
CentraSite

XQuery Navigation Tutorial

Version 9.0.1

June 2013



This document applies to CentraSite XQuery Navigation Tutorial Version 9.0.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IINM-NAVIG-TUTORIAL-901-20130618



Table of Contents

Preface ................................................................................................................................ v
1 Introduction ..................................................................................................................... 1
2 How to Query CentraSite ................................................................................................ 3

Using a CentraSite GUI .............................................................................................. 6
Using XQJ ................................................................................................................... 7
Using the HTTP GET Method .................................................................................... 9

3 Sample Queries .............................................................................................................. 11
Retrieving Primary Objects ...................................................................................... 15
Retrieving Embedded Objects .................................................................................. 14
Using Classifications ................................................................................................ 16
Navigating Along Associations ............................................................................... 17
Operations and Services ........................................................................................... 22

4 XQuery Modules ........................................................................................................... 25
5 Links .............................................................................................................................. 27

iii



iv



Preface

This page discusses navigation in CentraSite using XQuery, theW3C's query language for XML
data. CentraSite is SoftwareAG's SOA registry and repository. The following is based onCentraSite
version 8.2.

Introduction

How to Query CentraSite

Sample Queries

XQuery Modules

Links

v

http://www.w3.org/XML/Query/
http://www.w3.org/


vi



1 Introduction

CentraSite registry data is stored as XML; therefore, theW3C standard XML query language
XQuery iswell suited to retrieving information fromCentraSite. This chapter summarizes examples
for querying CentraSite using XQuery. XQuery is normatively described in a number of W3C
Recommendations. The two documents that are sufficient to the CentraSite XQuery user are the
following (both published 14 December 2010):

■ XQuery 1.0: An XML Query Language (Second Edition) (http://www.w3.org/TR/xquery/)
■ XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition) (ht-
tp://www.w3.org/TR/xquery-operators/)

CentraSite implements all of XQuery, with a few additional features. One of these extensions is
that the CentraSite implementation of XQuery includes update facilities. The currentW3CXQuery
standard defines only retrieval (read-only) facilities, though update extensions are in preparation
and will be part of the XQuery standard from version 2.0 onwards (see XQuery Update Facility
1.0). Note, however, that update support in CentraSite XQuery differs slightly from the W3C
proposal. This chapter only discusses the retrieval features of CentraSite XQuery; in principal, it
is also possible to use XQuery to update registry contents, but this should be used with caution.

This chapter describes how to query the CentraSite data store. It also presents numerous samples
that illustrate how queries are formulated. Finally, it briefly explains the concept of XQuery
modules and, in particular, it provides an introduction to the modules that are pre-loaded in the
data store; they are primarily intended for use with the CentraSite predefined reports but they
can also be used in the context of user-written queries.

1

http://www.w3.org/
http://www.w3.org/XML/Query/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/


2



2 How to Query CentraSite

■ Using a CentraSite GUI ...................................................................................................................... 6
■ Using XQJ ....................................................................................................................................... 7
■ Using the HTTP GET Method .............................................................................................................. 9

3



This chapter is about the technical means of addressing queries to the CentraSite server. Although
the techniques discussed here are not all there is to say about this topic, they suffice to useCentraSite
XQuerying in many scenarios.

This chapter does not describe XQuerying in connectionwithCentraSite reporting.We recommend
that you use one of the methods described below to develop your queries, then paste the queries
into the reports at the appropriate places.

Using a CentraSite GUI

The most convenient way of querying the CentraSite registry/repository with an XQuery is to use
one of the CentraSite GUIs, namely CentraSite Control or CentraSite Eclipse Perspective.

Using CentraSite Control

Using CentraSite Control, click themenu itemAsset Catalog > Search, then select theXQuery tab.
A window in which you can edit and execute queries opens. A first sample query is provided.
Execute the sample query by clicking the Search button.

