
webMethods EntireX

EntireX Broker ActiveX Control

Version 9.5 SP1

November 2013

This document applies to webMethods EntireX Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: EXX-EEXXACI-95SP1-20140628ACTX

Table of Contents

Preface .. v
1 Broker ActiveX Control Introduction .. 1

Broker ACI ... 2
Transaction Objects .. 2

2 Writing Applications - Broker ActiveX Control .. 3
Calling a Broker Function .. 4
Viewing the Type Library .. 6
Adding the Broker ActiveX Control Component to Visual Studio 7
Using Internationalization with Broker ActiveX Control .. 9
Using the Property Pages ... 10

3 Broker ActiveX Control with Visual Basic .. 13
Step 1: Instantiate EntireX Broker ActiveX Control ... 14
Step 2: Instantiate the Transaction Object .. 16
Step 3: Call Methods ... 16
Step 4: Access the Returned Data ... 17
Step 5: Cleanup Resources ... 20
Step 6: Error Handling in Transaction Object Methods ... 20
Examples: Writing an ACI Client and Server with Broker ActiveX Control 20

4 Using Broker ActiveX Control with Active Server Pages ... 25
Prerequisites ... 26
Designing a Web Page with ASP and Broker ActiveX Control 26
Using Broker ActiveX Control in Multiple Pages .. 28

5 Using Broker ActiveX Control with .NET ... 29
Using Broker ActiveX Control with Visual Studio .NET ... 30
A Small Visual Basic .NET Example .. 30

6 Transaction Objects in Broker ActiveX Control .. 31
Advantages of Transaction Objects .. 32
Calling the Transaction Object Editor .. 32
Managing TOR Files ... 34
Defining Methods .. 37
Specifying Connection Information ... 43
Defining Custom Data Types ... 46
TOR Files in IDL Format .. 49
TOR Files in XML Format .. 51
Storing TOR Files in a Tamino Database .. 55

7 Calling Broker ActiveX Control Remotely .. 59
Setting up the Server Environment .. 60
Setting up the Client Environment .. 65
Testing the Connection ... 68

8 Publish and Subscribe with Broker ActiveX Control .. 71
Writing Subscriber Applications .. 72
Writing Publisher Applications .. 77

9 Reference - Broker ActiveX Control .. 81

iii

Methods of Broker ActiveX Control .. 82
Properties of Broker ActiveX Control .. 83

EntireX Broker ActiveX Controliv

EntireX Broker ActiveX Control

Preface

Broker ActiveX Control allows GUI application developers to use an ActiveX-based interface to
access EntireX Broker. It can be usedwithinActiveX containers, such as Visual Basic, PowerBuilder,
Delphi, Microsoft Excel, Microsoft Word.

Broker ActiveX Control provides a programmatic interface to
COM-enabledprogramming environments. It has two types of operation:

Broker ActiveX Control
Introduction

the Broker ACI and transaction objects. Broker ActiveX Control enables
you to create EntireX ACI clients and EntireX ACI servers.

Topics include calling a Broker function; viewing the type library; using
internationalization; using property pages.

Writing Applications - Broker
ActiveX Control

Visual Basic is used here as an example of a development environment
in which applications using Broker ActiveX Control can work. Broker

Broker ActiveX Control with
Visual Basic

ActiveX Control can be used by any programming language or
programming environment that can act as a container for ActiveX
controls.

Microsoft's Active Server Page (ASP) is an HTML page that includes
one or more scripts and reusable ActiveX server components to create

Using Broker ActiveX Control
with Active Server Pages

dynamicWeb pages. The scripts andActiveX components are processed
on a Microsoft Web server before the page is sent to the user.

How touse BrokerActiveXControlwithVisual Studio .NET.An example
is provided.

Using Broker ActiveX Control
with .NET

Transaction objects (TOs) in Broker ActiveX Control are selections of
logical methods that are stored in a transaction object repository (TOR).

Transaction Objects in Broker
ActiveX Control

These logical methods contain all the connection and interface details
necessary to communicate with the Broker.

You can call Broker ActiveX Control remotely if you use it as an
automation server. This means you can use the Broker component from

Calling Broker ActiveX Control
Remotely

a separate process - either on the same machine or on another machine
in the network.

Broker ActiveX Control provides five Broker functions to enable
publishing and subscription. Publish and subscribe enables an

Publish and Subscribe with the
Broker ActiveX Control

application to send a message (publication) to multiple receivers
(subscribers).

Methods and properties of Broker ActiveX Control.Reference - Broker ActiveX
Control

v

vi

1 Broker ActiveX Control Introduction

■ Broker ACI ... 2
■ Transaction Objects ... 2

1

Broker ActiveX Control provides a programmatic interface to COM-enabled programming envir-
onments. It has two types of operation: the Broker ACI and transaction objects. Broker ActiveX
Control enables the user to create EntireX ACI clients and EntireX ACI servers.

Broker ACI

The BrokerACI provides a simple automationAPI that is one-to-one compatiblewith the published
EntireX Broker ACI. It provides Broker ActiveX Control properties and corresponding property
pages for the control parameters detailed in the Broker ACI fields. This API is conceptually com-
patiblewith current Broker programming practices. Further, the Broker ActiveXControl program-
mer can count on programmatic behavior consistent with programming the Broker API directly,
such as non-blocking calls and polling for completion.

Transaction Objects

Broker ActiveX Control generates ActiveX automation server interfaces dynamically at runtime
from files in the Transaction Object Repository (TOR).

Broker ActiveX Control transaction objects provide a dictionary subsystem and user interface that
will allow the EntireX Broker developer to define a dynamic IDispatch interface. This interface
allows received data to be accessed with the traditional automation methodology.

The transaction object definition of a method also includes parsing up the SEND and RECEIVE
buffers of a Broker message into parameters and return properties respectively. The transaction
objects are loaded at runtime and theActiveX container can then call themethods of that transaction
object to send/receive data.

See Transaction Objects in Broker ActiveX Control for more information.

EntireX Broker ActiveX Control2

Broker ActiveX Control Introduction

2 Writing Applications - Broker ActiveX Control

■ Calling a Broker Function .. 4
■ Viewing the Type Library .. 6
■ Adding the Broker ActiveX Control Component to Visual Studio .. 7
■ Using Internationalization with Broker ActiveX Control .. 9
■ Using the Property Pages ... 10

3

Calling a Broker Function

Setting the Broker ActiveX Properties

You can set the Broker ActiveX properties either in the program or in the property pages.

Specifying the Send Parameters

Before executing a send function, specify the send parameters with the method
SetSendDataLong(String bsData, Long DataLen) or SetSendData(String bsData, Short
DataLen).

This method sets only the send buffer.

The first parameter specifies the buffer that has to be sent to the server. The second parameter
specifies the number of bytes to be transferred.

The following rules apply to the SetSendDatamethod:

■ The DataLen bytes of the string bsData are copied to the internal send buffer.
■ A byte copy is performed (not a string character copy), which means that the string bsData can
contain zero bytes.

■ The function BOOL SetSendData(String bsData, Short DataLen) can be used if the send
buffer is smaller than 32 KB.

Calling the Broker Function

■ Set the required properties.
■ When you use the send function, use the method SetSendData to set up the send buffer.
■ When you use the receive function, use the property ReceiveBufferSize to set up the size of
the internal receive buffer.

■ Use the static automation method to call the Broker functions:

BOOL InvokeBrokerFunction()

This method executes the Broker function defined by the current value of the property Function.
Depending on the function, the required Broker parameters are taken from the current values of
the corresponding properties.

If the Broker call is successful:

■ The function returns TRUE.

EntireX Broker ActiveX Control4

Writing Applications - Broker ActiveX Control

■ The ErrorCode property is set to '00000000' and the ErrorMsg property is empty.

If the Broker call is a Send or Receive function, this call may also update the ConvID property.

If the Broker call is a Receive function and asterisks were specified for ServerClass, ServerName
and Service, the call updates the ServerClass, ServerName and Service properties.

If the Broker call is a Receive or Sendwith implicit Receive (Wait > 0), the number of bytes received
is stored in the property ReturnDataLength and the returned data can be retrieved with the
GetReceiveDatamethod.

If the Broker call fails:

■ The function returns FALSE.
■ The ErrorCode and ErrorMsg properties contain the corresponding error reason.

The error code has two parts:

■ error class (first four digits), which provides information for the application on how to react to
the returned error, and

■ error number (last four digits), which indicates the reason for the error.

The GetErrorTextmethod is still available and returns the value of the ErrorMsg property.

For more information see Error Messages and Codes.

Getting the Contents of the Receive Buffer

If a Receive function was executed, the receive buffer can be retrieved with the function

STRING GetReceiveData()

AboutBox

The AboutBoxmethod is used to show the version of Broker ActiveX Control.

A message box will be displayed containing the About information.

AboutBox ()

5EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

Viewing the Type Library

To view the Type Library of Broker ActiveX Control

■ Use the OLE/COMObject Viewer (choose EntireX Broker ActiveX Control and chooseView
Type Information).

To do this with Visual Basic, see Using Broker ActiveX Control as an Automation Server.

EntireX Broker ActiveX Control6

Writing Applications - Broker ActiveX Control

Adding the Broker ActiveX Control Component to Visual Studio

To add the Broker ActiveX Control component to Visual Studio

1 In Visual Studio, choose Toolbox > Components.

2 From the context menu, choose Choose Item.

3 In theChoose Toolbox Itemsdialog underCOMComponents, check "EntireX BrokerActiveX
Control".

7EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

EntireX Broker ActiveX Control8

Writing Applications - Broker ActiveX Control

EntireX Broker ActiveX Control is now known to Visual Studio. It can be copied and pasted
into the new form for later use.

