
Communicating between Software AG Products
Using Event Routing

Version 9.12

October 2016

This document applies to Software AG Product Suite Version 9.12 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: SAG-ER-912-20180619

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Communicating between Software AG Products Using Event Routing Version 9.12 3

Table of Contents

About this Guide..5
Deprecation of Software AG NERV... 5
Document Conventions.. 5
Online Information.. 6

Understanding Event Routing.. 7
What is Event-Driven Architecture?... 8
Related Software AG Products and Components..9
What is Event Routing?..11
Event Routing Concepts...11

The Principle of Event Routing... 11
Type-Based Routing.. 11
Reliability..12
Store-and-Forward Processing..12
Sending Events Asynchronously...12

Event Types.. 13
Event Structure..14
Heartbeats... 17
Event Type Governance..18
Event Type Store...18

Event Routing Services.. 18
Supported Service Types.. 18
Service Groups..19

Connecting to the Messaging Bus... 19
Connecting to the Messaging Bus Using Event Routing.. 20
Connecting to the Messaging Bus Using the EDA-Related Integration Server Built-In
Services... 21

Storing Events Using Event Persistence..21

Administering Event Routing... 23
Configuring Common Properties for Event Routing... 24

Configuring Storage Capacity for Event Routing.. 25
Setting up System Properties for Products Using Event Routing Outside the Software AG
Common Platform..26

Configuring Services and Service Groups... 27
Creating Universal Messaging Services..27
Creating Event Persistence Services..28

Using Event Persistence with HDFS... 28
Creating Event Persistence Services for HDFS...28
Creating Event Persistence Services for Elasticsearch... 30

Configuring the Default Service Group... 32
Configuring Custom Service Groups...33

M
Table of Contents

Communicating between Software AG Products Using Event Routing Version 9.12 4

Configuring Event Type Associations..35
Securing Passwords Held in Service Configurations... 36

Overview.. 36
Working with the Event Routing Ciphering Utility..36
Modifying the Event Routing Secret Key.. 37

Deploying EDA Event Types.. 37
Example of a Deployment Project Structure...38

Event Routing for Developers..39
Using the Event Routing Integration Server Built-In Services..40

Using the pub.event.routing:send Service...40
Using the pub.event.routing:subscribe Service... 41
Using the pub.event.routing.unsubscribe Service... 42

Developing Applications for Configuring Event Routing...42
Using the Command Central Command Line Interface for Configuring Event Routing..... 43

Getting all Available Event Routing Configuration Types...44
Getting a List of all Objects of a Particular Event Routing Configuration Type...........44
Getting Data for a Specific Configuration Instance..44
Updating Specific Configuration Data.. 44
Adding Configuration Data... 45
Deleting Configuration Data... 45
Configuration Types that Event Routing Supports... 45

Using the Command Central REST API for Configuring Event Routing........................... 46
Examples for Using the Command Central REST API for Configuring Event
Routing... 47

Using Command Central Composite Templates to Configure Event Routing...........................48
Configuring Event Routing in a Single Runtime..48
Configuring Event Routing in a Single Installation..49
Configuring Event Routing in Multiple Installations...50
Applying Composite Templates... 52

Monitoring Event Routing Data.. 52

M
Odd Header

Communicating between Software AG Products Using Event Routing Version 9.12 5

About this Guide

This document gives you an overview of webMethods Event Routing, which is Software
AG’s framework for managing simple event-based interactions and more complex event
analysis for paern matching in real-time.

Event Routing offers the following key features and functionality:

It is a solution for creating, processing, and monitoring events.

It provides the infrastructure to rapidly build and adapt event-driven applications.

It improves an organization’s ability to comprehend the current state of the physical
world and business environment and react rapidly to changes.

Deprecation of Software AG NERV
The Software AG NERV component and the low-level Java API to it is now deprecated.
Note that despite this deprecation, Software AG products continue to communicate
using events and you can still use the high-level webMethods Integration Server built-in
services to send and receive events.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

M
Even Header

Communicating between Software AG Products Using Event Routing Version 9.12 6

Convention Description

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 7

1 Understanding Event Routing

■ What is Event-Driven Architecture? ... 8

■ Related Software AG Products and Components ... 9

■ What is Event Routing? ... 11

■ Event Routing Concepts .. 11

■ Event Types ... 13

■ Event Routing Services .. 18

■ Connecting to the Messaging Bus ... 19

■ Storing Events Using Event Persistence ... 21

M
Even Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 8

This chapter contains an overview of Event Routing’s concepts and usage. It also
provides a list of related Software AG products and components, which can be used for
building an event-driven system.

What is Event-Driven Architecture?
Using the event-driven architecture paern, you can create systems for processing the
events that shape your everyday business environment. An event can be something as
simple as an electrical component being switched on or off, or more complicated, such
as a bid being made in an auction house for the painting of a great master. An event
represents something that has happened, and it may or may not require some follow-up
action to be taken. An event can also represent something that was expected to happen
but has failed to happen.

We all experience an event driven world every day. We walk through an airport
and hear announcements of planes arriving and departing (these are events). The
announcements (events) are emied even if nobody is listening. If, however, the
announcement is for my plane, then I will accept it, and start taking an action. My action
may be to run to the gate, while someone else's activity might be to walk and get a
snack. This is the basis of event-driven architecture: events are emied and listeners can
either take action on them or ignore them. The action I take is totally self-contained and
does not rely on the activity of another person.

The term event-driven indicates that when an event happens, it can have a significance
which requires some follow-up action to be taken. An event can be noticed by several
observers or listeners, and each observer can react to the event differently. For one
observer, an event might represent some critical status which requires immediate action.
For another observer the same event might not be relevant at all.

The significance of a single event is sometimes only visible when viewed in the context
of other events that together form a paern. For example, if cash is withdrawn at a cash
machine in the city center, this is not unusual, but if cash is withdrawn at many different
cash machines on the same day throughout the city using the same card, this might raise
the suspicion that the card is stolen.

If we change the focus from everyday events that we observe in the world around us to
events that can have an influence on the way a company does its business, we can see
that events such as the following could trigger a component in a predefined workflow:

A trade order has been issued.

A reading of sensor data (e.g. GPS, temperature or RFID reader) has occurred.

A business process has reached completion.

A software component has started successfully.

The existence of an event can be the trigger for processes, such as the invocation of a
service, the initiation of a business process, or the publication of relevant information.

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 9

Event Routing picks up on these ideas and provides a set of concepts for dealing with
events at all stages throughout the processing chain.

Related Software AG Products and Components
The generic event driven architecture approach can be implemented by using different
components for various roles, such as a messaging bus to transport the events, a
common repository to hold the event type definitions, and a dashboarding tool to
display the events. Currently Software AG offers you the following products and
components for these roles:

Role in the event-driven
architecture

Software AG component Additional information

Message broker webMethods Universal
Messaging

Event framework Event Routing Event Routing is
Software AG’s solution
for event routing in the
Software AG Common
Platform.

Service bus webMethods
Integration Server

Integration Server
is Software AG’s
standards-based
enterprise service
bus that integrates
technologies from any
vendor, including ERP
systems, databases,
mainframes, Web
services, and others.
It provides built-in
services for Event
Routing.

Event type repository Event Type Store (run-
time component)

The Event Type Store
is a run-time repository
that contains schemas
of the events on the
messaging bus. The
event types are required
in order to interpret the

M
Even Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 10

Role in the event-driven
architecture

Software AG component Additional information

payload of events on the
messaging bus.

CentraSite Registry
Repository (design-time
component)

CentraSite enables you
to archive, categorize
and govern event type
definitions.

Event type development
tool

Software AG Designer,
Events Development
perspective

An Eclipse-based
tool for creating and
maintaining event
types.

Event store webMethods Event
Persistence

A framework for
persistence and simple
analysis of event data.

CEP Engine Apama Correlator Apama’s event
correlator is the engine
that executes the
sophisticated event
paern-matching logic
that you define in your
Apama application.

CEP application design
tool

Apama perspectives in
Software AG Designer

Apama perspectives
running in Software AG
Designer are the
main entry point for
developing Apama
applications.

Dashboarding tool MashZone NextGen
Business Analytics

Business Analytics’s
mashups provide
analysis and data
transformation
capabilities that
handle various user
requirements.

Business Rules tool webMethods Business
Rules

Business Rules allows
developers to create,
test, and use rules that

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 11

Role in the event-driven
architecture

Software AG component Additional information

define or constrain
various aspects of a
business.

What is Event Routing?
webMethods Event Routing is Software AG’s generic mechanism for applications to
communicate using events. It plays a vital role in ensuring communication between
event-enabled applications.

Event Routing offers the following capabilities:

Easy data exchange between Software AG components

Easy configuration using Software AG Command Central

Reliable, fast, asynchronous data exchange between Software AG components

Common event format supported by Software AG products

Connectivity to webMethods Event Persistence in order to store EDA events for
further analysis and reporting

Event Routing Concepts

The Principle of Event Routing
The main principle of Event Routing is to ensure communication between the different
components of the event-driven system by loose coupling of applications - one
application can send events without caring which applications or services receive and
consume them.

Type-Based Routing
Event Routing sends and subscribes to events using services based on event types.
All events are delivered to the default service, unless one of more custom destination
services are specified for a particular event type. Event Routing subscribes for incoming
events on the default service. However, you can also specify a different source service
per event type. For more information about configuring Event Routing services, see
"Configuring Services and Service Groups" on page 27.

M
Even Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 12

Reliability
Event Routing offers a reliability seing that can be defined per service. When you set
this option to true for your service, Event Routing guarantees the delivery of each event
to the service. Event Routing operates in an asynchronous mode, which means that
when it sends an event, it does not wait for an immediate acknowledgment of successful
delivery before sending the next event. As a result, if the reliability parameter for a
service is set to true, and the runtime where Event Routing is embedded crashes, any
events that have been sent before the crash but have not been acknowledged will be
redelivered after the restart of the runtime.

If the reliability option is set to false, the delivery of events is not guaranteed. In this
case, if the runtime where Event Routing is embedded crashes, no events will be
redelivered. Also, if the maximum storage capacity of the event channel is reached, the
oldest undelivered events will be discarded in favor of the new events that arrive.