The screenshot below shows a query that retrieves the name and owner of all organizations, and
also the result of executing the query. The query is listed below:

XQuery Navigation Tutorial4

How to Query CentraSite



declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
for $organization in collection("CentraSite")/jaxr:organization
return
<organization>
<name> { string(($organization/jaxr:name/jaxr:localString)[1]) } </name>
<owner> {

let $owner := collection("CentraSite")/*:user
[jaxr:key = $organization/jaxr:owner]

return string(($owner/jaxr:name/jaxr:localString)[1])
} </owner>

</organization>

For additional queries, please see the chapter Sample Queries.

Using the Eclipse CentraSite Perspective

The Eclipse CentraSite Perspective offers the same functionality as CentraSite Control, therefore
it can also be used to searching the registry/repository by XQuery. The “flashlight” icon that is
also available in CentraSite Control is visible in the Eclipse menu:

5XQuery Navigation Tutorial

How to Query CentraSite



Clicking on this icon opens the CentraSite Search dialog, which is slightly different from the
CentraSite Control Search dialog: the Eclipse search dialog offers some Java-specific features and
also it shows a different sample query, namely tf:get-current-user(), a predefined function
that returns the identity of the current user:

Clicking on the Search button opens a view that reveals the results of the search:

XQuery Navigation Tutorial6

How to Query CentraSite



Using XQJ

CentraSite offers an implementation of the Java™ XQJ specification, see JSR 225: XQuery API for
Java - XQJ (http://www.jcp.org/en/jsr/detail?id=225). The XQJ interface is an implementation of
a specification developed under the Java Community Process (JCP), a mechanism to allow open
source development of Java standards and software. For more information about the JCP, see Java
Community Process Home (http://www.jcp.org/en/home/index).

The following Java class, XQJClient.java, queries the CentraSite registry and outputs the result to
standard output (STDOUT).

import com.softwareag.xqj.extension.TXQDataSourceFactory;
import javax.xml.xquery.*;

public class XQJClient {

public static void main(String[] args)
{

String dbUrl = "http://cshost:53305/CentraSite/CentraSite";
String userid = "Administrator";
String password = "manage";
String query = "collection('CentraSite')/*:organization/*:name";

7XQuery Navigation Tutorial

How to Query CentraSite

http://www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/home/index
http://www.jcp.org/en/home/index


try {

// get a new data source instance
XQDataSource dataSource

= TXQDataSourceFactory.createDataSource(dbUrl,userid,password);
dataSource.setProperty("com.softwareag.tamino.xqj.defaultCollection",

"CentraSite");

// establish a connection to the XQuery engine
XQConnection conn = dataSource.getConnection();
System.out.println("Connected to " + dbUrl);

// create an expression object that is later used
// to execute an XQuery expression
XQExpression expr = conn.createExpression();
XQResultSequence result = expr.executeQuery(query);
System.out.println("Executed query:" + query);

// output query results
while (result.next())
{

try
{
String str = result.getAtomicValue();
System.out.println(str.trim());

} catch (Exception ex)
{

conn.rollback();
ex.printStackTrace(System.err);
System.exit(1);

}
}

// free all resources
result.close();
expr.close();
conn.rollback();

} catch (XQException ex)
{
ex.printStackTrace(System.err);
System.exit(1);

}
}

}

To run this class, set the strings dbUrl, userid and password to suitable values, and set the string
query as desired (the query shown in the listing above should return a reasonable result).

Ensure that the following Java classes are included in the classpath (they can all be found in the
redist subdirectory of the CentraSite home directory):

XQuery Navigation Tutorial8

How to Query CentraSite



CentraSiteDynLoader.jar
cstUtils.jar
inmUtil.jar
inmUtilConf.jar
log4j.jar
stax-api.jar
TaminoAPI4J.jar
TaminoAPI4J-l10n.jar
wstx-asl.jar
xqj-api.jar
xqj-ino-api.jar

The following listing shows sample output after running the query:

Connected to http://pccentrasite:53305/CentraSite/CentraSite
Executed query:collection('CentraSite')/*:organization/*:name
<localString xml:lang="en-US">Default Organization</localString>

For a complete discussion of CentraSite's XQJ facilities, in particular the update feature, which is
a Software AG-specific enhancement to the standard, refer to the sectionCentraSite XQJ Interface
of the CentraSite documentation.

