5 software~

CentraSite

Run-Time Governance Reference

Version 9.5 SP1

November 2013




This document applies to CentraSite Version 9.5 SP1.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: [INM-DG-ACTIONSR-95SP1-20140410



Table of Contents

PTOACE ..t v
1 Run-Time Events and Key Performance Indicator (KPI) Metrics .........ccccccoeeiiiiiinnnnnnn. 1
The Run-Time Event TYPes .......ccccoeciiiiiiiiiiiiiiiiiiiiiiiiic 2
The Key Performance Indicator (KPI) Metrics .........ccccooviiiiiiiiiiiiiiiii 3
The Event Notification Destinations ...........ccccccevviiiiiiniiiiiiiiiiiiiiicccce 3
Alerts and Transaction LOZGING .........cccoviiiiiiiiiiiiiiiciccccecc e 4
The Metrics Tracking Interval ..........cccccoooiiiiiiiiiiiii e, 6
Configuring CentraSite to Receive Run-Time Events and Metrics ............cccceennnee. 6
Viewing Run-Time Events and Metrics ...........ccccoviiiiiiiiiiiii 16
Creating Custom Run-Time Events ...........cccccocciiiiiiiiiiiiiee 17
Modifying Run-Time EVents .........c.ccccoooiiiiiiiiiiiiiiiccec 18
2 Built-In Run-Time Actions Reference for Virtual Services ..........cccocceevvivviiniiiiiinien. 21
Summary of the Run-Time Actions for Virtual Services ............cccocooviiiiiiinninnnnn 22
Action Evaluation Order and Dependencies ............cccccocviiiiiiiiiiiiiiiiiiiiiiiennnnen. 24
Usage Cases for Identifying/Authenticating Consumers .............cccoccvevviiiniinnnnnnn. 26
Run-Time Actions Reference for Virtual Services ...........cccccocvvviiiiiiiiiiiiinnnne. 28
3 Built-In Run-Time Actions Reference for Virtual APIs ..........cccociviiiiiiiiiiniiiiinnnnn 47
Summary of the Run-Time Actions for Virtual APISs ............cccooooviiiiniiiis 48
Action Evaluation Order and Dependencies for Virtual APIs ...........ccccceeieniennn. 50
Run-Time Actions Reference for Virtual APIs ...........cccccooviiiiiiiiiiiiiiiiii 52







Preface

This document describes the run-time events and performance metrics, as well as the run-time
actions that you can apply to virtual services or virtual APIs.

The content is organized under the following sections:

Run-Time Events and Key
Performance Indicator (KPI)
Metrics

Built-In Run-Time Actions
Reference for Virtual Services

Built-In Run-Time Actions
Reference for Virtual APIs

Describes:

® The run-time events and Key Performance Indicator (KPI) metrics that
can be collected and reported for each virtual service deployed in your
system.

= How to configure CentraSite to receive the events and metrics from the
policy-enforcement point (such as Medjiator) that collects them.

You use these actions only when you are using CentraSite Control to
create run-time policies for virtual services. This section provides:

® A summary of the run-time actions.

® An alphabetic reference of all actions and their parameters.

= A listing of the action evaluation order and action dependencies.

® Some common combinations of actions used to authenticate/identify
consumers.

You use these actions only when you are using the CentraSite Business
Ul to create policy enforcement rules for virtual APIs. This section provides
an alphabetic reference of all actions and their parameters.




vi



1 Run-Time Events and Key Performance Indicator (KPI)

Metrics

B The RUN-TIME EVENE TYPES ....eeieeiiiiie ettt 2
= The Key Performance Indicator (KPI) MEIFCS ........cooiiiiiiiiiiii e 3
= The Event Notification DeStinations ..........c.vvvviiiiiii e 3
® Alerts and TranSaCtion LOGGING ... .vveeeiiiiieeiie ettt 4
® The Metrics Tracking INEIVAL ... . ..o 6
= Configuring CentraSite to Receive Run-Time Events and MetriCs ..o 6
= \/iewing Run-Time EVENtS and MEtriCS ... ....uueeii e 16
= Creating Custom RUN-TIME EVENLS ........uviiiiiiiiii e 17
m Modifying RUN-TIME EVENLS ... 18




Run-Time Events and Key Performance Indicator (KPI) Metrics

CentraSite can receive run-time events and Key Performance Indicator (KPI) metrics. A run-time
event is an event that occurs while services are actively deployed on the target. Examples of run-
time events include:

" Successful or unsuccessful SOAP requests/responses.
® Policy violation events, which are generated upon violation of service’s run-time policy.
" Service monitoring events, which are generated by the service-monitoring actions in the run-

time policy.

KPI metrics are used to monitor the run-time execution of virtual services. Metrics include the
maximum response time, average response time, fault count, availability of virtual services, and
more. If you include run-time monitoring actions in your run-time policies, the actions will mon-
itor the KPI metrics for virtual services, and can send alerts to various destinations when user-
specified performance conditions for a service are violated.

CentraSite provides predefined event types for use with any supported policy-enforcement point
(PEP), such as webMethods Mediator. In addition, you can create custom event types.

The run-time event data are collected by the PEP and published to CentraSite via SNMP. The PEP
publishes data for all run-time events for all instances of the PEP target.

You can view the run-time events and metrics on the CentraSite Control user interface. You can
view them for all targets, for a particular target, or for a particular virtual service.

The following topics are discussed:

The Run-Time Event Types

The types of run-time events that Mediator can publish are as follows:

Event Type Description
Lifecycle A Lifecycle event occurs each time Mediator is started or shut down.
Error An Error event occurs each time an invocation of a virtual service results in an error.

Policy Violation | A Policy Violation event occurs each time an invocation of a virtual service violates a
run-time policy that was set for the virtual service.

Transaction A Transaction event occurs each time a virtual service is invoked (successfully or
unsuccessfully).
Monitoring Mediator publishes key performance indicator (KPI) metrics, such as the average response

time, fault count, and availability of all virtual services (described below).

2 Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

The Key Performance Indicator (KPI) Metrics

For the Monitoring event type, Mediator can publish the following types of KPI metrics:

Metric

Reports on...

Availability

The percentage of time that a virtual service was available during the current
interval. A value of 100 indicates that the service was always available. Only
the time when the service is unavailable counts against this metric. If invocations
fail due to policy violations, this parameter could still be as high as 100.

Average Response Time

The average amount of time it took the service to complete all invocations in
the current interval. This is measured from the moment Mediator receives the
request until the moment it returns the response to the caller.

Fault Count

The number of failed invocations in the current interval.

Maximum Response Time

The maximum amount of time it took the service to complete an invocation in
the current interval.

Minimum Response Time

The minimum amount of time it took the service to complete an invocation in
the current interval.

Successful Request Count

The number of successful service invocations in the current interval.

Total Request Count

The total number of requests for each service running in Mediator in the current
interval.

| Note: By default, Average Response Time, Minimum Response Time and Maximum Response

Time do not include metrics for failed invocations. You can include metrics for failed invoc-
ations by setting the pg.PgMetricsFormatter.includeFaults parameter to true. For more in-
formation, see the section Advanced Settings in the document Administering webMethods

Mediator.

The Event Notification Destinations

Mediator can publish all run-time events to an SNMP server. Mediator sends events as SNMP
traps either to CentraSite's SNMP server or to a third-party SNMP server.

Run-Time Governance Reference 3



Run-Time Events and Key Performance Indicator (KPI) Metrics

CentraSite's SNMP Server

CentraSite's SNMP server uses SNMPv3 user-security model.

Mediator delivers the webMethodsESB.MIB file to define the SNMP traps that it can produce. For
the procedure to configure Mediator to send SNMP traps to the CentraSite SNMP server, see the
section SNMP Destinations for Run-Time Events in the document Administering webMethods Mediator.
For more information about the webMethodsESB.MIB file, see the section Run-Time Targets.

Third-Party SNMP Servers

A third-party SNMP server can use either the SNMPv1 community-based security model or the
SNMPv3 user-based security model.

To use a third party SNMP server, you must import or set up the MIB on all SNMP servers receiving
SNMP traps from Mediator. For the procedure to configure Mediator to send SNMP traps to a
third-party SNMP server, see the section SNMP Destinations for Run-Time Events in the document
Administering webMethods Mediator.

Alerts and Transaction Logging

In addition to publishing all run-time events to an SNMP server, you can configure Mediator to:

® Send monitoring alerts to various destinations when user-specified performance conditions are
violated.

* Log the payloads of all transactions to various destinations.
To do this, you include the following run-time actions in the policies of your virtual services. When

you configure the run-time actions, you will specify the destinations for sending the alerts or logging
the transactions.

To Send Monitoring Alerts... Destination for Sending Alerts

Use any of the following monitoring actions: |® The virtual service's Events profile in CentraSite.

: Al
= “Monitor Service Performance” ® Your Integration Server's local log.

= “Monitor Service Level Agreement” " An SMPT email server.

= “Throttling Traffic Optimization” ® The CentraSite SNMP server or a third-party SNMP server.

4 Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

To Log the Transaction Payloads Destinations for Logging the Transactions

Use the “Log Invocations” action. |® The virtual service's Events profile in CentraSite.

Your Integration Server's local log.

An SMPT email server.

Your Integration Server's audit log.

The CentraSite SNMP server or a third-party SNMP server.

The destinations for sending alerts and logging transactions are described below.

= SMTP Servers
= The Integration Server's Local Log
= The Integration Server's Audit Log

SMTP Servers

To specify an email destination, you must:

" Select the “Email” option as a destination when you configure the run-time actions listed above.

" Set the “Email Configuration” parameters in Integration Server Administrator (go to Solutions
> Mediator > Administration > Email) as described in the section SMTP Destinations for Alerts
and Transaction Logging in the document Administering webMethods Mediator.

The Integration Server's Local Log

To specify the Integration Server's local log as a destination, you must:

" Select the “Local Log” option as a destination when you configure the run-time actions listed
above. When configuring the actions, you must also specify the severity of the messages to be
logged (the logging level).

" Set the Integration Server Administrator's logging level for Mediator to match the logging levels
specified for the run-time actions (go to Settings > Logging > Server Logger). For example, if a
“Log Invocation” action is set to the logging level of Error, you must also set Integration Server
Administrator's logging level for Mediator to Error. If the action's logging level is set to a low
level (Warning-level or Informationlevel), but Integration Server Administrator's logging level
for Mediator is set to a higher level (Error-level), then only the higher-level messages are written
to the log file.

Entries posted to the local log are identified by a product code of MED.

Run-Time Governance Reference 5



Run-Time Events and Key Performance Indicator (KPI) Metrics

The Integration Server's Audit Log
You can select the Integration Server Audit Log as a destination for the “Log Invocation” action

only. If you expect a high volume of invocations in your system, it is recommended that you select
the Audit Log destination. For more information, see the webMethods Audit Logging Guide.

The Metrics Tracking Interval

Mediator tracks performance metrics by intervals. The interval is a period of time you set in Me-
diator, during which metrics are collected for reporting to CentraSite. You set the interval in the
Publish Interval field on the Mediator > Administration > CentraSite Communication page in
the Integration Server Administrator. For details, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

Mediator only tracks metrics for the current interval. At the end of the interval, Mediator aggregates
the metrics and reports them to CentraSite. Once the metrics are reported, Mediator resets its
counters for the new interval. Mediator does not calculate and aggregate metrics across intervals.
If Mediator is shut down or the virtual service is undeployed before the current interval expires,
the performance data is discarded.

Note: To avoid the need for Mediator to store metrics during periods of inactivity, Mediator

stores only first and last zero value metrics that occurs during an interval, and discards the
remaining consecutive zero value metrics. Doing this drastically reduces the storage space
consumed by the metrics, and speeds the queries you perform in the dashboard. Skipping

the in-between zero metrics will not affect in the performance graphs shown in the dash-
board.

For more information about the metrics tracking interval, see the section Key Performance Indicator
Metrics and Run-Time Event Notifications in the document Administering webMethods Mediator.

Configuring CentraSite to Receive Run-Time Events and Metrics

Prerequisites:

® Ensure that Mediator is configured for publishing events to an SNMP server, as described in
the section SNMP Destinations for Run-Time Events in the document Administering webMethods
Mediator.

® If you use a target type other than Mediator or webMethods Insight, be sure to configure
CentraSite to publish events by providing your own MIB file in your target type's definition
file, as described in the section Run-Time Targets. (CentraSite provides a MIB file for Mediator
and Insight.)

6 Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

® Optionally change CentraSite's default settings for logging run-time events, as described in the
section Logging. By default, CentraSite logs all predefined event types, but you may disable any

type.

CentraSite provides an Event Receiver, which is a data collector that collects the run-time event
data. The Event Receiver listens for run-time events from the target instances via the SNMP (Ap-
plication-Layer) protocol, and contains the logic to parse and store event data in the Event Receiver's
data store. You must configure the Event Receiver's properties file as described below.

This section includes the following topics:

= Components of the Event Receiver
= Configuring the Event Receiver

= Event Type Modeling

= Event Modeling

Components of the Event Receiver

The Event Receiver contains the following components.

® The SNMP Listener
CentraSite's SNMPv3 Trap Listener, which supports SNMP4]. This Listener starts automatically
when CentraSite starts.

" The Intermediate Queue
The queue from the SNMP Listener to the Event Processor. This queue decouples the SNMP

Listener threads from the Event Processor to improve throughput. The following modes are
supported.