Using Internationalization with Broker ActiveX Control

It is assumed that you have read the document Internationalization with EntireX and are familiar
with the various internationalization approaches described there.

By default, Broker ActiveX Control uses the Windows ANSI codepage to convert the Unicode
(UTF-16) representation within BSTRINGS to the multibyte or single-byte encoding sent to or re-
ceived from the broker. This codepage is also transferred as part of the locale string to tell the
broker the encoding of the data.

If you want to adapt the Windows codepage, see the Regional Settings in the Windows Control
Panel and your Windows documentation.

9EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

With the property LocaleString (see LocaleString in Reference - Broker ActiveX Control) you can
prevent a locale string from being sent if communicating with broker version 7.1.x and below
(blank out the property for this purpose).

Restrictions

■ Only the codepage configured forWindows in the Regional Settings can be used. It is not possible
to use any codepage other than the codepage configured for Windows in the Regional Settings.
Only LOCAL or blank is allowed as a value for the property. See Using the Abstract Codepage
Name LOCAL under Locale String Mapping in the internationalization documentation for more
information.

■ No TOR file property is available. When you are using the TOR interface, you can set this
property as usual in your own application.

■ The Windows codepage used by Broker ActiveX Control must also be a codepage supported
by the broker, depending on the internationalization approach. See Locale String Mapping in the
internationalization documentation for information on how the broker derives the codepage
from the locale string.

Using the Property Pages

If you do not use Transaction Object Repository (TOR) files, you can also supply the properties
using the property sheet of Broker ActiveX Control. (If you use Broker ActiveX Control as an
automation server, the property pages are not available.)

The property sheet contains the following:

■ General Page
■ Function Page
■ Parameters Page
■ Results Page

General Page

With this page you can specify the API version and the size of the receive buffer.

EntireX Broker ActiveX Control10

Writing Applications - Broker ActiveX Control

Function Page

With this page you can specify the function to be called and Service, Server Class and ServerName.

Parameters Page

With this page you can specify the Conversation ID, Broker ID, User ID, Password, Environment,
Wait time, and Option.

11EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

Results Page

This page displays the results of the Broker function.

EntireX Broker ActiveX Control12

Writing Applications - Broker ActiveX Control

3 Broker ActiveX Control with Visual Basic

■ Step 1: Instantiate EntireX Broker ActiveX Control ... 14
■ Step 2: Instantiate the Transaction Object .. 16
■ Step 3: Call Methods .. 16
■ Step 4: Access the Returned Data .. 17
■ Step 5: Cleanup Resources ... 20
■ Step 6: Error Handling in Transaction Object Methods .. 20
■ Examples: Writing an ACI Client and Server with Broker ActiveX Control .. 20

13

Visual Basic is used here as an example of a development environment inwhich applications using
Broker ActiveX Control can work. Broker ActiveX Control can be used by any programming lan-
guage or programming environment that can act as a container for ActiveX controls.

Note: If you edit a Visual Basic application that uses Broker ActiveX Control and save these
changes with the new version of Broker ActiveX Control, you will not be able to use this
application with Broker ActiveX Control version 1.2.1.

Step 1: Instantiate EntireX Broker ActiveX Control

To use Broker ActiveX Control as a control

1 From the Project, Components, Controlsmenu choose EntireX Broker ActiveX Control.

2 Drop it into your dialog.

EntireX Broker ActiveX Control14

Broker ActiveX Control with Visual Basic

In this example, Name is set to "BOX" in the Properties dialog:

Using Broker ActiveX Control as an Automation Server:

If you want to

■ see the interface description of Broker ActiveX Control in the object browser or
■ use the early bind feature,

15EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

from the Project > Referencesmenu choose Browse and then select Broker ActiveX Control in
<drive>:\SoftwareAG\EntireX\bin\ebx.dll.

To use Broker ActiveX Control as an automation server, you can define the following in your code:

Dim BOX as Object

or

Dim BOX as Broker
Set BOX=CreateObject("EntireX.Broker.ACI")

If you use Broker ActiveX Control as an automation server, you will not be able to:

■ call the methods DefineTOMethods and AboutBox

■ use the property pages.

Step 2: Instantiate the Transaction Object

If a Transaction Object Repository (TOR) file is used, it is not necessary to set the other properties.
If you want to use a transaction object, instantiate the transaction object with the command:

Dim TransObject As Object
Set TransObject = BOX.CreateTransObject("c:\\path\\to\\trans\\object\\object.tor")

BOX is the name set previously.

See the list of methods available for supporting transaction objects.

Step 3: Call Methods

Once a transaction object has been instantiated, the methods defined in that transaction object can
be called. If the transaction object method being called has one or more return values, transaction
object methods always return these values wrapped in a return object.

Dim ReturnObject As Object
Set ReturnObject = TransObject.MyMethod("Param1", 50, "Param3")

A return object is always used, as TOmethods usually returnmultiple scalar data items, or arrays,
structures or records. These in fact define the possible return values in a return object. They will
be either scalars:

■ 2-byte INT

EntireX Broker ActiveX Control16

Broker ActiveX Control with Visual Basic

■ 4-byte INT
■ etc., basically all scalar types handled through the automation VARIANT structure

or objects:

■ structure objects
■ collection objects
■ arrays
■ records

Alias custom types are mapped internally to the data type they alias, either scalars or objects.

Step 4: Access the Returned Data

You then access the returned data by interpreting the return object. The code required depends
on whether you are accessing scalars, structures, or arrays and records.

Note: Care must be taken to avoid recursive complex type definitions. For example, a
structure should not be defined that contains an instance of itself, or less directly, an array
of structures should not be defined that contains an instance of the same array type. These
and other permutations of recursive definitions cannot be resolved, and thus cannot be
used.

Scalars

Scalars can be accessed through the return object with code like this:

Dim Str As String
Dim Int As Integer
Str = ReturnObject.MyString
Int = ReturnObject.MyInt

Structures

Structures can be accessed from the return object like this:

17EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

Dim Struct As Object
Dim Str As String
Set Struct = ReturnObject.MyStruct
Str = Struct.MyString

Arrays and Records Exposed as Collections

Arrays and records are exposed by Broker ActiveX Control as automation collections when the
method CreateTransObject is used. As collections, they support the Count property, as well as
the Item property that acts as the default value when subscripting is performed without the Item
name. Thus, an array in the return object can be accessed like this:

Dim Array_Value As Object
Dim I As Integer
Dim MyInt As Integer
Set Array_Value = ReturnObject.MyArray
For I = 0 To Array_Value.Count - 1

MyInt = Array_Value(I)
Next I

The elements of a record can be accessed with the following method:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For I = 0 To Array_Value.Count - 1

Set Struct = Array_Value(I)
Str = Struct.Str

Next

or also:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For Each Struct in Array_Value

Str = Struct.str
Next

EntireX Broker ActiveX Control18

Broker ActiveX Control with Visual Basic

Arrays and Records Exposed as Safe Arrays

Arrays and Records are exposed as safe arrays when the method
CreateTransObjectSA(torfilename) is used. Instead of the Countproperty, the LBound and UBound
functions are supported.

An array in the return object can be accessed like this:

Dim Array_Value as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray
For I = LBound(Array_Value) To UBound(Array_Value)

Str = Array_Value[I]
Next

The elements on a record can be accessed with the following method:

Dim Array_Value as Variant
Dim Struct as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray
For I = LBound(Array_Value) To UBound(Array_Value)

Set Struct = Array_Value[I]
Str = Struct.Str

Next

Another possible For statement:

For Each Struct in Array_Value
Str = Struct.Str

Next

There are no limitations to the number of complex types or their relationship to each object in a
transaction object. Arrays can exist within structures, and conversely, structures and arrays can
existwithin records, etc. Thus,multidimensional arrays can easily be simulated if the given Broker
service that the method maps to provides data in such a format.

19EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

Step 5: Cleanup Resources

When objects in your automation code are no longer used, be sure to call:

Set ObjectName = Nothing

This decrements the reference count of the object, thus allowing cleanup of object resources.While
the above information pertains specifically to Visual Basic, the concepts are also relevant to other
automation controllers, such as Delphi and FoxPro.

Step 6: Error Handling in Transaction Object Methods

TO methods do not return an error flag; they raise a standard ActiveX exception instead. In
Visual Basic, this exception can be caught with an 'On error' clause. The most likely reason for the
failure of a TO method is that the Broker call that was issued returned an error. In Visual Basic,
use the standard Err object to retrieve the error number andmessage (Err.Number and Err.Descrip-
tion).

If the error is a Broker error, Err.Description shows a generic error message "Automation Error".
For a detailed error description use the ErrorCode and ErrorMsg properties.