Using the HTTP GET Method

This access method allows commands to be sent to the CentraSite server using URLs sent to the
server by means of the HTTP GETmethod. Queries are addressed by sending them via HTTP to
the CentraSite server URL, which is http://hostname:53305/CentraSite/CentraSite, assuming that the
port on which the CentraSite server listens is 53305 as suggested by the installation. The query is
formed by concatenating:

1. the server URL (see above);

2. the collection (in the example above, this is /CentraSite);

3. the xquery server command, which is "?_xquery=" followed by the query.

The following query requests a specific service named MusicQuoteService:

declare namespace cs="http://namespaces.CentraSite.com/Schema/jaxr";
collection("CentraSite")/cs:service

[xs:string(cs:name/cs:localString) = "MusicQuoteService"]

Open a browser, type http://hostname:53305/CentraSite/CentraSite/CentraSite?_xquery=declare ... into
the address field, and press Enter. The query should not contain any spaces. If spaces are necessary
(for example replacing the linebreak and around "namespace"), use the escape sequence "%20".

9XQuery Navigation Tutorial

How to Query CentraSite

http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/overview.htm
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/overview.htm


Assuming that the host has a CentraSite installed and assuming that it contains such a service, the
following response appears in the browser window:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"

xmlns:xql="http://metalab.unc.edu/xql/">
<xq:query xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">
...

</xq:query>
<ino:message ino:returnvalue="0">
<ino:messageline>XQuery Request processing</ino:messageline>

</ino:message>
<xq:result xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">
<service crt="2009-06-05T09:43:15.406+02:00"

mod="2009-06-05T09:43:15.406+02:00"
xmlns="http://namespaces.CentraSite.com/Schema/jaxr">

<key v2Key="874ba2e3-51a4-11de-9115-ba2e8418f294">
uddi:874ba2e3-51a4-11de-9115-ba2e8418f294

</key>
<owner>uddi:7470f530-4b6a-11de-850f-80568acb7b53</owner>
<name>
<localString xml:lang="en-GB">MusicQuoteService</localString>

</name>
<submittingOrganization>
uddi:4299de0d-51a4-11de-9115-99700cdcef42

</submittingOrganization>
<externalLinks>
...

</externalLinks>
<classifications>
...

</classifications>
<majorVersion>1</majorVersion>
<minorVersion>0</minorVersion>
<stability>DYNAMIC</stability>
<status>SUBMITTED</status>
<providingOrganization>
uddi:4299de0d-51a4-11de-9115-99700cdcef42

</providingOrganization>
<serviceBindings>
...

</serviceBindings>
<instanceSlots>
...

</instanceSlots>
</service>

</xq:result>
<ino:message ino:returnvalue="0">
<ino:messageline>XQuery Request processed</ino:messageline>

</ino:message>
</ino:response>

XQuery Navigation Tutorial10

How to Query CentraSite



3 Sample Queries

■ Retrieving Primary Objects ................................................................................................................ 15
■ Retrieving Embedded Objects ............................................................................................................ 14
■ Using Classifications ........................................................................................................................ 16
■ Navigating Along Associations ........................................................................................................... 17
■ Operations and Services ................................................................................................................... 22

11



This chapter provides a collection of sample queries that can be submitted, either as-is ormodified,
to a CentraSite server.

The first section deals with the so-called primary objects that are represented as XML documents
in the database. These are Services, Organizations, ClassificationSchemes, Concepts, and instances
of user-defined ObjectTypes. Subsequent sections cover the embedded objects, i.e. the objects that
are contained in documents representing primary objects. These are Associations, Classifications,
ExternalLinks, Slots and the like.

The queries deal with the data pertaining to the fictitiousMozart Music GmbH.