* FileSystem: Incoming Traps will be stored temporarily in the file system
* InMemory: Incoming Traps will be stored temporarily in memory
® NoQueue: Incoming Traps will not be stored in any intermediate queue; the SNMP Listener
threads will be processed.
To select the mode, set the eventsQueueImpl property as described in Setting the Events Queue
Implementation Property.
® The Event Processor
The Event Processor (SOALinkSNMPEventsListener) transforms incoming SNMPv3 Traps into

an XML file (Events.xml) that complies with the schema in the RuntimeEvents Collection com-
ponent. The Event Processor transforms an SNMPv3 Trap to the Events.xml file as follows:

1. Determines the Event Type (and Target Type) to which the Trap belongs, and gets the corres-
ponding UUIDs. This involves searching all Event Type-to-Trap mappings in all the defined

Run-Time Governance Reference 7


http://www.snmp4j.org/

Run-Time Events and Key Performance Indicator (KPI) Metrics

target types, using the Trap’s OID. Since this is an expensive search, the Event Type-to-Trap
mapping is cached to improve performance.

2. Parses the Trap attributes and obtains: the Service (UUID); the Target (Name); the TimeStamp
and the Sessionld. The Processor then searches the registry/repository and obtains the corres-
ponding UUID for the Target Name. This mapping is also cached to improve performance.

3. Collects the remaining attributes from the Trap.

4. Constructs the Events.xml file using the Event Type UUID, Target Type UUID, Service UUID,
Target UUID, TimeStamp, Sessionld and other collected attributes.

= The Batch Condition

The Batch Condition is a set of OR conditions used by the Event Processor. The Event Processor
supports two modes of event storage into CentraSite: BatchMode and NoBatchMode. BatchMode
is available only for FileSystem and InMemory queues. When BatchMode is enabled, the Event
Processor continues to accumulate Events.xml documents until one of the conditions is evaluated
as true. Then it inserts all the documents as a single batch into CentraSite.

To specify BatchMode or NoBatchMode, set the batch-related properties as described in Setting
the Properties for FileSystem or InMemory.
® The RuntimeEvents Collection

The run-time events are stored in the RuntimeEvents Collection as non-registry objects. For in-
formation about how events are stored, see Event Type Modeling.

Configuring the Event Receiver

The Event Receiver is bundled in the installation as a Web-Application named SOALinkSNM-
PEventsListener supporting the JavaEE standard. The configuration file for the Event Receiver is
located here:

<CentraSite_directory>/cast/cswebapps/SOALinkSNMPEventsListener/WEB-INF/web.xml

The web.xml configuration file contains all the Event Receiver configuration properties. You must
set these properties as described below, and then restart CentraSite.

= Setting the Database Configuration Properties

= Setting the SNMPv3 Transport Configuration Properties
= Setting the SNMPv3 USM Configuration Properties

= Setting the Events Queue Implementation Property

8 Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

= Setting the Properties for FileSystem or InMemory
Setting the Database Configuration Properties

In the Event Receiver's configuration file, set the following properties related to the RuntimeEvents
Collection database .

Database Property Description

com.softwareag.centrasite.soalink.events.dbUrl The URL of the RuntimeEvents Collection
database. All run-time events will be persisted
to this database.

com.softwareag.centrasite.soalink.events.dbUserld The user name that the Events Listener will
use for authentication before persisting event
data to the RuntimeEvents Collection
database. The default value of this property
is the predefined user EventsUser.

Optionally, you can change the value
EventsUser to any login user who has the
following privileges:

= Write access on the Tamino collection
"RuntimeEvents".

"non

B Read access on "TargetTypes", "Targets",
"RuntimeEventTypes" and "LogUnit",
which are under the Tamino collection
"CentraSite".

If you want to change the value to a login
user, enter that login user's name in the form
<hostName>\<userName>.

Important: The predefined password of

EventsUser is EventsManager4CS (there is no
need to specify the password in this file). If
you want to change this password, or if you
have changed the value EventsUser to a login
user, you must change the password. For details,
see the section Users, Groups, Roles, and
Permissions. Whenever you change the
password, you must restart CentraSite.

com.softwareag.centrasite.soalink.events.dbNonActivity TimeOut | The non-activity timeout in seconds for the
RuntimeEvents Collection database (default
2592000 seconds (i.e., 30 days)).

Run-Time Governance Reference 9



Run-Time Events and Key Performance Indicator (KPI) Metrics

Setting the SNMPv3 Transport Configuration Properties

In the Event Receiver's configuration file, set the following properties related to a SNMPv3

Transport.

SNMPv3 Transport Property

Description

com.softwareag.centrasite.soalink.events.snmp.transport

Wire transport protocol that
will be used by the SNMP
Listener. Supported values are:
TCP and UDP.

com.softwareag.centrasite.soalink.events.snmp.host

The CentraSite host name or IP
address to which the SNMP
listener will bind.

com.softwareag.centrasite.soalink.events.snmp.port

The port to which the SNMP
listener will bind. The default
is 8181.

If Microsoft Internet
Information Services (IIS) is
installed (or will be installed)
on the same machine hosting
IS/Mediator, then you may
want to change the default
SNMP port of 8181 to
something else, to avoid any
potential runtime conflicts
when sending SNMP packets.

com.softwareag.centrasite.soalink.events.snmp.maxInboundMessageSizelnBytes

Maximum inbound message
size in bytes (an integer). Traps
that exceed this size limit will
be rejected. Default value is
256Kb.

com.softwareag.centrasite.soalink.events.snmp.dispatcherPoolSize

The SNMP Listener's
Worker-Thread pool size
(default is 10). This determines
the throughput of the Listener.

10

Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

Setting the SNMPv3 USM Configuration Properties

In the Event Receiver's configuration file, set the following properties related to SNMPv3 USM.

SNMPv3 USM Property

Description

com.softwareag.centrasite.soalink.events.snmp.engineld

Engineld to be used by the SNMP Listener.
If the parameter is left blank, the SNMP
Listener will auto-generate the engineld.

com.softwareag.centrasite.soalink.events.snmp.securityName

The SecurityName to be used by the SNMP
Listener.

com.softwareag.centrasite.soalink.events.snmp.securityLevel

The Maximum SecurityLevel to be
supported by SNMP Listener. Supported
values in order are: NOAUTH_NOPRIY,
AUTH_NOPRIV and AUTH_PRIV. For
example, AUTH_PRIV provides the highest
level of security but also supports the other
two levels. Similarly AUTH_NOPRIV
supports NOAUTH_NOPRIV.

com.softwareag.centrasite.soalink.events.snmp.authProtocol

AuthorizationProtocol to be used by the
SNMP Listener for decoding the incoming
trap. Supported values are: MD5 and SHA.

com.softwareag.centrasite.soalink.events.snmp.authPassPhraseKey

The PassPhrase key to be used by the
AuthorizationProtocol. The passphrase key
length should be >= 8. The key is stored in
this file; the passphrase value is stored
securely in passman.

com.softwareag.centrasite.soalink.events.snmp.privProtocol

The PrivacyProtocol to be used by the SNMP
Listener for decoding the incoming trap.
Supported values are: DES, AES128, AES,
AES192, AES256, 3DES and DESEDE.

com.softwareag.centrasite.soalink.events.snmp.privPassPhraseKey

The PassPhrase key to be used by the
PrivacyProtocol. The passphrase length
should be >= 8. The key is stored in this file;
the passphrase value is stored securely in
passman.

Run-Time Governance Reference

11



Run-Time Events and Key Performance Indicator (KPI) Metrics

Setting the Events Queue Implementation Property

In the Event Receiver's configuration file, set the following property related to the implementation

of the events queue.

Events Queue Property

Description

com.softwareag.centrasite.soalink.events.eventsQueuelmpl

Supported values are:

® FileSystem: Incoming Traps will be stored
temporarily in the file system

® InMemory: Incoming Traps will be stored
temporarily in memory

® NoQueue: Incoming Traps will not be stored in
any intermediate queue; the SNMP Listener
threads will be processed one by one

Additional, related properties are described in
Setting the Properties for FileSystem or InMemory.

Setting the Properties for FileSystem or InMemory

When the eventsQueuelmpl property is set to either FileSystem or InMemory, you should also set

the following properties.

Property for FileSystem or InMemory

Description

com.softwareag.centrasite.soalink.events.enableBatchlnsertion

true and false. If true, events will be
batched as per the "batching rules"

Enable or disable batch insertion of events
into the database. Supported values are

properties below, and the batch will be
stored to the database. If false, events will
be stored to the database one by one.

com.softwareag.centrasite.soalink.events.maxNumOfEventsPerBatch

Maximum number of events in a batch.
Should be an integer value. A value <=0
disables this rule. This rule is evaluated
only on arrival of a new Trap.

com.softwareag.centrasite.soalink.events.maxSizeOfBatch

Maximum size (in bytes) of a batch.
Default value is 512KB. Should be an
integer value. A value <=0 disables this
rule. This rule is evaluated only on arrival
of a new Trap.

com.softwareag.centrasite.soalink.events.maxTimelnterval BetweenBatches

Maximum time interval (in milliseconds)
between two subsequent batch storages.
Should be an integer value. A value <=0
disables this rule. Unlike the other two
rules, this rule is evaluated periodically.

12

Run-Time Governance Reference




Run-Time Events and Key Performance Indicator (KPI) Metrics

Property for FileSystem or InMemory

Description

Hence this rule prevents any trap stuck in
the batch for ever if inflow of traps stops;
in short this acts as a batch-timeout. A very
low value for this rule reduces batch
efficiency and introduces unnecessary
looping.

com.softwareag.centrasite.soalink.events.fileSystemQueueDir

(Only applies when the eventsQueuelmpl
property is set to FileSystem.) The
directory that should be used as
FileSystem Queue. Incoming traps will be
stored in this directory temporarily and
hence should have write permission. The
path can be absolute or relative. It is
advisable to provide the absolute path.
Relative paths will be considered relative
to one of the following, based on
availability in the same order:

1. SOALinkSNMPEventsListener/WEB-INF
directory for exploded deployments.

2. javax.servlet.context.tempdir for zipped
deployments.

3. java.io.tmpdir if none of the above are
available.

Event Type Modeling

Event types are modeled as registry objects. The String, Date, Integer and Boolean event attributes
are stored in the registry/repository as slots. The File-Type attributes (representing payloads/binary-
data) are stored as HasExternalLink associations.

For example, consider the predefined event type Transaction. If you go to the Target Type details
page, you will see the Transaction event type attributes (which are obtained from the webMethod-
sESB.mib file) as follows:

Attribute Name Object ID Type
Service 1.3.6.1.4.1.1783.201.1.1.1 |String
Target 1.3.6.1.4.1.1783.201.1.1.2 |String
Timestamp 1.3.6.1.4.1.1783.201.1.1.3 |Date
Consumer 1.3.6.1.4.1.1783.201.1.1.4 |String
RequestStatus 1.3.6.1.4.1.1783.201.1.1.5 |String
ResponsePayload 1.3.6.1.4.1.1783.201.1.1.6 |File

Run-Time Governance Reference

13




Run-Time Events and Key Performance Indicator (KPI) Metrics

Attribute Name Object ID Type

RequestPayload 1.3.6.1.4.1.1783.201.1.1.7 |File

ProviderRoundTripTime |1.3.6.1.4.1.1783.201.1.1.8 |Integer
TotalRoundTripTime 1.3.6.1.4.1.1783.201.1.1.9 |Integer
SessionID 1.3.6.1.4.1.1783.201.1.1.16 | String
ConsumerIP 1.3.6.1.4.1.1783.201.1.1.17|String

All of these attributes (except the File-Type attributes RequestPayload and ResponsePayload) are
stored as registry object slots, as follows:

Slot Key Slot Type Slot Value (Attribute)

uddi_16d34470-9a92-11dd-9b43-e319c2a6593c |xs:string  |Service
uddi_f18b5a40-9a91-11dd-b95e-b4758b17b88b |xs:string  |Target
uddi_c798d3c0-9a91-11dd-889e-b999c87babb? |xs:datetime | TimeStamp
uddi_a7476ff0-a108-11dd-9c38-d8fd010529cc |xs:string  |Consumer
uddi_a7476£f0-a108-11dd-9c38-eac6d60fc855 |xs:string |RequestStatus
uddi_a7476ff0-a108-11dd-9c38-£3f84c6111f0  |xs:integer |ProviderRoundTripTime
uddi_a7476ff0-a108-11dd-9c38-d02170b3aae3 |xs:integer |TotalRoundTripTime
uddi_21b67010-9a92-11dd-926a-991c4c180c79 |xs:string  |SessionID
uddi_a7476ff0-a108-11dd-9¢38-d34£346cb3d5 |xs:string |ConsumerIP

The File-Type attributes ResponsePayload and RequestPayload are stored as HasExternalLink
associations, as follows:

Association Key Association Name (Attribute)

uddi:a747704b-a108-11dd-9c38-fde9d932116a |ResponsePayload
uddi:a745265b-a108-11dd-9c38-bf43eeel7363 |RequestPayload

The "Target Type to Event Type Association" Object

A target type (represented as a concept) is associated with an event type (represented as a registry
object) by a "Target Type to Event Type Association" object, which defines the "UUID to MIB OID"

mapping.

The following table shows the contents of a sample object that associates the target type webMethods

Mediator with the event type Transaction. The table's columns are described below.

" Attribute: The Attribute column is not part of the object; it is included here simply for your
reference.

= Slot Key: Contains the UUID, which is obtained from the event type registry object.

= Slot Type: Contains the slot type, which is obtained from the event type registry object.

