

Writing Applications: Client and Server

Stub Trace

Tracing is available for all stubs onUNIX andWindows. For the stubs forwhich tracing is available
on z/OS, see table under Administration of Broker Stubs under z/OS in the z/OS administration doc-
umentation.

To set the stub trace, see Tracing for Broker Stubs in the platform-specific administration document-
ation.

Kernel Trace

Tracing is available for Broker on all platforms. For z/OS, see Administration of Broker Stubs under
z/OS in the z/OS administration documentation.

To set the kernel trace, see Tracing webMethods EntireX in the platform-specific administration
documentation.

85ACI for C

Writing Applications: Client and Server

Transport Methods

Overview of Supported Transports

This table gives an overview of the transport methods supported by EntireX Broker stubs.

Transport to Broker
ModuleEnvironment

Operating
System HTTP(S) (6)NET (1)SSLTCP

xxxBROKERBatch, TSO, IMS (BMP)z/OS (2)

x(3)xCOMETBCom-plete

x(3)xCICSETBCICS

xxxMPPETBIMS (MPP)
(3)xIDMSIDMS/DC (4)

xxxNATETB23Natural

xxxJava ACI in the Developer's Kit
documentation

UNIX System Services

xxbroker.soUNIX

xxxJava ACI in the Developer's Kit
documentation

xxbroker.dll (5)Windows

xxxJava ACI in the Developer's Kit
documentation

xxxBROKERBatch, Dialog (formerly
TIAM)

BS2000/OSD

xxBKIMBCMSz/VM

xEXAIBM i

xxBROKEROpenVMS

Notes:

1. NET is available for transport to a broker running under mainframe platforms only; not to a
broker running under UNIX or Windows.

2. Under z/OS you can use IBM's Application Transparent Transport Layer Security (AT-TLS) as
an alternative to direct SSL support inside the broker stub. Refer to the IBM documentation for
more information.

3. Use AT-TLS. See Note 2.

4. Tracing and transport timeout are not supported in this environment.

ACI for C86

Writing Applications: Client and Server

5. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is
identical to broker.dll.

6. Via Broker HTTP(S) Agent; see Settting up and Administering the Broker HTTP(S) Agent in the
UNIX and Windows administration documentation.

See also:

■ Setting Transport Methods for Broker Stubs in the platform-specific broker stub administration
documentation

■ Setting Transport Methods underWriting Advanced Applications - EntireX Java ACI

TCP/IP

TCP is not available for all Broker stubs and all environments (see table above).

SeeUsing TCP/IP as Transport Method for the Broker Stub in Setting Transport Methods for Broker Stubs
in the platform-specific broker stub administration documentation, which describes how to set
up TCP transport.

Application programs using TCP/IP as the transport specify the target Broker ID in terms of a host
name (or IP address) together with the port number onwhich the Broker TCP/IP communications
driver is listening. Example: An application communicating through TCP/IP would specify on
each command the Broker ID

IBM1:3932:TCP

where the host on which the Broker kernel executes is known to TCP as IBM1 and is listening on
port 3932.

Entire Net-Work

Communication through Entire Net-Work is available for all Broker stubs when communicating
with a Broker kernel on z/OS through Entire Net-Work. Applications can also utilize Entire Net-
Work communication to obtain local interprocess communicationwith a z/OSBroker kernel running
on the same machine as the application. This can provide a considerable performance benefit.
Local interprocess communication is achieved through the Adabas SVC mechanism.

Application programs using EntireNet-Work as the transport specify the target Broker ID in terms
of the target Entire Net-Work ID of the Broker kernel. For example, an application communicating
through Entire Net-Work would specify on each command the Broker ID:

87ACI for C

Writing Applications: Client and Server

ETB001::NET

This can be abbreviated to the following for the Assembler stubs executing on z/OS (BROKER,
CICSETB, COMETB, MPPETB):

ETB001

where the Entire Net-Work ID of the Broker kernel is 001.

SSL and TLS

Application programs using Secure Sockets Layer (SSL) or Transport Layer Security (TLS) as the
transport must specify the SSL settings to the broker stub before any communication with the
Broker can take place. There are variousmethods of setting SSL or TLS transport. See SETSSLPARMS
andRunning Broker with SSL or TLSTransport in the platform-specific administration documentation.

Example: An application communicating through SSL or TLS would specify on each command
the Broker ID:

MYPC:1958:SSL

where the host on which the Broker kernel executes is known to SSL or TLS as MYPC and is
listening on port 1958.

Transport Examples

■ For programming language C under Windows:

strcpy(pSBuf, "TRUST_STORE=c:\\certs\\CaCert.pem&VERIFY_SERVER=N");
EtbCb.send_length = strlen(pSBuf);
EtbCb.errtext_length = 40;
EtbCb.function = FCT_SETSSLPARMS
rc = broker (etbcb, pSBuf, (char *) 0, pEBuf);

■ For programming language Natural under z/OS:

MOVE 'TRUST_STORE=UID/KEYRING' TO #SSL-BUFF
MOVE 80 TO #ETBCB.#SEND-LENGTH MOVE 40 TO #ETBCB.#ERRTEXT-LENGTH
MOVE #FCT-SSLP TO #ETBCB.#FUNCTION
MOVE 'IBMHOST:1958:SSL' TO #ETBCB.#BROKER-ID
...
CALL 'BROKER' #ETBAPI #SSL-BUFF #RECV-BUFF #ERR-TXT

See table above for how SSL or TLS is supported depending on broker stub and platform.

For information on Secure Sockets Layer, see SSL or TLS and Certificates with EntireX.

ACI for C88

Writing Applications: Client and Server

Considerations for Writing Applications

■ The ACI field WAIT allows the application to place the sending or receiving program in a WAIT
state for a specified time; data or a reply will therefore be received before control is passed to
the calling program.When a WAIT value is specified for a SEND / RECEIVE or RECEIVE_PUBLICATION
function, the calling applicationwaits until the specified time has elapsed or a notification event
occurs.

■ WAIT=YESmakes additional handling necessary in the Broker stub, whereby YES is replaced by
the maximum integer value. We recommend you specify a finite value instead of YES.

■ If frequent outages are expected in the network connections, it is useful to set the transport
timeout to n seconds. After n seconds, the Broker stub terminates the TCP connection, if there
is no response from the other side (the Broker kernel). This will help free up the network on the
application side. In the case of applications for which the WAIT value is specified in the ACI
control block (that is, blocking applications), the actual timeout value is the total of the transport
timeout plus WAIT time.

■ TCP/IP only:
■ The Broker ID can contain either an IP address or a hostname. If a hostname is used, it should
be a valid entry in the domain name server.

■ A LOGOFF call to the Broker kernel will only logically disconnect the application from the
Broker kernel. The physical TCP/IP connection is not released until the application terminates.

Restrictions with API Versions 1 and 2

The following maximum message sizes apply to all transport methods:

■ ACI version 1: 32167 bytes
■ ACI version 2: 31647 bytes

Variable-length Error Text

In previous ACI versions, Broker kernel always returned 40 bytes of error text, space-padded if
necessary. For ACI version 9 and above, variable length error text can nowbe returned if requested.
With ACI 9 and above, error text up to the requested length is returned via a new section in the
ACI reply. For any previous ACI versions, ETXL is not sent, and the error text is returned by the
traditional method.

Note that the error text will continue to be traced in the stub and kernel trace and kernel command
log.

See Broker ACI Fields in the ACI Programming documentation.

89ACI for C

Writing Applications: Client and Server

Programmatically Turning on Command Logging

You can trigger command logging for EntireX components that communicatewith Broker by setting
the field LOG-COMMAND in the ACI control block.

All functions with LOG-COMMAND programmatically set in the ACI string field will have their com-
mands logged, regardless of any filter settings. Because the LOG-COMMAND option will override any
command-log filter settings, remember to reset the LOG-COMMAND field if subsequent requests do
not need to be logged.

IAF Authentication

With ACI field CREDENTIALS-TYPE you can specify that the token specified in the IAF token field
is used to authenticate the user. If this field is left blank, user ID and password will be used as
before.

ACI for C90

Writing Applications: Client and Server

4 Writing Applications: Units of Work

■ What is a Unit of Work? .. 92
■ Control Block Fields and Verbs .. 93
■ Client/Server Programming for Units of Work .. 96
■ Client/Server Programming for a Persistent Unit of Work ... 98
■ Client/Server Restart after System Failure .. 100

91

This chapter describes the concept of units-of-work programming for EntireX Broker. Units of
work are the precondition for achieving persistent messaging within your applications. Units of
work can also be used without persistence.

This chapter assumes you are familiar with basic Broker ACI programming. If you are not familiar
with it, we recommend beginning with the chapterWriting Applications: Client and Server in the
EntireX Broker ACI Programming documentation.

What is a Unit of Work?

A unit of work (UOW) is a group of related messages transmitted and received as a single entity.
This is achieved through the sender committing as a single unit all the messages being sent and
the receiver acknowledging receipt, as a single unit, of all the messages being received. Units of
work are used in conjunction with conversations where a UOW exists strictly within one conver-
sation. There can be more than one unit of work within a conversation. Where this is the case,
subsequentUOWs can be created by either the client or the server. Since the conversation is always
initiated by a client, the first UOW in the conversation is always created by the client. The UOW
creator must commit the UOW to be created before being allowed to create another UOWwithin
the same conversation.

Messages belonging to a UOW are always sent with OPTION=SYNC, or OPTION=COMMIT, which per-
forms an implicit COMMIT at the same time as the SEND. Messages belonging to a UOW are always
sent asynchronously, i.e. SEND,WAIT=NO. Messages belonging to a UOW are always received with
OPTION=SYNC and can be received either with WAIT=NO or by specifying WAIT=[YES | timevalue],
depending on application requirements.

ACI for C92

Writing Applications: Units of Work

Control Block Fields and Verbs

■ Basic Functionality of Broker API
■ ACI Syntax
■ Key ACI Field Names
■ Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the expanded functionality of the Broker API used when programming
units of work (UOWs) with or without persistence.

■ DEREGISTER
The function DEREGISTER is used by a server to indicate its intention to terminate its role as a
server for the specified SERVER-CLASS, SERVER-NAME and SERVICE. The server can terminate its
role as server for all class, server and service names for which it is registered, using a single
DEREGISTER.

■ RECEIVE
The function RECEIVE is used by the server to obtain new requests from a client, and in the case
of conversations, to obtain subsequent related messages from the same client. This function is
also used by clients that issue asynchronous requests and wish to obtain the server's reply at a
later time. The field CONV-ID defines the behavior of this function. RECEIVE,CONV-ID=NEW signals
the server's readiness to obtain the next available new request, whereas the value CONV-ID=nnn
indicates that the next messagewithin an existing conversation is being requested by the server.
The client uses RECEIVE,CONV-ID=nnn to obtain asynchronously a reply from the server for an
existing conversation.

■ REGISTER
The function REGISTER is used by a component of an application to identify its intention to become
a server and satisfy requests issued to the named SERVER-CLASS, SERVER-NAME SERVICE.

■ SEND
The function SEND is used by the client either to initiate a new conversation or to send subsequent
messages within that conversation. This function is also used by servers to reply to the client
during the course of a conversation. Eachmessage is assigned to the unit of work currently being
created by the sender. If this is the firstmessage from the sender, a newUOW is created. Senders
can create a subsequent unit ofwork by committing their existingUOW, creating and performing
another subsequent SEND function. The field CONV-ID defines the behavior of this function re-
garding conversations. The client uses SEND,CONV-ID=NEW to initiate a new conversation and the
value CONV-ID=nnnwhen sending subsequent related messages in a conversation. The server
always uses SEND,CONV-ID=nnnwhen replying to a client, where nnn indicates the identity of the
existing conversation. The SEND command is always used asynchronously with units of work,
by both client and server. The sender can override the default persistence setting in the attribute
file for the server class, server name and service, using the ACI field STORE.

93ACI for C

Writing Applications: Units of Work

■ SYNCPOINT
The function is used by either the client or the server when committing UOWs that they are
creating, and also to acknowledge receipt of UOWs that they are receiving. It can also be used
by the creator of a UOW to determine its current status or modify the status of a UOW at a later
time.

ACI Syntax

Fields in EntireX Broker Control BlockFunction

DEREGISTER API = 1 or higher
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *
[,OPTION = QUIESCE | IMMED]

RECEIVE API = 3 or higher for UOW
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, OPTION = SYNC
, WAIT = n | YES | NO
, CONV-ID = conv_id | NEW | OLD | ANY
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *
[,USTATUS = user_status]
[,UOWID = uowid]

REGISTER API = 1 or higher
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, SERVER-CLASS = class_name,
, SERVER-NAME = server_name,
, SERVICE = service_name

SEND API = 3 or higher for UOW
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, OPTION = COMMIT | SYNC
, WAIT = NO
, CONV-ID = conv_id | NEW
, SERVER-CLASS = class_name,
, SERVER-NAME = server_name,
, SERVICE = service_name

ACI for C94

Writing Applications: Units of Work

Fields in EntireX Broker Control BlockFunction

[,USTATUS = user_status]
[,STORE = BROKER | OFF]
[,UWTIME = uow_life_time]
[,UWSTATUS-PERSIST = uow_status_persist_multiplier
| UWSTAT-LIFETIME = uow_status_persist_lifetime]
[,UOWID = uowid]

SYNCPOINT API = 3 or higher for UOW
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, OPTION = BACKOUT |

CANCEL |
COMMIT |
DELETE |

EOCCANCEL |
LAST |
QUERY |
SETUSTATUS

[,CONV-ID = conv_id]
[,UOWID = uowid]
[,USTATUS = user_status]

Key ACI Field Names

ExplanationACI Field Name

A client uses these fields to identify the service that it requires. A server uses this to offer
a service.

SERVER-CLASS

Identifier to obtain and specify the conversation. Also used to determine communication
mode (non-conversational or conversational).

CONV-ID

Function code for one of the verbs; see Key Verbs for FUNCTION Field underWriting
Applications: Units of Work in the ACI Programming documentation.

FUNCTION

Indication of specific Broker behavior, depending on the function.OPTION

Identifier generated by the Broker that identifies to the caller the unit of work ID. Specify
valid UOWID to indicate an existing unit of work or leave blank when starting to SEND or

UOWID

RECEIVE a new unit of work. It is optionally specifiedwhen examining the status of a unit
of work already created by the participant.

Time value to specify blocking or non-blocking of the conversation. See Blocked and
Non-blocked Broker Calls underWriting Applications: Client and Server | Publish and Subscribe
in the ACI Programming documentation.

WAIT

95ACI for C

Writing Applications: Units of Work

Key Verbs for FUNCTION Field

DescriptionVerb

Inform the broker that a service is available.REGISTER

Retrieve request from partner.RECEIVE

Send reply to the partner.SEND

Remove the availability of the service.DEREGISTER

Client/Server Programming for Units of Work

The figure below illustrates the logical programflowof a simple two-message client request UOW
and a one-message server reply UOW. See also Broker UOW Status Transition under Concepts of
Persistent Messaging in the general administration documentation.

1. The server logs on, registers, and issues a RECEIVE operation, and waits for a new CID and a
UOW (unit of work).

2. The client logs on, creates a new UOW and a new conversation ID. It sends a message as part
of a UOW and then commits the UOW, allowing the Broker to deliver it.

3. The server receives the first message in the UOW. Then the next (last) message. The server then
creates a newUOW for the reply. The newUOW is part of the existing conversation (CID=123).
The server commits both UOWs, i.e., the incoming UOW is processed and the outgoing UOW
is ACCEPTED.

4. The client receives the incomingmessage and commits theUOW.TheUOWis nowPROCESSED.

ServerClient

LOGON,UID=,TOKEN=
>OK
REGISTER
>OK
RECEIVE,CID=NEW,OPT=SYNC,WAIT=1M

This receive operation will be satisfied by a new CID
and a UOW. Non-UOWmessages will not satisfy.
(waits)

ACI for C96

Writing Applications: Units of Work

ServerClient

LOGON,UID=,TOKEN=
>OK
SEND,OPT=SYNC,CID=NEW,WAIT=NO

Creates a new UOW and a new CID.
>OK,CID=123,UOWSTATUS=RECEIVED,
UOWID=987
SEND,OPT=SYNC,CID=123,WAIT=NO

Adds another message to the open UOW
>OK,CID=123,UOWSTATUS=RECEIVED,
UOWID=987
SYNCPOINT,OPT=COMMIT,CID=123

Commits the open UOW, allowing the broker to
deliver it.

>OK,CID=123,UOWSTATUS=FIRST,UOWID=987>OK,CID=123,UOWSTATUS=ACCEPTED,
UOWID=987

The initial receive operation is completed, indicating
a CID, a UOWID, and the FIRST message of a UOW.

UOW (UOWID=987) is now safely in the hands of
the broker.

RECEIVE ,CID=123,OPT=SYNCRECEIVE,CID=123,OPT=SYNC,WAIT=1M

Request the next message in open UOW.This will be satisfied by a UOW on CID=123.

(waits) >OK,CID=123,UOWSTATUS=LAST,UOWID=987

Receive the next message, which is the last. The server
now has all the data.
SEND,OPT=SYNC,CID=123,WAIT=NO

Create a new UOW for the reply, on CID=123.
>OK,CID=123,UOWSTATUS=RECEIVED,UOWID=456

There are now actually 2 open UOWs (987 and 456),
one in each direction.
SYNCPOINT,OPT=COMMIT,CID=123,
UOWID=

This commits both UOWs, the incoming one (987) is
now PROCESSED and the outgoing one (456) is
ACCEPTED.

97ACI for C

Writing Applications: Units of Work

ServerClient

>OK,CID=123,UOWSTATUS=ACCEPTED,
UOWID=456

>OK,CID=123,UOWSTATUS=ONLY,UOWID=456

Receive a message, the only one, in a UOW on
CID=123. This is a different UOW than was sent.

(Loops back and reissues original receive)SYNCPOINT,OPTION=COMMIT,CID=123

This commits the UOW; it is now PROCESSED
>OK,CID=123,UOWSTATUS=PROCESSED,
UOWID=456
LOGOFF
>OK

Client/Server Programming for a Persistent Unit of Work

The figure below illustrates the logical program flow of a simple one-message persistent UOW
with deferred delivery to a server, with no reply. The client queries the status of the UOW to de-
termine its completion. See also Broker UOWStatus Transition underConcepts of PersistentMessaging
in the general administration documentation.

1. The client logs on and creates a new persistent UOW and a new conversation. The intended
server is not currently available.

2. The client commits the open UOW, allowing the Broker to deliver it. The UOW (UOWID=987)
is now stored by the Broker. It will be delivered whenever the server is available and will be
retained even in case of system failure (that is, the UOW is persistent).

3. The client logs off.

4. The server logs on and registers. It receives the new conversation ID and the new UOW. The
UOW is committed. Its status is now PROCESSED.

5. The client logs on using a user ID and token to identify itself as the client that originated the
UOW. It then queries the status of its UOW. The status PROCESSED is returned, so the client
knows that its UOW has been successfully delivered and processed by the server.

ACI for C98

Writing Applications: Units of Work

ServerClient

LOGON, UID=,TOKEN=
>OK
SEND,OPT=SYNC,CID=NEW,WAIT=NO,
STORE=BROKER,
UWTIME=5M,UWSTATP=5

Creates a new persistent UOW and a new CID. The UOW
will have a lifetime of 5 minutes; the duration of the status
is 5 times this value (25 minutes). The intended server is
not up at this time.
>OK,CID=123,UOWSTATUS=RECEIVED,UOWID=987
SYNCPOINT,OPT=COMMIT,CID=123

Commit the open UOW, allowing the broker to deliver it.
>OK,CID=123,UOWSTATUS=ACCEPTED,UOWID=987

UOW (UOWID=987) is now safely in the hands of the
broker. The UOWwill be delivered whenever the server
comes up, even if the system should fail.

LOGOFF

The client can now terminate, knowing that the UOWwill
be delivered.

Some time later, the server comes up.
LOGON,UID=,TOKEN=
>OK
REGISTER,
>OK
RECEIVE,CID=NEW,OPT=SYNC

This receive operationwill be satisfied by a new
CID and a UOW. Non-UOWmessages will not
satisfy.
>OK,CID=123,UOWSTATUS=ONLY,UOWID=987

The receive completes, indicating a CID and the
ONLY message of a UOW.
SYNCPOINT,OPT=COMMIT,CID=123,
UOWID=987

This commits the UOW; its status is now
PROCESSED.

99ACI for C

Writing Applications: Units of Work

ServerClient

>OK,CID=123,UOWSTATUS=PROCESSED,
UOWID=987

(Loop back and reissue original receive, if
desired, or terminate)

Some time later, the client can come back and check the
status of its UOW.
LOGON, UID=, TOKEN=

Specifying the same UID/TOKEN ensures that this client
can be identified as the original client.
>OK

SYNCPOINT,OPTION=LAST

Request the status of the last UOW this user created.
The request must bemadewithin 30minutes, based on the
value of the original SEND.
>OK,UOWID=987,CID=123,UOWSTATUS=PROCESSED

The client now knows that its UOWwas successfully
processed by the server.
LOGOFF
>OK

Client/Server Restart after System Failure

Caution: USER and TOKENmust be specified when using persistent units of work (UOWs)
to persist either amessage or the status of amessage exchanged between partner application
components, where this information is held in the persistent store.

EntireX Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER-ID, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

You need to specify USER and TOKEN to reconnect with the correct user context after a broker has
been stopped and restarted when using units of work.

ACI for C100

Writing Applications: Units of Work

5 Writing Applications: Attach Server

■ Implementing an Attach Server ... 102
■ Implementing Servers started by an Attach Server ... 105

101

This chapter describes the programming of Attach Server for EntireX Broker. It assumes you are
familiar with basic Broker ACI programming.

Implementing an Attach Server

An attach server is a server that is capable of starting another server rather than handling service
requests itself. See example under Attach Manager Interface under Examples for EntireX Broker Tu-
torial. To implement an attach server, perform the following steps:

■ Step 1: Register with EntireX Broker
■ Step 2: Issue a Receive with Wait
■ Step 3: Start Task
■ Step 4: Deregister when the Work is Done

Step 1: Register with EntireX Broker

To register with EntireX Broker, the application has to add the ATTACH option to the REGISTER call.
The SERVER-CLASS, SERVER-NAME and SERVICE parametersmust reflect the service you can dynam-
ically start. If the attach server is able to start several services, it has to register each service with
the option ATTACH so that EntireX Broker knows exactlywhich services can be started by that attach
server.

For example, an attach manager can start services (C1, N1, S1), (C2, N2, S2) and (C3, N3, S3). It
therefore issues the following three registrations:

REGISTER SERVER-CLASS=C1,SERVER-NAME=N1,SERVICE=S1,OPTION=ATTACH
REGISTER SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2,OPTION=ATTACH
REGISTER SERVER-CLASS=C3,SERVER-NAME=N3,SERVICE=S3,OPTION=ATTACH

Step 2: Issue a Receive with Wait

After all startable services have been registered by the attach server, the attach server must issue
an unrestricted RECEIVE command in order to receive notification about queued service requests.
The RECEIVE itselfmust be blocked for a certain time (WAIT=nnn). The attach servermust be prepared
to receive a notification for one of the announced services.

To continue the example from Step 1 above, the attach server now issues the RECEIVE command:

ACI for C102

Writing Applications: Attach Server

RECEIVE SERVER-CLASS=*,SERVER-NAME=*,SERVICE=*,WAIT=10M,RECEIVE-LENGTH=150

EntireX Broker answers either that nomessages will be available after 10 minutes (error class 0074
is used for this kind of information) or that an attach service is required (error class 0010 and error
code 0022), for example:

SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2,RETURN-LENGTH=116

with the following structure in the receive buffer, which is shownhere in C programming language
notation. The structure is the same for all programming languages and must be described in ac-
cordance with the programming language you select:

typedef struct
{
ETB_SHORT atm_version; /*version of structure */
ETB_SHORT atm_NotUsed; /* alignment */
ETB_LONG atm_nAttach; /* # of failed server lookups */
ETB_LONG atm_nServer; /* # of registered replicas */
ETB_LONG atm_nPendConv; /* # of pending conversations */
ETB_LONG atm_nActvConv; /* # of active conversations */
ETB_CHAR atm_server_class [S_SERVER_CLASS];/*class to attach */
ETB_CHAR atm_server_name [S_SERVER_NAME]; /*server name to attach */
ETB_CHAR atm_service [S_SERVICE]; /*service name to attach */
} ETB_ATMCB;

This structure contains the information necessary to decide whether a new replica needs to be
started.

atm_nAttach

Number of client requests (SEND CONVID=NEW) the Broker could not schedule to a server immediately.
After the AttachManager has issued a RECEIVE, the value is reset to 0. If the AttachManager does
not issue its RECEIVE, this number shows the unreceived requests.

atm_nServer

Number of registered servers (replicas) minus those servers that are only finishing existing con-
versations (after issuing DEREGISTER OPTION=QUIESCE).

103ACI for C

Writing Applications: Attach Server

atm_nPendConv

Number of pending conversations, that is, client requests that could not currently be scheduled
to a server. They are a subset of the active conversations.

atm_nActvConv

Number of the active conversations requesting a particular service.

Step 3: Start Task

This step depends very much on the platform. The attach server determines how to start up the
desired application. The attach server only gets the logical name of the service. Themapping from
the logical name to the program, including the path, startup parameters etc., must be performed
by the attach server.

Step 4: Deregister when the Work is Done

Generally, attach servers are designed to “run forever”. Once they are deregistered, nomore services
can be started on that platform automatically. However, if the administrator decides to shut down
an attach server for whatever reason, he or she must DEREGISTER all registered services. There is
no special flag for the deregistration.

