5 software~

webMethods Application Platform User’s Guide

Version 9.12

October 2016

WEBMETHODS

This document applies to webMethods Application Platform Version 9.12 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: AP-UG-912-20161018

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

ADOUL thiS GUILE......coerereccrrererecs e s s ane s s e e s s ana s 7
Document CONVENEIONS.........ccourerercemmrereresessssssesesessssssse s sssseses s e sess s s sssessssasssssssesensassnsnes 7
ONliNg INFOrMALION.........ccccce e e 8

DA\ o ToT U Y o7 o] 1o 1 ToT 4 I od T 1o o o PO 9
Architecture and COMPONENLS..........cocorereerrmereresesssrsesesessss e sssssesesesssssssesesssssssnens 10

Software AG Common PlatforM.............cvieriircss e 11
SOftWATE AG DESIGNET ..ottt bbb bbb 12
SOfWAIE AG SEIVEIS.......iieieeeeeieiieee sttt ettt b st s s nnis 12
WEDMEhOAS DEPIOYET.........ceeviveiiictcies ettt 12
Publishing and Deploying Bundles...........ccueererenrmrnenmssssnnnmnesssssssssssessssssssssesessssssssssesessssssssenes 13
Managing Application Platform Projects Using Software AG Command Central................. 14

Developing with Application Platform in Designer........c.ccovvecvennnesessssnmnsnessss s ssssssssenes 17

Getting Started with Application Platform Development..........ccoovinmrencnessnnnnesesessssnesesesens 18
Opening the Application Platform Perspective..........cccovvicveiiivicceeccece e 18
Adding a Server Runtime EnVIrONMENL............cviiniiniiiieeeeese s 18
Creating @ Server DEfiNItioN.........cccovcceiiiices e 19

Creating an Integration Server Definition..........ccccoveceeiiiccee e, 20
Creating a My webMethods Server Definition.............occvvnnneicreeeees 22
Configuring a Server for Publishing BUNIES...........ccoveeviiiiiiicece e 23
Verifying That Software AG Runtime Is Available.............cccocreeniiicceiccceeeee, 24
Performing Optional ConfiQurations..............cou e 24
Disabling Natural Language Support (NLS) Warnings in Designer..........ccccoovvvcvevevrinnnes 24
Enabling the OSGi CONSOIE.........cceuiiviiiiieiesiceecte ettt 25

About the Application Platform Perspective..........ccconnninnnncnsnnnncssns s 25
Application Platform DeSigner VIBWS.........couiueeurriniierrsseeieissi s sssesssssesnes 26
Application Platform Context MENU..........ccueviiiiecersiieces e 27

Creating ProjeCt BUNGIES........c.cviiueueieiiicicte ettt 27
Creating and Customizing Bundle Tool Templates for Projects.......c.cccovvvvvrnircrinnnnne. 27

About Creating Application Platform Projects..........c.coomnmnnssssnens 28
Using Application Platform Projects to Extend CAF Projects..........cccoevvevvivccesisicceinnns 28
Selecting ProjeCt FACELS........cco ittt 29
Selecting an Application Platform Runtime Environment............ccccoevvvnrennnncceseneees 29
Creating Java ProOJECES........ccciiiicce sttt 30

Folder Structure of Java PrOJECES........cccccveeiiiiecce et 31

webMethods Application Platform User’s Guide Version 9.12 3

Table of Contents

Creating Web ProJECES..........ciiiiicenic e 32
Folder Structure of Web Projects........ccccviieiiiiccssc e 33
Classpath CONTAINETS........ccuiuiieiiicecee sttt bbbt bbb 33
Adding the Application Platform Server Runtime Container...........c.cccoovvvennnccnnninns 33
Adding the Application Platform Shared Bundles Container..........c.cccooeeeevviccrcrennenen. 34
Adding the Application Platform API Libraries Container..........c.cccoovceeinivecereeiienene, 35
Bundle Tool Templates for PrOJECES. ..o 36
Including Non-OSGi Jars in ProjECES..........cvieiiiiiccieiceee e 36
About Adding Single Sign-on Authentication in Application Platform Projects..................... 37
Securing the Web Application LAYET...........cceviiircieieiiccce e s 38
Securing the OSGi SErvICe LaYEr.........ccouiiiiiriiiiercieestees s 38
About the Application Platform Integration Test Framework............ccccoueneeenrerenescssneresencnnas 40
Creating a JUnit Test for an Application Platform Project...........cccooeeeesviicccesciccees 40
Executing a JUnit Test for an Application Platform Project...........cccccovveeivivviceesecccennne 41
MaANAGING SEIVEIS.....cccceuciriririce s s e s e A e e e p s 42
Configuring Integration Server for Application Platform Projects...........cccoovvennivnicininnn. 42
Configuring Launch Configuration Settings for Integration Server..........ccccccvvvccvereiinee. 45
Configuring Integration Server ArgUMENIS...........cocuceririicreeee e 46
Configuring the Integration Server SOUTCE..........cooeveiericriersee e 47
Configuring Integration Server Environment...........cccooeeiivcccenscecee e, 48
Configuring Common Integration Server Settings.........cccooveeeeneeeeceeseceee s 49
Editing the Credentials Used for Connecting to Integration Server...........cccccccovnivninnnn. 51
Creating a New Integration Server Instance with the Application Platform Support
=T = o - RPN 52
Configuring My webMethods Server for Application Platform Projects...........cccoovevvncneneee. 53
Configuring Launch Configuration Settings for My webMethods Server................c.......... 56
Configuring the My webMethods Server SOUrCe........cocvvvicceeiicceessecee e 57
Configuring Common My webMethods Server Settings...........cccovvvrncnnicneinn. 58
Editing the User Credentials for Connecting to My webMethods Server..............ccc........ 60
Managing Server SEALUS..........cccceueiiiceessce e 60
Integration Server Lifecycle ACHONS..........ccvirirnicrceec e 61
Server Start ACHON.ccvecee s 62
SErVEr SLOP ACHON......c.ciiicicreicecce e 62
Server DEDUG ACHON. ..o 62
Server Restart ACHON..........cocoviecees e 62
My webMethods Server Lifecycle ACHONS.......cccovccveiviviiccesc e 63
SErVer Start ACHON. ... 63
SErVEr SEOP ACHON......cuciiiiecierteee e 63
Server DEBUQG ACHON........c.cciiiecce s 63
Server Restart ACHON..........ccreere e 64
About Publishing Projects..........ccussssssns 64
BUIIAING PrOJECES. ..o 64

webMethods Application Platform User’s Guide Version 9.12 4

Table of Contents

Building Projects with Designer Project BUIlders...........coocvirneninnicneseseis 64
Building Projects with Custom Application Platform Project Builders...........cccccoovrevrvnnnne. 65
Publishing Projects t0 the SEIVET..........ccoicciiicce e 65
Manifests and Bnd Templates for Software AG Common Platform.............ccccoeeeveecrcrenneee. 66
Assembling ProjeCt BUNAIES. ... 67
About Viewing Dependency Graphs..........cocvrmrmnnsmmnmnssssmsssesssssssssesessssssssssessssssssssesssass 68
Opening a Project in the Visual Navigator............ccoceeiicceicee e 69
Using the Visual NaVIGator..........couririercreeses s 69
Visual Navigator Node Depth LeVEIS.........cccovveeeecrccccceene s 70
Visual Navigator Context Menu Commands...........c.ccooueuereniniercesieeeee s 71
Visual Navigator Keyboard ShOrCULS...........ccccveriiniiccecee e 73
About Managing Project Dependencies..........cunmensmnmsnmsnsssssssssss s 73
Bundle PUDIISNEr VIEW.........oiiiiiiricer e 74
Publishing and Unpublishing BUNAIES...........ccccveeiiiiiiiiiieirseses v 75
Bundle Publisher Dependency Graphs..........c.cocveernieirnnnnsenssnssesissessseesssssenens 75
Examples of Dependency Validation............cccceerriicceisicceeeceee s, 76
Refreshing the Bundle PUbIIShEr VIEW............cccciueiiiiiiciciescecctee e 77
Validating BUNGIES.........cciuiiiiiicic s 77
BUNAle MaNAGEr VIBW.......cucvirieiiiieieeis st 77
Creating Wrapper BUNIES.........ccuiiuiviveiiiiccte et 78
Deleting Bundles and Jars...........cveeiiniciriesieseee s 79
Configuring Application Platform............ccovnssss s 80
Configuring Bundle PUDLISNET VIEW.........cccvviieccicccesr e 80
Configuring Bundle Manager VIEW...........ccccuvecueiiiiiecices ettt 82
Defining Application Platform Capabilities............cccevviierrnniiicesseceees e 82
CoNfIQUING SEIVEIS VIBW.........cvcviviiiiictetes ettt 83
Configuring Application Platform Projects........cccovieieeiiiiceeecre et 84
Developing Custom ApplICAtIONS.........ccvviiierrreces e 84
About Using Services in Application Platform............coeernmncscnnnnescssssnesesesessssssesesessssnens 86
SEIVICE BIOWSET VIBW......eieiiiciiciciece s 86
Searching in the Service Browser VIEW...........cccceiiceiiiiccee et 86
Grouping Services by Bundle Name............cooiviniiniceesese s 87
Refreshing Services and Bundle Information............ccccevviiicenviccesc e, 87
Filtering Services Displayed in the Service Browser VIEW...........cccoeveviveeceesiccecvevennn, 87
Customizing Content Displayed by the Service Browser VIEW.........cccocvvvrnnicenenninns 88
Calling Application Platform Services from Integration Server Services...........coocvceivivinnee, 89
Coding CONSIAEIAtIONS.........cciueiiiiictere ettt 90
Calling Integration Server Services from Application Platform Projects.........c.cccovvvvrvinnneee. 91
Coding CONSIAErAtIONS.........ccviveieiicciete et 92
Calling Application Platform Services from My webMethods Server Services.............cc.u...... 94
Coding CONSIAEIALIONS.c.couiviiieiiseiriie et 94

webMethods Application Platform User’s Guide Version 9.12 5

Table of Contents

Application Platform TULOrial...........cceceeinirincscsnniescss s ssse s ssssessssssssssssasaas 95
Working with Application Platform Projects.........ccvinnnnnnnncssssnnnnesess s sssesesesssssssessssans 97
About Deploying Projects.........cccvrrrrernnnnnnsnnnnsessssssssssssss s ssssssssssssssssssssssssssseseses 98
Configuring Asset Build ENVIFONMENL..........coiiiiiiiecescsese e 98
Configuring Application Platform Projects for Asset Build Environment..............cccccovvvvvineee. 98
Application Platform Project Configuration for Asset Build Environment...............cccc........ 99
Creating Assets with Asset Build Environment.............ccoeviincncnneneseees 101
Deploying ASSELS iN DEPIOYET......cccviiiciereiiseete s renes 101
About Using CAF Projects with Application Platform...........cccccorvcncsnnnncncsssnnenescssssssenens 101
Configuring CAF Projects for Asset Build Environment.............ccccoeeevieeiiicecceeeeee, 102
About Configuring Published Projects.........cccccouimnnnnninnncnnnnscss s ssssssenens 103
Using the Project Dynamic Configuration.............c.ccverinninnienseses s 103
Command Central and Platform Manager Client TOOIS............ccccoeiviviieceriiccceeeceeie, 104
Diagnostics and TroubleShooting............cuveerennmnnmnsssness s sesesens 105
oo o 11 o O PP 106
Diagnosing Bundles with the OSGi CONSOIe...........cooumrenrmnmmn s —— 106
Considerations When Publishing Projects to Servers..........cccuvvimmnnessnnnsnmsesssssssnesessssnns 107
Disabling the WmTomcat Package...........ccurerermrmrmmresesssmnmsnmsessssssssssesessssssssesessssssssssessssssssssesenes 107
CommON Project ISSUES.........cccouirimrmncsennrnrnmsess s sssse s ssssssesessssssssesesssssssssseseasas 108
Unable to Publish WED ProJECtS. ..o e 108
Unable to Add @ Project {0 the SErver...........cciiiiieceese e 108
Unable to Create @ BUNGIE..........c.cviiiriiicee s 108
References t0 LOCal RESOUICES...........cciiriireiricieicesee e 108
Unable to Publish Any Project Bundle...........ccoiiiiiiniiccecceeese 109
Manually Uninstall a Bundle from the Server...........cccooeeeiiccciscces e, 109
Class Loader Issues in Published Projects..........ccocviicieieiinicicreeeeece e, 110
Configuring a Designer Project for Application Platform...........cccccovvevcvcnnnnncscsnnnnnncscsnnnnns 111
Configuring an Application Platform Java Project............ccooenininnicnicncccncees 112
Configuring an Application Platform Dynamic Web Project..........cccccovvvvcveiviiiccceice 112

webMethods Application Platform User’s Guide Version 9.12 6

About this Guide

About this Guide

This guide provides information about working with webMethods Application Platform
aimed at application developers. It explains common tasks, such as building Java
applications using Application Platform projects in Software AG Designer, packaging
the applications in OSGi bundles, and deploying them to an Integration Server or a My

webMethods Server instance.

To use this guide effectively, you should be familiar with webMethods Integration
Server, My webMethods Server, and Software AG Designer and understand the
concepts and procedures in the webMethods Integration Server Administrator’s Guide, the
Administering My webMethods Server guide, and the Software AG Designer Online Help.
You should also have basic knowledge of OSGi and its concepts.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace Identifies text you must type or messages displayed by the

font system.

{}

Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[]

Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

webMethods Application Platform User’s Guide Version 9.12

About this Guide

Convention Description

Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.
Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at http://techcommunity.softwareag.com. You can:

B Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

B Access articles, code samples, demos, and tutorials.

®m Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

®m Link to external websites that discuss open standards and web technology.

webMethods Application Platform User’s Guide Version 9.12 8

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

About Application Platform

1 About Application Platform

B Architecture and COMPONENTSccociieiiiiiceeee e 10
m Publishing and Deploying BUNGIESccceveviieieieiceeccceeceee s 13
m Managing Application Platform Projects Using Software AG Command Centralc.c......... 14

webMethods Application Platform User’s Guide Version 9.12 9

About Application Platform

webMethods Application Platform complements the webMethods product line

by allowing you to create custom business applications. You can use Application
Platform together with other Software AG products to create entire business solutions.
Application Platform provides a user friendly way for building custom business logic.

Application Platform enables you to create custom business applications in a Java-
friendly way. It is based on OSGi and provides development tools and run-time
components for building Java applications using Software AG Designer. You can
use standard Designer tools for debugging and you can directly deploy your project
bundles to a webMethods runtime without using a third-party application server.
Project bundles are deployed to webMethods Integration Server or My webMethods
Server in exactly the same way, as in other webMethods products. You can integrate
your Application Platform projects with Integration Server (IS) services or with My
webMethods services and user interfaces, developed in the Composite Application
Framework.

With Application Platform you can complete the following tasks:

1. Develop business logic applications in Designer by using standard POJOs and
Spring Beans.

2. Integrate your applications with Enterprise Service Bus (ESB) services through bi-
directional invocation.

3. Deploy and run the applications on your existing webMethods servers alongside
your existing webMethods assets.

4. Expose your applications to users in various ways by using web applications.

Architecture and Components

The following diagram illustrates the Application Platform architecture and
components, and the components relationships. For further explanation, see the sections
for each component that follow the diagram.

webMethods Application Platform User’s Guide Version 9.12 10

About Application Platform

Designer

Workspace Eclipse Equinox 0SGI Container

Application Platform Eclipse Features

II . II Server Extension II
profets pluQ'ins

Eclipse Core Runtime

Server
Server profile Equinox OSGI Container Bundles

Customer deployments

Contiguration ﬂ
Customer projects I _ Customer II
third-party libraries

Reposwr.ory
Software AG Application Platform Software AG Product Server Third-party bundles

Software AG Common Platform Common Platform Third-party Extensions

0SGi Equinox Container

Software AG Common Platform

The architecture of Application Platform is based on Software AG Common Platform.
Common Platform is OSGi-based and it enables you to dynamically construct executable
instances of various products.

In Common Platform, a deployment module is typically a Java jar file, called a bundle,
that contains a META-INF/manifest.mf file with additional headers. When you install
bundles to a server, the OSGi container of the server uses the metadata, provided in the
additional headers. The OSGi container implementation used in Application Platform-
supported servers is Eclipse Equinox.

With Application Platform, you create and install OSGi bundles to a server. Third-party
jar files should also be OSGi bundles. Alternatively, you can use Application Platform to
create bundles from simple jar files. You can also embed plain jar files by placing them in
the Application Platform project's lib folder.

webMethods Application Platform User’s Guide Version 9.12 11

About Application Platform

For information about creating plain jar files, see "Including Non-OSGi Jars in Projects"
on page 36.

Software AG Designer

Application Platform uses Designer as an integrated development environment for
building components. In Designer, you use the Application Platform perspective and the
following functions:

B Project wizards for creating Java and web applications

®m Integration with server tools for publishing and debugging projects to the server
m Dialog wizards for creating Java bindings to server components

®m Options for customizing your perspective and views

®m Various utilities for developing projects on the Software AG Common Platform

For more information about the functions of Designer, see Working with Software AG
Designer.

For more information about developing services in Designer, see webMethods Service
Development Help.

Software AG Servers

Application Platform projects are published or deployed to a Software AG server, that
meets the following requirements:

B The server is based on OSGi runtime containers.
®m The server supports Software AG Common Platform.

®m The server is managed by a set of scripts for cross-cutting control. Examples of such
scripts include:

logging scripts
configuration scripts
lifecycle scripts

For more information about Software AG servers, see Software AG Infrastructure
Administrator’s Guide.

webMethods Deployer

When you have completed your projects in Application Platform, you can deploy
them to the required servers by using command line scripts in webMethods Deployer.

webMethods Application Platform User’s Guide Version 9.12 12

About Application Platform

Deployed projects are built and packaged as assets by using webMethods Asset Build
Environment. You can deploy all assets to one or more target systems with Deployer.

For more information about Deployer and Asset Build Environment, see the webMethods
Deployer User’s Guide.

Publishing and Deploying Bundles

In this guide we differentiate between the terms publish and deploy. Project bundles

are published when the deployment activities are performed from the integrated
development environment, which is Designer for Application Platform, to webMethods
Integration Server or My webMethods Server. Project bundles are deployed when the
deployment activities are performed outside of Designer. When Application Platform
projects are deployed, project assets found in an asset build environment repository are
deployed to Integration Server or My webMethods Server via webMethods Deployer.

For information about deploying assets using Deployer, see "About Deploying Projects"
on page 98.

When you publish project bundles in Designer, your bundles are published to a server
on the same physical machine or a remote server. Each component that is involved in
the publishing process requires a Java Virtual Machine (JVM). The following diagram
illustrates the work flow for publishing bundles to a dedicated server.

IDE Development Server

Designer

publish or unpublish
{(JMX)

dir dir

I |
‘ artifacts ‘ repository

When you deploy project bundles using Asset Build Environment and Deployer, your
bundles are published to a remote server, which is on a different physical machine.
Each component that is involved in the deployment process also requires a JVM. The
following diagram illustrates the work flow for deploying bundles using Deployer.

webMethods Application Platform User’s Guide Version 9.12 13

About Application Platform

Deployer Server

ABE Server

Asset Build

deploy or undeploy

Environment and ANT (HTTP) (Deployer)

I :
repository J ‘
dir

Managing Application Platform Projects Using Software AG
Command Central

Software AG Platform Manager and Software AG Command Central provide a common
infrastructure for managing your product configuration and monitoring your product
statuses. Application Platform is also managed in this common infrastructure by a
dedicated server, called Platform Manager. You can monitor Application Platform by
using Command Central. Command Central allows you to administer Software AG
products across networked servers through a command line interface or through a web-
based user interface.