For more information about configuring default maximum storage capacity, see
"Configuring Storage Capacity for Event Routing " on page 25. For more information
about seing up storage capacity per event type, see "Configuring Event Type
Associations" on page 35.

Store-and-Forward Processing
Instead of directly delivering each event to the configured destination services and
waiting for each service to acknowledge the event, Event Routing stores the event in an
internal queue. Depending on the reliability seing defined for each destination service
via the Command Central user interface, the queue can be held in-memory or on disk.
Once an event is added to the queue, Event Routing is ready to accept new events. In the
meantime, the queued events are delivered to their destination services by a separate
thread in the order in which they were added to the queue.

Sending Events Asynchronously
Event Routing insures a higher data throughput by providing a method for sending
events asynchronously. When an asynchronous send operation is performed, Event
Routing queues the event for further processing, but does not wait for the queue to
be synchronized with the disk, even in case any of the destination services are set to
reliable via the Command Central user interface, thus making it possible for the next
send operation to be executed faster. When an asynchronous send operation is invoked,
the calling application must provide a callback, which Event Routing then uses to notify
the application when the event has been queued and, in case of a reliable destination
service, the queue has been synchronized with the disk.

You can also send events synchronously using the respective Event Routing method
in your applications. In case a synchronous send operation is performed, and the
destination service is set to reliable via the Command Central user interface, Event
Routing queues the event for processing and synchronizes the queue with the disk

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 13

before processing the next send operation. In this case, the throughput of events is
slower.

Event Types
An event type is a schema definition that describes how events in an event stream are
structured. Event types are first-class objects that are declared at a high level in the
environment and can be processed by webMethods and non-webMethods products.

Events in the same stream always have the same payload structure. The schema defines
which data fields are present in each event, the data type of each field, and the order in
which the fields appear. Each event stream has exactly one event type associated with
it. One event type can be used as the schema for more than one event stream. All event
publishers on a given stream must ensure that their published events comply with the
stream's schema, and all subscribers must be aware of the schema that describes the
events received. In this respect, the schema represents a contract between publishers and
consumers of events of a specific type.

Event types are implemented as schemas that conform to the W3C XML Schema (XSD)
specification. Within the Event Type Editor, they are displayed as a hierarchy of nodes
representing the content of the event. The nodes can be field nodes, composite nodes,
or references to structures in other schemas. Field nodes are leaves within the node
hierarchy enabling users to specify typed text strings in the XML event. Composite
nodes are containers for field nodes, composite nodes, and reference nodes. At the
underlying XSD level:

The root node is invisible and is represented as a top-level element declaration with
the substitutionGroup=”eda:Payload” aribute

Composite nodes correspond to element declarations with a complex content model

Field nodes are element declarations with a simple type

References refer to top-level element or type definitions in other component
schemas.

You can specify a cardinality for all visible nodes, whereas the hidden root node has a
fixed cardinality of 1, denoting that a valid XML document has exactly one root element.

The XSD, as generated by the Event Type Editor, is only a subset of the full XML Schema
specification. However, you can use an almost arbitrary XSD as event schema, as long as
it does not contain the following:

Substitution group

Multiple child elements with the same name

Filterable property for an element with cardinality bigger than 1.

In order to use a custom XSD as event schema, you must do the following:

Add the following import statement:
<xsd:import namespace=”http://namespaces.softwareag.com/EDA/Event”

M
Even Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 14

schemaLocation=”Event/Envelope.xsd”/>

Note: Depending on the location of the event type schema within the Event
Types directory, the schemaLocation aribute may contain additional
leading ../ steps for moving up in the directory hierarchy.

Add the substitutionGroup=”eda:Payload” aribute to the declaration of the
element to be the root of the event XML.

Here is a section of a sample event type schema:
<xsd:complexType name="PartInventoryLowType">
 <xsd:annotation>
 <xsd:documentation>Report inventory low for a part</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Part">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ItemID" type="xsd:string" minOccurs="1"/>
 <xsd:element name="ItemName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Model" type="xsd:string" minOccurs="0" />
 <xsd:element name="Color" type="xsd:string" minOccurs="0" />
 <xsd:element name="Shape" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="InventoryLevel" type="xsd:integer"/>
 <xsd:element name="DesiredInventoryLevel" type="xsd:integer"/>
 </xsd:sequence>
</xsd:complexType>

Here is a sample event instance:
<PartInventoryLow>
 <Part>
 <ItemID>ABC123</ItemID>
 <ItemName>Widget </ItemName>
 <Model>XYZ</Model>
 <Color>Silver</Color>
 <Shape>Oval</Shape>
 </Part>
 <InventoryLevel>58</InventoryLevel>
 <DesiredInventoryLevel>1000<DesiredInventoryLevel>
</PartInventoryLow>

Event Structure
Each event on the messaging bus is composed of the following parts:

Header

The header contains system-defined event aributes:

Event Attribute Description

Start Start date and time of the event.

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 15

Event Attribute Description

End Optional. End date and time of the event. The use of this field
depends on how the event is being used. If the value is absent,
the consumer application may set a default one, such as start
time plus one millisecond.

Kind Optional. Indicates whether the event is a new event (Event)
or a heartbeat (Heartbeat). A heartbeat event indicates the
temporal progress of the stream. If a value is not specified, the
default is Event.

Type The unique identifier of the event type. Event types use
qualified names (QNames) as the mechanism for concisely
identifying the particular type. The event type combines
the URI and local name as a string. For example: {http://
namespaces.softwareag.com/EDA/WebM/Process/2.0}
ProcessStepInstanceChange is the event type identifier that
reports changes to a process instance.

Note: Event types without a namespace use only their local
name as event identifier. For example, the noTns.xsd
event type’s identifier is noTns.

Version Optional. The version of the event type with which the event
instance is compatible. Users specify this value if they have
chosen to support event type versioning. An event should not
specify a version if the event type supports versioning.

CorrelationID Optional. A unique identifier used to associate the event
instance with other event instances.

EventID Optional. A unique identifier of the event. EDA clients can
distinguish between different event instances.

Priority Optional. The priority of the event. Possible values are:

Normal (default value)

High

ProducerID Optional. A unique identifier of the event producer.

UserID Optional. A unique identifier of the user who emied the
event.

M
Even Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 16

Event Attribute Description

FormatVersion Optional. The version of the event format. Event Routing
creates automatically a value for this aribute. Check the value
in the received event to see if the event body contains headers
and payload.

If this aribute is not present in the event headers, the event
body contains both headers and payload.

If this aribute is present in the event headers, and its value
is 9.0, the event body contains only payload.

CustomHeaders Optional. A parent header element for any user-defined
headers included as sub-elements.

All messages support the same set of header fields. Header fields contain predefined
values that allow clients and providers to identify and route messages. Each of the
fields supports its own set and get methods for managing data; some fields are set
automatically by the send and publish methods, whereas others must be set by the
client. The header contains the start and end timestamp of the event.

Filterable Properties (optional)

Event Routing supports the so-called filterable properties. If you mark a field node
in the event type as filterable, its value is added to the header properties of the
event. For example, for the BoothDemo event shown below, if the Producer and the
Presenter fields are marked as filterable, the following key-value pairs are added:
PulseCommon$Producer=”Event Generator”
Presenter=”dada”

At run time, when events are delivered to the routing services, event consumers may
apply a filter, so that only events that match certain selection criteria are consumed.
These criteria can be, for example, whether the event type is a normal event or a
heartbeat, or whether the value of an element from the body of the event exceeds a
certain value.

Event header elements are always added to the filterable properties with an
additional prefix $Event$ in the key. If a node in the event schema is marked
as filterable, the element is added to the filterable properties when the event is
published. This allows event receivers to use filterable properties based on element
values.

Body

The body contains the payload of the event. The body contains the data fields of the
event, as specified in the event's schema.

Here is a sample event:
<evt:Event xmlns:evt="http://namespaces.softwareag.com/EDA/Event>
 <evt:Header>
 <evt:Type>{http://namespaces.softwareag.com/EDA/WebM/Sample/Pulse}Pulse

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 17

 </evt:Type>
 <evt:Start>2012-05-20T16:53:46.918-06:00</evt:Start>
 <evt:End>2012-05-20T16:53:47.918-06:00</evt:End>
 <evt:Kind>Event</evt:Kind>
 <evt:EventId>0f375801-dbd4-4a46-9f70-7015deca6c80</evt:EventID>
 </evt:Header>
 <evt:Body>
 <p1:BoothDemo
 xmlns:p1="http://namespaces.softwareag.com/EDA/WebM/Sample/Pulse">
 <p1:PulseCommon>
 <p1:Producer>Event Generator</p1:Producer>
 <p1:Subject>Pulse Test Event</p1:Subject>
 <p1:Coordinates>
 <p1:Longitude>87.44988659217529</p1:Longitude>
 <p1:Latitude>83.11056319477842</p1:Latitude>
 </p1:Coordinates>
 </p1:PulseCommon>
 <p1:Presenter>dada</p1:Presenter>
 <p1:DemoTopic>Demo2</p1:DemoTopic>
 <p1:Date>2012-04-05T17:09:33.112+03:00</p1:Date>
 </p1:BoothDemo>
 </evt:Body>
</evt:Event>

Heartbeats
A heartbeat is a special kind of event without a payload. It indicates that the event
channel on which it is being sent is active but that no payload events are currently being
sent on the same channel.

The header of a heartbeat event specifies event type corresponding to the channel the
heartbeat is being sent on, the start date and time of the heartbeat, and the Kind header
field is set to Heartbeat.

An example of the use of heartbeats is for CEP applications, in which heartbeats can be
used within a non-event detection query to determine whether the timespan in which a
certain paern did not occur has expired.