Examples: Writing an ACI Client and Server with Broker ActiveX Control

■ Writing an ACI Client with Broker ActiveX Control
■ Writing an ACI Server with Broker ActiveX Control

Writing an ACI Client with Broker ActiveX Control

On Error Resume Next
Dim ebx As Object
Dim senddata As String
Dim loopcount As Integer

loopcount = 0
' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"

EntireX Broker ActiveX Control20

Broker ActiveX Control with Visual Basic

ebx.Service = "ASERVICE"
ebx.UserId = "EBX-USER"

ebx.function = 9 ' Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub
End If

Do
ebx.function = 1 ' Send
ebx.ConvID = "NONE"
' SetSendData data, length of data
ebx.SetSendData senddata, Len(senddata)
ebx.wait = "10s" ' wait 10 seconds for a response from server
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else
MsgBox "Received " + Str(ebx.ReturnDataLength) + " bytes (" + ebx.GetReceiveData + ")"
End If
loopcount = loopcount + 1
If loopcount = 2 Then
senddata = " shutdown"
End If

Loop Until loopcount > 2

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Writing an ACI Server with Broker ActiveX Control

On Error Resume Next

Dim ebx As Object
Dim senddata As String
Dim receivedata As String

' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"
ebx.Service = "ASERVICE"

21EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

ebx.UserId = "EBX-USER"

ebx.function = 9 ' Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub
End If

ebx.function = 6 ' Register
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Do
ebx.function = 2 ' Receive
ebx.wait = "yes" ' wait until data is received
ebx.ConvID = "NEW"
ebx.SetReceiveBufferLength = 1024 ' we are now able to receive messages up to 1024 ↩
bytes
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else

' save received data
receivedata = ebx.GetReceiveData
' send response
ebx.function = 1 ' Send
' SetSendData data, length of data
ebx.SetSendData senddata, Len(senddata)
ebx.wait = "no" ' don't wait for a response
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else
MsgBox "Received data: " + receivedata
End If
End If
' loop until the received data has the string "shutdown" from the position 20
receivedata = Mid(receivedata, 20, 8)
Loop Until receivedata = "shutdown"

ebx.function = 7 ' DeRegister
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction

EntireX Broker ActiveX Control22

Broker ActiveX Control with Visual Basic

If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

23EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

24

4 Using Broker ActiveX Control with Active Server Pages

■ Prerequisites .. 26
■ Designing a Web Page with ASP and Broker ActiveX Control ... 26
■ Using Broker ActiveX Control in Multiple Pages ... 28

25

Microsoft's Active Server Page (ASP) is an HTML page that includes one or more scripts and re-
usable ActiveX server components to create dynamicWeb pages. The scripts andActiveX compon-
ents are processed on a Microsoft Web server before the page is sent to the user.

Prerequisites

Installation prerequisites for all EntireX components are described centrally. See Prerequisites in
the EntireX Release Notes.

To use Broker ActiveX Control with ASP, you must have a running Web server.

Designing a Web Page with ASP and Broker ActiveX Control

Creating an Instance of the ActiveX Control and the Transaction Object

<%
Set EBX = server.Createobject("EntireX.Broker.ACI")

Set torobj = EBX.CreateTransObject("calc.tor")

or

Set torobj = EBX.CreateTransObjectSA("calc.tor") (if returnvalue contains array)
%>

Calling a TOR Method

Set retobj = torobj.calc(op,op1,op2)

Accessing the Data

Scalars

<% string = retobj.result %>

EntireX Broker ActiveX Control26

Using Broker ActiveX Control with Active Server Pages

Structures

<% string = retobj.result.str %>

Arrays

You can have access to array elements:

<%string = retobj.retarr(0) %>

or

<%
return = retobj.retarr
string = return(0)
%>

or

<%
For Each element in retobj.retarr

string = element
Next
%>

Records

You can have access to record elements:

<%string = retobj.retrec(0).str %>

or

<%
Set return = retobj.retrec(3)
Response.Write return.str
%>

or

27EntireX Broker ActiveX Control

Using Broker ActiveX Control with Active Server Pages

<%
For Each struct in retobj.retrec

string = struct.str
Next
%>

or

<%
Array_Value = retobj.retrec
For I = LBound(Array_Value) To UBound(Array_Value)

string = Array_Value(I).str
Next
%>

Using Broker ActiveX Control in Multiple Pages

Objects created by Server.CreateObject or CreateTransObject have page scope. They will be
destroyed automatically when the current ASP page is finished.

To create an object with session or application scope, you can either use the <OBJECT> tag and set
the SCOPE parameter to SESSION or APPLICATION, or store the object in a session or application
variable.

For example, an object stored in a session variable, as shown in the following script, is destroyed
when the Session object is destroyed. That is, when the session times out, or the Abandonmethod
is called.

<% Set Session("torobj") = EBX.CreateTransObject("calc.tor")%>

You can destroy the object by setting the variable to "Nothing" or setting the variable to a new
value.

<% Session("torobj") = Nothing %>

EntireX Broker ActiveX Control28

Using Broker ActiveX Control with Active Server Pages

5 Using Broker ActiveX Control with .NET

■ Using Broker ActiveX Control with Visual Studio .NET .. 30
■ A Small Visual Basic .NET Example .. 30

29

Using Broker ActiveX Control with Visual Studio .NET

To use Broker ActiveX Control with Visual Studio .NET

1 Add Broker ActiveX Control to the Project references.

2 Add a Broker Control variable BrokerLib.BrokerClass().

While you are using Broker ActiveX Control, the properties and methods of the object are listed
in the member list.

Using Custom Data Types

Important: To use custom data types you have to access the items through a temporary
object.

A Small Visual Basic .NET Example

' create new ActiveX Control
Dim broker As New BrokerLib.BrokerClass()

Dim TransactionObject As Object
Dim SomeObject As Object
Dim CTObject As Object

' load tor object
TransactionObject = broker.CreateTransObject("Broker.tor")

' call a method from the tor object
SomeObject = TransactionObject.GetData("Person1")

'
reference a temporary object to the Customer Data type

CTObject = SomeObject.CustData

' access to the items of the Customer Data
Console.WriteLine("Name :" & CTObject.Name)
Console.WriteLine("Address :" & CTObject.Address)

EntireX Broker ActiveX Control30

Using Broker ActiveX Control with .NET

6 Transaction Objects in Broker ActiveX Control

■ Advantages of Transaction Objects ... 32
■ Calling the Transaction Object Editor ... 32
■ Managing TOR Files .. 34
■ Defining Methods .. 37
■ Specifying Connection Information .. 43
■ Defining Custom Data Types ... 46
■ TOR Files in IDL Format ... 49
■ TOR Files in XML Format .. 51
■ Storing TOR Files in a Tamino Database .. 55

31

Transaction Object (TOs) in Broker ActiveX Control are selections of logical methods that are
stored in a transaction object repository (TOR). These logical methods contain all the connection
and interface details necessary to communicate with EntireX Broker.

Advantages of Transaction Objects

The advantages of using transaction objects are:

■ Services are defined once, in one place, and distributed as needed. They can then be used by
anyone from many different applications to access back-end applications.

■ Transaction objects can encapsulate all connection and conversational information from the
developer, which simplifies the implementation and administration of distributed applications.

■ The SEND-BUFFER of a message is broken down into parameters, and the RECEIVE-BUFFER
is mapped to the return object. This means you do not have to worry about offsets, data types,
repeating fields (arrays), or structures.

Calling the Transaction Object Editor

The Transaction Object Editor is a tool within Broker ActiveX Control with which you can define
and maintain transaction objects. It is invoked by calling the method DefineTOMethods from a
form that includes an ActiveX control.

The Transaction Object Editor can be called directly using the TORedit executable. The extension
".tor" is registered as a file type, so you can call the Transaction Object Editor with a double click
from the Windows Explorer.

When the Transaction Object Editor is started, a license check is performed. If there is no license
file or if the license has expired, the editor will be closed.

Note: Before you start the TOR Editor for the first time, you need to register the required
DLL ebx.dll to your Windows system manually. Simply open a DOS prompt in folder
<drive>:\SoftwareAG\EntireX\bin and run the command regsvr32 ebx.dll. If you later
want to use a TOR Editor from a different installation directory, register the corresponding
ebx.dll as above.

EntireX Broker ActiveX Control32

Transaction Objects in Broker ActiveX Control

When a transaction object is loaded, the corresponding file name will be displayed in the title bar.
If loading or saving fails, an error message will be displayed in the title bar.

33EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Managing TOR Files

The following functions are available for managing TOR files.

■ File Menu
■ Edit Menu
■ Options Menu

EntireX Broker ActiveX Control34

Transaction Objects in Broker ActiveX Control

■ Help Menu

File Menu

DescriptionMenu Item

Resets the TOR Editor.New

Loads an existing TOR file. A standardOpen File dialog will be displayed. This
function is needed to modify an existing TOR file.

Open TOR

Loads an existing XML file. A standardOpen File dialog will be displayed. This
function is needed to modify an existing XML file (see Loading an XML File).

Open XML

Loads an existing Tamino Object. TheOpen Tamino Object dialog will be
displayed. This function is needed tomodify an existing Tamino object (seeLoading
Tamino Objects).

Open Tamino Object

Saves a TOR file.Save

Saves a new or modified TOR file. A standard Save File dialog will be displayed.Save as TOR

Saves a file in IDL format. If you havemade any changes to the TOR file, youmust
first save it in TOR file format.

Save as IDL

Saves a file in XML format. A standard Save File dialog will be displayed.Save as XML

This function saves a file in Tamino. The Save Tamino Object dialog will be
displayed.

Save as Tamino Object

Closes the TOR Editor.EXIT

35EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Edit Menu

DescriptionMenu Item

Calls the Custom Data Types dialog.Custom Types

Calls the Connection dialog.Connection

Calls a standardOpen File dialog. When a file is selected, a text editor will be opened.XML File

EntireX Broker ActiveX Control36

Transaction Objects in Broker ActiveX Control

Options Menu

DescriptionMenu Item

Calls an XML Options dialog.XML options

Help Menu

DescriptionMenu Item

Displays the Broker ActiveX Control online help.Contents

Displays the About box.About

Defining Methods

The following buttons are available in the transaction method definition model:

■ TheNew button causes the method name within the dialog box to be added to the store.
■ The Copy button copies the currently selected method to a new method.
■ TheDelete button removes the selected method from the store.