14 Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

= Slot Value: Contains the event type attribute's Object Identifier (OID), which is obtained from

the MIB file.
Attribute Slot Key (Event Type UUID) Slot Type Slot Value (Event Attribute
OID)
Service uddi_16d34470-9a92-11dd-9b43-e319c2a6593¢ |xs:string  |1.3.6.1.4.1.1783.201.1.1.1
Target uddi_f18b5a40-9a91-11dd-b95e-b4758b17b88b |xs:string  |1.3.6.1.4.1.1783.201.1.1.2
TimeStamp uddi_c798d3c0-9a91-11dd-889e-b999c87ba6b? |xs:datetime |1.3.6.1.4.1.1783.201.1.1.3
Consumer uddi_a7476ff0-a108-11dd-9c38-d8fd010529¢cc |xs:string  [1.3.6.1.4.1.1783.201.1.1.4
RequestStatus uddi_a7476ff0-a108-11dd-9c38-eac6d60£fc855 |xs:string  |1.3.6.1.4.1.1783.201.1.1.5
ResponsePayload uddi_a747704b-a108-11dd-9c38-fde9d932116a |xs:anyURI |1.3.6.1.4.1.1783.201.1.1.6
RequestPayload uddi_a745265b-a108-11dd-9c38-bf43eeel7363 |xs:anyURI |1.3.6.1.4.1.1783.201.1.1.7
ProviderRoundTripTime [uddi_a7476ff0-a108-11dd-9c38-f3f84c6111f0  |xs:integer |1.3.6.1.4.1.1783.201.1.1.8
TotalRoundTripTime uddi_a7476ff0-a108-11dd-9c38-d02170b3aae3 |xs:integer |1.3.6.1.4.1.1783.201.1.1.9
SessionID uddi_21b67010-9a92-11dd-926a-991c4c180c79 |xs:string  |1.3.6.1.4.1.1783.201.1.1.16
ConsumerlIP uddi_a7476ff0-a108-11dd-9c38-d34£346cb3d5 |xs:string  |1.3.6.1.4.1.1783.201.1.1.17

Event Modeling

An event is an instance of an event type. Events are modeled in a separate schema from the event
type schema. CentraSite models events as non-registry objects (to avoid storing large amounts of
unwanted event data in the registry/repository), and instead stores event data in a database collec-
tion within the Event Receiver. CentraSite maps events to their corresponding event types, using
the event types' UUIDs. Similarly, events are mapped to target types, targets and services using

UUIDs and the event type attributes.

The stored event data will contain:

® The event Trap ID (MIB OID).

® The event Trap value, which consists of:

* The attribute key (MIB OID).

= The attribute value.

The event data is stored in the Event Receiver as an "events" doctype.

If an event contains payloads (e.g., File-Type attributes such as ResponsePayload and RequestPay-
load), the payloads are stored in the Event Receiver as a "payloads" doctype, and will be referenced
by the event stored under the "event" doctype, using ino:id. This is used to reduce de-serialization
of the usually large payloads, and to improve performance of queries on the stored events.

Run-Time Governance Reference

15




Run-Time Events and Key Performance Indicator (KPI) Metrics

Viewing Run-Time Events and Metrics

You can view the run-time events and metrics that occurred for:

" A particular target or all targets (see Viewing Run-Time Events and Metrics for Targets).

® Each virtual service (see Viewing Run-Time Events and Metrics for Virtual Services).
Viewing Run-Time Events and Metrics for Targets

Use the following procedure to view lists of run-time events for a particular target or for all targets.

If you are using the Mediator target, ensure that Mediator is configured to send event notifications
to the destination(s) that are applicable for each event type. For details, see SNMP Destinations for
Run-Time Events in the document Administering webMethods Mediator.

ote: You must have the permissions to manage targets, as described in the section Run-
| Note: Y, t have the permissions t ge target. described in th tion R
Time Targets.

» To view a list of run-time events for targets

1  In CentraSite Control, go to Operations > Events > Event List.

2 Use the following fields to filter the event list you want to view:

In this field... |[Specify...

Target Type |The type of the target whose events you want to view.

Target The target whose events you want to view (or select All to view events of all targets).

Event Type |A particular event type, or select All to view all event types. For descriptions of the
predefined event types, see the The Run-Time Event Types.

Service Type |Select All or Virtual Service.

Note: CentraSite does not provide out-of-the-box policy-enforcement for web services.

Date Range |A range of dates from which to view the events.

Start Date Alternatively, select the check box next to this field and click the calendar and select a
starting date and time.

End Date Click the calendar and select an ending date and time.

3  Click the Search button.

4  The generated event list displays the following information:

16 Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

Field Description

Date/Time  |The date/time that the event occurred. Click this hyperlinked value to view the Event
Detail page, which will contain the event's SOAP request or response name in the
Attribute column. Click the hyperlinked request or response name to display the full
SOAP request or response.

Session ID  |(Read-only.) The session ID that generated the event.

Event Type |(Read-only.) The type of event (e.g., Monitoring, Policy Violation, Error, etc.).

Service Name |(Read-only.) The name of the service that caused the event.

Service Type |(Read-only.) The service’s type.

Target (Read only.) The target on which the event occurred.

Target Type |(Read only.) The type of the target on which the event occurred.

Note: To view the list of attributes that are mapped for each event type, go to the target
type's detail page (see the section Run-Time Targets).

Viewing Run-Time Events for Virtual Services

You can view the events and metrics for a virtual service in its Events profile and its Performance
profile. For details, see the section Virtual Services in CentraSite Control.

Creating Custom Run-Time Events

CentraSite provides the predefined event types described in The Run-Time Event Types. In addition,
you can create custom run-time events that CentraSite will monitor.

| Note: Prerequisite: You must have the Manage Runtime Event Types permission. By default,

the predefined roles CentraSite Administrator and Operations Administrator include this
permission. For more information about roles and permissions, see the section Users, Groups,
Roles, and Permissions.

[\, Important: To enable CentraSite to recognize custom event types, ensure that your MIB file

(which is contained in your target type definition file) contains the SNMP Traps metadata
and Object Identifiers for the custom events. For more information, see the section Run-Time
Targets.

» To create custom event types

1  In CentraSite Control, go to Operations > Events > Event Types to display the Event Types
page.

Run-Time Governance Reference 17



Run-Time Events and Key Performance Indicator (KPI) Metrics

The page displays all the predefined event types (Monitoring, Policy Violation, Transaction,
Error and Lifecycle) and any custom event types that have been defined.

2 To view the details of any event type, click its hyperlinked name.
The list of attributes for the event type is displayed. You can edit the attributes of custom
event types, but not the predefined event types (see Modifying Custom Run-Time Events).

3  To create a custom event type, click the Add Event Type button. In the Add/Edit Event Type
page specify a name and description for the event type. Event type names can contain any
character (including spaces), and are not case-sensitive.

4  Inthe Event Type Attribute panel, the following default attributes are displayed. These attrib-
utes are required and cannot be deleted.

Attribute Data Type

TimeStamp |Date

Target String

Service String

SessionID (String

To create additional attributes, perform the following steps:

1. Click the plus button at the bottom of the attribute list.

2. Specify a name in the Name column and a value in the Data Type column (Boolean, File,
Date, Integer or String). Attribute names can contain any character (including spaces).

3. To add another attribute, click the plus button at the bottom of the list.
4. To delete an attribute, click the minus button for the attribute you want to delete.

5. Click Save.

Modifying Run-Time Events

To edit and delete custom event types, perform the following steps.

» To modify a custom run-time event

1  In CentraSite Control, go to Operations > Events > Event Types to display the Event Types
page.
The page displays all event types that have been defined.

2 Todelete a custom event type, select the check box next to the event type and click the Delete
button.

18 Run-Time Governance Reference



Run-Time Events and Key Performance Indicator (KPI) Metrics

3  To edit the attributes of a custom event type, perform the following steps:

1. Click its hyperlinked name to display the Add/Edit Event Type page.

2. You can change the value of an attribute’s data type, but not its name. Data types can be
Boolean, File, Date, Integer or String.

3. To add another attribute, use the plus button at the bottom of the list.
4. To delete an attribute, click the minus button next to the attribute.

5. Click Save.

Run-Time Governance Reference 19



20



2 Built-In Run-Time Actions Reference for Virtual Services

= Summary of the Run-Time Actions for Virtual Services
= Action Evaluation Order and Dependencies ..............
= Usage Cases for Identifying/Authenticating Consumers
= Run-Time Actions Reference for Virtual Services .......

21



Built-In Run-Time Actions Reference for Virtual Services

This section describes the built-in run-time actions that you can include in run-time policies for
virtual services. You use these actions only when you are using CentraSite Control to create run-
time policies for virtual services. The content is organized under the following sections:

Summary of the Run-Time Actions for Virtual Services

You can include the following kinds of built-in run-time actions in the run-time policies for virtual
services:

= \WS-SecurityPolicy 1.2 Actions
= Monitoring Actions
= Additional Actions

WS-SecurityPolicy 1.2 Actions

Mediator provides two kinds of actions that support WS-SecurityPolicy 1.2: authentication actions
and XML security actions.

Authentication Actions (WS-SecurityPolicy 1.2)

Mediator uses the following authentication actions to verify that the requests for virtual services
contain a specified WS-Security element:

Require WSS Username Token |Uses WS-SecurityPolicy authentication to validate user names and
passwords that are transmitted in the SOAP message header for the WSS
Username token.

Require WSS X.509 Token Identifies consumers based on a WSS X.509 token.

Require WSS SAML Token Uses a WSS Security Assertion Markup Language (SAML) assertion token
to validate service consumers.

XML Security Actions (WS-SecurityPolicy 1.2)

These actions provide confidentiality (through encryption) and integrity (through signatures) for
request and response messages.

Require Signing Requires that a request's XML element (which is represented by an XPath expression)

be signed.

Require Encryption |Requires that a request's XML element (which is represented by an XPath expression)
be encrypted.

Require SSL Requires that requests be sent via SSL client certificates, and can be used by both
SOAP and REST services.

22 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Require Timestamps

Requires that timestamps be included in the request header. Mediator checks the
timestamp value against the current time to ensure that the request is not an old
message. This serves to protect your system against attempts at message tampering,
such as replay attacks.

Monitoring Actions

Mediator provides the following run-time monitoring actions:

Monitor Service
Performance

This action monitors a user-specified set of run-time performance conditions for
a virtual service, and sends alerts to a specified destination when these
performance conditions are violated.

Agreement

Monitor Service Level |This action provides the same functionality as “Monitor Service Performance”

but this action is different because it enables you to monitor a virtual service's
run-time performance especially for particular consumer(s). You can configure
this action to define a Service Level Agreement (SLA), which is set of conditions
that defines the level of performance that a specified consumer should expect
from a service.

Throttling Traffic
Optimization

(Not available in Mediator versions below 9.0.) This action limits the number of
service invocations during a specified time interval, and sends alerts to a specified
destination when the performance conditions are violated. You can use this action
to avoid overloading the back-end services and their infrastructure, to limit
specific consumers in terms of resource usage, etc.

Additional Actions

Medjiator provides the following actions, which you can use in conjunction with the actions above.

Identify Consumer

You use this action in conjunction with an authentication action (“Require
WSS Username Token”, “Require WSS X.509 Token” or “Require HTTP Basic
Authentication”). Alternatively, you can use this action alone to identify
consumers only by host name or IP address.

Require HTTP Basic
Authentication

This action uses HTTP basic authentication to verify the consumer's
authentication credentials contained in the request's Authorization header
against the Integration Server's user account.

Authorize User

This action authorizes consumers against a list of users and/or a list of groups
registered in the Integration Server on which Mediator is running. You use
this action in conjunction with an authentication action “Require WSS
Username Token”, “Require WSS SAML Token” or “Require HTTP Basic

Authentication”.
Authorize Against This action authorizes consumer applications against all Application assets
Registered Consumers that are registered in CentraSite as consumers for the service.

Log Invocations

Logs request/response payloads to a destination you specify.

Validate Schema

Validates all XML request and/or response messages against an XML schema
referenced in the WSDL.

Run-Time Governance Reference 23



Built-In Run-Time Actions Reference for Virtual Services

Action Evaluation Order and Dependencies

When you deploy a virtualized service, CentraSite automatically validates the service's run-time
policy (or policies) to ensure that:

" Any action that appears in a single policy multiple times is allowed to appear multiple times.

For those actions that can appear in a policy only once (for example, Identify Consumer), Medi-
ator will choose only one, which might cause problems or unintended results.

® All action dependencies are properly met. That is, some actions must be used in conjunction
with another particular action.

CentraSite will inform you of any violation, and you will need to correct the violations before de-
ploying the service.

= Effective Policies
Effective Policies

When you deploy a virtual service to Mediator, CentraSite combines the actions specified within
the service's run-time policy (or policies) that apply to the virtual service, and generates what is
called the effective policy for the virtual service. For example, suppose your virtual service is within
the scope of two run-time policies: one policy that performs a logging action and another policy
that performs a security action. When you deploy the virtual service, CentraSite automatically
combines the two policies into one effective policy. The effective policy, which contains both the
logging action and the security action, is the policy that CentraSite actually deploys to Mediator
with the virtual service.

When CentraSite generates the effective policy, it validates the resulting action list to ensure that
it contains no conflicting or incompatible actions. If the list contains conflicts or inconsistencies,
CentraSite resolves them according to Policy Resolution Rules. For example, an action list can in-
clude only one Identify Consumer action. If the resulting action list contains multiple Identify
Consumer actions, CentraSite resolves the conflict by including only one of the actions (selected
according to a set of internal rules) in the effective policy and omitting the others.

