5 software~

webMethods EntireX

AClfor C

Version 9.5 SP1

November 2013

webMethods EntireX

This document applies to webMethods EntireX Version 9.5 SP1.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-ACI-95SP1-20140628C

Table of Contents

1 EntireX Broker ACT fOr €ooiiiiiiiiiiiiiieieeeee e 1
Call FOrmatoooviiiiiiiiiiic 2
Broker ACI Control Block Layoutcccccoiiiiiiiiiiiiiiiiiiiiiiie 3
Broker ACI Control Block Definitionccccooiiiiiiiiiiiiiiiii, 8
ACI Examples and Header Filescccccooviiiiiiiiiiiiiiiiiiiiiiicciciccccee, 16
Creating a C User Application under IBM iccccooiiiiiiiiiinii, 18

2 Writing Applications: Publish and Subscribeccoccooiiniiiiii 21
Overview of Communication Modelsccccoociiiiiiiiiiiiiiiii 22
Basic Concepts of Publish and Subscribeccccooviviiiiiiiiii, 23
API-TYPE and API-VERSIONccccccoiiiiiiiiiiiiiccccce 26
LOGON and LOGOFEcccoooiiiiiiiiiiiiiiiiiicicicceic s 27
USER-ID and TOKENcccccoiiiiiiiiiiiiiiiiiiccicc s 27
Control Block Fields and Verbsccccociiiiiiiiiinii, 29
Implementation of Publisher and Subscriber Componentscccccoeeviiiiiinnns 32
Blocked and Non-blocked Broker Callsccccoeiiiiiiiiiiiiiiiiiiiiiiice, 34
Timeout Parameters ..o 36
Configuration Prerequisites for Durable Subscriptionscccccccivciiiiiiiiinnn. 37
Data COMPIeSSIONocviiiiiiiiiiiiciice e 38
Error Handlingcccoooiiiiiiiiiiiiiecee e 39
Using Internationalizationcccccociiiiiiiiiiiiiiiiii 41
Using Send and Receive Bufferscccooooiiiiiiiiiiiii 43
TIACINE oo 45
Transport Methods ... 47
Variable-length Error Textcccociiiiiiiiiiiiiiiiiiiiicccc e 50
Programmatically Turning on Command Loggingc.cccoevrviiiiiiiiiiinieicenne, 51
TAF Authenticationcccoooiiiiiiiiiiiiiiii 51

3 Writing Applications: Client and Serverccccovcviiiiiiiiiiiiniiii 53
Overview of Communication Modelsccccocooiiiiiiiiiiiiiii 55
Basic Concepts of Client and Serverccccooiviiiiiiiiiiiiiiiiiiiicceee, 55
API-TYPE and API-VERSIONcccccoiiiiiiiiiiiiiiiiiiicci 57
LOGON and LOGOFFcccooviiiiiiiiiiiiiiiciiciccc s 57
USER-ID and TOKENccccoiiiiiiiiiiiiiiiiiiiicce e 58
Control Block Fields and Verbs ... 60
Implementation of Client and Server Componentscccceveeviiiiiiiiiiiiinnnnenn. 63
Blocked and Non-blocked Broker Callsccccooviiiiiiiiinii 64
Conversational and Non-conversational Modec.cccooiiiiiiiiiii 67
Managing Conversation Contextsccooiiiiiiiiiiiiii 70
Delayed SEND FUNCHONoooviiiiiiiiiiiiiiiiiicccicecc e 73
Timeout Parametersccoociiiiiiiiiiiiiiiiiii 74
Data COMPIOSSIONocvviiieiiiiiiiiieic et 76
Error Handlingcccoociiiiiiiiiiiiiiiiiiicc 77
Using Internationalizationcccocooiiiiiiiiiiii 80
Using Send and Receive BUfferscccoociiiiiiiiiiiiiiiiiicccce 82

ACl for C

TIACINE woeiviiiiieie e 84
Transport Methods ..o 86
Variable-length Error Textc.ccocoiiiiiiiiiiiiiiiiiiii 89
Programmatically Turning on Command Loggingc.cccooviviiiiiiiiiiniiine, 90
TAF Authenticationcccoccooiiiiiiiiiiiiiiii 90
4 Writing Applications: Units of WOrkccccooviiiiiiiiiii 91
What is a Unit of WOrk?ccooiiiiiiiiiii 92
Control Block Fields and Verbsc.ccccooiiiiiiiiiiii 93
Client/Server Programming for Units of Work ..., 96
Client/Server Programming for a Persistent Unit of Workccccooiinin 98
Client/Server Restart after System Failurec.cccociiiiiiiiiiiii, 100
5 Writing Applications: Attach Serverccccocviviiiiiiiiiiiiiiicce e, 101
Implementing an Attach Server ... 102
Implementing Servers started by an Attach Servercccccooiiiii 105
6 Writing Applications: Command and Information Servicesc.ccccocveviiiiiiinnnnn. 107
Accessing the SEIVICESciiiiiiiiiiiiiicccc e 108
Security with Command and Information Servicesc.ccccoeviiiiiiiiiniininnnnn. 113
Examples of Command Servicec.cocovieiiiiiiiiiiiiicicccc 115
7 Writing Applications using EntireX Securityccccccciiiiiiiiiiiiniii, 117
General Programming Considerationscccccoeiiiiiiiiiiiiiiiiiiiiice 118
Authentication ... 120
AUthOTiZationcciiiiiiiiii 124
ENCIYPHON Lo 125
8 Broker ACT Fieldsccccciviiiiiiiiiiiiiiiiccccc 129
Field FOrmatsccccooiiiiiiiiiiiiiiiiiicc 130
Field DeSCIiPioNSoocuiiiiiiiiiiiiiiieee e 130
9 Broker ACI FUNCHONScooiviiiiiiiiiiiiiiiciccec s 143
Overview Table ... 145
Function Descriptionsccooviiiiiiiiiiiiiiiiiii 146
Option DesCriptionsccooiiiiiiiiiiiiiiii 155
ACI Field/Function Reference Tableccccooviiiiiiiiiiiiiiiiice, 157
10 Broker UOW Status Transitionccccoevviiiiiiiiiiiiiiiiiiiiiciceccccciccec 161
Initial UOW Status: NULL | Receivedcccoouiiiiiiiiiiiiiiiiiiiiiiicccce 162
Initial UOW Status: Accepted | Deliveredccccociiviiiiiiiiiiiiiiiiiiiiinen, 163
Initial UOW Status: Processed | Timedoutcccooeiiiiiiiiiiiiiiiiiiiiis 164
Initial UOW Status: Cancelled | Discarded | Backedoutccccooeviiiiiiiinnine 165
Legend for UOW Status Transition Tablec.ccooiiiiiiiiiiii 166
Table of Column Abbreviationscccceviiiiiiiiiiiiiiiii 166
11 Broker CIS Data Structurescccocviiiiiiiiiiiiiiiiiiiic e 167
Command Request Structureccocooiiiiiiiiiiii 169
Command Request Parameter Combinationscccccevvviiiiiiiiiiiiiniiiinnnn, 172
Common Header Structure for Response Datacccccooviiiiiiiiii, 176
Information Request Structurec.ccoceiviiiiiiiiiiiiiiiiiiicc 178
Information Reply Structuresccoooviiiiiiiiiiiiiic 188

ACl for C

1

EntireX Broker ACI for C

O {8 o] SRR 2
= Broker ACI Control BIOCK LAYOULvviiiiiiiiiiii e 3
= Broker ACI Control BIOCK DEfiNItIONoouviiiiiiiieei e 8
m ACIExamples and Header FIIESii it e e 16
= Creating a C User Application Under IBM iuviviiiiiiiiiiiiie e 18

EntireX Broker ACI for C

AClI-based programming is the base technology of EntireX. It uses a traditional Application Pro-
gramming Interface (API) approach for conducting client/server and peer-to-peer dialog between
distributed processes.

This chapter describes the EntireX Broker ACI from the perspective of the programming language
C.

Call Format

Calls to EntireX Broker use the following arguments:

1. The ACI control block is the first argument.
2. The send bulffer is the second argument.

3. The receive buffer is the third argument.
4.

The error text buffer is the last argument. It can provide a short text of the error code, if desired.
Sufficient buffer length must be supplied to allow the standard 40-byte long message to be re-
turned by EntireX Broker. For ACI version 9 and above, the error text buffer can be greater than
40 bytes as specified in the ACI field ERRTEXT-LENGTH.

You can set the send buffer and the receive buffer to null if they are not required by the selected
EntireX Broker function.

The API s called with a statement such as the following:

® Under all platforms and with all Broker stubs see the prototype. For example:

int broker (ETBCB *, char *, char *, char *);
rc = broker(pCb, pSBuf, pRBuf, pEBuf);

* additionally, under z/OS, you can invoke CICSETB under Administration of Broker Stubs under
z/OS, using the following EXEC CICS LINK command. The length of the COMMAREA is always
24. For example:

EXEC CICS LINK PROGRAM('CICSETB') COMMAREA(commarea) LENGTH(24)

The COMMAREA must specify an area in working storage with the following information:
" 8-byte character field "ETBCOMM*"

= one full word containing the address of the EntireX Broker control block

* one full word containing the address of send buffer

® one full word containing the address of receive buffer

* one full word containing the address of error text buffer

5 ACIfor C

EntireX Broker ACI for C

If the Broker stub is used as a function, the stub returns the last four bytes of the ERROR-CODE field
in the EntireX Broker control block, i.e. the error number.

If O (zeros) are returned in the ERROR-CODE field in all positions of the character array, the operation
has been performed successfully. However, function results other than 0 (zeros) in all positions
do not necessarily indicate an error. See Error Handling under Writing Applications: Client and
Server | Publish and Subscribe in the ACI Programming documentation.

Broker ACI Control Block Layout

The following table shows the Broker fields in order of the physical layout of the Broker ACI
control block and provides a brief description of each field. The fields are described in more detail

under Broker ACI Fields in the ACI Programming documentation. See the actual layout for C in
Broker ACI Control Block Definition below.

| Note: Header files and examples are provided as models if you want to write your own

ACI appliations (see ACI Examples and Header Files for location). The list below does not
include unused fields that are for internal purposes only. Check the included header files

for the full layout.
Description / API
Broker ACI Field C Definition Related Information Vers. |Notes
API-TYPE ETB_BYTE api_type API type See API-TYPE |1
API-VERSION ETB_BYTE api_version API version. |14
API-VERSION
under Writing
Applications:
Client and
Server | Publish
and Subscribe in
the ACI
Programming
documentation.
FUNCTION ETB_BYTE function See Broker ACI Fields in the ACI |1
Programming documentation.
OPTION ETB_BYTE option See OPTION under Broker ACI |1
Fields.
ETB_CHAR reservedl[16] Reserved for future use. 1 1
SEND-LENGTH ETB_LONG send_Tlength Send length |See Using Send |1
RECEIVE-LENGTH ETB_LONG receive_length Receive |1 Receive g
length. Buffers under
Writing
RETURN-LENGTH ETB_LONG return_length Return Applications: 1
length.

ACl for C 3

EntireX Broker ACI for C

Broker ACI Field

C Definition

Description /
Related Information

API
Vers.

Notes

Client and
Server | Publish
and Subscribe in
the ACI
Programming
documentation.

ERRTEXT-LENGTH

ETB_LONG errtext_length

Error text length.

BROKER-ID

ETB_CHAR broker_id[S_BROKER_ID]

Broker ID. See Using the Broker
ID in Applications in the ACI
Programming documentation.

—_

SERVER-CLASS
SERVER-NAME
SERVICE

ETB_CHAR
server_class[S_SERVER-CLASS]
ETB_CHAR
server_name[S_SERVER-NAME]
ETB_CHAR service[S_SERVICE]

Service. See Control Block Fields
and Verbs under Writing
Applications: Client and Server
in the EntireX Broker ACI
Programming documentation.

3,5

USER-ID

ETB_CHAR user_id[S_USER_ID]

User ID. See USER-ID and
TOKEN under Writing
Applications: Client and Server |
Publish and Subscribe in the ACI
Programming documentation.

PASSWORD

ETB_CHAR password[S_PASSWORD]

Password. See Authentication
under Writing Applications
using EntireX Security in the
ACI Programming
documentation.

4,5

TOKEN

ETB_CHAR token[S_TOKEN]

Reconnection token. See
USER-IDand TOKENunder
Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation.

3,5

SECURITY-TOKEN

ETB_CHAR
security_token[S_securityToken]

Security token. See Writing
Applications using EntireX
Security in the ACI
Programming documentation.

4,5

CONV-1ID

ETB_CHAR conv_1id[S_CONV_ID]

Conversation ID. See
Conversational and
Non-conversational Mode under
Writing Applications: Client and
Server in the EntireX Broker
ACI Programming
documentation.

3,5

WATT

ETB_CHAR wait[S_WAIT]

Wait value. See Blocked and
Non-blocked Broker Calls under

—_

ACl for C

3,5

EntireX Broker ACI for C

Broker ACI Field

C Definition

Description /
Related Information

API
Vers.

Notes

Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation.

ERROR-CODE

ETB_CHAR

error_code[S_ERROR_CODE]

Error code. See Error Handling
under Writing Applications:
Client and Server | Publish and
Subscribe in the ACI
Programming documentation.

ENVIRONMENT

ETB_CHAR

environment[S_ENVIRONMENT]

Environment. See Using
Internationalization under
Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation.

3,5

ADCOUNT

ETB_LONG

adcount

Attempted delivery count. See
Writing Applications: Units of
Work in the ACI Programming
documentation.

USER-DATA

ETB_CHAR

user_datal[S_USERDATA]

Conversation User Data. See
Writing Applications: Client and
Server in the EntireX Broker
ACI Programming
documentation.

3,5

ETB_CHAR

ptime[S_PTIME]

Reserved for future use.

1,3,

NEWPASSWORD

ETB_CHAR

newpassword[S_PASSWORD]

New password. See Writing
Applications using EntireX
Security in the ACI
Programming documentation.

4,5

CLIENT-UID

ETB_CHAR

client_uid[S_CLIENTUID]

Client User ID. See Client User
ID under Writing Applications
using EntireX Security in the
ACI Programming
documentation.

CONV-STAT

ETB_BYTE

conv_stat

Conversation status. See
Conversational and
Non-conversational Mode under
Writing Applications: Client and
Server in the EntireX Broker
ACI Programming
documentation.

STORE

ETB_BYTE

store

Persistence or non-persistence
of a UOW. See Writing

ACl for C

EntireX Broker ACI for C

Broker ACI Field

C Definition

Description /
Related Information

API
Vers.

Notes

Applications: Units of Work in
the ACI Programming
documentation.

ETB_BYTE

status

Reserved for future use.

UOWSTATUS

ETB_BYTE uowStatus

UOW Status.

UWTIME

ETB_CHAR uowTime[S_WAIT]

UOW
lifetime.

UOWID

ETB_CHAR uowID[S_UOW_ID]

UOW unique
identifier.

USTATUS

See Writing 3

3,5

Applications:
Units of Work in
the ACI

3,5

Programming
documentation.

3,5

ETB_CHAR

userStatus[S_U_STATUS]

User status.

UOW-STATUS-PERSIST

ETB_BYTE

uowStatusPersist

Multiplier for
persistent
status
lifetime.

ETB_CHAR

reserved2[3]

Reserved for future use.

LOCALE-STRING

ETB_CHAR Tocale_string[S_LOCALE]

Locale string. To be used to
override or provide codepages.
See Using Internationalization
under Writing Applications:
Client and Server | Publish and
Subscribe in the ACI
Programming documentation.

DATA-ARCH

ETB_BYTE

data_arch

Data architecture. See ICU
Conversion under Introduction
to Internationalization.

FORCE-LOGON

ETB_CHAR

forceLogon

Override
Broker
attribute
AUTOLOGON.

See Writing
Applications
using EntireX
Security in the

ENCRYPTION-LEVEL

ETB_BYTE

encryptionlLevel

ACI
Programming
documentation

Encryption
level.

KERNELSECURITY

ETB_CHAR

kernelsecurity

Kernel
security.

COMMITTIME

ETB_CHAR

commitTime[S_COMMIT_TIME]

Commit time. See Writing
Applications: Units of Work in
the ACI Programming
documentation.

COMPRESSLEVEL

ETB_CHAR

compress

Compression level. See Data
Compression under Writing
Applications: Client and Server |
Publish and Subscribe in the ACI
Programming documentation.

ACl for C

EntireX Broker ACI for C

Description / API
Broker ACI Field C Definition Related Information Vers. |Notes
ETB_BYTE reserved3[2] Reserved for future use. 8 1
ETB_LONG reserved4 Reserved for future use. 8 1
UWSTAT-LIFETIME ETB_CHAR uwStatLifeTime[S_WAIT]|Add value for persistent status |8

lifetime. See broker attribute
UWSTAT-LIFETIME.

TOPIC ETB_CHAR topic[S_TOPIC] Topic name |See Writing 8
for publish | Applications:
and Publish and
subscribe. Subscribe in the

PUBLICATION-ID ETB_CHAR Publication |C! s

publicationID[S_PUBLICATION_ID]|ID for Programming

publish and documentation.
subscribe.

CLIENT-ID ETB_LONG client_id Returns to a server application|9

the unique instance number of
a client application. It is
returned on receipt of a
message (RECEIVE or SEND
with WAIT).

LOG-COMMAND ETB_BYTE TogCommand Log the current command. See|9
also Programmatically Turning
on Command Logging under
Writing Applications: Client and
Server | Publish and Subscribe in
the ACI Programming
documentation

CREDENTIALS-TYPE ETB_BYTE credentialsType Indicates the credentials type |9
to be used to authenticate a
user. The default is to use user
ID and password. Enter "1" to
specify IAF authentication. See
also IAF Authentication under
Writing Applications: Client and
Server | Publish and Subscribe in

the ACI Programming

documentation.
VARLIST-OFFSET ETB_LONG varlist_offset Internal Software AG field. 10
LONG-BROKER-ID-LENGTH|ETB_LONG LONG-BROKER-ID-LENGTH |[See 10

LONG-BROKER-ID-LENGTH.

] Notes:

1. Reserved for future use.

ACl for C 7

EntireX Broker ACI for C

2. You must set this field to a low value (0x00) if you do not intend to use it.

3. The field is transmitted up to the first blank or low value (0x00). It is not transmitted if the first
character is a blank or a low value (0x00).

4. All trailing low values (0x00) are truncated. The field is not transmitted if the entire field is a

low value (0x00).

5. If fields are not needed for a specific command function, suppress their transmission by initial-
izing them to blanks or low value (0x00).

Broker ACI Control Block Definition

The Developer's Kit provides a header file with the ACI control block definition. See ACI Examples
and Header Files for where it is provided on your platform.

/*
khkhkkhkhhkhkhhkhkhhhkhhkhkhhkhhhkhhhkhkhkhkhkhkhhhhkkhhkhhhkhkhhkhhhkhkhhkhhkhkhhhkhhkhkhhkhhhkhkhkhkkhhkhkhkhkxhkhkk
* Product : EntireX Broker

* Copyright : (c) Copyright Software AG 1997 - 2012. All

* Version : 9.0

* File : ETBCDEF.H

* File Version : $Revision: 1.2 $

* Description : C Tanguage ACI control block definitions.

*

)/

##ifndef ETBCDEF__H_
ffdefine ETBCDEF__H_

#ifdef __cplusplus
extern "C" {
ffendif

/* --- Type Definitions -----------------"--"-----"--~-"-~-"-~-~-~"-~-~-~-~------ -

#fdefine ETB_BYTE unsigned char /*

ffdefine ETB_CHAR char /*
#fdefine ETB_LONG int /%
ffdefine ETB_SHORT short /*

/* --- EntireX Broker API Type Constants (api_type)

ftdefine API_TYPE1
ftdefine API_TYPE2
ftdefine API_TYPE4
ftdefine API_TYPES8

1 byte unsigned integer
1 byte character

4 byte signed integer

2 byte signed integer

(CETB_BYTE) 0x01)
(CETB_BYTE) 0x02)
(CETB_BYTE) 0x04)
(CETB_BYTE) 0x08)

*/
*/
*/
*/

rights reserved.

ACl for C

EntireX Broker ACI for C

/* --- EntireX Broker API Version Constants (api_version) ----------- =
ftdefine API_VERSI1 ((ETB_BYTE) 1)
ffdefine API_VERS?2 ((ETB_BYTE) 2)
ftdefine API_VERS3 ((ETB_BYTE) 3)
ffdefine API_VERS4 ((ETB_BYTE) 4)
ffdefine API_VERSS ((ETB_BYTE) 5)
ftdefine API_VERS6 ((ETB_BYTE) 6)
ftdefine API_VERS7 ((ETB_BYTE) 7)
ftdefine API_VERS8 ((ETB_BYTE) 8)
ftdefine API_VERS9 ((ETB_BYTE) 9)
ftdefine API_VERS10 ((ETB_BYTE) 10)
ffdefine API_VERS_HIGHEST API_VERS10

/* --- EntireX Broker API API Function Constants (function) ---------
ffdefine FCT_SEND ((ETB_BYTE) 1)
ftdefine FCT_RECEIVE ((ETB_BYTE) 2)
ffdefine FCT_UNDO ((ETB_BYTE) 4)
ffdefine FCT_EOC ((ETB_BYTE) 5)
ffdefine FCT_REGISTER ((ETB_BYTE) 6)
ffdefine FCT_DEREGISTER ((ETB_BYTE) 7)
#tdefine FCT_VERSION ((ETB_BYTE) 8)
ffdefine FCT_LOGON ((ETB_BYTE) 9)
#fdefine FCT_LOGOFF ((ETB_BYTE) 10)
ffdefine FCT_SET ((ETB_BYTE) 11)
ftdefine FCT_GET ((ETB_BYTE) 12)
ftdefine FCT_SYNCPOINT ((ETB_BYTE) 13)
ftdefine FCT_KERNELVERS ((ETB_BYTE) 14)
ffdefine FCT_LOCTRANS ((ETB_BYTE) 15)
ffdefine FCT_SETSSLPARMS ((ETB_BYTE) 16)
##define FCT_SEND_PUBLICATION ((ETB_BYTE) 17)
ftdefine FCT_RECEIVE_PUBLICATION ((ETB_BYTE) 18)
ffdefine FCT_SUBSCRIBE ((ETB_BYTE) 19)
ffdefine FCT_UNSUBSCRIBE ((ETB_BYTE) 20)
ffdefine FCT_CONTROL_PUBLICATION ((ETB_BYTE) 21)
ftdefine FCT_REPLY_ERROR ((ETB_BYTE) 22)
/* --- EntireX Broker API Option Constants (option) -----------------
ffdefine OPT_OFF ((ETB_BYTE) 0)
ffdefine OPT_MSG ((ETB_BYTE) 1)
ffdefine OPT_HOLD ((ETB_BYTE) 2)
ffdefine OPT_IMMED ((ETB_BYTE) 3)
##define OPT_QUIESCE ((ETB_BYTE) 4)
ftdefine OPT_EOC ((ETB_BYTE) 5)
##define OPT_CANCEL ((ETB_BYTE) 6)
ffdefine OPT_LAST ((ETB_BYTE) 7)
ftdefine OPT_NEXT ((ETB_BYTE) 8)
ftdefine OPT_PREVIEW ((ETB_BYTE) 9)
##define OPT_COMMIT ((ETB_BYTE) 10)
ffdefine OPT_BACKOUT ((ETB_BYTE) 11)

ACl for C

EntireX Broker ACI for C

Jfdefine OPT_SYNC ((ETB_BYTE) 12)
Jfdefine OPT_ATTACH ((ETB_BYTE) 13)
ffdefine OPT_DELETE ((ETB_BYTE) 14)
Jfdefine OPT_EOCCANCEL ((ETB_BYTE) 15)
ffdefine OPT_QUERY ((ETB_BYTE) 16)
ffdefine OPT_SETUSTATUS ((CETB_BYTE) 17)
Jfdefine OPT_ANY ((ETB_BYTE) 18)
Jfdefine OPT_TERMINATE ((CETB_BYTE) 19)
ffdefine OPT_DURABLE ((ETB_BYTE) 20)
Jfdefine OPT_CHECKSERVICE ((ETB_BYTE) 21)
/* --- EntireX Broker Environment Constants (environment) ----------- #

jtdefine ETB_ENVIRONMENT_NO_CONVERSION "NONE"

/* --- EntireX Broker Conversation Status Constants (conv_stat) -----)/
ftdefine CONVSTAT_NEW ((ETB_BYTE) 1)
Jfdefine CONVSTAT_OLD ((ETB_BYTE) 2)
Jfdefine CONVSTAT_NONE ((ETB_BYTE) 3)
/* --- EntireX Broker Store Constants (store) ----------------------- o/
Jfdefine STORE_OFF ((ETB_BYTE) 1)
#fdefine STORE_BROKER ((ETB_BYTE) 2)
/* --- EntireX Broker Status Constants (status) ---------------------)/
ffdefine STAT_OFF ((ETB_BYTE) 1)
Jffdefine STAT_STORED ((ETB_BYTE) 2)
ffdefine STAT_DELIVERY_ATTEMP ((ETB_BYTE) 3)
ffdefine STAT_DELIVERED ((ETB_BYTE) 4)
Jfdefine STAT_PROCESSED ((ETB_BYTE) 5)
Jfdefine STAT_DEAD ((ETB_BYTE) 6)
/* --- EntireX Broker UOW Status Constants (uowStatus) -------------- #
ftdefine RECV_NONE ((ETB_BYTE) 0)
J#fdefine RECEIVED ((ETB_BYTE) 1)
ffdefine ACCEPTED ((ETB_BYTE) 2)
Jfdefine DELIVERED ((ETB_BYTE) 3)
ftdefine BACKEDOUT ((ETB_BYTE) 4)
J#fdefine PROCESSED ((ETB_BYTE) 5)
Jfdefine CANCELLED ((ETB_BYTE) 6)
Jffdefine TIMEOUT ((ETB_BYTE) 7)
Jfdefine DISCARDED ((ETB_BYTE) 8)
#fdefine RECV_FIRST ((ETB_BYTE) 9)
Jfdefine RECV_MIDDLE ((ETB_BYTE) 10)
ffdefine RECV_LAST ((ETB_BYTE) 11)
Jfdefine RECV_ONLY ((ETB_BYTE) 12)
/* --- EntireX Broker Locale String Constants (locale_string) ------- &Y/

10

EntireX Broker ACI for C

ffdefine ETB_CODEPAGE_USE_PLATFORM_DEFAULT "LOCAL"

/* --- EntireX Broker Architecture Constants (data_arch) ------------ &Y/
Jfdefine ACODE_HIGH_ASCII_IBM ((ETB_BYTE) 1)

fidefine ACODE_LOW__ASCII_IBM ((ETB_BYTE) 2)

Jfdefine ACODE_HIGH_EBCDIC_IBM ((ETB_BYTE) 3)

fidefine ACODE_LOW__EBCDIC_IBM ((ETB_BYTE) 4)

J#fdefine ACODE_HIGH_ASCII_VAX ((CETB_BYTE) 5)

fidefine ACODE_LOW__ASCII_VAX ((ETB_BYTE) 6)

Jfdefine ACODE_HIGH_EBCDIC_VAX (CETB_BYTE) 7)

Jfdefine ACODE_LOW__EBCDIC_VAX ((ETB_BYTE) 8)

Jfdefine ACODE_HIGH_ASCII_IEEE (CETB_BYTE) 9)

Jfdefine ACODE_LOW__ASCII_IEEE ((ETB_BYTE) 10)

ffdefine ACODE_HIGH_EBCDIC_IEEE (CETB_BYTE) 11)

Jfdefine ACODE_LOW__EBCDIC_IEEE ((ETB_BYTE) 12)

Jfdefine ACODE_HIGHEST_VALUE (CETB_BYTE) 12)

/* --- EntireX Broker Force Logon Constants (forcelogon) ------------ =/
fidefine FORCE_LOGON_NO (CETB_CHAR) 'N")

fidefine FORCE_LOGON_YES (CETB_CHAR) 'Y")

ffdefine FORCE_LOGON_S ((ETB_CHAR) 'S")

/* --- EntireX Broker Encryption Level Constants (encryptionlLevel) -- */
Jfdefine ENCLEVEL_NONE ((ETB_BYTE) 0)

Jfdefine ENCLEVEL_TO_BROKER (CETB_BYTE) 1)

Jfdefine ENCLEVEL_TO_TARGET ((ETB_BYTE) 2)

/* --- EntireX Broker Kernel Security Constants (kernelSecurity) ---- */
Jfdefine KERNEL_SECURITY_NO (CETB_CHAR) 'N")

fidefine KERNEL_SECURITY_YES (CETB_CHAR) 'Y")

Jfdefine KERNEL_SECURITY_USER ((CETB_CHAR) 'U")

ffdefine KERNEL_SECURITY_LIGHT ((ETB_CHAR) 'L")

/* --- EntireX Broker Compression Level Constants (compress) -------- =/
Jfdefine COMPRESS_LEVEL_O ((ETB_CHAR) '0")

Jfdefine COMPRESS_LEVEL_1 (CETB_CHAR) '1'

jfdefine COMPRESS_LEVEL_2 ((ETB_CHAR) '2'

fidefine COMPRESS_LEVEL_3 ((ETB_CHAR) '3

Jfdefine COMPRESS_LEVEL_4 ((ETB_CHAR) '4'

fidefine COMPRESS_LEVEL_5 ((ETB_CHAR) '5'

fidefine COMPRESS_LEVEL_6 ((ETB_CHAR) '6'

Jfdefine COMPRESS_LEVEL_7 ((ETB_CHAR) '7'

fidefine COMPRESS_LEVEL_8 ((ETB_CHAR) '8")

ffdefine COMPRESS_LEVEL_9 ((ETB_CHAR) '9'

fidefine COMPRESS_LEVEL_NO ((ETB_CHAR) 'N'

ffdefine COMPRESS_LEVEL_YES ((ETB_CHAR) 'Y'

ACl for C

11

EntireX Broker ACI for C

/* - - -

ffdefine CREDENTIALS_TYPE_UID_PWD
ftdefine CREDENTIALS_TYPE_TIAF

/* The first 4 bytes of the first reserved field (reserved) can be

EntireX Broker Credentials Type Constants (credentialsType) --

(CETB_BYTE) 0)
(CETB_BYTE) 1)

/* used to specify a stub trace level

/* __
fdefine STUBLOG_EYECATCHER_ARRAY ‘T, 'L,

Jfdefine STUBLOG_OFF 0’

#fdefine STUBLOG_LEVELO STUBLOG_OFF

ffdefine STUBLOG_LEVEL1 1

ffdefine STUBLOG_LEVEL2 ‘2"

ffdefine STUBLOG_LEVEL3 '3’

ffdefine STUBLOG_LEVEL4 "4

/* --- EntireX Broker API Size of fields

ffdefine S_ADAPTERR

ftdefine S_APPLICATION_NAME
ftdefine S_APPLICATION_TYPE
jtdefine S_BROKER_ID
ftdefine S_CLIENTUID
ftdefine S_COMMIT_TIME

ftdefine S_CONV_ID

ftdefine S_ENVIRONMENT
jfdefine S_ERROR_CODE
ftdefine S_ERROR_CLASS
f#define S_ERROR_NUMBER

ffdefine S_LOCALE
J#define S_MSGID
ffdefine S_MSGTYPE

ftdefine S_NODENAME
ftdefine S_PASSWORD
ftdefine S_PLATFORM
#fdefine S_PRODUCT_VERSION

jtdefine S_PTIME

ftdefine S_PUBLICATION_ID

jtdefine S_PUID

ftdefine S_SECURITY_TOKEN
ftdefine S_SERVER_CLASS
jtdefine S_SERVER_NAME

ftdefine S_SERVICE
ftdefine S_T_NAME
jtdefine S_TOKEN
jtdefine S_TOPIC
ftdefine S_TXT

jtdefine S_U_STATUS

ftdefine S_UOW_ID

((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)
((ETB_CHAR)

8)

64)
8)

32)
32)
17)
16)
32)
8)

4)

4)

40)
32)
16)
32)
32)
8)

16)
8)

16)
28)
32)
32)
32)
32)
8)

32)
96)
40)
32)
16)

*/
*/
*/

12

ACl for C

EntireX Broker ACI for C

ffdefine S_USER_ID ((ETB_CHAR) 32)

ffidefine S_USRDATA ((ETB_CHAR) 16)

ffdefine S_VERS ((ETB_CHAR) 8)

fidefine S_WAIT ((ETB_CHAR) 8)

Jfdefine S_BROKER_URL ((CETB_SHORT) 512)

/* __ */

/* ETBCB: EntireX Broker API Control Block Definition &Y/

/* (The current size is 880 bytes))

/* __ */

typedef struct

{
ETB_BYTE api_type; /* vl1: Type of ETBCB =)
ETB_BYTE api_version; /* v1: For compatibility =)
ETB_BYTE function; /* vl: Function)
ETB_BYTE option; /* vl: Option =)
ETB_CHAR reserved[16]; /* vl: Reserved for future use */
ETB_LONG send_length; /* vl: Length of data to send &Y/
ETB_LONG receive_length; /* v1: Maximum receive Tength =
ETB_LONG return_length; /* vl: Length of received data */
ETB_LONG errtext_length; /* vl: Errortext buffer Tength =*/
ETB_CHAR broker_id[S_BROKER_ID]; /* vl: Target broker id &Y/
ETB_CHAR server_class[S_SERVER_CLASS]T; /* vl: Part of service name B/
ETB_CHAR server_name[S_SERVER_NAMET; /* vl: Part of service name)
ETB_CHAR servicel[S_SERVICE]; /* vl: Part of service name =
ETB_CHAR user_id[S_USER_ID]; /* vl: User id of caller Y/
ETB_CHAR password[S_PASSWORDJ; /* vl: Password of caller =/
ETB_CHAR token[S_TOKENT; /* vl: Special purposes =)
ETB_CHAR security_token[S_SECURITY_TOKEN];/* vl: Security purposes */
ETB_CHAR conv_id[S_CONV_ID]; /* vl: Conversational/non-conv. */
ETB_CHAR wait[S_WAITI; /* vl: Blocked/non-blocked =
ETB_CHAR error_code[S_ERROR_CODE]; /* vl: Error class/number /)
ETB_CHAR environment[S_ENVIRONMENTT; /* vl: Translation purposes =)
ETB_LONG adcount; /* v2: Attempted deliv. count =
ETB_CHAR user_datal[S_USRDATAT; /* vZ: User data field)
ETB_CHAR msg_id[S_MSGIDIJ; /* v2: Not used by Broker Y/
ETB_CHAR msg_typel[S_MSGTYPE]; /* v2: Not used by Broker)
ETB_CHAR ptime[S_PTIMET; /* v2: Not used by Broker /)
ETB_CHAR newpassword[S_PASSWORD]; /* v2: New password of caller */
ETB_CHAR adapt_err[S_ADAPTERR]; /* v2: Adapter error =
ETB_CHAR client_uid[S_CLIENTUIDJ; /* v2: Userid for security o/
ETB_BYTE conv_stat; /* vZ2: Conversation status &Y/
ETB_BYTE store; /* v2: Flag for saving data =)
ETB_BYTE status; /* vZ2: Not used by Broker)
ETB_BYTE uowStatus; /* v2: UOW's status &y
ETB_CHAR uowTime[S_WAIT]; /* v3: Lifetime of UOW in secs */
ETB_CHAR uowID[S_UOW_IDTJ; /* v3: UOW ID Y/
ETB_CHAR userStatus[S_U_STATUS]; /* v3: User Status)
ETB_BYTE wuowStatusPersist; /* v3: UOW Status persist flag */
ETB_CHAR reserved2[3]; /* v3: Alignment #/
ETB_CHAR Tlocale_string[S_LOCALE]; /* v4: Callers set_locale (ECS) */

ACl for C 13

EntireX Broker ACI for C

ETB_BYTE data_arch; /* v4: For future use)
ETB_CHAR forcelogon; /* v6: Force Togon =
ETB_BYTE encryptionlLevel; /* v6: End-to-end encryption =)
ETB_CHAR kernelsecurity; /* v7: Security indicator &Y/
ETB_CHAR commitTime[S_COMMIT_TIME]; /* v7: UOW commit time /)
ETB_CHAR compress; /* v7: Compression level =)
ETB_BYTE reserved3[2]; /* v7: Alignment &/
ETB_LONG reserved4; /* v7: Reserved for future use */
ETB_CHAR uwStatLifeTime[S_WAIT]; /* v8: UowStatuslLifetime:adder */
ETB_CHAR topic[S_TOPICI; /* v8: Topic name =)
ETB_CHAR publicationID[S_PUBLICATION_IDI; /* v8: Publication ID o/
ETB_CHAR partner_broker_id[S_BROKER_IDI]; /* v9: Partner broker id =
ETB_LONG reserved_etbcb_v73_1; /* v9: Reserved for future use */
ETB_LONG reserved_etbcb_v73_2; /* v9: Reserved for future use */
ETB_LONG reserved_etbcb_v73_3; /* v9: Reserved for future use */
ETB_LONG <client_id; /* v9: Unique client identifier */
ETB_CHAR reserved_etbchb_v73_4[32]; /* v9: Reserved for future use */
ETB_BYTE TogCommand; /* v9: Broker command logging =
ETB_BYTE credentialsType; /* v9: Credentials type &Y/
ETB_CHAR reserved_etbchb_v73_5[32]; /* v9: Reserved for future use */
ETB_BYTE reserved5[2]; /* v9: Alignment */
ETB_LONG varlist_offset; /*v10: Variable 1ist offset o/
ETB_LONG Tong_broker_id_length; /*v10: Length Tong broker id &Y/

} ETBCB;

/* ,, */

/* ATMCB: Attach Manager Control Block)/

/* ,, ~k/

typedef struct
{

ETB_SHORT atm_version; /* Version of structure &Y/
ETB_SHORT atm_NotUsed; /* Alignment &y
ETB_LONG atm_nAttach; /* # of failed Server lookups */
ETB_LONG atm_nServer; /* {f of Registered Servers =/
ETB_LONG atm_nPendConv; /* 4 of Pending Conversations */
ETB_LONG atm_nActvConv; /* 4 of Active Conversations Y/
ETB_CHAR atm_server_class[S_SERVER_CLASS];/* Class to attach Y/
ETB_CHAR atm_server_name[S_SERVER_NAME]; /* Server name to attach Y/
ETB_CHAR atm_service[S_SERVICE]; /* Service name to attach)

} ETB_ATMCB;

[# =sccsccsccsoosc ERGI PN BPOREP APRI =ccssssccsccccccscsccscccosoosoo &Y/

#ifCC _MVS__ && (defined(_IBMC__) || defined(_IBMCPP__))) || _VSE__)

#fpragma map(broker, "BROKER")

ffendif

#if defined(__SNI)
J# define broker BROKER
extern ETB_LONG BROKER(C ETBCB*, ETB_CHAR*, ETB_CHAR=*, ETB_CHAR*);

14 ACl for C

EntireX Broker ACI for C

ffelif defined(_WIN32)
extern ETB_LONG __cdecl broker(ETBCB*, ETB_CHAR*, ETB_CHAR*, ETB_CHAR*);

felse
extern ETB_LONG broker(ETBCB*, ETB_CHAR*, ETB_CHAR=*, ETB_CHAR*);
ftendif

typedef ETB_LONG

if defined(WIN32)

(__cdecl *PFBROKER)

ffelse

(*PFBROKER)

ffendif

(ETBCB*, ETB_CHAR*, ETB_CHAR*, ETB_CHAR*);

Jif defined(_WIN32)

J# define ETB_SHARED_LIBRARY_A "broker.d11"

define ETB_SHARED_LIBRARY W L"broker.d11"

if defined(UNICODE)

define ETB_SHARED_LIBRARY ETB_SHARED_LIBRARY_W
else

define ETB_SHARED_LIBRARY ETB_SHARED_LIBRARY_A
endif

felif(defined(__hpux) && !defined(__ia64))
define ETB_SHARED_LIBRARY "broker.sl"

ffelif defined(__ SNI)
define ETB_SHARED_LIBRARY "BROKER2 "
define ETB_BATCH_LOAD MODULE "BROKER "

frelif(_MVS__)

define ETB_SHARED_LIBRARY "BROKER2 "

define ETB_BATCH_LOAD_MODULE "BROKER "
define ETB_CICS_LOAD_MODULE "CICSETB "

fhelif(_VSE__)
define ETB_BATCH_LOAD_MODULE "BKIMB "
define ETB_CICS_LOAD_MODULE "BKIMC "

fhelif(__VMS)
define ETB_SHARED_LIBRARY "broker.exe"

ffelse

define ETB_SHARED_LIBRARY "broker.so"
ffendif

#if(defined(__SNI) || _MVS__ || __VSE__)
define ETB_ENTRY_POINT "BROKER"

ffelse

define ETB_ENTRY_POINT "broker"

ffendif

ACl for C 15

EntireX Broker ACI for C

f##ifdef __cplusplus

}
ffendif

ffendif

ACI Examples and Header Files

When you begin to write your first EntireX Broker ACI program, you can use the client and server
examples listed below as models for your own implementation. If the examples are not available
on your platform, transfer them - using FTD, for example - from a platform where they are delivered.

Depending on your platform for C, you will find the files with the examples, include files, etc. in
the following locations:

Platform Header Files / Examples Location Notes
z/OS Broker ACI control block header file |See member ETBCDEF in the mainframe source |5, 6
library EXX951.SRCE.
Broker Command and Info Services |See member ETBCINF in the mainframe source |5, 6
control block header file library EXX951.SRCE.
Client example See member BCOC in the mainframe source library |5, 6
ETBvrs.SRCE.
Server example See member BCOS in the mainframe source library |5, 6
ETBvrs.SRCE.

UNIX Broker ACI control block header file |See etbcdef . h in: include 3,4
Broker Command and Info Services [See etbcinf.h in: include 3,4
control block header file
Client example See convClt.c in examples/ ACl/conversational/C/ and |3, 4

nconvClt.c in examples/ ACI/nonConversational/C/.
Server example See convSruv.c in examples/ ACl/conversational/C/ |3, 4

and nconvSrv.c in

examples/ ACI/nonConversational/C/.

Windows |Broker ACI control block header file |See etbcdef . h in: include. 2
Broker Command and Info Services |See etbcinf . h in: include. 2
control block header file
Client example See convClt.c in examples \ ACI\ conversational \ C\ |2

and nconvClt.c in
examples \ ACI\nonConversational \C\.
Server example See convSrv.c in examples\ ACI\ conversational\C |2
and nconvSrv.c in
examples \ ACI\nonConversational\ C.
16 ACl for C

EntireX Broker ACI for C

1. See Installing EntireX under IBM 1i.

2. See Post-installation Steps under Windows.

Platform Header Files / Examples Location Notes
BS2000/0OSD |Broker ACI control block header file |See element ETBCDEF . H in the LMS library
EXX951.LIB.
Broker Command and Info Services |See element ETBCINF.H in the LMS library
control block EXX951.LIB.
z/VM Broker ACI control block header file |See member PL1DEF of the z/VM MACLIB 10
EXX951.MACLIB.
Broker Command and Info Services |See member PL1DEF of the z/VM MACLIB 10
control block EXX951.MACLIB.
IBM i Broker ACI control block header file |See member ETBCDEF in include source file 1,7
H_EXA.
Broker Command and Info Services |See member ETBCINF in include source file 1,7
control block H_EXA.
Sample procedure for compiling See member CRT_CMOD in source file EXASRC. |1
Client example See member BCOC of type C in source file 1,9
EXASRC.
Procedure to call client example See the CL member EXABCOC in source file 1,8
EXASRC.
Procedure to call Client example with |See the CL. member EXABCOCSEC in source file |1, 8
Security parameters EXASRC.
Server example See member BCOS of type C in source file 1,9
EXASRC.
Procedure to call server example See the CL member EXABCOS in source file 1,8
EXASRC.
Procedure to call server example with|See the CL member EXABCOSSEC in source file |1, 8
Security parameters EXASRC.
Notes:

3. For information on exxdir, see Shell Environment Settings under Post-installation Steps under

UNIX.

4. See Post-installation Steps under UNIX.

5. See Installing EntireX under z/OS in the z/OS installation documentation.

. For information on vrs, see Contents of Mainframe Installation Medium in the z/OS installation
documentation.

. Rename file H_EXA to H before use it.

. By default, these CL procedures call the C-type of the client and server programs -i.e, BCOC and
BCOS. Modify the procedures to adjust the Broker ID, Broker Version and Security parameters.