After the final deregister, the attach server should perform a LOGOFF call to release all allocated
resources:

DEREGISTER SERVER-CLASS=C1,SERVER-NAME=N1,SERVICE=S1
DEREGISTER SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2
DEREGISTER SERVER-CLASS=C3,SERVER-NAME=N3,SERVICE=S3

or better

DEREGISTER SERVER-CLASS=*,SERVER-NAME=*,SERVICE=*

and as the last EntireX Broker-related command:

LOGOFF

ACI for C104

Writing Applications: Attach Server

Implementing Servers started by an Attach Server

In general, every server that can be used as a standalone server can be started up automatically.
However, servers started by an attach server do not usually deregister and quit when no longer
busy. They are not scalable, i.e. the number of replicas increases if not enough power is available,
but the number does not decrease when there is no more work to be done.

To get around this situation, servers need to be prepared in such a way that they are started up
automatically. Note the following points:

Notes:

1. The easiest server you can implement handles only one client for one conversation. After the
last EOC, you can DEREGISTER or, preferably, LOGOFF the application and exit.

2. If youwrite an application that is automatically controlled by an attach server, try to implement
the startup and the first RECEIVE as soon as possible. In other words, perform the necessary
initialization after the conversation request is received.

3. Receive only the first call with the option NEW. Receive all subsequent calls with receive functions
that are restricted to the established conversation (either with the option OLD, or with explicit
restriction to the established conversation).

4. If you want to implement a server that does not exit after the first conversation, observe point
3 above. After the conversation has finished, set up the next RECEIVEwith the option NEW. With
this mechanism, the number of servers started in parallel corresponds to the number of clients
trying to access the service simultaneously. This feature adapts the number of servers for high
load peaks.

5. If you want to reduce the number of servers when they are no longer needed, set a proper
RECEIVE timeout if youwant to accept a new conversation, and finish your server if you actually
receive a timeout. Both mechanisms give you the chance to react to load changes in both direc-
tions (increasing load and decreasing load).

6. Starting up a server for only one conversation is a simple server scheme, but you have to balance
the simplicity of the application against the performance degradation for automatic startup.
We recommendyouuse purely automatic server startup for servers onlywhen the conversation
is expected to last a reasonable length of time.
If this is not clear, or if you want to run servers with short conversations - or even conversation-
less servers - you should consider using the method described under 4 and 5 above.

105ACI for C

Writing Applications: Attach Server

106

6 Writing Applications: Command and Information Services

■ Accessing the Services ... 108
■ Security with Command and Information Services .. 113
■ Examples of Command Service .. 115

107

EntireX Broker provides an API for Command and Information Services (CIS) that include the
following: shutting down conversations, servers and services; switching trace on and off; retrieving
information on clients; registering servers and services.

Before you begin to write an application, see Broker Command and Information Services.

This chapter describes how to use the Command and Information Services from a programmer's
point of view.

Accessing the Services

EntireX Broker's Command and Information Services are implemented as internal services. The
method for requesting these services is exactly the same as the method for requesting any other
service. An application issues a SEND function with appropriate data, retrieves the response with
the receive data of the SEND function and, in the case of the information service, with additional
RECEIVE operations. The RECEIVE operations have to be repeated until the information service in-
dicates the end of data with an EOC return message.

Command and Information Services define a protocol that must be followed by the application.
This protocol defines the structures needed to indicate to the service which information is desired
and to return this information to the application so that the information can be interpreted.

Basic Rules

Several basic rules for command as well as information services are described here.

■ Field Values
■ Structures

ACI for C108

Writing Applications: Command and Information Services

Field Values

All fields necessary for a SEND function must be provided. The following values for SERVER-CLASS
and SERVER-NAME are used for CIS:

DescriptionValue

Value is always SAG (Software AG).SERVER-CLASS=SAG

Value is always ETBCIS (EntireX Broker Command and Information
Services).

SERVER-NAME=ETBCIS

Full information service. Specify this for the full information service.
All clients, servers and conversations are listed. SeeWriting

SERVICE=INFO

Applications using EntireX Security in the ACI Programming
documentation.

Limited information service. Specify this for limited information
service. Only the user's own resources are listed. SeeWriting

SERVICE=USER-INFO

Applications using EntireX Security in the ACI Programming
documentation.

Specify this for the command service.SERVICE=CMD

Specify this for the participant shut-down functionality.SERVICE=PARTICIPANT-SHUTDOWN

Specify this for the EntireX Security command service.SERVICE=SECURITY-CMD

The services do not have to be defined in the broker attribute file. Nothing has to be started or
configured. You can use the services immediately after starting the broker.

The request for a command service or an information service is specified within the SEND buffer;
the response - if there is one - is returned in the RECEIVE buffer.

109ACI for C

Writing Applications: Command and Information Services

Structures

Structures are used to describe the request and to return information. The following structures
are available:

DescriptionCommand
Service

Information
Service

Structure

Used by an application to specify an
information service request.

InputInformation Request Structure under
Broker CISData Structures in theACI
Programming documentation

Used by an application to specify a command
service request.

InputCommand Request Structure under
Broker CISData Structures in theACI
Programming documentation

Returned as the first structure in each block
from both the information service and the
command service.

ReturnedReturnedCommonHeader Structure for Response
Data under Broker CIS Data
Structures in the ACI Programming
documentation

The object-specific information reply
structures are used to return information
about these object types:

Optionally
Returned

Information Reply Structures

■ BROKER
■ WORKER
■ CLIENT
■ SERVER
■ CONVERSATION
■ PSF
■ PSFDIV
■ PSFADA
■ PSFFILE
■ SUBSCRIBER
■ PUBLISHER
■ PUBLICATION
■ TOPIC
■ CMDLOG-FILTER
■ NET
■ PSFCTREE
■ SECURITY
■ SSL
■ TCP

ACI for C110

Writing Applications: Command and Information Services

Command and Information Services can be accessed from any environment from which EntireX
Broker can be accessed. The structures for these services are available for the programming lan-
guages Assembler, C, Natural and COBOL.

Accessing Information Services

For an information service request, the send buffer contains the information request structurewith
selection criteria depending on the requested information. See Information Request Structure under
Broker CIS Data Structures in the ACI Programming documentation.

Examples of Selection Criteria

OBJECT-TYPE = SERVICE

will return a list of all services.

OBJECT-TYPE = CONV, USER-ID = HUGO, TOKEN = FRED

will return a list of all conversations belonging to user with USER-ID HUGO who specified
TOKEN=FRED within Broker calls.

OBJECT-TYPE = CONV, CONV-ID = 0815

will return information about the one single conversation with ID 0815.

When the SEND request returns, the receive buffer contains parts or all of the return data, and the
CID field contains a conversation ID.

The return data in the receive buffer includes the common header structure followed by a list of
one or more object type structures. See Common Header Structure for Response Data under Broker
CISData Structures in theACI Programming documentation. For each object forwhich information
is returned, there is one information reply structure containing the information.

Information Request Structure under Broker CIS Data Structures in the ACI Programming
documentation

Send Buffer

Common Header Structure for Response Data under Broker CIS Data Structures in the ACI
Programming documentation [Information Reply Structures]

Receive Buffer

111ACI for C

Writing Applications: Command and Information Services

Tips

■ The size of the common header structure depends on the CIS interface version used.
■ Test the error code in the common header structure. See Broker Command and Information Services
Error Codes under Error Messages and Codes.

■ If the receive buffer is not large enough to contain all available information, the remaining in-
formation can be obtainedwith additional RECEIVE functions in the same conversation. WAIT=NO
can be specified because the data is there and only has to be collected. When no more data is
available, the RECEIVE returns an end of conversation (EOC) message.

■ If the selection is not unique - that is, more than one occurrence is possible - the information
service returns a list (array) of information reply structures of the requested type. The common
header structure informs the application of the total number of objects and the number of objects
accompanying the reply data.

■ The protocol for an information service request is as follows:

CALL BROKER
FUNCTION=SEND // send data = information request
Service=USER-INFO
CID=NEW
WAIT=YES // receive data = information reply

/* work off retrieved data */
REPEAT
CALL BROKER // receive data=information reply
FUNCTION=RECEIVE
Service=USER-INFO
CID=n
WAIT=NO

IF End of Conversation
escape

END-IF
/* work off retrieved data */

LOOP

■ The initial SENDmust be issued with the following:
■ WAIT=YES for blocking send commands
■ CID=NEW because the information service is implemented as a conversational service

ACI for C112

Writing Applications: Command and Information Services

Accessing Command Service

For a command service request, the send buffer contains the command request structure. See
CommandRequest StructureunderBroker CISData Structures in theACIProgrammingdocumentation.
When sending a command service request, note the possible combinations underCommandRequest
Parameter Combinations under Broker CIS Data Structures in the ACI Programming documentation.

The return data in the receive buffer includes the common header structure (see Common Header
Structure for Response Data under Broker CIS Data Structures in the ACI Programming documenta-
tion):

Command Request Structure under Broker CIS Data Structures in the ACI Programming
documentation

Send Buffer

Common Header Structure for Response Data under Broker CIS Data Structures in the ACI
Programming documentation

Receive Buffer

Tips

■ The error code in the common header structure must be tested by the application programmer.
See Broker Command and Information Services Error Codes under Error Messages and Codes.

■ A typical command service request looks like this:

CALL BROKER
FUNCTION=SEND // send data = command request
Service=CMD
CID=NONE
WAIT=YES

■ Unlike information service requests, the command service is defined as a non-conversational
service that returns a single response. Therefore, the initial SENDmust be issuedwith the follow-
ing:
■ CID=NONE

■ WAIT=YES

Security with Command and Information Services

For security purposes, the Command and Information services are treated exactly like any other
service. Therefore, if you are using either EntireX Security or equivalent user-written exits, user
access to operate these services can be protected through your security system. This allows you
to grant access based upon user ID to only those users who are authorized, where this facility is
provided by the platform security implementation for Broker kernel.

■ Full Command and Information Services

113ACI for C

Writing Applications: Command and Information Services

■ Limited Information Services
■ Protecting Specific Options

Full Command and Information Services

When using EntireX Security (or an equivalent), the full command service and the full information
service are protected to avoid unauthorized access to information or potential disruption to systems.
Therefore, you must grant appropriate access to the following resource profiles protecting the in-
ternal services:

■ Full Command Service

Class: SAG Server: ETBCIS Service: CMD

■ Full Information Service

Class: SAG Server: ETBCIS Service: INFO

Limited Information Services

The limited information service only returns information that belongs solely to the application
making the request; it is not necessary to protect this service from unauthorized users. You can
provide either limited or unlimited access to the resource profile used to protect the limited inform-
ation service, as required:

■ Limited Information Service

Class: SAG Server: ETBCIS Service: USER-INFO

Protecting Specific Options

The full command service can be used to shut down individual servers and, therefore, terminate
any Class/Server/Service registered to the server application. When using EntireX Security (or
equivalent), the shut-server operation is protected to avoid unauthorized termination of applica-
tions. This security check honors the Class/Server/Service of the server application. Therefore, you
must grant appropriate access to resource profiles protecting the server application, which gives
authorized users permission to register. This is in addition to the authorization for the full command
service:

■ Full Command Service (Shut Service option)

ACI for C114

Writing Applications: Command and Information Services

Class: ACLASS Server: ASERVER Service: ASERVICE

The full command service can be used as a PARTICIPANT-SHUTDOWN for individual participants
currently active in thememory of the Broker kernel.When using EntireX Security (or an equivalent),
the stop-participant operation is protected to avoid unauthorized use and potential disruption of
systems. Therefore, you must grant appropriate access to the following resource profile:

■ Full Command Service (PARTICIPANT-SHUTDOWN option)

Class: SAG Server: ETBCIS Service: PARTICIPANT-SHUTDOWN

The full command service can be used to administer EntireX Security. Currently the EntireX Security
commands:

■ allow the EntireX Security trace level to be changed independently of the Broker trace level
■ allow all cached security information for a user to be cleared.

Therefore, you must grant appropriate access to the following resource profile:

■ Full Command Service (SECURITY-CMD option)

Class: SAG Server: ETBCIS Service: SECURITY-CMD

The CIS commands SHUTDOWN CONVERSATION and SHUTDOWN SERVICE require the authorization to
use the specified Class/Server/Service triplet and to use CIS commands.

See Overview of EntireX Security in the EntireX Security documentation andWriting Security Exits
under Using Sample Security Exits for Broker Security.

Examples of Command Service

Example 1: ALLOW-NEWUOWMSGS

The Broker was restarted with the attribute NEW-UOW-MESSAGES=NO. This action will allow only
consumption of UOWs to occur after Broker restart. Therefore, after the persistent store capacity
has decreased to an acceptable level, the Broker administrator can issue the CIS command to allow
new UOWmessages in the broker. See ALLOW-NEWUOWMSGS under Broker CIS Data Structures in the
ACI Programming documentation.

115ACI for C

Writing Applications: Command and Information Services

Example 2: FORBID-NEWUOWMSGS

The Broker has been executing for a period of time when the Broker administrator notices that the
persistent store is nearly at capacity. As a preventive action, the Broker administrator can issue
the CIS command to forbid new UOWmessages. See FORBID-NEWUOWMSGS under Broker CIS Data
Structures in the ACI Programming documentation. This action will cause only consumption of
UOWs to occur in the Broker. Thereafter, when the persistent store capacity has been reduced to
an acceptable level, the Broker administrator can issue the CIS command to allow new UOW
messages in the Broker. See ALLOW-NEWUOWMSGS under Broker CIS Data Structures in the ACI Pro-
gramming documentation.

ACI for C116

Writing Applications: Command and Information Services

7 Writing Applications using EntireX Security

■ General Programming Considerations ... 118
■ Authentication ... 120
■ Authorization .. 124
■ Encryption .. 125

117

This chapter provides programming aids relevant to EntireX Security programming. It assumes
you are familiar with the basics of EntireX Broker ACI programming. See EntireX Broker ACI Pro-
gramming.

Note: ACI versions 1-7 apply to the communicationmodel client and server only. ACI version
8 and above apply to the communicationmodels client and server andpublish and subscribe.

General Programming Considerations

See Overview of EntireX Security in the EntireX Security documentation for overview of concepts
and installation.

■ ACI Versions and Security
■ Is Broker Kernel Secure?

ACI Versions and Security

If your applications are using ACI versions 1 to 7, you will decide at installation time whether
they are to communicate with a secured Broker. Your administrator will probably have installed
components of EntireX Security into the Broker stub environment(s) and into the Broker kernel.

If your environment is configured using components of EntireX Security, your applications can
communicate onlywith secured Broker kernels. If you attempt to communicate with both secured
and non-secured Broker kernels, you will receive ACI response code 00200379, indicating “incon-
sistent security installation”.

To achieve greater flexibility, particularly when migrating applications from development to
production, ACI version 8 introduces the new functionality described in the following table. For
ACI version 8 and above, the application may assign to the broker control block field
KERNELSECURITY one of the following values:

DescriptionValue

Application does not intend to communicate with a secured Broker kernel.N

Application intends to communicate with a Broker kernel which is secured using EntireX Security.Y

Application intends to communicate with a Broker kernel which is secured with the customer's own
security exits.

U

This information indicates the application's intention and ensures that the correct execution occurs
in the Broker stub and the Broker kernel. If the stub and the field KERNELSECURITY do not match,
the application will receive ACI response code 00200379. If an improper value is assigned, it is
treated as a blank. To make this assignment seamless, use an initial KERNELVERS command when
communicating with each Broker kernel so that the field is assigned automatically.

ACI for C118

Writing Applications using EntireX Security

Note: The default value (binary zero or space) specified in this field will result in the beha-
vior being determined by the security configuration rather than programmatically. It is
therefore possible to communicate either with a secure or non-secure Broker.

Is Broker Kernel Secure?

Issuing a KERNELVERS commandwill return information in the KERNELSECURITY field of the broker
control block structure to indicatewhether the application is communicatingwith a secure or non-
secure Broker Kernel. This information can be important for ensuring the security of transactions
and when making decisions such as prompting for USER-ID and PASSWORD values.

The following values are returned in the KERNELSECURITY field for ACI version 8 and above:

DescriptionValue

This is not a secured Broker kernel.N

This is a secured Broker kernel which is using EntireX Security.Y

This is a secured Broker kernel which is using the customer's own written security exits.U

By issuing a KERNELVERS command, the appropriate value of KERNELSECURITY is automatically
assigned to the control block structure; the user application does not need to take any further action
other than supplying the correct USER-ID and PASSWORD. The applicationmustmaintain the contents
of the control block structure for the duration of communication with the Broker kernel in order
to retain the correct value of the KERNELSECURITY field. See Broker ACI Control Block Layout in the
EntireX language-specific ACI documentation.

Notes:

1. Only applications using ACI version 7 or above can determine whether Broker is executing
with security. In version 8 or above, the necessary information is automatically set up in the
Broker control block.

2. We strongly recommend that applications maintain a separate copy of the Broker control block
for eachuser ID (or USER-ID and TOKEN if specified). Furthermore, if the application communicates
with different Broker kernels, a separate copy of the Broker control block must be maintained
for each user and each Broker ID.

119ACI for C

Writing Applications using EntireX Security

Authentication

■ Authentication with User ID and Password
■ Role of Security Token (STOKEN) during Authentication
■ Trusted User ID
■ Client User ID
■ FORCE-LOGON
■ IAF Tokens

Authentication with User ID and Password

The application is responsible for assigning the correct USER-ID and PASSWORD values to the control
block structure. This information is normally communicated through the LOGON command, since
this command initiates the user's session with the Broker kernel. Where the attribute file contains
AUTOLOGON=YES the first command issued by a user does not have to be LOGON, in which case the
application must supply USER-ID and PASSWORD credentials for the commands SEND or REGISTER.

Supplying the USER-ID and PASSWORD could subsequently be required if the user times out due to
expiration of either CLIENT-NONACT, SERVER-NONACT, PUBLISHER-NONACT or SUBSCRIBER-NONACT
time limits. If the user context has timed out due to these inactivity limits being exceeded, one of
the following events will occur when the application attempts to issue the next command.

Reason for ACI Error Action

■ 00200134

Application must perform another explicit LOGONwith correct credentials in the USER-ID and
PASSWORD fields:

AUTOLOGON=NO in the attribute file, or AUTOLOGON=YES and FORCE-LOGON=YES.

■ 00080003

Application must supply correct credentials in USER-ID and PASSWORD fields:

AUTOLOGON=YES in attribute file, FORCE-LOGON=YES not specified in the control block.

Subsequent commands do not require explicit LOGON to be issued.
■ 00080352

Application has attempted to transfer control to a different thread, or process, without correctly
transferring the necessary values of USER-ID, TOKEN and STOKEN:

The application transferring control must make values of USER, TOKEN and STOKEN available to
the application that is delegated to continue thread of execution.

ACI for C120

Writing Applications using EntireX Security

■ 00080353

Application has not correctly maintained the value of security token (STOKEN) in the control
block structure:

The applicationmustmaintain the value of STOKEN in order to communicate securelywith Broker
kernel without sending PASSWORDwith each command.

The application is able to change the password by assigning both PASSWORD and NEWPASSWORD fields
of the control block structure. This must be done at the time of initial authentication or at a sub-
sequent time when authentication is repeated due to timeout. It cannot be done at an arbitrary
time by assigning the NEWPASSWORD field.

The PASSWORD and NEWPASSWORD fields are always communicated in an encrypted format.

Role of Security Token (STOKEN) during Authentication

EntireX Security automatically generates a non-repeated security token, which is placed in the
ACI control block of the calling application. A unique security token is generated on behalf of all
Broker participants only after successful authentication has occurred, and is used to ensure nobody
can “tap in” to a participant's session. The calling application is responsible for maintaining the
contents of the control block structure for the duration of its communicationwith the Broker kernel
in order to ensure the correct value of security token is available on subsequent commands. An
incorrect value of security token will cause access to be denied. Security token avoids the need for
applications to supply a password except for presenting this once during the LOGON command, or
the first command (excluding KERNELVERSION), if AUTOLOGON=YES is defined. If a LOGOFF command
is issued or a participant is timed out, the passwordmust be reentered so that a newunique security
token can be generated.

An additional benefit of the security token is that it enables an application to transfer its execution
to a different thread or even to a different process. This requires the application to make available
the following fields of the control block structure to the program which is delegated to continue
the thread of execution: USER, TOKEN and STOKEN. However, it is not necessary for the program
transferring control to make its password available.

Note: If an application is unwilling or does not want to maintain the security token field
(STOKEN) in the control block structure, it is possible for the systems administrator to configure
the following field in the EntireX Security configuration module: BKISTK=Y. See Ignore Se-
curity Token under Configuration Options for Broker in the EntireX Security documentation.

121ACI for C

Writing Applications using EntireX Security

Trusted User ID

This mechanism is available where at least one application and Broker kernel are executing on
z/OS and communication is through Entire Net-Work (Adabas SVC).

Trusted User ID is an optional mechanism with which EntireX Security determines the identity
under which the application is executing, without the application having to provide the USER-ID
and PASSWORD in the Broker control block. SeeTrustedUser IDunderConfigurationOptions for Broker
in the EntireX Security documentation.

The benefit of this mechanism is that application components executing on z/OS never have to
provide credentials for authentication. This is because the identity under which execution occurs
has already been verified when initially accessing the machine in each of these cases:

■ online users
■ batch jobs or started tasks.

All subsequent security authorization checks - for example SEND or REGISTER - are then performed
under the known user ID under which the application executes.

Application components intending to utilize TrustedUser IDmust assign the Broker control block
field USER-ID only. The value assigned to this field is arbitrary for security purposes but required
in order to satisfy execution the stub. The application is not allowed to assign any value to PASSWORD
if Trusted User ID is used. The following example is given:

USER-ID = 'SERVER123' /* arbitrary value: used by Broker but not
significant for security purposes */

PASSWORD = ' ' /* password field must be
set to blanks or binary zeros */

If the application does not clear the PASSWORDfield, EntireX Securitywill assume that the application
does not want to use Trusted User ID. Therefore valid credentials must be supplied to the USER-ID
and PASSWORD fields in order to perform conventional authentication.

See alsoTrustedUser IDunderConfigurationOptions for Broker in the EntireX Security documentation.

Client User ID

Server applications are able to determine the user ID under which the partner client is executing
by examining the content of the CLIENT-USERID field exposed in the Broker control block. Specific-
ally, the CLIENT-USERID field should be examined on the first RECEIVE command of each new
conversation to obtain the identity of the client. When EntireX Security is active, the server applic-
ation is able to rely on the accuracy of the client user identity since it is derived from the user ID
and password credentials supplied by the client.

ACI for C122

Writing Applications using EntireX Security

See also Trusted User ID underWriting Applications using EntireX Security in the ACI Programming
documentation and Verified Client User ID under Configuration Options for Broker in the EntireX
Security documentation.

FORCE-LOGON

This topic does not apply to the publish-and-subscribe communication model since this requires
an explicit logon and cannot use AUTOLOGON.

FORCE-LOGON is used to override the AUTOLOGON feature of the Broker, with the result that the user
does not log on to the Broker kernel implicitly with the first command issued but instead requires
an explicit LOGON. When this option is used, it is necessary for the client and server to issue explicit
LOGON function calls - even after the expiration of a client timeout CLIENT-NONACT or server timeout
SERVER-NONACT. See Timeout Parameters underWriting Applications: Client and Server in the EntireX
Broker ACI Programming documentation.

FORCE-LOGON can be useful in cases where an implicit logon would be undesirable, for example
when attempting to authenticate a user. Specifically, unless the passwordwas communicatedwith
every command, an implicit logon - after a period of inactivity - would fail because of a missing
PASSWORD.

When FORCE-LOGON is set - and in the case of a client/server inactivity timeout - error 00200134 is
returned instead of an implicit logon being performed automatically. Therefore, the specification
of FORCE-LOGON can be used to give the programmer the opportunity to provide the ACI field
PASSWORD, which is needed for successful authentication.

Note: Caution should be taken when repeating a failed authentication attempt for both an
explicit and an implicit logon. Repeating the attempt several times can lead to a revocation
of the user ID, depending on the configuration of your security system.

IAF Tokens

The Integrated Authentication Framework (IAF) is a token-based infrastructure that enables
SoftwareAG's enterprise single sign-on. In addition, it allows usage of a configurable authentication
system (user database) with Software AG products across platforms. IAF is part of the Software
AG Security Infrastructure.

123ACI for C

Writing Applications using EntireX Security

Authorization

■ Publish and Subscribe
■ Client and Server
■ Authorization Rules

Publish and Subscribe

Applications that create publications are subject to authorization requests under EntireX Security.
For every new publication, an authorization check is performed based on the TOPIC. Publications
are transmitted to subscriber applications only if the authorization check is successful; otherwise
an ACI response is returned to the application issuing the SEND_PUBLICATION command.

Subscriber applications are subject to an authorization check if security is installed for EntireX
Broker. An authorization check based on the topic is performed when the subscriber application
issues a SUBSCRIBE command. The application is allowed to subscribe only if the authorization
check is successful; otherwise an ACI response code is returned to the subscriber. Similarly, if the
administrator performs third-party subscription or unsubscription on behalf of a subscriber using
command and information services (CIS), an authorization check is made, based on the topic. See
Writing Applications: Command and Information Services in the ACI documentation.

The ACI error response codes encountered for authorization failures are: 00080009 | 00080010.

See also publish-and-subscribe example under Resource Profiles in EntireX Security in the EntireX
Security documentation andWriting Applications: Client and Server in the EntireX Broker ACI Pro-
gramming documentation.