The effective policy that CentraSite produces for a virtual service is contained in an object called
a virtual service definition (VSD). The VSD is given to Mediator when you deploy the virtual service.
After you deploy a virtual service, you can view its VSD (and thus examine the effective policy
that CentraSite generated for it) from the CentraSite user interface or from the Mediator user in-
terface.

The following table shows:

® The order in which Mediator evaluates the actions.

24 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

® Action dependencies (that is, whether an action must be used in conjunction with another par-
ticular action).

® Whether an action can be included multiple times in a single policy. If an action cannot be in-
cluded multiple times in a single policy, Mediator selects just one for the effective policy, which
may cause problems or unintended results.

Evaluation |Action Dependency Can include multiple times in a policy?

Order

1 Require SSL None. If multiple actions appear, and one of them
has its Client Certificate Required
parameter set to Yes, only one occurrence
of the action appears in the effective policy.

2 Require HTTP Basic |In Mediator versions below 9.0:|No. Mediator includes only one action in

Authentication None. the effective policy.
In Mediator version 9.0 and
above: Identify Consumer.
3 Require WSS Identify Consumer action. No. Mediator includes only one action in
Username Token the effective policy.
4 Require WSS X.509 |Identify Consumer action. No. Mediator includes only one action in
Token the effective policy.
5 Require WSS SAML [None. No. Mediator includes only one action in
Token the effective policy.

6 Require Signing Identify Consumer action. Yes. Mediator generates a UNION of all
Require Signing actions for the effective
policy.

7 Require Encryption |Identify Consumer action. Yes. Mediator generates a UNION of all
Require Encryption actions for the effective
policy.

8 Require Timestamps |Require SSL, Require Signing |No. Mediator includes only one action in

and Require Encryption. the effective policy.

9 Identify Consumer |If Identify Consumer's No. Mediator includes only one action in

identifier field is set to:

= HTTP Authentication Token,
the action Require HTTP
Basic Authentication is also
required.

® WS-Security Authentication
Token, the action Require
WSS Username Token is also
required.

= Consumer Certificate, the
actions Require WSS X.509

the effective policy.

Run-Time Governance Reference

25



Built-In Run-Time Actions Reference for Virtual Services

Evaluation|Action Dependency Can include multiple times in a policy?
Order
Token or Require Signing are
also required.
10 Authorize User Require HTTP Basic No. Mediator includes only one action in

Authentication, Require WSS
Username Token or Require

the effective policy.

WSS SAML Token.
11 Authorize Against |Identify Consumer action. No. Mediator includes only one action in
Registered the effective policy.
Consumers
12 Validate Schema None. If at least one occurrence of the action is
configured to validate requests, and at least
one occurrence of the action is configured
to validate responses, then Mediator
includes in the effective policy an action to
validate both requests and responses.
Otherwise, an action is chosen which
validates only requests or only responses
(depending on the value of the Validate
SOAP Messages parameter of the action).
13 Log Invocation None. No. Mediator includes only one action in
the effective policy.
14 Monitor Service None. Yes. Mediator includes all Monitor Service
Performance Performance actions in the effective policy.
15 Monitor Service Identify Consumer action. Yes. Mediator includes all Monitor Service
Level Agreement Level Agreement actions in the effective
policy.
16 Throttling Traffic  |Identify Consumer (if the Limit| Yes. Mediator includes all Throttling
Optimization Traffic for Applications option |Traffic Optimization actions in the effective

is selected).

policy.

Usage Cases for Identifying/Authenticating Consumers

When deciding which type of identifier to use to identify a consumer application, consider the
following points:

® Whatever identifier you choose to identify a consumer application, it must be unique to the
application. Identifiers that represent user names are often not suitable because the identified
users might submit requests for multiple applications.

26

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

* Identifying applications by IP address or host name is often a suitable choice, however, it does
create a dependency on the network infrastructure. If a consumer application moves to a new
machine, or its IP address changes, you must update the identifiers in the application asset.

" Using X.509 certificates or a custom token that is extracted from the SOAP message itself (using
an XPATH expression), is often the most trouble-free way to identify a consumer application.

Following are some common combinations of actions used to authenticate/identify consumers.

" Scenario 1: Identify consumers by IP address or host name

* The simplest way to identify consumers is to use the Identify Consumer action and set its
Identify User Using parameter to specify either a host name or an IP address (or a range
of IP addresses).

" Scenario 2: Authenticate consumers by HTTP authentication token
Use the following actions:

* Identify Consumer action, and setits Identify User Using parameter to HTTP Authentication
Token (to identify consumers using the token derived from the HTTP header).

® Require HTTP Basic Authentication.
® Additionally, you can use one or both of the following;:

® Authorize User action (to authorize a list of users and/or groups registered in the Integration
Server on which Mediator is running).

® Authorize Against Registered Consumers action (to authorize consumer applications against
all Application assets registered as consumers for a service in CentraSite).

" Scenario 3: Authenticate consumers by WS-Security authentication token
Use the following actions:

* Identify Consumer action, and set its Identify User Using parameter to WS-Security Au-
thentication Token (to identify consumers using the token derived from the WSS Header).

® Require WSS Username Token action.
® Additionally, you can use one or both of the following;:

® Authorize User action (to authorize a list of users and/or groups registered in the Integration
Server on which Mediator is running).

® Authorize Against Registered Consumers action (to authorize consumer applications against
all Application assets registered as consumers for a service in CentraSite).

" Scenario 4: Authenticate consumers by WSS X.509 token

® Identify Consumer action, and setits Identify User Using parameter to Consumer Certificate
(to identify consumers using the WSS X.509 token).

® Require WSS X.509 Token action

" Require SSL action.

Run-Time Governance Reference 27



Built-In Run-Time Actions Reference for Virtual Services

Run-Time Actions Reference for Virtual Services

This section describes the following built-in run-time actions that you can include in run-time
policies for virtual services:

= Authorize Against Registered Consumers
= Authorize User

= |dentify Consumer

= | og Invocation

= Monitor Service Performance

= Monitor Service Level Agreement

= Require Encryption

= Require HTTP Basic Authentication
= Require Signing

= Require SSL

= Require Timestamps

= Require WSS SAML Token

= Require WSS Username Token

= Require WSS X.509 Token

= Throttling Traffic Optimization

= Validate Schema

Authorize Against Registered Consumers

] Note: Dependency requirement: A policy that includes this action must also include the

Identify Consumer action. However, if the Identify Consumer action is set to identify users
via the HTTP Authentication Token option, then “Authorize Against Registered Con-
sumers” should not be included in the policy.

Authorizes consumer applications against all Application assets that are registered in CentraSite
as consumers for the service.

Input Parameters

None.

28 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Authorize User

| Note: Dependency requirement: A policy that includes this action must also include one of

the following: the Require WSS SAML Token action or the Identify Consumer action with
one of the following options selected: “HTTP Authentication Token” or “WS-Security Au-
thentication Token”.

Authorizes consumers against a list of users and/or a list of groups registered in the Integration
Server on which Mediator is running.

Input Parameters

Perform authorization against |Boolean Authorizes consumers against a list of users who are
1ist of users registered in the Integration Server on which Mediator is running.
Specify one or more users in the fields below this option.

Perform authorization against |Boolean Authorizes consumers against a list of groups who are
1ist of groups registered in the Integration Server on which Mediator is running.
Specify one or more groups in the fields below this option.

| Note: By default, both of the input parameters are selected. If you de-select one of these
parameters, the fields showing the list of users (or groups) is not displayed.

Identify Consumer

Mediator uses this action to identify consumer applications based on the kind of consumer identi-
fier (IP address, HTTP authorization token, etc.) you specify. Alternatively, this action provides
an option to allow anonymous users to access the assets.

Input Parameters

Anonymous |Boolean Specifies whether to allow all users to access the asset, without restriction.

Usage Value Description
Allowed

False Default. Allows only the users specified inthe Identify User Using
parameter to access the assets.

True Allow all users to access the asset. In this case, do not configure the
Identify User Using parameter.

Identify |String Specifies the kind of consumer identifier that the action will use to identify consumer
User applications.
Using

Value Description

Run-Time Governance Reference 29



Built-In Run-Time Actions Reference for Virtual Services

[P Address Identifies one or more consumer applications based on their originating
IP addresses.

Host Name Identifies consumer applications based on a host name.

HTTP < Uses HTTP Basic authentication to verify the consumer's authentication

Authentication <«
Token

credentials contained in the request's Authorization header. Mediator
authorizes the credentials against the list of users registered in the
Integration Server on which Medjiator is running. This type of consumer
authentication is referred to as “preemptive authentication”. If you
want to use “preemptive authentication”, you should also include the
action Require HTTP Basic Authentication in the policy.

If you choose to omit “Require HTTP Basic Authentication”, the client
will be presented with a security challenge. If the client successfully
responds to the challenge, the user is authenticated. This type of
consumer authentication is referred to as “non-preemptive
authentication”. For more information, see Require HTTP Basic
Authentication.

Note: If you select the value HTTP Authentication Token, donot

include the Authorize Against Registered Consumers actionin
the policy. This is an invalid combination.

WS-Security «
Authentication «
Token

Validate user names and passwords that are transmitted in the SOAP
message header in the WSS Username Token. If you select this value,
you should also include the action Require WSS Username Token in
the policy.

Custom <«
Identification

Validates consumer applications based on an XML element (represented
by an XPath expression).

Consumer <
Certificate

Identifies consumer applications based on information in a WSS X.509
certificate. If you select this value, you should also include the action
Require WSS X.509 Token or the action Require Signing in the policy.

Client «
Certificate for «
SSL Connectivity

Validates the client's certificate that the consumer application submits
to the asset in CentraSite. The client certificate that is used to identify
the consumer is supplied by the client to the Mediator during the SSL
handshake over the transport layer. In order to identify consumers by
transport-level certificates, the run-time communication between the

client and the Mediator must be over HTTPS and the client must pass
a valid certificate.

To use this option, the following prerequisites must be met:

® In Integration Server, create a keystore and truststore, as described
in Securing Communications with the Server in the webMethods
Integration Server Administrator’s Guide.

® In Integration Server, create an HTTPS port, as described in
Configuring Ports in the webMethods Integration Server Administrator’s
Guide.

30

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

= Configure Mediator by setting the IS Keystore and IS Truststore
parameters, as described in Configuring Mediator > Keystore
Configuration in the document Administering webMethods Mediator.

= Configure Mediator by setting the HTTPS Ports Configuration
parameter, as described in Confiquring Mediator > Ports Configuration
in the document Administering webMethods Mediator.

Log Invocation

Logs request/response payloads. You can specify the log destination and the logging frequency.
This action also logs other information about the requests/responses, such as the service name,
operation name, the Integration Server user, a timestamp, and the response time.

| Note: You can include this action multiple times in a policy.

Input Parameters

Log the String Optional. Specifies whether to log all request payloads, all response payloads, or both.
FolTowing Iyalye Description
Payloads
Request Log all request payloads.
Response Log all response payloads.
Log String Specifies how frequently to log the payload.
Generation
Frequency
Value Description
Always Log all requests and/or responses.
On Success Log only the successful responses and/or requests.
On Failure Log only the failed requests and/or responses.
Send Data |String Specifies where to log the payload.
To

Important: Ensure that Mediator is configured to log the payloads to the destination(s) you

specify here. For details, see Alerts and Transaction Logging in the document Administering
webMethods Mediator.

Value Description

Run-Time Governance Reference 31



Built-In Run-Time Actions Reference for Virtual Services

CentraSite

Logs the payloads in the virtual service's Events profile in CentraSite.

Prerequisite: You must configure Mediator to communicate with
CentraSite (in the Integration Server Administrator, go to Solutions
> Mediator > Administration > CentraSite Communication). For
the procedure, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

Local Log

Logs the payloads in the server log of the Integration Server on
which Mediator is running.

Also choose a value in the Log Level field:

® Info: Logs error-level, warning-level, and informational-level
alerts.

® Warn: Logs error-level and warning-level alerts.

® Error: Logs only error-level alerts.

Important: The Integration Server Administrator's logging level for

Mediator should match the logging level specified for this action
(go to Settings > Logging > Server Logger).

SNMP

Logs the payloads in CentraSite's SNMP server or a third-party
SNMP server.

Prerequisite: You must configure the SNMP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
> Administration > SNMP). For the procedure, see the section SNMP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

Email

Sends the payloads to an SMTP email server, which sends them to
the email address(es) you specify here. Mediator sends the payloads
as email attachments that are compressed using gzip data

compression. To specify multiple addresses, use the */ button to
add rows.

Prerequisite: You must configure the SMTP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
> Administration > Email). For the procedure, see the section SMTP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

Audit Log

Logs the payload to the Integration Server audit logger. For
information, see the webMethods Audit Logging Guide.

Note: If you expect a high volume of events in your system, it is

recommended that you select the Audit Log destination for this
action.

32

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Monitor Service Performance

This action monitors a user-specified set of run-time performance conditions for a virtual service,
and sends alerts to a specified destination when the performance conditions are violated. You can
include this action multiple times in a single policy.

For the counter-based metrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
the metrics tracking interval. You can choose whether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

For the aggregated metrics (Average Response Time, Minimum Response Time, Maximum Response
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

| Note: To enable Mediator to publish performance metrics, you must configure Mediator to

communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator > Administration > CentraSite Communication). For the procedure, see the section
Configuring Communication with CentraSite in the document Administering webMethods Medi-
ator.

Input Parameters

Action Specify one or more conditions to monitor. To do this, specify a metric, operator, and a
Configuration|yalue for each metric. To specify multiple conditions, use the */ button to add multiple
parameters rows. If multiple parameters are used, they are connected by the AND operator.
Name String Array The metrics to monitor.