Retrieving Primary Objects

There are a number of so-called primary object types in theway the JAXRdatamodel is represented
in the CentraSite datastore. Instances of these object types are represented as XML documents in
the datastore'sCentraSite collection. This means to say that in order to find, for example, all organ-
izations in a CentraSite installation the following XQuery is appropriate:

for $organization in collection("CentraSite")/*:organization
return $organization

The document element name pattern "*:organization" finds all documents with a local-name "or-
ganization" in any namespace. Since using the proper namespace allows the XQuery processor
more scope for optimization (index utilization, for example), we can enhance the query:

declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr"
for $organization in collection("CentraSite")/jaxr:organization
return $organization

To find a specific organization, add a "where" clause. Keep in mind that most elements to be re-
trieved (for example the "key" element, which holds the unique UDDI key) are also in the JAXR
namespace.

declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
for $organization in collection("CentraSite")/jaxr:organization
where $organization/jaxr:key = "uddi:4299de0d-51a4-11de-9115-99700cdcef42"
return $organization

To return a more sophisticated result than just the retrieved element as it is contained in the
database, define a result structure as the query result and insert data taken from the element.

The query shown below returns a generated element "organization", which contains the organiz-
ation's name and the name of its owner. The owner is found as the "user" (another primary object
type) that is pointed to by the organization's "owner" sub-element.

XQuery Navigation Tutorial12

Sample Queries



declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
for $organization in collection("CentraSite")/jaxr:organization
where $organization/jaxr:key = "uddi:4299de0d-51a4-11de-9115-99700cdcef42"
return
<organization>
<name> { string(($organization/jaxr:name/jaxr:localString)[1]) } </name>
<owner> {

let $owner := collection("CentraSite")/*:user
[jaxr:key = $organization/jaxr:owner]

return string(($owner/jaxr:name/jaxr:localString)[1])
} </owner>

</organization>

This results in a newly-created element node that contains elements for the organization's name
and owner, for example:

- <xq:result xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">
- <organization>

<name>Mozart Music GmbH</name>
<owner>INTERNAL\Administrator</owner>

</organization>
</xq:result>

Since finding an object's name is something that occurs frequently, it is advisable to introduce a
user-defined function for this task:

declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
declare function local:getName($node as node()) as xs:string {

string(($node/jaxr:name/jaxr:localString)[1])
};
for $organization in collection("CentraSite")/jaxr:organization
where $organization/jaxr:key = "uddi:4299de0d-51a4-11de-9115-99700cdcef42"
return
<organization>
<name> { local:getName($organization) } </name>
<owner> {

let $owner := collection("CentraSite")/*:user
[jaxr:key = $organization/jaxr:owner]

return local:getName($owner)
} </owner>

</organization>

Other primary object types, besides "organization" and "user", are "service", "package", "classifica-
tionScheme", "concept", and "externalLink". In addition, instances of user-defined object types
become primary objects, since a corresponding schema that defines the new type as a newdoctype
to the database is created whenever a new type is added to CentraSite.

13XQuery Navigation Tutorial

Sample Queries



Retrieving Embedded Objects

Examples of instances of embedded object types are "Classifications", "Associations", and "Slots".
These three kinds of objects may occur within primary objects of different types; the way they are
included is always the same regardless of the primary object's type.

Firstly, we consider the slots provided with "MusicQuoteService". For this, we assume that the
company offering these kinds of services has bundled its services into different colour schemes,
and therefore attaches a property named colour to the services that are associatedwith a particular
colour scheme, as shown below:

The following query would retrieve that property:

XQuery Navigation Tutorial14

Sample Queries



declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
declare function local:getName($node as node()) as xs:string {

string($node/jaxr:name/jaxr:localString)
};
for $service in collection("CentraSite")/jaxr:service
where local:getName($service) = "MusicQuoteService"
return $service/jaxr:instanceSlots/colour

This would return:

<colour xmlns="">blue</colour>

When dealing with function calls, the optimizer sometimes decides to inline the function. In other
words, before the query is executed, a function call is replaced by the body of the function.However,
a function call may or may not be inlined; in the case of the current query, if the function call to
local:getName is not inlined, this might inhibit the use of an index on the service's name. If the
performance of a query is unsatisfactory, it might be worth trying to force function inlining by
preceding the function declaration with an inline query pragma as follows:

declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
{?inline?}
declare function local:getName($node as node()) as xs:string {

string($node/jaxr:name/jaxr:localString)
};
for $service in collection("CentraSite")/jaxr:service
where local:getName($service) = "MusicQuoteService"
return $service/jaxr:instanceSlots/colour

Likewise, the optimization pragma {?optimization inline="full"?} at the very beginning of
the querywould cause all user-defined functions to be inlined except those that directly or indirectly
reference themselves.