ACl for C

17

EntireX Broker ACI for C

Compile the sources and bind the created modules to executable *PGM programs. For compilation,
use the procedure CRT_CMOD. For binding, use the procedure EXABNDPGM. All sample programs
include the ACI Broker control block definitions ETBCDEF during compilation.

9. See also Verifying the Installation of the Broker Stubs in the IBM i installation documentation.
10. See Installing Broker Stubs under z/VM.

Creating a C User Application under IBM i

On the IBM i system, the broker stub is implemented as an object of type *SRVPGM (Service Program,).
This object type has the advantage that its program code can be shared by several programs. It
exists as an object on its own and can therefore be easily replaced without rebinding the user's
application, when a newer version becomes available.

The service program EXA supplied by Software AG contains all the functions necessary for con-
trolling and communicating with the remote broker. To create an executable Broker application
on IBM i, you need to develop, in any ILE-enabled programming language, at least one main
module to which the EXA service program is bound.

® For compilation, use the command CRTCMOD with the options:

...DEFINE (CE_TAS400 TCP_IP "_MULTI_THREADED")
...SYSIFCOPT (*NOIFSIO)...

® For binding, use the command CRTPGM with the option:

...BNDSRVPGM(*LIBL/EXA) ...

Example:

The following steps show how to create a server application using the program BC0S. See ACI
Examples and Header Files.

Step 1: Set the Environment

The library EXX must be located in the *LIBL list.

To set the library list, you can use the command:

18 ACl for C

EntireX Broker ACI for C

CHGCURLIB CURLIB(EXX)
Step 2: Compile the User Program
To compile BCOS, use the command CRTCMOD with options similar to the following;:

MODULE(BCOS) SRCFILE(*CURLIB/EXASRC) OUTPUT(*PRINT) DEFINE(CE_TAS400
TCP_IP '_MULTI_THREADED') SYSIFCOPT(*NOIFSIO)

Or, use the sample procedure CRT_CMOD

If the program has been successfully compiled, the module BCOS will be created.
Step 3: Bind EXA to the User Program

To produce an executable program, bind the user program BCOS to the service program EXA supplied
by Software AG. Use the command CRTPGM similar to the following;:

CRTPGM PGM(EXX/BCOS) MODULE(*PGM) ENTMOD(*PGM)
BNDSRVPGM(EXX/EXA) BNDDIR(*NONE) OPTION(*GEN *WARN *DUPVAR)
DETATL(*EXTENDED)

Or, use the sample procedure EXABNDPGM.

If the programs have been bound successfully, the object BCOS with type *PGM will be created.

ACl for C 19

20

2 Writing Applications: Publish and Subscribe

Overview of CommUNICAtIoN MOGEIScoiiiiiiiiie e e e 22
Basic Concepts of Publish and SUDSCIDEuvvviiiiiiiiii e 23
API-TYPE @nd API-VERSION ...ttt 26
LOGON @NA LOGOFF ...ttt ettt e e ettt e e ettt e e e et e e e e enneeas 27
USER-ID @NA TOKEN ...ttt et e et e e et e e e et e e e e e e e e nnees 27
Control Block Fields and VBIDSvveeiiiiiieii e 29
Implementation of Publisher and Subscriber COmMPONENLScccoiiiiiiiiiiiiiiieie e, 32
Blocked and Non-blocked BroKer Callscoouiiriiiiiieiei e aa e 34
TIMEOUL PAramMELEIS ... ittt e e e e e e e e 36
Configuration Prerequisites for Durable SUDSCIPLIONSuvviiiiiiiiiiiii e 37
Data COMPIESSION ... eeeee ittt ettt et e e oottt e e e e e e e ettt e e e e e e e ettt e ae e e e e e nnnees 38
ErrOr Hanaling oo, 39
USING INtern@tionaliIZAtIONooiiiiiiie e 41
Using Send and ReCeIVE BUITETSuviiiiiiiiiii e 43
TTACING ettt e e a e e 45
TranSPOIt METNOGASeeiiiiie ettt e e e et e e e 47
Variable-length ErTOr TEXEueeeiiieeiiii e 50
Programmatically Turning on Command LOGGINGccevouurrieeiiiiiieiiiiee e 51
LAF AUENENTICATION ...ttt ettt e e e e e e e e e 51

21

Writing Applications: Publish and Subscribe

This chapter describes how to implement and program publish-and-subscribe applications - em-
ploying durable subscription techniques - with EntireX Broker. Publish-and-subscribe communic-
ation is used if data is to be published in order to make it available to one or more subscribers.
This communication model is implemented as an independent subsystem in EntireX Broker, that
is, it can be activated by setting attributes or left inactive.

For ease of use, we recommend you use the aids and techniques below in the order given.

See also Concepts of Persistent Messaging in the general administration documentation.

Overview of Communication Models

There are two communication models in EntireX Broker: publish and subscribe and client and
server.

® Publish and Subscribe
This communication model is used if data is to be published to multiple recipients. It is an al-

ternative to client and server and is implemented as an independent subsystem in EntireX
Broker.

® Client and Server
This communication model is based on a logical connection between exactly two partners: a
client and a server. It covers these communication requirements conversationally and non-
conversationally, and synchronously and asynchronously. See Writing Applications: Client and
Server in the EntireX Broker ACI Programming documentation.

29 ACl for C

Writing Applications: Publish and Subscribe

Basic Concepts of Publish and Subscribe

= Topic

= Pyblication

= Subscription

= Publisher

= Subscriber

= Durability of Subscriptions
= Subscription Expiration

Scenario of Publish and Subscribe Messaging
Publisher

Publisher

SEMD_PUBLICATION, WAIT=NO
Publisher =

RECEIVE_PUBLICATION,
WAIT=NO

- Subscriber

RECEIVE_PUBLICATION,
WAIT=YES

- Subscriber

RECEIVE_PUBLICATION,
WAIT=NO

- Subscriber

publisher: SEND_PUBLICATION; WAIT=NO
subscriber. RECEIVE_PUBLICATION: WAIT=[YES | NO)

Topic

A topic is a logical grouping of publications relating to one subject area, which is defined in the
Broker Attributes in the administration documentation. Topics reflect subject areas, for example
current news, stock quotations, weather, online chat, sales systems. Data can be published to a
topic only if there are current subscribers to this topic.

] Note: For EntireX Broker, the term “topic” is analogous to the term “service”. Topic represents

the grouping of related information flows for the publish-and-subscribe communication
model, as service does for the client-and-server model.

ACl for C 23

Writing Applications: Publish and Subscribe

Publication

A publication is a message or set of messages that are created atomically by one publisher and are
available to all current subscribers to the topic. Messages for publication are queued to the topic
on a first-in, first-out basis.

Each publication is assigned a unique PUBLICATION-ID by EntireX Broker when the publication
is created. The PUBLICATION- IDis returned to the publisher on the first SEND_PUBLICATION command
issued when creating a new publication. The PUBLICATION- 1D is also returned to the subscriber
on the first RECEIVE_PUBLICATION command used to receive each new publication. Publisher and
subscriber must include the PUBLICATION-ID for all subsequent commands relating to the same
publication.

Subscription

A subscription identifies a user's intention to receive publications for a specified topic. An active
subscription requires the user to have issued a SUBSCRIBE command without issuing a subsequent
UNSUBSCRIBE command. Only publications created after the time of subscription can be read by
the subscriber. Conversely, publications created after the UNSUBSCRIBE command, or after the
subscription has expired, cannot be received by the subscriber, even if the subscription is renewed
at a later time. The time period of the subscription determines which publications can be delivered
to the subscriber. See Durability of Subscriptions under Basic Concepts of Publish and Subscribe under
Writing Applications: Publish and Subscribe in the ACI Programming documentation.

Publisher

A publisher is a user participating in publish and subscribe that creates publications for one or
more topics. It is possible for a publisher to create publications only if there is currently at least
one subscription to the topic. This prevents superfluous data from being assigned to the topic.

Subscriber

A subscriber is a user participating in publish and subscribe that can read publications from one
or more topics.

Durability of Subscriptions

The behavior of a subscription when the subscriber logs off or broker shuts down is determined
by an option specified in the original subscription command.

® Durable Subscription

EntireX Broker enables publish-and-subscribe applications to execute with durable subscriptions
by maintaining the user's subscription status on disk. This ensures that - in the case of a system
failure - subscriber information will automatically be recovered, allowing applications to be re-
started without any loss of data.

24 ACl for C

Writing Applications: Publish and Subscribe

If DURABLE is specified within the SUBSCRIBE command, users need only subscribe once to a
topic. The subscription is retained after the user issues a LOGOFF command or if the subscriber
has timed out. Similarly, the subscription remains if the broker is restarted. All publications
necessary to satisfy subscription requirements are also retained. If a subscriber no longer wishes
to subscribe to a topic, the subscriber must issue an UNSUBSCRIBE command; otherwise the
subscription remains valid until the subscription expiration time has passed. Durable subscription
requires the administrator to configure the persistent store. See Concepts of Persistent Messaging
in the general administration documentation. In addition, the topic must be specified as durable
in the Broker Attributes in the administration documentation.

Durable subscription comprises:

* a list of subscribers and topics to which subscribers have durably subscribed;

* information about the last publication received.

A user has to subscribe only once to a topic. The persistent status remains after the broker is
restarted. A subscriber signals its intention to receive publications by issuing a SUBSCRIBE
command and specifying the topic of interest. If the administrator has specified this topic in the

broker's attribute file with a characteristic of ALLOW-DURABLE, users will be able to subscribe
durably to the topic.

* Non-durable Subscription
Publish-and-subscribe applications can also employ non-durable subscription techniques, if

desired. Publications (messages sent from publishers to subscribers) can be either durable or
non-durable.

If durable is not specified in the subscribe command, the subscription is valid only until one of
the following events occurs, after which subscription is terminated and publication can no longer
be retrieved:

B the user issues a LOGOFF command,;
® Broker is restarted;

* the subscriber non-activity time value has passed;

or

" the subscription expiration time has passed.

The time at which the SUBSCRIBE command is issued is significant to the user's subscription. Only
publications created after this point in time can be read by the subscriber. Conversely, publications
created after either the time at which the UNSUBSCRIBE command was issued or the subscription
has expired cannot be received by the subscriber, even if the subscription is renewed at a later
time. The time period of the subscription determines which publications are delivered.

It is possible for a publisher to create publications only if there is currently at least one subscription
to the topic. This feature prevents superfluous data from being assigned to the topic.

ACl for C 25

Writing Applications: Publish and Subscribe

Subscription Expiration

A topicis specified in the broker's attribute file with a characteristic of SUBSCRIPTION-EXPIRATION
time. This is the time period for which the user's subscription remains in effect. After the time
period has elapsed, the user's subscription is terminated and the subscription is removed by the
broker.

API-TYPE and API-VERSION

Both the API-TYPE and the API-VERSION fields must always be provided.

Value |Bit Pattern | Description

1 (x'01") The standard value for API-TYPE is 1 (x'01') and usable with all Broker stubs in all
environments.

Note: If any of the following conditions exist, you must install the Adabas CICS link module
with the definition PARMTYP=ALL, using the ADAGSET macro.

1. If you are using NET transport with CICSETB stub with send or receive buffers greater
than 32 KB.

2. If you are using NET transport with CICSETB stub and your application does not have
a TWA.

Certain Broker functionality requires a minimum API - VERSION. Using publish and subscribe requires
API-VERSION 8 or higher. For the highest available version of Broker, see API-VERSION. The send
buffer and the receive buffer are passed as parameters to the EntireX Broker. Both buffers can occupy
the same location.

See Broker ACI Control Block Layout in the EntireX language-specific ACI documentation.

Both the API-TYPE and API-VERSION fields must be set correctly to ensure that Broker returns the
correct value in ACI field ERROR-CODE. Otherwise, depending on your programming language
and environment, a return code may not always be given.

See Call Format in the language-specific EntireX ACI documentation.

2% ACl for C

Writing Applications: Publish and Subscribe

LOGON and LOGOFF

The LOGON broker function is required in order to use the publish-and-subscribe programming
model in your application. We recommend that the application issue a LOGOFF function call for
the following reasons:

" LOGOFF will notify the broker to clean up in-memory resources held for your program, making
them available for other users of the broker.

® Without LOGOFF, the user's in-memory resources will time out in accordance with the broker
attributes PUBLISHER-NONACT and SUBSCRIBER-NONACT. Depending on the values set by the ad-
ministrator, this may not occur for some time.

Logon example for programming language Natural:

/* Logon to Broker/LOGON

MOVE #FCT-LOGON TO ffETBCB.#FUNCTION

/*

CALL 'BROKER' #fETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Logoff example for programming language Natural:

/* Logoff to Broker/LOGOFF
MOVE #FCT-LOGOFF TO #ETBCB.#FUNCTION
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

USER-ID and TOKEN

= |dentifying the Caller
= Restarting after System Failure with Durable Subscription
= Managing the Security Token

Identifying the Caller

USER- 1D identifies the caller and is required for all functions except VERSION. The USER-ID is
combined with an internal ID or with the TOKEN field, if supplied, in order to guarantee uniqueness,
for example where more than one application component is executing under a single USER-ID.

Brokers identify callers as follows:
® When the ACI field TOKEN is supplied:

The AClI field USER- 1D, together with the TOKEN, is used to identify the user. Using TOKEN allows
the application to reconnect with a different process or thread without losing the existing con-

ACl for C 27

Writing Applications: Publish and Subscribe

versation. When a new call is issued under the same USER- ID from a different location but with
the same TOKEN, the caller is reconnected to the previous context.

Note: The ability to reconnect to the previous context is vital if restart capabilities of ap-

plications are required. The combination of USER-ID and TOKEN must be unique to the
Broker. It is not possible to have the same USER- 1D and TOKEN combination duplicated.

® When the ACI field TOKEN is not supplied:

The USER-ID is combined with an internally generated ID. It is possible to use the same USER-ID
in different threads or processes. All threads and processes are distinct Broker users.

Restarting after System Failure with Durable Subscription

@ Caution: USER and TOKEN must be specified by all publisher and subscriber applications
where publication and subscription data is held in the persistent store.

The Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER- 1D, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

Specification of USER and TOKEN is necessary for reconnection with the correct user context after
Broker has been stopped and restarted. This specification is also necessary to enable effective use
of publish and subscribe, including recovery from system failures.

Managing the Security Token

If you are using EntireX Security, the application must maintain the content of the SECURITY - TOKEN
field and not change this field on subsequent calls.

28 ACl for C

Writing Applications: Publish and Subscribe

Control Block Fields and Verbs

= Basic Functionality of Broker AP
= ACI Syntax

= Key ACI Field Names

= Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the basic functionality of the API. There are five distinct functions in the
Broker ACI which are relevant to publish and subscribe:

® CONTROL_PUBLICATION
The function CONTROL_PUBLICATION is used by both the publisher and the subscriber. The pub-
lisher uses CONTROL_PUBLICATION,0PTION=COMMIT to commit the publication it is creating; the
subscriber uses CONTROL_PUBLICATION,0PTION=COMMIT to acknowledge the receipt of the public-
ation it is receiving.

® RECEIVE_PUBLICATION
The function RECEIVE_PUBLICATION is used by the subscriber to receive all or part of a publication.
The field PUBLICATION-ID defines the behavior of this function.
RECEIVE_PUBLICATION,PUBLICATION-ID=NEW signals the subscriber's readiness to obtain the next
available new publication, whereas the value PUBLICATION- ID=nnn specifies that the next message
within an existing publication is being requested. After all messages have been received, the
publication is acknowledged, using the function CONTROL_PUBLICATION,OPTION=COMMIT.

® SEND_PUBLICATION
The function SEND_PUBLICATION is used by the publisher to produce a publication. The field
PUBLICATION-ID defines the behavior of this function. The publisher uses
SEND_PUBLICATION,PUBLICATION-ID=NEW to create a new publication. The value
PUBLICATION-ID=nnnindicates that a subsequent message within the same publication is being
sent, which can be necessary when creating large publications. A publication is completed with
the function SEND_PUBLICATION,OPTION=COMMIT or with the function call CONTROL_PUBLICATION,
using the option COMMIT.

= SUBSCRIBE
The function SUBSCRIBE registers a user with the broker as a subscription for a certain topic.
Specifying SUBSCRIBE,OPTION=DURABLE determines that the subscription is to be durable. Other-
wise the subscription is non-durable.

® UNSUBSCRIBE
The function UNSUBSCRIBE covers the opposite functionality: a subscription is cancelled or dis-
solved.

The participants in publish-and-subscribe are identified by ACI fields USER-ID and TOKEN.

ACl for C 29

Writing Applications: Publish and Subscribe

ACI Syntax

Function Fields in EntireX Broker Control Block

CONTROL_PUBLICATION[API = 8

, BROKER-ID = BROKER-ID

, USER-ID = user_id

, TOKEN = token

, OPTION = { BACKOUT |
CANCEL

COMMIT |

LAST |

QUERY |

SETUSTATUS }

[, PUBLICATION-ID = pub_id 1]
[, USTATUS = user_status 1]

RECEIVE_PUBLICATION[API = 8

, BROKER-ID = BROKER-ID

, USER-ID = user_id

, TOKEN = token

, WAIT = NO | YES | wait_value

, PUBLICATION-ID = pub_id | NEW | OLD | ANY
, TOPIC = topic_name

SEND_PUBLICATION API = 8

, BROKER-ID = BROKER-ID

, USER-ID = user_id

, TOKEN = token

[, OPTION = COMMIT 1

, PUBLICATION-ID = pub_id | NEW
, TOPIC = topic_name

[, USTATUS = user_status 1]

SUBSCRIBE APT = 8

, BROKER-ID = BROKER-ID
, USER-ID = user_id

, TOKEN = token

, TOPIC = topic_name

[, OPTION = DURABLE 1]

UNSUBSCRIBE APT = 8

, BROKER-ID = BROKER-ID
, USER-ID = user_id

, TOKEN = token

, TOPIC topic_name

30 ACl for C

Writing Applications: Publish and Subscribe

Key ACI Field Names

The following table lists key ACI field names used to implement applications that use the publish-
and-subscribe communication model. The other fields are available to identify partner programs,
specify buffer lengths, convey error codes, etc.

See Broker ACI Fields in the ACI Programming documentation for all fields.

ACI Field Name Description

FUNCTION Function code for one of the verbs (see table below).

OPTION Indication of specific broker behavior, depending on the function.

PUBLICATION-ID|Identifier to obtain and specify the publication. Indicates a specific publication. The
publication ID value is an internally generated identifier (containing alphanumeric
characters) for the publication. We recommend that application programmers make no
assumptions about the content, layout or meaning of any part of the PUBLICATION-ID

field.
TOPIC Identifies the name of the publication's topic.
WAIT Value to specify blocking or non-blocking command.

Key Verbs for FUNCTION Field

The following table lists the most important verbs for the field FUNCTION.

See Broker ACI Functions in the EntireX Broker ACI Programming documentation for all functions.

Verb

Description

CONTROL_PUBLICATION

Publisher uses this to commit and subscriber uses this to acknowledge
publications.

RECEIVE_PUBLICATION

Retrieves publication from the broker.

SEND_PUBLICATION

Sends publication to the broker.

SUBSCRIBE Informs the broker of the existence of a subscriber to a topic.
UNSUBSCRIBE Informs the broker that the subscriber wishes to unsubscribe.
ACl for C 31

Writing Applications: Publish and Subscribe

Implementation of Publisher and Subscriber Components

= Single Message Publication
= Multiple Message Publication

Single Message Publication

This example illustrates a publisher creating single-message publications that are retrieved by one
or more subscriber applications. The publisher and subscriber operate asynchronously of each
other. There is no reply from the subscriber in this communication model.

This example, which uses durable subscription, shows the typical structure of a subscriber applic-
ation that has previously subscribed to a topic and is now retrieving the publications issued to
that topic. Subscription occurs either during one-time processing provided by the subscriber ap-
plication, or it is performed explicitly by an administrator. See Broker Command and Information
Services.

The subscriber performs RECEIVE_PUBLICATION commands in a loop specifying WAIT=YES, which
makes it possible to process publications as they occur. If none are received during the specified
wait period, the server executes another iteration of the loop and repeats the wait until a publication
is received.

The RECEIVE_PUBLICATION command specifies PUBLICATION-ID=NEW to receive all new publications
arriving from the publisher. This example assumes single-message publications which do not require
acknowledgment of receipt since AUT0-COMMIT-FOR-SUBSCRIBER=YES was specified in the topic-
specific attributes for the topic NYSE in this case.

LOGON USER-ID=SB1,TOKEN=TKSB1
Repeat

«
RECETVE_PUBLICATION,PUBLICATION-ID=NEW,WAIT=YES,TOPIC=NYSE,USER-ID=SB1,TOKEN=TKSB1
If (Error-Class = 0 and Error-Number = 0)
/* something received: process request*/

End-if /* otherwise nothing received */
End-repeat
LOGOFF USER-ID=SB1,TOKEN=TKSB1

A publisher issues a SEND_PUBLICATION command to send publications containing a single message
to a topic. The publisher's SEND_PUBLICATION commands are performed with WAIT=NO, and
PUBLICATION-ID=NEW is assigned each time.

32 ACl for C

Writing Applications: Publish and Subscribe

SEND_PUBLICATION,PUBLICATION-ID=NEW,WAIT=NO,OPTION=COMMIT,TOPIC=NYSE,USER-1D=PB1,TOKEN=TKPB1
Multiple Message Publication

This example, which uses durable subscription, shows a publisher creating multiple-message
publications that are retrieved by one or more subscriber applications. The publisher and subscriber
operate asynchronously of each other; there is no reply from the subscriber in this communication
model. In this example, one or more publishers in a stock exchange system send current stock
exchange quotations. The subscriber accesses the system at irregular intervals and receives all
publications currently available.

This example illustrates the typical structure of a subscriber application that has previously sub-
scribed to a topic and is now retrieving all available publications for a specified topic. Subscription
has already occurred either during one-time processing within the subscriber application, or it is
performed explicitly by an administrator. See Command-line Utilities under Broker Command and
Information Services.

The subscriber performs RECEIVE_PUBLICATION commands in the outer loop, specifying
PUBLICATION-ID=NEW in order to receive the first available publication. The inner loop allows re-
maining messages within the same publication to be retrieved, after which CONTROL_PUBLICATION
acknowledges receipt of the publication. The outer loop is then repeated to obtain the next available
publication in conjunction with the inner loop until all available publications are processed.

The RECEIVE_PUBLICATION command specifies PUBLICATION- ID=NEW to receive all new publications.
In this case, the subscriber explicitly acknowledges receipt of the publication, using the
CONTROL_PUBLICATION function, since itis assumed AUTO-COMMIT-FOR-SUBSCRIBER was not specified
in the topic-specific attributes for the topic NYSE in this case.

LOGON USER-ID=SB1,TK=TKSB1
While publications available
RECEIVE_PUBLICATION PUBLICATION-ID=NEW,TOPIC=NYSE,WAIT=YES,USER-ID=SB1,TOKEN=TKSB1
While data on publication
RECEIVE_PUBLICATION <
PUBLICATION-ID=publication-id, TOPIC=NYSE,WAIT=NO,USER-ID=SB1,TOKEN=TKSBI1
End-while
CONTROL_PUBLICATION OPTION=COMMIT,PUBLICATION-ID=publication-id,TOPIC=NYSE
End-while
LOGOFF USER-ID=SB1,TOKEN=TKSBI1

A publisher issues a SEND_PUBLICATION command to send a publication containing multiple
messages. The publisher's SEND_PUBLICATION command is performed with WAIT=NO and
PUBLICATION-ID=NEW. Remaining messages belonging to this publication are sent to the broker by
specifying the generated PUBLICATION-ID within each subsequent SEND_PUBLICATION command.
These messages are committed by issuing the CONTROL_PUBLICATION command, which also specifies
the generated PUBLICATION-ID.

ACl for C 33

Writing Applications: Publish and Subscribe

LOGON USER-ID=PB1,TK=TKPB1
SEND_PUBLICATION PUBLICATION-ID=NEW,TOP=NYSE,USER-ID=PB1,TOKEN=TKPB1
While data

SEND_PUBLICATION PUBLICATION-ID=publication-id,USER-ID=PB1,TOKEN=TKPBI
End-while
CONTROL_PUBLICATION «
OPTION=COMMIT,PUBLICATION-ID=publication-id,USER-ID=PB1,TOKEN=TKPB1
LOGOFF USER-ID=PB1,TOKEN=TKPB1

Blocked and Non-blocked Broker Calls

= Non-blocked Command: WAIT=NO
= Blocked Command: WAIT=YES or WAIT=n

In the publish-and-subscribe communication model, the term “blocked call” refers only to the
broker RECEIVE_PUBLICATION command used by subscriber applications. The SEND_PUBLICATION
command is always “non-blocking”, such that WAIT=NO must be specified. A publisher application
sends a publication via EntireX Broker for a specified topic without waiting for any subscribers
to receive the publication.

A subscriber application component can use the control block field WAIT in the following ways to
determine whether broker will automatically generate a WAIT in order for the command to be
either received or satisfied by the partner application:

Non-blocked Command: WAIT=NO

RECEIVE_PUBLICATION allows a subscriber application to request a publication for a specified
topic. If there are no publications currently available, an ACI response code is returned, indicating
that no publications are currently available for the designated topic. See Error Messages and Codes.
Similarly, a response code also indicates that there are no further messages to be received within
the same publication, where PUBLICATION-ID=nnn has been specified to retrieve continuation
segments of the same publication. This technique is used by subscriber applications only.

Example: Subscriber

The subscriber application component requests the next new publication, which is returned if
available. If there is no publication available, the subscriber receives a return code immediately,
indicating no publications are available at this time. There is no waiting, and the application per-
forms this command periodically under control of the application logic, as shown here:

34 AClfor C

Writing Applications: Publish and Subscribe

RECEIVE-PUBLICATION,PUBLICATION-ID=NEW,WAIT=NO,TOPIC=NYSE,USER-I1D=SB1, TOKEN=TKSB1
. application code to process publication

Blocked Command: WAIT=YES or WAIT=n

Allows a subscriber application to solicit a publication to be returned for the specified topic. The
calling application is automatically placed in a WAIT state until there is a publication available for
the specified topic. If no publication is available during the specified waiting time, an ACI response
code is returned to the application, indicating that no publications are currently available for the
designated topic. See Error Messages and Codes. Similarly, a response code also indicates that there
are no further messages to be received within the same publication if PUBLICATION-ID=nnn has
been specified in order to retrieve continuation segments of the same publication. This technique
is used by subscriber applications only.

Example: Subscriber

The subscriber application component requests the next new publication, which is returned if
available. If there is no publication available, the subscriber enters a WAIT state for the specified
(or default) time period, during which it is eligible to receive any new publications that arrive in
this time. At the end of the specified (or default) time period, the subscriber receives a return code
if no publications were available. The following example shows this process being repeated indef-
initely within a loop:

Repeat
RECETVE-PUBLICATION,PUBLICATION-ID=NEW,WAIT=YES,TOPIC=NYSE,USER-ID=SB1, TOKEN=TKSB1
. application code to process publication
End-repeat

ACl for C 35

Writing Applications: Publish and Subscribe

Timeout Parameters

= Timeout Behavior
= Types of Non-activity Time
= Recommendations

Timeout Behavior

EntireX Broker provides a number of timeout mechanisms that allow you to control wait times
flexibly, optimize resource usage, and configure efficient communication.

The PUBLISHER-NONACT and SUBSCRIBER-NONACT attributes are non-activity timeout parameters
which can be specified independently of each other to control the timeout behavior of publisher
and subscriber application components. If an application component issues no commands to
the broker for the specified time period, the broker logs the user off automatically, cleaning up
related in-memory resources. See L0GON and LOGOFF under Writing Applications: Publish and
Subscribe in the ACI Programming documentation. If the subscriber did not issue a durable ALLOW-
DURABLE command, the user's subscription will also be removed after this time.

The SUBSCRIPTION-EXPIRATION attribute determines the lifetime of a user's durable subscription.
Durable subscriptions are retained by the broker until either the subscriber issues an UNSUBSCRIBE
command or the subscription lifetime has expired.

The PUBLICATION-LIFETIME attribute determines how long publications are retained by the
broker until they are either received by all subscribers or the publication lifetime has expired.

The WAIT field in the ACI control block is significant only to the subscriber application component.
The program is placed into a WAIT state for a specified time when issuing the
RECEIVE_PUBLICATION command, allowing data or a reply to be received before control is passed
to the calling program. Placing the program into a WAIT state during a broker command is referred
to as making a blocked command. A non-blocked command is executed if WAIT=NO is specified.
See Blocked and Non-blocked Broker Calls under Writing Applications: Publish and Subscribe in the
ACI Programming documentation. The SEND_PUBLICATION command is always issued with
WATT=NO.

Types of Non-activity Time

There is interplay between the non-activity times specified in the attribute file for the attributes

PUBLISHER-NONACT
SUBSCRIBER-NONACT
CLIENT-NONACT
SERVER-NONACT

36

ACl for C

Writing Applications: Publish and Subscribe

where an application component performs more than one of these roles. In this case the maximum
non-activity time associated with the user will take precedence. This fact must be considered where
an application component implements both publish and subscribe and client and server.

Recommendations

The following recommendations apply to developing publish-and-subscribe applications:

® If the subscriber issues blocked RECEIVE_PUBLICATION commands, make the WAIT time adjustable.
The WAIT value can be read as a startup parameter from the user-written INI or CFG file, or any
other parameter data set or set of environment variables, depending on the platform.

® When using non-durable subscriptions, ensure the specified SUBSCRIBER-NONACT time is not
exceeded by the subscriber between issuing commands to the broker; otherwise the user will
be automatically logged off, and the user's subscription will be removed during a period of in-
activity. See Durability of Subscriptions under Basic Concepts of Publish and Subscribe under Writing
Applications: Publish and Subscribe in the ACI Programming documentation

] Note: When blocking RECEIVE_PUBLICATION commands, the SUBSCRIBER-NONACT value
is overridden by the WAIT time (if this is greater).

= If there are no available messages for the duration of a blocked RECEIVE_PUBLICATION command,
response code 00740074 is returned to the subscriber. The subscriber can reissue the
RECEIVE_PUBLICATION command repeatedly until the next publication becomes available. See
also Blocked Command: WAIT=YES or WAIT=n.

= If there are no available messages when issuing a non-blocked RECEIVE_PUBLICATION, the
command returns response code 00030488. See also Non-blocked Command: WAIT=NO.

= If there are no further messages available when issuing a RECEIVE_PUBLICATION, the command
returns response code 00740480.

® Ensure that the PUBLISHER-NONACT time is not exceeded by the publisher between issues of
SEND_PUBLICATION commands; otherwise the user will be automatically logged off, and any
unfinished or uncommitted publications will be lost.

Configuration Prerequisites for Durable Subscriptions

A subscription can be durable or non-durable. See Durability of Subscriptions under Basic Concepts
of Publish and Subscribe under Writing Applications: Publish and Subscribe in the ACI Programming
documentation. Durable subscriptions require additional configuration steps. Since subscriber
information for durable subscriptions must also be present after a broker is restarted, a persistent
store is required (PSTORE). See also Concepts of Persistent Messaging in the general administration
documentation. This allows Adabas (all platforms), file system (UNIX and Windows) and DIV
(z/OS) to be utilized for storing both publication information and, optionally, subscription inform-
ation.

ACl for C 37

Writing Applications: Publish and Subscribe

If you use the persistent store for subscriber information under Adabas, see Configuring and Oper-
ating the Adabas Persistent Store in the platform-specific administration documentation. If you are
using persitent store type DIV or the local file system, no additional PSTORE configuration is re-
quired. See also Broker-specific Attributes under Broker Attributes in the administration documentation
for other related parameters.

NUM-TOPIC-TOTAL =4
NUM-SUBSCRIBER-TOTAL = 8
SUBSCRIBER-STORE =PSTORE

Note: The topic attribute definitions must specify ALLOW DURABLE=YES. Otherwise durable

subscription requests are rejected.

Data Compression

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
senders and receivers. This helps to reduce response time during transmissions as well as improve
the overall network throughput, especially with low bandwidth connections.

Compression is performed only on the buffers used to send and receive data. The application has
the option of setting the level of compression/decompression for data transmission. The compression
level can be set to achieve either no compression or a range of compression/decompression. See
Data Compression in EntireX Broker in the general administration documentation. Application
components can set compression individually to Broker.

zlib is a general-purpose software implementing data compression across a variety of platforms.
The functions used within EntireX Broker represent a subset of those available within the zlib
software. The compression algorithms are implemented through the open source software zlib.
It may occur that the data buffer does not compress during a data transmission; if it does not
compress, a logged warning message will appear in 00200450 and in the stub.

Technique

The Broker ACI control block contains a field that is used to set the compression level. This field
determines for any send/receive transmission whether the data buffer will be compressed/decom-
pressed. See ACI control block field COMPRESSLEVEL.

38 ACl for C

http://www.zlib.net/

Writing Applications: Publish and Subscribe

Error Handling

After every broker operation, the application must check the ERROR-CODE. It consists of a combin-
ation of

= error class (first four digits) and

® error number (last four digits)

While the error number describes the exact situation, the error class often determines how the
program will proceed after returning from the EntireX Broker operation. From the programmer's
point of view, therefore, the error class may be more important than the particular error number.

For more information, see Error Messages and Codes.
Programming Techniques

We recommend trapping the error classes in a “case” statement, for example, a DECIDE in Natural
or a switch statement in C.

All error classes - for example user and configuration errors - leading to the same action (that is,
reporting or logging the situation and aborting issuing broker calls), can be handled together in
the NONE VALUE or default case.

Example for C Progamming Language

int i, iErrorCode, iErrorClass, iErrorNumber, ret_val;
char szErrorTextBuffer[S_TXT + 171;.....

/* prepare error code field and error text buffer */
memset (pETBCB->error_code, '0',sizeof(pETBCB->error_code));
memset(szErrorTextBuffer,'\0',sizeof(szErrorTextBuffer));

/* call the broker */
ret_val = broker(pETBCB,pSendBuffer,pReceiveBuffer,szErrorTextBuffer);

/* evaluate error class from error code field */
iErrorClass = 0;
for(i = 0; i < 4; ++1)
{

iErrorClass *= 10;

iErrorClass += pETBCB->error_codel i] - '0';
}

if (iErrorClass == 0 && ret_val != 0)
{
printf("Wrong API_TYPE and/or API_VERSION\n");

ACl for C 39

Writing Applications: Publish and Subscribe

else

/* evaluate error number from error code field */
iErrorNumber = 0;
for(i = 4; i < 8; ++i)
{

iErrorNumber *= 10;

iErrorNumber += pETBCB->error_codel[i] - '0';
}

/* evaluate error code as integer value */
iErrorCode = (iErrorClass * 10000) + iErrorNumber;

/* handle error */
switch (iErrorClass)
| case 0: /* Successful Response */
break;
case 2: /* User does not exist */
break;
case 3: /* Conversation ended */
break;
case 7: /* Service not registered */
break;
case 74: /* Wait Timeout occurred */

break;

default:

printf("EntireX Broker Error occurred.\n");
printf("%8.8u %s",ikrrorCode,szErrorTextBuffer);

break;

40

ACl for C

Writing Applications: Publish and Subscribe

Using Internationalization

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

This section covers the following topics:

= General Information
= Providing Locale Strings
= Using the ENVIRONMENT Field with the Translation User Exit

General Information

The broker stub does not convert your application data before it is sent to the broker. The applic-
ation's data is shipped as given.

For the internationalization approaches ICU conversion and SAGTRPC user exit, valid locale
strings are required for conversion to behave correctly.

Providing Locale Strings

Under the Windows operating system:

® The broker stub assumes by default that the data is given in the encoding of the Windows ANSI
codepage configured for your system. If you are using at least API - VERSION 8 and communicating
with a broker version 7.2.n or above, a codepage identifier of this Windows ANSI codepage is
also automatically transferred as part of the locale string to tell the broker how the data is en-
coded.

® If you want to adapt the Windows ANSI codepage, see the Regional Settings in the Windows
Control Panel and your Windows documentation.

Under all other operating systems:

® The broker stub does not automatically send a codepage identifier to the broker as part of the
locale string.

® The broker stub assumes the broker's locale string defaults match. If they do not match, provide
the codepage explicitly. See Broker’s Locale String Defaults under Locale String Mapping in the in-
ternationalization documentation.

With the ACI control block field LOCALE-STRING:

" You can override or provide a codepage in the locale string sent to the broker. If a codepage is
provided, it must follow the rules described under Locale String Mapping in the internationaliz-
ation documentation.

ACl for C 41

Writing Applications: Publish and Subscribe

" You can force a locale string to be sent if communicating with broker version 7.1.x and below.
Under Windows you can use the abstract codepage name. See Using the Abstract Codepage Name
LOCAL under Locale String Mapping in the internationalization documentation.

" API version 4 or above is required to override the locale string.
The encoding in which your application gives the data to the broker stub and the locale string

® must always match, i.e. the codepage derived after the broker's built-in locale string mapping
process must be the same as the encoding of the data provided. See Broker’s Built-in Locale String
Mapping under Locale String Mapping in the internationalization documentation.

" must be a codepage supported by the broker, depending on the internationalization approach;
otherwise, unpredictable results will occur.

Example for Assembler

MVC S$LOCALE,=C"ECS037" MOVE CP

Examples for C

1. Using a specific codepage

/* prepare the locale-string with a codepage */
memset (pETBCB->Tocale_string,' ',sizeof(pETBCB->Tocale_string));
strncpy (pETBCB->1ocale_string,"ECS0819",sizeof(pETBCB->1ocale_string));

2. Using the platform's default codepage (Windows only)

/* prepare the locale-string with a codepage */

memset (pETBCB->locale_string,' ',sizeof(pETBCB->locale_string));
strncpy (pETBCB->Tocale_string,
ETB_CODEPAGE_USE_PLATFORM_DEFAULT,sizeof(pETBCB->Tocale_string));

Example for COBOL

MOVE "ECS037' TO LOCALE-STRING.

42 ACl for C

Writing Applications: Publish and Subscribe

Examples for Natural

MOVE 'ECS037' TO #SDPA-API.#LOCALE_STRING.

Using the ENVIRONMENT Field with the Translation User Exit

Using the internationalization approach translation user exit, an ACI programmer can provide ad-
ditional information to their translation exit through the ENVIRONMENT field, allowing flexible
translation behavior in accordance with application requirements. The field cannot be used for
any other internationalization approaches and must be empty if a method other than translation
user exit is used. See Translation User Exit under Introduction to Internationalization.

Example

Assume a broker service or topic has a user-written translation routine called ABCTRAN, which
is capable of performing several types of data conversion, for example EBCDIC-ASCII translation,
byte swapping, and mixed data types. The user translation routine may need to know the data
formats used by both partners. The ENVIRONMENT field can be used to pass this information from
the application to the translation routine in Broker kernel.

Technique

MOVE 'MYCODEPAGE' TO #ETBCB.{fENVIRONMENT

CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Using Send and Receive Buffers

Introduction

The send buffer and the receive buffer are passed as parameters to the EntireX Broker. Both buffers
can occupy the same location. See Call Format in the language-specific EntireX ACI documentation.

The length of the data to be sent is given in the ACI field SEND- LENGTH. If the SEND-LENGTH is
greater than the send buffer during data transmission, you could accidentally send the data that
is physically located in memory behind your send buffer to the designated Broker.

The RECEIVE-LENGTH is required with the RECEIVE and RECEIVE_PUBLICATION functions and with
SEND functions waiting for a reply. The length of the receive buffer is specified in the ACI field
RECEIVE-LENGTH. If the RECEIVE-LENGTH is greater than the receive buffer during data reception,
you can overwrite the data physically located behind the receive buffer being used.

ACl for C 43

Writing Applications: Publish and Subscribe

If the data to be returned is less than RECEIVE-LENGTH, the rest of the receive buffer remains un-
changed and is not padded with trailing blanks or other characters. The ACI field RETURN- LENGTH
contains the length of the data actually returned. The RECEIVE-LENGTH field is not changed upon
return.

| Note: With Adabas version 8, the maximum size of message data is no longer limited to

approximately 32 KB. If Adabas version 8 is not used, these same limits still apply under
z/OS.

Error Cases

Conversion and translation of data can increase the amount of data and thus require a buffer of a
larger size than provided. It may also be impossible to determine the size required in advance.
EntireX provides a feature to reread the data in such cases:

Using API version 2 and above, if the amount of data to be returned is greater than the
RECEIVE-LENGTH, the exact length needed is given in the ACI field RETURN- LENGTH together with
an error code, depending on the internationalization approach. See Internationalization with EntireX.
Note the following:

For translation and translation user exit:

® The error code is 00200094.

® The data up to the length of the receive buffer is translated. The rest is truncated.
for ICU conversion and SAGTRPC user exit:

® The error code is 00200377.

® No data is returned in the receive buffer.

To obtain the entire message, increase the size of the receive buffer and issue an additional Broker
ACI function RECEIVE or RECEIVE_PUBLICATION with the option "LAST".

Using API version 5 and above, it is also possible for a client to reread a truncated message in non-
conversational mode, by issuing an additional Broker ACI function RECEIVE or
RECEIVE_PUBLICATION with the option "LAST" as well as the CONV - ID returned from the ACI control
block. No EOC is needed after RECEIVE.

44 ACl for C

Writing Applications: Publish and Subscribe

Transport Methods

The maximum length possible for send and receive buffers is affected by the transport method
used.

Maximum Receive /

Transport Method |Send Buffer Size If using this transport method, ...

TCP/IP 2,147,482,111 B B the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

Entire 30,545 B = the send and receive buffer sizes are affected by the setting of the

Net-Work Net-Work parameter IUBL for all involved platforms (see the

Net-Work documentation for more information);

= the send and receive buffer sizes are affected by the Adabas
SVC/Entire Net-Work-specific attribute IUBL for Broker running
under z/OS;

® the maximum send and receive buffer size is around 30,545 bytes.

Note: Under z/OS with Adabas version 8, the value for NET is the
same as for TCP and SSL.

SSL 2,147,482,111 B B the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

Tracing

Trace information showing the commands help the application programmer debug applications
and solve problems. Tracing can be obtained for the application (stub trace) and for the Broker
kernel (kernel trace). The stub trace shows the Broker functions issued by your application,
whereas the Broker kernel trace will contain all Broker functions issued by all applications using
the Broker.

Setting the Broker attribute TRACE- LEVEL=1 provides traces containing just the Broker functions
processed by the Broker kernel without additional diagnostics. It is only necessary to set the trace
value higher when generating traces for Software AG support.

ACl for C 45

Writing Applications: Publish and Subscribe

Stub Trace

Tracing is available for all stubs on UNIX and Windows. For the stubs for which tracing is available
on z/OS, see table under Administration of Broker Stubs under z/OS in the z/OS administration doc-
umentation.

To set the stub trace, see Tracing for Broker Stubs in the platform-specific administration document-
ation.

Kernel Trace

Tracing is available for Broker on all platforms. For z/OS, see Administration of Broker Stubs under
z/OS in the z/OS administration documentation.

To set the kernel trace, see Tracing webMethods EntireX in the platform-specific administration
documentation.

46 AClfor C

Writing Applications: Publish and Subscribe

Transport Methods

Overview of Supported Transports

This table gives an overview of the transport methods supported by EntireX Broker stubs.

Operating Transport to Broker
System Environment Module TCP[SSL|NET "JHTTP(S) ¥
z/OS @ Batch, TSO, IMS (BMP) |BROKER X | x| x
Com-plete COMETB x | @ X
CICS CICSETB x | 9] x
IMS (MPP) MPPETB X | x e
IDMS/DC ¥ IDMS x | @
Natural NATETB23 x | x X
UNIX System Services Java ACI in the Developer's Kit X | x X
documentation
UNIX broker.so X | x
Java ACI in the Developer's Kit X | x X
documentation
Windows broker.dll © X | x
Java ACI in the Developer's Kit x | x X
documentation
BS2000/0OSD |Batch, Dialog (formerly BROKER X | x X
TIAM)
z/VM BKIMBCMS X X
IBM i EXA X
OpenVMS BROKER x | x
Notes:

1. NET is available for transport to a broker running under mainframe platforms only; not to a
broker running under UNIX or Windows.

2. Under z/OS you can use IBM's Application Transparent Transport Layer Security (AT-TLS) as
an alternative to direct SSL support inside the broker stub. Refer to the IBM documentation for
more information.

