5 software

Using webMethods Mobile Designer

Version 9.10

April 2016

WEBMETHODS

This document applies to webMethods Mobile Designer Version 9.10 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2011-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: MD-UG-910-20160415

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

ADOUL thiS GUILE......coerereccrrererecs e s s ane s s e e s s ana s 9
Document CONVENEIONS.........ccourerercemmrereresessssssesesessssssse s sssseses s e sess s s sssessssasssssssesensassnsnes 9
ONliNE INFOrMALION........e e a e e nanens 10

Getting Started..........coc i ————————————— 11
About Mobile DESIGNET ... ————— 13

webMethods Mobile DESIGNEr OVEIVIEW...........cccvvvceciereiriicicies e 14
Mobile Designer Build-Time COMPONENL.........ccccciiiivireeiicreeee et 14
Mobile Designer Cross Compiler and Run-time Classes............ccouerevninniennesnieneeens 14
Mobile Designer DeVICe Profiler............cociiiiceisiccssc e 15
Parameter-Driven PrOJECES. ... 15
Configuring Mobile DeSIgNer.......cccuverevennininesess s s ssssesessssssssssesens 17
About Configuring Mobile DESIGNET...........ceiiiiiire e 18
Updating the sdk.properties File to Configure Mobile DeSIgNer.........ccvvvceveeviiececeienes 18
Mobile Designer Configuration Properties (SAK.properties)...........ccocveeerrivercreeienececveeneenns 19
JAD and Manifest FlES.........cvrriiierrieees e 19
Java Compiler ChECK........cvviieiieiricicce et 20
(O T o (001 TR PTTRRT 20
LOCAlIZAtION PrOPEMY.......cecviiiicieiiese e 21
Proguard Obfuscator SEtNGS.........ccociviiiieiii s 21
Project BUild SEHHNGS......ccccviiiiciercesece et 23
PrOXY SEHINGS.vucveviriirieieisiict e 23
Platform-Specific Properties.........ccovviiiieiiiiiccses et 24
Environment Variable for Mobile DESIGNET..........cocevviicieiececece e 25

Setting Up PIatforms.........ccccicci s ss s s sssnns 27

Supported SDK VEISIONS.........ccccceummerinenisnnisisssssssesssss s sssssssssssssssssssssessssssssssesessssssssssens 29

SDK Versions that Mobile Designer SUPPOMS.........covuerriernnrrieee s 30
Setting Up the Android Platform.............ooconnsnnssssssessssns 31
About Setting Up the Android Platform...........ccccoviiieriicccsceee e 32
Installing the Android SDK on WINAOWS..........cccceuereiiiiiieieeseece e 33
Installing the Android SDK on Macintosh...........cccccvieniiniiescesese e 34
Installing the Android Development Tools Eclipse Plug-In............cccevviveceiivicccese e, 36
Configuring Mobile Designer for the Android SDK............cccccevviviceeecccee e 38
Setting Up an Android Virtual Device (EmMUIALor)..........cococviiniiniiniccceceee, 39
Starting the Android Virtual Device (EMUIALON).........cccovvieeviiiiiiceee s 40
Using the Android Emulator with @ ProXy SEIVEr..........ccccvvviiceieiecce e 40

Using webMethods Mobile Designer Version 9.10 3

Table of Contents

Setting Up the i0S Platform.........ccecicinrcscsn s ssse s sssnes 43
About Setting Up the i0S PIatform............cciiiiiiicreee s 44
Installing the Apple XCOAE IDE.........ccooeeeeeeeeccreeeee st seseeenes 44
About Signing i0S ApPlICALIONS.........ccceveiiiiieie e 45

Using an Existing Signing ENVIrONMENt............ccooviincceeseseeene 46
Importing the Signing Environment from Another Macintosh.............ccccoeevvivccccinee. 47
Creating a New Signing EnVIrONmMENt..........ccccociiieiiiiccesceeee et 48
Configuring Mobile Designer for the i0S Platform...........cccoovinincnienceeees 48

Setting Up the Windows Phone 8 Platform..........ccoonnnssssssssesses 51
About Setting Up the Windows Phone 8 Platform............cccccevviccesiccecssccec s 52
ENADIING HYPEI-V. ..ot bbbt 53
Installing the Windows Phone SDK VEersion 8............ccoccvnnnnneesesseeneiens 53
Setting Up Visual Studio Express 2012 for Windows Phone...........ccoceevvivcccensicceeins 54
Configuring Mobile Designer for the Windows Phone 8 Platform............ccccocvvviciicinicnee, 55

Setting Up the Windows RT/Windows 8 Platform...........cccccoovvevveinnnncscnnnnnncsesenssnsnesesssssnees 57
About Setting Up the Windows RT/Windows 8 Platform...........ccccoeerencnninnencsene 58
Installing Visual Studio Express 2012 for WIndOWS 8.........ccccvvvcceiiiecess e, 58
Configuring Mobile Designer for the Windows RT or Windows 8 Platform.............ccccceuevniee. 59

Creating Mobile Application Projects.........c.ccurrnnnnnscnnniness s ssssessssssssssessssssssens 61

Setting Up a Mobile Application Project..........ccovvnnncscnsnnnnnescss s ssssesesssssssssseseseans 63
About Mobile Application PrOJECES.........co i 64
Using Software AG Designer with Mobile DESIGNET...........cccevviiceiviecesrr e, 64

Creating a New Mobile Project Using the Mobile Development Wizard............................ 65
Displaying the ANt VIBW........c.cuirriiiriiiieiieis s 65
Creating a New Mobile Application Project..........cccovivvieeiiiiccesccecce e 65
Sample Projects Provided with Mobile DESIGNET.........ccccceveveiiiicccee e 66
EXPENSE TraACKET.......oeceieeeeeiccees et 66
LIDFArY JSON... ..ottt bbb 67
NALVEUI DEMO.......coeieiriicicietesec ettt 67
NALVEUI CONLACES. ...t 68
NAHVEUI EXEITISE.......cvvieiireieicieisee st 68
NativeUl HEllo WOIT. ... 68
NAEVEUI JSON......oviiieiiieice st 68
NAHIVEUI LOCATON. ..o 69
NativeUl My Graphical EIement............ccciiiiiieiiccce e 69
NativeUl My Native EIBMENT..........ccoiiiiiiiice e 69
NatIVEUI PDF DEMO......cuvieiieiiieiscieir ettt 69
NAEVEUI SOAP........e ettt s 69
NativeUl Push NOtIfiCationS..........coveerriiiieesccces e 69
NatVEUI DAtabase.ceuvvieriiiririeirieiesiesie s 69
NativeUl JavaScript Map........cccccviiceiciece et 69

Using webMethods Mobile Designer Version 9.10 4

Table of Contents

Coding a Mobile APPlICatioN...........ccceeeeienirnncne e an s 71
Mobile Designer-Provided Run-Time CIaSSES.........covuviurniririiiriieneiesessee e 72
Application and Parameter ClaSSeS.........ccoviieeiiiceesrseee s 72
RUN-TIME CanVas ClIaSSES.........cccvuiuriiiriiieirinirisie et ssesssses 73
RUN-TIME COMMS ClaSSES.......covreeeuriririiieiniririseeieie sttt 75
Run-Time Database ClaSSeS..........uurruriiiriiininieirieis et 76
RUN-TIME Media ClaSSES........crvrrrrirririiieirieisie e 76
RUN-TIME SEMaliZEr ClASS.........cceeeuriririeirieesiereseis ettt 78
RUN-TIME StOrage ClaSSES.........coviiviiiiieieiiiiceies et 78
RUN-TIME ULIlity ClaSSES.......ccccviuireriiiiiicictesiceecte ettt 79
IMAGJE CACNING. ...ttt 80
Managing the Image Cache...........ccoceiiiceiccec s 80
Disabling Image Caching for the Whole Application..............cccccceevivicreesnicceeene, 80
Copying an Image for DraWing........corieeienereeeee e 80
Mobile Designer LOgging APL........c.cciiiceiicees ettt 81
DAtEFOMMA APLL......eeeeee e 82
Registering Applications for Data Sharing (custom URIs and MIME-types)..........c.cccovueurenee. 82
Defining Data Sharing for an Application............cccoceceervicceesseces e, 82
Handling Data Sharing EVENLS............cccceiiiiiciiescecce e e 83
SUPPOIEA MIME-LYPES.......oececeiriiciciesr ettt 83
Creating and Using Code LIraries.......ccoouieeeiiiiceieisicesssssees s snns 84
Building a Library that You Want to Reference in Other Projects.........ccccceveviceiivicnnnee. 84
Referencing @ LIDIary..........ccoiriccesee e 85
Linking to External (3rd Party) Native Libraries/Frameworks...........cccccovvrvereenricrcnnnnnn, 85

IO S Rttt 86

Y3 o ST 87

Using System.getProperty to Obtain Device Information..........cccccoveeeeiniicceesciccesns 87
Creating the USEr INtEIACE.........ccciiicecec et 90
Adding Devices to a Mobile Application Project..........ccouenencsencncnnnsnsssessssesesesessssssssssssnnns 91
Devices that a Mobile Application SUPPOS.........cvvrrieririereeerreee e 92
Adding a Device 10 @ PIOJECL.......ccviiicicessee s 92
Updating an Existing Device Profile in the Device Database.............ccocevvvvcveveiniviceceinns 94
Determining Device Settings by Running the Device Profiler...........coooevviininncnnn, 95
Device Profiler Tests to Determine Device Settings........ccccvvveeeeiiecceeseceeeess 97
Adding a Device Profile to the Device Databases..........cccccvviviceeviiceccecceeee e 101
Testing Settings in @ Device Profile..........cooiicce e 103
Defining Resources for a Mobile Application Project..........connnnnnnsnsnns 105
About the ReSOUIrCe HaNGIET.............ceimriircesceese s 106
Coding the Resource HandIer............cccviicieiiieccee et 106
Using Resource Blocks and Resource Packs...........cccveririnnicscncesieseens 108
Storing Resource Files for the Project.........cccoveeceiiiceesscce e, 110
Splash Screens for APPlICALIONS...........ccccueuiiiiiiicc e 110
Android Splash Screen ReqUIrEMENES..........cverriiernnnicesessee s 110

Using webMethods Mobile Designer Version 9.10 5

Table of Contents

iOS Platform Splash Screen ReqUIremMeNtS..........ccvrvrieecrrnreees e, 111
Windows Phone 8 Splash Screen Requirements............ccccevvvvveceescecccessceeeenens 111
Windows 8 (RT) Splash Screen ReqUIrEMENLS.............ccccueveiviercrereiiiecreeesecee e 112

Setting Project Properties for the Resource Handler............ccocvvinincnncncnenes 112
Managing Memory for Your Resource Handler and RESOUICES..........ccoovvvcverereivicecversirinne, 113
Accessing Resources in Your Application COde........ccccuviiriuereeiiiccreeseece e 114
Compiling Resources Using the +Run-Reshandler Ant Target...........cocooverniiniinicnnn. 115
Setting Properties and Parameters for a Mobile Application Project............cccoeeeeerrnererenccnns 119
About Properties and Parameters..........cococviieiiiccers s 120
Where YOU Set PrOPEIIES.ccevviiieiteiiieeiectete sttt ettt ettt 120
Project Properties YOU MUSE Set..........couiviiriiicccese s 121
Setting Project Properties. ...t 123
Where You Define Parameters............ocviirinniess s 124
Setting Parameters in the _defaults_.xml and Target Device Files..........ccccovvninnivininnnn. 124
Setting Parameters in the Resource Handler Code........ccoviieiiniieceeescece e, 125
Using Parameters in Your Application Code...........cccoeimiviimreiiicceeeeece e 127
Building and Compiling Mobile Application Projects..........ccccoumrnenenmnnnsennnmnenesssssssesesesssssssesesens 129
BUild Process OVEIVIEW.........ccumrenmmmnmmnnsisnsssss s ssssssssssssssssssssssssssssases 131
Build Ant Target SUMMAIY.........ccviiiiiiiii s 132
Steps in the MUlti-Build ProCesS..........cciueiiiciceirccee e 134
Building Mobile Applications...........cccoommrmrcsesmnmnenenssssnsese s sssesessssssssssesssses 141
About Building a Mobile Application Project...........cccvvveceeseeecccceeeeseeee e 142
Before You Can Build a Mobile Application Project............cooveervnieeenseceesseeeeeins 142
Building a Project for Multiple Target DEVICES........cccevvviirceiricceese e 143
Building a Project for the Last Target DEVICES.........ccccoviicvereniiiceee e 144
Building a Project from the Command LiNe...........coceieriinnenicncscsssesesine 144
Using Native Tools to Create the Final Binary...........cccococevviiieeeniieceseceeee e, 145
Generating Javadocs for @ ProjECh..........ccociiciiiiiiiccceeeece et 147
Customizing the Build Process...........counmnnnnsnincss s ssssesessssssssssssssssssssssessssnns 149
About Customizing the Build ProCESS..........ccooriiiniiiercsereseees s 150
Setting Properties at Build Time Using a Custom JPanel...........ccccoovveeeviicccesccicennn, 150
Coding Your Custom JPaNEL..........couiuieriiiiiccescete et 151

Setting JPanel Properties..........crnicisees e 151
Creating Custom Ant Scripts to Run at Predefined Hook Points............cccccoovveiinccicnennn, 153
HOOK POINt REFEIENCE.........cucviecieiciee e 154
Creating Patch Files to Apply to the Cross-Compiled Code.......cccvvvirirnrnniiccrrireene, 156
Creating @ PatCh........ccccuiicceece s 157
Installing and Testing Mobile Applications.........c.ccccurmrrencnsnnnencssrsss s 161
Using Phoney for Debugging Your Mobile Application............cccocoumrncsennnrnnsescsssssnenesesssssnnns 163
About Using Phoney to Debug Mobile Applications............cccccceeeeciiciiiinni i, 164

Using webMethods Mobile Designer Version 9.10 6

Table of Contents

Phoney Ant Target SUMMAIY...........coiiiiriieienee e 164
Steps Performed for Phoney Ant Targets........cccceeiiicceiicecesec s 166
Running Phoney from Software AG DESIGNET..........cccvivevereiniiecieeeee e 167
Running Phoney from the Command LiNe............ccoeieiininnccscecese s 168
Installing Certificates 0N PRONEY.........ccovciiieieiiccecce e, 173
Using Phoney to Monitor an Application’s Memory and Thread Usage............ccccceeveevnnnnns 173
ACHIVaAtiNG DEVICES. ..o s 177
ADOUL ACHIVATING DBVICES......covivieirciicie e 178
Activate Devices ANt SUMMAIY.......cccoviiriieiiiccee e 178
Steps Performed to Activate HandSets............ccceviiiiiceiiecee e 179
ACHIVATING @ DBVICE......oveiiiiciic s 181
Installing Applications 0N DEVICES..........ccourermrerrmmereresessnsseresessss s sssesesesssaseses 183
About Installing Applications 0N DEVICES..........ccceeriviircieeiieee e, 184
Installing Applications on Android DEVICES.........ccvvviriririeesse e 184
Installing an APK File to an Emulated or Physical Device Using the Android Debug
BIIAGE. ...ttt 184
Installing an Application to an Emulated or Physical Device Using the ADT Eclipse Plug-
DLt 185
Installing Applications 0N I0S DEVICES.......ccerrierrerieiririeirinesesreee st snses 186
Installing to a Simulated or Physical Device Using the Apple Xcode IDE....................... 186
Installing an Ad-Hoc Build to a Physical Device Using iTUNES...........cccceeeeeerccennnnns 187
Installing a Windows Phone 8 Application to an Emulated or Physical Device...................... 188
Installing a Windows RT/Windows 8 Application to an Emulated or Physical Device............ 189
Installing Custom SSL Certificates on DEVICES..........ccouerereiriiicieeeeee e, 191
Installing Certificates on Android 4.0 and Later Physical Devices..........ccccoocvnivirinnnnns 191
Installing Certificates on i0OS Physical DEVICES.........cccovvieveriiviricess e 192
Installing Certificates on Windows Phone Emulator.............cccccocoeeenviceciesccccenne, 192
Distributing Mobile AppliCations............cccovrrririnnn e nannnas 195
Distributing Applications Using webMethods Mobile Administrator.............ccocevvrrrrnnnnns 197
Using Mobile Administrator to Manage and Distribute Mobile Applications.............c.cccceuene. 198
Requirements for Using the Mobile Administrator Plug-in for a Project...........cccccoooccevennen. 199
Activating the Mobile Administrator Plug-in for a Mobile Designer Project.............ccccceveuee... 200
Setting Mobile Administrator Plug-in Project Properties..........coocvvnencnccnencns 200
Project Properties for the Mobile Administrator Plug-In............ccccoveeeeencecceicecen, 201
Uploading Final Binaries to Mobile Administrator.............cccoovvviceeeieeccccccceeeieens 209
Remotely BUlding @ PIOJECE.........c.oviiiiiieicceee s 210
Monitoring Jobs Used to Remotely Build Projects..........ccccoeevviiceivccccsccccc s, 213
Project Properties REfEreNCe..........cvvererenrierescsssmssrssessss s sss s sssssss e ssssssesessssssssssssssssssssseeasas 215
Build ReSUItS Properties........cuucvmmmreresessmsmmnmsessssssssssssssssssssessssssssssssssssssssssssssssssssssssessssasssens 216
Build Script Properties..........ccunnmmnmsessnnnmsesssssssssessssssssssessssssssssssessssssssssessssssssssesesssssssseses 220

Using webMethods Mobile Designer Version 9.10 7

Table of Contents

Code ConVversion ProPerties........ccovenminmnesssssinssesessssssssssessss s sessssssssssessssssssssesesssssssssses 222
Cross-Compiler Properties...........oinncsensniisesessssesessssssss s ssssssssesessssssssssesssssssssseses 225
2D and 3 D RENAEIING. ..ottt 225
DEDUGGING. ...cv vttt 228
Extra Libraries and CuStom COde..........ccoueiruriiirinnieireese s 229
JAVA ClaSSES... .ttt 233
MaKEFile AQTITIONS........oveerieiieeree et 236
OPHMIZALON. ...ttt a bbb 239
OFIBNEALIONS. ...ttt 241
Screen and Display Handling.............coceeviiieiiiecee e 242
L1210 T PR 244
USEIE INPUL. ..ttt b sttt 246
ANGIOIG. ... 246
L1 TSSOSO 253
Windows RT and WINAOWS 8.........couiriiicersseeeen e 257
Cross-Product Integration Properties...........ounsnmssssssssssssssssesssesans 258
Device-SPecific ProPerties........ocuoorererercnsmsneresessssssseseses e sssssssessssssssssesessassssnes 259
HOOK POINt Properties.........covrercncnemereresessssssresesesssssesesesssssssesesssssssssesessssssssssesssssssssesessassssns 260
Multi-Build Selection Properties..........currmrreresessnssesmsssssssssesessssssssesessssssssssessssssssssesessasasens 263
PhoNneY Properties........c s sssssssans 265
Project Language Properties.........mnnnsmssssssssssssssssssssssssssssssssssessssssssssssass 266
Resource Handler Properties.........orrrmnesssssnesenessssssssssessssssssssesessssssssssesesssssssssesessssssseses 267
RUN-TiMe ClasSes PrOPEIties......c.cooceurrrermrmsesssnsresmssssssssesesessssssssesessssssssesesesssssssesessasssssssessnsas 271
Run-Time Code Compilation Properties.........c.cocourermsessrnrrermsmsssssnssesmsssssssesesessssssssesesssssssesens 279
Android Project Properties..........ocnsssssssssssssssssssssssss s 280
Ant Target SUMMAIY.......cocovinirin s s 281
Ant Target SUMMAY.......ccco e ———————— 282

Using webMethods Mobile Designer Version 9.10 8

About this Guide

This guide contains the information about using webMethods Mobile Designer to create
mobile applications for multiple device platforms.

Document Conventions

Convention Description
Bold Identifies elements on a screen.
Narrowfont Identifies storage locations for services on webMethods

Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace Identifies text you must type or messages displayed by the

font system.

{} Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Using webMethods Mobile Designer Version 9.10

Online Information

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.
Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at http://techcommunity.softwareag.com. You can:

B Access product documentation, if you have TECHcommunity credentials. If you do

not, you will need to register and specify "Documentation” as an area of interest.
B Access articles, code samples, demos, and tutorials.

®m Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

®m Link to external websites that discuss open standards and web technology.

Using webMethods Mobile Designer Version 9.10

10

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

Getting Started

I Getting Started

B ADOUE MODIIE DESIGNET ...t 13
B Configuring MODIlE DESIGNETcvcviveiceeeicicete e bbb 17

Using webMethods Mobile Designer Version 9.10 1"

Getting Started

Using webMethods Mobile Designer Version 9.10 12

About Mobile Designer

1 About Mobile Designer

m webMethods Mobile DeSIgNer OVEIVIEWcceirriririiiniieisieiseeesesei e 14
m Mobile Designer Build-Time COMPONENL ...t 14
m Mobile Designer Cross Compiler and Run-time Classesccccvviceeniiieessiecses e, 14
m Mobile Designer Device PrOfilEr ..o 15
B Parameter-Driven PrOJECES ... 15

Using webMethods Mobile Designer Version 9.10 13

About Mobile Designer

webMethods Mobile Designer Overview

webMethods Mobile Designer provides a set of standardized coding abstraction layers,
processes, and utilities that help you to develop mobile applications and port the
applications across multiple platforms.

Mobile Designer also includes a cross compiler that you can use to compile the same
source code so that it can run on a wide variety of platforms. You do not have to wait
until the post-development process to apply the requirements for all mobile platforms
required. You can apply cross-compilation requirements throughout the development
process and launch a multi-platform solution simultaneously.

Mobile Designer Build-Time Component

The Mobile Designer build-time component is a standard build script that each project
uses for each device to:

® Compile and compact the resources including data-arrays, text, audio, images, fonts,
and palettes.

m Create the parameters a specific build uses.

m Replace (hot-swap) the generic code in the underlying run-time Mobile Designer
code branches with code specific to the device.

m Reference any project-specific code branches, and compilation stubs or inclusion
libraries.

m Compile the code.
® Optionally obfuscate the code.
®m Package, build, and sign the final binary.

Mobile Designer Cross Compiler and Run-time Classes

In Mobile Designer you can cross compile your mobile application's Java code into C+

+, C#, or Java. Mobile Designer can then compile the application code using the native
tools that were installed with the target platform’s SDKs. Mobile Designer then links the
compiled code to the libraries installed with the SDK. When building an application for
the target platform, the relevant target-platform SDKs must be installed and configured.
For more information, see "Setting Up Platforms" on page 27.

You can use the run-time classes described in the webMethods Mobile Designer Java API
Reference to provide a wide array of features found on mobile devices. To handle device-
specific differences, Mobile Designer provides the device profile database, the classes,
and abstraction layers, to provide a consistent base for building your application. The

Using webMethods Mobile Designer Version 9.10 14

About Mobile Designer

abstraction layers provide the ability to load images and sound, detect interruptions,
and handle text, as well as other functions, such as to establish an HTTP connection.

Mobile Designer Device Profiler

Mobile Designer comes with profile settings for many devices. Mobile Designer
maintains the settings for each device in its device database. The settings for each device
are in individual profile XML files in the following directory:

Mobile Designer_directory/Devices

The device profile XML files are grouped by platforms and manufacturer within this
directory.

If you want an application to support a device for which Mobile Designer does not
provide settings, you can use the Device Profiler sample application. You can find the
Device Profiler sample application in the following location:

Mobile Designer_directory/Samples/ DeviceProfiler_

You can run the Device Profiler sample application on any supported mobile platform.
The Device Profiler provides a set of tools that you use to discover the appropriate
settings for devices. For more information, see "Determining Device Settings by Running
the Device Profiler" on page 95.

After determining the settings for a device, you can add the profile settings to the Mobile
Designer device database. For more information, see "Adding a Device Profile to the
Device Databases" on page 101.

Parameter-Driven Projects

Mobile Designer projects use parameters and properties to simplify the process

of including and/or excluding features based on a target device. Mobile Designer
predefines some parameter and property values, for example, the profile settings for
devices. You can override the predefined settings for a specific mobile application project
and/or for a specific target device.

When creating an application, typically you have common logic that works for all target
devices. However, you might require branches in the logic to address the needs of a
specific target device. For example, you might need to omit or alter a feature for a target
device, or you might need to position an image relative to the screen dimensions for a
target device. To accommodate device-specific logic, your application logic can branch
based on parameter values that are set using the device profile settings.

Properties and parameters also drive how Mobile Designer builds applications for

a target device. Mobile Designer drives builds using a combination of properties,
parameters, and paths, all of which you can customize and override. For example, these
properties, parameters, and paths control stubs against which to compile, packagers

to use when making the final binaries, details about screen dimensions, the sound

Using webMethods Mobile Designer Version 9.10 15

About Mobile Designer

APIs and settings that are most appropriate for a target device, and other general and
application-specific settings.

Using webMethods Mobile Designer Version 9.10 16

Configuring Mobile Designer

2 Configuring Mobile Designer

m About Configuring Mobile DESIGNET ... s 18
m Updating the sdk.properties File to Configure Mobile DESIGNErcccceeeecciiririrciieie e 18
m Mobile Designer Configuration Properties (SAK.properties)c.cccovveeeeiiiiesesiiicessssens 19
m Environment Variable for Mobile DESIGNENccoviviirriiceeeces e 25

Using webMethods Mobile Designer Version 9.10 17

Configuring Mobile Designer

About Configuring Mobile Designer

You configure Mobile Designer by altering the properties located in the following file:
Mobile Designer_directory/sdk.properties

The properties in the sdk.properties file apply globally to all Mobile Designer projects.
See the following for more information:

m For instructions for how to update and add properties to the sdk.properties file, see "Updating
the sdk.properties File to Configure Mobile Designer" on page 18.

m Foradescription of the configuration properties, see "Mobile Designer Configuration
Properties (sdk.properties)" on page 19.

Note: You can set properties for a project that override the settings in the
sdk.properties file.

Updating the sdk.properties File to Configure Mobile
Designer

The sdk.properties file is an ASCII text file that you can edit with any text editor. Update
the sdk.properties file with name value pairs, using the following format:

property=value

Note: The sdk.properties file contains default values for some properties. If the
value you need to specify for a property is a path, a best practice is to use
the convention shown in the default unless you are working on a different
operating system. For example, if a path uses c:\ \a\ \b\ \c it is best to specify
the path using that notation rather than c:/a/b/c. Although both notations are
technically correct, some third-party tools might encounter issues.

When updating Windows paths use a forward slash character (/) or an
escaped slash character (\ \) in the properties file.

To add or update properties in the sdk. properties file

1. Open the sdk.properties file in your Mobile Designer installation directory using a
text editor.

2. Locate the property you want to update, or add a property if it does not already
exist. For more information about the properties you can specify and valid values,
see "Mobile Designer Configuration Properties (sdk.properties)" on page 19.

3. Save and close the sdk.properties file.

Using webMethods Mobile Designer Version 9.10 18

Configuring Mobile Designer

Mobile Designer Configuration Properties (sdk.properties)

The properties in the sdk.properties file are settings that apply globally to all Mobile
Designer projects.

JAD and Manifest Files

Use the JAD and manifest files properties to configure the vendor name and URL that
Mobile Designer uses when creating project and metadata files.

Although the JAD and manifest files properties have default values, you should set
values for these properties to specify information for your own organization.

Tip: You can override the JAD and manifest files properties on a project-by-
project basis, such as when creating ported builds on an application for a
separate development company. To do so, specify the JAD and manifest files
properties in your projects targets/_defaults_.xml file. For more information

about setting project properties, see "Setting Project Properties" on page
123.

project.jad.vendor.name

Specifies the vendor name included in project and/or application metadata files that
are bundled with the final binary. This is usually used as part of the data that uniquely
identifies an application in an App store.

Value Vendor name.
Default Software AG

Example project.jad.vendor.name=My Company

project.jad.vendor.url

Specifies the URL to the vendor’s website.

Value URL
Default http://www.softwareag.com

Example project.jad.vendor.url=http://www.mycompany.com

Using webMethods Mobile Designer Version 9.10 19

Configuring Mobile Designer

Java Compiler Check

When Mobile Designer executes an Ant target, the Java compiler is usually required.
Use the mobiledesigner.javac.detection.mode property to specify whether Mobile
Designer checks for the Java compiler when executing an Ant target and the action to
take if the Java compiler is not present.

mobiledesigner.javac.detection.mode

Specifies whether you want Mobile Designer to check whether the Java compiler is
present in a user's currently configured version of Java when the user executes a Mobile
Designer Ant target. Mobile Designer checks for javac.exe on Windows or javac on
Macintosh.

Value One of the following;:

B fail if you want Mobile Designer to check for the Java compiler when
a user executes an Ant target. If the Java compiler is not found, Mobile
Designer immediately stops the running Ant target with an error
message.

B warn if you want Mobile Designer to check for the Java compiler when
a user executes an Ant target. If the Java compiler is not found, Mobile
Designer displays a warning message and continues to execute the Ant
target.

B none if you want Mobile Designer to execute the Ant target without
checking for the Java compiler.

Default warn

Example mobiledesigner.javac.detection.mode=fail

KZip Property

You can configure Mobile Designer to use KZip for JAR compression. When KZip is not
available, Mobile Designer uses 7Zip as the default JAR packager.

You can download the Windows version of KZip from Ken Silverman’s Utility Page. You
can download the Linux and Mac OS X version from JonoF’s Games and Stuff.

j2me.packager.kzip
Specifies the location of the KZip executable.

Value Path to the installed KZip executable.

Using webMethods Mobile Designer Version 9.10 20

http://advsys.net/ken/utils.htm
http://www.jonof.id.au/kenutils

Configuring Mobile Designer

Default C:/Program Files/KZip/kzip.exe

Example j2me.packager.kzip=D:/Program Files/KZip/kzip.exe

Localization Property

You can configure the language you want Mobile Designer to use for text in dialogs
and samples. This configuration affects Mobile Designer dialogs, such as the Activate-
Handset and Multi-Build dialogs.

mobiledesigner.locale

Specifies the language code.

Value One of the following language codes:
® en (English)
B zh (Chinese)
B fr (French)

B de (German)
B iw (Hebrew)
B ja (Japanese)
m pl (Polish)

B ru (Russian)
B es (Spanish)
B tr (Turkish)

Default en

Example mobiledesigner.locale=de

Proguard Obfuscator Settings

Use the Proguard obfuscator settings to provide information about your installed
version of Proguard if you want to use Proguard for Android. Mobile Designer only
supports obfuscation using Proguard for Android.

Note: If you have the Android SDK installed, Proguard is included in the SDK.

Mobile Designer has been tested with Proguard versions 3.7 through to 5.1.

Using webMethods Mobile Designer Version 9.10 21

Configuring Mobile Designer

Caution:

Proguard version 4.0.1 and later includes method collapsing. If your
application has collapsible methods, this might cause problems if a device has
built in method size limits. If this is the case, you can change parameters to
use an earlier version of Proguard or different execution parameters for that
particular device.

proguard.library.root

Specifies the Proguard directory that contains the proguard.jar file.

Value
Default

Example

Path to the Proguard directory.
None.

proguard.library.root=C:/Proguard/lib

obfuscator.proguard.version

Specifies the Proguard configuration and mapping you want to use.

Value

Default

Example

Configuration and mapping from the Tools/Proguard folder.

One of the following:

® Proguard version 4.7 if the version supplied with the Android SDK is
available

® Otherwise:
m If building for the Android platform, Proguard version 4.3

m If building for another platform, Proguard version 4.0.1

obfuscator.proguard.version=proguard 4.7

obfuscator.proguard.library.filename

Specifies the name of your Proguard library.

Value
Default

Example

Proguard library name without the jar extension.
None

obfuscator.proguard.library.filename=proguard

Using webMethods Mobile Designer Version 9.10 22

Configuring Mobile Designer

obfuscator

Enables or disables use of the obfuscator.

Value B proguard if you want to use Proguard as the obfuscator.

B none to disable the obfuscator.
Default none

Example obfuscator=proguard

Project Build Settings

You can specify the name of the project directory to use for the output of builds.

project.build.dir.rel.root

Specifies the name of the folder that you want to use for the output of builds. This folder
is relative to a project’s base directory.

Value Folder name to use for the output of project builds.
Default Builds

Example project.build.dir.rel.root=Output

Proxy Settings

Configure proxy settings if you need to use a proxy server to connect to the Internet.

Note: The Software AG Installer prompts for proxy settings during installation and
the values provided at installation are saved to the sdk.properties file.

proxy.hostname

Specifies the proxy server host name.

Value Host name of the proxy server.
Default No default.

Example proxy.hostname=proxyserver

Using webMethods Mobile Designer Version 9.10 23

Configuring Mobile Designer

proxy.port

Specifies the proxy server port number.

Value Port number for the proxy server.
Default No default.

Example proxy.port=1080

proxy.username

Specifies the user name of a user with authority to connect to the proxy server.

Value User name
Default No default

Example proxy.username=Administrator

proxy.password

Specifies the password associated with the user name specified in the proxy.username
property.

Value Password for the proxy server.
Default No default.

Example proxy.password=secret

Platform-Specific Properties

You must configure the location of the third-party SDKs and compilers that you want
Mobile Designer to use when producing mobile application bundles. The following table
lists where you can find information about the required configuration for each platform.

Note: For a list of supported SDKs, see "Supported SDK Versions" on page 29.

Using webMethods Mobile Designer Version 9.10 24

Configuring Mobile Designer

Platform Description

Android "Configuring Mobile Designer for the Android
SDK" on page 38

i0S "Configuring Mobile Designer for the iOS
Platform" on page 48

Windows Phone 8 "Configuring Mobile Designer for the Windows
Phone 8 Platform" on page 55

Windows RT "Configuring Mobile Designer for the Windows RT
Windows 8 or Windows 8 Platform" on page 59

Environment Variable for Mobile Designer

With previous versions, Mobile Designer created an environment variable,

MOBILE_ DESIGNER, on the computer when Mobile Designer was installed. As a result,
the installation process set the value of MOBILE_DESIGNER to the location of the latest
Mobile Designer installed instance. As of version 9.8, this environment variable is
considered deprecated and is no longer created by default. However, you can continue
to use it if you want. If you wish to continue using this feature, you will need to create/
alter the variable yourself in the indicated locations. If you do not want to use the
MOBILE_DESIGNER environment variable any more, you can disable it. Then use the
following when calling Ant from the command line or IDE:

-Denv.MOBILE DESIGNER=Mobile Designer dir
There are 3 different scenarios:

B You are already using Mobile Designer with the Mobile Development view (through
the Software AG Designer) to create applications, and you want to replace your 9.7
installation with 9.8. In this case, you should ensure that the environment variable
MOBILE DESIGNER is unset manually before using Mobile Designer 9.8.

B You want to continue using Mobile Designer 9.8 with your current applications
that are not created through Mobile Development and you want to continue with
your own choice of build environment (another IDE, Jenkins, etc.). Although the
MOBILE DESIGNER environment variable is now considered deprecated, you may
continue to use it for this release if you wish. Alternatively, you may wish to disable
this variable as described above.

B You want to continue developing an application created outside of the Mobile
Development view, but you also want to make use of the Mobile Development
view for your projects. In this case, you should ensure that the MOBILE DESIGNER
environment variable is unset manually before using Mobile Designer 9.8.

Using webMethods Mobile Designer Version 9.10 25

Configuring Mobile Designer

Mobile Designer uses the environment variable at run time to determine its location so
that it can locate Mobile Designer-specific information, for example, the sdk.properties
file.

If a developer has multiple Mobile Designer installations on a single machine, the
developer can set the MOBILE DESIGNER environment variable to indicate the current
instance of Mobile Designer to use.

