
CentraSite

Run-Time Governance Reference

Version 9.5 SP1

November 2013



This document applies to CentraSite Version 9.5 SP1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-DG-ACTIONSR-95SP1-20140410



Table of Contents

Preface ................................................................................................................................ v
1 Run-Time Events and Key Performance Indicator (KPI) Metrics ................................... 1

The Run-Time Event Types ........................................................................................ 2
The Key Performance Indicator (KPI) Metrics ........................................................... 3
The Event Notification Destinations .......................................................................... 3
Alerts and Transaction Logging ................................................................................. 4
The Metrics Tracking Interval .................................................................................... 6
Configuring CentraSite to Receive Run-Time Events and Metrics ........................... 6
Viewing Run-Time Events and Metrics ................................................................... 16
Creating Custom Run-Time Events ......................................................................... 17
Modifying Run-Time Events .................................................................................... 18

2 Built-In Run-Time Actions Reference for Virtual Services ............................................ 21
Summary of the Run-Time Actions for Virtual Services ......................................... 22
Action Evaluation Order and Dependencies ........................................................... 24
Usage Cases for Identifying/Authenticating Consumers ........................................ 26
Run-Time Actions Reference for Virtual Services .................................................... 28

3 Built-In Run-Time Actions Reference for Virtual APIs ................................................. 47
Summary of the Run-Time Actions for Virtual APIs ............................................... 48
Action Evaluation Order and Dependencies for Virtual APIs ................................ 50
Run-Time Actions Reference for Virtual APIs ......................................................... 52

iii



iv



Preface

This document describes the run-time events and performance metrics, as well as the run-time
actions that you can apply to virtual services or virtual APIs.

The content is organized under the following sections:

Describes:Run-Time Events and Key
Performance Indicator (KPI)
Metrics ■ The run-time events and Key Performance Indicator (KPI) metrics that

can be collected and reported for each virtual service deployed in your
system.

■ How to configure CentraSite to receive the events andmetrics from the
policy-enforcement point (such as Mediator) that collects them.

You use these actions only when you are using CentraSite Control to
create run-time policies for virtual services. This section provides:

Built-In Run-Time Actions
Reference for Virtual Services

■ A summary of the run-time actions.
■ An alphabetic reference of all actions and their parameters.
■ A listing of the action evaluation order and action dependencies.
■ Some common combinations of actions used to authenticate/identify
consumers.

You use these actions only when you are using the CentraSite Business
UI to create policy enforcement rules for virtualAPIs. This section provides
an alphabetic reference of all actions and their parameters.

Built-In Run-Time Actions
Reference for Virtual APIs

v



vi



1 Run-Time Events and Key Performance Indicator (KPI)

Metrics
■ The Run-Time Event Types ................................................................................................................. 2
■ The Key Performance Indicator (KPI) Metrics ......................................................................................... 3
■ The Event Notification Destinations ...................................................................................................... 3
■ Alerts and Transaction Logging ............................................................................................................ 4
■ The Metrics Tracking Interval ............................................................................................................... 6
■ Configuring CentraSite to Receive Run-Time Events and Metrics ............................................................... 6
■ Viewing Run-Time Events and Metrics ................................................................................................. 16
■ Creating Custom Run-Time Events ..................................................................................................... 17
■ Modifying Run-Time Events ............................................................................................................... 18

1



CentraSite can receive run-time events and Key Performance Indicator (KPI) metrics. A run-time
event is an event that occurs while services are actively deployed on the target. Examples of run-
time events include:

■ Successful or unsuccessful SOAP requests/responses.
■ Policy violation events, which are generated upon violation of service’s run-time policy.
■ Service monitoring events, which are generated by the service-monitoring actions in the run-
time policy.

KPI metrics are used to monitor the run-time execution of virtual services. Metrics include the
maximum response time, average response time, fault count, availability of virtual services, and
more. If you include run-time monitoring actions in your run-time policies, the actions will mon-
itor the KPI metrics for virtual services, and can send alerts to various destinations when user-
specified performance conditions for a service are violated.

CentraSite provides predefined event types for use with any supported policy-enforcement point
(PEP), such as webMethods Mediator. In addition, you can create custom event types.

The run-time event data are collected by the PEP and published to CentraSite via SNMP. The PEP
publishes data for all run-time events for all instances of the PEP target.

You can view the run-time events and metrics on the CentraSite Control user interface. You can
view them for all targets, for a particular target, or for a particular virtual service.

The following topics are discussed:

The Run-Time Event Types

The types of run-time events that Mediator can publish are as follows:

DescriptionEvent Type

A Lifecycle event occurs each time Mediator is started or shut down.Lifecycle

An Error event occurs each time an invocation of a virtual service results in an error.Error

A Policy Violation event occurs each time an invocation of a virtual service violates a
run-time policy that was set for the virtual service.

Policy Violation

A Transaction event occurs each time a virtual service is invoked (successfully or
unsuccessfully).

Transaction

Mediator publishes key performance indicator (KPI)metrics, such as the average response
time, fault count, and availability of all virtual services (described below).

Monitoring

Run-Time Governance Reference2

Run-Time Events and Key Performance Indicator (KPI) Metrics



The Key Performance Indicator (KPI) Metrics

For the Monitoring event type, Mediator can publish the following types of KPI metrics:

Reports on...Metric

The percentage of time that a virtual service was available during the current
interval. A value of 100 indicates that the service was always available. Only

Availability

the timewhen the service is unavailable counts against thismetric. If invocations
fail due to policy violations, this parameter could still be as high as 100.

The average amount of time it took the service to complete all invocations in
the current interval. This is measured from the moment Mediator receives the
request until the moment it returns the response to the caller.

Average Response Time

The number of failed invocations in the current interval.Fault Count

The maximum amount of time it took the service to complete an invocation in
the current interval.

Maximum Response Time

The minimum amount of time it took the service to complete an invocation in
the current interval.

Minimum Response Time

The number of successful service invocations in the current interval.Successful Request Count

The total number of requests for each service running inMediator in the current
interval.

Total Request Count

Note: Bydefault,AverageResponseTime,MinimumResponseTime andMaximumResponse
Time do not includemetrics for failed invocations. You can includemetrics for failed invoc-
ations by setting the pg.PgMetricsFormatter.includeFaults parameter to true. For more in-
formation, see the section Advanced Settings in the document Administering webMethods
Mediator.

The Event Notification Destinations

Mediator can publish all run-time events to an SNMP server. Mediator sends events as SNMP
traps either to CentraSite's SNMP server or to a third-party SNMP server.

3Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



CentraSite's SNMP Server

CentraSite's SNMP server uses SNMPv3 user-security model.

Mediator delivers the webMethodsESB.MIB file to define the SNMP traps that it can produce. For
the procedure to configure Mediator to send SNMP traps to the CentraSite SNMP server, see the
section SNMPDestinations for Run-Time Events in the documentAdministering webMethodsMediator.
For more information about the webMethodsESB.MIB file, see the section Run-Time Targets.

Third-Party SNMP Servers

A third-party SNMP server can use either the SNMPv1 community-based security model or the
SNMPv3 user-based security model.

To use a third party SNMP server, youmust import or set up theMIB on all SNMP servers receiving
SNMP traps from Mediator. For the procedure to configure Mediator to send SNMP traps to a
third-party SNMP server, see the section SNMP Destinations for Run-Time Events in the document
Administering webMethods Mediator.

Alerts and Transaction Logging

In addition to publishing all run-time events to an SNMP server, you can configure Mediator to:

■ Sendmonitoring alerts to various destinations when user-specified performance conditions are
violated.

■ Log the payloads of all transactions to various destinations.

To do this, you include the following run-time actions in the policies of your virtual services.When
you configure the run-time actions, youwill specify the destinations for sending the alerts or logging
the transactions.

Destination for Sending AlertsTo Send Monitoring Alerts...

Use any of the following monitoring actions: ■ The virtual service's Events profile in CentraSite.
■ Your Integration Server's local log.■ “Monitor Service Performance”
■ An SMPT email server.■ “Monitor Service Level Agreement”
■ TheCentraSite SNMP server or a third-party SNMP server.■ “Throttling Traffic Optimization”

Run-Time Governance Reference4

Run-Time Events and Key Performance Indicator (KPI) Metrics



Destinations for Logging the TransactionsTo Log the Transaction Payloads

Use the “Log Invocations” action. ■ The virtual service's Events profile in CentraSite.
■ Your Integration Server's local log.
■ An SMPT email server.
■ Your Integration Server's audit log.
■ TheCentraSite SNMP server or a third-party SNMP server.

The destinations for sending alerts and logging transactions are described below.

■ SMTP Servers
■ The Integration Server's Local Log
■ The Integration Server's Audit Log

SMTP Servers

To specify an email destination, you must:

■ Select the “Email” option as a destinationwhen you configure the run-time actions listed above.
■ Set the “Email Configuration” parameters in Integration Server Administrator (go to Solutions
> Mediator > Administration > Email) as described in the section SMTP Destinations for Alerts
and Transaction Logging in the document Administering webMethods Mediator.

The Integration Server's Local Log

To specify the Integration Server's local log as a destination, you must:

■ Select the “Local Log” option as a destination when you configure the run-time actions listed
above. When configuring the actions, you must also specify the severity of the messages to be
logged (the logging level).

■ Set the Integration Server Administrator's logging level forMediator tomatch the logging levels
specified for the run-time actions (go to Settings > Logging > Server Logger). For example, if a
“Log Invocation” action is set to the logging level of Error, you must also set Integration Server
Administrator's logging level for Mediator to Error. If the action's logging level is set to a low
level (Warning-level or Informationlevel), but Integration Server Administrator's logging level
forMediator is set to a higher level (Error-level), then only the higher-levelmessages arewritten
to the log file.

Entries posted to the local log are identified by a product code of MED.

5Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



The Integration Server's Audit Log

You can select the Integration Server Audit Log as a destination for the “Log Invocation” action
only. If you expect a high volume of invocations in your system, it is recommended that you select
the Audit Log destination. For more information, see the webMethods Audit Logging Guide.

The Metrics Tracking Interval

Mediator tracks performance metrics by intervals. The interval is a period of time you set in Me-
diator, during which metrics are collected for reporting to CentraSite. You set the interval in the
Publish Interval field on theMediator > Administration > CentraSite Communication page in
the Integration Server Administrator. For details, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

Mediator only tracksmetrics for the current interval. At the end of the interval,Mediator aggregates
the metrics and reports them to CentraSite. Once the metrics are reported, Mediator resets its
counters for the new interval. Mediator does not calculate and aggregate metrics across intervals.
If Mediator is shut down or the virtual service is undeployed before the current interval expires,
the performance data is discarded.

Note: To avoid the need forMediator to store metrics during periods of inactivity, Mediator
stores only first and last zero value metrics that occurs during an interval, and discards the
remaining consecutive zero value metrics. Doing this drastically reduces the storage space
consumed by the metrics, and speeds the queries you perform in the dashboard. Skipping
the in-between zero metrics will not affect in the performance graphs shown in the dash-
board.

For more information about the metrics tracking interval, see the section Key Performance Indicator
Metrics and Run-Time Event Notifications in the document Administering webMethods Mediator.

Configuring CentraSite to Receive Run-Time Events and Metrics

Prerequisites:

■ Ensure that Mediator is configured for publishing events to an SNMP server, as described in
the section SNMP Destinations for Run-Time Events in the document Administering webMethods
Mediator.

■ If you use a target type other than Mediator or webMethods Insight, be sure to configure
CentraSite to publish events by providing your own MIB file in your target type's definition
file, as described in the section Run-Time Targets. (CentraSite provides a MIB file for Mediator
and Insight.)

Run-Time Governance Reference6

Run-Time Events and Key Performance Indicator (KPI) Metrics



■ Optionally change CentraSite's default settings for logging run-time events, as described in the
section Logging. By default, CentraSite logs all predefined event types, but youmay disable any
type.

CentraSite provides an Event Receiver, which is a data collector that collects the run-time event
data. The Event Receiver listens for run-time events from the target instances via the SNMP (Ap-
plication-Layer) protocol, and contains the logic to parse and store event data in the Event Receiver's
data store. You must configure the Event Receiver's properties file as described below.

This section includes the following topics:

■ Components of the Event Receiver
■ Configuring the Event Receiver
■ Event Type Modeling
■ Event Modeling

Components of the Event Receiver

The Event Receiver contains the following components.

■ The SNMP Listener

CentraSite's SNMPv3 Trap Listener, which supports SNMP4J. This Listener starts automatically
when CentraSite starts.

■ The Intermediate Queue

The queue from the SNMP Listener to the Event Processor. This queue decouples the SNMP
Listener threads from the Event Processor to improve throughput. The following modes are
supported.
■ FileSystem: Incoming Traps will be stored temporarily in the file system
■ InMemory: Incoming Traps will be stored temporarily in memory
■ NoQueue: Incoming Traps will not be stored in any intermediate queue; the SNMP Listener
threads will be processed.

To select the mode, set the eventsQueueImpl property as described in Setting the Events Queue
Implementation Property.