3. Use AT-TLS. See Note 2.

4. Tracing and transport timeout are not supported in this environment.

ACl for C 47

Writing Applications: Publish and Subscribe

5. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is
identical to broker.dll.

6. Via Broker HTTP(S) Agent; see Settting up and Administering the Broker HTTP(S) Agent in the
UNIX and Windows administration documentation.

See also:

= Setting Transport Methods for Broker Stubs in the platform-specific broker stub administration
documentation

= Setting Transport Methods under Writing Advanced Applications - EntireX Java ACI
TCP/IP

TCP is not available for all Broker stubs and all environments (see table above).

See Using TCP/IP as Transport Method for the Broker Stub in Setting Transport Methods for Broker Stubs
in the platform-specific broker stub administration documentation, which describes how to set
up TCP transport.

Application programs using TCP/IP as the transport specify the target Broker ID in terms of a host
name (or IP address) together with the port number on which the Broker TCP/IP communications
driver is listening. Example: An application communicating through TCP/IP would specify on
each command the Broker ID

IBM1:3932:TCP

where the host on which the Broker kernel executes is known to TCP as IBM1 and is listening on
port 3932.

Entire Net-Work

Communication through Entire Net-Work is available for all Broker stubs when communicating
with a Broker kernel on z/OS through Entire Net-Work. Applications can also utilize Entire Net-
Work communication to obtain local interprocess communication with a z/OS Broker kernel running
on the same machine as the application. This can provide a considerable performance benefit.
Local interprocess communication is achieved through the Adabas SVC mechanism.

Application programs using Entire Net-Work as the transport specify the target Broker ID in terms
of the target Entire Net-Work ID of the Broker kernel. For example, an application communicating
through Entire Net-Work would specify on each command the Broker ID:

48 AClfor C

Writing Applications: Publish and Subscribe

ETBOOL::NET

This can be abbreviated to the following for the Assembler stubs executing on z/OS (BROKER,
CICSETB, COMETB, MPPETB):

ETB0OO1

where the Entire Net-Work ID of the Broker kernel is 001.

SSL and TLS

Application programs using Secure Sockets Layer (SSL) or Transport Layer Security (TLS) as the
transport must specify the SSL settings to the broker stub before any communication with the

Broker can take place. There are various methods of setting SSL or TLS transport. See SETSSLPARMS
and Running Broker with SSL or TLS Transport in the platform-specific administration documentation.

Example: An application communicating through SSL or TLS would specify on each command
the Broker ID:

MYPC:1958:SSL

where the host on which the Broker kernel executes is known to SSL or TLS as MYPC and is
listening on port 1958.

Transport Examples
® For programming language C under Windows:

strcpy(pSBuf, "TRUST_STORE=c:\\certs\\CaCert.pem&VERIFY_SERVER=N");
EtbCb.send_length = strlen(pSBuf);

EtbCb.errtext_length = 40;

EtbCb.function = FCT_SETSSLPARMS

rc = broker (etbcb, pSBuf, (char *) 0, pEBuf);

* For programming language Natural under z/OS:

MOVE 'TRUST_STORE=UID/KEYRING' TO #SSL-BUFF

MOVE 80 TO #ETBCB.#fSEND-LENGTH MOVE 40 TO ffETBCB.{fERRTEXT-LENGTH
MOVE #FCT-SSLP TO #ETBCB.#FUNCTION

MOVE 'IBMHOST:1958:SSL' TO #ETBCB.#BROKER-ID

CALL 'BROKER' #ETBAPI #SSL-BUFF #RECV-BUFF #ERR-TXT

See table above for how SSL or TLS is supported depending on broker stub and platform.

For information on Secure Sockets Layer, see SSL or TLS and Certificates with EntireX.

ACl for C 49

Writing Applications: Publish and Subscribe

Considerations for Writing Applications

" The ACI field WAIT allows the application to place the sending or receiving program in a WAIT
state for a specified time; data or a reply will therefore be received before control is passed to
the calling program. When a WAIT value is specified fora SEND /RECEIVE or RECEIVE_PUBLICATION
function, the calling application waits until the specified time has elapsed or a notification event
occurs.

" WAIT=YES makes additional handling necessary in the Broker stub, whereby YES is replaced by
the maximum integer value. We recommend you specify a finite value instead of YES.

® If frequent outages are expected in the network connections, it is useful to set the transport
timeout to n seconds. After n seconds, the Broker stub terminates the TCP connection, if there
is no response from the other side (the Broker kernel). This will help free up the network on the
application side. In the case of applications for which the WAIT value is specified in the ACI
control block (that is, blocking applications), the actual timeout value is the total of the transport
timeout plus WAIT time.

= TCP/IP only:

" The Broker ID can contain either an IP address or a hostname. If a hostname is used, it should
be a valid entry in the domain name server.

" A LOGOFF call to the Broker kernel will only logically disconnect the application from the
Broker kernel. The physical TCP/IP connection is not released until the application terminates.

Restrictions with APl Versions 1 and 2

The following maximum message sizes apply to all transport methods:

" AClI version 1: 32167 bytes
® AClI version 2: 31647 bytes

Variable-length Error Text

In previous ACI versions, Broker kernel always returned 40 bytes of error text, space-padded if
necessary. For ACI version 9 and above, variable length error text can now be returned if requested.
With ACI 9 and above, error text up to the requested length is returned via a new section in the
AClI reply. For any previous ACI versions, ETXL is not sent, and the error text is returned by the
traditional method.

Note that the error text will continue to be traced in the stub and kernel trace and kernel command
log.

See Broker ACI Fields in the ACI Programming documentation.

50 ACIfor C

Writing Applications: Publish and Subscribe

Programmatically Turning on Command Logging

You can trigger command logging for EntireX components that communicate with Broker by setting
the field LOG-COMMAND in the ACI control block.

All functions with LOG-COMMAND programmatically set in the ACI string field will have their com-
mands logged, regardless of any filter settings. Because the L0G- COMMAND option will override any
command-log filter settings, remember to reset the L0G-COMMAND field if subsequent requests do
not need to be logged.

IAF Authentication

With ACI field CREDENTIALS-TYPE you can specify that the token specified in the IAF token field
is used to authenticate the user. If this field is left blank, user ID and password will be used as
before.

ACl for C 51

52

3 Writing Applications: Client and Server

Overview of CommUNICAtIoN MOGEIScoiiiiiiiiie e e e 55
Basic Concepts 0f ClieNt @Nd SEIVETciiiiiiiiii e 55
API-TYPE @nd API-VERSION ...ttt 57
LOGON @NA LOGOFF ...ttt ettt e e ettt e e ettt e e e et e e e e enneeas 57
USER-ID @NA TOKEN ...ttt et e et e e et e e e et e e e e e e e e nnees 58
Control Block Fields and VBIDSvveeiiiiiieii e 60
Implementation of Client and Server COMPONENESvvviiiiiiiiiiiiiiie e 63
Blocked and Non-blocked BroKer Callscoouiiriiiiiieiei e aa e 64
Conversational and Non-conversational MOGEoouvviiiiiiiiiieie e 67
Managing Conversation CONLEXEScceiiiiiiiiiie ettt e e e e e e e eeaeeaa e 70
Delayed SEND FUNCHON ..ottt 73
TIMEOUL PAraMELEIS ... ittt e e et e e e e 74
Data COMPIESSION .. .ttteeees ittt ettt e ettt e e e e e ettt e e e e e e e e bbbttt e e e e e e e ettt eaae e e e e e neees 76
Error Handling .o 77
Using INtern@tion@liZAtIONcoiiiiiii s 80
Using Send and RECEIVE BUFETSoiiiiiiii i 82
L= e 84
TranSPOIt METNOGASee ittt e e e e e e e e e 86
Variable-length ErTOr TEXEuuiuueiiiiiii e 89
Programmatically Turning on Command LOGGINGceeiuurrieeiiiiii ettt 90
LAF AUERENTICATION ...ttt e e e e e e e e e 90

53

Writing Applications: Client and Server

This chapter describes how to implement and program client and server applications with EntireX
Broker.

See also Writing Applications: Attach Server in the ACI Programming documentation and Writing
Applications: Units of Work in the ACI Programming documentation.

54 AClfor C

Writing Applications: Client and Server

Overview of Communication Models

There are two communication models in EntireX Broker: client and server and publish and sub-
scribe.

® Client and Server
This communication model is based on a logical connection between exactly two partners: a
client and a server. It covers the communication requirements conversational and non-conver-
sational, and synchronous and asynchronous.

® Publish and Subscribe
This communication model is used if data is to be published to multiple recipients. It is an al-
ternative to client and server and is implemented as an independent subsystem in EntireX
Broker. See Writing Applications: Publish and Subscribe in the ACI Programming documentation.

Basic Concepts of Client and Server

= Client-and-Server Application Components
= Conversationality
= Synchronicity

Client-and-Server Application Components

In the client-and-server communication model there are two partner application components: a
requesting partner (the client) and the partner satisfying the request (the server). The client iden-
tifies the required service through the names of the SERVER-CLASS, SERVER-NAME and SERVICE with
which the partner has registered.

EntireX Broker allows multiple server application components to register the same service in order
to satisfy processing requirements. In conversational requests, the client and the server are bound
to each other for the duration of the conversation. In addition, a server application component can
satisfy more than one request type after registering several class, server and service names.

An application component is not restricted to a single role as either client or server; it can perform
the role of both client and server. It can therefore make requests for processing while also satisfying
requests from other partner application components.

ACl for C 95

Writing Applications: Client and Server

Conversationality

The EntireX Broker allows both non-conversational and conversational communication in order
to meet the different requirements of connections between distributed application components.

* Non-conversational
In this communication type, each request comprises a single message from the client that requires
at most one reply from a server. Since there is only one SEND / RECEIVE cycle per request, each
request can be satisfied individually by any of a number of server replicas.

® Conversational
In this communication type, the request contains a series of related messages, initiated by a client,
which occur between client and server. Since there is a series of SEND / RECEIVE commands for
each request, the same replica of a server must process all related messages within a conversation.

Using EntireX Broker, an application may have more than one conversation active at the same
time with the same partner or with different partners. Conversational and non-conversational
modes can also be used simultaneously. The required mode of communication is always controlled
by the application component that initiates the communication, that is, the client side.

Synchronicity

EntireX Broker makes possible both synchronous and asynchronous communication. EntireX
Broker enables application components to combine synchronous and asynchronous communication
as needed by the application. The terms synchronous and asynchronous correspond to the terms
“blocked” and “non-blocked”. See Blocked and Non-blocked Broker Calls under Writing Applications:
Client and Server in the EntireX Broker ACI Programming documentation.

® Synchronous
The application component initiating the request waits for the processing to be completed by
the partner application component before continuing. EntireX Broker provides the application
with facilities to wait automatically for the partner application to complete processing and reply
to the requesting application partner.

= Asynchronous
The application component initiating the request does not wait for the processing to be completed
and continues to execute without needing to receive a reply from the partner application. EntireX
Broker provides the application with facilities to continue processing and obtain the partner's
reply at a later time, if needed.

56 ACIfor C

Writing Applications: Client and Server

API-TYPE and API-VERSION

Both the API-TYPE and the API-VERSION fields must always be provided.

Value |Bit Pattern | Description

1 (x'01") The standard value for API-TYPE is 1 (x'01') and usable with all Broker stubs in all
environments.

Note: If any of the following conditions exist, you must install the Adabas CICS link module
with the definition PARMTYP=ALL, using the ADAGSET macro.

1. If you are using NET transport with CICSETB stub with send or receive buffers greater
than 32 KB.

2. If you are using NET transport with CICSETB stub and your application does not have
a TWA.

Certain Broker functionality requires a minimum API - VERSION. Using publish and subscribe requires
APT-VERSION 8 or higher. For the highest available version of Broker, see API-VERSION. The send
buffer and the receive buffer are passed as parameters to the EntireX Broker. Both buffers can occupy
the same location.

See Broker ACI Control Block Layout in the EntireX language-specific ACI documentation.

Both the APT-TYPE and API-VERSION fields must be set correctly to ensure that Broker returns the
correct value in ACI field ERROR-CODE. Otherwise, depending on your programming language
and environment, a return code may not always be given.

See Call Format in the language-specific EntireX ACI documentation.

LOGON and LOGOFF

The LOGON and LOGOFF Broker functions are optional when using the client-and-server programming
model in your application. However, we recommend that the application issues LOGON and LOGOFF
function calls for the following reasons:

" LOGOFF will notify the Broker to clean up in-memory resources held for your program, making
them available to other users of the Broker.

® Without LOGOFF, the user's in-memory resources will time out in accordance with the Broker
attributes CLTENT-NONACT and SERVER-NONACT. Depending on the values set by the administrator,
this may not occur for some time.

Example for programming language Natural:

ACl for C of

Writing Applications: Client and Server

/* Logon to Broker/LOGON

MOVE #FCT-LOGON TO #fETBCB.#fFUNCTION

/*

CALL 'BROKER' #fETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Logoff example for programming language Natural:

/* Logoff to Broker/LOGOFF
MOVE #FCT-LOGOFF TO {ETBCB.#fFUNCTION
CALL 'BROKER" #fETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

USER-ID and TOKEN

= |dentifying the Caller
= Restarting after System Failure
= Managing the Security Token

Identifying the Caller

USER-ID identifies the caller and is required for all functions except VERSION. The USER-ID is
combined with an internal ID or with the TOKEN field, if supplied, in order to guarantee uniqueness,
for example where more than one application component is executing under a single USER-ID.

Brokers identify callers as follows:
® When the ACI field TOKEN is supplied:

The ACI field USER- ID, together with the TOKEN, is used to identify the user. Using TOKEN allows
the application to reconnect with a different process or thread without losing the existing con-
versation. When a new call is issued under the same USER-ID from a different location but with
the same TOKEN, the caller is reconnected to the previous context.

| Note: The ability to reconnect to the previous context is vital if restart capabilities of ap-

plications are required. The combination of USER- 1D and TOKEN must be unique to the
Broker. It is not possible to have the same USER-ID and TOKEN combination duplicated.

® When the ACI field TOKEN is not supplied:

The USER-ID is combined with an internally generated ID. It is possible to use the same USER-ID
in different threads or processes. All threads and processes are distinct Broker users.

58 ACIfor C

Writing Applications: Client and Server

Restarting after System Failure

(Caution: USER and TOKEN must be specified by all publisher and subscriber applications

where publication and subscription data is held in the persistent store.

The Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER- 1D, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

Specification of USER and TOKEN is necessary for reconnection with the correct user context after
Broker has been stopped and restarted. This specification is also necessary to enable effective use
of publish and subscribe, including recovery from system failures.

Managing the Security Token

If you are using EntireX Security, the application must maintain the content of the SECURITY - TOKEN
field and not change this field on subsequent calls.

ACl for C 59

Writing Applications: Client and Server

Control Block Fields and Verbs

= Basic Functionality of Broker AP
= ACI Syntax

= Key ACI Field Names

= Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the basic functionality of the Broker API. The following functions in the
Broker API are fundamental to client-and-server processing. For full set of verbs relating to UOW
processing, see Control Block Fields and Verbs under Writing Applications: Units of Work in the ACI
Programming documentation.

" DEREGISTER
The function DEREGISTER is used by a server to indicate its intention to terminate its role as a
server for the named SERVER-CLASS, SERVER-CLASS and SERVER-CLASS. The server can terminate
its role as server for all class, server and service names for which it is registered, using a single
DEREGISTER command.

" EOC
The function EOC is used by either partner to terminate one or more active conversations.

® RECEIVE

The function RECEIVE is used by the server to obtain new requests from a client, and in the case
of conversations, to obtain subsequent related messages from the same client. This function is
also used by clients that issue asynchronous requests and wish to obtain the server's reply at a
later time. The field CONV- ID defines the behavior of this function. RECEIVE,CONV- ID=NEW signals
the server's readiness to obtain the next available new request, whereas the value CONV-ID=nnn
indicates that the next message within an existing conversation is being requested by the server.
The client uses RECEIVE,CONV-ID=nnn to obtain asynchronously a reply from the server for an
existing conversation.

" REGISTER
The function REGISTER is used by a component of an application to identify its intention to become
a server and satisfy requests issued to the named SERVER-CLASS, SERVER-CLASS and SERVER-CLASS.

= SEND

The functionSEND is used by the client either to make a new request or to send subsequent related
messages within a conversation. This function is also used by servers, after satisfying a request,
or during the course of a conversation, to reply to the client. The field CONV-ID defines the beha-
vior of this function. The client uses SEND,CONV - ID=NEW to initiate a new request and the value

CONV-ID=nnn when sending subsequent related messages in a conversation. The server always
uses SEND,CONV - ID=nnnwhen replying to a client, where nnnindicates the identity of the existing
conversation. The same syntax is used for both conversational and non-conversational modes.

60 ACl for C

Writing Applications: Client and Server

ACI Syntax

Function

Fields in EntireX Broker Control Block

DEREGISTER

API = 1 or higher

, BROKER-ID = BROKER-ID

, USER-ID = user_id

[, TOKEN = token]

, SERVER-CLASS = class_name |
, SERVER-NAME = server_name |
, SERVICE = service_name |
[, OPTION = QUIESCE | IMMED 1]

*
*
*

EOC

API = 2 or higher

, BROKER-ID = BROKER-ID

, USER-ID = user_id

[, TOKEN = token]

[, OPTION = CANCEL]

, CONV-ID = conv_id | ANY

[, SERVER-CLASS = class_name]
[, SERVER-NAME = server_name]
[, SERVICE = service_name]

RECEIVE

API =1 or higher

, BROKER-ID = BROKER-ID

, USER-ID = user_id

[, TOKEN = token]

, WAIT = n | YES | NO

, CONV-ID = conv_id | NEW | OLD | ANY
, SERVER-CLASS = class_name | *

, SERVER-NAME = server_name | *

, SERVICE = service_name | *

REGISTER

API = 1 or higher

, BROKER-ID = BROKER-ID

, USER-ID = user_id

[, TOKEN = token]

, SERVER-CLASS = class_name
, SERVER-NAME = server_name
, SERVICE service_name

[, OPTION ATTACH 1]

SEND

API = 1 or higher

, BROKER-ID = BROKER-ID

, USER-ID = user_id

[, TOKEN = token]

[, OPTION = DEFERRED]

, WAIT =n | YES | NO

, CONV-ID = conv_id | NEW

, SERVER-CLASS = class_name

ACl for C

61

Writing Applications: Client and Server

Function

Fields in EntireX Broker Control Block

, SERVER-NAME = server_name
, SERVICE = service_name

Key ACI Field Names

The following table lists key ACI field names for implementing applications that use the client/server
communication model. The other fields are available to identify partner programs, specify buffer
lengths, convey error codes, etc.

See Broker ACI Fields in the ACI Programming documentation for all fields.

ACI Field Name |Explanation

SERVER-CLASS|A client uses these fields to identify the service that it requires. A server uses this to offer

a service.

CONV-1ID Identifier to obtain and specify the conversation. Also used to determine communication
mode: conversational or non-conversational. See Conversationality.

FUNCTION Function code for one of the verbs (see Key Verbs for FUNCTION Field).

OPTION Indication of specific Broker behavior, depending on the function.

WALT Time value to specify blocking or non-blocking of the conversation. See Blocked and

Non-blocked Broker Calls under Writing Applications: Client and Server in the EntireX Broker
ACI Programming documentation.

Key Verbs for FUNCTION Field

The following table lists the most important verbs for the FUNCTION field.

See Broker ACI Functions in the EntireX Broker ACI Programming documentation for a complete
list of functions.

Verb Description
REGISTER |Inform the EntireX Broker that a service is available.
RECEIVE Retrieve request from partner.
SEND Send reply to the partner.
EOC Terminate one or more conversations.
DEREGISTER|Remove the availability of the service.
62 AClfor C

Writing Applications: Client and Server

Implementation of Client and Server Components

This example implements a simple non-conversational server and the appropriate client. The
server is able to receive a request from the client and send back a reply. See Conversationality.

The following EntireX Broker functions are used to implement the server component:

Function Explanation

LOGON Log on the application to EntireX Broker.

REGISTER |Inform EntireX Broker about the availability of a service.

RECEIVE Retrieve request from partner.

SYNCPOINT |Commit the sending or acknowledgment receipts of a UOW and examine status.

SEND Send reply to the partner.

DEREGISTER |Remove the availability of the service.

LOGOFF Log off the application from EntireX Broker.

The program flow of the client component is:

LOGON USER-ID=user-id
SEND SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
LOGOFF USER-ID=user-id

The program flow of the server component is:

LOGON
REGISTER SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
repeat
RECEIVE SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
(individual request processing: reply to client for each message)
SEND CONV-ID=n
end-repeat
DEREGISTER SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
LOGOFF

The example above illustrates the structure of a typical server program. It consists of a server re-
gistration and a loop with RECEIVE / SEND cycles. This RECEIVE / SEND loop is normally interrupted
by shutdown messages from administration programs.

The appropriate client component needs three functions:

ACl for C 63

Writing Applications: Client and Server

Function |Explanation

LOGON |Log on the application to EntireX Broker.

SEND |Send request to partner.

LOGOFF |Log off the application from EntireX Broker.

The service offered by the server above is used by issuing a SEND operation within the client
component of the application.

Both server and client perform a LOGON as the first call and LOGOFF as the last call. This enables se-
curity checks and saves resources in EntireX Broker.

Blocked and Non-blocked Broker Calls

The application can use the EntireX Broker control block field WAIT to determine whether Broker
will automatically generate a WAIT in order for the command to be received or satisfied by the
partner application.

= Non-blocked Command: WAIT=NO

= Blocked Command: WAIT=YES or WAIT=n
= Examples: WAIT

= Examples: Programming Language Natural

Non-blocked Command: WAIT=NO

= SEND

An application sends a message via Broker to a partner application. The caller does not wait for
the partner application to RECEIVE the message or to process it. The application subsequently
performs RECEIVE commands if it intends to retrieve messages from the partner. This technique
is frequently used by server applications when replying to clients after satisfying their requests;
it can also be used by client applications that do not want to wait for the request to be serviced,
such as when using units of work (see Writing Applications: Units of Work in the ACI Programming
documentation).

= RECEIVE
Allows an application to ask for a message to be returned from the partner application. If the
partner application has not yet communicated any messages to Broker using the SEND command,
an ACI response code is given to the application, indicating no messages are currently available
either for the designated class/server/service or for the conversation (if an existing conversation
was established). This technique can be used by both client and server application components,
especially in a multithreading context, where more than one communication thread is being
maintained, or when programming units of work (see Writing Applications: Units of Work in the
ACI Programming documentation).

64 AClfor C

Writing Applications: Client and Server

Blocked Command: WAIT=YES or WAIT=n

® SEND
An application sends a request via Broker to a partner application. The calling application is
automatically put into a WAIT state until the partner application has performed a RECEIVE oper-
ation to obtain the request and then processes it before issuing a reply, using the SEND command.
Unlike the case where WAIT=NO, an inherent RECEIVE is generated to return the partner's reply.
This technique is used by client applications only.

= RECEIVE
An application asks for a message to be returned from the partner application. The calling ap-
plication is automatically put into a WAIT state until the partner application has provided the
necessary message through issuing a SEND command. If no messages are available during the
specified waiting time, an ACI response code is given to the application, indicating no messages
were available for the designated class/server/service or for the conversation (if an existing
conversation was established). This technique is frequently used by server applications when
waiting for messages to arrive from clients; it can also be used by client applications if the SEND
and RECEIVE commands are programmed separately.

Examples: WAIT

The EntireX Broker allows both server and client applications to specify a WAIT time with the SEND
or RECEIVE function. WAIT is a field in the ACI control block (see Broker ACI Fields in the ACI Pro-
gramming documentation). If a WAIT time is specified, the application is suspended until a reply
is received or the timeout value has elapsed. If a timeout occurs, the EntireX Broker returns an
error code to the calling program. If no WAIT time is specified, the application continues processing
and collects the reply later.

Server applications typically use the WAIT field with a RECEIVE function in order to wait for requests.
WAIT is not typically used with server SEND functions, allowing the server to continue processing
instead of waiting for a request. For example:

LOGON

REGISTER service

repeat
RECEIVE,CONV-ID=NEW,WAIT=nS
(individual processing)
SEND, CONV-1D=n,WAIT=NO

end-repeat

DEREGISTER service

LOGOFF

Client applications use the WAIT field with a SEND function in non-conversational communication
if they require a reply. Because the mode is non-conversational, no conversation ID is returned to
the client. The client must therefore wait for the reply from the server.

ACl for C 65

Writing Applications: Client and Server

LOGON
SEND, CONV-ID=NONE,WAIT=nS
LOGOFF

A RECEIVE function with no WAIT time can be used to check if requests or data/messages are
available for processing. Control is returned to the caller even if no request or data/message is
available to satisfy the caller's operation. Appropriate error codes are returned when nothing is
available.

LOGON
RECEIVE,CONV-ID=n,WAIT=NO
LOGOFF

The application can use the EntireX Broker control block field WAIT in the following ways to de-
termine whether Broker will automatically generate a WAIT in order for the command to be received
or satisfied by the partner application.

Examples: Programming Language Natural

* Blocked Broker Calls
= Example 1: Single Request without Reply under Examples for EntireX Broker Tutorial
® Example 2: Single Request with Reply under Examples for EntireX Broker Tutorial
* Non-blocked Broker Calls
® Example 3: Long Running Service - Non-blocked Client under Examples for EntireX Broker Tutorial

= Example 14: Single Requests without Reply - A Polling Server under Examples for EntireX Broker
Tutorial

= Example 15: Single Requests with Reply - A Polling Server under Examples for EntireX Broker Tu-
torial

| Note: See Examples for EntireX Broker Tutorial.

66 ACl for C

Writing Applications: Client and Server

Conversational and Non-conversational Mode

The mode of communication is always controlled by the component of the distributed application
that initiates communication. In the client and server model, this is the client side. When starting
a communication, the CONV-ID field of the ACI control block is used to signal the communication
mode to the Broker as follows:

® CONV-ID=NONE
Coded on the service-requesting side (client program), it denotes non-conversational mode.
EntireX Broker assigns a unique conversation ID to the communication that the client does not
need to know.

® CONV-ID=NEW
Coded in the client program, it denotes conversational mode. The EntireX Broker assigns a
unique conversation ID to the communication, which is retrieved by the server and client pro-
gram. This conversation ID must be specified in subsequent calls by both sides to refer to this
conversation, until the conversation is ended by either side.

The server always retrieves the unique conversation ID and uses it when sending back the reply
to the client. If no reply is required in non-conversational mode, the server ignores the conversation
ID.

Non-conversational Mode

When implementing a non-conversational communication, the CONV - ID field is used by the server
as follows:

LOGON

REGISTER service

repeat
RECEIVE,CONV-ID=NEW
(individual processing)
SEND, CONV-1ID=n

end-repeat

DEREGISTER service

LOGOFF

The client's SEND function is supplemented as follows:

ACl for C 67

Writing Applications: Client and Server

LOGON
SEND, CONV-ID=NONE
LOGOFF

Conversational Mode

When implementing conversational communication, the server uses the CONV-ID field as follows:

LOGON
REGISTER service
repeat
RECEIVE,CONV-ID=NEW
repeat
(individual processing)
SEND, CONV-ID=n
RECEIVE,CONV-ID=n
end-repeat until conversation ended
end-repeat
DEREGISTER service
LOGOFF

The conversation is ended when Message Class 0003 - EntireX ACI - Conversation Ended under Error
Messages and Codes is received. See Error Handling under Writing Applications: Client and Server in
the EntireX Broker ACI Programming documentation.

The client's SEND function is supplemented as follows:

LOGON

SEND, CONV-ID=NEW
SEND, CONV-1ID=n
SEND, CONV-ID=n
EOC,CONV-ID=n
LOGOFF

EOC Reason

The reason for an EOC might be of interest to the partner of the conversation. EntireX Broker enables
you to define the CANCEL option for an EOC function to indicate an abortive end of conversation.
You can also distinguish between a timeout and a regular EOC on the basis of the error number.
The error class is always Message Class 0003 - EntireX ACI - Conversation Ended under Error Messages
and Codes; the error number specifies the actual circumstances.

68 ACl for C

Writing Applications: Client and Server

Examples: Programming Language Natural

® Non-conversational communication
= Example 1: Single Request without Reply under Examples for EntireX Broker Tutorial
® Example 2: Single Request with Reply under Examples for EntireX Broker Tutorial

® Conversational communication
® Example 4: Transfer Messages from Server to Client under Examples for EntireX Broker Tutorial

= Example 5: Transfer Messages from Client to Server under Examples for EntireX Broker Tutorial

| Note: See Examples for EntireX Broker Tutorial.

ACl for C 69

Writing Applications: Client and Server

Managing Conversation Contexts

It is possible to program a server application to handle several clients simultaneously and thus
many conversations in parallel. Such a server is also capable of providing several different services
and this technique can be used to reduce the number of different server applications executing on
your machine. This increases throughput without wasting resources on a new service replica. The
following features make it easier to implement a server that supports multiple conversations:

= Conversation Status
= Conversation User Data
= Stored EOC

Conversation Status

The Broker ACI control block contains a field named CONV-STAT. This is filled by Broker after a
RECEIVE command. The following values are possible:

Value |Description

NEW |This is a new conversation. If the server needs to allocate a user-specific area, for example, this can
be done without a comparison being made against existing conversations.

NONE | This message is a conversationless message. It is probably not necessary to create a user context,
since the next request of this user is completely independent of this one, which is a requirement of
conversationless communication. The implementation of mixed servers (conversational and
non-conversational) is easier if it is known whether a message is conversational or not.

OLD |The message belongs to an existing conversation. The server can refer to the conversation user data
to find the partner context. See Conversation User Data.

Conversation User Data

Servers capable of serving multiple clients simultaneously are either stateless (servicing non-con-
versational requests) or they have to store conversation-related data for each user. This conversation-
related context data is typically stored by the server application in a dynamic memory area. When
a message is received, the user context related to that conversation must be located. This can be
done by implementing a mapping structure in the application that can be indexed by the conver-
sation ID, which returns the related context data.

Additionally, conversation-related contexts can be maintained by the Broker on behalf of the
server application using the USER - DATA field in the ACI control block. Broker remembers information
stored in the USER-DATA field when executing the SEND command. This data is returned to the ap-
plication on subsequent RECEIVE commands executed within the same conversation. Therefore,
your application is able to store information in USER-DATA when executing SEND commands and
retrieve it on RECEIVE commands. The data in USER-DATA is considered binary and is untouched
by the Broker.

70 ACIfor C

Writing Applications: Client and Server

) Note: The USER-DATA is never transmitted from client to server or vice versa. Both sides of

a conversation can store different USER-DATA, and both sides always receive their own data.

This USER-DATA helps with context areas as follows. A server application encounters a new conver-
sation with the CONV-STAT API field. The user area is created and, typically, a first application
confirmation is sent back to the client. Along with this SEND function, the server specifies the
pointer to the user context - or the index into a context array, or whatever is available - into the
USER-DATA. Whenever another request/message comes from that client via this conversation, this
pointer/index is returned to the application, and the server has the context of the client application
immediately, without having to scan a list of known conversations. Example:

ACl for C 7"

Writing Applications: Client and Server

example of State-ful server program which utilizes
USER-DATA to maintain application specific context
information between successive messages within
conversations with clients.

* % X o

REGISTER #SERVER-CLASS {#fSERVER-NAME #SERVICE

DO FOREVER
RECEIVE FCONV-ID=ANY
DECIDE ON FIRST VALUE #ERROR-CODE
/*
/* NICE RETURN CODE
VALUE '0"
DECIDE ON FIRST VALUE #CONV-1ID
/*
/* NEW CONVERSATION
VALUE "NEW'
#REQUEST-IN = #fRECEIVE-BUFFER
PROCESS NEW REQUEST FROM CLIENT AND
REPLY TO CLIENT ASKING BROKER TO REMEMBER
ACCOUNT NUMBER SO CLIENT DOESN'T HAVE TO
TRANSMIT THIS WITH EVERY MESSAGE
##ACCOUNT-NR = REQUEST-IN.ACCOUNT-NR
SEND #CONV-ID #SEND-DATA #fUSER-DATA

/*
/* EXISTING CONVERSATION
NONE VALUE
/* NEXT MESSAGE IN CONVERSATION RECEIVED
/* AND ACCOUNT NUMBER REMEMBERED BY BROKER
#FACCOUNT -NR = JFUSER-DATA
##REQUEST-IN = #fRECEIVE-BUFFER
DO SOME PROCESSING BASED ON REQUEST AND
ACCOUNT NUMBER REMEMBERED BY BROKER FOR
THIS CONVERSATION CONTEXT
REPLY TO CLIENT AS APPROPRIATE AND
END CONVERSATION SOONER OR LATER
SEND #fCONV-ID #SEND-DATA #fUSER-DATA
END-DECIDE
VALUE '00740074" /* RECEIVE TIME-OUT
ESCAPE BOTTOM
NONE VALUE /* REAL BROKER ERROR
DEAL WITH A REAL BROKER ERROR
END-DECIDE
DOEND /* END FOREVER LOOP

DEREGISTER

7 ACIfor C

Writing Applications: Client and Server

Stored EOC

Servers that handle multiple conversations in parallel normally have to maintain a user context
related to every conversation as described above. However, this context is typically allocated dy-
namically, and is therefore released after the conversation has ended. Not knowing when a partic-
ular conversation has finished would result in orphan contexts. To avoid this, the Broker offers
the NOTIFY-EOC option, which is a service-specific attribute defined in the Broker Attributes in the
administration documentation.

This means that the EOC notification, even for timed-out conversations, is kept until the server re-
ceives it. This is useful for servers serving multiple conversations, since they are always informed
about the end of a particular conversation and can therefore release all internal resources of a
particular user context.

Specification of NOTIFY-EOC=YES can consume substantial system resources; as a result, a shortage
of conversations for a service may occur. To avoid this shortage, a server must issue RECEIVE re-
quests not restricted to any conversation, which gives the Broker the chance to report timed-out
conversations. This does not of course mean that only RECEIVE functions with CONVERSATION- ID=ANY
are valid, but from time to time such an unrestricted RECEIVE function should be issued.

Delayed SEND Function

To allow maximum flexibility in communication, the EntireX Broker provides a simple means of
delaying the delivery of messages: allowing delivery of related messages in one logical block. If,
for some reason, the messages that belong to a block cannot all be sent, all the messages in the lo-
gical block can optionally be deleted.

The mechanisms by which the EntireX Broker does this are the HOLD option on the SEND function
and the UNDO function. Messages sent with HOLD status are not delivered until a message without
the HOLD option is sent on the same conversation.

Example

This example illustrates the logical program flow of a client program that sends several messages
on the same conversation, making delivery of the messages dependent on some condition. If the
logical block of messages cannot be delivered (triggering an error condition), all messages in the
logical block already sent can be deleted:

ACl for C 73

Writing Applications: Client and Server

SEND, CONV-ID=NEW,OPTION=HOLD
ce /* individual processing
SEND, CONV-ID=n,WAIT=NQO,OPTION=HOLD
e /* individual processing
SEND, CONV-ID=n,WAIT=NO,OPTION=HOLD
A /* individual processing
if <error> then /* error condition
UNDO,CONV-ID=n,0PTION=HOLD
else
SEND, CONV-ID=n,WAIT=NO
end-if
e /* individual processing
EOC

Example: Programming Language Natural

® Example 7: Send Messages with HOLD - Delayed Delivery under Examples for EntireX Broker Tutorial

Timeout Parameters

= Timeout Behavior

= Types of Non-activity Time
= Recommendations

= Unit of Work Lifetime

= Unit of Work Status Lifetime

Timeout Behavior

EntireX Broker provides a number of timeout mechanisms that allow you to control WAIT times
flexibly, optimize resource usage, and configure efficient communication.

® The CLIENT-NONACT, SERVER-NONACT and CONV-NONACT attributes are non-activity timeout para-
meters that can be specified independently of each other to govern the three elements involved
in a conversation: the requesting client, the registered server, and the conversation that will exist
between them.

® The WAIT field in the Broker ACI control block allows you to place the sending or receiving
program in a WAIT state for a specified time to allow data or a reply to be received before control
is passed to the calling program. Placing the program into a WAIT state during a Broker command
is referred to as issuing a blocked command. A non-blocked command is executed if WAIT=NO
is specified. See Blocked and Non-blocked Broker Calls under Writing Applications: Client and Server
in the EntireX Broker ACI Programming documentation.

There is interplay between the WAIT values of your SEND and RECEIVE calls and the settings of the
non-activity parameters in the Broker attribute file. See the WAIT field.

74 ACl for C

Writing Applications: Client and Server

Types of Non-activity Time

There is interplay between the non-activity times specified in the attribute file for the attributes

® PUBLISHER-NONACT
® SUBSCRIBER-NONACT
® CLIENT-NONACT and
® SERVER-NONACT

where an application component performs more than one of these roles. In this case, the maximum
non-activity time associated with the user will take precedence. This fact must be considered where
an application component implements both publish and subscribe and client and server.

Recommendations

The following recommendations apply to developing client and server applications:

" Make the Broker WAIT time used for blocked SEND / RECEIVE calls in the application (both servers
and clients) adjustable. This means that WAIT values must be read as a startup parameter from
a user-supplied INI or CFG file, or any other parameter data set or set of environment variables,
depending on the platform in use.

" On the client side, avoid high values for the WAIT time, which may lead to communication
problems.

= When the WAIT time is lower than CONV-NONACT attribute, the caller will receive 00740074 error
messages. Since the lifetime of the conversation exceeds the WAIT time specified for the command,
the application can retry with the Broker function RECEIVE, and option LAST is possible.

® When the WAIT time is higher than CONV-NONACT attribute, the caller will receive 00030003 error
messages. Since the lifetime of the conversation is less than the WAIT time specified for the
command, it is not possible for the application to retry because any messages relating to the
current conversation have already been cleaned up.

See also Timeout Considerations for EntireX Broker in the general administration documentation.
Unit of Work Lifetime

The UWNTIME parameter in the Broker Attributes in the administration documentation specifies the
lifetime for a persistent UOW. The UOW exists until it has been successfully processed or until it
is explicitly cancelled or backed out. If a UOW times out before being processed, or before any
other explicit action is taken, its status changes to TIMEOUT. The status may or may not be retained
in the persistent store, depending on the value of UOW status lifetime as described below. The
default UOW lifetime for the Broker is defined by the UWTIME attribute. It can be overridden by
the application in the UWTIME field of the ACI control block.

The UOW lifetime for the units of work is calculated only while Broker is executing.

ACl for C 75

Writing Applications: Client and Server

Unit of Work Status Lifetime

This can be specified through either of the following two exclusive attribute settings. The default
value zero implies the UOW status lifetime is zero, which means the status of the UOWSTATUS is
not retained after one of the following events occurs: UOW is processed; UOW times out; UOW
is backed out; UOW is cancelled. Status lifetime can be specified through either of the following
two parameters in the Broker Attributes in the administration documentation:

" UWSTATP (ACI_VERSION 3 or above)

This attribute contains a multiplier used to compute the lifetime of the status of a UOW. See
Writing Applications: Units of Work in the ACI Programming documentation. The UNSTATP value
is multiplied by the UWTIME value (the lifetime of the associated UOW) to determine how much
additional time the UOW status is retained in the persistent store. The lifetime is calculated to
start when any of the above events occurs and ends when the lifetime value expires. It can be
overridden by the application in the UOW-STATUS-PERSIST field in the ACI control block.

" UWSTAT-LIFETIME (ACI_VERSION 8 or above)

This attribute specifies the value to be added to the UWNT IME (lifetime of the associated UOWSTATUS)
to compute the length of time the UOW status is persisted. The UOW status lifetime begins at
the time at which the associated UOW enters any of the following statuses: PROCESSED, TIMEOUT,
BACKEDOUT, CANCELLED, DISCARDED. Specifying unit of work status lifetime in this way excludes
specifying it as a multiplier value through the attribute UNSTATP.

The status lifetime for the unit of work is calculated only while Broker is executing.

Note: The values described here as UWSTATP and UWSTAT-LIFETIME can also be assigned as

global Broker attributes or as a per-service attribute. However, the value specified by the
application in the ACI control block overrides the Broker (or service) attributes. See Broker
ACI Fields in the ACI Programming documentation.

Data Compression

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
senders and receivers. This helps to reduce response time during transmissions as well as improve
the overall network throughput, especially with low bandwidth connections.

Compression is performed only on the buffers used to send and receive data. The application has
the option of setting the level of compression/decompression for data transmission. The compression
level can be set to achieve either no compression or a range of compression/decompression. See
Data Compression in EntireX Broker in the general administration documentation. Application
components can set compression individually to Broker.

76 ACIfor C

Writing Applications: Client and Server

zlib is a general-purpose software implementing data compression across a variety of platforms.
The functions used within EntireX Broker represent a subset of those available within the zlib
software. The compression algorithms are implemented through the open source software zlib.
It may occur that the data buffer does not compress during a data transmission; if it does not
compress, a logged warning message will appear in 00200450 and in the stub.

Technique

The Broker ACI control block contains a field that is used to set the compression level. This field
determines for any send/receive transmission whether the data buffer will be compressed/decom-
pressed. See ACI control block field COMPRESSLEVEL.

Error Handling

After every broker operation, the application must check the ERROR-CODE. It consists of a combin-
ation of

" error class (first four digits) and

® error number (last four digits)

While the error number describes the exact situation, the error class often determines how the
program will proceed after returning from the EntireX Broker operation. From the programmer's
point of view, therefore, the error class may be more important than the particular error number.

For more information, see Error Messages and Codes.
Programming Techniques

We recommend trapping the error classes in a “case” statement, for example, a DECIDE in Natural
or a switch statement in C.

All error classes - for example user and configuration errors - leading to the same action (that is,
reporting or logging the situation and aborting issuing broker calls), can be handled together in
the NONE VALUE or default case.

ACl for C 77

http://www.zlib.net/

Writing Applications: Client and Server

Example for C Progamming Language

int i, iErrorCode, iErrorClass, iErrorNumber, ret_val;

char szErrorTextBuffer[S_TXT + 171;.....

/* prepare error code field and error text buffer */

memset (pETBCB->error_code, '0',sizeof(pETBCB->error_code));
memset(szErrorTextBuffer, '\0',sizeof(szErrorTextBuffer));

/* call the broker */

ret_val = broker(pETBCB,pSendBuffer,pReceiveBuffer,szErrorTextBuffer);

/* evaluate error class from error code field */
iErrorClass = 0;
for(i = 0; 1 < 4; ++1)
{

iErrorClass *= 10;

iErrorClass += pETBCB->error_code[i 1 - '0';
}

if (iErrorClass == 0 && ret_val != 0)
{
printf("Wrong API_TYPE and/or API_VERSION\n");
}
else
{
/* evaluate error number from error code field */
iErrorNumber = 0;
for(i = 4; i < 8; ++i)
{
iErrorNumber *= 10;
iErrorNumber += pETBCB->error_code[i 1 - '0';
}

/* evaluate error code as integer value */
iErrorCode = (iErrorClass * 10000) + iErrorNumber;

/* handle error */
switch (iErrorClass)
| case 0: /* Successful Response */
break;
case 2: /* User does not exist */
break;
case 3: /* Conversation ended */

break;

78

ACl for C

Writing Applications: Client and Server

ACl for C 79

Writing Applications: Client and Server

Using Internationalization

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

This section covers the following topics:

= General Information
= Providing Locale Strings
= Using the ENVIRONMENT Field with the Translation User Exit

General Information

The broker stub does not convert your application data before it is sent to the broker. The applic-
ation's data is shipped as given.

For the internationalization approaches ICU conversion and SAGTRPC user exit, valid locale
strings are required for conversion to behave correctly.

Providing Locale Strings

Under the Windows operating system:

® The broker stub assumes by default that the data is given in the encoding of the Windows ANSI
codepage configured for your system. If you are using at least API - VERSION 8 and communicating
with a broker version 7.2.n or above, a codepage identifier of this Windows ANSI codepage is
also automatically transferred as part of the locale string to tell the broker how the data is en-
coded.

® If you want to adapt the Windows ANSI codepage, see the Regional Settings in the Windows
Control Panel and your Windows documentation.

Under all other operating systems:

® The broker stub does not automatically send a codepage identifier to the broker as part of the
locale string.

® The broker stub assumes the broker's locale string defaults match. If they do not match, provide
the codepage explicitly. See Broker’s Locale String Defaults under Locale String Mapping in the in-
ternationalization documentation.