Methods are logically grouped in a transaction object. Each method specified in the transaction
object relates directly to a specific Broker service. To define a new method, therefore, you need to
know which services are available. Each method requires the following information:

■ Connection
■ Call Type
■ Parameters

37EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

■ Return Object

Connection

Connection information is specified using the Broker Connection Information dialog. Each TOR
file has default connection information, and eachmethod has its individual connection information.
If a parameter is not defined in the connection information of a method, the default is taken. For
a description of the parameters, seeDefining Connection Information.

Call Type

The Call Type tab represents the call types that can be used for this method.

DescriptionCall Type

Used to define a method that accepts parameters but does not return data from
the service. This could be used to notify a back-end application of some event
without waiting for a response.

Send Data

Used to define amethod that accepts parameters and returns data from that service.Send and Receive Data

Can be used to get information from a back-end application that requires no input,
for example MOTD (message of the day) information. It is also used to wait for

Receive Data

incoming requests if you are using Broker ActiveX Control to write Broker Server
applications.

Logon to EntireX Broker.Logon

Logoff from EntireX Broker.Logoff

Used to end a conversation.End of Conversation

Used to commit, backout, or cancel a unit of work, obtain the status of a unit of
work, or delete the persistent status of a unit of work.

Syncpoint

Informs EntireX Broker that a service is available.Register

Removes previously registered services from EntireX Broker's active list.Deregister

Used to subscribe a user to a topic.Subscribe User

Used to unsubscribe a user from a topic.Unsubscribe User

Used to send a publication message to a topic.Send Publication

Used to receive a publicationmessage from a topic towhich the userwas previously
subscribed.

Receive Publication

Used to commit or backout a publication message.Control Publication

The Call Type tab is shown in the screen above.

EntireX Broker ActiveX Control38

Transaction Objects in Broker ActiveX Control

Parameters

The Parameter tab exposes a multiline box containing individual parameter variables.

These parameters are placed into the SEND-BUFFER of the EntireX Broker call. Each parameter
has a data type (Integer, Real, String etc.) and a length.

39EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Defining a Parameter List

If data is sent, it is necessary to define a parameter list for this method. The TOmethod parameter
list serves as a "map" between the types passed as parameters, and the data types and locations
within themethod's send buffer. Itemswithin the TOmethodparameter list are ordered sequentially
as they will be passed when the method is invoked.

List Control

A list control is used for defining, removing and ordering parameters of the current method. The
list control supports in-place editing of items names, andworks togetherwith the item configuration
controls positioned below. When a particular item is selected, it can be moved up and down the
list sequentially. The order of the list defines the order in which parameters are passed when the
method is invoked. Note that offsets are automatically generated for each list item, relative to the
start of the list, and the items (and their sizes) that precede it.

The Add function adds the field after the selected position.

Data Conversion

Data conversion is also supported between a type provided by the client and the type expected
by the Broker service. For parametersers, the user can specify the data type that will be provided,
and the type that will be sent to the Broker service. For return objects, the data received by the
Broker service can be set to the data type retrieved by the user. The important data types are those
sent to and received from a Broker service. BrokerActiveXControl automatically converts between
the data type received from the Broker and a data type specified by the user (see theData is received
as andData is retrieved as fields in the screen below).

Implemented Data Types

The scalar data types supported by the Broker ActiveX are a subset of the standard Automation
VARIANT types and are listed below. In cases where the selected data type is of fixed length, the
data length edit control is set to the appropriate length and grayed.

DescriptionTransaction Object Method Data Types

1-byte Integer used for signed and unsigned.1-byte Integer

2-byte Integer used for signed and unsigned.2-byte Integer

4-byte Integer used for signed and unsigned.4-byte Integer

4-byte Real compatible with "C" float.4-byte Real

8-byte Real compatible with "C" double.8-byte Real

Boolean variable.Bool

String of specified length.String

Generic byte block.Blob

EntireX Broker ActiveX Control40

Transaction Objects in Broker ActiveX Control

DescriptionTransaction Object Method Data Types

Used to separate types in the buffer.Padding

Return Object

If the transaction object method is invoked with call type 'Send and Receive' or 'Receive', a Return
Object is created. This is a logical object that enables you to retrievemultiple scalar values or records
by referencing its properties.

The Return Object tab exposes the individual properties that are mapped onto the RECEIVE-
BUFFER of the Broker call. When the data is returned from the Broker service, Broker ActiveX
Control uses the types and lengths of the defined properties to populate the values of the properties.
You can now access the contents of the receive buffer as ActiveX properties of the method that is
created by loading the transaction object.

41EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Aswith the parameters, Broker ActiveX Control calculates the offset in the RECEIVE-BUFFER for
each property. For infomation on list control, data conversion and implemented data types, see
Defining a Parameter List.

CustomData Types are used for non-scalar data types such as arrays and structures. They are also
used to assign aliases to parameters for consistent naming purposes.

EntireX Broker ActiveX Control42

Transaction Objects in Broker ActiveX Control

TheManually set data offset check box allows the transaction object designer to override auto-
matic offset calculation and specify offsets manually. This feature is powerful, but also potentially
dangerous, because no base type checking can be performed.

Specifying Connection Information

Connection information relates directly to the Broker service that you want to communicate with
when using this method.

Transaction methods are defined using the Transaction Object Editor. Connection information is
specified using the Broker Connection Information dialog. Each TOR file has default connection
information, and each method has its individual connection information. If a parameter is not
specified in the connection information of a method, the default is taken. The Broker parameters
are part of this connection information (with the exception of Function, which depends on the
Call Type).

43EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

TheBrokerConnection Informationdialog box accepts all the parameters required for establishing
the necessary Broker connection to execute the defined method/call type.

EntireX Broker ActiveX Control44

Transaction Objects in Broker ActiveX Control

Connection Information Parameters

DescriptionParameter

The unique name of the Broker node that the services are attached to. Information
in this dialog can be changed without affecting the application code. For example,

BrokerID

if the BrokerID changed, you would change the connection information in the
methods (services) affected and distribute the new transaction object file. The next
time the application code loads the transaction object file and calls a method, the
new connection information will be used.

Compression level. Valid values: N|Y|0-9. See also Data Compression in EntireX
Broker in the general administration documentation.

CompressLevel

These three parameters represent the unique “signature” of this method call.ServerClass,
ServerName, Service

The following values are set for this parameter, depending on the operation:Wait

Wait Value (in seconds)Operation

0Send

30 (*)Send and Receive

59 (*)Receive
(*) if no value is specified in the Connection info.

See Properties of Broker ActiveX Control for a description of the other parameters.

Setting the Broker Call Parameters

Calling a method of a transaction object results in a Broker call. The parameters for the Broker call
are taken either

■ from the Broker Connection Information dialog, see above, or
■ from the properties (see Properties of Broker ActiveX Control).

If a value is specified in the Connection Information dialog, this value is taken and overrides any
value specified in the properties.

If no value is specified in theConnection Information dialog, the current setting of the properties
is taken. Leaving these parameters blank in the Connection Information dialog enables you to
change these parameters dynamically, and also enables Broker communication in conversational
mode. See example below:

45EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Visual Basic Example

This example shows a possible usage of dynamic parameter assignment:

Set TransObject=BOCX.CreateTransObject ("...calc.tor")
BOCX.UserID = "USER1"
BOCX.BrokerID = "ETB121"
Set ReturnOb = TransObject.calc("+", "000000000001", "000000000002")

Defining Custom Data Types

TheCustomData Types dialog allows you to define new data types that will appear in theReturn
Object tag. With the Apply button you can embed a custom type within another custom type as
long as this does not result in a recursive inclusion.

The following four classes of custom data types are supported:

■ Custom Data Type 'Alias'
■ Custom Data Type 'Array '
■ Custom Data Type 'Record'
■ Custom Data Type 'Structure'

Any custom data type can be used in transaction objects return objects. Custom data types are not
supported as method parameters.

Note: All custom data types can be used recursively. That is, any custom data type can be
used as amember or base type for any other custom type. This allows for nested structures,
as well as arrays within structures and records.

Custom Data Type 'Alias'

An alias is a custom data type that allows an administrator to specify an alias for any defined data
type - custom or not. Aliasing also allows the definition of data types with specific in and out data
types (type translation).

EntireX Broker ActiveX Control46

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Array '

An array consists of multiple serial elements of the same data types. Arrays can be made up of
either scalar or custom data types. The number of elements in an array must be specified.

Array custom data types accept the same basic information as alias data types, with the addition
of the number of elements in the array. Arrays allow elements of the specified base type to be ac-
cessed in a subscripted fashion.

Note: Multidimensional arrays and arrays of structures can be implemented by specifying
a custom array or record data type as the base type of this array.

47EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Record'

A record is a repeating collection of data types - scalar or custom.

This custom data type allows you to define a collection of data types that can be accessed in a
subscripted fashion. The order of defined types in the Record can be changed. Also, the number
of records within the receive buffer can be specified if known.

EntireX Broker ActiveX Control48

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Structure'

A structure is a named collection of data types.

The controls for this custom data type are identical to those of the data type 'record', with the ex-
ception of a repetitive count, which is not applicable.

TOR Files in IDL Format

When a TOR file is saved in IDL format, a file with extension .idl is generated. (The file must have
been saved as a TOR file before).