Some applications may not support heartbeats. Event receivers can suppress receiving
heartbeat events by using message selection filtering on the value of the Kind aribute.
The following message selector can be used for this purpose:
$Event$Kind <>’Heartbeat’ or $Event$Kind is null

Here is a sample heartbeat event:
<evt:Event xmlns:evt="http://namespaces.softwareag.com/EDA/Event">
 <evt:Header>
 <evt:Type>{http://namespaces.softwareag.com/EDA/WebM/Sample/
 InventoryMgmt/1.0}PartInventoryLow</evt:Type>
 <evt:Start>2010-05-20T16:53:46.918-06:00</evt:Start>
 <evt:Kind>Heartbeat</evt:Kind>
 <evt:EventId>0f375801-dbd4-4a46-9f70-7015deca6c80</evt:EventId>
 </evt:Header>
</evt:Event>

M
Even Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 18

Event Type Governance
You can use CentraSite to register, categorize, and govern event definitions. The Events
Development perspective in Software AG Designer offers publish and unpublish
functionality for the transfer of event types to and from CentraSite. You can also use
CentraSite to inspect the dependencies between event type schemas and imported
component schemas.

Event Type Store
The Event Type Store provides a central location per installation where predefined and
user-defined event types are stored. This shared location is used by all EDA applications
within the respective installation to retrieve deployed custom event types at run time.

At design time, a local copy of the predefined event types of the Event Type Store is
available for reference. By default, it is located in the Software AG_directory/common/
PredefinedEventTypes directory. You can import this directory as an existing project
in Software AG Designer to inspect the event types. User-defined event types can be
created using the Event Type Editor and stored in the local copy.

Event types in the local copy must be deployed to the runtime store, so that EDA
applications that process an event stream can retrieve the schema definition of the event.
For more information about deploying event types, see "Deploying EDA Event Types"
on page 37.

Event Routing Services
Event Routing sends to and receives events from one or more services. Each service
represents an instance of an external system, such as Universal Messaging and Event
Persistence, or an instance of a service within the runtime, such as an in-process event
delivery service. The services are the source and target endpoints for receiving and
delivering events.

Supported Service Types
Services can be of different types:

Universal Messaging services

Use services of this type send events to or receive events from a specific Universal
Messaging server realm or cluster.

For more information about configuring Universal Messaging services, see "Creating
Universal Messaging Services" on page 27.

Event Persistence services

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 19

Use services of this type to send events to a specific Event Persistence destination.

For more information about configuring Event Persistence services, see "Creating
Event Persistence Services" on page 28.

In-Process service

Use this pre-configured service to send and receive events within the same JVM.

Note: Only one In-Process service exists per event type. It must be used only as
Source and Destination and its reliability must be set to false.

Service Groups
Services are grouped together as a set of one or more services to which events can be
sent. One of the services in a service group can be tagged as the source of events for all
event types associated with this service group.

Each Event Routing runtime contains a default service group, which is sufficient for
most use cases. However, you can also define a custom service group for a particular
runtime.

For every custom service group you must define the following:

A unique display name

A set of services in the service group

A set of event types associated with the service group.

At runtime, each event emied by an application is delivered to one or more services
based on its event type. If an event type is associated with a custom service group, the
event of this event type is routed to the services within that particular service group.
When an application emits events of an event type not associated with any custom
service group, these events are routed to the services defined within the default service
group.

For more information about configuring service groups, see "Configuring Custom
Service Groups" on page 33.

Connecting to the Messaging Bus
You can connect to the messaging bus in your event-driven environment in one of the
following ways:

Using Event Routing

Event Routing is a solution that enables Software AG products to communicate
using events. Event Routing uses native webMethods Universal Messaging channels
as endpoints. The endpoints are defined as services using the Command Central

M
Even Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 20

user interface. Specific event types are associated with the different services to define
which events will be emied or consumed by the specific service.

For more information about configuring Event Routing, see "Administering Event
Routing " on page 23.

Using the EDA-related built-in services in Integration ServerIntegration Server interacts with
many Software AG products, and provides pre-configured public services for use
in the event-driven system. It supports JMS connections to webMethods Universal
Messaging, and it can act as an event publisher or subscriber. As a publisher,
Integration Server can convert IS document types into events and publish them to
the messaging bus. As a subscriber it can transform received events into IS document
types.

In addition, Integration Server:

Receives events from the messaging bus using JMS triggers.

Includes built-in services to send EDA events via Event Routing.

The Integration Server offers a variety of bus connectivity and data transformation
features, and it contains functionality that enables you to transform
non-Software AG EDA event data into Software AG EDA event data. If a third party
product generates events that do not conform to the webMethods events schema,
they can be converted to the webMethods event schema by using the document
transformation capabilities of Integration Server. Also, Integration Server supports
sending non-Software AG EDA events to the messaging bus.

For more information about using the EDA-related Integration Server built-in
services, see the PDF publication webMethods Integration Server Built-In Services
Reference.

Connecting to the Messaging Bus Using Event Routing
Event Routing is included by default in the Integration Server OSGi profile. This
documentation assumes you are familiar with and have a working knowledge of OSGi
implementation and architecture.

To interact with Event Routing, you should:

Modify your runtime configuration seings, if necessary, as described in
"Configuring Common Properties for Event Routing" on page 24.

Create your custom messaging services and service groups, as described in
"Configuring Services and Service Groups" on page 27.

Modify the default event types associations, if necessary, as described in
"Configuring Event Type Associations" on page 35.

M
Odd Header

Understanding Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 21

Connecting to the Messaging Bus Using the EDA-Related Integration
Server Built-In Services
Integration Server enables you to transform non-Software AG EDA event data into
Software AG EDA event data using the pub.event.routing:send built-in service.
Integration Server constructs an EDA event using the parameters defined in the service
and sends the event to the messaging bus using Event Routing.

You can also subscribe and unsubscribe for EDA events using the
pub.event.routing:subscribe and pub.event.routing:unsubscribe built-in
services.

For more information about using the Event Routing-related Integration Server built-
in services, see "Using the Event Routing Integration Server Built-In Services" on page
40.

For more general information about using Integration Server built-in services, see the
PDF publication webMethods Integration Server Built-In Services Reference.

Storing Events Using Event Persistence
webMethods Event Persistence is a unified model for storing events in the EDA
environment regardless of the underlying storage technology. With Event Persistence,
you can persist event instances within an event-driven system to an event store. This
event store is not a transactional or analytic database, but a system of record that
supports long-term, high-volume storage. The event store is used as a resource for
Extract, Transform, Load (ETL) operations, which in turn can feed analytic applications.

You use webMethods Event Persistence through the Event Persistence service type for
Event Routing. Event Persistence services can be configured to persist all instances of an
event type to an event store within a storage system of your choice. For example, you
can use Elasticsearch 1.7.2 or 2.3.2 as the storage engine for persisted events data.

For more information about how to create and configure Event Persistence services, see
"Creating Event Persistence Services" on page 28.

M
Even Header

Communicating between Software AG Products Using Event Routing Version 9.12 22

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 23

2 Administering Event Routing

■ Configuring Common Properties for Event Routing ... 24

■ Configuring Services and Service Groups ... 27

■ Securing Passwords Held in Service Configurations ... 36

■ Deploying EDA Event Types .. 37

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 24

This chapter provides information about administering Event Routing using
Software AG Command Central.

Important: To administer Event Routing within your Software AG installation, you need
to have installed the Platform Manager plug-in for Event Routing, as well
as the Platform Manager plug-ins for the respective products, for example
webMethods Event Persistence or webMethods Universal Messaging.

The Platform Manager plug-in for Event Routing enables you to configure routes that
determine the event flow through your system, as well as specify different values for
various parameters, such as Event Type Store location.

Using Command Central, you can also configure services of Universal Messaging and
Event Persistence type, group those services together, and associate event types to them.
You can also configure a service within the group to serve as source and/or destination
for events of a particular type.

For more information about configuring Event Routing services, see "Configuring
Services and Service Groups" on page 27.

For more information about using Event Routing, see "Understanding Event Routing "
on page 7.

Important: In case your event-driven environment contains applications that use the
JMS capabilities of Integration Server (or the JMS protocol in general) to
send and receive events of a particular EDA event type, and you create
applications that use NERV and/or Event Routing to send and receive
events of the same EDA event type, the respective JNDI entries might
not be created correctly in the Universal Messaging server for the two
application types to work. As a workaround, open a command line prompt
in Software AG_directory\common\lib, and run the event-routing-jms-util.jar
utility. This will ensure the JNDI entries and topics have been created in
your Universal Messaging server. For more information about how to run
the utility, see the readme file in event-routing-jms-util.jar.

Configuring Common Properties for Event Routing

Important: To administer Event Routing within your Software AG installation, you need
to have installed the Platform Manager plug-in for Event Routing, as well
as the Platform Manager plug-ins for the respective products, for example
webMethods Event Persistence or webMethods Universal Messaging.

This section contains information about common properties available for Event Routing
as a runtime component in your Software AG installation. For information about
configuring services and service groups, see "Configuring Services and Service Groups"
on page 27.

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 25

Configuring Storage Capacity for Event Routing
Depending on the reliability configured for each service within a service group, all
events sent to Event Routing are stored on disk or in-memory.

For more information about configuring services, see "Configuring Services and Service
Groups" on page 27.

Important: You need to stop the runtime where Event Routing is embedded before you
modify the value of the Storage Location property. If Event Routing is running
in a Platform Manager runtime, you must restart Platform Manager for the
changes to take effect. In case the previous storage location is already in use,
you must copy any existing files manually to the new storage location before
modifying the value of the Storage Location property.

To configure the storage capacity for Event Routing

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >Event
Routing> Configuration tab, select Runtime Configuration from the drop-down menu, and
then click Edit.

2. Modify the values of the properties as follows:

Property Description

Storage Location Defines the location where events are
stored on disk. The provided value
must be an existing folder. The default
value is Software AG_directory\profiles
\profile_name \configuration\event
\routing\runtime\storage, where
profile_name is the name of the OSGi
profile where Event Routing is embedded.

If left blank, the default value applies.

If your product runs outside an
OSGi environment, the value
of this property corresponds to
the value you defined using the
com.softwareag.event.routing.configuration.directory
system property.

Note: You need to stop the runtime where
Event Routing is embedded before you
modify the value of this property.

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 26

Property Description

Default On-Disk Capacity Defines the maximum number of events of
a particular event type stored on disk. The
default value is 1000000.