With the ACI control block field LOCALE-STRING:

" You can override or provide a codepage in the locale string sent to the broker. If a codepage is
provided, it must follow the rules described under Locale String Mapping in the internationaliz-
ation documentation.

80 ACl for C

Writing Applications: Client and Server

" You can force a locale string to be sent if communicating with broker version 7.1.x and below.
Under Windows you can use the abstract codepage name. See Using the Abstract Codepage Name
LOCAL under Locale String Mapping in the internationalization documentation.

" API version 4 or above is required to override the locale string.
The encoding in which your application gives the data to the broker stub and the locale string

® must always match, i.e. the codepage derived after the broker's built-in locale string mapping
process must be the same as the encoding of the data provided. See Broker’s Built-in Locale String
Mapping under Locale String Mapping in the internationalization documentation.

" must be a codepage supported by the broker, depending on the internationalization approach;
otherwise, unpredictable results will occur.

Example for Assembler

MVC S$LOCALE,=C"ECS037" MOVE CP

Examples for C

1. Using a specific codepage

/* prepare the locale-string with a codepage */
memset (pETBCB->Tocale_string,' ',sizeof(pETBCB->Tocale_string));
strncpy (pETBCB->1ocale_string,"ECS0819",sizeof(pETBCB->1ocale_string));

2. Using the platform's default codepage (Windows only)

/* prepare the locale-string with a codepage */

memset (pETBCB->locale_string,' ',sizeof(pETBCB->locale_string));
strncpy (pETBCB->Tocale_string,
ETB_CODEPAGE_USE_PLATFORM_DEFAULT,sizeof(pETBCB->Tocale_string));

Example for COBOL

MOVE "ECS037' TO LOCALE-STRING.

ACl for C 81

Writing Applications: Client and Server

Examples for Natural

MOVE 'ECS037' TO #SDPA-API.#LOCALE_STRING.

Using the ENVIRONMENT Field with the Translation User Exit

Using the internationalization approach translation user exit, an ACI programmer can provide ad-
ditional information to their translation exit through the ENVIRONMENT field, allowing flexible
translation behavior in accordance with application requirements. The field cannot be used for
any other internationalization approaches and must be empty if a method other than translation
user exit is used. See Translation User Exit under Introduction to Internationalization.

Example

Assume a broker service or topic has a user-written translation routine called ABCTRAN, which
is capable of performing several types of data conversion, for example EBCDIC-ASCII translation,
byte swapping, and mixed data types. The user translation routine may need to know the data
formats used by both partners. The ENVIRONMENT field can be used to pass this information from
the application to the translation routine in Broker kernel.

Technique

MOVE 'MYCODEPAGE' TO #ETBCB.{fENVIRONMENT

CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Using Send and Receive Buffers

Introduction

The send buffer and the receive buffer are passed as parameters to the EntireX Broker. Both buffers
can occupy the same location. See Call Format in the language-specific EntireX ACI documentation.

The length of the data to be sent is given in the ACI field SEND- LENGTH. If the SEND-LENGTH is
greater than the send buffer during data transmission, you could accidentally send the data that
is physically located in memory behind your send buffer to the designated Broker.

The RECEIVE-LENGTH is required with the RECEIVE and RECEIVE_PUBLICATION functions and with
SEND functions waiting for a reply. The length of the receive buffer is specified in the ACI field
RECEIVE-LENGTH. If the RECEIVE-LENGTH is greater than the receive buffer during data reception,
you can overwrite the data physically located behind the receive buffer being used.

82 ACl for C

Writing Applications: Client and Server

If the data to be returned is less than RECEIVE-LENGTH, the rest of the receive buffer remains un-
changed and is not padded with trailing blanks or other characters. The ACI field RETURN- LENGTH
contains the length of the data actually returned. The RECEIVE-LENGTH field is not changed upon
return.

| Note: With Adabas version 8, the maximum size of message data is no longer limited to

approximately 32 KB. If Adabas version 8 is not used, these same limits still apply under
z/OS.

Error Cases

Conversion and translation of data can increase the amount of data and thus require a buffer of a
larger size than provided. It may also be impossible to determine the size required in advance.
EntireX provides a feature to reread the data in such cases:

Using API version 2 and above, if the amount of data to be returned is greater than the
RECEIVE-LENGTH, the exact length needed is given in the ACI field RETURN- LENGTH together with
an error code, depending on the internationalization approach. See Internationalization with EntireX.
Note the following:

For translation and translation user exit:

® The error code is 00200094.

® The data up to the length of the receive buffer is translated. The rest is truncated.
for ICU conversion and SAGTRPC user exit:

® The error code is 00200377.

® No data is returned in the receive buffer.

To obtain the entire message, increase the size of the receive buffer and issue an additional Broker
ACI function RECEIVE or RECEIVE_PUBLICATION with the option "LAST".

Using API version 5 and above, it is also possible for a client to reread a truncated message in non-
conversational mode, by issuing an additional Broker ACI function RECEIVE or
RECEIVE_PUBLICATION with the option "LAST" as well as the CONV - ID returned from the ACI control
block. No EOC is needed after RECEIVE.

ACl for C 83

Writing Applications: Client and Server

Transport Methods

The maximum length possible for send and receive buffers is affected by the transport method
used.

Maximum Receive /

Transport Method |Send Buffer Size If using this transport method, ...

TCP/IP 2,147,482,111 B B the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

Entire 30,545 B = the send and receive buffer sizes are affected by the setting of the

Net-Work Net-Work parameter IUBL for all involved platforms (see the

Net-Work documentation for more information);

= the send and receive buffer sizes are affected by the Adabas
SVC/Entire Net-Work-specific attribute IUBL for Broker running
under z/OS;

® the maximum send and receive buffer size is around 30,545 bytes.

Note: Under z/OS with Adabas version 8, the value for NET is the
same as for TCP and SSL.

SSL 2,147,482,111 B B the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

Tracing

Trace information showing the commands help the application programmer debug applications
and solve problems. Tracing can be obtained for the application (stub trace) and for the Broker
kernel (kernel trace). The stub trace shows the Broker functions issued by your application,
whereas the Broker kernel trace will contain all Broker functions issued by all applications using
the Broker.

Setting the Broker attribute TRACE-LEVEL=1 provides traces containing just the Broker functions
processed by the Broker kernel without additional diagnostics. It is only necessary to set the trace
value higher when generating traces for Software AG support.

84 AClfor C

Writing Applications: Client and Server

Stub Trace

Tracing is available for all stubs on UNIX and Windows. For the stubs for which tracing is available
on z/OS, see table under Administration of Broker Stubs under z/OS in the z/OS administration doc-
umentation.

To set the stub trace, see Tracing for Broker Stubs in the platform-specific administration document-
ation.

Kernel Trace

Tracing is available for Broker on all platforms. For z/OS, see Administration of Broker Stubs under
z/OS in the z/OS administration documentation.

To set the kernel trace, see Tracing webMethods EntireX in the platform-specific administration
documentation.

ACl for C 85

Writing Applications: Client and Server

Transport Methods

Overview of Supported Transports

This table gives an overview of the transport methods supported by EntireX Broker stubs.

Transport to Broker

Operating
System Environment Module TCP[SSL[NET ""THTTP(S) |
z/OS @ Batch, TSO, IMS (BMP) |BROKER X | x| x
Com-plete COMETB x | @ X
CICS CICSETB x | 9] x
IMS (MPP) MPPETB X | x e
IDMS/DC @ IDMS x | @
Natural NATETB23 x | x X
UNIX System Services Java ACI in the Developer's Kit X | x X
documentation
UNIX broker.so X | x
Java ACI in the Developer's Kit X | x X
documentation
Windows broker.dll © X | x
Java ACI in the Developer's Kit x | x X
documentation
BS2000/0OSD |Batch, Dialog (formerly BROKER X | x X
TIAM)
z/VM BKIMBCMS X X
IBM i EXA X
OpenVMS BROKER x | x
Notes:

1. NET is available for transport to a broker running under mainframe platforms only; not to a
broker running under UNIX or Windows.

2. Under z/OS you can use IBM's Application Transparent Transport Layer Security (AT-TLS) as
an alternative to direct SSL support inside the broker stub. Refer to the IBM documentation for
more information.

3. Use AT-TLS. See Note 2.

4. Tracing and transport timeout are not supported in this environment.

86

ACl for C

Writing Applications: Client and Server

5. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is
identical to broker.dll.

6. Via Broker HTTP(S) Agent; see Settting up and Administering the Broker HTTP(S) Agent in the
UNIX and Windows administration documentation.

See also:

= Setting Transport Methods for Broker Stubs in the platform-specific broker stub administration
documentation

= Setting Transport Methods under Writing Advanced Applications - EntireX Java ACI
TCP/IP

TCP is not available for all Broker stubs and all environments (see table above).

See Using TCP/IP as Transport Method for the Broker Stub in Setting Transport Methods for Broker Stubs
in the platform-specific broker stub administration documentation, which describes how to set
up TCP transport.

Application programs using TCP/IP as the transport specify the target Broker ID in terms of a host
name (or IP address) together with the port number on which the Broker TCP/IP communications
driver is listening. Example: An application communicating through TCP/IP would specify on
each command the Broker ID

IBM1:3932:TCP

where the host on which the Broker kernel executes is known to TCP as IBM1 and is listening on
port 3932.

Entire Net-Work

Communication through Entire Net-Work is available for all Broker stubs when communicating
with a Broker kernel on z/OS through Entire Net-Work. Applications can also utilize Entire Net-
Work communication to obtain local interprocess communication with a z/OS Broker kernel running
on the same machine as the application. This can provide a considerable performance benefit.
Local interprocess communication is achieved through the Adabas SVC mechanism.

Application programs using Entire Net-Work as the transport specify the target Broker ID in terms
of the target Entire Net-Work ID of the Broker kernel. For example, an application communicating
through Entire Net-Work would specify on each command the Broker ID:

ACl for C 87

Writing Applications: Client and Server

ETBOOL: :NET

This can be abbreviated to the following for the Assembler stubs executing on z/OS (BROKER,
CICSETB, COMETB, MPPETB):

ETB0OO1

where the Entire Net-Work ID of the Broker kernel is 001.

SSL and TLS

Application programs using Secure Sockets Layer (SSL) or Transport Layer Security (TLS) as the
transport must specify the SSL settings to the broker stub before any communication with the

Broker can take place. There are various methods of setting SSL or TLS transport. See SETSSLPARMS
and Running Broker with SSL or TLS Transport in the platform-specific administration documentation.

Example: An application communicating through SSL or TLS would specify on each command
the Broker ID:

MYPC:1958:SSL

where the host on which the Broker kernel executes is known to SSL or TLS as MYPC and is
listening on port 1958.

Transport Examples
® For programming language C under Windows:

strcpy(pSBuf, "TRUST_STORE=c:\\certs\\CaCert.pem&VERIFY_SERVER=N");
EtbCb.send_length = strlen(pSBuf);

EtbCb.errtext_length = 40;

EtbCb.function = FCT_SETSSLPARMS

rc = broker (etbcb, pSBuf, (char *) 0, pEBuf);

* For programming language Natural under z/OS:

MOVE 'TRUST_STORE=UID/KEYRING' TO #SSL-BUFF

MOVE 80 TO #ETBCB.#fSEND-LENGTH MOVE 40 TO ffETBCB.{fERRTEXT-LENGTH
MOVE #FCT-SSLP TO #ETBCB.#FUNCTION

MOVE 'IBMHOST:1958:SSL' TO #ETBCB.#BROKER-ID

CALL 'BROKER' #ETBAPI #SSL-BUFF #RECV-BUFF #ERR-TXT

See table above for how SSL or TLS is supported depending on broker stub and platform.

For information on Secure Sockets Layer, see SSL or TLS and Certificates with EntireX.

88 ACl for C

Writing Applications: Client and Server

Considerations for Writing Applications

" The ACI field WAIT allows the application to place the sending or receiving program in a WAIT
state for a specified time; data or a reply will therefore be received before control is passed to
the calling program. When a WAIT value is specified fora SEND /RECEIVE or RECEIVE_PUBLICATION
function, the calling application waits until the specified time has elapsed or a notification event
occurs.

" WAIT=YES makes additional handling necessary in the Broker stub, whereby YES is replaced by
the maximum integer value. We recommend you specify a finite value instead of YES.

® If frequent outages are expected in the network connections, it is useful to set the transport
timeout to n seconds. After n seconds, the Broker stub terminates the TCP connection, if there
is no response from the other side (the Broker kernel). This will help free up the network on the
application side. In the case of applications for which the WAIT value is specified in the ACI
control block (that is, blocking applications), the actual timeout value is the total of the transport
timeout plus WAIT time.

= TCP/IP only:

" The Broker ID can contain either an IP address or a hostname. If a hostname is used, it should
be a valid entry in the domain name server.

" A LOGOFF call to the Broker kernel will only logically disconnect the application from the
Broker kernel. The physical TCP/IP connection is not released until the application terminates.

Restrictions with APl Versions 1 and 2

The following maximum message sizes apply to all transport methods:

® AClI version 1: 32167 bytes
® AClI version 2: 31647 bytes

Variable-length Error Text

In previous ACI versions, Broker kernel always returned 40 bytes of error text, space-padded if
necessary. For ACI version 9 and above, variable length error text can now be returned if requested.
With ACI 9 and above, error text up to the requested length is returned via a new section in the
AClI reply. For any previous ACI versions, ETXL is not sent, and the error text is returned by the
traditional method.

Note that the error text will continue to be traced in the stub and kernel trace and kernel command
log.

See Broker ACI Fields in the ACI Programming documentation.

ACl for C 89

Writing Applications: Client and Server

Programmatically Turning on Command Logging

You can trigger command logging for EntireX components that communicate with Broker by setting
the field LOG-COMMAND in the ACI control block.

All functions with LOG-COMMAND programmatically set in the ACI string field will have their com-
mands logged, regardless of any filter settings. Because the L0G- COMMAND option will override any
command-log filter settings, remember to reset the L0G-COMMAND field if subsequent requests do
not need to be logged.

IAF Authentication

With ACI field CREDENTIALS-TYPE you can specify that the token specified in the IAF token field
is used to authenticate the user. If this field is left blank, user ID and password will be used as
before.

90 ACl for C

4 Writing Applications: Units of Work

B Whatis @ Unit Of WOTK? ...t e e e e e e e e 92
m Control BIock Fields @nd VEIDScooiiiiiiiiiiie e 93
= Client/Server Programming for Units of WOTKcoeiiiiiiiiii e 96
= Client/Server Programming for a Persistent Unit 0f WOrKccoooiiiiiiiii 98
= Client/Server Restart after System Failurecoooiiiiiiiiiii e 100

91

Writing Applications: Units of Work

This chapter describes the concept of units-of-work programming for EntireX Broker. Units of
work are the precondition for achieving persistent messaging within your applications. Units of
work can also be used without persistence.

This chapter assumes you are familiar with basic Broker ACI programming. If you are not familiar
with it, we recommend beginning with the chapter Writing Applications: Client and Server in the
EntireX Broker ACI Programming documentation.

What is a Unit of Work?

A unit of work (UOW) is a group of related messages transmitted and received as a single entity.
This is achieved through the sender committing as a single unit all the messages being sent and
the receiver acknowledging receipt, as a single unit, of all the messages being received. Units of
work are used in conjunction with conversations where a UOW exists strictly within one conver-
sation. There can be more than one unit of work within a conversation. Where this is the case,
subsequent UOWs can be created by either the client or the server. Since the conversation is always
initiated by a client, the first UOW in the conversation is always created by the client. The UOW
creator must commit the UOW to be created before being allowed to create another UOW within
the same conversation.

Messages belonging to a UOW are always sent with OPTION=SYNC, or OPTION=COMMIT, which per-
forms an implicit COMMIT at the same time as the SEND. Messages belonging to a UOW are always
sent asynchronously, i.e. SEND,WAIT=NO. Messages belonging to a UOW are always received with
OPTION=SYNC and can be received either with WAIT=NO or by specifying WAIT=[YES | timevalue],
depending on application requirements.

92 ACl for C

Writing Applications: Units of Work

Control Block Fields and Verbs

= Basic Functionality of Broker AP
= ACI Syntax

= Key ACI Field Names

= Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the expanded functionality of the Broker API used when programming
units of work (UOWs) with or without persistence.

® DEREGISTER
The function DEREGISTER is used by a server to indicate its intention to terminate its role as a
server for the specified SERVER-CLASS, SERVER-NAME and SERVICE. The server can terminate its
role as server for all class, server and service names for which it is registered, using a single
DEREGISTER.

" RECEIVE

The function RECEIVE is used by the server to obtain new requests from a client, and in the case
of conversations, to obtain subsequent related messages from the same client. This function is
also used by clients that issue asynchronous requests and wish to obtain the server's reply at a
later time. The field CONV- 1D defines the behavior of this function. RECEIVE,CONV- ID=NEW signals
the server's readiness to obtain the next available new request, whereas the value CONV-ID=nnn
indicates that the next message within an existing conversation is being requested by the server.
The client uses RECEIVE,CONV-ID=nnn to obtain asynchronously a reply from the server for an
existing conversation.

" REGISTER
The function REGISTER is used by a component of an application to identify its intention to become
a server and satisfy requests issued to the named SERVER-CLASS, SERVER-NAME SERVICE.

® SEND
The function SEND is used by the client either to initiate a new conversation or to send subsequent
messages within that conversation. This function is also used by servers to reply to the client
during the course of a conversation. Each message is assigned to the unit of work currently being
created by the sender. If this is the first message from the sender, a new UOW is created. Senders
can create a subsequent unit of work by committing their existing UOW), creating and performing
another subsequent SEND function. The field CONV - ID defines the behavior of this function re-
garding conversations. The client uses SEND,CONV - ID=NEW to initiate a new conversation and the
value CONV-ID=nnn when sending subsequent related messages in a conversation. The server
always uses SEND,CONV - ID=nnn when replying to a client, where nnn indicates the identity of the
existing conversation. The SEND command is always used asynchronously with units of work,
by both client and server. The sender can override the default persistence setting in the attribute
file for the server class, server name and service, using the ACI field STORE.

ACl for C 93

Writing Applications: Units of Work

" SYNCPOINT
The function is used by either the client or the server when committing UOWs that they are
creating, and also to acknowledge receipt of UOWs that they are receiving. It can also be used
by the creator of a UOW to determine its current status or modify the status of a UOW at a later
time.

ACI Syntax

Function Fields in EntireX Broker Control Block

DEREGISTER|API = 1 or higher

, BROKER-ID = broker_id

, USER-ID = user_id

[,TOKEN = token]

, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | =
[LOPTION = QUIESCE | IMMED]

RECEIVE API = 3 or higher for UQOW

, BROKER-ID = broker_id

, USER-ID = user_id

[,TOKEN = token]

, OPTION = SYNC

, WAIT = n | YES | NO

, CONV-ID = conv_id | NEW | OLD | ANY
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *
[,USTATUS = user_status]
[,UOWID = uowid]

REGISTER |API = 1 or higher

, BROKER-ID = broker_id

, USER-ID = user_id

[, TOKEN = token]

, SERVER-CLASS = class_name,
, SERVER-NAME = server_name,
, SERVICE = service_name

SEND API = 3 or higher for UQOW

, BROKER-ID = broker_id

, USER-ID = user_id

[,TOKEN = token 1]

, OPTION = COMMIT | SYNC

, WAIT = NO

, CONV-ID = conv_id | NEW

, SERVER-CLASS = class_name,
, SERVER-NAME = server_name,
, SERVICE = service_name

94 AClfor C

Writing Applications: Units of Work

Function Fields in EntireX Broker Control Block

[
[
[
[

,USTATUS = user_status]
,STORE = BROKER | OFF]
,UWTIME = uow_11ife_time]
,UWSTATUS-PERSIST = uow_status_persist_multiplier

L,

UWSTAT-LIFETIME = uow_status_persist_lifetime 1]
UOWID = uowid]

s

s

s

SYNCPOINT [|API = 3 or higher for UOW

L,

L,
L,
L,

BROKER-ID = broker_id
USER-ID = user_id
TOKEN = token]
OPTION = BACKOUT
CANCEL
COMMIT
DELETE

EOCCANCEL |
LAST |
QUERY
SETUSTATUS
CONV-ID = conv_id 1]
UOWID = uowid]
USTATUS = user_status]

Key ACI Field Names

ACI Field Name |Explanation

SERVER-CLASS | A client uses these fields to identify the service that it requires. A server uses this to offer
a service.

CONV-ID Identifier to obtain and specify the conversation. Also used to determine communication
mode (non-conversational or conversational).

FUNCTION Function code for one of the verbs; see Key Verbs for FUNCTION Field under Writing
Applications: Units of Work in the ACI Programming documentation.

OPTION Indication of specific Broker behavior, depending on the function.

UOWID Identifier generated by the Broker that identifies to the caller the unit of work ID. Specify
valid UOWID to indicate an existing unit of work or leave blank when starting to SEND or
RECEIVE anew unit of work. It is optionally specified when examining the status of a unit
of work already created by the participant.

WALT Time value to specify blocking or non-blocking of the conversation. See Blocked and
Non-blocked Broker Calls under Writing Applications: Client and Server | Publish and Subscribe
in the ACI Programming documentation.

ACl for C 95

Writing Applications: Units of Work

Key Verbs for FUNCTION Field

Verb Description

REGISTER |Inform the broker that a service is available.
RECEIVE Retrieve request from partner.

SEND Send reply to the partner.
DEREGISTER|Remove the availability of the service.

Client/Server Programming for Units of Work

The figure below illustrates the logical program flow of a simple two-message client request UOW
and a one-message server reply UOW. See also Broker UOW Status Transition under Concepts of
Persistent Messaging in the general administration documentation.

1. The server logs on, registers, and issues a RECEIVE operation, and waits for a new CID and a
UOW (unit of work).

2. The client logs on, creates a new UOW and a new conversation ID. It sends a message as part
of a UOW and then commits the UOW, allowing the Broker to deliver it.

3. The server receives the first message in the UOW. Then the next (last) message. The server then
creates a new UOW for the reply. The new UOW is part of the existing conversation (CID=123).
The server commits both UOWs, i.e., the incoming UOW is processed and the outgoing UOW
is ACCEPTED.

4. The client receives the incoming message and commits the UOW. The UOW is now PROCESSED.

Client

Server

LOGON,UID=, TOKEN=

>0K

REGISTER

>0K
RECEIVE,CID=NEW,OPT=SYNC,WAIT=1M

This receive operation will be satisfied by a new CID
and a UOW. Non-UOW messages will not satisfy.
(waits)

96

ACl for C

Writing Applications: Units of Work

Client

LOGON,UID=, TOKEN=
>0K
SEND,OPT=SYNC, CID=NEW,WAIT=NO

Creates a new UOW and a new CID.

>0K,CID=123,UOWSTATUS=RECEIVED,
UOWID=987
SEND,OPT=SYNC,CID=123,WAIT=NO

Adds another message to the open UOW

>0K,CID=123,UOWSTATUS=RECEIVED,
UOWID=987
SYNCPOINT,OPT=COMMIT,CID=123

Commits the open UOW, allowing the broker to
deliver it.

>0K,CID=123,UOWSTATUS=ACCEPTED,
UOWID=987

UOW (UOWID=987) is now safely in the hands of
the broker.

RECEIVE,CID=123,0PT=SYNC,WAIT=1M

This will be satisfied by a UOW on CID=123.

(waits)

Server

>0K,CID=123,UOWSTATUS=FIRST,UOWID=987

The initial receive operation is completed, indicating
a CID, a UOWID, and the FIRST message of a UOW.

RECEIVE ,CID=123,0PT=SYNC

Request the next message in open UOW.
>0K,CID=123,UOWSTATUS=LAST,UOWID=987

Receive the next message, which is the last. The server
now has all the data.

SEND,OPT=SYNC,CID=123,WAIT=NO

Create a new UOW for the reply, on CID=123.
>0K,CID=123,UOWSTATUS=RECEIVED,UOWID=456

There are now actually 2 open UOWSs (987 and 456),
one in each direction.

SYNCPOINT,OPT=COMMIT,CID=123,
UOWID=

This commits both UOWs, the incoming one (987) is
now PROCESSED and the outgoing one (456) is
ACCEPTED.

ACl for C

97

Writing Applications: Units of Work

Client Server

>0K,CID=123,UOWSTATUS=0ONLY ,UOWID=456 >0K,CID=123,UOWSTATUS=ACCEPTED,

UOWID=456
Receive a message, the only one, in a UOW on
CID=123. This is a different UOW than was sent.
SYNCPOINT,OPTION=COMMIT,CID=123 (Loops back and reissues original receive)

This commits the UOW; it is now PROCESSED

>0K,CID=123,UOWSTATUS=PROCESSED,
UOWID=456

LOGOFF

>0K

Client/Server Programming for a Persistent Unit of Work

The figure below illustrates the logical program flow of a simple one-message persistent UOW
with deferred delivery to a server, with no reply. The client queries the status of the UOW to de-
termine its completion. See also Broker UOW Status Transition under Concepts of Persistent Messaging
in the general administration documentation.

1.

The client logs on and creates a new persistent UOW and a new conversation. The intended
server is not currently available.

. The client commits the open UOW, allowing the Broker to deliver it. The UOW (UOWID=987)

is now stored by the Broker. It will be delivered whenever the server is available and will be
retained even in case of system failure (that is, the UOW is persistent).

The client logs off.

The server logs on and registers. It receives the new conversation ID and the new UOW. The
UOW is committed. Its status is now PROCESSED.

The client logs on using a user ID and token to identify itself as the client that originated the
UOW. It then queries the status of its UOW. The status PROCESSED is returned, so the client
knows that its UOW has been successfully delivered and processed by the server.

98

ACl for C

Writing Applications: Units of Work

Client Server

LOGON, UID=,TOKEN=

>0K

SEND,OPT=SYNC, CID=NEW,WAIT=NO,
STORE=BROKER,

UWTIME=5M, UNSTATP=5

Creates a new persistent UOW and a new CID. The UOW
will have a lifetime of 5 minutes; the duration of the status
is 5 times this value (25 minutes). The intended server is
not up at this time.

>0K,CID=123,UOWSTATUS=RECEIVED,UOWID=987
SYNCPOINT,OPT=COMMIT,CID=123

Commit the open UOW, allowing the broker to deliver it.
>0K,CID=123,UOWSTATUS=ACCEPTED, UOWID=987

UOW (UOWID=987) is now safely in the hands of the
broker. The UOW will be delivered whenever the server
comes up, even if the system should fail.

LOGOFF

The client can now terminate, knowing that the UOW will
be delivered.

Some time later, the server comes up.
LOGON,UID=, TOKEN=

>0K

REGISTER,

>0K

RECEIVE,CID=NEW,OPT=SYNC

This receive operation will be satisfied by a new
CID and a UOW. Non-UOW messages will not
satisfy.

>0K,CID=123,UOWSTATUS=ONLY,UOWID=987

The receive completes, indicating a CID and the
ONLY message of a UOW.

SYNCPOINT,OPT=COMMIT,CID=123,
UOWID=987

This commits the UOW; its status is now
PROCESSED.

ACl for C

99

Writing Applications: Units of Work

Client Server

>0K,CID=123,UOWSTATUS=PROCESSED,
UOWID=987

(Loop back and reissue original receive, if
desired, or terminate)

Some time later, the client can come back and check the
status of its UOW.

LOGON, UID=, TOKEN=

Specifying the same UID/TOKEN ensures that this client
can be identified as the original client.

>0K
SYNCPOINT,OPTION=LAST

Request the status of the last UOW this user created.
The request must be made within 30 minutes, based on the
value of the original SEND.

>0K,UOWID=987,CID=123,UOWSTATUS=PROCESSED

The client now knows that its UOW was successfully
processed by the server.

LOGOFF
>0K

Client/Server Restart after System Failure

@ Caution: USER and TOKEN must be specified when using persistent units of work (UOWs)

to persist either a message or the status of a message exchanged between partner application
components, where this information is held in the persistent store.

EntireX Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER-ID, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

You need to specify USER and TOKEN to reconnect with the correct user context after a broker has
been stopped and restarted when using units of work.

100 ACl for C

5 Writing Applications: Attach Server

= |mplementing an Attach Serverccceee

= |mplementing Servers started by an Attach Server

101

Writing Applications: Attach Server

This chapter describes the programming of Attach Server for EntireX Broker. It assumes you are
familiar with basic Broker ACI programming.

Implementing an Attach Server

An attach server is a server that is capable of starting another server rather than handling service
requests itself. See example under Attach Manager Interface under Examples for EntireX Broker Tu-
torial. To implement an attach server, perform the following steps:

= Step 1: Register with EntireX Broker

= Step 2: Issue a Receive with Wait

= Step 3: Start Task

= Step 4: Deregister when the Work is Done

Step 1: Register with EntireX Broker

To register with EntireX Broker, the application has to add the ATTACH option to the REGISTER call.
The SERVER-CLASS, SERVER-NAME and SERVICE parameters must reflect the service you can dynam-
ically start. If the attach server is able to start several services, it has to register each service with
the option ATTACH so that EntireX Broker knows exactly which services can be started by that attach
server.

For example, an attach manager can start services (C1, N1, S1), (C2, N2, S52) and (C3, N3, S3). It
therefore issues the following three registrations:

REGISTER SERVER-CLASS=C1,SERVER-NAME=N1,SERVICE=S1,0PTION=ATTACH
REGISTER SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2,0PTION=ATTACH
REGISTER SERVER-CLASS=C3,SERVER-NAME=N3,SERVICE=S3,0PTION=ATTACH

Step 2: Issue a Receive with Wait

After all startable services have been registered by the attach server, the attach server must issue
an unrestricted RECEIVE command in order to receive notification about queued service requests.
The RECEIVE itself must be blocked for a certain time (WAIT=nnn). The attach server must be prepared
to receive a notification for one of the announced services.

To continue the example from Step 1 above, the attach server now issues the RECEIVE command:

102 ACl for C

Writing Applications: Attach Server

RECEIVE SERVER-CLASS=*,SERVER-NAME=*,SERVICE=*,WAIT=10M,RECEIVE-LENGTH=150

EntireX Broker answers either that no messages will be available after 10 minutes (error class 0074
is used for this kind of information) or that an attach service is required (error class 0010 and error
code 0022), for example:

SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2,RETURN-LENGTH=116

with the following structure in the receive buffer, which is shown here in C programming language
notation. The structure is the same for all programming languages and must be described in ac-
cordance with the programming language you select:

typedef struct
{

ETB_SHORT atm_version; /*version of structure &Y/

ETB_SHORT atm_NotUsed; /* alignment o/

ETB_LONG atm_nAttach; /* 4 of failed server lookups */

ETB_LONG atm_nServer; /* 4 of registered replicas */

ETB_LONG atm_nPendConv; /* # of pending conversations &Y/

ETB_LONG atm_nActvConv; /* # of active conversations =/

ETB_CHAR atm_server_class [S_SERVER_CLASS];/*class to attach =
ETB_CHAR atm_server_name [S_SERVER_NAME]; /*server name to attach */
ETB_CHAR atm_service [S_SERVICET; /*service name to attach */
} ETB_ATMCB;

This structure contains the information necessary to decide whether a new replica needs to be
started.

atm_nAttach

Number of client requests (SEND CONVID=NEW) the Broker could not schedule to a server immediately.
After the Attach Manager has issued a RECEIVE, the value is reset to 0. If the Attach Manager does
not issue its RECEIVE, this number shows the unreceived requests.

atm_nServer

Number of registered servers (replicas) minus those servers that are only finishing existing con-
versations (after issuing DEREGISTER OPTION=QUIESCE).

ACl for C 103

Writing Applications: Attach Server

atm_nPendConv

Number of pending conversations, that is, client requests that could not currently be scheduled
to a server. They are a subset of the active conversations.

atm_nActvConv

Number of the active conversations requesting a particular service.
Step 3: Start Task

This step depends very much on the platform. The attach server determines how to start up the
desired application. The attach server only gets the logical name of the service. The mapping from
the logical name to the program, including the path, startup parameters etc., must be performed
by the attach server.

Step 4: Deregister when the Work is Done

Generally, attach servers are designed to “run forever”. Once they are deregistered, no more services
can be started on that platform automatically. However, if the administrator decides to shut down
an attach server for whatever reason, he or she must DEREGISTER all registered services. There is
no special flag for the deregistration.

After the final deregister, the attach server should perform a LOGOFF call to release all allocated
resources:

DEREGISTER SERVER-CLASS=C1,SERVER-NAME=N1,SERVICE=SI
DEREGISTER SERVER-CLASS=CZ2,SERVER-NAME=NZ,SERVICE=S?2
DEREGISTER SERVER-CLASS=C3,SERVER-NAME=N3,SERVICE=S3

or better

DEREGISTER SERVER-CLASS=*,SERVER-NAME=*,SERVICE=*

and as the last EntireX Broker-related command:

LOGOFF

104 ACIfor C

Writing Applications: Attach Server

Implementing Servers started by an Attach Server

In general, every server that can be used as a standalone server can be started up automatically.
However, servers started by an attach server do not usually deregister and quit when no longer
busy. They are not scalable, i.e. the number of replicas increases if not enough power is available,
but the number does not decrease when there is no more work to be done.

To get around this situation, servers need to be prepared in such a way that they are started up
automatically. Note the following points:

Notes:

1. The easiest server you can implement handles only one client for one conversation. After the
last EOC, you can DEREGISTER or, preferably, LOGOFF the application and exit.

2. If you write an application that is automatically controlled by an attach server, try to implement
the startup and the first RECEIVE as soon as possible. In other words, perform the necessary
initialization after the conversation request is received.

3. Receive only the first call with the option NEW. Receive all subsequent calls with receive functions
that are restricted to the established conversation (either with the option 0LD, or with explicit
restriction to the established conversation).

4. If you want to implement a server that does not exit after the first conversation, observe point
3 above. After the conversation has finished, set up the next RECEIVE with the option NEW. With
this mechanism, the number of servers started in parallel corresponds to the number of clients
trying to access the service simultaneously. This feature adapts the number of servers for high
load peaks.

5. If you want to reduce the number of servers when they are no longer needed, set a proper
RECEIVE timeout if you want to accept a new conversation, and finish your server if you actually
receive a timeout. Both mechanisms give you the chance to react to load changes in both direc-
tions (increasing load and decreasing load).

6. Starting up a server for only one conversation is a simple server scheme, but you have to balance
the simplicity of the application against the performance degradation for automatic startup.
We recommend you use purely automatic server startup for servers only when the conversation
is expected to last a reasonable length of time.

If this is not clear, or if you want to run servers with short conversations - or even conversation-
less servers - you should consider using the method described under 4 and 5 above.

ACl for C 105

106

6 Writing Applications: Command and Information Services

B ACCESSING thE SEIVICES ...ttt 108
= Security with Command and Information SErVICESocouiiiiiiiiii i 113
= Examples of COMMANG SEIVICEooiiiiiiiieiiii e 115

107

Writing Applications: Command and Information Services

EntireX Broker provides an API for Command and Information Services (CIS) that include the
following: shutting down conversations, servers and services; switching trace on and off; retrieving
information on clients; registering servers and services.

Before you begin to write an application, see Broker Command and Information Services.

This chapter describes how to use the Command and Information Services from a programmer's
point of view.

Accessing the Services

EntireX Broker's Command and Information Services are implemented as internal services. The
method for requesting these services is exactly the same as the method for requesting any other
service. An application issues a SEND function with appropriate data, retrieves the response with
the receive data of the SEND function and, in the case of the information service, with additional
RECEIVE operations. The RECEIVE operations have to be repeated until the information service in-
dicates the end of data with an EOC return message.

Command and Information Services define a protocol that must be followed by the application.
This protocol defines the structures needed to indicate to the service which information is desired
and to return this information to the application so that the information can be interpreted.

Basic Rules

Several basic rules for command as well as information services are described here.

= Field Values
= Structures

108 ACl for C

Writing Applications; Command and Information Services

Field Values

All fields necessary for a SEND function must be provided. The following values for SERVER-CLASS
and SERVER-NAME are used for CIS:

Value Description

SERVER-CLASS=SAG Value is always SAG (Software AG).

SERVER-NAME=ETBCIS Value is always ETBCIS (EntireX Broker Command and Information
Services).

SERVICE=INFO Full information service. Specify this for the full information service.

All clients, servers and conversations are listed. See Writing
Applications using EntireX Security in the ACI Programming
documentation.

SERVICE=USER-INFO Limited information service. Specify this for limited information
service. Only the user's own resources are listed. See Writing
Applications using EntireX Security in the ACI Programming

documentation.
SERVICE=CMD Specify this for the command service.
SERVICE=PARTICIPANT-SHUTDOWN|Specify this for the participant shut-down functionality.
SERVICE=SECURITY-CMD Specify this for the EntireX Security command service.

The services do not have to be defined in the broker attribute file. Nothing has to be started or
configured. You can use the services immediately after starting the broker.

The request for a command service or an information service is specified within the SEND buffer;
the response - if there is one - is returned in the RECEIVE buffer.

ACl for C 109

Writing Applications: Command and Information Services

Structures

Structures are used to describe the request and to return information. The following structures

are available:

Structure Information |Command |Description
Service Service
Information Request Structure under |Input Used by an application to specify an

Broker CIS Data Structures in the ACI
Programming documentation

information service request.

Command Request Structure under Input Used by an application to specify a command
Broker CIS Data Structures in the ACI service request.

Programming documentation

Common Header Structure for Response|Returned |Returned |Returned as the first structure in each block

Data under Broker CIS Data
Structures in the ACI Programming
documentation

from both the information service and the
command service.

Information Reply Structures

Optionally
Returned

The object-specific information reply
structures are used to return information
about these object types:
= BROKER

= WORKER

= CLIENT

= SERVER

= CONVERSATION

= PSF

= PSFDIV

= PSFADA

= PSFFILE

= SUBSCRIBER

= PUBLISHER

= PUBLICATION

= TOPIC

= CMDLOG-FILTER

= NET

= PSFCTREE

= SECURITY

= SSL

= TCP

110

ACl for C

Writing Applications; Command and Information Services

Command and Information Services can be accessed from any environment from which EntireX
Broker can be accessed. The structures for these services are available for the programming lan-
guages Assembler, C, Natural and COBOL.

Accessing Information Services

For an information service request, the send buffer contains the information request structure with
selection criteria depending on the requested information. See Information Request Structure under
Broker CIS Data Structures in the ACI Programming documentation.

Examples of Selection Criteria

O0BJECT-TYPE = SERVICE

will return a list of all services.

0BJECT-TYPE = CONV, USER-ID = HUGO, TOKEN = FRED

will return a list of all conversations belonging to user with USER- 1D HUGO who specified
TOKEN=FRED within Broker calls.

0BJECT-TYPE = CONV, CONV-ID = 0815
will return information about the one single conversation with ID 0815.

When the SEND request returns, the receive buffer contains parts or all of the return data, and the
CID field contains a conversation ID.

The return data in the receive buffer includes the common header structure followed by a list of
one or more object type structures. See Common Header Structure for Response Data under Broker
CIS Data Structures in the ACI Programming documentation. For each object for which information
is returned, there is one information reply structure containing the information.

Send Buffer | 1y1formation Request Structure under Broker CIS Data Structures in the ACI Programming
documentation

Receive Buffer| Coyiim0n Header Structure for Response Data under Broker CIS Data Structures in the ACI
Programming documentation [Information Reply Structures]

ACl for C M

Writing Applications: Command and Information Services

Tips

® The size of the common header structure depends on the CIS interface version used.

" Test the error code in the common header structure. See Broker Command and Information Services

Error Codes under Error Messages and Codes.

= If the receive buffer is not large enough to contain all available information, the remaining in-

formation can be obtained with additional RECEIVE functions in the same conversation.

WAIT=NO

can be specified because the data is there and only has to be collected. When no more data is

available, the RECEIVE returns an end of conversation (E0C) message.

= If the selection is not unique - that is, more than one occurrence is possible - the information
service returns a list (array) of information reply structures of the requested type. The common
header structure informs the application of the total number of objects and the number of objects

accompanying the reply data.
® The protocol for an information service request is as follows:
CALL BROKER

FUNCTION=SEND // send data = information request
Service=USER-INFO

CID=NEW

WATT=YES // receive data = information reply
/* work off retrieved data */

REPEAT

CALL BROKER // receive data=information reply

FUNCTION=RECEIVE

Service=USER-INFO

CID=n

WAIT=NO

IF End of Conversation

escape

END-IF

/* work off retrieved data */
LOOP

® The initial SEND must be issued with the following:
" WAIT=YES for blocking send commands

® CID=NEW because the information service is implemented as a conversational service

12

ACl for C

Writing Applications; Command and Information Services

Accessing Command Service

For a command service request, the send buffer contains the command request structure. See

Command Request Structure under Broker CIS Data Structures in the ACI Programming documentation.
When sending a command service request, note the possible combinations under Command Request
Parameter Combinations under Broker CIS Data Structures in the ACI Programming documentation.

The return data in the receive buffer includes the common header structure (see Common Header
Structure for Response Data under Broker CIS Data Structures in the ACI Programming documenta-
tion):

Send Buffer | Command Request Structure under Broker CIS Data Structures in the ACI Programming
documentation

Receive Buffer| Coyimon Header Structure for Response Data under Broker CIS Data Structures in the ACI
Programming documentation

Tips

® The error code in the common header structure must be tested by the application programmer.
See Broker Command and Information Services Error Codes under Error Messages and Codes.

" A typical command service request looks like this:

CALL BROKER
FUNCTION=SEND // send data = command request
Service=CMD
CID=NONE
WATT=YES

® Unlike information service requests, the command service is defined as a non-conversational
service that returns a single response. Therefore, the initial SEND must be issued with the follow-

ing:
® CID=NONE
" WAIT=YES

Security with Command and Information Services

For security purposes, the Command and Information services are treated exactly like any other
service. Therefore, if you are using either EntireX Security or equivalent user-written exits, user
access to operate these services can be protected through your security system. This allows you
to grant access based upon user ID to only those users who are authorized, where this facility is
provided by the platform security implementation for Broker kernel.

= Full Command and Information Services

ACl for C 13

Writing Applications: Command and Information Services

= |imited Information Services
= Protecting Specific Options

Full Command and Information Services

When using EntireX Security (or an equivalent), the full command service and the full information
service are protected to avoid unauthorized access to information or potential disruption to systems.
Therefore, you must grant appropriate access to the following resource profiles protecting the in-
ternal services:

= Full Command Service
Class: SAG Server: ETBCIS Service: CMD
= Full Information Service

Class: SAG Server: ETBCIS Service: INFO

Limited Information Services

The limited information service only returns information that belongs solely to the application
making the request; it is not necessary to protect this service from unauthorized users. You can
provide either limited or unlimited access to the resource profile used to protect the limited inform-
ation service, as required:

= Limited Information Service

Class: SAG Server: ETBCIS Service: USER-INFO

Protecting Specific Options

The full command service can be used to shut down individual servers and, therefore, terminate
any Class/Server/Service registered to the server application. When using EntireX Security (or
equivalent), the shut-server operation is protected to avoid unauthorized termination of applica-
tions. This security check honors the Class/Server/Service of the server application. Therefore, you
must grant appropriate access to resource profiles protecting the server application, which gives
authorized users permission to register. This is in addition to the authorization for the full command
service:

® Full Command Service (Shut Service option)

114 ACl for C

Writing Applications; Command and Information Services

Class: ACLASS Server: ASERVER Service: ASERVICE

The full command service can be used as a PARTICIPANT - SHUTDOWN for individual participants
currently active in the memory of the Broker kernel. When using EntireX Security (or an equivalent),
the stop-participant operation is protected to avoid unauthorized use and potential disruption of
systems. Therefore, you must grant appropriate access to the following resource profile:

® Full Command Service (PARTICIPANT-SHUTDOWN option)

Class: SAG Server: ETBCIS Service: PARTICIPANT-SHUTDOWN

The full command service can be used to administer EntireX Security. Currently the EntireX Security
commands:

® allow the EntireX Security trace level to be changed independently of the Broker trace level

* allow all cached security information for a user to be cleared.
Therefore, you must grant appropriate access to the following resource profile:

® Full Command Service (SECURITY-CMD option)

Class: SAG Server: ETBCIS Service: SECURITY-CMD

The CIS commands SHUTDOWN CONVERSATION and SHUTDOWN SERVICE require the authorization to
use the specified Class/Server/Service triplet and to use CIS commands.

See Overview of EntireX Security in the EntireX Security documentation and Writing Security Exits
under Using Sample Security Exits for Broker Security.