The following diagram illustrates managing Application Platform projects with
Software AG Command Central and Software AG Platform Manager.

webMethods Application Platform User’s Guide Version 9.12 14

About Application Platform

Workstation

Configuration, Monitoring, and Management

Server

Command Central

{HTTP)

Server

L]

Server

Software AG
Platform Manager

(depends on
product server)

Product Server

For more information about Platform Manager and Command Central, see Software AG
Command Central Help.

webMethods Application Platform User’s Guide Version 9.12

15

webMethods Application Platform User’s Guide Version 9.12

16

Developing with Application Platform in Designer

2 Developing with Application Platform in Designer

m Getting Started with Application Platform Developmentcccccoovcevnviiceseceeee s 18
B About the Application Platform Perspectivecccocueceieiiiiececieeeececee e 25
m About Creating Application Platform ProjeCts ..o 28
m About Adding Single Sign-on Authentication in Application Platform Projectscccccoervenee. 37

m About the Application Platform Integration Test Frameworkcccccovveeeviiicesieccees 40

B MANAGING SEIVETS ...ttt 42
B About Publishing PrOJECES ...c.vviiiiiiecss et 64
m About Viewing Dependency Graphs ... 68
m About Managing Project DEPeNndENCIEScccccceeiiiiiiiiie it 73
m Configuring Application PIAtIOrm ..o 80
B About Using Services in Application Platform ..o 86
m Application PIatform TULOMIALcceriiiriiie e 95

webMethods Application Platform User’s Guide Version 9.12 17

Developing with Application Platform in Designer

This topic describes the features added to Designer to support developing with
Application Platform.

Getting Started with Application Platform Development

The following sections describe tasks that you should perform after you install
Application Platform in order to start building projects.

Opening the Application Platform Perspective

Application Platform has a dedicated Designer perspective. This perspective contains
the basic views you need in order to develop applications.

To open the Application Platform perspective

1. In Designer, go to Window menu, select Perspective > Open Perspective, and then click
Other....

2. Click App Platform and then click OK.

If you have not created a runtime environment for Application Platform, a warning
message will be displayed after opening the App Platform perspective.

After you open the App Platform perspective for the first time, it is cached in the
upper right corner of Designer for quick access.

3. Optionally, if a warning message is displayed after you execute step 2, click Yes and
configure a runtime environment.

Designer redirects you to the App Platform Runtime configuration view.

Adding a Server Runtime Environment

When you first install Application Platform, you must add a server runtime for
Application Platform, so that your projects can reference their runtime container. For
the runtime configuration, use an absolute path to the product installation. Runtime
containers are Designer configuration elements that define a set of product libraries that
are included in project classpaths.

To add a server runtime environment for Application Platform
1. In Designer, go to Window menu and click Preferences.
2. In the Preferences dialog box, click Server, and then click Runtime Environments.

3. In the Server Runtime Environments dialog box click Add.

webMethods Application Platform User’s Guide Version 9.12 18

Developing with Application Platform in Designer

4. In the New Server Runtime Environment dialog box, select an Application Platform
server, and then click Next.

Currently, the available servers are Integration Server and My webMethods Server,
so you can select Application Platform Integration Server, Application Platform Integration
Server (Remote), or My webMethods Server.

5. In the Designer installation root directory field, enter the path to the Software AG
installation folder.

Depending on the type of server you are using, keep in mind the following:

m If you are configuring Integration Server runtime with a local Integration Server,
the installation folder must reside in a Software AG_directory, which contains a
profiles directory.

m If you are configuring Integration Server runtime with a remote Integration
Server, you must also have an Integration Server instance installed on the
machine where Designer is installed. In this way Designer can access the server
runtime's libraries when building projects.

m If you are configuring My webMethods Server runtime, the installation folder
must reside in a Software AG_directory, which contains a My webMethods Server
directory.

Important: The installation root directory of Designer is stored in the Eclipse
workspace metadata area. If you install another instance of Designer
on the same machine, you must not use the same workspace directory.
Using the same workspace directory for more than one instance of
Designer can lead to errors, since both instances will share the same
runtime configuration and will communicate to the same server.

6. Click Finish.
After adding the server, you must configure it for your Application Platform projects.

For more information about configuring Integration Server, see "Configuring Integration
Server for Application Platform Projects" on page 42.

For more information about configuring My webMethods Server, see "Configuring My
webMethods Server for Application Platform Projects” on page 53.

Creating a Server Definition

After you configure a runtime environment, you must create a server definition in order
to publish projects. Application Platform supports the following servers:

® webMethods Integration Server

® My webMethods Server

webMethods Application Platform User’s Guide Version 9.12 19

Developing with Application Platform in Designer

When you have a runtime environment and a server configuration, you will be able to
manage the development server in Application Platform. For information about using
the server tools, see the Web Tools Platform User Guide in Software AG Designer Online
Help.

Note: As prompted during the server installation, Software AG recommends
that you install the server as an application, as opposed to a service. When
you start a server as a service, the server does not run in debug mode. This
prevents Designer from remotely debugging the server instance.

For information about the issues, related to installing a server as a service, see
"Considerations When Publishing Projects to Servers" on page 107.

Creating an Integration Server Definition

This section describes the steps for creating an Integration Server definition in
Application Platform.

To create an Integration Server definition
1. Go to the Servers view at the bottom of the App Platform perspective.

2. (lick the link for creating a new server or right-click anywhere in the Servers view,
select New, and click Server.

3. In the Define a New Server page of the New Server dialog box, specify values in the
fields as follows:

For this setting... Specify...

Select the server ~ The type of server to be added. For Integration Server select

type webMethods Integration Server under the Software AG directory.
Server’s host The host name or address of the Integration Server, to which
name you publish projects. If you have created a runtime with a local

Integration Server, keep the value of this field to localhost.

Default: 1ocalhost

Server name The name of the Integration Server, to which you publish
projects.

Default: webMethods Integration Server at host name
Server runtime The server runtime environment to be used by the Integration

environment Server. All server runtime environments that you have added for
Application Platform are listed here.

webMethods Application Platform User’s Guide Version 9.12 20

Developing with Application Platform in Designer

4. Click Next.

5. If you have changed the server properties during installation, specify the following
settings. Otherwise, keep the default values.

For this setting...

Specify...

Instance name
for Integration
Server

Server Port

Server Debug
Port

Server JMX RMI
Port

Server
Connection Mode

The instance name of the Integration Server on the specified
address. Integration Server allows multiple instances on the same
machine. The default value of this field is default.

The port number of the primary port of Integration Server.

Default: 5555

The port number that is used by Integration Server when you
debug an Application Platform project in Designer.

Default: 9191

The port number that is used for monitoring Integration Server
remotely using a JMX agent.

Default: 8075

The connection mode to be used when connecting to the
Integration Server. The following modes are available:

®m Debug - Default. This mode depends on your runtime
environment, as follows:

m If you have configured a runtime environment with a
local Integration Server, Designer will automatically start
debugging the servers in the Servers view. For example, if
you restart Designer, the server instance in the Servers view
will automatically start debugging.

m If you have configured a runtime environment with a
remote Integration Server, you must start the server in
debug mode from the machine, where the server is installed.
For information about starting Integration Server in debug
mode, see webMethods Integration Agent Administrator’s
Guide.

® No Action - In this mode Designer will not synchronize the state
of the Servers view with the server. If Designer is started and
a server is running, the Servers view will indicate the server is
stopped. In this case you must execute the Start or Debug action
in the Servers view. Additionally, if the status of the server

webMethods Application Platform User’s Guide Version 9.12 21

Developing with Application Platform in Designer

For this setting... Specify...

changes while Designer is still running, the change will not be
indicated in Designer.

® Run - In this mode Designer will automatically set the
server status to “started” and you will not be able to debug
applications remotely, while Designer is connected to the
server.

6. Click Next.

7. To add the projects that you want to configure on the server, select the name of a
project in the Available field and click Add.

8. Click Finish.

Creating a My webMethods Server Definition

This section describes the steps for creating a My webMethods Server definition in
Application Platform.

To create a My webMethods Server definition
1. Go to the Servers view at the bottom of the App Platform perspective.

2. Click the link for creating a new server or right-click anywhere in the Servers view,
select New, and click Server.

3. Inthe Define a New Server page of the New Server dialog box, specify values in the
fields as follows:

For this setting... Specify...

Select the server ~ The type of server to be added. For My webMethods Server select

type My webMethods Server (Remote) under the Software AG directory.
Server’s host The host name or address of the My webMethods Server, to
name which you publish projects.

Default: 1ocalhost

Server name The name of the My webMethods Server, to which you publish
projects.

Default: My webMethods Server (Remote) at host name
Server runtime The server runtime environment to be used by the My

environment webMethods Server. All server runtime environments that you
have added for Application Platform are listed here.

webMethods Application Platform User’s Guide Version 9.12 22

Developing with Application Platform in Designer

4. Click Next.

5. If you have changed the server properties during installation, specify values in
the provided fields. Otherwise, keep the default values. The following fields are
available on this page:

For this setting... Specify...

Protocol The data transfer protocol to be used.

Http(s) Port The port number of the primary port of My webMethods Server.

Default: 8585

Debug Port The port number that is used by My webMethods Server when
you debug an Application Platform project in Designer.

Default: 10033.

Publish Timeout The time, in seconds, in which Designer attempts to publish a
(seconds) bundle to My webMethods Server.

Default: 120
Server JMX RMI The port number that is used for monitoring My webMethods
Port Server remotely using a J]MX agent.

Default: 5002

6. Click Next.

7. To add the projects that you want to configure on the server, select the name of a
project in the Available field and click Add.

8. Click Finish.

Configuring a Server for Publishing Bundles

If you want to publish your Application Platform projects to Integration Server or to My
webMethods Server, you must ensure a functional environment for publishing bundles
to the server. Depending on the type of server you are using, ensure that the following
conditions are met:

®m For both Integration Server and My webMethods Server, verify that the Software AG
Runtime component is available.

For detailed steps, see "Verifying That Software AG Runtime Is Available" on page
24.

webMethods Application Platform User’s Guide Version 9.12 23

Developing with Application Platform in Designer

®m For Integration Server only, the WmTomcat package must be disabled. The
WmTomcat package is disabled by default after you install Application Platform. In
case you have enabled the package on Integration Server after installing Application
Platform, you must disable it manually.

For detailed steps, see "Disabling the WmTomcat Package" on page 107.

Verifying That Software AG Runtime Is Available

Application Platform uses a Software AG Common Platform component called
Software AG Runtime. This component is enabled by default after installing Application
Platform.

Software AG Runtime uses the following default ports:
®m For Integration Server: 8072 for HTTP and 8074 for HTTPS.
m For My webMethods Server: 8585 for HTTP.

To verify that Software AG Runtime is available after you install Application Platform

1. Depending on the server type you are using, start the Integration Server or the My
webMethods Server instance.

2. Inaweb browser enter one of the following:
m For Integration Server: http://localhost:8072
m For My webMethods Server: http://localhost:8585

If you can successfully load the server log-on page, this indicates that Software AG
Runtime is available.

Performing Optional Configurations

This section describes optional configurations, which you can perform after installing
Application Platform.

Disabling Natural Language Support (NLS) Warnings in Designer

Designer produces warning messages for localized messages (NLS messages). NLS
warning messages do not indicate installation problems, but that a localized message is
not used. NLS warning messages are in the following format:

Warning: NLS unused message: {resource key} in: {file reference}

Displaying such messages can lead to situations when too many log messages are
generated.

webMethods Application Platform User’s Guide Version 9.12 24

Developing with Application Platform in Designer

To disable the generation of NLS messages

1. Go to the Software AG_directory\ Designer\eclipse directory and open the eclipse.ini
file in a text editor.

2. Add the following property at the end of the file: ~-Dosgi.nls.warnings=ignore.

Note: You can also add this property to the server configuration file, located here:
Software AG_directory\ profiles\server_default \ configuration\ config.ini.
Make sure you restart the server when you update server configurations.

3. Save the file.

Enabling the OSGi Console

If you are familiar with OSGi, or you want to expand your knowledge about it, you can
use the OSGi console while working with Application Platform. The OSGi console can
be useful for troubleshooting. It is available in the Terminal view of Designer. However,
in order to use the Terminal view in the App Platform perspective, you must first enable
the OSGi console.

Caution: The OSGi console uses unsecured telnet. Make sure that the OSGi console is
disabled on production systems.

To enable the OSGi Console

1. Go to the Software AG_directory\ profiles\IS_default\ configuration\ config.ini
directory and open the config.ini file in a text editor.

2. In the config.ini file, enter osgi.console=[port number].Save the file.
Specify an unused value for the port number.

3. If the Integration Server server is running, stop and restart the server to apply the
changes.

4. In Designer, configure the Terminal view to connect to the port specified in step 2.
5. Open the Terminal view and press Enter.
An osgi> prompt appears.

6. To view the OSGi console help, type help in the console.

About the Application Platform Perspective

Designer uses perspectives to organize a set of editors and views in the workbench,
which are provided for specific development tasks. Application Platform provides the
custom App Platform perspective for developing Application Platform projects. The
App Platform perspective contains a collection of default views. Many of the views in

webMethods Application Platform User’s Guide Version 9.12 25

Developing with Application Platform in Designer

the App Platform perspective are core Eclipse components. For information about the
Eclipse views, see the Eclipse documentation at http://help.eclipse.org.

Note: You can customize the App Platform perspective by using core Eclipse

tooling. To return to the default state of the perspective click the App Platform
button, and then click Reset.

Application Platform Designer Views

The default layout of the App Platform perspective contains the following views:
m Project Explorer. Access projects.

m Package Explorer. Display the Java element hierarchy of the Java projects in your
workbench.

m Main Code Editor. Edit selected resources.

®m Outline. Display an outline of the current resource in the code editor window.
Note: Not every resource will have content in the Outline view.

m Properties. Display properties of the current resource in the active view.
Note: Not every resource will have content in the Properties view.

m Servers. Start or stop the server and to publish or unpublish Application Platform
projects.

m Problems. Resolve errors, such as compilation errors in project source files.

®m Javadoc. Display Javadoc source documentation for the selected Java source file in the
code editor window.

m Console. Display content, written to the system IO streams, stdout and stderr, or
read from the process input, stdin.

m Error Log. Display messages, written to the Designer’s log file, which is located here:
workspace_directory / metadata/.log.

®m Bundle Publisher. Publish additional bundles to the server, or to unpublish bundles
from the server.

For more information, see "Configuring Bundle Publisher View" on page 80.
® Bundle Manager. Create or delete wrapper bundles that wrap non-OSGi jars.
For more information, see "Configuring Bundle Manager View" on page 82.

m Terminal. Open a telnet connection to the OSGi console of the server profile.

Note: This view requires additional configuration.

webMethods Application Platform User’s Guide Version 9.12 26

http://help.eclipse.org

Developing with Application Platform in Designer

For information about configuring the OSGi console, see "Enabling the
OSGi Console" on page 25.

For more information about the different views, see the Workbench User Guide in
Software AG Designer Online Help.

Application Platform Context Menu

Application Platform has its own context menu for executing wizards and utilities. The
tools in the menu are divided in the following categories:

m Core Tools. These tools are available regardless of the server product used. The Create
Project Bundle and the Create Bnd template menu items are listed here.

m Product-Specific Tools. These tools are available for specific server products. For
example, the product-specific tools for Integration Server are located in the IS Tools
submenu.

Creating Project Bundles

You can create OSGi bundles for your Application Platform projects from the App
Platform context menu. The new bundles are located in an artifacts folder, which resides
in the current Designer workspace. For example, if you are creating a bundle for a
project named MyJavaProject, it will be created in the following location:

workspace_directory / . metadata/.plugins/
com.softwareag.ide.eclipse.pld.bundle.builder.ui/MyJavaProject/artifacts/.

Note: You can create project bundles as a diagnostic tool without defining a server
configuration and publishing your project to a server. It is not required to
publish bundles to a server.

To create a project bundle
1. Go to the Package Explorer view and right-click the required project.

2. Select the App Platform context menu and click Create Project Bundle.

Creating and Customizing Bundle Tool Templates for Projects

You can create Bundle Tool (Bnd) template files for your Application Platform projects.
The Bnd template files are located in the src/main/resources/OSGI-OPT directory. Bnd
template files are useful when the default manifest file produced during bundle creation
requires additional customization.

For information about Bnd templates in Application Platform, see "Bundle Tool
Templates for Projects" on page 36.

webMethods Application Platform User’s Guide Version 9.12 27

Developing with Application Platform in Designer

For information about the syntax and supported options of Bnd templates, see http://
www.aqute.biz/Bnd.

Important: Make sure that all Java package names in your Application Platform web
project begin with a lowercase character. If the name of a package begins
with an uppercase character, the Asset Build Environment does not move
the package to the WEB-INF \ classes directory when you build your project
and the package is not available at runtime.

To create and customize a Bnd template for a project
1. Go to the Package Explorer view and right-click the required project.
2. Select the App Platform context menu and click Create Bnd template.

3. Go to the Package Explorer view and double-click the Bnd template file, located here:
project_name /src/main/resources/OSGI-OPT/bnd.bnd.

Designer loads the bnd.bnd file.
4. Edit the bnd.bnd file by adding the required custom values.
5. Save the bnd.bnd file.

About Creating Application Platform Projects

Application Platform includes two project wizards in the App Platform perspective. The
wizards create projects that meet the requirements for publishing projects to the server.

= Web Project. Create servlet-based projects.
m Java Project. Create all other projects.

You can use other project wizards for developing Application Platform projects. To do
this, you must first select additional Application Platform project facets.

For more information about using other project wizards for developing Application
Platform projects, see "Configuring a Designer Project for Application Platform " on page
111.

Using Application Platform Projects to Extend CAF Projects

If you are developing user interfaces for My webMethods Server, Software AG
recommends to use Composite Application Framework (CAF) project wizards. You can
create Application Platform projects that extend a CAF project with complementary
business logic. For this purpose, you must create at least one Application Platform
project and a CAF project, where the CAF project contains calls to the Application
Platform project and the two projects have a dependency on each other. In this scenario
the Application Platform project has the same life cycle as Software AG Runtime and My
webMethods. The Application Platform project is deployed through Java Management

webMethods Application Platform User’s Guide Version 9.12 28

http://www.aqute.biz/Bnd
http://www.aqute.biz/Bnd

Developing with Application Platform in Designer

Extensions (JMX) to the OSGi environment under the My webMethods runtime.
The CAF project is deployed through the My webMethods web service deployment
endpoint. The Application Platform JMX web service and the My webMethods web
service store their own sets of user credentials in secured Designer storage.

When you deploy Application Platform and CAF projects with complementary business
logic, you must first deploy the Application Platform project, and then the CAF project
to My webMethods. The Application Platform and the CAF project are deployed at
runtime to the same OSGi container on a single JVM. The CAF portlets get access to the
Application Platform services through direct OSGi processing.

For more information about deploying Application Platform and CAF projects with
complementary logic, see "About Using CAF Projects with Application Platform " on
page 101.

For information about developing CAF projects, see webMethods CAF and OpenCAF
Development Help.

Selecting Project Facets

Application Platform project wizards utilize project facets to capture additional
configuration required for publishing projects to the server. In the Project Facets wizard
page you can view a list of all project facets registered in Designer. When you select

a project facet, it performs validation for its specific requirements. For example, you
must first select the Application Platform Core and Java facets before selecting any other
Application Platform facets.

Note: Some project facets have their own wizard pages that supports additional
configuration. The order and number of wizard pages displayed in Designer
will vary based on the selected project facets.

To select Application Platform project facets

1. In the Project Explorer view of the App Platform perspective, right-click your project
and then click Properties.

2. In the Properties dialog box click Project Facets.

Designer lists the available facets for the selected project, together with the facet
version numbers.

3. Select the check boxes next to the facets you want to add to your project.

4. Click Apply, and then click OK.

Selecting an Application Platform Runtime Environment

Before you publish your project to the server, you must select a server runtime
environment.

webMethods Application Platform User’s Guide Version 9.12 29

Developing with Application Platform in Designer

To select the server runtime

1.

In Designer, go to the Project Explorer or Package Explorer view and right-click your
project.

Click Properties.
In the Properties dialog box click Targeted Runtimes.
Select the check box next to the required runtime environment.

All runtime environments that you have created for Application Platform are listed
here.

For detailed steps for creating a runtime environment, see "Adding a Server Runtime
Environment" on page 18.

Click Apply, and then click OK.

Creating Java Projects

The App Platform perspective has its own Java Project wizard, which is different from
the Java Project wizard of the Java perspective. You can use the Java Project wizard for
creating application components that do not require servlet support.

To create a Java project in Application Platform

1.

In Designer, go to File menu and select New.

Designer displays a context menu with all available wizards. The upper section lists
the Application Platform wizards.

In the upper section of the context menu, click Java Project.

On the App Platform Core Service Template page, specify the following;:

For this setting... Specify...