The following indicates where you can find the environment variable:

B On Windows, in System Properties > Advanced > Environment Variables in the User
variables group

® On Macintosh:
m OSX10.7 or earlier in the ~/. MacOSX/environment.plist file

m Later versions in /etc/launchd.conf

Using webMethods Mobile Designer Version 9.10 26

Setting Up Platforms

I1

Setting Up Platforms
B SUPPOIEd SDK VEISIONSouiieieieiiiceitce ettt 29
m Setting Up the Android PIAtfOrmccooiviiiicccce e 31
B Setting Up the 10S PIAtfOrmc.cciiiiccee e 43
m Setting Up the Windows Phone 8 Platform ... 51
m Setting Up the Windows RT/Windows 8 PIatfOrmccccoeeeiiiicrcceiiccce s, 57

Using webMethods Mobile Designer Version 9.10 27

Setting Up Platforms

Using webMethods Mobile Designer Version 9.10 28

Supported SDK Versions

3 Supported SDK Versions

m SDK Versions that Mobile Designer SUPPOMScoccvviiiieeiiieece e 30

Using webMethods Mobile Designer Version 9.10 29

Supported SDK Versions

SDK Versions that Mobile Designer Supports

The following table lists the SDK versions that Mobile Designer supports for each

platform.
Platform SDK Supported versions
Android SDK 2.3.3 through 5.0
iOS SDK 6.0 through 8.1.x
Windows Phone 8 SDK 8.0 and 8.1
Windows 8 (x86 architecture version) 8.0 and 8.1

Windows RT (ARM architecture version)

NoteOnly Windows Store/Metro applications
are supported.

Using webMethods Mobile Designer Version 9.10

30

Setting Up the Android Platform

4

Setting Up the Android Platform

About Setting Up the Android PIatfOrmccoiiniiiirsereesese s 32
Installing the Android SDK 0N WINAOWSccvviiiiiiiiiiiiisscsce e 33
Installing the Android SDK on MaciNtoShccoriirinisece s 34
Installing the Android Development Tools Eclipse PlUg-Incccoviiirnniccceccees 36
Configuring Mobile Designer for the Android SDKcccoirirninncrenese s 38
Setting Up an Android Virtual Device (EMUIALOT)cccviiiiiriinccecese e 39
Starting the Android Virtual Device (EMUIALOr)ccoveveviieiiiicceecccee e 40
Using the Android Emulator with @ ProXy SEIVEFcooiriiniineieeieseseeseeies 40

Using webMethods Mobile Designer Version 9.10 31

Setting Up the Android Platform

About Setting Up the Android Platform

Before you can use Mobile Designer to build applications for the Android platform, you
need to set up your environment. The following table lists required and optional tasks to
set up the environment.

Setup

Required
or
Optional

Tasks

Development
Environment

Required

Install the Android stand-alone SDK.

For more information, see:

B 'Installing the Android SDK on Windows" on page

33

® '"Installing the Android SDK on Macintosh" on
page 34

Optional

Install the ADT Eclipse plug-in if you want to use
Eclipse to develop Android applications and if
you want to manage virtual devices and debug
applications via Eclipse.

For more information, see "Installing the Android
Development Tools Eclipse Plug-In" on page 36

Mobile
Designer
Configuration

Required

Update the Mobile Designer sdk.properties file to
provide information about the installed Android
SDK.

For more information, see "Configuring Mobile
Designer for the Android SDK" on page 38

Emulators

Optional

Define Android emulators if you want to test
Android applications on emulated devices.

For more information, see "Setting Up an Android
Virtual Device (Emulator)" on page 39.

Optional

Specify a proxy server to use if the Android
emulator must access the Internet through a proxy
server.

For more information, see "Using the Android
Emulator with a Proxy Server" on page 40

Using webMethods Mobile Designer Version 9.10

32

Setting Up the Android Platform

The procedures in this documentation do not cover all possible setups and scenarios.
Refer to the Android Developer website at http://developer.android.com/index.html for
further details.

Installing the Android SDK on Windows

If you use a Windows personal computer, use this procedure to install the SDK so that
you can use it with Mobile Designer.

To install the Android SDK on Windows

1.

Open the following webpage in a browser: http://developer.android.com/sdk/
index.html.

On the Android website, locate the system requirements and review them to ensure
that your Windows environment meets the requirements for the Android SDK.

Locate the installer you want to use.

You can install either the standalone SDK or the full bundle, which includes Eclipse.
If you are using Software AG Designer or other IDE and only need to install

the standalone SDK, click USE AN EXISTING IDE to reveal information about the
standalone SDK.

Important: Install the 32-bit version. The 32-bit JDK is generally required for
compatibility.
Run the Android SDK installer for the Windows platform.

When prompted for the install location, set the destination folder to: c: \android-
sdk-windows

When the installer completes, it starts the Android SDK Manager.
In the Android SDK Manager, select the following:

m Tools folder to select all Android SDK tools

® Android SDK 5.0 (API 21)

m Other Android SDK versions you want to ensure compatibility

Note: For a list of supported SDKs, see "SDK Versions that Mobile Designer
Supports" on page 30.

m Optionally, any other SDK versions that you might need.
Note: At alater time if you decide you need another SDK version, you can

download and install it by running the Android SDK Manager in the C:
\ android-sdk-windows directory.

Using webMethods Mobile Designer Version 9.10 33

http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Setting Up the Android Platform

m Latest Android Support Library
m Latest Google Play services
m Google Cloud Messaging for Android Library
Note: This is only visible if the "Obsolete" option is selected in the Android
SDK Manager.
7. Install the packages.

When prompted, review the licensing and packaging dependencies. If you agree,
accept all the licenses and continue the installation.

The Android SDK Manager downloads and installs the APIs you selected.

8. If the Android SDK Manager prompts you to restart the ADB (Android Debug
Bridge) command-line tool, select Yes.

Note: The ADB tool is a tool you can run manually and also has a background
service component that manages communications to and from Android
devices, both virtual and physical. When installing the Android SDK, the
Android SDK Manager restarts the ADB tool to restart the background
service.

Installing the Android SDK on Macintosh

If you use a Macintosh, use this procedure to install the SDK so that you can use it with
Mobile Designer.

To install the Android SDK on Macintosh

1. Open the following webpage in a browser: http://developer.android.com/sdk/
index.html.

2. On the Android website, locate the system requirements and review them to ensure
that your Macintosh environment meets the requirements for the Android SDK.

3. Locate the installer you want to use.

You can install either the standalone SDK or the full bundle, which includes Eclipse.
If you are using Software AG Designer or other IDE and only need to install

the standalone SDK, click USE AN EXISTING IDE to reveal information about the
standalone SDK.

Important: Install the 32-bit version. The 32-bit JDK is generally required for
compatibility.

4. Download the .zip file containing the install files for the Mac OS X platform to your
desktop.

Using webMethods Mobile Designer Version 9.10 34

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Setting Up the Android Platform

5. Double-click the .zip file to open it with the Archive utility and extract its contents.
This creates a new folder named android-sdk-macosx on your desktop.
6. Perform the following to copy the android-sdk-macosx folder to the root of the hard

disk to ensure that the SDK is available to all users.

Note: You might require administrator privileges to write to the root of the hard
disk.

Start the Terminal application, which is in the Applications/Ultilities folder.

b. Using the Terminal application, issue the following commands, substituting
username with your Macintosh user name:

sudo su -

cd /

cp /Users/username /Desktop/android-sdk-macosx /
chmod -R a+rw android-sdk-macosx

exit

Note: If you do not know the Macintosh user name, you can determine it by
using the whoami command in the Terminal application.

You can use the Tab key to help auto-complete paths.

This series of commands does the following:

® The cp command copies the android-sdk-macosx folder from your desktop
and places it in the root of the hard disk.

B The chmod command makes the android-sdk-macosx folder readable and
writeable to all users.

Note: You may wish to consider a more restrictive set of permissions than
this.

m The exit detaches from the root shell.
The remaining steps in the procedure do not require super-user privileges.

7. Start the start the Android SDK Manager. To do so, using the Terminal application,
issue the following commands;

cd /android-sdk-macosx
./tools/android

8. In the Android SDK Manager, select the following:
m Tools folder to select all Android SDK tools
m Latest version of the Android SDK

m Other Android SDK versions you want to ensure compatibility

Note: For a list of supported SDKs, see "SDK Versions that Mobile Designer
Supports" on page 30.

Using webMethods Mobile Designer Version 9.10 35

Setting Up the Android Platform

m Optionally, any other SDK versions that you might need.

Note: At alater time if you decide you need another SDK version, you can
download and install it by running the Android SDK Manager again.

m Latest Android Support Library
m Latest Google Play services
m Google Cloud Messaging for Android Library
Note: This is only visible if the "Obsolete" option is selected in the Android
SDK Manager.
9. Install the packages.

When prompted, review the licensing and packaging dependencies. If you agree,
accept all the licenses and continue the installation.

The Android SDK Manager downloads and installs the APIs you selected.

10. If the Android SDK Manager prompts you to restart the ADB (Android Debug
Bridge) command-line tool, select Yes.

Note: The ADB tool is a tool you can run manually and also has a background
service component that manages communications to and from Android
devices, both virtual and physical. When installing the Android SDK, the
Android SDK Manager restarts the ADB tool to restart the background
service.

11. Delete the .zip file that you downloaded from the Android Developer website and
the android-sdk-macosx folder from your desktop.

Installing the Android Development Tools Eclipse Plug-In

You can optionally install the Android Development Tools (ADT) Eclipse plug-in. Install
the ADT Eclipse plug-in if you want to use Eclipse to develop Android applications. You
also use the ADT Eclipse plug-in to manage virtual devices.

Note: If you installed the version of the Android SDK that comes bundled with
Eclipse rather than the standalone SDK, the ADT was also installed. You do
not need to install it again.

This section provides only the minimal information for installing the ADT Eclipse plug-
in. For additional details, refer to information about the ADT Eclipse plug-in on the
Android Developer website at http://developer.android.com/sdk/eclipse-adt.html and
http://developer.android.com/sdk/installing/installing-adt.html.

Using webMethods Mobile Designer Version 9.10 36

http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/installing/installing-adt.html

Setting Up the Android Platform

Important: You must install the Android SDK before you can install the ADT Eclipse
plug-in.

Caution: It may also be possible to install the Android SDK plug-in through
Software AG Designer, but this is currently not supported by Mobile Designer
- do this at your own risk.

To install the ADT Eclipse plug-in

The description below was valid at the time of the release. It is recommended that you
also check the http://developer.android.com/sdk/installing/installing-adt.html website
for any changes in the process.

1. If you do not have Eclipse Classic installed, install it.
a. Download the Eclipse install files from http://www.eclipse.org/downloads/.
b. Extract the .zip file to the location where you want to install Eclipse.

2. Start Eclipse if it is not already started.

Note: If you have Eclipse installed under Program Files (x86), you need to start
Eclipse as administrator to install and update Android tools.

3. Save and close all files you have open in Eclipse. You will need to restart Eclipse
during this procedure to install the ADT Eclipse plug-in.

4. From Eclipse, select Help > Install New Software.
5. In the Install window, click Add to add a new software repository.

6. Inthe Add Repository window, specify the following information, then click OK:

In this field... Specify...
Name Eclipse ADT Plug-in
Location https://dl-ssl.google.com/android/eclipse/

Note: You can use http:// if you encounter problems using
https://.

7. In the Install window, ensure that the Work with list is set to the Eclipse ADT Plug-in
repository that you just added.

8. In the Install window, select the Developer Tools item to install all the developer tools.

9. Continue through the install wizard.

®m When presented with the license agreement, review and accept if its conditions
are acceptable.

Using webMethods Mobile Designer Version 9.10 37

http://developer.android.com/sdk/installing/installing-adt.html
http://www.eclipse.org/downloads/

Setting Up the Android Platform

m When presented with the panel with the Finish button, click Finish to download
and install the ADT Eclipse plug-in.

®m During the installation, you might be warned that the content being installed has
not been signed. This is normal. Click OK to complete the installation.

10. When prompted to restart the Eclipse SDK, click Restart Now.
When Eclipse restarts, you are prompted to configure the Android SDK.

11. Select Use existing SDKs and set the Existing Location field to the location where you
installed the Android SDK, which should be one of the following:

m For Windows: c:\android-sdk-windows

m For Macintosh: /android-sdk-macosx

Configuring Mobile Designer for the Android SDK

After installing the Android SDK, you need to configure Mobile Designer to provide
information about the SDK.

To configure Mobile Designer for the Android SDK
1. Use a text editor to open the following file:
Mobile Designer_directory/sdk.properties
2. Locate the Android section of the file.
3. Set the values for the properties in the following table.
Note: ~ When specifying paths in the sdk.properties file, use a forward slash

character, “/” or an escaped slash character, "\ \", to separate folders, even
when specifying Window paths.

Property and Setting

android.package

Set to the default package prefix that Mobile Designer uses when creating the
final build for an Android device.

android.bin.dir.root

Set to the path of the location of the default Android SDK that you want Mobile
Designer to use to compile mobile applications for Android devices.

m For Windows: c:\android-sdk-windows

m For Macintosh: /android-sdk-macosx

Using webMethods Mobile Designer Version 9.10 38

Setting Up the Android Platform

4. Optionally, if you want to override default values for a project, set the project
property project.android.sdk.version.override to the APl number you want
to use.

Note: Using an API earlier than 21 may cause failed builds.
5. Optionally configure Proguard, which is included in the Android SDK. For

information about the properties you need to set to configure Proguard, see
"Proguard Obfuscator Settings" on page 21.

6. Save and close the file.

Setting Up an Android Virtual Device (Emulator)

You can define Android emulators that you can use to test mobile applications.

To create an Android Virtual Device (Emulator)
1. Launch the Android Virtual Device (AVD) Manager tool.

m For Windows, the AVD Manager is located at C:\android-sdk-windows\SDK
Manager.exe. You can directly launch it by double clicking the SDK Manager.exe
file.

m For Macintosh, open the terminal window and enter the following to start the AVD
Manager:

cd /android-sdk-macosx
./tools/android

2. From the AVD Manager tool, select Tools > Manage AVDs.
The AVD Manager displays the virtual devices that you have defined.

3. Click New to create a new device.

4. Perform the following in the window for creating a new Android virtual device:
a. Inthe Name field, type a meaningful name for the device you are adding.

Tip: It is helpful to include the Android API level and screen size in the
name.

b. Select the API level you want to emulate.

The selected API level determines the version of the Android operating system
that runs on your virtual device, as well as default features for that device.

c. Set the remaining settings that you want to emulate. These settings include:

m Specifying and/or creating an SD Card image
m Altering the screen size of the device (the "skin" section)
®m Adding any extra hardware features, such as GPS

Using webMethods Mobile Designer Version 9.10 39

Setting Up the Android Platform

5. Click Create AVD.

Starting the Android Virtual Device (Emulator)

Note: If the Android emulator must access the Internet through a proxy server, you
need to define proxy information. See "Using the Android Emulator with a
Proxy Server" on page 40.

To start an Android virtual device
1. Launch the Android Virtual Device (AVD) Manager tool.

m For Windows, the AVD Manager is located at C:\android-sdk-windows\SDK
Manager.exe. You can directly launch it by double clicking the SDK Manager.exe
file.

m For Macintosh, open the terminal window and enter the following to start the AVD
Manager:

cd /android-sdk-macosx
./tools/android

2. Select the virtual device you want to start.

3. Click Start.

Using the Android Emulator with a Proxy Server

If the Android emulator must access the Internet through a proxy server, you must
specify the proxy server to use.

Proxy Information to Provide

To provide proxy server information, use one of the following formats based on whether
authentication is required for the proxy server:

®m If user authentication is not required, use:
proxyMachineName :port

m If user authentication is required, use:

username :password @proxyMachineName : port

Specifying the Proxy Information

You can specify the proxy server by either providing the proxy information when
starting the emulator or by defining an environment variable.

m To specify the proxy server when starting the emulator, start the Android Emulator using
the -http-proxy proxy option, where proxy is the proxy information using one of
the formats described above.

Using webMethods Mobile Designer Version 9.10 40

Setting Up the Android Platform

®m To specify using an environment variable, set the http proxy to the value you want
to use for proxy, where proxy is the proxy information using one of the formats
described above.

The Android emulator checks the value of the http proxy environment variable
when it starts up and uses the value if one is defined.

Note: Launching the Android emulator with the -verbose flag displays the current
host name and port used for the proxy.

Using webMethods Mobile Designer Version 9.10 41

Using webMethods Mobile Designer Version 9.10

42

Setting Up the iOS Platform

5 Setting Up the iOS Platform

m About Setting Up the i0S PIatformccoeriiiiieese s 44
m Installing the Apple XCode IDE ..o e 44
m About Signing iOS APPlICALIONScvevrieeiieirieircece s 45
m Configuring Mobile Designer for the iOS PIatform ... 48
Using webMethods Mobile Designer Version 9.10 43

Setting Up the iOS Platform

About Setting Up the iOS Platform

Before you can use Mobile Designer to build applications for the iOS platform, you need
to set up your environment. The following table lists required and optional tasks to set
up the environment.

Setup Required Tasks
or
Optional
Development Required Install the Apple Xcode IDE and iOS SDK.
Environment
Required Perform setup for signing applications. To deploy
applications to iOS devices, the applications must be
signed.
For more information, see "About Signing iOS
Applications" on page 45.
Mobile Required Update the Mobile Designer sdk.properties file to
Designer provide information about the iOS platform setup.
Configuration For more information, see "Configuring Mobile
Designer for the iOS Platform" on page 48
Simulators Optional ~ Use tools such as Proxifer to capture and re-direct

messages sent over your Internet connect, inspect
network traffic, and assist in debugging.

For information about Proxifier, see http://
www.proxifier.com/mac/

The procedures in this documentation do not cover all possible setups and scenarios.
Refer to the Apple Developer website at https://developer.apple.com/devcenter/ios/

index.action for further details.

Installing the Apple Xcode IDE

Mobile Designer supports Xcode 5.0 and later. For information about supported iOS
SDK versions, see "SDK Versions that Mobile Designer Supports" on page 30.

Note: The iOS SDK is included as part of the Xcode installation. Be aware of the
following:

m Use of Xcode 5 requires OS 10.8.

Using webMethods Mobile Designer Version 9.10 44

http://www.proxifier.com/mac/
http://www.proxifier.com/mac/
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action

Setting Up the iOS Platform

® Developing and testing applications that run on iOS 7 requires Xcode 5.
m Developing and testing applications that run on iOS 8 requires Xcode 6.

This section provides only the minimal information for installing the Apple Xcode
IDE so that you can use it with Mobile Designer. For additional details, refer to
information about the Apple Xcode IDE on the Apple Developer website at https://
developer.apple.com/xcode/index.php.

To install the Xcode IDE from the Mac App Store
1. Ensure that your environment meets the requirements for the Xcode IDE.

You can find the requirements at https://developer.apple.com/support/ios/ios-dev-
center.html

2. On your Macintosh, open the Mac App Store.
3. Search for Xcode.
Note: You can find Xcode in iTunes at: https://itunes.apple.com/us/app/xcode/
1d497799835?mt=12. From iTunes, use the link to view Xcode in the Mac
App Store.
4. Install Xcode from the Mac App Store.

Note: You might need to sign in with a user account that has membership in the
iOS development program.

After installation, open Xcode.

On the System Component Installation screen, install Device Support,

5
6
7. When the installation completes, click Start Using Xcode.
8. Select Xcode > Preferences.

9

Select the Downloads tab.

10. Next to Command Line Tools, click Install

About Signing iOS Applications

To deploy applications to iOS devices, the applications must be signed. During
development, you can sign applications using a development certificate that is limited to
a small set of devices. To deploy to the App Store, you must sign the application with a
distribution certificate.

If you develop on a Macintosh for iOS, you can use your existing signing environment
on the same machine, or you can import an existing environment to another machine.
If you do not have an existing signing environment, you need to create a signing
environment.

Using webMethods Mobile Designer Version 9.10 45

https://developer.apple.com/xcode/index.php
https://developer.apple.com/xcode/index.php
https://developer.apple.com/support/ios/ios-dev-center.html
https://developer.apple.com/support/ios/ios-dev-center.html
https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://itunes.apple.com/us/app/xcode/id497799835?mt=12

Setting Up the iOS Platform

Using an Existing Signing Environment

If you are already developing on a Macintosh for iOS and intend to use the same
machine for developing iOS applications with Mobile Designer, you can use your
existing signing environment.

To use an existing signing environment on the same machine

1.
2.

Start the Keychain Access application, which is in the Applications/Utilities folder.

In the Keychain Access application, in the Keychains panel, ensure that login is
selected.

In the Category panel, select Certificates.

Note the following information so that you will have it available to configure Mobile
Designer.

m Full name of your iPhone Developer certificate. The full name is typically:
iPhone Developer: Firstname Lastname

m Full name of your iPhone Distribution certificate, if applicable. The full name is
typically:
iPhone Distribution: CompanyName

You will need this information when you configure the Mobile
Designerios.devcodesign and ios.distcodesign properties. For more
information, see "Configuring Mobile Designer for the iOS Platform" on page 48.

Locate your .mobileprovision files and note the path to the following so that you will
have it available to configure Mobile Designer.

®m Ad-hoc profile you intend to use for development
m Distribution profile, if you have one

You will need path to the .mobileprovision files when you configure the Mobile
Designer ios.adhocprov and ios.appstoreprov properties. For more information,
see "Configuring Mobile Designer for the iOS Platform" on page 48.

Export your existing certificates using one of the following methods:

m If you use Xcode to automatically manage your certificates, you can export your
existing certificates using the Xcode Organizer.

m Download your certificates from the iOS provisioning portal, at https://
developer.apple.com/ios/manage/overview/index.action

Using webMethods Mobile Designer Version 9.10 46

https://developer.apple.com/ios/manage/overview/index.action
https://developer.apple.com/ios/manage/overview/index.action

Setting Up the iOS Platform

Importing the Signing Environment from Another Macintosh

To use your existing signing setup on another Macintosh, you export signing
information from an existing Macintosh and copy it to the Macintosh where you want to
develop iOS applications with Mobile Designer.

To import an existing signing environment to another machine

1.

On the Macintosh with signing environment you want to use, start the Keychain
Access application, which is in the Applications/Utilities folder.

In the Keychain Access application, in the Keychains panel, ensure that login is
selected.

In the Category panel, select Certificates.

Make a note of the following information:

Full name of your iPhone Developer certificate. The full name is typically:
iPhone Developer: Firstname Lastname
Full name of your iPhone Distribution certificate. The full name is typically:

iPhone Distribution: CompanyName

Export the private key associated with the developer certificate:

In the Category panel, select Keys.

Select the private key that is associated with the developer certificate. Select File >
Export Items.

When prompted, create a password for exporting. You will need to supply this
password when importing the private key to the target Macintosh.

Important: Do not use the password you use to login to your Macintosh.

When saving the private key, be sure to save in Personal Information Exchange (p12)
format.

Important: You should keep a backup copy of your private key by copying the key

to removable media and storing it somewhere safe. If you lose your
private key, for example, due to a hardware failure, you will not be able
to deploy applications. This is particularly important when you want to
update old versions of an application submitted to the App Store. Apple
does not keep information about your private key.

6. Move the exported p12 key file to the Macintosh where you want to develop iOS
applications with Mobile Designer.

a.

Copy the p12 key file to the target Macintosh and save in any location.

Using webMethods Mobile Designer Version 9.10 47

Setting Up the iOS Platform

b. Double-click the p12 key file to begin the key import process.

c. When prompted for a password, supply the password you created when
exporting the private key.

The private key and required certificates are imported into the target Macintosh

7. Download the appropriate .mobileprovision files for ad-hoc and distribution from
the developer portal, https://developer.apple.com/ios/manage/provisioningprofiles/
index.action, or copy the. mobileprovision files from your existing environment to an
appropriate location from the target Macintosh.

Creating a New Signing Environment

If you do not have a signing environment, you need to set up your environment.
You can find setup instructions on the iOS Provisioning Portal at https://
developer.apple.com/ios/manage/overview/index.action.

The setup steps include the following:

® Create and install iOS development certificates
® Nominate device IDs for development

® Nominate an App ID
|

Create a Development Provisioning Profile
Note: When your environment is ready to distribute iOS applications as Ad-Hoc or
App Store builds, you need to create the appropriate .mobileprovision files.

You configure Mobile Designer to specify where the .mobileprovision files are
located.

Configuring Mobile Designer for the iOS Platform

After installing the Apple Xcode IDE and setting up your environment for signing iOS
applications, you need to configure Mobile Designer to provide information about the
iOS platform setup.

To configure Mobile Designer for the iOS platform

1. Use a text editor to open the following file:
Mobile Designer_directory/sdk.properties

2. Locate the iOS section of the file.

3. Set the values for the properties in the following table.

Using webMethods Mobile Designer Version 9.10 48

https://developer.apple.com/ios/manage/provisioningprofiles/index.action
https://developer.apple.com/ios/manage/provisioningprofiles/index.action
https://developer.apple.com/ios/manage/overview/index.action
https://developer.apple.com/ios/manage/overview/index.action

Setting Up the iOS Platform

Property and Setting

ios.bundle
Set to the prefix to use for the CFBundleldentifier.

The CFBundleldentifier is a unique identifier for your application bundle.
For the prefix, it is recommended that you use your company's domain
name, with each portion in reverse order. For example, for the domain name
mycompany.com, the recommended identifier is “com.mycompany”. An
example of setting the property for this identifier is:

ios.bundle=com.mycompany.

Note: It isimportant to include a trailing period to act as a separator when
specifying the ios.bundle property. Mobile Designer appends your
application's name directly to the ios.bundle value to create your
application's unique CFBundleldentifier. For example, for an application
named “MyApp”, the name is "com.mycompany.MyApp".

ios.xcode.app.path

Set to the path of the contents of the Xcode application. The location is
typically /Applications/Xcode.app/Contents.

ios.devcodesign

Set to the name of the developer certificate to use for signing iOS builds that you
can deploy only to a limited range of known devices, for example, for testing or
demonstrating applications.

Specify a String that identifies the certificate stored in your keychain. Typically,
the format is "iPhone Developer: Firstname Lastname". An example is:

ios.devcodesign=iPhone Developer: John Doe

ios.distcodesign

Set to the name of the certificate to use for signing iOS builds intended for
distribution to the App Store.

Specify a String that identifies the certificate stored in your keychain. Typically,
the format is "iPhone Distribution: MyCompanyName". An example is:
ios.distcodesign=1iPhone Distribution: SoftwareAG

Note: If you do not intend to use this configuration for creating builds to
submit to the App Store, you can leave this property blank.

ios.adhocprov

Using webMethods Mobile Designer Version 9.10 49

Setting Up the iOS Platform

Property and Setting

Set to the path of the Ad-Hoc provision file to use with the developer certificate
for signing iOS builds that you can deploy only to a limited range of known
devices, for example, for testing or demonstrating applications. An example is:

ios.adhocprov=/Users/softwareag/Desktop/OfficeDevices Ad Hoc.mobileprov
ision

ios.appstoreprov

Set to the path of the provision file to use with the distribution certificate to use
for signing iOS builds intended for distribution to the App Store. An example is:
ios.appstoreprov=/Users/softwareag/Desktop/App Store.mobileprovision

Note: If you do not intend to use this configuration for creating builds to
submit to the App Store, you can leave this property blank.

project.make.simultaneous.jobs

Specifies the number of make jobs that you want Mobile Designer to run
simultaneously. Running make jobs simultaneously can help improve the
performance when building mobile applications.

Specity a positive integer between 1 and n *3, where 1 is the number of CPU
cores in the build machine. The default is 2. An example is:

project.make.simultaneous.jobs=3

Caution: Specifying a number that is too large can cause a slowdown.

4. Save and close the file.

Using webMethods Mobile Designer Version 9.10

50

Setting Up the Windows Phone 8 Platform

6 Setting Up the Windows Phone 8 Platform

m About Setting Up the Windows Phone 8 PIatform ..o, 52
B ENADING HYPEI-V oottt 53
m [nstalling the Windows Phone SDK VErSION 8ccoieirnnirresceseses e 53
m Setting Up Visual Studio Express 2012 for Windows Phone ... 54
m Configuring Mobile Designer for the Windows Phone 8 Platformccccccovvviiceiviccccene, 55

Using webMethods Mobile Designer Version 9.10 51

Setting Up the Windows Phone 8 Platform

About Setting Up the Windows Phone 8 Platform

Before you can use Mobile Designer to build applications for the Windows Phone 8
platform, you need to set up your environment. The following table lists the tasks you
need to perform to set up the environment.

Setup Required Tasks
or
Optional
Development Required Enable Hyper-V on your PC.

Environment

For more information, see "Enabling Hyper-V" on
page 53.

Required

Install the Windows Phone SDK 8.

For more information, see "Installing the Windows
Phone SDK Version 8" on page 53.

Required

Install the Visual Studio Express 2012 for Windows
Phone.

For more information, see "Setting Up Visual Studio
Express 2012 for Windows Phone" on page 54.

Mobile Required
Designer
Configuration

Update the Mobile Designer sdk.properties file to
provide information about the installed Windows
Phone 8 platform.

For more information, see "Configuring Mobile
Designer for the Windows Phone 8 Platform" on
page 55.

Emulators N/A

Note: A virtual emulator is installed with the
Windows Phone SDK 8.

The procedures in this documentation do not cover all possible setups and scenarios. For
more information, see the Windows Phone Developer website.

Using webMethods Mobile Designer Version 9.10 52

Setting Up the Windows Phone 8 Platform

Enabling Hyper-V

The PC you use to develop applications must be running the 64-bit version of Windows
8 Pro or later. To develop mobile applications, the Hyper-V feature must be enabled.
However, by default, Windows has Hyper-V disabled.

Important: Enabling Hyper-V requires that you restart your PC. Be sure to save your
work before enabling Hyper-V.

To enable Hyper-V
1. Open the Control Panel.
2. In the Control Panel, select Programs, then select Programs and Features.
3. Click Turn Windows features on or off.
Windows displays the Windows Features dialog.
4. Inthe Windows Features dialog, select the Hyper-V check box.
5. Click OK, and then click Close.
6. Close the Programs and Features window.
7. Restart your PC.

Two new tiles are added to your Start screen.

Installing the Windows Phone SDK Version 8

Use this procedure to install the Windows Phone SDK 8 so that you can use it with
Mobile Designer.

Note: For a list of supported SDK versions, see "SDK Versions that Mobile Designer
Supports" on page 30.

To install Windows Phone SDK version 8

1. Open the following webpage in a browser: http://dev.windowsphone.com/en-us/
downloadsdk

2. C(Click Download to download the 8.0 version of the SDK.
3. Run the installer to install the Windows Phone 8.0 SDK.

Using webMethods Mobile Designer Version 9.10 53

http://dev.windowsphone.com/en-us/downloadsdk
http://dev.windowsphone.com/en-us/downloadsdk

Setting Up the Windows Phone 8 Platform

Setting Up Visual Studio Express 2012 for Windows Phone

Visual Studio Express 2012 is automatically installed with Windows Phone SDK 8.0.

Use this procedure to set up Visual Studio Express 2012 for Windows Phone and
download the WPToolkit library package.

To set up Visual Studio Express 2012 for Windows Phone

1.
2.
3.

Start Visual Studio.

Follow the prompts to register Visual Studio with Microsoft for a developer's license.

Ensure that the version of NuGet installed with Visual Studio is the latest version by
selecting Tools > Extensions and Updates in Visual Studio.

Create a new project so that you can download the WPToolkit.

f.

Note: You download the WPToolkit library package from within a project. As a

result, to install WPToolkit, you need to set up a new project.

In Visual Studio, close the Updater window, and select File > New Project.
Visual Studio opens the New Project wizard.

In the tree on the left, expand Installed > Templates > Visual C#, and select Windows
Phone.

In the middle panel, select Windows Phone App.
In the Name field, type a name for the project, for example, PhoneAppl.

Note the location where Visual Studio will create the project’s root directory, for
example:

C:\Users\ developer\ Documents\ Visual Studio 2012\ Projects\ PhoneApp1

Note: You will need to find this location in a subsequent step. Visual Studio
displays the location at the bottom of the window.

Click OK to create the project.

Install WPToolkit by performing the following steps:

a

In Visual Studio, select Tools > Library Package Manager > Package Manager Console.

Visual Studio opens the package manager terminal inside the Visual Studio
window. By default, this is in the bottom-left.

In the console, type the following, and then press ENTER.

Install-Package WPToolkit

The package manager installs the WPToolkit extras inside your new project.

Using webMethods Mobile Designer Version 9.10 54

Setting Up the Windows Phone 8 Platform

6. Save a copy of the WPToolkit folder.
a. Navigate to the root directory of the project that you created, for example:
C:\Users\ developer\ Documents\ Visual Studio 2012\ Projects\ PhoneApp1

b. Open the packages folder and locate the WPToolkit folder, which will have a
name, such as, WPtoolkit.4.2012.10.30.

c. Copy the WPToolkit folder to a convenient location on your hard drive, for
example, C:\Development\ WPToolkit.

d. Note the location where you copied the WPToolkit folder.

Note: When configuring Mobile Designer for the Windows Phone 8 platform,
you will configure a property for the location where you copy the
WPToolkit folder.

7. Install the SQLite package by performing the following steps.

Note: Install the SQLite package if you require applications running on Windows
Phone 8 to access database information. For more information about using
databases, see "Run-Time Database Classes" on page 76.

In Visual Studio, select Tools > Extensions and Updates.
b. Select the Online tab and type SoLite in the search field.

c. In the search results, locate the row for SQLite for Windows Phone and click
Download.

d. Install the SQLite for Windows Phone package.

Configuring Mobile Designer for the Windows Phone 8
Platform

After installing the Windows Phone SDK 8 and setting up Visual Studio Express 2012 for
Windows Phone, you need to configure Mobile Designer to provide information about
the Windows Phone 8 platform setup.

Note: When specifying paths in the sdk.properties file, use a forward slash
character, “/” or an escaped slash character, "\ \", to separate folders, even
when specifying Windows paths.

To configure Mobile Designer for the Windows Phone 8 Platform
1. Use a text editor to open the following file:
Mobile Designer_directory/sdk.properties

Using webMethods Mobile Designer Version 9.10 55

Setting Up the Windows Phone 8 Platform

2. Locate the Windows 8 section of the file and set the values for the properties in the
following table.

Property and Setting

microsoft.windows8.phone.path
Set to the path of the framework installed with the Windows Phone 8 SDK. The
following shows an example using the default installation location is:

microsoft.windows8.phone.path=C:\\Program Files (x86)\\Reference
Assemblies\\Microsoft\\Framework\\WindowsPhone\\v8.0

microsoft.winphone.toolkit.8.0.path

Set to the path of the location of the lib\ wp8 folder of the WPToolkit package,
for example:
microsoft.winphone.toolkit.8.0.path=C:\\Development\\WPtoolkit\\1lib\\wp8

Note: Use the location in the WPToolkit folder that you saved when
performing the instructions in "Setting Up Visual Studio Express 2012 for
Windows Phone" on page 54.

The \wp8 folder contains a file named "Microsoft.Phone.Controls.Toolkit.dll".

microsoft.sdk.winphone.extensions.sqlite

Set to the path of the location of the SQLite extension SDKSs installed for
Windows Phone. The following shows an example using the default installation
location is:

microsoft.sdk.winphone.extensions.sqlite=C:\\Program Files
(x86) \\Microsoft SDKs\\Windows Phone\\v8.0\\ExtensionSDKs\\SQLite.WP80

microsoft.net.framework.path

Set the path of the location of the .NET Framework. The default value is:
C:\\WINDOWS\\Microsoft.NET\\Framework\\v4.0.30319

Note: This property is located within the XN A/Silverlight section.

3. Save and close the file.

Using webMethods Mobile Designer Version 9.10 56

Setting Up the Windows RT/Windows 8 Platform

7 Setting Up the Windows RT/Windows 8 Platform

m About Setting Up the Windows RT/Windows 8 Platformcccccoviieeiiicsecececes 58
m |Installing Visual Studio Express 2012 for WINdOWS 8ccoviiiiiiiiiiieiiiiccssse e 58
m Configuring Mobile Designer for the Windows RT or Windows 8 Platformccccccevviivieinnnns 99

Using webMethods Mobile Designer Version 9.10 57

Setting Up the Windows RT/Windows 8 Platform

About Setting Up the Windows RT/Windows 8 Platform

Before you can use Mobile Designer to build applications for the Windows RT or
Windows 8 platform, you need to set up your environment. The following table lists
tasks you need to perform to set up the environment.