Default In-Memory Capacity Defines the maximum number of events
of a particular event type stored in the
memory. The default value is 1000.

3. Save your changes.

Event Routing detects that the configuration has been updated, and starts to use the new
seings automatically.

Setting up System Properties for Products Using Event Routing
Outside the Software AG Common Platform
When you embed Event Routing in a product that runs outside the Software AG
Common Platform, you must configure several system properties beforehand.

To use Event Routing outside the Common Platform

1. Set up the following system properties:

System property Definition

com.softwareag.event.routing.configuration.directory

 Specifies the path to the Event Routing
configuration directory.

com.softwareag.event.routing.evenypestore.location

 Specifies the path to the Event Type Store location.

com.softwareag.event.routing.security.file.location

 Specifies the Event Routing security file location.
This file contains the encrypted secret key used
by Event Routing for encrypting and decrypting
passwords specified in the Event Routing services.

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 27

Configuring Services and Service Groups
Services are grouped together as a set of one or more services to which events can be
sent. One of the services in a service group can be tagged as the source of events for all
event types associated with this service group.

Each Event Routing runtime contains a default service group, which is sufficient for
most use cases. However, you can also define a custom service group for a particular
runtime.

For more information about supported service types, see "Supported Service Types" on
page 18.

For more conceptual information about service groups, see "Service Groups" on page 19.

Important: To administer Event Routing within your Software AG installation, you need
to have installed the Platform Manager plug-in for Event Routing, as well
as the Platform Manager plug-ins for the respective products, for example
webMethods Integration Server or webMethods Universal Messaging.

Creating Universal Messaging Services
You can create and configure services of Universal Messaging type, add them to groups,
and associate event types to them.

To create and configure Event Routing services of type Universal Messaging

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >Event
Routing> Configuration tab, select Messaging Services from the drop-down menu, and
then click Add.

2. In the Select Configuration dialog, select Universal Messaging for the service type and
click OK.

3. In the Configuration Details dialog, enter a service name, a description, and provider
URL for the new service.

Note: The service name must be unique. It is not case-sensitive, and must start
with a character. You can use the following characters as separators: . (dot)
and - (dash).

Important: You cannot rename a service which has already been created. If you wish
to modify a service name, you must delete the old one and recreate a new
one with a different name.

4. Optional. Specify values for User Name and Password to connect to a Universal
Messaging server that is configured with server-side authentication.

5. Save your changes.

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 28

Event Routing detects that the configuration has been updated, and starts to use the new
seings automatically.

Creating Event Persistence Services
This section explains how to create Event Persistence services using HDFS and
Elasticsearch as storage engines. For more information about service creation for the
different storage engines, see also:

"Creating Event Persistence Services for HDFS" on page 28.

"Creating Event Persistence Services for Elasticsearch" on page 30.

Using Event Persistence with HDFS
Before you can store events with Event Persistence using HDFS as the storage engine,
you must configure the Hadoop cluster by deploying the custom Hive SerDe and Joda
Date/Time libraries from your Event Persistence installation to your CDH Hadoop 5.3
distribution.

To configure Hadoop HDFS as the storage engine for Event Persistence

1. In your Software AG installation, locate the Joda Date/Time and the custom Event
Persistence Hive SerDe .jar files:

joda-time_2.9.3.jar - available in the Software AG_directory\common\runtime
\bundles\platform\eclipse\plugins directory.

com.softwareag.evp.hive.serde_9.12.0.0000-nnnn .jar - available in the
Software AG_directory\common\runtime\bundles\evs\eclipse\plugins
directory

where nnnn is the build number of your Event Persistence installation.

2. Copy both files to the Hive library directory on all nodes in the Hadoop cluster
where Hive is running, for example HDFS_directory /lib/hive/lib.

3. Copy both files into the Yarn library directory on all data nodes in the Hadoop
cluster, for example HDFS_directory /lib/hadoop-yarn/lib or HDFS_directory /lib/
hadoop-mapreduce/lib if you are using MRv1.

4. Restart Hive.

Creating Event Persistence Services for HDFS
With Event Persistence services, you can store events to a Hadoop Distributed File
System (HDFS) storage engine. You create and administer Event Persistence services
using the Software AG Command Central web interface.

To use HDFS as the storage engine for Event Persistence, you must first configure the
Hadoop cluster by deploying the custom Hive SerDe and Joda Date/Time libraries from

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 29

your Event Persistence installation as described in "Using Event Persistence with HDFS"
on page 28.

To create Event Routing services of type Event Persistence for HDFS:

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >Event
Routing> Configuration tab, select Event Persistence from the drop-down menu, and
then click Add.

2. In the Select Configuration dialog, select HDFS CDH 5.3.0 for the service type and click
OK.

3. In the Configuration Details dialog, define the following parameters for the service:

Parameter Description

Service Name Custom name for the new service. Specify a unique
service name that starts with a character. Valid separator
characters are periods (.) and dashes (-). The service
name is not case-sensitive.

Note: You cannot rename a service which has already
been created. If you wish to modify a service name,
you must delete the old one and recreate a new one
with a different name.

Service Description Custom description for the new service.

Name Node URI Specify the URI of the Name Node in the HDFS cluster
as follows: hdfs://host :port , where host is the host name
of the server, and port is the port on which the server
listens for incoming requests. The default value is
hdfs://localhost:8020.

Max File Size(MB) The HDFS block size in megabytes. The default value is
65.

Hive Server URI Specify the URI of the Apache Hive Server as follows:
jdbc:hive2://host :port , where host is the host name of the
server, and port is the port on which the server listens
for incoming connection requests. The default value is
jdbc:hive2://localhost:10000.

Database The name of the Hive database.

Warehouse Location The location of the Hive warehouse. The default value is
/user/hive/warehouse .

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 30

Parameter Description

User Id The username for the Hive user account.

Password The password for the Hive user account.

Batch Size The number of events that is wrien to HDFS with a
single write operation. The default value is 10000.

Note: If the HDFS service enqueues a batch of events
before the batch write timer expires, it will
immediately persist all enqueued events to HDFS.

Batch Write Timer
Sec(sec)

Batch write frequency in seconds. The default value is
15.

Note: If the batch write timer expires before the HDFS
service enqueues a batch of events, all currently
enqueued events will be persisted to HDFS.

4. Save your changes.

Event Routing Event Routing detects that the configuration has been updated, and starts
to use the new seings automatically.

Creating Event Persistence Services for Elasticsearch
With Event Persistence services, you can store events to an Elasticsearch 1.7.2 or
2.3.2 storage engine. You create and administer Event Persistence services using the
Software AG Command Central web interface.

Note: Event Persistence is not supported on Elasticsearch clusters with Shield
enabled.

To create Event Routing services of type Event Persistence for Elasticsearch:

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >Event
Routing> Configuration tab, select Event Persistence from the drop-down menu, and
then click Add.

2. In the Select Configuration dialog, select Elasticsearch 1.7.2 or Elasticsearch 2.3.2 for the
service type and click OK.

3. In the Configuration Details dialog, define the following parameters for the service:

Parameter Description

Service Name Custom name for the new service. Specify a unique
service name that starts with a character. Valid separator

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 31

Parameter Description
characters are periods (.) and dashes (-). The service
name is not case-sensitive.

Note: You cannot rename a service which has already
been created. If you wish to modify a service name,
you must delete the old one and recreate a new one
with a different name.

Service Description Custom description for the new service.

Cluster URI(s) A comma-separated list of servers in an Elasticsearch
cluster to which an Event Persistence service can
connect. If the initial host is unavailable, Event
Persistence aempts to connect to the other servers
in the cluster. Specify the URI of the servers in the
Elasticsearch cluster as follows: elasticsearch://host :port ,
where host is the host name of the server, and port is the
port on which the server listens for incoming requests.

The default value is elasticsearch://
localhost:9300.

Cluster Name The name of the Elasticsearch cluster.

Index Name The name of the index in which the events will be stored.

Core threads The number of threads to keep in the pool at all times.
The default value is 5.

Maximum Threads The maximum number of threads on which to run bulk
indexing tasks. The default value is 10.

Queue Size The size of the thread pools work queue. A value of 0
indicates an unlimited queue. A value other than 0 sets
the number of pending bulk indexing tasks that can be
queued before the processing thread blocks. The default
value is 10.

Keep Alive(sec) Sets the time limit for which threads may remain idle
before being terminated. The default value is 5.

Pre-Start Core
Threads

Whether the core threads must be started immediately
rather than as work is pulled from the queue. Possible
values are true or false (default).

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 32

Parameter Description

Batch Size The number of events that are wrien to Elasticsearch
with a single write operation. The default value is 1000.

Note: If the Elasticsearch service enqueues a batch of
events before the batch write timer expires, it
will immediately persist all enqueued events to
Elasticsearch.

Batch Write Timer
Sec(sec)

Batch write frequency in seconds. The default value is
15.

Note: If the batch write timer expires before the
Elasticsearch service enqueues a batch of events,
all currently enqueued events will be persisted to
Elasticsearch.

4. Save your changes.

Event Routing Event Routing detects that the configuration has been updated, and starts
to use the new seings automatically.

Configuring the Default Service Group
Each product runtime where Event Routing is used has a default service group. All
event types that are not explicitly associated to any custom service group are considered
associated to the default one. This means that any events from those event types are
delivered to the services within the default service group.

Note: You cannot rename or delete the default service group.

You can modify the default behavior of Event Routing by adding or removing services
from the default service group.

Note: You must have created and configured the services before adding them to
the default service group. For more information about creating services, see
"Creating Universal Messaging Services" on page 27.

To configure the default service group Event Routing

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >Event
Routing> Configuration tab, select Service Groups from the drop-down menu, and then
click Default in the Service Group Name column.

2. To add existing services to the group, click Add and select them from the drop-down
menu in the Service Name field.

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 33

3. For each service you add to the default service group, define the following
properties:

Property Description

Reliable Defines whether Event Routing guarantees the delivery
of every event to the service. By default this value is set
to true. Possible values are true and false.

Note: You can set this property to true only for services
whose type supports reliable delivery of events.