■ The Event Processor

The Event Processor (SOALinkSNMPEventsListener) transforms incoming SNMPv3 Traps into
an XML file (Events.xml) that complies with the schema in the RuntimeEvents Collection com-
ponent. The Event Processor transforms an SNMPv3 Trap to the Events.xml file as follows:

1. Determines the Event Type (and Target Type) to which the Trap belongs, and gets the corres-
ponding UUIDs. This involves searching all Event Type-to-Trap mappings in all the defined

7Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics

http://www.snmp4j.org/


target types, using the Trap’s OID. Since this is an expensive search, the Event Type-to-Trap
mapping is cached to improve performance.

2. Parses the Trap attributes and obtains: the Service (UUID); the Target (Name); the TimeStamp
and the SessionId. The Processor then searches the registry/repository and obtains the corres-
ponding UUID for the Target Name. This mapping is also cached to improve performance.

3. Collects the remaining attributes from the Trap.

4. Constructs the Events.xml file using the Event TypeUUID, Target TypeUUID, Service UUID,
Target UUID, TimeStamp, SessionId and other collected attributes.

■ The Batch Condition

The Batch Condition is a set of OR conditions used by the Event Processor. The Event Processor
supports twomodes of event storage intoCentraSite: BatchMode andNoBatchMode. BatchMode
is available only for FileSystem and InMemory queues. When BatchMode is enabled, the Event
Processor continues to accumulate Events.xml documents until one of the conditions is evaluated
as true. Then it inserts all the documents as a single batch into CentraSite.

To specify BatchMode or NoBatchMode, set the batch-related properties as described in Setting
the Properties for FileSystem or InMemory.

■ The RuntimeEvents Collection

The run-time events are stored in the RuntimeEvents Collection as non-registry objects. For in-
formation about how events are stored, see Event Type Modeling.

Configuring the Event Receiver

The Event Receiver is bundled in the installation as a Web-Application named SOALinkSNM-
PEventsListener supporting the JavaEE standard. The configuration file for the Event Receiver is
located here:

<CentraSite_directory>/cast/cswebapps/SOALinkSNMPEventsListener/WEB-INF/web.xml

Theweb.xml configuration file contains all the Event Receiver configuration properties. Youmust
set these properties as described below, and then restart CentraSite.

■ Setting the Database Configuration Properties
■ Setting the SNMPv3 Transport Configuration Properties
■ Setting the SNMPv3 USM Configuration Properties
■ Setting the Events Queue Implementation Property

Run-Time Governance Reference8

Run-Time Events and Key Performance Indicator (KPI) Metrics



■ Setting the Properties for FileSystem or InMemory

Setting the Database Configuration Properties

In the Event Receiver's configuration file, set the following properties related to the RuntimeEvents
Collection database .

DescriptionDatabase Property

The URL of the RuntimeEvents Collection
database. All run-time eventswill be persisted
to this database.

com.softwareag.centrasite.soalink.events.dbUrl

The user name that the Events Listener will
use for authentication before persisting event

com.softwareag.centrasite.soalink.events.dbUserId

data to the RuntimeEvents Collection
database. The default value of this property
is the predefined user EventsUser.

Optionally, you can change the value
EventsUser to any login user who has the
following privileges:

■ Write access on the Tamino collection
"RuntimeEvents".

■ Read access on "TargetTypes", "Targets",
"RuntimeEventTypes" and "LogUnit",
which are under the Tamino collection
"CentraSite".

If you want to change the value to a login
user, enter that login user's name in the form
<hostName>\<userName>.

Important: The predefined password of
EventsUser is EventsManager4CS (there is no
need to specify the password in this file). If
you want to change this password, or if you
have changed the value EventsUser to a login
user, youmust change the password. For details,
see the section Users, Groups, Roles, and
Permissions. Whenever you change the
password, you must restart CentraSite.

The non-activity timeout in seconds for the
RuntimeEvents Collection database (default
2592000 seconds (i.e., 30 days)).

com.softwareag.centrasite.soalink.events.dbNonActivityTimeOut

9Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



Setting the SNMPv3 Transport Configuration Properties

In the Event Receiver's configuration file, set the following properties related to a SNMPv3
Transport.

DescriptionSNMPv3 Transport Property

Wire transport protocol that
will be used by the SNMP

com.softwareag.centrasite.soalink.events.snmp.transport

Listener. Supported values are:
TCP and UDP.

The CentraSite host name or IP
address to which the SNMP
listener will bind.

com.softwareag.centrasite.soalink.events.snmp.host

The port to which the SNMP
listener will bind. The default
is 8181.

If Microsoft Internet
Information Services (IIS) is

com.softwareag.centrasite.soalink.events.snmp.port

installed (or will be installed)
on the same machine hosting
IS/Mediator, then you may
want to change the default
SNMP port of 8181 to
something else, to avoid any
potential runtime conflicts
when sending SNMP packets.

Maximum inbound message
size in bytes (an integer). Traps

com.softwareag.centrasite.soalink.events.snmp.maxInboundMessageSizeInBytes

that exceed this size limit will
be rejected. Default value is
256Kb.

The SNMP Listener's
Worker-Thread pool size

com.softwareag.centrasite.soalink.events.snmp.dispatcherPoolSize

(default is 10). This determines
the throughput of the Listener.

Run-Time Governance Reference10

Run-Time Events and Key Performance Indicator (KPI) Metrics



Setting the SNMPv3 USM Configuration Properties

In the Event Receiver's configuration file, set the following properties related to SNMPv3 USM.

DescriptionSNMPv3 USM Property

EngineId to be used by the SNMP Listener.
If the parameter is left blank, the SNMP
Listener will auto-generate the engineId.

com.softwareag.centrasite.soalink.events.snmp.engineId

The SecurityName to be used by the SNMP
Listener.

com.softwareag.centrasite.soalink.events.snmp.securityName

The Maximum SecurityLevel to be
supported by SNMP Listener. Supported

com.softwareag.centrasite.soalink.events.snmp.securityLevel

values in order are: NOAUTH_NOPRIV,
AUTH_NOPRIV and AUTH_PRIV. For
example, AUTH_PRIVprovides the highest
level of security but also supports the other
two levels. Similarly AUTH_NOPRIV
supports NOAUTH_NOPRIV.

AuthorizationProtocol to be used by the
SNMP Listener for decoding the incoming
trap. Supported values are: MD5 and SHA.

com.softwareag.centrasite.soalink.events.snmp.authProtocol

The PassPhrase key to be used by the
AuthorizationProtocol. The passphrase key

com.softwareag.centrasite.soalink.events.snmp.authPassPhraseKey

length should be >= 8. The key is stored in
this file; the passphrase value is stored
securely in passman.

The PrivacyProtocol to be used by the SNMP
Listener for decoding the incoming trap.

com.softwareag.centrasite.soalink.events.snmp.privProtocol

Supported values are: DES, AES128, AES,
AES192, AES256, 3DES and DESEDE.

The PassPhrase key to be used by the
PrivacyProtocol. The passphrase length

com.softwareag.centrasite.soalink.events.snmp.privPassPhraseKey

should be >= 8. The key is stored in this file;
the passphrase value is stored securely in
passman.

11Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



Setting the Events Queue Implementation Property

In the Event Receiver's configuration file, set the following property related to the implementation
of the events queue.

DescriptionEvents Queue Property

Supported values are:com.softwareag.centrasite.soalink.events.eventsQueueImpl

■ FileSystem: Incoming Traps will be stored
temporarily in the file system

■ InMemory: Incoming Traps will be stored
temporarily in memory

■ NoQueue: Incoming Traps will not be stored in
any intermediate queue; the SNMP Listener
threads will be processed one by one

Additional, related properties are described in
Setting the Properties for FileSystem or InMemory.

Setting the Properties for FileSystem or InMemory

When the eventsQueueImpl property is set to either FileSystem or InMemory, you should also set
the following properties.

DescriptionProperty for FileSystem or InMemory

Enable or disable batch insertion of events
into the database. Supported values are

com.softwareag.centrasite.soalink.events.enableBatchInsertion

true and false. If true, events will be
batched as per the "batching rules"
properties below, and the batch will be
stored to the database. If false, events will
be stored to the database one by one.

Maximum number of events in a batch.
Should be an integer value. A value <= 0

com.softwareag.centrasite.soalink.events.maxNumOfEventsPerBatch

disables this rule. This rule is evaluated
only on arrival of a new Trap.

Maximum size (in bytes) of a batch.
Default value is 512KB. Should be an

com.softwareag.centrasite.soalink.events.maxSizeOfBatch

integer value. A value <= 0 disables this
rule. This rule is evaluated only on arrival
of a new Trap.

Maximum time interval (in milliseconds)
between two subsequent batch storages.

com.softwareag.centrasite.soalink.events.maxTimeIntervalBetweenBatches

Should be an integer value. A value <= 0
disables this rule. Unlike the other two
rules, this rule is evaluated periodically.

Run-Time Governance Reference12

Run-Time Events and Key Performance Indicator (KPI) Metrics



DescriptionProperty for FileSystem or InMemory

Hence this rule prevents any trap stuck in
the batch for ever if inflow of traps stops;
in short this acts as a batch-timeout. A very
low value for this rule reduces batch
efficiency and introduces unnecessary
looping.

(Only applies when the eventsQueueImpl
property is set to FileSystem.) The

com.softwareag.centrasite.soalink.events.fileSystemQueueDir

directory that should be used as
FileSystemQueue. Incoming trapswill be
stored in this directory temporarily and
hence should have write permission. The
path can be absolute or relative. It is
advisable to provide the absolute path.
Relative paths will be considered relative
to one of the following, based on
availability in the same order:

1. SOALinkSNMPEventsListener/WEB-INF
directory for exploded deployments.

2. javax.servlet.context.tempdir for zipped
deployments.

3. java.io.tmpdir if none of the above are
available.

Event Type Modeling

Event types aremodeled as registry objects. The String, Date, Integer and Boolean event attributes
are stored in the registry/repository as slots. The File-Type attributes (representing payloads/binary-
data) are stored as HasExternalLink associations.

For example, consider the predefined event type Transaction. If you go to the Target Type details
page, youwill see the Transaction event type attributes (which are obtained from thewebMethod-
sESB.mib file) as follows:

TypeObject IDAttribute Name

String1.3.6.1.4.1.1783.201.1.1.1Service

String1.3.6.1.4.1.1783.201.1.1.2Target

Date1.3.6.1.4.1.1783.201.1.1.3Timestamp

String1.3.6.1.4.1.1783.201.1.1.4Consumer

String1.3.6.1.4.1.1783.201.1.1.5RequestStatus

File1.3.6.1.4.1.1783.201.1.1.6ResponsePayload

13Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



TypeObject IDAttribute Name

File1.3.6.1.4.1.1783.201.1.1.7RequestPayload

Integer1.3.6.1.4.1.1783.201.1.1.8ProviderRoundTripTime

Integer1.3.6.1.4.1.1783.201.1.1.9TotalRoundTripTime

String1.3.6.1.4.1.1783.201.1.1.16SessionID

String1.3.6.1.4.1.1783.201.1.1.17ConsumerIP

All of these attributes (except the File-Type attributes RequestPayload and ResponsePayload) are
stored as registry object slots, as follows:

Slot Value (Attribute)Slot TypeSlot Key

Servicexs:stringuddi_16d34470-9a92-11dd-9b43-e319c2a6593c

Targetxs:stringuddi_f18b5a40-9a91-11dd-b95e-b4758b17b88b

TimeStampxs:datetimeuddi_c798d3c0-9a91-11dd-889e-b999c87ba6b7

Consumerxs:stringuddi_a7476ff0-a108-11dd-9c38-d8fd010529cc

RequestStatusxs:stringuddi_a7476ff0-a108-11dd-9c38-eac6d60fc855

ProviderRoundTripTimexs:integeruddi_a7476ff0-a108-11dd-9c38-f3f84c6111f0

TotalRoundTripTimexs:integeruddi_a7476ff0-a108-11dd-9c38-d02170b3aae3

SessionIDxs:stringuddi_21b67010-9a92-11dd-926a-991c4c180c79

ConsumerIPxs:stringuddi_a7476ff0-a108-11dd-9c38-d34f346cb3d5

The File-Type attributes ResponsePayload and RequestPayload are stored as HasExternalLink
associations, as follows:

Association Name (Attribute)Association Key

ResponsePayloaduddi:a747704b-a108-11dd-9c38-fde9d932116a

RequestPayloaduddi:a745265b-a108-11dd-9c38-bf43eee17363

The "Target Type to Event Type Association" Object

A target type (represented as a concept) is associatedwith an event type (represented as a registry
object) by a "Target Type to Event Type Association" object, which defines the "UUID toMIB OID"
mapping.

The following table shows the contents of a sample object that associates the target typewebMethods
Mediator with the event type Transaction. The table's columns are described below.

■ Attribute: The Attribute column is not part of the object; it is included here simply for your
reference.

■ Slot Key: Contains the UUID, which is obtained from the event type registry object.
■ Slot Type: Contains the slot type, which is obtained from the event type registry object.

Run-Time Governance Reference14

Run-Time Events and Key Performance Indicator (KPI) Metrics



■ Slot Value: Contains the event type attribute's Object Identifier (OID), which is obtained from
the MIB file.