Client and Server

Client applications are automatically subject to authorization requests if security is installed for
EntireX Broker. For UNIX and Windows, see Authorization Rules underWriting Applications using
EntireX Security in the ACI Programming documentation.

An authorization check based on class, server and service is performed for the first SEND of a con-
versation and on every SEND if there is only one message in the conversation (CONV-ID). Messages
are transmitted through to the server application only if the authorization check is successful;
otherwise an ACI response is given to the client.

Server applications are automatically subject to authorization requests if security is installed for
EntireX Broker. For UNIX and Windows, see Authorization Rules underWriting Applications using
EntireX Security in the ACI Programming documentation. An authorization check based on
class/server/service is performed when the server application issues a REGISTER command. The
server is allowed to register only if the authorization check is successful; otherwise anACI response
code is returned to the server application. In a similar way, if the administrator terminates a

ACI for C124

Writing Applications using EntireX Security

server through Command and Information Services (CIS), an authorization check is made based
on the class/server/service.

The ACI error response codes encountered for authorization failures are: 00080009 | 00080010.

See also client-and-server example underResource Profiles in EntireX Security in the EntireX Security
documentation andWriting Applications: Client and Server in the EntireX Broker ACI Programming
documentation.

Authorization Rules

ForUNIX andWindows, Broker authorization checks aremadeusing a set of definitionsmaintained
in an LDAP repository (Lightweight Directory Access Protocol). Authorization rules are the
mechanism by which authorization checks are performed for UNIX and Windows. For more in-
formation see Configuring Authorization Rules in the UNIX and Windows administration sections.

Encryption

■ Introduction
■ Encryption for non-Java Applications
■ Encryption for Java-based Applications (ACI and RPC)

Introduction

Encryption of the message data with the EntireX Security encryption is configured in the broker
and in client and server applications. The ENCRYPTION-LEVEL attribute configured in the broker
attribute file is a service-specific attribute. Allowed values are 0, 1, and 2. Using ENCRYPTION-LEVEL
1 or 2 requires SECURITY=YES in the DEFAULTS = BROKER section.

DescriptionEncryption Level

No encryption requested, but allowed.0

Encryption for server requested, client can encrypt.1

Encryption for client and server requested.2

Example:

125ACI for C

Writing Applications using EntireX Security

DEFAULTS = SERVICE
CONV-NONACT = 5M
DEFERRED = YES
SERVER-NONACT = 10M
ENCRYPTION-LEVEL = 2
CLASS = RPC, SERVER = SRV1, SERVICE = CALLNAT, TRANSLATION = SAGTCHA

Applications can configure the encryption level by setting the broker ACI field ENCRYPTION-LEVEL
or using themethods of the JavaACI. Allowed values are 0, 1, and 2. 0 does not encrypt themessage,
1 encrypts the message to the broker, while 2 encrypts the message to the broker and requests that
the partner application also encrypts themessage. To guarantee end-to-end encryption from client
to server, use encryption level 2.

The broker controls the encryption and issues one of the error codes 00200401 | 00200419 |
00200420 | 00200421 | 00200422 if encryption levels do not match.

In all cases encryption requires broker connections secured with EntireX Security. Broker returns
error code 00210402 if this is violated.

Encryption behavior is slightly different depending on whether the application is Java-based or
not. For non-Java-based applications, the behavior depends on the ACI version. These differences
are described below.

Encryption for non-Java Applications

For non-Java applications, Encryption behavior depends on the ACI version:

■ ACI Version 8 and Above
■ ACI Version 6 and 7
■ ACI Version 1 to 5

Note: In the sections below, “EL” refers to the field ENCRYPTION-LEVEL in the ACI control
block.

ACI Version 8 and Above

Encryption is configured by the application per message. The table shows allowed combinations
of ENCRYPTION-LEVEL and EL.

ClientServer
ENCRYPTION-LEVEL in Broker Attribute File

EL= 0 or 1EL= 0 or 10 (or undefined)

EL= 0 or 1EL= 11

EL= 2EL= 22

ACI for C126

Writing Applications using EntireX Security

ACI Version 6 and 7

Encryption is configured by installing the security exit for the application (security exit is
secuexit.dll on windows, secuexit.so on UNIX, SECUEXI0 on z/OS) and the environment
variable NA2_BKPRIV (or ETB_ENCRPYT) is set to 1. The table shows allowed combinations of ENCRYP-
TION-LEVEL and EL.

ClientServer
ENCRYPTION-LEVEL in Broker Attribute File

EL= 0 or 1EL= 00 (or undefined)

EL= 0 or 1EL= 11

EL= 2EL= 22

ACI Version 1 to 5

Encryption is configured by installing the security exit for the application (security exit is
secuexit.dll on windows, secuexit.so on UNIX, SECUEXI0 on z/OS) and the environment
variable NA2_BKPRIV (or ETB_ENCRPYT) is set to 1. Only ENCRYPTION-LEVEL in the broker attribute
file is available. Field EL for the stub is not available.

Encryption for Java-based Applications (ACI and RPC)

On the Broker object, use the methods setSecurity(...) or useEntireXSecurity(...) to enable
EntireX Security and set the encryption level. See Broker in the Javadoc documentation of the Java
ACI in the Javadoc for details.

RPC Servers

For RPC servers, the encryption level is set in the configuration. See documentation of the config-
uration for the specific RPC server.

RPC Clients

■ C-based RPC Clients
Use the structure ERX_CLIENT_IDENTIFICATION to set the encryption level. See
ERX_CLIENT_IDENTIFICATION for details.

■ Natural RPC Clients
Natural Clients use user exit USR4009N to set the encryption level. SeeOperating a Natural RPC
Environment in the Natural documentation.

127ACI for C

Writing Applications using EntireX Security

128

8 Broker ACI Fields

■ Field Formats .. 130
■ Field Descriptions .. 130

129

Field Formats

The ACI field formats are alphanumeric, binary, or integer and include the number of bytes. For
example:

DescriptionFormat

Alphanumeric (A-Z, 0-9, underscore, hyphen). Other characters are currently possible,
but we cannot guarantee that these will work consistently across all platforms in future
versions. Do not use dollar, percent, period or comma.

A8, A16, A32

BinaryB16, B32

Integer (unsigned)

The terms “null value” or “nothing specified” used for a fieldmean blank for alphanumeric formats
and zero for integer formats.

Field Descriptions

The ACI fields are described below in alphabetical order.

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Filled by Broker with the transport error as supplemental diagnostic
data.

O2A8ADAPTER-ERROR

Acount of the number of times an attemptwasmade to deliver aUOW.
The count is incremented if a UOW is backed out or timed out.

O2I4ADCOUNT

Required for all ACI functions. See API-TYPE and API-VERSION under
Writing Applications: Client and Server | Publish and Subscribe in the ACI
Programming documentation.

I1bitsB1API-TYPE

Required for all ACI functions.I11-10I1API-VERSION

ID of the broker instance. Required for all ACI functions except
VERSION.

The BROKER-IDmay be specified in URL Style or Transport-method
Style. In order to communicate, applications must specify the same
BROKER-ID.

I1stringA32BROKER-ID

Note: URL style does not apply to mainframe platforms (z/OS,
BS2000/OSD and z/VSE).

Returns to a server application the unique instance number of a client
application.

O91-2147483647I4CLIENT-ID

ACI for C130

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Applies only to client/server communication model.

When a server issues a RECEIVE function, the user ID of the client is
returned to the server in the CLIENT-UID field. If EntireX Security is

O2stringA32CLIENT-UID

installed, it is valid for the server application to rely on this user ID
when making decisions concerning access to information.

See Authentication under Configuration Options for Broker in the EntireX
Security documentation (z/OS only).

Note: There is an uppercase translation when the USER-ID field is
propagated to the CLIENT-UID field under EntireX Security when
Broker kernel is running under z/OS.

O7YYYY
MMDD
HHMM
SSms
(millisecs.)

A17COMMITTIME Time when UOWwas committed.

I70-9 or Y | NA1COMPRESSLEVEL Compression level. See Data Compression underWriting Applications:
Client and Server | Publish and Subscribe in the ACI Programming
documentation. The following values are possible:

0 = no compression, 9 = maximum
compression/decompression

0 - 9

No compressionN

Compression level 6Y

I/O1stringA16CONV-ID A unique ID assigned to each conversation by EntireX Broker. Client
and server must include the CONV-ID in their communications. Client
and server can also specify the indicated textual values (capitals) in
order to indicate to Broker the expected status of the conversation.
Messages for the conversation are taken from the queue on a first-in,
first-out basis. See Conversational and Non-conversational Mode under
Writing Applications: Client and Server in the EntireX Broker ACI
Programming documentation.

On a SEND function, initiates a new conversation.
On a RECEIVE function, signals readiness to

NEW

receive requests for new conversations only. A
CONV-ID value is assigned to the conversation,
and the value is returned to the caller.

Applies to RECEIVE function only. Only
messages for existing conversations are returned.

OLD

On a RECEIVE function, requests ormessages are
returned on a first-in, first-out basis for any

ANY

conversation. On an EOC function, any

131ACI for C

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

conversations belonging to the caller are
terminated.

On a SEND function, the message is
non-conversational.

NONE

Indicates a specific conversation.

The CONV-ID value is an internally generated
identifier (containing numeric characters only or

conv-id

alphanumeric characters) for the conversation.
Application programmers are advised to make
no assumptions about the contents, layout, or
meaning of any part of the CONV-ID field.

If the client has specified API-VERSION 3 or
above, the CONV-ID contains both alphanumeric
and numeric characters.

If the Broker does not support UOW processing
(the Broker attribute MAX-UOWS=0) or the client
has specified API-VERSION or 2, the CONV-ID
contains numeric characters.

O21 | 2 | 3I1CONV-STAT Conversation Status. SeeManaging Conversation ContextsunderWriting
Applications: Client and Server in the EntireX Broker ACI Programming
documentation.

NEW - The message is the first in a new
conversation.

1

OLD - The message is part of an existing
conversation.

2

NONE - The message is non-conversational.3

O9binaryCREDENTIALS-TYPE Determines the credentials type to be used to authenticate a user.

Default. Use user ID and password.blank

The token specified in the IAF token field
is used.

IAF

I4I1DATA-ARCH Architecture code. For future use.

Encryption level. See Encryption underWriting Applications using
EntireX Security.

I60|1|2I1ENCRYPTION-LEVEL

Information for translation user exits.

The contents of the field are solely the responsibility of the application
and its associated translation user exit. The field cannot be used for any

I1stringA32ENVIRONMENT

other internationalization approaches and must be empty if a method
other than translation user exit is used. See Using the ENVIRONMENT

ACI for C132

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Field with the Translation User Exit underWriting Applications: Client and
Server | Publish and Subscribe in the ACI Programming documentation.

Returns an error code to the caller. The application should check the
contents of this field at the completion of every Broker function. See

O1A8ERROR-CODE

Error Handling underWriting Applications: Client and Server | Publish
and Subscribe in the ACI Programming documentation. The first four
digits represent the error class; the next four digits represent the error
number; see also Error Messages and Codes.

Length of the error text buffer in bytes. See Call Format in the
language-specific EntireX ACI documentation.

If there are fewer than 40 bytes, the error textmay be truncated. A value
of 0 (zero) means no error text.

I1 |
9

0-40 | 0-255I4ERRTEXT-LENGTH

Note: In previousACI versions, Broker kernel always returned 40 bytes
of error text that were space-padded if necessary. With ACI version 9
and above, variable-length error texts can be returned to improve
logging and tracing.

I6Y | NA1FORCE-LOGON Override the AUTOLOGON feature of the Broker. See AUTOLOGON.

The attributeAUTOLOGON=YES in the Broker attribute
file is overridden. See FORCE-LOGON underWriting

Y

Applications using EntireX Security in the ACI
Programming documentation.

Default. Use the value of the Broker attribute file
for AUTOLOGON.

N

I11-22I1FUNCTION The Broker function to be performed. A function value is required and
is modified by the ACI field OPTION and the other ACI fields. See
below for description of values.

KERNELVERS14SEND1

LOCTRANS (deprecated)15RECEIVE2

SETSSLPARMS16UNDO4

SEND_PUBLICATION17EOC5

RECEIVE_PUBLICATION18REGISTER6

SUBSCRIBE19DEREGISTER7

UNSUBSCRIBE20VERSION8

CONTROL_PUBLICATION21LOGON9

REPLY_ERROR22LOGOFF10

SYNCPOINT13

I/O7Y | U | NA1KERNELSECURITY This field is used by the application to indicate programmatically its
intention to communicate with a secure/non-secure Broker. The field

133ACI for C

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

also indicates to the application how security has been configured for
a particular Broker kernel. See Broker attribute SECURITY.

When used as an input field, this field is used by programmer to
indicate the desired security behavior of the application. If no option
is specified, defaults to administrator's configuration setup.

EntireX SecurityY

User-written SecurityU

No securityN

Notes

■ Output
In version 7 or above, this field returns the output value when
executing the KERNELVERSION command.

■ Input
In version 8 or above, the application can programmatically specify
the desired security behavior for all commands other than
KERNELVERSION.

It is assumed that you have read the document Internationalization with
EntireX and are familiar with the various internationalization
approaches described there.

I4stringA40LOCALE-STRING

The locale string tells the broker the encoding of the data. No conversion
is done within the broker's stub. The application must ensure the data
providedmatches the locale string. The locale string is case-insensitive,
also dashes '-' and underscores '_' are ignored (dashes and underscore
improve human readability). SeeUsing InternationalizationunderWriting
Applications: Client and Server | Publish and Subscribe in the ACI
Programming documentation.

Components that communicate with Broker can trigger command
logging by setting this field. By default, command logging is based on

I90 | 1I1LOG-COMMAND

the command log filters set in the kernel. Youmay override these kernel
settings programmatically by setting this LOG-COMMAND field. If this
field is set, all associated commands will be logged.

Note: If command logging is not enabled for your kernel, you must
first contact your administrator.

Length of LONG-BROKER-ID. If the value is non-zero, specify the value
of LONG-BROKER-ID directly after the ACI control block. The
LONG-BROKER-ID overrides any BROKER-ID value.

With the LONG-BROKER-ID you can now specify numeric IPv6
addresses. Some sample values:

100-2147483647I4LONG-BROKER-ID-LENGTH

ACI for C134

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

tcpip://[2001:0db8:85a3:08d3:1319:8a2e:0370:7347]:3930
[2001:0db8:85a3:08d3:1319:8a2e:0370:7347]:3930:TCP
(2001:0db8:85a3:08d3:1319:8a2e:0370:7347):3930:TCP

The IP address is enclosed in square brackets or parentheses.

Not used by EntireX Broker.I/O2B32MSG-ID

Not used by EntireX Broker.I/O2A16MSG-TYPE

Specifies a newpassword to be transmitted to the Broker kernel to check
the authentication of the application. See Authentication under
Configuration Options for Broker in the EntireX Security documentation.

The current password can be changed only when the client or server
authenticates itself. This occurs on the first Broker ACI function (can

I2Can contain
binary data.

B32NEWPASSWORD

be LOGON) and requires the application to assign to the Broker ACI
fields PASSWORD and NEWPASSWORD.

I10-21I1OPTION Provides additional information that modifies the behavior of the
Broker ACI functions.

QUERY16NEXT8no option0

SETUSTATUS17PREVIEW9MSG1

ANY18COMMIT10HOLD2

reserved for
future use

19BACKOUT11IMMED3

DURABLE20SYNC12QUIESCE4

CHECKSERVICE21ATTACH13EOC5

DELETE14CANCEL6

EOCCANCEL15LAST7

ID of the partner broker. Deprecated.O9stringA32PARTNER-BROKER-ID

Specifies a password to be transmitted to the Broker to check the
authentication of the application. SeeAuthenticationunderConfiguration

I1Can contain
binary data.

A32PASSWORD

Options for Broker in the EntireX Security documentation and
FORCE-LOGON underWriting Applications using EntireX Security in the
ACI Programming documentation.

Not used by EntireX Broker.I2A8PTIME

I/O8string,
case-sensitive.

A16PUBLICATION-ID Publication ID for publish-and-subscribe communication model.

A unique ID assigned to each publication by EntireX Broker. Publisher
and subscribers must include the publication ID and the CONV-ID in
their communications. Publisher and subscriber can also specify the
indicated textual value (capitals) in order to indicate to Broker the
expected status of the publication. Messages for the publication are
queued to the topic on a first-in, first-out basis.

135ACI for C

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

On a SEND_PUBLICATION function, initiates
a new publication. On a

NEW

RECEIVE_PUBLICATION function, signals
readiness to obtain next available publication.
A publication ID value is assigned to the
publication, and the value is returned to the
caller.

Indicates a specific publication. The
PUBLICATION-ID value is an internally

publication-id

generated identifier (containing
alphanumeric characters) for the publication.
Application programmers are advised to
make no assumptions about the content,
layout or meaning of any part of the
PUBLICATION-ID field.

Specifies the length of receive buffer, in bytes. The maximum length
depends on the transport method:

I/O1Binary.B32RECEIVE-LENGTH

30,545NET

2,147,483,647TCP

2,147,483,647SSL

Note: Under z/OSwithAdabas version 8, the value forNET is the same
as for TCP and SSL.

SeeUsing Send and Receive Buffers underWriting Applications: Client and
Server | Publish and Subscribe in the ACI Programming documentation.

Length, in bytes, of the data returned.

SeeUsing Send and Receive Buffers underWriting Applications: Client and
Server | Publish and Subscribe in the ACI Programming documentation.

O1I4RETURN-LENGTH

The contents of this field depend heavily on the implementation of the
security exits.

This field is utilized by EntireX Security. The applicationmustmaintain
SECURITY-TOKEN between commands and not change this value. We

I/O1binaryB32SECURITY-TOKEN

recommend that the application allocate a separate ACI control block
for each user if it issues commands on behalf of more than one user.
For objects executing inside Web servers, assigning a unique value,
such as 'session ID', to the ACI TOKEN field is highly recommended to
ensure uniqueness of user at same physical location. See Ignore Security
Token under Configuration Options for Broker in the EntireX Security
documentation.

ACI for C136

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

If EntireX Security is not implemented, and you choose to write your
own security exits your can transmit an initial value to your security
exit as a credential that is used to calculate the actual security token.
After an application's authenticity has been verified by the security
exits, the SECURITY-TOKEN can be used to avoid additional
authentication checks.

Specifies the length of data being sent, in bytes. The maximum length
depends on the transport method:

I/O1binaryB32SEND-LENGTH

30,545NET

2,147,483,647TCP

2,147,483,647SSL

Note: Under z/OSwithAdabas version 8, the value forNET is the same
as for TCP and SSL.

SeeUsing Send and Receive Buffers underWriting Applications: Client and
Server | Publish and Subscribe in the ACI Programming documentation.

A client uses these fields to identify the service that it requires. A server
uses this field to offer a service.

Using all three fields allows you to organize servers, making them
easier to identify, monitor, andmaintain. Servers can be organized into

I/O1string,
case-sensitive

A32
each

SERVER-CLASS
SERVER-NAME
SERVICE

server-classes,with each server providing a number of different services.
Each service must be defined in the attribute file (see Service-specific
Attributes (DEFAULTS=SERVICE) under Broker Attributes in the
administration documentation).

The service fields are required with SEND, RECEIVE, and EOC functions
when CONV-ID is set to NEW, OLD, or ANY. When a CONV-ID is supplied,
the service fields are ignored.

SERVICE=* or SERVER-NAME=* can be used on a RECEIVE function to
indicate all services within a specified server or all servers within a
specified server class.

Note: Server classes "SAG", "Entire", "Adabas", "Natural", "ETB", "RPC"
and Broker are reserved for Software AG. Do not use them in your
applications.

Not used by EntireX Broker.I/O2I1STATUS

I/O20 | 1 | 2I1STORE Persistence or non-persistence of a UOW. Used with the first SEND
function for a UOW to specify whether the UOW is persistent or not.
Once established, the persistence of a UOW cannot be altered.

none - Defaults to the value specified for
the service.

0

137ACI for C

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

OFF - The UOW is not persistent.1

BROKER - The UOW is persistent.2

I1string,
case-sensitive.

A32TOKEN Optionally identifies the caller and, when used, is required for all
Broker ACI functions except VERSION. See USER-ID and TOKEN under
Writing Applications: Client and Server | Publish and Subscribe in the ACI
Programming documentation.

Caution: USER-ID and TOKENmust be specified by all applications
that use UOWs held in the persistent store, and by all publisher and
subscriber applications where publication and subscription data is
held in the persistent store.

Topic name for publish and subscribe communication model.

A publisher uses this field to identify the topic name required. A
subscriber uses this field to indicate the topic from which publications

I/O8string,
case-sensitive

A96TOPIC

are to be obtained. Each topic must be defined in the attribute file. See
Topic-specific Attributes (DEFAULTS=TOPIC) under Broker Attributes in
the administration documentation.

I/O3A16UOWID A unique identifier for a UOW.
The value is returned on the first SEND or RECEIVE command within
a UOW; the valuemust be provided on all subsequent SEND, RECEIVE
andSYNCPOINT commands related to the sameUOW.Client and server
can also specify the indicated textual value (capitals) in order to indicate
to Broker the following:

Since a server receives a UOW and replies
with a different UOW, both UOWs can be

BOTH

committed or backed out by specifying
UOWID=BOTH for theSYNCPOINT command.

The uowidmust be supplied in subsequent
SEND,RECEIVE andSYNCPOINT commands
related to the same UOW.

uowid

O3I1UOWSTATUS Contains the status of a UOW. EntireX Broker returns the UOWSTATUS
field to the calling application in order to provide information about
the condition of the specified UOW.

RECEIVED - One ormoremessages have been
sent as part of a UOW but the UOW has not
yet been committed.

1

ACCEPTED - The UOW has been committed
by the sender.

2

DELIVERED - The UOW is currently being
received.

3

ACI for C138

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

BACKEDOUT - The UOW has been backed out
by the sender.

4

PROCESSED - TheUOWhas been received and
the receiver has committed it.

5

CANCELLED - TheUOWhas been cancelled by
the receiver.

6

TIMEOUT - The UOWwas not processed
within the time allowed.

7

DISCARDED - The UOWwas not persistent
and its data was discarded as the result of a
restart.

8

With the exception of DELIVERED, all UOWSTATUS values are persistent.
Persistent values are kept until they are explicitly deleted by the user
or the time limit is exceeded. The lifetime of the UOWSTATUS value is
determined by the broker attribute UWSTATP.

UOWSTATUS values in the following table are returned on a RECEIVE
function to indicate whether the message being transferred is part of
a UOW and, if so, its sequence within the UOW:

NONE - The message is not part of a UOW.0

FIRST - The message is the first message in a
UOW.

9

MIDDLE - The message is neither the first nor
the last in the UOW.

10

LAST - The message is the last message in the
UOW.

11

ONLY - Themessage is the onlymessage in the
UOW.

12

I30 - 255UOW-STATUS-PERSIST The value of the UOW-STATUS-PERSIST field is used as a multiplier
to calculate the lifetime for the persistent status of a UOW. The value
is multiplied by the value of the broker attribute UWTIME. The value
255 can be specified to indicate no persistent status.

Means that the multiplier will have the
same value as the UWSTATP Broker
attribute.

0

Means that there will be no persistent
status for UOWs.

255

Any number in this range is a valid
multiplier.

1-254

139ACI for C

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Conversation User Data. SeeManaging Conversation Contexts under
Writing Applications: Client and Server in the EntireX Broker ACI
Programming documentation.

I/O2binaryB16USER-DATA

I1string,
case-sensitive

A32USER-ID Identifies the caller and is required for all Broker ACI functions except
VERSION. See USER-ID and TOKEN underWriting Applications: Client
and Server | Publish and Subscribe in the ACI Programming
documentation.

Caution: USER-ID and TOKENmust be specified by all publisher and
subscriber applications where publication and subscription data is
held in the persistent store.

User-defined information about a unit of work (UOW). It can be
transmitted on a SEND, RECEIVE, orSYNCPOINT function and is returned

I/O3stringA32USTATUS

to applications that query the status of theUOW. Toupdate the USTATUS
field, use OPTION=SETUSTATUS.

I8nS | nM | nH
| nD

A8UWSTAT-LIFETIME Add value for persistent status lifetime in client and server
communication model.

This field is used to calculate the lifetime of theUOWstatus. The value
of this field determines how long the UOW status is to be retained in
the persistent store after the UOW is processed or timed out if it is not
processed. This is an alternative to specifying UOW-STATUS-PERSIST.

UWSTAT-LIFETIME is specified on the first SEND_PUBLICATION
function for a UOW; it is not allowed on a RECEIVE_PUBLICATION
function.

The number of additional seconds the
UOW status will exist.

nS

The number of additional minutes the
UOW status will exist.

nM

The number of additional hours the
UOW status will exist.

nH

Thenumber of additional days theUOW
status will exist.

nD

I3nS | nM | nH
| nD

A8UWTIME The lifetime of a UOW. The UOW exists until its lifetime expires or it
is explicitly cancelled or backed outwith SYNCPOINT OPTION=CANCEL
or SYNCPOINT OPTION=BACKOUT.

If the UOW is not committed, backed out, or cancelled before its
UWTIME expires, theUOWis discarded and its status becomesTIMEOUT.

UWTIME is specified on the first SEND function for a UOW; it is not
allowed on a RECEIVE function.