Project name The name of your Java project.
Use default Clear this check box if you want to specify a custom location for
location your project. If you keep this check box selected, your project will

be stored in the default location.

Default: check box is selected

Click Next.

On the Project Facets page, select the Application Platform project and core Java
project facets required for your Java project.

The Java facet is the core project facet, which is required for Java projects.

webMethods Application Platform User’s Guide Version 9.12 30

Developing with Application Platform in Designer

10.

11.

12.

Go to the Project Facet list, expand SoftwareAG Application Platform, and do one of the
following:

m If you want to publish your project to Integration Server, select Integration Server
Extensions.

m If you want to publish your project to My webMethods Server, ensure that the
Integration Server Extensions check box is cleared.

Click Next.

Optionally, on the Java page, modify the project’s folder structure and default output
folder.

Application Platform requires the Java source directory to follow the Maven 2
convention. The Designer project wizard automatically updates the default directory
of the Java facet from src to src/main/java.

If you have selected Integration Server Extensions in step 6, click Next and continue to
the next step. Otherwise, click Finish.

On the App Platform IS Facet page, enter a source path in Generated Source Path.
This source path will be added to the Application Platform project’s classpath.

If the specified source path does not exist on the file system, select the Include
Generated Source Path check box.

Important: If you are deploying the project to a project environment using Asset
Build Environment and Deployer, verify that the source path is src/main/
java.

Click Finish.

Folder Structure of Java Projects

When you create a Java project, Application Platform creates a folder structure that
contains the following folder types:

Source Folders. The source folders contain the Java source files and unit test source
code. The location path of the source folders must follow the Maven convention to be
compatible with the Application Platform. The required location path structure for
the source folders is src/main/java.

Note: If you add your unit tests in the source folders, they will be included in the
project bundle when you publish your project from Designer.

Config Folder. The src/main/config directory contains the property files with
configuration data to be passed to the server. When you publish your project bundle
to the server, the files in this directory are extracted from the bundle and installed

to a common directory on the server, which contains all configuration files for that
server.

webMethods Application Platform User’s Guide Version 9.12 31

Developing with Application Platform in Designer

For more information about configuring projects dynamically, see "Using the Project
Dynamic Configuration” on page 103.

Resource Folder. The resource folder contains all non-Java source files. Files and
folders that you define in this directory are included in the root directory path of the
project bundle.

Lib Folder. The lib folder contains all non-OSGi jar files that you want to include in the
classpath of your Application Platform project.

For detailed steps for including non-OSGi jar files in Application Platform projects,
see "Including Non-OSGi Jars in Projects” on page 36.

Creating Web Projects

The Web Project wizard enables you to create servlet-based application components. To
create web projects, you must configure the Application Platform Web facet.

To create a web project in Application Platform

1.

10.

In Designer, go to File menu and select New.

Designer displays a context menu with all available wizards. The upper section lists
the Application Platform wizards.

In the upper section of the context menu, click Web Project.

Enter a name for your web project.

On the App Platform Core Web Ul Template page, specify the following:
In the Project name field, enter a name for your web project.

b. To create the project at the default location, select the Use default location check
box.

c. To create the project at a different location, clear the Use default location check box
and browse to the location you require.

Click Next.

On the project facets page, expand SoftwareAG Application Platform and select
Application Platform Web.

Optionally, select other project facets and click Next.

Optionally, on the Java page, modify the project’s folder structure and default output
folder.

Click Next.

On the App Platform Web Facet page, specify web context information in the Web
Context field.

By default, this field is populated with the name of your project.

webMethods Application Platform User’s Guide Version 9.12 32

Developing with Application Platform in Designer

Note: ~ When you build projects with Asset Build Environment in order to deploy
them with Deployer, you must define the web context with the web-
ContextPath: 0SGi manifest header property.

For more information about defining the web context, see "Configuring
Application Platform Projects" on page 84.

11. To complete the web project configuration, click Finish.

Folder Structure of Web Projects

When you create a web project, Application Platform creates a folder structure for the
project. The folder structure contains all folder types, which are created for Java Projects.

For information about the folder types contained in Java Projects, see "Folder Structure
of Java Projects" on page 31.

Additionally, a src/main/webapp directory is created for web projects. Use this directory
for web-related content, such as HTML, JSP, JavaScript, and CSS.

Classpath Containers

Classpath containers are a collection of libraries, which you can add to your project’s
classpath. The following classpath containers are available for Application Platform:

m Application Platform Integration Server - The Application Platform server runtime
container for Integration Server, which has a fixed collection of product libraries.
By default, Designer automatically adds this classpath container if you create an
Application Platform project with an Integration Server runtime environment.

m My webMethods Server - The Application Platform server runtime container for My
webMethods Server, which has a fixed collection of product libraries. By default,
Designer automatically adds this classpath container if you create an Application
Platform project with a My webMethods Server runtime environment.

®m Application Platform Shared Bundles Container - The Application Platform shared
bundles container, which can be configured for each project, so that it contains an
arbitrary set of libraries.

®m Application Platform API Libraries - The Application Platform API Libraries container
that is added by the project wizards. It contains API libraries that are generic for
all servers. By default, Designer automatically adds this classpath container if you
create an Application Platform project.

Adding the Application Platform Server Runtime Container

The Application Platform server runtime container delivers a subset of the server's
runtime libraries. When you create a project with one of the Application Platform project

webMethods Application Platform User’s Guide Version 9.12 33

Developing with Application Platform in Designer

wizards, the server runtime container is automatically added to your project’s classpath.
You cannot change the list of libraries for Application Platform.

To add the Application Platform server runtime container

1. In Designer, go to the Package Explorer view, right-click your project, and select
Build Path.

2. Click Add Libraries....

3. Inthe Add Library dialog box, select Server Runtime, and then click Next.
4. Depending on the type of server you are using, do one of the following:
m For Integration Server, select Application Platform Integration Server.

m For My webMethods Server, select My webMethods Server.
5. Click Finish.

Adding the Application Platform Shared Bundles Container

The Application Platform Shared Bundles container has a collection of libraries, which
you can add to your project’s classpath. You can use this container for common bundle
dependencies. Each project can define its own classpath container for the Application
Platform shared bundles container. This classpath container allows you to specify the
location of the common bundles in your file system. Make sure that you keep only valid
OSGi bundles in this directory. Any non-OSGi jars that are contained in this directory
will not be included as part of the library entry.

For more information about bundle dependencies, see "About Managing Project
Dependencies" on page 73.

To add the Application Platform Shared Bundles container

1. In Designer, go to the Package Explorer view, right-click your project, and
select Build Path.

2. C(Click Add Libraries....

3. Inthe Add Library dialog box, select Application Platform Shared Bundles, and then
click Next.

4. In the Edit Variable Entry dialog box, specify the following;:

In this field... Specify...

Name The name of the classpath variable. Keep the default value.

Default: BUILD EXTERNAL DIR

Note: The BUILD EXTERNAL DIR variable points to the folder
location that contains your project’s external dependencies.

webMethods Application Platform User’s Guide Version 9.12 34

Developing with Application Platform in Designer

In this field... Specify...

Path The file path to the shared bundles container in your local
directory. To specify the path, click Folder, navigate to the
directory that contains the bundles, and click OK. All bundles in
the selected directory will be added to your project's classpath.

When you specify a path here, the folder structure under that
path is available for further selection for this project. Make

sure that the selected directories contain valid third-party or
external OSGi bundles that are added to the project as library
dependencies for compilation purposes. Note that the jars in the
selected directories are not included within the project bundle
when it is built and deployed to the configured server runtime.

The directories that you configure in this step are configured in the project
assetBuild.properties file for the component .dependencies.external property.
This value is used by the Asset Build Environment while building assets to resolve
the external dependencies used by the project. The equivalent property in the
Asset Build Environment that points to the global external build directory is called
build.external.dir and is configured in the master build properties file of the
Asset Build Environment.

For more information about the assetBuild.properties file, see " Application Platform
Project Configuration for Asset Build Environment " on page 99.

5. Inthe Edit Variable Entry dialog box, click OK.
6. Click Finish.

After you complete this configuration, the bundles that are located in the selected
directories relative to the BUILD EXTERNAL DIR folder value are shown as library
dependencies for the project.

If you add, remove, or change bundles in your local directory, refresh your project and
build it to ensure that your project’s classpath is updated.

Important: If you update the BUILD EXTERNAL DIR classpath variable to a different
location on the file system, update also the projects that use this shared
classpath container functionality and select the correct folder(s) that contain
the libraries to be added to the classpath.

Adding the Application Platform API Libraries Container

The Application Platform API Libraries container delivers a Software Development
Kit (SDK) bundle that includes the core annotations related to publishing POJOs as
OSGi and Integration Server services, for example @Service, @ServiceReference, and
@ExposeTolS. To use the classes from the SDK, you can add the new Application
Platform API Libraries classpath container as a library dependency to your project.

webMethods Application Platform User’s Guide Version 9.12 35

Developing with Application Platform in Designer

You can add the Application Platform API Libraries container to any project as a
library dependency. However, not all classes provided by this container work for all
projects, created in Designer. Some of the SDK functionality, like the service publishing
annotation functionality, is only available for Application Platform projects.

For more information, see Getting Started with the webMethods Application Platform API.

To add the Application Platform API Libraries container

1. In Designer, go to the Package Explorer view, right-click your project, and select
Build Path.

2. C(Click Add Libraries....

3. Inthe Add Library dialog box, select Application Platform APl Bundles, and then click
Next.

4. Click Finish.

Bundle Tool Templates for Projects

When you publish a project to a server, an OSGi-compliant manifest file is automatically
generated for the project in the src/main/resources/META-INF directory. This manifest
contains default values for the minimal set of required OSGi headers. If you need
additional values, you must dynamically customize the manifest file. For this purpose,
you must create a Bnd template file for your project and include it in your project’s
source control. When you create a Bnd template, the default template is added in the src/
main/resources/OSGI-OPT directory of your project. You can customize the default Bnd
template with a text editor. When your Application Platform project directory contains a
Bnd template, the contents of the project manifest file are dynamically updated with the
contents of the template every time you publish the project. If no Bnd template exists for
a project, Application Platform uses the default contents of the manifest file when you
publish the project.

For information about how to create a Bnd template and add values to it, see "Creating
and Customizing Bundle Tool Templates for Projects" on page 27.

Note: Use different package names for different projects, because Application
Platform exports all packages by default. When you are working on more
than one project, Application Platform may export the same package and
version to different bundles. In such cases you can use split packages to avoid
runtime errors.

Including Non-OSGi Jars in Projects

You can include libraries in your project’s lib folder. The libraries that you add in this
folder will be included in the classpath of your project bundle. In this way you can
include non-OSGi jars in your project bundle’s classpath. The jars you add in the lib

webMethods Application Platform User’s Guide Version 9.12 36

Developing with Application Platform in Designer

folder will be available only to your project’s classes. To include non-OSGi jars in your
project, navigate to your project’s lib folder and add the files you require in it.

For example, if you add the jfind jar in the lib folder, the generated project bundle

will contain the jfind.jar and the OSGi Bnd template will contain the following header
attribute: Bundle-ClassPath: .,1lib/jfind.jar. The OSGi container will include the
classes of your jar file in your project bundle’s classpath when you publish the bundle.
However, the packages of the jar file will not be exported and will be resolved only by
classes inside the bundle.

For more information, see "About Managing Project Dependencies" on page 73.

About Adding Single Sign-on Authentication in Application
Platform Projects

Application Platform enables you to set up security configurations to your servlet-
based web applications. Depending on your project and requirements, you can use

the available security filter, class, or annotation in your Application Platform projects.
The class and the annotation are available in the Application Platform API Libraries
classpath container. For more information about the Application Platform API Libraries
container, see "Adding the Application Platform API Libraries Container" on page

35.

You can enable SSO authentication and authorization in your Application Platform
projects by adding SSO:

® To the web application layer of an Application Platform web project by using the
standard Java EE approach of configuring a security filter in the web.xml file, which
is the deployment descriptor of your project. With the security filter you can add a
SSO functionality to your web applications.

m To the OSGi service layer of an Application Platform Java or web project. You can
implement SSO to OSGi services that are:

m Exposed as Integration Server (IS) services and invoked through HTTP(S) calls.
= Exposed as POJO OSGi services.

m Invoked from the Application Platform web layer. This layer consists of web
applications that run on Tomcat and are deployed to Integration Server via
HTTP(S).

m Invoked from the Composite Application Framework (CAF) web layer. This
layer consists of web applications that run on Jetty and are deployed to My
webMethods Server via HTTP(S).

For detailed information about the security filter, class, and annotation you can use for
adding SSO, see Getting Started with the webMethods Application Platform API.

webMethods Application Platform User’s Guide Version 9.12 37

Developing with Application Platform in Designer

Securing the Web Application Layer

The following procedure describes the steps you must execute to secure the web
application layer by using the web security filter. This function is available only for
Application Platform web projects.

To secure the web application layer of your Application Platform web project

1. In Designer, go to the Project Explorer or Package Explorer and right-click your
project.

2. Double-click the web.xml file, located here: project_name /WebContent/WEB-INF/
web.xml.

3. Edit the web.xml file by adding the following entry:
com.softwareag.applatform.pls.security.filter.AppPlatformSecurityFilter
Configure the filter by specifying one or more of its parameters.

For information about the security filter and its parameters, see Getting Started with
the Application Platform API.

4. Optional. If the project does not have a Bnd template:
a. Go to the Project Explorer or Package Explorer and select App Platform.
b. Click Create Bnd template.
5. Optional. If your project is deployed to Integration Server, edit the Require-Bundle

key from the bnd.bnd file by adding the following entry:

com.softwareag.applatform.pls.security, com.softwareag.applatform.
pls.security.is

The com.softwareag.applatform.pls.security entry is a security bundle, which ensures
that the SSO support can be enabled for this POJO service and resolves the
AppPlatformSecurityFilter class.

Note: If your project is deployed to My webMethods Server, My webMethods
automatically resolves the AppPlatformSecurityFilter class when the associated
Composite Application Framework (CAF) project is deployed to the
server.

6. Optional. If you are configuring an Application Platform project created in version

9.9 or earlier, redeploy your project to a runtime, configured in a later release of
Application Platform than version 9.9.

Securing the OSGi Service Layer

The following procedure describes the steps you must execute in order to secure the
OSGi service layer of your Application Platform Java or web project.

webMethods Application Platform User’s Guide Version 9.12 38

Developing with Application Platform in Designer

To Secure the OSGi Service Layer of your Application Platform project

1.

10.

In Designer, go to the Project Explorer or Package Explorer and right-click your
project.

Create the required Java class to be published as an OSGi service.

For information about creating classes, see the Software AG Designer Online Help.
Add the @Service annotation to the class, created in step 2.

Add the @Secure annotation to the class, created in step 2.

Optional. To enable declarative security, add one of the following annotations,
depending on your server:

m For My webMethods Server, add the @DenyAll, the @PermitAll, or the @RolesAllowed
annotation at the class or method level.

m For Integration Server, add the @AclAllowed annotation at the class or method level
to define an Access Control List (ACL) parameter.

Optional. To enable dynamic runtime security, associate the class, created in step 2
with the SecurityContext class.

For information about the SecurityContext class, see Getting Started with the webMethods
Application Platform API.

Optional. If the project does not have a Bnd template:
a. Go to the Project Explorer or Package Explorer and select App Platform.
b. Click Create Bnd template.

Double-click the Bnd template file, located here: project_name /src/main/resources/
OSGI-OPT/bnd.bnd.

Edit the bnd.bnd file by adding the following entry:

Require-Bundle:com.softwareag.applatform.pls.security

Note: This entry is a security bundle, which ensures that the SSO support can be
enabled for this POJO service.

Important: If your Application Platform project was created in version 9.8 and you
are using a custom MANIFEST.MF file instead of a bnd.bnd file, you
must add the entry to the MANIFEST.MF file.

Optional. If you are configuring an Application Platform project created in version
9.9 or before, redeploy your project to a runtime, configured in a later release of
Application Platform than version 9.9.

webMethods Application Platform User’s Guide Version 9.12 39

Developing with Application Platform in Designer

About the Application Platform Integration Test Framework

Application Platform enables you to write regular JUnit tests for your projects and
execute them in Designer. When you execute a test, Designer provides you with
immediate feedback for the test run.

The Application Platform integration test framework uses the same development-time
deployment mechanism to publish the test project bundle to the server and to execute
the test class and its methods on the server. Application Platform publishes and executes
the tests through a JMX call on a JMX MBean service on the configured runtime. The
core project code and the JUnit tests run in the same OSGi environment and access the
same libraries and Application Programming Interfaces (API). The JUnit test code can
use the deployed project POJO instances and other OSGi services that are available in
the container, without mocking or stubbing any interactions.

Note: If required, your test can still mock certain method calls by using the available
Mockito bundle in the runtime.

You can develop JUnit tests by using the custom JUnit classes, provided by Application
Platform.

For information about developing JUnit tests for Application Platform projects, see the
Getting Started with the webMethods Application Platform API.

Creating a JUnit Test for an Application Platform Project

Before you start developing JUnit tests for an Application Platform project, verify the
following conditions:

1. The Application Platform project you are testing exists.
2. Integration Server or My webMethods Server is configured for this project.
3. The project is successfully published to the configured server.

When you develop JUnit tests for your Application Platform projects, you must use the
dedicated classes, available in the Application Platform API Libraries container.

For information about the Application Platform API Libraries container, see "Adding the
Application Platform API Libraries Container" on page 35.

For information about the classes, provided for the Application Platform integration test
framework, see the Getting Started with the webMethods Application Platform API.

To create a JUnit test for an Application Platform project

1. In Designer, go to the Project Explorer or Package Explorer view and right-click your
project.

webMethods Application Platform User’s Guide Version 9.12 40

Developing with Application Platform in Designer

2. Create a source folder for your JUnit tests.
For example, src/test/java.

For information about creating source folders, see the Software AG Designer Online
Help.

3. Optional. Create a source folder for your JUnit test resources.
For example, src/test/resources.

4. Associate your JUnit test with the Application Platform integration test framework.
Depending on the type of your JUnit test, do one of the following:

m If your JUnit test does not extend from another class, create a
new package and add a new test class, which extends from the
com.softwareag.applatform.sdk.test.framework.AppPlatformIntegrationTest class. For
information about creating packages and classes, see the Software AG Designer
Online Help.

m If your JUnit test already extends from another class and cannot use the
AppPlatformintegrationTest class as its superclass, add the class type annotation
@RunWith from the com.softwareag.applatform.sdk.test.framework.IntegrationTestRunner
class. This will ensure that the custom Application Platform JUnit runner is
responsible for running your test.

5. Add the @TestBundle annotation to the test class, created in step 4, and do the
following:

a. Specify the bundle symbolicName property.

b. If you have specified a version for your project, different from 1.0.0, update the
value of the version property with the correct project version.

6. Add one or more JUnit test methods and annotate them with the @Test method.

7. Optional. Specify the details of the configured server by using the @RunOnServer
annotation.

Executing a JUnit Test for an Application Platform Project

You can execute your JUnit tests in Designer. When you execute JUnit tests, Designer
publishes them to the server, together with the core Application Platform project code.

To execute JUnit tests for an Application Platform project

1. In Designer, go to the Project Explorer or Package Explorer view and expand the
project, where your JUnit test is located.

2. Locate and select your JUnit test.
3. Go to Run menu and select Run As.

4. Click JUnit Test.

webMethods Application Platform User’s Guide Version 9.12 41

Developing with Application Platform in Designer

Designer reports the success and failure messages from the JUnit test in the JUnit
view and in the Console view.

Managing Servers

This section describes tasks for configuring Application Platform servers. Server
management in Application Platform is based on the Eclipse Server Tools Project. For
information about the server tools, see the Web Tools Platform Guide in Designer’s Help
Contents.

Configuring Integration Server for Application Platform
Projects

Use the following procedure to configure an Integration Server for your Application
Platform projects.

Important: Always stop the server before changing its configurations. Otherwise,
unpredictable results may occur.

To configure an Integration Server for an Application Platform project

1. In Designer, go to the Servers view and double-click the Integration Server you want
to configure.

2. In the General Information section, specify values in the following fields:

In this field... Specify...
Server name The name of the Integration Server, to which you publish
projects.