Slot Value (Event Attribute
OID)

Slot TypeSlot Key (Event Type UUID)Attribute

1.3.6.1.4.1.1783.201.1.1.1xs:stringuddi_16d34470-9a92-11dd-9b43-e319c2a6593cService

1.3.6.1.4.1.1783.201.1.1.2xs:stringuddi_f18b5a40-9a91-11dd-b95e-b4758b17b88bTarget

1.3.6.1.4.1.1783.201.1.1.3xs:datetimeuddi_c798d3c0-9a91-11dd-889e-b999c87ba6b7TimeStamp

1.3.6.1.4.1.1783.201.1.1.4xs:stringuddi_a7476ff0-a108-11dd-9c38-d8fd010529ccConsumer

1.3.6.1.4.1.1783.201.1.1.5xs:stringuddi_a7476ff0-a108-11dd-9c38-eac6d60fc855RequestStatus

1.3.6.1.4.1.1783.201.1.1.6xs:anyURIuddi_a747704b-a108-11dd-9c38-fde9d932116aResponsePayload

1.3.6.1.4.1.1783.201.1.1.7xs:anyURIuddi_a745265b-a108-11dd-9c38-bf43eee17363RequestPayload

1.3.6.1.4.1.1783.201.1.1.8xs:integeruddi_a7476ff0-a108-11dd-9c38-f3f84c6111f0ProviderRoundTripTime

1.3.6.1.4.1.1783.201.1.1.9xs:integeruddi_a7476ff0-a108-11dd-9c38-d02170b3aae3TotalRoundTripTime

1.3.6.1.4.1.1783.201.1.1.16xs:stringuddi_21b67010-9a92-11dd-926a-991c4c180c79SessionID

1.3.6.1.4.1.1783.201.1.1.17xs:stringuddi_a7476ff0-a108-11dd-9c38-d34f346cb3d5ConsumerIP

Event Modeling

An event is an instance of an event type. Events are modeled in a separate schema from the event
type schema. CentraSite models events as non-registry objects (to avoid storing large amounts of
unwanted event data in the registry/repository), and instead stores event data in a database collec-
tion within the Event Receiver. CentraSite maps events to their corresponding event types, using
the event types' UUIDs. Similarly, events are mapped to target types, targets and services using
UUIDs and the event type attributes.

The stored event data will contain:

■ The event Trap ID (MIB OID).
■ The event Trap value, which consists of:

■ The attribute key (MIB OID).
■ The attribute value.

The event data is stored in the Event Receiver as an "events" doctype.

If an event contains payloads (e.g., File-Type attributes such as ResponsePayload andRequestPay-
load), the payloads are stored in the Event Receiver as a "payloads" doctype, andwill be referenced
by the event stored under the "event" doctype, using ino:id. This is used to reduce de-serialization
of the usually large payloads, and to improve performance of queries on the stored events.

15Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



Viewing Run-Time Events and Metrics

You can view the run-time events and metrics that occurred for:

■ A particular target or all targets (see Viewing Run-Time Events and Metrics for Targets).
■ Each virtual service (see Viewing Run-Time Events and Metrics for Virtual Services).

Viewing Run-Time Events and Metrics for Targets

Use the following procedure to view lists of run-time events for a particular target or for all targets.

If you are using theMediator target, ensure thatMediator is configured to send event notifications
to the destination(s) that are applicable for each event type. For details, see SNMP Destinations for
Run-Time Events in the document Administering webMethods Mediator.

Note: You must have the permissions to manage targets, as described in the section Run-
Time Targets.

To view a list of run-time events for targets

1 In CentraSite Control, go toOperations > Events > Event List.

2 Use the following fields to filter the event list you want to view:

Specify...In this field...

The type of the target whose events you want to view.Target Type

The target whose events you want to view (or select All to view events of all targets).Target

A particular event type, or select All to view all event types. For descriptions of the
predefined event types, see the The Run-Time Event Types.

Event Type

Select All or Virtual Service.

Note: CentraSite does not provide out-of-the-box policy-enforcement for web services.

Service Type

A range of dates from which to view the events.Date Range

Alternatively, select the check box next to this field and click the calendar and select a
starting date and time.

Start Date

Click the calendar and select an ending date and time.End Date

3 Click the Search button.

4 The generated event list displays the following information:

Run-Time Governance Reference16

Run-Time Events and Key Performance Indicator (KPI) Metrics



DescriptionField

The date/time that the event occurred. Click this hyperlinked value to view the Event
Detail page, which will contain the event's SOAP request or response name in the
Attribute column. Click the hyperlinked request or response name to display the full
SOAP request or response.

Date/Time

(Read-only.) The session ID that generated the event.Session ID

(Read-only.) The type of event (e.g., Monitoring, Policy Violation, Error, etc.).Event Type

(Read-only.) The name of the service that caused the event.Service Name

(Read-only.) The service’s type.Service Type

(Read only.) The target on which the event occurred.Target

(Read only.) The type of the target on which the event occurred.Target Type

Note: To view the list of attributes that are mapped for each event type, go to the target
type's detail page (see the section Run-Time Targets).

Viewing Run-Time Events for Virtual Services

You can view the events and metrics for a virtual service in its Events profile and its Performance
profile. For details, see the section Virtual Services in CentraSite Control.

Creating Custom Run-Time Events

CentraSite provides the predefined event types described inTheRun-Time Event Types. In addition,
you can create custom run-time events that CentraSite will monitor.

Note: Prerequisite: Youmust have theManage Runtime Event Types permission. By default,
the predefined roles CentraSite Administrator and Operations Administrator include this
permission. Formore information about roles and permissions, see the sectionUsers, Groups,
Roles, and Permissions.

Important: To enable CentraSite to recognize custom event types, ensure that your MIB file
(which is contained in your target type definition file) contains the SNMP Traps metadata
andObject Identifiers for the custom events. Formore information, see the sectionRun-Time
Targets.

To create custom event types

1 In CentraSite Control, go toOperations > Events > Event Types to display the Event Types
page.

17Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



The page displays all the predefined event types (Monitoring, Policy Violation, Transaction,
Error and Lifecycle) and any custom event types that have been defined.

2 To view the details of any event type, click its hyperlinked name.

The list of attributes for the event type is displayed. You can edit the attributes of custom
event types, but not the predefined event types (seeModifying Custom Run-Time Events).

3 To create a custom event type, click theAdd Event Type button. In theAdd/Edit Event Type
page specify a name and description for the event type. Event type names can contain any
character (including spaces), and are not case-sensitive.

4 In the Event TypeAttribute panel, the following default attributes are displayed. These attrib-
utes are required and cannot be deleted.

Data TypeAttribute

DateTimeStamp

StringTarget

StringService

StringSessionID

To create additional attributes, perform the following steps:

1. Click the plus button at the bottom of the attribute list.

2. Specify a name in theName column and a value in the Data Type column (Boolean, File,
Date, Integer or String). Attribute names can contain any character (including spaces).

3. To add another attribute, click the plus button at the bottom of the list.

4. To delete an attribute, click the minus button for the attribute you want to delete.

5. Click Save.

Modifying Run-Time Events

To edit and delete custom event types, perform the following steps.

To modify a custom run-time event

1 In CentraSite Control, go toOperations > Events > Event Types to display the Event Types
page.

The page displays all event types that have been defined.

2 To delete a custom event type, select the check box next to the event type and click theDelete
button.

Run-Time Governance Reference18

Run-Time Events and Key Performance Indicator (KPI) Metrics



3 To edit the attributes of a custom event type, perform the following steps:

1. Click its hyperlinked name to display the Add/Edit Event Type page.

2. You can change the value of an attribute’s data type, but not its name. Data types can be
Boolean, File, Date, Integer or String.

3. To add another attribute, use the plus button at the bottom of the list.

4. To delete an attribute, click the minus button next to the attribute.

5. Click Save.

19Run-Time Governance Reference

Run-Time Events and Key Performance Indicator (KPI) Metrics



20



2 Built-In Run-Time Actions Reference for Virtual Services

■ Summary of the Run-Time Actions for Virtual Services ............................................................................ 22
■ Action Evaluation Order and Dependencies .......................................................................................... 24
■ Usage Cases for Identifying/Authenticating Consumers ........................................................................... 26
■ Run-Time Actions Reference for Virtual Services ................................................................................... 28

21



This section describes the built-in run-time actions that you can include in run-time policies for
virtual services. You use these actions only when you are using CentraSite Control to create run-
time policies for virtual services. The content is organized under the following sections:

Summary of the Run-Time Actions for Virtual Services

You can include the following kinds of built-in run-time actions in the run-time policies for virtual
services:

■ WS-SecurityPolicy 1.2 Actions
■ Monitoring Actions
■ Additional Actions

WS-SecurityPolicy 1.2 Actions

Mediator provides two kinds of actions that supportWS-SecurityPolicy 1.2: authentication actions
and XML security actions.

Authentication Actions (WS-SecurityPolicy 1.2)

Mediator uses the following authentication actions to verify that the requests for virtual services
contain a specified WS-Security element:

Uses WS-SecurityPolicy authentication to validate user names and
passwords that are transmitted in the SOAPmessage header for theWSS
Username token.

Require WSS Username Token

Identifies consumers based on a WSS X.509 token.Require WSS X.509 Token

Uses aWSS SecurityAssertionMarkupLanguage (SAML) assertion token
to validate service consumers.

Require WSS SAML Token

XML Security Actions (WS-SecurityPolicy 1.2)

These actions provide confidentiality (through encryption) and integrity (through signatures) for
request and response messages.

Requires that a request's XML element (which is represented by anXPath expression)
be signed.

Require Signing

Requires that a request's XML element (which is represented by anXPath expression)
be encrypted.

Require Encryption

Requires that requests be sent via SSL client certificates, and can be used by both
SOAP and REST services.

Require SSL

Run-Time Governance Reference22

Built-In Run-Time Actions Reference for Virtual Services



Requires that timestamps be included in the request header. Mediator checks the
timestamp value against the current time to ensure that the request is not an old

Require Timestamps

message. This serves to protect your system against attempts at message tampering,
such as replay attacks.

Monitoring Actions

Mediator provides the following run-time monitoring actions:

This action monitors a user-specified set of run-time performance conditions for
a virtual service, and sends alerts to a specified destination when these
performance conditions are violated.

Monitor Service
Performance

This action provides the same functionality as “Monitor Service Performance”
but this action is different because it enables you to monitor a virtual service's

Monitor Service Level
Agreement

run-time performance especially for particular consumer(s). You can configure
this action to define a Service Level Agreement (SLA), which is set of conditions
that defines the level of performance that a specified consumer should expect
from a service.

(Not available in Mediator versions below 9.0.) This action limits the number of
service invocations during a specified time interval, and sends alerts to a specified

Throttling Traffic
Optimization

destinationwhen the performance conditions are violated. You can use this action
to avoid overloading the back-end services and their infrastructure, to limit
specific consumers in terms of resource usage, etc.

Additional Actions

Mediator provides the following actions, which you can use in conjunctionwith the actions above.

You use this action in conjunction with an authentication action (“Require
WSS Username Token”, “RequireWSS X.509 Token” or “Require HTTP Basic

Identify Consumer

Authentication”). Alternatively, you can use this action alone to identify
consumers only by host name or IP address.

This action uses HTTP basic authentication to verify the consumer's
authentication credentials contained in the request's Authorization header
against the Integration Server's user account.

Require HTTP Basic
Authentication

This action authorizes consumers against a list of users and/or a list of groups
registered in the Integration Server on which Mediator is running. You use

Authorize User

this action in conjunction with an authentication action “Require WSS
Username Token”, “Require WSS SAML Token” or “Require HTTP Basic
Authentication”.

This action authorizes consumer applications against all Application assets
that are registered in CentraSite as consumers for the service.

Authorize Against
Registered Consumers

Logs request/response payloads to a destination you specify.Log Invocations

Validates all XML request and/or response messages against an XML schema
referenced in the WSDL.

Validate Schema

23Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Action Evaluation Order and Dependencies

When you deploy a virtualized service, CentraSite automatically validates the service's run-time
policy (or policies) to ensure that:

■ Any action that appears in a single policy multiple times is allowed to appear multiple times.

For those actions that can appear in a policy only once (for example, Identify Consumer), Medi-
ator will choose only one, which might cause problems or unintended results.

■ All action dependencies are properly met. That is, some actions must be used in conjunction
with another particular action.

CentraSite will inform you of any violation, and you will need to correct the violations before de-
ploying the service.

■ Effective Policies

Effective Policies

When you deploy a virtual service to Mediator, CentraSite combines the actions specified within
the service's run-time policy (or policies) that apply to the virtual service, and generates what is
called the effective policy for the virtual service. For example, suppose your virtual service is within
the scope of two run-time policies: one policy that performs a logging action and another policy
that performs a security action. When you deploy the virtual service, CentraSite automatically
combines the two policies into one effective policy. The effective policy, which contains both the
logging action and the security action, is the policy that CentraSite actually deploys to Mediator
with the virtual service.

When CentraSite generates the effective policy, it validates the resulting action list to ensure that
it contains no conflicting or incompatible actions. If the list contains conflicts or inconsistencies,
CentraSite resolves them according to Policy Resolution Rules. For example, an action list can in-
clude only one Identify Consumer action. If the resulting action list contains multiple Identify
Consumer actions, CentraSite resolves the conflict by including only one of the actions (selected
according to a set of internal rules) in the effective policy and omitting the others.