Examples of Command Service

Example 1: ALLOW-NEWUOWMSGS

The Broker was restarted with the attribute NEW-UOW-MESSAGES=NO. This action will allow only
consumption of UOWs to occur after Broker restart. Therefore, after the persistent store capacity
has decreased to an acceptable level, the Broker administrator can issue the CIS command to allow
new UOW messages in the broker. See ALLOW-NEWUOWMSGS under Broker CIS Data Structures in the
ACI Programming documentation.

ACl for C 15

Writing Applications: Command and Information Services

Example 2: FORBID-NEWUOWMSGS

The Broker has been executing for a period of time when the Broker administrator notices that the
persistent store is nearly at capacity. As a preventive action, the Broker administrator can issue
the CIS command to forbid new UOW messages. See FORBID-NEWUOWMSGS under Broker CIS Data
Structures in the ACI Programming documentation. This action will cause only consumption of
UOWs to occur in the Broker. Thereafter, when the persistent store capacity has been reduced to
an acceptable level, the Broker administrator can issue the CIS command to allow new UOW
messages in the Broker. See ALLOW-NEWUOWMSGS under Broker CIS Data Structures in the ACI Pro-
gramming documentation.

116 ACl for C

7 Writing Applications using EntireX Security

= General Programming CONSIAEIAtIONSuvvieiiiiiie e 118
B AUENENTICALION ...t 120
B AUBNOMIZALON ...ttt ettt 124
B NI CTYPHION e 125

"7

Writing Applications using EntireX Security

This chapter provides programming aids relevant to EntireX Security programming. It assumes
you are familiar with the basics of EntireX Broker ACI programming. See EntireX Broker ACI Pro-
gramming.

| Note: ACIversions 1-7 apply to the communication model client and server only. ACI version

8 and above apply to the communication models client and server and publish and subscribe.

General Programming Considerations

See Ouverview of EntireX Security in the EntireX Security documentation for overview of concepts
and installation.

= ACI Versions and Security
= |s Broker Kernel Secure?

AClI Versions and Security

If your applications are using ACI versions 1 to 7, you will decide at installation time whether
they are to communicate with a secured Broker. Your administrator will probably have installed
components of EntireX Security into the Broker stub environment(s) and into the Broker kernel.

If your environment is configured using components of EntireX Security, your applications can
communicate only with secured Broker kernels. If you attempt to communicate with both secured
and non-secured Broker kernels, you will receive ACI response code 00200379, indicating “incon-
sistent security installation”.

To achieve greater flexibility, particularly when migrating applications from development to
production, ACI version 8 introduces the new functionality described in the following table. For
AClI version 8 and above, the application may assign to the broker control block field
KERNELSECURITY one of the following values:

Value |Description

N |Application does not intend to communicate with a secured Broker kernel.

Y |Application intends to communicate with a Broker kernel which is secured using EntireX Security.

U |Application intends to communicate with a Broker kernel which is secured with the customer's own
security exits.

This information indicates the application's intention and ensures that the correct execution occurs
in the Broker stub and the Broker kernel. If the stub and the field KERNELSECURITY do not match,
the application will receive ACI response code 00200379. If an improper value is assigned, it is
treated as a blank. To make this assignment seamless, use an initial KERNELVERS command when
communicating with each Broker kernel so that the field is assigned automatically.

118 ACl for C

Writing Applications using EntireX Security

| Note: The default value (binary zero or space) specified in this field will result in the beha-

vior being determined by the security configuration rather than programmatically. It is
therefore possible to communicate either with a secure or non-secure Broker.

Is Broker Kernel Secure?

Issuing a KERNELVERS command will return information in the KERNELSECURITY field of the broker
control block structure to indicate whether the application is communicating with a secure or non-
secure Broker Kernel. This information can be important for ensuring the security of transactions
and when making decisions such as prompting for USER- 1D and PASSWORD values.

The following values are returned in the KERNELSECURITY field for ACI version 8 and above:

Value [Description

N This is not a secured Broker kernel.

Y This is a secured Broker kernel which is using EntireX Security.

U |This is a secured Broker kernel which is using the customer's own written security exits.

By issuing a KERNELVERS command, the appropriate value of KERNELSECURITY is automatically
assigned to the control block structure; the user application does not need to take any further action
other than supplying the correct USER-ID and PASSWORD. The application must maintain the contents
of the control block structure for the duration of communication with the Broker kernel in order
to retain the correct value of the KERNELSECURITY field. See Broker ACI Control Block Layout in the
EntireX language-specific ACI documentation.

] Notes:

1. Only applications using ACI version 7 or above can determine whether Broker is executing
with security. In version 8 or above, the necessary information is automatically set up in the
Broker control block.

2. We strongly recommend that applications maintain a separate copy of the Broker control block
for each user ID (or USER- ID and TOKEN if specified). Furthermore, if the application communicates
with different Broker kernels, a separate copy of the Broker control block must be maintained
for each user and each Broker ID.

ACl for C 19

Writing Applications using EntireX Security

Authentication

= Authentication with User ID and Password

= Role of Security Token (STOKEN) during Authentication
= Trusted User ID

= Client User ID

= FORCE-LOGON

= |[AF Tokens

Authentication with User ID and Password

The application is responsible for assigning the correct USER-ID and PASSWORD values to the control
block structure. This information is normally communicated through the LOGON command, since
this command initiates the user's session with the Broker kernel. Where the attribute file contains
AUTOLOGON=YES the first command issued by a user does not have to be L0GON, in which case the

application must supply USER-ID and PASSWORD credentials for the commands SEND or REGISTER.

Supplying the USER- 1D and PASSWORD could subsequently be required if the user times out due to
expiration of either CLIENT-NONACT, SERVER-NONACT, PUBLISHER-NONACT or SUBSCRIBER-NONACT
time limits. If the user context has timed out due to these inactivity limits being exceeded, one of
the following events will occur when the application attempts to issue the next command.

Reason for ACI Error Action

= 00200134

Application must perform another explicit LOGON with correct credentials in the USER-1D and
PASSWORD fields:

AUTOLOGON=NO in the attribute file, or AUTOLOGON=YES and FORCE-LOGON=YES.

= 00080003
Application must supply correct credentials in USER-ID and PASSWORD fields:
AUTOLOGON=YES in attribute file, FORCE - LOGON=YES not specified in the control block.

Subsequent commands do not require explicit LOGON to be issued.

= 00080352

Application has attempted to transfer control to a different thread, or process, without correctly
transferring the necessary values of USER-1D, TOKEN and STOKEN:

The application transferring control must make values of USER, TOKEN and STOKEN available to
the application that is delegated to continue thread of execution.

120 ACl for C

Writing Applications using EntireX Security

= 00080353

Application has not correctly maintained the value of security token (STOKEN) in the control
block structure:

The application must maintain the value of STOKEN in order to communicate securely with Broker
kernel without sending PASSWORD with each command.

The application is able to change the password by assigning both PASSWORD and NEWPASSWORD fields
of the control block structure. This must be done at the time of initial authentication or at a sub-
sequent time when authentication is repeated due to timeout. It cannot be done at an arbitrary
time by assigning the NEWPASSWORD field.

The PASSWORD and NEWPASSWORD fields are always communicated in an encrypted format.
Role of Security Token (STOKEN) during Authentication

EntireX Security automatically generates a non-repeated security token, which is placed in the
ACI control block of the calling application. A unique security token is generated on behalf of all
Broker participants only after successful authentication has occurred, and is used to ensure nobody
can “tap in” to a participant's session. The calling application is responsible for maintaining the
contents of the control block structure for the duration of its communication with the Broker kernel
in order to ensure the correct value of security token is available on subsequent commands. An
incorrect value of security token will cause access to be denied. Security token avoids the need for
applications to supply a password except for presenting this once during the LOGON command, or
the first command (excluding KERNELVERSION), if AUTOLOGON=YES is defined. If a LOGOFF command
isissued or a participant is timed out, the password must be reentered so that a new unique security
token can be generated.

An additional benefit of the security token is that it enables an application to transfer its execution
to a different thread or even to a different process. This requires the application to make available
the following fields of the control block structure to the program which is delegated to continue
the thread of execution: USER, TOKEN and STOKEN. However, it is not necessary for the program
transferring control to make its password available.

Note: If an application is unwilling or does not want to maintain the security token field
(STOKEN) in the control block structure, it is possible for the systems administrator to configure
the following field in the EntireX Security configuration module: BKISTK=Y. See Ignore Se-
curity Token under Configuration Options for Broker in the EntireX Security documentation.

ACl for C 121

Writing Applications using EntireX Security

Trusted User ID

This mechanism is available where at least one application and Broker kernel are executing on
z/OS and communication is through Entire Net-Work (Adabas SVC).

Trusted User ID is an optional mechanism with which EntireX Security determines the identity
under which the application is executing, without the application having to provide the USER-ID
and PASSWORD in the Broker control block. See Trusted User ID under Configuration Options for Broker
in the EntireX Security documentation.

The benefit of this mechanism is that application components executing on z/OS never have to
provide credentials for authentication. This is because the identity under which execution occurs
has already been verified when initially accessing the machine in each of these cases:

" online users

" batch jobs or started tasks.

All subsequent security authorization checks - for example SEND or REGISTER - are then performed
under the known user ID under which the application executes.

Application components intending to utilize Trusted User ID must assign the Broker control block
field USER-ID only. The value assigned to this field is arbitrary for security purposes but required
in order to satisfy execution the stub. The application is not allowed to assign any value to PASSWORD
if Trusted User ID is used. The following example is given:

USER-ID = 'SERVERI23' /* arbitrary value: used by Broker but not
significant for security purposes */

PASSWORD = ' " /* password field must be
set to blanks or binary zeros */

If the application does not clear the PASSWORD field, EntireX Security will assume that the application
does not want to use Trusted User ID. Therefore valid credentials must be supplied to the USER-ID
and PASSWORD fields in order to perform conventional authentication.

See also Trusted User ID under Configuration Options for Broker in the EntireX Security documentation.
Client User ID

Server applications are able to determine the user ID under which the partner client is executing
by examining the content of the CLIENT-USERID field exposed in the Broker control block. Specific-
ally, the CLIENT-USERID field should be examined on the first RECEIVE command of each new
conversation to obtain the identity of the client. When EntireX Security is active, the server applic-
ation is able to rely on the accuracy of the client user identity since it is derived from the user ID
and password credentials supplied by the client.

122 ACl for C

Writing Applications using EntireX Security

See also Trusted User ID under Writing Applications using EntireX Security in the ACI Programming
documentation and Verified Client User ID under Configuration Options for Broker in the EntireX
Security documentation.

FORCE-LOGON

This topic does not apply to the publish-and-subscribe communication model since this requires
an explicit logon and cannot use AUTOLOGON.

FORCE-LOGON is used to override the AUTOLOGON feature of the Broker, with the result that the user
does not log on to the Broker kernel implicitly with the first command issued but instead requires
an explicit LOGON. When this option is used, it is necessary for the client and server to issue explicit
LOGON function calls - even after the expiration of a client timeout CLIENT-NONACT or server timeout
SERVER-NONACT. See Timeout Parameters under Writing Applications: Client and Server in the EntireX
Broker ACI Programming documentation.

FORCE-LOGON can be useful in cases where an implicit logon would be undesirable, for example
when attempting to authenticate a user. Specifically, unless the password was communicated with
every command, an implicit logon - after a period of inactivity - would fail because of a missing
PASSWORD.

When FORCE-LOGON is set - and in the case of a client/server inactivity timeout - error 00200134 is
returned instead of an implicit logon being performed automatically. Therefore, the specification
of FORCE-LOGON can be used to give the programmer the opportunity to provide the ACI field
PASSWORD, which is needed for successful authentication.

Note: Caution should be taken when repeating a failed authentication attempt for both an

explicit and an implicit logon. Repeating the attempt several times can lead to a revocation
of the user ID, depending on the configuration of your security system.

IAF Tokens

The Integrated Authentication Framework (IAF) is a token-based infrastructure that enables
Software AG's enterprise single sign-on. In addition, it allows usage of a configurable authentication
system (user database) with Software AG products across platforms. IAF is part of the Software
AG Security Infrastructure.

ACl for C 123

Writing Applications using EntireX Security

Authorization

= Publish and Subscribe
= Client and Server
= Authorization Rules

Publish and Subscribe

Applications that create publications are subject to authorization requests under EntireX Security.
For every new publication, an authorization check is performed based on the TOPIC. Publications
are transmitted to subscriber applications only if the authorization check is successful; otherwise
an ACI response is returned to the application issuing the SEND_PUBLICATION command.

Subscriber applications are subject to an authorization check if security is installed for EntireX
Broker. An authorization check based on the topic is performed when the subscriber application
issues a SUBSCRIBE command. The application is allowed to subscribe only if the authorization
check is successful; otherwise an ACI response code is returned to the subscriber. Similarly; if the
administrator performs third-party subscription or unsubscription on behalf of a subscriber using
command and information services (CIS), an authorization check is made, based on the topic. See
Writing Applications: Command and Information Services in the ACI documentation.

The ACI error response codes encountered for authorization failures are: 00080009 | 00080010.

See also publish-and-subscribe example under Resource Profiles in EntireX Security in the EntireX
Security documentation and Writing Applications: Client and Server in the EntireX Broker ACI Pro-
gramming documentation.

Client and Server

Client applications are automatically subject to authorization requests if security is installed for
EntireX Broker. For UNIX and Windows, see Authorization Rules under Writing Applications using
EntireX Security in the ACI Programming documentation.

An authorization check based on class, server and service is performed for the first SEND of a con-
versation and on every SEND if there is only one message in the conversation (CONV-ID). Messages
are transmitted through to the server application only if the authorization check is successful;
otherwise an ACI response is given to the client.

Server applications are automatically subject to authorization requests if security is installed for
EntireX Broker. For UNIX and Windows, see Authorization Rules under Writing Applications using
EntireX Security in the ACI Programming documentation. An authorization check based on
class/server/service is performed when the server application issues a REGISTER command. The
server is allowed to register only if the authorization check is successful; otherwise an ACI response
code is returned to the server application. In a similar way, if the administrator terminates a

124 ACl for C

Writing Applications using EntireX Security

server through Command and Information Services (CIS), an authorization check is made based
on the class/server/service.

The ACI error response codes encountered for authorization failures are: 00080009 | 00080010.

See also client-and-server example under Resource Profiles in EntireX Security in the EntireX Security
documentation and Writing Applications: Client and Server in the EntireX Broker ACI Programming
documentation.

Authorization Rules
For UNIX and Windows, Broker authorization checks are made using a set of definitions maintained
in an LDAP repository (Lightweight Directory Access Protocol). Authorization rules are the

mechanism by which authorization checks are performed for UNIX and Windows. For more in-
formation see Configuring Authorization Rules in the UNIX and Windows administration sections.

Encryption

= |ntroduction
= Encryption for non-Java Applications
= Encryption for Java-based Applications (ACl and RPC)

Introduction

Encryption of the message data with the EntireX Security encryption is configured in the broker
and in client and server applications. The ENCRYPTION- LEVEL attribute configured in the broker
attribute file is a service-specific attribute. Allowed values are 0, 1, and 2. Using ENCRYPTION-LEVEL
1 or 2 requires SECURITY=YES in the DEFAULTS = BROKER section.

Encryption Level | Description

0 No encryption requested, but allowed.

1 Encryption for server requested, client can encrypt.
2 Encryption for client and server requested.
Example:

ACl for C 125

Writing Applications using EntireX Security

DEFAULTS = SERVICE

CONV-NONACT = 5M
DEFERRED = YES
SERVER-NONACT = 10M

ENCRYPTION-LEVEL = 2
CLASS = RPC, SERVER = SRV1, SERVICE = CALLNAT, TRANSLATION = SAGTCHA

Applications can configure the encryption level by setting the broker ACI field ENCRYPTION- LEVEL
or using the methods of the Java ACI. Allowed values are 0, 1, and 2. 0 does not encrypt the message,
1 encrypts the message to the broker, while 2 encrypts the message to the broker and requests that
the partner application also encrypts the message. To guarantee end-to-end encryption from client
to server, use encryption level 2.

The broker controls the encryption and issues one of the error codes 00200401 | 00200419 |
00200420 | 00200421 | 00200422 if encryption levels do not match.

In all cases encryption requires broker connections secured with EntireX Security. Broker returns
error code 00210402 if this is violated.

Encryption behavior is slightly different depending on whether the application is Java-based or
not. For non-Java-based applications, the behavior depends on the ACI version. These differences
are described below.

Encryption for non-Java Applications

For non-Java applications, Encryption behavior depends on the ACI version:

= ACI Version 8 and Above
= ACI| Version 6 and 7
= ACl Version1t0 5

] Note: In the sections below, “EL” refers to the field ENCRYPTION-LEVEL in the ACI control
block.

ACI Version 8 and Above

Encryption is configured by the application per message. The table shows allowed combinations
of ENCRYPTION-LEVEL and EL.

ENCRYPTION- LEVEL in Broker Attribute File| o o' | 1™

0 (or undefined) EL=0or1|EL=0or1
1 EL=1 EL=0or1
2 EL=2 EL=2

126 ACl for C

Writing Applications using EntireX Security

ACI Version 6 and 7

Encryption is configured by installing the security exit for the application (security exit is
secuexit.dl1 on windows, secuexit.so on UNIX, SECUEXI0 on z/OS) and the environment
variable NA2_BKPRIV (or ETB_ENCRPYT)is set to 1. The table shows allowed combinations of ENCRYP -
TION-LEVEL and EL.

ENCRYPTION- LEVEL in Broker Attribute File| >0 o' | O o™t
0 (or undefined) EL=0|EL=0or 1
! EL=1|EL=0or 1
2 EL=2|EL=2

ACI Version 1to 5

Encryption is configured by installing the security exit for the application (security exit is
secuexit.d11 on windows, secuexit.so on UNIX, SECUEXI0 on z/OS) and the environment
variable NA2_BKPRIV (or ETB_ENCRPYT) is set to 1. Only ENCRYPTION-LEVEL in the broker attribute
file is available. Field EL for the stub is not available.

Encryption for Java-based Applications (ACl and RPC)

On the Broker object, use the methods setSecurity(...)oruseEntireXSecurity(...)toenable
EntireX Security and set the encryption level. See Broker in the Javadoc documentation of the Java
ACI in the Javadoc for details.

RPC Servers

For RPC servers, the encryption level is set in the configuration. See documentation of the config-
uration for the specific RPC server.

RPC Clients

® C-based RPC Clients
Use the structure ERX_CLIENT_IDENTIFICATION to set the encryption level. See
ERX_CLIENT_IDENTIFICATION for details.

* Natural RPC Clients
Natural Clients use user exit USR4009N to set the encryption level. See Operating a Natural RPC
Environment in the Natural documentation.

ACl for C 127

128

8 Broker ACI Fields

B I F OIS ..ot e 130
L =Y (o LTS o (o) APPSR PPPPPPP 130

129

Broker ACI Fields

Field Formats

The ACI field formats are alphanumeric, binary, or integer and include the number of bytes. For

example:

Format Description

A8, Al6, A32 Alphanumeric (A-Z, 0-9, underscore, hyphen). Other characters are currently possible,
but we cannot guarantee that these will work consistently across all platforms in future
versions. Do not use dollar, percent, period or comma.

B16, B32 Binary

Integer (unsigned)

The terms “null value” or “nothing specified” used for a field mean blank for alphanumeric formats
and zero for integer formats.

Field Descriptions

The ACI fields are described below in alphabetical order.

ACI Field

Format

Possible
Values

API
Vers

IIo

Description

ADAPTER-ERROR

A8

2

Filled by Broker with the transport error as supplemental diagnos
data.

ADCOUNT

14

A count of the number of times an attempt was made to deliver a U(
The count is incremented if a UOW is backed out or timed out.

API-TYPE

B1

bits

Required for all ACI functions. See API-TYPEand API-VERSIONur
Writing Applications: Client and Server | Publish and Subscribe in the .
Programming documentation.

API-VERSION

I

1-10

—_

Required for all ACI functions.

BROKER-ID

A32

string

—_

ID of the broker instance. Required for all ACI functions except
VERSION.

The BROKER-ID may be specified in URL Style or Transport-meth
Style. In order to communicate, applications must specify the sam
BROKER-ID.

Note: URL style does not apply to mainframe platforms (z/OS,
BS2000/0OSD and z/VSE).

CLIENT-ID

14

1-2147483647

Returns to a server application the unique instance number of a cl
application.

130

ACl for C

Broker ACI Fields

ACI Field

Format

Possible
Values

API
Vers

IIo

Description

CLIENT-UID

A32

string

Applies only to client/server communication model.

When a server issues a RECEIVE function, the user ID of
returned to the server in the CLIENT-UID field. If EntireX
installed, it is valid for the server application to rely on thi
when making decisions concerning access to information.

See Authentication under Configuration Options for Broker in
Security documentation (z/OS only).

Note: There is an uppercase translation when the USER- I

propagated to the CLIENT-UID field under EntireX Securi
Broker kernel is running under z/OS.

COMMITTIME

Al17

YYYY
MMDD
HHMM
SSms
(millisecs.)

Time when UOW was committed.

COMPRESSLEVEL

Al

09orYIN

Compression level. See Data Compression under Writing A
Client and Server | Publish and Subscribe in the ACI Progra:
documentation. The following values are possible:

0-9 0 =no compression, 9 = max
compression/decompression

N No compression

Y Compression level 6

CONV-1ID

Al6

string

1/O

A unique ID assigned to each conversation by EntireX Bre
and server must include the CONV - ID in their communicat
and server can also specify the indicated textual values (c
order to indicate to Broker the expected status of the cony
Messages for the conversation are taken from the queue o
first-out basis. See Conversational and Non-conversational M
Writing Applications: Client and Server in the EntireX Broke
Programming documentation.

NEW On a SEND function, initiates a new cc
On a RECEIVE function, signals read
receive requests for new conversatio
CONV-ID value is assigned to the cor
and the value is returned to the calle

OLD Applies to RECEIVE function only. C
messages for existing conversations a

ANY Ona RECEIVE function, requests or n
returned on a first-in, first-out basis
conversation. On an EOC function, a

ACl for C

131

Broker ACI Fields

Possible API
ACI Field Format |Values Vers |I/0 |Description
conversations belonging to the caller are
terminated.
NONE On a SEND function, the message is
non-conversational.
conv-id Indicates a specific conversation.
The CONV - ID value is an internally generate
identifier (containing numeric characters only
alphanumeric characters) for the conversatic
Application programmers are advised to ma
no assumptions about the contents, layout, c
meaning of any part of the CONV - ID field.
If the client has specified API-VERSION 3 or
above, the CONV - ID contains both alphanum
and numeric characters.
If the Broker does not support UOW process
(the Broker attribute MAX - UOWS=0) or the cli
has specified API-VERSION or 2, the CONV -]
contains numeric characters.

CONV-STAT 1 11213 2 |O | Conversation Status. See Managing Conversation Contexts under Wri
Applications: Client and Server in the EntireX Broker ACI Programm
documentation.

1 NEW - The message is the first in a new
conversation.

2 OLD - The message is part of an existing
conversation.

3 NONE - The message is non-conversatior

CREDENTIALS-TYPE binary 9 |O | Determines the credentials type to be used to authenticate a user.
LT Default. Use user ID and password.

IAF The token specified in the IAF token fie
is used.

DATA-ARCH 11 4 T | Architecture code. For future use.

ENCRYPTION-LEVEL I1 01112 6 |I |Encryption level. See Encryption under Writing Applications using
EntireX Security.

ENVIRONMENT A32 |string 1 |I |Information for translation user exits.

The contents of the field are solely the responsibility of the applica
and its associated translation user exit. The field cannot be used for
other internationalization approaches and must be empty if a met]
other than translation user exit is used. See Using the ENVIRONMEN

132

ACl for C

Broker ACI Fields

ACI Field

Format

Possible
Values

API
Vers

IIo

Description

Field with the Translation User Exit under Writing Applicatior
Server | Publish and Subscribe in the ACI Programming doc

ERROR-CODE

A8

Returns an error code to the caller. The application should
contents of this field at the completion of every Broker fur
Error Handling under Writing Applications: Client and Servei
and Subscribe in the ACI Programming documentation. Th
digits represent the error class; the next four digits represe
number; see also Error Messages and Codes.

ERRTEXT-LENGTH

14

0-40 | 0-255

Length of the error text buffer in bytes. See Call Format in 1
language-specific EntireX ACI documentation.

If there are fewer than 40 bytes, the error text may be trunca
of 0 (zero) means no error text.

Note: In previous ACI versions, Broker kernel always retur

of error text that were space-padded if necessary. With AC
and above, variable-length error texts can be returned to i
logging and tracing.

FORCE-LOGON

Al

YIN

Override the AUTOLOGON feature of the Broker. See AUTOL

Y The attribute AUTOLOGON=YES in the Brol
file is overridden. See FORCE-LOGON un
Applications using EntireX Security in the
Programming documentation.

N Default. Use the value of the Broker att:
for AUTOLOGON.

FUNCTION

In

1-22

The Broker function to be performed. A function value is r¢
is modified by the ACI field OPTION and the other ACI fie
below for description of values.

SEND 14 KERNELVERS

RECEIVE 15 LOCTRANS (d

UNDO 16 SETSSLPARM

EOC 17 SEND_PUBLI

REGISTER 18 RECEIVE_PU

DEREGISTER 19 SUBSCRIBE

VERSTON 20 UNSUBSCRIB

O 0 N o O A D -

LOGON 21 CONTROL_PU

-
o

LOGOFF 22 REPLY_ERRO

13 SYNCPOINT

KERNELSECURITY

Al

YIUIN

1/O

This field is used by the application to indicate programn
intention to communicate with a secure/non-secure Broke

ACl for C

133

Broker ACI Fields

ACI Field

Format

Possible
Values

API
Vers

o

Description

also indicates to the application how security has been configured
a particular Broker kernel. See Broker attribute SECURITY.

When used as an input field, this field is used by programmer to
indicate the desired security behavior of the application. If no opt
is specified, defaults to administrator's configuration setup.

Y EntireX Security

u User-written Security

N No security
Notes

" Output
In version 7 or above, this field returns the output value when
executing the KERNELVERSION command.

" Input
In version 8 or above, the application can programmatically spe«
the desired security behavior for all commands other than
KERNELVERSION.

LOCALE-STRING

A40

string

It is assumed that you have read the document Internationalization 1
EntireX and are familiar with the various internationalization
approaches described there.

The locale string tells the broker the encoding of the data. No conver:
is done within the broker's stub. The application must ensure the
provided matches the locale string. The locale string is case-insensit
also dashes '-' and underscores '_' are ignored (dashes and unders
improve human readability). See Using Internationalization under Wri
Applications: Client and Server | Publish and Subscribe in the ACI
Programming documentation.

LOG-COMMAND

In

Components that communicate with Broker can trigger command
logging by setting this field. By default, command logging is basec
the command log filters set in the kernel. You may override these ke
settings programmatically by setting this LOG- COMMAND field. If th
field is set, all associated commands will be logged.

Note: If command logging is not enabled for your kernel, you mu

first contact your administrator.

LONG-BROKER-ID-LENGTH

0-2147483647

—_

0

Length of LONG-BROKER-ID. If the value is non-zero, specify the v:
of LONG-BROKER-ID directly after the ACI control block. The
LONG-BROKER-ID overrides any BROKER-ID value.

With the LONG-BROKER-ID you can now specify numeric IPv6
addresses. Some sample values:

134

ACl for C

Broker ACI Fields

ACI Field

Format

Possible
Values

API
Vers

IIo

Description

tepip://[2001:0db8:85a3:08d3:1319:8a2e:0370:7
[2001:0db8:85a3:08d3:1319:8a2e:0370:73477:393
(2001:0db8:8523:08d3:1319:8a2e:0370:7347):393

The IP address is enclosed in square brackets or parenthes

MSG-ID

B32

I/O

Not used by EntireX Broker.

MSG-TYPE

Aleé

1/O0

Not used by EntireX Broker.

NEWPASSWORD

B32

Can contain
binary data.

Specifies a new password to be transmitted to the Broker ke
the authentication of the application. See Authentication ut
Configuration Options for Broker in the EntireX Security doc

The current password can be changed only when the clier
authenticates itself. This occurs on the first Broker ACI fuz
be LOGON) and requires the application to assign to the Bre
fields PASSWORD and NEWPASSWORD.

OPTION

In

0-21

Provides additional information that modifies the behavic
Broker ACI functions.

©o

NEXT 16
PREVIEW 17
COMMIT 18
BACKOUT 19

QUE
SET
ANY

0 no option
1 MSG 9
2 HOLD 10
3 IMMED 11

rese
futu

DUR
CHE

SYNC 20
ATTACH 21
DELETE

EOCCANCEL

4 QUIESCE 12
5 EOC 13
6
7

CANCEL 14
LAST 15

PARTNER-BROKER-ID

A32

string

ID of the partner broker. Deprecated.

PASSWORD

A32

Can contain
binary data.

e

Specifies a password to be transmitted to the Broker to ch
authentication of the application. See Authentication under (
Options for Broker in the EntireX Security documentation a
FORCE - LOGON under Writing Applications using EntireX Se
ACI Programming documentation.

PTIME

A8

Not used by EntireX Broker.

PUBLICATION-ID

Aleé

string,
case-sensitive.

o]

I/0

Publication ID for publish-and-subscribe communication

A unique ID assigned to each publication by EntireX Broke
and subscribers must include the publication ID and the (
their communications. Publisher and subscriber can also :
indicated textual value (capitals) in order to indicate to Bz
expected status of the publication. Messages for the publi
queued to the topic on a first-in, first-out basis.

ACl for C

135

Broker ACI Fields

Possible API
ACI Field Format |Values Vers (/O |Description
NEW Ona SEND_PUBLICATION function, initiz
a new publication. On a
RECEIVE_PUBLICATION function, signal
readiness to obtain next available publicat
A publication ID value is assigned to the
publication, and the value is returned to
caller.
publication-id Indicates a specific publication. The
PUBLICATION-ID value is an internally
generated identifier (containing
alphanumeric characters) for the publicati
Application programmers are advised to
make no assumptions about the content,
layout or meaning of any part of the
PUBLICATION-ID field.
RECEIVE-LENGTH B32 |Binary. 1 |I/O|Specifies the length of receive buffer, in bytes. The maximum leng
depends on the transport method:
NET 30,545
TCP 2,147,483,647
SSL 2,147,483,647
Note: Under z/OS with Adabas version 8, the value for NET is the s:
as for TCP and SSL.
See Using Send and Receive Buffers under Writing Applications: Client
Server | Publish and Subscribe in the ACI Programming documentat
RETURN-LENGTH 14 1 O |Length, in bytes, of the data returned.
See Using Send and Receive Buffers under Writing Applications: Client
Server | Publish and Subscribe in the ACI Programming documentat
SECURITY-TOKEN B32 |binary 1 |I/O|The contents of this field depend heavily on the implementation of

security exits.

This field is utilized by EntireX Security. The application must main
SECURITY -TOKEN between commands and not change this value.
recommend that the application allocate a separate ACI control bl
for each user if it issues commands on behalf of more than one use
For objects executing inside Web servers, assigning a unique value
such as 'session ID', to the ACI TOKEN field is highly recommendex
ensure uniqueness of user at same physical location. See Ignore Sec
Token under Configuration Options for Broker in the EntireX Security
documentation.

136

ACl for C

Broker ACI Fields

ACI Field

Format

Possible
Values

API
Vers

IIo

Description

If EntireX Security is not implemented, and you choose to
own security exits your can transmit an initial value to yo
exit as a credential that is used to calculate the actual secu
After an application's authenticity has been verified by the
exits, the SECURITY-TOKEN can be used to avoid addition
authentication checks.

SEND-LENGTH

B32

binary

1/O

Specifies the length of data being sent, in bytes. The maxir
depends on the transport method:

NET 30,545
TCP 2,147,483,647
SSL 2,147,483,647

Note: Under z/OS with Adabas version 8, the value for NE
as for TCP and SSL.

See Using Send and Receive Buffers under Writing Applicatior
Server | Publish and Subscribe in the ACI Programming doc

SERVER-CLASS
SERVER-NAME
SERVICE

A32
each

string,
case-sensitive

1/0

A client uses these fields to identify the service that it requi
uses this field to offer a service.

Using all three fields allows you to organize servers, maki
easier to identify, monitor, and maintain. Servers can be or;
server-classes, with each server providing a number of differ
Each service must be defined in the attribute file (see Serv:
Attributes (DEFAULTS=SERVICE) under Broker Attributes in
administration documentation).

The service fields are required with SEND, RECEIVE, and E
when CONV-IDissetto NEW, OLD, or ANY. Whena CONV-1ID
the service fields are ignored.

SERVICE=* or SERVER-NAME=* can be used on a RECEIVE
indicate all services within a specified server or all servers
specified server class.

Note: Server classes "SAG", "Entire", "Adabas", "Natural", "

and Broker are reserved for Software AG. Do not use then
applications.

STATUS

Il

1/O

Not used by EntireX Broker.

STORE

I

01112

1/0

Persistence or non-persistence of a UOW. Used with the f;
function for a UOW to specify whether the UOW is persis
Once established, the persistence of a UOW cannot be alt

0 none - Defaults to the value s
the service.

ACl for C

137

Broker ACI Fields

ACI Field

Format

Possible
Values

API
Vers

o

Description

1 ‘OFF - The UOW is not persistent.
2 ‘BROKER - The UOW is persistent.

TOKEN

A32

string,
case-sensitive.

Optionally identifies the caller and, when used, is required for all
Broker ACI functions except VERSION. See USER-IDand TOKENun
Writing Applications: Client and Server | Publish and Subscribe in the £
Programming documentation.

Caution: USER-ID and TOKEN must be specified by all application

that use UOWs held in the persistent store, and by all publisher a
subscriber applications where publication and subscription data i
held in the persistent store.

TOPIC

A96

string,
case-sensitive

1/O

Topic name for publish and subscribe communication model.

A publisher uses this field to identify the topic name required. A
subscriber uses this field to indicate the topic from which publicati
are to be obtained. Each topic must be defined in the attribute file.
Topic-specific Attributes (DEFAULTS=TOPIC) under Broker Attributes
the administration documentation.

UOWID

Aleé

I/0

A unique identifier for a UOW.

The value is returned on the first SEND or RECEIVE command wit]
a UOW; the value must be provided on all subsequent SEND, RECE
and SYNCPOINT commands related to the same UOW. Client and ser
can also specify the indicated textual value (capitals) in order to indic
to Broker the following:

BOTH Since a server receives a UOW and rep
with a different UOW, both UOWs can
committed or backed out by specifying
UOWID=BOTH for the SYNCPOINT comma

The vow7dmust be supplied in subsequ
SEND, RECEIVE and SYNCPOINT comma:
related to the same UOW.

uowid

UOWSTATUS

In

Contains the status of a UOW. EntireX Broker returns the UOWSTA’
field to the calling application in order to provide information abc
the condition of the specified UOW.

1 RECEIVED - One or more messages have b
sent as part of a UOW but the UOW has
yet been committed.

2 ACCEPTED - The UOW has been committe
by the sender.

3 DELIVERED - The UOW is currently being
received.

138

ACl for C

Broker ACI Fields

Possible API
ACI Field Format |Values Vers (/O |Description

4 BACKEDOUT - The UOW has been
by the sender.

5 PROCESSED - The UOW hasbeenr
the receiver has committed it.

6 CANCELLED -The UOW hasbeen c
the receiver.

7 TIMEOUT - The UOW was not pro
within the time allowed.

8 DISCARDED - The UOW was not
and its data was discarded as the
restart.

With the exception of DELIVERED, all UOWSTATUS values ar:

Persistent values are kept until they are explicitly deleted

or the time limit is exceeded. The lifetime of the UOWSTAT

determined by the broker attribute UNSTATP.

UOWSTATUS values in the following table are returned on

function to indicate whether the message being transferre

a UOW and, if so, its sequence within the UOW:

0 NONE - The message is not part of

9 FIRST - The message is the first n
UOW.

10 MIDDLE - The message is neither
the last in the UOW.

1 LAST - The message is the last me
UOW.

12 ONLY - The message is the only me
UOW.

UOW-STATUS-PERSIST 0-255 3 I | The value of the UOW-STATUS-PERSIST field is used as a

to calculate the lifetime for the persistent status of a UOW
is multiplied by the value of the broker attribute UWTIME.
255 can be specified to indicate no persistent status.

0 Means that the multiplier will
same value as the UNSTATP B
attribute.

255 Means that there will be no pe
status for UOWs.

1-254 Any number in this range is a
multiplier.

ACl for C

139

Broker ACI Fields

ACI Field

Format

Possible
Values

API
Vers

o

Description

USER-DATA

Bl16

binary

I/O

Conversation User Data. See Managing Conversation Contexts unde
Writing Applications: Client and Server in the EntireX Broker ACI
Programming documentation.

USER-ID

A32

string,
case-sensitive

Identifies the caller and is required for all Broker ACI functions exc
VERSION. See USER-ID and TOKEN under Writing Applications: Clie
and Server | Publish and Subscribe in the ACI Programming
documentation.

Caution: USER-1D and TOKEN must be specified by all publisher a

subscriber applications where publication and subscription data i
held in the persistent store.

USTATUS

A32

string

1/0

User-defined information about a unit of work (UOW). It can be
transmitted ona SEND, RECEIVE, or SYNCPOINT function and is retur
to applications that query the status of the UOW. To update the USTA
field, use OPTION=SETUSTATUS.

UWSTAT-LIFETIME

A8

nS1 nM | nH
| nD

Add value for persistent status lifetime in client and server
communication model.

This field is used to calculate the lifetime of the UOW status. The va
of this field determines how long the UOW status is to be retainec
the persistent store after the UOW is processed or timed out if it is
processed. This is an alternative to specifying UOW-STATUS-PERSI

UWSTAT-LIFETIME is specified on the first SEND_PUBLICATION
function for a UOW, it is not allowed on a RECEIVE_PUBLICATIO
function.

nS The number of additional seconds tl
UOW status will exist.

M The number of additional minutes t!
UOW status will exist.

nH The number of additional hours the
UOW status will exist.

nD The number of additional days the U(
status will exist.

UWTIME

A8

nS1 nM | nH
| nD

The lifetime of a UOW. The UOW exists until its lifetime expires ¢
is explicitly cancelled or backed out with SYNCPOINT OPTION=CAN(
or SYNCPOINT OPTION=BACKOUT.

If the UOW is not committed, backed out, or cancelled before its
UWTIME expires, the UOW is discarded and its status becomes TIMEQ

UWTIME is specified on the first SEND function for a UOW; it is not
allowed on a RECEIVE function.

140

ACl for C

Broker ACI Fields

| nM | nH

Possible API
ACI Field Format |Values Vers (/O |Description
1S The number of seconds the
exist.
M The number of minutes the
exist.
nH The number of hours the U
exist.
nD The number of days the UO
VARLIST-OFFSET 14 0-2147483647 |10 |I |For Software AG internal use only.
WAIT A8 NO | YES | nS|1 I

When a WAIT value (other than NO) is specified on a SEND «
function, the caller will wait for a reply until the message
or the specified time limit has been reached. See Blocked and
Broker Calls under Writing Applications: Client and Server |
Subscribe in the ACI Programming documentation.

NO Default. No wait. Control is returne
caller.

nS The number of seconds the caller wi
reply.

M The number of minutes the caller w1
reply.

H The number of hours the caller will
reply.

YES

Depending on the role of the user (cl
publisher or subscriber), the respecti
isused (CLIENT-NONACT | SERVER-
PUBLISHER-NONACT | SUBSCRIBER
If a server registers multiple services,
value of all the services registered is
wait time for the server. However, if
both client and server, CLIENT-NON
used for calculating the wait time.

All different roles provide non-activit
The maximum value is taken for the

ACl for C

141

142

9 Broker ACI Functions

O Y o =T o] [TR 145
B FUNCHON DESCHIPHONS ..vvvvvitiiiiiiiitittttet ettt ettt s s e s en s s ennneeee e 146
B OPtON DESCHIPHONS ...ttt ettt e et e e 155
= ACI Field/Function REfErence Tablevvviiiiiiiiiiiiiiiiiiieeeeeee e 157

143

Broker ACI Functions

Programs written for EntireX Broker contain instructions that specify to the Broker which functions
to perform. The function's behavior is controlled by the option value and other ACI fields.

See also Broker ACI Fields in the ACI Programming documentation.

144 ACl for C

Broker ACI Functions

Overview Table

Applicable Participant Logon User ID
Function Name Client[Server|[Publisher[Subscriber |Required "' |Required ® |Minimum API Version
CONTROL_PUBLICATION X X X X 8
DEREGISTER X X 1
EOC X X X 1
KERNELVERS X X X X X 4
LOGOFF X X X X X X 2
LOGON X X X X X 2
RECEIVE X X @ X 1
RECEIVE_PUBLICATION X X X 8
REGISTER X X 1
REPLY_ERROR X X X 8
SEND X X ® X 1
SEND_PUBLICATION X X X 8
SETSSLPARMS X X X X 6
SUBSCRIBE X X X 8
SYNCPOINT X X X® X 3
UNDO X X X X 2
UNSUBSCRIBE X X X 8
VERSION X X X X 2
Key

@ Logon is a prerequisite for issuing this command. See LOGON.

@ User ID is a prerequisite for issuing this command.

@ The following functions require a logon when used with units of work: RECEIVE, SEND,

SYNCPOINT.

ACl for C

145

Broker ACI Functions

Function Descriptions

CONTROL_PUBLICATION

This function is used to control a publication.

Option Description
BACKOUT = Used by the publisher, it backs out a publication in received status.
® Used by the subscriber, it backs out the subscriber's reading of the publication;
RECEIVE_PUBLICATION, PUBLICATION-ID=NEW will read it again.
COMMIT = Used by the publisher, it completes the publication, places it in accepted status and makes
it available to a subscriber.
® Used by the subscriber, it acknowledges receipt of a publication.
QUERY Used by the publisher, it returns the status of the publication specified by the
PUBLICATION-ID.
SETUSTATUS |[Used by the publisher, it updates the optional application-specific user status of the specified
publication that is in received status.
DEREGISTER

This function is used by a server application to deregister a service from EntireX Broker. Assigned
resources are de-allocated. To remove multiple services, specify either SERVER-CLASS, SERVER-NAME
and/or SERVICE.

Option Description

IMMED |To execute a immediate deregistration, use IMMED. The service is removed immediately; an error
code informs partners in existing conversations of this removal. Any active UOW is backedout.

QUIESCE |To execute a non-immediate deregistration, use QUIESCE. All active conversations are allowed
to continue until an EOC is issued or a conversation timeout occurs. The application that issues
the DEREGISTER function must remain active until all existing conversations are ended. No new
conversations are accepted.

146

ACl for C

Broker ACI Functions

EOC

This function is used by a client or server and applies to conversational mode only. It is used to
terminate one or more conversations. EntireX Broker accepts no additional SEND s for the conver-
sation(s). The partner can receive requests and messages that were sent before the EOC was issued.

Although conversations are normally terminated by the client, the EOC function can be issued by
either partner in a conversation. If an active UOW has not yet been committed (that is, its current
status is received or delivered) the conversation will not be terminated until the UOW is either com-
mitted, backedout, cancelled, or timedout. See Broker UOW Status Transition under Concepts of Persistent
Messaging in the general administration documentation.

® To terminate all conversations initiated by the participant, use CONV-ID.

* To terminate all conversations for a particular service, use CONV- 1D, SERVER-CLASS, SERVER-NAME
and/or SERVICE.

Option |Description

CANCEL|To inform the partner that the EOC is due to an unexpected event, use CANCEL.

KERNELVERS

This function is used by any participant to determine the highest API-VERSION that is supported
by the requested Broker. The highest API-VERSION that the Broker supports is returned in the
API-VERSION field (see API-TYPE and API-VERSION under Writing Applications: Client and Server |
Publish and Subscribe in the ACI Programming documentation). Platform and version information
is returned in the error text.

Option Description

CHECKSERVICE |If option is set to CHECKSERVICE, the command will determine whether a specified
SERVICE is currently registered to the Broker.

The KERNELSECURITY field returns one of the following values to indicate whether the kernel is
running with security. These values are returned only for API version 7 or above.

Value |Description

Y |Software AG-supplied security (SECURITY=YES in the Broker attribute file).
U |User-written security (SECURITY=YES in the Broker attribute file).
N [SECURITY=NO in the Broker attribute file.