Default: webMethods Integration Server at host name.

Host name The host name or address of the Integration Server, to which
you publish projects. If you have created a runtime with a local
Integration Server, keep the value of this field to 1ocalhost.

Default: 1ocalhost.
3. Select a Runtime Environment.
Note: The runtime environment includes an absolute directory path to the

Application Platform installation, together with the relative paths to the
platform bundles that represent the server libraries available in your

webMethods Application Platform User’s Guide Version 9.12 42

Developing with Application Platform in Designer

project’s classpath. Designer uses this absolute path to locate the server
profile when you attempt to start or stop the server.

4. To edit the settings used when Designer executes operating system scripts that start
or stop the server, click the Open Launch Configuration link.

For information about the launch configuration properties, see "Configuring Launch
Configuration Settings for Integration Server " on page 45.

5. After you complete the launch configuration, click OK.

6. In the Publishing section, select one of the following publishing settings:

Select this option... To...

Never publish Default. If you select this option, you must publish your project
automatically to the server manually.
Automatically If you select this option, your projects will be published
publish when automatically with a predefined time interval, in seconds, every
resources time you update a project resource. You can configure the time
change interval of this setting.

Default: 15

Note: This option requires a lot of resources.

Automatically If you select this option, your projects will be published
publish when automatically after any project build event (for example clean,
resources full, or incremental project build).

change

Note: This option requires a lot of resources.

7. In the Server Properties section, specify values in the following fields:

For this Specify...

setting...
Instance This field matches the instance name of Integration Server.
name for
. Default: default
Integration
Server
Server The HTTP port for the configured Integration Server. This port is used
Port to verify the server startup sequence. Based on the port number you

configure here, Designer uses the corresponding default user credentials
to connect to Integration Server.

webMethods Application Platform User’s Guide Version 9.12 43

Developing with Application Platform in Designer

For this Specify...
setting...

ImportantIf you change the user credentials in Integration Server, you
must also update them in Designer.

For information about editing the credentials used by Designer, see
"Editing the Credentials Used for Connecting to Integration Server " on
page 51.

Default: 5555

Server The Java Platform Debugger Architecture (JPDA) debugger port

Debug configured for the JVM that Integration Server uses. The port value

Port is sent to the startup scripts when Integration Server is started by
Designer. During the server startup sequence if Designer cannot connect
to the configured debugger port, the server still starts. However, any
breakpoints will be ignored. For more information about JPDA, see the
Oracle documentation.

Default: 9191

Server The Java Management Extensions Remote Method Invocation
JMX RMI port used to execute a service for publishing bundles to the OSGi
Port container. This port number is configured in Integration Server
in a property file, located in the Software AG_directory\ profiles
\Instance_Name_for_Integration_Server \ configuration
\ com.softwareag.platform.config.propsloader directory.

For more information about the server configuration, see '
Software AG Servers" on page 12. For more information about JMX, see
the Oracle documentation.

Note: If the port number is in use while installing Application Platform,
the port number may change in the server configuration. If you
are uncertain of the server state, use an operating system utility to
see if the JMX port is in LISTEN mode.

Note: The default value matches JMX RMI port value, configured in
Integration Server.

Default: 8075

Server Select an option for synchronizing the Servers view with the state of the
Connection external servers when you start Designer, or when a server is stopped or
Mode started outside of Designer. This list box has the following options:

® Debug - Default. If you select Debug, Designer will automatically start
debugging the servers in the Servers view. For example, if you restart

webMethods Application Platform User’s Guide Version 9.12 44

Developing with Application Platform in Designer

For this Specify...
setting...

Designer, the server instance in the Servers view will automatically
start debugging.

®m No Action - If you select No Action, Designer will not synchronize the
state of the Servers view with the server. If Designer is started and a
server is running, its Servers view will indicate the server is stopped.
In this case you must execute the Start or Debug action in the Servers
view. Also, if the server status changes while Designer is still running,
the change will not be indicated in Designer.

B Run-If you select Run, Designer will automatically set the server status
to started and you will not be able to debug applications remotely,
while Designer is connected to the server.

Note: Since the server states are synchronized with a polling
mechanism, there may be a short delay when the Servers view is
updated.

8. In the Timeouts section, specify values in the following fields:

In this field... Specify...

Start Configure how long Designer should wait for the server to start
before assuming failure. If the timeout is exceeded, you will see
an error message in Designer.

For more information, see "Server Start Action" on page 62.

The default Start value is 300 seconds.

Stop Configure how long Designer should wait for the server to stop
before assuming failure. If the timeout is exceeded, you will see
an error message in Designer.

For more information, see "Server Stop Action" on page 62.

The default Stop value is 60 seconds.

Configuring Launch Configuration Settings for Integration Server

Use the following procedure to configure the launch configuration settings for
Integration Server.

webMethods Application Platform User’s Guide Version 9.12 45

Developing with Application Platform in Designer

To configure the launch configuration settings for Integration Server

1.

8.

In Designer, go to the Servers view and double-click the Integration Server you want
to configure.

In the General Information section, click Open Launch Configuration.

On the Server tab of the Edit Configuration dialog box, select the server to configure
from the Server list box.

Optionally, click the Arguments tab and define the arguments to be passed to the
application and to the virtual machine, if any.

For information about the Integration Server configurations on the Arguments tab,
see "Configuring Integration Server Arguments" on page 46.

Optionally, click the Source tab and define the location of source files that Designer
uses to display the source when debugging your Java applications.

For information about the Integration Server configurations on the Source tab, see
"Configuring the Integration Server Source" on page 47.

Optionally, click the Environment tab and define the environment variables to use
when running or debugging your Java applications.

For information about the Integration Server configurations on the Environment tab,
see "Configuring Integration Server Environment" on page 48.

Optionally, click the Common tab and define general information about the launch
configuration.

For information about the Integration Server configurations on the Common tab, see
"Configuring Common Integration Server Settings" on page 49.

Click Apply, and then click OK.

Configuring Integration Server Arguments

On the Arguments tab of the launch configuration properties for Integration Server, you
can configure the Program and VM arguments. The Program arguments are processed
by the Equinox OSGi Framework. The VM arguments modify the settings of the Java
Virtual Machine (JVM).

To configure the Integration Server arguments

1.

In Designer, go to the Servers view and double-click the Integration Server you want
to configure.

In the General Information section, click Open Launch Configuration.
In the Edit Configuration dialog box click the Arguments tab.

In the Program arguments field specify program arguments for the Equinox OSGi
Framework.

webMethods Application Platform User’s Guide Version 9.12 46

Developing with Application Platform in Designer

Important: Do not modify or delete the existing program arguments!

Tip: Click the Variables... button to select a variable from the list, or to define
your own variables.

5. In the VM arguments field specify VM arguments for the JVM.
Important: Do not modify or delete the existing VM arguments!

Tip: Click the Variables... button to select a variable from the list, or to define
your own variables.

6. Select the working directory thatIntegration Server uses for the launched process by
clicking one of the following:

Select this option... To...

Default Use the root directory of the Designer installation:
Software AG_directory\ Designer \ eclipse.

Other Change the default directory. You can set as a working
directory any directory to which you have write privileges.
To set a working directory, click one of the following
buttons:

m Workspace... - select a Designer workspace as a working
directory.

m File System... - select a working directory from your file
system.

®m \Variables... - set a variable for the working directory. For
instructions about how to set a variable, see the tip in step
5.

Default: Software AG_directory\ profiles\1S_default\bin
7. Click Apply, and then click OK.

Configuring the Integration Server Source

On the Source tab of the launch configuration properties for Integration Server, you can
define the location of source files used to display the source when debugging a Java
application. By default, the location is derived from the build path of the associated
project.

To define a new source lookup path

1. In Designer, go to the Servers view and double-click the Integration Server you want
to configure.

webMethods Application Platform User’s Guide Version 9.12 47

Developing with Application Platform in Designer

2. In the General Information section, click Open Launch Configuration.
3. Inthe Edit Configuration dialog box, click the Source tab.
4. To add a new source lookup path, click Add....
5. In the Add Source dialog box, select the required source files by using one of the
following:
Select this option... To add...
Archive A jar or zip in the workspace containing source
files.
External Archive Ajar or zip in the local file system containing
source files.
File System Directory A directory in the local file system.
Java Classpath Variable A workspace folder, a local directory, or an
archive referenced by a variable path.
Java Library A collection of binary archives with the source
attached.
Java Project Source folders in a Java Project.
Workspace Folder A folder in the workspace.

6. Optionally, select the Search for duplicate source files on the path check box to search
the source lookup path and include duplicate entries. By default, this check box is
cleared.

7. Click Apply, and then click OK.

Configuring Integration Server Environment

You can configure environment variables on the Environment tab of the launch
configuration properties for Integration Server. Designer uses the environment variable
values when it runs an application. By default, the environment is inherited from the
Designer runtime.

1. In the General Information section, click Open Launch Configuration.
2. In the Edit Configuration dialog box, click the Environment tab.

3. Click New... to define a new environment variable.

Important: Do not modify or delete the existing environment variables!

webMethods Application Platform User’s Guide Version 9.12 48

Developing with Application Platform in Designer

Tip: Click the Variables... button in the New Environment Variable dialog box to
select a variable from the list, or to define your own variables.

4. Click Select... to select one or more native environment variables from a list and add
them to your Integration Server launch configuration.

Select one of the following options for the launch configuration environment:

Select this option...

To...

Append environment to
native environment

Replace native
environment with
specified environment

Default. Append to the native environment.

Designer seeds the launched environment with the native
environment, after which the variables configured in the
Environment tab replace or augment the set of environment
variables.

Replace the native environment.

Designer creates the launched environment only from the
variables configured on the Environment tab.

6. Click Apply, and then click OK.

Configuring Common Integration Server Settings

On the Common tab of the launch configuration properties for Integration Server, you
can define general settings of the launch configuration.

To define common launch configuration settings for Integration Server

1.

In Designer, go to the Servers view and double-click the Integration Server you want

to configure.

In the General Information section, click Open Launch Configuration.

In the Edit Configuration dialog box, click the Common tab.

Set the physical location where the launch will be saved by selecting one of the

following:

Select this option...

To...

Local file

Shared file

Default. Save the launch file in the local workspace
metadata.

Move the launch file to a custom location in the workspace.
Use to share the launch configuration using a version
control system.

webMethods Application Platform User’s Guide Version 9.12 49

Developing with Application Platform in Designer

5. In the Display in favorites menu field, select one or more menus where you want your
launch configuration to appear.

6. Set the encoding you want to use for the launch configuration by selecting one of the

following:
Select this option... To...
Default - inherited Default. Use the default encoding.
(Cp1252)
Other To select from the supported encoding standards:
m 1S0-8859-1 - Default.
m US-ASCII
m UTF-16
m UTF-16BE
m UTF-16LE
m UTF-8

7. Define where to provide input and output data by using the following:

Select this check box... To...

Allocate console (necessary Select the check box to allocate a separate console in
for input) Designer. Clear the check box if you do not require a
separate console for the input data.

Default: check box is selected.

Input File Select the check box to specify an input file, in which
you can configure the launch configuration. Clear
the check box if you do not require an input file to
configure the launch configuration.

Default: check box is cleared.

Output File Select the check box to specify an output file, in which
you can configure the launch configuration. Clear
the check box if you do not require an output file to
configure the launch configuration.

Default: check box is cleared.

Append Select the check box to append newly added launch
configuration data to the output file. Clear the check

webMethods Application Platform User’s Guide Version 9.12 50

Developing with Application Platform in Designer

Select this check box... To...

box to have new data that you add to the output file
override the existing configurations.

Default: check box is cleared.

Note: You can select this check box only when Output File
is selected.

8. Use the Launch in background check box to set background launching.

If this check box is selected, Designer launches the configuration in the background,
with a separate job. If this check box is cleared, you will not be able to use Designer
until the launch operation is complete. Default: check box is selected.

9. Click Apply, and then click OK.

Editing the Credentials Used for Connecting to Integration Server

If you configure an Integration Server connection in Designer, Designer stores the
credentials that are used for connecting to the server instance. However, if you change
those credentials in Integration Server, you must also update them in Designer.

To edit the credentials used by Designer for connecting to Integration Server

1. In Designer, go to Window menu, and then click Preferences.

2. In the Preferences dialog box, expand Software AG and select Integration Servers.

3. Select the Integration Server instance to update based on the Port number.

4. Click Edit.

5. In the Edit Integration Server dialog box, update the following fields, as required:

In this field... Specify...

Name The name of the selected Integration Server instance.

Default: Default

Host The host name or address of the selected Integration Server
instance.

Default: 1ocalhost

Port The HTTP port for the selected Integration Server instance. This
port is used to verify the server startup sequence.

Default: 5555

webMethods Application Platform User’s Guide Version 9.12 51

Developing with Application Platform in Designer

In this field... Specify...
User The user name used to connect to the selectedIntegration Server
instance.

Default: Administrator

Password The password used to connect to the selectedIntegration Server
instance.

Default: manage

6. Optional. Set the following check boxes to define connection settings:

Set this check box... To...

Connect immediately When this check box is selected, Designer connects
immediately to the Integration Server instance after you
complete the connection configuration. When this check box
is cleared, Designer connects to the configured Integration
Server instance after you start the connection manually.

Default: check box is selected

Connect at startup When this check box is selected, Designer connects to
the configured Integration Server instance on startup.
When this check box is cleared, Designer connects to the
configured Integration Server instance after you start the
connection manually.

Default: check box is selected

Secure connection When this check box is selected, Designer connects to the
configured Integration Server instance through HTTPS.
When this check box is cleared, Designer connects to the
configured Integration Server instance through HTTP.

Default: check box is cleared

7. In the Edit Integration Server dialog box, click OK.
8. In the Preferences dialog box, click OK.

Creating a New Integration Server Instance with the Application
Platform Support Package

You can create a new Integration Server instance and install the Application Platform
Support package to it by using the Integration Server instance script.

webMethods Application Platform User’s Guide Version 9.12 52

Developing with Application Platform in Designer

To create a new Integration Server instance with the Application Platform Support package

1. Navigate to the following directory: Software AG_directory /
Integration Server_directory /instances.

2. Run the is_instance script with the create command and specify the following
additional JVM parameter:

-Dpackage.list=WmAppPlat

Important: When you add the WmAppPlat package, which is used for Application
Platform, the new Integration Server instance includes a configured
instance of Tomcat. This Tomcat instance uses ports 8072 and 8074 as the
default HTTP and HTTPS ports, respectively. These default ports conflict
with the ports used by Tomcat on the default instance of Integration
Server . You must use Command Central to change the default HTTP
and HTTPS port numbers for Tomcat on the new instance of Integration
Server.

For more information about the is_instance script, including details about the
create command and the remaining additional JVM parameters, see webMethods
Integration Server Administrator’s Guide.

Configuring My webMethods Server for Application Platform
Projects

Use the following procedure to configure a My webMethods Server for your Application
Platform projects.

Important: Always stop the server before changing its configuration settings. Otherwise,
unpredictable results may occur.

To configure My webMethods Server for an Application Platform project

1. In Designer, go to the Servers view and double-click the My webMethods Server you
want to configure.

2. In the General Information section, specify values in the following fields:

In this field... Specify...
Server name The name of the My webMethods Server to which you publish
projects.

Default: My webMethods Server (Remote) at host name

webMethods Application Platform User’s Guide Version 9.12 53

Developing with Application Platform in Designer

In this field... Specify...
Host name The host name or address of the My webMethods Server to which
you publish projects.

Default: 1ocalhost

3. Select a Runtime Environment.

4. To edit the settings used when Designer executes operating system scripts that start
or stop the server, click the Open Launch Configuration link.

For information about the launch configuration properties, see "Configuring Launch
Configuration Settings for My webMethods Server " on page 56.

5. In the Publishing section, select one of the following publishing settings:

Select this option... To...

Never publish Default. Publish your project to the server manually.
automatically

Automatically Publish your projects automatically with a predefined time
publish when interval, in seconds, every time you update a project resource.
resources change You can configure the time interval of this setting.

Default: 15

Note: This option requires a lot of resources.

Automatically Publish your projects automatically after any project build
publish when event (for example clean, full, or incremental project build).

resources change
Note: This option requires a lot of resources.

6. In the Server Properties section, specify values in the following fields:

For this Specify...
setting...

Protocol The data transfer protocol to be used. The following protocols are
available:

®m http - This is a networking, data transfer protocol used for exchanging
content between applications, servers, or systems.

B https - This is a secure modification of HTTP that encrypts and decrypts
user page requests, as well as the pages that are returned by the web
server.

webMethods Application Platform User’s Guide Version 9.12 54

Developing with Application Platform in Designer

For this Specify...
setting...

Http(s) The port number of the primary port of My webMethods Server.

Port Default: 8585

Debug The port number that is used by My webMethods Server when you
Port debug an Application Platform project in Designer.

Default: 10033

Publish The length of time, in seconds, that Designer should attempt to publish a
Timeout bundle to My webMethods Server.

(seconds) Default: 120

Server The port number that is used for monitoring My webMethods Server
JMXRMI remotely using a JMX agent. If you have not configured user credentials
Port for the My webMethods Server instance you are using, you will be

prompted to enter the credentials the first time you connect to the server.
After you enter the credentials, Designer stores them in its secure storage.

ImportantIf you change the user credentials in My webMethods Server, you
must also update them in Designer.

For information about editing the My webMethods Server credentials

used by Designer, see "Editing the User Credentials for Connecting to My
webMethods Server " on page 60.

Default: 5002

7. In the Timeouts section, specify values in the following fields:

In this field... Specify...

Start The time in seconds that Designer should wait for the server to
start before assuming failure. If the timeout is exceeded, you will
see an error message in Designer.

For more information, see "Server Start Action" on page 63.

Default: 20

Stop The time in seconds that Designer should wait for the server to
stop before assuming failure. If the timeout is exceeded, you will
see an error message in Designer.

For more information, see "Server Stop Action" on page 63.

webMethods Application Platform User’s Guide Version 9.12 55

Developing with Application Platform in Designer

In this field...

Specify...

Default: 15

Configuring Launch Configuration Settings for My webMethods

Server

Use the following procedure to configure the server launch configurations for My

webMethods Server.

To configure the launch configuration settings for My webMethods Server

1. In Designer, go to the Servers view and double-click the My webMethods Server you

want to configure.

2. In the General Information section, click Open Launch Configuration.

3. On the Connect tab of the Edit Configuration dialog box, configure the following;:

For this setting...

Specify...

Project

Connection Type

Host

Port

Optional. The project configured here is used only for source
lookup.

To select a project, type its name, or click Browse.

Specify how Designer connects to the virtual machine. The
following options are available:

m Standard (Socket Attach) - Default. Attaches the virtual machine at
a specific location.

m Standard (Socket Listen) - Creates a launch that will listen for
incoming connections from a remote virtual machine. If you
select this option, you must also specify a port number in the
Port field to identify where the launch will listen.

The IP address or domain name of the host where the Java
program is running.

Default: 1ocalhost

The port where the remote virtual machine accepts connections.
You must specify a value here if you have selected the Standard
(Socket Listen) connection type.

Default: 8000

webMethods Application Platform User’s Guide Version 9.12 56

Developing with Application Platform in Designer

For this setting... Specify...

Allow termination Select the check box if you want to be able to terminate the VM,
of remote VM to which you are connecting, from Designer. Clear the check box
if you do not require to terminate the VM from Designer.

Default: check box is cleared

4. Optionally, click the Source tab and define the location of the source files that
Designer uses to display the source when debugging your Java applications.

For information about My webMethods Server configuration settings on the Source
tab, see "Configuring the My webMethods Server Source" on page 57.

5. Optionally, click the Common tab and define general information about the launch
configuration.

For information about My webMethods Server configuration settings on the
Common tab, see "Configuring Common My webMethods Server Settings" on page
58.

6. Click Apply, and then click OK.

Configuring the My webMethods Server Source

On the Source tab of the launch configuration properties for My webMethods Server,
you can define the location of source files used to display the source when debugging a
Java application. By default, the location is derived from the build path of the associated
project.