Value Description

Availability Indicates whether the service was available to the

specified consumers in the current interval.

Average Response Time The average amount of time it took the service to
complete all invocations in the current interval.
Response time is measured from the moment Mediator
receives the request until the moment it returns the
response to the caller.

Run-Time Governance Reference 33



Built-In Run-Time Actions Reference for Virtual Services

Monitor Service Level Agreement

Note: Dependency requirement: A policy that includes this action must also include the

Identify Consumer action.

This action is similar to the Monitor Service Performance action. Both actions can monitor the
same set of run-time performance conditions for a virtual service, and then send alerts when the
performance conditions are violated. This action is different because it enables you to monitor
run-time performance for one or more specified consumers. You can include this action multiple times
in a single policy.

You can configure this action to define a Service Level Agreement (SLA), which is a set of conditions
that defines the level of performance that a consumer should expect from a service. You can use

this action to identify whether a service's threshold rules are met or exceeded. For example, you

might define an agreement with a particular consumer that sends an alert to the consumer if re-

sponses are not sent within a certain maximum response time. You can configure SLAs for each

virtual service/consumer application combination.

For the counter-based metrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
the metrics tracking interval. You can choose whether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the metrics
tracking interval, see The Metrics Tracking Interval.

For the aggregated metrics (Average Response Time, Minimum Response Time, Maximum Response
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

Note: To enable Mediator to publish performance metrics, you must configure Mediator to
communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator > Administration > CentraSite Communication). For the procedure, see the section
Configuring Communication with CentraSite in the document Administering webMethods Medi-
ator.

Input Parameters

Action Specify one or more conditions to monitor. To do this, specify a metric, operator, and
Configuration|yalue for each metric. To specify multiple conditions, use the */ button to add multiple
parameters rows. If multiple parameters are used, they are connected by the AND operator.
Name String Array The metrics to monitor.

Value Description

34 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Availability Indicates whether the service was available to the
specified consumers in the current interval.

Average Response Time The average amount of time it took the service to
complete all invocations in the current interval.
Response time is measured from the moment Mediator
receives the request until the moment it returns the
response to the caller.

Require Encryption

Requires that a request's XML element (which is represented by an XPath expression) be encrypted.
This action supports WS-SecurityPolicy 1.2 and cannot be used with REST services.

Prerequisites

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communications with the Server in the document Administering webMethods Integration
Server.

2. Configure Mediator: In the Integration Server Administrator, navigate to Solutions > Mediator
> Administration > General and complete the IS Keystore Name, IS Truststore Name and Alias
(signing) fields, as described in Keystore Confiquration in the document Administering WebMethods
Mediator.

When this policy action is set for the virtual service, Mediator provides decryption of incoming
requests and encryption of outgoing responses. Mediator can encrypt and decrypt only individual
elements in the SOAP message body that are defined by the XPath expressions configured for the
policy action. Mediator requires that requests contain the encrypted elements that match those in
the XPath expression. You must encrypt the entire element, not just the data between the element
tags. Mediator rejects requests if the element name is not encrypted.

A\  Important: Do not encrypt the entire SOAP body because a SOAP request without an element
will appear to Mediator to be malformed.

Mediator attempts to encrypt the response elements that match the XPath expressions with those
defined for the policy. If the response does not have any elements that match the XPath expression,
Mediator will not encrypt the response before sending. If the XPath expression resolves a portion
of the response message, but Mediator cannot locate a certificate to encrypt the response, then
Mediator sends a SOAP fault exception to the consumer and a Policy Violation event notification
to CentraSite.

How Mediator Encrypts Responses

The Require Encryption action encrypts the response back to the client by dynamically setting a
public key alias at run time. Mediator determines the public key alias as follows:

Run-Time Governance Reference 35



Built-In Run-Time Actions Reference for Virtual Services

1. If Mediator can access the X.509 certificate of the client (based on the incoming request signature),
it will use "useReqSigCert" as the public key alias.

OR

2. If the Identify Consumer action is present in the policy (and it successfully identifies a consumer
application), then Mediator will look for a public key alias with that consumer name in the "IS
Keystore Name" property. The "IS Keystore Name" property is specified in the Integration
Server Administrator, under Solutions > Mediator > Administration > General. This property
should be set to an Integration Server keystore that Mediator will use.

For an Identify Consumer action that allows for anonymous usage, Mediator does not require
a consumer name in order to send encrypted responses. In this case, Mediator can use one of
the following to encrypt the response in the following order, depending on what is present in
the security element:

" A signing certificate.

® Consumer name.

WSS username, SAML token or X.509 certificate.
HTTP authorized user.

OR

3. If Mediator can determine the current IS user from the request (i.e., if an Integration Server WS-
Stack determined that Subject is present), then the first principal in that subject is used.

OR

4. If the above steps all fail, then Mediator will use either the WS-Security username token or the
HTTP Basic-Auth user name value. There should be a public key entry with the same name as
the identified username.

| Note: You can include this action multiple times in a single policy.

Input Parameters

Namespace |String Optional. Namespace of the element required to be encrypted.

Note: Enter the namespace prefix in the following format: xmins: <prefix-name>. For example:

xmIns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.0rg/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

36 Run-Time Governance Reference



http://www.w3.org/TR/REC-xml-names/#ns-decl

Built-In Run-Time Actions Reference for Virtual Services

<sp:SignedElements <«
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
{sp:XPath <

</sp:SignedETements>

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPatl

Element |String An XPath expression that represents the XML element that is required to be encrypted.
Required
to be
Encrypted

Require HTTP Basic Authentication

This action uses HTTP Basic authentication to verify the consumer's authentication credentials
contained in the request's Authorization header. Mediator authorizes the credentials against the
list of users registered in the Integration Server on which Mediator is running. This type of consumer
authentication is referred to as “preemptive authentication”. If you want to perform “preemptive
authentication”, a policy that includes this action must also include the Identify Consumer action.

If the user/password value in the Authorization header cannot be authenticated as a valid Integ-
ration Server user (or if the Authorization header is not present in the request), a 500 SOAP fault
is returned, and the client is presented with a security challenge. If the client successfully responds
to the challenge, the user is authenticated. This type of consumer authentication is referred to as
“non-preemptive authentication”. If the client does not successfully respond to the challenge, a
401 “WWW-Authenticate: Basic” response is returned and the invocation is not routed to the
policy engine. As a result, no events are recorded for that invocation, and its key performance in-
dicator (KPI) data are not included in the performance metrics.

If you choose to omit the “Require HTTP Basic Authentication” action (and regardless of whether
an Authorization header is present in the request or not), then:

® Mediator forwards the request to the native service, without attempting to authenticate the re-
quest.

® The native service returns a 401 “WWW-Authenticate: Basic” response, which Mediator will
forward to the client; the client is presented with a security challenge. If the client successfully
responds to the challenge, the user is authenticated.

In the case where a consumer sends a request with transport credentials (HTTP Basic authentication)
and message credentials (WSS Username or WSS X.509 token), the message credentials take pre-
cedence over the transport credentials when Integration Server determines which credentials it
should use for the session. For more information, see Require WSS Username Token and Require
WSS X.509 Token. In addition, you must ensure that the service consumer that connects to the
virtual service has an Integration Server user account.

Run-Time Governance Reference 37



Built-In Run-Time Actions Reference for Virtual Services

Note: Do not include the “Require HTTP Basic Authentication” action in a virtual service's

run-time policy if you selected the OAuth2 option in the virtual service's Routing Protocol
step.

Input Parameters

Note: This input parameter is not available in Mediator versions prior to 9.0.

Authenticate Credentials|Required. Authorizes consumers against the list of users registered in the
Integration Server on which Mediator is running.

Require Signing

This action requires that a request's XML element (which is represented by an XPath expression)
be signed. This action supports WS-SecurityPolicy 1.2.

Prerequisites

1. Configure Integration Server: Set up keystores and truststores in Integration Server, as described
in Securing Communications with the Server in the document Administering webMethods Integration
Server.

2. Configure Mediator: In the Integration Server Administrator, navigate to Solutions > Mediator
> Administration > General and complete the IS Keystore Name, IS Truststore Name and Alias
(signing) fields, as described in Keystore Configuration in the document Administering WebMethods
Mediator. Mediator uses the signing alias specified in the Alias (signing) field to sign the response.

When this action is set for the virtual service, Mediator validates that the requests are properly
signed, and provides signing for responses. Mediator provides support both for signing an entire
SOAP message body or individual elements of the SOAP message body.

Mediator uses a digital signature element in the security header to verify that all elements
matching the XPath expression were signed. If the request contains elements that were not signed
or no signature is present, then Mediator rejects the request.

Notes:

1. You must map the public certificate of the key used to sign the request to an Integration Server
user. If the certificate is not mapped, Mediator returns a SOAP fault to the caller.

2. You can include this action multiple times in a policy.

38 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Input Parameters

Namespace|String Optional. Namespace of the element required to be signed.

Note: Enter the namespace prefix in the following format: xmIns: <prefix-name>. For example:

xmIns:soapenv. For more information, see the XML Namespaces specifications at
http://www.w3.0rg/TR/REC-xml-names/#ns-decl.

The generated XPath element in the policy should look similar to this:

<sp:SignedElements <«
xmins:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
{sp:XPath <«
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/">//soapenv:Body</sp:XPatl
</sp:SignedETements>

Element |String An XPath expression that represents the XML element that is required to be signed.
Required
to be
Signed

Require SSL

Requires that requests be sent via SSL client certificates. This action supports WSSecurityPolicy
1.2 but can be used for both SOAP and REST services.

When this policy action is set for the virtual service, Mediator ensures that requests are sent to the
server using the HTTPS protocol (SSL). The policy also specifies whether the client certificate is
required. This allows Mediator to verify the client sending the request. If the policy requires the
client certificate, but it is not presented, Mediator rejects the message.

When a client certificate is required by the policy, the Integration Server HTTPS port should be
configured to request or require a client certificate.

Input Parameters

Client Boolean Specifies whether client certificates are required for the purposes of:
Certificate
Required = Verifying the signature of signed SOAP requests or decrypting encrypted SOAP requests

= Signing SOAP responses or encrypting SOAP responses

Value Description

Run-Time Governance Reference 39


http://www.w3.org/TR/REC-xml-names/#ns-decl

Built-In Run-Time Actions Reference for Virtual Services

Yes Require client certificates.

No Default. Do not require client certificates.

Require Timestamps

| Note: Dependency requirement: A policy that includes this action must also include all of

the following actions: Require SSL, Require Signing, Require Encryption.

When this policy action is set for the virtual service, Mediator requires that timestamps be included
in the request header. Mediator checks the timestamp value against the current time to ensure
that the request is not an old message. This serves to protect your system against attempts at
message tampering, such as replay attacks. This action supports WS-SecurityPolicy 1.2 and cannot
be used with REST services.

Mediator rejects the request if either of the following happens:

® Mediator receives a timestamp that exceeds the time defined by the timestamp element.

" A timestamp element is not included in the request.
Input Parameters

None.
Require WSS SAML Token

When this action is set for a virtual service, Mediator uses a WSS Security Assertion Markup
Language (SAML) assertion token to validate service consumers. This action supports WS-Secur-
ityPolicy 1.2 and cannot be used with REST services and cannot be used with REST services.

For more information about configuring your system for SAML token processing, see SAML
Support in Mediator in the document Administering webMethods Mediator.

Input Parameters

SAML Subject |String Select one of the following SAML subject confirmation methods:
Confirmation(yulge

Description

Default. Select this option if consumers use the SAML V1.1 or V2.0
Holder-of-Key Web Browser SSO Profile, which allows for transport
of holder-of-key assertions. In this scenario, the consumer presents a
holder-of-key SAML assertion acquired from its preferred identity
provider to access a web-based resource at a service provider.

If you select Holder of Key, Mediator also implicitly selects the
“timestamp” and “signing” assertions to the virtual service definition

40 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Holder of Key [(VSD). Thus, you should not add the ““Require Timestamps” and
“Require Signing” policy actions to a virtual service if the “Require
WSS SAML Token” action is already applied.

Bearer Select this option if consumers use SAML V1.1 Bearer token
authentication, in which a Bearer token mechanism relies upon bearer
semantics as a means by which the consumer conveys to Mediator the
sender's identity.

If you select Bearer, the “timestamp” and “signing” assertions will
be added to the virtual service definition (VSD).

Note: If consumers use SAML 2.0 Sender-Vouches tokens, configure

your system as described in SAML Support in Mediator in the document
Administering WebMethods Mediator.

SAML Version|String Specifies the WSS SAML Token version to use: 1.1 or 2.0.

Require WSS Username Token

| Note: Dependency requirement: A policy that includes this action must also include the

Identify Consumer action.

When this policy action is set for the virtual service, Mediator uses WS-SecurityPolicy authentication
to validate user names and passwords that are transmitted in the SOAP message header for the
WSS Username token. This action supports WS-SecurityPolicy 1.2 and cannot be used with REST
services.

In the case where a consumer is sending a request with both transport credentials (HTTP basic
authentication) and message credentials (WSS Username or X.509 token), the message credentials
take precedent over the transport credentials when Integration Server is determining which cre-
dentials it should use for the session. For more information, see Require HTTP Basic Authentic-
ation.

Medjiator rejects requests that do not include the username token and password of an Integration
Server user. Mediator only supports clear text passwords with this kind of authentication

Input Parameters

None.

Run-Time Governance Reference 41



Built-In Run-Time Actions Reference for Virtual Services

Require WSS X.509 Token

| Note: Dependency requirement: A policy that includes this action must also include the

Identify Consumer action.