Since dealing with the other two general embedded object types, Classification and Association,
is more complicated, they are dealt with in the separate sections Using Classifications andNav-
igating along Associations.

Other embedded object types are proprietary to certain primary object types, for example "service-
Bindings", which only occur as parts of "services". To find out about the structure, use queries to
return whole objects. A good method to find out which elements exist below a certain point in an
XML document is to use the local-name function:

15XQuery Navigation Tutorial

Sample Queries



declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
declare function local:getName($node as node()) as xs:string {

string($node/jaxr:name/jaxr:localString)
};
for $service in collection("CentraSite")/jaxr:service
where local:getName($service) = "MusicQuoteService"
return for $subelement in $service/*

return local-name($subelement)

The result is:

<xq:result xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">
<xq:value>key</xq:value>
<xq:value>owner</xq:value>
<xq:value>name</xq:value>
<xq:value>description</xq:value>
<xq:value>submittingOrganization</xq:value>
<xq:value>externalLinks</xq:value>
<xq:value>classifications</xq:value>
<xq:value>majorVersion</xq:value>
<xq:value>minorVersion</xq:value>
<xq:value>stability</xq:value>
<xq:value>status</xq:value>
<xq:value>providingOrganization</xq:value>
<xq:value>serviceBindings</xq:value>
<xq:value>instanceSlots</xq:value>

</xq:result>

Using Classifications

Objects are classified in order to allow a means of semantic retrieval. With the "music" sample
data, we have established the following taxonomy describing kinds of music:

Classical musice

Classical chamber musicec

Brass chamber musicecb

Classical music for orchestraeo

Non-classical musicu

Music for small bandsus

Big-band musicub

Later on, the services that enable the potential customer to search through the available sheet
music are classified using this classification. The following query finds the "Concept" object rep-
resenting the taxonomy entry "ecb" (i.e. brass chamber music).

XQuery Navigation Tutorial16

Sample Queries



declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
for $concept in collection("CentraSite")/jaxr:concept
where $concept/jaxr:name/jaxr:localString = "ecb"
return $concept

Note that we do not use the user-defined function local:getName, since this would assume that
each concept has only one name; this is not necessarily true in an internationalized environment.

The next query uses this concept to retrieve those services that are classified by this concept,
meaning they are appropriate to search the company's catalogue for sheet music applicable to
brass chamber music:

declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr";
declare function local:getName($node as node()) as xs:string { 
  string($node/jaxr:name/jaxr:localString) 
};
let $concept := ↩
collection("CentraSite")/jaxr:concept[jaxr:name/jaxr:localString="ecb"]
for $service in collection("CentraSite")/jaxr:service
where $service//jaxr:classification/jaxr:concept = $concept/jaxr:key
return local:getName($service)

Navigating Along Associations

As a first example, assume that a service "serv1" points towards two other services "serv2" and
"serv3" using the predefined association types "Contains" and "Uses" respectively.

17XQuery Navigation Tutorial

Sample Queries



The following query finds all registry entries pointed to from "serv1" that use the association
"Contains" once. Firstly, the query finds the concept corresponding to the association type "Contains"
and the service "serv1". Associations are stored with the primary objects where they originate, i.e.
the two associations starting from "serv1" are stored as "cs:association" descendants of "serv1".

declare namespace cs="http://namespaces.CentraSite.com/Schema/jaxr"
let $concept := collection("CentraSite")/cs:concept

[cs:name/cs:localString = "Contains"]/cs:key
let $service := collection("CentraSite")/

cs:service[cs:name/cs:localString="serv1"]
for $target in $service//cs:association[cs:associationType=$concept]/

cs:targetObject
return collection("CentraSite")/cs:*[cs:key=$target]

This returns the complete service "serv2".