ACl for C 147

Broker ACI Functions

LOGOFF

This function is used by all application components before termination when no further Broker
functions are to be issued.

LOGOFF should be issued after the application's last SEND, SEND_PUBLICATION, RECEIVE,
RECEIVE_PUBLICATION, DEREGISTER or UNSUBSCRIBE has been executed. It releases all resources
used by the application immediately rather than waiting until they time out (see Timeout Parameters
under Writing Applications: Client and Server | Publish and Subscribe in the ACI Programming doc-
umentation.

LOGON

This function is used by all application components so that the application can establish commu-
nication with a particular instance of the Broker kernel.

Allows the client or server application to logon to EntireX Broker, which allocates the necessary
structures to handle the new participant. If EntireX Broker is running in a secure environment
(with SECURITY=YES in the attribute file), LOGON performs the authentication process.

LOGON is normally the first function unless a LOCTRANS function (deprecated) is issued first to de-
termine the BROKER-ID.

In addition to the USER- 1D, the LOGON optionally transmits the PASSWORD, NEWPASSWORD and
SECURITY-TOKEN to authenticate itself, provided SECURITY=YES is set in the broker attribute file.

RECEIVE

This function is used by clients to receive incoming messages and by servers to receive incoming
requests.

" You can specify a WAIT time, causing the RECEIVE to wait for the request or message that satisfies
the operation.

® The RECEIVE-LENGTH field is required. It specifies the maximum length of data the caller can
receive. A receive buffer of at least this length must be provided. The actual length of the message
received is returned in the RETURN- LENGTH field.

Option Description Note
ANY Used with the RECEIVE function to indicate that the RECEIVE will be satisfied
by any message, whether part of a UOW or not.
LAST To retrieve the last (most recent) message in a conversation, use LAST. With this option,
WAIT must be set to
"NO" or not
specified.

148 ACl for C

Broker ACI Functions

Option Description Note

MSG To indicate that the RECEIVE will be satisfied only by a message that is not
part of a UOW, use MSG. See also Broker UOW Status Transition under Concepts
of Persistent Messaging in the general administration documentation.

NEXT To retrieve the next unprocessed request or message in a conversation, use
NEXT.

PREVIEW|To retrieve the next unprocessed request or message in a conversation
without deleting the previous message or moving the READ pointer, use
PREVIEW, which excludes using units of work.

SYNC To receive only messages that are part of a UOW, use SYNC. See also Broker
UOW Status Transition under Concepts of Persistent Messaging in the general
administration documentation.

RECEIVE_PUBLICATION

This function is used by subscribers to receive publications. If PUBLICATION- ID=NEW is specified,
Broker will deliver the next publication in accepted status to the subscriber, if a publication is in
accepted status. In the case of subsequent RECEIVE_PUBLICATION commands, a valid PUBLICATION-ID
is used to receive any messages from a multi-message publication. See function
CONTROL_PUBLICATION to acknowledge the publication.

ACI Field Description

RECEIVE-LENGTH |This field is required.

WATT You can specify a WAIT time to wait for a new publication.
REGISTER

This function is used by servers to inform EntireX Broker that a service is available. The Broker
obtains information about the service from the Broker Attributes in the administration documentation,
creates the appropriate environment, and makes the participant available as the specified
SERVER-CLASS, SERVER-NAME and SERVICE.

If REGISTER is the first call by a server when both AUTOLOGON and SECURITY are set to "YES" in the
Broker attribute file, USER-1D and PASSWORD are required in order to authenticate and authorize
the server. This is because an implicit LOGON is being performed.

The services being registered must be defined in the attribute file.

ACl for C 149

Broker ACI Functions

Option |Description

ATTACH|To register an attach service, use ATTACH. An attach service cannot be requested by a client. Its
function is to make available a service that cannot otherwise be scheduled.

REPLY_ERROR

This function is used by clients or servers to send an error message to the partner of the conversa-
tion. The error number is specified in the error code field. The sent message is delivered as an error
text; the specified error number is delivered as an error code.

® The user must be logged on.

® The error number is a numeric 8-byte value and must start with 8 - e.g., 80010001. A zero error
number will be rejected. These errors are user-definable and therefore not documented.

® The error message is provided in the send buffer and is limited to 40 bytes.
" Use the SEND-LENGTH field to specify the length of the error message.

® REPLY_ERROR can be used with a valid CONV-1ID only.

" Only WAIT=NO is allowed.

® The conversation is not allowed to contain units of work.

Option | Description

EOC |To end the conversation after the REPLY_ERROR function, use EOC.

SEND

This function is used by clients to send requests and by servers to send replies (messages). If a
corresponding RECEIVE function issued by a partner application is outstanding, EntireX Broker
forwards the request or message to that partner application. If not, EntireX Broker queues the re-
quest or message until a suitable RECEIVE is issued by a partner application. If no suitable RECEIVE
is issued by a partner application, the request will timeout within the specified timeout period.

" You can specify a SEND with either of the following;:
= WAIT=YES | Value
This causes an implicit RECEIVE to be generated and the SEND to wait for a reply. If a reply is
expected, the SEND must pass the length of the receive buffer, in bytes, as the value of the

RECEIVE-LENGTH parameter. The actual - not the specified - length of the reply is returned to
the sender as the RETURN- LENGTH value.

B WAIT=NO

Choose WAIT=NO if you are only forwarding a request or message.

150 ACl for C

Broker ACI Functions

" Use the SEND- LENGTH field to specify the length of the request or message being sent. The specified
number of bytes is transferred, starting at the beginning of the send buffer.

® The client starts a new conversation, using CONV- ID=NEW.
* The client can specify non-conversational mode, using CONV- ID=NONE.

" Include the SERVER-CLASS, SERVER-NAME and SERVICE if this is a new conversation or a non-
conversational request.

® If youadd the ENVIRONMENT parameter, its value is passed to the translation routine for the service.

* To transmit conversation-related data to the sending application, use USER-DATA.

Option |Description Note

COMMIT |Use COMMIT to indicate that the UOW being sent is complete
and can now be delivered to the intended receiver, which can
be either client or server.

EOC To end the conversation after the SEND, use EOC. WAIT must be "NO" or not
specified.

HOLD |To hold SEND data in a queue, use HOLD. The data is released [WAIT must be "NO" or not
by a SEND without a HOLD. specified.

SYNC |Client and server can send a message as part of a unit of work|WAIT must be "NO" or not
(UOW), using SYNC. specified.

SEND_PUBLICATION

This function is used by publishers to create publications for a specified topic. PUBLICATION-ID=NEW
is used to create a new publication. In the case of a subsequent SEND_PUBLICATION, a valid
PUBLICATION-ID is used when sending a multi-message publication. The publisher completes the
publication either by specifying SEND_PUBLICATION,OPTION=COMMIT or using the function
CONTROL_PUBLICATION. If SEND_PUBLICATION,OPTION=COMMIT is used, the option is specified on
the final SEND_PUBLICATION in the sequence.

Option/ ACI Field Description
OPTION=COMMIT Required to complete a publication if the function CONTROL_PUBLICATION is not
used.

PUBLICATION-ID=NEW |Required to start a new publication.
SEND-LENGTH Required.

ACl for C 151

Broker ACI Functions

SETSSLPARMS

This function is used by clients and servers to set the SSL parameters. It can be called whenever
the transport method SSL is available.

The SSL parameters are specified in the send buffer, (second parameter of the Broker ACI call).
These SSL parameters are used and communication is performed if the Secure Sockets Layer is
configured. See Running Broker with SSL or TLS Transport in the platform-specific administration
documentation.

SUBSCRIBE

This function is used to request EntireX Broker to subscribe to a specific topic. The Topic-specific
Attributes (DEFAULTS=TOPIC) under Broker Attributes in the administration documentation contains
parameters that specify the behavior of the topic. If Broker runs with the setting SECURITY=YES in
the Broker attribute file, the user must be successfully authenticated by EntireX Broker and also
authorized to subscribe to the specific topic.

The TOPIC name must be defined in the Broker attribute file.

Option |Description

DURABLE |If durable is specified within the SUBSCRIBE command, users need to subscribe only once to a
topic. The subscription is retained after the user issues a logoff command or if the subscriber has
timed out. Similarly, the subscription remains if Broker is restarted. All publications necessary
to meet subscription requirements are also retained. If a subscriber no longer wishes to subscribe
to a topic, it must issue an UNSUBSCRIBE command; otherwise the subscription remains valid
until the subscription expiration time has passed.

Durable subscription requires the administrator to configure the persistent store. See Concepts of|
Persistent Messaging in the general administration documentation. In addition, the topic must be
specified as durable within the Topic-specific Attributes (DEFAULTS=TOPIC) under Broker Attributes
in the administration documentation.

ALLOW-DURABLE is a topic-specific attribute that determines whether a subscriber is allowed to
perform a durable subscription to a topic. If users are allowed to durably subscribe to any topic,
you must specify a value for the SUBSCRIBER-STORE attribute.

152 ACl for C

Broker ACI Functions

SYNCPOINT

This function allows you to manage units of work (UOWs), both persistent and non-persistent,
that have been sent or received. See Using Persistence and Units of Work in the general administration
documentation.

SYNCPOINT is used with the OPTION field. The UOWID parameter is required and normally limits
the request to a specified UOW. For example:

SYNCPOINT OPTION=COMMIT,UOWID=n
SYNCPOINT OPTION=BACKOUT,UOWID=n

In cases where a server receives a UOW and sends a different UOW, you can ensure that the two
UOWs will be processed together (that is, if one is committed, both are committed) by specifying
UOWID=BOTH. For example:

SYNCPOINT OPTION=COMMIT,UOWID=BOTH

UOWID=BOTH can also be used with BACKOUT. This simply backs out both UOWs in a single call instead
of two separate calls:

SYNCPOINT OPTION=BACKOUT,UOWID=BOTH

Option Description

BACKOUT Used by the sender, it causes the UOW to be deleted, with a status of backedout.

By the receiver, causes the UOW to be returned to its prior, unreceived state, with a status
of accepted. The ADCOUNT field is incremented. See also Broker UOW Status Transition under
Concepts of Persistent Messaging in the general administration documentation.

CANCEL Used by the receiver, it causes the UOW to be considered finished, with a status of cancelled.
No further processing of the UOW is possible. The sender can cancel the UOW if, and only
if, it is in accepted status. The following sequence of commands, issued during recovery
processing, allows the sender to remove any created but undelivered UOWs:

= SYNCPOINT OPTION=LAST

= SYNCPOINT OPTION=CANCEL

B SYNCPOINT OPTION=DELETE

COMMIT User by the sender, it indicates that the UOW has been completely built and can be made
available for delivery, with a status of accepted. By the receiver, indicates that the UOW has
been completely received, with a status of processed. No further processing of the UOW is
possible.

EOC With UOWID=n, commits the UOW being created and ends the conversation.

EOCCANCEL |With UOWID=n, commits the UOW being created and cancels the conversation, that is,
terminates the conversation immediately.

ACl for C 153

Broker ACI Functions

Option Description

DELETE With UOWID=n, deletes the persistent status of the specified UOW. The UOW must be logically
complete (processed, cancelled, timedout, backedout, discarded) and must have been created by
the caller.

LAST Returns the status of the last UOW sent by the caller. In addition, SERVER-CLASS,

SERVER-NAME and SERVICE details of the associated server are also returned. The CONV-1D
can be included to qualify the request.

QUERY With UOWID=n, returns the status of the specified UOW. In addition, SERVER-CLASS,
SERVER-NAME and SERVICE details of the associated server are also returned.

SETUSTATUS [With UOWID=n, updates the user status of the specified UOW.

UNDO

This function is used to remove messages that have been sent but not received. It can only be used
with an existing conversation. When a message is undone, the conversation continues.

| Note: UNDO is not used in conjunction with units of work. See Using Persistence and Units of

Work in the general administration documentation.

Option | Description

HOLD |To undo messages in HOLD status, use UNDO with HOLD.

UNSUBSCRIBE

This function is used to cancel the subscription to a specific topic. The fully specified topic name
is required to execute the UNSUBSCRIBE request.

VERSION
This function is used to return the version of the stub implementation in the receive buffer. This

version string is useful to the application in determining the maximum API version supported by
the stub and to Software AG support if problems occur.

The string was modified in version 8.2. Example:

EntireX Broker Stub XXXXXXXX Version=08.3.0.00, Highest API Supported=09

where "XXXXXXXX" is is the name of the stub, for example "CICSETB".

154 ACIfor C

Broker ACI Functions

Option Descriptions

Number

Option

Description

1

MSG

Used with a RECEIVE function to receive only a message that is not part of a UOW.

2

HOLD

Used in conversational mode only.

B On a SEND function, places the messages in a HOLD queue. Messages are
released by a SEND without HOLD.

B On an UNDO function, releases all previously held messages.

B Ona LOGOFF function, the conversation is not ended although the user is logged
off.

IMMED

Used with the DEREGISTER function to immediately terminate all conversations
for the specified server. All partners are informed with an appropriate error code.

QUIESCE

Used with the DEREGISTER function to terminate a server smoothly. Existing
conversations are allowed to end normally; no new conversations are accepted.
The server is removed from the “active” list. QUI ESCE is the default option for the
DEREGISTER function.

EOC

Used with the SEND function to end the conversation with the current message.
It can be issued by either partner. The conversation is not ended if an active UOW
has not yet been committed, that is, its status is received or delivered. See Broker
UOW Status Transition under Concepts of Persistent Messaging in the general
administration documentation.

CANCEL

Used with the EOC function to abort a conversation rather than terminate normally.
The receiver of a UOW can use SYNCPOINT OPTION=CANCEL to interrupt
processing and discard the UOW.

LAST

B Used in conversational mode with the RECEIVE function to retrieve the last
(most recent) message.

B Used with the SYNCPOINT function, it returns the status of the last UOW sent
by the caller.

= Used with the CONTROL_PUBLICATION function, it returns the status of the last
publication sent by the publisher.

NEXT

Used with the RECEIVE function to retrieve the next unprocessed request or
message. The request or message is then considered processed and can be accessed
only with OPTION=LAST. NEXT is the default option for the RECEIVE function.

PREVIEW

Used with the RECEIVE function to retrieve the next unprocessed request message
without deleting the previous message or moving the READ pointer. The previewed
message will be retrieved again by the next RECEIVE OPTION=NEXT.

10

COMMIT

= COMMIT is used with the SYNCPOINT function to commit the active UOW. For
a UOW being sent, it means that the UOW is complete and can now be delivered

ACl for C

155

Broker ACI Functions

Number

Option

Description

to the intended receiver. For a UOW being received, it means that that UOW is
complete and no further processing of the UOW is allowed.

= COMMIT is used with the SEND function to commit the active UOW.
® COMMIT is used with the CONTROL_PUBLICATION function as follows:

= Used by the publisher, it completes the publication and makes it available to
subscribers.
= Used by the subscriber, it acknowledges receipt of a read publication.

= COMMIT isused with the SEND_PUBLICATION function to commit the publication
and make it available to subscribers.

11

BACKOUT

® The receiver of a UOW can use SYNCPOINT OPTION=BACKOUT to return the
UOW to its undelivered state. The UOW can be processed again, in its entirety,
by subsequent RECEIVE operations. The sender of a UOW can use SYNCPOINT
OPTION=BACKOUT to delete the UOW. No further processing of the UOW is
allowed.

= BACKOUT is used with the CONTROL_PUBLICATION function as follows:
® Used by the publisher, it back outs a publication.

= Used by the subscriber, it back outs the subscriber's reading of the publication;
RECEIVE_PUBLICATION will read it again.

12

SYNC

On a SEND function, indicates that the message is part of a UOW. On a RECEIVE
function, indicates that the RECEIVE will be satisfied only by a message that is
part of a UOW.

13

ATTACH

Used with the REGISTER function to register an attach server.

14

DELETE

Used with the SYNCPOINT function to delete the persistent status information for
the specified UOW.

15

EOCCANCEL

Used with the SYNCPOINT function to cancel the conversation after committing a
UOW.

16

QUERY

= Used with the SYNCPOINT function only to query the status of a UOW.

= Used with the CONTROL_PUBLICATION function, it returns the status of the
publication specified by the PUBLICATION-ID.

17

SETUSTATUS

= Used with the SYNCPOINT function to cancel the conversation after committing
a UOW.

= Used with the CONTROL_PUBLICATION function, it is used by the publisher to
update the optional application-specific user status of the specified publication.

18

ANY

Used with the RECEIVE function to indicate that the RECEIVE will be satisfied by
a message that is or is not part of a UOW.

19

No longer used.

156

ACl for C

Broker ACI Functions

Number|Option Description

20 DURABLE Used with the SUBSCRIBE function to establish a durable subscription to a topic
with attribute ALLOW-DURABLE=YES.

21 CHECKSERVICE |Use with the KERNELVERS function to check if the specified service is active in
EntireX Broker.

ACI Field/Function Reference Table

The following table identifies the ACI fields that apply to each of the Broker functions. For a given
function, an ACI field value may be a request field (Rq), and/or a reply field (Rt). Optional fields

are marked (O).
Function
5 5
g | & 3
2|5 |3 3 |«
c | m s |2
x E = E) é @ E| i % E' %
w wu |w | = v | B 2|22 3 |w |z 213 |m
= Elo ||z |t |8 |22 @ 2 | oo |® |
[a w o]) w | w (8] Z|l=|wm| o fm Q|2 |E bt
=z O [m] (O] o [id = i [=z Q m w | = o
w L = 8 w W | w § § > L 8 w | w w 5 |2 | O w
ADCOUNT Rt Rt Rt |Rt Rt
API-TYPE Rq |Rq [Rq|Rq |Rq |Rq[Rq|Rq[Rq|Rq [Rq|Rq|Rq|Rq |[Rq |Rq|Rq|Rq [Rq
API-VERSION Rq |Rq [Rq|Rq |Rq |Rq[Rq|Rq[Rq|Rq [Rq|Rq|Rq|Rq |[Rq |Rq|Rq|Rq [Rq
Rt
BROKER-1ID Rq |Rq [Rq|Rq |Rq |Rq Rq|Rq|Rq |Rq Rq|Rq |Rq |Rq[Rq|Rq |Rq
CLIENT-UID Rt Rt
COMMITTIME Rt |Rt Rt Rt |Rt Rt
COMPRESSLEVEL O (O O |O O
Rt |Rt Rt |Rt
CONV-1ID Rq |Rq [Rq|Rq Rq Rq
Rt
CONV-STAT Rt Rt
DATA-ARCH O (O O |0 (@)
ENCRYPTION-LEVEL |O |O O O
ENVIRONMENT O (O O |0 O
ERROR-CODE Rt [Rt |Rt |[Rt |Rt |[Rt |Rt|Rt |Rt |[Rt [Rt |[Rt [Rt [Rt |Rt |[Rt |Rt |[Rt |Rt
ERRTEXT-LENGTH o o0 |00 |0 0oj0oj0oOj0oj0O [O0O0O0O |0 |00 |0 |O
FORCE-LOGON O (O |00 |O [0 O |0 |O o 0O |O |0 |0 |0
ACl for C 157

Broker ACI Functions

Function
2|3 <
w 6 g w @ 14
" E b |= L2 181215(3 o |2 2|3 |&
> Ela|lolz|E|R |B|IZ2|a|E |2 € |
o g |2 D \m | w» g | = |E ﬁ O | w ﬁ = =
21828 |g m|E|B(B|2|5I5laig|(S |8 2|5 |k
ACI Field wr o D | W i a|=>|3J |3 |w ® [J|w | | ® w | Do i
FUNCTION Rq |Rq [Rq|Rq |Rq |Rq[Rq[Rq[Rq|Rq [Rq|Rq|Rq|Rq |[Rq |Rq|Rq|Rq [Rq
KERNELSECURITY Rt
LOG-COMMAND Rq |Rq [Rq|Rq |Rq |Rq Rq|Rq|Rq |Rq Rq |Rq |Rq|Rq|Rq |Rq
LOCALE-STRING O |O O |O @)
MSG-1ID
NEWPASSWORD (@) ©) (@)
PARTNER-BROKER-ID |O |Rt |Rt [Rt |Rt |Rt Rt [Rt |Rt |Rt Rt Rt |Rt |Rt [Rt |Rt
(deprecated)
OPTION o O |00 |0 |0 O |0 |0 |0 O |0 |O Rq |O
PASSWORD @) ©) @) O
PUBLICATION-ID Rq |Rq Rq
Rt Rt
RECEIVE-LENGTH O |Rq Rq Rq
RETURN-LENGTH Rt [Rt Rt Rt
SECURITY-TOKEN o O |00 |0 |0 0|0 |0 |0 o |0 |00 |0 |O
SEND-LENGTH Rq Rq|Rq|Rq Rq
SERVER-CLASS Rq |O O |Rq |O @) Rt
Rt
SERVER-NAME Rq |O O |Rq |O @) Rt
Rt
SERVICE Rq |O O |Rq |O @) Rt
Rt
STORE O [Rt Rt [Rt
TOKEN o 0O |00 |0 |0 O |0 Rq |Rq |Rq[Rq|Rq |O
TOPIC Rq |Rq |Rq|Rq|Rq
UOWID O |0 Rq
Rt [Rt
UOWSTATUS Rt [Rt Rt Rt Rt [Rt
UOW-STATUS-PERSIST @)
USER-DATA O [Rt Rt O
USER-ID Rq |Rq [Rq|Rq |Rq |Rq Rq|Rq|Rq Rq |Rq |Rq|Rq|Rq |Rq
158 ACl for C

Broker ACI Functions

Function

HoYYI Ad3y

NOILYDITENd 10¥LNOD

Rt

384 ISBNSNN

3IHISENS

NOILYDIT8Nd IAI303Y

Rt

NOILYDNENd ON3s

Rt

SWHYd18513s

SNYHL207

SHINTINETH

LNIOdINAS

Rt

440901

NCDOT

NOISHAA

4315193430

3181934

203

Rt

OaNn

EINEWE]E]

Rt

anN3s

Rt

ACI Field

USTATUS

UWSTAT-LIFETIME

UWTIME
WATT

159

ACl for C

160

10 Broker UOW Status Transition

= |nitial UOW Status: NULL | RECEIVEAvvviiiiiiiie i 162
= |nitial UOW Status: Accepted | DEIIVEIEAuvvieiiiiiiiiice e 163
= |nitial UOW Status: Processed | TIMEAOULuviiiiiiiiiei e 164
= |nitial UOW Status: Cancelled | Discarded | Backedoutcooiiiiiiiiiiiiiiiiicci e 165
= | egend for UOW Status Transition Tablevviiiiiiiiiiiiiiie e 166
= Table of ColumMN ADDIEVILIONSciiiiiiiiiiii e 166

161

Broker UOW Status Transition

This chapter contains the UOW status transition tables for EntireX Broker and covers the following

topics:

See also Broker ACI Fields in the ACI Programming documentation | Broker ACI Functions in the
EntireX Broker ACI Programming documentation | Error Messages and Codes.

Initial UOW Status: NULL | Received

Resulting UOW Status
No. |Initial UOW Status |Action [PU&PS PUGNPS |NPU&PS NPU&NPS |Description

2 |Received Send Received |Received |Received |Received

3 |Received Commit |Accepted |Accepted |Accepted |Accepted

4 |Received ReStart |BackedOut|NULL Discarded |NULL

5|Received BackOut |BackedOut|NULL BackedOut|NULL

6|Received TimeOut|BackedOutNULL BackedOut|NULL R6: This action can only be
a conversation timeout since
a UOW only exists once it is
committed.

7|Received Delete |Received |Received |Received |Received

8|Received Cancel |Received |Received [Received |Received

9|Received Receive |Received |Received |Received |Received

162

ACl for C

Broker UOW Status Transition

Initial UOW Status: Accepted | Delivered

Resulting UOW Status

No. |Initial UOW Status |Action |PU&PS PUGNPS |INPU&PS |NPU&NPS |Description

10| Accepted Receive |Delivered |Delivered |Delivered |Delivered

11| Accepted Timeout |Timedout |NULL Timedout |[NULL

12| Accepted Restart |Accepted |Accepted |Discarded |[NULL

13| Accepted Cancel |Cancelled |NULL Cancelled |[NULL

14| Accepted Delete |Accepted |Accepted |Accepted |Accepted

15| Accepted BackOut |Accepted |Accepted |Accepted |Accepted

16| Accepted Send Accepted |Accepted |Accepted |Accepted

17| Accepted Commit |Accepted |Accepted |Accepted |Accepted

18|Delivered Receive |Delivered |Delivered |Delivered |Delivered

19|Delivered Commit |Processed |NULL Processed |NULL

20 |Delivered Cancel |Cancelled |NULL Cancelled |[NULL R20:
Cancel
can only
be issued
by
receiver of
the UOW

21 |Delivered BackOut |Accepted |Accepted |Accepted |Accepted

22 |Delivered TimeOut|Timedout |NULL NULL NULL

23|Delivered Restart |Accepted |Accepted |Discarded |NULL

24 |Delivered Delete |Delivered |Delivered |Delivered |Delivered

26 |Delivered Send Delivered |Delivered |Delivered |Delivered

AClforC 163

Broker UOW Status Transition

Initial UOW Status: Processed | Timedout

Resulting UOW Status

No. Initial UOW Status |Action [PU&PS PU&NPS [NPU&PS NPU&NPS | Description

27 |Processed Delete |NULL N/A |NULL N/A |Processed is a STABLE UOW
status:

28|Processed Timeout|NULL NULL |NULL N/A |All actions and transitions refer
to the status of a UOW.

29|Processed Restart |Processed | N/A |Processed N/A

30|Processed Backout |Processed | N/A |Processed N/A

31|Processed Cancel |Processed | N/A [Processed N/A

32| Processed Commit |Processed | N/A |Processed N/A

33 |Processed Receive |Processed | N/A |Processed N/A

34 |Processed Send Processed | N/A |Processed N/A

35|Timedout Restart |Timeout N/A |Timeout N/A |Timedout is a STABLE UOW
status:

36| Timedout Delete |NULL N/A |NULL N/A | All actions and transitions refer
to the status of a UOW.

37 | Timedout Timeout|NULL N/A |NULL N/A

38| Timedout Send Timedout N/A |Timedout N/A

39| Timedout Receive |Timedout N/A |Timedout N/A

40| Timedout Commit | Timedout N/A |Timedout N/A

41| Timedout Backout |[Timedout | N/A |Timedout N/A

42| Timedout Cancel |Timedout | N/A |Timedout N/A

164

ACl for C

Broker UOW Status Transition

Initial UOW Status: Cancelled | Discarded | Backedout

Resulting UOW Status

No. |Initial UOW Status|Action |PU&PS PU&NPS [NPU&PS NPU&NPS | Description

43|Cancelled Delete |NULL N/A |NULL N/A |Cancelled is a STABLE UOW
status:

44 |Cancelled Restart |Cancelled N/A |Cancelled N/A |All actions and transitions
refer to the status of a UOW.

45|Cancelled TimeOut|NULL N/A |NULL N/A

46|Cancelled Send Cancelled N/A |Cancelled N/A

47 |Cancelled Receive |Cancelled N/A |Cancelled N/A

48|Cancelled Commit |Cancelled N/A |Cancelled N/A

49|Cancelled Backout |Cancelled N/A |Cancelled N/A

50|Cancelled Cancel |Cancelled N/A |Cancelled N/A

51|Discarded Delete N/A N/A |NULL N/A |Discarded is a STABLE UOW
status:

52|Discarded TimeOut N/A N/A |NULL N/A | All actions and transitions
refer to the status of a UOW.

53|Discarded Restart N/A N/A |Discarded N/A

54 |Discarded Cancel N/A N/A |Discarded N/A

55|Discarded Send N/A N/A |Discarded N/A

56|Discarded Receive N/A N/A |Discarded N/A

57 |Discarded Commit N/A N/A |Discarded N/A

58| Discarded Backout N/A N/A |Discarded N/A

59|BackedOut TimeOut|NULL N/A |NULL N/A |BackedOutis a STABLE
UOW status:

60 |BackedOut Cancel |[BackedOut | N/A |BackedOut N/A | All actions and transitions
refer to the status of a UOW

61 |BackedOut Restart |BackedOut | N/A |BackedOut N/A

62 |BackedOut Send BackedOut | N/A |BackedOut N/A

63 |BackedOut Receive |BackedOut | N/A |BackedOut N/A

64 |BackedOut Commit |BackedOut | N/A |BackedOut N/A

65|BackedOut Delete |NULL N/A |NULL N/A

66 |BackedOut Backout |BackedOut | N/A |BackedOut N/A

AClI for C 165

Broker UOW Status Transition

Legend for UOW Status Transition Table

Abbreviation

Resulting UOW Status

N/A

Not applicable

UOW Status |Error condition, message issued, no change

Table of Column Abbreviations

Abbreviation lUOW Status
PU Persistent unit of work
PS Persistent status
NPU Non-persistent unit of work
NPS Non-persistent status
166

ACl for C

11 Broker CIS Data Structures

B Command REGUESE STTUCIUIEeviiiei ettt e e e e e e e e e e e e e e e 169
= Command Request Parameter CombINAtoNSccoiiiiiiiiiiiieiii e 172
= Common Header Structure for ReSponse Dataoviiiiiiiiiiiiiie e 176
m |nformation REQUESE STTUCIUIEeeiiiie e e e 178
B |nformation REPIY SIUCIUIESvvviiiii i a e 188

167

Broker CIS Data Structures

EntireX Broker provides an API for Command and Information Services (CIS) that include the
following: shutting down conversations, servers and services; switching trace on and off; retrieving
information on clients; registering servers and services.

Command and Information Services can be accessed from any environment from which EntireX
Broker can be accessed. The structures for these services are available for the programming lan-
guages Assembler, C, Natural and COBOL.

Before referring to the structure tables below, see section Command-line Utilities under Broker
Command and Information Services.

This chapter describes the Command and Information Services data structures..

] Note: Version numbers in the tables below refer to the CIS interface version and not to the

Broker version.

168 ACl for C

Broker CIS Data Structures

Command Request Structure

The request structure is given in the table below. Note possible combinations under Command
Request Parameter Combinations under Broker CIS Data Structures in the ACI Programming docu-

mentation.

Field Name

Format

CIS
Interface
Version

Comment

VERSION

12

1

Interface version.

OBJECT-TYPE

12

1

Specifies the object type to which the command applies:

7 BROKER
4 CONVERSATION

18 PARTICIPANT @
9 PSF

21 SECURITY

1 SERVER

6 SERVICE

14 SUBSCRIBER®

29 TRANSPORT

COMMAND

12

Valid commands:

13 ALLOW-NEWUOWMSGS

20 CLEAR-CMDLOG-FILTER
88 NO-OPERATION

17 CONNECT-PSTORE

28 DISABLE-ACCOUNTING
24 DISABLE-CMDLOG

22 DISABLE-CMDLOG-FILTER
37 DISABLE-DYN-WORKER
18 DISCONNECT-PSTORE

27 ENABLE-ACCOUNTING

23 ENABLE-CMDLOG

21 ENABLE-CMDLOG-FILTER
38 ENABLE-DYN-WORKER

14 FORBID-NEWUOWMSGS

25 PRODUCE-STATISTICS

ACl for C

169

Broker CIS Data Structures

CIS
Interface
Field Name Format|Version |Comment

12 PURGE

29 RESET-USER

31 RESUME

19 SET-CMDLOG-FILTER
8 SHUTDOWN

33 START

36 STATUS

32 STOP

15 SUBSCRIBE ™
30 SUSPEND

26 SWITCH-CMDLOG
35 TRACE-FLUSH

2 TRACE-OFF

1 TRACE-ON

34 TRAP-ERROR

16 UNSUBSCRIBE @

OPTION 12 1 Possible values:

3 IMMED

4 QUIESCE
11 TR_LEVELL
12 TR_LEVEL?
13 TR_LEVEL3
14 TR_LEVEL4
15 TR_LEVELS
16 TR_LEVELG6
17 TR_LEVEL7Y
18 TR_LEVELS

P-USER-ID A28 |1 Specifies the internal unique ID which is used to distinguish
between several users with the same user ID. Using this field
uniquely identifies a single server. The value for this field
must be obtained by a previous info request. This field is used
as a handle, i.e. no translation is performed.

UOWID Ale |2 Selection field. Optional. Specifies the unit of work to be
purged.

170 ACl for C

Broker CIS Data Structures

CIS
Interface

Field Name Format Version |Comment

TOPIC® A96 |4 Selection field. Optional. Specifies the topic to be subscribed
or unsubscribed to.

UID A32 |4 Selection field. Optional. Specifies the user name for
subscription/unsubscription and participant shutdown.

TOKEN A32 |4 Selection field. Optional. Specifies the token name for
subscription/unsubscription and participant shutdown.

SERVER-CLASS A32 |5 Selection field. Optional. Specifies the server class name for
command log filter addition or removal.

SERVER A32 |5 Selection field. Optional. Specifies the server name for
command log filter addition or removal.

SERVICE A32 |5 Selection field. Optional. Specifies the service name for
command log filter addition or removal.

CONVID Ale |7 Optional. Specifies the conversation to be shut down with
command SHUTDOWN.

TRANSPORTID A3 |7 Optional. Specifies the transport task. Possible values:
NET | Snn| Tnn. Required for commands RESUME, START,
STATUS, STOP, SUSPEND.

EXCLUDE-ATTACH-SERVERS|I1 7 Optional. Exclude attach servers when shutting down a
service.

SEQNO 14 7 Optional. Specifies the sequence number of the participant
(i.e. client, server, publisher, subscriber) to be shut down.
Can be used instead of P-USER-ID.

ERROR-NUMBER 14 7 Specifies the error number to be used with command

TRAP-ERROR.

O See Writing Applications: Publish and Subscribe in the ACI Programming documentation.

ACl for C

171

Broker CIS Data Structures

Command Request Parameter Combinations

The following table shows all valid combinations of parameters:

Object Type

Command

Option

Comment

BROKER

CLEAR-CMDLOG-FILTER

Remove a command log filter. The
command log filter can be identified
using the fields TOPIC, UID,
SERVER-CLASS, SERVERand SERVICE.

DISABLE-ACCOUNTING

Disable accounting.

DISABLE-CMDLOG

Disable command logging.

DISABLE-CMDLOG-FILTER

Disable a command log filter. The
command log filter can be identified
using the fields TOPIC, UID,
SERVER-CLASS, SERVER and SERVICE.

DISABLE-DYN-WORKER

Disable the
DYNAMIC-WORKER-MANAGEMENT.
DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
The current number of active worker
tasks will not be changed until
DYNAMIC-WORKER-MANAGEMENT is
enabled again.

ENABLE-ACCOUNTING

Enable accounting.

ENABLE-CMDLOG

Enable command logging.

ENABLE-CMDLOG-FILTER

Enable a command log filter. The
command log filter can be identified
using the fields TOPIC, UID,
SERVER-CLASS, SERVERand SERVICE.

ENABLE-DYN-WORKER

Enable the
DYNAMIC-WORKER-MANAGEMENT again.
DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
DYNAMIC-WORKER-MANAGEMENT has
been disabled before. Additional
worker tasks can be started again, or
stopped if not used.

PRODUCE-STATISTICS

Output current statistics to the broker
log.

SET-CMDLOG-FILTER

Add a command log filter. The
command log filter can be identified
using the fields TOPIC, UID,
SERVER-CLASS, SERVERand SERVICE.

172

ACl for C

Broker CIS Data Structures

Object Type Command

Option

Comment

SHUTDOWN

Shutdown Broker immediately.

SWITCH-CMDLOG

Force a switch of command logging
output files.

TRACE-FLUSH

Flush all trace data kept in internal
trace buffers to stderr (DD: SYSOUT).
The broker-specific attribute
TRMODE=WRAP is required.

TRACE-OFF

Set trace off in Broker.

TRACE-ON

LEVEL

Set TRACE-LEVEL on in Broker.

TRAP-ERROR

error number

Modifies the setting of the
broker-specific attribute TRAP - ERROR.

CONVERSATION|SHUTDOWN

convid

SERVER SHUTDOWN

IMMED

Shutdown server immediately. The
server must be uniquely identified
using field P_USER_ID or SEQNOand
will be completely removed from the
BROKER environment.

The following steps will be performed:

= Error code 00100050 will be replied
to the server if it is waiting.

= All existing conversations will be
finished with EOC.

= User will be logged off.

QUIESCE

Shutdown server but allow existing
conversations to continue.

The termination is signaled to the
server by error code 00100051. After
this, the next call issued must be a
DEREGISTER for all services
(SC=*,SN=*,SV=* if more than one
service is active).

PSF ALLOW-NEWUOWMSGS

New UOW messages are allowed.

CONNECT-PSTORE

Connect the persistent store.

DISCONNECT-PSTORE

Disconnect the persistent store.

FORBID-NEWUOWMSGS

New UOW messages are not allowed.

PURGE Remove a unit of work from the
EntireX Broker persistent store. (From
version 2.)

TRACE-OFF Set trace off in the persistent store.

ACl for C

173

Broker CIS Data Structures

Object Type

Command

Option

Comment

TRACE-ON

LEVEL

SetTRACE-LEVEL on in the persistent
store.

PARTICIPANT

SHUTDOWN

IMMED

Shutdown participant immediately.
The participant must be identified,
using fields P-USER- ID under Broker
CIS Data Structures in the ACI
Programming documentation, UID or
TOKEN and will be completely
removed from the Broker
environment.

The following steps will be performed:

® Error code 00100050 will be replied
to the participant, if it is waiting.

= All existing conversations will be
finished with EOC.

= User will be logged off.

QUIESCE

Shutdown participant but allow
existing conversations to continue. The
termination is signaled to the
participant by error code 00100051.

seqno

INFO requests return a seqno that can
be used here to identify the target.

SECURITY

RESET-USER

Clear all cached security information
for a user. The user must be identified
using the field UID.

TRACE-OFF

Set trace off in EntireX Security.

TRACE-ON

LEVEL

Set TRACE-LEVEL on in EntireX
Security.

SERVICE

SHUTDOWN

IMMED

QUIESCE

class/server/service

SUBSCRIBER

SUBSCRIBE

Subscribe a user to a topic.

UNSUBSCRIBE

Unsubscribe a user to a topic.

TRANSPORT

RESUME

NET | Snn | Tnn

Resume NET transport or a specific
SSL or TCP communicator instance.

START

NET | Snn | Tnn

Start NET transport or a specific SSL
or TCP communicator instance.

STATUS

NET | Snn | Tnn

Show status of NET transport or a
specific SSL or TCP communicator
instance.

174

ACl for C

Broker CIS Data Structures

Object Type Command Option Comment
STOP NET | Snn | Tnn Stop NET transport or a specific SSL
or TCP communicator instance.
SUSPEND NET | Snn | Tnn Suspend NET transport or a specific
SSL or TCP communicator instance.
TRACE-OFF COM | NET | SSL Switch trace off for all communicators
TCP (COM) or only NET, SSL or TCP
communicators.
TRACE-ON LEVELn COM | NET | SSL Set trace level for all communicators
TCP (COM) or only NET, SSL or TCP
communicators.
ACl for C 175

Broker CIS Data Structures

Common Header Structure for Response Data

This section describes the header structure (Struct HD_CIS), which is used by both the information
services and the command service. For command-specific or information-specific structures, see
Command Request Structure under Broker CIS Data Structures in the ACI Programming documentation
or Information Request Structure under Broker CIS Data Structures in the ACI Programming docu-

mentation.

The header structure is always the first structure in the receive buffer that comes back from an
information or command service request. Even receive buffers obtained with subsequent RECEIVE
commands have this structure as the first part of the buffer. The header structure has the following
layout, whereby in the Format column I = 4-byte integer value:

CIS
Interface

Field Name Format Version |Comment

ERROR-CODE 14 1 Result of request. Value 0 indicates success. See Broker Command
and Information Services Error Codes under Error Messages and Codes.

TOTAL-NUM-0BJECTS |14 1 Total number of objects returned in object list.

CURRENT-NUM-OBJECTS|I4 1 Number of objects returned within current receive block.

MAX-SC-LEN 14 1 Length of longest SERVER-CLASS value in total object list. This
field is only relevant if the object-specific structure for the object
list contains the SERVER-CLASS field.

MAX-SN-LEN 14 1 Length of longest SERVER-NAME value in total object list. This
field is only relevant if the object-specific structure for the object
list contains the SERVER-NAME field.

MAX-SV-LEN 14 1 Length of longest SERVICE value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the SERVICE field.

MAX-UID-LEN 14 1 Length of longest USER-ID value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the USER-ID field.

MAX-TK-LEN 14 1 Length of longest TOKEN value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the TOKEN field.

MAX-TOPIC-LEN 14 4 Length of longest TOPIC value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the TOPIC field.

REQUESTTIME 14 4 This is the time that the request was received by the Broker kernel.

ETB-ERROR-CODE A8 |5 This is any secondary error code from the broker kernel. See Error

Messages and Codes.

176

ACl for C

Broker CIS Data Structures

CIs
Interface
Field Name Format|Version |Comment
ETB-ERROR-TEXT A40 |5 This is any secondary error text from the broker kernel. See Error
Messages and Codes.
MAX-PPC-LIB-LEN 14 6 Length of longest RPC - L1B value in total object list. This field is

only relevant if the object-specific structure for the object list
contains the RPC-LIB field.

MAX-PPC-PGM-LEN 14 6 Length of longest RPC - PGM value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the RPC-PGM field.

ACl for C 177

Broker CIS Data Structures

Information Request Structure

The information services can handle many different information structures. Applications use the
information request structure to specify which information structure is required. See also Examples
of Selection Criteria under Writing Applications: Command and Information Services in the ACI docu-

mentation.

The layout of the information request structure is shown in the following table. Fields BLOCK- LENGTH,
VERSION, and OBJECT-TYPE are mandatory. All other fields are optional. Fields of type I or B are
considered “not specified” if they contain low value. Fields of type A are considered “not specified”
if they contain low value or spaces (according to the caller's character set).

CIS
Interface |Opt/

Field Name Format |Version |Req |Comment

BLOCK-LENGTH 14 1 R |Defines the block length of the data packages returned (without
length of header.)

(RECEIVE-LENGTH field of ACI not used in order to keep the
interfaces independent.)

VERSTION 12 1 R |Interface version. This describes the kind and amount of
information wanted and enables us to extend the information
in further versions of INFO services. Valid versions are 1 and
above.

OBJECT-TYPE 2 1 R |Specifies the object type for which the information is required.

If an object type is specified without additional selection
criteria, a list of all active objects of that type is returned in
accordance with the information service being addressed (INFO
or USER-INFO). Possible values are:

BROKER 7 Info on this Broker.
CLIENT 2 Info on active clients
CMDLOG_FILTER 23 Info on command log filters

CONVERSATION 4 Info on active conversations

NET 24 Info on the Entire Net-Work
communicator.

PARTICIPANT 18 Info on participants

POOL_USAGE 25 Info on Broker pool usage and
dynamic memory management.

PSF 9 Info on a unit of work's status

PSFADA 12 Info on the Adabas persistent store.

PSFCTREE 20 Info on the c-tree persistent store.

PSFDIV 11 Info on the DIV persistent store.

178

ACl for C

Broker CIS Data Structures

Field Name

Format

CIS
Interface
Version

Opt/
Req

Comment

PSFFILE 13 Info on the B-Tree persistent store (no
longer supported)

PUBLICATION 16 Info on active publications
PUBLISHER 15 Info on active publishers
RESOURCE_USAGE 26 Info on Broker resource usage.
SECURITY 21 Info on EntireX Security.
SERVER 1 Info on active servers

SERVICE 6 Info on active services

SSL 2?2 Info on SSL communicators.

STATISTICS 27 Statistics on selected Broker

resources. o

SUBSCRIBER 14 Info on active subscribers

TCP 19 Info on TCP communicators.

TOPIC 17 Info on active topics

USER 28 Info on all users of Broker regardless
of the user type

WORKER 8 Info on all workers. ©
WORKER_USAGE 30 Info on usage of worker tasks and
dynamic worker management. "

) No additional selection criteria are needed. Other selection
criteria fields are ignored.

USER-ID

A32

Selection criteria field. This is the user ID of the client or server
as specified in the field USER- 1D of the EntireX Broker ACL
The value of the field is used to restrict information to related
objects of a specific user.

P-USER-ID

B28

Selection criteria field. Specifies the internal unique ID which
is used to distinguish between several users with the same
user ID.

This field uniquely identifies a client or server process. The
value for this field must be obtained by a previous info request.
This field is used as a handle, i.e. no translation is performed.
Any value different from low value will be treated as selection
value.