Identifies consumers based on a WSS X.509 token. This action supports WSSecurityPolicy 1.2 and
cannot be used with REST services.

In the case where a consumer is sending a request with both transport credentials (HTTP Basic
authentication) and message credentials (WSS X.509 token or WSS Username), the message cre-
dentials take precedence over the transport credentials when Integration Server is determining
which credentials it should use for the session. For more information, see Require HTTP Basic
Authentication. In addition, you must ensure that the service consumer that connects to the virtual
service has an Integration Server user account.

Input Parameters

None.
Throttling Traffic Optimization

) Notes:

1. This action is not available in Mediator versions below 9.0.
2. Dependency requirement: A policy that includes this action must also include the Identify

Consumer action if the Limit Traffic for Applications option is selected.

This action limits the number of service invocations during a specified time interval, and sends
alerts to a specified destination when the performance conditions are violated.

Reasons for limiting the service invocation traffic include:

* To avoid overloading the back-end services and their infrastructure.

* To limit specific consumers in terms of resource usage (that is, you can use the “Monitor Service
Level Agreement” action to monitor performance conditions for a particular consumer, together
with “Throttling Traffic Optimization” to limit the resource usage).

® To shield vulnerable servers, services, and even specific operations.

® For service consumption metering (billable pay-per-use services).

| Note: To enable Mediator to publish performance metrics, you must configure Mediator to

communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator > Administration > CentraSite Communication). For the procedure, see the section
Configuring Communication with CentraSite in the document Administering webMethods Medi-
ator.

42 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Input Parameters

Soft Limit

Number Optional. Specifies the maximum number of invocations allowed per Interval
before issuing an alert. Reaching the soft limit will not affect further processing of requests
(until the Hard Limit is reached).

Note: The limit is reached when the total number of invocations coming from all all the

consumer applications (specified inthe Limit Traffic for Applications field)reaches
the limit. Soft Limit is computed in an asynchronous manner; thus when multiple requests
are made at the same time, it may be possible that the Soft Limit alert will not be strictly
accurate.

Hard Limit

Number Required. Specifies the maximum number of invocations allowed per alert interval
before stopping the processing of further requests and issuing an alert. Typically, this
number should be higher than the soft limit.

Note: The limit is reached when the total number of invocations coming from all all the

consumer applications (specifiedinthe Limit Traffic for Applications field)reaches
the limit. Hard Limit is computed in an asynchronous manner; thus when multiple requests
are made at the same time, it may be possible that the Hard Limit alert will not be strictly
accurate.

Limit
Traffic for
Applications

String Specifies the consumer application(s) that this action applies to. To specify multiple

consumer applications, use the */ button to add rows, or select Any Consumer to apply
this action to any consumer application.

Interval Number Specifies the amount of time for the soft limit and hard limit to be reached.
Frequency String Specifies how frequently to issue alerts.
Value Description
Every Time Issue an alert every time the specified condition is
violated.
Only Once Issue an alert only the first time the specified condition
is violated.
Reply To String Optional. Specifies where to log the alerts.

Destination

Important: Ensure that Mediator is configured to send event notifications to the

destination(s) you specify here. For details, see Alerts and Transaction Logging in the
document Administering webMethods Mediator.

Value Description

Sends the alerts to the virtual service's Events profile in
CentraSite.

Prerequisite: You must configure Mediator to
communicate with CentraSite (in the Integration Server
Administrator, go to Solutions > Mediator >
Administration > CentraSite Communication). For the
procedure, see the section Configuring Communication

Run-Time Governance Reference 43



Built-In Run-Time Actions Reference for Virtual Services

CentraSite

with CentraSite in the document Administering
webMethods Mediator.

Local Log

Sends the alerts to the server log of the Integration
Server on which Mediator is running.

Also choose a value in the Log Level field:

= Info: Logs error-level, warning-level, and
informational-level alerts.

® Warn: Logs error-level and warning-level alerts.

® Error: Logs only error-level alerts.

Important: The Integration Server Administrator's
logging level for Mediator should match the logging
level specified for this action (go to Settings > Logging
> Server Logger).

SNMP

Sends the alerts to CentraSite's SNMP server or a
third-party SNMP server.

Prerequisite: You must configure the SNMP server
destination (in the Integration Server Administrator, go
to Solutions > Mediator > Administration > Email). For
the procedure, see the section SNMP Destinations for
Run-Time Events in the document Administering
webMethods Mediator.

Email

Sends the alerts to an SMTP email server, which sends
them to the email address(es) you specify here. To

specify multiple addresses, use the [*/ button to add
rows.

Prerequisite: You must configure the SMTP server
destination (in the Integration Server Administrator, go
to Solutions > Mediator > Administration > Email). For
the procedure, see the section SMTP Destinations for
Run-Time Events in the document Administering
webMethods Mediator.

Alert
Message for
Soft Limit

String Optional. Specify a text message to include in the soft limit alert.

Alert
Message for
Hard Limit

String Optional. Specify a text message to include in the hard limit alert.

44

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual Services

Validate Schema

This action validates all XML request and/or response messages against an XML schema referenced
in the WSDL.

Mediator can enforce this policy action for messages sent between services. When this policy is
set for the virtual service, Mediator validates XML request messages, response messages, or both,
against the XML schema referenced in the WSDL.

Input Parameters

Validate |Object Validates request and/or response messages. You may select both Request and
SOAP Response.

Message(s) [yalue

Description
Request Validate all requests.
Response Validate all responses.

/\  Important: Be aware that Mediator does not remove wsu: Id attributes that may have been

added to a request by a consumer as a result of security operations against request elements
(i.e., signatures and encryptions). In this case, to avoid schema validation failures you would
have to add a Request Processing step to the virtual service so that the requests are passed
to an XSLT transformation file that removes the wsu: Id attribute. For details about the Re-
quest Processing step, see the section Virtual Services in CentraSite Control .

Run-Time Governance Reference 45



46



3 Built-In Run-Time Actions Reference for Virtual APls

= Summary of the Run-Time Actions for Virtual APIs

= Action Evaluation Order and Dependencies for Virtual APIS ............ccooiiiiiiiiiiiiiiiiiiie e

= Run-Time Actions Reference for Virtual APIs .......

47



Built-In Run-Time Actions Reference for Virtual APIs

This section describes the built-in run-time actions that you can include in run-time governance
rules for virtualized APIs. You use these actions only when you are using the CentraSite Business
UI to create run-time policies for virtualized APIs. The content is organized under the following
sections:

Summary of the Run-Time Actions for Virtual APIs

You can include the following kinds of built-in run-time actions in the run-time governance rules
for virtualized APISs:

= Request Handling Actions
= Policy Enforcement Actions
= Response Handling Actions
= Error Handling Action

Request Handling Actions

Mediator provides the following actions for handling requests:

Request HTTP Protocol Specifies the protocol (HTTP or HTTPS) for the virtualized API to accept
requests.

In addition,
For SOAP APIs. Specify the SOAP version.

For REST APIs. Specify the HTTP method.

Request Transformation Invokes an XSLT transformation in the SOAP request before it is submitted
to the native APIL

Invoke webMethods IS Service|Invokes a webMethods IS service to preprocess the request before it is
submitted to the native APL

Policy Enforcement Actions

Mediator provides the following categories of policy enforcement actions:

= | ogging and Monitoring Actions
= Routing Actions
= Security Actions

48 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

= Validation Action

Logging and Monitoring Actions

Log Invocations

Logs request/response payloads to a destination you specify.

Monitor Service Level
Agreement

Monitors the run-time performance of a virtual alias, especially for particular
consumer(s). You can configure this action to define a Service Level
Agreement (SLA), which is set of conditions that define the level of
performance that a specified consumer should expect from the alias.

Routing Actions

Endpoint Properties

Defines a set of properties for an endpoint to which you route requests. You
can specify a SOAP optimization method, timeouts for HTTP connections and
socket reads, the SSL client authentication aliases for the endpoint (Client
Certificate Alias, Keystore Alias, Truststore Alias), and the WS-Security headers
of the requests that Mediator should pass to the native APL.

Set Headers

Specifies the HTTP headers to authenticate the requests.

Set HTTP Authorization

Specifies the authentication scheme (HTTP Basic authentication, NTLM or
OAuth).

Straight Through Routing

Routes the requests directly to a native endpoint that you specify.

Security Actions

Allow Anonymous Usage

Allows anonymous users to access the APIs.

Evaluate Client Certificate
for SSL Connectivity

Mediator will validate the client's certificate that the consumer application
submits to the API in CentraSite. The client certificate that is used to identify
the consumer is supplied by the client to the Mediator during the SSL
handshake over the transport layer.

Evaluate Hostname

Mediator will try to identify the consumer's hostname against either the
Registered Consumers list (the list of consumers available in Mediator) or the
Global Consumers list (the list of Registered Consumers).

Evaluate HTTP Basic
Authentication

You can select one of the following options:

= Mediator will try to identify the consumer against either the Registered
Consumers list (the list of consumers available in Mediator) or the Global
Consumers list (the list of Registered Consumers).

® Mediator will try to verify the consumer's authentication credentials
contained in the request's Authorization header against the list of users
registered in the Integration Server on which Medjiator is running.

Evaluate IP Address

Mediator will try to identify the consumer's IP address against either the
Registered Consumers list (the list of consumers available in Mediator) or the
Global Consumers list (the list of Registered Consumers).

Run-Time Governance Reference

49



Built-In Run-Time Actions Reference for Virtual APIs

Evaluate WSS Username
Token

For SOAP APIs. Mediator will try to identify the consumer's WSS username
token against either the Registered Consumers list (the list of consumers
available in Mediator) or the Global Consumers list (the list of Registered
Consumers).

Evaluate X.509 Certificate

For SOAP APIs. Medjiator will try to identify the consumer's WSS X.509 token
against either the Registered Consumers list (the list of consumers available
in Mediator) or the Global Consumers list (the list of Registered Consumers).

Evaluate XPath Address

Mediator will try to identify the consumer's XPath expression against either
the Registered Consumers list (the list of consumers available in Mediator) or
the Global Consumers list (the list of Registered Consumers).

Require SSL

For SOAP APIs. Requires that requests be sent via SSL client certificates.

Validation Action

Validate Schema | Validates all XML request and/or response messages against an XML schema referenced
in the WSDL.

Response Handling Actions

Response Transformation

Invokes an XSLT transformation in the SOAP response payloads from
XML format to the format required by the consumer.

Invoke webMethods IS Service|Invokes a webMethods IS service to process the response from the native

API before it is returned to the consumer.

Error Handling Action

Custom SOAP Response Message |Returns a custom error message (and/or the native provider's service

fault content) to the consumer when the native provider returns a service
fault.

Action Evaluation Order and Dependencies for Virtual APls

When you publish a virtual API, CentraSite automatically validates the API's policy enforcement

workflow to ensure that:

" Any action that appears in a single message flow multiple times is allowed to appear multiple

times.

For those actions that can appear in a message flow only once (for example, Evaluate I Address),
Mediator will choose only one, which might cause problems or unintended results.

50

Run-Time Governance Reference




Built-In Run-Time Actions Reference for Virtual APIs

® All action dependencies are properly met. That is, some actions must be used in conjunction
with another particular action.

CentraSite will inform you of any violation, and you will need to correct the violations before
publishing the APL

Effective Policies

When you publish a virtual endpoint to Mediator, CentraSite combines the actions specified
within the virtual endpoint’s enforcement definition, and generates what is called the effective
policy for the virtual endpoint. For example, suppose your virtual endpoint is configured with
two run-time actions: one that performs a logging action and another that performs a security action.
When you publish the virtual endpoint, CentraSite automatically combines the two actions into
one effective policy. The effective policy, which contains both the logging action and the security
action, is the policy that CentraSite actually publishes to Mediator with the virtual endpoint.

When CentraSite generates the effective policy, it validates the resulting action list to ensure that
it contains no conflicting or incompatible actions. If the list contains conflicts or inconsistencies,
CentraSite resolves them according to Policy Resolution Rules.

The effective policy that CentraSite produces for a virtual endpoint is contained in an object called
a virtual service definition (VSD). The VSD is given to Mediator when you publish the virtual
endpoint. After you publish a virtual endpoint, you can view its VSD (and thus examine the effective
policy that CentraSite generated for it) from the Mediator user interface.

The following table shows:

® The order in which Mediator evaluates the actions.

® Action dependencies (that is, whether an action must be used in conjunction with another par-
ticular action).

Evaluation|Action Dependency Can include multiple times in a policy if the selection
Order
criteria is combined using an AND operator, not an
OR?
1 Evaluate HTTP Basic|None. No. Mediator includes only one action in the
Authentication effective policy.
2 Evaluate WSS None. If you select this | No. Mediator includes only one action in the
Username Token action in addition to other |effective policy.
actions, you must select
the ALL option to join the
identifiers with the AND
operator.
3 Evaluate X.509 None. If you select this  |No. Mediator includes only one action in the
Certificate action in addition to other |effective policy.

Run-Time Governance Reference 51



Built-In Run-Time Actions Reference for Virtual APIs

Evaluation|Action Dependency Can include multiple times in a policy if the selection

Order
criteria is combined using an AND operator, not an
OR?

actions, you must select
the ALL option to join the
identifiers with the AND
operator.

4 Evaluate IP Address [None. No. Mediator includes only one action in the
effective policy.

5 Evaluate XPath None. No. Mediator includes only one action in the

Address effective policy.