The next query uses a local function "getName" to return the name of the service:

XQuery Navigation Tutorial18

Sample Queries



declare namespace cs="http://namespaces.CentraSite.com/Schema/jaxr"
declare function local:getName($node as node()) as xs:string
{

xs:string($node/cs:name/cs:localString)
}
let $concept := collection("CentraSite")/cs:concept

[cs:name/cs:localString = "Contains"]/cs:key
let $service := collection("CentraSite")/cs:service

[cs:name/cs:localString="serv1"]
for $target in $service//cs:association

[cs:associationType=$concept]/cs:targetObject
return local:getName(collection("CentraSite")/cs:*[cs:key=$target])

The following query does the same, but uses another local function "followAssocOnce" to follow
the association:

declare namespace cs="http://namespaces.CentraSite.com/Schema/jaxr"
declare function local:getName($node as node()) as xs:string
{

xs:string($node/cs:name/cs:localString)
}
declare function local:followAssocOnce($entry as node(),

$assoc as xs:string)
as node()*

{
for $key in $entry//cs:association

[cs:associationType=$assoc]/cs:targetObject
return collection("CentraSite")/*[cs:key=$key]

}
let $concept := collection("CentraSite")/cs:concept

[cs:name/cs:localString = "Contains"]/cs:key
let $service := collection("CentraSite")/cs:service

[cs:name/cs:localString="serv1"]
for $target in local:followAssocOnce($service,$concept)
return local:getName($target)

We assume furthermore that "serv2" in turn points to three other entries, namely to two services
"serv4" and "serv5", again along "Contains"; and to another service "serv6" along "Uses", as shown
below:

19XQuery Navigation Tutorial

Sample Queries



The following query introduces a recursive local function "followAssocMultiple" that retrieves all
entries reachable by following a given association starting from a given entry. Given the starting
entry "serv1" and the association "Contains", it yields the three services "serv2", "serv4" and "serv5":

declare namespace cs="http://namespaces.CentraSite.com/Schema/jaxr";
declare function local:getName($node as node()) as xs:string
{

xs:string($node/cs:name/cs:localString)
}
declare function local:followAssocOnce($entry as node(),

$assoc as xs:string)
as node()*

{
for $key in $entry//cs:association

[cs:associationType=$assoc]/cs:targetObject
return collection("CentraSite")/*[cs:key=$key]

}
declare function local:followAssocMultiple($entry as node(),

$assoc as xs:string)
as node()*

{

XQuery Navigation Tutorial20

Sample Queries



for $target in local:followAssocOnce($entry,$assoc)
return ($target,local:followAssocMultiple($target,$assoc))

}
let $concept := collection("CentraSite")/cs:concept

[cs:name/cs:localString = "Contains"]/cs:key
let $service := collection("CentraSite")/cs:service

[cs:name/cs:localString="serv1"]
for $target in local:followAssocMultiple($service,$concept)
return local:getName($target)

If the above query is applied to an entry that is part of or leads to a loop, stack overflow occurs.
The next query does the same, but can cope with loops. This requires that the recursive function
takes three parameters. The first parameter is the list of previously found nodes. The second
parameter holds the current nodes, i.e. the nodes found in the previous step. Each time the function
is called, it finds the nodes reached directly from the current nodes. These become the new current
nodes unless they have previously been visited.

declare namespace cs="http://namespaces.CentraSite.com/Schema/jaxr";
declare function local:getName($node as node()) as xs:string
{

xs:string($node/cs:name/cs:localString)
}
declare function local:followAssocOnce($entry as node(),

$assoc as xs:string)
as node()*

{
for $key in $entry//cs:association

[cs:associationType=$assoc]/cs:targetObject
return collection("CentraSite")/*[cs:key=$key]

}
declare function local:followAssocMultiple($current as node()*,

$assoc as xs:string)
as node()* {

let $first := for $node in $current
return local:followAssocOnce($node,$assoc)

return local:followAssocMultipleRecursive((),$first,$assoc)
}
declare function local:followAssocMultipleRecursive(