Setup Required Tasks

or

Optional
Development Required Install the Visual Studio Express 2012 for Windows
Environment 8.

For more information, see "Installing Visual Studio
Express 2012 for Windows 8" on page 58.

Mobile Required Update the Mobile Designer sdk.properties file to
Designer provide information about the installed Windows
Configuration RT and Windows 8 platforms.

For more information, see "Configuring Mobile
Designer for the Windows RT or Windows 8
Platform" on page 59.

Emulators N/A Note: A virtual emulator is installed with Visual
Studio Express 2012 for Windows 8.

The procedures in this documentation do not cover all possible setups and scenarios. For
more information, see the Windows Developer website.

Installing Visual Studio Express 2012 for Windows 8

Use this procedure to install Visual Studio Express 2012 for Windows 8.

To install Visual Studio Express 2012 for Windows 8

1. Ensure your system meets the system requirements for Visual Studio Express 2012
for Windows 8.

Tip: If you will be developing applications for both Windows RT/Windows
8 and Windows Phone 8, use the system requirements for Visual Studio
Express 2012 for Windows Phone, which are more restrictive. For more
information, see "Setting Up Visual Studio Express 2012 for Windows
Phone" on page 54.

Using webMethods Mobile Designer Version 9.10 58

Setting Up the Windows RT/Windows 8 Platform

a. Open the following webpage in a browser: http://www.microsoft.com/
visualstudio/eng/products/visual-studio-express-for-windows-8

b. Scroll down to display and review the system requirements listed on the
webpage.

2. Open the following webpage in a browser: http://www.microsoft.com/visualstudio/
eng/downloads#d-express-windows-8

3. Download the installer.
Note: The correct installer has a blue icon.

4. Run the installer to install Visual Studio.
5. Start Visual Studio.

6. If required, follow the prompts to register Visual Studio with Microsoft for a
developer's license.

7. Install the SQLite package by performing the following steps.

Note: Install the SQLite package if you require applications running on Windows
RT/Windows 8 to access database information. For more information about
using databases, see "Run-Time Database Classes" on page 76.

In Visual Studio, select Tools > Extensions and Updates.
b. Select the Online tab and type soLite in the search field.

c. In the search results, locate the row for SQLite for Windows Runtime and click
Download.

d. Install the SQLite for Windows Runtime package.

Configuring Mobile Designer for the Windows RT or Windows
8 Platform

After installing the SDK for Windows RT/Windows 8 and Visual Studio Express 2012,
you need to configure Mobile Designer to provide information about the Windows RT/
Windows 8 platform setup.

Note: When specifying paths in the sdk.properties file, use a forward slash
character, “/” or an escaped slash character, "\ \", to separate folders, even
when specifying Windows paths.

To configure Mobile Designer for the Windows RT/Windows 8 Platform
1. Use a text editor to open the following file:
Mobile Designer_directory/sdk.properties

Using webMethods Mobile Designer Version 9.10 59

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-8
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-8
http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-8
http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-8

Setting Up the Windows RT/Windows 8 Platform

2. Locate the Windows 8 section of the file and set the values for the property in the
following table.

Property and Setting

microsoft.windows8.netcore.path
Set to the path of the NETCore 4.5 framework folder. The following shows an
example using the default installation location is:

microsoft.windows8.netcore.path=C:\\Program Files (x86)\\Reference
Assemblies\\Microsoft\\Framework\\.NETCore\\v4.5

microsoft.sdk.winrt.extensions.sqlite

Set to the path of the location of the SQLite extension SDKSs installed for
Windows RT/Windows 8. The following shows an example using the default
installation location is:

microsoft.sdk.winrt.extensions.sqglite=C:\\Program Files (x86) \\Microsoft
SDKs\\Windows\\v8.0\\ExtensionSDKs\\SQLite.WinRT

3. Save and close the file.

Using webMethods Mobile Designer Version 9.10 60

Creating Mobile Application Projects

III Creating Mobile Application Projects

m Setting Up a Mobile Application ProjECtccccviieeiiiicssseeee e 63
B Coding a Mobile APPIICAtIONcvcvivicicicicec e 71
m Adding Devices to a Mobile Application ProJECtccoeeriiiericcessceesce e 91
m Defining Resources for a Mobile Application Projectcoceevrieennicceeceee e 105
m Setting Properties and Parameters for a Mobile Application Projectcoeovvvvniniinnenne 119

Using webMethods Mobile Designer Version 9.10 61

Creating Mobile Application Projects

Using webMethods Mobile Designer Version 9.10 62

Setting Up a Mobile Application Project

8

Setting Up a Mobile Application Project

About Mobile AppliCation PrOJECEScvviiiiiiriiirirrs e 64
Using Software AG Designer with Mobile DESIGNETccoeviiiiiiieririieieei e 64
Creating @ New Mobile Application PrOJECEccvveurieiriiirreences s 65
Sample Projects Provided with Mobile DESIGNErccrrriiieee e 66

Using webMethods Mobile Designer Version 9.10 63

Setting Up a Mobile Application Project

About Mobile Application Projects

You set up a mobile application project for each mobile application you want to develop.
The project contains the application code, defines the devices you want the application
to support, and references all the resources that the project requires.

Perform the following actions to set up a mobile application project:

®m Create the mobile application project. You start a project by cloning an existing
project. webMethods Mobile Designer provides several sample applications that you
can use. For more information, see "Creating a New Mobile Application Project” on
page 65 and "Sample Projects Provided with Mobile Designer" on page 66.

m Code your application using Java, specifically J2ME. Mobile Designer provides
several run-time classes that you can use in your application. For more information,
see " Mobile Designer-Provided Run-Time Classes" on page 72 and webMethods
Mobile Designer Java API Reference.

®m Create the resource handler for your application to identify the resources that
your project requires. For more information, see "Defining Resources for a Mobile
Application Project” on page 105.

® Set properties for your project. Although there are numerous properties you can
define for a project, Mobile Designer provides initial settings and/or defaults for
most. However, there are a few properties you must set for your project. For more
information, see "Setting Project Properties" on page 123.

m Set parameters for your project. Parameters contain settings about devices and
resources. Additionally, you can define your own application-specific parameters.
In your application code, you use parameters to perform such tasks as loading
resources or branching the logic based on parameter values to address the needs of
specific target devices. For more information, see "Where You Define Parameters" on
page 124.

® Add devices to your project to define the devices you want your application to
support. For more information, see "Adding Devices to a Mobile Application Project”
on page 91.

Using Software AG Designerwith Mobile Designer

To create a mobile application project using Mobile Designer, you can use Software AG
Designer.

Mobile Designer uses Ant tasks. You can use the standard Eclipse Ant view to edit the
XML files for Ant tasks. By default, Software AG Designer does not display the Ant
View. For information about how to display this view, see "Displaying the Ant View" on
page 65.

Using webMethods Mobile Designer Version 9.10 64

Setting Up a Mobile Application Project

Creating a New Mobile Project Using the Mobile Development Wizard

When you create a mobile project as described below, you can use all features of Mobile
Development.

To create a new mobile project in Software AG Designer

m In Software AG Designer, go to Help > Help Contents > Software AG Designer Guides >
webMethods Mobile Development Help > Creating and Building a Mobile Application and see
the instructions for creating a project using the wizard.

Displaying the Ant View

To display the Eclipse Ant View in Software AG Designer
1. In Software AG Designer, select Window > Show View > Ant

2. (Optional) In the Ant view, click Hide Internal Targets icon to hide the unused Ant
targets.

Creating a New Mobile Application Project

This is the old way for creating new applications. You can use this method to create an
old-style application without Mobile Development features.

You can begin a mobile application project by cloning an existing project. You can clone
a sample project that Mobile Designer provides or clone a project that you have already
created. Clone a project that is similar to the one you want to create.

For example, if you want to create an application that uses NativeUI controls for the user
interface, you could start with the _NativeUIHelloWorld_ project. If you want to create
an application that uses pixel-level access to the screen, but no NativeUI controls, you
could use the _FunctionDemo_ project.

For a description of the sample projects that Mobile Designer, see "Sample Projects
Provided with Mobile Designer" on page 66.

To create a new mobile application project
1. If the project you want to clone is not in Software AG Designer, import the project.

a. In Software AG Designer select File > Import > General > Existing Projects into
Workspace, and then click Next.

b. In Import Projects, click Browse and select the project source directory of the
project you want to clone.

c. Click OK, and then click Finish.
2. Use the Clone-Project Ant target to make a copy of the original project.

Using webMethods Mobile Designer Version 9.10 65

Setting Up a Mobile Application Project

a. In the Project Explorer view, expand the project you want to clone and drag its
build.xml file to the Ant view.

If the Ant view is not open, see "Displaying the Ant View" on page 65.

b. In the Ant view, double-click Clone-Project.

c. In the Clone Project dialog, specify the following;:
m Directory path where you want the save the cloned version of the project
= Name for the cloned project

= MIDlet name (application name of your project) for the cloned project

Caution: Do not create projects in directories that have spaces in their names.
Some third-party tools are less tolerant of spaces in directory names,
and you might get compilation errors as a result.

Mobile Designer creates the cloned project in the location you specified.

After you clone a project, you can begin editing it to the requirements for you
application. For example, you can change the names used in the final build, the
version of Mobile Designer to use at both build time and run time, and you can start
adding new code.

3. In the Project Explorer view, expand the project you just cloned, and drag the
build.xml file to the Ant editor. In the build.xml file, you can:

® Rename the MIDlet, which is the application name of your project.
m Identify the targets for which you want to build this project.

Add a call to the importxmldirectory Ant task to import all individual handset targets
set up for the project. You can replace this with a list of individual import calls.
However, doing so requires updating the build.xml file each time you add a
handset.

4. Define project-specific properties. For instructions, see "Where You Set Properties” on
page 120 and "Setting Project Properties" on page 123.

Sample Projects Provided with Mobile Designer

Mobile Designer comes with the sample projects described in this section. The sample
projects are located in the following directory:

Mobile Designer_directory/Samples

Expense Tracker

The Expense Tracker sample project uses many NativeUI objects. It demonstrates how
to solve design and implementation difficulties when developing mobile applications.

Using webMethods Mobile Designer Version 9.10 66

Setting Up a Mobile Application Project

It features user interface conventions that are common requirements for mobile
applications, such as dynamic list population and display; data entry, storage and
reporting mechanisms; handling for multiple device platforms and form factors.

Library JSON

The Library JSON sample project is an example of a library project. It demonstrates how
you can precompile parts of your codebase into separate libraries that you can then
reference in another project. Specifically, this project uses third-party JSON Java code.
For more information about creating and using libraries, see "Creating and Using Code
Libraries" on page 84.

You compile the project for the target platforms for which you want to use the library. A
library project’s build.xml references libtargets.xml rather than targets.xml. The target
libraries for this sample project are J2ME (for Phoney), Android, and iOS. To use this
sample project, you can import it, then cross-compile and build the library using the
+Library-Build Ant task.

Note: For a sample of a project that references this library, see the NativeUI JSON
sample project.

NativeUl Demo

The NativeUI Demo application demonstrates the use of all the major native user
interface (NativeUI) classes in Mobile Designer.

The sample also demonstrates how to support tablet devices. It contains code to
determine whether it is running on a tablet based on the screen size of the device. When
running on a tablet, the application uses multiple panes in the user interface. For more
information about using panes, see webMethods Mobile Designer Native User Interface
Reference.

Mobile Designer provides two versions of the NativeUI Demo.
® _NativeUIDemo_ was hand coded using Mobile Designer functionality.
® _NativeUIDemoX_ was created using Mobile Development.

This version of the sample illustrates how to use Mobile Development to create a
mobile application. In this sample, many of the user interface objects were added
explicitly in the Outline Editor. For example, a button was added using the Mobile
DevelopmentButton object. However, some objects were defined using the dynamic
objects that Mobile Development offers, for example, the DynamicDisplayObject object.
The dynamic objects were used to illustrate how to use dynamic objects and how to
provide user code for dynamic objects.

Mobile Development provides a default resource handler that handles most
resources. However, this project also uses a custom resource handler to illustrate
handling cases when custom code/dynamic objects requires resources that the
default resource handler cannot accommodate.

Using webMethods Mobile Designer Version 9.10 67

Setting Up a Mobile Application Project

Note: To use the _NativeUIDemoX_ version of the sample, you need to import
the sample project into Software AG Designer. The _NativeUIDemoX_
sample project includes the information for the model. It also includes user
logic in the src folder (that is, the user space). However, before you can
use the project, you must use the Mobile Development Generate Source Code
> Application Model and APl command to generate sources for the project.
This command generates the logic to execute the model in the gen/src
folder and the Mobile Development API in the gen/api-src folder. For more
information about generating sources, see webMethods Mobile Development
Help.

NativeUl Contacts

The NativeUI Contacts application demonstrates the use of the Personal Information
Management (PIM) APIs defined for JSR 75.

The sample demonstrates using the PIM APIs to:

B Read information for contacts that already exist in a device’s address book. This can
be done for devices running on any platform.

m Edit existing contacts in a device’s address book and adding new contacts to a
device’s address book. This can be done for devices running on platforms that
support editing the address book.

NativeUl Exercise

The NativeUI Exercise sample project shows the process of creating a simple native user
interface voting application, complete with model answers for each of the steps.

NativeUl Hello World

The NativeUI Hello World sample project contains the bare minimum needed to display
some text and transition between two Views. You can copy this project to assist in
learning the native user interface classes in Mobile Designer.

NativeUl JSON

The NativeUI JSON sample project shows the interaction with a JavaScript Object
Notation (JSON)-based server, fetch and display data.

Note: This sample references the library created using the Library JSON sample
project.

Using webMethods Mobile Designer Version 9.10 68

Setting Up a Mobile Application Project

NativeUl Location

The NativeUI Location sample project shows the use of the Location API with native
user interface classes to display the user's current location.

NativeUl My Graphical Element

The NativeUI My Graphical Element project demonstrates the use of a custom user-
created native user interface element to draw a chart.

NativeUl My Native Element

The NativeUI My Native Element project demonstrates how to add platform-specific
native code to create a new custom visual component that works along with the
NativeUI objects that Mobile Designer provides.

NativeUl PDF Demo

The NativeUI PDF Demo sample project demonstrates the use of native platform code
injection to display a PDF.

NativeUl SOAP

The NativeUI Soap sample project uses SOAP to communicate with a remote server,
fetch data, and display it on the device.

NativeUl Push Notifications

The NativeUI Push Notifications sample project demonstrates the use of push
notifications on supported platforms.

NativeUl Database

The NativeUI Database sample project demonstrates the use of databases on supported
platforms.

NativeUl JavaScript Map

The NativeUI JavaScript Map sample project gives an example of how to to send simple
messages into and out of a nUIWebView. The project is designed to be used with Mobile
Development. The important code resides in the MyMapViewControllerimpl class.

Using webMethods Mobile Designer Version 9.10 69

Using webMethods Mobile Designer Version 9.10

70

Coding a Mobile Application

9

Coding a Mobile Application

Mobile Designer-Provided Run-Time CIaSSEScccoururireiriiiniinirieseeeeesces s 72
IMAGE CACNING ..t 80
Mobile Designer LOgging AP 81
DAtEFOMMAT APL ... 82
Registering Applications for Data Sharing (custom URIs and MIME-types)ccccovevverirrirennen. 82

Creating and Using Code LIDraries ... 84
Using System.getProperty to Obtain Device Informationcccccevviecceiiicccececccens 87
Creating the USer INTErfACE ... 90

Using webMethods Mobile Designer Version 9.10 71

Coding a Mobile Application

Mobile Designer-Provided Run-Time Classes

webMethods Mobile Designer provides many run-time classes that provide an array of
features that you can use in your application. You can find details about all the classes in
the webMethods Mobile Designer Java API Reference.

Application and Parameter Classes

com.softwareag.mobile.runtime.core.Application

The Application class contains only the minimal functionality to start an application and
detect core interrupt and termination events.

The Application class also provides debug functionality to output messages. The messages
are prefixed with MD: so that you can visually differentiate Mobile Designer debug
information from other generated debug information. You can define flags to indicate
the debug messages you want displayed.

When running on a PC or device that has a connected console output solution, the
Application class displays the debug messages on the console. Otherwise, the debug
messages are available in a String Array. You can add logic to your application to obtain
the messages from the String Array and output them to the screen if you want visual
debugging on a device.

com.softwareag.mobile.runtime.Parameters

When Mobile Designer runs the resource handler that you create for your project, it
automatically creates the Parameters static class, which contains the parameters that

drive the Mobile Designer run-time code for a particular build. The Parameters class,
com.softwareag.mobile.runtime.Parameters, contains information about the devices and project-
specific parameters, such as resource, resource block, and text IDs.

Mobile Designer uses the following naming conventions for the parameter names:

m PARAM MD_ *** defines parameters controlling Mobile Designer run-time source code
functionality

PARAM *** defines application-specific parameters
RESBLOCKID *** defines identifiers for all the resource blocks
RESID *** defines identifiers for all the individual resources

TEXTID *** defines identifiers for all the lines of text

MENUID *** defines identifiers for all the menus

When the remaining run-time classes are not used in a project, you can generate the
Parameters class by reference in third-party code.

Using webMethods Mobile Designer Version 9.10 72

Coding a Mobile Application

Run-Time Canvas Classes

com.softwareag.mobile.runtime.core.CanvasCore

Use the CanvasCore class to control application state transitions and to create new threads
when the application enters loading states so that the primary thread can animate the
screen as required. In addition, the CanvasCore class:

®m Detects interrupts and feeds information through to the application code so that
it can respond appropriately, while automatically stopping any playing music or
vibrations.

B Provides a frame-rate handling solution using either a variableRateUpdate,
where millisecond update times are passed into the application code, or a
fixedRateUpdate, a potentially preset rate.

m Performs safety checks to prevent large visual stutters if random long pauses occur
in the device’s JVM.

® Provides touchscreen pointer support and the ability to define regions on screen that
perform the same as defined keypresses would on non-touchscreen devices.

m Detects QA test-codes for ease of debugging.
® Provides standardized keypress detection.

Mobile Designer stores keypress information for each device. You can decide how
the keypress response works in your application by setting the Mobile Designer
project.numeric.keys.emulate.directionals project property.

You can set the parameter PARAM MD CORE DEBUGFLAGS TO DISPLAY to 0 (zero) to
avoid storing debug or output, removing of the debug method. However, this might
not necessarily be true for all of the data associated with the debug method call. For
example, in the following code:

debug ("Having a problem loading object #" + i, PARAM MY DEBUGFLAG) ;
The method call itself is obfuscated, but the creation of the String included in the debug

method call could remain due to the way the compiled Java byte code is created. As a
result, Mobile Designer recommends changing the call to:

if ((PARAM MD CORE DEBUGFLAGS TO DISPLAY & PARAM MY DEBUGFLAG) != 0)
debug ("Having a problem loading object #" + i, PARAM MY DEBUGFLAG) ;

com.softwareag.mobile.runtime.core.CanvasBase

The CanvasBase class provides the canvas and interaction to events. Mobile Designer sets
the value for each device. You can override the value Mobile Designer sets using the
mobiledesigner.runtime.core.class.graphics.canvas project property.

com.softwareag.mobile.runtime.core.CanvasDimensions

Use the CanvasDimensions class to specify the screen height and width Mobile
Designer sets the CURRENT SCREEN HEIGHT and CURRENT SCREEN WIDTH for

Using webMethods Mobile Designer Version 9.10 73

Coding a Mobile Application

each device. You can override the value Mobile Designer sets by setting the
mobiledesigner.runtime.core.class.graphics.dimensions project property to either fixed or
dynamic.

If the parameters MD BASE SCREEN WIDTH and MD BASE SCREEN HEIGHT are set to

0 (zero) in the build script, or the device is set up to require dynamic dimensional
detection, this layer queries the canvas's getWidth and getHeight methods with each call
to retrieve the current screen dimensions, rather than embedding the dimensions as
static compile-time constants. Using dynamic dimensions means that means that some
compile-time optimizations do not occur. If you want the user to be able to rotate the
device screen, you need to use the dynamic dimensions value.

com.softwareag.mobile.runtime.core.Canvaslinterrupts

Use the Canvasinterrupts class to control how your mobile application detects interrupts.
Mobile Designer sets the value for each device in the project. You can override the value
Mobile Designer sets using the mobiledesigner.runtime.core.class.interrupts project property.

com.softwareag.mobile.runtime.core.CanvasKeysandTouch

Use the CanvasKeysandTouch class to control how the mobile application
detects keypress, touch, or pointer events. Mobile Designer sets the value
for each device. You can override the value Mobile Designer sets using the
mobiledesigner.runtime.core.class.keysandtouch project property.

When you want to override the keypress detection methods, the Mobile Designer run-
time classes pass these keypress actions to the standard keyPressed and keyReleased
methods, enabling methods overrides to work consistently regardless of the specified
target.

com.softwareag.mobile.runtime.core.CanvasMenu

Use the CanvasMenu class to control the loading, creation and general data structures for
all menus. You can create menus in the resource handler and manipulate them at run
time.

Mobile Designer must determine whether the menu item type is the

MENU ITEMTYPE SOFTKEY.Mobile Designer can automatically create the appropriate
soft keys when a menu is loaded. You can create any other menu item based on the basic
standard and soft key standard, as long as its initial data chunk remains unchanged, and
default items such as header, text-item, button are included in Mobile Designer.

Menus are constructed from a list of menu types and a general menu definition
that includes information about the number of items present, the menu type, and
information on the previous menu and previous selected item.

Individual menu items are a simple list of integers of arbitrary length with the leading
integer specifying:

® The top 1 byte (0xff000000) specifies the item type.

® The middle 2 bytes (0x00£fff00) specifies the item flags. You can use item flags as
masks to indicate the items the user can select, or for any other user functionality.

Using webMethods Mobile Designer Version 9.10 74

Coding a Mobile Application

B The bottom 1 byte (0x000000ff) specifies the item length including this standard int.

com.softwareag.mobile.runtime.core.CanvasNativeUl

Use the CanvasNativeUl class to control the loading, creation and general data structures of
all the Native User Interface (NativeUI) menus. To enable the CanvasNativeUl class, set the
project.runtime.uses.nativeui and the mobiledesigner.runtime.core.class.ui properties to true.

com.softwareag.mobile.runtime.core.CanvasSoftKeys

The CanvasSoftKeys class controls the creation and update of soft-key labels. Mobile
Designer attempts to follow the forward and back standard expected for each device by
informing the code where to display the forward and backward soft keys. The Mobile
Designer run time and device profiling are based on a forward or back soft-key naming
convention, rather than left or right.

Mobile Designer sets the value for each device. You can override the value Mobile
Designer sets using the mobiledesigner.runtime.core.class.softkeys project property.

com.softwareag.mobile.runtime.core.CanvasThreading

Use the CanvasThreading class to control how the mobile application manages the primary
thread using a java.lang.Thread or a java.lang.TimerTask. The mobile application always
launches all secondary threads using a new java.lang.Thread.

Mobile Designer sets the value for each device. You can override the value Mobile
Designer sets by setting the mobiledesigner.runtime.core.class.threading project property to
either thread or timertask.

Run-Time Comms Classes

com.softwareag.mobile.runtime.comms.HttpConnectionHandler

Use the HttpConnectionHandler class to initiate HTTP connections and manage sending and
downloading data in separate threads.

Mobile Designer sets the default value for a device based on the device’s capabilities.

The default value is set in the device’s profile in the Mobile Designer device database.
For more information about the device profiles and the device database, see "Devices

that a Mobile Application Supports" on page 92.

You can override the value Mobile Designer sets using the
mobiledesigner.runtime.core.class.comms.httpconnection project property.
com.softwareag.mobile.runtime.comms.MessageConnectionHandler

Use the MessageConnectionHandler class to control the detection of incoming SMS messages
using the Wireless Messaging AP]I, to send SMS messages to other phones and to handle
Push Notifications.

Using webMethods Mobile Designer Version 9.10 75

Coding a Mobile Application

Mobile Designer sets the default value for each device. You can override the value
Mobile Designer sets setting the mobiledesigner.runtime.core.class.comms.messageconnection
project property to none or wma.

Note: The MessageConnectionHandler implements the MessageListener class.

Note: The httpstream variant of HttpConnectionHandler allows HTTP DELETE messages to
specify an optional POST body.

Run-Time Database Classes

Mobile platforms can support a database. For example, many platforms support the
SQLite database. Mobile Designer provides the com.softwareag.mobile.runtime.database library
that contains classes and methods you can use in your mobile applications to execute
SQL statements. Using the database library allows your mobile application to access
database information. The database library provides a uniform manner for using a
database independent of the target platform and database system. For more information
about the database library, see the webMethods Mobile Designer Java API Reference.

Note: Support for the database library is provided only for the following platforms:

Android

i0S

Phoney

Windows Phone 8
Windows 8

m Windows RT

To use the database library in a mobile application, you must set the
project.nandset.uses.Database project property to true.

For an example that illustrates how to use the database library, see the NativeUI
Database sample.

Important: On most platforms, the Cursor class is a Buffered Cursor, which stores all
query results in memory. Use caution when querying database tables that
contain data that uses the Blob data type, for example, images.

Run-Time Media Classes

com.softwareag.mobile.runtime.media.AudioHandler

Use the AudioHandler class to control the sound and vibration functionality when writing
for the main common audio libraries available on mobile devices. The media classes try to
keep the phone's backlight on when possible for the selected device.

Using webMethods Mobile Designer Version 9.10 76

Coding a Mobile Application

The Mobile DesignerAudioHandler class sets the value for each device. You can override
the value Mobile Designer sets using the mobiledesigner.runtime.core.class.sound project

property.
com.softwareag.mobile.runtime.media.CameraHandler

Use the CameraHandler class to initialize a device’s camera, take snapshots, and stop the
camera.

Mobile Designer sets the values for the CameraHandler class for each device. You can
override the value Mobile Designer sets using the mobiledesigner.runtime.core.class.camera
project property.

com.softwareag.mobile.runtime.media.ImageBase

The ImageBase class provides the base level of the image creation and drawing
functionality, including;

®m Decoders for the various image encoding methods that are part of the Mobile
Designer Resource Handler.

® Image caching used with some devices that have problems freeing images from
memory.

B Multi-celled image support, stored as individual images at run time, or as a single
image which is clipped and drawn.

® Transformations for all devices
® Image dimension information to support any multi-cell images or transformations.
You can access the ImageBase functionality through the ImageHandler class.

The DRAWIMAGETRANSFORM *** values and the LOADIMAGETRANSFORM *** values are
not interchangeable. The LOADIMAGETRANSFORM *** values are used to cache multiple
images at load time. For more information, see the webMethods Mobile Designer Java API
Reference.

com.softwareag.mobile.runtime.media.ImageHandler

Use the ImageHandler class to load, draw, and manage images. Mobile Designer sets the
values for the ImageHandler class for each device. You can override the value Mobile
Designer sets using the mobiledesigner.runtime.core.class.graphics.image project property.

com.softwareag.mobile.runtime.media.PngParser

The PngParser class provides a PNG-encoding method that can create an image from
pixel and palette data. In Mobile Designer you can create the image dynamically at run
time, or use image compression methods that exceed the default PNG format.

When opaque mutable images render faster on a device than immutable images, the
PngParser makes adjustments to improve performance when rendering the image.

Using webMethods Mobile Designer Version 9.10 77

Coding a Mobile Application

You can generate palettized (PNG-8) and true-color (PNG-24) PNG files using the
PngParser methods when full pixel or palettized information is provided.
com.softwareag.mobile.runtime.media.TextHandler

The Mobile DesignerTextHandler class provides the following functionality:

Loads text files

Supports multi-languages

Stores hyphenation guidelines for text splitting

Dynamically splits text based on hyphenation guidelines

Injects text

Supports system and bitmap font

Draws proportional and fixed width font in all systems

Handles all the expected metric queries such as font height, character width, and
string width

Run-Time Serializer Class

com.softwareag.mobile.runtime.serialize.Serializer

The Serializer class provides the ability to serialize a Java Class into a binary stream and to
deserialize a binary stream back to a given Java class.

To enable a class to be serialized, you must ensure it implements the
com.softwareag.mobile.runtime.serialize.Serialzable interface (not the J2SE java.io.Serializable
interface). A class that implements the Serializable Interface can then be passed to the
Serializer class for serialization and deserialization.

Mobile Designer sets the values for the Serializer class for each device. You can override
the value Mobile Designer sets by setting the mobiledesigner.runtime.core.class.serialize project
property to cldcll.

Run-Time Storage Classes

com.softwareag.mobile.runtime.storage.RecordStoreHandler

Use the Mobile DesignerRecordStoreHandler class to control saving data in the application's
RecordStore. The RecordStoreHandler class also determines whether saving the data is
performed immediately or is cached and saved on termination. Use the cache and save
option with slow devices.

For access to the RecordStore, call the derivatives of setRecordStoreData and
getRecordStoreData.

Using webMethods Mobile Designer Version 9.10 78

Coding a Mobile Application

com.softwareag.mobile.runtime.storage.ResourceDataTypes

The ResourceDataTypes class contains a set of helper methods to retrieve primitive data
types from your resources with the run-time ResourceHandler class. Two variants are
present that enable including the float and double methods with Connected Limited
Device Configuration (CLDC) 1.1 devices.

Mobile Designer sets the ResourceDataTypes value for each device. You can override the
value Mobile Designer sets by setting the mobiledesigner.runtime.core.class.datatypes project
property to cldcll.

com.softwareag.mobile.runtime.storage.ResourceHandler

Use the ResourceHandler class to manage the loading and caching of resources, resource
packs, and resource blocks.

Depending on parameter settings, devices can:

® Cache the entire resource packs
® Cache individual blocks
® Load only the resources that are individually stored in the application bundle

You need to use clean-up methods to ensure that the mobile application handles
memory management in the most appropriate way for all devices.

Run-Time Utility Classes

com.softwareag.mobile.runtime.utility.Maths

The Maths class is a fixed point math library that contains methods you can use in your
applications for conversion to and from a fixed-point number, trigonometric functions,
square and cube roots methods, and a random method. The random method is included
for instances when your application relies on the random method returning the same
value across all devices. Built-in JVM implementations can differ from one device to
another in their number handling. As a result, if you are porting your code to anything
other than Java, you could encounter differences in the output produced by the random
function.

The parameter PARAM MD MATHS FP SHIFT controls the accuracy of the math
performed, with a fixed point value of 1 equal to 1 << PARAM MD MATHS FP SHIFT.

The Maths class is based on Connected Limited Device Configuration (CLDC) 1.1. The
Maths class does not contain references to the primitive types £loat or double.
com.softwareag.mobile.runtime.utility.PlatformRequest

Use the PlatformRequest class to launch the browser on devices that support Wireless
Application Protocol (WAP) browsers.

Using webMethods Mobile Designer Version 9.10 79

Coding a Mobile Application

Image Caching

Mobile Designer now supports caching of javax.microedition.lcdui.Image data. This happens
transparently, without intervention from the developer. Calls to Image.loadimage() will
first check if the data exists in the internal Image cache. If so, then the previous Image
instance that was created will be returned. This behaviour is enabled by default, but may
be disabled if required.

Note: Due to the way caching is performed, altering the Image through the Graphics
Object associated with it will now alter ALL references to that loaded file.
A copy of the Image can be manually created, if altering a single instance is
required.

Managing the Image Cache

At times, it may be desirable to remove Images from the cache. This can become
particularly important if the application is about to do something memory-intensive,

or if the developer knows that a certain Image will not be needed again for a long
period of time. The nUIController class provides additional static methods to clear

the Image cache. nUIController.clearCache() removes all images from the Image cache.
nUIController.clearCache(String) will remove a single Image from the cache with the path and
file name given to load it initially.

Note: Although these methods are also available in the Image class itself, NativeUl
performs additional management that requires the developer to use the
methods in nUIController.

Disabling Image Caching for the Whole Application

For certain applications, caching Images is undesirable. The developer can disable the
Image cache by calling the static method nUIController.enableCache(boolean enableCache) and
passing false as an argument.

Copying an Image for Drawing

While in most cases, cached Images are desirable, if the developer wishes to alter a
single instance of an Image that has been created through Image.loadimage() it should be
copied to a separate instance of the Image. A simple way to do this is illustrated below.
With a non-null Image oldimage.

//BARRGGBB data

int[] imageData = new int[oldImage.getWidth() * oldImage.getHeight()];
oldImage.getRGB (imageData, 0, oldImage.getWidth(), 0, 0, oldImage.getWidth(),
oldImage.getHeight ()) ;

Image newlmage = Image.createRGBImage (imageData, oldImage.getWidth (),
oldImage.getHeight (), true);

Using webMethods Mobile Designer Version 9.10 80

Coding a Mobile Application

Mobile Designer Logging API

Mobile Designer provides a java.util.logging API that is based on the Java Logging API
standard. The java.util.logging package that Mobile Designer provides contains classes
and interfaces that are based on the Connected Limited Device Configuration (CLDC)
8 standard. You can find information about this package in the javadocs for the
java.util.logging package provided with the CLDC 8 standard.

Note: The Mobile Designer version of java.util.logging does not include the
LoggingPermission class.

The following table describes some limitations and differences in the Mobile Designer
version of the java.util.logging API based on platforms:

Platform Limitation or Difference

All Platforms The Logger class that Mobile Designer provides does not include
a Logger.getGlobal() method. To access the global logger, use the
following:

Logger.getLogger (Logger .GLOBAL LOGGER NAME)

Android When running applications on the Android platform, the
application uses the Java Standard Edition (Java SE) Logging
APIL. It does not use the java.util.logging package that Mobile
Designer provides.

When configuring loggers, take into consideration that the global
logger is not a root logger. The following code shows how to
obtain the root logger in the logger’s hierarchy.

Logger rootLogger = Logger.getlLogger (Logger.GLOBAL LOGGER NAME) ;

if (rootLogger.getParent () != null)
{
rootLogger = rootLogger.getParent () ;
}
i0S When running applications on the iOS platform, the application

uses the java.util.logging API that Mobile Designer provides rather
than the Java SE Logging APL The standard output for the
ConsoleHandler class is console in Xcode.

Windows When running applications on the Windows platforms, the

Phone application uses the java.util.logging API that Mobile Designer
Windows RT provides rather than the Java SE Logging APIL The standard
Windows 8 output for the ConsoleHandler class is output in Visual Studio.

Using webMethods Mobile Designer Version 9.10 81

Coding a Mobile Application

Platform Limitation or Difference

Phoney When running applications in the Mobile Designer Phoney
utility, the application uses the Java SE Logging APL. It does not
use the java.util.logging package that Mobile Designer provides.

DateFormat API

Mobile Designer provides an API to allow access to the internal date formatting logic of
the mobile platform. This is provided through the com.softwareag.mobile.md.text.DateFormat
class. Methods are provided to format a java.util.Date as a String conforming to a given
format, and to parse Strings with a specified format back to Date Objects.

Registering Applications for Data Sharing (custom URIs and
MIME-types)

Many mobile operating systems now allow the developer to register applications to
handle certain URI schemas, or file types. Mobile Designer provides a mechanism to
define these registrations. Applications may register themselves as handlers for custom
URLISs, file types, or both.

Defining Data Sharing for an Application

In order to register for Data Sharing, the Ant-task registerDataSharing is used. Definitions
should be given in the project's targets/_defaults_.xml, and look like this:
<registerDataSharing>

<entry scheme="customurl"/>

<!-- App will handle URIs starting "customurl:" -->

<entry mimeType="application/pdf"/> <!-- App will accept PDFs -->
</registerDataSharing>

If the developer wishes to just handle audio files:

<registerDataSharing>
<entry mimeType="audio/*"/> <!-- App will accept any audio -->
</registerDataSharing>

You can find a list of currently supported MIME-types for files in the section below:
"Supported MIME-types" on page 83.