ACI for C140

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

The number of seconds the UOW can
exist.

nS

The number of minutes the UOW can
exist.

nM

The number of hours the UOW can
exist.

nH

The number of days theUOWcan exist.nD

For Software AG internal use only.I100-2147483647I4VARLIST-OFFSET

I1NO | YES | nS
| nM | nH

A8WAIT When a WAIT value (other than NO) is specified on a SEND or RECEIVE
function, the caller will wait for a reply until the message is received
or the specified time limit has been reached. SeeBlocked andNon-blocked
Broker Calls underWriting Applications: Client and Server | Publish and
Subscribe in the ACI Programming documentation.

Default. No wait. Control is returned to the
caller.

NO

The number of seconds the caller will wait for a
reply.

nS

The number of minutes the caller will wait for a
reply.

nM

The number of hours the caller will wait for a
reply.

nH

Depending on the role of the user (client, server,
publisher or subscriber), the respective attribute

YES

is used (CLIENT-NONACT | SERVER-NONACT |
PUBLISHER-NONACT | SUBSCRIBER-NONACT).
If a server registersmultiple services, the highest
value of all the services registered is taken as
wait time for the server. However, if the user is
both client and server, CLIENT-NONACT is also
used for calculating the wait time.

All different roles provide non-activity attributes.
The maximum value is taken for the wait time.

141ACI for C

Broker ACI Fields

142

9 Broker ACI Functions

■ Overview Table ... 145
■ Function Descriptions ... 146
■ Option Descriptions .. 155
■ ACI Field/Function Reference Table .. 157

143

Programswritten for EntireX Broker contain instructions that specify to the Brokerwhich functions
to perform. The function's behavior is controlled by the option value and other ACI fields.

See also Broker ACI Fields in the ACI Programming documentation.

ACI for C144

Broker ACI Functions

Overview Table

Minimum API Version
User ID
Required (2)

Logon
Required (1)

Applicable Participant
Function Name SubscriberPublisherServerClient

8XXXXCONTROL_PUBLICATION

1XXDEREGISTER

1XXXEOC

4XXXXXKERNELVERS

2XXXXXXLOGOFF

2XXXXXLOGON

1X(3)XXRECEIVE

8XXXRECEIVE_PUBLICATION

1XXREGISTER

8XXXREPLY_ERROR

1X(3)XXSEND

8XXXSEND_PUBLICATION

6XXXXSETSSLPARMS

8XXXSUBSCRIBE

3XX(3)XXSYNCPOINT

2XXXXUNDO

8XXXUNSUBSCRIBE

2XXXXVERSION

Key

Logon is a prerequisite for issuing this command. See LOGON.(1)

User ID is a prerequisite for issuing this command.(2)

The following functions require a logon when used with units of work: RECEIVE, SEND,
SYNCPOINT.

(3)

145ACI for C

Broker ACI Functions

Function Descriptions

CONTROL_PUBLICATION

This function is used to control a publication.

DescriptionOption

BACKOUT ■ Used by the publisher, it backs out a publication in received status.
■ Used by the subscriber, it backs out the subscriber's reading of the publication;
RECEIVE_PUBLICATION, PUBLICATION-ID=NEWwill read it again.

COMMIT ■ Used by the publisher, it completes the publication, places it in accepted status and makes
it available to a subscriber.

■ Used by the subscriber, it acknowledges receipt of a publication.

Used by the publisher, it returns the status of the publication specified by the
PUBLICATION-ID.

QUERY

Used by the publisher, it updates the optional application-specific user status of the specified
publication that is in received status.

SETUSTATUS

DEREGISTER

This function is used by a server application to deregister a service from EntireX Broker. Assigned
resources are de-allocated. To removemultiple services, specify either SERVER-CLASS, SERVER-NAME
and/or SERVICE.

DescriptionOption

To execute a immediate deregistration, use IMMED. The service is removed immediately; an error
code informs partners in existing conversations of this removal. Any active UOW is backedout.

IMMED

To execute a non-immediate deregistration, use QUIESCE. All active conversations are allowed
to continue until an EOC is issued or a conversation timeout occurs. The application that issues

QUIESCE

the DEREGISTER function must remain active until all existing conversations are ended. No new
conversations are accepted.

ACI for C146

Broker ACI Functions

EOC

This function is used by a client or server and applies to conversational mode only. It is used to
terminate one or more conversations. EntireX Broker accepts no additional SEND s for the conver-
sation(s). The partner can receive requests andmessages that were sent before the EOCwas issued.

Although conversations are normally terminated by the client, the EOC function can be issued by
either partner in a conversation. If an active UOW has not yet been committed (that is, its current
status is received or delivered) the conversation will not be terminated until the UOW is either com-
mitted, backedout, cancelled, or timedout. See Broker UOWStatus Transition underConcepts of Persistent
Messaging in the general administration documentation.

■ To terminate all conversations initiated by the participant, use CONV-ID.
■ To terminate all conversations for a particular service, use CONV-ID, SERVER-CLASS, SERVER-NAME
and/or SERVICE.

DescriptionOption

To inform the partner that the EOC is due to an unexpected event, use CANCEL.CANCEL

KERNELVERS

This function is used by any participant to determine the highest API-VERSION that is supported
by the requested Broker. The highest API-VERSION that the Broker supports is returned in the
API-VERSION field (see API-TYPE and API-VERSION underWriting Applications: Client and Server |
Publish and Subscribe in the ACI Programming documentation). Platform and version information
is returned in the error text.

DescriptionOption

If option is set to CHECKSERVICE, the command will determine whether a specified
SERVICE is currently registered to the Broker.

CHECKSERVICE

The KERNELSECURITY field returns one of the following values to indicate whether the kernel is
running with security. These values are returned only for API version 7 or above.

DescriptionValue

Software AG-supplied security (SECURITY=YES in the Broker attribute file).Y

User-written security (SECURITY=YES in the Broker attribute file).U

SECURITY=NO in the Broker attribute file.N

147ACI for C

Broker ACI Functions

LOGOFF

This function is used by all application components before termination when no further Broker
functions are to be issued.

LOGOFF should be issued after the application's last SEND, SEND_PUBLICATION, RECEIVE,
RECEIVE_PUBLICATION, DEREGISTER or UNSUBSCRIBE has been executed. It releases all resources
used by the application immediately rather thanwaiting until they time out (see Timeout Parameters
underWriting Applications: Client and Server | Publish and Subscribe in the ACI Programming doc-
umentation.

LOGON

This function is used by all application components so that the application can establish commu-
nication with a particular instance of the Broker kernel.

Allows the client or server application to logon to EntireX Broker, which allocates the necessary
structures to handle the new participant. If EntireX Broker is running in a secure environment
(with SECURITY=YES in the attribute file), LOGON performs the authentication process.

LOGON is normally the first function unless a LOCTRANS function (deprecated) is issued first to de-
termine the BROKER-ID.

In addition to the USER-ID, the LOGON optionally transmits the PASSWORD, NEWPASSWORD and
SECURITY-TOKEN to authenticate itself, provided SECURITY=YES is set in the broker attribute file.

RECEIVE

This function is used by clients to receive incoming messages and by servers to receive incoming
requests.

■ You can specify a WAIT time, causing the RECEIVE to wait for the request ormessage that satisfies
the operation.

■ The RECEIVE-LENGTH field is required. It specifies the maximum length of data the caller can
receive. A receive buffer of at least this lengthmust be provided. The actual length of themessage
received is returned in the RETURN-LENGTH field.

NoteDescriptionOption

Usedwith the RECEIVE function to indicate that the RECEIVEwill be satisfied
by any message, whether part of a UOW or not.

ANY

With this option,
WAITmust be set to

To retrieve the last (most recent) message in a conversation, use LAST.LAST

"NO" or not
specified.

ACI for C148

Broker ACI Functions

NoteDescriptionOption

To indicate that the RECEIVEwill be satisfied only by a message that is not
part of aUOW, use MSG. See alsoBroker UOWStatus TransitionunderConcepts
of Persistent Messaging in the general administration documentation.

MSG

To retrieve the next unprocessed request or message in a conversation, use
NEXT.

NEXT

To retrieve the next unprocessed request or message in a conversation
without deleting the previous message or moving the READ pointer, use
PREVIEW, which excludes using units of work.

PREVIEW

To receive only messages that are part of a UOW, use SYNC. See also Broker
UOW Status Transition under Concepts of Persistent Messaging in the general
administration documentation.

SYNC

RECEIVE_PUBLICATION

This function is used by subscribers to receive publications. If PUBLICATION-ID=NEW is specified,
Broker will deliver the next publication in accepted status to the subscriber, if a publication is in
accepted status. In the case of subsequent RECEIVE_PUBLICATION commands, a valid PUBLICATION-ID
is used to receive any messages from a multi-message publication. See function
CONTROL_PUBLICATION to acknowledge the publication.

DescriptionACI Field

This field is required.RECEIVE-LENGTH

You can specify a WAIT time to wait for a new publication.WAIT

REGISTER

This function is used by servers to inform EntireX Broker that a service is available. The Broker
obtains information about the service from theBrokerAttributes in the administrationdocumentation,
creates the appropriate environment, and makes the participant available as the specified
SERVER-CLASS, SERVER-NAME and SERVICE.

If REGISTER is the first call by a server when both AUTOLOGON and SECURITY are set to "YES" in the
Broker attribute file, USER-ID and PASSWORD are required in order to authenticate and authorize
the server. This is because an implicit LOGON is being performed.

The services being registered must be defined in the attribute file.

149ACI for C

Broker ACI Functions

DescriptionOption

To register an attach service, use ATTACH. An attach service cannot be requested by a client. Its
function is to make available a service that cannot otherwise be scheduled.

ATTACH

REPLY_ERROR

This function is used by clients or servers to send an error message to the partner of the conversa-
tion. The error number is specified in the error code field. The sentmessage is delivered as an error
text; the specified error number is delivered as an error code.

■ The user must be logged on.
■ The error number is a numeric 8-byte value and must start with 8 - e.g., 80010001. A zero error
number will be rejected. These errors are user-definable and therefore not documented.

■ The error message is provided in the send buffer and is limited to 40 bytes.
■ Use the SEND-LENGTH field to specify the length of the error message.
■ REPLY_ERROR can be used with a valid CONV-ID only.
■ Only WAIT=NO is allowed.
■ The conversation is not allowed to contain units of work.

DescriptionOption

To end the conversation after the REPLY_ERROR function, use EOC.EOC

SEND

This function is used by clients to send requests and by servers to send replies (messages). If a
corresponding RECEIVE function issued by a partner application is outstanding, EntireX Broker
forwards the request or message to that partner application. If not, EntireX Broker queues the re-
quest or message until a suitable RECEIVE is issued by a partner application. If no suitable RECEIVE
is issued by a partner application, the request will timeout within the specified timeout period.

■ You can specify a SENDwith either of the following:
■ WAIT=YES | Value

This causes an implicit RECEIVE to be generated and the SEND to wait for a reply. If a reply is
expected, the SENDmust pass the length of the receive buffer, in bytes, as the value of the
RECEIVE-LENGTH parameter. The actual - not the specified - length of the reply is returned to
the sender as the RETURN-LENGTH value.

■ WAIT=NO

Choose WAIT=NO if you are only forwarding a request or message.

ACI for C150

Broker ACI Functions

■ Use the SEND-LENGTHfield to specify the length of the request ormessage being sent. The specified
number of bytes is transferred, starting at the beginning of the send buffer.

■ The client starts a new conversation, using CONV-ID=NEW.
■ The client can specify non-conversational mode, using CONV-ID=NONE.
■ Include the SERVER-CLASS, SERVER-NAME and SERVICE if this is a new conversation or a non-
conversational request.

■ If you add the ENVIRONMENTparameter, its value is passed to the translation routine for the service.
■ To transmit conversation-related data to the sending application, use USER-DATA.

NoteDescriptionOption

Use COMMIT to indicate that the UOW being sent is complete
and can now be delivered to the intended receiver, which can
be either client or server.

COMMIT

WAITmust be "NO" or not
specified.

To end the conversation after the SEND, use EOC.EOC

WAITmust be "NO" or not
specified.

To hold SEND data in a queue, use HOLD. The data is released
by a SENDwithout a HOLD.

HOLD

WAITmust be "NO" or not
specified.

Client and server can send a message as part of a unit of work
(UOW), using SYNC.

SYNC

SEND_PUBLICATION

This function is used by publishers to create publications for a specified topic. PUBLICATION-ID=NEW
is used to create a new publication. In the case of a subsequent SEND_PUBLICATION, a valid
PUBLICATION-ID is used when sending a multi-message publication. The publisher completes the
publication either by specifying SEND_PUBLICATION,OPTION=COMMIT or using the function
CONTROL_PUBLICATION. If SEND_PUBLICATION,OPTION=COMMIT is used, the option is specified on
the final SEND_PUBLICATION in the sequence.

DescriptionOption/ ACI Field

Required to complete a publication if the function CONTROL_PUBLICATION is not
used.

OPTION=COMMIT

Required to start a new publication.PUBLICATION-ID=NEW

Required.SEND-LENGTH

151ACI for C

Broker ACI Functions

SETSSLPARMS

This function is used by clients and servers to set the SSL parameters. It can be called whenever
the transport method SSL is available.

The SSL parameters are specified in the send buffer, (second parameter of the Broker ACI call).
These SSL parameters are used and communication is performed if the Secure Sockets Layer is
configured. See Running Broker with SSL or TLS Transport in the platform-specific administration
documentation.

SUBSCRIBE

This function is used to request EntireX Broker to subscribe to a specific topic. The Topic-specific
Attributes (DEFAULTS=TOPIC) under Broker Attributes in the administration documentation contains
parameters that specify the behavior of the topic. If Broker runs with the setting SECURITY=YES in
the Broker attribute file, the user must be successfully authenticated by EntireX Broker and also
authorized to subscribe to the specific topic.

The TOPIC name must be defined in the Broker attribute file.

DescriptionOption

If durable is specified within the SUBSCRIBE command, users need to subscribe only once to a
topic. The subscription is retained after the user issues a logoff command or if the subscriber has

DURABLE

timed out. Similarly, the subscription remains if Broker is restarted. All publications necessary
tomeet subscription requirements are also retained. If a subscriber no longer wishes to subscribe
to a topic, it must issue an UNSUBSCRIBE command; otherwise the subscription remains valid
until the subscription expiration time has passed.

Durable subscription requires the administrator to configure the persistent store. See Concepts of
Persistent Messaging in the general administration documentation. In addition, the topic must be
specified as durablewithin the Topic-specific Attributes (DEFAULTS=TOPIC) under Broker Attributes
in the administration documentation.

ALLOW-DURABLE is a topic-specific attribute that determines whether a subscriber is allowed to
perform a durable subscription to a topic. If users are allowed to durably subscribe to any topic,
you must specify a value for the SUBSCRIBER-STORE attribute.

ACI for C152

Broker ACI Functions

SYNCPOINT

This function allows you to manage units of work (UOWs), both persistent and non-persistent,
that have been sent or received. SeeUsing Persistence andUnits ofWork in the general administration
documentation.

SYNCPOINT is used with the OPTION field. The UOWID parameter is required and normally limits
the request to a specified UOW. For example:

SYNCPOINT OPTION=COMMIT,UOWID=n
SYNCPOINT OPTION=BACKOUT,UOWID=n

In cases where a server receives a UOW and sends a different UOW, you can ensure that the two
UOWs will be processed together (that is, if one is committed, both are committed) by specifying
UOWID=BOTH. For example:

SYNCPOINT OPTION=COMMIT,UOWID=BOTH

UOWID=BOTH can also be usedwith BACKOUT. This simply backs out bothUOWs in a single call instead
of two separate calls:

SYNCPOINT OPTION=BACKOUT,UOWID=BOTH

DescriptionOption

Used by the sender, it causes the UOW to be deleted, with a status of backedout.
By the receiver, causes the UOW to be returned to its prior, unreceived state, with a status
of accepted. The ADCOUNT field is incremented. See also Broker UOW Status Transition under
Concepts of Persistent Messaging in the general administration documentation.

BACKOUT

Used by the receiver, it causes the UOW to be considered finished, with a status of cancelled.
No further processing of the UOW is possible. The sender can cancel the UOW if, and only

CANCEL

if, it is in accepted status. The following sequence of commands, issued during recovery
processing, allows the sender to remove any created but undelivered UOWs:

■ SYNCPOINT OPTION=LAST

■ SYNCPOINT OPTION=CANCEL

■ SYNCPOINT OPTION=DELETE

User by the sender, it indicates that the UOW has been completely built and can be made
available for delivery, with a status of accepted. By the receiver, indicates that the UOW has

COMMIT

been completely received, with a status of processed. No further processing of the UOW is
possible.

With UOWID=n, commits the UOW being created and ends the conversation.EOC

With UOWID=n, commits the UOW being created and cancels the conversation, that is,
terminates the conversation immediately.

EOCCANCEL

153ACI for C

Broker ACI Functions

DescriptionOption

With UOWID=n, deletes the persistent status of the specifiedUOW. TheUOWmust be logically
complete (processed, cancelled, timedout, backedout, discarded) and must have been created by
the caller.

DELETE

Returns the status of the last UOW sent by the caller. In addition, SERVER-CLASS,
SERVER-NAME and SERVICE details of the associated server are also returned. The CONV-ID
can be included to qualify the request.

LAST

With UOWID=n, returns the status of the specified UOW. In addition, SERVER-CLASS,
SERVER-NAME and SERVICE details of the associated server are also returned.

QUERY

With UOWID=n, updates the user status of the specified UOW.SETUSTATUS

UNDO

This function is used to removemessages that have been sent but not received. It can only be used
with an existing conversation. When a message is undone, the conversation continues.

Note: UNDO is not used in conjunction with units of work. See Using Persistence and Units of
Work in the general administration documentation.

DescriptionOption

To undo messages in HOLD status, use UNDOwith HOLD.HOLD

UNSUBSCRIBE

This function is used to cancel the subscription to a specific topic. The fully specified topic name
is required to execute the UNSUBSCRIBE request.

VERSION

This function is used to return the version of the stub implementation in the receive buffer. This
version string is useful to the application in determining the maximumAPI version supported by
the stub and to Software AG support if problems occur.

The string was modified in version 8.2. Example:

EntireX Broker Stub XXXXXXXX Version=08.3.0.00, Highest API Supported=09

is is the name of the stub, for example "CICSETB"."XXXXXXXX"where

ACI for C154

Broker ACI Functions

Option Descriptions

DescriptionOptionNumber

Usedwith a RECEIVE function to receive only amessage that is not part of aUOW.MSG1

Used in conversational mode only.HOLD2

■ On a SEND function, places the messages in a HOLD queue. Messages are
released by a SENDwithout HOLD.

■ On an UNDO function, releases all previously held messages.
■ On a LOGOFF function, the conversation is not ended although the user is logged
off.

Used with the DEREGISTER function to immediately terminate all conversations
for the specified server. All partners are informedwith an appropriate error code.

IMMED3

Used with the DEREGISTER function to terminate a server smoothly. Existing
conversations are allowed to end normally; no new conversations are accepted.

QUIESCE4

The server is removed from the “active” list. QUIESCE is the default option for the
DEREGISTER function.

Used with the SEND function to end the conversation with the current message.
It can be issued by either partner. The conversation is not ended if an active UOW

EOC5

has not yet been committed, that is, its status is received or delivered. See Broker
UOW Status Transition under Concepts of Persistent Messaging in the general
administration documentation.

Usedwith the EOC function to abort a conversation rather than terminate normally.
The receiver of a UOW can use SYNCPOINT OPTION=CANCEL to interrupt
processing and discard the UOW.

CANCEL6

LAST7 ■ Used in conversational mode with the RECEIVE function to retrieve the last
(most recent) message.

■ Used with the SYNCPOINT function, it returns the status of the last UOW sent
by the caller.

■ Used with the CONTROL_PUBLICATION function, it returns the status of the last
publication sent by the publisher.

Used with the RECEIVE function to retrieve the next unprocessed request or
message. The request ormessage is then considered processed and can be accessed
only with OPTION=LAST. NEXT is the default option for the RECEIVE function.

NEXT8

Usedwith the RECEIVE function to retrieve the next unprocessed requestmessage
without deleting the previousmessage ormoving the READpointer. The previewed
message will be retrieved again by the next RECEIVE OPTION=NEXT.

PREVIEW9

COMMIT10 ■ COMMIT is used with the SYNCPOINT function to commit the active UOW. For
aUOWbeing sent, it means that theUOW is complete and can nowbe delivered

155ACI for C

Broker ACI Functions

DescriptionOptionNumber

to the intended receiver. For a UOW being received, it means that that UOW is
complete and no further processing of the UOW is allowed.

■ COMMIT is used with the SEND function to commit the active UOW.

■ COMMIT is used with the CONTROL_PUBLICATION function as follows:

■ Used by the publisher, it completes the publication and makes it available to
subscribers.

■ Used by the subscriber, it acknowledges receipt of a read publication.

■ COMMIT is usedwith the SEND_PUBLICATION function to commit the publication
and make it available to subscribers.

BACKOUT11 ■ The receiver of a UOW can use SYNCPOINT OPTION=BACKOUT to return the
UOW to its undelivered state. The UOW can be processed again, in its entirety,
by subsequent RECEIVE operations. The sender of a UOW can use SYNCPOINT
OPTION=BACKOUT to delete the UOW. No further processing of the UOW is
allowed.

■ BACKOUT is used with the CONTROL_PUBLICATION function as follows:
■ Used by the publisher, it back outs a publication.
■ Used by the subscriber, it back outs the subscriber's reading of the publication;
RECEIVE_PUBLICATIONwill read it again.

On a SEND function, indicates that the message is part of a UOW. On a RECEIVE
function, indicates that the RECEIVEwill be satisfied only by a message that is
part of a UOW.

SYNC12

Used with the REGISTER function to register an attach server.ATTACH13

Used with the SYNCPOINT function to delete the persistent status information for
the specified UOW.

DELETE14

Used with the SYNCPOINT function to cancel the conversation after committing a
UOW.

EOCCANCEL15

QUERY16 ■ Used with the SYNCPOINT function only to query the status of a UOW.
■ Used with the CONTROL_PUBLICATION function, it returns the status of the
publication specified by the PUBLICATION-ID.

SETUSTATUS17 ■ Usedwith the SYNCPOINT function to cancel the conversation after committing
a UOW.

■ Used with the CONTROL_PUBLICATION function, it is used by the publisher to
update the optional application-specific user status of the specified publication.

Used with the RECEIVE function to indicate that the RECEIVEwill be satisfied by
a message that is or is not part of a UOW.

ANY18

No longer used.19

ACI for C156

Broker ACI Functions

DescriptionOptionNumber

Used with the SUBSCRIBE function to establish a durable subscription to a topic
with attribute ALLOW-DURABLE=YES.

DURABLE20

Use with the KERNELVERS function to check if the specified service is active in
EntireX Broker.

CHECKSERVICE21

ACI Field/Function Reference Table

The following table identifies the ACI fields that apply to each of the Broker functions. For a given
function, an ACI field value may be a request field (Rq), and/or a reply field (Rt). Optional fields
are marked (O).

Function

ACI Field

RtRtRtRtRtADCOUNT

RqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqAPI-TYPE

RqRqRqRqRqRqRqRqRq
Rt

RqRqRqRqRqRqRqRqRqRqAPI-VERSION

RqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqBROKER-ID

RtRtCLIENT-UID

RtRtRtRtRtRtCOMMITTIME

OO
Rt

O
Rt

O
Rt

O
Rt

COMPRESSLEVEL

RqRq
Rt

RqRqRqRqCONV-ID

RtRtCONV-STAT

OOOOODATA-ARCH

OOOOENCRYPTION-LEVEL

OOOOOENVIRONMENT

RtRtRtRtRtRtRtRtRtRtRtRtRtRtRtRtRtRtRtERROR-CODE

OOOOOOOOOOOOOOOOOOOERRTEXT-LENGTH

OOOOOOOOOOOOOOOFORCE-LOGON

157ACI for C

Broker ACI Functions

Function

ACI Field

RqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqFUNCTION

RtKERNELSECURITY

RqRqRqRqRqRqRqRqRqRqRqRqRqRqRqRqLOG-COMMAND

OOOOOLOCALE-STRING

MSG-ID

OOONEWPASSWORD

RtRtRtRtRtRtRtRtRtRtRtRtRtRtRtOPARTNER-BROKER-ID
(deprecated)

ORqOOOOOOOOOOOOOOPTION

OOOOPASSWORD

Rq
Rt

RqRq
Rt

PUBLICATION-ID

RqRqRqORECEIVE-LENGTH

RtRtRtRtRETURN-LENGTH

OOOOOOOOOOOOOOOOSECURITY-TOKEN

RqRqRqRqRqSEND-LENGTH

RtO
Rt

ORqOORqSERVER-CLASS

RtO
Rt

ORqOORqSERVER-NAME

RtO
Rt

ORqOORqSERVICE

RtRtRtOSTORE

ORqRqRqRqRqOOOOOOOOTOKEN

RqRqRqRqRqTOPIC

RqO
Rt

O
Rt

UOWID

RtRtRtRtRtRtUOWSTATUS

OUOW-STATUS-PERSIST

ORtRtOUSER-DATA

RqRqRqRqRqRqRqRqRqRqRqRqRqRqRqUSER-ID

ACI for C158

Broker ACI Functions

Function

ACI Field

O
Rt

O
Rt

O
Rt

O
Rt

O
Rt

O
Rt

O
Rt

USTATUS

OUWSTAT-LIFETIME

OUWTIME

OOOOWAIT

159ACI for C

Broker ACI Functions

160

10 Broker UOW Status Transition

■ Initial UOW Status: NULL | Received ... 162
■ Initial UOW Status: Accepted | Delivered .. 163
■ Initial UOW Status: Processed | Timedout ... 164
■ Initial UOW Status: Cancelled | Discarded | Backedout .. 165
■ Legend for UOW Status Transition Table .. 166
■ Table of Column Abbreviations ... 166

161

This chapter contains the UOWstatus transition tables for EntireX Broker and covers the following
topics:

See also Broker ACI Fields in the ACI Programming documentation | Broker ACI Functions in the
EntireX Broker ACI Programming documentation | Error Messages and Codes.