$old as node()*,
$current as node()*,
$assoc as xs:string) as node()* {

if ($current)
then let $new := for $entry in $current

return local:followAssocOnce($entry,$assoc)
let $nextold := $old union $current
let $nextcurrent := $new except $nextold
return local:followAssocMultipleRecursive($nextold,

$nextcurrent,
$assoc)

else $old
}

21XQuery Navigation Tutorial

Sample Queries



let $concept := collection("CentraSite")/cs:concept
[cs:name/cs:localString = "Contains"]/cs:key

let $service := collection("CentraSite")/cs:service
[cs:name/cs:localString="serv1"]

for $target in local:followAssocMultiple($service,$concept)
return local:getName($target)

Things are slightly more complicated when following relations backwards. To retrieve all entries
fromwhich a given entry "$entry" can be reached via a relation "$assoc", find each entry and check
its relations. The following query uses a local function "followAssocOnceBackwards" to find all
entries starting from "serv4" and traversing "Contains" backwards, yielding "serv2".

declare namespace cs="http://namespaces.CentraSite.com/Schema/jaxr"
declare function local:getName($node as node()) as xs:string
{

xs:string($node/cs:name/cs:localString)
}
declare function local:followAssocOnceBackwards($entry as node(),

$assoc as xs:string)
as node()*

{
for $everyentry in collection("CentraSite")/*
for $target in $everyentry//cs:association

[cs:associationType=$assoc]/cs:targetObject
where $target = $entry/cs:key
return $everyentry

}
let $concept := collection("CentraSite")/cs:concept

[cs:name/cs:localString = "Contains"]/cs:key
let $service := collection("CentraSite")/cs:service

[cs:name/cs:localString="serv4"]
for $target in local:followAssocOnceBackwards($service,$concept)
return local:getName($target)

Operations and Services

The representation of services togetherwith their accompanying artifacts in the registry and repos-
itory is a topic of its own. When a service is added by importing its WSDL, usually a series of
mutually-connected entries is created. Each service that is included this way has at least one Ser-
viceBinding. This binding, which is a JAXR object of its own, is referred to from the service by
an implicit reference. In the database, the bindings are contained in the service document. The
binding points to two SpecificationLink JAXR objects that, in CentraSite, also come with the
service document, as descendants of their bindings. Each of the two specification links has an at-
tribute SpecificationObject. The specification object of the first specification link points to the
operations belonging to that binding via an association of type Implements.

XQuery Navigation Tutorial22

Sample Queries



Much more could be said about what happens to a registry when a service's WSDL is imported.
In particular, there is anotherway to get to a service's operations, namely by following the bindings'
second specification links. The complete infomodel for a service is shown in the following diagram:

We do not pursue this further, since the information collected so far is sufficient for the following
query. The query finds all organizations, their services and these services' operations. Note that
Operation is a primary object type, but does not reside in the JAXR namespace ht-
tp://namespaces.CentraSite.com/Schema/jaxr; rather, it is in the namespace http://namespaces.Centra-
Site.com/Schema, as are many CentraSite-specific extensions to the JAXR datamodel.

Note also the slightlymodified user-defined function getName, which can handle the case inwhich
an object has more than one name (internationalization).

declare namespace csjaxr = "http://namespaces.CentraSite.com/Schema"
declare namespace jaxr = "http://namespaces.CentraSite.com/Schema/jaxr"
declare function local:getName($node as node()) as xs:string {

string(($node/jaxr:name/jaxr:localString)[1])
};
let $implKey := string(collection('CentraSite')

/jaxr:concept[local:getName(.)="Implements"]/jaxr:key)
for $org in collection('CentraSite')/jaxr:organization
return
<org>

23XQuery Navigation Tutorial

Sample Queries



<name>{local:getName($org)}</name>
<services> {
for $serv in collection('CentraSite')/jaxr:service
where $serv/jaxr:providingOrganization = $org/jaxr:key
return
<service>
<name>{local:getName($serv)}</name>
<operations> {
let $so := ($serv//jaxr:serviceBinding//jaxr:specificationLink