The effective policy that CentraSite produces for a virtual service is contained in an object called
a virtual service definition (VSD). TheVSD is given toMediatorwhen you deploy the virtual service.
After you deploy a virtual service, you can view its VSD (and thus examine the effective policy
that CentraSite generated for it) from the CentraSite user interface or from the Mediator user in-
terface.

The following table shows:

■ The order in which Mediator evaluates the actions.

Run-Time Governance Reference24

Built-In Run-Time Actions Reference for Virtual Services



■ Action dependencies (that is, whether an action must be used in conjunction with another par-
ticular action).

■ Whether an action can be included multiple times in a single policy. If an action cannot be in-
cluded multiple times in a single policy, Mediator selects just one for the effective policy, which
may cause problems or unintended results.

Can include multiple times in a policy?DependencyActionEvaluation
Order

If multiple actions appear, and one of them
has its Client Certificate Required

None.Require SSL1

parameter set to Yes, only one occurrence
of the action appears in the effective policy.

No. Mediator includes only one action in
the effective policy.

InMediator versions below9.0:
None.

RequireHTTPBasic
Authentication

2

In Mediator version 9.0 and
above: Identify Consumer.

No. Mediator includes only one action in
the effective policy.

Identify Consumer action.Require WSS
Username Token

3

No. Mediator includes only one action in
the effective policy.

Identify Consumer action.Require WSS X.509
Token

4

No. Mediator includes only one action in
the effective policy.

None.RequireWSSSAML
Token

5

Yes. Mediator generates a UNION of all
Require Signing actions for the effective
policy.

Identify Consumer action.Require Signing6

Yes. Mediator generates a UNION of all
Require Encryption actions for the effective
policy.

Identify Consumer action.Require Encryption7

No. Mediator includes only one action in
the effective policy.

Require SSL, Require Signing
and Require Encryption.

RequireTimestamps8

No. Mediator includes only one action in
the effective policy.

If Identify Consumer's
identifier field is set to:

Identify Consumer9

■ HTTPAuthenticationToken,
the action Require HTTP
Basic Authentication is also
required.

■ WS-Security Authentication
Token, the action Require
WSSUsernameToken is also
required.

■ Consumer Certificate, the
actions Require WSS X.509

25Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Can include multiple times in a policy?DependencyActionEvaluation
Order

Token or Require Signing are
also required.

No. Mediator includes only one action in
the effective policy.

Require HTTP Basic
Authentication, Require WSS

Authorize User10

Username Token or Require
WSS SAML Token.

No. Mediator includes only one action in
the effective policy.

Identify Consumer action.Authorize Against
Registered
Consumers

11

If at least one occurrence of the action is
configured to validate requests, and at least

None.Validate Schema12

one occurrence of the action is configured
to validate responses, then Mediator
includes in the effective policy an action to
validate both requests and responses.
Otherwise, an action is chosen which
validates only requests or only responses
(depending on the value of the Validate
SOAP Messages parameter of the action).

No. Mediator includes only one action in
the effective policy.

None.Log Invocation13

Yes. Mediator includes all Monitor Service
Performance actions in the effective policy.

None.Monitor Service
Performance

14

Yes. Mediator includes all Monitor Service
Level Agreement actions in the effective
policy.

Identify Consumer action.Monitor Service
Level Agreement

15

Yes. Mediator includes all Throttling
TrafficOptimization actions in the effective
policy.

IdentifyConsumer (if the Limit
Traffic for Applications option
is selected).

Throttling Traffic
Optimization

16

Usage Cases for Identifying/Authenticating Consumers

When deciding which type of identifier to use to identify a consumer application, consider the
following points:

■ Whatever identifier you choose to identify a consumer application, it must be unique to the
application. Identifiers that represent user names are often not suitable because the identified
users might submit requests for multiple applications.

Run-Time Governance Reference26

Built-In Run-Time Actions Reference for Virtual Services



■ Identifying applications by IP address or host name is often a suitable choice, however, it does
create a dependency on the network infrastructure. If a consumer application moves to a new
machine, or its IP address changes, you must update the identifiers in the application asset.

■ Using X.509 certificates or a custom token that is extracted from the SOAPmessage itself (using
an XPATH expression), is often the most trouble-free way to identify a consumer application.

Following are some common combinations of actions used to authenticate/identify consumers.

■ Scenario 1: Identify consumers by IP address or host name
■ The simplest way to identify consumers is to use the Identify Consumer action and set its
Identify User Using parameter to specify either a host name or an IP address (or a range
of IP addresses).

■ Scenario 2: Authenticate consumers by HTTP authentication token
Use the following actions:
■ IdentifyConsumer action, and set its Identify User Usingparameter toHTTPAuthentication
Token (to identify consumers using the token derived from the HTTP header).

■ Require HTTP Basic Authentication.
■ Additionally, you can use one or both of the following:

■ AuthorizeUser action (to authorize a list of users and/or groups registered in the Integration
Server on which Mediator is running).

■ AuthorizeAgainst RegisteredConsumers action (to authorize consumer applications against
all Application assets registered as consumers for a service in CentraSite).

■ Scenario 3: Authenticate consumers by WS-Security authentication token
Use the following actions:
■ Identify Consumer action, and set its Identify User Using parameter to WS-Security Au-
thentication Token (to identify consumers using the token derived from the WSS Header).

■ Require WSS Username Token action.
■ Additionally, you can use one or both of the following:

■ AuthorizeUser action (to authorize a list of users and/or groups registered in the Integration
Server on which Mediator is running).

■ AuthorizeAgainst RegisteredConsumers action (to authorize consumer applications against
all Application assets registered as consumers for a service in CentraSite).

■ Scenario 4: Authenticate consumers by WSS X.509 token
■ Identify Consumer action, and set its Identify User Usingparameter toConsumerCertificate
(to identify consumers using the WSS X.509 token).

■ Require WSS X.509 Token action
■ Require SSL action.

27Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Run-Time Actions Reference for Virtual Services

This section describes the following built-in run-time actions that you can include in run-time
policies for virtual services:

■ Authorize Against Registered Consumers
■ Authorize User
■ Identify Consumer
■ Log Invocation
■ Monitor Service Performance
■ Monitor Service Level Agreement
■ Require Encryption
■ Require HTTP Basic Authentication
■ Require Signing
■ Require SSL
■ Require Timestamps
■ Require WSS SAML Token
■ Require WSS Username Token
■ Require WSS X.509 Token
■ Throttling Traffic Optimization
■ Validate Schema

Authorize Against Registered Consumers

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action. However, if the Identify Consumer action is set to identify users
via theHTTP Authentication Token option, then “Authorize Against Registered Con-
sumers” should not be included in the policy.

Authorizes consumer applications against all Application assets that are registered in CentraSite
as consumers for the service.

Input Parameters

None.

Run-Time Governance Reference28

Built-In Run-Time Actions Reference for Virtual Services



Authorize User

Note: Dependency requirement: A policy that includes this action must also include one of
the following: theRequireWSSSAMLToken action or the Identify Consumer actionwith
one of the following options selected: “HTTP Authentication Token” or “WS-Security Au-
thentication Token”.

Authorizes consumers against a list of users and/or a list of groups registered in the Integration
Server on which Mediator is running.

Input Parameters

Boolean Authorizes consumers against a list of users who are
registered in the Integration Server on which Mediator is running.
Specify one or more users in the fields below this option.

Perform authorization against
list of users

Boolean Authorizes consumers against a list of groups who are
registered in the Integration Server on which Mediator is running.
Specify one or more groups in the fields below this option.

Perform authorization against
list of groups

Note: By default, both of the input parameters are selected. If you de-select one of these
parameters, the fields showing the list of users (or groups) is not displayed.

Identify Consumer

Mediator uses this action to identify consumer applications based on the kind of consumer identi-
fier (IP address, HTTP authorization token, etc.) you specify. Alternatively, this action provides
an option to allow anonymous users to access the assets.

Input Parameters

Boolean Specifies whether to allow all users to access the asset, without restriction.Anonymous
Usage
Allowed

DescriptionValue

Default.Allows only the users specified in the Identify User Using
parameter to access the assets.

False

Allow all users to access the asset. In this case, do not configure the
Identify User Using parameter.

True

String Specifies the kind of consumer identifier that the action will use to identify consumer
applications.

Identify
User
Using

DescriptionValue

29Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Identifies one ormore consumer applications based on their originating
IP addresses.

IP Address

Identifies consumer applications based on a host name.Host Name

UsesHTTPBasic authentication to verify the consumer's authentication
credentials contained in the request's Authorization header. Mediator
authorizes the credentials against the list of users registered in the
Integration Server onwhichMediator is running. This type of consumer
authentication is referred to as “preemptive authentication”. If you
want to use “preemptive authentication”, you should also include the
action Require HTTP Basic Authentication in the policy.

If you choose to omit “Require HTTP Basic Authentication”, the client
will be presented with a security challenge. If the client successfully

HTTP ↩
Authentication ↩
Token

responds to the challenge, the user is authenticated. This type of
consumer authentication is referred to as “non-preemptive
authentication”. For more information, see Require HTTP Basic
Authentication.

Note: If you select the value HTTP Authentication Token, do not
include the Authorize Against Registered Consumers action in
the policy. This is an invalid combination.

Validate user names and passwords that are transmitted in the SOAP
message header in the WSS Username Token. If you select this value,
you should also include the action Require WSS Username Token in
the policy.

WS-Security ↩
Authentication ↩
Token

Validates consumer applications based on anXMLelement (represented
by an XPath expression).

Custom ↩
Identification

Identifies consumer applications based on information in aWSS X.509
certificate. If you select this value, you should also include the action
RequireWSSX.509 Token or the actionRequire Signing in the policy.

Consumer ↩
Certificate

Validates the client's certificate that the consumer application submits
to the asset in CentraSite. The client certificate that is used to identify
the consumer is supplied by the client to the Mediator during the SSL
handshake over the transport layer. In order to identify consumers by
transport-level certificates, the run-time communication between the
client and the Mediator must be over HTTPS and the client must pass
a valid certificate.

To use this option, the following prerequisites must be met:

Client ↩
Certificate for ↩
SSL Connectivity

■ In Integration Server, create a keystore and truststore, as described
in Securing Communications with the Server in the webMethods
Integration Server Administrator's Guide.

■ In Integration Server, create an HTTPS port, as described in
Configuring Ports in thewebMethods Integration Server Administrator's
Guide.

Run-Time Governance Reference30

Built-In Run-Time Actions Reference for Virtual Services



■ Configure Mediator by setting the IS Keystore and IS Truststore
parameters, as described in Configuring Mediator > Keystore
Configuration in the document Administering webMethods Mediator.

■ Configure Mediator by setting the HTTPS Ports Configuration
parameter, as described in ConfiguringMediator > Ports Configuration
in the document Administering webMethods Mediator.

Log Invocation

Logs request/response payloads. You can specify the log destination and the logging frequency.
This action also logs other information about the requests/responses, such as the service name,
operation name, the Integration Server user, a timestamp, and the response time.

Note: You can include this action multiple times in a policy.

Input Parameters

StringOptional. Specifies whether to log all request payloads, all response payloads, or both.Log the
Following
Payloads

DescriptionValue

Log all request payloads.Request

Log all response payloads.Response

String Specifies how frequently to log the payload.Log
Generation
Frequency

DescriptionValue

Log all requests and/or responses.Always

Log only the successful responses and/or requests.On Success

Log only the failed requests and/or responses.On Failure

String Specifies where to log the payload.

Important: Ensure that Mediator is configured to log the payloads to the destination(s) you
specify here. For details, see Alerts and Transaction Logging in the document Administering
webMethods Mediator.

Send Data
To

DescriptionValue

31Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Logs the payloads in the virtual service's Events profile inCentraSite.

Prerequisite: You must configure Mediator to communicate with
CentraSite (in the Integration ServerAdministrator, go toSolutions
> Mediator > Administration > CentraSite Communication). For
the procedure, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

CentraSite

Logs the payloads in the server log of the Integration Server on
which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and informational-level
alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration Server Administrator's logging level for
Mediator should match the logging level specified for this action
(go to Settings > Logging > Server Logger).

Logs the payloads in CentraSite's SNMP server or a third-party
SNMP server.

Prerequisite: You must configure the SNMP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
>Administration > SNMP). For the procedure, see the section SNMP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

SNMP

Sends the payloads to an SMTP email server, which sends them to
the email address(es) you specify here.Mediator sends the payloads
as email attachments that are compressed using gzip data
compression. To specify multiple addresses, use the button to
add rows.

Prerequisite: You must configure the SMTP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
> Administration > Email). For the procedure, see the section SMTP

Email

Destinations for Run-Time Events in the document Administering
webMethods Mediator.

Logs the payload to the Integration Server audit logger. For
information, see the webMethods Audit Logging Guide.

Note: If you expect a high volume of events in your system, it is
recommended that you select the Audit Log destination for this
action.

Audit Log

Run-Time Governance Reference32

Built-In Run-Time Actions Reference for Virtual Services



Monitor Service Performance

This action monitors a user-specified set of run-time performance conditions for a virtual service,
and sends alerts to a specified destination when the performance conditions are violated. You can
include this action multiple times in a single policy.

For the counter-basedmetrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
themetrics tracking interval. You can choosewhether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

For the aggregatedmetrics (AverageResponseTime,MinimumResponseTime,MaximumResponse
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Input Parameters

Specify one or more conditions to monitor. To do this, specify a metric, operator, and a
value for each metric. To specify multiple conditions, use the button to add multiple
rows. If multiple parameters are used, they are connected by the AND operator.