If the developer wishes to just handle custom URIs:

<registerDataSharing>
<entry scheme="myurl"/> <!-- App will handle URIs starting "myurl:" -->
</registerDataSharing>

Using webMethods Mobile Designer Version 9.10 82

Coding a Mobile Application

Handling Data Sharing Events

When the application is asked by the OS to handle data sharing, either
Application.onStartAppFromURL(String scheme, String url) or Application.onStartAppFromFile(String
mimeType, String absolutePath) will be called. These calls react to user interaction coming
from outside the application, and may occur at any point in the application's lifecycle.

The default implementations of onStartAppFromURL() and onStartAppFromFile() will store the
incoming data and allow it to be queried through getters in the base Application class.

Alternatively, it is possible to override onStartAppFromURL and onStartAppFromFile from

a class that extends Application. Doing so will ensure that the application is notified
directly. At this point, standard Java classes are available for use. If the application has
been started by the OS, then onCreateMainWindow() on the NativeUI side will not have been
called yet.

Note: If the getter functionality in Application is still required, then it is vital that
any overriding method for onStartAppFromURL() or onStartAppFromFile() calls
super.onStartAppFromURL() or super.onStartAppFromFile(), respectively.

Supported MIME-types

The following is a list of MIME-types recognised by Mobile Designer, when defining the
type of content that can be handled.

Note: In case of wild-cards (e.g. audio/*), the mobile Operating System underneath
will likely have more specific MIME-types, that can be defined to narrow the
range of file types associated with the application.

application/octet-stream

application/pdf

application/vnd.ms-excel

application/vnd.ms-powerpoint
application/vnd.openxmlformats-officedocument.presentationml.presentation
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
application/vnd.openxmlformats-officedocument.wordprocessingml.document
application/x-zip-compressed

application/zip

application/zip-compressed

audio/*

image/*

Using webMethods Mobile Designer Version 9.10 83

Coding a Mobile Application

B multipart/x-zip
B text/*

m video/*

Creating and Using Code Libraries

If there are parts of your codebase that you use repeatedly, rather than copy the

code into multiple mobile application projects, you can create a library that you can
reference in your mobile applications. To create a library, you precompile the parts of
your codebase that you want to reference into separate libraries. Building a library of
frequently-used code allows you to avoid repeated cross compilation of the code you
add to the library and speeds up development.

Building a Library that You Want to Reference in Other Projects

For an example of a sample library project, see the Library JSON (_Library]SON_)
sample project, which you can find in the following directory:

Mobile Designer_directory/Samples

In a library project, the build.xml file references a libtargets.xml file rather than a
targets.xml file. Additionally, to compile, use the +Library-Build Ant task rather than the
+Multi-Build Ant target.

Important: Be sure to precompile your library for each target platform with which you
want to use the library.

To successfully activate an application project that references a library
project, you must build the J2ME libraries in the referenced library project
first.

To build a library

1. Start a new project, or you can import and clone the provided Library JSON sample
project. For more information, see "Creating a New Mobile Application Project” on
page 65.

Note: To clone the project, use the Clone-Project Ant target.

2. Use the +Library-Build Ant task to compile the codebase.

a. In the Project Explorer view, expand the project, and drag the build.xml file to
the Ant view.

b. In the Ant view, double-click +Library-Build to launch the Library Build dialog.

c. Inthe Library Build dialog, select the platforms for which you want to build the
library.

Using webMethods Mobile Designer Version 9.10 84

Coding a Mobile Application

The +Library-Build Ant task compiles the library code into the libraries for the chosen
platforms and places the result in a library in the Builds folder.

Referencing a Library

After you have created a library, you can reference the library in a mobile application
project. You must also add the project.library.name and project.library.path
properties to your mobile application project. To apply the setting to all targets, set the
property in the project’s _defaults_.xml file. To apply the setting to a specific target
device, set the property in the target file for that device, target_name .xml.

Property and Description

project.library.name

Specifies the name of one or more libraries that the mobile application references.
Use a semi-colon delimited list to specify multiple libraries.

Example value:

_LibraryJSON

project.library.path

Specifies the path to one or more Builds folders where the precompiled libraries
reside for each platform. Use a semi-colon delimited list to specify multiple libraries.

Example value:

$ (env.MOBILE DESIGNER}/Samples/ LibraryJSON /Builds/0.0.0

When running the +Multi-Build Ant target for the project, Mobile Designer will
automatically inject any references as required in the build process for each target
platform to enable it to build and run.

For an example of referencing a library that you create using the +Library-Build Ant task,
see the NativeUI JSON (_NativeUIJSON_) sample project, which you can find in the
following directory:

Mobile Designer_directory/Samples

Linking to External (3rd Party) Native Libraries/Frameworks

It is possible to link an application to an external native library, or framework, by

using the addExtraLibs ant task. This task may be used in _defaults_.xml, or the individual
handset targets themselves. For the element <addExtraLibs> setting the platform attribute

is mandatory. Inside this tag, libraries can be defined using the <library> tag. A name
attribute is mandatory, and points to the name of the library or framework to be used. It
must end with the correct file extension: .framework for a framework, .dylib for a dynamic
library, and .a for a static library.

Using webMethods Mobile Designer Version 9.10 85

Coding a Mobile Application

i0OS

Note: Under iOS, a static library should be built as a fat version. This file should
contain code for all the required architectures.

<addExtralLibs platform="ios-app">

<library name="MobileCoreServices.framework"/> <!-- using default path for

Frameworks —-->

<library name="Twitter.framework"/>

<library name="1libz.1.2.5.dylib"/> <!-- using default path for libraries -->
</addExtralLibs>

Here, the default paths are used to import libraries. These default paths are determined
by the current SDK being used for compilation, the device architecture and the target
build type. For iOS applications using an iOS 8.3 SDK, the default paths are:

For the Simulator
m Frameworks:

/Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator8.3.sdk/
System/Library/Frameworks

m Libraries:

m /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator8.3.sdk/
usr/lib

B /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator8.3.sdk/
usr/include

For iOS 8.3 on devices
m Frameworks:

/Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneOS.platform/Developer/SDKs/iPhone0S8.3.sdk/Developer/SDKs/
iPhoneSimulator.sdk/System/Library/Frameworks

m Libraries:

B /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneOS.platform/Developer/SDKs/iPhone0S8.3.sdk/Developer/SDKs/
iPhoneSimulator.sdk/usr/1lib

B /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneOS.platform/Developer/SDKs/iPhone0S8.3.sdk/Developer/SDKs/
iPhoneSimulator.sdk/usr/include

The location of the default paths cannot be altered, but custom paths for libraries and
includes may be specified using the libPath and includePath attributes. Static libraries will

Using webMethods Mobile Designer Version 9.10 86

Coding a Mobile Application

be used if they have their libPath and includePath set directly, or if they are stored in a
location pre-configured as a search path within Xcode.

It is also possible to import libraries from custom locations using the optional libPath and
headerPath.

<addExtralLibs platform="ios-app">

<!-- use a custom path for libraries-->
<library name="MyTestLib.1l.2.dylib" libPath="/Users/libs" headerPath="/
Users/include"/>
<library name="MyStatictLib.1l.2.a" libPath="/Users/libs" headerPath="/
Users/include" />

</addExtralLibs>

The libPath attribute gives the location of the actual library/framework file itself, and the
headerPath gives the location of any header files that can be used for compilation.

Note: Both the libPath and headerPath attributes must currently be a full path (e.g. /
Users/MyName/project/path/to/libs), not relative paths.

Android

For the platform setting, Android libs need to use the value android-apk, and specify jar files
for the <library> sub-elements. It is possible to refer to jar files directly inside the Android
SDK's platform folders by just specifying the name attribute, or give the name of a folder
via libPath to specify a custom location for a library. Example:

<addExtralibs platform="android-apk">
<library name="SomeDefaultLib.jar"/>
<!-- Library will be found in appropriate sdk/platforms/android-X folder,
where X is the current API level -->
<library name="MyCustomLib.jar"
libPath="C:/path/to/custom/libraries" />
<!-- a jar in a custom location -->
</addExtralLibs>

Using System.getProperty to Obtain Device Information

You can use the Java System.getProperty(String) method to return system information for the
device on which your application is running. The table below lists properties that you
might find useful.

When invoking the Java method, supply the property name as the String input variable.
For example, if you want to use the mobiledesigner.device.name property, invoke
the following:

System.getProperty ("mobiledesigner.device.name")

Property and Description

mobiledesigner.device.firmware

The System.getProperty method returns information that identifies the firmware of the
device.

Using webMethods Mobile Designer Version 9.10 87

Coding a Mobile Application

Property and Description

If you are running the application in Phoney, the System.getProperty method returns
the full Mobile Designer version number including the build number, for example,
“9.5.1.2.344".

mobiledesigner.device.name

The System.getProperty method returns information that identifies the device
hardware, for example, “iPhone4S”.

If you are running the application in Phoney, the System.getProperty method returns
“Phoney”.

mobiledesigner.device.uid

The System.getProperty method returns information that uniquely identifies the
specific device on which the application is running. This is typically a unique
String.

mobiledesigner.display.ppi

The System.getProperty method returns the resolution of the device’s screen in pixels
per inch, for example, “240”.

mobiledesigner.display.scaling.percent

The System.getProperty method returns a percentage value that you can use to
determine the physical size of a screen.

Some Windows devices provide a virtual screen size that is not equal to the
number of physical pixels in the device's display. In this case, the operating system
automatically scales the content to fit. Use this property to obtain a percentage
value that indicates the scaling factor to apply to the device's reported width and
height values to get the actual physical size of the screen in pixels.

This property is supported for Windows 8, Windows RT, and Windows Phone 8.

mobiledesigner.domain.availability:domain name

The System.getProperty method returns whether the device can connect

to the domain specified by domain name. For example, if you want to
determine whether the device can connect to www.softwareag.com, use
mobiledesigner.domain.availability:www.softwareag.com.

The return values are one of the following:
B true if the device can connect.

B false if the device cannot connect.

Using webMethods Mobile Designer Version 9.10

88

Coding a Mobile Application

Property and Description

mobiledesigner.locale

The System.getProperty method returns the language the device is currently
configured to use. The language is returned in the following format:

language COUNTRY
where:
m language is the two-character, lowercase language code defined by ISO 639.

B COUNTRY is the two-character, uppercase country code defined by ISO3166.

Note: In some circumstances, the country code might not be returned, for
example, if the device does not grant access to the country information.
In these circumstances, only the two-letter language code is returned, for
example, “en”.

mobiledesigner.online.availability

The System.getProperty method returns whether the device is connected to a network.

The returned information is one of the following;:

m If the device is not connected to a network, the method returns “false”.

m If the device is connected to a network, the return information is in the following

format:
true:method

For example, if the device is connected to WiFj, the return information is
“true:wifi”.

If the network interface details are not specified, method is “unknown”, for
example, “true:unknown”.

mobiledesigner.platform

The System.getProperty method returns the platform for the device. The platform
name that the System.getProperty method returns matches how Mobile Designer lists
platforms, for example, “Android”, “iOS”, or “WinPhone”.

If you are running the application in Phoney, the System.getProperty method returns
the name of the platform you are simulating in Phoney.

mobiledesigner.device.push.id

If the application is set up to use Push Notifications, then at application start, the
runtime will ask the handset's operating system to give a unique ID that can be
used to identify this phone and register it with a server for push notifications. The
String returned for mobiledesigner.device.push.id will be an appropriate

Using webMethods Mobile Designer Version 9.10

89

Coding a Mobile Application

Property and Description

representation of that unique ID. If an error has occurred, or push notification is not
enabled, this value will be null.

mobiledesigner.device.push.error

If the application encounters an error when attempting to get the unique ID for
mobiledesigner.device.push.id on startup, the handset's OS may return one or
more error messages. In this case, mobiledesigner.device.push.error will be
populated with the last error message returned. These will likely be of a technical
nature, and may or may not be localised for the user's current language, depending
on the handset's OS.

mobiledesigner.android.display.dpi.class

Provides a DPI value based on the screen's display class. This will not follow the exact
DPI of the device, but will give a value equivalent to a typical device in this class,
be it low, medium, high, xhigh, etc. density. The values returned are based on the scaling
factor given in Android's DisplayMetrics.density as applied to a 160 DPI screen. So, a
device with relatively high DPI may have a DisplayMetrics.density value of 2.5, and
therefore return a value of 400 (160 *2.5) for the DPI class.

mobiledesigner.android.display.capabilities

Will output a String enumerating some of the capabilities for the device. For now,
the expected format of this string is <screenlayout_size_category>|<display_is_long>.

This String may expand to include more data later, and will continue to use

the pipe character "|" as a separator between fields. The values returned are

based on information obtained from the android.content.res.Configuration class. For

the <screenlayout_size_category>, current possible return values are SIZE_SMALL,
SIZE_NORMAL, SIZE_LARGE,SIZE_XLARGE and SIZE_UNKNOWN. For the <display_is_long>
category, possible return values are LONG_YES, LONG_NO and LONG_UNDEFINED. A
typical handset may return SIZE_XLARGE|LONG_YES.

Creating the User Interface

To create the user interface for your mobile application, use the Mobile Designer Native

User Interface. For more information, see the webMethods Mobile Designer Native User
Interface Reference.

Using webMethods Mobile Designer Version 9.10

90

Adding Devices to a Mobile Application Project

10 Adding Devices to a Mobile Application Project

m Devices that a Mobile Application SUPPOISccceviiieeiiccee e 92
B Adding a Device t0 @ PrOJECT ..ot 92
m Updating an Existing Device Profile in the Device Databasecccccovvvvvieecieiccscccce, 94
m Determining Device Settings by Running the Device Profiler ..., 95
m Adding a Device Profile to the Device Databasesccccouvreerinnieinienssseseeseeees 101
m Testing Settings in @ Device Profile ..o 103

Using webMethods Mobile Designer Version 9.10 91

Adding Devices to a Mobile Application Project

Devices that a Mobile Application Supports

Mobile Designer has a device database that provides device profiles for many devices.
You are encouraged to use the more generic devices and code for multi-resolution apps.

The device profiles are located in the following directory:
Mobile Designer_directory/Devices

In your mobile application project, you reference the subset of the devices your mobile
application project will support. The project’s target folder contains an XML file for each
device that your mobile application supports. Mobile Designer creates the XML file and
adds it to the project’s target folder when you execute the Add-Handset Ant target to
add a device to your project. You can add a device to your project at anytime during the
development phase. For more information, see "Adding a Device to a Project” on page
92.

If needed, you can change the settings that Mobile Designer provides in a device profile
by executing the +Add-Update-Handset Ant target. For more information, see "Updating an
Existing Device Profile in the Device Database" on page 94.

If you want an application to support a device for which Mobile Designer does not
provide a device profile, you can add a device profile to the Mobile Designer device
database. To do so, you first use the Device Profiler sample application to determine
the settings for the device. After you determine the settings, you execute the +Add-
Update-Handset Ant target to manually add the device profile. For more information,
see "Determining Device Settings by Running the Device Profiler" on page 95 and
"Adding a Device Profile to the Device Databases" on page 101.

Adding a Device to a Project

To add a device to a mobile application project, execute the Add-Handset Ant target from
your project. When adding the device, you associate the device with a language or
language group.

The Add-Handset Ant target adds an XML file for the device to your project’s targets
folder. The following is a sample of the target XML file:

<?xml version="1.0" encoding="UTF-8"?>

<project>

<property name="project.handset.AND generic Android3xAPI.langgroups" value="EFIGS"/>
<property name="project.handset.AND generic Android3xAPI.mobiledesigner.handsetgroup"”
value="AND generic Android3xAPI"/>

<target name="-Project.Handset.AND generic Android3xAPI">

<!-- properties, parameters and paths -->
<!-- Load the global info for this project and the Mobile Designer ==
<!-- handset group ==>

<call-mobiledesigner-handset-target handset="${selected.handset}"/>
</target>
</project>

Using webMethods Mobile Designer Version 9.10 92

Adding Devices to a Mobile Application Project

To add a device to a project
1. In Software AG Designer, open the project’s build.xml file in the Ant view.

a. In the Project Explorer view, locate the project to which you want to add a
device.

b. Expand the project and drag its build.xml file to the Ant view.

If the Ant view is not open, for instruction, see "Displaying the Ant View" on page
65.

2. In the Ant view, double-click Add-Handset.
Mobile Designer displays an Add Handset dialog.

3. In Add Handset dialog, select the platform on which the device runs from the
Platform Filter list.

4. Select the manufacturer that makes the device from the Manufacturer Filter list.

When you select a valid platform and manufacturer combination for which Mobile
Designer has a device profile, Mobile Designer populates the Choose your handset list
and displays a default device name in the Reference Name field.

If Mobile Designer does not have a device profile for the platform and manufacturer
combination you specified:

®m Ensure you are specifying the information correctly by reviewing the information
in the following directory to determine the names of supported devices and
platforms:

Mobile Designer_directory/Devices

m If the device you want is not available, you can add a new device profile for the
device. For more information, see "Determining Device Settings by Running
the Device Profiler" on page 95 and "Adding a Device Profile to the Device
Databases" on page 101.

5. Select the device you want to add to the project from the Choose your handset list.

6. Accept the default name in the Reference Name field or update it if you want to use
another name.

7. In Language Groups, type a semicolon-separated list of language groups to specify
the languages that your mobile application will support for the device. You define
language groups using the project.langgroup.group_name property.

For example, if you have defined the language groups europe and asia and want to
specify those language groups, use the following:

europe;asia

8. Click Add Handset.

Using webMethods Mobile Designer Version 9.10 93

Adding Devices to a Mobile Application Project

Updating an Existing Device Profile in the Device Database

You can update the settings in an existing device profile by executing the +Add-Update-
Handset Ant target, also known as the Profile Updater. When you update an existing
device profile in the Mobile Designer device database, the +Add-Update-Handset Ant target
modifies the XML profile file in the following directory:

Mobile Designer_directory/Devices

Note: This procedure describes how to use the +Add-Update-Handset Ant target to
update a device profile. If you want to add a new device profile for a device,
see "Determining Device Settings by Running the Device Profiler" on page
95 and "Adding a Device Profile to the Device Databases" on page 101.

To update an existing device profile
1. If the Device Profiler project is not in Software AG Designer, import the project.

a. In Software AG Designer select File > Import> General > Existing Projects into
Workspace, and then click Next.

b. In Import Projects, click Browse and select the project source directory of the
project you want to clone.

The source code for the Device Profiler sample application is in the following
directory:

Mobile Designer_directory/Samples/_DeviceProfiler_
c. Click OK, and then click Finish.
2. Open the Device Profiler project’s build.xml file in the Ant view.
a. In the Project Explorer view, locate the Device Profiler project.
b. Expand the project and drag its build.xml file to the Ant view.

If the Ant view is not open, for instruction, see "Displaying the Ant View" on page
65.

3. In the Ant view, double-click +Add-Update-Handset.

4. In the Choose Handset dialog, select the device profile you want to update from the
Edit an existing handset list.

5. Click Update.

The +Add-Update-Handset Ant target displays the Update Handset Information dialog,
which displays the default settings for the device and any device-specific overrides.

6. Inthe Update Handset Information dialog, for each parameter or property you want
to update, type a value in the Handset Override column.

Using webMethods Mobile Designer Version 9.10 94

Adding Devices to a Mobile Application Project

Note: You can also specify the values for the properties used in the Java run-
time code, such as the obfuscator to use, the MIDlet-icon size, and the
maximum JAR size.

7. Optionally, in Comments field, type a explanation for the change.
8. Click Update Handset Information.

The Console view indicates whether the update was successful or failed.

Determining Device Settings by Running the Device Profiler

If you want your mobile application project to support a device for which Mobile
Designer does not have a device profile, you can add a device profile. To do so, you
must first determine the settings for the device. To determine the settings, use the Mobile
Designer Device Profiler sample application and run it on the device.

After using the Device Profiler to determine the settings, execute the +Add-Update-Handset
Ant target to add a device profile for a device. For more information about executing the
+Add-Update-Handset Ant target, see "Adding a Device Profile to the Device Databases" on
page 101.

The _DeviceProfiler_ project uses the Mobile Designer build process, but does not use
the Mobile Designer run-time code.

Mobile Designer provides the source code and build process for the Device Profiler.
However, you might need to modify and recompile the application to work on a specific
device. For example, the Device Profiler contains tests to determine whether certain
APIs and functions are present on a device. However, some devices perform a pre-
installation check on the contents of an application bundle, and if the device check finds
references to classes it does not implement, the device will not allow the installation

of the application. The Device Profiler has parameters that you might need to alter to
disable features that prevent the Device Profiler application from working on a given
device.

To run the Device Profiler to determine settings for a device
1. If the Device Profiler project is not in Software AG Designer, import the project.

a. In Software AG Designer select File > Import> General > Existing Projects into
Workspace, and then click Next.

b. In Import Projects, click Browse and select the project source directory of the
project you want to clone.

The source code for the Device Profiler sample application is in the following
directory:

Mobile Designer_directory/Samples/_DeviceProfiler_
c. Click OK, and then click Finish.

Using webMethods Mobile Designer Version 9.10 95

Adding Devices to a Mobile Application Project

2. Update the Device Profiler code to provide a mobile phone number that the Device
Profiler can use for testing SMS messaging capabilities. When you run the Device
Profile, during the SMS Test, the Device Profiler attempts to send a text message to
the mobile number you provide.

a. In the Project Explorer view, expand the following to access the
TestWirelessMessaging class:

src > runtime-sms_test

b. In the runtime-sms_test folder, double-click TestWirelessMessaging.java to open
it.
c. Inthe TestWirelessMessaging.java file, locate the following lines:

// TODO: FILL IN THIS PHONE NUMBER OF WHERE TO SEND THE SMS
public String phone number = null;

d. Set a phone number for the phone number String. For example:

// TODO: FILL IN THIS PHONE NUMBER OF WHERE TO SEND THE SMS
public String phone number = "202-555-1234";

e. Save your changes.

3. Open the Device Profiler project’s build.xml file in the Ant view.
a. In the Project Explorer view, locate the Device Profiler project.
b. Expand the project and drag its build.xml file to the Ant view.

If the Ant view is not open, for instruction, see "Displaying the Ant View" on page
65.

4. In the Ant view, double-click +Multi-Build to launch the Multi Build dialog.
5. In the Multi Build dialog, select the DefaultDevice.

The Device Profiler project comes with this one device profile, DefaultDevice. The
+Multi-Build Ant task cross compiles for the target platform, for example, Android or
iOS, so that you can run the Device Profiler on the target device.

6. After building the Device Profiler, install and run it on the new target device.

You can alter the settings for any particular build. Additionally, several settings
are available using the ++Activate-Handset or the +Multi-Build JPanel to enable or disable
features of the test suite when these features cause installation problems.

If the device has problems displaying the screen at startup or on recovering from an
interrupt, you might need to set the MD BASE CALL SERVICEPAINTS parameter to
false for the device and recompile.

The Device Profiler requires that you perform manual steps that require your input.
Select the <SUMMARY> option on the main menu to get a list of all the settings that
the device requires. On the main menu, the Device Profiler denotes completed tests
using an asterisk (*).

Using webMethods Mobile Designer Version 9.10 96

Adding Devices to a Mobile Application Project

For details on the Device Profiler tests you need to perform, see "Device Profiler
Tests to Determine Device Settings" on page 97.

Device Profiler Tests to Determine Device Settings

The following lists the Device Profiler tests you need to complete to determine the
settings for a device.

Keypresses

On loading the Device Profiler, you are asked to perform the keypress test to define the
keys the device has and also to define the keys being used for navigation in the Device
Profiler application itself. This test checks for:

® Up, Down, Left, Right
Action button (Fire)

0-9 numerical keys

Back and Forward softkeys
(pound)

* (asterisk)

When asked to press a key:
m If the device has the key you are asked to press, press that key.

®m If a device does not have a key that you are asked to press, simply press a previously
defined key, for example, 0, to skip this test.

Caution: If you press a new key, one that you have not previously defined, the
application assumes you are identifying that key to be the one the test is
trying to define.

m If the device does not have a keypad, wait 5 seconds for the Device Profiler to
continue to the main menu.

You might need to perform the keypress test again after you have configured the correct
canvas in order to detect the key code values for the soft keys.

If you find that different firmware for the same device returns different keypress values,
when you add the device profile using the +Add-Update-Handset Ant task, you can enter a
comma-delimited list of values so that mobile applications that use this device will work
on all versions of the device.

Touchscreen

Although there is no specific touchscreen test, the Device Profiler should automatically
enable touchscreen support if it determines touchscreen support is needed.
Alternatively, simply tap the screen, and if the particular device is touchscreen enabled,
the Device Profiler should detect the touchscreen functionality. When touchscreen

is enabled, the Device Profiler displays a 3x3 grid in the background of each screen.
Tapping in the top, bottom, left and right squares emulates up, down, left and right keys

Using webMethods Mobile Designer Version 9.10 97

Adding Devices to a Mobile Application Project

being pressed in the Device Profiler, while tapping in the center square emulates the fire
key being pressed.

Canvas

The Canvas test sets the screen area for an application. For the Canvas test you choose
the canvas that provides the most-usable screen area. Additionally, on some devices,
you can manually alter the screen size beyond what the device returns to enable
drawing outside of the indicated screen region.

System Font

The System Font test allows you to detect the best font to use on the device, and any
adjustments that need to be applied when using it. Use Up and Down to cycle through
the various options that you can change, with Left and Right changing the settings for
each one.

Gfx Speed

The Gfx Speed test does not require user interaction. However, it is best to tap one of
the device keys or the screen every few seconds to keep the phone from entering the
screen saver mode because the screen saver mode might compromise the metrics that
the Device Profiler is recording.

Keypress2

Sometimes a device needs an application to regularly call a threading sleep or wait so
that the device can perform its other activities in the background. A normal indication
that a device is not calling a threading sleep or wait when it needs to is that the
application might run slow or keypresses might seem to lag. Use the Keypress2 test to
adjust the sleep time per update to achieve the best keypress response time and frame
rate.

Sprite Width

The Sprite Width test allows you to indicate whether transparent images with odd pixel
widths display properly. For this test, the Device Profiler displays two images. You
indicate whether the two images are the same.

Interrupts

The Interrupts test defines how to detect interrupts for the device. For this test, the
Device Profiler prompts you to perform various interrupts.

Press the Fire key to initiate an interrupt test. The Device Profiler will not detect the
interrupt if you do not press the Fire key. For each interrupt:

m If the interrupt is intrusive, press the key that the Device Profiler indicates.

Caution: During this test, only press the keys that the Device Profiler indicates.
Some devices use incoming key codes as indicators of certain interrupts.

Using webMethods Mobile Designer Version 9.10 98

Adding Devices to a Mobile Application Project

® If the interrupt is non-intrusive, such as an incoming SMS resulting in an audio cue,
press Right to skip a test.

m If the interrupt is irrelevant to the device, such as receiving a phone call on a non-
mobile device, press Right to skip the test.

If you find a device does not detect a particularly intrusive interrupt through these
tests, it might be worth trying some tests in the run-time code of the Device Profiler to
determine whether other detection methods might work instead. If you find something
new that works, contact Software AG can be applied to all other devices.

LCDUI Softkeys

The LCDUI Softkeys test defines LCDUI soft key functionality for the device. The Device
Profiler application switches to MIDP1.0 canvas mode for this test. If the soft keys are
not displaying as expected, you can alter the LCDUI soft key parameters. By using the
soft keys themselves, you should be able to test the following soft key scenarios:

m Test 0: FWRD soft key
®m Test 1: Both BACK and FWRD soft keys
m Test 2: BACK soft key

RotCanvas

The RotCanvas test determines whether a user of the device can rotate the screen and
whether the rotation is detected at run time. If the user can rotate the screen, the Mobile
Designer run-time code detects the screen size for this device on each update cycle. The
Resource Handler uses the information about the standard screen dimensions.

Softkeys2

The Softkeys2 test determines whether the device detects LCDUI soft keys with the
selected canvas. If the device does detect the soft keys, applications can use the soft keys
to minimize screen intrusion.

Vibrate

The Vibrate test determines whether the device has a vibration feature. The Device
Profiler attempts to execute the vibration feature and then prompts you to indicate
whether the device physically vibrated or not (basically we don't want to assume that
just because the device API claimed it worked that it actually did).

Backlight

The Backlight test determines whether the backlight can be kept on continuously. The
Device Profiler requires you to provide input to adjust and confirm the backlight timing.

Using webMethods Mobile Designer Version 9.10 99

Adding Devices to a Mobile Application Project

Transforms

The Transforms test determines whether the run-time image transforms work as
expected. The transforms are displayed in the repeating order, as shown in the following
image:

The Device Profiler prompts you to compare the images it displays to the reference
image shown above.

Browser Launch

The Browser Launch test determines whether the device can launch its Web Application
Protocol (WAP) or Web browser successfully.

Caution: This test can crash the device or Device Profiler. Ensure that you have saved
all test results so far.

SMS Test

The SMS test determines whether the device can send an SMS message.

Note: Before you build the Device Profile project, you need to update its
TestWirelessMessaging class to set a mobile phone number for the phone number
String. The Device Profiler attempts to send a text message to the mobile
number you provide, and you verify whether the SMS message was
successfully sent.

Audio

The Audio test performs several audio checks that prompt for user feedback to
determine the best format on the device, whether a piece of sound plays, and whether
the volume is configurable. The test also determines the best volume at which to play a
sound, as well as a few other minor tests.

In the Mobile Media API for]2ME, there are audio parameters that Mobile Designer
cannot identify by running the Device Profiler. If the audio does not work properly,
you need to manually set these parameters in Mobile Designer for the device using the
procedure described in "Updating an Existing Device Profile in the Device Database" on
page 94. The following are the parameters to update:

B MD SOUND JSR135 MAX PREFETCHED PLAYERS is set to 1 by default. This parameter
determines how many player objects are in a pre-fetched state at any one time.

Using webMethods Mobile Designer Version 9.10 100

Adding Devices to a Mobile Application Project

B MD SOUND JSR135 CLEAN PLAYER AFTER PLAYING is set to false by default. This
parameter de-allocates or ends the sound when it has finished playing.

B MD SOUND JSR135 CLEAN PLAYER IF STOPSOUND is set to false by default. This
parameter de-allocates or ends a sound when it is stopped.

B MD SOUND JSR135 DELETE PLAYERS is set to false by default. This parameter
deletes player objects when no longer in use. Some devices might need to retain the
player for future use.

B MD SOUND JSR135 DONT INTERRUPT PLAYING issetto false by default. This
parameter prevents audio from starting when audio is already playing.

B MD SOUND JSR135 IGNORE STOPSOUND is set to false by default. This parameter
ignores any attempts by the application code to force a sound to stop.

B MD SOUND JSR135 KILL IF START WHEN PREFETCHED is setto false by default.
This parameter clears a player object if the application tries to start it when the
player is in its pre-fetched state.

B MD SOUND JSR135 LOADSOUND CREATES PLAYER issetto false by default. This

parameter ensures that the player object is created when the sound resource is
loaded.

Adding a Device Profile to the Device Databases

After you determine the settings for a device by running the Device Profiler, you can
use the device settings to manually add a new profile for a device. To add a new device
profile, execute the +Add-Update-Handset Ant target, also known as the Profile Updater.
The +Add-Update-Handset Ant target adds the new device to the Mobile Designer device
database by creating an XML file for the device in the following directory:

Mobile Designer_directory/Devices

Note: After adding the device to the Mobile Designer device database:

B You might want to test the settings. For more information, see "Testing
Settings in a Device Profile" on page 103.

® If you want to build an application for the device, add the device to the
project. For more information, see "Adding a Device to a Project" on page
92.

Note: This procedure describes how to use the +Add-Update-Handset Ant target to add
a new device profile. If you want to update an existing device profile, see
"Updating an Existing Device Profile in the Device Database" on page 94.

To add a new device profile

1. If the Device Profiler project is not in Software AG Designer, import the project.

Using webMethods Mobile Designer Version 9.10 101

Adding Devices to a Mobile Application Project

a. In Software AG Designer select File > Import> General > Existing Projects into
Workspace, and then click Next.

b. In Import Projects, click Browse and select the project source directory of the
project you want to clone.

The source code for the Device Profiler sample application is in the following
directory:

Mobile Designer_directory/Samples/_DeviceProfiler_
c. Click OK, and then click Finish.
Open the Device Profiler project’s build.xml file in the Ant view.
a. In the Project Explorer view, locate the Device Profiler project.
b. Expand the project and drag its build.xml file to the Ant view.

If the Ant view is not open, for instruction, see "Displaying the Ant View" on page
65.

In the Ant view, double-click +Add-Update-Handset.

In the Choose Handset dialog, type a name for the new device profile in the Add a
new handset field.

When specifying the name, use the Mobile Designer naming convention for a device
profile. The naming convention is the following;:

platform _manufacturer _model

where:

m platform represents the platform
®m manufacturer represents the manufacturer
m model represents the model name

For example, the name of the device profile for the AOC Android Breeze is
AND_AOC_Breeze . AND represents the Android platform; AOC represents the
manufacturer AOC, and Breeze represents the model.

To view samples of existing profile names, review the names in the Choose your
handset list.

Click Add.
The +Add-Update-Handset Ant target displays the Update Handset Information dialog.

In the Update Handset Information dialog, select each parameter or property and
enter the value for the device in the Handset override column. For the value, use the
information you determined when running the Device Profiler.

Optionally, in Comments field, type a comment for the new device profile.

Click Update Handset Information when you have completed the device profile.

Using webMethods Mobile Designer Version 9.10 102

Adding Devices to a Mobile Application Project

Testing Settings in a Device Profile

After adding a new device profile to Mobile Designer using the Add-Handset Ant target,
you might want to test the settings. To do so, run the NativeUI Demo and Function
Demo sample projects, which are provided with Mobile Designer, on the device to
ensure those applications work correctly.

To run the sample applications on the device, first build the applications for the device
using the +Multi-Build Ant task. For instructions, see "Building a Project for Multiple Target
Devices" on page 143. Install the resulting builds for testing.

If needed, you can execute the Add-Handset Ant target again to alter device settings,. For
instructions, see "Updating an Existing Device Profile in the Device Database" on page
924,

Using webMethods Mobile Designer Version 9.10 103

Using webMethods Mobile Designer Version 9.10 104

Defining Resources for a Mobile Application Project

11

Defining Resources for a Mobile Application Project

About the ReSOUrce HANGIET ... e 106
Coding the ReSoUrCe HaNAIEr ..o 106
Storing Resource Files for the ProjeCt ... 110
Splash Screens for APPlICALIONScoriiciirricer e 110
Setting Project Properties for the Resource Handlerccccvviecciieiccsieccce e, 112
Managing Memory for Your Resource Handler and RESOUICEScocvveerriiicreinniieicicinennn, 113
Accessing Resources in Your Application COdEccccvvicveveieiiiiccecssee e, 114
Compiling Resources Using the +Run-Reshandler Ant Targetcoovveeniiiecnesiiecenns 115

Using webMethods Mobile Designer Version 9.10 105

Defining Resources for a Mobile Application Project

About the Resource Handler

Each project requires its own resource handler that you code. The goals of the resource
handler are to:

B Define all the resources to include with your mobile application, such as graphics,
text, icons, and sounds.

m Set parameters that define the identifiers for resources, text lines, menus, and
resource blocks. Mobile Designer includes the parameters in the Parameters.java.
For more information about the Parameters class, see "Application and Parameter
Classes" on page 72.

For information about how to code the resource handler for your project, see "Coding
the Resource Handler" on page 106.

You also must store the resource files that your project requires, for example image
files, text files, and audio files. Store the resource files in a location within your project’s
folder. For more information, see "Storing Resource Files for the Project" on page 110.

When building your project, Mobile Designer runs your project’s resource handler
before it compiles the run-time code. To let Mobile Designer know about the resource
handler, for example, the name and location of your resource handler code and the
location of your resource files, you set project properties. For more information, see
"Setting Project Properties for the Resource Handler" on page 112.

After defining the resources for your project, you can use the resources in your
application code. For more information, see "Accessing Resources in Your Application
Code" on page 114.

Coding the Resource Handler

If you started your project by cloning a sample project provided with Mobile Designer,
you can update the resource handler provided in the sample to work for your
application. Alternatively, you create the resource handler from the beginning on your
own.