Usage Defines whether the service serves as a source and/or
destination for events. By default this value is set to
Destination Only.Possible values are:

Source Only - the service only consumes events.
Only supported for services that can act as a source.

Destination Only - the service only emits events.

Source and Destination - the service emits and
consumes events. Only supported for services that
can act as a source.

Note: Your service group must contain only one source
service. You cannot include the same service twice
in the same service group. If you selected the
predefined In-Process service, it must always be
set to Source and Destination.

4. Optionally, click Test to verify your configuration is consistent.

5. Save your changes.

Event Routing detects that the configuration has been updated, and starts to use the new
seings automatically.

Configuring Custom Service Groups
After installing Event Routing, you have one default service group that contains the
preconfigured UniversalMessaging service. You can create one or more custom service
groups and associate a set of event types to them. When events of those particular event
types are sent or received, they go to all services within the service group. One of the
services in the group can be marked as source and/or destination of events for all event
types associated to the service group.

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 34

Note: You must have created and defined at least one service before creating a
custom service group. For more information about creating services, see
"Creating Universal Messaging Services" on page 27.

To configure custom service groups for Event Routing

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >Event
Routing> Configuration tab, select Service Groups from the drop-down menu, and then
click Add.

2. In the Configuration Details dialog, enter a name and a description for the new service
group.

Note: The service group name must be unique. It is not case-sensitive, and must
start with a character. You can use the following characters as separators: .
(dot) and - (dash).

Note: You cannot rename a service group which has already been created. If you
wish to modify a service group name, you must delete the old one and
recreate a new one with a different name.

3. To add existing services to the group, click Add and select them from the drop-down
menu in the Service Name field.

4. For each service you add to the new service group, define the following properties:

Property Description

Reliable Defines whether Event Routing guarantees the delivery
of every event to the service. By default this value is set
to true. Possible values are true and false.

Note: You can set this property to true only for services
whose type supports reliable delivery of events.

Usage Defines whether the service serves as a source and/or
destination for events. By default this value is set to
Destination Only.Possible values are:

Source Only - the service only consumes events.
Only supported for services that can act as a source.

Destination Only - the service only emits events.

Source and Destination - the service emits and
consumes events. Only supported for services that
can act as a source.

Note: Your service group must contain only one source
service. You cannot include the same service twice

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 35

Property Description
in the same service group. If you selected the
predefined In-Process service, it must always be
set to Source and Destination.

5. Optionally, click Test to verify your configuration is consistent.

6. Save your changes.

Event Routing detects that the configuration has been updated, and starts to use the new
seings automatically.

Configuring Event Type Associations
You can associate a set of predefined and custom event types that exist in your Event
Type Store to different service groups. When events of those particular event types are
sent or received, Event Routing delivers them to all services within the respective service
groups.

Note: All event types, which are not explicitly associated to a custom service group,
are associated to the default service group.

Note: You must have already defined your custom service groups before associating
event types to them. You cannot delete a custom service group which has
event types associated to it. For more information about defining service
groups, see "Configuring Custom Service Groups" on page 33.

To configure event type associations

1. In Command Central, navigate to Environments > Instances > All > <profile_name> >Event
Routing> Configuration tab, select Event Type Associations from the drop-down menu,
and then click the Event Type Associations entry.

2. In the Configuration Details dialog, click Edit.

3. In the Service Group column, select the service group from the drop-down menu to
associate the respective event type to it.

4. In the In-Memory Capacity and On-Disk Capacity columns, enter the desired values to
set the maximum number of events stored in the Store and Forward queue for a
particular event type.

You can use any positive integer or specify 1K (1024), 1M (1024K) or 1G (1024M). You
can leave an empty string or enter Default to denote usage of the default global
seings.

For more information about seing up common storage capacity seings, see
"Configuring Storage Capacity for Event Routing " on page 25.

5. Optionally, click Test to verify your configuration is consistent.

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 36

6. Save your changes.

Event Routing detects that the configuration has been updated, and starts to use the new
seings automatically.

Securing Passwords Held in Service Configurations

Overview
In specific cases when you create Event Routing service configurations making
connections which require password authentications, you must provide authentication
credentials as values within the service configurations. The passwords are encrypted in
all service configuration files using a secret key, which is also encrypted.

The secret key is used by Event Routing to encrypt and decrypt passwords specified in
the service configurations making connections which require password authentications.
The secret key can be found in the event-routing-security.xml file available in the
Software AG_directory/common/conf/event/routing directory.

Software AG recommends that you modify the value of the secret key on each
Software AG installation containing an Event Routing node before you start configuring
services in Command Central. You can use the Event Routing ciphering utility to
encrypt a given value and use it as a secret key.

For more information about using the Event Routing ciphering utility, see "Working
with the Event Routing Ciphering Utility" on page 36.

For more information about modifying the secret key, see "Modifying the Event Routing
Secret Key" on page 37.

Working with the Event Routing Ciphering Utility
The Event Routing ciphering utility enables you to encrypt a given value and use it as a
secret key. You can then use the new encrypted value to replace the secret key used by
Event Routing to encrypt and decrypt passwords specified in your service definitions.
The Event Routing ciphering utility is delivered as part of your Software AG installation
and can be found as a .jar file in the Software AG_directory/common/conf/event/routing
directory.

To use the Event Routing ciphering utility

1. In a command prompt, navigate to Software AG_directory/common/conf/event/
routing.

2. Execute the java -jar command and specify the nerv-cipher-util.jar, as well as a
value to be encrypted, for example:
java -jar
Software AG_directory
/common/lib/

M
Odd Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 37

nerv-cipher-util.jar <value_to_be_encrypted>

The encrypted value is displayed in the command prompt and can be used as a secret
key for encrypting and decrypting user credentials provided to Event Routing by
custom route bundles making connections which require password authentications.

Modifying the Event Routing Secret Key
By default, Event Routing is delivered with an encrypted secret key which is used for
encrypting and decrypting user credentials provided by custom route bundles making
connections which require password authentications. Software AG recommends that
you modify the value of the secret key on each Software AG installation containing
a Event Routing node before you start developing your Event Routing custom route
bundles.

To modify the Event Routing secret key

1. In your file system, navigate to the nerv-security.xml file available in the
Software AG_directory/common/conf/event/routing directory.

The file contains the default encrypted secret key value:
<nervSecurity>
 <key>{AES}9bexKOp6S06Y8IJL53b4P8wCXf3pKWBrI8/vbOqlnhA=</key>
</nervSecurity>

2. Using the Event Routing ciphering utility, generate a new encrypted value for the
secret key.

For more information about the Event Routing ciphering utility, see "Working with
the Event Routing Ciphering Utility" on page 36.

3. For each Software AG installation containing a product which embeds Event
Routing, use the newly generated value to replace the default secret key in the in
the nerv-security.xml file available in the Software AG_directory/common/conf/event/
routing directory.

4. Recreate any existing service definition, such as Event Persistence, which contains a
password.

Event Routing uses the new secret key to encrypt and decrypt passwords which are part
of service definitions, such as Event Persistence.

Deploying EDA Event Types
Deployment is the process of moving EDA assets from the design environment into the
run-time or production environment.

EDA event types composites can be deployed to one or more target runtimes using the
webMethods Deployer’s repository-based deployment. To use this deployment method,
you must have the Asset Build Environment (ABE) installed.

M
Even Header

Administering Event Routing

Communicating between Software AG Products Using Event Routing Version 9.12 38

The EDA event types composites that you create prior to deployment must have a
specific structure in order to be deployable using Deployer. Event Types deployment
composites are valid Event Types projects - a parent project directory with an Event
Types subdirectory containing event type definitions. Software AG recommends that
you use Software AG Designer’s Events Development perspective to develop your
custom event type definitions.

The event type definitions are considered individual assets and are packed by the Asset
Build Environment into zip archives. Multiple event type definitions can be packed in a
single zip file.

Note: Event type schemata with namespaces that do not start with the http://
namespaces.softwareag.com/EDA string are deployed to the WebM/External
directory of the Event Type Store.

When you enable the creation of EDA composites and run the ABE build script, the
script searches the specified source directories and creates a composite for each project
directory that contains EDA event types.

For more information about installing the Asset Build Environment feature, see Installing
Software AG Products. For more information about building composites for repository-
based deployment, see webMethods Deployer User’s Guide.

Example of a Deployment Project Structure
You can use Asset Build Environment to build deployable composites from EDA event
types. Here is an example of an EDA source repository directory and the deployable
assets which are produced by the Asset Build Environment build script. In the example
below the build.source.dir property is set to /source as a prerequisite.

For Event Types with the following source repository structure:
/source/MyNewEvents/Event Types/MyCompany/Account.xsd
/source/MyNewEvents/Event Types/MyCompany/Receipt.xsd

the Asset Build Environment build script creates the MyNewEvents.zip deployable
composite, which contains the two Account and Receipt event types.

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 39

3 Event Routing for Developers

■ Using the Event Routing Integration Server Built-In Services ... 40

■ Developing Applications for Configuring Event Routing .. 42

■ Using Command Central Composite Templates to Configure Event Routing 48

■ Monitoring Event Routing Data .. 52

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 40

If you are a developer working in an event-enabled environment, you can create custom
applications using the capabilities offered by Event Routing.

Using the Event Routing Integration Server Built-In Services
Integration Server interacts with many Software AG products, and provides pre-
configured public services for use in the event-driven system. It supports JMS
connections to webMethods Universal Messaging, and it can act as an event publisher or
subscriber. As a publisher, Integration Server can convert IS document types into events
and publish them to the messaging bus. As a subscriber it can transform received events
into IS document types.

The pre-configured Event Routing built-in services are available in the WmPublic\pub
\event\routing folder of your Integration Server packages.

Using the pub.event.routing:send Service
The procedure below explains how to use the pub.event.routing:send service to send
events. It assumes that you are familiar with working with built-in services and flow
services in Software AG Designer. For more information about IS built-in services, see
the PDF publication webMethods Integration Server Built-In Services Reference. For more
information about working with flow services, see the PDF publication webMethods
Service Development Help.

To send EDA events using the pub.event.routing:send service

1. In the Service Development perspective in Designer, create a new document type
from an existing event type, for example the PartInventoryLow event type.