Action
Configuration
parameters

String Array The metrics to monitor.Name

DescriptionValue

Indicates whether the service was available to the
specified consumers in the current interval.

Availability

The average amount of time it took the service to
complete all invocations in the current interval.
Response time ismeasured from themomentMediator
receives the request until the moment it returns the
response to the caller.

Average Response Time

33Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Monitor Service Level Agreement

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action.

This action is similar to the Monitor Service Performance action. Both actions can monitor the
same set of run-time performance conditions for a virtual service, and then send alerts when the
performance conditions are violated. This action is different because it enables you to monitor
run-time performance for one or more specified consumers. You can include this actionmultiple times
in a single policy.

You can configure this action to define a Service Level Agreement (SLA), which is a set of conditions
that defines the level of performance that a consumer should expect from a service. You can use
this action to identify whether a service's threshold rules are met or exceeded. For example, you
might define an agreement with a particular consumer that sends an alert to the consumer if re-
sponses are not sent within a certain maximum response time. You can configure SLAs for each
virtual service/consumer application combination.

For the counter-basedmetrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
themetrics tracking interval. You can choosewhether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

For the aggregatedmetrics (AverageResponseTime,MinimumResponseTime,MaximumResponse
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Input Parameters

Specify one or more conditions to monitor. To do this, specify a metric, operator, and
value for each metric. To specify multiple conditions, use the button to add multiple
rows. If multiple parameters are used, they are connected by the AND operator.

Action
Configuration
parameters

String Array The metrics to monitor.Name

DescriptionValue

Run-Time Governance Reference34

Built-In Run-Time Actions Reference for Virtual Services



Indicates whether the service was available to the
specified consumers in the current interval.

Availability

The average amount of time it took the service to
complete all invocations in the current interval.
Response time ismeasured from themomentMediator
receives the request until the moment it returns the
response to the caller.

Average Response Time

Require Encryption

Requires that a request's XML element (which is represented by anXPath expression) be encrypted.
This action supports WS-SecurityPolicy 1.2 and cannot be used with REST services.

Prerequisites

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communicationswith the Server in the documentAdministeringwebMethods Integration
Server.

2. Configure Mediator: In the Integration Server Administrator, navigate to Solutions > Mediator
> Administration > General and complete the IS Keystore Name, IS Truststore Name and Alias
(signing) fields, as described inKeystore Configuration in the documentAdministeringWebMethods
Mediator.

When this policy action is set for the virtual service, Mediator provides decryption of incoming
requests and encryption of outgoing responses.Mediator can encrypt and decrypt only individual
elements in the SOAPmessage body that are defined by the XPath expressions configured for the
policy action. Mediator requires that requests contain the encrypted elements that match those in
the XPath expression. You must encrypt the entire element, not just the data between the element
tags. Mediator rejects requests if the element name is not encrypted.

Important: Donot encrypt the entire SOAP body because a SOAP requestwithout an element
will appear to Mediator to be malformed.

Mediator attempts to encrypt the response elements that match the XPath expressions with those
defined for the policy. If the response does not have any elements thatmatch the XPath expression,
Mediator will not encrypt the response before sending. If the XPath expression resolves a portion
of the response message, but Mediator cannot locate a certificate to encrypt the response, then
Mediator sends a SOAP fault exception to the consumer and a Policy Violation event notification
to CentraSite.

HowMediator Encrypts Responses

The Require Encryption action encrypts the response back to the client by dynamically setting a
public key alias at run time. Mediator determines the public key alias as follows:

35Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



1. IfMediator can access the X.509 certificate of the client (based on the incoming request signature),
it will use "useReqSigCert" as the public key alias.

OR

2. If the Identify Consumer action is present in the policy (and it successfully identifies a consumer
application), then Mediator will look for a public key alias with that consumer name in the "IS
Keystore Name" property. The "IS Keystore Name" property is specified in the Integration
Server Administrator, under Solutions > Mediator > Administration > General. This property
should be set to an Integration Server keystore that Mediator will use.

For an Identify Consumer action that allows for anonymous usage, Mediator does not require
a consumer name in order to send encrypted responses. In this case, Mediator can use one of
the following to encrypt the response in the following order, depending on what is present in
the security element:
■ A signing certificate.
■ Consumer name.
■ WSS username, SAML token or X.509 certificate.
■ HTTP authorized user.

OR

3. If Mediator can determine the current IS user from the request (i.e., if an Integration ServerWS-
Stack determined that Subject is present), then the first principal in that subject is used.

OR

4. If the above steps all fail, then Mediator will use either the WS-Security username token or the
HTTP Basic-Auth user name value. There should be a public key entry with the same name as
the identified username.

Note: You can include this action multiple times in a single policy.

Input Parameters

String Optional. Namespace of the element required to be encrypted.Namespace

Note: Enter the namespace prefix in the following format: xmlns:<prefix-name>. For example:
xmlns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.org/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

Run-Time Governance Reference36

Built-In Run-Time Actions Reference for Virtual Services

http://www.w3.org/TR/REC-xml-names/#ns-decl


<sp:SignedElements ↩
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
              <sp:XPath ↩
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPath>
            </sp:SignedElements>

String An XPath expression that represents the XML element that is required to be encrypted.Element
Required
to be
Encrypted

Require HTTP Basic Authentication

This action uses HTTP Basic authentication to verify the consumer's authentication credentials
contained in the request's Authorization header. Mediator authorizes the credentials against the
list of users registered in the Integration Server onwhichMediator is running. This type of consumer
authentication is referred to as “preemptive authentication”. If you want to perform “preemptive
authentication”, a policy that includes this actionmust also include the Identify Consumer action.

If the user/password value in the Authorization header cannot be authenticated as a valid Integ-
ration Server user (or if the Authorization header is not present in the request), a 500 SOAP fault
is returned, and the client is presentedwith a security challenge. If the client successfully responds
to the challenge, the user is authenticated. This type of consumer authentication is referred to as
“non-preemptive authentication”. If the client does not successfully respond to the challenge, a
401 “WWW-Authenticate: Basic” response is returned and the invocation is not routed to the
policy engine. As a result, no events are recorded for that invocation, and its key performance in-
dicator (KPI) data are not included in the performance metrics.

If you choose to omit the “Require HTTP Basic Authentication” action (and regardless of whether
an Authorization header is present in the request or not), then:

■ Mediator forwards the request to the native service, without attempting to authenticate the re-
quest.

■ The native service returns a 401 “WWW-Authenticate: Basic” response, which Mediator will
forward to the client; the client is presented with a security challenge. If the client successfully
responds to the challenge, the user is authenticated.

In the casewhere a consumer sends a requestwith transport credentials (HTTPBasic authentication)
and message credentials (WSS Username or WSS X.509 token), the message credentials take pre-
cedence over the transport credentials when Integration Server determines which credentials it
should use for the session. Formore information, seeRequireWSSUsernameToken andRequire
WSS X.509 Token. In addition, you must ensure that the service consumer that connects to the
virtual service has an Integration Server user account.

37Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Note: Do not include the “Require HTTP Basic Authentication” action in a virtual service's
run-time policy if you selected theOAuth2 option in the virtual service's Routing Protocol
step.

Input Parameters

Note: This input parameter is not available in Mediator versions prior to 9.0.

Required. Authorizes consumers against the list of users registered in the
Integration Server on which Mediator is running.

Authenticate Credentials

Require Signing

This action requires that a request's XML element (which is represented by an XPath expression)
be signed. This action supports WS-SecurityPolicy 1.2.

Prerequisites

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communicationswith the Server in the documentAdministeringwebMethods Integration
Server.

2. Configure Mediator: In the Integration Server Administrator, navigate to Solutions > Mediator
> Administration > General and complete the IS Keystore Name, IS Truststore Name and Alias
(signing) fields, as described inKeystore Configuration in the documentAdministeringWebMethods
Mediator.Mediator uses the signing alias specified in theAlias (signing) field to sign the response.

When this action is set for the virtual service, Mediator validates that the requests are properly
signed, and provides signing for responses. Mediator provides support both for signing an entire
SOAP message body or individual elements of the SOAP message body.

Mediator uses a digital signature element in the security header to verify that all elements
matching the XPath expression were signed. If the request contains elements that were not signed
or no signature is present, then Mediator rejects the request.

Notes:

1. You must map the public certificate of the key used to sign the request to an Integration Server
user. If the certificate is not mapped, Mediator returns a SOAP fault to the caller.

2. You can include this action multiple times in a policy.

Run-Time Governance Reference38

Built-In Run-Time Actions Reference for Virtual Services



Input Parameters

String Optional. Namespace of the element required to be signed.Namespace

Note: Enter the namespace prefix in the following format: xmlns:<prefix-name>. For example:
xmlns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.org/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

<sp:SignedElements ↩
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
              <sp:XPath ↩
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPath>
            </sp:SignedElements>

String An XPath expression that represents the XML element that is required to be signed.Element
Required
to be
Signed

Require SSL

Requires that requests be sent via SSL client certificates. This action supports WSSecurityPolicy
1.2 but can be used for both SOAP and REST services.

When this policy action is set for the virtual service, Mediator ensures that requests are sent to the
server using the HTTPS protocol (SSL). The policy also specifies whether the client certificate is
required. This allows Mediator to verify the client sending the request. If the policy requires the
client certificate, but it is not presented, Mediator rejects the message.

When a client certificate is required by the policy, the Integration Server HTTPS port should be
configured to request or require a client certificate.

Input Parameters

Boolean Specifies whether client certificates are required for the purposes of:Client
Certificate
Required ■ Verifying the signature of signed SOAP requests or decrypting encrypted SOAP requests

■ Signing SOAP responses or encrypting SOAP responses

DescriptionValue

39Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services

http://www.w3.org/TR/REC-xml-names/#ns-decl


Require client certificates.Yes

Default. Do not require client certificates.No

Require Timestamps

Note: Dependency requirement: A policy that includes this action must also include all of
the following actions: Require SSL, Require Signing, Require Encryption.

When this policy action is set for the virtual service,Mediator requires that timestamps be included
in the request header. Mediator checks the timestamp value against the current time to ensure
that the request is not an old message. This serves to protect your system against attempts at
message tampering, such as replay attacks. This action supportsWS-SecurityPolicy 1.2 and cannot
be used with REST services.

Mediator rejects the request if either of the following happens:

■ Mediator receives a timestamp that exceeds the time defined by the timestamp element.
■ A timestamp element is not included in the request.

Input Parameters

None.

Require WSS SAML Token

When this action is set for a virtual service, Mediator uses a WSS Security Assertion Markup
Language (SAML) assertion token to validate service consumers. This action supports WS-Secur-
ityPolicy 1.2 and cannot be used with REST services and cannot be used with REST services.

For more information about configuring your system for SAML token processing, see SAML
Support in Mediator in the document Administering webMethods Mediator.

Input Parameters

String Select one of the following SAML subject confirmation methods:SAML Subject
Confirmation DescriptionValue

Default. Select this option if consumers use the SAML V1.1 or V2.0
Holder-of-Key Web Browser SSO Profile, which allows for transport
of holder-of-key assertions. In this scenario, the consumer presents a
holder-of-key SAML assertion acquired from its preferred identity
provider to access a web-based resource at a service provider.

If you select Holder of Key, Mediator also implicitly selects the
“timestamp” and “signing” assertions to the virtual service definition

Run-Time Governance Reference40

Built-In Run-Time Actions Reference for Virtual Services



(VSD). Thus, you should not add the ““Require Timestamps” and
“Require Signing” policy actions to a virtual service if the “Require
WSS SAML Token” action is already applied.

Holder of Key

Select this option if consumers use SAML V1.1 Bearer token
authentication, inwhich a Bearer tokenmechanism relies upon bearer
semantics as ameans bywhich the consumer conveys toMediator the
sender's identity.

If you select Bearer, the “timestamp” and “signing” assertions will
be added to the virtual service definition (VSD).

Note: If consumers use SAML 2.0 Sender-Vouches tokens, configure
your system as described in SAMLSupport inMediator in the document
Administering WebMethods Mediator.

Bearer

String Specifies the WSS SAML Token version to use: 1.1 or 2.0.SAML Version

Require WSS Username Token

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action.

When this policy action is set for the virtual service,Mediator usesWS-SecurityPolicy authentication
to validate user names and passwords that are transmitted in the SOAP message header for the
WSS Username token. This action supports WS-SecurityPolicy 1.2 and cannot be used with REST
services.

In the case where a consumer is sending a request with both transport credentials (HTTP basic
authentication) andmessage credentials (WSS Username or X.509 token), the message credentials
take precedent over the transport credentials when Integration Server is determining which cre-
dentials it should use for the session. For more information, see Require HTTP Basic Authentic-
ation.

Mediator rejects requests that do not include the username token and password of an Integration
Server user. Mediator only supports clear text passwords with this kind of authentication

Input Parameters

None.

41Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



Require WSS X.509 Token

Note: Dependency requirement: A policy that includes this action must also include the
Identify Consumer action.

Identifies consumers based on aWSS X.509 token. This action supports WSSecurityPolicy 1.2 and
cannot be used with REST services.