Resource Handler Requirements

B Your resource handler must extend com.softwareag.mobile.reshandler.ResourceHandler. This
class includes the projectResourceScript method.

® In the resource handler, include all resource handling logic that your project requires
in the projectResourceScript method.

When building your project, Mobile Designer calls the resource handler’s
projectResourceScript method.

Using webMethods Mobile Designer Version 9.10 106

Defining Resources for a Mobile Application Project

Methods that Mobile Designer Provides for the Resource Handler

Mobile Designer provides the com.softwareag.mobile.reshandler.AntTaskResourceHandler that
contains methods you can use in your resource handler.

The com.softwareag.mobile.reshandler.ResourceHandler class, which your project’s resource
handler must extend, includes the rh field that defines a link to AntTaskResourceHandler.

As a result, you can easily execute the methods in the AntTaskResourceHandler using the
following format, where method is the AntTaskResourceHandler method you want to invoke:

rh.method

For example, to use the AntTaskResourceHandleraddFile method to create a resource from a
file, use the following:

rh.addFile

The types of actions you can accomplish using methods provided by the
AntTaskResourceHandler include:

® Add resources to the project.

m Set and get IDs for resources, text lines, menus, and resource blocks.

Note: When the resource handler sets identifiers, Mobile Designer adds
corresponding parameters to the Parameters.java class. For more
information, see "Setting Parameters in the Resource Handler Code" on
page 125.

® Bundle resources into packs. For more information, see "Using Resource Blocks and
Resource Packs" on page 108.

®m Set application-specific parameters. For more information, see "Setting Parameters in
the Resource Handler Code" on page 125.

To learn about all the methods that Mobile Designer provides for a resource handler,
see information about com.softwareag.mobile.reshandler.AntTaskResourceHandler in webMethods
Mobile Designer Java API Reference.

Setup to Allow the Resource Handler and Application Code to Share Common Code

You can set up your project’s resource handler and the application code so that they
share common code. For example, the resource handler and application code might use
the same set of constant values, or you might have common code that you want to use in
both the resource handler and the application code.

To use shared common code, place the shared code in a folder within your project. Then
when defining the project.runtime.project.src.path and project.reshandler.src.path Ant paths for
your project, include <pathelement> tags to the location that contains the shared code.
For example, if you placed shared code in the project’s src/shared_code folder, you
might define Ant paths like the following in your project’s _defaults_.xml file:

<path id="project.runtime.project.src.path">

<pathelement path="${basedir}/src/core"/>
<pathelement path="${basedir}/src/shared code"/>

Using webMethods Mobile Designer Version 9.10 107

Defining Resources for a Mobile Application Project

</path>

<path id="project.reshandler.src.path">
<pathelement path="${basedir}/reshandler"/>
<pathelement path="${basedir}/src/shared code"/>
</path>

The _FunctionDemo_ sample application provides an example of this shared code setup.

Sample Resource Handler Code

You can find examples of basic and complex resource handler logic in all the samples
applications provided with Mobile Designer.

Accessing Resources in Your Application Code

Your resource handler defines the resources available to your application. For
information about how to use the resources in your application code, see "Accessing
Resources in Your Application Code" on page 114.

Using Resource Blocks and Resource Packs

You can code your resource handler to put resources into resource blocks and resource
packs.

= Resource blocks are a group of resources. For example, you might bundle splash
screens into one block, images into another block, and audio files into another block.

m Resource Packs are bundles of resource blocks.

The use of resource blocks and packs is not required. Reasons to use them might

be to save space and/or increase speed. A single larger file compresses better than
multiple smaller files. Opening one file can be faster than opening several smaller files.
However, with current devices, space and speed are no longer major issues for mobile
applications. As a result, using resource bundles and packs for reasons of space and
speed is not typically needed.

Another reason you might want to use resource blocks and packs is for better security.
When bundling resources, it is more difficult to determine names of resources and more
difficult to take malicious actions without having to rebuild the resource packs.

Defining Resource Blocks

To define resource blocks in the resource handler code, execute the startResourceBlock
method that is in the com.softwareag.mobile.reshandler.AntTaskResourceHandler class. For
information about how to use an AntTaskResourceHandler method in your resource handler,
see "Methods that Mobile Designer Provides for the Resource Handler" on page 107.

When you execute the startResourceBlock method, you assign the resource block a name.
You can assign resource blocks any name that is appropriate for your application. When
you execute the startResourceBlock method, the resource block you create becomes the
current resource block and all subsequent resources you add are included in the current

Using webMethods Mobile Designer Version 9.10 108

Defining Resources for a Mobile Application Project

block. For example, the following code sample shows how to start a resource block
named "IMAGES" and add the file "logo.png" as the resource name "res_logo.png":

public class ResHandler extends com.softwareag.mobile.reshandler.ResourceHandler
{

public void projectResourceScript ()

{

rh.startResourceBlock ("IMAGES");
rh.setResourceReadSubdirectory ("graphics"));
rh.addFile ("res logo.png", "logo.png");

}

To start a new resource block, execute the startResourceBlock method again.

Using resource blocks helps you to control the memory your application uses. When you
bundle resources into a block, you can cache the block(s) your application needs based
on the application state. In other words, your application can load and unload blocks so
that only the resources that are required for a state in your application are loaded and
therefore the application is not using valuable memory space for unneeded resources.

Important: If your resource handler bundles resources into blocks, when your
application needs to use the resources that are in a block, be sure the
application code caches the block into memory before loading its resources.

A best practice is to use the same resource blocks for all the platforms for which you
build your application. However, if the devices on which your application runs have
varying memory and you are concerned that some devices cannot keep all the resources
in memory, you might want to split your resources up in the application bundle for
compression, decompression, or run-time memory management. One approach you can
use is to bundle the blocks into packs.

Using Resource Packs

Resource packs are bundles of resource blocks. You can define several packs of different
combinations of your resource bundles. You might customize packs for each of the
devices your application supports. For example, some devices might have the memory
capacity to cache all the blocks in memory at application load time, while other devices
might only be able to cache one block at a time due to memory limitations.

To define resource packs in the resource handler code, execute the
allocateResourceBlockToPack method that is in the AntTaskResourceHandler class. When you
execute the allocateResourceBlockToPack method, you identify a resource block and specify
the identifier for a resource pack. For example, the following line of code allocates the
resource block named "IMAGES" to the pack with identifier “0”:

rh.allocateResourceBlockToPack ("IMAGES", 0);

At build time when Mobile Designer runs the resource handlers, it creates an individual
file for each resource pack that your resource handler defines. When you use resource

Using webMethods Mobile Designer Version 9.10 109

Defining Resources for a Mobile Application Project

bundles, your resource handler should define, at a minimum, at least one resource
pack that contains all the resource bundles. If a block is not included in a pack, Mobile
Designer saves that block’s resources as individual resources in the final binary.

The resource packs you define in your resource handler are transparent to your
application code. When Mobile Designer runs the resource handler, it keeps a record of
each resource pack along with the blocks that the pack contains. It also keeps track of the
resources that are in each block. When your application code loads a resource block into
memory, Mobile Designer determines the appropriate pack to load for that block. As a
result, you can customize the packs for each device your application supports without
being concerned about altering your application code.

Storing Resource Files for the Project

Save the files that contain the resources that your project uses in a folder within your
project. You can set up any structure that is appropriate for your application.

The following shows an example setup for a project named "MyProject":

MyProject
resources
audio
icons
graphics
text

In this example, all the resource files are stored within the "resources" folder. The
"resources" folder has subfolders for the different types of resources.

Splash Screens for Applications

When defining the resources for your application, you should include a splash screen
image. A splash screen image is a static image that a device displays when the user
launches the mobile application. The purpose of the image is so that the user can see that
the application is starting while the application initializes its initial window and views.

The requirements for splash screen images differ based on the platform on which the
application is running.

Android Splash Screen Requirements

Use of splash screen images is discouraged except for game applications that require
lengthy times to load.

For more information, refer to the Android developer website, http://
developer.android.com/design/patterns/help.html#your-app.

Using webMethods Mobile Designer Version 9.10 110

http://developer.android.com/design/patterns/help.html#your-app
http://developer.android.com/design/patterns/help.html#your-app

Defining Resources for a Mobile Application Project

iOS Platform Splash Screen Requirements

Use of splash screen images is required.

The Asset Catalog is used to manage these images. For details, see the information on
launch images on the Apple developer website at https://developer.apple.com/library/
ios/recipes/xcode_help-image_catalog-1.0/Recipe.html.

You can find the current Asset Catalog configuration for launch images under
MobileDesigner\Platforms\iOS\build\project\Images.xcassets universal
\Images.xcassets\LaunchImage.launchimage\.

Windows Phone 8 Splash Screen Requirements

Use of splash screen images is discouraged. Windows Phone 8 applications should start
quickly enough so that a splash screen is not required.

If you do use a splash screen for a Windows Phone 8 application, use one of the
following naming conventions:

To use... Do the following...

A single image for all Name the image file SplashScreenlmage.jpg. The
Windows Phone 8 devices image should have the dimensions 768x1280px.

On devices that have a different screen size, this image
will be scaled to fit the screen.

Separate image files for Provide multiple image files based on the specific
each type of Windows device sizes:
Phone 8 device
Image Size Filename
480x800px SplashScreenlmage.screen-
WVGA jpg

768x1280px SplashScreenlmage.screen-
WXGA jpg

720x1280px SplashScreenlmage.screen-720p.jpg

For more information, refer to information about splash screens on the Microsoft
website at http://msdn.microsoft.com/en-us/library/windowsphone/develop/
f£769511%28v=vs.105%29.aspx.

Using webMethods Mobile Designer Version 9.10 111

https://developer.apple.com/library/ios/recipes/xcode_help-image_catalog-1.0/Recipe.html
https://developer.apple.com/library/ios/recipes/xcode_help-image_catalog-1.0/Recipe.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769511%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769511%28v=vs.105%29.aspx

Defining Resources for a Mobile Application Project

Windows 8 (RT) Splash Screen Requirements

Use a splash screen image with the file name SplashScreen.png with the dimensions
620x300px.

Ensure the splash screen image is a transparent image because the image will not cover
the entire screen. The operating system fills the background and draws the splash screen
image centered on the device screen. By default, the background color is set to black, but
you can set a different color inside the Visual Studio project.

For more information, refer to information about splash screens on the Microsoft website
at http://msdn.microsoft.com/en-us/library/windows/apps/br211467.aspx and http://
msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx.

Setting Project Properties for the Resource Handler

The following table lists the resource handler project properties. The table specifies the
properties you are required to set to provide details about the resource handler for your
project. For instructions about how to set properties, see "Where You Set Properties” on
page 120 and "Setting Project Properties” on page 123. For further details about the
properties, see "Resource Handler Properties” on page 267.

Property and Description

project.java.reshandler.name

Required. Specifies the Java package/class name of the resource handler class.

project.reshandler.src.path

Required. Specifies the location of your project’s resource handler script and any
associated classes.

project.resource.dir.root

Required. Specifies the location of the resource files (audio files, image files, etc.) for
your project.

project.reshandler.additional.libs.path

Conditionally required. Specifies the location of classes that the resource handler
requires. Required only if your resource handler requires additional classes.

mobiledesigner.run.reshandler.with.beanshell

Optional. Specifies whether to use the BeanShell provided with Mobile Designer or
the one provided with Software AG Designer.

Using webMethods Mobile Designer Version 9.10 112

http://msdn.microsoft.com/en-us/library/windows/apps/br211467.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx

Defining Resources for a Mobile Application Project

Property and Description

The default is to use the BeanShell provided with Software AG Designer.

debug.remember.resource.names

Optional. Specifies whether you want the Mobile Designer to record the names of
the resources included in the build rather than the resource IDs.

By default, the resource IDs are recorded, not the resource names.

project.compiled.resources.info.format

Optional. Specifies whether you want the _compiled_resources file that Mobile
Designer creates when it runs your resource handler to be in XML or text format.
For more information, see "Managing Memory for Your Resource Handler and
Resources" on page 113.

By default, Mobile Designer creates a .txt format file.

The following table lists the resource handler project properties that are driven based on
the device profiles in the Mobile Designer device database. It is recommended that you
do not change the settings.

Property and Description

project.jar.midlet.icon.spec

Specifies the icon(s) to use for the application’s MIDLet-icon for a specific device.

project.audio.spec

Specifies the type of audio (for example, mp3 or wav) that a device supports.

project.audio.file.extensions

Specifies the file extension (for example, .mp3 or .wav) that a device supports.

Managing Memory for Your Resource Handler and Resources

If your mobile application project’s resource compilation is memory and resource
intensive, you can increase the amount of memory available for Ant to avoid
encountering out-of-memory exceptions during the execution of the resource handler.
To increase this memory, use a system property to set the amount of memory. The
following shows examples:

B On Windows: set ANT OPTS=-Xmx256m

Using webMethods Mobile Designer Version 9.10 113

Defining Resources for a Mobile Application Project

B On Linux: export ANT OPTS=-Xmx256m

Adjust the value, "256m", used in the example to reflect how much memory your
resource handling needs.

You can estimate the amount of memory your application will require when it

runs using the information in the _compiled_resources_ file, which resides in your
project’s _temp_ folder. Mobile Designer creates this file when it runs your project’s
resource handler. Use the project.compiled.resources.info.format project property to indicate
whether you want the _compiled_resources file to be in XML or text format. The
_compiled_resources_ file contains information on the resources, as well as their
resultant resource blocks, resource packs, and file sizes.

Accessing Resources in Your Application Code

To access resources in your application code, Mobile Designer provides the following
run-time classes:

m com.softwareag.mobile.runtime.media.AudioHandler

Use in your application code to access and manage the audio resources. The
AudioHandler class includes the loadSound and unloadSound methods that you can use to
load and unload audio resources.

m com.softwareag.mobile.runtime.media.ImageBase and
com.softwareag.mobile.runtime.media.ImageHandler

Use in your application code to access and manage image resources. The ImageBase
class includes the getlmage, loadimagelD, and unloadimagelD methods that you can use to
load and unload image resources.

m com.softwareag.mobile.runtime.media. TextHandler

Use in your application code to access and manage text line resources. The TextHandler
class includes the getString method to get a text string.

m com.softwareag.mobile.runtime.storage.ResourceHandler

If you use resource blocks and packs, use this class in your application code to
manage the blocks and packs. The ResouceHandler class includes the loadResourceBlock
and unloadResourceBlock methods that you can use to load and unload resource blocks.

When using a method to load or unload a resource, you specify the resource’s identifier.
When Mobile Designer runs your resource handler, it sets parameters for the resources
in the com.softwareag.mobile.runtime.Parameters class. For example, if you want to load an
audio resource with the identifier RESID_STARTUP, you can use the following method
call:

AudioHandler.loadSound (Parameters. RESID STARTUP) ;
If your resource handler bundles resources into resource blocks and packs, in your

application code, you must load the resource bundle containing a resource before
you load the specific resource. Continuing with the previous example, suppose the

Using webMethods Mobile Designer Version 9.10 114

Defining Resources for a Mobile Application Project

RESID_STARTUP audio resource is included in the resource block with the identifier
RESBLOCKID_AUDIO, you can use the following method calls:

ResourceHandler loadResourceBlock (Parameters.RESBLOCKID AUDIO) ;
AudioHandler.loadSound (Parameters. RESID STARTUP) ;

When the application is no longer using the resources in a block, it can use the
unloadResourceBlock, which is also in the ResourceHandler class to unload the resource block.

Note: If you are using resource blocks and packs, your application code does not
need to load and unload resource packs. Mobile Designer keeps track of the
packs required for each resource block. When you load a resource block,
Mobile Designer takes care of loading the appropriate pack that contains the
resource block.

Compiling Resources Using the +Run-Reshandler Ant Target

Use the +Run-Reshandler Ant target if you want to compile the resources, such as text files
and images, for the current device without compiling the source code for the mobile
application.

The following diagram shows the steps that Mobile Designer performs when you use
the +Run-Reshandler Ant target. See the table below the diagram for a description of the
steps. The table also indicates hook points where Mobile Designer can run custom Ant
scripts that you provide. For more information about hook points, see "Creating Custom
Ant Scripts to Run at Predefined Hook Points" on page 153.

Using webMethods Mobile Designer Version 9.10 115

Defining Resources for a Mobile Application Project

+Run-Reshandler Ant Target

&
&\"&
QS'G"
&
L Steps within the process Hook points

Project-level device_name.xml files

,/
’

Project-level _defaults_.xml file
Mobile Designer device database

Mobile Designer sdk.properties
N .
—&—PostBuildResources

1 Determine settings for target devices

Mobile Designer determines the settings for the device for which it is
building the application. It retrieves the settings from the following sources
in the order listed.

®m Project-level device_name .xml files
®m Project-level _defaults_.xml file

® Mobile Designer device database

®m Mobile Designer sdk.properties file

Mobile Designer uses the first setting it encounters. For example, if Mobile
Designer encounters a setting in the project-level target device_name .xml file
and then again in the project-level _defaults_.xml file, Mobile Designer uses
the setting from the target device_name .xml file.

For more information about:

®m Project-level device files, see "Where You Set Properties” on page 120
and "Setting Project Properties" on page 123

Using webMethods Mobile Designer Version 9.10 116

Defining Resources for a Mobile Application Project

hook
point

hook
point

B Mobile Designer device database, see "Devices that a Mobile Application
Supports" on page 92

® Mobile Designer sdk.properties file, see "Mobile Designer Configuration
Properties (sdk.properties)” on page 19

PreBuildResources

If you have created an Ant script to run at the PreBuildResources hook
point, Mobile Designer runs the Ant script.

Execute the resource handler

Mobile Designer runs the resource handler that you created for the project.
When running the resource handler, Mobile Designer records all the
resources required for your application. Mobile Designer also creates the
com.softwareag.mobile.runtime.Parameters class. For more information about
creating the resource handler, see "About the Resource Handler" on page
106. For more information about the Parameters class, see "Application

and Parameter Classes" on page 72.

At this point in the build process, Mobile Designer uses the following
project properties:

m project.reshandler.src.path for the location of the project’s resource handler
script and any associated classes

m projectjava.reshandler.name for the name of the resource handler class you
created for your project.

m project.resource.dir.root for the location of the top-level folder that contains the
resources (audio files, image files, etc.) for your project

m project.reshandler.additional.libs.path for the location of additional libraries that
your project’s resource handler requires

For more information about these properties, see "Resource Handler
Properties" on page 267.
PostBuildResources

If you have created an Ant script to run at the PostBuildResources hook
point, Mobile Designer runs the Ant script.

Using webMethods Mobile Designer Version 9.10 17

Using webMethods Mobile Designer Version 9.10 118

Setting Properties and Parameters for a Mobile Application Project

12 Setting Properties and Parameters for a Mobile
Application Project

m About Properties and Parameters ... 120
B Where YOU Set PrOPEIHEScccviiiicecieceecte ettt 120
m Project Properties YOU MUSE SEEcoiiiiiiiiesce s 121
B Setling Project PrOPEIIESvcvcviiciiiicccse sttt 123
B Where You Define Parameters ..ot 124
m Setting Parameters in the _defaults_.xml and Target Device Filescccoviviieiiiicrircrnines 124
m Setting Parameters in the Resource Handler Code ... 125
m Using Parameters in Your Application COdecccooiieiiiiiiiicieececccee et 127
Using webMethods Mobile Designer Version 9.10 119

Setting Properties and Parameters for a Mobile Application Project

About Properties and Parameters

Properties and parameters are project settings used when building your project or at run
time.

m Properties are build-time settings that your project’s build script can access when
building your project. At build time, the build process can access property settings to
determine information, for example, the device for which your application is being
built. As a result, you can set properties to manipulate how your application is built
for specific platforms and/or specific target devices, including and/or excluding
features for the devices your mobile application supports.

Note: Your application code cannot reference property settings at run time. Use
parameters for settings that are available to your application’s run-time
code.

m Parameters are run-time attributes that you can use in your application code. For
example, at run time your application can access parameters to retrieve information
abouts the resources included in the application to perform such tasks as loading
resources. Another example is that your application code can access information
about the device on which the application is running to branch the logic based on the
needs of that specific device. For more information, see "Using Parameters in Your
Application Code" on page 127.

When Mobile Designer builds a project, it runs the project’s resource
handler before it compiles your application. The resource handler creates the
com.softwareag.mobile.runtime.Parameters class that includes all the parameters.

The Parameters.java includes:
m Parameters that Mobile Designer defines and uses.

®m Application-specific parameters related to the resources in your project.

Where You Set Properties

Properties are generally set in the following files. When you set properties, be aware that
when Mobile Designer builds a project, it obtains properties from the files in the order
listed and uses the first setting it encounters for a property.

B Project-specific target device files (device_name .xml) that contain device-specific
settings for devices that the project supports. For more information about target
device files, see "Devices that a Mobile Application Supports" on page 92 and
"Adding a Device to a Project” on page 92.

Mobile Designer sets some properties in a target device file when you add a
device to a project. You can change and/or add additional project properties. For
instructions, see "Setting Project Properties” on page 123.

Using webMethods Mobile Designer Version 9.10 120

Setting Properties and Parameters for a Mobile Application Project

®m Project-level _defaults_.xml file that contains default settings for all devices in a
project.

To start a project, you typically clone an existing project. As a result, your project
starts with the settings in the cloned project. You can change and/or add additional
properties. For more information, see "Setting Project Properties” on page 123.

m Mobile Designer device database contains profiles for devices. The device profiles
that Mobile Designer provides have properties set. You can update the settings
by updating the device profiles. For more information, see "Devices that a Mobile
Application Supports" on page 92 and "Updating an Existing Device Profile in the
Device Database" on page 94. The changes you make in the device profiles apply to
all projects.

If you want to override settings for your mobile application project, set project
properties in the project’s target device files for the device. For instructions, see
"Setting Project Properties” on page 123.

® The Mobile Designer sdk.properties contains default property settings that affect all
projects. For more information, see "Updating the sdk.properties File to Configure
Mobile Designer" on page 18 and "Mobile Designer Configuration Properties
(sdk.properties)" on page 19.

Project Properties You Must Set

The following table lists the properties you must set for your project. For information
about how to set properties, see "Setting Project Properties” on page 123.

Property

project.runtime.project.src.path

Required. Specifies the location of the run-time code for your mobile application.

project.runtime.additional.classes.path

Conditionally required. Specifies the location of classes required for building your
project. Required only if your project requires additional precompiled classes to
build the application.

project.runtime.additional.stubs.path

Conditionally required. Specifies the location of the stubs required for compilation.
Required only if your project requires additional stubs to compile the application’s
run-time source code.

project.langgroup.group_name

Using webMethods Mobile Designer Version 9.10 121

Setting Properties and Parameters for a Mobile Application Project

Property

Required. Specifies the language(s) that you want your application to support.

project.jarname.format

Required. Specifies the file name format that you want Mobile Designer to use
when naming your application’s final binary.

project.java.reshandler.name

Required. Specifies the Java package/class name of the resource handler class you
created for your project.

project.reshandler.src.path

Required. Specifies the location of your project’s resource handler script and any
associated classes.

project.resource.dir.root

Required. Specifies the location of the resource files (audio files, image files, etc.) for
your project.

project.reshandler.additional.libs.path

Conditionally required. Specifies the location of classes that the resource handler
requires. Required only if your resource handler requires additional classes.

mobiledesigner.buildscript.version

Required. Specifies the version of the Mobile Designer build scripting system to use
when building your application.

mobiledesigner.runtime.version

Required. Specifies the version of the Mobile Designer run-time system to use for
your application.

project.java.midlet.name

Required. Specifies the name of the root MIDlet/Application class of
your project's run-time code. Typically this is the class that extends
com.softwareag.mobile.runtime.core.Application.

project.jar.name

Required. Specifies a text name you want your application to have when installed
on a device.

Using webMethods Mobile Designer Version 9.10 122

Setting Properties and Parameters for a Mobile Application Project

Setting Project Properties

Mobile Designer defines values for most properties. For a list the properties you must set
for your project, see "Project Properties You Must Set" on page 121.

To set a value or change a predefined value for your project, you can set property values
within the project’s targets folder.

B Specify properties in the project’s _defaults_.xml file apply to the settings to all
devices that the application supports.

m Specify properties in target device XML files to apply settings to a single device
that the application supports. The properties you place in target device XML files
override settings in the _default_.xml file.

Note: The properties you specify for the project override settings you make for all
projects in the sdk.properties file.

To set project properties

1. In Software AG Designer, in the Project Explorer view, expand the Mobile Designer
project for which you want to define properties.

2. Inthe project’s targets folder, double-click the file to which you want to add a
property:

m To apply the setting to all the devices the application supports, double-click the
defaults.xml file.

project_folder /targets/_defaults_.xml

m To apply the setting to a single device that your application supports, add the
property to the XML file for that device:

project_folder /targets/device_file xml

For example, if your application supports the Apple iPhone 5 and you
want to apply the settings only for this device, add the settings to the
IOS_Apple_iPhone5.xml file.

3. Locate the area of the file where you want to add the property. Refer to comments in
the file to find good location.

4. Add the property to the file using the following format:
<property name="PropertyName" value="PropertyValue"/>
For example:
<property name="cross.compiler.extractinners" value="true"/>

5. After adding properties, save the file.

Using webMethods Mobile Designer Version 9.10 123

Setting Properties and Parameters for a Mobile Application Project

Where You Define Parameters

You define application-specific parameters in the following files:

® You define application-specific parameters related to the resources in your project
in the resource handler code. For more information, see "Setting Parameters in the
Resource Handler Code" on page 125.

® You define general application-specific parameters in the following locations:

m Project’s _defaults_.xml and target device files. For more information, see
"Setting Parameters in the _defaults_.xml and Target Device Files" on page
124.

m Project’s resource handler that you create for a project. For more information, see
"Setting Parameters in the Resource Handler Code" on page 125.

You can define any application-specific parameters you might need.

Setting Parameters in the _defaults_.xml and Target Device
Files

To add parameters to the project’s _defaults_.xml or one of the project’s target device
files (device_name .xml), use the following format:

<param name="ParameterName" value="ParameterValue"/>

You can also optionally include a comment when setting the parameter:

<param name="ParameterName" value="ParameterValue" comment="comment"/>
Specifying the Parameter Name

For ParameterName specify the name you want to use. The name can be anything that is
acceptable as a Java variable.

Specifying the Parameter Value

For parametervalue use one of the formats specified in the following table.

For this type of value... Use this format to specify the value...
boolean boolean={"true" | "false"}
or
bool={"true" | "false"}
byte byte=value

Using webMethods Mobile Designer Version 9.10 124

Setting Properties and Parameters for a Mobile Application Project

For this type of value... Use this format to specify the value...
char char=value
double double=value
float float=value
int int=value
long long=value
short short=value
string string=value
Example

Suppose at run time your application code needs to determine whether to display a
splash screen. To set the default for all devices to display the splash screen, you can add
a parameter named “DISPLAY_SPLASH_SCREEN”" to the _defaults_.xml file and set its
value to “true”:

<param name="DISPLAY SPLASH SCREEN" bool="true"/>

The following shows the resulting parameter declaration in Parameters.java:
public static final boolean PARAM DISPLAY SPLASH SCREEN = true;
Then for devices for which you do not want to display the splash screen, you can add

the parameter to the target device file for those devices and the parameter value to
“false”:

<param name="DISPLAY SPLASH SCREEN" bool="false"/>
If you build your project for one of the devices for which the splash screen should not

be displayed, Mobile Designer reads the target device file, and as a result, uses the
following parameter declaration in Parameters.java:

public static final boolean PARAM DISPLAY SPLASH SCREEN = false;

Setting Parameters in the Resource Handler Code

When you code the resource handler for your project, you can add application-specific
parameters. Additionally, for each resource you add to the project and to which you
assign an ID, an associated parameter is included in the Parameters.java class.

In your resource handler code, to define the parameters, you invoke
methods that Mobile Designer provides. The methods are defined in the
com.softwareag.mobile.reshandler.AntTaskResourceHandler class. For information about how

Using webMethods Mobile Designer Version 9.10 125

Setting Properties and Parameters for a Mobile Application Project

to use the AntTaskResourceHandler methods in your resource handler, see "Methods that
Mobile Designer Provides for the Resource Handler" on page 107.

The following table lists:

® The AntTaskResourceHandler method you use to define a parameter.

®m The naming convention that Mobile Designer uses for the parameter names. In
the naming conventions, name is the name assigned to the parameter and id is the
identifier assigned to the parameter

Method

Naming convention for
added parameter

Description

n/a

PARAM_MD_name

Parameters that Mobile Designer defines.
These parameters are for internal use.
The Mobile Designer run-time classes use
these parameters. For a description of the
run-time classes, see " Mobile Designer-
Provided Run-Time Classes" on page 72.

setParam

PARAM_name

General application-specific parameters
that you define.

setResBlockID

RESBLOCKID_name

Parameters that define the identifiers

for resource blocks that you defined in
your project. For more information about
resource blocks, see "Using Resource
Blocks and Resource Packs" on page 108.

setResID

RESID _name

Parameters that define the identifiers for
resources (for example, audio files or
image files, etc.) that you added to your
project.

setTextID

TEXTID_name

Parameters that define the identifiers
for lines of text that you added to your
project.

setMenulD

MENUID_name

Parameters that define the identifiers for
menus that you added to your project.

The following list examples:

m If you use the setParam method to add the application-specific parameter
“DISPLAY_SPLASH_SCREEN”, Mobile Designer includes the parameter
PARAM DISPLAY SPLASH SCREEN in the Parameters.java class.

Using webMethods Mobile Designer Version 9.10

126

Setting Properties and Parameters for a Mobile Application Project

® If you use the setResID method to assign an audio file the identifier “BEEP”, Mobile
Designer includes the parameter RESID BEEP in the Parameters.java class.

®m If you use the setResBlocklD method to assign a resource block the identifier “AUDIO”,
Mobile Designer includes the parameter RESBLOCKID AUDIO in the Parameters.java
class.

Using Parameters in Your Application Code

When creating an application, typically you have common logic that works for all target
devices. However, you might require branches in the logic to address the needs of a
specific target device. For example, you might need to omit or alter a feature for a target
device, or you might need to position an image relative to the screen dimensions for a
target device. To accommodate device-specific logic, your application logic can branch
based on parameter values that are set using the device profile settings.

To use parameters in your application code, import the
com.software.mobile.runtime.Parameters class. You can then easily access parameter

values. For example, if you want to branch logic based on an application-specific
“PARAM_DISPLAY_SPLASH_SCREEN” parameter, you can use a statement like the
following:

if (Parameters.PARAM DISPLAY SPLASH SCREEN)
You also use parameters that define identifiers for resources and resource blocks to

load resources and resource blocks into memory, and unload them from memory, as
necessary.

ResourceHandler.instance.loadResourceBlock (Parameters.RESBLOCKID SPLASHES) ;

splash screen image id = ImageHandler.instance.loadImageID
(Parameters.RESID SPLASH SCREEN IMAGE, -1, -1, false);

ResourceHandler.instance.unloadResourceBlock (Parameters.RESBLOCKID SPLASHES) ;

For more examples about how to use the parameters in application code, review the
code provided with sample projects that are provided with Mobile Designer.

Using webMethods Mobile Designer Version 9.10 127

Using webMethods Mobile Designer Version 9.10 128

Building and Compiling Mobile Application Projects

IV Building and Compiling Mobile Application
Projects

B BUIld ProCeSss OVEIVIEWccoiiiuiiiiiiiieicieisieisse s 131
m Building Mobile APPIICALIONS ..o 141
B Customizing the BUild PrOCESS ..o 149

Using webMethods Mobile Designer Version 9.10 129

Building and Compiling Mobile Application Projects

Using webMethods Mobile Designer Version 9.10 130

Build Process Overview

13 Build Process Overview

B Build Ant Target SUMMAIY ..o e 132
B Steps in the MUlti-Build PrOCESSccociciiiiiiiiiiiiie it 134

Using webMethods Mobile Designer Version 9.10 131

Build Process Overview

Build Ant Target Summary

The following diagram provides summary information about the process Mobile
Designer performs to build a mobile application project. It shows:

B The names of the Ant targets you can use to build a mobile application project.

m The steps Mobile Designer performs in the build process. For details about each step,
see "Steps in the Multi-Build Process" on page 134.

® The hook points in the build process where Mobile Designer can run custom Ant
scripts that you provide. For more information about hook points, see "Creating
Custom Ant Scripts to Run at Predefined Hook Points" on page 153.

Note: For instructions for how to perform a build of your mobile application project,
see "Building Mobile Applications" on page 141.

Using webMethods Mobile Designer Version 9.10 132

Build Process Overview

Multi-Build Ant Targets

A\
N,
%\.&9’@\6 Q,\‘»@
N
S S
ox * Steps within the build process
" g Wl Bl g otoral par)
C | oominsetings oot doices
=§
=
P
P
L retombigtotronotdev
+

Hook points

PreBuildResources

PostBuildResources

PostCrossCompiler
PreMakefileGeneration

PrePatch

PreCompilation and
PreObfuscation

PostCompilation and
PostObfuscation

PostPackaging and
PostPreverification

PostBuild

PostMultiBuild

Using webMethods Mobile Designer Version 9.10

133

Build Process Overview

Steps in the Multi-Build Process

This section describes the steps that Mobile Designer performs when you run the +Multi-
Build, +Multi-Build-Last, or +Target-Build Ant targets to build a mobile application project.

The table also indicates hook points where Mobile Designer can run custom Ant scripts
that you provide. For more information about hook points, see "Creating Custom Ant
Scripts to Run at Predefined Hook Points" on page 153.

Note: For instructions for how to perform a build of your mobile application project,
see "Building Mobile Applications" on page 141.

1 Display the Multi Build dialog (optional JPanel)

Mobile Designer displays the Multi Build dialog, and also a custom JPanel
for the build, if you defined one.

For more information, see "Setting Properties at Build Time Using a Custom
JPanel" on page 150.

Note: Mobile Designer only displays the Multi Build dialog when you run
the +Multi-Build Ant target.

2 Determine settings for target devices

Mobile Designer determines the settings for the device for which it is
building the application. It retrieves the settings from the following sources
in the order listed.

®m Project-level device_name .xml files
B Project-level _defaults_.xml file

® Mobile Designer device database

® Mobile Designer sdk.properties file

Mobile Designer uses the first setting it encounters. For example, if Mobile
Designer encounters a setting in the project-level target device_name .xml file
and then again in the project-level _defaults_.xml file, Mobile Designer uses
the setting from the target device_name .xml file.

For more information about:

B Project-level device files, see "Where You Set Properties” on page 120 and
"Setting Project Properties” on page 123

B Mobile Designer device database, see "Devices that a Mobile Application
Supports" on page 92

Using webMethods Mobile Designer Version 9.10 134

Build Process Overview

® Mobile Designer sdk.properties file, see "Mobile Designer Configuration
Properties (sdk.properties)" on page 19

hook PreBuildResources

point If you have created an Ant script to run at the PreBuildResources hook
point, Mobile Designer runs the Ant script.
3 Execute the resource handler

Mobile Designer runs the resource handler that you created for the project.
When running the resource handler, Mobile Designer records all the
resources required for your application. Mobile Designer also creates

the com.softwareag.mobile.runtime.Parameters class. For more information

about creating the resource handler, see "Defining Resources for a Mobile
Application Project” on page 105. For more information about the Parameters
class, see "Application and Parameter Classes" on page 72.

At this point in the build process, Mobile Designer uses the following
project properties:

m project.reshandler.src.path for the location of the project’s resource handler
script and any associated classes

®m projectjava.reshandler.name for the name of the resource handler class you
created for your project.

m project.resource.dir.root for the location of the top-level folder that contains the
resources (audio files, image files, etc.) for your project

m project.reshandler.additional.libs.path for the location of additional libraries that
your project’s resource handler requires

For more information about these properties, see "Resource Handler
Properties” on page 267.

hook PostBuildResources

point If you have created an Ant script to run at the PostBuildResources hook
point, Mobile Designer runs the Ant script.
4 Cross compile the application for a device

Mobile Designer copies your project’s application code for the target device
into the project’s _temp__src_ folder. At this point in the build process,
Mobile Designer uses the following project properties:

m project.runtime.project.src.path for the location of your project’s application code

m project.runtime.additional.classes.path for the location of additional precompiled
classes that your application requires

Using webMethods Mobile Designer Version 9.10 135

Build Process Overview

m project.runtime.additional.stubs.path for the location of additional stubs to use
when compiling your application code

For more information about these properties, see "Run-Time Code
Compilation Properties" on page 279.