You can use any event type that has previously been deployed to the Event Type
Store in your Software AG installation. For more information about deploying event
types, see "Deploying EDA Event Types" on page 37.

a. Use the PartInventoryLow event name as a name for the new document type and
click Next.

b. Select XML Schema as source type and click Next.

c. Select File/URL for source location, and browse to the PartInventoryLow event
type in the Event Type Store and click Next.

By default, the PartInventoryLow event type is located in the
Software AG_directory\common\EventTypeStore\WebM\Sample
\InventoryMngt\1.0 directory.

d. On the next page of the wizard, leave the schema-related processing options
unchanged, and click Next.

e. Select the PartInventoryLow element as the root node, enable the Expand complex
type inline option for a cleaner layout, then click Next.

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 41

f. On the next page of the wizard you can configure the namespace prefixes to
be used for representing namespaces found in the schema. Leave the entries
unmodified, and click Finish.

2. Create a new empty flow service.

3. In the Input/Output tab of the Flow service editor, in the Input Parameters panel,
insert a document reference to the new document type you created in step 1.

Note: You can drag and drop the document type from Package Navigator view.

4. In the Tree or the Layout tab of the Flow service editor, insert an INVOKE
pub.event.routing:send step.

5. In the Pipeline view, link the document reference from the Pipeline Input area to the
event/body node of the pub.event.routing:send service in the Service Input area.

6. In the Service Input area, set the value of the Type variable to the full event type
name, in this example {http://namespaces.softwareag.com/EDA/WebM/Sample/
InventoryMgmt/1.0}PartInventoryLow.

7. In the Service Input area, set the value of the documentTypeName variable to refer to
the document type you created in step 1.

This is required in order to assert that the namespace declarations are added to the
XML document emied as an EDA event.

8. Right click and select Run As > Run Flow Service to test your flow service.

Note: The name aribute of the second <record> element must match the name
of the document reference configured as the input of the flow service.

Using the pub.event.routing:subscribe Service
The procedure below explains how to use the pub.event.routing:subscribe service
to subscribe to events. It assumes that you are familiar with working with built-in
services and flow services in Software AG Designer. For more information about
IS built-in services, see the PDF publication webMethods Integration Server Built-In
Services Reference. For more information about working with flow services, see the PDF
publication webMethods Service Development Help.

To subscribe to EDA events using the pub.event.routing:subscribe service

1. In the Service Development perspective in Designer, create a new empty flow
service, and open it.

2. In the Tree tab of the Flow service editor, drag and drop the
pub.event.routing:subscribe service.

3. In the Pipeline view, set the eventTypeName to the name of the desired event type,
in this example {http://namespaces.softwareag.com/EDA/WebM/Sample/

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 42

InventoryMgmt/1.0}PartInventoryLow, and the serviceName to the name of a
service that will be invoked when an event of the specified type is received.

Note: The service specified by theserviceName parameter must have a document
reference to the pub.event.eda:event service. Other input parameters
are not allowed.

4. Right click and select Run As > Run Flow Service to subscribe to events using the flow
service.

Note: You can configure the newly created flow service as a startup service. For
more information about startup services, see webMethods Service Development
Help.

Using the pub.event.routing.unsubscribe Service
The procedure below explains how to use the pub.event.routing:unsubscribe
service to unsubscribe from events. It assumes that you are familiar with working with
built-in services and flow services in Software AG Designer. For more information
about IS built-in services, see the PDF publication webMethods Integration Server Built-In
Services Reference. For more information about working with flow services, see the PDF
publication webMethods Service Development Help.

To unsubscribe from EDA events using the pub.event.routing:unsubscribe service

1. In the Service Development perspective in Designer, create a new empty flow
service, and open it.

2. In the Tree tab of the Flow service editor, drag and drop the
pub.event.routing:unsubscribe service.

3. In the Pipeline view, set the eventTypeName and the serviceName to the same values
that were specified in the subscription service.

4. Right click and select Run As > Run Flow Service to subscribe to events using the flow
service.

Note: You can configure the newly created flow service as a shut down service.
For more information about shut down services, see webMethods Service
Development Help.

Developing Applications for Configuring Event Routing
Event Routing configuration is integrated with Software AG Command Central. You can
configure Event Routing programmatically in a specified runtime using your custom
applications. This can be achieved by using the Command Central command line
interface or by using the Command Central REST API.

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 43

For more information, see the following sections below:

"Using the Command Central Command Line Interface for Configuring Event
Routing " on page 43.

"Using the Command Central REST API for Configuring Event Routing" on page
46.

Using the Command Central Command Line Interface for Configuring
Event Routing
You can use the Command Central command line interface in your custom applications
to configure your Event Routing runtime component.

Below you can find a list of most relevant Event Routing-related commands, and
examples of their usage in the context of Event Routing. Note that the example syntax is
as required for execution in Command Central.

For the full list of available Command Central commands and their options, as well
as syntax examples for execution in Software AG Platform Manager, see Software AG
Command Central Help.

Related Command Description

sagcc list
configuration types

Gets all available configuration types for a particular
runtime component. For a usage example, see "Geing
all Available Event Routing Configuration Types" on
page 44.

sagcc list
configuration
instances

Gets a list of all objects of a particular configuration
type. For a usage example, see "Geing a List of all
Objects of a Particular Event Routing Configuration
Type" on page 44.

sagcc get
configuration data

Gets configuration data for a specified object. For
a usage example, see "Geing Data for a Specific
Configuration Instance" on page 44.

sagcc update
configuration data

Updates a configuration object. For a usage example,
see "Updating Specific Configuration Data" on page
44.

sagcc create
configuration data

Adds a configuration object. For a usage example, see
"Adding Configuration Data" on page 45.

sagcc delete
configuration data

Deletes a configuration object. For a usage example,
see "Deleting Configuration Data" on page 45.

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 44

Getting all Available Event Routing Configuration Types
You can retrieve information about all available Event Routing configuration types for
a specified Event Routing instance running within a product’s OSGi profile. Use the
following command:
sagcc list configuration types node_alias componentid [typeid] [options]

For example, to get all configuration types available for an Event Routing component
running within the Integration Server OSGi profile on an installation with alias “sag01”,
execute the following command:
sagcc list configuration types sag01 OSGI-IS_default-EventRouting

Getting a List of all Objects of a Particular Event Routing Configuration Type
You can get a list of all objects of a particular Event Routing configuration type with an
ID, name, display name, and description. Use this command together with the sagcc
get configuration data command to retrieve detailed information for each object.
Use the following command:
sagcc list configuration instances node_alias componentid [instanceid] [options]

For example, to get a list of all configuration instances of an Event Routing component
running within the Integration Server OSGi profile on an installation with alias “sag01”,
execute the following command:
sagcc list configuration instances sag01 OSGI-IS_default-EventRouting

Getting Data for a Specific Configuration Instance
You can get data about a specified configuration instance that belongs to a specified
Event Routing component. Use the following command:
sagcc get configuration data node_alias componentid instanceid [options]

For example, to get configuration data for all Universal Messaging services in the
Event Routing component running within the Integration Server OSGi profile on an
installation with alias “sag01”, execute the following command:
sagcc get configuration data sag01 OSGI-IS_default-EventRouting UniversalMessaging

Updating Specific Configuration Data
You can update data about a specified configuration instance of a specified Event
Routing component. Use the following command:
sagcc update configuration data node_alias componentid instanceid
[sharedsecret=text_string]# {--input | -i}
filename {.xml|.json|.properties} [options]

For example, to update the configuration data for a Universal Messaging service with
the name “UM1” in the Event Routing component running within the Integration Server
OSGi profile on an installation with alias “sag01”, execute the following command:
sagcc update configuration data sag01
OSGI-IS_default-EventRouting COMMON-WMMESSAGING-ER

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 45

UM1 --input C:\ConfigStore\UM1.json

Where “C:\ConfigStore\UM1.json” is a file containing the updated configuration for the
“UM1” service.

Note: The data in the input file must match the expected format for the
configuration type. You can use the sagcc exec configuration
validation update command to validate the input data that you want to use
for updating your configuration instance.

Adding Configuration Data
You can create a new instance of a specified configuration type for a specified Event
Routing component. Use the following command:
sagcc create configuration data node_alias componentid typeid {--input | -i}
file {.xml|.json|.properties} [options]

For example, to create a new instance of Universal Messaging service type with the
name “UM1” in the Event Routing component running within the Integration Server
OSGi profile on an installation with alias “sag01”, execute the following command:
sagcc create configuration data sag01 OSGI-IS_default-EventRouting
COMMON-WMMESSAGING-ER --input C:\ConfigStore\UM1.json

Where “C:\ConfigStore\UM1.json” is a file containing the configuration for the new
“UM1” service.

Deleting Configuration Data
You can delete a configuration instance from a specified Event Routing component. Use
the following command:
sagcc delete configuration data node_alias componentid instanceid [options]

For example, to delete the “UM1” messaging service of Universal Messaging service
type in the Event Routing component running within the Integration Server OSGi profile
on an installation with alias “sag01”, execute the following command:
sagcc delete configuration data sag01 OSGI-IS_default-EventRouting
COMMON-WMMESSAGING-ER UM1

Note: The restrictions for deleting services and service groups using the Command
Central web user interface are also applicable when using the command line
interface.

Configuration Types that Event Routing Supports
The Event Routing run-time component supports the configuration types listed in
the table below. For general information about using Command Central to configure
seings for a product, see Software AG Command Central Help.

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 46

Configuration Type Use to configure...

RUNTIME-CONFIGURATION Runtime configuration seings for Event
Routing.

For information about the fields and values
to specify when configuring Event Routing
runtime seings, see "Configuring Common
Properties for Event Routing" on page 24.

SERVICE-GROUP Groups of services for a particular runtime.
One of the services in a service group can be
tagged as the source of events for all event
types associated with this service group.

For information about Event Routing service
groups, see "Configuring Services and Service
Groups" on page 27.

COMMON-WMMESSAGING-
ER

Services of Universal Messaging type that are
the source or target endpoints for receiving
and delivering events.