In the case where a consumer is sending a request with both transport credentials (HTTP Basic
authentication) and message credentials (WSS X.509 token or WSS Username), the message cre-
dentials take precedence over the transport credentials when Integration Server is determining
which credentials it should use for the session. For more information, see Require HTTP Basic
Authentication. In addition, youmust ensure that the service consumer that connects to the virtual
service has an Integration Server user account.

Input Parameters

None.

Throttling Traffic Optimization

Notes:

1. This action is not available in Mediator versions below 9.0.

2. Dependency requirement: A policy that includes this action must also include the Identify
Consumer action if the Limit Traffic for Applications option is selected.

This action limits the number of service invocations during a specified time interval, and sends
alerts to a specified destination when the performance conditions are violated.

Reasons for limiting the service invocation traffic include:

■ To avoid overloading the back-end services and their infrastructure.
■ To limit specific consumers in terms of resource usage (that is, you can use the “Monitor Service
Level Agreement” action tomonitor performance conditions for a particular consumer, together
with “Throttling Traffic Optimization” to limit the resource usage).

■ To shield vulnerable servers, services, and even specific operations.
■ For service consumption metering (billable pay-per-use services).

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Run-Time Governance Reference42

Built-In Run-Time Actions Reference for Virtual Services



Input Parameters

Number Optional. Specifies the maximum number of invocations allowed per Interval
before issuing an alert. Reaching the soft limit will not affect further processing of requests
(until the Hard Limit is reached).

Note: The limit is reached when the total number of invocations coming from all all the
consumer applications (specified in theLimit Traffic for Applicationsfield) reaches

Soft Limit

the limit. Soft Limit is computed in an asynchronousmanner; thuswhenmultiple requests
are made at the same time, it may be possible that the Soft Limit alert will not be strictly
accurate.

NumberRequired. Specifies themaximumnumber of invocations allowed per alert interval
before stopping the processing of further requests and issuing an alert. Typically, this
number should be higher than the soft limit.

Note: The limit is reached when the total number of invocations coming from all all the
consumer applications (specified in theLimit Traffic for Applicationsfield) reaches

Hard Limit

the limit. Hard Limit is computed in an asynchronousmanner; thuswhenmultiple requests
are made at the same time, it may be possible that the Hard Limit alert will not be strictly
accurate.

String Specifies the consumer application(s) that this action applies to. To specify multiple
consumer applications, use the button to add rows, or select Any Consumer to apply
this action to any consumer application.

Limit
Traffic for
Applications

Number Specifies the amount of time for the soft limit and hard limit to be reached.Interval

String Specifies how frequently to issue alerts.Frequency

DescriptionValue

Issue an alert every time the specified condition is
violated.

Every Time

Issue an alert only the first time the specified condition
is violated.

Only Once

String Optional. Specifies where to log the alerts.

Important: Ensure that Mediator is configured to send event notifications to the
destination(s) you specify here. For details, see Alerts and Transaction Logging in the
document Administering webMethods Mediator.

Reply To
Destination

DescriptionValue

Sends the alerts to the virtual service's Events profile in
CentraSite.

Prerequisite: You must configure Mediator to
communicatewith CentraSite (in the Integration Server
Administrator, go to Solutions > Mediator >
Administration >CentraSiteCommunication). For the
procedure, see the section Configuring Communication

43Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



with CentraSite in the document Administering
webMethods Mediator.

CentraSite

Sends the alerts to the server log of the Integration
Server on which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and
informational-level alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration Server Administrator's
logging level for Mediator should match the logging
level specified for this action (go to Settings > Logging
> Server Logger).

Sends the alerts to CentraSite's SNMP server or a
third-party SNMP server.

Prerequisite: You must configure the SNMP server
destination (in the Integration Server Administrator, go
to Solutions >Mediator >Administration > Email). For
the procedure, see the section SNMP Destinations for
Run-Time Events in the document Administering
webMethods Mediator.

SNMP

Sends the alerts to an SMTP email server, which sends
them to the email address(es) you specify here. To
specify multiple addresses, use the button to add
rows.

Prerequisite: You must configure the SMTP server
destination (in the Integration Server Administrator, go
to Solutions >Mediator >Administration > Email). For
the procedure, see the section SMTP Destinations for

Email

Run-Time Events in the document Administering
webMethods Mediator.

String Optional. Specify a text message to include in the soft limit alert.Alert
Message for
Soft Limit

String Optional. Specify a text message to include in the hard limit alert.Alert
Message for
Hard Limit

Run-Time Governance Reference44

Built-In Run-Time Actions Reference for Virtual Services



Validate Schema

This action validates all XML request and/or responsemessages against an XML schema referenced
in the WSDL.

Mediator can enforce this policy action for messages sent between services. When this policy is
set for the virtual service, Mediator validates XML request messages, response messages, or both,
against the XML schema referenced in the WSDL.

Input Parameters

Object Validates request and/or response messages. You may select both Request and
Response.

Validate
SOAP
Message(s) DescriptionValue

Validate all requests.Request

Validate all responses.Response

Important: Be aware that Mediator does not remove wsu:Id attributes that may have been
added to a request by a consumer as a result of security operations against request elements
(i.e., signatures and encryptions). In this case, to avoid schema validation failures youwould
have to add a Request Processing step to the virtual service so that the requests are passed
to an XSLT transformation file that removes the wsu:Id attribute. For details about the Re-
quest Processing step, see the section Virtual Services in CentraSite Control .

45Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual Services



46



3 Built-In Run-Time Actions Reference for Virtual APIs

■ Summary of the Run-Time Actions for Virtual APIs ................................................................................. 48
■ Action Evaluation Order and Dependencies for Virtual APIs ..................................................................... 50
■ Run-Time Actions Reference for Virtual APIs ........................................................................................ 52

47



This section describes the built-in run-time actions that you can include in run-time governance
rules for virtualized APIs. You use these actions only when you are using the CentraSite Business
UI to create run-time policies for virtualized APIs. The content is organized under the following
sections:

Summary of the Run-Time Actions for Virtual APIs

You can include the following kinds of built-in run-time actions in the run-time governance rules
for virtualized APIs:

■ Request Handling Actions
■ Policy Enforcement Actions
■ Response Handling Actions
■ Error Handling Action

Request Handling Actions

Mediator provides the following actions for handling requests:

Specifies the protocol (HTTP or HTTPS) for the virtualized API to accept
requests.

In addition,

Request HTTP Protocol

For SOAP APIs. Specify the SOAP version.

For REST APIs. Specify the HTTP method.

Invokes anXSLT transformation in the SOAP request before it is submitted
to the native API.

Request Transformation

Invokes a webMethods IS service to preprocess the request before it is
submitted to the native API.

Invoke webMethods IS Service

Policy Enforcement Actions

Mediator provides the following categories of policy enforcement actions:

■ Logging and Monitoring Actions
■ Routing Actions
■ Security Actions

Run-Time Governance Reference48

Built-In Run-Time Actions Reference for Virtual APIs



■ Validation Action

Logging and Monitoring Actions

Logs request/response payloads to a destination you specify.Log Invocations

Monitors the run-time performance of a virtual alias, especially for particular
consumer(s). You can configure this action to define a Service Level

Monitor Service Level
Agreement

Agreement (SLA), which is set of conditions that define the level of
performance that a specified consumer should expect from the alias.

Routing Actions

Defines a set of properties for an endpoint to which you route requests. You
can specify a SOAP optimization method, timeouts for HTTP connections and

Endpoint Properties

socket reads, the SSL client authentication aliases for the endpoint (Client
CertificateAlias, KeystoreAlias, TruststoreAlias), and theWS-Security headers
of the requests that Mediator should pass to the native API.

Specifies the HTTP headers to authenticate the requests.Set Headers

Specifies the authentication scheme (HTTP Basic authentication, NTLM or
OAuth).

Set HTTP Authorization

Routes the requests directly to a native endpoint that you specify.Straight Through Routing

Security Actions

Allows anonymous users to access the APIs.Allow Anonymous Usage

Mediator will validate the client's certificate that the consumer application
submits to the API in CentraSite. The client certificate that is used to identify

Evaluate Client Certificate
for SSL Connectivity

the consumer is supplied by the client to the Mediator during the SSL
handshake over the transport layer.

Mediator will try to identify the consumer's hostname against either the
Registered Consumers list (the list of consumers available in Mediator) or the
Global Consumers list (the list of Registered Consumers).

Evaluate Hostname

You can select one of the following options:Evaluate HTTP Basic
Authentication

■ Mediator will try to identify the consumer against either the Registered
Consumers list (the list of consumers available in Mediator) or the Global
Consumers list (the list of Registered Consumers).

■ Mediator will try to verify the consumer's authentication credentials
contained in the request's Authorization header against the list of users
registered in the Integration Server on which Mediator is running.

Mediator will try to identify the consumer's IP address against either the
Registered Consumers list (the list of consumers available in Mediator) or the
Global Consumers list (the list of Registered Consumers).

Evaluate IP Address

49Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



For SOAP APIs.Mediator will try to identify the consumer's WSS username
token against either the Registered Consumers list (the list of consumers

Evaluate WSS Username
Token

available in Mediator) or the Global Consumers list (the list of Registered
Consumers).

For SOAP APIs.Mediator will try to identify the consumer's WSS X.509 token
against either the Registered Consumers list (the list of consumers available
in Mediator) or the Global Consumers list (the list of Registered Consumers).

Evaluate X.509 Certificate

Mediator will try to identify the consumer's XPath expression against either
the Registered Consumers list (the list of consumers available in Mediator) or
the Global Consumers list (the list of Registered Consumers).

Evaluate XPath Address

For SOAP APIs. Requires that requests be sent via SSL client certificates.Require SSL

Validation Action

Validates all XML request and/or responsemessages against an XML schema referenced
in the WSDL.

Validate Schema

Response Handling Actions

Invokes an XSLT transformation in the SOAP response payloads from
XML format to the format required by the consumer.

Response Transformation

Invokes a webMethods IS service to process the response from the native
API before it is returned to the consumer.

Invoke webMethods IS Service

Error Handling Action

Returns a custom error message (and/or the native provider's service
fault content) to the consumerwhen the native provider returns a service
fault.

CustomSOAPResponseMessage

Action Evaluation Order and Dependencies for Virtual APIs

When you publish a virtual API, CentraSite automatically validates the API's policy enforcement
workflow to ensure that:

■ Any action that appears in a single message flow multiple times is allowed to appear multiple
times.

For those actions that can appear in amessage flowonly once (for example, Evaluate IPAddress),
Mediator will choose only one, which might cause problems or unintended results.

Run-Time Governance Reference50

Built-In Run-Time Actions Reference for Virtual APIs



■ All action dependencies are properly met. That is, some actions must be used in conjunction
with another particular action.

CentraSite will inform you of any violation, and you will need to correct the violations before
publishing the API.

Effective Policies

When you publish a virtual endpoint to Mediator, CentraSite combines the actions specified
within the virtual endpoint’s enforcement definition, and generates what is called the effective
policy for the virtual endpoint. For example, suppose your virtual endpoint is configured with
two run-time actions: one that performs a logging action and another that performs a security action.
When you publish the virtual endpoint, CentraSite automatically combines the two actions into
one effective policy. The effective policy, which contains both the logging action and the security
action, is the policy that CentraSite actually publishes to Mediator with the virtual endpoint.

When CentraSite generates the effective policy, it validates the resulting action list to ensure that
it contains no conflicting or incompatible actions. If the list contains conflicts or inconsistencies,
CentraSite resolves them according to Policy Resolution Rules.

The effective policy that CentraSite produces for a virtual endpoint is contained in an object called
a virtual service definition (VSD). The VSD is given to Mediator when you publish the virtual
endpoint. After youpublish a virtual endpoint, you can view its VSD (and thus examine the effective
policy that CentraSite generated for it) from the Mediator user interface.

The following table shows:

■ The order in which Mediator evaluates the actions.
■ Action dependencies (that is, whether an action must be used in conjunction with another par-
ticular action).

Can include multiple times in a policy if the selection

criteria is combined using an AND operator, not an

OR?

DependencyActionEvaluation
Order

No. Mediator includes only one action in the
effective policy.

None.EvaluateHTTPBasic
Authentication

1

No. Mediator includes only one action in the
effective policy.

None. If you select this
action in addition to other

Evaluate WSS
Username Token

2

actions, you must select
the ALL option to join the
identifiers with the AND
operator.

No. Mediator includes only one action in the
effective policy.

None. If you select this
action in addition to other

Evaluate X.509
Certificate

3

51Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Can include multiple times in a policy if the selection

criteria is combined using an AND operator, not an

OR?

DependencyActionEvaluation
Order

actions, you must select
the ALL option to join the
identifiers with the AND
operator.

No. Mediator includes only one action in the
effective policy.

None.Evaluate IP Address4

No. Mediator includes only one action in the
effective policy.

None.Evaluate XPath
Address

5

No. Mediator includes only one action in the
effective policy.

None.Evaluate Hostname6

If multiple actions appear, and one of them has
its Client Certificate Required parameter set to

None.Require SSL7

Yes, only one occurrence of the action appears
in the effective policy.

If at least one occurrence of the action is
configured to validate requests, and at least one

None.Validate Schema8

occurrence of the action is configured to validate
responses, then Mediator includes in the
effective policy an action to validate both
requests and responses. Otherwise, an action is
chosen which validates only requests or only
responses (depending on the value of the
Validate SOAP Messages parameter of the
action).