TOKEN

A32

Selection criteria field. Corresponds to the TOKEN field of the
EntireX Broker ACIL. The value restricts the information to
objects of users which have specified this TOKEN value in their
Broker calls.

SERVER-CLASS

A32

Selection criteria field. Corresponds to field SERVER-CLASS in
the EntireX Broker ACI. The value of this field is used to restrict

ACl for C

179

Broker CIS Data Structures

CIs
Interface |Opt/

Field Name Format |Version [Req |Comment
information to objects concerning the services registered with
this class.

SERVER-NAME A32 |1 O |Selection criteria field. Corresponds to field SERVER-NAME in
the EntireX Broker ACI. The value of this field is used to restrict
information to objects concerning the services registered with
this server name.

SERVICE A32 |1 O |Selection criteria field. Corresponds to field SERVICE in the
EntireX Broker ACI. The value of this field is used to restrict
information to objects concerning the services registered with
this service name.

CONV-ID Ale |1 O |Selection criteria field. Specifies the conversation ID of a
conversation. Using this field uniquely identifies a
conversation. The value for this field must be obtained by a
previous info request.

RESERVED 2 1 Reserved for future use.

UOWID Ale |2 O [Selection criteria field. Specifies the unit of work ID.

UOWSTATUS I1 2 O [Selection criteria field. Specifies the unit of work status search
criteria:

1 RECEIVED
2 ACCEPTED
3 DELIVERED
4 BACKEDOUT
5 PROCESSED
6 CANCELLED
7 TIMEOUT

8 DISCARDED

USERSTATUS A32 |2 O [Selection field. Specifies the user status selection value.

RECVUID A32 |2 O |Selection field. Specifies the unit-of-work receiver's user ID.

RECVTOKEN A32 |2 O |Selection field. Specifies the unit-of-work receiver's token ID.

RECVSERVER A32 |2 O |Selection field. Specifies the unit-of-work receiver's server
name.

RECVSERVICE A32 |2 O |Selection field. Specifies the unit-of-work receiver's service
name.

RECVCLASS A32 O |Selection field. Specifies the unit-of-work receiver's class name.

TOPIC A96 O |Selection field. Specifies the topic name.

PUBLICATION-ID Ale6 O [Selection field. Specifies the publication ID.

180

ACl for C

Broker CIS Data Structures

CIs
Interface |Opt/
Field Name Format |Version [Req |Comment
SUBSCRIPTION-TYPE(I2 4 O [Selection field. Specifies the subscription type:
1 DURABLE
2 NON-DURABLE
CONVERSATION-TYPE|I2 5 O [Selection field. Specifies the conversation type:
1 NON-CONVERSATIONAL
2 CONVERSATIONAL
Legend
Abbreviation | Long Form / Description
Y The field is specified.
I The field is ignored.
N The field is not specified; information should not be restricted by its value.

ACl for C

181

Broker CIS Data Structures

Column Abbreviation Table

Abbreviation|Long Form / Description

UID USER-ID

RECV-UID |RECEIVER USER-ID

PUID P-USER-ID

TK TOKEN

RECV-TK |RECEIVER TOKEN

SC SERVER-CLASS

RECV-SC |RECEIVER SERVER-CLASS
SN SERVER-NAME

RECV-SN |RECEIVER SERVER-NAME
SV SERVICE

RECV-SV |RECEIVER SERVICE

CID CONV-1ID

UOWID UNIT OF WORK ID
UWSTAT UNIT OF WORK STATUS
USTAT USER STATUS

TOPIC TOPIC

PBN-ID PUBLICATION-ID
SBN-TYP |SUBSCRIPTION-TYPE

182 ACl for C

Broker CIS Data Structures

Selection Criteria CLIENT Object Type

Selection PUID|UID[TK[SC[SN[SV[CID
Client Y |I [T |1 (I |1 |1
Client ® N |Y [Y|I [T [T]I
Clients with UID|N |Y [N |I |I |I |I
Clients with TK [N [N [Y [T |I |I |I
all clients N [N NI |T (I |I

Selection Criteria SERVER Object Type

Selection

PUID

uiD

TK

CiD

Server)

Server @

Servers with UID

Servers with TK

Servers offering service

All Servers

z|\z|zl z|lZ|l<

Z|\z| Z| <| <™

zZ|lz|<|Z|=x|l"

Z,_<»—<»—|»—|»—(

Z,_<»—<»—¢»—|»—(

Z,_<»—<»—¢»—4>—(

[N (RS RS (Y — y—

Selection Criteria SERVICE Object Type

Selection

PUID

uiD

TK

(72
(9]
w
=

SV

CID

Services offered by this server

(1)

Services offered by this server

2

Services with this SC/SN/SV

Services with this SC/SN

Services with this SC/SV

Services with this SC

Services with this SN/SV

Services with this SN

Services with this SV

All services

z|\z|\z|z|Z|Z|Z|Z|Z|<

z|zZ|\z|Z|z|z|Z|z|<|™

Z|z2|z2|Z2|Z|Z|Z|Z|<|™

Z|z| Z| z| <[<[<[<[]~

Z| Z| <<l Z|lz|l <<=~

z| <}z <}|Z|=<Z|=<|7~

— = = = = = = =] =] =

ACl for C

183

Broker CIS Data Structures

Selection Criteria CONV Object Type

Selection PUID|UID [TK|SC|SN|SV|CID
Conversations of this client/server VY [T [T (I [T [T |I
Conversations of this client/server N |Y |Y [I [T [T |I
Conversations of this service N [N |[N[Y |Y |Y |I
The conversation with CID N [N |[N[N|N |NJ|Y
All Conversations N |N |[N|N |N |N|N

184 ACIfor C

Broker CIS Data Structures

Selection Criteria PSF Object Type (Version 2 and above)

Selection

uowib

uiD

—
b

(/2]
(9]
(/2]
=

w
<

CID

The unit of work

All units of work for the conversation

UOWs with client UID

UOWs with clients having TK

UOWSs with the client SC

UOWs with the client SN

UOWs with the client SV

UOWSs with the client SC/SN

UOWSs with the client SC/SV

UOWSs with the client SC/SN/SV

UOWSs with the client SN/SV

All UOWs

UOWs with user status

UOWs with UOW status

UOWs with server ID

UOWs with server having TK

UOWSs with the server SC

UOWs with the server SN

UOWs with the server SV

UOWs with the server SC/SN

UOWs with the server SC/SV

UOWSs with the server SC/SN/SV

UOWSs with the server SN/SV

All UOWs

z\z|z|z|Z|Z|Z|Z|Z|<|7 |7 z|z|z|z|Z2|Z|Z|Z|Z|z|zZ|=<

z\z|\z|z|z|Z|Z|zZ|zZ|z|"|T|\z|z|z|z|Z|Z2|Z|Z|Z|=<|T|~

Z\z|\z|Z|\z|z|Zz|Z|\<|z|7|T|\z|z|Z|z|z|Z|Z|z|<|Z|7|~

z| z| <[<[<[z[z| <[z[Zz][|~ z| 2| <[<[<[z| 2| <[z Zz| ~ |~
z| < <[z <[z[<[z|z[z[|~ | z| <[<[Z[<| z| <[z[Zz[2|~ |~
Z| < <[<[Z[=[z]| z| z[Z[<[z| z| <[<[<[z| <[z[z[2| 2| = |~

z\z|\z|z|z|Z|Z|Z|Z|z|z|x}|z|z|z|Z2|Z|Z2|Z|Z|Z|zZz|=<|"T

ACl for C

185

Broker CIS Data Structures

Selection Criteria for PUBLISHER Objects (Version 4 and above)

Selection PUID[UID[TK|TOPIC|PBN-ID
Publisher Y [T |1 |1 I
Publisher @ N |Y |Y|I I
Publishers with UID|N |Y [N |I I
Publishers with TK [N [N [Y |I I
All publishers N [N |[N|I I

Selection Criteria for PUBLICATION (Version 4 and above)

Selection PUID|UID|TK|TOPIC | PBN-ID
Publications of this publisher/subscriber VY |T [T |I I
Publications of this publisher/subscriber N |Y [Y [I I
Publications of this topic N N |[NY I

The publications with PBN-ID N |N |N N Y

All publications N |N [N (N N

Selection Criteria for TOPIC (Version 4 and above)

Selection PUID|UID|TK|TOPIC | PBN-ID
Topics subscribed to by this subscriber Y [T | |I I
Topics subscribed to by this subscriber ® [N |Y |Y |I I
Topics with this TOPIC N N |[N|Y I

All topics N |N |[N|N N

Selection Criteria for SUBSCRIBER (Version 4 and above)

All subscribers with SBN-TYTP
All subscribers with TOPIC

Selection PUID |UID TK|TOPIC | SBN-TYP
Subscriber Y [T |T|I I
Subscriber ® N |Y |Y [I I
Subscribers with UID N |Y |[N[I I
Subscribers with TK N N |Y [I I

N |N |[N[I Y

N [N |INJ|Y I

186 ACl for C

Broker CIS Data Structures

Key

@ if participant is not using TK (token) for authentication

@ if participant is using TK (token) for authentication

ACl for C 187

Broker CIS Data Structures

Information Reply Structures

The information reply structures are defined and described in the delivered source code. The

structures are available for programming languages Assembler, C, Natural and COBOL.

= BROKER-OBJECT (Struct INFO_BKR)

= CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)
= CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)
= CONVERSATION-OBJECT (Struct INFO_CV)

= NET-OBJECT (Struct INFO_NET)

= POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)

= PSF-OBJECT (Struct INFO_PSF)

= PSFADA-OBJECT (Struct INFO_PSFADA)

= PSFCTREE-OBJECT (Struct INFO_PSTCTREE)

= PSFDIV-OBJECT (Struct INFO_PSFDIV)

= PSFFILE-OBJECT (Struct (INFO_PSFFILE)

= PUBLICATION-OBJECT (Struct INFO_PUBLICATION)

= PUBLISHER-OBJECT (Struct INFO_PUBLISHER)

= RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)
= SECURITY-OBJECT (Struct INFO_SECURITY)

= SERVICE-OBJECT (Struct INFO_SV)

= SSL-OBJECT (Struct INFO_SSL)

= STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)
= SUBSCRIBER-OBJECT (Struct INFO_SUBSCRIBER)

= TCP-OBJECT (Struct INFO_TCP)

= TOPIC-OBJECT (Struct INFO_TOPIC)

= USER-OBJECT (Struct INFO_USER)

= WORKER-OBJECT (Struct INFO_WKR)

= \WWORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

188

ACl for C

Broker CIS Data Structures

BROKER-OBJECT (Struct INFO_BKR)

CIS
Interface

Field Name Format |Version (Description / Action

PLATFORM A8 1 Platform dependent.

RUNTIME 14 1 Time since Broker started, in seconds. Computed
from current time - Broker start time.

NUM-WORKER-ACT 14 1 Number of active workers.

NUM-LONG 14 1 Number of long buffers defined (see
NUM-LONG-BUFFER).

LONG-ACT 14 1 Number of long buffers active (in use).

LONG-HIGH 14 1 Highest number of long buffers active since Broker
started.

NUM-SHORT 14 1 Number of short buffers defined (see
NUM-SHORT-BUFFER).

SHORT-ACT 14 1 Number of short buffers active.

SHORT-HIGH 14 1 Highest number of short buffers active since Broker
started.

LONG-SIZE 14 1 Size of long buffer entry.

SHORT-SIZE 14 1 Size of short buffer entry.

NUM-SERVICE 14 1 Number of services defined (see NUM-SERVICE).

SERVICE-ACT 14 1 Number of services active.

NUM-SERVER 14 1 Number of servers defined (see NUM- SERVER).

SERVER-ACT 14 1 Number of servers active.

SERVER-HIGH 14 1 Highest number of servers active since Broker started.

NUM-CLIENT 14 1 Number of clients defined (see NUM-CLIENT).

CLIENT-ACT 14 1 Number of clients active.

CLIENT-HIGH 14 1 Highest number of clients active since Broker started.

NUM-CONV 14 1 Number of conversations defined (see
NUM-CONVERSATION).

CONV-HIGH 14 1 Highest number of conversations active since Broker
started.

TRACE-LEVEL 12 1 Actual Trace Level value.

UNUSED1 12 1 Unused.

LMAXUOWS 14 2 Maximum number of active UOWs.

LMAXUOWMSG 14 2 Maximum number of messages in a UOW.

LUWTIME 14 2 Maximum UOW lifetime

LMAXDELCNT 14 2 Currently not in use. (Count is always zero.)

ACl for C 189

Broker CIS Data Structures

CIs
Interface
Field Name Format |Version (Description / Action
LMAXMSGSIZE 14 2 Maximum size of a message
LTOTALUOWS 14 2 Number of UOWs.
CSTORE In 2 Store attribute for all UOWs:
0 OFF
1 BROKER
CPSTORE I1 2 Startup value for persistent store:
0 NO
1 HOT
2 COLD
4 WARM
CUWSTATP Il UOW status lifetime multiplier (0-255)
CDEFERRED I1 2 Default status attribute for all UOWs:
0 NO
1 YES
CACCOUNTING A3 |3
NO Accounting not active
YES Accounting active on UNIX and Windows
nnn SMF Record number on z/OS
CAUTHDEFAULT In 3 Authorization Default:
0 NO
1 YES
LSSLPORT 14 3 Port number being used for SSL transport (UNIX and
Windows only).
NEW-UOW-MESSAGES In 3 New UOW messages:
0 NO
1 YES
SNMP-LICENSED In 3 SNMP licensed:
0 NO
1 YES
UNUSED2 I1 Unused.
CPLATNAME A32 |3 Full platform name where Broker is running

190

ACl for C

Broker CIS Data Structures

CIS
Interface
Field Name Format |Version (Description / Action
CPSTORETYPE A8 |3 Persistent store type. It will be one of the following
values:
DIV Data-in-Virtual Persistent Store (z/OS only)
FILE B-Tree Store (UNIX and Windows only, no
longer supported)
ADABAS Adabas Persistent Store (all platforms)
PUB-SUB In 4 Publish and subscribe:
0 NO
1 YES
HIGHEST-API-VERSION n 4 For example: 0x06.
HIGHEST-CIS-VERSION n 4 For example: 0x06.
PSTORE-CONNECTED 1 4
0 NO
1 YES
NUM-TOPIC 14 4 Number of topics defined (see NUM-TOPIC).
TOPIC-ACT 14 4 Number of topics active.
NUM-SUBSCRIBER 14 4 Number of subscribers defined (see
NUM-SUBSCRIBER).
SUBSCRIBER-ACT 14 4 Number of subscribers active.
SUBSCRIBER-HIGH 14 4 Highest number of subscribers active since Broker
started.
NUM-PUBLISHER 14 4 Number of publishers defined (see NUM-PUBLISHER).
PUBLISHER-ACT 14 4 Number of publishers active.
PUBLISHER-HIGH 14 4 Highest number of publishers active since Broker
started.
NUM-PUBLICATION 14 4 Number of publications defined (see
NUM-PUBLICATION).
PUBLICATION-HIGH 14 4 Highest number of publications active since Broker
started.
ATTACH-MGRS-ACT 14 4 Number of attach servers active.
LUWSTAT-ADD-TIME 14 4 Unit of work status additional lifetime.
PRODUCT-VERSION Al6 Version, release, service pack, and patch level, e.g.
8.0.1.00.
LICENSE-EXPIRATION-DATE Al0 |5 License expiration date.

ACl for C

191

Broker CIS Data Structures

CIS
Interface

Field Name Format |Version (Description / Action
SECURITY-TYPE I 5 Security type:

0 None

1 SAG

2 Light

3 Other
ACCOUNTING-ENABLED I 5

1 Accounting enabled

0 Accounting disabled
NUM-FREE-CCB 14 5 Number of free CCB entries (conversation control

block).
NUM-FREE-PCB 14 5 Number of free PCB entries(participant control block).
NUM-FREE-PCBEXT 14 5 Number of free PCBEXT entries (PCB extension).
NUM-FREE-SCB 14 5 Number of free SCB entries (service control block).
NUM-FREE-SCBEXT 14 5 Number of free SCBEXT entries (SCB extension).
NUM-FREE-SUBSCB 14 5 Number of free SUBSCB entries (subscriber control
block).

NUM-FREE-TCB 14 5 Number of free TCB entries (topic control block).
NUM-FREE-TCBEXT 14 5 Number of free TCBEXT entries (TCP extension).
NUM-FREE-TOQ 14 5 Number of free TOQ entries (timeout queue).
NUM-FREE-UWCB 14 5 Number of free UWCB entries (UOW control block).
NUM-COM-BUFFER 14 5 Number of communication buffers.
NUM-COM-SLOT 14 5 Number of communication buffer slots.
NUM-COM-SLOT-FREE 14 5 Number of communication buffer slots free.
NUM-CMDLOG-FILTER 14 5 Number of CMDLOG filters.
NUM-CMDLOG-FILTER-ACTIVE 14 5 Number of CMDLOG filters active.
CMDLOG I 5 Reflects status of Broker attribute CMDLOG:

1 Command logging features are available for the

Broker

0 Command logging not available

CMDLOG-ENABLED I 5 Reflects result of commands DISABLE-CMDLOG and

ENABLE-CMDLOG:

1 Command logging enabled
0 Command logging temporarily disabled

192

ACl for C

Broker CIS Data Structures

CIs
Interface
Field Name Format |Version (Description / Action
NOTUSED3 A2 |5 Alignment.
ATTRIBUTE-FILE-NAME A256 |5 Attribute file name.
LOG-FILE-NAME A256 |5 Name of trace log file.
LOG-FILE-SIZE 14 5 Size of trace log file.
LICENSE-FILE-NAME A256 |5 License file name.
CMDLOG-FILE-SIZE 14 5 Max. size of CMDLOG file.
OPEN-CMDLOG-FILE-NAME A256 |5 Name of open CMDLOG file.
OPEN-CMDLOG-FILE-SIZE 14 5 Size of CMDLOG file.
CLOSED-CMDLOG-FILE-NAME A256 |5 Name of closed CMDLOG file.
CLOSED-CMDLOG-FILE-SIZE 14 5 Size of closed CMDLOG file.
RESERVED 14 5 Reserved for future use.
ACCOUNTING-FILE-NAME A256 |5 Name of accounting output file.
ACCOUNTING-FILE-SIZE 14 5 Size of accounting output file.
CONTROL-INTERVAL 14 5 Control interval in seconds.
MAX-TAKEOVER-ATTEMPTS 14 5 Max. number of takeover attempts.
RUN-MODE Alé6 |5 Broker run mode.
PARTNER-CLUSTER-ADDRESS A32 |5 Partner Cluster Address.
CMDLOG-SWITCHES-BY-SIZE 14 5 Number of CMDLOG switches by size.
CMDLOG-SWITCHES-BY-CIS 14 5 Number of CMDLOG switches by CIS.
CLIENT-NONACT 14 7 Client timeout in seconds. See broker attribute
CLIENT-NONACT.
NUM-WQE 14 7 Number of work queue entries. See broker attribute
NUM-WQE.
TOTAL-STORAGE-ALLOCATED 14 7 Size of allocated storage in bytes.
TOTAL-STORAGE-ALLOCATED-HIGH |14 7 Highest size of allocated storage in bytes since Broker
started.
TOTAL-STORAGE-LIMIT 14 7 Maximum of storage that can be allocated. See broker
attribute MAX -MEMORY.
BROKER-ID A32 |7 BROKER-ID. See broker attribute BROKER- ID.
HOST-NAME A256 |7 Name of host running broker (on z/OS copied from
CVTSNAME).
SYSPLEX-NAME A8 7 Name of SYSPLEX (copied from ECVTSPLX).
CAUTOLOGON I1 7 Auto logon:
0 NO
1 YES

ACl for C

193

Broker CIS Data Structures

Field Name

Format

CIS
Interface
Version

Description / Action

See broker attribute AUTOLOGON.

CDYNAMIC-MEMORY -MANAGEMENT

In

Dynamic memory management:

0 NO

1 YES
See broker attribute DYNAMIC-MEMORY -MANAGEMENT.

CDYNAMIC-WORKER-MANAGEMENT

In

Dynamic worker management:

0 NO

1 YES
See broker attribute DY NAMIC-WORKER-MANAGEMENT.

CSERVICE-UPDATES

In

Service updates:

0 NO

1 YES
See broker attribute SERVICE-UPDATES.

CTOPIC-UPDATES

nn

Topic updates:

0 NO

1 YES
See broker attribute TOPIC-UPDATES.

CTRANSPORT-NET

I

Was TRANSPORT=NET specified?

0 NO
1 YES
See broker attribute TRANSPORT=NET.

CTRANSPORT-SSL

In

Was TRANSPORT=SSL specified?

0 NO

1 YES
See broker attribute TRANSPORT=SSL.

CTRANSPORT-TCP

In

Was TRANSPORT=TCP specified?

0 NO

1 YES
See broker attribute TRANSPORT=TCP.

NTRAP-ERROR

14

Value defined for attribute TRAP-ERROR.

194

ACl for C

Broker CIS Data Structures

CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)

CIs
Interface

Field Name Format |Version (Description / Action

USER-ID A32 |1 Corresponds to USER- ID in the ACI. The maximum
length of this field is determined by field
MAX-UID-LEN in the header. See Common Header
Structure for Response Data under Broker CIS Data
Structures in the ACI Programming documentation.

P-USER-ID B28 |1 Specifies the physical internal unique ID which is
used to distinguish between several users with the
same user ID. This field is used as a handle, i.e. no
translation is performed. With CIS commands
SHUTDOWN PARTICIPANT and SHUTDOWN SERVER,
field SEQNO under Broker CIS Data Structures in the
ACI Programming documentation is provided as
unique criterion.

P-USER-ID-CHAR A28 |1 No longer used.

TOKEN A32 |1 Corresponds to TOKEN in the ACI. The maximum
length of this field is determined by MAX-TK- LEN
in the header. See Common Header Structure for
Response Data under Broker CIS Data Structures in
the ACI Programming documentation.

CHAR-SET 2 1 Character set of user's platform:

34 EBCDIC IBM
66 EBCDIC SNI
1 ASCIIPC 386
16 ASCIIPC OS/2
128 ASCII 8859-1
ENDIAN 12 1 Endian type of user's platform:
1 Big endian (high order first)
0 Little endian
STATUS 2 1 Status of user:
0 Not waiting
5 Waiting
UNUSED1 2 1 Unused.

ACl for C

195

Broker CIS Data Structures

CIS
Interface
Field Name Format |Version (Description / Action
WAIT-CONV-TYPE Ale |1 Only valid if user is waiting. Indicates what kind of
conversation user is waiting for:
NEW User waiting for new conversations
ANY User waiting for any conversation
oLD User waiting for old conversations
NONE User waiting for non-conversational
reply
CONV- 1D User waiting for specific conversation
WAIT-SERVER-CLASS A32 |1 When waiting for ANY, NEW or OLD, the class name
of the service to wait for is returned.
WAIT-SERVER-NAME A32 |1 When waiting for ANY, NEW or OLD, the server name
of the service to wait for is returned.
WAIT-SERVICE A32 |1 When waiting for ANY, NEW or OLD, the name of the
service to wait for is returned.
CONV-ACT 14 1 Number of active conversations of this user.
SERVICE-ACT 14 1 Number of services active (offered) by this server.
This information is available for server only.
LAST-ACTIVE 14 1 Elapsed time since the last activity of the user.
NONACT 14 1 Non-activity time-out value.
WAIT-NEW 14 1 Accumulated time a server waited for new
conversations. (Receive with CONVID=NEW or
CONVID=ANY). A high value indicates that server
has capacity.
NUM-WATT-NEW 14 1 Number of times a server had to wait for new
conversations.
WAIT-OLD 14 1 Accumulated time a server or client waited for
messages of existing conversations. (Receive with
CONVID=cidor CONVID=0LD.) A high value for a
server indicates that server had to wait for the
clients. A high value for a client indicates that the
server's response was delayed.
NUM-WAIT-0LD 14 1 Number of times a server or client had to wait for
messages of existing conversations.
SUM-CONV 14 1 Sum of conversations (including non-conversational
requests) for the user since start of User.
LTOTALUOWS 14 Number of UOWs.
IP-ADDRESS Al6 |4 IPv4 address of client/server.
HOST - NAME A256 |4 Host name of client/server.
196 ACl for C

Broker CIS Data Structures

Field Name

Format

CIS
Interface
Version

Description / Action

RECV-OPTION

In

4

Receive option.

ATTACH-MGR

In

Attach manager indicator.

UNUSED2

12

Unused.

RESERVED_ETBINFO_V73_1

A32

Reserved for future use.

APPLICATION-NAME

A64

4
4
5
5

The name of the executable that called the broker.
If the program that issued the broker call is running
on a mainframe system, the eight-byte job name is
used as application name. If the job name is shorter
than eight bytes, it is padded with underscore
characters.

If the z/OS program issuing the broker call is
running in a TP monitor (except IDMS/DC), a dash
sign is set as ninth byte. The following eight bytes
from position 10-17 contain monitor-dependent data:

CICS The four-byte transaction ID is set.

Com-plete The eight-byte program name is set.
IMS The four-byte IMS ID is set.

Padding blanks in bytes 10-17 are replaced by
underscore characters.

APPLICATION-TYPE

A8

Application type. This field is used internally. It can
be set by other Software AG products, which pass
this value to the Broker stub via an unpublished
control block. If no value is set, the respective
operating system is displayed here.

RESERVED_ETBINFO_V73_3

Reserved for future use.

COUNT-AUTHORIZATION-SUCCEEDED

Counter AUTHORIZ succeeded.

COUNT-AUTHORIZATION-FAILED

Counter AUTHORI 7 failed.

CREATE-TIME

Creation time.

RPC-LIBRARY-NAME

A128

N G| G| G| G

Name of the RPC library of the current user request.
If the user is inactive at the time of the request and
has not issued a request to be processed by the
Broker, no RPC information is displayed.

RPC-PROGRAM-NAME

A128

Name of the RPC program of the current user
request. If the user is inactive at the time of the
request and has not issued a request to be processed
by the Broker, no RPC information is displayed.

SEQNO

14

Unique sequence number of client/server. Can be
used with CIS command SHUTDOWN.

ACl for C

197

Broker CIS Data Structures

Field Name

CIS
Interface
Format |Version (Description / Action

APPLICATION-VERSION

Ale |7 Application version. This field is used internally. It

can be set by other Software AG products, which
pass this value to the Broker stub via an unpublished
control block. The value is the version of the
program that calls the Broker stub.

IPV6-ADDRESS

Ad46 |8 IPv6 address corresponding to attribute HOST in

DEFAULTS=SSL|TCP/IP section of Broker attribute
file.

CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)

CIS
Interface
Field Name Format |Version |Description / Action
UID A32 |5 User ID.
SERVER-CLASS|A32 |5 Class.
SERVER A32 |5 Server.
SERVICE A32 |5 Service.
TOPIC A% |5 Topic.
SETTER-UID |A32 |5 User ID of filter setter.
ENABLED In 5
1 Enabled
0 Disabled

CONVERSATION-OBJECT (Struct INFO_CV)

CIs
Interface
Field Name Format |Version |Description / Action
CONV-ID Ale |1 Unique identification of conversation.
SERVER-USER-ID A32 |1 User ID of server - corresponds to USER- D in the ACL. The
maximum length of this field is determined by field
MAX-UID-LEN in the header. See Common Header Structure
for Response Data under Broker CIS Data Structures in the ACI
Programming documentation.
SERVER-P-USER-ID B28 |1 Specifies the physical internal unique ID which is used to
distinguish between several users with the same user ID.
This field is used as a handle i.e. no translation is performed.
SERVER-P-USER-ID-CHAR |A28 |1 No longer used.

198

ACl for C

Broker CIS Data Structures

CIs
Interface

Field Name Format Version |Description / Action

SERVER-TOKEN A32 |1 Partner's additional identification - corresponds to TOKEN
in the ACIL. The maximum length of this field is determined
by MAX-TK-LEN in the header. See Common Header Structure
for Response Data under Broker CIS Data Structures in the ACI
Programming documentation.

CLIENT-USER-ID A32 |1 Owners name. Corresponds to USER- 1D in the ACIL.

CLIENT-P-USER-ID B28 |1 Specifies the physical internal unique ID which is used to
distinguish between several users with the same user ID.
This field is used as a handle i.e. no translation is performed.

CLIENT-P-USER-ID-CHAR |A28 |1 No longer used.

CLIENT-TOKEN A32 |1 Owner's additional identification - corresponds to TOKEN in
the ACL

SERVER-CLASS A32 |1 Server class of Service of Conversation.

SERVER-NAME A32 |1 Server name of Service of Conversation. The maximum
length of SERVER-CLASS, SERVER-NAME and SERVICE is
determined by fields MAX-SC- LEN, MAX-SN-LEN and
MAX-SV-LEN in the header. See Common Header Structure for
Response Data under Broker CIS Data Structures in the ACI
Programming documentation.

SERVICE A32 |1 Service name of Service of Conversation.

CONV-TIME-OUT 14 1 Conversation timeout (corresponds to CONV-NONACT of the
service in the attribute file)

LAST-ACTIVE 14 1 Elapsed time since the last activity for this conversation.

TYPE 12 1 Type of conversation:

0 conversational
1 non-conversational

UNUSEDI 12 Unused.

LTOTALUOWS 14 2 Number of UOWs.

CLIENT-RPC-LIBRARY-NAME|A128 |6 Name of the RPC library that was provided by the RPC
client at the start of the conversation, that is, the first SEND
that contains both RPC library and RPC program is stored
in the conversation.

CLIENT-RPC-PROGRAM-NAME |A128 |6 Name of the RPC program that was provided by the RPC
client at the start of the conversation, that is, the first SEND
that contains both RPC library and RPC program is stored
in the conversation.

SERVER-RPC-LIBRARY-NAME|A128 |6 Name of the RPC library that was provided by the RPC

server with the first response to clients request, that is, the

ACl for C

199

Broker CIS Data Structures

CIS
Interface
Field Name Format |Version |Description / Action
first SEND that contains both RPC library and RPC program
is stored in the conversation.
SERVER-RPC-PROGRAM-NAME|A128 |6 Name of the RPC program that was provided by the RPC

server with the first response to clients request, that is, the
first SEND that contains both RPC library and RPC program
is stored in the conversation.

200

ACl for C

Broker CIS Data Structures

NET-OBJECT (Struct INFO_NET)

CIS
Interface
Field Name Format |Version |Description / Action
CLONE-INDEX|I4 5 Clone index.
STATUS 14 5 Status of communicator. Possible values defined as
ETB_INFO_COM_STATUS_.
DBID 12 5 DBID.
SVC-NUMBER |12 5 Adabas SVC number.
IUBL 14 5 Maximum buffer length.
TIME 14 5 MPM-12 timeout.
NABS 14 5 Number of attached buffers.
CQES 14 5 Number of CQEs.
FORCE n 5 DBID table entry overwrite.
LOCAL Il 5
1 Local node
0 Not local
NOTUSEDO A2 5 Alignment.

POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)

CIs

Interface
Field Name Format |Version (Description / Action
TOTAL-NUM-POOLS 14 7 Number of pools currently allocated.
TOTAL-STORAGE-ALLOCATED 14 7 Size of allocated storage in bytes.
ACCOUNTING-NUM-POOLS 14 7 ACCOUNTING: Number of pools.
ACCOUNTING-SIZE-ALL-POOLS 14 7 ACCOUNTING: Size of all pools in bytes.
ACCOUNTING-SIZE-ONE-POOL 14 7 ACCOUNTING: Size of one pool in bytes.
BLACKLIST-NUM-POOLS 14 7 BLACKLIST: Number of pools.
BLACKLIST-SIZE-ALL-POOLS 14 7 BLACKLIST: Size of all pools in bytes.
BLACKLIST-SIZE-ONE-POOL 14 7 BLACKLIST: Size of one pool in bytes.
BROKER-TO-BROKER-NUM-POOLS 14 7 BROKER-T0-BROKER: Number of pools.
BROKER-TO-BROKER-SIZE-ALL-POOLS |14 7 BROKER-T0-BROKER: Size of all pools in bytes.
BROKER-TO-BROKER-SIZE-ONE-POOL 14 7 BROKER-T0-BROKER: Size of one pool in bytes.
COM-BUFFER-NUM-P0OOLS 14 7 COM-BUFFER: Number of pools.
COM-BUFFER-SIZE-ALL-POOLS 14 7 COM-BUFFER: Size of all pools in bytes.
COM-BUFFER-SIZE-ONE-POOL 14 7 COM-BUFFER: Size of one pool in bytes.

ACl for C

201

Broker CIS Data Structures

CIs

Interface
Field Name Format |Version |Description / Action
CMDLOG-NUM-POOLS 14 7 CMDLOG: Number of pools.
CMDLOG-SIZE-ALL-POOLS 14 7 CMDLOG: Size of all pools in bytes.
CMDLOG-SIZE-ONE-POOL 14 7 CMDLOG: Size of one pool in bytes.
CONNECTION-NUM-POOLS 14 7 CONNECTION: Number of pools.
CONNECTION-SIZE-ALL-POOLS 14 7 CONNECTION: Size of all pools in bytes.
CONNECTION-SIZE-ONE-POOL 14 7 CONNECTION: Size of one pool in bytes.
CONVERSATION-NUM-POOLS 14 7 CONVERSATION: Number of pools.
CONVERSATION-SIZE-ALL-POOLS 14 7 CONVERSATION: Size of all pools in bytes.
CONVERSATION-SIZE-ONE-POOL 14 7 CONVERSATION: Size of one pool in bytes.
EXT-SUBSCRIBER-NUM-POOLS 14 7 PSTORE-SUBSCRIBER: Number of pools.
EXT-SUBSCRIBER-SIZE-ALL-POOLS 14 7 PSTORE-SUBSCRIBER: Size of all pools in bytes.
EXT-SUBSCRIBER-SIZE-ONE-POOL 14 7 PSTORE-SUBSCRIBER: Size of one pool in

bytes.

EXT-TOPIC-NUM-POOLS 14 7 PSTORE-TOPIC: Number of pools.
EXT-TOPIC-SIZE-ALL-POOLS 14 7 PSTORE-TOPIC: Size of all pools in bytes.
EXT-TOPIC-SIZE-ONE-POOL 14 7 PSTORE-TOPIC: Size of one pool in bytes.
HEAP-NUM-POOLS 14 7 HEAP: Number of pools.
HEAP-SIZE-ALL-POOLS 14 7 HEAP: Size of all pools in bytes.
HEAP-SIZE-ONE-POOL 14 7 HEAP: Size of one pool in bytes.
MSG-BUFFER-LONG-NUM-POOLS 14 7 MSG-BUFFER-LONG: Number of pools.
MSG-BUFFER-LONG-SIZE-ALL-POOLS 14 7 MSG-BUFFER-LONG: Size of all pools in bytes.
MSG-BUFFER-LONG-SIZE-ONE-POOL 14 7 MSG-BUFFER-LONG: Size of one pool in bytes.
MSG-BUFFER-SHORT-NUM-POOLS 14 7 MSG-BUFFER-SHORT: Number of pools.
MSG-BUFFER-SHORT-SIZE-ALL-POOLS |14 7 MSG-BUFFER-SHORT: Size of all pools in bytes.
MSG-BUFFER-SHORT-SIZE-ONE-POOL 14 7 MSG-BUFFER-SHORT: Size of one pool in bytes.
PARTICIPANT-NUM-POOLS 14 7 PARTICIPANT: Number of pools.
PARTICIPANT-SIZE-ALL-POOLS 14 7 PARTICIPANT: Size of all pools in bytes.
PARTICIPANT-SIZE-ONE-POOL 14 7 PARTICIPANT: Size of one pool in bytes.
PARTICIPANT-EXT-NUM-POOLS 14 7 PARTICIPANT-EXT: Number of pools.
PARTICIPANT-EXT-SIZE-ALL-POOLS 14 7 PARTICIPANT-EXT: Size of all pools in bytes.
PARTICIPANT-EXT-SIZE-ONE-POOL 14 7 PARTICIPANT-EXT: Size of one pool in bytes.
PROXY-QUEUE-NUM-POOLS 14 7 PROXY -QUEUE: Number of pools.
PROXY-QUEUE-SIZE-ALL-POOLS 14 7 PROXY-QUEUE: Size of all pools in bytes.
PROXY-QUEUE-SIZE-ONE-POOL 14 7 PROXY - QUEUE: Size of one pool in bytes.
SERVICE-ATTRIBUTES-NUM-POOLS 14 7 SERVICE-ATTRIBUTES: Number of pools.

202

ACl for C

Broker CIS Data Structures

CIs

Interface
Field Name Format |Version |Description / Action
SERVICE-ATTRIBUTES-SIZE-ALL-POOLS|I4 7 SERVICE-ATTRIBUTES: Size of all pools in

bytes.
SERVICE-ATTRIBUTES-SIZE-ONE-POOL |14 7 SERVICE-ATTRIBUTES: Size of one pool in
bytes.

SERVICE-NUM-POOLS 14 7 SERVICE: Number of pools.
SERVICE-SIZE-ALL-POOLS 14 7 SERVICE: Size of all pools in bytes.
SERVICE-SIZE-ONE-POOL 14 7 SERVICE: Size of one pool in bytes.
SERVICE-EXT-NUM-POOLS 14 7 SERVICE-EXT: Number of pools.
SERVICE-EXT-SIZE-ALL-POOLS 14 7 SERVICE-EXT: Size of all pools in bytes.
SERVICE-EXT-SIZE-ONE-POOL 14 7 SERVICE-EXT: Size of one pool in bytes.
SUBSCRIPTION-NUM-POOLS 14 7 SUBSCRIPTION: Number of pools.
SUBSCRIPTION-SIZE-ALL-POOLS 14 7 SUBSCRIPTION: Size of all pools in bytes.
SUBSCRIPTION-SIZE-ONE-POOL 14 7 SUBSCRIPTION: Size of one pool in bytes.
TIMEOUT-QUEUE-NUM-POOLS 14 7 TIMEOUT-QUEUE: Number of pools.
TIMEOUT-QUEUE-SIZE-ALL-POOLS 14 7 TIMEOUT-QUEUE: Size of all pools in bytes.
TIMEOUT-QUEUE-SIZE-ONE-POOL 14 7 TIMEOUT-QUEUE: Size of one pool in bytes.
TOPIC-ATTRIBUTE-NUM-POOLS 14 7 TOPIC-ATTRIBUTE: Number of pools.
TOPIC-ATTRIBUTE-SIZE-ALL-POOLS 14 7 TOPIC-ATTRIBUTE: Size of all pools in bytes.
TOPIC-ATTRIBUTE-SIZE-ONE-POOL 14 7 TOPIC-ATTRIBUTE: Size of one pool in bytes.
TOPIC-NUM-POOLS 14 7 TOPIC: Number of pools.
TOPIC-SIZE-ALL-POOLS 14 7 TOPIC: Size of all pools in bytes.
TOPIC-SIZE-ONE-POOL 14 7 TOPIC: Size of one pool in bytes.
TOPIC-EXT-NUM-POOLS 14 7 TOPIC-EXT: Number of pools.
TOPIC-EXT-SIZE-ALL-POOLS 14 7 TOPIC-EXT: Size of all pools in bytes.
TOPIC-EXT-SIZE-ONE-POOL 14 7 TOPIC-EXT: Size of one pool in bytes.
TRANSLATION-NUM-POOLS 14 7 TRANSLATION: Number of pools.
TRANSLATION-SIZE-ALL-POOLS 14 7 TRANSLATION: Size of all pools in bytes.
TRANSLATION-SIZE-ONE-POOL 14 7 TRANSLATION: Size of one pool in bytes.
UOW-NUM-POOLS 14 7 UOW: Number of pools.
UOW-SIZE-ALL-POOLS 14 7 UOW: Size of all pools in bytes.
UOW-SIZE-ONE-POOL 14 7 UOW: Size of one pool in bytes.
WORK-QUEUE-NUM-POOLS 14 7 WORK-QUEUE: Number of pools.
WORK-QUEUE-SIZE-ALL-POOLS 14 7 WORK-QUEUE: Size of all pools in bytes.
WORK-QUEUE-SIZE-ONE-POOL 14 7 WORK-QUEUE: Size of one pool in bytes.

ACl for C

203

Broker CIS Data Structures

PSF-OBJECT (Struct INFO_PSF)

Information about individual UOWs, or groups of UOWs, can be obtained through information

services.
CIS
Interface
Field Name Format |Version |Description / Action
UOWID Al6 |2 Unit of work ID.
CONVID Ale |2 Conversation ID.
SENDERUID A32 |2 Sender user ID.
SENDERTOKEN A32 |2 Sender user token
SENDERSERVER A32 |2 Sender server name
SENDERCLASS A32 |2 Sender server class
SENDERSERVICE A32 |2 Sender service name
RECVRUID A32 |2 Receiver user ID.
RECVRTOKEN A32 |2 Receiver user token
RECVRSERVER A32 |2 Receiver server name
RECVRCLASS A32 |2 Receiver server class
RECVRSERVICE A32 |2 Receiver service name
USERSTATUS A32 |2 User status
UWSTATUS I 2 UOW status:
1 RECEIVED
2 ACCEPTED
3 DELIVERED
4 BACKEDOUT
5 PROCESSED
6 CANCELLED
7 TIMEOUT
8 DISCARDED
CEOC I1 2 End of conversation state:
0 NO
1 YES
CSTORE In 2 Persistence flag:
0 none
1 off
204 ACl for C

Broker CIS Data Structures

CIS
Interface
Field Name Format |Version |Description / Action
2 Broker
CUOWSTATSTORE I 2 Multiplier used to calculate lifetime for the persistent status of a
UOW:
255 no persistent status
1-254 valid multiplier values
LEOCREASON 14 2 End of conversation reason code.
LATTEMPTCOUNT 14 2 Attempted delivery count.
LMSQCNT 14 2 Number of messages.
LMSQSIZE 14 2 Total message size.
UWSTATUSLIFETIME|A32 |2 Status lifetime.
UWCREATETIME A32 |2 Time UOW created.
UWLIFETIME 14 2 UOW lifetime.

PSFADA-OBJECT (Struct INFO_PSFADA)

| Note: Some of the fields listed in this table are represented by blanks or zeros under Win-

dows. Such fields will not be displayed under Windows because of this limitation.

CIS

Interface
Field Name Format |Version |Description / Action
ADA-INFO-VERS |14 3 Adabas persistent store information services version.
ADA-DBID 14 3 Adabas database ID (DBID) where the store is located.
ADA-FNR 14 3 Adabas file number of the store (FNR).
ADA-FNAME Ale |3 Adabas file name of the store.
ADA-FORMAT-TOD |Al6 |3 TOD of persistent store last format in YYYMMDDHHMMSST.
ADA-FORMAT-VERS |14 3 Persistent store format version.
ADA-START-CNT |14 3 Number of times the persistent store has been opened.
ADA-START-TOD |Al6 |3 TOD of persistent store last open in YYYMMDDHHMMSST.
ADA-ATTLEN 14 3 Length of attribute data.
ADA-OID-LEN 14 3 Length of object identifier.
ADA-0ID-OFF 14 3 Offset of object identifier.
ADA-ATT-CNT 14 3 Number of attributes in the store.
ADA-OID-CNT 14 3 Number of object identifiers in the store.

ACl for C

205

Broker CIS Data Structures

CIs

Interface
Field Name Format |Version |Description / Action
ADA-UI-EXTS 14 3 Number of upper index extents of the Adabas file used by the store.
ADA-NI-EXTS 14 3 Number of normal index extents of the Adabas file used by the store.
ADA-AC-EXTS 14 3 Number of address converter extents of the Adabas file used by the

store.

ADA-DA-EXTS 14 3 Number of data extents of the Adabas file used by the store.
ADA-INDEX-LVLS |14 3 Number of index levels in the Adabas file used by the store.
ADA-UI-PCT 14 3 Percentage of upper index that has been used by the store.
ADA-NI-PCT 14 3 Percentage of normal index that has been used by the store.
ADA-AC-PCT 14 3 Percentage of address converter that has been used by the store.
ADA-DA-PCT 14 3 Percentage of data area that has been used by the store.
TRACE-LEVEL 2 5 PSTORE trace level.
NOTUSEDO 12 5 Alignment.