For information about Event Routing
services, see "Configuring Services and
Service Groups" on page 27.

EVENT-PERSISTENCE Services of Event Persistence type that are the
target endpoints for receiving events.

For information about Event Routing
services, see "Configuring Services and
Service Groups" on page 27.

EVENT-TYPE-ASSOCIATIONS Associations of predefined and custom event
types that exist in the Event Type Store to
different Event Routing service groups.

For information about Event Routing event
type associations, see "Configuring Event
Type Associations" on page 35.

Using the Command Central REST API for Configuring Event Routing
You can use the Command Central REST API in your custom applications to configure
Event Routing.

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 47

For more information about using the Command Central REST API, see the Geing
Started with the Software AG Command Central REST API PDF publication.

For a list of commands that can be called using the Command Central REST API, see
"Using the Command Central Command Line Interface for Configuring Event Routing "
on page 43.

Examples for Using the Command Central REST API for Configuring Event
Routing
In order to be able to configure Event Routing using the Command Central REST API,
you should be familiar with the landscape, inventory, and configuration services of Command
Central.

To get detailed information about which REST URLs are supported by the services, and
how they can be used with the HTTP methods GET, PUT, POST, and DELETE, issue the
following calls:

hp://cc-host :cc-port /cce/landscape/application.wadl

hp://cc-host :cc-port /cce/inventory/application.wadl

hp://cc-host :cc-port /cce/configuration/application.wadl

Where cc-host is the name of the host machine where you have installed Command
Central, and cc-port is the port number where the Command Central instance is running.

The following sample REST URLs assume that your Command Central server can be
reached under localhost:8090, where localhost is the node alias of the default
installation.

GET http://localhost:8090/cce/landscape/nodes - gets all nodes (and their
nodeAliases) in the landscape.

GET http://localhost:8090/cce/inventory/components - gets all runtime
components in the landscape. Component IDs for Event Routing always end with
“EventRouting”. For example, “OSGI-SPM-EventRouting” is the ID of the Event
Routing component installed inside Software AG Platform Manager.

GET http://localhost:8090/cce/configuration/instances/{nodeAlias}/
{runtimeComponentId} - gets all metadata for all configuration instances of a
specific component on the defined node. For example,
GET http://localhost:8090/cce/configuration/instances/local/
OSGI-SPM-EventRouting

gets metadata for all configuration instances of the “OSGI-SPM-EventRouting”
component on the “local” node. This metadata contains the configuration ID which
is required in other REST calls.

GET http://localhost:8090/cce/configuration/data/{nodeAlias}/
{runtimeComponentId}/{configurationInstanceId} - gets the actual
configuration data for a configuration instance in a specified runtime component. For
example,

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 48

GET http://localhost:8090/cce/configuration/data/local/
OSGI-SPM-EventRouting/UniversalMessaging

gets the actual configuration data of the “UniversalMessaging” configuration of the
“OSGI-SPM-EventRouting” component. You can use PUT with the same REST URL
to update the configuration instance. You can use DELETE with the same REST URL
to delete the configuration instance.

GET http://localhost:8090/cce/configuration/types/{nodeAlias}/
{runtimeComponentId} - gets all configuration types that can be used with a
specified runtime component. For example,
GET http://localhost:8090/cce/configuration/types/local/
OSGI-SPM-EventRouting

gets all configuration types that can be used with the “OSGI-SPM-EventRouting”
component.

The Event Routing component has the following configuration types: RUNTIME-
CONFIGURATION, SERVICE-GROUP, COMMON-WMMESSAGING-ER, EVENT-PERSISTENCE,
EVENT-TYPE-ASSOCIATIONS.

POST http://localhost:8090/cce/configuration/data/{nodeAlias}/
{runtimeComponentId}/{configurationTypeId} - creates a new configuration
object of the specified configuration type of the component. For example,
POST http://localhost:8090/cce/configuration/data/local/
OSGI-SPM-EventRouting/SERVICE-GROUP

creates a new configuration object of type “SERVICE-GROUP” of the “OSGI-SPM-
EventRouting” component.

Using Command Central Composite Templates to Configure
Event Routing
With Command Central, you can create new environments using composite templates.
A composite template defines a set of environment properties for which you can specify
values or use the default values provided in the template definition. For example, you
can specify which products to include in a composite template or the number of nodes
on which to apply the template.

With Command Central, you import and apply composite templates using the
Command Central command line tool.

For more information about composite templates and the related command line
commands, see Software AG Command Central Help.

Configuring Event Routing in a Single Runtime
You can provision Event Routing configuration in a single runtime instance on a
specified installation. For example, in an Integration Server profile on your installation,
you can define a Universal Messaging service called “MyUniversalMessaging”, and

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 49

configure the default service group to use it as a source and destination service. To do
this, define the following Event Routing template:
templates:
 is-esb:
 # ...
 er-config:
 instance:
 productId: integrationServer
 name: ${is.instance.name} # You can also fix the name such as
 IS_default in the template directly
 configuration:
 *-EventRouting:
 COMMON-WMMESSAGING-ER:
 COMMON-JMS-umdefault:
 alias: MyUniversalMessaging,
 enabled: true,
 URL: nsp://${umhost}:${umport}
 service-groups:
 name: default
 description: The default event group includes all event types
 that are not added to other defined groups
 services:
 service-name: MyUniversalMessaging,
 service-is-reliable: true
 service-usage: SourceAndDestination

Note: The example above contains variables that use the following format:
${parameterName} . In case you use variables instead of hard-coded values,
make sure you create a properties file containing values for those variables,
and provide it when applying your composite templates.

Now add the newly created Event Routing template to all layers which include product
instances where you want to provision the Event Routing configuration:
layers:
 esb:
 description: Enterprise Service Bus layer based on Integration Server
 templates:
 is-esb
 er-config
 bpm:
 description: Business Process Management layer based on Integration Server
 templates:
 is-bpm
 er-config

Configuring Event Routing in a Single Installation
You can provision Event Routing configuration in all runtime instances on a single
installation. For example, in all Integration Server instances on your installation, you can
define a Universal Messaging service called “MyUniversalMessaging”, and configure
the default service group to use it as a source and destination service. To do this, define
the following Event Routing template:
templates:
 is-esb:
 # ...
 is-bpm:

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 50

 # ...
 er-config:
 instance:
 productId: * # Use * to have unified Event Routing configuration
 across the installation, you can be selective if necessary
 name: * # Use * again (any instance)
 configuration:
 *-EventRouting:
 COMMON-WMMESSAGING-ER:
 COMMON-JMS-umdefault:
 alias: MyUniversalMessaging,
 enabled: true,
 URL: nsp://${umhost}:${umport}
 service-groups:
 name: default
 description: The default event group includes all event types
 that are not added to other defined groups
 services:
 service-name: MyUniversalMessaging,
 service-is-reliable: true
 service-usage: SourceAndDestination

Note: The example above contains variables that use the following format:
${parameterName} . In case you use variables instead of hard-coded values,
make sure you create a properties file containing values for those variables,
and provide it when applying your composite templates.

Now add the newly created Event Routing template to all layers which include product
instances where you want to provision the Event Routing configuration:
layers:
 esb:
 description: Enterprise Service Bus layer based on Integration Server
 templates:
 is-esb
 er-config
 bpm:
 description: Business Process Management layer based on Integration Server
 templates:
 is-bpm
 er-config

Configuring Event Routing in Multiple Installations
You can provision Event Routing configuration in all runtime instances on multiple
installations. For example, in all Integration Server instances on several installations,
you can define a Universal Messaging service called “MyUniversalMessaging”, and
configure the default service group to use it as a source and destination service. To do
this, you must:

Define the installations in your composite template

Add the following code snippet:
nodes:
 default:
 default:
 port: 8093
 secure: true

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 51

 credentials:
 username: Administrator
 password: manage
 envType1:
 node1:
 host: localhost
 port: 8192
 node2:
 host: localhost
 port: 8292

Define the layers and list the templates that should be applied

Add the following code snippet:
layers:
 esb:
 templates:
 is-esb
 er-config
 bpm:
 templates:
 is-bpm
 er-config

Define the environments

Add the following code snippet:
environments:
 envType1:
 param2: someValue
 envType2:
 param1: v1
 param3: v3

Map the layers to the nodes.

This is done separately for each environment. The example below shows that the
nodes for the envType2 environment are not hard-coded directly in the template, but
are resolved by using input parameters.
provision:
 envType1:
 bpm: [node1,node2]
 esb: [node2,node3]
 envType2:
 bpm: ${bpm.hosts}
 esb: ${is.hosts}

Define the following Event Routing template that applies to all product instances in
the installation.
templates:
 is-esb:
 # ...
 is-bpm:
 # ...
 er-config:
 instance:
 productId: * # Use * to have unified Event Routing configuration
 across the installation, you can be selective if necessary
 name: * # Use * again (any instance)
 configuration:

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 52

 *-EventRouting:
 COMMON-WMMESSAGING-ER:
 COMMON-JMS-umdefault:
 alias: MyUniversalMessaging,
 enabled: true,
 URL: nsp://${umhost}:${umport}
 service-groups:
 name: default
 description: The default event group includes all event types
 that are not added to other defined groups
 services:
 service-name: MyUniversalMessaging,
 service-is-reliable: true
 service-usage: SourceAndDestination

Note: The example above contains variables that use the following format:
${parameterName} . In case you use variables instead of hard-coded values,
make sure you create a properties file containing values for those variables,
and provide it when applying your composite templates.

Applying Composite Templates
The composite templates can be applied to your environment using command line
commands. For the full list of available command line commands, see Software AG
Command Central Help.

To apply a composite template that uses hard-coded values, in a command prompt,
run the following command:
cc exec templates composite apply mytemplate param1=value1 param2=value2

To apply a composite template where values for variables are provided in
a .properties file:
cc exec templates composite apply mytemplate -i myparams1.properties

Monitoring Event Routing Data
As a developer of a product that uses Event Routing, you can create a JMX client to
retrieve configuration information exposed by Event Routing. This enables you to
monitor Event Routing data flowing through your system.

As a developer creating Event Routing services, you can expose configuration
information specific to your service.