Mobile Designer converts the mobile application source code into a neutral
language, for example, C++ or Java. The neutral language that Mobile
Designer uses is the required neutral language for the target device. You
can set the following code conversion properties to customize how Mobile
Designer converts the application source code:

®m cpp.no.selfprotect for whether to add a safeguard to every method call

m cross.compiler.extractinners for whether to extract inner classes included in the
Java source code

m cross.compiler.nodatestamp for whether to include timestamps at the top of
every generated C++ (CPP) and H file

m cross.compiler.render.selfprotect for whether to add an extra line at the top of
every non-static method

m java.parser.retain.comments for whether to retain comments when compiling

For more information about these properties, see "Code Conversion
Properties" on page 222.

The neutral language code that Mobile Designer generates from converting
your application code is easy-to-read and, by default, retains comments
from the original Java source code.

Note: When Mobile Designer generates C++ code for C++-based platforms
(for example, iOS), the C++ code it generates will be the same format
for all C++-based platforms. The generated C++ code is uniform,
ANSI-compatible, and compiles against all target architectures (such
as x86, MIPS, and ARM processors).

5 Prepare platform-required source files

Mobile Designer gathers other source files that it requires to make the final
binary. For example, additional platform-specific files might be needed for

the final binary.

hook PostCrossCompiler

point If you have created an Ant script to run at the PostCrossCompiler hook
point, Mobile Designer runs the Ant script.

6 Prepare resources

Mobile Designer gathers the resources that the project requires and
prepares them for building the final binary. These includes, for example, the

Using webMethods Mobile Designer Version 9.10 136

Build Process Overview

hook
point

hook
point

Note:

hook
point

resources defined by your project’s resource handler, NativeUI resources,
and resources that the specific platform might require.

PreMakefileGeneration

If you have created an Ant script to run at the PreMakefileGeneration hook
point, Mobile Designer runs the Ant script.

Generate makefile and optional project

Mobile Designer creates the makefile that defines everything that is required
to create the final binary.

Additionally, if appropriate for the target platform, Mobile Designer creates
the platform-specific project. For example, when building an application
that runs on the iOS platform, Mobile Designer creates an Xcode project or
when building an application that runs on the Android platform, it creates
an Eclipse project.

You can set the cross-compiler properties that affect this step in the build
process:

m project.handset.custom.stubfolder for whether to override the makefile and
project template files that are provided with Mobile Designer with
makefile and project template files that you supply

m Several properties that customize the generation of the makefile. See
"Makefile Additions" on page 236.

PrePatch

If you have created an Ant script to run at the PrePatch hook point, Mobile
Designer runs the Ant script.

Apply patches

If you created patches, Mobile Designer applies the patches to the cross-
compiled code. For more information about when to use patches and how
to create patches, see "Creating Patch Files to Apply to the Cross-Compiled
Code" on page 156.

If you set the project.handset.skip.compilation property to true, Mobile Designer
skips the following actions.

PreCompilation and PreObfuscation

If you have created Ant script(s) to run at the PreCompilation and/or
PreObfuscation hook points, Mobile Designer runs the Ant script(s).

Compile the application into binary

Using webMethods Mobile Designer Version 9.10 137

Build Process Overview

hook
point

10

hook
point

1"

Mobile Designer executes the makefile it created in a previous step to create
binary for the target device. During this step Mobile Designer requires the
platform-specific SDKs that you installed when setting up the platform. For
more information, see "Setting Up Platforms" on page 27.

PostCompilation and PreVerification

If you have created Ant script(s) to run at the PostCompilation and/or
PreVerification hook points, Mobile Designer runs the Ant script(s).

Sign and package the final binary

Mobile Designer packages the output of the build so that is ready for
installation on the target device. The packaging process varies from
platform to platform. For example, for Android builds, the output is in an
application package (apk) file.

Additionally, if required by the target platform, Mobile Designer signs the
final build.

PostPackaging and PostVerification

If you have created Ant script(s) to run at the PostPackaging and/or
PostVerification hook points, Mobile Designer runs the Ant script(s).

Copy final binary (optional cleanup temp files)

When Mobile Designer builds your project, it adds a Builds folder to your
project folder. Within the Builds folder, Mobile Designer creates a folder for
the device for which it is building your application:

project /[Builds/x.y.z /device

In the folder location above:

® project is the name of your project.

B x.yz is the version number you specified for the build.

B device is the name of the device for which Mobile Designer is building your
application.

The device folder contains a _temp_ folder. Mobile Designer stores
temporary files in the _temp_ directory while it is building the application.
After it creates the final binary, Mobile Designer copies the final binary from
within the _temp_ folder into the device folder.

Mobile Designer then optionally performs cleanup. If you clear the Retain
output build files check box in the Multi Build dialog when you started the
build, Mobile Designer cleans up the temporary files by deleting the _temp_
folder.

Using webMethods Mobile Designer Version 9.10 138

Build Process Overview

Note: If you set the project.handset.skip.compilation property to true, Mobile Designer
resumes processing with the following actions.

hook PostBuild

point If you have created an Ant script to run at the PostBuild hook point, Mobile
Designer runs the Ant script.
12 Perform build for the next device

If you select multiple devices/language combinations in the Multi Build
dialog to have Mobile Designer build your application for multiple device/
language combinations, Mobile Designer restarts the build process at step 2
for the next device/language to build.

hook PostMultiBuild

point If you have created an Ant script to run at the PostMultiBuild hook point,

Mobile Designer runs the Ant script.

Using webMethods Mobile Designer Version 9.10 139

Using webMethods Mobile Designer Version 9.10 140

Building Mobile Applications

14 Building Mobile Applications

m About Building a Mobile Application Projectccoeeiiiiiiniceeccsss e, 142
m Before You Can Build a Mobile Application Project ... 142
m Building a Project for Multiple Target DEVICEScoovrriirniereresee s 143
m Building a Project for the Last Target DEVICEScccvriirrirrriiceeesecieee e 144
m Building a Project from the Command LINEcccevenirirerncesesese s 144
m Using Native Tools to Create the Final BiNary ... 145
B Generating Javadocs fOor @ PrOJECTcccucviiiicccec e 147

Using webMethods Mobile Designer Version 9.10 141

Building Mobile Applications

About Building a Mobile Application Project

Before you can build your project, you must ensure you have completed the required
prerequisite tasks. For more information, see "Before You Can Build a Mobile
Application Project" on page 142.

To build your project, including compiling your project into binary and packaging your
application for target devices, use the following Ant Targets:

®m +Multi-Build to build your project for multiple device/language combinations. For more
information, see "Building a Project for Multiple Target Devices" on page 143.

®m +Multi-Build-Last to rebuild your project for the last target device. For more information,
see "Building a Project for the Last Target Devices" on page 144.

m +Target-Build to build your project from the command line. For more information, see
"Building a Project from the Command Line" on page 144.

If you want, you can use Mobile Designer to convert your mobile code into a neutral
language (for example, C++ or Java), but then use your own platform-specific, native
tools to compile your project into binary and package the application for the target
device. For more information, see "Using Native Tools to Create the Final Binary" on
page 145.

For details about the actions that Mobile Designer performs to build your project, see
"Build Process Overview" on page 131.

Before You Can Build a Mobile Application Project

Before you build your mobile application project, be sure you have completed the
following tasks:

®m Perform platform-specific setup on your machine

You must have the proper setup for the target platform(s). The setup requires that
you have items such as compilers and SDK installed on your machine. For example,
if you want to build an Android application, you must have the Android SDK
installed on your machine.

In addition to installing platform-specific tools, you must also set properties in the
Mobile Designer sdk.properties file to indicate where the SDKs, compilers, and other
tools are located.

For information about how to set up your platform, see "Setting Up Platforms" on
page 27.

m Set required project properties

Mobile Designer requires that you set some project properties for your project. For
example, you need to set the project.runtime.project.src.path property to

Using webMethods Mobile Designer Version 9.10 142

Building Mobile Applications

specify the location of your project’s run-time code. For a list of the required project
properties, see "Setting Project Properties” on page 123.

Building a Project for Multiple Target Devices

To build your mobile application project, you typically use the +Multi-Build Ant target.
The +Multi-Build Ant target allows you to build your project for multiple device/language
combinations.

For information about the actions that Mobile Designer performs to build your project,
see "Build Process Overview" on page 131.

Note: Before you build your project, be sure you have completed the required setup.

See "Before You Can Build a Mobile Application Project” on page 142.

To build a project for multiple targets

1.
2.

In Software AG Designer, open the project you want to build.

Click the Project Explorer view, expand the project, and drag the build.xml file to the
Ant view.

If the Ant view is not open, for instruction, see "Displaying the Ant View" on page
65.

In the Ant view, double-click +Multi-Build to launch the Multi Build dialog.
Note: If you created a custom JPanel for the project, Mobile Designer includes

the JPanel on the right side of the Multi Dialog. For more information, see
"Setting Properties at Build Time Using a Custom JPanel" on page 150.

In the Multi Build dialog, select the device/language combinations for which you
want to build the project.

In the Version field type the version number for the build.
Select or clear the Retain output build files check box.
m Select the check box to retain the files from the build.

Mobile Designer retains the cross-compiled code it generated from your original
Java code, along with any project (for example, Xcode project for iOS) it might
have generated.

Choose to retain the files if you need to create a patch for your project, if you
want to save the output for subsequent testing, or if you want to use native
platform tools to compile to create the final binary for your project.

m Clear the check box if you do not need the files from the build.
Click Multi Build.

Using webMethods Mobile Designer Version 9.10 143

Building Mobile Applications

Building a Project for the Last Target Devices

If you want to rebuild your project for the last target devices, use the +Multi-Build-Last Ant
task. Mobile Designer rebuilds the project for all the devices you selected the last time
you used the Multi-Build dialog.

For information about the actions that Mobile Designer performs to build your project,
see "Build Process Overview" on page 131.

Note: Before you build your project, be sure you have completed the required setup.
See "Before You Can Build a Mobile Application Project" on page 142.

To build a project for the last target
1. In Software AG Designer, open the project you want to build.

2. Click the Project Explorer view, expand the project, and drag the build.xml file to the
Ant view.

If the Ant view is not open, for instruction, see "Displaying the Ant View" on page
65.

3. In the Ant view, double-click +Multi-Build-Last.

Mobile Designer does not display a dialog. Mobile Designer rebuilds the project for
the last target device that was built, using the settings from the last build, including
any setting you might have made in a custom JPanel.

Building a Project from the Command Line

You can build your project from the command line using the +Target-Build Ant target.
When using the +Target-Build Ant target, you can build for only a single device/language
combination at a time. To execute the Ant target, from the command line navigate into
the project's folder.

For information about the actions that Mobile Designer performs to build your project,

see "Build Process Overview" on page 131.

Note: Before you build your project, be sure you have completed the required setup.
See "Before You Can Build a Mobile Application Project” on page 142.

Syntax

version=x.y.z [retain={true | false}] handset=device langgroup=language
platform=platform target=executable type +Target-Build

Using webMethods Mobile Designer Version 9.10 144

Building Mobile Applications

Options

Option Description

version=x.y.z Required. Specifies the version number for the
application your are building.

[retain={true | Optional. Specifies whether you want Mobile

false}] Designer to retain the cross-compiled code it
generated from your original Java code, along
with any platform-specific project it might have
generated
The default is true.

handset=device Required. Specifies the device for which you want
Mobile Designer to build the application.

langgroup=language Required. Specifies the language(s) for which you
want Mobile Designer to build the application.

platform=platform Required. Specifies the platform for which you
want Mobile Designer to build the application.

target=executable type Required. Specifies the type of executable you are
building. For example, you might specify release
or debug.

Example

To build version 2.0.3 of your project for the IOS_Apple_iPhone5 device, which runs on
the iOS platform, for the language group EFIGS to create an executable version for the
Apple App Store.

ant -Dversion=2.0.3 -Dretain=true -Dhandset=I0S Apple iPhone5 -Dlanggroup=EFIGS
-Dplatform=I0S -Dtarget=appstore +Target-Build

Because retain is set to true, Mobile Designer retains the cross-compiled code it
generated from your original Java code, along with any project (for example, Xcode
project for iOS) it might have generated.

Using Native Tools to Create the Final Binary

If you want to use platform-specific, native tools to create the final binary and package
your application, you can use the Mobile Designer+Multi-Build or +Target-Build Ant target
to build your project, but have Mobile Designer skip compiling your project into binary

Using webMethods Mobile Designer Version 9.10 145

Building Mobile Applications

and packaging your application for the target device. You can move the cross-compiled
code and platform-specific project that Mobile Designer creates to the platform-specific
tool to create the final binary.

For information about the actions that Mobile Designer performs to build your project,
including the actions that Mobile Designer skips when you perform the following
procedure, see "Build Process Overview" on page 131.

Note: Before you build your project, be sure you have completed the required setup.

See "Before You Can Build a Mobile Application Project” on page 142.

To use native tools to create the final binary for your project

1.

Set the project.handset.skip.compilation property to true to indicate that you want Mobile
Designer to skip compiling your project into binary and packaging your application
for the target device. For instructions for how to set a property, see "Setting Project
Properties" on page 123.

Start the build using one of the following Ant targets:

m +Multi-Build Ant target. For instructions, see "Building a Project for Multiple Target
Devices" on page 143.

Be sure you select the Retain output build files in the Multi Build dialog.

m +Target-Build Ant target. For instructions, see "Building a Project from the
Command Line" on page 144.

Be sure you set the retain option to true.

After the build is complete, locate the cross-compiled code and platform-specific
project.

When Mobile Designer builds your project, it adds a Builds folder to your project
folder. Within the Builds folder, Mobile Designer creates a _temp_ folder for each
device. The cross-compiled code and the platform-specific project reside within the
temp folder:

project /[Builds/x.y.z /device /_temp_

In the folder location above:

m project is the name of your project.

®m x.y,z is the version number you specified for the build.

m device is the name of a device for which Mobile Designer built your application.

You can find the cross-compiled code and the platform-specific project in the
temp/_language _ folder. If you created a patch file for the application, you can
find the patched versions in the _temp_/_language _edit_ folder. For example, for
an Android build, you can find the cross-compiled code in the _temp_/_java_
folder, and if a patch was applied, the patched version of the code is in the _temp_/
_java_edit_ folder.

Using webMethods Mobile Designer Version 9.10 146

Building Mobile Applications

4. Copy the files you need to create the final binary to the platform-specific, native tool.
Then use the native tool to create the final binary.

Generating Javadocs for a Project

Use the Generate-Javadoc Ant target to generate javadocs for a project. The javadocs that
the Generate-Javadoc Ant target generates are primarily javadocs for the customer’s project
codebase. The javadocs also include Mobile Designer run-time methods and constants.

When you use the Generate-Javadoc Ant target, Mobile Designer adds a _temp_ folder to
your main project folder that contains the generated files.

To generate javadocs for a project

1. In Software AG Designer, in the Project Explorer view, locate the project for which
you want to generate javadocs.

2. Expand the project and drag its build.xml file to the Ant view.

If the Ant view is not open, see "Displaying the Ant View" on page 65.
3. In the Ant view, double-click Generate-Javadoc.

Mobile Designer displays the Activate Handset dialog.

4. In the Activate Handset dialog, select the device for which you want generate
javadocs and the language group. Then click Activate Handset.

Mobile Designer places the results of the Generate-Javadoc Ant target in your project’s
temp folder.

Using webMethods Mobile Designer Version 9.10 147

Using webMethods Mobile Designer Version 9.10 148

Customizing the Build Process

15 Customizing the Build Process

m About Customizing the BUild PrOCESScoueuveiireieirieiresceceesce e 150
m Setting Properties at Build Time Using a Custom JPanelcccooveeceicecccccccceieenns 150
m Creating Custom Ant Scripts to Run at Predefined Hook Pointscccccoveieeniiiccvcenn, 153
m Creating Patch Files to Apply to the Cross-Compiled Codeccoovviiiireniiiicecccen, 156

Using webMethods Mobile Designer Version 9.10 149

Customizing the Build Process

About Customizing the Build Process

Mobile Designer provides the following features that you can use to customize the
standard build process:

m Custom JPanels. You can create a custom JPanel that Mobile Designer includes in the
Multi Build dialog. The purpose of the custom JPanel is to allow you to change the
values of project properties or parameters when you initiate a build without having
to manually edit your project’s _defaults_.xml file, target device files, or resource
handler code. For more information, see "Setting Properties at Build Time Using a
Custom JPanel" on page 150.

Note: If you create a custom JPanel, Mobile Designer also includes the JPanel
in the Activate Handset dialog. For more information, see "Activating
Devices" on page 177.

®m Hook points. You can create custom Ant scripts that you want Mobile Designer to
run during the build process. Mobile Designer defines various points, called hook
points, in the build process where it can run an Ant script that you provide. For more
information, see "Creating Custom Ant Scripts to Run at Predefined Hook Points" on
page 153.

m Patch files. You can create patch files that Mobile Designer applies to the cross-
compiled code. Use patch files to correct issues that might prevent the cross-
compiled code from compiling successfully. Additionally, some times the code
might cross-compile successfully, but the resulting code might not execute
as expected. You might be able to correct the issue with a patch file. For more
information, see "Creating Patch Files to Apply to the Cross-Compiled Code" on
page 156.

Setting Properties at Build Time Using a Custom JPanel

You might want to be able to change the values of project properties or parameters
when you initiate a build or activate a device without having to manually edit your
project’s _defaults_.xml file, target device files, or resource handler code. You can
achieve this by creating a custom panel (JPanel) for your project. For more information
about project properties and parameters, see "Setting Properties and Parameters for a
Mobile Application Project” on page 119.

Mobile Designer includes your custom JPanel into its Multi Build and Activate Handset
dialogs. When you use the +Multi-Build Ant target to start a build, the Multi Build dialog
includes your custom JPanel on the right. Similarly, when you use the ++Activate-Handset
Ant target to activate a device, the Activate Handset dialog includes your custom JPanel.
If you create a custom JPanel for a project, Mobile Designer incorporates the JPanel into
both dialogs.

Using webMethods Mobile Designer Version 9.10 150

Customizing the Build Process

To use a custom JPanel, first you must code the JPanel. For more information, see
"Coding Your Custom JPanel" on page 151.

After you code the JPanel, you set properties in your project’s build.xml file to indicate
that you are using a JPanel and provide information about the location of the code. The
JPanel properties must go in the build.xml file rather than the _defaults_.xml file because
Mobile Designer must use the properties at the beginning of the build process before it
reads the project properties in the _default_.xml and target device files. For information
about the JPanel properties you need to set, see "Setting JPanel Properties” on page

151.

Coding Your Custom JPanel

If you started your project by cloning a project that included a custom JPanel, you

can update the JPanel from that project. Alternatively, you create the JPanel from the

beginning on your own.

JPanel Requirements

® You must name the class that contains your JPanel code My]JPanel.java.

® Your My]JPanel java class must extend com.softwareag.mobile.core.ProjectJPanelHandler and
any associated libraries that it needs for compilation.

Methods that Mobile Designer Provides for the JPanel

The com.softwareag.mobile.core.ProjectJPanelHandler class, which your project’s My]JPanel.java
class must extend, contains methods you can use in your JPanel. For more information
about the Project/PanelHandler, see the webMethods Mobile Designer Java API Reference.

Sample JPanel Code

You can also find an example that demonstrates how to use the ProjectJPanelHandler in the
Device Profiler sample project provided with Mobile Designer.

Setting JPanel Properties

This section lists the JPanel properties to specify when you want to use a custom JPanel
for your project. Include these properties in your project’s build.xml file.

project.uses.defined.jpanel

Specifies whether you want to include a custom JPanel in the Multi Build and Activate
Handset dialogs.

Platforms All

Value B true if you are using a custom JPanel.

Using webMethods Mobile Designer Version 9.10 151

Customizing the Build Process

B false if you are not using a custom JPanel.
Default false

Use the following format to add the Ant property to your project’s build.xml file:

<property name="project.uses.defined.jpanel" value="value"/>

For example to indicate that you are using a custom JPanel:

<property name="project.uses.defined.jpanel" value="true"/>

project.jpanel.src.path

Specifies the Ant path to the source code for the custom JPanel. The source code for your
custom JPanel must be called My]JPanel.java.

Platforms All
Value Path to the My]JPanel.java file.
Default null

Use the following format to add the Ant path to your project’s build.xml file:

<path id="project.jpanel.src.path">
<pathelement path="path"/>
</path>

For example:

<path id="project.]jpanel.src.path">
<pathelement path="${basedir}/jpanel"/>
</path>

project.jpanel.additional.libs.path

Specifies the Ant path to additional libraries that your custom JPanel requires.

Platforms All
Value Path to the libraries
Default null

Use the following format to add the Ant path to your project’s build.xml file:

<path id="project.]jpanel.additional.libs.path">
<pathelement path="path"/>
</path>

For example:

<path id="project.]jpanel.additional.libs.path">

Using webMethods Mobile Designer Version 9.10 152

Customizing the Build Process

<pathelement path="${basedir}/jpanel/libs"/>
</path>

Creating Custom Ant Scripts to Run at Predefined Hook
Points

To customize the standard build process that Mobile Designer performs, you can create
custom Ant scripts that Mobile Designer runs at various predefined points, called

hook points. For example, to automatically upload a build to an FTP server once the
build is created, you can use the PostBuild Hook Point, which Mobile Designer runs after it
completes a build.

Mobile Designer provides several predefined hook points in the build process where
you can inject a custom Ant script to perform custom actions. For example, you can have
Mobile Designer run a custom Ant script before it runs the resource handler, or you can
have Mobile Designer run a custom Ant script after it runs the resource handler. For
more information about the hook points you can use and when each occur in the build
process, see "Hook Point Reference" on page 154 and "Ant Target Summary" on page
281.

To run a custom Ant script at a hook point:

® You must add the associated hook point property to your project’s _defaults_.xml
file. You use the property to provide the name of the custom Ant script that you
want Mobile Designer to run. For information about the properties, see "Hook Point
Properties" on page 260.

B You must create the custom Ant script. You can include the Ant script in your
defaults.xml file directly after the property declaration.

Ant properties, parameters, and paths set in your custom Ant scripts do not flow
through into the remaining build process. Your custom Ant scripts are separate Ant
target calls that branch off outside the normal build process flow.

Caution: Although invoking custom Ant scripts at the predefined hook points adds
flexibility to the build process, be aware that Mobile Designer does not
perform safety checking on custom Ant scripts before executing them.
You should thoroughly test your custom Ant script's functionality before
integrating it into Mobile Designer.

Note: Use of hook points is optional. You can use none, one, or multiple hook
points. Mobile Designer only attempts to run a custom Ant script at a hook
point if your project’s _defaults_.xml file contains a hook point property that
provides the name of a custom Ant script.

For an example that illustrates how you use hook points, see the NativeUI PDF Demo
sample project.

Using webMethods Mobile Designer Version 9.10 153

Customizing the Build Process

Hook Point Reference

The following sections describe the hook points that you can use for a project. Each
section lists:

® When the hook point occurs in the build process

®m Property that you specify in your project’s _defaults_.xml file to provide the name of
the custom Ant script you want Mobile Designer to run at the hook point

® Names of the Mobile Designer Ant targets that use the hook point

To see a diagram that shows where the hook points are in the build process, see "Ant
Target Summary" on page 281.

PreBuildResources Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script before it
runs your project’s resource handler.

Property project.hookpoint.target.prebuildresources

Ant targets +Run-Reshandler +Multi-Build +Multi-Build-Last +Target-Build ++Activate-Handset +
+Re-Activate-Handset ++Run-Phoney-With-Re-Activation

PostBuildResources Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script after it
runs your project’s resource handler.

Property project.hookpoint.target.postbuildresources

Ant targets +Run-Reshandler +Multi-Build +Multi-Build-Last +Target-Build ++Activate-Handset +
+Re-Activate-Handset ++Run-Phoney-With-Re-Activation

PostCrossCompiler Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script after it
converts your project’s source to the build’s target language.

Note: Mobile Designer only calls this hook point for cross-compiled builds.
Property project.hookpoint.target.postcrosscompiler
Ant targets +Multi-Build +Multi-Build-Last +Target-Build

Using webMethods Mobile Designer Version 9.10 154

Customizing the Build Process

PreMakefileGeneration Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script before
it generates the makefile and associated Microsoft Visual Studio or Apple Xcode project
for a build.

Note: Mobile Designer only calls this hook point for cross-compiled builds.

Property project.hookpoint.target.premakefilegeneration
Ant targets +Multi-Build +Multi-Build-Last +Target-Build
PrePatch Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script before it
applies the patches to your code.

Note: Mobile Designer only calls this hook point for cross-compiled builds.

Property project.hookpoint.target.prepatch

Ant targets +Multi-Build +Multi-Build-Last +Target-Build

PreCompilation Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script before it
performs platform-specific compilation for each build.

Property project.hookpoint.target.precompilation

Ant targets +Multi-Build +Multi-Build-Last +Target-Build ++Activate-Handset ++Re-Activate-
Handset ++Run-Phoney-With-Re-Activation

PostCompilation Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script after it
performs platform-specific compilation for each build.

Property project.hookpoint.target.postcompilation

Ant targets +Multi-Build +Multi-Build-Last +Target-Build

Using webMethods Mobile Designer Version 9.10 155

Customizing the Build Process

PostPackaging Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script after
it generates the platform-specific build bundle. After executing this hook point, Mobile
Designer performs code signing, if any, that is appropriate to the platform being built.

Note: Mobile Designer only calls this hook point for cross-compiled builds.

Property project.hookpoint.target.postpackaging

Ant targets +Multi-Build +Multi-Build-Last +Target-Build

PostBuild Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script after it
packages and signs the build.

Property project.hookpoint.target.postbuild

Ant targets +Multi-Build +Multi-Build-Last +Target-Build

PostMultiBuild Hook Point

When you use this hook point, Mobile Designer invokes your custom Ant script after it
creates all the builds you selected in the Multi Build dialog.

Property project.hookpoint.target.postmultibuild

Ant targets +Multi-Build +Multi-Build-Last +Target-Build

Creating Patch Files to Apply to the Cross-Compiled Code

A patch file is a standard difference (diff) file that you can create. Use patch files when
you need to make changes to the code that the Mobile Designer cross compiler creates.
For example:

B You might need to correct issues that prevent the code from compiling.

B You might need to correct issues when the code cross compiles correctly, but the
resulting code does not execute as expected.

For example, in your source Java code, you use multiple post increments, such as i+
+ in one line of code:

int rgb = (datal[i++] << 16) + (data[i++] << 8) + (datali++]);

Using webMethods Mobile Designer Version 9.10 156

Customizing the Build Process

This line of code can cross-compile to C++ fine, but cannot be guaranteed to execute
as Java does. In some C++ compilers this type of code might result in “undefined
behavior.” In this case, even though the code will convert to C++ and then compile
successfully, you might find the run-time execution is incorrect. For these types

of situations, it is usually a best practice to write a more compliant variant in your
Java code. Continuing this example, you might change the original Java code to
something like the following:

int rgb = (data[i] << 16) + (data[i + 1] << 8) + (datal[i + 2]);

You create the patch file one time, and Mobile Designer automatically applies the fix to
all future builds, even if you continue to make changes to your application’s original
Java code. For instructions about how to create a patch and where to store the patch file,
see "Creating a Patch" on page 157.

When Mobile Designer builds your project, it adds a Builds folder to your project folder.
Within the Builds folder, there are folders for each device for which your application
was built.

project /Builds/x.y.z /device

In the folder location above:

B project is the name of your project.

B x.yz is the version number you specified for the build.

B device is the name of a device for which Mobile Designer built your application.

The device folder contains a _temp_/_language _ folder that contains the version of the
cross-compiled code without a patch applied. If a patch file exists, Mobile Designer
patches the code and stores the resulting patched version of your project in the _temp_/
_language _edit_ folder. For example, for Android, Mobile Designer generates a
_java_edit_ folder along side the _java_ folder, or for Windows Phone Mobile Designer
generates a _csharp_edit_ folder along side the _csharp_ folder.

Creating a Patch

Mobile Designer provides patch and diff tools with sample scripts so that you can create
patch files. For an example of how to use the patch and diff tools, see the Function Demo
sample project.

To create a patch file
1. Build your project using one of the following Ant targets:

m +Multi-Build Ant target. For instructions, see "Building a Project for Multiple Target
Devices" on page 143.

Be sure you select the Retain output build files in the Multi Build dialog.

m +Target-Build Ant target. For instructions, see "Building a Project from the
Command Line" on page 144.

Using webMethods Mobile Designer Version 9.10 157

Customizing the Build Process

Be sure you set the retain option to true.

2. Locate your project’s Build folder, which Mobile Designer creates during the build
process.

3. In the Build folder, locate the cross-compiled version of your code.
Specifically, look for your code in the following folder:
project /Builds/x.y.z /device /| _temp_/_language _edit_
In the folder location above:
m project is the name of your project.
® x.y,z is the version number you specified for the build.
m device is the name of a device for which Mobile Designer built your application.

m language is the language into which your application code was cross compiled,
for example, java.

4. Review the cross-compiled code and make any minor code adjustments needed to
correct the issues you are encountering so that your code compiles as expected on
the target platform.

5. Run the patch_maker script that Mobile Designer provides in the following project
folder:

project /[Builds/x.y.z /device /_temp_

When Mobile Designer builds your project, it places versions of the cross-compiled
code in both of the following project folders:

m _language _folder
m _language _edit_folder

The version of the cross-compiled code in the _language _edit_ folder includes any
patch that you might have already applied.

When you run the patch_maker script, Mobile Designer generates a diff file with the
differences between the two folders.

6. Save the diff file that the patch_maker script created in the project’s main folder
using the names specified in the following table.

Platform Patch Name

Android android java.diff
i0S ios cpp.diff
Windows Phone winphone csharp.diff

Using webMethods Mobile Designer Version 9.10 158

Customizing the Build Process

Platform Patch Name

Windows RT win8rt csharp.diff

Windows 8 win8str csharp.diff

Note: If you want to give your diff file an alternate name, for example, if two

targets for the same platform require different diff files, you can use a
custom name for a diff file. You still save the diff file to the project’s main
folder. However, if you name your diff file differently from the names
specified in the table above, you must add the patch.name property to
the target device file in the project’s targets folder. Set the value of the
patch.name property to the name of the diff file to use for the device.

Using webMethods Mobile Designer Version 9.10 159

Using webMethods Mobile Designer Version 9.10 160

Installing and Testing Mobile Applications

V Installing and Testing Mobile Applications

m Using Phoney for Debugging Your Mobile Application ..o 163
B ACHVAUNG DEBVICES ..ooouiiiiiic ettt bbb enens 177
m Installing Applications 0N DEVICESccvviviririririiee e 183

Using webMethods Mobile Designer Version 9.10 161

Installing and Testing Mobile Applications

Using webMethods Mobile Designer Version 9.10 162

Using Phoney for Debugging Your Mobile Application

16 Using Phoney for Debugging Your Mobile
Application

m About Using Phoney to Debug Mobile APpliCAtioNScccoveeieiriciriceesie s 164
B Phoney Ant Target SUMMAIYcccoiiiviiiiiiecee ettt 164
m Steps Performed for Phoney Ant Targets ... 166
B Running Phoney from Software AG DESIGNETcccceeviiirevereiiiiceee e 167
m Running Phoney from the Command LiNEccooeiiiiiiniieeece e 168
B Installing Certificates 0N PRONEYcccovoiiviviiciiccc e 173
m Using Phoney to Monitor an Application’s Memory and Thread UsSagecccocovvevnirnininnnes 173

Using webMethods Mobile Designer Version 9.10 163

Using Phoney for Debugging Your Mobile Application

About Using Phoney to Debug Mobile Applications

The Mobile Designer utility, Phoney, is a phone simulator that is not platform-specific.
You can test your application by running it in Phoney.

If you use the Mobile Designer NativeUlI library to create the user interface for your
mobile application, the user interface is rendered using Phoney skins that Mobile
Designer provides. Mobile Designer provides some platform-specific Phoney skins that
attempt to mimic the look-and-feel of a platform. For platforms that Mobile Designer
does not provide a platform-specific Phoney skin, Mobile Designer provides a general
graphical skin for the user interface. For more information about Phoney skins, see
webMethods Mobile Designer Native User Interface Reference.

Use the ++Run-Phoney, ++Run-Phoney-With-Activation, or ++Run-Phoney-With-Re-Activation Ant
targets to run a mobile application in the Phoney simulator. For information about the
actions Mobile Designer takes when you run Phoney, see "Phoney Ant Target Summary"
on page 164 and "Steps Performed for Phoney Ant Targets" on page 166.

You can run Phoney from Software AG Designer. For instructions, see "Running Phoney
from Software AG Designer " on page 167. Alternatively, you can run Phoney from

the command line. For more information, see "Running Phoney from Software AG
Designer " on page 167.

If a mobile application accesses services via the Internet and you want to use SSL to
secure the communications between the Phoney and the service, install certificates on
Phoney. For instructions, see "Installing Certificates on Phoney" on page 173.

You can use the Phoney Metrics panel to get an estimation of an application’s memory
and thread usage to help determine whether you might encounter issues with memory
and thread usage when running the application on physical devices. For more
information, "Using Phoney to Monitor an Application’s Memory and Thread Usage" on
page 173.

Note: You can also test and debug by installing a mobile application on to a physical
device or a platform-specific emulator or simulator. See the providers’
documentation for the latest instructions for how to install applications and
use emulators or simulators that they provide. This documentation includes
limited instructions for some platforms. For more information, see "Installing
Applications on Devices" on page 183.

Phoney Ant Target Summary

The following diagram provides summary information about the process Mobile
Designer performs when you use Phoney Ant targets. It shows:

® The names of the Ant targets you can use to run Phoney.

Using webMethods Mobile Designer Version 9.10 164

Using Phoney for Debugging Your Mobile Application

® The steps Mobile Designer performs. For details about each step, see "Steps
Performed for Phoney Ant Targets" on page 166.

® The hook points in the process where Mobile Designer can run custom Ant scripts
that you provide. For more information about hook points, see "Creating Custom
Ant Scripts to Run at Predefined Hook Points" on page 153.

Note: For instructions for how to run Phoney, see "Running Phoney from
Software AG Designer " on page 167 and "Running Phoney from the
Command Line" on page 168.

N
&
& &
¥
¥
Q é Qﬁ
& &S
© & L
& o o
Q& Xx x&
% v Steps within the process Hook points
/
/
Project-level device_name.xml files
Project-level _defaults_.xml file
Mobile Designer device database
Mobile Designer sdk.properties
PreBuildResources
PostBuildResources
N

Using webMethods Mobile Designer Version 9.10 165

Using Phoney for Debugging Your Mobile Application

Steps Performed for Phoney Ant Targets

This section describes the steps that Mobile Designer performs when you run the ++Run-
Phoney, ++Run-Phoney-With-Activation, and ++Run-Phoney-With-Re-Activation Ant targets to run a
mobile application in the Phoney simulator.

Note: For instructions for how to run Phoney, see "Running Phoney from
Software AG Designer " on page 167 and "Running Phoney from the
Command Line" on page 168.

++Run-Phoney Ant Target

When you use the ++Run-Phoney Ant target, Mobile Designer performs only the Run
Phoney step.

The Run Phoney step starts Phoney for the last activated device. You can specify Phoney
startup options using the phoney.base.params property.

++Run-Phoney-With-Activation and ++Run-Phoney-With-Re-Activation Ant Targets

Use the ++Run-Phoney-With-Activation Ant target to activate a device, then run Phoney.
Use the ++Run-Phoney-With-Re-Activation Ant target to reactivate the last device, then run
Phoney.