To define a new source lookup path

1. In Designer, go to the Servers view and double-click the My webMethods Server you
want to configure.

2. In the General Information section, click Open Launch Configuration.

3. Inthe Edit Configuration dialog box, click the Source tab.

4. To add a new source lookup path, click Add....

5. In the Add Source dialog box, select the required source files by using one of the
following:
Select this option... To add...
Archive A jar or zip in the workspace containing source files.
External Archive A jar or zip in the local file system containing source files.
File System Directory A directory in the local file system.

webMethods Application Platform User’s Guide Version 9.12 57

Developing with Application Platform in Designer

Select this option... To add...

Java Classpath Variable A workspace folder, a local directory, or an archive
referenced by a variable path.

Java Library A collection of binary archives with the source attached.
Java Project Source folders in a Java Project.
Workspace Folder A folder in the workspace.

Optional. Select the Search for duplicate source files on the path check box to search
the source lookup path and include duplicate entries. Clear the check box if you do
not require to search the source lookup path and include duplicate entries. Default:
check box is cleared.

7. Click Apply, and then click OK.

Configuring Common My webMethods Server Settings

On the Common tab of the launch configuration properties for My webMethods Server,
you can define the general settings of the launch configuration.

To define common launch configuration settings for My webMethods Server

1.

In Designer, go to the Servers view and double-click the My webMethods Server you
want to configure.

In the General Information, section click Open Launch Configuration.
In the Edit Configuration dialog box, click the Common tab.

Set the physical location where the launch will be saved by selecting one of the
following:

Select this option... To...

Local file Default. Save the launch file in the local workspace
metadata.

Shared file Move the launch file to a custom location in the workspace.

Use to share the launch configuration using a version
control system.

In the Display in favorites menu field, select one or more menus where you want your
launch configuration to appear.

Set the encoding you want to use for the launch configuration by selecting one of the
following:

webMethods Application Platform User’s Guide Version 9.12 58

Developing with Application Platform in Designer

Select this option... To...
Default - inherited Default. Use the default encoding.
(Cp1252)
Other To select from the supported encoding standards:
m 1SO-8859-1 - Default.
= US-ASCII
m UTF-16
m UTF-16BE
m UTF-16LE
= UTF-8

7. Define where to provide input and output data by using the following:

Select this check box... To...

Allocate console (necessary Select the check box to allocate a separate console in
for input) Designer. Clear the check box if you do not require a
separate console for the input data.

Default: check box is selected.

Input File Select the check box to specify an input file, in which
you can configure the launch configuration. Clear
the check box if you do not require an input file to
configure the launch configuration.

Default: check box is cleared.

Output File Select the check box to specify an output file, in which
you can configure the launch configuration. Clear
the check box if you do not require an output file to
configure the launch configuration.

Default: check box is cleared.

Append Select the check box to append newly added launch
configuration data to the output file.Clear the check
box to have new data that you add to the output file
override the existing configurations.

Default: check box is cleared.

webMethods Application Platform User’s Guide Version 9.12 59

Developing with Application Platform in Designer

Select this check box... To...

Note: You can select this check box only when Output File
is selected.

8. Use the Launch in background check box to set background launching.

If this check box is selected, Designer launches the configuration in the background,
with a separate job. If this check box is cleared, you will not be able to use Designer
until the launch operation is complete. Default: check box is selected.

9. Click Apply, and then click OK.

Editing the User Credentials for Connecting to My webMethods
Server

If you configure a My webMethods Server connection in Designer, Designer stores the
user credentials for connecting to the server instance. However, if you change those user
credentials in My webMethods Server, you must also update them in Designer.

The default user credentials for My webMethods Server are sysadmin for user name and
manage for password.

To edit the user credentials for connecting to My webMethods Server

1. In Designer, go to Window menu, and then click Preferences.

2. Inthe Preferences dialog box expand General, and then expand Security.

3. Select Secure Storage and click the Contents tab.

4. Expand [Default Secure Storage], and then expand com.softwareag.applatform.pld and
5

Select the host name and JMX port number combination of the My webMethods
Server instance connection you want to update.

6. To edit the user credentials of the selected My webMethods Server instance, do one
of the following:

® Under Values associated with the selected node, update the values for password and
user name and click Save.

m Remove the selected node by clicking Delete.
7. Click Apply, and then click OK.

Managing Server Status

The Servers view is an Eclipse component. In Designer it is customized for Software AG
servers and it allows you to manage the status of your servers. You can perform the
following server lifecycle operations from the actions toolbar in the Servers view:

webMethods Application Platform User’s Guide Version 9.12 60

Developing with Application Platform in Designer

Use this action... To...
o Start the server
] Stop the server
F Debug the server
3B Publish or unpublish projects
Note: The toolbar action Starting the server in profile mode is not supported.

To manage the status of a server
1. Go to the Servers view.
2. Select a server.
3. To change the status of the selected server:
m Click one of the available actions in the upper right corner.

m Right-click the server and click one of the available actions.

Important: If you have configured a remote Integration Server, you cannot start and
stop the server in Designer. You must directly start and stop it through
the machine, where the server is installed.

While the server actions in Designer are used for all server types, the behavior of
Integration Server and My webMethods Server when the actions are triggered in
Designer is different.

You can find detailed information about the behavior of each server here:

m For information about Integration Server, see " Integration Server Lifecycle
Actions" on page 61.

® For information about My webMethods Server, see " My webMethods Server
Lifecycle Actions" on page 63.

Integration Server Lifecycle Actions

This section describes the behavior of Integration Server when different server actions
are triggered in Designer. For more detailed information, see the webMethods Integration
Server Administrator’s Guide.

For troubleshooting information, see "Considerations When Publishing Projects to
Servers" on page 107.

webMethods Application Platform User’s Guide Version 9.12 61

Developing with Application Platform in Designer

Server Start Action

When you start the server, a shell script is executed. The script must be blocked when
the server is started. The runtime environment for the server includes an environment
variable that ensures the script is blocked. If the script is not blocked and the server is
started asynchronously, Designer will report an error immediately after you attempt to
start the server.

When you click the start icon, Designer changes the server status from Stopped to
Starting. Designer uses a polling mechanism to periodically ping the server. When the
server starts and responds to the HTTP request, the server status changes from Starting
to Started.

When you start Integration Server, Designer uses the server connection details defined
in Window > Preferences > Software AG > Integration Servers settings to connect to the
Integration Server. Designer executes a GET request by using basic authentication. If the
server returns the expected response code within the configured timeout period, the
state of the server is changed from Starting to Started.

Server Stop Action

When you stop the server, a shell script is executed. If the server fails to stop within the
configured timeout period, you can terminate the stop action in Designer.

Note: Terminating the action does not affect the state of the server but it resets the
Servers view in Designer.

When you initiate the stop action, Designer uses a polling mechanism to verify the
execution of the server shutdown. After the stop action is complete, the server state
changes from Stopping to Stopped.

Server Debug Action

You can start the server by using the debug action. However, there is a difference
between the start and the debug action. When Designer updates the state of the server
after executing the debug action, it opens a socket connection to the JPDA port. This
allows for debugging the source code, which is not possible when you use the start
action.

Note: If you launch the server outside of Designer, make sure that you launch it in
debug mode. Otherwise, Designer will not be able to connect to the server
because the JPDA port will be closed. To check the state of the server, use an
OS utility and verify that the JPDA port is in LISTEN mode.

Server Restart Action

You can restart the server by using the restart, or the restart-in-debug action. The restart
action will execute the stop action, and then the start action. The restart-in-debug action
will execute the stop action, and then the debug action.

webMethods Application Platform User’s Guide Version 9.12 62

Developing with Application Platform in Designer

My webMethods Server Lifecycle Actions

This section describes the behavior of My webMethods Server for the different server
actions, triggered in Designer. For more detailed information, see the Administering My
webMethods Server guide.

For troubleshooting information, see "Considerations When Publishing Projects to
Servers" on page 107.

Server Start Action

When you start the server, Designer makes a socket connection to a running My
webMethods Server in order to publish or unpublish projects. Make sure that the server
you are connecting to is running. You cannot control the status of My webMethods
Server from Designer. You simply open and close the connection from Designer to the
server.

When you click the start icon, Designer changes the server status from Stopped to
Starting. Designer uses a polling mechanism to periodically ping the server. When the
server starts and responds to the HTTP request, the server status changes from Starting
to Started.

When you start My webMethods Server, Designer uses the server connection details you
have defined to connect to the My webMethods Server. Designer executes a GET request
by using basic authentication. If the server returns the expected response code within the
configured timeout period, the state of the server is changed from Starting to Started.

Server Stop Action

When you stop the server, Designer disconnects the socket connection to My
webMethods Server. If the socket connection fails to stop within the configured timeout
period, you can terminate the stop action in Designer.

Note: Stopping My webMethods Server from Designer does not affect the state of
the server.

When the socket connection to My webMethods Server is successfully terminated in
Designer, the server state changes from Stopping to Stopped.

Server Debug Action

You can start the server by using the debug action. However, there is a difference
between the start and the debug action. When Designer updates the state of the server
after executing the debug action, it opens a socket connection to the My webMethods
Server debug port. This allows for debugging the source code, which is not possible
when you use the start action.

webMethods Application Platform User’s Guide Version 9.12 63

Developing with Application Platform in Designer

Server Restart Action

You can restart the server by using the restart, or the restart-in-debug action. The restart
action will execute the stop action, and then the start action. The restart-in-debug action
will execute the stop action, and then the debug action.

About Publishing Projects

This section describes the processes that are involved when you build Application
Platform projects in Designer and publish them to the server. The major phases of
project publishing are the following;:

® Building the project
® Deploying the project to the server

B Assembling the project to a module

Building Projects

You must validate and compile an Application Platform project before you can publish
it. During the build phase, Application Platform compiles the project source code and
produces additional files, for example metadata files. However, Application Platform
does not perform any additional bundle-related activities when building a project.

You can build your project either with one of the standard project builders in Designer,
or with one of the custom project builders for Application Platform projects. However,
Application Platform projects are build with all of the project builders that are
automatically configured when you apply the Application Platform Core project facet.

Building Projects with Designer Project Builders

You can use some of the Designer project builders to build your Application Platform
projects.

To build your project with one of the standard build actions in Designer
1. In Designer, go to Project menu, and then click Build Project.

2. Select one of the build actions supported for Application Platform projects:

Select this action... To...
Clean Purge transient files in your project.
Incremental Build Build only the resources you modified after the latest build.

webMethods Application Platform User’s Guide Version 9.12 64

Developing with Application Platform in Designer

Select this action... To...

Full Build Build or rebuild the entire project, regardless of the state of
the current build.

For more information about the build actions, see the Workbench User Guide in
Software AG Designer Online Help.

Building Projects with Custom Application Platform Project Builders

You can use custom project builders to build your Application Platform projects. The
custom builders execute the Designer clean build, incremental build, and full build
actions, and at the same time perform Application Platform tasks in the background.

The custom project builders for Application Platform are installed after you enable the
Application Platform Core facet for your project.

To build a project with one of the custom build actions
1. In Designer, go to Project menu, and then click Build Project.

2. Select one of the custom builders supported for Application Platform projects:

Select this builder... To...
Application Platform Pass additional context information that is captured while
Builder your project is compiled to the Project Publisher.
Application Platform Create additional files that are necessary to publish your
Service Publishing project’s services in the OSGi container.
Builder

Note: Do not disable or remove the Application Platform project builders from

your project.

Publishing Projects to the Server

Before you can publish your project to the OSGi container of a server, you must add
your project to the server from the Servers view.

Before you can add and publish a project to the server, make sure that the project is
opened in Designer and that it has at least one Application Platform Core project facet.

To add and publish projects to a server

1. In Designer, go to the Servers view, right-click the required server, and then click
Add and Remove....

webMethods Application Platform User’s Guide Version 9.12 65

Developing with Application Platform in Designer

2. Click the required project in the list of available projects, and then lick Add.

3. Optional. Remove one or more of the configured projects. In the list of configured
projects, click the project you want to remove, and then click Remove.

Important: If you delete a project that is already published to the server, the
published project becomes an orphan and you have to remove it
manually from the server.

For information about the manual steps, see "Manually Uninstall a Bundle from the
Server" on page 109.

4. Optional. Select the If server is started, publish changes immediately check box if you
want Designer to immediately publish all configured projects after you click Finish.

5. Click Finish.

6. To publish the configured projects, go to the Servers view and right-click the server
to which you want to publish.

7. Select one of the supported publish commands:

Select this command... To...

Publish Assemble a project bundle from the project files from
the most recent build.

Clean Fully rebuild all configured projects.

Manifests and Bnd Templates for Software AG Common
Platform

Before you can create bundles for your project, your project must have a manifest. If a
manifest.mf file exists in your project's src/main/resources folder, the manifest file serves
as a template during bundle creation. Otherwise, Application Platform automatically
creates a manifest when you publish your project. However, in some cases you need to
customize the default manifest. You can customize manifests dynamically using a Bnd
template. The following examples describe cases when custom manifests are required:

® Indirect Package Imports. The default manifest is created with a list of package
imports after analyzing the project classes' imports and locating external package
dependencies found in the bundle. Because the project is compiled against is also
a bundle, the analysis can match package imports to specific bundle versions.
Sometimes dependencies are declared in additional metadata, such as XML files and
class references, and are invoked indirectly. These additional dependencies must be
exported by another bundle in the container and the manifest must be customized,
so that the additional packages can be imported.

webMethods Application Platform User’s Guide Version 9.12 66

Developing with Application Platform in Designer

® Reduced Scope of Package Exports. By default, all packages defined in the project
bundle are exported. If you want to customize the package exports, you must declare
an alternative set of exports. You can do this by customizing the default manifest.
For example, you can configure Application Platform to only export packages that
represent a public API, and keep your implementation packages in the bundle.

For information about customizing manifest dynamically using a Bnd template, see
"Creating and Customizing Bundle Tool Templates for Projects" on page 27.

Assembling Project Bundles

After you build your project, you must assemble it into a module. To assemble the
project to a module, you must create an OSGi bundle. The following major steps are
involved in this process:

®m Using the default project manifest or creating a Bnd template for Software AG
Common Platform.

You can create a custom Bnd template or you can use the default project manifest,
provided by Application Platform.

For information about cases when you need to create a Bnd template, see "Manifests
and Bnd Templates for Software AG Common Platform " on page 66.

®m Creating and staging the jar in an Artifacts directory.

After Designer compiles your project, it inserts the contents of the project
into a bundle jar and copies the contents to an Artifacts directory out of the
project's workspace. The contents are moved out of the project’s workspace
because Designer locks the entire workspace while building projects. The
artifacts directory is located here: User_Workspace /. metadata/.plugins/
com.softwareag.ide.eclipse.pld.bundle.builder.ui/Project_Name /artifacts/.

Project bundles you create are also added in the Artifacts directory. After Designer
executes a successful clean build action of your project, the associated bundles are
removed from the Artifacts directory.

m Copying the jar to the bundle repository.

After you publish your project to a server, a JMX service transfers the project bundle
from the artifacts directory to the following temporary directory, located in the
server’s profile: Software AG_directory\ profiles\server_instance \ workspace \ temp
\app-platform\ deployer\bundles. If this transfer is successful, then the project
bundle is copied to the following location of the server’s repository directory:
Software AG_directory\ profiles\server_instance \ workspace \ app-platform\ deployer
\bundles. After the project bundle is successfully copied, the server’s publisher
service is invoked to install the project bundle into the container’s OSGi runtime.
When you unpublish the project, Designer removes the project bundle from the
server's repository directory and the publisher service removes it from the OSGi
runtime.

webMethods Application Platform User’s Guide Version 9.12 67

Developing with Application Platform in Designer

When you assemble project bundles, the server uses an OSGi service provided by the
Common Platform. This service is used for installing and uninstalling bundles from the
repository directory. Any errors that occur in this process are added in Designer's error
view.

Note: You cannot add or remove bundles from the server by adding or removing
files from the repository directory.

To assemble the project bundles into a module
1. Create a manifest or use the default manifest, provided by Application Platform.

For detailed steps, see "Creating and Customizing Bundle Tool Templates for
Projects” on page 27.

2. Compile your project.
3. Right-click your project and select App Platform.
4. Click Create Project Bundle.

About Viewing Dependency Graphs

Application Platform enables you to view a graphic representation of different
dependencies. You view dependency graphs in the Visual Navigator view.

The Visual Navigator renders the dependencies as graphs based on different object
attributes. Each attribute forms the basis of a dimension. Dimensions provide the
information necessary to produce a collection of graph nodes and connections between
these nodes that illustrate a relationship for a given attribute. A dimension displays node
relationships based on one or all of the following relationship types:

®m Parent-child composition
m Reference dependencies

A collection of dimensions is called a universe. Each Designer perspective can have a
single universe registered to it. For example, the App Platform perspective has its own
universe, named the App Platform universe. The App Platform universe supports the
following dimensions:

m Project - Displays an open project from the current Designer workspace. This
dimension is useful if you want to see project dependencies.

®m Resources - Displays composition relationships for a selected resource. The default
node depth of this dimension is 1. Increasing the node depth shows more project
resources.

For information about node depth, see "Visual Navigator Node Depth Levels" on
page 70.

®m Java Packages - Displays the composition relationships for a selected package.
Package graph nodes are rendered in this dimension only if they contain resources,

webMethods Application Platform User’s Guide Version 9.12 68

Developing with Application Platform in Designer

such as files, binary or source classes, or non-class resources. Empty packages are not
displayed in this dimension.

m Classes & Interfaces - Displays relationships between Java classes and interfaces,
as well as ICompilationUnit objects, which construct the Designer JDT (Java
Development Tooling) models. ICompilationUnit objects are visible in the Package
Explorer and Project Explorer views in Designer. They act as a container for source
references.

m Java Methods - Displays relationships between the Java methods, used in the selected
project.

m Metadata - Reserved for internal use.

Opening a Project in the Visual Navigator

You can open your Designer projects in the Visual Navigator view.

To open your Designer projects in the Visual Navigator

1. In Designer, go to the Project Explorer or Package Explorer view.
2. Right-click the required project.

3. Select Show In and click Visual Navigator.

The Visual Navigator view opens and renders a graph of the selected project.

Using the Visual Navigator

The Visual Navigator provides several functions, which enable you to render the
required graph and nodes.

To use the Visual Navigator
1. Open a project in the Visual Navigator view.

For information about how to open a project in the Visual Navigator, see "Opening a
Project in the Visual Navigator" on page 69.

2. To view the required graph and nodes, perform one or more of the following actions:

To... Do this...
Select a Click the drop-down list box and select one of the available
dimension dimensions.

The list of available dimensions depends on the currently
selected object. The list displays all dimensions that can represent
this object.

webMethods Application Platform User’s Guide Version 9.12 69

Developing with Application Platform in Designer

To... Do this...

For information about the available dimensions, see "About
Viewing Dependency Graphs" on page 68.

Configure the Use the slider, available in the upper part of the Visual
graphic depth Navigator.

The positions of the slider represent the available node depth
levels, starting from level 0 in the leftmost part.

For information about the different node depth levels, see "Visual
Navigator Node Depth Levels" on page 70.

Filter theo [am
displayed Enter the required filter text in the text box and click m
nodes

Use a context Right-click a node or anywhere in the graph view and click the
menu required command.

command

For information about the context menu commands, see "Visual
Navigator Context Menu Commands" on page 71.

Zoominorout Use the required keyboard shortcut.
or reposition

. For information about the available keyboard shortcuts, see
the port view

"Visual Navigator Keyboard Shortcuts" on page 73.

Openanodein Double-click the node.

an editor
To open a node in an editor, the Visual Navigator invokes the

default editor for the associated resource, defined in Designer.
If no default editor is defined for the resource, nothing happens.
To view the default editors for different resources, navigate to
Window > Preferences > General > Editors > File Associations.

Visual Navigator Node Depth Levels

The Visual Navigator uses node depth levels from 0 to 5 to render the depth of the
graphs. You can use these levels to control the scope of information that is displayed
on a graph. At level 0, no relationships are displayed between a selected object and its
references. Level 5 represents the most complex object relationships.

For example, if you have classes A, B, C, and D, with the following relationship: A >B >
C>D, and you want to render graphs at different levels, the following table shows the
classes that will be displayed at the different node depth levels you select:

webMethods Application Platform User’s Guide Version 9.12 70

Developing with Application Platform in Designer

Selected Class Node Depth Level Visible Classes
A 0 A

A 1 A, B

A 2 A, B, C

A 3 A,B,CD

B 0 B

B 1 A, B, C

B 2 A,B,CD

B 3 A,B,CD

Visual Navigator Context Menu Commands

The Visual Navigator context menu contains the following submenus and commands:

Show In
Command Description
Terminal Opens the currently selected node in the Terminal view.
Package Opens the currently selected node in the Package Explorer
Explorer view.