Initial UOW Status: NULL | Received

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

ReceivedReceivedReceivedReceivedSendReceived2

AcceptedAcceptedAcceptedAcceptedCommitReceived3

NULLDiscardedNULLBackedOutReStartReceived4

NULLBackedOutNULLBackedOutBackOutReceived5

R6: This action can only be
a conversation timeout since

NULLBackedOutNULLBackedOutTimeOutReceived6

a UOW only exists once it is
committed.

ReceivedReceivedReceivedReceivedDeleteReceived7

ReceivedReceivedReceivedReceivedCancelReceived8

ReceivedReceivedReceivedReceivedReceiveReceived9

ACI for C162

Broker UOW Status Transition

Initial UOW Status: Accepted | Delivered

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

DeliveredDeliveredDeliveredDeliveredReceiveAccepted10

NULLTimedoutNULLTimedoutTimeoutAccepted11

NULLDiscardedAcceptedAcceptedRestartAccepted12

NULLCancelledNULLCancelledCancelAccepted13

AcceptedAcceptedAcceptedAcceptedDeleteAccepted14

AcceptedAcceptedAcceptedAcceptedBackOutAccepted15

AcceptedAcceptedAcceptedAcceptedSendAccepted16

AcceptedAcceptedAcceptedAcceptedCommitAccepted17

DeliveredDeliveredDeliveredDeliveredReceiveDelivered18

NULLProcessedNULLProcessedCommitDelivered19

R20:
Cancel

NULLCancelledNULLCancelledCancelDelivered20

can only
be issued
by
receiver of
the UOW

AcceptedAcceptedAcceptedAcceptedBackOutDelivered21

NULLNULLNULLTimedoutTimeOutDelivered22

NULLDiscardedAcceptedAcceptedRestartDelivered23

DeliveredDeliveredDeliveredDeliveredDeleteDelivered24

DeliveredDeliveredDeliveredDeliveredSendDelivered26

163ACI for C

Broker UOW Status Transition

Initial UOW Status: Processed | Timedout

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

Processed is a STABLE UOW
status:

N/ANULLN/ANULLDeleteProcessed27

All actions and transitions refer
to the status of a UOW.

N/ANULLNULLNULLTimeoutProcessed28

N/AProcessedN/AProcessedRestartProcessed29

N/AProcessedN/AProcessedBackoutProcessed30

N/AProcessedN/AProcessedCancelProcessed31

N/AProcessedN/AProcessedCommitProcessed32

N/AProcessedN/AProcessedReceiveProcessed33

N/AProcessedN/AProcessedSendProcessed34

Timedout is a STABLE UOW
status:

N/ATimeoutN/ATimeoutRestartTimedout35

All actions and transitions refer
to the status of a UOW.

N/ANULLN/ANULLDeleteTimedout36

N/ANULLN/ANULLTimeoutTimedout37

N/ATimedoutN/ATimedoutSendTimedout38

N/ATimedoutN/ATimedoutReceiveTimedout39

N/ATimedoutN/ATimedoutCommitTimedout40

N/ATimedoutN/ATimedoutBackoutTimedout41

N/ATimedoutN/ATimedoutCancelTimedout42

ACI for C164

Broker UOW Status Transition

Initial UOW Status: Cancelled | Discarded | Backedout

Description
Resulting UOW Status

ActionInitial UOW StatusNo. NPU&NPSNPU&PSPU&NPSPU&PS

Cancelled is a STABLE UOW
status:

N/ANULLN/ANULLDeleteCancelled43

All actions and transitions
refer to the status of a UOW.

N/ACancelledN/ACancelledRestartCancelled44

N/ANULLN/ANULLTimeOutCancelled45

N/ACancelledN/ACancelledSendCancelled46

N/ACancelledN/ACancelledReceiveCancelled47

N/ACancelledN/ACancelledCommitCancelled48

N/ACancelledN/ACancelledBackoutCancelled49

N/ACancelledN/ACancelledCancelCancelled50

Discarded is a STABLEUOW
status:

N/ANULLN/AN/ADeleteDiscarded51

All actions and transitions
refer to the status of a UOW.

N/ANULLN/AN/ATimeOutDiscarded52

N/ADiscardedN/AN/ARestartDiscarded53

N/ADiscardedN/AN/ACancelDiscarded54

N/ADiscardedN/AN/ASendDiscarded55

N/ADiscardedN/AN/AReceiveDiscarded56

N/ADiscardedN/AN/ACommitDiscarded57

N/ADiscardedN/AN/ABackoutDiscarded58

BackedOut is a STABLE
UOW status:

N/ANULLN/ANULLTimeOutBackedOut59

All actions and transitions
refer to the status of a UOW

N/ABackedOutN/ABackedOutCancelBackedOut60

N/ABackedOutN/ABackedOutRestartBackedOut61

N/ABackedOutN/ABackedOutSendBackedOut62

N/ABackedOutN/ABackedOutReceiveBackedOut63

N/ABackedOutN/ABackedOutCommitBackedOut64

N/ANULLN/ANULLDeleteBackedOut65

N/ABackedOutN/ABackedOutBackoutBackedOut66

165ACI for C

Broker UOW Status Transition

Legend for UOW Status Transition Table

Resulting UOW StatusAbbreviation

Not applicableN/A

Error condition, message issued, no changeUOW Status

Table of Column Abbreviations

UOW StatusAbbreviation

Persistent unit of workPU

Persistent statusPS

Non-persistent unit of workNPU

Non-persistent statusNPS

ACI for C166

Broker UOW Status Transition

11 Broker CIS Data Structures

■ Command Request Structure ... 169
■ Command Request Parameter Combinations .. 172
■ Common Header Structure for Response Data .. 176
■ Information Request Structure .. 178
■ Information Reply Structures .. 188

167

EntireX Broker provides an API for Command and Information Services (CIS) that include the
following: shutting down conversations, servers and services; switching trace on and off; retrieving
information on clients; registering servers and services.

Command and Information Services can be accessed from any environment from which EntireX
Broker can be accessed. The structures for these services are available for the programming lan-
guages Assembler, C, Natural and COBOL.

Before referring to the structure tables below, see section Command-line Utilities under Broker
Command and Information Services.

This chapter describes the Command and Information Services data structures..

Note: Version numbers in the tables below refer to the CIS interface version and not to the
Broker version.

ACI for C168

Broker CIS Data Structures

Command Request Structure

The request structure is given in the table below. Note possible combinations under Command
Request Parameter Combinations under Broker CIS Data Structures in the ACI Programming docu-
mentation.

Comment

CIS
Interface
VersionFormatField Name

Interface version.1I2VERSION

Specifies the object type to which the command applies:1I2OBJECT-TYPE

BROKER7

CONVERSATION4

PARTICIPANT (1)18

PSF9

SECURITY21

SERVER1

SERVICE6

SUBSCRIBER (1)14

TRANSPORT29

Valid commands:1I2COMMAND

ALLOW-NEWUOWMSGS13

CLEAR-CMDLOG-FILTER20

NO-OPERATION88

CONNECT-PSTORE17

DISABLE-ACCOUNTING28

DISABLE-CMDLOG24

DISABLE-CMDLOG-FILTER22

DISABLE-DYN-WORKER37

DISCONNECT-PSTORE18

ENABLE-ACCOUNTING27

ENABLE-CMDLOG23

ENABLE-CMDLOG-FILTER21

ENABLE-DYN-WORKER38

FORBID-NEWUOWMSGS14

PRODUCE-STATISTICS25

169ACI for C

Broker CIS Data Structures

Comment

CIS
Interface
VersionFormatField Name

PURGE12

RESET-USER29

RESUME31

SET-CMDLOG-FILTER19

SHUTDOWN8

START33

STATUS36

STOP32

SUBSCRIBE (1)15

SUSPEND30

SWITCH-CMDLOG26

TRACE-FLUSH35

TRACE-OFF2

TRACE-ON1

TRAP-ERROR34

UNSUBSCRIBE (1)16

Possible values:1I2OPTION

IMMED3

QUIESCE4

TR_LEVEL111

TR_LEVEL212

TR_LEVEL313

TR_LEVEL414

TR_LEVEL515

TR_LEVEL616

TR_LEVEL717

TR_LEVEL818

Specifies the internal unique ID which is used to distinguish
between several users with the same user ID. Using this field

1A28P-USER-ID

uniquely identifies a single server. The value for this field
must be obtained by a previous info request. This field is used
as a handle, i.e. no translation is performed.

Selection field. Optional. Specifies the unit of work to be
purged.

2A16UOWID

ACI for C170

Broker CIS Data Structures

Comment

CIS
Interface
VersionFormatField Name

Selection field. Optional. Specifies the topic to be subscribed
or unsubscribed to.

4A96TOPIC (1)

Selection field. Optional. Specifies the user name for
subscription/unsubscription and participant shutdown.

4A32UID

Selection field. Optional. Specifies the token name for
subscription/unsubscription and participant shutdown.

4A32TOKEN

Selection field. Optional. Specifies the server class name for
command log filter addition or removal.

5A32SERVER-CLASS

Selection field. Optional. Specifies the server name for
command log filter addition or removal.

5A32SERVER

Selection field. Optional. Specifies the service name for
command log filter addition or removal.

5A32SERVICE

Optional. Specifies the conversation to be shut down with
command SHUTDOWN.

7A16CONVID

Optional. Specifies the transport task. Possible values:
NET|Snn|Tnn. Required for commands RESUME, START,
STATUS, STOP, SUSPEND.

7A3TRANSPORTID

Optional. Exclude attach servers when shutting down a
service.

7I1EXCLUDE-ATTACH-SERVERS

Optional. Specifies the sequence number of the participant
(i.e. client, server, publisher, subscriber) to be shut down.
Can be used instead of P-USER-ID.

7I4SEQNO

Specifies the error number to be used with command
TRAP-ERROR.

7I4ERROR-NUMBER

(1) SeeWriting Applications: Publish and Subscribe in the ACI Programming documentation.

171ACI for C

Broker CIS Data Structures

Command Request Parameter Combinations

The following table shows all valid combinations of parameters:

CommentOptionCommandObject Type

Remove a command log filter. The
command log filter can be identified

CLEAR-CMDLOG-FILTERBROKER

using the fields TOPIC, UID,
SERVER-CLASS,SERVER andSERVICE.

Disable accounting.DISABLE-ACCOUNTING

Disable command logging.DISABLE-CMDLOG

Disable a command log filter. The
command log filter can be identified

DISABLE-CMDLOG-FILTER

using the fields TOPIC, UID,
SERVER-CLASS,SERVER andSERVICE.

Disable the
DYNAMIC-WORKER-MANAGEMENT.

DISABLE-DYN-WORKER

DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
The current number of active worker
tasks will not be changed until
DYNAMIC-WORKER-MANAGEMENT is
enabled again.

Enable accounting.ENABLE-ACCOUNTING

Enable command logging.ENABLE-CMDLOG

Enable a command log filter. The
command log filter can be identified

ENABLE-CMDLOG-FILTER

using the fields TOPIC, UID,
SERVER-CLASS,SERVER andSERVICE.

Enable the
DYNAMIC-WORKER-MANAGEMENTagain.

ENABLE-DYN-WORKER

DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
DYNAMIC-WORKER-MANAGEMENT has
been disabled before. Additional
worker tasks can be started again, or
stopped if not used.

Output current statistics to the broker
log.

PRODUCE-STATISTICS

Add a command log filter. The
command log filter can be identified

SET-CMDLOG-FILTER

using the fields TOPIC, UID,
SERVER-CLASS,SERVER andSERVICE.

ACI for C172

Broker CIS Data Structures

CommentOptionCommandObject Type

Shutdown Broker immediately.SHUTDOWN

Force a switch of command logging
output files.

SWITCH-CMDLOG

Flush all trace data kept in internal
trace buffers to stderr (DD:SYSOUT).

TRACE-FLUSH

The broker-specific attribute
TRMODE=WRAP is required.

Set trace off in Broker.TRACE-OFF

Set TRACE-LEVEL on in Broker.LEVELTRACE-ON

Modifies the setting of the
broker-specific attribute TRAP-ERROR.

error numberTRAP-ERROR

convidSHUTDOWNCONVERSATION

Shutdown server immediately. The
server must be uniquely identified

IMMEDSHUTDOWNSERVER

using field P_USER_ID or SEQNOand
will be completely removed from the
BROKER environment.
The following stepswill be performed:

■ Error code 00100050 will be replied
to the server if it is waiting.

■ All existing conversations will be
finished with EOC.

■ User will be logged off.

Shutdown server but allow existing
conversations to continue.
The termination is signaled to the
server by error code 00100051. After

QUIESCE

this, the next call issued must be a
DEREGISTER for all services
(SC=*,SN=*,SV=* if more than one
service is active).

New UOWmessages are allowed.ALLOW-NEWUOWMSGSPSF

Connect the persistent store.CONNECT-PSTORE

Disconnect the persistent store.DISCONNECT-PSTORE

NewUOWmessages are not allowed.FORBID-NEWUOWMSGS

Remove a unit of work from the
EntireX Broker persistent store. (From
version 2.)

PURGE

Set trace off in the persistent store.TRACE-OFF

173ACI for C

Broker CIS Data Structures

CommentOptionCommandObject Type

SetTRACE-LEVEL on in the persistent
store.

LEVELTRACE-ON

Shutdown participant immediately.
The participant must be identified,

IMMEDSHUTDOWNPARTICIPANT

using fields P-USER-ID under Broker
CIS Data Structures in the ACI
Programming documentation, UID or
TOKEN and will be completely
removed from the Broker
environment.
The following stepswill be performed:

■ Error code 00100050 will be replied
to the participant, if it is waiting.

■ All existing conversations will be
finished with EOC.

■ User will be logged off.

Shutdown participant but allow
existing conversations to continue. The

QUIESCE

termination is signaled to the
participant by error code 00100051.

INFO requests return a seqno that can
be used here to identify the target.

seqno

Clear all cached security information
for a user. The user must be identified
using the field UID.

RESET-USERSECURITY

Set trace off in EntireX Security.TRACE-OFF

Set TRACE-LEVEL on in EntireX
Security.

LEVELTRACE-ON

IMMEDSHUTDOWNSERVICE

QUIESCE

class/server/service

Subscribe a user to a topic.SUBSCRIBESUBSCRIBER

Unsubscribe a user to a topic.UNSUBSCRIBE

Resume NET transport or a specific
SSL or TCP communicator instance.

NET | Snn | TnnRESUMETRANSPORT

Start NET transport or a specific SSL
or TCP communicator instance.

NET | Snn | TnnSTART

Show status of NET transport or a
specific SSL or TCP communicator
instance.

NET | Snn | TnnSTATUS

ACI for C174

Broker CIS Data Structures

CommentOptionCommandObject Type

Stop NET transport or a specific SSL
or TCP communicator instance.

NET | Snn | TnnSTOP

Suspend NET transport or a specific
SSL or TCP communicator instance.

NET | Snn | TnnSUSPEND

Switch trace off for all communicators
(COM) or only NET, SSL or TCP
communicators.

COM | NET | SSL |
TCP

TRACE-OFF

Set trace level for all communicators
(COM) or only NET, SSL or TCP
communicators.

COM | NET | SSL |
TCP

TRACE-ON LEVELn

175ACI for C

Broker CIS Data Structures

Common Header Structure for Response Data

This section describes the header structure (Struct HD_CIS), which is used by both the information
services and the command service. For command-specific or information-specific structures, see
CommandRequest StructureunderBroker CISData Structures in theACI Programmingdocumentation
or Information Request Structure under Broker CIS Data Structures in the ACI Programming docu-
mentation.

The header structure is always the first structure in the receive buffer that comes back from an
information or command service request. Even receive buffers obtainedwith subsequent RECEIVE
commands have this structure as the first part of the buffer. The header structure has the following
layout, whereby in the Format column I = 4-byte integer value:

Comment

CIS
Interface
VersionFormatField Name

Result of request. Value 0 indicates success. See Broker Command
and Information Services Error CodesunderErrorMessages and Codes.

1I4ERROR-CODE

Total number of objects returned in object list.1I4TOTAL-NUM-OBJECTS

Number of objects returned within current receive block.1I4CURRENT-NUM-OBJECTS

Length of longest SERVER-CLASS value in total object list. This
field is only relevant if the object-specific structure for the object
list contains the SERVER-CLASS field.

1I4MAX-SC-LEN

Length of longest SERVER-NAME value in total object list. This
field is only relevant if the object-specific structure for the object
list contains the SERVER-NAME field.

1I4MAX-SN-LEN

Length of longest SERVICE value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the SERVICE field.

1I4MAX-SV-LEN

Length of longest USER-ID value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the USER-ID field.

1I4MAX-UID-LEN

Length of longest TOKEN value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the TOKEN field.

1I4MAX-TK-LEN

Length of longest TOPIC value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the TOPIC field.

4I4MAX-TOPIC-LEN

This is the time that the requestwas received by the Broker kernel.4I4REQUESTTIME

This is any secondary error code from the broker kernel. See Error
Messages and Codes.

5A8ETB-ERROR-CODE

ACI for C176

Broker CIS Data Structures

Comment

CIS
Interface
VersionFormatField Name

This is any secondary error text from the broker kernel. See Error
Messages and Codes.

5A40ETB-ERROR-TEXT

Length of longest RPC-LIB value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the RPC-LIB field.

6I4MAX-PPC-LIB-LEN

Length of longest RPC-PGM value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the RPC-PGM field.

6I4MAX-PPC-PGM-LEN

177ACI for C

Broker CIS Data Structures

Information Request Structure

The information services can handle many different information structures. Applications use the
information request structure to specifywhich information structure is required. See also Examples
of Selection Criteria underWriting Applications: Command and Information Services in the ACI docu-
mentation.

The layout of the information request structure is shown in the following table. Fields BLOCK-LENGTH,
VERSION, and OBJECT-TYPE are mandatory. All other fields are optional. Fields of type I or B are
considered “not specified” if they contain lowvalue. Fields of typeA are considered “not specified”
if they contain low value or spaces (according to the caller's character set).

Comment
Opt/
Req

CIS
Interface
VersionFormatField Name

Defines the block length of the data packages returned (without
length of header.)
(RECEIVE-LENGTH field of ACI not used in order to keep the
interfaces independent.)

R1I4BLOCK-LENGTH

Interface version. This describes the kind and amount of
information wanted and enables us to extend the information

R1I2VERSION

in further versions of INFO services. Valid versions are 1 and
above.

Specifies the object type forwhich the information is required.
If an object type is specified without additional selection

R1I2OBJECT-TYPE

criteria, a list of all active objects of that type is returned in
accordancewith the information service being addressed (INFO
or USER-INFO). Possible values are:

Info on this Broker. (1)7BROKER

Info on active clients2CLIENT

Info on command log filters23CMDLOG_FILTER

Info on active conversations4CONVERSATION

Info on the Entire Net-Work
communicator. (1)

24NET

Info on participants18PARTICIPANT

Info on Broker pool usage and
dynamic memory management. (1)

25POOL_USAGE

Info on a unit of work's status9PSF

Info on the Adabas persistent store. (1)12PSFADA

Info on the c-tree persistent store. (1)20PSFCTREE

Info on the DIV persistent store. (1)11PSFDIV

ACI for C178

Broker CIS Data Structures

Comment
Opt/
Req

CIS
Interface
VersionFormatField Name

Info on the B-Tree persistent store (no
longer supported)

13PSFFILE

Info on active publications16PUBLICATION

Info on active publishers15PUBLISHER

Info on Broker resource usage. (1)26RESOURCE_USAGE

Info on EntireX Security. (1)21SECURITY

Info on active servers1SERVER

Info on active services6SERVICE

Info on SSL communicators. (1)22SSL

Statistics on selected Broker
resources. (1)

27STATISTICS

Info on active subscribers14SUBSCRIBER

Info on TCP communicators. (1)19TCP

Info on active topics17TOPIC

Info on all users of Broker regardless
of the user type

28USER

Info on all workers. (1)8WORKER

Info on usage of worker tasks and
dynamic worker management. (1)

30WORKER_USAGE

(1) No additional selection criteria are needed. Other selection
criteria fields are ignored.

Selection criteria field. This is the user ID of the client or server
as specified in the field USER-ID of the EntireX Broker ACI.

O1A32USER-ID

The value of the field is used to restrict information to related
objects of a specific user.

Selection criteria field. Specifies the internal unique ID which
is used to distinguish between several users with the same
user ID.
This field uniquely identifies a client or server process. The
value for this fieldmust be obtained by a previous info request.
This field is used as a handle, i.e. no translation is performed.
Any value different from low valuewill be treated as selection
value.

O1B28P-USER-ID

Selection criteria field. Corresponds to the TOKEN field of the
EntireX Broker ACI. The value restricts the information to

O1A32TOKEN

objects of users which have specified this TOKEN value in their
Broker calls.

Selection criteria field. Corresponds to field SERVER-CLASS in
the EntireX BrokerACI. The value of this field is used to restrict

O1A32SERVER-CLASS

179ACI for C

Broker CIS Data Structures

Comment
Opt/
Req

CIS
Interface
VersionFormatField Name

information to objects concerning the services registered with
this class.

Selection criteria field. Corresponds to field SERVER-NAME in
the EntireX BrokerACI. The value of this field is used to restrict

O1A32SERVER-NAME

information to objects concerning the services registered with
this server name.

Selection criteria field. Corresponds to field SERVICE in the
EntireX Broker ACI. The value of this field is used to restrict

O1A32SERVICE

information to objects concerning the services registered with
this service name.

Selection criteria field. Specifies the conversation ID of a
conversation. Using this field uniquely identifies a

O1A16CONV-ID

conversation. The value for this field must be obtained by a
previous info request.

Reserved for future use.1I2RESERVED

Selection criteria field. Specifies the unit of work ID.O2A16UOWID

Selection criteria field. Specifies the unit of work status search
criteria:

O2I1UOWSTATUS

RECEIVED1

ACCEPTED2

DELIVERED3

BACKEDOUT4

PROCESSED5

CANCELLED6

TIMEOUT7

DISCARDED8

Selection field. Specifies the user status selection value.O2A32USERSTATUS

Selection field. Specifies the unit-of-work receiver's user ID.O2A32RECVUID

Selection field. Specifies the unit-of-work receiver's token ID.O2A32RECVTOKEN

Selection field. Specifies the unit-of-work receiver's server
name.

O2A32RECVSERVER

Selection field. Specifies the unit-of-work receiver's service
name.

O2A32RECVSERVICE

Selection field. Specifies the unit-of-work receiver's class name.O2A32RECVCLASS

Selection field. Specifies the topic name.O4A96TOPIC

Selection field. Specifies the publication ID.O4A16PUBLICATION-ID

ACI for C180

Broker CIS Data Structures

Comment
Opt/
Req

CIS
Interface
VersionFormatField Name

Selection field. Specifies the subscription type:O4I2SUBSCRIPTION-TYPE

DURABLE1

NON-DURABLE2

Selection field. Specifies the conversation type:O5I2CONVERSATION-TYPE

NON-CONVERSATIONAL1

CONVERSATIONAL2

Legend

Long Form / DescriptionAbbreviation

The field is specified.Y

The field is ignored.I

The field is not specified; information should not be restricted by its value.N

181ACI for C

Broker CIS Data Structures

Column Abbreviation Table

Long Form / DescriptionAbbreviation

USER-IDUID

RECEIVER USER-IDRECV-UID

P-USER-IDPUID

TOKENTK

RECEIVER TOKENRECV-TK

SERVER-CLASSSC

RECEIVER SERVER-CLASSRECV-SC

SERVER-NAMESN

RECEIVER SERVER-NAMERECV-SN

SERVICESV

RECEIVER SERVICERECV-SV

CONV-IDCID

UNIT OF WORK IDUOWID

UNIT OF WORK STATUSUWSTAT

USER STATUSUSTAT

TOPICTOPIC

PUBLICATION-IDPBN-ID

SUBSCRIPTION-TYPESBN-TYP

ACI for C182

Broker CIS Data Structures

Selection Criteria CLIENT Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYClient (1)

IIIIYYNClient (2)

IIIINYNClients with UID

IIIIYNNClients with TK

IIIINNNall clients

Selection Criteria SERVER Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYServer (1)

IIIIYYNServer (2)

IIIINYNServers with UID

IIIIYNNServers with TK

IYYYNNNServers offering service

INNNNNNAll Servers

Selection Criteria SERVICE Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYServices offered by this server (1)

IIIIYYNServices offered by this server (2)

IYYYNNNServices with this SC/SN/SV

INYYNNNServices with this SC/SN

IYNYNNNServices with this SC/SV

INNYNNNServices with this SC

IYYNNNNServices with this SN/SV

INYNNNNServices with this SN

IYNNNNNServices with this SV

INNNNNNAll services

183ACI for C

Broker CIS Data Structures

Selection Criteria CONV Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYConversations of this client/server (1)

IIIIYYNConversations of this client/server (2)

IYYYNNNConversations of this service

YNNNNNNThe conversation with CID

NNNNNNNAll Conversations

ACI for C184

Broker CIS Data Structures

Selection Criteria PSF Object Type (Version 2 and above)

CIDSVSNSCTKUIDUOWIDSelection

IIIIIIYThe unit of work

YIIIIINAll units of work for the conversation

NNNNNYNUOWs with client UID

NNNNYNNUOWs with clients having TK

NNNYNNNUOWs with the client SC

NNYNNNNUOWs with the client SN

NYNNNNNUOWs with the client SV

NNYYNNNUOWs with the client SC/SN

NYNYNNNUOWs with the client SC/SV

NYYYNNNUOWs with the client SC/SN/SV

NYYNNNNUOWs with the client SN/SV

NNNNNNNAll UOWs

YNIIIIIUOWs with user status

NYIIIIIUOWs with UOW status

NNNNNNYUOWs with server ID

NNNNYNNUOWs with server having TK

NNNYNNNUOWs with the server SC

NNYNNNNUOWs with the server SN

NYNNNNNUOWs with the server SV

NNYYNNNUOWs with the server SC/SN

NYNYNNNUOWs with the server SC/SV

NYYYNNNUOWs with the server SC/SN/SV

NYYNNNNUOWs with the server SN/SV

NNNNNNNAll UOWs

185ACI for C

Broker CIS Data Structures

Selection Criteria for PUBLISHER Objects (Version 4 and above)

PBN-IDTOPICTKUIDPUIDSelection

IIIIYPublisher (1)

IIYYNPublisher (2)

IINYNPublishers with UID

IIYNNPublishers with TK

IINNNAll publishers

Selection Criteria for PUBLICATION (Version 4 and above)

PBN-IDTOPICTKUIDPUIDSelection

IIIIYPublications of this publisher/subscriber (1)

IIYYNPublications of this publisher/subscriber (2)

IYNNNPublications of this topic

YNNNNThe publications with PBN-ID

NNNNNAll publications

Selection Criteria for TOPIC (Version 4 and above)

PBN-IDTOPICTKUIDPUIDSelection

IIIIYTopics subscribed to by this subscriber (1)

IIYYNTopics subscribed to by this subscriber (2)

IYNNNTopics with this TOPIC

NNNNNAll topics

Selection Criteria for SUBSCRIBER (Version 4 and above)

SBN-TYPTOPICTKUIDPUIDSelection

IIIIYSubscriber (1)

IIYYNSubscriber (2)

IINYNSubscribers with UID

IIYNNSubscribers with TK

YINNNAll subscribers with SBN-TYP

IYNNNAll subscribers with TOPIC

ACI for C186

Broker CIS Data Structures

Key

if participant is not using TK (token) for authentication(1)

if participant is using TK (token) for authentication(2)

187ACI for C

Broker CIS Data Structures

Information Reply Structures

The information reply structures are defined and described in the delivered source code. The
structures are available for programming languages Assembler, C, Natural and COBOL.