6 Evaluate Hostname |None. No. Mediator includes only one action in the
effective policy.

7 Require SSL None. If multiple actions appear, and one of them has
its Client Certificate Required parameter set to
Yes, only one occurrence of the action appears
in the effective policy.

8 Validate Schema None. If at least one occurrence of the action is
configured to validate requests, and at least one
occurrence of the action is configured to validate
responses, then Mediator includes in the
effective policy an action to validate both
requests and responses. Otherwise, an action is
chosen which validates only requests or only
responses (depending on the value of the
Validate SOAP Messages parameter of the
action).

9 Log Invocations None. No. Mediator includes only one action in the
effective policy.

10 Monitor Service At least one of the Yes. Mediator includes all Monitor Service Level

Level Agreement

Evaluate actions.

Agreement actions in the effective policy.

Run-Time Actions Reference for Virtual APls

This section provides an alphabetic list of the built-in run-time actions you can include in run-time

governance rules for virtualized APIs:

= Allow Anonymous Usage

= Custom SOAP Response Message
= Endpoint Properties
= Evaluate Client Certificate for SSL Connectivity
= Evaluate Hostname

52

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

Evaluate HTTP Basic Authentication
Evaluate IP Address

Evaluate WSS Username Token
Evaluate WSS X.509 Certificate
= Evaluate XPath Address

= |nvoke webMethods IS Service

= | og Invocations

= Monitor Service Level Agreement
= Response Transformation

= Request HTTP Protocol

= Request Transformation

= Require SSL

= Set Headers

= Set HTTP Authentication

= Straight Through Routing

= Validate Schema

Allow Anonymous Usage

This action allows anonymous users to access the APIs.

Input Parameters

Allow Boolean. Specifies whether to allow all users to access the API, without restriction.

Anonymous Value

Description

Usage

True Default. Allows only the identified users to access the
APL
False Allow all users to access the API.

Custom SOAP Response Message

This action returns a custom error response (and/or the native provider’s service fault content) to
the consumer when the native provider returns a service fault. Alternatively, you can configure

global error responses for all virtual services, using Mediator's Service Fault Configuration page
(see Configuring Global Service Fault Responses in the document Administering webMethods Mediator).

Run-Time Governance Reference

53



Built-In Run-Time Actions Reference for Virtual APIs

Input Parameters

Failure Message

String. Returns the fault responses to the consumer, when:
® When a fault is returned by the native API provider.

In this case, the $ERROR_MESSAGE variable in the fault response will contain the
message produced by the provider's exception that caused the error. This is equivalent
to the getMessage call on the Java Exception. This maps to the faultString element
for SOAP 1.1 or the Reason element for SOAP 1.2 catch. Mediator discards the native
API provider's fault and does not return this content to the web service caller since
it could be considered a security issue, especially if the native provider is returning
a stack trace with its response.

® When a fault is returned by internal Mediator exceptions (such as policy violation

errors, timeouts, etc.).

In this case, SERROR_MESSAGE will contain the error message generated by
Mediator.

Send Native
Failure Message

Boolean. Optional. Specifies whether to send native SOAP / REST failure message to the
consumer.

Value Description

True Default. Mediator sends the failure message
to the consumer.

False Mediator does not send the failure message
to the consumer.

Pre-processing
webMethods IS
Service

String. Optional. Invokes one or more webMethods IS services to manipulate the
response message before the Custom SOAP Response Message action is invoked. The
IS service will have access to the response message context (the axis2 MessageContext
instance) before it is updated with the custom error message. For example, you might
want to send emails or perform custom alerts based on the response payload.

Post-processing
webMethods IS

String. Optional. Invokes one or more webMethods IS services to manipulate the API
fault after the Custom SOAP Response Message action is invoked. The IS service will

Service have access to the entire API fault and the custom error message. You can make further
changes to the fault message structure, if needed.
Endpoint Properties

This action defines a set of properties for an endpoint to which you route requests.

54

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

Input Parameters

SOAP
Optimization
Method

String. Optional. For a SOAP endpoint. Specifies the optimization methods to optimize
the payloads of SOAP requests:

Value Description

MTOM Default. Indicates that Mediator expects to
receive a request with a Message Transmission
Optimization Mechanism (MTOM) attachment,
and will forward the attachment to the native
APL

SWA Indicates that Mediator expects to receive a
"SOAP with Attachment" (SwA) request, and
will forward the attachment to the native APL

HTTP
Connection
Timeout

String. The time interval (in seconds) after which a connection attempt will timeout. If a
value is not specified (or if the value 0 is specified), Mediator will use the value of the
global property pg.endpoint.connectionTimeout located in the file Integration
Server_directory\packages\ WmMediator\ config \ resources \ pg-config.properties . The
default of that property is 30 seconds.

Read Timeout

Number Optional. The time interval (in seconds) after which a socket read attempt will
timeout. If a value is not specified (or if the value 0 is specified), Mediator will use the
value of the global property pg.endpoint.readTimeout located in the file Integration
Server_directory\packages\ WmMediator\ config \ resources \ pg-config.properties . The
default of that property is 30 seconds.

SSL Object. Enables SSL client authentication for the endpoint.
Configuration
Value Description
Client Certificate Alias The client's private key to be used for

performing SSL client authentication.

Truststore Alias The truststore alias of the instance of Integration
Server on which Mediator is running.

Keystore Alias The keystore alias of the instance of Integration
Server on which Mediator is running. This value
(along with the value of Client Certificate Alias)
will be used for performing SSL client
authentication.

WSS Header

String. Specifies WS-Security headers of the incoming requests that Mediator should pass
to the native APL

Run-Time Governance Reference 55



Built-In Run-Time Actions Reference for Virtual APIs

Evaluate Client Certificate for SSL Connectivity

When this action is configured for a virtual API, Mediator validates the client's certificate that the
consumer application submits to the API in CentraSite. The client certificate that is used to
identify the consumer is supplied by the client to the Mediator during the SSL handshake over
the transport layer. In order to identify consumers by transport-level certificates, the run-time
communication between the client and the Mediator must be over HTTPS and the client must pass
a valid certificate.

To use this action, the following prerequisites must be met:
® InIntegration Server, create an HTTPS port, as described in Configuring Ports in the webMethods

Integration Server Administrator’s Guide.

® In Integration Server, create a keystore and truststore, as described in Securing Communications
with the Server in the webMethods Integration Server Administrator’s Guide.

* Configure Mediator by setting the IS Keystore and IS Truststore parameters, as described in
Configuring Mediator > Keystore Configuration in the document Administering webMethods Mediator.

® Configure Mediator by setting the HTTPS Ports Configuration parameter, as described in Con-
figuring Mediator > Ports Configuration in the document Administering webMethods Mediator.

Mediator rejects requests that do not include a client certificate during the SSL handshake over
the Transport layer.

Input Parameters

Identify |String. The list of consumers against which the client certificate should be validated for identifying
Consumer |requests from a particular consumer.

Value Description

Registered Consumers Mediator will try to verify the consumer's certificate against
the list of consumer applications who are registered as
consumers for the APL

Global Consumers Default. Mediator will try to verify the consumer's certificate
against a list of users registered in the Integration Server on
which Mediator is running.

If Mediator cannot identify the consumer, Mediator fails the request and generates a Policy Violation
event.

56 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

Evaluate Hostname

If you select this action, Mediator will evaluate the request to ensure that the request originated
from the particular host machine. Mediator identifies the consumer against the list of users re-
gistered in the Integration Server on which Mediator is running.

Input Parameters

Identify String. Optional.

User Using [yalue Description
HostName - - . - ; :
Address Registered Consumers|Mediator will try to identify the consumer's hostname against

the list of Registered Consumers.

Global Consumers Mediator will try to identify the consumer's hostname against
the consumers available in Mediator.

If Mediator cannot identify the consumer, Mediator fails the request and generates a Policy Violation
event.

Evaluate HTTP Basic Authentication

If youset Validate User Using HTTP Basic Authentication to True, this type of consumer au-
thentication is referred to as “preemptive authentication”.

If the user/password value in the Authorization header cannot be authenticated as a valid Integ-
ration Server user (or if the Authorization header is not present in the request), a 500 SOAP fault
is returned, and the client is presented with a security challenge. If the client successfully responds
to the challenge, the user is authenticated. This type of consumer authentication is referred to as
“non-preemptive authentication”. If the client does not successfully respond to the challenge, a
401 “WWW-Authenticate: Basic” response is returned and the invocation is not routed to the
policy engine. As a result, no events are recorded for that invocation, and its key performance in-
dicator (KPI) data are not included in the performance metrics.

Input Parameters

Identify User String. Optional.

Using HTTP Basic Iyalye Description

Authentication -
Registered « Mediator will try to identify the consumer against the list
Consumers of Registered Consumers.

Run-Time Governance Reference 57



Built-In Run-Time Actions Reference for Virtual APIs

Global Consumers Mediator will try to identify the consumer against the
consumers available in Mediator.

Validate User Boolean. Optional.
Using HTTP Basic
Authentication

Value Description

True Default. Mediator will verify the consumer's
authentication credentials contained in the request's
Authorization header against the list of users registered
in the Integration Server on which Mediator is running.

False Mediator will not verify the consumer’s authentication
credentials.

If Mediator cannot validate or identify the consumer, Mediator fails the request and generates a
Policy Violation event.

Evaluate IP Address

If you select this action, Mediator will evaluate the request to ensure that the request header contains
the X-Forwarded-For, which is used for identifying the IP address of a consumer through an HTTP

proxy.

Input Parameters

Identify|String. Optional.

5 Ser Ip Value Description
sing -
Address |Registered Consumers Mediator will try to identify the consumer's IP address against the

list of Registered Consumers.

Mediator will evaluate whether the request header contains the
X-Forwarded-For, which is used for identifying the IP address of a
consumer through an HTTP proxy.

Global Consumers Mediator will try to identify the consumer's IP address against the
consumers available in Medjiator.

58 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

Evaluate WSS Username Token

If you select this action, Mediator will evaluate the request to ensure that the request header contains
the WSS username token, which is used for identifying a consumer.

Input Parameters

Identify String. Optional.

bszg rUsing value Description
Username Registered Consumers|Mediator will try to identify the consumer's WSS username token
Token against the list of Registered Consumers.

Global Consumers Mediator will try to identify the consumer's WSS username token
against the consumers available in Mediator.

If Mediator cannot identify the consumer, Mediator fails the request and generates a Policy Violation
event.

Evaluate WSS X.509 Certificate

If you select this action, Mediator will evaluate the request to ensure that the request header contains
the WSS X.509 token, which is used for identifying a consumer.

Input Parameters

Identify String. Optional.

User Using Iyalye Description
WSS X.509 _
Token Registered Consumers|Mediator will try to identify the consumer's WSS X.509 token

against the list of Registered Consumers.

Global Consumers Mediator will try to identify the consumer's WSS X.509 token
against the consumers available in Mediator.

If Mediator cannot identify the consumer, Mediator fails the request and generates a Policy Violation
event.

Evaluate XPath Address

If you select this action, Mediator will evaluate the request to ensure that the request header contains
an XPath expression, and that expression matches with the expression defined in the consumer
details.

Run-Time Governance Reference 59



Built-In Run-Time Actions Reference for Virtual APIs

Input Parameters

Identify User String. Optional.
Using XPath Value Description
Address

Registered Consumers | Mediator will try to identify the consumer's XPath
expression against the list of Registered Consumers.

Global Consumers Mediator will try to identify the consumer's XPath
expression against the consumers available in Mediator.

Namespace The namespace of the XPath expression.

XPath Expression |An argument for evaluating the XPath expression.

If Mediator cannot identify the consumer, Mediator fails the request and generates a Policy Violation
event.

Invoke webMethods IS Service

This action invokes a webMethods IS service to preprocess the request before it is submitted to
the native APL

Input Parameters

IS Service|String. Specifies the webMethods IS service.

Log Invocations

This action logs request/response payloads. You can specify the log destination and the logging
frequency. This action also logs other information about the requests/responses, such as the API
name, operation name, the Integration Server user, a timestamp, and the response time.

Input Parameters

Request Boolean. Optional. Specifies whether to log all request payloads.
Payloads

Value Description
True Log all request payloads.
False Do not log request payloads.

Response |Boolean. Optional. Specifies whether to log all response payloads.
Payloads

Value Description

60 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

True Log all response payloads.
False Do not log response payloads.
Log String. Specifies how frequently to log the payload.
Generation
Frequency
Value Description
None Default. Do not log payloads.
Always Log all requests and/or responses.
On Success Log only the successful responses and/or requests.
On Failure Log only the failed requests and/or responses.
Send Data |String. Specifies where to log the payload.
To

Important: Ensure that Mediator is configured to log the payloads to the destination(s) you

specify here. For details, see Alerts and Transaction Logging in the document Administering

webMethods Mediator.

Value Description

CentraSite Logs the payloads in the API's Events profile in CentraSite.
Prerequisite: You must configure Mediator to communicate with
CentraSite (in the Integration Server Administrator, go to Solutions
> Mediator > Administration > CentraSite Communication). For
the procedure, see the section Configuring Communication with
CentraSite in the document Administering webMethods Mediator.

Local Log Logs the payloads in the server log of the Integration Server on

which Mediator is running.

Also choose a value in the Log Level field:

= Info: Logs error-level, warning-level, and informational-level
alerts.

® Warn: Logs error-level and warning-level alerts.

® Error: Logs only error-level alerts.

Important: The Integration Server Administrator's logging level for

Mediator should match the logging level specified for this action
(go to Settings > Logging > Server Logger).

Run-Time Governance Reference

61



Built-In Run-Time Actions Reference for Virtual APIs

SNMP Logs the payloads in CentraSite's SNMP server or a third-party
SNMP server.