Project Explorer

Opens the currently selected node in the Project Explorer
view.

System Explorer

Opens the currently selected node in the System Explorer
view.

Properties

Opens the currently selected node in the Properties view.

webMethods Application Platform User’s Guide Version 9.12

71

Developing with Application Platform in Designer

Other Dimensions

Command

Description

Resources

Renders the Resources dimension, if available.

Java Packages

Renders the Java Packages dimension, if available.

Classes & Renders the Classes & Interfaces dimension, if available.
Interfaces

Java Methods Renders the Java Methods dimension, if available.
Previous Renders the previous dimension, if available.
Dimension

Navigator Global Actions

Command

Description

Refresh view
for current
dimension

Renders a graph for the currently selected dimension.

Clear view of all
graph items

Clears the graph from the Visual Navigator.

Render view
on this selected
object

Renders a graph for the currently selected node.

App Platform Universe Actions

Command Description

Show Open Renders a graph that displays all projects that are currently
Projects available in the Designer workspace.

Navigator This command is reserved for internal use.

Metadata

webMethods Application Platform User’s Guide Version 9.12 72

Developing with Application Platform in Designer

Visual Navigator Keyboard Shortcuts

You can use the following keyboard shortcuts in the Visual Navigator view:

Keyboard Shortcut Action

Ctrl + - Zoom out.

Ctrl += Zoom in.

Left Arrow Move the view port to the left.
Up Arrow Move the view port up.

Down Arrow

Move the view port down.

Right Arrow Move the view port to the right.

Ctrl + Left Reposition the view port to the left with the width of the
Arrow view port.

Ctrl + Right Reposition the view port to the right with the width of the
Arrow view port.

Ctrl + Down Reposition the view port down with the width of the view
Arrow port.

Ctrl + Up Arrow Reposition the view port up with the width of the view port.

About Managing Project Dependencies

Applications you develop in Designer may have contents, different from source
projects developed in Designer. Application Platform handles such contents as project
dependencies. Application Platform supports the following types of dependencies:

®m Dependencies with bundles. Projects can have dependencies on other bundles. For
example, a project can depend on third-party bundles or bundles that are developed

by another team.

= Dependencies with jars that are not bundles. Projects can have dependencies on plain jar
files. Such files can reside in an external location, which under version control or is

webMethods Application Platform User’s Guide Version 9.12 73

Developing with Application Platform in Designer

present in a repository library, such as an artifactory or a Maven repository. You can
use plain jar files that are not bundles in the following ways:

® Include the plain jar files in your project as a local dependency when you publish
the project. The common jars are included in your project’s lib directory and will
be duplicated in different projects during publishing.

m Publish the plain jar files as a bundle in the runtime, so that they can be shared
with other published projects. The common jars are wrapped as bundles and
published once to the runtime. Projects that require one of the common jars refer
to the jar’s bundle.

For more information about wrapping common jars as bundles, see "Creating
Wrapper Bundles" on page 78.

Important: When you include common jars as bundles, they are not packaged
with your project. The common jars are only used for compiling
dependencies and for computing the Import-Package OSGi header
values of the project manifest or Bnd template while building the
project bundle. You must add the referenced bundles in the runtime
before you use them. To ensure that bundles can be installed and
resolved, set the imports to be required.

Application Platform provides the following views, which you can use for such
dependencies:

®m Bundle Publisher View. Use this view to publish or unpublish a bundle to or from a
container.

= Bundle Manager View. Use this view to create bundles from non-OSGi jars.

Bundle Publisher View

You can use the Bundle Publisher view to install additional bundles to the server from
Designer. You can also uninstall bundles from the server. However, you cannot use the
Bundle Publisher view to publish project bundles to the server. You must use the Servers
view for publishing.

The Bundle Publisher lists items from the following locations:
m The classpath of the selected project.
® The directory, which is configured in the settings of the Bundle Manager view.

For more information about the settings of the Bundle Manager view, see
"Configuring Bundle Manager View" on page 82.

m The server runtime container.

The Bundle Publisher uses different icons in order to distinguish between plain Java
jars and OSGi bundles. Depending on the configurations of the Bundle Publisher view,
certain items can be excluded from the view, based on the item category.

webMethods Application Platform User’s Guide Version 9.12 74

Developing with Application Platform in Designer

For more information about the Bundle Publisher, see "Configuring Bundle Publisher
View" on page 80.

Publishing and Unpublishing Bundles

You can publish or unpublish bundles by selecting or clearing the bundle check boxes.
The Bundle Publisher performs the following operations depending on the check box
statuses:

m Installs selected bundles to the server.
®m Uninstalls cleared bundles from the server.

You can simultaneously send several publish and unpublish commands to the server.

To publish or unpublish bundles from the server

1. In Designer, go to the Bundle Publisher view.

2. Select the bundles you want to publish to the server.

3. Clear the check boxes for the bundles you want to unpublish from the server.
4. Click [#].

The selected bundles are published to the server. Published bundles remain selected
in the Bundle Publisher view. The bundles with cleared check boxes are unpublished
from the server and the newly selected bundles are published to the server.

Bundle Publisher Dependency Graphs

The Bundle Publisher provides you with a dialog, which displays potential warnings
and errors that are discovered when validating a collection of bundles. The Bundle
Publisher determines the dependencies between the bundles by examining all of the
OSGi manifests and Bnd templates in the group of bundles. Based on the examination,
the Bundle Publisher forms a dependency graph. When you start the server, all active
bundles are also included in the graph, unless you have removed them.

When creating a dependency graph for a group of bundles, the Bundle Publisher
validates the attempts for:

m Publishing a bundle that exports the same package and version.

® Publishing a bundle that imports a package that is not exported. Note that you can
configure the Bundle Publisher to ignore optional missing imports, like bundles with
package imports that contain the following qualifier: resolution:=optional.

® Unpublishing a bundle that exports a package imported by another bundle.
® Unpublishing a bundle that is required by one or more published bundles.
® Publishing a bundle that produces a circular dependency.

The Bundle Publisher can display the following types of messages:

webMethods Application Platform User’s Guide Version 9.12 75

Developing with Application Platform in Designer

Message Type Description
Information Status messages that provide information.
Warning Messages that indicate dependency issues that may prevent

bundles from reaching an active state.

Error Messages that indicate invalid bundles.

For example, an error message can indicate that there is a
corrupt file or a jar with an invalid OSGi manifest.

Examples of Dependency Validation
The following examples describe cases, in which dependency validation is useful:

m Publishing a Bundle with Missing Dependency. Assume that you have the following
bundles in the Bundle Publisher view: MyProject-A and MyProject-B. Neither of
the bundles has been published to the server. MyProject-B has a dependency on
MyProject-A and MyProject-A has a dependency on a package (com.softwareag.demo.c).
The package is not exported by the project, nor by any bundle on the server. This
represents a missing dependency. Attempts to publish MyProject-A will fail with an
error message, because the package import is required.

Imports Package Exports Package
MyProject A com.softwareag.demo.c com.softwareag.demo.a
MyProject B com.softwareag.demo.a com.softwareag.demo.b

® Removing a Bundle that Provides a Dependency. Assume that you have the following
bundles in the Bundle Publisher view: MyProject-A and MyProject-B. MyProject-B has
a dependency on MyProject-A and both bundles are published to the server.

Imports Package Exports Package
MyProject A com.softwareag.demo.a
MyProject B com.softwareag.demo.a com.softwareag.demo.b

If you clear MyProject-A for unpublishing from the server and perform validation,
you will see a warning message. The warning states that the bundle you are
attempting to remove has a dependency on MyProject-B.

m Circular Dependencies. Assume that you have the following bundles in the Bundle
Publisher view: MyProject-A, MyProject-B, and MyProject-C. None of the bundles

webMethods Application Platform User’s Guide Version 9.12 76

Developing with Application Platform in Designer

has been published to the server. MyProject-A has a dependency on MyProject-B
and MyProject-B has a dependency on MyProject-C. MyProject-C has a dependency
on MyProject-A. This represents a circular dependency. Attempts to publish these
bundles will fail. If you select the bundles and perform validation, you will see a
warning message, describing the following circular dependency: MyProject-C has
a dependency on MyProject-B, which depends on MyProject-A, and MyProject-A
depends on MyProject-B.

Imports Package Exports Package
MyProject A com.softwareag.demo.b com.softwareag.demo.a
MyProject B com.softwareag.demo.c com.softwareag.demo.b
MyProject C com.softwareag.demo.a com.softwareag.demo.c

Refreshing the Bundle Publisher View

To refresh the contents of the Bundle Publisher view
1. In Designer, go to the Bundle Publisher view.
2. Click &.

Validating Bundles

In the Bundle Publisher view, you can perform a dependency check on a selection of
bundles. The dependency check ensures that you catch potential errors before you
attempt to publish a group of bundles to the server. When you perform a dependency
check, Application Platform produces a dependency graph for the selected bundles
based on the bundles’ declared package imports and exports. If the server is started,

the dependency check will also include the items, which are currently published to the
server. This enables you to check the potential impact of unpublishing bundles from the
server.

To validate bundles in the Bundle Publisher view

1. In Designer, go to the Bundle Publisher view.
2. Verify that the Project field is cleared.

3. Click +.

Bundle Manager View

You can use the Bundle Manager view in order to create bundles from non-OSGi jars,
that is, plain jars. When you create a bundle from one or more plain jars, you need an

webMethods Application Platform User’s Guide Version 9.12 77

Developing with Application Platform in Designer

OSGi bundle to host the plain jar. An OSGi bundle that hosts a plain jar, is called a
wrapper bundle. A single wrapper bundle is used for publishing one or more plain jars
to the server. The Bundle Manager uses different icons to distinguish between plain jars

and OSGi bundles.

Creating Wrapper Bundles

Before you can publish plain jar files to the server, you must create one or more wrapper
OSGi bundles for the plain jar files.

To create a wrapper bundle for one or more plain jar files

1. In Designer, go to the Bundle Manager view.

2. Select the plain jar or jars for which you want to create a wrapper bundle.

If you attempt to create a wrapper bundle for an OSGi bundle file, you will receive
an error. You can only create wrapper bundles for plain jar files.

For information about how to add more plain jar files to the Bundle Manager view,
see "Configuring Bundle Manager View" on page 82.

3. Click .

4. In the Create an OSGi bundle page of the Create Bundle for Selected Jars dialog
specify the following settings:

For this setting...

Specify...

Bundle Type

Bundle Symbolic
Name

One of the following;:

® Unwrapped - to unwrap the contents of selected jar(s) in the
root directory of generated bundle.

® Embedded - to embed the selected jar(s) in the generated
bundle.

Importaif:you have selected more than one jar file, make
sure that each jar contains a set of files with
unique names to prevent files from one jar to be
overwritten by files from the other jar.

If you are converting a signed jar file, Software AG
recommends that you use the Embedded option to ensure
that the integrity of the signed jar is maintained when
wrapping the jar as a bundle.

A symbolic name for the bundle.

webMethods Application Platform User’s Guide Version 9.12 78

Developing with Application Platform in Designer

For this setting... Specify...
Bundle Version A bundle version.
Directory Select the required directory from the drop-down list box.

If the required directory is not available, add the directory
from the Bundle Manager settings.

For information about adding a directory, see "Configuring
Bundle Manager View" on page 82.

Optional. Click Next. On the Bnd Classpath Settings page select one or more jars to be
added to the classpath when building the bundle.

The selected jars are added to the -classpath Bnd directive as absolute URIs.

Optional. Click Next. On the Bnd Template Settings page edit the bundle manifest
content before building the bundle.

For information about the syntax and supported options of Bnd templates, see http://
www.aqute.biz/Bnd.

Optional. Click Next. On the OSGi bundle manifest page update the contents of the
bundle manifest, if required.

The manifest contents must comply with the general specification for jar
manifest files. For information about the jar manifest specification, see the Oracle
documentation.

Click Finish.

Deleting Bundles and Jars

You can use the Bundle Manager view in order to remove OSGi bundle files and plain
jar files.

To delete bundles or jars from the Bundle Manager view

1.

In Designer, verify that the bundles or jars you want to delete are not published to
the server.

If there are bundles or jars, which are published to the server, go to the Bundle
Publisher view and unpublish them.

You can only unpublish bundles or jars when the relevant server is started in the
Servers view of Designer.

For information about unpublishing bundles from the server, see "Publishing and
Unpublishing Bundles" on page 75.

Click X.

webMethods Application Platform User’s Guide Version 9.12 79

http://www.aqute.biz/Bnd
http://www.aqute.biz/Bnd

Developing with Application Platform in Designer

Configuring Application Platform

Application Platform configuration is supported for the following elements:

Bundle Publisher View
Bundle Manager View
Eclipse Capabilities
Servers View

Project Configuration

Customer Applications

Configuring Bundle Publisher View

The configuration of the Bundle Publisher view is divided in separate sections.

Use the View Contents section to configure what items to show in the Bundle Publisher
view. Note that user bundles are always displayed and you cannot hide them from this
section.

Use the Bundle Dependency Validation section to limit the amount of content that is
returned during bundle validation, or to convey bundle changes to the server.

To configure the Bundle Publisher view

1.

In Designer, go to the Bundle Publisher view, click = , and then click Settings.
Alternatively, go to Window menu and click Preferences.

In the Preferences dialog box, expand Software AG.
Expand Application Platform, and then click Bundle Publisher.
In the Bundle Publisher page set the following settings:

Set this check box... To...

Plain Jars (not OSGi) Select to display plain jars in the Bundle Publisher view.
When Plain Jars (not OSGi) is cleared, plain jars are not
displayed.

Note: Plain jars cannot be published, so you cannot select
them in the Bundle Publisher view.

Default: check box is cleared

webMethods Application Platform User’s Guide Version 9.12 80

Developing with Application Platform in Designer

Set this check box...

To...

Platform Server
Bundles

User Bundles

Show Warnings for
server bundles

Show warnings for
missing optional
imports

Select to display the platform server bundles, which are
delivered with the server profile, in the Bundle Publisher
view. When Platform Server Bundles is cleared, the platform
server bundles are not displayed.

If you display the platform server bundles, make sure that
you do not remove any platform server bundles from the
server.

Default: check box is cleared

Display all user bundles in the Bundle Publisher view.

Default: check box is always selected

Select to view the OSGi manifest warnings for active server
bundles. When Show Warnings for server bundles is cleared,
OSGi manifest warnings are not displayed.

Note: Selecting this check box may produce excessive
warning messages in unrelated bundles when
publishing or validating bundles.

Default: check box is cleared

Select to view warning messages when imported packages
for a bundle are not included. When Show warnings for missing
optional imports is cleared, warning messages for missing
imported packages for bundles are not displayed.

These warning messages are displayed when the Bundle
Publisher is validating bundles or applying updates to the
server. For example, if one of the bundles in the set has a
manifest.mf file containing an Import-Package header
with the resolution := optional qualifier, and no active
bundle exports exist for this package, a warning message
will be returned if this check box is selected.

Note: In some cases a missing package does not result
in a warning message, for example when you are

performing imports to a test framework.

Default: check box is cleared

webMethods Application Platform User’s Guide Version 9.12 81

Developing with Application Platform in Designer

Configuring Bundle Manager View

Use the Bundle Manager view to define one or more directories that contain additional
bundles to be published to the server. You can share bundles that reside in one of these
directories across your projects.

To configure a directory for additional bundles in the Bundle Manager view

1.

In Designer, go to the Bundle Manager view, click = , and then click Settings.
Alternatively, go to Window menu and click Preferences.

In the Preferences dialog box expand Software AG, then expand Application Platform,
and then click Bundle Manager.

Click Add Directory.
Select the directory you require and click OK.
Click Apply, and then click OK.

Defining Application Platform Capabilities

Use the Eclipse capabilities to associate a collection of views or activities to a specific
purpose. After you define a capability, you can use it to quickly hide those related items.
Application Platform also provides custom capabilities.

To configure Application Platform capabilities

1.
2.
3.

In Designer, go to Window menu and click Preferences.
In the Preferences dialog box, expand the General menu and click Capabilities.

On the Capabilities page, specify values in the following fields:

In this field... Specify...

Prompt when When this check box is selected, you will be prompted to confirm
enabling enabling the capabilities.

capabilities

By default, this check box is cleared.

Capabilities The list of the groups of capabilities you can configure. Here you
can enable or disable the Software AG App Platform capability.

By default, the Software AG App Platform capability is enabled.

Description A description for the selected capability.

webMethods Application Platform User’s Guide Version 9.12 82

Developing with Application Platform in Designer

6.
7.

In this field... Specify...

Requires If the selected capability, requires enabling other capabilities,
they are listed here.

Click Advanced... to select the next configuration view.

Expand Software AG App Platform and configure the following Application Platform
capabilities:

Capability Description
App Platform The core development features of Application Platform, used for
Core developing Java projects.

By default, this capability is enabled.

App Platform The web development features of Application Platform, used for
Web developing web projects.

By default, this capability is enabled.

Integration All Integration Server-related features of Application Platform.
gigﬁgions By default, this capability is enabled.

In the Advanced Capabilities Settings dialog box, click OK.
On the Capabilities page click Apply, and then click OK.

Configuring Servers View

You can update the configuration of the Servers view.

To configure the Servers view

1.
2.
3.

In Designer, go to Window menu, click Preferences.
In the Preferences dialog box, click Server.

Select the Show Servers view when server state changes check box if you want the
Servers view to be activated whenever there is a server activity, including startup,
shutdown, or project changes.

In the Navigation panel, expand the Server menu and click Launching. Use this page
to configure the server launching settings.

For information about the launching configurations, see the Web Tools Platform User
Guide in Software AG Designer Online Help.

webMethods Application Platform User’s Guide Version 9.12 83

Developing with Application Platform in Designer

Configuring Application Platform Projects

Projects that you create in Designer contain project-specific properties. Application
Platform projects contain the Application Platform Core project facet and an Application
Platform project property configuration.

You configure the properties of your Application Platform projects in Designer.

To configure Application Platform projects

1. Right-click the required project and click Properties.

2. In the Properties dialog box, expand Application Platform.
3. Click Project Version.

4. In the Version field enter the project version.

The version string must be valid for the OSGi standard and it must include three
numeric values, separated by periods. Bundles you create for this project will adopt
the same value for the Bundle Version manifest header.

Note: If you have created a custom Bnd template using the Create Bnd template
tool from the project context menu, you must update the Bnd template
with the updated project version. This will ensure that the Bundle Version
header is up to date.

Important: If you are deploying your project using Deployer, you must create a
project manifest in order to use the Project Version property. You must
include the manifest with other project files that you commit to source
control, so that the manifest is available when using the Asset Build
Environment. This will ensure that the bundle produced by the Asset
Build Environment contains the expected Bundle Version property.

5. Optional. If you are configuring a web project, go to the Navigation panel and click
Project Bundle. Fill in the Web Context Path field.

You can update the web context path of projects, created with the Application
Platform Web project facet, after creating the project.

Developing Custom Applications

Applications you develop may include properties files, which contain key-value

pairs that allow you to configure the values on each server where your application is
deployed. Application Platform expects these key-value pairs to be implemented as
properties files. This section explains how the properties files are created and installed
on the server.

webMethods Application Platform User’s Guide Version 9.12 84

Developing with Application Platform in Designer

The following rules apply to the properties files:

You must include all properties files in the src/main/config folder of the associated
project.

You must add a unique name to each properties file.

You must name the files following a reverse domain name convention. For example,
company XYZ might have a com.xyz.demo.dataSource.properties file.

You must begin the names of the files for internal use with “com.softwareag.”. These
files are not deployed to the server.

You must not share properties files across projects because all properties files are
removed when a project is unpublished.

The following diagram illustrates the steps for managing configuration data while in
Designer.

Designer

Step 1 Step 2 Step 3 Step 4

Create project Publish project Application Platform Any changes to
service and extracts properties properties file are
configuration from bundle detected and service
properties file is notified

To develop custom applications

1.

2.

Open Designer and create a properties file in the src/main/config directory.
Implement a Java class to use these configuration properties.

Note: ~ When you unpublish your project from the server using the Servers view
in Designer, the affected properties file will be removed from the server.