■ BROKER-OBJECT (Struct INFO_BKR)
■ CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)
■ CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)
■ CONVERSATION-OBJECT (Struct INFO_CV)
■ NET-OBJECT (Struct INFO_NET)
■ POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)
■ PSF-OBJECT (Struct INFO_PSF)
■ PSFADA-OBJECT (Struct INFO_PSFADA)
■ PSFCTREE-OBJECT (Struct INFO_PSTCTREE)
■ PSFDIV-OBJECT (Struct INFO_PSFDIV)
■ PSFFILE-OBJECT (Struct (INFO_PSFFILE)
■ PUBLICATION-OBJECT (Struct INFO_PUBLICATION)
■ PUBLISHER-OBJECT (Struct INFO_PUBLISHER)
■ RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)
■ SECURITY-OBJECT (Struct INFO_SECURITY)
■ SERVICE-OBJECT (Struct INFO_SV)
■ SSL-OBJECT (Struct INFO_SSL)
■ STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)
■ SUBSCRIBER-OBJECT (Struct INFO_SUBSCRIBER)
■ TCP-OBJECT (Struct INFO_TCP)
■ TOPIC-OBJECT (Struct INFO_TOPIC)
■ USER-OBJECT (Struct INFO_USER)
■ WORKER-OBJECT (Struct INFO_WKR)
■ WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

ACI for C188

Broker CIS Data Structures

BROKER-OBJECT (Struct INFO_BKR)

Description / Action

CIS
Interface
VersionFormatField Name

Platform dependent.1A8PLATFORM

Time since Broker started, in seconds. Computed
from current time - Broker start time.

1I4RUNTIME

Number of active workers.1I4NUM-WORKER-ACT

Number of long buffers defined (see
NUM-LONG-BUFFER).

1I4NUM-LONG

Number of long buffers active (in use).1I4LONG-ACT

Highest number of long buffers active since Broker
started.

1I4LONG-HIGH

Number of short buffers defined (see
NUM-SHORT-BUFFER).

1I4NUM-SHORT

Number of short buffers active.1I4SHORT-ACT

Highest number of short buffers active since Broker
started.

1I4SHORT-HIGH

Size of long buffer entry.1I4LONG-SIZE

Size of short buffer entry.1I4SHORT-SIZE

Number of services defined (see NUM-SERVICE).1I4NUM-SERVICE

Number of services active.1I4SERVICE-ACT

Number of servers defined (see NUM-SERVER).1I4NUM-SERVER

Number of servers active.1I4SERVER-ACT

Highest number of servers active since Broker started.1I4SERVER-HIGH

Number of clients defined (see NUM-CLIENT).1I4NUM-CLIENT

Number of clients active.1I4CLIENT-ACT

Highest number of clients active since Broker started.1I4CLIENT-HIGH

Number of conversations defined (see
NUM-CONVERSATION).

1I4NUM-CONV

Highest number of conversations active since Broker
started.

1I4CONV-HIGH

Actual Trace Level value.1I2TRACE-LEVEL

Unused.1I2UNUSED1

Maximum number of active UOWs.2I4LMAXUOWS

Maximum number of messages in a UOW.2I4LMAXUOWMSG

Maximum UOW lifetime2I4LUWTIME

Currently not in use. (Count is always zero.)2I4LMAXDELCNT

189ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Maximum size of a message2I4LMAXMSGSIZE

Number of UOWs.2I4LTOTALUOWS

Store attribute for all UOWs:2I1CSTORE

OFF0

BROKER1

Startup value for persistent store:2I1CPSTORE

NO0

HOT1

COLD2

WARM4

UOW status lifetime multiplier (0-255)2I1CUWSTATP

Default status attribute for all UOWs:2I1CDEFERRED

NO0

YES1

3A3CACCOUNTING

Accounting not activeNO

Accounting active on UNIX and WindowsYES

SMF Record number on z/OSnnn

Authorization Default:3I1CAUTHDEFAULT

NO0

YES1

Port number being used for SSL transport (UNIX and
Windows only).

3I4LSSLPORT

New UOWmessages:3I1NEW-UOW-MESSAGES

NO0

YES1

SNMP licensed:3I1SNMP-LICENSED

NO0

YES1

Unused.3I1UNUSED2

Full platform name where Broker is running3A32CPLATNAME

ACI for C190

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Persistent store type. It will be one of the following
values:

3A8CPSTORETYPE

Data-in-Virtual Persistent Store (z/OS only)DIV

B-Tree Store (UNIX and Windows only, no
longer supported)

FILE

Adabas Persistent Store (all platforms)ADABAS

Publish and subscribe:4I1PUB-SUB

NO0

YES1

For example: 0x06.4I1HIGHEST-API-VERSION

For example: 0x06.4I1HIGHEST-CIS-VERSION

4I1PSTORE-CONNECTED

NO0

YES1

Number of topics defined (see NUM-TOPIC).4I4NUM-TOPIC

Number of topics active.4I4TOPIC-ACT

Number of subscribers defined (see
NUM-SUBSCRIBER).

4I4NUM-SUBSCRIBER

Number of subscribers active.4I4SUBSCRIBER-ACT

Highest number of subscribers active since Broker
started.

4I4SUBSCRIBER-HIGH

Number of publishers defined (see NUM-PUBLISHER).4I4NUM-PUBLISHER

Number of publishers active.4I4PUBLISHER-ACT

Highest number of publishers active since Broker
started.

4I4PUBLISHER-HIGH

Number of publications defined (see
NUM-PUBLICATION).

4I4NUM-PUBLICATION

Highest number of publications active since Broker
started.

4I4PUBLICATION-HIGH

Number of attach servers active.4I4ATTACH-MGRS-ACT

Unit of work status additional lifetime.4I4LUWSTAT-ADD-TIME

Version, release, service pack, and patch level, e.g.
8.0.1.00.

4A16PRODUCT-VERSION

License expiration date.5A10LICENSE-EXPIRATION-DATE

191ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Security type:5I1SECURITY-TYPE

None0

SAG1

Light2

Other3

5I1ACCOUNTING-ENABLED

Accounting enabled1

Accounting disabled0

Number of free CCB entries (conversation control
block).

5I4NUM-FREE-CCB

Number of free PCB entries(participant control block).5I4NUM-FREE-PCB

Number of free PCBEXT entries (PCB extension).5I4NUM-FREE-PCBEXT

Number of free SCB entries (service control block).5I4NUM-FREE-SCB

Number of free SCBEXT entries (SCB extension).5I4NUM-FREE-SCBEXT

Number of free SUBSCB entries (subscriber control
block).

5I4NUM-FREE-SUBSCB

Number of free TCB entries (topic control block).5I4NUM-FREE-TCB

Number of free TCBEXT entries (TCP extension).5I4NUM-FREE-TCBEXT

Number of free TOQ entries (timeout queue).5I4NUM-FREE-TOQ

Number of free UWCB entries (UOW control block).5I4NUM-FREE-UWCB

Number of communication buffers.5I4NUM-COM-BUFFER

Number of communication buffer slots.5I4NUM-COM-SLOT

Number of communication buffer slots free.5I4NUM-COM-SLOT-FREE

Number of CMDLOG filters.5I4NUM-CMDLOG-FILTER

Number of CMDLOG filters active.5I4NUM-CMDLOG-FILTER-ACTIVE

Reflects status of Broker attribute CMDLOG:5I1CMDLOG

Command logging features are available for the
Broker

1

Command logging not available0

Reflects result of commands DISABLE-CMDLOG and
ENABLE-CMDLOG:

5I1CMDLOG-ENABLED

Command logging enabled1

Command logging temporarily disabled0

ACI for C192

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Alignment.5A2NOTUSED3

Attribute file name.5A256ATTRIBUTE-FILE-NAME

Name of trace log file.5A256LOG-FILE-NAME

Size of trace log file.5I4LOG-FILE-SIZE

License file name.5A256LICENSE-FILE-NAME

Max. size of CMDLOG file.5I4CMDLOG-FILE-SIZE

Name of open CMDLOG file.5A256OPEN-CMDLOG-FILE-NAME

Size of CMDLOG file.5I4OPEN-CMDLOG-FILE-SIZE

Name of closed CMDLOG file.5A256CLOSED-CMDLOG-FILE-NAME

Size of closed CMDLOG file.5I4CLOSED-CMDLOG-FILE-SIZE

Reserved for future use.5I4RESERVED

Name of accounting output file.5A256ACCOUNTING-FILE-NAME

Size of accounting output file.5I4ACCOUNTING-FILE-SIZE

Control interval in seconds.5I4CONTROL-INTERVAL

Max. number of takeover attempts.5I4MAX-TAKEOVER-ATTEMPTS

Broker run mode.5A16RUN-MODE

Partner Cluster Address.5A32PARTNER-CLUSTER-ADDRESS

Number of CMDLOG switches by size.5I4CMDLOG-SWITCHES-BY-SIZE

Number of CMDLOG switches by CIS.5I4CMDLOG-SWITCHES-BY-CIS

Client timeout in seconds. See broker attribute
CLIENT-NONACT.

7I4CLIENT-NONACT

Number of work queue entries. See broker attribute
NUM-WQE.

7I4NUM-WQE

Size of allocated storage in bytes.7I4TOTAL-STORAGE-ALLOCATED

Highest size of allocated storage in bytes since Broker
started.

7I4TOTAL-STORAGE-ALLOCATED-HIGH

Maximumof storage that can be allocated. See broker
attribute MAX-MEMORY.

7I4TOTAL-STORAGE-LIMIT

BROKER-ID. See broker attribute BROKER-ID.7A32BROKER-ID

Name of host running broker (on z/OS copied from
CVTSNAME).

7A256HOST-NAME

Name of SYSPLEX (copied from ECVTSPLX).7A8SYSPLEX-NAME

Auto logon:7I1CAUTOLOGON

NO0

YES1

193ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

See broker attribute AUTOLOGON.

Dynamic memory management:7I1CDYNAMIC-MEMORY-MANAGEMENT

NO0

YES1

See broker attribute DYNAMIC-MEMORY-MANAGEMENT.

Dynamic worker management:7I1CDYNAMIC-WORKER-MANAGEMENT

NO0

YES1

See broker attribute DYNAMIC-WORKER-MANAGEMENT.

Service updates:7I1CSERVICE-UPDATES

NO0

YES1

See broker attribute SERVICE-UPDATES.

Topic updates:7I1CTOPIC-UPDATES

NO0

YES1

See broker attribute TOPIC-UPDATES.

Was TRANSPORT=NET specified?7I1CTRANSPORT-NET

NO0

YES1

See broker attribute TRANSPORT=NET.

Was TRANSPORT=SSL specified?7I1CTRANSPORT-SSL

NO0

YES1

See broker attribute TRANSPORT=SSL.

Was TRANSPORT=TCP specified?7I1CTRANSPORT-TCP

NO0

YES1

See broker attribute TRANSPORT=TCP.

Value defined for attribute TRAP-ERROR.7I4NTRAP-ERROR

ACI for C194

Broker CIS Data Structures

CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)

Description / Action

CIS
Interface
VersionFormatField Name

Corresponds to USER-ID in theACI. Themaximum
length of this field is determined by field

1A32USER-ID

MAX-UID-LEN in the header. See Common Header
Structure for Response Data under Broker CIS Data
Structures in theACI Programming documentation.

Specifies the physical internal unique ID which is
used to distinguish between several users with the

1B28P-USER-ID

same user ID. This field is used as a handle, i.e. no
translation is performed. With CIS commands
SHUTDOWN PARTICIPANT and SHUTDOWN SERVER,
field SEQNO under Broker CIS Data Structures in the
ACI Programming documentation is provided as
unique criterion.

No longer used.1A28P-USER-ID-CHAR

Corresponds to TOKEN in the ACI. The maximum
length of this field is determined by MAX-TK-LEN

1A32TOKEN

in the header. See Common Header Structure for
Response Data under Broker CIS Data Structures in
the ACI Programming documentation.

Character set of user's platform:1I2CHAR-SET

EBCDIC IBM34

EBCDIC SNI66

ASCII PC 3861

ASCII PC OS/216

ASCII 8859-1128

Endian type of user's platform:1I2ENDIAN

Big endian (high order first)1

Little endian0

Status of user:1I2STATUS

Not waiting0

Waiting5

Unused.1I2UNUSED1

195ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Only valid if user is waiting. Indicates what kind of
conversation user is waiting for:

1A16WAIT-CONV-TYPE

User waiting for new conversationsNEW

User waiting for any conversationANY

User waiting for old conversationsOLD

User waiting for non-conversational
reply

NONE

User waiting for specific conversationCONV-ID

When waiting for ANY, NEW or OLD, the class name
of the service to wait for is returned.

1A32WAIT-SERVER-CLASS

When waiting for ANY, NEW or OLD, the server name
of the service to wait for is returned.

1A32WAIT-SERVER-NAME

When waiting for ANY, NEW or OLD, the name of the
service to wait for is returned.

1A32WAIT-SERVICE

Number of active conversations of this user.1I4CONV-ACT

Number of services active (offered) by this server.
This information is available for server only.

1I4SERVICE-ACT

Elapsed time since the last activity of the user.1I4LAST-ACTIVE

Non-activity time-out value.1I4NONACT

Accumulated time a server waited for new
conversations. (Receive with CONVID=NEW or

1I4WAIT-NEW

CONVID=ANY). A high value indicates that server
has capacity.

Number of times a server had to wait for new
conversations.

1I4NUM-WAIT-NEW

Accumulated time a server or client waited for
messages of existing conversations. (Receive with

1I4WAIT-OLD

CONVID=cid or CONVID=OLD.) A high value for a
server indicates that server had to wait for the
clients. A high value for a client indicates that the
server's response was delayed.

Number of times a server or client had to wait for
messages of existing conversations.

1I4NUM-WAIT-OLD

Sumof conversations (including non-conversational
requests) for the user since start of User.

1I4SUM-CONV

Number of UOWs.2I4LTOTALUOWS

IPv4 address of client/server.4A16IP-ADDRESS

Host name of client/server.4A256HOST-NAME

ACI for C196

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Receive option.4I1RECV-OPTION

Attach manager indicator.4I1ATTACH-MGR

Unused.4I2UNUSED2

Reserved for future use.5A32RESERVED_ETBINFO_V73_1

The name of the executable that called the broker.
If the program that issued the broker call is running

5A64APPLICATION-NAME

on a mainframe system, the eight-byte job name is
used as application name. If the job name is shorter
than eight bytes, it is padded with underscore
characters.

If the z/OS program issuing the broker call is
running in a TP monitor (except IDMS/DC), a dash
sign is set as ninth byte. The following eight bytes
fromposition 10-17 containmonitor-dependent data:

The four-byte transaction ID is set.CICS

The eight-byte program name is set.Com-plete

The four-byte IMS ID is set.IMS

Padding blanks in bytes 10-17 are replaced by
underscore characters.

Application type. This field is used internally. It can
be set by other Software AG products, which pass

5A8APPLICATION-TYPE

this value to the Broker stub via an unpublished
control block. If no value is set, the respective
operating system is displayed here.

Reserved for future use.5A32RESERVED_ETBINFO_V73_3

Counter AUTHORIZ succeeded.5I4COUNT-AUTHORIZATION-SUCCEEDED

Counter AUTHORIZ failed.5I4COUNT-AUTHORIZATION-FAILED

Creation time.5I4CREATE-TIME

Name of the RPC library of the current user request.
If the user is inactive at the time of the request and

6A128RPC-LIBRARY-NAME

has not issued a request to be processed by the
Broker, no RPC information is displayed.

Name of the RPC program of the current user
request. If the user is inactive at the time of the

6A128RPC-PROGRAM-NAME

request and has not issued a request to be processed
by the Broker, no RPC information is displayed.

Unique sequence number of client/server. Can be
used with CIS command SHUTDOWN.

7I4SEQNO

197ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Application version. This field is used internally. It
can be set by other Software AG products, which

7A16APPLICATION-VERSION

pass this value to the Broker stub via an unpublished
control block. The value is the version of the
program that calls the Broker stub.

IPv6 address corresponding to attribute HOST in
DEFAULTS=SSL|TCP/IP section of Broker attribute
file.

8A46IPV6-ADDRESS

CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)

Description / Action

CIS
Interface
VersionFormatField Name

User ID.5A32UID

Class.5A32SERVER-CLASS

Server.5A32SERVER

Service.5A32SERVICE

Topic.5A96TOPIC

User ID of filter setter.5A32SETTER-UID

5I1ENABLED

Enabled1

Disabled0

CONVERSATION-OBJECT (Struct INFO_CV)

Description / Action

CIS
Interface
VersionFormatField Name

Unique identification of conversation.1A16CONV-ID

User ID of server - corresponds to USER-ID in the ACI. The
maximum length of this field is determined by field

1A32SERVER-USER-ID

MAX-UID-LEN in the header. See Common Header Structure
for Response Data under Broker CISData Structures in the ACI
Programming documentation.

Specifies the physical internal unique ID which is used to
distinguish between several users with the same user ID.
This field is used as a handle i.e. no translation is performed.

1B28SERVER-P-USER-ID

No longer used.1A28SERVER-P-USER-ID-CHAR

ACI for C198

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Partner's additional identification - corresponds to TOKEN
in the ACI. The maximum length of this field is determined

1A32SERVER-TOKEN

by MAX-TK-LEN in the header. SeeCommonHeader Structure
for Response Data under Broker CISData Structures in the ACI
Programming documentation.

Owners name. Corresponds to USER-ID in the ACI.1A32CLIENT-USER-ID

Specifies the physical internal unique ID which is used to
distinguish between several users with the same user ID.
This field is used as a handle i.e. no translation is performed.

1B28CLIENT-P-USER-ID

No longer used.1A28CLIENT-P-USER-ID-CHAR

Owner's additional identification - corresponds to TOKEN in
the ACI.

1A32CLIENT-TOKEN

Server class of Service of Conversation.1A32SERVER-CLASS

Server name of Service of Conversation. The maximum
length of SERVER-CLASS, SERVER-NAME and SERVICE is

1A32SERVER-NAME

determined by fields MAX-SC-LEN, MAX-SN-LEN and
MAX-SV-LEN in the header. SeeCommonHeader Structure for
Response Data under Broker CIS Data Structures in the ACI
Programming documentation.

Service name of Service of Conversation.1A32SERVICE

Conversation timeout (corresponds to CONV-NONACT of the
service in the attribute file)

1I4CONV-TIME-OUT

Elapsed time since the last activity for this conversation.1I4LAST-ACTIVE

Type of conversation:1I2TYPE

conversational0

non-conversational1

Unused.2I2UNUSED1

Number of UOWs.2I4LTOTALUOWS

Name of the RPC library that was provided by the RPC
client at the start of the conversation, that is, the first SEND

6A128CLIENT-RPC-LIBRARY-NAME

that contains both RPC library and RPC program is stored
in the conversation.

Name of the RPC program that was provided by the RPC
client at the start of the conversation, that is, the first SEND

6A128CLIENT-RPC-PROGRAM-NAME

that contains both RPC library and RPC program is stored
in the conversation.

Name of the RPC library that was provided by the RPC
server with the first response to clients request, that is, the

6A128SERVER-RPC-LIBRARY-NAME

199ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

first SEND that contains both RPC library and RPC program
is stored in the conversation.

Name of the RPC program that was provided by the RPC
server with the first response to clients request, that is, the

6A128SERVER-RPC-PROGRAM-NAME

first SEND that contains both RPC library and RPC program
is stored in the conversation.

ACI for C200

Broker CIS Data Structures

NET-OBJECT (Struct INFO_NET)

Description / Action

CIS
Interface
VersionFormatField Name

Clone index.5I4CLONE-INDEX

Status of communicator. Possible values defined as
ETB_INFO_COM_STATUS_.

5I4STATUS

DBID.5I2DBID

Adabas SVC number.5I2SVC-NUMBER

Maximum buffer length.5I4IUBL

MPM-12 timeout.5I4TIME

Number of attached buffers.5I4NABS

Number of CQEs.5I4CQES

DBID table entry overwrite.5I1FORCE

5I1LOCAL

Local node1

Not local0

Alignment.5A2NOTUSED0

POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)

Description / Action

CIS
Interface
VersionFormatField Name

Number of pools currently allocated.7I4TOTAL-NUM-POOLS

Size of allocated storage in bytes.7I4TOTAL-STORAGE-ALLOCATED

ACCOUNTING: Number of pools.7I4ACCOUNTING-NUM-POOLS

ACCOUNTING: Size of all pools in bytes.7I4ACCOUNTING-SIZE-ALL-POOLS

ACCOUNTING: Size of one pool in bytes.7I4ACCOUNTING-SIZE-ONE-POOL

BLACKLIST: Number of pools.7I4BLACKLIST-NUM-POOLS

BLACKLIST: Size of all pools in bytes.7I4BLACKLIST-SIZE-ALL-POOLS

BLACKLIST: Size of one pool in bytes.7I4BLACKLIST-SIZE-ONE-POOL

BROKER-TO-BROKER: Number of pools.7I4BROKER-TO-BROKER-NUM-POOLS

BROKER-TO-BROKER: Size of all pools in bytes.7I4BROKER-TO-BROKER-SIZE-ALL-POOLS

BROKER-TO-BROKER: Size of one pool in bytes.7I4BROKER-TO-BROKER-SIZE-ONE-POOL

COM-BUFFER: Number of pools.7I4COM-BUFFER-NUM-POOLS

COM-BUFFER: Size of all pools in bytes.7I4COM-BUFFER-SIZE-ALL-POOLS

COM-BUFFER: Size of one pool in bytes.7I4COM-BUFFER-SIZE-ONE-POOL

201ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

CMDLOG: Number of pools.7I4CMDLOG-NUM-POOLS

CMDLOG: Size of all pools in bytes.7I4CMDLOG-SIZE-ALL-POOLS

CMDLOG: Size of one pool in bytes.7I4CMDLOG-SIZE-ONE-POOL

CONNECTION: Number of pools.7I4CONNECTION-NUM-POOLS

CONNECTION: Size of all pools in bytes.7I4CONNECTION-SIZE-ALL-POOLS

CONNECTION: Size of one pool in bytes.7I4CONNECTION-SIZE-ONE-POOL

CONVERSATION: Number of pools.7I4CONVERSATION-NUM-POOLS

CONVERSATION: Size of all pools in bytes.7I4CONVERSATION-SIZE-ALL-POOLS

CONVERSATION: Size of one pool in bytes.7I4CONVERSATION-SIZE-ONE-POOL

PSTORE-SUBSCRIBER: Number of pools.7I4EXT-SUBSCRIBER-NUM-POOLS

PSTORE-SUBSCRIBER: Size of all pools in bytes.7I4EXT-SUBSCRIBER-SIZE-ALL-POOLS

PSTORE-SUBSCRIBER: Size of one pool in
bytes.