This IDL file can be used by other EntireX tools such as DCOMWrapper or Java Wrapper. It can
be modified with any editor like a regular IDL file.

49EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Conversion Rules

List of the performed conversions:

Converted to ... in IDL fileIn TOR file

Library nameTOR file name

Program nameMethodname

"Server address" as commentConnection Info

"In" ParametersDataItems in Parameter Map

"Out" ParametersDataItems in Return Map

Will not be converted. If "manual offsets" ismarked in amethod, a comment
is generated for this program.

Manual Offsets in Return Map

The names of the CDTs used are displayed in a comment.Custom Data Types

Nothing- Alias

A dimension specification- Array

A dimension specification and a group- Record

A group- Structure

The IN-Type of the Parameter Map and the OUT-Type of the Return Map
are used.

Format Conversion

I1- I1

I2- I2

I4- I4

F4- Real 4

F8- Real 8

L- Bool

A<size>- String

B<size>- Blob

B<size>- Padding

EntireX Broker ActiveX Control50

Transaction Objects in Broker ActiveX Control

TOR Files in XML Format

To use TOR files in XML format, Internet Explorer 5 or above is required.

Loading an XML File

When you load an XML file, the XML file is checked against the defined DTD (see The DTD File
list below). When you use the XML file, it is not necessary to store the transaction object in TOR
file format.

Saving an XML File

When a TOR file is saved in XML format, a file with the extension .xml is generated.

This XML file can be viewed with a browser that supports XML. It can also be viewed and edited
with any XML notepad or any text editor.

The DTD File

The structure of the XML file is defined in the DTD file. When you use a tool that validates XML
files, the XML file is checked against these definitions.

ExplanationEntry in the DTD file

The rootmust always be defined. It contains:

■ 0-1 default connections
■ 0-n methods
■ 0-n CDT (= custom data types)

<!ELEMENT EntireXTorFile (DefaultConnection? , ↩
Method*, CDT*)>

The name of the TOR file.Name

The EntireX versionwithwhich the
XML file was generated

Version
<!ATTLIST EntireXTorFile Name CDATA #IMPLIED

Version CDATA #IMPLIED>

The global connection information is stored
here.

<!ELEMENT DefaultConnection EMPTY>

All parameters in the default connection are
stored as attributes. See the detailed
description of the %Connection at the end
of this table.

<!ATTLIST DefaultConnection %Connection;>

51EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

ExplanationEntry in the DTD file

Each method contains:

■ 0-1 method connections
■ 0-n parameter

<!ELEMENT Method (MethodConnection? , ↩
Parameter*)>

A name and a call type must be defined for
each method. The manual offset contains
the manual offset switch of the return map.

<!ATTLIST Method Name CDATA #REQUIRED
CallType (SEND | RECEIVE | SEND-RECEIVE |

LOGON | LOGOFF |EOC | SYNCPOINT |
REGISTER | DEREGISTER | SUBSCRIBE |
UNSUBSCRIBE | SEND_PUB | RECEIVE_PUB |
CONTROL_PUB) #REQUIRED

ManualOffset (YES | NO) #IMPLIED>

The connection information of eachmethod
is stored here.

<!ELEMENT MethodConnection EMPTY>

All parameters belonging to the method
connection are stored as attributes. See the
detailed description of the%Connection at
the end of this table.

<!ATTLIST MethodConnection %Connection;>

Each parameter contains:

■ 1 in format
■ 1 out format
■ 0-1 length

<!ELEMENT Parameter (InFormat, OutFormat, ↩
Length?)>

Name of the parameterName

IN: if parameter is from the
parameter map
OUT: if it is from the return map

Direction

Offset value of the return map, if
ManualOffset = YES

Offset

<!ATTLIST Parameter Name CDATA #IMPLIED
 Direction (IN | OUT | INOUT) ↩
#IMPLIED
 Offset CDATA #IMPLIED>

A custom data type (CDT) is an alias, an
array, a record or a structure.

<!ELEMENT CDT (Alias | Array | Record | ↩
Structure) >

The name of the CDT is required.<!ATTLIST CDT Name ID #REQUIRED>

An alias contains:

■ 1 in format
■ 1 out format
■ 0-1 length

<!ELEMENT Alias (InFormat, OutFormat, Length?)>

EntireX Broker ActiveX Control52

Transaction Objects in Broker ActiveX Control

ExplanationEntry in the DTD file

An array contains:

■ 1 in format
■ 1 out format
■ 0-1 length

<!ELEMENT Array (InFormat, OutFormat, Length?)>

The numbers of elements for an array are
stored here.

<!ATTLIST Array NumberEle CDATA #IMPLIED>

The record contains:

■ 0-n parameter

<!ELEMENT Record (Parameter*)>

The numbers of elements for a record are
stored here.

<!ATTLIST Record NumberEle CDATA #IMPLIED>

The structure contains:

■ 0-n parameter

<!ELEMENT Structure (Parameter*) >

An InFormat is a scalar value or a reference
to a CDT.

<!ELEMENT InFormat (Scalar | UsedCDT)>

<!ELEMENT Scalar EMPTY>

A scalarmust be in one of the listed formats.<!ATTLIST Scalar Format (I1 | I2 | I4 | F4 | F8 |
Bool | String | Blob | Padding) #REQUIRED>

<!ELEMENT UsedCDT EMPTY>

A UsedCDT must reference the name of a
defined CDT.

<!ATTLIST UsedCDT Target IDREF #REQUIRED>

An OutFormat is a scalar value or a
reference to a CDT.

<!ELEMENT OutFormat (Scalar | UsedCDT)>

<!ELEMENT Length EMPTY>

A length must be defined for scalars with
the values: string, BLOB and padding or
UsedCDTs.

<!ATTLIST Length Value CDATA #IMPLIED>

All connection parameters are defined as
attributes.

<!ENTITY % Connection
 'ServerClass CDATA #IMPLIED
 ServerName CDATA #IMPLIED
 Service CDATA #IMPLIED
 ConversationID (NONE | NEW | OLD | ANY)
 #IMPLIED
 UOWTime CDATA #IMPLIED
 BrokerID CDATA #IMPLIED
 UserID CDATA #IMPLIED
 Password CDATA #IMPLIED

53EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

ExplanationEntry in the DTD file

 Environment CDATA #IMPLIED
 Wait CDATA #IMPLIED
 UOWStatusPersist CDATA #IMPLIED
 Option (NULL | MSG | HOLD | IMMED | ↩
QUIESCE
 | EOC | CANCEL | LAST |
 NEXT | PREVIEW | COMMIT | BACKOUT |
 SYNC | ATTACH | DELETE |
 EOCCANCEL | QUERY | SETUSTATUS | ANY |
 TERMINATE |DURABLE |CHECKSERVICE)
 #IMPLIED
 Encryption (NONE | TO-BROKER | TO-TARGET)
 #IMPLIED
 ForceLogon (NO | YES) #IMPLIED
 CompressLevel CDATA #IMPLIED
 Token CDATA #IMPLIED
 Topic CDATA #IMPLIED
 PublicationID CDATA #IMPLIED
 UOWStatusLife CDATA #IMPLIED
 BrokerSecurity CDATA #IMPLIED" >

Defining the Location of the DTD and XSL File

ADTD file is used to check the XML file. An XSL file is used to view the XML file. To locate these
files, enter a reference in the XML Options:

This reference can be aURL (like above) or a regular path (e.g., the default: the EntireX etcdirectory).

EntireX Broker ActiveX Control54

Transaction Objects in Broker ActiveX Control

Using the XML Objects During Runtime

The XML file can also be used during runtime. It must be defined in the sameway as the TOR file.

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("...\\calc.xml")

Storing TOR Files in a Tamino Database

To store and use TOR files in a Tamino database, Tamino 4.2.1 or higher and Internet Explorer 5
or higher are required.

Creating a Tamino Database for the TOR Files

In the EntireX etc directory an EntireXTorIno vrs.xml is provided. This file can be used to define
the schema in Tamino (_define function). It is very close to the DTD file. The XML files generated
can be directly stored in Tamino. The database prefix defined in Tamino must be defined in the
XML Options screen as well as the server name of the Tamino database.

55EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Loading Tamino Objects using the TOR Editor

When loading a Tamino object, the following dialog will be displayed:

If necessary, the Tamino server name and the Tamino database prefix can be changed here. The
name of the desired object can be entered directly or selected from the drop-down menu Select
by Object Name.

Storing Tamino Objects using the TOR Editor

When saving a Tamino object, the following dialog will be displayed:

If necessary, the Tamino server name and the Tamino DB prefix can be changed here. The name
of the object must be entered in the Tamino Object Name field. If a Tamino object with this name
already exists, you can overwrite the existing file or cancel the save operation.

EntireX Broker ActiveX Control56

Transaction Objects in Broker ActiveX Control

Using Tamino Objects During Runtime

The Tamino object can also be used during runtime. It must be defined like the XML file:

Visual Basic Example

Set TransObject=BOCX.CreateTransObject ("Calc")

Note: The name of the Tamino object is case-sensitive.

The Tamino server name and the Tamino DB prefix from theGeneral XML Options screen are
used.

57EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

58

7 Calling Broker ActiveX Control Remotely

■ Setting up the Server Environment .. 60
■ Setting up the Client Environment ... 65
■ Testing the Connection ... 68

59

You can call Broker ActiveX Control remotely if you use it as an automation server. This means
you can use the Broker component from a separate process - either on the same machine or on
another machine in the network.

Setting up the Server Environment

To configure the security settings use Component Services from the Administrative Tools in the
Control Panel.