Publish the project to the server.

When you publish the project in Designer, a bundle is created and the contents

from the src/main/config folder are included in the bundle. When the project bundle
is created, a special AP-Bundle-ConfigFiles header is inserted into the project
manifest. The configuration properties files contained in the project override any
properties files that reside on the server. The server responds to any subsequent edits
in the properties file by notifying the managed service. For more information, see
Getting Started with the Application Platform API.

When a project bundle is created, Application Platform checks the bundle for

the special AP-Bundle-ConfigFiles header. If Application Platform finds this
header, it extracts all listed properties files and installs them to the server profile's
directory for dynamic configuration, located here: Software AG_directory\ profiles
\server_instance \ configuration\ com.softwareag.platform.config.propsloader.

webMethods Application Platform User’s Guide Version 9.12 85

Developing with Application Platform in Designer

Important: Do not remove the AP-Bundle-ConfigFiles property header from the
bundle. This header is only produced when projects are published in
Designer. The Asset Build Environment tool does not create this header
when it produces a project bundle.

About Using Services in Application Platform

This section describes how you can browse and expose services from your Application
Platform projects.

You can browse services from your Application Platform projects by using the Service
Browser view, available in the Application Platform perspective.

You can expose services from and to Application Platform projects. Currently, the
following scenarios are available:

®m Calling Integration Server services from Application Platform projects.
m Calling Application Platform services from Integration Server services.

m Calling Application Platform services from My webMethods Server services.

Service Browser View

You can use the Service Browser view in order to browse the services used in your
project bundles. When you publish a project to the server, all the services that are used
in that bundle are listed in the Service Browser view. The Service Browser view displays
all services that are published to the currently selected server in the Servers view. To
switch between servers, you must change the selection in the Servers view. You can
filter the services by service name or project bundle. You can also customize the Service
Browser view by selecting the filters to be used and the content it displays.

Searching in the Service Browser View

In the Service Browser view you can search for services by using the search bar.

To search for services in the Service Browser view
1. In Designer, go to the Service Browser view.
2. Type the required text in the search bar.
You can search by service name, service details, bundle name, or bundle details.

3. Press Enter.

webMethods Application Platform User’s Guide Version 9.12 86

Developing with Application Platform in Designer

Grouping Services by Bundle Name

By default, the services displayed in the Service Browser view are grouped by service
name. You can also group the services by the name of the bundle that has registered the
service.

To group services by bundle name

1. In Designer, go to the Service Browser view.

2. Click 4.

3. Optional. Click 4 again to group the services by name.

Refreshing Services and Bundle Information

In the Service Browser view you can refresh the services and the bundle information that
is published to your runtime environment.

To refresh services and bundle information
1. In Designer, go to the Service Browser view.

2. Click " .

Filtering Services Displayed in the Service Browser View

You can filter the services displayed in the Service Browser view by using the available
custom filters.

To filter the services displayed in the Service Browser view
1. In Designer, go to the Service Browser view.

2. Click = .

3. Click Customize View.

4. In the Filters tab set the following check boxes to define the customizing filters to be

used.

Set this check box... To filter...

Apache namespace services Services that start with org.apache.

App Platform Secure Services Services that are registered by POJO classes

annotated with both @Secure and @Service.

webMethods Application Platform User’s Guide Version 9.12 87

Developing with Application Platform in Designer

Set this check box...

To filter...

App Platform Services

App Platform Services published
to Integration Server

Eclipse Services
Java namespace services
OSGi Services

Platform Services (registered by
Software AG bundles)

Software AG Platform Services

Services that are registered by POJO classes
annotated with @Service.

Services that are exposed to Integration Server with
the @ExposeTolS annotation.

OSGi services that start with org.eclipse.
OSGi services that start with java or javax.
OSGi services that start with org.osgi.

OSGi services that are registered by internal
Software AG product bundles. The parent bundles
of these services have symbolic names that start
with com.softwareag.

OSGi services that start with com.softwareag.

Customizing Content Displayed by the Service Browser View

You can customize the content that the Service Browser view displays.

To customize content, displayed by the Service Browser view

1.

2
3
4.
5

In Designer, go to the Service Browser view.

Click = .
Click Customize View.

Click the Content tab.

Set the following check boxes to define the content to be displayed.

Set this check box...

To display...

Runtime services

Bundle details

The full list of services that are published to

the runtime. If you disable this check box when
services are grouped by service name, you will hide
all services .

Details about each bundle when the services are
grouped by bundles. The following details are
displayed:

webMethods Application Platform User’s Guide Version 9.12 88

Developing with Application Platform in Designer

Set this check box... To display...

® Bundle headers
® Export package details
® Import package details

If you disable this check box when services are
grouped by bundles, you will hide all bundle
details.

Service details Details about each service when services are
grouped by service name. The following details are
displayed:

B Service properties

m Name and version of the bundle that has
registered the service

If you disable this check box when services are
grouped by service name, you will hide all service
details.

Runtime bundles The bundles that have registered the services.
If you disable this check box when services are
grouped by bundles, you will hide all services.

Calling Application Platform Services from Integration Server
Services

Integration Server allows you to have Integration Server (IS) services that call Java
source files in Application Platform by attaching annotations to methods in Application
Platform. When you publish projects that contain these annotated methods to
Integration Server, IS service bindings are created, which can be invoked in Integration
Server flow services, or executed by Integration Server Java services.

When you expose Java methods to Integration Server, you must use annotations in
order to mark the specific method(s) to expose. This section provides an overview of the
required functional steps.

For more information, see Getting Started with the webMethods Application Platform API.

To call Application Platform services from IS services

1. Annotate a method by marking the class and method with the necessary
annotations. The following class annotations are available:

webMethods Application Platform User’s Guide Version 9.12 89

Developing with Application Platform in Designer

Method Description

@Service Use the @service class annotation to identify the class as a
service, so that it can be included in the server's OSGi service
registry.

@ExposeToIS Use the @ExposeToIs class annotation to provide additional

details for Integration Server.

@ExposedMethod Use the @ExposedMethod method annotation to identify the
method to be used when creating an IS service.

Example:

@Service (name="0OrdersService”, interfaces =
{“com.softwareag.demo.orders.api.OrdersService”})
@ExposeTolIS (packageName="0OrdersService”)

public class OrdersServieImpl implements OrdersService {

Method

@Override
@ExposedMethod
public String createReceiptEntry(Lineltem inItem) ({

Publish your project.

When the project's bundle is assembled, it will contain additional metadata to be
used by Integration Server when creating IS service bindings.

Verity that the Integration Server package you provided in step 1 with the
@ExposeToIS annotation exists, and that it contains the proper service signatures.

Coding Considerations

There are some architectural differences between coding with Java and coding
with Integration Server. You must keep the following points in mind when you call
Application Platform services from IS services:

IS services are stateless operations on a pipeline. Holding references to Java objects
in the Integration Server pipeline is not supported. Make sure that the exposed
operations do not depend on a Java objects’ holding state.

Application Platform and Integration Server use different class loaders, so object
references are not transferred between them. Java objects that you use in a method
signature must be Java Beans. The IS services that are generated will include
signatures that use objects of type Document in order to represent the Java Bean
objects.

webMethods Application Platform User’s Guide Version 9.12

90

Developing with Application Platform in Designer

Calling Integration Server Services from Application Platform
Projects

You can expose your Integration Server Java services and Integration Server flow
services to your Application Platform projects. Java source file binding classes are code-
generated to facilitate calling the IS services.

In Application Platform, you can create Java source files that are essentially client stubs
used to invoke Integration Server Java services and Integration Server flow services from
an Application Platform project.

For more information, see Getting Started with the webMethods Application Platform API.

To call Integration Server services from your Application Platform project

1.
2.

Right-click your project and select App Platform, and then select IS Tools.
Click IS Service Wizard.

Note: You can also launch the IS Service Wizard by pressing Ctrl+Shift+Z.

Select a destination project from the Project drop-down list box.
You can select only projects with an enabled IS Service Extensions project facet.

Select the required IS services. If you see no IS services, or less IS services than you
expect, try one of the following;:

® Right-click the required node and click =7|.
m Right-click the required node and click Refresh tree contents.

You can select one or more IS services. You must use only user-developed services
with valid IO specifications.

Note: None of the Integration Server product services, contained in packages
that begin with wm*, are visible in the wizard. Therefore, you will see no
services for selection before you have created at least one custom service.

Click Finish.

Java bindings are created for the selected IS services. You can find the source files
in the source directory, as defined for the IS Service Extensions project facet. The
default location is genSource. The package name is determined from the IS service
and its parent folder name(s). Each IS service you select has its own dedicated Java
package. This ensures that there is no overlap with the generated input and output
classes.

Important: If you deploy a project that calls IS services to the production server, you
must set the generated source directory to src/main/java.

webMethods Application Platform User’s Guide Version 9.12 91

Developing with Application Platform in Designer

Coding Considerations

There are some architectural differences between coding with Java and coding with IS
services. You must keep the following points in mind when you call IS services from
your Application Platform projects:

While Java is Object-Oriented, IS services are stateless operations on a pipeline.
When you generate a Java class to represent an IS service, the class has a single
method to represent service invocation. The IS pipeline is essentially a collection of
name/value pairs, or a map.

While Java methods are defined in classes which are in packages, IS services are
defined in folders and in Integration Server packages. Java packages and Integration
Server packages are different concepts. A class's Java package path uniquely
represents the class in the Java class namespace. An Integration Server package is a
unit of packaging but it is not part of the service namespace. In the Integration Server
namespace, the folder and service name uniquely identify a service. The folder
name in the Integration Server namespace is usually a dot-separated list of words,
for example: this.is.my.folder.name. Also, it is not uncommon that Integration Server
folders include capital letters, while Java packages are almost always lowercase.
Application Platform combines the Integration Server folder and service names to
create a Java package name.

Java and Integration Server use different data types. Java's data type system is
very rich, it includes primitive types and every class ever created. Integration
Server has a much smaller data type system. Integration Server supports String
and Java primitive wrapper types. However, complex structures in IS services are
typically modeled using the Document data type. A Document is essentially a
map where each element associates a name with a value. The values can be String,
primitive wrapper, or Document. An IS document with nested Document elements
is similar to a map that represents properties in a Java Bean. Application Platform
takes advantage of this similarity. The input and output classes it generates are
simple Java Beans with a property that represents each input or output value. If
the IS service input signature includes a Document type, then a Java (Bean) class is
generated to represent the Document structure.

The following table shows the data type mapping between Java and Integration
Server:

Java Data Type Integration Server Data Type

java.lang.String String

Primitives; int, Object->Primitive Wrapper; Integer, Float, ...
float, ...

webMethods Application Platform User’s Guide Version 9.12 92

Developing with Application Platform in Designer

Java Data Type Integration Server Data Type
Primitive Object->Primitive Wrapper; Integer, Float, ...
Wrappers;

java.lang.Integer,

java.lang.Float, ...

java.util.Date Object->Primitive Wrapper; Date

Java Bean class Document

A map of property name => property value, where String
and primitive properties are represented as described here,
and other types are represented as nested Documents.

®m Application Platform and Integration Server use different class loaders, so object
references are not transferred between them. Only String, Date, primitive wrappers,
and arrays of these elements have the same representation in both Integration
Server and Java. More complex object structures are represented by Java Beans in
Java and by IS documents in Integration Server. The list of elements with similar
representation includes a byte array, so you can pass serialized objects if you
handle serialization in Application Platform and ensure that appropriate classes are
available on both sides.

® Java and Integration Server recognize different words as having special meaning.
For example, an IS service can have an input parameter named class but class is
a reserved word in Java. Also, a reserved word in Java may be a valid IS service or
folder name. The Application Platform code generator adds PLs or pls in front
of generated class and property names. However, there still can be cases when the
generated code does not compile properly. In such cases, try to use flow mapping in
Application Platform in order to change parameter or service names.

® Java and Integration Server recognize different sets of characters as having special
meaning. An IS service and parameter names can use @, *, or other characters that
are not allowed in Java class names and variable names. You must avoid such
conflicts by changing service names and property names in Integration Server.

® The Application Platform code generator relies on the IS service to have an explicit
service signature that defines all input and output elements. Such a signature is not
required in Integration Server. If you want to call an IS service without a signature
from Java and it is not possible to add a signature to this IS service, you must create a
flow wrapper that has an appropriate signature and invokes the service.

webMethods Application Platform User’s Guide Version 9.12 93

Developing with Application Platform in Designer

Calling Application Platform Services from My webMethods
Server Services

My webMethods Server provides services that call Java source files in Application
Platform by attaching annotations to methods in Application Platform. When you
publish projects that contain these annotated methods to My webMethods Server, My
webMethods Server service bindings are created.

When you expose Java methods to My webMethods Server, you must use annotations in
order to mark the specific method(s) to expose. This section provides an overview of the
required functional steps.

For more information, see Getting Started with the webMethods Application Platform API.

To call Application Platform services from My webMethods Server services

1. Annotate a method by marking the class and method with the necessary
annotations. The following class annotations are available:

Method Description
@Service Use the @service class annotation to identify the class as
a service, so it can be included in the server's OSGi service
registry.
Example:
@Service (name="0OrdersService”, interfaces =

{“com.softwareag.demo.orders.api.OrdersService”})
2. Publish your project.

When the project's bundle is assembled, it will contain additional metadata to be
used by My webMethods Server when creating service bindings.

Coding Considerations

There are some architectural differences between coding with Java and coding with My
webMethods Server. You must keep the following in mind when you call Application
Platform services from My webMethods Server services:

When you develop My webMethods Server user interface applications that call
Application Platform services, you must ensure that the Application Platform service
classes are not accessed from any code that is executed during the web context
initialization of the My webMethods Server user interface project, which occurs when
the project is published. The service project cannot be installed in the container runtime
until after the user interface project is initialized, which leads to exceptions of type
“ClassDefNotFoundException.”

webMethods Application Platform User’s Guide Version 9.12 94

Developing with Application Platform in Designer

Application Platform Tutorial

In addition to webMethods Application Platform User’s Guide and Getting Started with the
webMethods Application Platform API, there is also a webMethods Application Platform
Tutorial. The webMethods Application Platform Tutorial provides step-by-step examples
for performing common tasks in Application Platform. It also provides sample projects,
which allow you to practice developing in Application Platform. You can download
the webMethods Application Platform Tutorial, together with the code samples, from the
Software AG TECHcommunity.

webMethods Application Platform User’s Guide Version 9.12 95

webMethods Application Platform User’s Guide Version 9.12

96

Working with Application Platform Projects

3 Working with Application Platform Projects

B About DeployiNg PrOJECES ... 98
m About Using CAF Projects with Application Platformccccoovviviiiiiicccceecee e 101
m About Configuring Published ProjECtscccvirriirirsecessee s 103

webMethods Application Platform User’s Guide Version 9.12 97

Working with Application Platform Projects

This topic describes the tasks, which you can execute after your Application Platform
project is implemented and you want to deploy the project to the server.

About Deploying Projects

You can deploy your Application Platform projects with webMethods Deployer.
Deployer ensures that reproducible builds of your developed projects are produced
outside of Designer. This section provides a high-level description of the steps you need
to execute in order to deploy a project. For more information, see webMethods Deployer
User’s Guide.

Before using Deployer, you must prepare your project bundles with the Asset Build
Environment command line tool. With Asset Build Environment you can create bundles
from the source of your Application Platform projects. Deployer then uses the generated
bundles for deploying your projects. In Deployer the bundle files are referred to as assets.
For more information about Asset Build Environment and Deployer, see webMethods
Deployer User’s Guide.

Before you can create bundles for an Application Platform project with the Asset Build
Environment, you must do the following configurations:

m Configure a properties file for the Asset Build Environment.

m Configure a properties file for your Application Platform project.

Configuring Asset Build Environment

Asset Build Environment has its own properties file, which includes properties that
control which products are included, the location of the project source files, and so on.

To configure the Asset Build Environment properties file for your Application Platform project

1. Go to the Software AG_directory\ common \ AssetBuildEnvironment\ master_build
directory.

2. Open the build.properties file.

3. Add the necessary configurations for your Application Platform project.

Configuring Application Platform Projects for Asset Build
Environment

Designer creates a properties file for each Application Platform project. Designer adds
this file to the project’s root folder.

webMethods Application Platform User’s Guide Version 9.12 98

Working with Application Platform Projects

To configure the Application Platform project properties file for Asset Build Environment

1. Go to the root directory of your Application Platform project.

2. Open the assetBuild.properties file in a text editor.

For a detailed description of the contents of the assetBuild.properties file, see "

Application Platform Project Configuration for Asset Build Environment " on page

99.

3. Commit the assetBuild.properties file, together with the remaining project source

files, to the Asset Build Environment.

Application Platform Project Configuration for Asset Build

Environment

The assetBuild.properties file, generated by Designer, has the following contents:

Property Name

Value Type

Description

Required

component.name

String

This name is used
for the bundle

file name and the
following manifest
headers:

Bundle-Name:

Yes

component. type

String

For Application
Platform this value
must always be
bundle .

Yes

component.home

String

The path to the
project source.

No, Asset Build
Environment will
assume that a
project with

component. name
is located in

master_build/
build.properties

build.source.
projects

webMethods Application Platform User’s Guide Version 9.12

99

Working with Application Platform Projects

Property Name Value Type Description Required
component. Comma A list of No
dependencies delimited = component names
String to be included
on the classpath
when building this
project.
component. This property is No, the web
webcontext reserved for future context path
use. defaults to the
project name but it
can be overridden
by the
Web-
ContextPath:
0SGi
manifest header.
component.version This property is No, specify the
reserved for future bundle version
use. in the project's
bnd.bnd file with
the
Bundle-Version:
header.
component. This property is No, all source
src.dirs reserved for future files must be in
use. thesrc/main/java
directory.
component. String This property No
dependencies. is a reserved
external value that is

automatically
generated in the
project’s

assetBuild.properties

file. Its value is a
file pattern relative
to the configured

webMethods Application Platform User’'s Guide Version 9.12

100

Working with Application Platform Projects

Property Name Value Type Description Required

BUILD_EXTERNAL_
DIR

classpath variable
in Designer and
relative to the

build.external.dir

Ant property
defined in the
master build
properties file

of Asset Build
Environment.
For example, this
value can be

com/
springsource/3.2.3/
*.jar.

Creating Assets with Asset Build Environment

To deploy bundles with Asset Build Environment and create assets, you must embed
the bundles in the project. For this purpose, you must include the bundles in the

lib directory of the project. In this way the bundles are part of that project bundle's
classpath. When you do this, make sure that every project that has a dependency on one
or more bundles, includes the bundles in its own directory.

Deploying Assets in Deployer

After you create assets using the Asset Build Environment, you can use Deployer to
install the assets to the target servers. For information about deploying assets, see
webMethods Deployer User’s Guide.

About Using CAF Projects with Application Platform

You can develop an Application Platform project that extends a Composite Application
Framework (CAF) project with complementary business logic. The high-level steps for
creating an Application Platform project that extends a CAF project are as follows:

1. Create an Application Platform project and build it with Asset Build Environment.

webMethods Application Platform User’'s Guide Version 9.12 101

Working with Application Platform Projects

2. Create a CAF project, add a dependency to the Application Platform asset you built,
and build the CAF project with Asset Build Environment.

3. Create a deployment set that contains both CAF and Application Platform assets and
deploy it to My webMethods Server using Deployer.

Before deploying an application that consists of CAF and Application Platform projects
to My webMethods Server, you must declare dependencies.

For information about how to declare dependencies to Application Platform assets in
CAF projects, see "Configuring CAF Projects for Asset Build Environment " on page
102.

For more information about developing CAF projects, see webMethods CAF and OpenCAF
Development Help.

Note: Before deploying an application that consists of CAF and Application
Platform assets with Deployer, you must place both types of assets in the
same repository.

Configuring CAF Projects for Asset Build Environment

After you create your CAF project in Software AG Designer, you must specify that it
depends on an Application Platform project.

To declare dependencies to Application Platform projects in CAF projects
1. In Designer, open the Solutions Perspective for your CAF project.

2. In the WebContent directory of your CAF project, create a xxx .component.xml file,
where xxx is the project type of the CAF project.

The CAF project type can be one of the following;:
m war - if the project is a web application

m jar - if the project is a bundle

m pdp - if the project is a legacy portlet.