7I4EXT-SUBSCRIBER-SIZE-ONE-POOL

PSTORE-TOPIC: Number of pools.7I4EXT-TOPIC-NUM-POOLS

PSTORE-TOPIC: Size of all pools in bytes.7I4EXT-TOPIC-SIZE-ALL-POOLS

PSTORE-TOPIC: Size of one pool in bytes.7I4EXT-TOPIC-SIZE-ONE-POOL

HEAP: Number of pools.7I4HEAP-NUM-POOLS

HEAP: Size of all pools in bytes.7I4HEAP-SIZE-ALL-POOLS

HEAP: Size of one pool in bytes.7I4HEAP-SIZE-ONE-POOL

MSG-BUFFER-LONG: Number of pools.7I4MSG-BUFFER-LONG-NUM-POOLS

MSG-BUFFER-LONG: Size of all pools in bytes.7I4MSG-BUFFER-LONG-SIZE-ALL-POOLS

MSG-BUFFER-LONG: Size of one pool in bytes.7I4MSG-BUFFER-LONG-SIZE-ONE-POOL

MSG-BUFFER-SHORT: Number of pools.7I4MSG-BUFFER-SHORT-NUM-POOLS

MSG-BUFFER-SHORT: Size of all pools in bytes.7I4MSG-BUFFER-SHORT-SIZE-ALL-POOLS

MSG-BUFFER-SHORT: Size of one pool in bytes.7I4MSG-BUFFER-SHORT-SIZE-ONE-POOL

PARTICIPANT: Number of pools.7I4PARTICIPANT-NUM-POOLS

PARTICIPANT: Size of all pools in bytes.7I4PARTICIPANT-SIZE-ALL-POOLS

PARTICIPANT: Size of one pool in bytes.7I4PARTICIPANT-SIZE-ONE-POOL

PARTICIPANT-EXT: Number of pools.7I4PARTICIPANT-EXT-NUM-POOLS

PARTICIPANT-EXT: Size of all pools in bytes.7I4PARTICIPANT-EXT-SIZE-ALL-POOLS

PARTICIPANT-EXT: Size of one pool in bytes.7I4PARTICIPANT-EXT-SIZE-ONE-POOL

PROXY-QUEUE: Number of pools.7I4PROXY-QUEUE-NUM-POOLS

PROXY-QUEUE: Size of all pools in bytes.7I4PROXY-QUEUE-SIZE-ALL-POOLS

PROXY-QUEUE: Size of one pool in bytes.7I4PROXY-QUEUE-SIZE-ONE-POOL

SERVICE-ATTRIBUTES: Number of pools.7I4SERVICE-ATTRIBUTES-NUM-POOLS

ACI for C202

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

SERVICE-ATTRIBUTES: Size of all pools in
bytes.

7I4SERVICE-ATTRIBUTES-SIZE-ALL-POOLS

SERVICE-ATTRIBUTES: Size of one pool in
bytes.

7I4SERVICE-ATTRIBUTES-SIZE-ONE-POOL

SERVICE: Number of pools.7I4SERVICE-NUM-POOLS

SERVICE: Size of all pools in bytes.7I4SERVICE-SIZE-ALL-POOLS

SERVICE: Size of one pool in bytes.7I4SERVICE-SIZE-ONE-POOL

SERVICE-EXT: Number of pools.7I4SERVICE-EXT-NUM-POOLS

SERVICE-EXT: Size of all pools in bytes.7I4SERVICE-EXT-SIZE-ALL-POOLS

SERVICE-EXT: Size of one pool in bytes.7I4SERVICE-EXT-SIZE-ONE-POOL

SUBSCRIPTION: Number of pools.7I4SUBSCRIPTION-NUM-POOLS

SUBSCRIPTION: Size of all pools in bytes.7I4SUBSCRIPTION-SIZE-ALL-POOLS

SUBSCRIPTION: Size of one pool in bytes.7I4SUBSCRIPTION-SIZE-ONE-POOL

TIMEOUT-QUEUE: Number of pools.7I4TIMEOUT-QUEUE-NUM-POOLS

TIMEOUT-QUEUE: Size of all pools in bytes.7I4TIMEOUT-QUEUE-SIZE-ALL-POOLS

TIMEOUT-QUEUE: Size of one pool in bytes.7I4TIMEOUT-QUEUE-SIZE-ONE-POOL

TOPIC-ATTRIBUTE: Number of pools.7I4TOPIC-ATTRIBUTE-NUM-POOLS

TOPIC-ATTRIBUTE: Size of all pools in bytes.7I4TOPIC-ATTRIBUTE-SIZE-ALL-POOLS

TOPIC-ATTRIBUTE: Size of one pool in bytes.7I4TOPIC-ATTRIBUTE-SIZE-ONE-POOL

TOPIC: Number of pools.7I4TOPIC-NUM-POOLS

TOPIC: Size of all pools in bytes.7I4TOPIC-SIZE-ALL-POOLS

TOPIC: Size of one pool in bytes.7I4TOPIC-SIZE-ONE-POOL

TOPIC-EXT: Number of pools.7I4TOPIC-EXT-NUM-POOLS

TOPIC-EXT: Size of all pools in bytes.7I4TOPIC-EXT-SIZE-ALL-POOLS

TOPIC-EXT: Size of one pool in bytes.7I4TOPIC-EXT-SIZE-ONE-POOL

TRANSLATION: Number of pools.7I4TRANSLATION-NUM-POOLS

TRANSLATION: Size of all pools in bytes.7I4TRANSLATION-SIZE-ALL-POOLS

TRANSLATION: Size of one pool in bytes.7I4TRANSLATION-SIZE-ONE-POOL

UOW: Number of pools.7I4UOW-NUM-POOLS

UOW: Size of all pools in bytes.7I4UOW-SIZE-ALL-POOLS

UOW: Size of one pool in bytes.7I4UOW-SIZE-ONE-POOL

WORK-QUEUE: Number of pools.7I4WORK-QUEUE-NUM-POOLS

WORK-QUEUE: Size of all pools in bytes.7I4WORK-QUEUE-SIZE-ALL-POOLS

WORK-QUEUE: Size of one pool in bytes.7I4WORK-QUEUE-SIZE-ONE-POOL

203ACI for C

Broker CIS Data Structures

PSF-OBJECT (Struct INFO_PSF)

Information about individual UOWs, or groups of UOWs, can be obtained through information
services.

Description / Action

CIS
Interface
VersionFormatField Name

Unit of work ID.2A16UOWID

Conversation ID.2A16CONVID

Sender user ID.2A32SENDERUID

Sender user token2A32SENDERTOKEN

Sender server name2A32SENDERSERVER

Sender server class2A32SENDERCLASS

Sender service name2A32SENDERSERVICE

Receiver user ID.2A32RECVRUID

Receiver user token2A32RECVRTOKEN

Receiver server name2A32RECVRSERVER

Receiver server class2A32RECVRCLASS

Receiver service name2A32RECVRSERVICE

User status2A32USERSTATUS

UOW status:2I1UWSTATUS

RECEIVED1

ACCEPTED2

DELIVERED3

BACKEDOUT4

PROCESSED5

CANCELLED6

TIMEOUT7

DISCARDED8

End of conversation state:2I1CEOC

NO0

YES1

Persistence flag:2I1CSTORE

none0

off1

ACI for C204

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Broker2

Multiplier used to calculate lifetime for the persistent status of a
UOW:

2I1CUOWSTATSTORE

no persistent status255

valid multiplier values1-254

End of conversation reason code.2I4LEOCREASON

Attempted delivery count.2I4LATTEMPTCOUNT

Number of messages.2I4LMSQCNT

Total message size.2I4LMSQSIZE

Status lifetime.2A32UWSTATUSLIFETIME

Time UOW created.2A32UWCREATETIME

UOW lifetime.2I4UWLIFETIME

PSFADA-OBJECT (Struct INFO_PSFADA)

Note: Some of the fields listed in this table are represented by blanks or zeros under Win-
dows. Such fields will not be displayed under Windows because of this limitation.

Description / Action

CIS
Interface
VersionFormatField Name

Adabas persistent store information services version.3I4ADA-INFO-VERS

Adabas database ID (DBID) where the store is located.3I4ADA-DBID

Adabas file number of the store (FNR).3I4ADA-FNR

Adabas file name of the store.3A16ADA-FNAME

TOD of persistent store last format in YYYMMDDHHMMSST.3A16ADA-FORMAT-TOD

Persistent store format version.3I4ADA-FORMAT-VERS

Number of times the persistent store has been opened.3I4ADA-START-CNT

TOD of persistent store last open in YYYMMDDHHMMSST.3A16ADA-START-TOD

Length of attribute data.3I4ADA-ATTLEN

Length of object identifier.3I4ADA-OID-LEN

Offset of object identifier.3I4ADA-OID-OFF

Number of attributes in the store.3I4ADA-ATT-CNT

Number of object identifiers in the store.3I4ADA-OID-CNT

205ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of upper index extents of the Adabas file used by the store.3I4ADA-UI-EXTS

Number of normal index extents of the Adabas file used by the store.3I4ADA-NI-EXTS

Number of address converter extents of the Adabas file used by the
store.

3I4ADA-AC-EXTS

Number of data extents of the Adabas file used by the store.3I4ADA-DA-EXTS

Number of index levels in the Adabas file used by the store.3I4ADA-INDEX-LVLS

Percentage of upper index that has been used by the store.3I4ADA-UI-PCT

Percentage of normal index that has been used by the store.3I4ADA-NI-PCT

Percentage of address converter that has been used by the store.3I4ADA-AC-PCT

Percentage of data area that has been used by the store.3I4ADA-DA-PCT

PSTORE trace level.5I2TRACE-LEVEL

Alignment.5I2NOTUSED0

ACI for C206

Broker CIS Data Structures

PSFCTREE-OBJECT (Struct INFO_PSTCTREE)

Description / Action

CIS
Interface
VersionFormatField Name

Store version format.5I4FORMAT-VERS

YYYYMMDDHHMMSST cold start.5A16COLD-START-TIME

Hot starts since format.5I4HOT-STARTS

Message data file name.5A256MSG-DAT-FILE-NAME

Message data file size (64-bit).5I8MSG-DAT-FILE-SIZE

Message index file name.5A256MSG-IDX-FILE-NAME

Message index file size (64-bit).5I8MSG-IDX-FILE-SIZE

Status data file name.5A256STATUS-DAT-FILE-NAME

Status data file size (64-bit).5I8STATUS-DAT-FILE-SIZE

Status index file name.5A256STATUS-IDX-FILE-SIZE

Status index file size (64-bit).5I8STATUS-IDX-FILE-SIZE

PSTORE trace level.5I2TRACE-LEVEL

Alignment.5I2NOTUSED0

PSFDIV-OBJECT (Struct INFO_PSFDIV)

Information services also provide detailed information on the allocation and usage of the various
storage pools that implement the z/OS-DIV persistent store. This information can be used to tune
the persistent store.

Description / Action

CIS
Interface
VersionFormatField Name

PSD query structure version.2I4DIV-INFO-VERS

Persistent store name.2A8DIV-SH-NAME

TOD of persistent store last format in YYYYMMDDHHMMSST.2A16DIV-SH-FORMAT-TOD

Persistent store format version.2I4DIV-SH-FORMAT-VERS

Highest address in the data space.2B4DIV-SH-HWMARK

Number of times the persistent store has been opened.2I4DIV-SH-START-CNT

ALET (Access List Entry Token) for data space.2B4DIV-SH-DS-ALET

Length of attribute data.2I4DIV-SH-ATT-LEN

Length of object identifier.2I4DIV-SH-OID-LEN

Offset of object identifier.2I4DIV-SH-OID-OFF

Size of array/hash modulus.2I4DIV-SH-IXMODULUS

207ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of cell pool definitions.2I4DIV-SH-CP-DEF-CNT

Cell pool name.2A8DIV-CP-NAME

Cell size.2I4DIV-CP-CELL-SIZE

Total number of cells.2I4DIV-CP-CELL-TOTAL

Number of cells available.2I4DIV-CP-CELL-AVAIL

Number of cell pool extents.2I4DIV-CP-EXTENT-CNT

Return code from cell pool query.2I4DIV-CP-QUERY-RC

Cell pool extent status.2I4DIV-CX-STATUS

Address of cell pool extent.2B4DIV-CX-EXTENT-ADDR

Length of cell pool extent.2I4DIV-CX-EXTENT-LEN

Address of cell area.2B4DIV-CX-AREA-ADDR

Length of cell area.2I4DIV-CX-AREA-LEN

Number of cells in extent.2I4DIV-CX-CELL-TOTAL

Number of cells available in extent.2I4DIV-CX-CELL-AVAIL

Return code from cell pool extent query.2I4DIV-CX-QUERY-RC

PSTORE trace level.5I2TRACE-LEVEL

Alignment.5I2NOTUSED0

ACI for C208

Broker CIS Data Structures

PSFFILE-OBJECT (Struct (INFO_PSFFILE)

Description / Action

CIS
Interface
VersionFormatField Name

Store format version.4I4FORMAT-VERSION

Store cold-start time.4A16COLD-START-TOD

Number of hot starts since format.4I4HOT-STARTS

Message index data file name.4A256SMSGINDEXDAT

Message index data file size.4I4LMSGINDEXDAT

Message index index file name.4A256SMSGINDEXNDX

Message index index file size.4I4LMSGINDEXNDX

Status data file name.4A256SSTATUSDAT

Status data file size.4I4LSTATUSDAT

Status index file name.4A256SSTATUSNDX

Status index file size.4I4LSTATUSNDX

Message data file name.4A256SMSGDAT

Message data file size.4I4LMSGDAT

PUBLICATION-OBJECT (Struct INFO_PUBLICATION)

Description / Action

CIS
Interface
VersionFormatField Name

Publication ID.4A16PUBLICATION-ID

Publisher's user ID.4A32PUBLISHER-USER-ID

Publisher's physical user ID.4A28PUBLISHER-P-USER-ID

No longer used.4A28PUBLISHER-P-USER-ID-CHAR

Publisher's token.4A32TOKEN

Topic name.4A96TOPIC

Time (in seconds) since last activity.4I4LAST-ACTIVE

Expiration time. Number of seconds since 1 JAN 1970.4I4EXPIRATION-TIME

Number of messages.4I4LMSQCNT

Publication status:4I1STATUS

RECEIVED1

ACCEPTED2

DELIVERED3

BACKEDOUT4

209ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

PROCESSED5

CANCELLED6

TIMEOUT7

DISCARDED8

Unused.4A3UNUSED1

ACI for C210

Broker CIS Data Structures

PUBLISHER-OBJECT (Struct INFO_PUBLISHER)

Description / Action

CIS
Interface
VersionFormatField Name

User ID.4A32USER-ID

Specifies the physical internal unique ID which is
used to distinguish between several users with the

4A28P-USER-ID

same user ID. This field is used as a handle, i.e. no
translation is performed. With CIS commands
SHUTDOWN PARTICIPANT and SHUTDOWN SERVER,
field SEQNO is provided as unique criterion.

No longer used.4A28P-USER-ID-CHAR

Token.4A32TOKEN

Publisher's character set.4I2CHAR-SET

Publisher's endianness.4I2ENDIAN

Publisher's status.4I2STATUS

Unused.4I2UNUSED1

Publication that publisher is waiting for.4A16WAIT-PUBL-TYPE

Topic that publisher is waiting for.4A96WAIT-TOPIC

Number of active publications.4I4PUBL-ACT

Number of topics offered.4I4TOPIC-ACT

Time (in seconds) since last activity.4I4LAST-ACTIVITY

Non activity timeout.4I4NONACT

Accumulated time (in seconds) of waits for new
publications.

4I4WAIT-NEW

Number of waits for new publications.4I4NUM-WAIT-NEW

Accumulated time (in seconds) of waits for old
publications.

4I4WAIT-OLD

Number of waits for old publications.4I4NUM-WAIT-OLD

Total number of publications.4I4SUM-PUBL

IPv4 address of publisher.4A16IP-ADDRESS

Host name of publisher.4A256HOST-NAME

The name of the executable that called the broker.
If the program that issued the broker call is running

5A64APPLICATION-NAME

on a mainframe system, the eight-byte job name is
used as application name. If the job name is shorter
than eight bytes, it is padded with underscore
characters.

If the z/OS program issuing the broker call is
running in a TP monitor (except IDMS/DC), a dash

211ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

sign is set as ninth byte. The following eight bytes
fromposition 10-17 containmonitor-dependent data:

The four-byte transaction ID is set.CICS

The eight-byte program name is set.Com-plete

The four-byte IMS ID is set.IMS

Padding blanks in bytes 10-17 are replaced by
underscore characters.

Application type. This field is used internally. It can
be set by other Software AG products, which pass

5A8APPLICATION-TYPE

this value to the Broker stub via an unpublished
control block. If no value is set, the respective
operating system is displayed here.

Reserved for future use.5A32RESERVED_ETBINFO_V73_5

Counter AUTHORIZ succeeded.5I4COUNT-AUTHORIZATION-SUCCEEDED

Counter AUTHORIZ failed.5I4COUNT-AUTHORIZATION-FAILED

Creation time.5I4CREATE-TIME

Unique sequence number of publisher. Can be used
with CIS command SHUTDOWN.

7I4SEQNO

Application version. This field is used internally. It
can be set by other Software AG products, which

7A16APPLICATION-VERSION

pass this value to the Broker stub via an unpublished
control block. The value is the version of the
program that calls the Broker stub.

IPv6 address corresponding to attribute HOST in
DEFAULTS=SSL|TCP/IP section of Broker attribute
file.

8A46IPV6-ADDRESS

ACI for C212

Broker CIS Data Structures

RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)

Description / Action

CIS
Interface
VersionFormatField Name

Size of allocated storage in bytes.7I4TOTAL-STORAGE-ALLOCATED

Highest size of allocated storage in bytes
since Broker started.

7I4TOTAL-STORAGE-ALLOCATED-HIGH

Maximum of storage that can be allocated
(broker attribute MAX-MEMORY.

7I4TOTAL-STORAGE-LIMIT

ACCOUNTING: Number of buffers allocated.7I4ACCOUNTING-BUFFERS-ALLOCATED

ACCOUNTING: Number of buffers free.7I4ACCOUNTING-BUFFERS-FREE

ACCOUNTING: Number of buffers used.7I4ACCOUNTING-BUFFERS-USED

BLACKLIST: Number of entries allocated.7I4BLACKLIST-ENTRIES-ALLOCATED

BLACKLIST: Number of entries free.7I4BLACKLIST-ENTRIES-FREE

BLACKLIST: Number of entries used.7I4BLACKLIST-ENTRIES-USED

BROKER-TO-BROKER: Number of entries
allocated.

7I4BROKER-TO-BROKER-ENTRIES-ALLOCATED

BROKER-TO-BROKER:Number of entries free.7I4BROKER-TO-BROKER-ENTRIES-FREE

BROKER-TO-BROKER: Number of entries
used.

7I4BROKER-TO-BROKER-ENTRIES-USED

COM-BUFFER: Number of buffers allocated.7I4COM--BUFFERS-ALLOCATED

COM-BUFFER: Number of buffers free.7I4COM--BUFFERS-FREE

COM-BUFFER: Number of buffers used.7I4COM--BUFFERS-USED

CMDLOG-FILTER: Number of entries
allocated.

7I4CMDLOG-FILTER-ENTRIES-ALLOCATED

CMDLOG-FILTER: Number of entries free.7I4CMDLOG-FILTER-ENTRIES-FREE

CMDLOG-FILTER: Number of entries used.7I4CMDLOG-FILTER-ENTRIES-USED

CONNECTION: Number of entries allocated.7I4CONNECTION-ENTRIES-ALLOCATED

CONNECTION: Number of entries free.7I4CONNECTION-ENTRIES-FREE

CONNECTION: Number of entries used.7I4CONNECTION-ENTRIES-USED

CONVERSATION:Number of entries allocated.7I4CONVERSATION-ENTRIES-ALLOCATED

CONVERSATION: Number of entries free.7I4CONVERSATION-ENTRIES-FREE

CONVERSATION: Number of entries used.7I4CONVERSATION-ENTRIES-USED

PSTORE-SUBSCRIBER: Number of entries
allocated.

7I4EXT-SUBSCRIBER-ENTRIES-ALLOCATED

PSTORE-SUBSCRIBER: Number of entries
free.

7I4EXT-SUBSCRIBER-ENTRIES-FREE

PSTORE-SUBSCRIBER: Number of entries
used.

7I4EXT-SUBSCRIBER-ENTRIES-USED

213ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

PSTORE-TOPIC:Number of entries allocated.7I4EXT-TOPIC-ENTRIES-ALLOCATED

PSTORE-TOPIC: Number of entries free.7I4EXT-TOPIC-ENTRIES-FREE

PSTORE-TOPIC: Number of entries used.7I4EXT-TOPIC-ENTRIES-USED

HEAP: Number of bytes allocated.7I4HEAP-BYTES-ALLOCATED

HEAP: Number of bytes free.7I4HEAP-BYTES-FREE

HEAP: Number of bytes used.7I4HEAP-BYTES-USED

MSG-BUFFER-LONG: Number of buffers
allocated.

7I4MSG-BUFFER-LONG-ALLOCATED

MSG-BUFFER-LONG: Number of buffers free.7I4MSG-BUFFER-LONG-FREE

MSG-BUFFER-LONG:Numberof buffersused.7I4MSG-BUFFER-LONG-USED

MSG-BUFFER-SHORT: Number of buffers
allocated.

7I4MSG-BUFFER-SHORT-ALLOCATED

MSG-BUFFER-SHORT: Number of buffers
free.

7I4MSG-BUFFER-SHORT-FREE

MSG-BUFFER-SHORT: Number of buffers
used.

7I4MSG-BUFFER-SHORT-USED

PARTICIPANT: Number of entries allocated.7I4PARTICIPANT-ENTRIES-ALLOCATED

PARTICIPANT: Number of entries free.7I4PARTICIPANT-ENTRIES-FREE

PARTICIPANT: Number of entries used.7I4PARTICIPANT-ENTRIES-USED

PARTICIPANT-EXT: Number of entries
allocated.

7I4PARTICIPANT-EXT-ENTRIES-ALLOCATED

PARTICIPANT-EXT: Number of entries free.7I4PARTICIPANT-EXT-ENTRIES-FREE

PARTICIPANT-EXT:Number of entries used.7I4PARTICIPANT-EXT-ENTRIES-USED

PROXY-QUEUE: Number of entries allocated.7I4PROXY-QUEUE-ENTRIES-ALLOCATED

PROXY-QUEUE: Number of entries free.7I4PROXY-QUEUE-ENTRIES-FREE

PROXY-QUEUE: Number of entries used.7I4PROXY-QUEUE-ENTRIES-USED

SERVICE-ATTRIBUTE: Number of entries
allocated.

7I4SERVICE-ATTRIBUTE-ENTRIES-ALLOCATED

SERVICE-ATTRIBUTE: Number of entries
free.

7I4SERVICE-ATTRIBUTE-ENTRIES-FREE

SERVICE-ATTRIBUTE: Number of entries
used.

7I4SERVICE-ATTRIBUTE-ENTRIES-USED

SERVICE: Number of entries allocated.7I4SERVICE-ENTRIES-ALLOCATED

SERVICE: Number of entries free.7I4SERVICE-ENTRIES-FREE

SERVICE: Number of entries used.7I4SERVICE-ENTRIES-USED

SERVICE-EXT: Number of entries allocated.7I4SERVICE-EXT-ENTRIES-ALLOCATED

SERVICE-EXT: Number of entries free.7I4SERVICE-EXT-ENTRIES-FREE

ACI for C214

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

SERVICE-EXT: Number of entries used.7I4SERVICE-EXT-ENTRIES-USED

SUBSCRIPTION:Number of entries allocated.7I4SUBSCRIPTION-ENTRIES-ALLOCATED

SUBSCRIPTION: Number of entries free.7I4SUBSCRIPTION-ENTRIES-FREE

SUBSCRIPTION: Number of entries used.7I4SUBSCRIPTION-ENTRIES-USED

TIMEOUT-QUEUE: Number of entries
allocated.

7I4TIMEOUT-QUEUE-ENTRIES-ALLOCATED

TIMEOUT-QUEUE: Number of entries free.7I4TIMEOUT-QUEUE-ENTRIES-FREE

TIMEOUT-QUEUE: Number of entries used.7I4TIMEOUT-QUEUE-ENTRIES-USED

TOPIC-ATTRIBUTE: Number of entries
allocated.