No. Mediator includes only one action in the
effective policy.

None.Log Invocations9

Yes.Mediator includes allMonitor Service Level
Agreement actions in the effective policy.

At least one of the
Evaluate actions.

Monitor Service
Level Agreement

10

Run-Time Actions Reference for Virtual APIs

This section provides an alphabetic list of the built-in run-time actions you can include in run-time
governance rules for virtualized APIs:

■ Allow Anonymous Usage
■ Custom SOAP Response Message
■ Endpoint Properties
■ Evaluate Client Certificate for SSL Connectivity
■ Evaluate Hostname

Run-Time Governance Reference52

Built-In Run-Time Actions Reference for Virtual APIs



■ Evaluate HTTP Basic Authentication
■ Evaluate IP Address
■ Evaluate WSS Username Token
■ Evaluate WSS X.509 Certificate
■ Evaluate XPath Address
■ Invoke webMethods IS Service
■ Log Invocations
■ Monitor Service Level Agreement
■ Response Transformation
■ Request HTTP Protocol
■ Request Transformation
■ Require SSL
■ Set Headers
■ Set HTTP Authentication
■ Straight Through Routing
■ Validate Schema

Allow Anonymous Usage

This action allows anonymous users to access the APIs.

Input Parameters

Boolean. Specifies whether to allow all users to access the API, without restriction.Allow
Anonymous
Usage

DescriptionValue

Default. Allows only the identified users to access the
API.

True

Allow all users to access the API.False

Custom SOAP Response Message

This action returns a custom error response (and/or the native provider’s service fault content) to
the consumer when the native provider returns a service fault. Alternatively, you can configure
global error responses for all virtual services, using Mediator's Service Fault Configuration page
(seeConfiguringGlobal Service Fault Responses in the documentAdministeringwebMethodsMediator).

53Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Input Parameters

String. Returns the fault responses to the consumer, when:Failure Message

■ When a fault is returned by the native API provider.

In this case, the $ERROR_MESSAGE variable in the fault response will contain the
message produced by the provider's exception that caused the error. This is equivalent
to the getMessage call on the Java Exception. This maps to the faultString element
for SOAP 1.1 or the Reason element for SOAP 1.2 catch.Mediator discards the native
API provider's fault and does not return this content to the web service caller since
it could be considered a security issue, especially if the native provider is returning
a stack trace with its response.

■ When a fault is returned by internal Mediator exceptions (such as policy violation
errors, timeouts, etc.).

In this case, $ERROR_MESSAGE will contain the error message generated by
Mediator.

Boolean. Optional. Specifies whether to send native SOAP / REST failure message to the
consumer.

Send Native
Failure Message

DescriptionValue

Default.Mediator sends the failuremessage
to the consumer.

True

Mediator does not send the failure message
to the consumer.

False

String. Optional. Invokes one or more webMethods IS services to manipulate the
response message before the Custom SOAP Response Message action is invoked. The
IS service will have access to the response message context (the axis2 MessageContext
instance) before it is updated with the custom error message. For example, you might
want to send emails or perform custom alerts based on the response payload.

Pre-processing
webMethods IS
Service

String. Optional. Invokes one or more webMethods IS services to manipulate the API
fault after the Custom SOAP Response Message action is invoked. The IS service will

Post-processing
webMethods IS
Service have access to the entire API fault and the custom errormessage. You canmake further

changes to the fault message structure, if needed.

Endpoint Properties

This action defines a set of properties for an endpoint to which you route requests.

Run-Time Governance Reference54

Built-In Run-Time Actions Reference for Virtual APIs



Input Parameters

String. Optional. For a SOAP endpoint. Specifies the optimization methods to optimize
the payloads of SOAP requests:

SOAP
Optimization
Method DescriptionValue

Default. Indicates that Mediator expects to
receive a request with a Message Transmission
OptimizationMechanism (MTOM) attachment,
and will forward the attachment to the native
API.

MTOM

Indicates that Mediator expects to receive a
"SOAP with Attachment" (SwA) request, and
will forward the attachment to the native API.

SWA

String. The time interval (in seconds) after which a connection attempt will timeout. If a
value is not specified (or if the value 0 is specified), Mediator will use the value of the
global property pg.endpoint.connectionTimeout located in the file Integration
Server_directory\packages\WmMediator\config\resources\pg-config.properties . The
default of that property is 30 seconds.

HTTP
Connection
Timeout

Number Optional. The time interval (in seconds) after which a socket read attempt will
timeout. If a value is not specified (or if the value 0 is specified), Mediator will use the

Read Timeout

value of the global propertypg.endpoint.readTimeout located in the fileIntegration
Server_directory\packages\WmMediator\config\resources\pg-config.properties . The
default of that property is 30 seconds.

Object. Enables SSL client authentication for the endpoint.SSL
Configuration

DescriptionValue

The client's private key to be used for
performing SSL client authentication.

Client Certificate Alias

The truststore alias of the instance of Integration
Server on which Mediator is running.

Truststore Alias

The keystore alias of the instance of Integration
Server onwhichMediator is running. This value
(alongwith the value of Client Certificate Alias)
will be used for performing SSL client
authentication.

Keystore Alias

String. SpecifiesWS-Security headers of the incoming requests thatMediator should pass
to the native API.

WSS Header

55Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Evaluate Client Certificate for SSL Connectivity

When this action is configured for a virtual API, Mediator validates the client's certificate that the
consumer application submits to the API in CentraSite. The client certificate that is used to
identify the consumer is supplied by the client to the Mediator during the SSL handshake over
the transport layer. In order to identify consumers by transport-level certificates, the run-time
communication between the client and theMediatormust be overHTTPS and the clientmust pass
a valid certificate.

To use this action, the following prerequisites must be met:

■ In Integration Server, create an HTTPS port, as described in Configuring Ports in the webMethods
Integration Server Administrator’s Guide.

■ In Integration Server, create a keystore and truststore, as described in Securing Communications
with the Server in the webMethods Integration Server Administrator’s Guide.

■ Configure Mediator by setting the IS Keystore and IS Truststore parameters, as described in
ConfiguringMediator > Keystore Configuration in the documentAdministeringwebMethodsMediator.

■ Configure Mediator by setting the HTTPS Ports Configuration parameter, as described in Con-
figuring Mediator > Ports Configuration in the document Administering webMethods Mediator.

Mediator rejects requests that do not include a client certificate during the SSL handshake over
the Transport layer.

Input Parameters

String.The list of consumers againstwhich the client certificate should be validated for identifying
requests from a particular consumer.

Identify
Consumer

DescriptionValue

Mediatorwill try to verify the consumer's certificate against
the list of consumer applications who are registered as
consumers for the API.

Registered Consumers

Default.Mediatorwill try to verify the consumer's certificate
against a list of users registered in the Integration Server on
which Mediator is running.

Global Consumers

IfMediator cannot identify the consumer,Mediator fails the request and generates a PolicyViolation
event.

Run-Time Governance Reference56

Built-In Run-Time Actions Reference for Virtual APIs



Evaluate Hostname

If you select this action, Mediator will evaluate the request to ensure that the request originated
from the particular host machine. Mediator identifies the consumer against the list of users re-
gistered in the Integration Server on which Mediator is running.

Input Parameters

String. Optional.Identify
User Using DescriptionValue
HostName
Address Mediator will try to identify the consumer's hostname against

the list of Registered Consumers.
Registered Consumers

Mediator will try to identify the consumer's hostname against
the consumers available in Mediator.

Global Consumers

IfMediator cannot identify the consumer,Mediator fails the request and generates a PolicyViolation
event.

Evaluate HTTP Basic Authentication

If you set Validate User Using HTTP Basic Authentication to True, this type of consumer au-
thentication is referred to as “preemptive authentication”.

If the user/password value in the Authorization header cannot be authenticated as a valid Integ-
ration Server user (or if the Authorization header is not present in the request), a 500 SOAP fault
is returned, and the client is presentedwith a security challenge. If the client successfully responds
to the challenge, the user is authenticated. This type of consumer authentication is referred to as
“non-preemptive authentication”. If the client does not successfully respond to the challenge, a
401 “WWW-Authenticate: Basic” response is returned and the invocation is not routed to the
policy engine. As a result, no events are recorded for that invocation, and its key performance in-
dicator (KPI) data are not included in the performance metrics.

Input Parameters

String. Optional.Identify User
Using HTTP Basic
Authentication

DescriptionValue

Mediatorwill try to identify the consumer against the list
of Registered Consumers.

Registered ↩
Consumers

57Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Mediator will try to identify the consumer against the
consumers available in Mediator.

Global Consumers

Boolean. Optional.Validate User
Using HTTP Basic
Authentication

DescriptionValue

Default. Mediator will verify the consumer's
authentication credentials contained in the request's
Authorization header against the list of users registered
in the Integration Server on which Mediator is running.

True

Mediator will not verify the consumer’s authentication
credentials.

False

If Mediator cannot validate or identify the consumer, Mediator fails the request and generates a
Policy Violation event.

Evaluate IP Address

If you select this action,Mediatorwill evaluate the request to ensure that the request header contains
the X-Forwarded-For,which is used for identifying the IP address of a consumer through anHTTP
proxy.

Input Parameters

String. Optional.Identify
User DescriptionValue
Using IP
Address Mediator will try to identify the consumer's IP address against the

list of Registered Consumers.

Mediator will evaluate whether the request header contains the
X-Forwarded-For, which is used for identifying the IP address of a
consumer through an HTTP proxy.

Registered Consumers

Mediator will try to identify the consumer's IP address against the
consumers available in Mediator.

Global Consumers

Run-Time Governance Reference58

Built-In Run-Time Actions Reference for Virtual APIs



Evaluate WSS Username Token

If you select this action,Mediatorwill evaluate the request to ensure that the request header contains
the WSS username token, which is used for identifying a consumer.

Input Parameters

String. Optional.Identify
User Using DescriptionValue
WSS

Mediatorwill try to identify the consumer'sWSSusername token
against the list of Registered Consumers.

Username
Token

Registered Consumers

Mediatorwill try to identify the consumer'sWSSusername token
against the consumers available in Mediator.

Global Consumers

IfMediator cannot identify the consumer,Mediator fails the request and generates a PolicyViolation
event.

Evaluate WSS X.509 Certificate

If you select this action,Mediatorwill evaluate the request to ensure that the request header contains
the WSS X.509 token, which is used for identifying a consumer.

Input Parameters

String. Optional.Identify
User Using DescriptionValue
WSS X.509
Token Mediator will try to identify the consumer's WSS X.509 token

against the list of Registered Consumers.
Registered Consumers

Mediator will try to identify the consumer's WSS X.509 token
against the consumers available in Mediator.

Global Consumers

IfMediator cannot identify the consumer,Mediator fails the request and generates a PolicyViolation
event.

Evaluate XPath Address

If you select this action,Mediatorwill evaluate the request to ensure that the request header contains
an XPath expression, and that expression matches with the expression defined in the consumer
details.

59Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Input Parameters

String. Optional.Identify User
Using XPath
Address

DescriptionValue

Mediator will try to identify the consumer's XPath
expression against the list of Registered Consumers.

Registered Consumers

Mediator will try to identify the consumer's XPath
expression against the consumers available inMediator.

Global Consumers

The namespace of the XPath expression.Namespace

An argument for evaluating the XPath expression.XPath Expression

IfMediator cannot identify the consumer,Mediator fails the request and generates a PolicyViolation
event.

Invoke webMethods IS Service

This action invokes a webMethods IS service to preprocess the request before it is submitted to
the native API.

Input Parameters

String. Specifies the webMethods IS service.IS Service

Log Invocations

This action logs request/response payloads. You can specify the log destination and the logging
frequency. This action also logs other information about the requests/responses, such as the API
name, operation name, the Integration Server user, a timestamp, and the response time.

Input Parameters

Boolean. Optional. Specifies whether to log all request payloads.Request
Payloads DescriptionValue

Log all request payloads.True

Do not log request payloads.False

Boolean. Optional. Specifies whether to log all response payloads.Response
Payloads

DescriptionValue

Run-Time Governance Reference60

Built-In Run-Time Actions Reference for Virtual APIs



Log all response payloads.True

Do not log response payloads.False

String. Specifies how frequently to log the payload.Log
Generation
Frequency

DescriptionValue

Default. Do not log payloads.None

Log all requests and/or responses.Always

Log only the successful responses and/or requests.On Success

Log only the failed requests and/or responses.On Failure

String. Specifies where to log the payload.

Important: Ensure that Mediator is configured to log the payloads to the destination(s) you
specify here. For details, see Alerts and Transaction Logging in the document Administering
webMethods Mediator.

Send Data
To

DescriptionValue

Logs the payloads in the API's Events profile in CentraSite.

Prerequisite: You must configure Mediator to communicate with
CentraSite (in the Integration Server Administrator, go to Solutions
> Mediator > Administration > CentraSite Communication). For
the procedure, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

CentraSite

Logs the payloads in the server log of the Integration Server on
which Mediator is running.

Also choose a value in the Log Level field:

■ Info: Logs error-level, warning-level, and informational-level
alerts.

■ Warn: Logs error-level and warning-level alerts.
■ Error: Logs only error-level alerts.