3. In the <component> tag of the xxx .component.xml file, add the project dependencies.
The following example shows a dependency to an Application Platform project,
declared in the war.component.xml file of a CAF project:
<component name="caf.project.name" type="war">

<required>
<component name="app.platform.project.name"™ type="Bundle" />
</required>
</component>

Where caf.project.name is the name of the current CAF project, and
app.platform.project.name is the name of the Application Platform project to which
you want to add a dependency.

webMethods Application Platform User’'s Guide Version 9.12 102

Working with Application Platform Projects

The Asset Build Environment will transfer the dependency to the ACDL descriptor file
for the CAF project.

About Configuring Published Projects

Your Application Platform projects can contain configuration data, which is included
when you publish a project to the server. After a project is on the server, you can modify
this configuration data dynamically during runtime.

Using the Project Dynamic Configuration

The Application Platform runtime allows you to configure project properties
dynamically through the ConfigurationAdmin service of Software AG Common Platform.

Before you start using the project dynamic configuration, keep in mind that in
traditional Java projects configuration files, such as properties files, are loaded using
the class/classloader of the currently executing method or thread. The configuration
files are present in the classpath of the running program and they are accessible during
runtime either with the project bundle that is published, or globally as part of the
runtime container. However, if you are using this approach, you have to republish the
project bundle, or restart the runtime container before you can update dynamically

the properties file with an external service, for example the ConfigurationAdmin service of
Software AG Common Platform.

To support dynamic updates in Application Platform project configuration, ensure the
following during project development:

m Keep the project’s properties file in the src/main/config directory of the project.

® Add a unique name to the project’s properties file. This name is used as a persistent
identifier (PID) that identifies the properties file.

For more information about the properties file, see "Developing Custom
Applications" on page 84.

®m Ensure that classes that need to dynamically update the properties file implement
the OSGi org.osgi.service.cm.ManagedService interface and the associated updated Map
properties callback method.

® Ensure that classes that need to dynamically update the properties file are published
as managed services, so that they can receive notifications about configuration file
changes. For this purpose, you must use the @service annotation, which allows you
to publish a class as an OSGi service. In the annotation, specify the following type as
one of the exported interfaces: org.osgi.service.cm.ManagedService.

Note that the project’s properties file is packaged with the published bundle in the
container but it is extracted and stored in the following location of the common
configuration store of the installed runtime: Software AG_directory\ profiles\IS_default
\ configuration\ com.softwareag.platform.config.propsloader.

webMethods Application Platform User’s Guide Version 9.12 103

Working with Application Platform Projects

For more information, see Getting Started with the Application Platform API.

Command Central and Platform Manager Client Tools

You can use the command line interface of Command Central and a server for hosting
web applications to access a configured group of products across one or more servers.

For more information, see "Managing Application Platform Projects Using Software AG
Command Central " on page 14.

webMethods Application Platform User’'s Guide Version 9.12 104

Diagnostics and Troubleshooting

4

Diagnostics and Troubleshooting

LOGGING vttt 106
Diagnosing Bundles with the OSGi CONSOIEccccureiiiiiiiiieie s 106
Considerations When Publishing Projects 10 SErvers ... 107
Disabling the WmTomcat Package ..o 107
COMMON PIOJECE ISSUES ..ot 108
Configuring a Designer Project for Application PlIatform ... 111

webMethods Application Platform User’s Guide Version 9.12 105

Diagnostics and Troubleshooting

This topic describes how you can diagnose and troubleshoot Application Platform issues
in Designer and on the server.

Logging

You can use the following logs to diagnose Application Platform issues:

Designer Log Files. The Designer log file is located here:
Workspace_Directory \ .metadata\ .log

Designer Trace Logging. Designer includes a tracing convention for capturing
additional content when something goes wrong. Application Platform supports

this convention too. In order to use trace logging with Application Platform, you
must perform additional configuration steps. For information about trace logging
configuration for Application Platform, see the Workbench User’s Guide in Software AG
Designer Online Help.

Server Log Files. The server produces several log files. The log files for Integration
Server's default instance are located here: Software AG_directory\ profiles\IS_default
\logs\. The available log files are wrapper.log and sag-osgi.log.

Configure Server Debug Output. You can configure additional debug output for

the server. For Integration Server's default instance, use the following location:
Software AG_directory\ profiles\IS_default\ configuration\logging\log_config.xml. In
the log_config.xml file add the following formatter:

<logger name="com.softwareag.applatform.pls" additivity="true">

<level value="debug" />
</logger>

Restart the server after updating the log_config.xml file. This formatter captures
Application Platform debug messages.

For more information, see " Software AG Servers" on page 12.

Diagnosing Bundles with the OSGi Console

Designer provides a host OSGi console in the Console view. You can use this console to
examine the status of bundles installed to the JVM. You can also configure the server to
allow access to an OSGi console.

For detailed steps about enabling the OSGi console in the Terminal view, see "Enabling
the OSGi Console" on page 25.

webMethods Application Platform User’s Guide Version 9.12 106

Diagnostics and Troubleshooting

Considerations When Publishing Projects to Servers

This section describes common problems that may occur when you publish your
Application Platform projects to the server. The following points describe common
server issues and recommendation for troubleshooting each issue:

m Server is installed as a service.Software AG recommends that when you set up a
development environment with Application Platform, you install the server as an
application, as opposed to a service. This is required because the service wrapper
scripts do not start the server with the expected configuration, which can lead to a
mismatched configuration between Designer and the server.

For example, the service is started without a configured and opened JPDA
debugging port. If this happens, try to resolve the problem by stopping the server
and restarting it in Designer.

m Server immediately fails to start. If the server fails with an error in the Servers view
in Designer immediately after startup, confirm that the server startup script is
running synchronously. Also, check the server’s runtime environment and verify
that BLOCKING SCRIPT is not set to yes.

m Server fails to start after the timeout. If the server fails to start after the timeout, verify
that the primary HTTP port number, configured in the Servers view, matches
the port number, configured for the server instance. For Integration Server, also
verify that valid user credentials exist for the matching Integration Server port
configuration found in Designer, under Window > Preferences > Software AG >
Integration Servers.

Disabling the WmTomcat Package

Application Platform uses Software AG Web Server, which is based on Apache Tomcat.
The Software AG Web Server is part of Software AG Common Platform. Integration
Server, on the other hand, provides its own Tomcat instance via the WmTomcat
package. The WmTomcat package must be disabled in servers that host Application
Platform web modules. By default, the WmTomcat package is disabled when you first
install Integration Server and when you create Integration Server instances by using the
is_instance.sh/bat script. If the WmTomcat package is enabled on the Integration Server
where you want to publish your Application Platform projects, follow the steps in this
procedure.

For detailed information about Integration Server, see webMethods Integration Server
Administrator’s Guide.

To disable the WmTomcat Package
1. Open the Integration Server Administrator.

2. Do one of the following:

webMethods Application Platform User’'s Guide Version 9.12 107

Diagnostics and Troubleshooting

m Disable the WmTomcat package.
m Delete the WmTomcat package.

3. Restart the server.

Common Project Issues

This section describes some of the more common issues that can occur when you create
and publish project bundles.

Unable to Publish Web Projects

If you are unable to publish your web projects, this can be caused by the WmTomcat
package. You must delete or disable the WmTomcat package to ensure that it does not
interfere with the Tomcat component of Software AG Web Server. If the WmTomcat
package is enabled, this can lead to failed publish attempts or projects that cannot
initialize their web context.

For information about disabling the WmTomcat package, see "Disabling the WmTomcat
Package" on page 107.

Unable to Add a Project to the Server

If you cannot add a project to the server, check if any of the Application Platform project
facets are missing. The Application Platform core facet is required for adding a project to
the server. Make sure that you use the Application Platform project wizards when you
are building a new project.

Unable to Create a Bundle

If you are unable to create a bundle, verify that your project does not contain Java source
files in the default package. Currently, such projects are not supported. Make sure that
your source files have a qualified package name.

References to Local Resources

Keep in mind that if your projects use traditional Java programming techniques that rely
on access to metadata files, you cannot reference your projects remotely across bundle
boundaries. Such techniques are Java service provider and thread context classloader.

webMethods Application Platform User’s Guide Version 9.12 108

Diagnostics and Troubleshooting

Unable to Publish Any Project Bundle

If you are unable to publish any project bundle, verify the following conditions:

The Runtime Environment configuration is stored in a file under the workspace. If
you use multiple workspaces with multiple installations of Application Platform,
this can lead to confusion. Verify that the Runtime Environment directory path is
correct for the current workspace. If Designer is installed in C:\SoftwareAG, for
example, and its workspace is in C:\ dev\workspace_98, make sure that the Runtime
Environment configuration indicates C:\ SoftwareAG for the installation home.

For more information, see "Adding the Application Platform Server Runtime
Container” on page 33.

The port number, defined for the server configuration in Designer matches the
port number, defined in the server profile configuration. For example, for My
webMethods Server the profile configuration file is located here:

Software AG_directory\ profiles\MWS_default\ configuration
\ com.softwareag.platform.config.propsloader
\ com.softwareag.jmx.connector.pid-5002.properties.

The file contains a port number key-value pair.

The server and the J]MX service in the server are started successfully. Verify that the
JMX port is in LISTEN mode for the server. If it is not in LISTEN mode, restart the
server and check if this issue is resolved.

The Application Platform components are installed for each server. If the
components are not installed, install the missing components and restart the server.

Manually Uninstall a Bundle from the Server

If you delete a project published to the server from Designer, the project bundle will be
orphaned. You must remove orphaned bundles manually from the server.

To manually uninstall a bundle from the server

1.

While the server is started, delete the orphaned file from the repository directory,
located here: Software AG_directory\ profiles\IS_default\ workspace\ app-platform
\deployer\bundles.

This will ensure that the bundle is not re-deployed the next time you restart the
server.

Open an OSGi console to the server and uninstall the bundle using its bundle ID.

For information about configuring an OSGi console, see "Enabling the OSGi Console”
on page 25.

webMethods Application Platform User’s Guide Version 9.12 109

Diagnostics and Troubleshooting

Class Loader Issues in Published Projects

Careful inspection of the stack trace can provide you with helpful hints about
Application Platform issues. The following points describe the most common cases:

m ClassNotFoundException. A java.lang.ClassNotFoundException usually
indicates that a class within the bundle fails to instantiate a class, for example,
Class.forName, for one of the following reasons:

m The class is not in the bundle that is raising the exception.
m The class is not exported by any other bundle on the server.

m The class is exported by a bundle on the server but the bundle that is raising the
exception does not import the class.

Usually, this issue will not be caught when your project is published, as long as
there is a source code reference to the class.

For more information, see "Assembling Project Bundles" on page 67.

Note: Jars that are added to a project's classpath through its \lib directory do
not have its packages exported with the project bundle. This feature
is intended as a means to extend a project bundle's classloader by
including additional classes that are private to the project.

® NoClassDefFoundError. A java.lang.NoClassDefFoundError usually indicates that a class that
is loaded in the bundle's classloader fails to reference another class while executing.

m LinkageError and ClassCastException. These errors usually indicate classloader
pollution. Under normal circumstances, a collection of related bundles can be
represented by a dependency graph based upon the chain of package imports and
exports formed between these bundles. You must ensure that within a specific graph
only one instance of a class type is loaded and accessed across the graph. If there
are multiple versions of the same class in the graph, then a java.lang.LinkageError or a
java.lang.ClassCastException is produced.

Software AG Common Platform supports loading multiple versions of class
instances in the JVM. However, you must ensure that one execution thread
consistently uses the same class type. The OSGi Export-Package: header supports a
uses directive to provide clarity in such cases.

For example, in the diagram below, bundle A imports a package from bundle B. One
of the exported packages contains a class with a method signature that includes
parameters found in bundle C. At the same time, bundle A has dependencies to
another version of bundle C, which leads to an invalid classloader graph.

webMethods Application Platform User’'s Guide Version 9.12 110

Diagnostics and Troubleshooting

Bundle C

version 1.1

imports

iuses

Note: If you are adding jars to a project's classpath through its \lib directory,
make sure that containing classes are not already exported by another,
similarly to the provided example.

Configuring a Designer Project for Application Platform

This section describes the steps you must execute, for the most common cases, in order
to import a Designer project that was not created with an Application Platform project

wizard.

Note: You can safely change the selected Application Platform project facets for a
project. No files are deleted when you uninstall one of the project facets.

webMethods Application Platform User’s Guide Version 9.12 11

Diagnostics and Troubleshooting

Configuring an Application Platform Java Project

This section describes the steps you must execute for a project that was created in
Designer using the basic Java Project wizard from the Java perspective.

To configure an Application Platform Java Project

1. In Designer, go to the Package Explorer or Project Explorer view, right-click your
project, and then click Properties.

2. In the Properties dialog box click Project Facets, and then click Convert to faceted
form....

3. Verify that the Java project facet for the appropriate version is selected.
4. Expand SoftwareAG Application Platform and select Application Platform Core.
5. Optional. Select Integration Server Extensions.
You need this project facet if you are using the IS Service wizard.
6. Optional. Click Further configuration available... to provide additional configuration.

For information about the additional configuration, see "Creating Java Projects” on
page 30.

7. After you are done with the configurations in the Properties dialog box, click OK.
8. Verify that the following modifications on your project are successfully executed:

a. The source code folder is moved from src to /src/main/java and it is selected in
the project's Build Paths dialog box.

b. A src/main/resources folder is created and it is selected in the project’s
assetBuild.properties file.

A /lib folder is created.

d. A src/main/config folder is created.

Configuring an Application Platform Dynamic Web Project

This section covers the steps you must execute for a servlet-based project that was
created using the Dynamic Web Project.

To configure an Application Platform Dynamic Web Project
1. Go to the settings folder in the project’s directory in the workspace of Designer.
2. Open org.eclipse.wst.common.project.facet.core.xml in a text editor.

3. Remove the fixed element for the jst.web facet and save the file.

webMethods Application Platform User’'s Guide Version 9.12 112

Diagnostics and Troubleshooting

4. Go to the Package Explorer or Project Explorer view, right-click your project and
click Refresh.

Right-click your project again and click Properties.
Click Project Facets.
Verify that the Java project facet for the appropriate version is selected.

Clear the Dynamic Web Module check box.

© % N o @»

Expand SoftwareAG Application Platform and select Application Platform Core and
Application Platform Web.

10. Optional. Select Integration Server Extensions.

You need this project facet if you are using the IS Service wizard.
11. Optional. Click Further configuration available... to provide additional configuration.
12. After you are done with the configurations in the Properties dialog box, click OK.
13. Verity that the following modifications on your project are successfully executed:

a. The source code folder is moved from /src to /src/main/java and is selected in the
project's Build Paths dialog box.

b. A /lib folder is created.
c. An src/main/config folder is created.
d. An src/main/webapp/WEB-INF folder is created.

14. In Designer, move the project’s servlet content, for example JSP, CSS, JavaScript, or
HTML, from its current location to src/main/webapp/.

For example, if the images of the servlet-based project are located in the C:
\ WebContent\images\ directory, you should move the images folder to C:\src
\main\webapp\images\.

webMethods Application Platform User’'s Guide Version 9.12 113

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	About Application Platform
	Architecture and Components
	Software AG Common Platform
	Software AG Designer
	Software AG Servers
	webMethods Deployer

	Publishing and Deploying Bundles
	Managing Application Platform Projects Using Software AG Command Central

	Developing with Application Platform in Designer
	Getting Started with Application Platform Development
	Opening the Application Platform Perspective
	Adding a Server Runtime Environment
	Creating a Server Definition
	Creating an Integration Server Definition
	Creating a My webMethods Server Definition

	Configuring a Server for Publishing Bundles
	Verifying That Software AG Runtime Is Available

	Performing Optional Configurations
	Disabling Natural Language Support (NLS) Warnings in Designer
	Enabling the OSGi Console

	About the Application Platform Perspective
	Application Platform Designer Views
	Application Platform Context Menu
	Creating Project Bundles
	Creating and Customizing Bundle Tool Templates for Projects

	About Creating Application Platform Projects
	Using Application Platform Projects to Extend CAF Projects
	Selecting Project Facets
	Selecting an Application Platform Runtime Environment
	Creating Java Projects
	Folder Structure of Java Projects

	Creating Web Projects
	Folder Structure of Web Projects

	Classpath Containers
	Adding the Application Platform Server Runtime Container
	Adding the Application Platform Shared Bundles Container
	Adding the Application Platform API Libraries Container

	Bundle Tool Templates for Projects
	Including Non-OSGi Jars in Projects

	About Adding Single Sign-on Authentication in Application Platform Projects
	Securing the Web Application Layer
	Securing the OSGi Service Layer

	About the Application Platform Integration Test Framework
	Creating a JUnit Test for an Application Platform Project
	Executing a JUnit Test for an Application Platform Project

	Managing Servers
	Configuring Integration Server for Application Platform Projects
	Configuring Launch Configuration Settings for Integration Server
	Configuring Integration Server Arguments
	Configuring the Integration Server Source
	Configuring Integration Server Environment
	Configuring Common Integration Server Settings

	Editing the Credentials Used for Connecting to Integration Server
	Creating a New Integration Server Instance with the Application Platform Support Package

	Configuring My webMethods Server for Application Platform Projects
	Configuring Launch Configuration Settings for My webMethods Server
	Configuring the My webMethods Server Source
	Configuring Common My webMethods Server Settings

	Editing the User Credentials for Connecting to My webMethods Server

	Managing Server Status
	Integration Server Lifecycle Actions
	Server Start Action
	Server Stop Action
	Server Debug Action
	Server Restart Action

	My webMethods Server Lifecycle Actions
	Server Start Action
	Server Stop Action
	Server Debug Action
	Server Restart Action

	About Publishing Projects
	Building Projects
	Building Projects with Designer Project Builders
	Building Projects with Custom Application Platform Project Builders

	Publishing Projects to the Server
	Manifests and Bnd Templates for Software AG Common Platform
	Assembling Project Bundles

	About Viewing Dependency Graphs
	Opening a Project in the Visual Navigator
	Using the Visual Navigator
	Visual Navigator Node Depth Levels
	Visual Navigator Context Menu Commands
	Visual Navigator Keyboard Shortcuts

	About Managing Project Dependencies
	Bundle Publisher View
	Publishing and Unpublishing Bundles
	Bundle Publisher Dependency Graphs
	Examples of Dependency Validation

	Refreshing the Bundle Publisher View
	Validating Bundles

	Bundle Manager View
	Creating Wrapper Bundles
	Deleting Bundles and Jars

	Configuring Application Platform
	Configuring Bundle Publisher View
	Configuring Bundle Manager View
	Defining Application Platform Capabilities
	Configuring Servers View
	Configuring Application Platform Projects
	Developing Custom Applications

	About Using Services in Application Platform
	Service Browser View
	Searching in the Service Browser View
	Grouping Services by Bundle Name
	Refreshing Services and Bundle Information
	Filtering Services Displayed in the Service Browser View
	Customizing Content Displayed by the Service Browser View

	Calling Application Platform Services from Integration Server Services
	Coding Considerations

	Calling Integration Server Services from Application Platform Projects
	Coding Considerations

	Calling Application Platform Services from My webMethods Server Services
	Coding Considerations

	Application Platform Tutorial

	Working with Application Platform Projects
	About Deploying Projects
	Configuring Asset Build Environment
	Configuring Application Platform Projects for Asset Build Environment
	Application Platform Project Configuration for Asset Build Environment

	Creating Assets with Asset Build Environment
	Deploying Assets in Deployer

	About Using CAF Projects with Application Platform
	Configuring CAF Projects for Asset Build Environment

	About Configuring Published Projects
	Using the Project Dynamic Configuration
	Command Central and Platform Manager Client Tools

	Diagnostics and Troubleshooting
	Logging
	Diagnosing Bundles with the OSGi Console
	Considerations When Publishing Projects to Servers
	Disabling the WmTomcat Package
	Common Project Issues
	Unable to Publish Web Projects
	Unable to Add a Project to the Server
	Unable to Create a Bundle
	References to Local Resources
	Unable to Publish Any Project Bundle
	Manually Uninstall a Bundle from the Server
	Class Loader Issues in Published Projects

	Configuring a Designer Project for Application Platform
	Configuring an Application Platform Java Project
	Configuring an Application Platform Dynamic Web Project