Note: You must not expose any service-specific aributes of complex types in your
JMX client. You must only use generic Java types, such as String , Integer/int ,
Long/br_long , Date , etc.

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 53

Common Attributes for All Service MBeans

Name Description

usage String. The usage of the Event Routing
service. Possible values are:

Source only - you can subscribe to services
of this type, but you cannot send events to
them.

Destination only - you can send events
to services of this type, but you cannot
subscribe to them.

Source and Destination - you can send
events and subscribe to services of this type.

reliability String. The reliability seing of the service.
Possible values are:

reliable

best-effort

status String. The status of the service after an event
was sent through it to the destination server
or another type of endpoint. The value of this
aribute is updated every time an event is
sent from the queue to the destination service
or another endpoint, depending on whether
the server/ endpoint has acknowledged the
event with success or failure. Possible values
are:

green when the service is functioning
correctly.

red when the service is unavailable.

Note: If the destination server or endpoint
becomes unavailable, but no events have
been sent for a long time, the status will
still be green. In case you are monitoring
a Universal Messaging service, use this
parameter in conjunction with connected,
connectTime, and disconnectTime to determine
whether the Universal Messaging server is
available.

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 54

Name Description

statusDetails String. An explanation of the current status.
Possible values are:

green when the service is functioning
correctly.

red when the service is unavailable.
Provides the message of the last error which
occurred while trying to deliver events to
the destination server or another type of
endpoint denoted by the service.

receivedEvents Long. The number of events received by all
subscribers to this service since its activation.
If the service usage is Destination only,
the value of this aribute will be empty.
Otherwise, the value will be:

Growing at a steady pace, when the service
is functioning correctly.

Growing slowly, when the service is slow.

Not growing for a long period of time, when
the service is unavailable.

Note: In case you are monitoring a Universal
Messaging service, use this parameter in
conjunction with connected, connectTime, and
disconnectTime to determine whether the
Universal Messaging server is available.

activeDurableSubscribersCount Integer. The number of active durable
subscribers to this service. If the service
usage is Destination only, the value of this
aribute will be empty.

activeDurableSubscribersIds List<String>. The identifiers of the active
durable subscribers to this service. If the
service usage is Destination only, the value
of this aribute will be empty.

inactiveDurableSubscribersCount Integer. The number of inactive (closed but
still subscribed) durable subscribers to this
service. If the service usage is Destination
only, the value of this aribute will be empty.

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 55

Name Description

inactiveDurableSubscribersIds List<String>. The identifiers of the inactive
(closed but still subscribed) durable
subscribers to this service. If the service
usage is Destination only, the value of this
aribute will be empty.

nonDurableSubscribersCount Integer. The number of non-durable
subscribers to this service. If the service
usage is Destination only, the value of this
aribute will be empty.

sentEvents Long. The number of events sent to the
service. If the service usage is Source only,
the value of this aribute will be empty. The
value of this aribute is:

Growing if the service is functioning
correctly.

Growing up to the point when the on-disk
queue is full, if the service is reliable. This is
most probably due to a slow or unavailable
service.

acknowledgedSentEvents Long. The number of events sent through this
service and successfully acknowledged by the
messaging server, database, or another type of
endpoint it represents. If the service usage is
Source only, the value of this aribute will
be empty. Otherwise, the value will be:

Growing at a steady pace, when the service
is functioning correctly.

Growing slowly, when the service is slow.

Not growing for a long period of time, when
the service is unavailable.

lastSendingTime Instant. The time of sending the last event to
the messaging server, database, or another
type of endpoint it represents. If the service
usage is Source only, the value of this
aribute will be empty. Otherwise, the value
will be:

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 56

Name Description

A few milliseconds or seconds before the
current time, when the service is functioning
correctly or when the service is slow.

Before the current time, when the service is
unavailable.

Note: This reading denotes the time an
event was last sent to the destination
service. It does not contain information
about whether or when the event
was acknowledged by the service.
For such information, see the
lastCompletedAcknowledgementTime and
lastFailedAcknowledgementTime aributes.

lastCompletedAcknowledgementTime Instant. The last time an event sent through
this service was acknowledged with success
by the destination server. If the service usage
is Source only, the value of this aribute will
be empty. Otherwise, the value will be:

A few milliseconds or seconds before the
current time and shortly after lastSendingTime,
when the service is functioning correctly.

Before lastSendingTime, when the service is
slow or unavailable.

lastFailedAcknowledgementTime Instant. The last time an event sent through
this service was acknowledged with failure by
the destination server. If the service usage is
Source only, the value of this aribute will
be empty. Otherwise, the value will be:

empty or pointing to a long time before the
current time, when the service is functioning
correctly.

empty or pointing to a recent moment in
the past, when the service is slow. The
delivery of an event might fail due to a
slow connection to the destination server, in
which case the event must be redelivered.

After lastSendingTime and a few milliseconds
or seconds before the current time
(depending on the redelivery interval and

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 57

Name Description
the response timeout of the service), when
the service is unavailable.

regularDeliveryInterruptionsCount Integer. The number of times the service
has switched to redelivery mode because of
failure to deliver an event to the destination
server or another type of endpoint. The
delivery of an event might fail due to a slow
connection to the destination server, in which
case the event must be redelivered. If the
service usage is Source only, the value of
this aribute will be empty.

Specific Attributes for Universal Messaging Service MBeans

Name Description

providerUrl String. The URL of the Universal
Messaging server in the following format:
<protocol> ://<host> :<port> , for example:
nsp://localhost:9000

connected Boolean. Indicates whether the Universal
Messaging service is connected to the
configured Universal Messaging server.
Possible values are:

true when the service is functioning
correctly or is slow.

false when the service is disconnected.

connectTime Instant. The time when the Universal
Messaging service connected to the
configured Universal Messaging server,
or reconnected to it after a disconnection.
Possible values are:

Before the current time when the service is
functioning correctly or is slow.

Empty when the service is initially
unavailable.

Before the time represented by disconnectTime
when the Universal Messaging service
becomes unavailable afterwards.

M
Even Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 58

Name Description

disconnectTime Instant. The time when the Universal
Messaging service disconnected from the
Universal Messaging server. Possible values
are:

Empty or before the value represented by
connectTime when the Universal Messaging
service is functioning correctly or is slow.

Empty when the Universal Messaging
service is initially unavailable.

After the value represented by connectTime
when the Universal Messaging service
becomes unavailable afterwards.

Attributes for Queue MBeans

Name Description

status String. The status of the queue. Possible values
are:

green when the queue is functioning
correctly.

yellow when the queue is slow.

red when the queue is unavailable. This
might be caused by the destination server
being down for a longer period of time.

statusDetails String. An explanation of the current status:

green when the queue’s utilization is below
90%.

yellow when the queue’s utilization is equal
to or greater than 90% but less than 100%.

red when the queue is full; new events will
be rejected in case of an on-disk queue, or the
oldest events will be discarded when new
events arrive in case of an in-memory queue.

capacity Long. The maximum number of event which
the queue can store.

M
Odd Header

Event Routing for Developers

Communicating between Software AG Products Using Event Routing Version 9.12 59

Name Description

currentSize Long. The number of events currently stored
in the queue. Possible values are:

green when the queue capacity is below 90%.

yellow when the queue capacity is equal to or
greater than 90%.

red when the queue capacity is equal to 100%.

averageUtilization Float. The average size:capacity ratio since the
first send operation for the event type which
uses the queue.

queueBufferFullCount Integer. The number of times the queue has
become full, that is currentSize has been equal to
capacity. Possible values are:

0 - if the queue status has never been red.

> 0 - when the queue status is red now, or has
been red before.

	Table of Contents
	About this Guide
	Deprecation of Software AG NERV
	Document Conventions
	Online Information

	Understanding Event Routing
	What is Event-Driven Architecture?
	Related Software AG Products and Components
	What is Event Routing?
	Event Routing Concepts
	The Principle of Event Routing
	Type-Based Routing
	Reliability
	Store-and-Forward Processing
	Sending Events Asynchronously

	Event Types
	Event Structure
	Heartbeats
	Event Type Governance
	Event Type Store

	Event Routing Services
	Supported Service Types
	Service Groups

	Connecting to the Messaging Bus
	Connecting to the Messaging Bus Using Event Routing
	Connecting to the Messaging Bus Using the EDA-Related Integration Server Built-In Services

	Storing Events Using Event Persistence

	Administering Event Routing
	Configuring Common Properties for Event Routing
	Configuring Storage Capacity for Event Routing
	Setting up System Properties for Products Using Event Routing Outside the Software AG Common Platform

	Configuring Services and Service Groups
	Creating Universal Messaging Services
	Creating Event Persistence Services
	Using Event Persistence with HDFS
	Creating Event Persistence Services for HDFS
	Creating Event Persistence Services for Elasticsearch

	Configuring the Default Service Group
	Configuring Custom Service Groups
	Configuring Event Type Associations

	Securing Passwords Held in Service Configurations
	Overview
	Working with the Event Routing Ciphering Utility
	Modifying the Event Routing Secret Key

	Deploying EDA Event Types
	Example of a Deployment Project Structure

	Event Routing for Developers
	Using the Event Routing Integration Server Built-In Services
	Using the pub.event.routing:send Service
	Using the pub.event.routing:subscribe Service
	Using the pub.event.routing.unsubscribe Service

	Developing Applications for Configuring Event Routing
	Using the Command Central Command Line Interface for Configuring Event Routing
	Getting all Available Event Routing Configuration Types
	Getting a List of all Objects of a Particular Event Routing Configuration Type
	Getting Data for a Specific Configuration Instance
	Updating Specific Configuration Data
	Adding Configuration Data
	Deleting Configuration Data
	Configuration Types that Event Routing Supports

	Using the Command Central REST API for Configuring Event Routing
	Examples for Using the Command Central REST API for Configuring Event Routing

	Using Command Central Composite Templates to Configure Event Routing
	Configuring Event Routing in a Single Runtime
	Configuring Event Routing in a Single Installation
	Configuring Event Routing in Multiple Installations
	Applying Composite Templates

	Monitoring Event Routing Data