7I4TOPIC-ATTRIBUTE-ENTRIES-ALLOCATED

TOPIC-ATTRIBUTE: Number of entries free.7I4TOPIC-ATTRIBUTE-ENTRIES-FREE

TOPIC-ATTRIBUTE:Number of entries used.7I4TOPIC-ATTRIBUTE-ENTRIES-USED

TOPIC: Number of entries allocated.7I4TOPIC-ENTRIES-ALLOCATED

TOPIC: Number of entries free.7I4TOPIC-ENTRIES-FREE

TOPIC: Number of entries used.7I4TOPIC-ENTRIES-USED

TOPIC-EXT: Number of entries allocated.7I4TOPIC-EXT-ENTRIES-ALLOCATED

TOPIC-EXT: Number of entries free.7I4TOPIC-EXT-ENTRIES-FREE

TOPIC-EXT: Number of entries used.7I4TOPIC-EXT-ENTRIES-USED

TRANSLATION: Number of entries allocated.7I4TRANSLATION-ENTRIES-ALLOCATED

TRANSLATION: Number of entries free.7I4TRANSLATION-ENTRIES-FREE

TRANSLATION: Number of entries used.7I4TRANSLATION-ENTRIES-USED

UOW: Number of entries allocated.7I4UOW-ENTRIES-ALLOCATED

UOW: Number of entries free.7I4UOW-ENTRIES-FREE

UOW: Number of entries used.7I4UOW-ENTRIES-USED

WORK-QUEUE: Number of entries allocated.7I4WORK-QUEUE-ENTRIES-ALLOCATED

WORK-QUEUE: Number of entries free.7I4WORK-QUEUE-ENTRIES-FREE

WORK-QUEUE: Number of entries used.7I4WORK-QUEUE-ENTRIES-USED

215ACI for C

Broker CIS Data Structures

SECURITY-OBJECT (Struct INFO_SECURITY)

Description / Action

CIS
Interface
VersionFormatField Name

Successful authentications.5I4COUNT-AUTHENTICATION-SUCCEEDED

Failed authentications.5I4COUNT-AUTHENTICATION-FAILED

Successful authorizations.5I4COUNT-AUTHORIZATION-SUCCEEDED

Failed authorizations.5I4COUNT-AUTHORIZATION-FAILED

Max profile length (CDT) m/f.5I4SAF-PROFILE-LENGTH

Security trace level.5I2TRACE-LEVEL

Security Level m/f.5I2SECURITY-LEVEL

Authentication type.5A8AUTHENTICATION-TYPE

SAF profile CLASS (8) m/f.5A8SAF-CLASS

Security node m/f.5A8SECURITY-NODE

Include CLASS in prof m/f.5I1INCLUDE-CLASS

Include NAME in prof m/f.5I1INCLUDE-NAME

Include SERVICE in prof m/f.5I1INCLUDE-SERVICE

Allow undefined profile m/f.5I1UNIVERSAL

Check IP address m/f.5I1CHECK-IP-ADDRESS

Run in warn mode m/f.5I1WARN-MODE

Ignore ACI STOKENm/f.5I1IGNORE-STOKEN

Trusted User ID m/f.5I1TRUSTED-USER

VerifiedId m/f.5I1PROPAGATE-TRUSTED-USER

Convert password to uppercase m/f.5I1PASSWORD-TO-UPPER-CASE

Alignment.5A2NOTUSED0

SERVICE-OBJECT (Struct INFO_SV)

Description / Action

CIS
Interface
VersionFormatField Name

Name of server class.1A32SERVER-CLASS

Name of server.1A32SERVER-NAME

Name of service. The header contains themaximum length for
the SERVER-CLASS, SERVER-NAME and SERVICE fields for all

1A32SERVICE

retrieved objects. SeeCommonHeader Structure for ResponseData
under Broker CIS Data Structures in the ACI Programming
documentation.

ACI for C216

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Name of translation routine used.1A8TRANS

Conversation timeout (corresponds to CONV-NONACT for the
service in the attribute file).

1I4CONV-NONACT

Number of servers active for service.1I4SERVER-ACT

Number of conversations active for service.1I4CONV-ACT

Highest number of conversations active for service.1I4CONV-HIGH

Number of long buffers active (in use) for the service.1I4LONG-ACT

Highest number of long buffers active (in use) for the service.1I4LONG-HIGH

Number of short buffers active (in use) for the service.1I4SHORT-ACT

Highest number of short buffers active (in use) for the service.1I4SHORT-HIGH

Number of times a client had to wait for this service or
messages from the server.

1I4NUM-WAIT-SERVER

Number of times a client request (SENDwith CONVID=NEW or
NONE) could not be immediately assigned to a waiting server,
i.e. all servers offering this service are occupied.

1I4NUM-SERV-OCC

Number of new conversationswhich are currently in the queue,
but not yet assigned to a server (pending).

1I4NUM-PEND

Highest number of pending conversations.1I4PEND-HIGH

Accumulated number of requests (number of SEND commands
with CONVID=NEW or NONE).

1I4REQ-SUM

Maximum number of active UOWs2I4LMAXUOWS

Maximum number of messages in a UOW2I4LMAXUOWMSG

Maximum UOW lifetime2I4LUWTIME

Is currently not in use (count is always zero.)2I4LMAXDELCNT

Maximum size of a message2I4LMAXMSGSIZE

Number of UOWs2I4LTOTALUOWS

Store attribute for all UOWs:
0=OFF
1=BROKER

2I1CSTORE

UOWstatus lifetime multiplier (0-255)2I1CUWSTATP

Default status attribute for all UOWs:2I1CDEFERRED

NO0

YES1

Encryption level3I1CENCLEVEL

Number of attach servers active4I4ATTACH-MGRS-ACT

Unit of work status additional lifetime4I4LUWSTAT-ADD-TIME

217ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of conversations.5I4NUM-CONV

Number of servers.5I4NUM-SERVER

Number of long message buffers.5I4NUM-LONG-MSG-BUFFER

Number of short message buffers.5I4NUM-SHORT-MSG-BUFFER

Name of conversion routine.5A8CONVERSION

Conversion parameters.5A255CONVERSION-PARMS

Alignment.5A1NOTUSED1

Reserved for future use.5I4RESERVED

ACI for C218

Broker CIS Data Structures

SSL-OBJECT (Struct INFO_SSL)

Description / Action

CIS
Interface
VersionFormatField Name

Clone index.5I4CLONE-INDEX

Status of communicator. Possible values defined as
ETB_INFO_COM_STATUS_.

5I4STATUS

Number of open connections.5I4OPEN-CONNECTIONS

Maximum number of connections.5I4MAX-CONNECTIONS

Port number.5I4PORT-NUMBER

IPv4 address corresponding to attribute HOST in DEFAULTS=SSL
section of Broker attribute file.

6A16IP-ADDRESS

Host name specified using attribute HOST in DEFAULTS=SSL section
of Broker attribute file.

6A256HOST-NAME

Transport task running. 0=NO, 1=YES.8I1TASK-RUNNING

IPV6 address corresponding to attribute HOST in the DEFAULTS=SSL
section of the Broker attribute file.

8A46IPV6-ADDRESS

STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)

Description / Action

CIS
Interface
VersionFormatField Name

Number of services defined (see NUM-SERVER).7I4NUM-SERVICE

Number of services active.7I4SERVICE-ACT

Number of clients defined (see NUM-CLIENT).7I4NUM-CLIENT

Number of clients active.7I4CLIENT-ACT

Highest number of clients active since Broker started.7I4CLIENT-HIGH

Number of servers (see NUM-SERVER).7I4NUM-SERVER

Number of servers active.7I4SERVER-ACT

Highest number of servers active since Broker started.7I4SERVER-HIGH

Number of conversations defined (see NUM-CONVERSATION).7I4NUM-CONV

Number of conversations active.7I4CONV-ACT

Highest number of conversations active since Broker started.7I4CONV-HIGH

Number of long buffers defined (see NUM-LONG-BUFFER).7I4NUM-LONG

Number of long buffers active.7I4LONG-ACT

Highest number of long buffers active since Broker started.7I4LONG-HIGH

Number of short buffers defined (see NUM-SHORT-BUFFER).7I4NUM-SHORT

219ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of short buffers active.7I4SHORT-ACT

Highest number of short buffers active since Broker started.7I4SHORT-HIGH

Number of topics defined (see NUM-TOPIC).7I4NUM-TOPIC

Number of topics active.7I4TOPIC-ACT

Number of publishers defined (see NUM-PUBLISHER).7I4NUM-PUBLISHER

Number of publishers active.7I4PUBLISHER-ACT

Highest number of publishers active since Broker started.7I4PUBLISHER-HIGH

Number of subscribers defined (see NUM-SUBSCRIBER).7I4NUM-SUBSCRIBER

Number of subscribers active.7I4SUBSCRIBER-ACT

Highest number of subscribers active since Broker started.7I4SUBSCRIBER-HIGH

Number of publications defined (see NUM-PUBLICATION).7I4NUM-PUBLICATION

Number of publications active.7I4PUBLICATION-ACT

Highest number of publications active since Broker started.7I4PUBLICATION-HIGH

SUBSCRIBER-OBJECT (Struct INFO_SUBSCRIBER)

Description / Action

CIS
Interface
VersionFormatField Name

Topic name.4A96TOPIC

User ID.4A32USER-ID

Specifies the physical internal unique ID which is
used to distinguish between several users with the

4A28P-USER-ID

same user ID. This field is used as a handle, i.e. no
translation is performed. With CIS commands
SHUTDOWN PARTICIPANT and SHUTDOWN SERVER,
field SEQNO is provided as unique criterion.

No longer used.4A28P-USER-ID-CHAR

Token.4A32TOKEN

Subscription time.4I4SUBSCRIPTION-TIME

Last activity time.4I4LAST-ACTIVITY-TIME

Expiration time.4I4EXPIRATION-TIME

Last committed publication.4A16LAST-COMMITTED

Last received publication.4A16LAST-RECEIVED

Durable flag:4I1DURABLE

NO0

ACI for C220

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

YES1

Durable subscriber swapped out?4I1SWAPPED-OUT

NO0

YES1

Unused.4I2UNUSED1

User's character set:5I2CHAR-SET

EBCDIC_IBM34

EBCDIC_SNI66

ASCII_PC_3861

ASCII_PC_OS216

ASCII_8859_1128

High order first:5I2BIG-ENDIAN

NO0

YES1

User's status:5I2STATUS

Not waiting0

Waiting5

PUBLID user is waiting for: "NEW" "OLD" "ANY"
publication ID.

5A16WAIT-PUBLID

Alignment.5I2NOTUSED1

Number of active publications.5I4NUM-PUBLICATIONS-ACTIVE

Nonactivity timeout.5I4NONACT-TIME

Accumulated time of waits for new publications.5I4WAIT-NEW

Number of waits for new publ.5I4NUM-WAIT-NEW

Accumulated time of waits for messages from
publisher.

5I4WAIT-OLD

Number of waits for publshr msgs.5I4NUM-WAIT-OLD

IPv4 address of subscriber.5A16IP-ADDRESS

Host name of subscriber.5A256HOST-NAME

The name of the executable that called the broker.
If the program that issued the broker call is running

5A64APPLICATION-NAME

on a mainframe system, the eight-byte job name is

221ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

used as application name. If the job name is shorter
than eight bytes, it is padded with underscore
characters.

If the z/OS program issuing the broker call is
running in a TP monitor (except IDMS/DC), a dash
sign is set as ninth byte. The following eight bytes
fromposition 10-17 containmonitor-dependent data:

The four-byte transaction ID is set.CICS

The eight-byte program name is set.Com-plete

The four-byte IMS ID is set.IMS

Padding blanks in bytes 10-17 are replaced by
underscore characters.

Application type. This field is used internally. It can
be set by other Software AG products, which pass

5A8APPLICATION-TYPE

this value to the Broker stub via an unpublished
control block. If no value is set, the respective
operating system is displayed here.

Reserved for future use.5A32RESERVED_ETBINFO_V73_4

Counter AUTHORIZ succeeded.5I4COUNT-AUTHORIZATION-SUCCEEDED

Counter AUTHORIZ failed.5I4COUNT-AUTHORIZATION-FAILED

Creation time.5I4CREATE-TIME

Unique sequence number of subscriber. Can be used
with CIS command SHUTDOWN.

7I4SEQNO

Application version. This field is used internally. It
can be set by other Software AG products, which

7A16APPLICATION-VERSION

pass this value to the Broker stub via an unpublished
control block. The value is the version of the
program that calls the Broker stub.

IPv6 address corresponding to attribute HOST in
DEFAULTS=SSL|TCP/IP section of Broker attribute
file.

8A46IPV6-ADDRESS

ACI for C222

Broker CIS Data Structures

TCP-OBJECT (Struct INFO_TCP)

Description / Action

CIS
Interface
VersionFormatField Name

Clone index.5I4CLONE-INDEX

Status of communicator ETB_INFO_COM_STATUS_.5I4STATUS

Number of open connections.5I4OPEN-CONNECTIONS

Maximum number of connections. Platform-dependent. See
MaximumTCP/IPConnections per CommunicatorunderBroker Resource
Allocation in the general administration documentation.

5I4MAX-CONNECTIONS

Port number.5I4PORT-NUMBER

IPv4 address corresponding to attribute HOST in DEFAULTS=TCP
section of Broker attribute file.

6A16IP-ADDRESS

Host name specified using attribute HOST in DEFAULTS=TCP section
of Broker attribute file.

6A256HOST-NAME

Transport task running. 0=NO, 1=YES.8I1TASK-RUNNING

IPV6 address corresponding to attribute HOST in the DEFAULTS=TCP
section of the Broker attribute file.

8A46IPV6-ADDRESS

TOPIC-OBJECT (Struct INFO_TOPIC)

Description / Action

CIS
Interface
VersionFormatField Name

Topic name.4A96TOPIC

Name of translation routine.4A8TRANS

Name of conversion routine.4A8CONV

Publisher non-activity timeout.4I4PUBLISHER-NONACT

Subscriber non-activity timeout.4I4SUBSCRIBER-NONACT

Subscription expiration time.4I4SUBSCRIPTION-EXP

Number of active publications.4I4PUBLICATION-ACT

Highest number of publications active since Broker
started.

4I4PUBLICATION-HIGH

Number of durable subscribers active.4I4DURABLE-ACT

Number of non-durable subscribers active.4I4NON-DURABLE-ACT

Number of long buffers active.4I4LONG-ACT

Highest number of long buffers active since Broker
started.

4I4LONG-HIGH

Number of short buffers active.4I4SHORT-ACT

223ACI for C

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Highest number of short buffers active since Broker
started.

4I4SHORT-HIGH

Durable subscriber flag:4I1ALLOW-DURABLE

NO0

YES1

Allow SUBSCRIBE request?4I1ALLOW-SUBSCRIBE

NO0

YES1

Auto commit:4I1AUTO-COMMIT

NO0

YES1

Unused.4I1UNUSED1

Number of publications.5I4NUM-PUBLICATION

Number of subscribers.5I4NUM-SUBSCRIBER

Number of long message buffers.5I4NUM-LONG-MSG-BUFFER

Number of short message buffers.5I4NUM-SHORT-MSG-BUFFER

Conversion parameters.5A255CONVERSION-PARMS

Alignment.5I2NOTUSED1

Max publication message size.5I4MAX-PUBLICATION-MSG-SIZE

Reserved for future use.5I4RESERVED

USER-OBJECT (Struct INFO_USER)

Description / Action

CIS
Interface
VersionFormatField Name

Corresponds to USER-ID in the ACI. The maximum length of this field
is determined by field MAX-UID-LEN in the header. SeeCommonHeader
Structure.

7A32USER-ID

Is user a client?7I1IS-CLIENT

NO0

YES1

ACI for C224

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Is user a server?7I1IS-SERVER

NO0

YES1

Is user a publisher?7I1IS-PUBLISHER

NO0

YES1

Is user a subscriber?7I1IS-SUBSCRIBER

NO0

YES1

Unique sequence number of user. Can be used with CIS command
SHUTDOWN.

7I4SEQNO

Endian type of user's platform:7I2ENDIAN

BIG ENDIAN (high order first)1

LITTLE ENDIAN0

Character set of user's platform:7I2CHAR-SET

EBCDIC IBM34

EBCDIC SNI66

ASCII PC 3861

ASCII PC OS/216

ASCII 8859-1128

Specifies the physical internal unique ID which is used to distinguish
between several users with the same user ID. This field is used as a

7B28P-USER-ID

handle, i.e. no translation is performed.With CIS commands SHUTDOWN
PARTICIPANT andSHUTDOWN SERVER, fieldSEQNO is provided as unique
criterion.

Corresponds to TOKEN in the ACI. The maximum length of this field is
determined by MAX-TK-LEN in the header. SeeCommonHeader Structure

7A32TOKEN

for Response Data under Broker CIS Data Structures in the ACI
Programming documentation.

Elapsed time since the last activity of the user.7I4LAST-ACTIVE

225ACI for C

Broker CIS Data Structures

WORKER-OBJECT (Struct INFO_WKR)

Description / Action

CIS
Interface
VersionFormatField Name

The worker ID is the table number of this worker's worker queue entry.1I2WORKER-ID

Status of worker:1I2WORKER-STAT

ACTIVE2

STARTED4

WAITING5

Sum of calls per worker since Broker started.1I4CALL-SUM

Sum of idle time per worker since Broker started.1I4IDLE-SUM

WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

Description / Action

CIS
Interface
VersionFormatField Name

Maximum number of worker tasks the
Broker can use. See broker attribute
WORKER-MAX.

7I4WORKER-MAX-ATTRIBUTE

Minimum number of worker tasks the
Broker can use. See broker attribute
WORKER-MIN.

7I4WORKER-MIN-ATTRIBUTE

Non-activity time in seconds to elapse before
a worker tasks is stopped. See broker
attribute WORKER-NONACT.

7I4WORKER-NONACT-ATTRIBUTE

Number of unassigned user requests in the
input queue before anotherworker task gets

7I4WORKER-QUEUE-DEPTH

started. See broker attribute
WORKER-QUEUE-DEPTH.

Delay after a successful worker task
invocation before another worker task can

7I4WORKER-START-DELAY-ATTRIBUTE

be started. See broker attribute
WORKER-START-DELAY.

Time of last worker startup.7I4LAST-START-TIME

Time of last worker stop.7I4LAST-STOP-TIME

Time value representing the seconds of the
timeval structure that contains the effective
time consumption starting a worker task.

7I4EFFECTIVE-START-DELAY-SECONDS

ACI for C226

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Time value representing the microseconds
of the timeval structure that contains the

7I4EFFECTIVE-START-DELAY-MICRO-SECONDS

effective time consumption starting aworker
task.

Highest number ofworker tasks active since
Broker started.

7I4WORKER-HIGH

Lowest number of worker tasks active since
Broker started.

7I4WORKER-LOW

227ACI for C

Broker CIS Data Structures

228

	ACI for C
	Table of Contents
	1 EntireX Broker ACI for C
	Call Format
	Broker ACI Control Block Layout
	Broker ACI Control Block Definition
	ACI Examples and Header Files
	Creating a C User Application under IBM i
	Step 1: Set the Environment
	Step 2: Compile the User Program
	Step 3: Bind EXA to the User Program

	2 Writing Applications: Publish and Subscribe
	Overview of Communication Models
	Basic Concepts of Publish and Subscribe
	Topic
	Publication
	Subscription
	Publisher
	Subscriber
	Durability of Subscriptions
	Subscription Expiration

	API-TYPE and API-VERSION
	LOGON and LOGOFF
	USER-ID and TOKEN
	Identifying the Caller
	Restarting after System Failure with Durable Subscription
	Managing the Security Token

	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Implementation of Publisher and Subscriber Components
	Single Message Publication
	Multiple Message Publication

	Blocked and Non-blocked Broker Calls
	Non-blocked Command: WAIT=NO
	Example: Subscriber

	Blocked Command: WAIT=YES or WAIT=n
	Example: Subscriber

	Timeout Parameters
	Timeout Behavior
	Types of Non-activity Time
	Recommendations

	Configuration Prerequisites for Durable Subscriptions
	Data Compression
	Error Handling
	Programming Techniques
	Example for C Progamming Language

	Using Internationalization
	General Information
	Providing Locale Strings
	Using the ENVIRONMENT Field with the Translation User Exit

	Using Send and Receive Buffers
	Introduction
	Error Cases
	Transport Methods

	Tracing
	Stub Trace
	Kernel Trace

	Transport Methods
	Overview of Supported Transports
	TCP/IP
	Entire Net-Work
	SSL and TLS
	Transport Examples
	Considerations for Writing Applications
	Restrictions with API Versions 1 and 2

	Variable-length Error Text
	Programmatically Turning on Command Logging
	IAF Authentication

	3 Writing Applications: Client and Server
	Overview of Communication Models
	Basic Concepts of Client and Server
	Client-and-Server Application Components
	Conversationality
	Synchronicity

	API-TYPE and API-VERSION
	LOGON and LOGOFF
	USER-ID and TOKEN
	Identifying the Caller
	Restarting after System Failure
	Managing the Security Token

	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Implementation of Client and Server Components
	Blocked and Non-blocked Broker Calls
	Non-blocked Command: WAIT=NO
	Blocked Command: WAIT=YES or WAIT=n
	Examples: WAIT
	Examples: Programming Language Natural

	Conversational and Non-conversational Mode
	Non-conversational Mode
	Conversational Mode
	Examples: Programming Language Natural

	Managing Conversation Contexts
	Conversation Status
	Conversation User Data
	Stored EOC

	Delayed SEND Function
	Example
	Example: Programming Language Natural

	Timeout Parameters
	Timeout Behavior
	Types of Non-activity Time
	Recommendations
	Unit of Work Lifetime
	Unit of Work Status Lifetime

	Data Compression
	Error Handling
	Programming Techniques
	Example for C Progamming Language

	Using Internationalization
	General Information
	Providing Locale Strings
	Using the ENVIRONMENT Field with the Translation User Exit

	Using Send and Receive Buffers
	Introduction
	Error Cases
	Transport Methods

	Tracing
	Stub Trace
	Kernel Trace

	Transport Methods
	Overview of Supported Transports
	TCP/IP
	Entire Net-Work
	SSL and TLS
	Transport Examples
	Considerations for Writing Applications
	Restrictions with API Versions 1 and 2

	Variable-length Error Text
	Programmatically Turning on Command Logging
	IAF Authentication

	4 Writing Applications: Units of Work
	What is a Unit of Work?
	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Client/Server Programming for Units of Work
	Client/Server Programming for a Persistent Unit of Work
	Client/Server Restart after System Failure

	5 Writing Applications: Attach Server
	Implementing an Attach Server
	Step 1: Register with EntireX Broker
	Step 2: Issue a Receive with Wait
	atm_nAttach
	atm_nServer
	atm_nPendConv
	atm_nActvConv

	Step 3: Start Task
	Step 4: Deregister when the Work is Done

	Implementing Servers started by an Attach Server

	6 Writing Applications: Command and Information Services
	Accessing the Services
	Basic Rules
	Field Values
	Structures

	Accessing Information Services
	Examples of Selection Criteria
	Tips

	Accessing Command Service
	Tips

	Security with Command and Information Services
	Full Command and Information Services
	Limited Information Services
	Protecting Specific Options

	Examples of Command Service
	Example 1: ALLOW-NEWUOWMSGS
	Example 2: FORBID-NEWUOWMSGS

	7 Writing Applications using EntireX Security
	General Programming Considerations
	ACI Versions and Security
	Is Broker Kernel Secure?

	Authentication
	Authentication with User ID and Password
	Reason for ACI Error Action

	Role of Security Token (STOKEN) during Authentication
	Trusted User ID
	Client User ID
	FORCE-LOGON
	IAF Tokens

	Authorization
	Publish and Subscribe
	Client and Server
	Authorization Rules

	Encryption
	Introduction
	Encryption for non-Java Applications
	ACI Version 8 and Above
	ACI Version 6 and 7
	ACI Version 1 to 5

	Encryption for Java-based Applications (ACI and RPC)
	RPC Servers
	RPC Clients

	8 Broker ACI Fields
	Field Formats
	Field Descriptions

	9 Broker ACI Functions
	Overview Table
	Key

	Function Descriptions
	CONTROL_PUBLICATION
	DEREGISTER
	EOC
	KERNELVERS
	LOGOFF
	LOGON
	RECEIVE
	RECEIVE_PUBLICATION
	REGISTER
	REPLY_ERROR
	SEND
	SEND_PUBLICATION
	SETSSLPARMS
	SUBSCRIBE
	SYNCPOINT
	UNDO
	UNSUBSCRIBE
	VERSION

	Option Descriptions
	ACI Field/Function Reference Table

	10 Broker UOW Status Transition
	Initial UOW Status: NULL | Received
	Initial UOW Status: Accepted | Delivered
	Initial UOW Status: Processed | Timedout
	Initial UOW Status: Cancelled | Discarded | Backedout
	Legend for UOW Status Transition Table
	Table of Column Abbreviations

	11 Broker CIS Data Structures
	Command Request Structure
	Command Request Parameter Combinations
	Common Header Structure for Response Data
	Information Request Structure
	Legend
	Column Abbreviation Table
	Selection Criteria CLIENT Object Type
	Selection Criteria SERVER Object Type
	Selection Criteria SERVICE Object Type
	Selection Criteria CONV Object Type
	Selection Criteria PSF Object Type (Version 2 and above)
	Selection Criteria for PUBLISHER Objects (Version 4 and above)
	Selection Criteria for PUBLICATION (Version 4 and above)
	Selection Criteria for TOPIC (Version 4 and above)
	Selection Criteria for SUBSCRIBER (Version 4 and above)
	Key

	Information Reply Structures
	BROKER-OBJECT (Struct INFO_BKR)
	CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)
	CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)
	CONVERSATION-OBJECT (Struct INFO_CV)
	NET-OBJECT (Struct INFO_NET)
	POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)
	PSF-OBJECT (Struct INFO_PSF)
	PSFADA-OBJECT (Struct INFO_PSFADA)
	PSFCTREE-OBJECT (Struct INFO_PSTCTREE)
	PSFDIV-OBJECT (Struct INFO_PSFDIV)
	PSFFILE-OBJECT (Struct (INFO_PSFFILE)
	PUBLICATION-OBJECT (Struct INFO_PUBLICATION)
	PUBLISHER-OBJECT (Struct INFO_PUBLISHER)
	RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)
	SECURITY-OBJECT (Struct INFO_SECURITY)
	SERVICE-OBJECT (Struct INFO_SV)
	SSL-OBJECT (Struct INFO_SSL)
	STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)
	SUBSCRIBER-OBJECT (Struct INFO_SUBSCRIBER)
	TCP-OBJECT (Struct INFO_TCP)
	TOPIC-OBJECT (Struct INFO_TOPIC)
	USER-OBJECT (Struct INFO_USER)
	WORKER-OBJECT (Struct INFO_WKR)
	WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