/jaxr:specificationObject)[1]
for $assoc in collection('CentraSite')/jaxr:concept[jaxr:key=$so]

//jaxr:association[jaxr:associationType = $implKey]
let $target := collection('CentraSite')

/csjaxr:Operation[jaxr:key = $assoc/jaxr:targetObject]
return
<operation> { local:getName($target) } </operation>

} </operations>
</service>

} </services>
</org>

The following is an excerpt of the result after querying a registry into which the service Music-
QuoteService had previously been imported:

<org>
<name>Mozart Music GmbH</name>
<services>

<service>
<name>MusicQuoteService</name>
<operations>

<operation>MusicQuoteMethod</operation>
</operations>

</service>

XQuery Navigation Tutorial24

Sample Queries



4 XQuery Modules

Mainly for use in its predefined reports, CentraSite comes with a collection of XQuery modules
that contain predefined XQuery functions. These functions can be used in other queries, either
contained in reports or written by CentraSite users. These modules are stored as text (i.e. non-
XML) documents in the CentraSite registry and can again be browsed by means of XQuery.

An overview of all themodules that comewith CentraSite can be obtained by the following query:

declare namespace ino="http://namespaces.softwareag.com/tamino/response2"
for $mod in collection('ino:source')/ino:module/..
return tf:getDocname($mod)

An excerpt of the query result might look as such.

<xq:result xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">
<xq:value>BusinessQueryManager.xquery</xq:value>
<xq:value>SchemaTransformer.xquery</xq:value>
<xq:value>NotificationAssessories.xquery</xq:value>
<xq:value>JAXRConstants.xquery</xq:value>
<xq:value>uddiJaxrMapping.xquery</xq:value>
<xq:value>sin.xquery</xq:value>
<xq:value>CentraSiteDateTime.xquery</xq:value>
<xq:value>CentraSiteUtil.xquery</xq:value>
<xq:value>CentraSiteReportAssetChanges.xquery</xq:value>
<xq:value>CentraSiteReportOrganizationSummary.xquery</xq:value>

The next query returns the source code of such a module, in this case the module
CentraSiteUtil.xquery. This module contains many functions that may prove generally useful.

25



declare namespace ino="http://namespaces.softwareag.com/tamino/response2"
for $mod in collection('ino:source')/ino:module/..
where tf:getDocname($mod) = "CentraSiteUtil.xquery"
return tf:text-content($mod)

For additional helpful examples of XQueries dealing with CentraSite, please refer to the reports,
which containmany queries accessingCentraSite either directly, or using functions frommodules,
or both. Reports can be viewed from CentraSite Control from the report's detail view via Actions
> ShowTemplate File, or more conveniently in the Designer's BIRT perspective. Formore inform-
ation on reports, refer to CentraSite Reporting.

XQuery Navigation Tutorial26

XQuery Modules



5 Links

■ XQuery 1.0: An XML Query Language (Second Edition) (http://www.w3.org/TR/xquery/)
■ XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition) (ht-
tp://www.w3.org/TR/xquery-operators/)

■ XQuery Update Facility 1.0 (http://www.w3.org/TR/xquery-update-10)

■ JSR 225: XQuery API for Java - XQJ (http://www.jcp.org/en/jsr/detail?id=225)
■ Java Community Process Home (http://www.jcp.org/en/home/index)
■ CentraSite Documentation: CentraSite XQJ Interface (http://documentation.software-
ag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/over-
view.htm)

27

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-update-10
http://www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/home/index
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/overview.htm
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/overview.htm
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8-2_ga/CentraSite/8-2-SP1_CentraSite/dg-xqj/overview.htm


28


	XQuery Navigation Tutorial
	Table of Contents
	Preface
	1 Introduction
	2 How to Query CentraSite
	Using a CentraSite GUI
	Using CentraSite Control
	Using the Eclipse CentraSite Perspective

	Using XQJ
	Using the HTTP GET Method

	3 Sample Queries
	Retrieving Primary Objects
	Retrieving Embedded Objects
	Using Classifications
	Navigating Along Associations
	Operations and Services

	4 XQuery Modules
	5 Links