Local Log

Important: The Integration ServerAdministrator's logging level for
Mediator should match the logging level specified for this action
(go to Settings > Logging > Server Logger).

61Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Logs the payloads in CentraSite's SNMP server or a third-party
SNMP server.

Prerequisite: You must configure the SNMP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
> Administration > SNMP). For the procedure, see the section
SNMP Destinations for Run-Time Events in the document
Administering webMethods Mediator.

SNMP

Sends the payloads to an SMTP email server, which sends them to
the email address(es) you specify here.Mediator sends the payloads
as email attachments that are compressed using gzip data

compression. To specify multiple addresses, use the button
to add rows.

Prerequisite: You must configure the SMTP server destination (in
the Integration Server Administrator, go to Solutions > Mediator

Email

>Administration > Email). For the procedure, see the section SMTP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

Logs the payload to the Integration Server audit logger. For
information, see the webMethods Audit Logging Guide.

Note: If you expect a high volume of events in your system, it is
recommended that you select the Audit Log destination for this
action.

Audit Log

Monitor Service Level Agreement

Monitors the run-timeperformance conditions for a virtualAPI for one ormore specified consumers
, and then send alerts when the performance conditions are violated

You can configure this action to define a Service Level Agreement (SLA), which is a set of conditions
that defines the level of performance that a consumer should expect from a service. You can use
this action to identify whether a service's threshold rules are met or exceeded. For example, you
might define an agreement with a particular consumer that sends an alert to the consumer if re-
sponses are not sent within a certain maximum response time. You can configure SLAs for each
virtual service/consumer application combination.

For the counter-basedmetrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
themetrics tracking interval. You can choosewhether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the the metrics
tracking interval, see The Metrics Tracking Interval .

Run-Time Governance Reference62

Built-In Run-Time Actions Reference for Virtual APIs



For the aggregatedmetrics (AverageResponseTime,MinimumResponseTime,MaximumResponse
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator >Administration >CentraSiteCommunication). For the procedure, see the section
Configuring Communication with CentraSite in the documentAdministering webMethodsMedi-
ator.

Input Parameters

Object. Specifies one or more conditions to monitor. To do this, specify a metric, operator,

and value for each metric. To specify multiple conditions, use the button to add
multiple rows. If multiple parameters are used, they are connected by the AND operator.

Action
Configuration

String Array. The metrics to monitor.Name

DescriptionValue

Default.None

Indicates whether the service was available to the
specified consumers in the current interval.

Availability

The average amount of time it took the service to
complete all invocations in the current interval.
Response time is measured from the moment
Mediator receives the request until the moment it
returns the response to the caller.

Average Response Time

Response Transformation

This action invokes an XSLT transformation in the SOAP response payloads from XML format to
the format required by the consumer.

Input Parameters

Object. Specifies the XSLT transformation file.Transformation File

63Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Request HTTP Protocol

This action specifies the protocol (HTTP or HTTPS), SOAP format, and the HTTP method for the
virtual API to accept and process the requests.

Note: In order to have the API secured, it is mandatory that at least one of the (HTTP / HT-
TPS) protocol is set to “TRUE”.

Input Parameters

Boolean. Specifies whether the virtual API is secured by HTTPS (Secure Sockets Layer
(SSL)) authentication.

Is SSL
Enabled?

DescriptionValue

The virtual API is secured by HTTPS (Secure
Sockets Layer (SSL)).

True

Default. The virtual API is not secured byHTTPS.False

String. For SOAP APIs. Specifies the SOAP format (None, SOAP 1.1, SOAP 1.2) of the
requests that the virtual API will accept. Default: SOAP 1.1.

SOAP Version

String. Optional. For REST APIs. Specifies the HTTPmethods (GET, POST, PUT, DELETE)
that the virtual API should be allowed to perform on a REST resource. Default: POST.

HTTP Method

Boolean. Specifies whether the virtual API is secured by HTTP authentication.HTTP Protocol

DescriptionValue

The virtual API is secured by HTTP.True

Default. The virtual API is not secured by HTTP.False

Request Transformation

This action invokes an XSLT transformation in the SOAP request before it is submitted to the
native API.

Input Parameters

Object. Specifies the XSLT transformation file.Transformation File

Run-Time Governance Reference64

Built-In Run-Time Actions Reference for Virtual APIs



Require SSL

Requires that requests be sent via SSL client certificates. This action supports WSSecurityPolicy
1.2 but can be used for both SOAP and REST services.

When this policy action is set for the virtual service, Mediator ensures that requests are sent to the
server using the HTTPS protocol (SSL). The policy also specifies whether the client certificate is
required. This allows Mediator to verify the client sending the request. If the policy requires the
client certificate, but it is not presented, Mediator rejects the message.

When a client certificate is required by the policy, the Integration Server HTTPS port should be
configured to request or require a client certificate.

Input Parameters

Boolean. Specifies whether client certificates are required for the purposes of:Client
Certificate
Required ■ Verifying the signature of signed SOAP requests or decrypting encrypted SOAP requests

■ Signing SOAP responses or encrypting SOAP responses

DescriptionValue

Require client certificates.Yes

Default. Do not require client certificates.No

Set Headers

This action specifies the HTTP headers to authenticate the incoming requests.

Input Parameters

String. Specifies the HTTP headers to authenticate the requests.Set
Headers DescriptionValue

Default. Do not use anyHTTP headers to authenticate requestsNone

Use the HTTP headers that are contained in the requests.Reuse Existing Headers

Use theHTTP headers that you specify in theName andValue
columns below. If you need to specify multiple headers, use

the button to add rows.

Custom Headers

Object. Specifies the custom HTTP header(s) and the values.Header

DescriptionValue

65Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



Name of the HTTP header.Name

A value for the HTTP header.Value

Set HTTP Authentication

This action specifies the authentication scheme for incoming requests.

Input Parameters

String. Authenticates requests to the native endpoint.HTTP
Authentication DescriptionValue

Default. Authenticates requests based on the
credentials specified in the HTTP header.

Reuse Existing Credentials

Do not authenticate requests to the native
endpoint.

Is Anonymous

Authenticates requests based on the
credentials you specify in the Username,
Password andDomain fields.

Custom Credentials

String. Optional. Specifies the mode of authentication: None, Basic Authentication
(default), or NTLM (Windows only).

If you are choosingNone, select the following option:

Authentication
Scheme

■ Is Anonymous: Does not authenticate requests.

If you are choosing Basic Authentication (default), select the following options:

■ Reuse Existing Credentials: Default. Authenticates requests based on the credentials
specified in the HTTP header. Mediator passes the “Authorization” header present
in the original client request to the native service.

■ Custom Credentials: Authenticates requests according to the values you specify in
the User, Password and Domain fields.

If you are choosingNTLM (Currently Windows only), select the following options:

Note: Note that ifMediator is used to access a native service protected byNTLM (which
is typically hosted in IIS), then the native service in IIS should be configured to use
NTLM as the authentication scheme. If the authentication scheme is configured as
“Windows”, then “NTLM” should be in its list. The “Negotiate” handshake will be
supported in the near future. This note applies to all three options for NTLM.

■ Reuse Existing Credentials: Default. Mediator uses the user credentials passed in
the request header for an NTLM handshake with the server.

■ Custom Credentials: Mediator uses the values you specify in the User, Password
andDomain fields for an NTLM handshake with the server.

Run-Time Governance Reference66

Built-In Run-Time Actions Reference for Virtual APIs



String. Optional.

If you are choosingOAuth2, select the following options:

OAuth2 Token

■ Reuse Existing Credentials: Default. Mediator will pass the OAuth2 Access token (a
“Bearer” type token) unchanged to the native OAuth server.

■ Custom Credentials: Specify an OAuth access token to be deployed by Mediator. If
you select this option, the consumer need not pass the OAuth token during service
invocation. Click the ShowToken button to view the OAuth access token. Users who
do not have the permissions to create and manage virtual services will not see this
button.

Note:

1. Youmust set the Integration Server propertywatt.server.auth.skipForMediator
to “true” and then restart Integration Server for the change to take effect. This property
is located in the server configuration file (server.cnf), which is located in the
Integration Server_directory\config directory. For details, see thewebMethods
Integration Server Administrator's Guide.

2. The run-time action “EvaluateHTTPBasicAuthentication”will not be enforcedwhen
using the authentication schemeOAuth2.

Specifies an OAuth2 access token to be deployed by Mediator.

Straight Through Routing

This action routes the requests directly to a native endpoint that you specify.

Input Parameters

String. Specifies the URL of the native endpoint to route the request to. For example:

http://mycontainer/creditCheckService

Endpoint

Alternatively, Mediator offers “Local Optimization” capability if the native service and the
virtual service (in Mediator) are located on the same machine. With local optimization, service
invocation happens in-memory and not through a network hop. In the Default To field the
Routing Protocols tab, specify the native service in either of the following forms:

local://<Service-full-path>

OR

local://<server>:<port>/ws/<Service-full-path>

For example:

local://MediatorTestServices:NewMediatorTestServices_Port

67Run-Time Governance Reference

Built-In Run-Time Actions Reference for Virtual APIs



which points to the endpoint service NewMediatorTestServices_Port which is present under
the folder MediatorTestServices in Integration Server.

Validate Schema

This action validates all XML request and/or responsemessages against an XML schema referenced
in the WSDL.

Mediator can enforce this policy action for messages sent between services. When this policy is
set for the virtual service, Mediator validates XML request messages, response messages, or both,
against the XML schema referenced in the WSDL.

Input Parameters

Object. Validates request and/or response messages. You may select both Request and
Response.

Validate
SOAP
Message(s) DescriptionValue

Validate all requests.Request

Validate all responses.Response

Important: Be aware that Mediator does not remove wsu:Id attributes that may have been
added to a request by a consumer as a result of security operations against request elements
(i.e., signatures and encryptions). In this case, to avoid schema validation failures youwould
have to add a Request Transformation action or a Response Transformation action to the
virtual service so that the requests are passed to an XSLT transformation file that removes
the wsu:Id attribute. For details about the Request Transformation andResponse Transform-
ation actions, see Request Transformation and Response Transformation.

Run-Time Governance Reference68

Built-In Run-Time Actions Reference for Virtual APIs


	Run-Time Governance Reference
	Table of Contents
	Preface
	1 Run-Time Events and Key Performance Indicator (KPI) Metrics
	The Run-Time Event Types
	The Key Performance Indicator (KPI) Metrics
	The Event Notification Destinations
	CentraSite's SNMP Server
	Third-Party SNMP Servers

	Alerts and Transaction Logging
	SMTP Servers
	The Integration Server's Local Log
	The Integration Server's Audit Log

	The Metrics Tracking Interval
	Configuring CentraSite to Receive Run-Time Events and Metrics
	Components of the Event Receiver
	Configuring the Event Receiver
	Setting the Database Configuration Properties
	Setting the SNMPv3 Transport Configuration Properties
	Setting the SNMPv3 USM Configuration Properties
	Setting the Events Queue Implementation Property
	Setting the Properties for FileSystem or InMemory

	Event Type Modeling
	The "Target Type to Event Type Association" Object

	Event Modeling

	Viewing Run-Time Events and Metrics
	Viewing Run-Time Events and Metrics for Targets
	Viewing Run-Time Events for Virtual Services

	Creating Custom Run-Time Events
	Modifying Run-Time Events

	2 Built-In Run-Time Actions Reference for Virtual Services
	Summary of the Run-Time Actions for Virtual Services
	WS-SecurityPolicy 1.2 Actions
	Authentication Actions (WS-SecurityPolicy 1.2)
	XML Security Actions (WS-SecurityPolicy 1.2)

	Monitoring Actions
	Additional Actions

	Action Evaluation Order and Dependencies
	Effective Policies

	Usage Cases for Identifying/Authenticating Consumers
	Run-Time Actions Reference for Virtual Services
	Authorize Against Registered Consumers
	Authorize User
	Identify Consumer
	Log Invocation
	Monitor Service Performance
	Monitor Service Level Agreement
	Require Encryption
	Require HTTP Basic Authentication
	Require Signing
	Require SSL
	Require Timestamps
	Require WSS SAML Token
	Require WSS Username Token
	Require WSS X.509 Token
	Throttling Traffic Optimization
	Validate Schema


	3 Built-In Run-Time Actions Reference for Virtual APIs
	Summary of the Run-Time Actions for Virtual APIs
	Request Handling Actions
	Policy Enforcement Actions
	Logging and Monitoring Actions
	Routing Actions
	Security Actions
	Validation Action

	Response Handling Actions
	Error Handling Action

	Action Evaluation Order and Dependencies for Virtual APIs
	Effective Policies

	Run-Time Actions Reference for Virtual APIs
	Allow Anonymous Usage
	Custom SOAP Response Message
	Endpoint Properties
	Evaluate Client Certificate for SSL Connectivity
	Evaluate Hostname
	Evaluate HTTP Basic Authentication
	Evaluate IP Address
	Evaluate WSS Username Token
	Evaluate WSS X.509 Certificate
	Evaluate XPath Address
	Invoke webMethods IS Service
	Log Invocations
	Monitor Service Level Agreement
	Response Transformation
	Request HTTP Protocol
	Request Transformation
	Require SSL
	Set Headers
	Set HTTP Authentication
	Straight Through Routing
	Validate Schema