Below is a step-by-step guide on how to configure the server environment:

Step 1

Open the Component Services on the server.

The following dialog box will be displayed:

Select EntireX Broker ActiveX Control in the DCOM Config list box and choose the properties
from the context menu.

The following dialog box will be displayed:

EntireX Broker ActiveX Control60

Calling Broker ActiveX Control Remotely

Step 2

Click the Security tab.

61EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

In the dialog box displayed above, keep the defaults for access, launch and configuration permis-
sions.

Step 3

Click the Identity tab.

There are three options to define the user account to be used to run the application:

■ The interactive user

This implies that a user with permission to launch the application must be logged on to the
server machine.

■ The launching user

This implies that an accountmust be created on the servermachinewith the sameusername/pass-
word as on the client machine. This account will then be used to launch the application.

■ This user

A final option is to specify a user account to be used when launching the application.

In each case, the username/password of the client machine must also exist on the server machine.

Select one of the options and chooseOK to return to the Component Services.

EntireX Broker ActiveX Control62

Calling Broker ActiveX Control Remotely

Step 4

Click onMy Computer and choose the properties from the context menu.

The following dialog box will be displayed; click on the Default Properties tab.

Choose the options as shown in the dialog box above.

Step 5

Click on the COM Security tab.

63EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

In the Launch and Activation Permissions area of the dialog box displayed above, choose Edit
Default. The following dialog box will be displayed:

EntireX Broker ActiveX Control64

Calling Broker ActiveX Control Remotely

Make sure that either the user corresponding to the client machine account, or a group to which
the user belongs, has Allow Launch as Type of Access.

ChooseOK in this screen and then Apply, and exit Component Services on the server.

Setting up the Client Environment

The EbxProxy.dll is installed by default on the server in directory <drive>:\SoftwareAG\EntireX\bin.
Copy the file from the server machine to the client machine.

The DLL must then be registered with: REGSVR32 <path>\EBXproxy.dll.

To configure the client environment use Component Services from the Administrative Tools in
the Control Panel.

Below is a step-by-step guide on how to configure the client environment:

Step 1

Open the Component Services on the client.

The following dialog box will be displayed:

Select EntireX Broker ActiveX Control in theDCOMConfig list box, choose the properties from
the context menu and click the Location tab.

65EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

Step 2

In the Location tab of theActiveX Control Properties dialog box above, select the check box Run
application on the following computer: and enter either the hostname or the IP address of the
server machine.

Choose Apply and thenOK.

EntireX Broker ActiveX Control66

Calling Broker ActiveX Control Remotely

Step 3

SelectMy Computer and choose the properties from the context menu.

TheMy Computer Properties dialog box will be displayed. Select the Default Properties tab.

Choose the check box Enable Distributed COM on this computer, set the default authentication
level to Call and the default impersonation level to Identify.

ChooseOK.

67EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

Testing the Connection

You are now ready to test the connection between the client machine and the server machine.

Test the TCP/IP Connection

Test the TCP/IP connection between the client and the server (use, for example, PING).

Test the Remote Call

To test whether an application can be called remotely, you can use the OLE/COM Object Viewer:

Run the OLE/COM Object Viewer on the client.

TheOLE/COMObject Viewer dialog box will be displayed:

Select Automation Objects in the navigation frame to display a list of all the automation objects
on the client machine.

A screen similar to the one displayed below will be displayed:

EntireX Broker ActiveX Control68

Calling Broker ActiveX Control Remotely

Select EntireX Broker ActiveX Control, open its context menu and choose Create Instance.

If the remote call is successful, the EntireX Broker component on the server machine will be called
and the following screen will be displayed:

If you receive an error message (for example “Class not registered”) please check the following:

69EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

■ the TCP/IP connection (with PING)
■ the security definitions on the server with Component Services
■ the remote server name on the client (this can also be checked with the OLE/COM Object
Viewer)

When the connection has been established, you will be able to run your application on the client.
Please remember that Broker ActiveX Controlmust be used as automation server. For information
on how to use Broker ActiveX Control with Visual Basic see Broker ActiveX Control as an Auto-
mation Server.

EntireX Broker ActiveX Control70

Calling Broker ActiveX Control Remotely

8 Publish and Subscribe with Broker ActiveX Control

■ Writing Subscriber Applications .. 72
■ Writing Publisher Applications .. 77

71

Broker ActiveX Control provides five Broker functions to enable publishing and subscription.
Publish and subscribe enables an application to send amessage (publication) tomultiple receivers
(subscribers).

This functionality is supported by the native COM interface as well as by the Transaction Object
Repository interface (TOR file).

Some examples of publish and subscribe for the native interface are given below.

Writing Subscriber Applications

A subscriber receives the publications that are sent by the publisher. Subscribers will only receive
publications that are sent after they have subscribed to a topic. Similarly, publishers can only send
a publication if at least one subscriber has already subscribed to a topic.

To learn more about a particular topic, seeWriting Applications: Publish and Subscribe in the ACI
Programming documentation.

Themethods, functions, properties and steps required to operate as subscriber are described here.

Methods

DescriptionMethod

Invoke the Broker function call.InvokeBrokerFunction

Return the most recently received publication as string.GetReceiveData

Functions

These will be set in the function property. For all function calls, the UserID, Password (if security
Broker), Token and Topic properties must be set.

OptionFunction

Logon

Option = NoneSubscribe

Option = None, Publication ID = NEWReceive Publication

Option = CommitControl Publication

Option = NoneUnsubscribe

Logoff

EntireX Broker ActiveX Control72

Publish and Subscribe with Broker ActiveX Control

Properties

DescriptionProperty

Must be set to 8 or aboveAPIVersion

See the Functions table.Function

Needed to receive and control publications.Option

Your user ID.UserID

Your password.Password

Set an adequate amount of time to wait for a publication. The length of time
depends on your application and can be set to Yes to wait until a publication has
been received.

Wait

Broker returns the current status of the publication.UOWstatus

Set to the maximum possible publication length.ReceiveBufferLength

Additional caller identifier. The combination of the user ID and the token must
be unique.

Token

The topic of the publication that is to be received. Use a topic that has been
registered with the EntireX Broker. Ask your broker administrator to get a valid
topic.

Topic

Always NEW for the first call to receive a publication. For subsequent messages,
reuse the received publication ID. See the step Check UOW status to find out
whether it is a multi-message publication.

Publication ID

Important: Please check the Error Status regularly; at least after every InvokeBrokerFunction.

To operate as subscriber

1 Set the APIVersion property to 8, the functionality Publish and Subscribe is only available
with API version 8 and above.

2 Set the BrokerID property for your EntireX Broker.

3 Set the UserID, Password (if required), Token and Topic properties.

4 Set the Option property to 0 (None).

5 Set the Functionproperty to 9 (Logon). Youmust be logged on to use the publish-and-subscribe
functionality.

6 Call the method InvokeBrokerFunction to perform the logon function. The application has
now been logged on to the EntireX Broker.

7 After successful logon to the Broker, set the function property to 19 (subscribe).

8 Call themethod InvokeBrokerFunction to subscribe. The application has nowbeen subscribed
as a non-durable subscriber for this topic. If youwant to be a durable subscriber, set the Option
property toDurablewhen calling the method InvokeBrokerFunction. To learn more about

73EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

the difference betweendurable andnon-durable subscribers, seeConcepts of PersistentMessaging
in the general administration documentation.

9 Set the Wait property to the required value, for example 60s (s = seconds).

10 Set the Option property to 0 (None).

11 Set the PublicationID property to NEW.

12 Set the Function property to 18 (Receive Publication).

13 Set the ReceiveBufferLength property to your maximum expected publication length (can
be up to 2048).

14 Call the method InvokeBrokerFunction to receive publications. The application will now
wait to receive a publication. With the current settings the application would receive a pub-
lication within 60 seconds or time out after 60 seconds. If the publication is larger than 2048
characters, Broker ActiveX Control will return an error. Assuming that an application has
received a publication, that publication nowhas a publication ID, assigned to it by the EntireX
Broker.

15 Get the received data with the method GetReceiveData.

16 The current status of the publication is stored in the UOWstatusproperty. Check thisUOWstatus
now. A UOWstatus of 12 (Received Only), means that the received publication has only one
message. A UOWstatus of 9 (Received First) means that you have received the first message
of a multi-message publication. In this case you should request the other messages of this
publication, until a UOWstatus of 11 (Received Last) is returned. See Concepts of Persistent
Messaging in the general administration documentation for more information. To inform the
EntireX Broker that the subscriber has received and retrieved the publication the subscriber
must commit this.

17 Do not change the PublicationIDproperty. This is required to refer to the received publication.

18 Set the Option property to 10 (Commit).

19 Set the Function property to 21 (Control Publication).

20 Call the method InvokeBrokerFunction to control the publication.

21 Get the UOWstatus property and check the status. The value of the UOWstatus should now
be 5 (Processed). Your application may now run in a loop between steps 9 and 21 to receive
several publications.