Prerequisite: You must configure the SNMP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
> Administration > SNMP). For the procedure, see the section
SNMP Destinations for Run-Time Events in the document
Administering webMethods Mediator.

Email Sends the payloads to an SMTP email server, which sends them to
the email address(es) you specify here. Mediator sends the payloads
as email attachments that are compressed using gzip data

compression. To specify multiple addresses, use the button
to add rows.

Prerequisite: You must configure the SMTP server destination (in
the Integration Server Administrator, go to Solutions > Mediator
> Administration > Email). For the procedure, see the section SMTP
Destinations for Run-Time Events in the document Administering
webMethods Mediator.

Audit Log Logs the payload to the Integration Server audit logger. For
information, see the webMethods Audit Logging Guide.

Note: If you expect a high volume of events in your system, it is

recommended that you select the Audit Log destination for this
action.

Monitor Service Level Agreement

Monitors the run-time performance conditions for a virtual API for one or more specified consumers
, and then send alerts when the performance conditions are violated

You can configure this action to define a Service Level Agreement (SLA), which is a set of conditions
that defines the level of performance that a consumer should expect from a service. You can use

this action to identify whether a service's threshold rules are met or exceeded. For example, you

might define an agreement with a particular consumer that sends an alert to the consumer if re-

sponses are not sent within a certain maximum response time. You can configure SLAs for each

virtual service/consumer application combination.

For the counter-based metrics (Total Request Count, Success Count, Fault Count), Mediator sends
an alert as soon as the performance condition is violated, without having to wait until the end of
the metrics tracking interval. You can choose whether to send an alert only once during the interval,
or every time the violation occurs during the interval. (Mediator will send another alert the next
time a condition is violated during a subsequent interval.) For information about the the metrics
tracking interval, see The Metrics Tracking Interval .

62 Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

For the aggregated metrics (Average Response Time, Minimum Response Time, Maximum Response
Time), Mediator aggregates the response times at the end of the interval, and then sends an alert
if the performance condition is violated.

This action does not include metrics for failed invocations.

| Note: To enable Mediator to publish performance metrics, you must configure Mediator to

communicate with CentraSite (in the Integration Server Administrator, go to Solutions >
Mediator > Administration > CentraSite Communication). For the procedure, see the section
Configuring Communication with CentraSite in the document Administering webMethods Medi-
ator.

Input Parameters

Action Object. Specifies one or more conditions to monitor. To do this, specify a metric, operator,
Configuration
and value for each metric. To specify multiple conditions, use the button to add
multiple rows. If multiple parameters are used, they are connected by the AND operator.

Name String Array. The metrics to monitor.
Value Description
None Default.
Availability Indicates whether the service was available to the

specified consumers in the current interval.

Average Response Time The average amount of time it took the service to
complete all invocations in the current interval.
Response time is measured from the moment
Mediator receives the request until the moment it
returns the response to the caller.

Response Transformation

This action invokes an XSLT transformation in the SOAP response payloads from XML format to
the format required by the consumer.

Input Parameters

Transformation File|Object. Specifies the XSLT transformation file.

Run-Time Governance Reference 63



Built-In Run-Time Actions Reference for Virtual APIs

Request HTTP Protocol

This action specifies the protocol (HTTP or HTTPS), SOAP format, and the HTTP method for the

virtual API to accept and process the requests.

| Note: In order to have the API secured, it is mandatory that at least one of the (HTTP / HT-

TPS) protocol is set to “TRUE”.

Input Parameters

Is SSL
Enabled?

Boolean. Specifies whether the virtual API is secured by HTTPS (Secure Sockets Layer

(SSL)) authentication.

Value Description

True The virtual APl is secured by HTTPS (Secure
Sockets Layer (SSL)).

False Default. The virtual APl is not secured by HTTPS.

SOAP Version

String. For SOAP APIs. Specifies the SOAP format (None, SOAP 1.1, SOAP 1.2) of the
requests that the virtual API will accept. Default: SOAP 1.1.

HTTP Method

String. Optional. For REST APIs. Specifies the HTTP methods (GET, POST, PUT, DELETE)
that the virtual API should be allowed to perform on a REST resource. Default: POST.

HTTP Protocol

Boolean. Specifies whether the virtual APl is secured by HTTP authentication.

Value Description
True The virtual APl is secured by HTTP.
False Default. The virtual API is not secured by HTTP.

Request Transformation

This action invokes an XSLT transformation in the SOAP request before it is submitted to the

native APL

Input Parameters

Transformation File|Object. Specifies the XSLT transformation file.

64

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

Require SSL

Requires that requests be sent via SSL client certificates. This action supports WSSecurityPolicy
1.2 but can be used for both SOAP and REST services.

When this policy action is set for the virtual service, Mediator ensures that requests are sent to the
server using the HTTPS protocol (SSL). The policy also specifies whether the client certificate is
required. This allows Mediator to verify the client sending the request. If the policy requires the
client certificate, but it is not presented, Mediator rejects the message.

When a client certificate is required by the policy, the Integration Server HTTPS port should be
configured to request or require a client certificate.

Input Parameters

Client Boolean. Specifies whether client certificates are required for the purposes of:

Certificate
Required ® Verifying the signature of signed SOAP requests or decrypting encrypted SOAP requests

= Signing SOAP responses or encrypting SOAP responses

Value Description
Yes Require client certificates.
No Default. Do not require client certificates.

Set Headers

This action specifies the HTTP headers to authenticate the incoming requests.

Input Parameters

Set String. Specifies the HTTP headers to authenticate the requests.
Headers Iyalue Description
None Default. Do not use any HTTP headers to authenticate requests

Reuse Existing Headers |Usethe HTTP headers that are contained in the requests.

Custom Headers Use the HTTP headers that you specify in the Name and Value
columns below. If you need to specify multiple headers, use

the button to add rows.

Header  |Object. Specifies the custom HTTP header(s) and the values.

Value | Description

Run-Time Governance Reference 65



Built-In Run-Time Actions Reference for Virtual APIs

Name Name of the HTTP header.
Value A value for the HTTP header.
Set HTTP Authentication

This action specifies the authentication scheme for incoming requests.

Input Parameters

HTTP
Authentication

String. Authenticates requests to the native endpoint.

Value Description

Reuse Existing Credentials Default. Authenticates requests based on the
credentials specified in the HTTP header.

Is Anonymous Do not authenticate requests to the native
endpoint.

Custom Credentials Authenticates requests based on the

credentials you specify in the Username,
Password and Domain fields.

Authentication
Scheme

String. Optional. Specifies the mode of authentication: None, Basic Authentication
(default), or NTLM (Windows only).

If you are choosing None, select the following option:
= Is Anonymous: Does not authenticate requests.
If you are choosing Basic Authentication (default), select the following options:

" Reuse Existing Credentials: Default. Authenticates requests based on the credentials
specified in the HTTP header. Mediator passes the “Authorization” header present
in the original client request to the native service.

= Custom Credentials: Authenticates requests according to the values you specify in
the User, Password and Domain fields.

If you are choosing NTLM (Currently Windows only), select the following options:

Note: Note that if Mediator is used to access a native service protected by NTLM (which

is typically hosted in IIS), then the native service in IIS should be configured to use
NTLM as the authentication scheme. If the authentication scheme is configured as
“Windows”, then “NTLM” should be in its list. The “Negotiate” handshake will be
supported in the near future. This note applies to all three options for NTLM.

® Reuse Existing Credentials: Default. Mediator uses the user credentials passed in
the request header for an NTLM handshake with the server.

® Custom Credentials: Mediator uses the values you specify in the User, Password
and Domain fields for an NTLM handshake with the server.

66

Run-Time Governance Reference



Built-In Run-Time Actions Reference for Virtual APIs

OAuth2 Token |String. Optional.

If you are choosing OAuth2, select the following options:

= Reuse Existing Credentials: Default. Mediator will pass the OAuth2 Access token (a
“Bearer” type token) unchanged to the native OAuth server.

® Custom Credentials: Specify an OAuth access token to be deployed by Mediator. If
you select this option, the consumer need not pass the OAuth token during service
invocation. Click the Show Token button to view the OAuth access token. Users who
do not have the permissions to create and manage virtual services will not see this
button.

Note:

1. Youmust set the Integration Server property watt.server.auth.skipForMediator
to “true” and then restart Integration Server for the change to take effect. This property
is located in the server configuration file (server.cnf), which is located in the
Integration Server_directory\configdirectory. For details, see the webMethods
Integration Server Administrator’s Guide.

2. The run-time action “Evaluate HTTP Basic Authentication” will not be enforced when
using the authentication scheme OAuth2.

Specifies an OAuth2 access token to be deployed by Mediator.

Straight Through Routing

This action routes the requests directly to a native endpoint that you specify.

Input Parameters

Endpoint

String. Specifies the URL of the native endpoint to route the request to. For example:
http://mycontainer/creditCheckService

Alternatively, Mediator offers “Local Optimization” capability if the native service and the
virtual service (in Mediator) are located on the same machine. With local optimization, service
invocation happens in-memory and not through a network hop. In the Default To field the
Routing Protocols tab, specify the native service in either of the following forms:

local://<Service-full-path>

OR
local://<server>:<port>/ws/<Service-full-path>
For example:

local://MediatorTestServices:NewMediatorTestServices_Port

Run-Time Governance Reference 67



Built-In Run-Time Actions Reference for Virtual APIs

which points to the endpoint service NewMediatorTestServices_Port which is present under
the folder MediatorTestServices in Integration Server.

Validate Schema

This action validates all XML request and/or response messages against an XML schema referenced
in the WSDL.

Mediator can enforce this policy action for messages sent between services. When this policy is
set for the virtual service, Mediator validates XML request messages, response messages, or both,
against the XML schema referenced in the WSDL.

Input Parameters

Validate |Object. Validates request and/or response messages. You may select both Request and
SOAP Response.
Message(s) Value

Description
Request Validate all requests.
Response Validate all responses.

A\  Important: Be aware that Mediator does not remove wsu: 1d attributes that may have been

added to a request by a consumer as a result of security operations against request elements
(i.e., signatures and encryptions). In this case, to avoid schema validation failures you would
have to add a Request Transformation action or a Response Transformation action to the
virtual service so that the requests are passed to an XSLT transformation file that removes
the wsu: Id attribute. For details about the Request Transformation and Response Transform-
ation actions, see Request Transformation and Response Transformation.

68 Run-Time Governance Reference



	Run-Time Governance Reference
	Table of Contents
	Preface
	1 Run-Time Events and Key Performance Indicator (KPI) Metrics
	The Run-Time Event Types
	The Key Performance Indicator (KPI) Metrics
	The Event Notification Destinations
	CentraSite's SNMP Server
	Third-Party SNMP Servers

	Alerts and Transaction Logging
	SMTP Servers
	The Integration Server's Local Log
	The Integration Server's Audit Log

	The Metrics Tracking Interval
	Configuring CentraSite to Receive Run-Time Events and Metrics
	Components of the Event Receiver
	Configuring the Event Receiver
	Setting the Database Configuration Properties
	Setting the SNMPv3 Transport Configuration Properties
	Setting the SNMPv3 USM Configuration Properties
	Setting the Events Queue Implementation Property
	Setting the Properties for FileSystem or InMemory

	Event Type Modeling
	The "Target Type to Event Type Association" Object

	Event Modeling

	Viewing Run-Time Events and Metrics
	Viewing Run-Time Events and Metrics for Targets
	Viewing Run-Time Events for Virtual Services

	Creating Custom Run-Time Events
	Modifying Run-Time Events

	2 Built-In Run-Time Actions Reference for Virtual Services
	Summary of the Run-Time Actions for Virtual Services
	WS-SecurityPolicy 1.2 Actions
	Authentication Actions (WS-SecurityPolicy 1.2)
	XML Security Actions (WS-SecurityPolicy 1.2)

	Monitoring Actions
	Additional Actions

	Action Evaluation Order and Dependencies
	Effective Policies

	Usage Cases for Identifying/Authenticating Consumers
	Run-Time Actions Reference for Virtual Services
	Authorize Against Registered Consumers
	Authorize User
	Identify Consumer
	Log Invocation
	Monitor Service Performance
	Monitor Service Level Agreement
	Require Encryption
	Require HTTP Basic Authentication
	Require Signing
	Require SSL
	Require Timestamps
	Require WSS SAML Token
	Require WSS Username Token
	Require WSS X.509 Token
	Throttling Traffic Optimization
	Validate Schema


	3 Built-In Run-Time Actions Reference for Virtual APIs
	Summary of the Run-Time Actions for Virtual APIs
	Request Handling Actions
	Policy Enforcement Actions
	Logging and Monitoring Actions
	Routing Actions
	Security Actions
	Validation Action

	Response Handling Actions
	Error Handling Action

	Action Evaluation Order and Dependencies for Virtual APIs
	Effective Policies

	Run-Time Actions Reference for Virtual APIs
	Allow Anonymous Usage
	Custom SOAP Response Message
	Endpoint Properties
	Evaluate Client Certificate for SSL Connectivity
	Evaluate Hostname
	Evaluate HTTP Basic Authentication
	Evaluate IP Address
	Evaluate WSS Username Token
	Evaluate WSS X.509 Certificate
	Evaluate XPath Address
	Invoke webMethods IS Service
	Log Invocations
	Monitor Service Level Agreement
	Response Transformation
	Request HTTP Protocol
	Request Transformation
	Require SSL
	Set Headers
	Set HTTP Authentication
	Straight Through Routing
	Validate Schema