When you use the ++Run-Phoney-With-Activation or ++Run-Phoney-With-Re-Activation Ant target,
Mobile Designer performs the steps in the following table. The table also indicates hook
points where Mobile Designer can run custom Ant scripts that you provide. For more
information about hook points, see "Creating Custom Ant Scripts to Run at Predefined
Hook Points" on page 153.

The first four steps and hook points are for reactivating the last device. For details about
these steps, see "Steps Performed to Activate Handsets" on page 179.

Step Description

1 Display the Activate Handset dialog (optional JPanel)

Mobile Designer displays the Activate Handset dialog, and also a custom
JPanel for the build, if you defined one.

For more information, see "Setting Properties at Build Time Using a Custom
JPanel" on page 150.

Note: Mobile Designer only displays the Activate Handset dialog when
you run the ++Run-Phoney-With-Activation Ant target.

2 Determine setting for target devices

Using webMethods Mobile Designer Version 9.10 166

Using Phoney for Debugging Your Mobile Application

Step Description

hook Optional. Run a custom Ant script for the PreBuildResources hook point
point

3 Execute the resource handler

hook Optional. Run a custom Ant script for the PostBuildResources hook point
point

4 Prepare source (include Mobile Designer abstraction lib

5 Create .classpath for Eclipse

6 Compiles the Java source

7 Run Phoney

Mobile Designer starts Phoney for the last activated device. You can specify
Phoney startup options using the phoney.base.params property.

Running Phoney from Software AG Designer

To run Phoney, you should have already activated a device for your project because
the Phoney Ant targets run the your application for the last activated device. For
information about activating a device, see "Activating Devices" on page 177.

Note:

To run Phoney from the Mobile Development perspective, refer to the Mobile
Development documentation available in Softwage AG Designer via Help >
Help Contents > Software AG Designer Guides > webMethods Mobile Development Help.

To run Phoney from Software AG Designer

1. In Software AG Designer, click the Project Explorer view, expand the Mobile Designer
project, and drag the build.xml file to the Ant view.

If the Ant view is not open, for instructions, see "Displaying the Ant View" on page

65.

2. To create a Run configuration, use the ++Activate-Handset Ant target to activate a
handset for your project. For instructions, see "Activating a Device" on page 181.

Note: As part of activating a device, Mobile Designer creates a Run

configuration, which you can use to run or debug the application using
Software AG Designer and Phoney.

Using webMethods Mobile Designer Version 9.10 167

Using Phoney for Debugging Your Mobile Application

3. In Software AG Designer run Phoney using either a Run Configuration, to simply
execute Phoney, or Debug Configuration, if you want to use debug capabilities, for
example, setting breakpoints.

m To use Run Configurations:
i. Select Run > Run Configurations.

ii. In Run Configurations, expand Java Application, select your mobile application
project and click Run.

m To use Debug Configurations:
i. Select Run > Debug Configurations.

ii. In Run Configurations, expand Java Application, select your mobile application
project and click Run.

Running Phoney from the Command Line

You can run Phoney from the command line using any of the Phoney Ant targets. To
execute the Ant target, from the command line navigate into the project's folder.

Syntax
[options] ant target

For ant target, specify one of the Phoney Ant targets, for example, ++Run-Phoney. The
options you can use are listed in the table below.

Phoney Startup Options

Note: If you want to run Phoney from Software AG Designer, you can specify the
startup options in the phoney.base.params property.

Option and Description

{--accelerate_images | -ai}

Enables image acceleration, speeding up 32-bit images.

{--device | -fd} device name

Forces Phoney to emulate the dimensions and keys of the specified device. For
device name specify the name you selected from the Choose your handset list in the
Add Handset dialog when you added the device to the project. For example, for the
Microsoft Surface RT device, use WN8 Microsoft SurfaceRT for device name.

{--dimensions | -d} widthxheight

Using webMethods Mobile Designer Version 9.10 168

Using Phoney for Debugging Your Mobile Application

Option and Description

Specifies the canvas dimensions. The default is 176x220 pixels.

Note: If you also specify the {--device | -fd} option, the dimensions you
specify with the {--dimensions | -d} option override the dimension
specified with the {--device | -fd} option. Other settings specified with
the {--device | -£fd} option still apply.

{--fc_pim_roots | -1t} simulated drives

Specifies one or more simulated drives that Phoney uses when executing
FileConnection classes.

To specify a drive use the format:

fake root name ,path

For example, to simulate the D:\ drive in C:\fake\d, use the following
D:\,C:\fake\d

Use a semicolon-separated list to specify multiple simulated drives. For example,
to simulate the D:\ drive in C:\fake\d and the E:\drive in C:\fake\e, use the
following

D:\,C:\fake\d;E:\,C:\fake\e

The default is the following;:
C:\,$FCDIR%/c/

For the default, ¥FCDIR% maps to the following directory:
Mobile Designer_directory\ Tools\Phoney \ FC_PIM_fake_roots

{--fixed_frame_rate | -ff}

Specifies you want to Phoney to create AVI files using fixed frame rate. If you do
not specify this option, Phoney uses variable rate.

{--frame_rate | -fr} rate

Specifies that you want Phoney to record everything that is displayed in the Phoney
window in an AVI file. Specify rate to indicate the frame rate (frames per second)
to use to record the movie. The default frame rate value is 25fps.

Using this option allows you to record a movie of your application, for example, to
use as a demonstration video.

{--invert | -i}

Inverts the number pad so that it behaves like a phone keypad.

{--jad_param | -jp} parameters

Using webMethods Mobile Designer Version 9.10 169

Using Phoney for Debugging Your Mobile Application

Option and Description

Specifies Java Application Descriptor (JAD) parameters. If a JAD file is present, the
parameters you specify override the parameters in the JAD file. You can specify the
{--jad param | -jp} startup option multiple times.

{--location_position | -lp} l1atitude,;longitude;altitude

Specifies the default position returned by the Location API. The default is
"51:30:26;-0:7:39;24" (London).

{--max_scale | -ms}

Sets the scale of the current screen to the maximum that is allowable given the
current screen resolution.

{--metrics_mem_limit_kb | -mm]} megabytes

Specifies the maximum number of kilobytes to use for memory before issuing
warnings. Phoney signals a warning if an application's memory usage is
approaching or exceeding configured limit. The default is 51200 KB (50 MB). For
more information, see "Using Phoney to Monitor an Application’s Memory and
Thread Usage" on page 173.

Note: It is recommended that you do not change the default. If you need to
change it, do so for specific devices rather than the entire project.

{--metrics_thread_limit | -mt} number

Specifies the maximum number of threads to use before issuing warnings. Phoney
signals a warning if an application's thread usage is approaching or exceeding
configured limit. The default is 15 threads. For more information, see "Using
Phoney to Monitor an Application’s Memory and Thread Usage" on page 173.

Note: It is recommended that you do not change the default. If you need to
change it, do so for specific devices rather than the entire project.

{--no_fake_fc_pim_roots | -fk}
Disables the behavior of the {--fc_pim roots | -rt} startup option.
Caution: When you use {--no_fake fc pim roots | -fk}, Phoney lists your

computer’s root devices directly. As a result, your mobile application has
direct access to the root drives, for example, C:\.

{--no_file_connection | -fc}

Using webMethods Mobile Designer Version 9.10

170

Using Phoney for Debugging Your Mobile Application

Option and Description

Disables the FileConnection portion of FC-PIM. Use this option when you want to
simulate devices that do not support the FileConnection APL

{--no_menus | -nm}

Disables the menu bar.

{--no_pim | -np}

Disables the reading of the Phoney Contacts file.

{--no_settings | -ns}

Specifies that you want Phoney to only use the command-line options for user
settings and ignore settings in user settings files.

By default, Phoney retains settings from previous sessions in a properties file so
they can be used again. Using this property ensures that Phoney does not use
previously saved settings.

{--open_dialog | -od}

Shows the file open dialog so that you can have Phoney load a JAD or JAR file at
startup.

{--open_screenshot | -os}

Indicates that you want Phoney to automatically open any screen shot you take
using F1. The screen shot is open using the system-defined application for viewing
PNG images.

{--pim_root | -pr}
Specifies where to locate the Phoney Contacts file.
The default is the following:

$PIMDIRS
For the default, $PIMDIR% maps to the following directory:

Mobile Designer_directory\ Tools\ Phoney \ FC_PIM_Contacts

{--properties | -p} £ilename

Specifies you want Phoney to use device settings in the specified properties file.

Important: Be sure to specify this setting so that Phoney automatically represents the
activated device.

Using webMethods Mobile Designer Version 9.10 171

Using Phoney for Debugging Your Mobile Application

Option and Description

{--redirect_output | -ro}

Redirects all stdout and stderr text to an internal buffer that you can then view from
the Phoney > Console menu item.

{--repaint_sleep | -rs} mi11iseconds

Specifies the number of milliseconds the MIDP repaint calls sleeps, allowing time
for the paint thread to service the queue.

{--rms_files | -1}
Specifies you want to store RMS data in files.

Phoney uses RMS files for the RecordStore class read/write processes. If you do
not use file-based RMS, the save/load operations do not persist between Phoney
sessions.

{--scale | -s} number

Specifies the window scale multiplier. The default is 1.

Note: ~ While running Phoney, you can change the screen scale by pressing the '+'
or -' key to increase or decrease the scale.

{--single_keypress | -sk}

Disables multiple simultaneous key presses. By default, multiple simultaneous key
presses are enabled.

{--slow_rms | -sr} milliseconds

Specifies you want to emulate a record store that performs slowly. Specify the
number of milliseconds you want the RecordStore class to use to perform an add or
set operation.

Note: This is mostly useful for legacy J2ME devices that sometimes had issues
writing to the RecordStore, causing a lag when trying to save too frequently
or not allowing enough time for the write operations to complete. By
simulating the time that the device takes, you can determine how the
application will perform on devices that exhibit this issue.

{--softkeys | -k}
Forces a system soft-key area for LCDUI soft keys.

{--sound | -so}

Using webMethods Mobile Designer Version 9.10 172

Using Phoney for Debugging Your Mobile Application

Option and Description

Enables sound playback using the JDK 1.5 Java Sound APL

{--verbose | -v}

Specifies you want verbose output.

{--verbose_mmapi | -vm}

Specifies you want verbose debug information from the MMAPI code.

Installing Certificates on Phoney

Phoney makes use of the J2SE keychain. As a result, you can use X.509 v1, v2, and v3
certificates and PKCS #7-formatted certificate chains consisting of certificates of that

type.

Note: The J2SE keychain details vary based on the VM you have installed. For more
information about the Oracle Java 7 keychain, see http://docs.oracle.com/
javase/7/docs/technotes/tools/solaris/keytool.html.

To install custom SSL certificates on Phoney
®m Use keytool to install the certificate.

The keytool is located in %JAVA_HOME%/bin.

Example:

keytool -importcert -file $KEY FILE FOLDER$\$KEY FILE%
—alias $CERTIFICATE ALIASS -keystore "$JAVA HOME%$\jre\lib\security\cacerts

Using Phoney to Monitor an Application’s Memory and
Thread Usage

You can use Phoney to run applications on a simulated, generic device. When using
Phoney to run an application, you can view memory and thread usage information for
the simulated device in the Metrics panel. Use the metrics to determine:

®m Estimation of how much memory and threads an application uses.
® When an application’s memory and thread use is at its highest.

The metrics can help determine whether you might encounter issues with memory and
thread usage when running the application on physical devices.

Using webMethods Mobile Designer Version 9.10 173

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

Using Phoney for Debugging Your Mobile Application

Additionally, Phoney displays warnings if an application’s memory and/or thread use
exceeds configured thresholds.

Note: When running the application on a physical device, the metrics might differ
somewhat from the values in the Metrics panel. For example, when running
the application on a physical device, the memory usage might be a little less
because the format of the application resources, such as, data, images, and
sound, might be in a format better suited for the physical device. Native
Mobile Designer libraries used on physical devices might also differ slightly
in their usage of threads.

Also note that other applications accessing sound and video hardware can
cause the JVM in which Phoney is running to create spurious threads. For
example, web browsers displaying video, Flash, or other rich content might
cause the JVM in which Phoney is running to create spurious threads. You can
safely ignore these additional threads.

Metrics Panel

You can open the Metrics panel from Phoney by selecting Phoney > App Metrics, or
by pressing CTRL+M on the keyboard. The Metrics panel displays the following
information:

m Overall memory usage of an application

The Peak bar shows the highest recorded use of memory, as a proportion of the
current JVM's total size. The History graph shows the last 60 seconds of memory
usage.

Overall Memory (Peak)

o 5.3k 10.5MB 15.8h 21.0ME

Owverall Memory (History), Current; 6.5MB
10.0

m Memory usage for Image classes within an application

Similar to the overall memory metrics, these metrics display a Peak bar that shows
the highest recorded use of memory for Image classes within the application. The
History graph shows the last 60 seconds of memory usage.

Using webMethods Mobile Designer Version 9.10 174

Using Phoney for Debugging Your Mobile Application

raphics Memory {Peak)

0 5.3MB 10.5mBE 10.3N 21.0ME

raphics Memory (History), Current; 3.5MB
10.0

Because both the overall memory usage and the usage for Image classes use the same
scale, you can determine the proportion of the overall memory that the application
uses for Image classes.

m Thread usage

For thread usage, the Metrics panel lists the number of threads that the application
has created. The History graph shows the last 60 seconds of thread usage.

hreads {History), Current: 2

Note: Even if the Metrics panel is closed, Phoney continues to monitor memory and
thread usage and displays warnings if memory and/or threshold use exceeds
configured thresholds.

Setting Warning Thresholds and How Warnings are Displayed

You can configure limits for when you want Phoney to signal a warning if an
application's memory and/or thread usage is approaching or exceeding configured
limits. To configure the limits, you specify options when you start Phoney. If you do
not specify the startup options, Phoney uses default values. You can specify the startup
options:

® On the command line when you start Phoney.

Using webMethods Mobile Designer Version 9.10 175

Using Phoney for Debugging Your Mobile Application

B When starting Phoney via Software AG Designer. Set the options in one of the
following locations:

® On the Arguments tab inside the Run Configurations window.
m Using the phoney.base.params property in the project’s targets/_defaults_.xml file.

When an application goes over the configured limits, Phoney displays a blinking icon
on the bottom-left of the screen. If the Metrics Panel is open, the background behind
the graphs also blinks red. The warnings blink for approximately 60 seconds after the
application's memory and/or thread usage reduces to the configured limits.

Note: Even if the Metrics panel is closed, Phoney monitors memory and thread
usage and displays warning icons.

The following table lists the startup option you use to configure the limits, the default
values for the limits, and provides information about when Phoney displays warning.

Memory Startup option {--metrics mem limit kb | -mm}
limit

Default value 50 MB

Warning Blinking RAM warning icon

® When blinking slowly, the application's usage is over
90% of the memory limit.

®m When blinking rapidly, the application's usage is over
the memory limit.

Thread limit Startup option {--metrics thread limit | -mt}
Default value 15 threads

Warning Blinking CPU warning icon

® When blinking slowly, the application's usage is over
80% of the thread limit.

= When blinking rapidly, the application's usage is over
the thread limit.

The following example shows startup options to set the memory usage limit to 20 MB
and the thread usage limit to 5 threads.

-—-metrics thread limit 5 --metrics mem limit kb 20480

Alternatively, you can use the short form of the options:
--mt 5 --mm 20480

Using webMethods Mobile Designer Version 9.10 176

Activating Devices

17 Activating Devices

B AbOUt ACHIVALING DEVICES ..ottt 178
B Activate Devices ANt SUMMATYccciiieiciccecee et renens 178
m Steps Performed to Activate HandSetscccccvviieciiccce e, 179
B ACHVANNG @ DEVICE ...ttt 181

Using webMethods Mobile Designer Version 9.10 177

Activating Devices

About Activating Devices

When you set up your mobile application project, you add devices to the project. Each
device you add is a device your mobile application supports. When testing how your
application runs on one of the devices, you need the run-time settings to be set for a
specific device. To get the correct settings for a device, you can activate it. For example,
if you want to test your application using Phoney, you might first activate the device for
which you want to test, then run Phoney to test your application.

When you activate a device, Mobile Designer

® Hot-swaps in the required Mobile Designer run-time classes. For more information,
see " Mobile Designer-Provided Run-Time Classes" on page 72 and "Run-Time
Classes Properties" on page 271.

® Sets up the project compile path appropriately by creating the .classpath file that
provides information about how to compile the Java code.

B Runs the project’s resource handler so that the com.softwareag.mobile.runtime.Parameters
class contains settings for the device you activate

® Compiles the code.

For more information about the steps Mobile Designer takes when you activate a device,
see "Activate Devices Ant Summary" on page 178 and "Steps Performed to Activate
Handsets" on page 179.

To activate a device, you use the ++Activate-Handset or ++Re-Activate-Handset Ant targets. For
instructions, see "Activating a Device" on page 181.

Activate Devices Ant Summary

The following diagram provides summary information about the process Mobile
Designer performs when activating a device. It shows:

B The names of the Ant targets you can use to activate devices.

® The steps Mobile Designer performs. For details about each step, see "Steps
Performed to Activate Handsets" on page 179.

B The hook points in the process where Mobile Designer can run custom Ant scripts
that you provide. For more information about hook points, see "Creating Custom
Ant Scripts to Run at Predefined Hook Points" on page 153.

Note: For instructions for how to activate a device, see "Activating a Device" on page
181.

Using webMethods Mobile Designer Version 9.10 178

Activating Devices

&é
X
Q‘fé\ nge
F X
SR o _ ,
Steps in the process Hook points
4

4
Project-level device_name.xml files
Project-level _defaults_.xml file
Mobile Designer device database
Mobile Designer sdk.properties

|| D

Steps Performed to Activate Handsets

This section describes the steps that Mobile Designer performs when you run the +
+Activate-Handset or ++Re-Activate-Handset Ant targets to activate a device.

The table also indicates hook points where Mobile Designer can run custom Ant scripts
that you provide. For more information about hook points, see "Creating Custom Ant
Scripts to Run at Predefined Hook Points" on page 153.

Note: For instructions for how to activate a device, see "Activating a Device" on page
181.

1 Display the Activate Handset dialog (optional JPanel)

Using webMethods Mobile Designer Version 9.10 179

Activating Devices

hook
point

Mobile Designer displays the Activate Handset dialog, and also a custom
JPanel for the build, if you defined one.

For more information, see "Setting Properties at Build Time Using a Custom
JPanel" on page 150.

Note: Mobile Designer only displays the Activate Handset dialog when you
run the ++Activate-Handset Ant target.

Determine settings for target devices

Mobile Designer determines the settings for the device you are activating. It
retrieves the settings from the following sources in the order listed.

m Project-level device_name .xml files
®m Project-level _defaults_.xml file

® Mobile Designer device database

m Mobile Designer sdk.properties file

Mobile Designer uses the first setting it encounters. For example, if Mobile
Designer encounters a setting in the project-level target device_name .xml file
and then again in the project-level _defaults_.xml file, Mobile Designer uses
the setting from the target device_name .xml file.

For more information about:

B Project-level device files, see "Where You Set Properties” on page 120 and
"Setting Project Properties” on page 123

® Mobile Designer device database, see "Devices that a Mobile Application
Supports" on page 92

® Mobile Designer sdk.properties file, see "Mobile Designer Configuration
Properties (sdk.properties)" on page 19

PreBuildResources

If you have created an Ant script to run at the PreBuildResources hook
point, Mobile Designer runs the Ant script.

Execute the resource handler

Mobile Designer runs the resource handler that you created for the project.
When running the resource handler, Mobile Designer records all the
resources required for your application. Mobile Designer also creates

the com.softwareag.mobile.runtime.Parameters class. For more information

about creating the resource handler, see "Defining Resources for a Mobile
Application Project” on page 105. For more information about the Parameters
class, see "Application and Parameter Classes" on page 72.

Using webMethods Mobile Designer Version 9.10 180

Activating Devices

hook
point

At this point in the build process, Mobile Designer uses the following
project properties:

m project.reshandler.src.path for the location of the project’s resource handler
script and any associated classes

m projectjava.reshandler.name for the name of the resource handler class you
created for your project.

m project.resource.dir.root for the location of the top-level folder that contains the
resources (audio files, image files, etc.) for your project

m project.reshandler.additional.libs.path for the location of additional libraries that
your project’s resource handler requires

For more information about these properties, see "Resource Handler
Properties” on page 267.

PostBuildResources

If you have created an Ant script to run at the PostBuildResources hook
point, Mobile Designer runs the Ant script.

Prepare source (include Mobile Designer abstraction lib)

Mobile Designer prepares the source by including the relevant run-time
classes. For more information, see " Mobile Designer-Provided Run-Time
Classes" on page 72 and "Run-Time Classes Properties" on page 271.

Create .classpath for Eclipse

Mobile Designer creates a classpath file in the project's root folder to
reference the stubs that the device’s run-time code and that the resource
handler requires. The Mobile Designer project is refreshed so that the
classpath changes are propagated through to the codebase.

Compile the Java source

Activating a Device

To activate a device you use one of the following Ant targets:

m ++Activate-Handset to specify the device and the language combination that you want
to activate.

m ++Re-Activate-Handset to activate the last device that was activated.

Using webMethods Mobile Designer Version 9.10 181

Activating Devices

Note: When you activate a device, Mobile Designer also creates a debug or run
configuration. You can find the created .launch file in the project’s _temp_
folder.

To activate a device

1. In Software AG Designer, click the Project Explorer view, expand the Mobile Designer
project, and drag the build.xml file to the Ant view.

If the Ant view is not open, for instruction, see "Displaying the Ant View" on page
65.

2. Inthe Ant view, double-click the Ant target you want to use:

m Double-click ++Activate-Handset if you want to specify a device/language
combination.

Mobile Designer displays an Activate Handset dialog. Continue with the next
step to complete the procedure.

m Double-click ++Re-Activate-Handset to re-activate the last device.

Mobile Designer does not display a dialog. It re-activates the last device and does
not require you to perform further actions.

3. In Activate Handset dialog, select the device you want to activate from Choose your
handset list.

4. Select the language group for which you want to test from Choose your language group
list.

5. C(Click Activate Handset.

Using webMethods Mobile Designer Version 9.10 182

Installing Applications on Devices

18 Installing Applications on Devices

About Installing Applications 0N DEVICEScccccureiereiriririeieieeeenee s 184
Installing Applications on Android DEVICEScccceeviriiiiiiiieieee s 184
Installing Applications 0N i0S DEVICEScccvuevriiririieiriicieieseeee e 186
Installing a Windows Phone 8 Application to an Emulated or Physical Devicec.cccceeue.e. 188
Installing a Windows RT/Windows 8 Application to an Emulated or Physical Device 189
Installing Custom SSL Certificates on DEVICEScccriueriririiiiiinnieseseeeesesens 191

Using webMethods Mobile Designer Version 9.10 183

Installing Applications on Devices

About Installing Applications on Devices

After you use webMethods Mobile Designer to build an application, you can install
the final binary on the target devices. This documentation describes how to install
applications on the following commonly-used platforms:

® Android

m iOS

® Windows Phone

The procedures in this documentation do not cover all possible setups and scenarios.
Refer to the device provider's web pages for further details.

Installing Applications on Android Devices

To install Android applications, you can use the following methods to install
applications on emulated or physical devices:

® Install an Android application package (APK) file using the Android Debug Bridge
(ADB)

®m Install an Eclipse project build using the Android Development Tools (ADT) Eclipse
plug-in

Note: If you need to install a certificate, this documentation provides information
about installing certificates on Android 4.0 and later devices. See "Installing
Certificates on Android 4.0 and Later Physical Devices" on page 191. For
additional information, see the device provider's web pages.

Installing an APK File to an Emulated or Physical Device Using the
Android Debug Bridge

To upload an APK file to an Android device, use the ADB command-line tool. The
ADB tool is located in the platform-tools directory of your Android SDK install. See the
Android developer website for more information about the ADB tool.

Tip: To make accessing the Android tools from the command line easier, add the
platform-tools and tools folder of your SDK install to your default path.

Note: You can use the following procedure for both virtual Android devices and
physical Android devices.

To install an APK file using the ADB tool
1. Ensure that your Android device is fully booted.

Using webMethods Mobile Designer Version 9.10 184

Installing Applications on Devices

If you are using a physical device, connect the device to your computer and ensure
that you have all required drivers installed.

Note: For physical Android devices, you might need to enable debugging. To do
so, launch the Settings application, and select Applications > Development >
USB Debugging.

Open a command prompt and execute one of the following, where apkFilepathis
the path to the APK file and filename is the name of your APK file.

a. ForWindows:

cd apkFilePath
C:\android-sdk-windows\platform-tools\adb install filename .apk

b. For Macintosh:

cd apkFilePath
/android-sdk-macosx/platform-tools/adb install filename .apk

The ADB tool interacts with the device and installs your build.

Launch your application from the device and test it.

Note: From the command line, use adb logcat to monitor output from your
device. This can be useful when debugging your application.

Installing an Application to an Emulated or Physical Device Using the
ADT Eclipse Plug-In

The following procedure describes how to install an application to a device using Eclipse
with the Android Development Tools (ADT) Eclipse plug-in.

To install an application using the ADT Eclipse plug-in

1.

2.

When building your project using the Mobile Designer +Multi-Build Ant task, be sure to
select the Retain output build files check box.

When the build completes successfully, Mobile Designer retains a folder named
temp in the same folder as your build. The _temp_/ java_edit_ folder is a self-
contained Eclipse project that you can import.

Import the project in the _temp_/_java_edit_ folder into Eclipse as an existing project:
In the Package Explorer window, right-click the project and select Import.

b. For the type of project to import, select General > Existing Projects into Workspace,
then click Next.

c. When selecting the root of the project you want to import, select Select root
directory and browse to and select the _temp_/_java_edit_ folder of the project
you want to import.

d. Click Finish.

Using webMethods Mobile Designer Version 9.10 185

Installing Applications on Devices

3. Do one of the following based on whether you are installing to a emulated or
physical device.

= Toinstall to an emulated device, ensure the you have configured at least one
Android Virtual Device for the target device’s API. For more information, see
"Setting Up an Android Virtual Device (Emulator)" on page 39.

m Toinstall to a physical device, ensure the device is connected to the machine and
turned on.

4. From Eclipse, select Run>Run.
5. Select that you want to run the project as an Android Application.

Eclipse launches the appropriate Virtual Device, if it is not already started, and
installs the application.

Installing Applications on iOS Devices

To install iOS applications, you can use the following methods:
®m Toinstall to a simulator, you can install using Apple Xcode.
®m Toinstall to a physical device, you can:

m Install using the Apple Xcode IDE

m Install an Ad-Hoc Build Using iTunes

Note: If you need to install a certificate, this documentation provides information
about installing certificates on iOS devices. See "Installing Certificates on iOS
Physical Devices" on page 192. For additional information, see the device
provider's web pages.

Installing to a Simulated or Physical Device Using the Apple Xcode
IDE

This method is useful when installing during the development process and when you
want to install to a simulated device.

To install to a simulated or physical device using Xcode

1. When building your project using the Mobile Designer +Multi-Build Ant task, be sure to
select the Retain output build files check box.

When the build completes successfully, Mobile Designer retains a folder named
temp in the same folder as your build. The temp/_cpp_edit_ folder is an Xcode
project (the .xcodeproj file) that you can use to access your cross-compiled source.

2. Double-click the .xcodeproj file.

Using webMethods Mobile Designer Version 9.10 186

Installing Applications on Devices

Xcode starts.
3. Select the device to which you want to install the application:

m Toinstall to a simulated device, on the screen set the scheme to the simulated device
to which you want to install.

= Toinstall to a physical device, attach the iOS device to your computer.

4. Click Run.

Xcode compiles your application, signs it with the development certificate, and
installs it on the selected simulated or physical device.

Installing an Ad-Hoc Build to a Physical Device Using iTunes

Use the following procedure to install an ad-hoc build to a physical iOS device.

To install an Ad-Hoc build using iTunes

1. Gather the build files you need for installation and make them available on the
machine running iTunes.

a. Locate the application bundle in the project Builds folder.

After running the Mobile Designer+Multi-Build Ant task to create an ad-hoc device
build, Mobile Designer places the application bundle in this location.

b. Compress the application bundle on the Macintosh where you created the build.

If you want to distribute the build, for example, via an email message or upload
it to a server, you must compress the files before moving them. Distributing

an uncompressed application bundle can cause issues, for example, missing
symbolic links and/or permissions set for the build.

Important: It is recommended that you use a program such as 7Zip, WinZip, or
WinRar for the decompression. Using the built-in Extract All function
that comes with Windows can damage the build when it is extracted.

c. Locate the ad-hoc mobile provision file used when signing the application.

Tip: This is the file specified in the ios.adhocprov property in Mobile
Designer sdk.properties file.

d. Copy the compressed application bundle and the ad-hoc mobile provision file
(.mobileprovision file) to the computer you want to use for the installation.

Place the files in an easy-to-find location, for example, the desktop.

2. Optionally, if the application already exists on the physical device, delete the
application if you want to perform a clean installation.

3. Connect the physical iOS device to your computer.

Using webMethods Mobile Designer Version 9.10 187

Installing Applications on Devices

10.
11.

Start iTunes.

Optionally, install the ad-hoc mobile provision file by dragging the .mobileprovision
file into Library > Applications in iTunes.

Important: You must install the .mobileprovision file if:
®m This is the first time installing this application on the device.

®m The .mobileprovision file has changed since the last time you installed
the application.

Install the application bundle.
a. Extract the files from the compressed application bundle.

® On Windows, the application is in a folder with the name
application_name .app

®m On Macintosh, the application is in a single file with a name that matches the
application name.

b. Drag the application bundle (that is, the Windows folder or Macintosh file) into
Library > Applications in iTunes.

Select Library > Applications to verify that the new application is present.

Under Devices, select the iOS device to which you want to install the application.
Select the Applications tab.

Select Sync Applications and that the application you want to install is selected.
Select the Summary tab.

iTunes installs the application.

Installing a Windows Phone 8 Application to an Emulated or
Physical Device

The following procedure describes how to install a Windows Phone 8 application.

Note: A virtual emulator is installed with the Windows Phone SDK 8.

Note: If you need to install a certificate, this documentation provides information

about installing certificates on the Windows Phone emulator. See "Installing
Certificates on Windows Phone Emulator” on page 192. For additional
information, see the device provider's web pages.

Using webMethods Mobile Designer Version 9.10 188

Installing Applications on Devices

To install a Windows Phone 8 application

1. When building your project using the Mobile Designer +Multi-Build Ant task, be sure to
select the Retain output build files check box.

When the build completes successfully, Mobile Designer retains a folder named
temp in the same folder as your build. The folder _temp_/_csharp_edit_ contains
a .csproj file, which is a Visual Studio project file.

2. Open the Visual Studio project file (.csproj file) in Visual Studio Express 2012 for
Windows Phone using one of the following methods:

®m From Windows Explorer, right-click the Visual Studio project file and select Open
with > Microsoft Visual Studio 2012 Express for Windows Phone.

m From Microsoft Visual Studio 2012 Express for Windows Phone, do the
following:

i. Select File > Open Project Dialog.

ii. Navigate to the correct _temp_/_csharp_edit_ folder to select the root
directory.

iii. Click Open.

3. Do one of the following based on whether you are installing to a emulated or
physical device.

m Toinstall to an emulated device, select Debug > Start Debugging.
The Windows Phone Emulator launches and your application starts.

m Toinstall to a physical device, ensure the device is connected to the machine and
turned on.

i. Unlock the device for development. For more information, see
http://msdn.microsoft.com/en-us/library/windowsphone/develop/
tf769508%28v=vs.105%29.aspx.

ii. Connect the device via USB. Ensure the device is active. Ensure the that the
screensaver is not active.

iii. In Visual Studio 2012 Express for Windows Phone, select your target, either
a device or an emulator, then click anywhere else to build, deploy the
application to the device, and start the execution of the application.

Installing a Windows RT/Windows 8 Application to an
Emulated or Physical Device

The following procedure describes how to install a Windows RT/Windows 8 application.
Only Windows Store/Metro applications are supported.

Using webMethods Mobile Designer Version 9.10 189

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769508%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769508%28v=vs.105%29.aspx

Installing Applications on Devices

Note:

A virtual emulator is installed with Visual Studio 2012 Express for Windows
Phone.

To install a Windows RT/Windows 8 application

1. When building your project using the Mobile Designer +Multi-Build Ant task, be sure to
select the Retain output build files check box.

Note:

Windows RT and Windows 8 require the use of Visual Studio to sign and
deploy the application.

When the build completes successfully, Mobile Designer retains a folder named
temp in the same folder as your build. The folder _temp_/_csharp_edit_ contains
a .csproj file, which is a Visual Studio project file.

2. Open the Visual Studio project file (.csproj file) in Visual Studio Express 2012 for
Windows 8 using one of the following methods:

From Windows Explorer, right-click the Visual Studio project file and select Open
with > Microsoft Visual Studio 2012 Express for Windows 8.

From Microsoft Visual Studio 2012 Express for Windows 8, do the following:

i

ii.

Select File > Open Project Dialog.

Navigate to the correct _temp_/_csharp_edit_ folder to select the root
directory.

iii. Click Open.

3. Do one of the following based on whether you are installing to a emulated or
physical device.

To install to an emulated device:

i

ii.

In Visual Studio Express 2012 for Windows 8, switch to Simulator.
Select Debug > Start Debugging

To install to a physical device, ensure the device is connected to the machine and
turned on.

i.

ii.

Download and install the Remote Debugger on the device itself. For
more information, see http://msdn.microsoft.com/en-gb/library/vstudio/
bt727f1t.aspx.

Start the Remote Debugger.

If the user account and/or password on the remote device does not match
the login for your desktop, in Remote Debugger select Tools > Options and
perform configuration to allow any user.

iii. Ensure that you know the IP address of the device.

Using webMethods Mobile Designer Version 9.10 190

http://msdn.microsoft.com/en-gb/library/vstudio/bt727f1t.aspx
http://msdn.microsoft.com/en-gb/library/vstudio/bt727f1t.aspx

Installing Applications on Devices

iv. In Visual Studio Express 2012 for Windows 8, switch to Remote Machine. You
will be prompted for the IP address.

If you have configured Remote Debugger for no authentication, ensure the
Authentication dropdown is set to none.

v. Select OK.
vi. Click the Remote Machine and Visual Studio builds and deploys the
application.

Installing Custom SSL Certificates on Devices

If an application accesses services via the Internet and you want to use SSL to secure
the communications between the device and the service, install certificates on the
device. This documentation describes the supported certificate types and how to install
certificates for the following platforms:

® Android 4.0 and later devices
®m iOS physical devices
® Windows Phone Emulator

The procedures in this documentation do not cover all possible setups and scenario.
Refer to the device provider's web pages for further details.

Installing Certificates on Android 4.0 and Later Physical Devices

Android 4.0 (Ice Cream Sandwich) and later supports DER-encoded X.509 certificates
saved in files with a .crt or .cer file extension.

Note: If you do not have a valid certificate installed, you will
see the error javax.net.ssl.SSLHandshakeException:
java.security.cert.CertPathValidatorException: Trust anchor for certification
path not found.

To install custom SSL certificates on Android 4.0 and later physical devices
1. If your certificate file has a .der or other extension, change it to .crt or .cer.

2. Use the Android Debug Bridge (ADB) tool to send a copy of your certificate to
the SD card on the device. To do so, with the ADB running, execute the following
command, where certirficate is the name of your certificate:

adb push certificate .crt /sdcard/

3. On the Android device, select Settings > Location & Security Settings > Set up screen lock
to ensure you have a password or screen lock for the device.

Using webMethods Mobile Designer Version 9.10 191

Installing Applications on Devices

4. On the device, select Settings > Personal > Security > Credential Storage > Install from SD
Card to install the custom certificate.

Installing Certificates on iOS Physical Devices

Apple iOS supports DER or Base64-encoded X.509 certificates saved in files with
a .crt, .cer, .der or .pem file extension.