22 Set the Option property to 0 (None).

23 Set the Function property to 20 (Unsubscribe).

24 Call themethod InvokeBrokerFunction to unsubscribe. The application has nowbeen unsub-
scribed from the topic.

25 Set the Function property to 10 (Log off).

26 Call the method InvokeBrokerFunction to log off. The application has now been logged off
from the EntireX Broker.

EntireX Broker ActiveX Control74

Publish and Subscribe with Broker ActiveX Control

C# Example with a simple Subscriber who has Received only one Publication

using System;
// add the "EntireX Broker ActiveX Control" in COM references
using BrokerLib;

namespace Pubsub
{

class Class1
{

static BrokerClass ebx;
// EntireX Broker ACI definitions.
const int function_logon = 9;
const int function_logoff = 10;
const int function_subscribe = 19;
const int function_unsubscribe = 20;
const int function_receive_publication = 18;
const int function_control_publication = 21;
const int option_none = 0;
const int option_commit = 10;
const int uowstatus_receive_only = 12;
const int uowstatus_receive_last = 11;

// procedure to invoke an entirex broker function call.
static bool invokeEBX(short function, short option)
{

bool rc = true;
ebx.Option = option;
ebx.Function = function;
ebx.InvokeBrokerFunction();
// check the error status after the broker call.
if (ebx.ErrorCode != "00000000")
{

Console.WriteLine(ebx.ErrorMsg);
rc = false;

}
return rc;

}

[STAThread]
static void Main(string[] args)
{

bool receive_error = false;
bool subscribe_error = false;
ebx = new BrokerClass();

ebx.APIVersion = 8;
ebx.BrokerID = "localhost";
ebx.UserID = "EBXUSER";
ebx.Token = "EBXTOKEN";
ebx.Topic = "NYSE";

75EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

Console.WriteLine("Log on");
if (!invokeEBX(function_logon, option_none))

return; // logon failed

Console.WriteLine("Subscribe");
if (!invokeEBX(function_subscribe, option_none))

subscribe_error = true; // subscribe failed

if (!subscribe_error)
{

ebx.PublicationID = "NEW";
ebx.ReceiveBufferLength = 2048;
ebx.Wait = "60s";
// loop until all messages of the publication have been received.
do
{

Console.WriteLine("Receive Publication");
if (!invokeEBX(function_receive_publication, option_none))
{

receive_error = true; // receive failed
break; // cancel the while loop

}
else
{

// work with the received publication.
Console.WriteLine(ebx.GetReceiveData());

}
} while ((ebx.UOWStatus != uowstatus_receive_only) &&

(ebx.UOWStatus != uowstatus_receive_last));

if (!receive_error)
{

Console.WriteLine("Control Publication");
invokeEBX(function_control_publication, option_commit);
// the publication status should be 5 (= processed)
Console.WriteLine("Publication status = " + ebx.UOWStatus);

}
Console.WriteLine("Unsubscribe");
invokeEBX(function_unsubscribe, option_none);

}
Console.WriteLine("Log off");
invokeEBX(function_logoff, option_none);

}
}

}

EntireX Broker ActiveX Control76

Publish and Subscribe with Broker ActiveX Control

Writing Publisher Applications

The publisher sends publications to subscribers. Publications will fail if there is no subscriber for
this topic. SeeWriting Applications: Publish and Subscribe in the ACI Programming documentation
for a list of the valid topics.

Themethods, functions, properties and steps required to operate as Publisher are described below.

Methods

DescriptionMethod

Invoke the broker function call.InvokeBrokerFunction

Set the publication to be sent.SetSendData or SetSendDataLong

Functions

These will be set in the Function property. For all function calls, the UserID, Password (if secure
Broker), Token and Topic properties must be set.

OptionFunction

Logon

Option = Sync, Publication ID = NEW.Send Publication

Option =Commit.Apublication can also be committedwith function=send_publication
option=commit.

Control Publication

Logoff

Properties

DescriptionProperty

Must be set to 8 or above.APIVersion

See the function table.Function

Needed to send and control publication.Option

Your user ID.UserID

Your password.Password

Must be set to NO.Wait

Broker returns the current status of the publication.UOWstatus

Additional identifier of the caller. The combination of the user ID and the token must be
unique.

Token

77EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

DescriptionProperty

The topic of the publication that is to be received. Use a topic that has been registered
with the EntireX Broker. Ask your Broker administrator to get a valid topic.

Topic

Always NEW for the first call to send a publication. If you want to send a multi-message
publication, reuse the received publication ID to send the other messages.

PublicationID

Important: Please check the Error Status regularly; at least after every InvokeBrokerFunction.

To operate as publisher

1 Set the APIVersion property to 8, the publish-and-subscribe functionality is only available
with API version 8 or above.

2 Set the BrokerID property for your EntireX Broker.

3 Set the UserID, Password (if required), Token and Topic properties.

4 Set the Option property to 0 (None).

5 Set the Function property to 9 (Logon). You must log on to use the publish-and-subscribe
functionality.

6 Call the method InvokeBrokerFunction to perform the Logon function.

The application has now been logged on to the EntireX Broker.

7 Set the Option property to 10 (Commit).

8 Set the Function property to 17 (Send Publication).

9 Set the Wait property to NO.

10 Set the PublicationID property to NEW.

11 Call the method SetSendData or SetSendDataLong to set the publication data.

12 Call the method InvokeBrokerFunction to send the publication.

13 Get the UOWstatus property and check this. It should be 2 (Accepted).

A publication has now been sent. Please note that the publication will fail if there are no
subscribers to this topic. If your publication has more than one message, the steps beginning
with Set the Option property to 10 (Commit) will change. See Concepts of Persistent Messaging
in the general administration documentation.

14 Set the Option property to 0 (None).

15 Set the Function property to 10 (Logoff).

16 Call the method InvokeBrokerFunction to log off.

The application has now been logged off from the EntireX Broker.

EntireX Broker ActiveX Control78

Publish and Subscribe with Broker ActiveX Control

C# Example with a simple Publisher who Sends only one (single-message) Publication

using System;
// add the "EntireX Broker ActiveX Control" in COM references
using BrokerLib;

namespace Pubsub
{
 class Class1
 {
 static BrokerClass ebx;
 // EntireX Broker ACI definitions
 const int function_logon = 9;
 const int function_logoff = 10;
 const int function_send_publication = 17;
 const int function_control_publication = 21;
 const int option_none = 0;
 const int option_commit = 10;

 // procedure to invoke an entirex broker function call
 static bool invokeEBX(short function, short option)
 {
 bool rc = true;
 ebx.Option = option;
 ebx.Function = function;
 ebx.InvokeBrokerFunction();
 if (ebx.ErrorCode != "00000000")
 {
 Console.WriteLine(ebx.ErrorMsg);
 rc = false;
 }
 return rc;
 }

 [STAThread]
 static void Main(string[] args)
 {
 ebx = new BrokerClass();
 String s = "A small c# publisher example with EntireX Broker ActiveX ↩
Control.";

 ebx.APIVersion = 8;
 ebx.BrokerID = "localhost";
 ebx.UserID = "EBXUSER";
 ebx.Token = "EBXTOKEN";
 ebx.Topic = "NYSE";

 Console.WriteLine("Log on");
 if (!invokeEBX(function_logon, option_none))
 return; // logon failed

79EntireX Broker ActiveX Control

Publish and Subscribe with Broker ActiveX Control

 ebx.Wait = "NO"; // set to NO because we cannot receive data
 ebx.PublicationID = "NEW";
 ebx.SetSendDataLong(s, s.Length); // set the sent data

 Console.WriteLine("Send Publication");
 invokeEBX(function_send_publication, option_commit);
 // Check the status of the UOW. It should be 2 (= Accepted).
 Console.WriteLine("Publication status = " + ebx.UOWStatus);

 Console.WriteLine("Log off");
 invokeEBX(function_logoff, option_none);
 }
 }
}

EntireX Broker ActiveX Control80

Publish and Subscribe with Broker ActiveX Control

9 Reference - Broker ActiveX Control

■ Methods of Broker ActiveX Control ... 82
■ Properties of Broker ActiveX Control ... 83

81

Methods of Broker ActiveX Control

This section describes the methods of Broker ActiveX Control.

Broker ACI

The following methods are useful for writing applications using the native interface.

DescriptionMethod

Return the received data inner stringBSTR GetReceiveData()

Return the last received error message.BSTR GetErrorText()

Copy user's data buffer into the send buffer.BOOL SetSendDataLong(String, Long) or
BOOL SetSendData (String, Short)

Invoke the broker function call. Set the properties
Function and Option.

BOOL InvokeBrokerFunction()

Transaction Objects

DescriptionMethod

Starts the TO editor. If you specify a valid TOR name, this TO
is then loaded into the editor. If a valid TOR name is not

Bool DefineTOMethods(String)

specified, the currently loaded TO will be displayed or an
empty editor will be started.

Loads and initializes a transaction object. You must specify a
valid TOR file name; otherwise FALSE will be returned.

Bool LoadTransObject(String)

Loads and initializes a transaction object. You must specify a
valid TOR file name. An object reference will be returned,

Object CreateTransObject(String)

which can be used to call the methods defined in the TO. If
loading fails, a null reference will be returned.

This method uses the safe array implementation for arrays
instead of the collection implementation. If you experience

Object CreateTransObjectSA(String)

problems accessing arrays with an automation controller, try
using this method to instantiate a TOR object.

EntireX Broker ActiveX Control82

Reference - Broker ActiveX Control

Properties of Broker ActiveX Control

Most properties of Broker ActiveX Control correspond to the Broker ACI fields. The properties
must be set to the appropriate values before using any function.

If transaction object repository (TOR) files are used, it will not be necessary to set all the properties.
See section Transaction Objects in Broker ActiveX Control. The properties can also be supplied
by means of the property pages (see Using the Property Pages in sectionWriting Applications -
Broker ActiveX Control).

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

28Stringnot usedAdapterError

2Longnot usedAdCount

Possible values: 1, 2, 3, 4, 5,
6, 7, 8, 9.