206

ACl for C

Broker CIS Data Structures

PSFCTREE-OBJECT (Struct INFO_PSTCTREE)

CIS

Interface
Field Name Format |Version |Description / Action
FORMAT-VERS 14 5 Store version format.
COLD-START-TIME Al6 |5 YYYYMMDDHHMMSST cold start.
HOT-STARTS 14 5 Hot starts since format.
MSG-DAT-FILE-NAME A256 |5 Message data file name.
MSG-DAT-FILE-SIZE I8 5 Message data file size (64-bit).
MSG-IDX-FILE-NAME A256 |5 Message index file name.
MSG-IDX-FILE-SIZE I8 5 Message index file size (64-bit).
STATUS-DAT-FILE-NAME|A256 |5 Status data file name.
STATUS-DAT-FILE-SIZE|I8 5 Status data file size (64-bit).
STATUS-IDX-FILE-SIZE|A256 |5 Status index file name.
STATUS-IDX-FILE-SIZE|I8 5 Status index file size (64-bit).
TRACE-LEVEL 12 5 PSTORE trace level.
NOTUSEDO 12 5 Alignment.

PSFDIV-OBJECT (Struct INFO_PSFDIV)

Information services also provide detailed information on the allocation and usage of the various
storage pools that implement the z/OS-DIV persistent store. This information can be used to tune

the persistent store.

CIS

Interface
Field Name Format |Version |Description / Action
DIV-INFO-VERS 14 2 PSD query structure version.
DIV-SH-NAME A8 2 Persistent store name.
DIV-SH-FORMAT-TOD |Al6 |2 TOD of persistent store last format in YYYYMMDDHHMMSST.
DIV-SH-FORMAT-VERS|I4 2 Persistent store format version.
DIV-SH-HWMARK B4 2 Highest address in the data space.
DIV-SH-START-CNT |I4 2 Number of times the persistent store has been opened.
DIV-SH-DS-ALET B4 2 ALET (Access List Entry Token) for data space.
DIV-SH-ATT-LEN 14 2 Length of attribute data.
DIV-SH-0ID-LEN 14 2 Length of object identifier.
DIV-SH-OID-OFF 14 2 Offset of object identifier.
DIV-SH-IXMODULUS |I4 2 Size of array/hash modulus.

ACl for C

207

Broker CIS Data Structures

CIS

Interface
Field Name Format |Version |Description / Action
DIV-SH-CP-DEF-CNT |I4 2 Number of cell pool definitions.
DIV-CP-NAME A8 2 Cell pool name.
DIV-CP-CELL-SIZE |I4 2 Cell size.
DIV-CP-CELL-TOTAL |I4 2 Total number of cells.
DIV-CP-CELL-AVAIL |I4 2 Number of cells available.
DIV-CP-EXTENT-CNT |I4 2 Number of cell pool extents.
DIV-CP-QUERY-RC 14 2 Return code from cell pool query.
DIV-CX-STATUS 14 2 Cell pool extent status.
DIV-CX-EXTENT-ADDR|B4 2 Address of cell pool extent.
DIV-CX-EXTENT-LEN |I4 2 Length of cell pool extent.
DIV-CX-AREA-ADDR |B4 2 Address of cell area.
DIV-CX-AREA-LEN 14 2 Length of cell area.
DIV-CX-CELL-TOTAL |I4 2 Number of cells in extent.
DIV-CX-CELL-AVAIL |I4 2 Number of cells available in extent.
DIV-CX-QUERY-RC 14 2 Return code from cell pool extent query.
TRACE-LEVEL 2 5 PSTORE trace level.
NOTUSEDO 2 5 Alignment.

208

ACl for C

Broker CIS Data Structures

PSFFILE-OBJECT (Struct (INFO_PSFFILE)

CIS

Interface
Field Name Format |Version |Description / Action
FORMAT-VERSION|I4 4 Store format version.
COLD-START-TOD|Al6 |4 Store cold-start time.
HOT-STARTS 14 4 Number of hot starts since format.
SMSGINDEXDAT |A256 |4 Message index data file name.
LMSGINDEXDAT |14 4 Message index data file size.
SMSGINDEXNDX |A256 (4 Message index index file name.
LMSGINDEXNDX |14 4 Message index index file size.
SSTATUSDAT A256 |4 Status data file name.
LSTATUSDAT 14 4 Status data file size.
SSTATUSNDX A256 |4 Status index file name.
LSTATUSNDX 14 4 Status index file size.
SMSGDAT A256 |4 Message data file name.
LMSGDAT 14 4 Message data file size.

PUBLICATION-OBJECT (Struct INFO_PUBLICATION)

CIS
Interface
Field Name Format |Version |Description / Action
PUBLICATION-ID Ale |4 Publication ID.
PUBLISHER-USER-ID A32 |4 Publisher's user ID.
PUBLISHER-P-USER-ID A28 |4 Publisher's physical user ID.
PUBLISHER-P-USER-ID-CHAR|A28 |4 No longer used.
TOKEN A32 |4 Publisher's token.
TOPIC A% |4 Topic name.
LAST-ACTIVE 14 4 Time (in seconds) since last activity.
EXPIRATION-TIME 14 4 Expiration time. Number of seconds since 1 JAN 1970.
LMSQCNT 14 4 Number of messages.
STATUS n 4 Publication status:
1 RECEIVED
2 ACCEPTED
3 DELIVERED
4 BACKEDOUT
AClforC 209

Broker CIS Data Structures

CIS
Interface
Field Name Format |Version |Description / Action
5 PROCESSED
6 CANCELLED
7 TIMEOUT
8 DISCARDED
UNUSED1 A3 4 Unused.

210

ACl for C

Broker CIS Data Structures

PUBLISHER-OBJECT (Struct INFO_PUBLISHER)

Cis
Interface

Field Name Format |Version (Description / Action

USER-1ID A32 |4 User ID.

P-USER-ID A28 |4 Specifies the physical internal unique ID which is
used to distinguish between several users with the
same user ID. This field is used as a handle, i.e. no
translation is performed. With CIS commands
SHUTDOWN PARTICIPANT and SHUTDOWN SERVER,
field SEQNO is provided as unique criterion.

P-USER-ID-CHAR A28 |4 No longer used.

TOKEN A32 |4 Token.

CHAR-SET 2 4 Publisher's character set.

ENDIAN 2 4 Publisher's endianness.

STATUS 2 4 Publisher's status.

UNUSED1 2 4 Unused.

WAIT-PUBL-TYPE Ale |4 Publication that publisher is waiting for.

WAIT-TOPIC A% |4 Topic that publisher is waiting for.

PUBL-ACT 14 4 Number of active publications.

TOPIC-ACT 14 4 Number of topics offered.

LAST-ACTIVITY 14 4 Time (in seconds) since last activity.

NONACT 14 4 Non activity timeout.

WATT-NEW 14 4 Accumulated time (in seconds) of waits for new
publications.

NUM-WATIT-NEW 14 Number of waits for new publications.

WAIT-0OLD 14 Accumulated time (in seconds) of waits for old
publications.

NUM-WAIT-OLD 14 4 Number of waits for old publications.

SUM-PUBL 14 4 Total number of publications.

IP-ADDRESS Ale |4 IPv4 address of publisher.

HOST-NAME A256 |4 Host name of publisher.

APPLICATION-NAME A64 |5 The name of the executable that called the broker.

If the program that issued the broker call is running
on a mainframe system, the eight-byte job name is
used as application name. If the job name is shorter
than eight bytes, it is padded with underscore
characters.

If the z/OS program issuing the broker call is
running in a TP monitor (except IDMS/DC), a dash

ACl for C

211

Broker CIS Data Structures

Field Name

Format

CIS
Interface
Version

Description / Action

sign is set as ninth byte. The following eight bytes
from position 10-17 contain monitor-dependent data:

CICS The four-byte transaction ID is set.
Com-plete The eight-byte program name is set.
IMS The four-byte IMS ID is set.

Padding blanks in bytes 10-17 are replaced by
underscore characters.

APPLICATION-TYPE

A8

Application type. This field is used internally. It can
be set by other Software AG products, which pass
this value to the Broker stub via an unpublished
control block. If no value is set, the respective
operating system is displayed here.

RESERVED_ETBINFO_V73_5

Reserved for future use.

COUNT-AUTHORIZATION-SUCCEEDED

Counter AUTHORIZ succeeded.

COUNT-AUTHORIZATION-FAILED

Counter AUTHORI Z failed.

CREATE-TIME

Creation time.

SEQNO

| O Q1 1| O1

Unique sequence number of publisher. Can be used
with CIS command SHUTDOWN.

APPLICATION-VERSION

Aleé

Application version. This field is used internally. It
can be set by other Software AG products, which
pass this value to the Broker stub via an unpublished
control block. The value is the version of the
program that calls the Broker stub.

I[PV6-ADDRESS

A46

IPv6 address corresponding to attribute HOST in
DEFAULTS=SSL|TCP/IP section of Broker attribute
file.

212

ACl for C

Broker CIS Data Structures

RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)

CIS
Interface
Field Name Format |Version |Description / Action
TOTAL-STORAGE-ALLOCATED 14 7 Size of allocated storage in bytes.
TOTAL-STORAGE-ALLOCATED-HIGH 14 7 Highest size of allocated storage in bytes
since Broker started.
TOTAL-STORAGE-LIMIT 14 7 Maximum of storage that can be allocated
(broker attribute MAX-MEMORY.
ACCOUNTING-BUFFERS-ALLOCATED 14 7 ACCOUNTING: Number of buffers allocated.
ACCOUNTING-BUFFERS-FREE 14 7 ACCOUNTING: Number of buffers free.
ACCOUNTING-BUFFERS-USED 14 7 ACCOUNTING: Number of buffers used.
BLACKLIST-ENTRIES-ALLOCATED 14 7 BLACKLIST: Number of entries allocated.
BLACKLIST-ENTRIES-FREE 14 7 BLACKLIST: Number of entries free.
BLACKLIST-ENTRIES-USED 14 7 BLACKLIST: Number of entries used.
BROKER-TO-BROKER-ENTRIES-ALLOCATED |14 7 BROKER-T0O-BROKER: Number of entries
allocated.
BROKER-TO-BROKER-ENTRIES-FREE 14 7 BROKER-TO-BROKER: Number of entries free.
BROKER-TO-BROKER-ENTRIES-USED 14 7 BROKER-TO-BROKER: Number of entries
used.
COM--BUFFERS-ALLOCATED 14 7 COM-BUFFER: Number of buffers allocated.
COM--BUFFERS-FREE 14 7 COM-BUFFER: Number of buffers free.
COM--BUFFERS-USED 14 7 COM-BUFFER: Number of buffers used.
CMDLOG-FILTER-ENTRIES-ALLOCATED 14 7 CMDLOG-FILTER: Number of entries
allocated.
CMDLOG-FILTER-ENTRIES-FREE 14 7 CMDLOG- FILTER: Number of entries free.
CMDLOG-FILTER-ENTRIES-USED 14 7 CMDLOG-FILTER: Number of entries used.
CONNECTION-ENTRIES-ALLOCATED 14 7 CONNECTION: Number of entries allocated.
CONNECTION-ENTRIES-FREE 14 7 CONNECTION: Number of entries free.
CONNECTION-ENTRIES-USED 14 7 CONNECTION: Number of entries used.
CONVERSATION-ENTRIES-ALLOCATED 14 7 CONVERSATION: Number of entries allocated.
CONVERSATION-ENTRIES-FREE 14 7 CONVERSATION: Number of entries free.
CONVERSATION-ENTRIES-USED 14 7 CONVERSATION: Number of entries used.
EXT-SUBSCRIBER-ENTRIES-ALLOCATED 14 7 PSTORE-SUBSCRIBER: Number of entries
allocated.
EXT-SUBSCRIBER-ENTRIES-FREE 14 7 PSTORE-SUBSCRIBER: Number of entries
free.
EXT-SUBSCRIBER-ENTRIES-USED 14 7 PSTORE-SUBSCRIBER: Number of entries

used.

ACl for C

213

Broker CIS Data Structures

CIS
Interface
Field Name Format |Version |Description / Action
EXT-TOPIC-ENTRIES-ALLOCATED 14 7 PSTORE-TOPIC: Number of entries allocated.
EXT-TOPIC-ENTRIES-FREE 14 7 PSTORE-TOPIC: Number of entries free.
EXT-TOPIC-ENTRIES-USED 14 7 PSTORE-TOPIC: Number of entries used.
HEAP-BYTES-ALLOCATED 14 7 HEAP: Number of bytes allocated.
HEAP-BYTES-FREE 14 7 HEAP: Number of bytes free.
HEAP-BYTES-USED 14 7 HEAP: Number of bytes used.
MSG-BUFFER-LONG-ALLOCATED 14 7 MSG-BUFFER-LONG: Number of buffers
allocated.
MSG-BUFFER-LONG-FREE 14 7 MSG-BUFFER-LONG: Number of buffers free.
MSG-BUFFER-LONG-USED 14 MSG-BUFFER-LONG: Number of buffers used.
MSG-BUFFER-SHORT-ALLOCATED 14 7 MSG-BUFFER-SHORT: Number of buffers
allocated.
MSG-BUFFER-SHORT-FREE 14 7 MSG-BUFFER-SHORT: Number of buffers
free.
MSG-BUFFER-SHORT-USED 14 7 MSG-BUFFER-SHORT: Number of buffers
used.
PARTICIPANT-ENTRIES-ALLOCATED 14 7 PARTICIPANT: Number of entries allocated.
PARTICIPANT-ENTRIES-FREE 14 7 PARTICIPANT: Number of entries free.
PARTICIPANT-ENTRIES-USED 14 7 PARTICIPANT: Number of entries used.
PARTICIPANT-EXT-ENTRIES-ALLOCATED |14 7 PARTICIPANT-EXT: Number of entries
allocated.
PARTICIPANT-EXT-ENTRIES-FREE 14 7 PARTICIPANT-EXT: Number of entries free.
PARTICIPANT-EXT-ENTRIES-USED 14 7 PARTICIPANT-EXT: Number of entries used.
PROXY-QUEUE-ENTRIES-ALLOCATED 14 7 PROXY - QUEUE: Number of entries allocated.
PROXY-QUEUE-ENTRIES-FREE 14 7 PROXY -QUEUE: Number of entries free.
PROXY-QUEUE-ENTRIES-USED 14 7 PROXY -QUEUE: Number of entries used.
SERVICE-ATTRIBUTE-ENTRIES-ALLOCATED|I4 7 SERVICE-ATTRIBUTE: Number of entries
allocated.
SERVICE-ATTRIBUTE-ENTRIES-FREE 14 7 SERVICE-ATTRIBUTE: Number of entries
free.
SERVICE-ATTRIBUTE-ENTRIES-USED 14 7 SERVICE-ATTRIBUTE: Number of entries
used.
SERVICE-ENTRIES-ALLOCATED 14 7 SERVICE: Number of entries allocated.
SERVICE-ENTRIES-FREE 14 7 SERVICE: Number of entries free.
SERVICE-ENTRIES-USED 14 7 SERVICE: Number of entries used.
SERVICE-EXT-ENTRIES-ALLOCATED 14 7 SERVICE-EXT: Number of entries allocated.
SERVICE-EXT-ENTRIES-FREE 14 7 SERVICE-EXT: Number of entries free.

214

ACl for C

Broker CIS Data Structures

CIS

Interface
Field Name Format |Version |Description / Action
SERVICE-EXT-ENTRIES-USED 14 7 SERVICE - EXT: Number of entries used.
SUBSCRIPTION-ENTRIES-ALLOCATED 14 7 SUBSCRIPTION: Number of entries allocated.
SUBSCRIPTION-ENTRIES-FREE 14 7 SUBSCRIPTION: Number of entries free.
SUBSCRIPTION-ENTRIES-USED 14 7 SUBSCRIPTION: Number of entries used.
TIMEQUT-QUEUE-ENTRIES-ALLOCATED 14 7 TIMEQOUT-QUEUE: Number of entries

allocated.
TIMEQUT-QUEUE-ENTRIES-FREE 14 7 TIMEQUT-QUEUE: Number of entries free.
TIMEOUT-QUEUE-ENTRIES-USED 14 TIMEQUT-QUEUE: Number of entries used.
TOPIC-ATTRIBUTE-ENTRIES-ALLOCATED |14 TOPIC-ATTRIBUTE: Number of entries
allocated.

TOPIC-ATTRIBUTE-ENTRIES-FREE 14 7 TOPIC-ATTRIBUTE: Number of entries free.
TOPIC-ATTRIBUTE-ENTRIES-USED 14 7 TOPIC-ATTRIBUTE: Number of entries used.
TOPIC-ENTRIES-ALLOCATED 14 7 TOPIC: Number of entries allocated.
TOPIC-ENTRIES-FREE 14 7 TOPIC: Number of entries free.
TOPIC-ENTRIES-USED 14 7 TOPIC: Number of entries used.
TOPIC-EXT-ENTRIES-ALLOCATED 14 7 TOPIC-EXT: Number of entries allocated.
TOPIC-EXT-ENTRIES-FREE 14 7 TOPIC-EXT: Number of entries free.
TOPIC-EXT-ENTRIES-USED 14 7 TOPIC-EXT: Number of entries used.
TRANSLATION-ENTRIES-ALLOCATED 14 7 TRANSLATION: Number of entries allocated.
TRANSLATION-ENTRIES-FREE 14 7 TRANSLATION: Number of entries free.
TRANSLATION-ENTRIES-USED 14 7 TRANSLATION: Number of entries used.
UOW-ENTRIES-ALLOCATED 14 7 UOW: Number of entries allocated.
UOW-ENTRIES-FREE 14 7 UOW: Number of entries free.
UOW-ENTRIES-USED 14 7 UOW: Number of entries used.
WORK-QUEUE-ENTRIES-ALLOCATED 14 7 WORK-QUEUE: Number of entries allocated.
WORK-QUEUE-ENTRIES-FREE 14 7 WORK-QUEUE: Number of entries free.
WORK-QUEUE-ENTRIES-USED 14 7 WORK-QUEUE: Number of entries used.

ACl for C

215

Broker CIS Data Structures

SECURITY-OBJECT (Struct INFO_SECURITY)

CIS
Interface

Field Name Format |Version |Description / Action

COUNT-AUTHENTICATION-SUCCEEDED|I4 5 Successful authentications.

COUNT-AUTHENTICATION-FATLED 14 5 Failed authentications.

COUNT-AUTHORIZATION-SUCCEEDED |I4 5 Successful authorizations.

COUNT-AUTHORIZATION-FAILED 14 5 Failed authorizations.

SAF-PROFILE-LENGTH 14 5 Max profile length (CDT) m/f.

TRACE-LEVEL 2 5 Security trace level.

SECURITY-LEVEL 2 5 Security Level m/f.

AUTHENTICATION-TYPE A8 5 Authentication type.

SAF-CLASS A8 5 SAF profile CLASS (8) m/f.

SECURITY-NODE A8 5 Security node m/f.

INCLUDE-CLASS I1 5 Include CLASS in prof m/f.

INCLUDE - NAME I1 5 Include NAME in prof m/f.

INCLUDE-SERVICE I1 5 Include SERVICE in prof m/f.

UNIVERSAL I1 5 Allow undefined profile m/f.

CHECK-IP-ADDRESS I1 5 Check IP address m/f.

WARN-MODE I1 5 Run in warn mode m/f.

IGNORE-STOKEN I1 5 Ignore ACI STOKEN m/f.

TRUSTED-USER I1 5 Trusted User ID m/f.

PROPAGATE-TRUSTED-USER I1 5 VerifiedId m/f.

PASSWORD-TO-UPPER-CASE In 5 Convert password to uppercase m/f.

NOTUSEDO A2 5 Alignment.

SERVICE-OBJECT (Struct INFO_SV)
CIS
Interface

Field Name Format |Version |Description / Action

SERVER-CLASS A32 |1 Name of server class.

SERVER-NAME A32 |1 Name of server.

SERVICE A32 |1 Name of service. The header contains the maximum length for
the SERVER-CLASS, SERVER-NAME and SERVICE fields for all
retrieved objects. See Common Header Structure for Response Data
under Broker CIS Data Structures in the ACI Programming
documentation.

216 AClfor C

Broker CIS Data Structures

CIs
Interface
Field Name Format|Version |Description / Action
TRANS A8 |1 Name of translation routine used.
CONV-NONACT 14 1 Conversation timeout (corresponds to CONV-NONACT for the
service in the attribute file).
SERVER-ACT 14 1 Number of servers active for service.
CONV-ACT 14 1 Number of conversations active for service.
CONV-HIGH 14 1 Highest number of conversations active for service.
LONG-ACT 14 1 Number of long buffers active (in use) for the service.
LONG-HIGH 14 1 Highest number of long buffers active (in use) for the service.
SHORT-ACT 14 1 Number of short buffers active (in use) for the service.
SHORT-HIGH 14 1 Highest number of short buffers active (in use) for the service.
NUM-WAIT-SERVER 14 1 Number of times a client had to wait for this service or
messages from the server.
NUM-SERV-0CC 14 1 Number of times a client request (SEND with CONVID=NEW or
NONE) could not be immediately assigned to a waiting server,
i.e. all servers offering this service are occupied.
NUM-PEND 14 1 Number of new conversations which are currently in the queue,
but not yet assigned to a server (pending).
PEND-HIGH 14 1 Highest number of pending conversations.
REQ-SUM 14 1 Accumulated number of requests (number of SEND commands
with CONVID=NEW or NONE).
LMAXUOWS 14 2 Maximum number of active UOWSs
LMAXUOWMSG 14 2 Maximum number of messages in a UOW
LUWTIME 14 2 Maximum UOW lifetime
LMAXDELCNT 14 2 Is currently not in use (count is always zero.)
LMAXMSGSTZE 14 2 Maximum size of a message
LTOTALUOWS 14 2 Number of UOWs
CSTORE In 2 Store attribute for all UOWs:
0=OFF
1=BROKER
CUWSTATP In UOWstatus lifetime multiplier (0-255)
CDEFERRED In 2 Default status attribute for all UOWs:
0 NO
1 YES
CENCLEVEL In Encryption level
ATTACH-MGRS-ACT 14 Number of attach servers active
LUWSTAT-ADD-TIME 14 4 Unit of work status additional lifetime

ACl for C

217

Broker CIS Data Structures

CIS

Interface
Field Name Format|Version |Description / Action
NUM-CONV 14 5 Number of conversations.
NUM-SERVER 14 5 Number of servers.
NUM-LONG-MSG-BUFFER |14 5 Number of long message buffers.
NUM-SHORT-MSG-BUFFER |14 5 Number of short message buffers.
CONVERSION A8 5 Name of conversion routine.
CONVERSION-PARMS A255 |5 Conversion parameters.
NOTUSED1L Al 5 Alignment.
RESERVED 14 5 Reserved for future use.

218

ACl for C

Broker CIS Data Structures

SSL-OBJECT (Struct INFO_SSL)

CIS
Interface
Field Name Format |Version |Description / Action
CLONE-INDEX 14 5 Clone index.
STATUS 14 5 Status of communicator. Possible values defined as
ETB_INFO_COM_STATUS_.
OPEN-CONNECTIONS |I4 5 Number of open connections.
MAX-CONNECTIONS |14 5 Maximum number of connections.
PORT-NUMBER 14 5 Port number.
IP-ADDRESS Al6 |6 IPv4 address corresponding to attribute HOST in DEFAULTS=SSL
section of Broker attribute file.
HOST-NAME A256 |6 Host name specified using attribute HOST in DEFAULTS=SSL section
of Broker attribute file.
TASK-RUNNING In 8 Transport task running. 0=NO, 1=YES.
IPV6-ADDRESS Ad46 |8 IPV6 address corresponding to attribute HOST in the DEFAULTS=SSL

section of the Broker attribute file.

STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)

CIS
Interface
Field Name Format|Version |Description / Action
NUM-SERVICE 14 7 Number of services defined (see NUM-SERVER).
SERVICE-ACT 14 7 Number of services active.
NUM-CLIENT 14 7 Number of clients defined (see NUM-CLIENT).
CLIENT-ACT 14 7 Number of clients active.
CLIENT-HIGH 14 7 Highest number of clients active since Broker started.
NUM-SERVER 14 7 Number of servers (see NUM- SERVER).
SERVER-ACT 14 7 Number of servers active.
SERVER-HIGH 14 7 Highest number of servers active since Broker started.
NUM-CONV 14 7 Number of conversations defined (see NUM-CONVERSATION).
CONV-ACT 14 7 Number of conversations active.
CONV-HIGH 14 7 Highest number of conversations active since Broker started.
NUM-LONG 14 7 Number of long buffers defined (see NUM- LONG-BUFFER).
LONG-ACT 14 7 Number of long buffers active.
LONG-HIGH 14 7 Highest number of long buffers active since Broker started.
NUM-SHORT 14 7 Number of short buffers defined (see NUM- SHORT -BUFFER).
ACl for C 219

Broker CIS Data Structures

CIs

Interface
Field Name Format|Version |Description / Action
SHORT-ACT 14 7 Number of short buffers active.
SHORT-HIGH 14 7 Highest number of short buffers active since Broker started.
NUM-TOPIC 14 7 Number of topics defined (see NUM-TOPIC).
TOPIC-ACT 14 7 Number of topics active.
NUM-PUBLISHER 14 7 Number of publishers defined (see NUM-PUBLISHER).
PUBLISHER-ACT 14 7 Number of publishers active.
PUBLISHER-HIGH |14 7 Highest number of publishers active since Broker started.
NUM-SUBSCRIBER |14 7 Number of subscribers defined (see NUM-SUBSCRIBER).
SUBSCRIBER-ACT |14 7 Number of subscribers active.
SUBSCRIBER-HIGH (14 7 Highest number of subscribers active since Broker started.
NUM-PUBLICATION (14 7 Number of publications defined (see NUM-PUBLICATION).
PUBLICATION-ACT |14 7 Number of publications active.
PUBLICATION-HIGH|I4 7 Highest number of publications active since Broker started.

SUBSCRIBER-OBJECT (Struct INFO_SUBSCRIBER)

CIs
Interface

Field Name Format |Version |Description / Action

TOPIC A% |4 Topic name.

USER-ID A32 |4 User ID.

P-USER-ID A28 |4 Specifies the physical internal unique ID which is
used to distinguish between several users with the
same user ID. This field is used as a handle, i.e. no
translation is performed. With CIS commands
SHUTDOWN PARTICIPANT and SHUTDOWN SERVER,
field SEQNO is provided as unique criterion.

P-USER-ID-CHAR A28 |4 No longer used.

TOKEN A32 |4 Token.

SUBSCRIPTION-TIME 14 4 Subscription time.

LAST-ACTIVITY-TIME 14 4 Last activity time.

EXPIRATION-TIME 14 4 Expiration time.

LAST-COMMITTED Ale |4 Last committed publication.

LAST-RECEIVED Ale |4 Last received publication.

DURABLE I1 4 Durable flag:

0 NO
220 ACl for C

Broker CIS Data Structures

CIs
Interface
Field Name Format |Version |Description / Action
1 YES
SWAPPED-QUT nn 4 Durable subscriber swapped out?
0 NO
1 YES
UNUSED1 12 4 Unused.
CHAR-SET 2 User's character set:
34 EBCDIC_IBM
66 EBCDIC_SNI
1 ASCII_PC_386
16 ASCII_PC_0OS2
128 ASCII_8859_1
BIG-ENDIAN 12 5 High order first:
0 NO
1 YES
STATUS I2 5 User's status:
0 Not waiting
5 Waiting
WAIT-PUBLID Al6 |5 PUBLID user is waiting for: "NEW" "OLD" "ANY"
publication ID.
NOTUSEDI 12 5 Alignment.
NUM-PUBLICATIONS-ACTIVE 14 5 Number of active publications.
NONACT-TIME 14 5 Nonactivity timeout.
WAIT-NEW 14 5 Accumulated time of waits for new publications.
NUM-WAIT-NEW 14 5 Number of waits for new publ.
WAIT-0LD 14 5 Accumulated time of waits for messages from
publisher.
NUM-WAIT-0OLD 14 5 Number of waits for publshr msgs.
IP-ADDRESS Al6 |5 IPv4 address of subscriber.
HOST-NAME A256 |5 Host name of subscriber.
APPLICATION-NAME A64 |5 The name of the executable that called the broker.

If the program that issued the broker call is running
on a mainframe system, the eight-byte job name is

ACl for C

221

Broker CIS Data Structures

Field Name

Format

CIS
Interface
Version

Description / Action

used as application name. If the job name is shorter
than eight bytes, it is padded with underscore
characters.

If the z/OS program issuing the broker call is
running in a TP monitor (except IDMS/DC), a dash
sign is set as ninth byte. The following eight bytes
from position 10-17 contain monitor-dependent data:

CICS The four-byte transaction ID is set.
Com-plete The eight-byte program name is set.
IMS The four-byte IMS ID is set.

Padding blanks in bytes 10-17 are replaced by
underscore characters.

APPLICATION-TYPE

A8

Application type. This field is used internally. It can
be set by other Software AG products, which pass
this value to the Broker stub via an unpublished
control block. If no value is set, the respective
operating system is displayed here.

RESERVED_ETBINFO_V73_4

Reserved for future use.

COUNT-AUTHORIZATION-SUCCEEDED

Counter AUTHORIZ succeeded.

COUNT-AUTHORIZATION-FAILED

Counter AUTHORIZ failed.

CREATE-TIME

Creation time.

SEQNO

N G| O Q1| O1

Unique sequence number of subscriber. Can be used
with CIS command SHUTDOWN.

APPLICATION-VERSION

Aleé

Application version. This field is used internally. It
can be set by other Software AG products, which
pass this value to the Broker stub via an unpublished
control block. The value is the version of the
program that calls the Broker stub.

IPV6-ADDRESS

A46

IPv6 address corresponding to attribute HOST in
DEFAULTS=SSL|TCP/IP section of Broker attribute
file.

222

ACl for C

Broker CIS Data Structures

TCP-OBJECT (Struct INFO_TCP)

CIs
Interface
Field Name Format |Version |Description / Action
CLONE-INDEX 14 5 Clone index.
STATUS 14 5 Status of communicator ETB_INFO_COM_STATUS_.
OPEN-CONNECTIONS |14 5 Number of open connections.
MAX-CONNECTIONS |I4 5 Maximum number of connections. Platform-dependent. See
Maximum TCP/IP Connections per Communicator under Broker Resource
Allocation in the general administration documentation.
PORT-NUMBER 14 Port number.
1P-ADDRESS Al6 |6 IPv4 address corresponding to attribute HOST in DEFAULTS=TCP
section of Broker attribute file.
HOST-NAME A256 |6 Host name specified using attribute HOST in DEFAULTS=TCP section
of Broker attribute file.
TASK-RUNNING n 8 Transport task running. 0=NO, 1=YES.
IPV6-ADDRESS Ad46 |8 IPV6 address corresponding to attribute HOST in the DEFAULTS=TCP
section of the Broker attribute file.

TOPIC-OBJECT (Struct INFO_TOPIC)

CIs
Interface
Field Name Format |Version |Description / Action
TOPIC A% |4 Topic name.
TRANS A8 4 Name of translation routine.
CONY A8 4 Name of conversion routine.
PUBLISHER-NONACT 14 4 Publisher non-activity timeout.
SUBSCRIBER-NONACT 14 4 Subscriber non-activity timeout.
SUBSCRIPTION-EXP 14 4 Subscription expiration time.
PUBLICATION-ACT 14 4 Number of active publications.
PUBLICATION-HIGH 14 4 Highest number of publications active since Broker
started.
DURABLE-ACT 14 4 Number of durable subscribers active.
NON-DURABLE-ACT 14 4 Number of non-durable subscribers active.
LONG-ACT 14 4 Number of long buffers active.
LONG-HIGH 14 4 Highest number of long buffers active since Broker
started.
SHORT-ACT 14 4 Number of short buffers active.
ACl for C 223

Broker CIS Data Structures

CIs
Interface
Field Name Format |Version |Description / Action
SHORT-HIGH 14 4 Highest number of short buffers active since Broker
started.
ALLOW-DURABLE In 4 Durable subscriber flag:
0 NO
1 YES
ALLOW-SUBSCRIBE I1 4 Allow SUBSCRIBE request?
0 NO
1 YES
AUTO-COMMIT n 4 Auto commit:
0 NO
1 YES
UNUSED1 In 4 Unused.
NUM-PUBLICATION 14 5 Number of publications.
NUM-SUBSCRIBER 14 5 Number of subscribers.
NUM-LONG-MSG-BUFFER 14 5 Number of long message buffers.
NUM-SHORT-MSG-BUFFER 14 5 Number of short message buffers.
CONVERSION-PARMS A255 |5 Conversion parameters.
NOTUSED1 12 5 Alignment.
MAX-PUBLICATION-MSG-SIZE |14 5 Max publication message size.
RESERVED 14 5 Reserved for future use.

USER-OBJECT (Struct INFO_USER)

Cis
Interface
Field Name Format |Version |Description / Action
USER-ID A32 |7 Corresponds to USER-ID in the ACI. The maximum length of this field
is determined by field MAX -UID- LEN in the header. See Common Header
Structure.
I[S-CLIENT I 7 Is user a client?
0 NO
1 YES

224

ACl for C

Broker CIS Data Structures

Field Name

Format

CIS
Interface
Version

Description / Action

IS-SERVER

In

7

Is user a server?

0 NO
1 YES

IS-PUBLISHER

Is user a publisher?

0 NO
1 YES

IS-SUBSCRIBER

ot

1

Is user a subscriber?

0 NO
1 YES

SEQNO

14

Unique sequence number of user. Can be used with CIS command
SHUTDOWN.

ENDIAN

12

Endian type of user's platform:

1 BIG ENDIAN (high order first)
0 LITTLE ENDIAN

CHAR-SET

12

Character set of user's platform:

34 EBCDIC IBM
66 EBCDIC SNI

1 ASCIIPC 386
16 ASCII PC OS/2
128 ASCII 8859-1

P-USER-ID

B28

Specifies the physical internal unique ID which is used to distinguish
between several users with the same user ID. This field is used as a
handle, i.e. no translation is performed. With CIS commands SHUTDOWN
PARTICIPANT and SHUTDOWN SERVER, field SEQNO is provided as unique
criterion.

TOKEN

A32

Corresponds to TOKEN in the ACI. The maximum length of this field is
determined by MAX - TK- LEN in the header. See Common Header Structure
for Response Data under Broker CIS Data Structures in the ACI
Programming documentation.

LAST-ACTIVE

Elapsed time since the last activity of the user.

ACl for C

225

Broker CIS Data Structures

WORKER-OBJECT (Struct INFO_WKR)

CIS
Interface
Field Name Format |Version |Description / Action
WORKER-ID |I2 1 The worker ID is the table number of this worker's worker queue entry.
WORKER-STAT|I2 1 Status of worker:
2 ACTIVE
4 STARTED
5 WAITING
CALL-SUM 14 1 Sum of calls per worker since Broker started.
IDLE-SUM 14 1 Sum of idle time per worker since Broker started.

WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

CIS
Interface
Field Name Format |Version |Description / Action
WORKER-MAX-ATTRIBUTE 14 7 Maximum number of worker tasks the
Broker can use. See broker attribute
WORKER -MAX.
WORKER-MIN-ATTRIBUTE 14 7 Minimum number of worker tasks the
Broker can use. See broker attribute
WORKER-MIN.
WORKER-NONACT-ATTRIBUTE 14 7 Non-activity time in seconds to elapse before
a worker tasks is stopped. See broker
attribute WORKER-NONACT.
WORKER-QUEUE-DEPTH 14 7 Number of unassigned user requests in the
input queue before another worker task gets
started. See broker attribute
WORKER-QUEUE-DEPTH.
WORKER-START-DELAY-ATTRIBUTE 14 7 Delay after a successful worker task
invocation before another worker task can
be started. See broker attribute
WORKER-START-DELAY.
LAST-START-TIME 14 7 Time of last worker startup.
LAST-STOP-TIME 14 7 Time of last worker stop.
EFFECTIVE-START-DELAY-SECONDS 14 7 Time value representing the seconds of the
timeval structure that contains the effective
time consumption starting a worker task.

226

ACl for C

Broker CIS Data Structures

CIS
Interface
Field Name Format |Version |Description / Action
EFFECTIVE-START-DELAY-MICRO-SECONDS|I4 7 Time value representing the microseconds
of the timeval structure that contains the
effective time consumption starting a worker
task.
WORKER-HIGH 14 7 Highest number of worker tasks active since
Broker started.
WORKER-LOW 14 7 Lowest number of worker tasks active since

Broker started.

ACl for C

227

228

	ACI for C
	Table of Contents
	1 EntireX Broker ACI for C
	Call Format
	Broker ACI Control Block Layout
	Broker ACI Control Block Definition
	ACI Examples and Header Files
	Creating a C User Application under IBM i
	Step 1: Set the Environment
	Step 2: Compile the User Program
	Step 3: Bind EXA to the User Program

	2 Writing Applications: Publish and Subscribe
	Overview of Communication Models
	Basic Concepts of Publish and Subscribe
	Topic
	Publication
	Subscription
	Publisher
	Subscriber
	Durability of Subscriptions
	Subscription Expiration

	API-TYPE and API-VERSION
	LOGON and LOGOFF
	USER-ID and TOKEN
	Identifying the Caller
	Restarting after System Failure with Durable Subscription
	Managing the Security Token

	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Implementation of Publisher and Subscriber Components
	Single Message Publication
	Multiple Message Publication

	Blocked and Non-blocked Broker Calls
	Non-blocked Command: WAIT=NO
	Example: Subscriber

	Blocked Command: WAIT=YES or WAIT=n
	Example: Subscriber

	Timeout Parameters
	Timeout Behavior
	Types of Non-activity Time
	Recommendations

	Configuration Prerequisites for Durable Subscriptions
	Data Compression
	Error Handling
	Programming Techniques
	Example for C Progamming Language

	Using Internationalization
	General Information
	Providing Locale Strings
	Using the ENVIRONMENT Field with the Translation User Exit

	Using Send and Receive Buffers
	Introduction
	Error Cases
	Transport Methods

	Tracing
	Stub Trace
	Kernel Trace

	Transport Methods
	Overview of Supported Transports
	TCP/IP
	Entire Net-Work
	SSL and TLS
	Transport Examples
	Considerations for Writing Applications
	Restrictions with API Versions 1 and 2

	Variable-length Error Text
	Programmatically Turning on Command Logging
	IAF Authentication

	3 Writing Applications: Client and Server
	Overview of Communication Models
	Basic Concepts of Client and Server
	Client-and-Server Application Components
	Conversationality
	Synchronicity

	API-TYPE and API-VERSION
	LOGON and LOGOFF
	USER-ID and TOKEN
	Identifying the Caller
	Restarting after System Failure
	Managing the Security Token

	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Implementation of Client and Server Components
	Blocked and Non-blocked Broker Calls
	Non-blocked Command: WAIT=NO
	Blocked Command: WAIT=YES or WAIT=n
	Examples: WAIT
	Examples: Programming Language Natural

	Conversational and Non-conversational Mode
	Non-conversational Mode
	Conversational Mode
	Examples: Programming Language Natural

	Managing Conversation Contexts
	Conversation Status
	Conversation User Data
	Stored EOC

	Delayed SEND Function
	Example
	Example: Programming Language Natural

	Timeout Parameters
	Timeout Behavior
	Types of Non-activity Time
	Recommendations
	Unit of Work Lifetime
	Unit of Work Status Lifetime

	Data Compression
	Error Handling
	Programming Techniques
	Example for C Progamming Language

	Using Internationalization
	General Information
	Providing Locale Strings
	Using the ENVIRONMENT Field with the Translation User Exit

	Using Send and Receive Buffers
	Introduction
	Error Cases
	Transport Methods

	Tracing
	Stub Trace
	Kernel Trace

	Transport Methods
	Overview of Supported Transports
	TCP/IP
	Entire Net-Work
	SSL and TLS
	Transport Examples
	Considerations for Writing Applications
	Restrictions with API Versions 1 and 2

	Variable-length Error Text
	Programmatically Turning on Command Logging
	IAF Authentication

	4 Writing Applications: Units of Work
	What is a Unit of Work?
	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Client/Server Programming for Units of Work
	Client/Server Programming for a Persistent Unit of Work
	Client/Server Restart after System Failure

	5 Writing Applications: Attach Server
	Implementing an Attach Server
	Step 1: Register with EntireX Broker
	Step 2: Issue a Receive with Wait
	atm_nAttach
	atm_nServer
	atm_nPendConv
	atm_nActvConv

	Step 3: Start Task
	Step 4: Deregister when the Work is Done

	Implementing Servers started by an Attach Server

	6 Writing Applications: Command and Information Services
	Accessing the Services
	Basic Rules
	Field Values
	Structures

	Accessing Information Services
	Examples of Selection Criteria
	Tips

	Accessing Command Service
	Tips

	Security with Command and Information Services
	Full Command and Information Services
	Limited Information Services
	Protecting Specific Options

	Examples of Command Service
	Example 1: ALLOW-NEWUOWMSGS
	Example 2: FORBID-NEWUOWMSGS

	7 Writing Applications using EntireX Security
	General Programming Considerations
	ACI Versions and Security
	Is Broker Kernel Secure?

	Authentication
	Authentication with User ID and Password
	Reason for ACI Error Action

	Role of Security Token (STOKEN) during Authentication
	Trusted User ID
	Client User ID
	FORCE-LOGON
	IAF Tokens

	Authorization
	Publish and Subscribe
	Client and Server
	Authorization Rules

	Encryption
	Introduction
	Encryption for non-Java Applications
	ACI Version 8 and Above
	ACI Version 6 and 7
	ACI Version 1 to 5

	Encryption for Java-based Applications (ACI and RPC)
	RPC Servers
	RPC Clients

	8 Broker ACI Fields
	Field Formats
	Field Descriptions

	9 Broker ACI Functions
	Overview Table
	Key

	Function Descriptions
	CONTROL_PUBLICATION
	DEREGISTER
	EOC
	KERNELVERS
	LOGOFF
	LOGON
	RECEIVE
	RECEIVE_PUBLICATION
	REGISTER
	REPLY_ERROR
	SEND
	SEND_PUBLICATION
	SETSSLPARMS
	SUBSCRIBE
	SYNCPOINT
	UNDO
	UNSUBSCRIBE
	VERSION

	Option Descriptions
	ACI Field/Function Reference Table

	10 Broker UOW Status Transition
	Initial UOW Status: NULL | Received
	Initial UOW Status: Accepted | Delivered
	Initial UOW Status: Processed | Timedout
	Initial UOW Status: Cancelled | Discarded | Backedout
	Legend for UOW Status Transition Table
	Table of Column Abbreviations

	11 Broker CIS Data Structures
	Command Request Structure
	Command Request Parameter Combinations
	Common Header Structure for Response Data
	Information Request Structure
	Legend
	Column Abbreviation Table
	Selection Criteria CLIENT Object Type
	Selection Criteria SERVER Object Type
	Selection Criteria SERVICE Object Type
	Selection Criteria CONV Object Type
	Selection Criteria PSF Object Type (Version 2 and above)
	Selection Criteria for PUBLISHER Objects (Version 4 and above)
	Selection Criteria for PUBLICATION (Version 4 and above)
	Selection Criteria for TOPIC (Version 4 and above)
	Selection Criteria for SUBSCRIBER (Version 4 and above)
	Key

	Information Reply Structures
	BROKER-OBJECT (Struct INFO_BKR)
	CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)
	CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)
	CONVERSATION-OBJECT (Struct INFO_CV)
	NET-OBJECT (Struct INFO_NET)
	POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)
	PSF-OBJECT (Struct INFO_PSF)
	PSFADA-OBJECT (Struct INFO_PSFADA)
	PSFCTREE-OBJECT (Struct INFO_PSTCTREE)
	PSFDIV-OBJECT (Struct INFO_PSFDIV)
	PSFFILE-OBJECT (Struct (INFO_PSFFILE)
	PUBLICATION-OBJECT (Struct INFO_PUBLICATION)
	PUBLISHER-OBJECT (Struct INFO_PUBLISHER)
	RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)
	SECURITY-OBJECT (Struct INFO_SECURITY)
	SERVICE-OBJECT (Struct INFO_SV)
	SSL-OBJECT (Struct INFO_SSL)
	STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)
	SUBSCRIBER-OBJECT (Struct INFO_SUBSCRIBER)
	TCP-OBJECT (Struct INFO_TCP)
	TOPIC-OBJECT (Struct INFO_TOPIC)
	USER-OBJECT (Struct INFO_USER)
	WORKER-OBJECT (Struct INFO_WKR)
	WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