The default is 2. This value
canbe changeddynamically

2ShortAPI-VERSIONAPIVersion

by setting the property. If
the current value of the
Function or Option
property requires aminimal
API version, the value of
APIVersionwill be
adjusted automatically.

Target Broker ID. SeeUsing
the Broker ID in Applications

132StringBROKER-IDBrokerID

in the ACI Programming
documentation and details
on TCP/IP in Transport
Methods underWriting
Applications: Client and
Server | Publish and Subscribe
in the ACI Programming
documentation.

71StringKERNELSECURITYBrokerSecurity

The partner's user ID.232StringCLIENT-UIDClientUserid

83EntireX Broker ActiveX Control

Reference - Broker ActiveX Control

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

Readonly property.
Time when UOWwas
committed.
Format:
YYYYMMDDHHMMSSms
ms = milliseconds in
Possible Values field.

717StringCOMMITTIMECommitTime

Compression level. Possible
values: N/Y/0-9.

The first character of the
string will be used as the

71StringCOMPRESSLEVELCompressLevel

compression value. If you
type YES, the character Y
will be used and ES will be
cut off. Example:
Broker1.CompressLevel =
"6".

See also Data Compression
underWriting Applications:
Client and Server | Publish
and Subscribe in the ACI
Programming
documentation.

Conversation ID, see
Managing Conversation

116StringCONV-IDConvID

Contexts underWriting
Applications: Client and
Server in the EntireX Broker
ACI Programming
documentation.

2ShortCONV-STATConvStatus Contains the status of the
conversation when the
RECEIVE function is
complete. SeeManaging
ConversationContextsunder
Writing Applications: Client
and Server in the EntireX
Broker ACI Programming
documentation. Possible
values:

NEW1

OLD2

NONE3

EntireX Broker ActiveX Control84

Reference - Broker ActiveX Control

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

Possible values: 0, 1, 2. See
Encryption underWriting

6ShortENCRYPTION-LEVELEncryptionLevel

Applications using EntireX
Security in the ACI
Programming
documentation.

132StringENVIRONMENTEnvironment

Broker error code, see Error
Handling underWriting

18StringERROR-CODEErrorCode

Applications: Client and
Server | Publish and Subscribe
in the ACI Programming
documentation.

Contains the error message
to the corresponding error
code.

140Stringnot usedErrorMsg

Possible values: Y, N.6BooleanFORCE-LOGONForceLogon

The functions to be
performed by Broker.

1ShortFunction FUNCTION
Possible values:

SEND1

RECEIVE2

UNDO4

EOC5

REGISTER6

DEREGISTER7

VERSION8

LOGON9

LOGOFF10

SYNCPOINT13

KERNELVERS14

SEND_PUBLICATION17

RECEIVE_PUBLICATION18

SUBSCRIBE19

UNSUBSCRIBE20

CONTROL_PUBLICATION21

For sending locale strings to
the broker (see Using

440StringLOCALE-STRINGLocaleString

Internationalization in

85EntireX Broker ActiveX Control

Reference - Broker ActiveX Control

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

Writing Applications - Broker
ActiveX Control).

232Stringnot usedMessageId

232Stringnot usedMessageType

232StringNEWPASSWORDNewPassword

1ShortOption OPTION

Possible values:

NULL0

MSG1

HOLD2

IMMED3

QUIESCE4

EOC5

CANCEL6

LAST7

NEXT8

PREVIEW9

COMMIT10

BACKOUT11

SYNC12

ATTACH13

DELETE14

EOCCANCEL15

QUERY16

SETUSTATUS17

ANY18

no longer used19

DURABLE20

CHECKSERVICE21

132StringPASSWORDPassword

Length of the receive buffer.3LongRECEIVE-LENGTHReceiveBufferLength

This is an old property. Can
be used instead of

1ShortRECEIVE-LENGTHReceiveBufferSize

ReceiveBufferLength -
for buffers with less than
32 KB only.

EntireX Broker ActiveX Control86

Reference - Broker ActiveX Control

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

Length of returned data.3LongRETURN-LENGTHReturnDataLength

This is an old property. Can
be used instead of

1ShortRETURN-LENGTHReturnLength

ReturnDataLength - for
bufferswith less than 32KB
only.

This is handled
automatically, but can be

232StringSECURITY-TOKENSecurityToken

filled in by the user if
required.

No longer used.1ShortSendBufferSize

These three Broker
parameters form the target
service.

132StringSERVER-CLASSServerClass

132StringSERVER-NAMEServerName

132StringSERVICEService

2ShortSTOREStore Possible values:

NULL0

OFF1

BROKER2

132StringTOKENToken

316StringUOWIDUOWID

3ShortUOWStatus UOWSTATUS

Possible values:

NONE0

RECEIVED1

ACCEPTED2

DELIVERED3

BACKEDOUT4

PROCESSED5

CANCELLED6

TIMEOUT7

DISCARDED8

FIRST9

MIDDLE10

LAST11

ONLY12

3ShortUOW-STATUS-PERSISTUOWStatusPersist

87EntireX Broker ActiveX Control

Reference - Broker ActiveX Control

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

38StringUWTIMEUOWTime

This field is not converted
by the Broker. If the field

216StringUSER-DATAUserData

containsH'00', only the data
up to the first H'00' will be
sent.

User ID.132StringUSER-IDUserID

332StringUSTATUSUserStatus

Possible values: Yes No
<n>S - waiting n Seconds

18StringWAITWait

(max 99999) <n>M -waiting
n Minutes (Max 99999)
<n>H - waiting n Hours
(max 99999). See Blocked and
Non-blocked Broker Calls
underWriting Applications:
Client and Server in the
EntireX Broker ACI
Programming
documentation.

Required for handling with
publish and subscribe.

8StringTopic

Required for handling with
publish and subscribe.

816StringPublicationID

88StringUOWStatusLife

EntireX Broker ActiveX Control88

Reference - Broker ActiveX Control

	EntireX Broker ActiveX Control
	Table of Contents
	Preface
	1 Broker ActiveX Control Introduction
	Broker ACI
	Transaction Objects

	2 Writing Applications - Broker ActiveX Control
	Calling a Broker Function
	Setting the Broker ActiveX Properties
	Specifying the Send Parameters
	Calling the Broker Function
	Getting the Contents of the Receive Buffer
	AboutBox

	Viewing the Type Library
	Adding the Broker ActiveX Control Component to Visual Studio
	Using Internationalization with Broker ActiveX Control
	Using the Property Pages
	General Page
	Function Page
	Parameters Page
	Results Page

	3 Broker ActiveX Control with Visual Basic
	Step 1: Instantiate EntireX Broker ActiveX Control
	Step 2: Instantiate the Transaction Object
	Step 3: Call Methods
	Step 4: Access the Returned Data
	Scalars
	Structures
	Arrays and Records Exposed as Collections
	Arrays and Records Exposed as Safe Arrays

	Step 5: Cleanup Resources
	Step 6: Error Handling in Transaction Object Methods
	Examples: Writing an ACI Client and Server with Broker ActiveX Control
	Writing an ACI Client with Broker ActiveX Control
	Writing an ACI Server with Broker ActiveX Control

	4 Using Broker ActiveX Control with Active Server Pages
	Prerequisites
	Designing a Web Page with ASP and Broker ActiveX Control
	Creating an Instance of the ActiveX Control and the Transaction Object
	Calling a TOR Method
	Accessing the Data
	Scalars
	Structures
	Arrays
	Records

	Using Broker ActiveX Control in Multiple Pages

	5 Using Broker ActiveX Control with .NET
	Using Broker ActiveX Control with Visual Studio .NET
	Using Custom Data Types

	A Small Visual Basic .NET Example

	6 Transaction Objects in Broker ActiveX Control
	Advantages of Transaction Objects
	Calling the Transaction Object Editor
	Managing TOR Files
	File Menu
	Edit Menu
	Options Menu
	Help Menu

	Defining Methods
	Connection
	Call Type
	Parameters
	Defining a Parameter List
	List Control
	Data Conversion
	Implemented Data Types

	Return Object

	Specifying Connection Information
	Connection Information Parameters
	Setting the Broker Call Parameters
	Visual Basic Example

	Defining Custom Data Types
	Custom Data Type 'Alias'
	Custom Data Type 'Array '
	Custom Data Type 'Record'
	Custom Data Type 'Structure'

	TOR Files in IDL Format
	Conversion Rules

	TOR Files in XML Format
	Loading an XML File
	Saving an XML File
	The DTD File
	Defining the Location of the DTD and XSL File
	Using the XML Objects During Runtime
	Visual Basic Example

	Storing TOR Files in a Tamino Database
	Creating a Tamino Database for the TOR Files
	Loading Tamino Objects using the TOR Editor
	Storing Tamino Objects using the TOR Editor
	Using Tamino Objects During Runtime
	Visual Basic Example

	7 Calling Broker ActiveX Control Remotely
	Setting up the Server Environment
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Setting up the Client Environment
	Step 1
	Step 2
	Step 3

	Testing the Connection
	Test the TCP/IP Connection
	Test the Remote Call

	8 Publish and Subscribe with Broker ActiveX Control
	Writing Subscriber Applications
	Methods
	Functions
	Properties
	C# Example with a simple Subscriber who has Received only one Publication

	Writing Publisher Applications
	Methods
	Functions
	Properties
	C# Example with a simple Publisher who Sends only one (single-message) Publication

	9 Reference - Broker ActiveX Control
	Methods of Broker ActiveX Control
	Broker ACI
	Transaction Objects

	Properties of Broker ActiveX Control