Note: If you do not have a valid certificate installed, you might see an error on the
console MD: ERROR: Can't reach url "..." and a java.io.IOException.

Important: You can only use the following procedure to install custom certificates on a
physical iOS device. The procedure will not work to install certificates to the
keychain that the iOS simulator uses.

To install custom SSL certificates on iOS physical devices
1. Send the certificate to your device by doing one of the following:

m Send an email message with the certificate as an attachment. On the device, open
the email attachment.

m Put the certificate on an accessible server. On the device, download the certificate
from Safari.

When the device receives the certificate, it opens an Install Profile dialog.
2. In the Install Profile dialog, click Install.
3. Double-check the root certificate to ensure it is the one you want to install.
4. Click Install in the warning dialog.
5. Enter your passcode if you have one set up on your device.

On an iOS device, you can view and remove installed certificates selecting Settings >
General > Profiles.

Installing Certificates on Windows Phone Emulator

Windows Phone supports DER-encoded X.509 certificates with a .cer file extension.

Note: Without a valid certificate, various errors and exceptions are thrown,
including System.Net.WebException in libmidp20_slv_debug.dll at
javax.microedition.io.HttpConnectionImplNative.getResponse(HttpWebRequest
request) and System.NotSupportedException in mscorlib.dll at
System.Threading.Interlocked.Increment(Int64& location).

Important: When using the Windows Phone Emulator, you must install the custom
certificate each time the Windows Phone Emulator is started.

Using webMethods Mobile Designer Version 9.10 192

Installing Applications on Devices

To install custom SSL certificates on Windows Phone Emulator

1. Put the certificate on an accessible server. On the emulator, download the certificate
from Internet Explorer.

2. Confirm that you want to install the certificate and click Install.

Using webMethods Mobile Designer Version 9.10 193

Using webMethods Mobile Designer Version 9.10 194

Distributing Mobile Applications

VI Distributing Mobile Applications

m Distributing Applications Using webMethods Mobile Administratorcccocoevvrnicnnnnnns 197

Using webMethods Mobile Designer Version 9.10 195

Distributing Mobile Applications

Using webMethods Mobile Designer Version 9.10 196

Distributing Applications Using webMethods Mobile Administrator

19 Distributing Applications Using webMethods Mobile
Administrator

m Using Mobile Administrator to Manage and Distribute Mobile Applicationscccccccovvennnee. 198
m Requirements for Using the Mobile Administrator Plug-in for a Projectcccccevvvicvivcieinen. 199
m Activating the Mobile Administrator Plug-in for a Mobile Designer Projectccccovvniennee 200
m Setting Mobile Administrator Plug-in Project Propertiescccoccevviiieciiiccee e 200
m Project Properties for the Mobile Administrator PIug-In ..., 201
m Uploading Final Binaries to Mobile AdMINIStratorcccccieieiiiiiiiiecccsss s 209
m Remotely BUilding @ Project ..o 210
m Monitoring Jobs Used to Remotely Build Projectscccvvviiiiiiccccreceeece 213

Using webMethods Mobile Designer Version 9.10 197

Distributing Applications Using webMethods Mobile Administrator

Using Mobile Administrator to Manage and Distribute Mobile
Applications

Mobile Administrator allows you to manage and distribute your mobile applications.
Mobile Administrator provides an app store where users can browse the app catalog to
select applications to install. Mobile Administrator can send push notifications to users
when updates are available for their installed applications.

Mobile Administrator also allows you to set up build nodes that you can use to remotely
build a mobile application. You can set up build nodes that run Mobile Designer.

Mobile Designer provides a Mobile Administrator plug-in. Using the Mobile
Administrator plug-in, you can:

m Upload applications you create using Mobile Designer to the Mobile Administrator app
store.

In this situation, you create and build your mobile application locally on your own
machine. Then, use the plug-in to upload the final binaries to Mobile Administrator.

® Remotely build applications using a Mobile Administrator build node and make the
resulting applications available from the Mobile Administrator app store.

In this situation, you can use Mobile Designer to code mobile applications locally

on your own machine. Then, using the Mobile Administrator plug-in, you transmit
your source code to Mobile Administrator. Mobile Administrator, in turn, remotely
builds your application on a build node running Mobile Designer. The resulting final
binaries are made available in the Mobile Administrator app store.

When your Mobile Designer applications are in the Mobile Administrator app store,
users can install Mobile Designer mobile applications from the app store and can receive
push notifications when you make updates available. Using Mobile Administrator
application-level permissions, you can make test builds available to only members of a
development team, while giving users who want a production-ready application access
to the latest stable version of the application.

To use the Mobile Administrator plug-in, be sure to perform the setup described in
"Requirements for Using the Mobile Administrator Plug-in for a Project” on page 199.
After you have completed the setup, see the following for instructions for how to use the
plug-in for uploading applications and remotely building applications:

B '"Uploading Final Binaries to Mobile Administrator " on page 209
® '"Remotely Building a Project” on page 210
B "Monitoring Jobs Used to Remotely Build Projects" on page 213

Using webMethods Mobile Designer Version 9.10 198

Distributing Applications Using webMethods Mobile Administrator

Requirements for Using the Mobile Administrator Plug-in for
a Project

Using the Mobile Administrator plug-in requires setup in both Mobile Administrator
and in Mobile Designer.
Mobile Administrator Setup

For more detailed information on the steps below, see the webMethods Mobile
Administrator User’s Guide.

m Create a Mobile Administrator application that you will associate with your Mobile
Designer project. You need one Mobile Administrator application for each Mobile
Designer project.

® Use an existing Mobile Administrator user account or define a new one, and assign
the user account to the Mobile Administrator application.

Mobile Designer uses this user account when accessing Mobile Administrator to
upload or remotely build the project.

® Ensure the Mobile Administrator user account, at a minimum, has the following
permissions for the Mobile Administrator application:

m View and Download Stable Versions
® Manage Build Jobs

Mobile Designer requires these permissions so that it can request information,
such as the last version of the application or a list of Mobile Administrator build
configurations, and so that it can start build jobs.

® Ensure the Mobile Administrator user account has the global Manage Site
permission.

You can set this permission in Mobile Administrator on the Details tab for a user.

Mobile Designer requires this permission so that it can retrieve a list of certificates
for the project.

® Determine whether you want Mobile Designer to use an access token or basic
authentication when using the Mobile Administrator user account to access Mobile
Administrator.

Note: It is recommended that you use an access token for authentication.

B Generate an access token for the Mobile Administrator user account if you want to
use an access token for authentication.

B Set up Mobile Designer build nodes if you want to remotely build your project.

Using webMethods Mobile Designer Version 9.10 199

Distributing Applications Using webMethods Mobile Administrator

Mobile Designer Setup
m Create your Mobile Designer project or use an existing project.

B Activate the Mobile Administrator plug-in. For instructions, see "Activating the
Mobile Administrator Plug-in for a Mobile Designer Project" on page 200.

m Define Mobile Administrator plug-in properties for your Mobile Designer project.
For instructions, see "Distributing Applications Using webMethods Mobile
Administrator " on page 197.

Activating the Mobile Administrator Plug-in for a Mobile
Designer Project

To activate the Mobile Administrator plug-in for a project
1. In Software AG Designer, open the Mobile Designer project.

2. Click the Project Explorer view, expand the project, and double-click the build.xml file
to open the build.xml file in the default editor.

3. In the build.xml file, insert an <import> that imports the plug-in. Place the <import>
after the last line inside the <project> tag, as shown below:

<import

file="${env.MOBILE DESIGNER}/plugins/MobileAdministrator/v1.0.0/targets.xml"
/>

</project>

4. Save the changes to the build.xml file.

Setting Mobile Administrator Plug-in Project Properties

Define the Mobile Administrator plug-in properties for a project in the project’s
ma.properties file. The ma.properties file resides in the root folder for a project along
with the build.xml file.

To define Mobile Administrator plug-in properties
1. If your project does not have a ma.properties file, perform the following to add one:
a. Locate the ma.properties.template file in the following location:
Mobile Designer_directory/plugins/MobileAdministrator/v1.0.0

b. Copy the ma.properties.template file to your project’s root folder, renaming it to
ma.properties.

Using webMethods Mobile Designer Version 9.10 200

Distributing Applications Using webMethods Mobile Administrator

2. Set properties using the following format:

property=value

The properties you can add to the ma.properties files are described in "Project
Properties for the Mobile Administrator Plug-In" on page 201.

3. After adding the properties, save the file.

Project Properties for the Mobile Administrator Plug-In

The following sections describe the properties that you can add to the ma.properties file
to configure the Mobile Administrator plug-in for a project. Each section lists:

m Description of the property

® Platforms for which the Mobile Administrator plug-in supports the property
B Ant tasks that use the property

®m Description of the value you need to specity for the property

These properties do not have default values. You must specify a value for each property
you want to use. For information about how to set properties, see "Setting Mobile
Administrator Plug-in Project Properties” on page 200.

mobile.admin.server

Specifies a URL of the Mobile Administrator instance.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Upload-Binaries Upload-Binaries-Last Remote-Multi-Build

Value URL of the Mobile Administrator instance

Example value:
http://localhost:8080

mobile.admin.project.slug

Specifies the S1ug property that identifies the Mobile Administrator project that is
associated with the Mobile Designer project.

Platforms Android
i0S

Using webMethods Mobile Designer Version 9.10 201

Distributing Applications Using webMethods Mobile Administrator

Windows Phone 8.x

Windows RT

Windows 8
Ant tasks Upload-Binaries Upload-Binaries-Last Remote-Multi-Build
Value Value of the S1ug property that identifies the Mobile

Administrator project

Note: You can find the S1ug property in Mobile Administrator on
the Detail tab for the project.

ma.ios.bundle.id

Specifies the bundleID you want Mobile Designer to use for the final binary. The bundle
ID is a unique identifier of a final binary.

Important: The bundle ID for the Mobile Designer project must match the bundle ID for
the Mobile Administrator project.

Note: If you do not specify a value for this property, Mobile Designer uses the
bundle ID that it generates by using the value of the ios.bundle property
from the sdk.properties file, the application name, device name, and
language. Because Mobile Designer includes the device name and language in
the bundle ID, two devices for the same platform have different bundle IDs.
However, Mobile Administrator supports only one bundle ID per platform.
Use this property to override the bundle ID Mobile Designer generates for the

final binary.
Platforms iOS
Ant tasks Upload-Binaries Upload-Binaries-Last
Value Bundle ID

mobile.admin.use.authentication

Specifies the type of authentication you want Mobile Designer to use when it accesses
Mobile Administrator during the process of uploading or remotely building the project.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Using webMethods Mobile Designer Version 9.10 202

Distributing Applications Using webMethods Mobile Administrator

Ant tasks Upload-Binaries Upload-Binaries-Last Remote-Multi-Build
Value B access_token if you want to use an access token for
authentication.

When you specify access_token, use the
mobile.admin.auth.access_token property to provide the access token.

Software AG recommends that you use an access token for
authentication.

B Dbasic if you want to use basic authentication.

When you specify basic, use the following properties to provide
a user name, password, and/or to indicate whether you want
Mobile Designer to prompt for a password:

m mobile.admin.basic.auth.user
m mobile.admin.basic.auth.pass
m mobile.admin.basic.auth.prompt_for_pass

mobile.admin.auth.access_token

Specifies the access token that you want Mobile Designer to use for authentication when
it accesses Mobile Administrator during the process of uploading or remotely building
the project.

Note: This property is only applicable when you set the mobile.admin.use.authentication
property to access_token.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Upload-Binaries Upload-Binaries-Last Remote-Multi-Build

Value Access token that Mobile Administrator generated for a user
account.

mobile.admin.basic.auth.prompt_for_pass

Specifies whether you want Mobile Designer to prompt for a password to use for
authentication when Mobile Designer accesses Mobile Administrator during the process
of uploading or remotely building the project. The password corresponds to the user
name you specify in the mobile.admin.basic.auth.user property.

Using webMethods Mobile Designer Version 9.10 203

Distributing Applications Using webMethods Mobile Administrator

Note:

Platforms

Ant tasks

Value

This property is only applicable when you set the mobile.admin.use.authentication
property to basic.

Android

iOS

Windows Phone 8.x
Windows RT
Windows 8

Upload-Binaries Upload-Binaries-Last Remote-Multi-Build

B true if you want Mobile Designer to prompt for a password.

If you specify true and you also specify the password in the
mobile.admin.basic.auth.pass property, Mobile Designer uses the
password you supply at the prompt and ignores the value of the
mobile.admin.basic.auth.pass property.

B false if you do not want Mobile Designer to prompt for a
password.

If you specify false, be sure to specify the password in the
mobile.admin.basic.auth.pass property.

mobile.admin.basic.auth.user

Specifies the user name of the user account that you want Mobile Designer to use when
it accesses Mobile Administrator during the process of uploading or remotely building

the project.

Note:

Platforms

Ant tasks

Value

This property is only applicable when you set the mobile.admin.use.authentication
property to basic.

Android

i0S

Windows Phone 8.x
Windows RT
Windows 8

Upload-Binaries Upload-Binaries-Last Remote-Multi-Build

User name of a Mobile Administrator user account

Be sure to specify a user account that has permissions to act
against the Mobile Administrator project that corresponds
to the Mobile Designer project. For a description of the

Using webMethods Mobile Designer Version 9.10 204

Distributing Applications Using webMethods Mobile Administrator

required permissions, see "Requirements for Using the Mobile
Administrator Plug-in for a Project” on page 199.

mobile.admin.basic.auth.pass

Specifies the password associated with the user account that you provide with the
mobile.admin.basic.auth.user property.

Note: This property is only applicable when you set the mobile.admin.use.authentication
property to basic.

Platforms Android
iOS
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Upload-Binaries Upload-Binaries-Last Remote-Multi-Build

Value Password of the Mobile Administrator user account.

Cautionif you use basic authentication, the password is saved
in plain text in the ma.properties file. To avoid this,
Software AG recommends that you use an access token for
authentication.

mobile.admin.md.latest.version.file

Specifies the Mobile Designerproject.temp.last.version.properties.file project
property that the +Multi-Build Ant task uses for caching the last version of the final binary.

Platforms Android
iOS
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Upload-Binaries Upload-Binaries-Last Remote-Multi-Build
Value Set the value to the

project.temp.last.version.properties.file project

property

Using webMethods Mobile Designer Version 9.10 205

Distributing Applications Using webMethods Mobile Administrator

mobile.admin.upload.version

Specifies how Mobile Designer determines the version number to use for the project
build.

Mobile Designer accesses Mobile Administrator to get the project’s last version number.
Use this property to indicate whether you want Mobile Designer to use that last version
for the build or to calculate a new version number by incrementing the last build version
number by one.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Upload-Binaries
Remote-Multi-Build

Value B INCREMENT if you want Mobile Designer to increment the last
version number by one.

Note: If the last version number does not end with a number,
for example, “1.0.0.0a”, Mobile Designer cannot
increment the version number. Instead, Mobile Designer
prompts you to provide the version number to use.

B LATEST if you want Mobile Designer to use the last version
number.

mobile.admin.upload.version.stable

Specifies whether you want to mark the project final binaries that are uploaded to
Mobile Administrator as stable.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Upload-Binaries Upload-Binaries-Last Remote-Multi-Build

Value B true if you want to mark the uploaded final binaries as stable.

B false if the uploaded final binaries are not stable.

Using webMethods Mobile Designer Version 9.10 206

Distributing Applications Using webMethods Mobile Administrator

mobile.admin.upload.open_browser_on_success

Specifies whether you want a webpage containing a link to the application displayed if
the build is successful. The webpage is displayed in the default browser.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Upload-Binaries Upload-Binaries-Last

Value B true if you want to display a web page containing a link that
you can use to download the mobile application if the build is
successful.

B false if you do not want to display a web page containing a link
for the application if the build is successful.

mobile.admin.reuse.existing.build_configs

Specifies whether you want Mobile Designer to use the existing build configurations
defined in the Mobile Administrator project that is associated with your Mobile
Designer project.

Note: You create build configurations from Mobile Administrator on the Build tab
for the project.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Remote-Multi-Build

Value B true if you want Mobile Designer to use existing build
configurations to build targets

B false if you want Mobile Designer to create new build
configuration in the corresponding Mobile Administrator project
based on information you supply on the Remote Multi-Build
dialogs.

Note: After the build is finished, Mobile Designer does not delete
the newly created build configurations because deleting

Using webMethods Mobile Designer Version 9.10 207

Distributing Applications Using webMethods Mobile Administrator

build configurations triggers the deletion of all underlying
build jobs in Mobile Administrator.

mobile.admin.data.transmission.zip.includes

Specifies a list of project files and folders that you want Mobile Designer to include in a
remote project build.

This property identifies the files and folders that reside within the project folder that you
want Mobile Designer to transmit to Mobile Administrator to perform a remote multi-
build of the project. When you use this property, Mobile Designer transmits only the
files and folders that you specifically include using this property.

Note: Specify either the mobile.admin.data.transmission.zip.includes
property or the mobile.admin.data.transmission.zip.excludes. If
you specify both properties, Mobile Designer uses only the
mobile.admin.data.transmission.zip.includes property.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Remote-Multi-Build

Value Semicolon-separated list of project files and folders to include.

Specify the files and folders that are required to remotely build the
project.

mobile.admin.data.transmission.zip.excludes

Specifies a list of project files and folders that you want Mobile Designer to exclude from
the project build.

This project identifies the files and folders that Mobile Designer transmits to Mobile
Administrator to perform a remote multi-build of the project. Mobile Designer transmits
all the files and folders from the project folder except the ones you specifically exclude
using this property.

Note: Specify either the mobile.admin.data.transmission.zip.includes property
or the mobile.admin.data.transmission.zip.excludes.
If you specify both properties, Mobile Designer uses only the
mobile.admin.data.transmission.zip.includes property.

Platforms Android

Using webMethods Mobile Designer Version 9.10 208

Distributing Applications Using webMethods Mobile Administrator

i0S

Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Remote-Multi-Build

Value Semicolon-separated list of project files and folders to exclude.

Specity only files and folders that are not required to remotely
build the project.

mobile.admin.data.transmission.zip.ignores

Specifies a list of file or folder name prefixes. When Mobile Designer transmits files to
Mobile Administrator to perform a remote multi-build, Mobile Designer ignores, that is,
does not transmit, files and folders in the project folder that begin with the prefixes you
specify. This property applies to all files and folders, including subfolders and their files
recursively.

Platforms Android
i0S
Windows Phone 8.x
Windows RT
Windows 8

Ant tasks Remote-Multi-Build

Value Semicolon-separated list of prefixes that identify the start of file
and/or folder names to ignore.

Example value:

. SvVn

Uploading Final Binaries to Mobile Administrator

Use the Upload-Binaries or Upload-Binaries-Last Ant tasks to build a project and upload the
final binaries to Mobile Administrator so that the application is available via the Mobile
Administrator App Store.

Note: If you have an existing final binary, you can upload it directly from Mobile
Administrator on Build tab for the project.

To build a project and upload the final binaries to Mobile Administrator

1. In Software AG Designer, open the project you want to build and upload.

Using webMethods Mobile Designer Version 9.10 209

Distributing Applications Using webMethods Mobile Administrator

Click the Project Explorer view, expand the project, and drag the build.xml file to the
Ant view.

In the Ant view, double-click Upload-Binaries or Upload-Binaries-Last.

m If you select Upload-Binaries, Mobile Designer opens the Multi-Build dialog.
Continue with the next step.

m If you select Upload-Binaries-Last, no further action is required. Mobile Designer
builds the last configuration and uploads it to Mobile Administrator.

If you selected Upload-Binaries, select the device and language combinations that you
want to build.

The Multi-Build dialog lists devices and language combinations for all the project’s
targets. However, Mobile Designer only uploads the final binaries for the supported
platforms. If you select devices that run on unsupported platforms, Mobile Designer
performs the build, but does not upload the final binary and logs a notification in the
console output.

Important: Mobile Designer allows you to build the project for multiple devices
for a single platform. However, when downloading an application
from Mobile Administrator, Mobile Administrator only displays one
version per platform. As a result, it is recommended that you select
only the universal device for a platform that will be uploaded to Mobile
Administrator. If you build for a specific device, a user that is using the
same platform, but a different device might download an incompatible
application.

Update the Version field, if necessary.

When Mobile Designer displays the Multi-Build dialog, it sets the version based on
the mobile.admin.upload.version property in the ma.properties file.

If you want to retain the code that Mobile Designer generates for each platform,
select the Retain output build files check box.

Click Multi Build.

After Mobile Designer successfully uploads a final binary to Mobile Administrator,
if the mobile.admin.upload.open_browser_on_success property is set to true, a webpage
containing a link you can use to download the mobile application is displayed in the
default browser.

Remotely Building a Project

Use the Remote-Multi-Build Ant task to remotely build a project. When a project is built
remotely, Mobile Designer transmits the source code to Mobile Administrator. After
receiving the source code, Mobile Administrator builds the project on a Mobile
Administrator build node that is running the version of Mobile Designer that you

Using webMethods Mobile Designer Version 9.10 210

Distributing Applications Using webMethods Mobile Administrator

specify. The final binaries from the build are made available on Mobile Administrator
and can be installed via the Mobile Administrator App Store.

To remotely build a project

1.
2.

In Software AG Designer, open the project you want to remotely build.

Click the Project Explorer view, expand the project, and drag the build.xml file to the
Ant view.

In the Ant view, double-click Remote-Multi-Build.

Mobile Designer displays the Remote Multi-Build dialog. This dialog lists only
devices for the supported platforms.

If the mobile.admin.reuse.existing.build_configs property in the ma.properties file is set
to true, Mobile Designer presets information in the Remote Multi-Build dialog
based on build configurations defined in the Mobile Administrator project that
corresponds to this Mobile Designer project. If multiple build configurations exist,
Mobile Designer uses the latest version.

In the Selected column, select the check boxes for each device for which you want to
remotely build the project.

Important: When downloading an application from Mobile Administrator, Mobile
Administrator only displays one version per platform. As a result, it is
recommended that you select only the universal device for a platform. If
you build for a specific device, a user that is using the same platform, but
a different device might download an incompatible application.

If the mobile.admin.reuse.existing.build_configs property is set to t rue, Mobile Designer
preselects each device for which there is a build configuration.

In the Target name column, specify the name of the target device you want to
remotely build.

Important: Be sure names you specify match the names in the build configurations of
the corresponding Mobile Administrator project.

If the mobile.admin.reuse.existing.build_configs property is set to true, Mobile Designer
specifies device names from build configurations.

Leave the information in the Languages column as is.

You cannot configure the languages to use for the build. Mobile

Administrator sets the language using the first language specified on the
project.handset.handset.langgroups project property. For example, if the
project.handset.ios_apple universal.langgroups property is set to en;de,
Mobile Administrator uses en.

In the API SDK column, specify the platform SDK that you want to use for compiling.

If the mobile.admin.reuse.existing.build_configs property is set to true, Mobile Designer
presets this field to the platform SDK specified in the build configurations.

Using webMethods Mobile Designer Version 9.10 211

Distributing Applications Using webMethods Mobile Administrator

8.

10.

11.

12.

13.

In the Certificate column, specify how to sign the mobile application.
m For an Android devices, specify a certificate to use for signing.
m For iOS devices, specify the Provisioning Profile to use for signing.

If the mobile.admin.reuse.existing.build_configs property is set to t rue, Mobile Designer
presets this field based on the information in the build configurations.

In the MD SDK column, specify the version of Mobile Designer you want to use to
build the project, for example, 8.2.7.1.353.

Important: Be sure a Mobile Administrator build node running the version of Mobile
Designer you specified exists. If no such build node exists, the remote
build job will remain in a PENDING status indefinitely.

If the mobile.admin.reuse.existing.build_configs property is set to true, Mobile Designer
presets this field based on the information in the build configurations.

In the Retain output column, select the check box if you want to retain the platform
code the remote Mobile Designer generates on the build node.

If the mobile.admin.reuse.existing.build_configs property is set to true, Mobile Designer
presets this field based on the information in the build configurations.

Leave the Upload data method field as is.

This field describes how Mobile Designer transmits the source code for the project
to Mobile Administrator. To transmit the source code, Mobile Designer compresses
the project files and folders you specify into a .zip file and sends the .zip file to
Mobile Administrator. You specify the source code files and folders that you want to
transmit to Mobile Administrator using the following Mobile Administrator plug-in
properties:

m mobile.admin.data.transmission.zip.includes
m mobile.admin.data.transmission.zip.excludes
m mobile.admin.data.transmission.zip.ignores

Update the Version field, if necessary.

When Mobile Designer displays the Multi-Build dialog, it sets the version based on
the mobile.admin.upload.version property in the ma.properties file.

Click Remote Multi-Build.

Mobile Designer display status information for the job in the Remote Multi-Build
dialog. For more information, see "Monitoring Jobs Used to Remotely Build Projects"
on page 213.

Using webMethods Mobile Designer Version 9.10 212

Distributing Applications Using webMethods Mobile Administrator

Monitoring Jobs Used to Remotely Build Projects

Mobile Designer displays the following status information in the Remote Multi-Build
dialog for the build jobs that Mobile Administrator starts to perform the remote build.

Note:

Column

You can also view status information in Mobile Administrator on the Build tab
of the Mobile Administrator project.

Description

Job ID

Specifies a unique ID for a remote build job.

You can request information about the build job by opening the
following URL in a web browser:

http://Mobile_Administrator_hostname:port /build_jobs/jobid
where:

B Mobile_Administrator_hostname:port is the hostname and port
number for the Mobile Administrator running the remote build
job

B jobid is the job ID listed in the Remote Multi-Build dialog

Handset

Specifies the name of the device for which the build job is
running.

Status

Specifies the current status of the build job. The following
describes the possible statuses:

m PENDING when Mobile Administrator has queued the job and is
waiting for a free build node.

Note: If Mobile Administrator does not have a build node
that is running the version of Mobile Designer that
you specified in the MD SDK field on the Remote Multi-
Build screen, the job will stay in the PENDING status
indefinitely.

® RUNNING when the job is running on the build node.
m SUCCESS when the job has completed successfully.

®m ERROR when the job is completed, but ended with errors.

When errors occur, Mobile Administrator displays the build
output in the default web browser.

Using webMethods Mobile Designer Version 9.10 213

Distributing Applications Using webMethods Mobile Administrator

Column Description

MD SDK Specifies the version of Mobile Designer that is running in the
build node that Mobile Administrator is using for the remote
build.

Note: This is the version you specified in the MD SDK field on the
Remote Multi-Build screen.

Host Specifies the host name build node that Mobile Administrator is
using for the remote build.

Using webMethods Mobile Designer Version 9.10 214

Project Properties Reference

A

Project Properties Reference

BUIld RESUIES PIrOPEIHIESvviiiciceies e 216
BUIld SCHPE PrOPEILIESvviececicieieiecee ettt bbb bbb 220
Code COoNVErsiOoN PrOPEIIES ...ttt 222
Cross-Compiler PrOPEIHIESc.oviiieieieieiieeie e 225
Cross-Product Integration Properti€scccvvieeiiiiiicicesiiecee e 258
DeVviCe-SpeCific PrOPEITIESc.oviiiceeieiiiciee s 259
HOOK POINt PrOPEIHIES ...vvvevii e 260
Multi-Build Selection Properties ... 263
PhONEY PrOPEIIESo.vvieiiiici ittt enenenn 265
Project Language PrOPEITIES ..o 266
Resource Handler PrOPEITIESccciiiiiiiiiiiiieitiees e 267
RUN-Time ClasSSES PrOPEIIEScuvuiuriieririieirieieieiseeise s 271
Run-Time Code Compilation PrOPEIESccerriiiiceeeeeee s 279
ANdroid Project PrOPEILIEScceeeeeirieeciiieeeee st 280

Using webMethods Mobile Designer Version 9.10 215

Project Properties Reference

Note:

You are not required to define values for all the properties described in this
reference because Mobile Designer defines values for most of the properties.
However, if you need to set a value or change a predefined value for your
project, you can. For instructions, see "Setting Project Properties” on page 123.

Build Results Properties

The build results properties customize how Mobile Designer creates the final binary for
the project.

packager

Specifies the packager that you want Mobile Designer to use to create the JAR for each
J2ME device that your project supports.

Note:

Platforms

Value

Mobile Designer does not use this property for platforms that do not use JAR
files, for example, iOS and Android.

If you are building your application for a platform that does use JAR files,

be sure to set the property to a packager that creates JARs that the devices in
your project can run. Some devices might not be able to execute JARs created
by some packagers.

All

Specify one of the following values:

Value Meaning

jar Mobile Designer uses the built-in JAR packager that is part of
the JDK.

zip Mobile Designer provides compression with WinZip.

7zip Mobile Designer provides compression with 7Zip.

To create the JAR Mobile Designer uses the following
command-line parameters when executing 7Zip:

$S{packager.7zip.argsl} "filename" * ${packager.7zip.args2}
The packager.7zip.argsl and packager.7zip.args?2

properties are defined in the bs-defaults.xml file, which is in
the following location:

Mobile Designer_directory/Tools/Build/BuildScript/v1.0.0/bs-
defaults.xml

Using webMethods Mobile Designer Version 9.10 216

Project Properties Reference

The following shows the default property settings in the bs-
defaults.xml file:
<property name="packager.7zip.argsl"
value="a -r -tzip"/>
<property name="packager.7zip.args2"
value="-mx=9 -mfb=255"/>

kzip Mobile Designer provides compression with Kzip.

To create the JAR Mobile Designer uses the following
command-line parameters when executing Kzip:

$S{packager.kzip.args} "filename" *

The packager.kzip.args property is defined in the bs-
defaults.xml file.

The following shows the default property setting in the bs-
defaults.xml file:

<property name="packager.kzip.args"
value="-r -z1121"/>

Default kzip

If you do not have the KZip packager installed, at run time Mobile
Designer uses 7Zip.

project.handset.skip.compilation

Specifies whether you want Mobile Designer to skip the build step. You can have Mobile
Designer skip the build step if you want to use native platform tools to compile and
create the final binary.

Platforms All

Value B true to skip the build.

Mobile Designer performs all the resource handling and cross-
compiling (for platforms that require it), but does not compile the
final binary.

ImportanfiWhen you set this property to true, be sure to select Retain
output build files in the Multi Build dialog. When you select
Retain output build files, Mobile Designer retains the cross-
compiled code it generated from your original mobile code,
along with any project (for example, Xcode project for iOS)
it might have generated. You can then use the retained files
and the native platform tools to compile to create the final
binary.

Using webMethods Mobile Designer Version 9.10 217

Project Properties Reference

Default

B false to have Mobile Designer perform the build step to compile and

create the final binary.

Mobile Designer performs all the resource handling, cross-compiling,

and compiles the final binary.

false

project.jarname.format

Specifies the file name format that you want Mobile Designer to use when creating the
final binary for a build of the project.

Platforms

Value

All

File name format that you define by specifying one or more of the
parameters listed below. At run time, Mobile Designer replaces the
parameters with the values listed below.

m @PROJECT@
is replaced with: ${project.jar.name}

®m @LANGPROJECT@

is replaced with: ${project.jar.name.selected-langgroup},ifit
exists, otherwise replace with the value of $ {project.jar.name}

® @HANDSETe@

is replaced with:
${mobiledesigner.handset.devicegroup.output.filename}

® @LANGGROUPe@
is replaced with: Selected language group

= @VMAJOR@

is replaced with: X part of the project version number (X.y.z) that you

specify in the Multi Build dialog when building the project.
= @VMINORe@

is replaced with: Y part of the project version number (x.Y.z) that you

specify in the Multi Build dialog when building the project.
m @VMICRO@

is replaced with: Z part of the project version number (x.y.Z) that you

specify in the Multi Build dialog when building the project.

Example:

Using webMethods Mobile Designer Version 9.10

218

Project Properties Reference

<property name="project.jarname.format"
value="@PROJECTQ@@HANDSET@QLANGGROUP@" />

Note: The resulting file name must contain only valid characters are
alphanumeric (A-Z, a-z, 0-9), period (.), and hyphen (-).

Default None.

Note: You must specify this property for a project.

project.jarname.format.override.device_name

Overrides the JAR file name format value specified in the project.jarname. format
property for a specific device.

When specifying the property, replace device name with the name of the device for
which you want to override the JAR file name. You can find the device name in the
Handset field of the Multi Build dialog. For example, to specify the property for the
Apple iPhone 5 phone, use the following property, where the 10S Apple iPhone5
portion of the property name is the device name for the Apple iPhone 5 phone:

project.jarname.format.override.IOS Apple iPhoneb

Platforms All
Value See the value for the project.jarname.format property

Default No default.

Mobile Designer uses the value of project.jarname. format
for all devices that you do not specifically override using the
project.jarname.format.override.device name property.

project.multibuild.built.handset.list

Contains a semicolon-separated list of all the devices that Mobile Designer built when
building the project. Mobile Designer sets this property.

Platforms All
Value Semicolon-separated list of all the builds that Mobile Designer created

Default n/a

project.output._temp_.folder

Overrides the default name for the project folder that contains the output data from a
build of the project.

Using webMethods Mobile Designer Version 9.10 219

Project Properties Reference

Platforms All

Value Folder name that you define by specifying the one or more of the
parameters listed below. At run time, Mobile Designer replaces the
parameters with the values listed below.

Parameter Replace with the value of

@LANGGROUP@ $S{selected.langgroup}

@PLATFORM@ S{selected.platform}
@TARGET@ ${selected.target}
Example:

If you want Mobile Designer to store the output data in a project folder
named “_temp_EFIGS_j2me-jar_release_" for an English, French,
Italian, German, Spanish (EFIGS) release]2ME build, specify the
following:

<property name="project.output. temp .folder"
value="_temp @LANGGROUPQ@_ @PLATFORM@ @TARGET@_"/>

Default project _temp_ folder

If you do not set this property, Mobile Designer stores the output
and compilation directories in a project _temp_ folder alongside the
compiled binary.

Build Script Properties

The build script properties are properties you are required to put in your project’s
build.xml file.

additional.device.profiles.dir.root
Specifies the location of a folder that contains custom device profiles for your project.

You might want to create your own custom device profiles, but you do not want to
include them in Mobile Designer device database. In this situation, set up a separate
folder to contain the your additional, custom device profiles, which must use the same
XML format that Mobile Designer uses for the device profiles it provides.

To use the custom device profiles for a project, include this property in the project’s
build.xml file. You must place it in the build.xml file before the following line that
imports the targets.xml:

Using webMethods Mobile Designer Version 9.10 220

Project Properties Reference

<importxmldirectory location="${basedir}/targets"/>

Platforms All

Value Directory that contains custom device profiles

For example:

<property name="additional.device.profiles.dir.root"
value="8${basedir}/device info"/>

Default None.
Note: Mobile Designer does not use custom profiles if you do not

include this property.

mobiledesigner.buildscript.version

Specifies the version of the Mobile Designer build scripting system to use when building
your application. Define this property in the project’s build.xml file.

Platforms All

Value v1.0.0
Note: Currently the only supported value is v1.0.0.This property is

for backward compatibility in the event Mobile Designer uses a
different build scripting system in the future.

Default None.

Note: You must specify this property for a project.

mobiledesigner.runtime.version

Specifies the version of the Mobile Designer run-time code to use for your application.
Define this property in the project’s build.xml file.

Mobile Designer

Platforms All

Value v1.0.0

Note: Currently the only supported value is v1.0.0.This property is
for backward compatibility in the event Mobile Designer uses a
different run-time code in the future.

Using webMethods Mobile Designer Version 9.10 221

Project Properties Reference

Default None.

Note: You must specify this property for a project.

project.jar.name

Specifies a text name you want your application to have when installed on a device.
Define this property in the project’s build.xml file.

Platforms All

Value Name for your project. Valid characters are alphanumeric (A-Z, a-z,
0-9), period (.), and hyphen (-).

For example:

<property name="project.jar.name" value="HelloWorld"/>

Default None.

Note: You must specify this property for a project.

project.java.midlet.name

Specifies the name of the root MIDlet/Application class of your project's run-time code.
Typically this is the class that extends com.softwareag.mobile.runtime.core.Application. Define
this property in the project’s build.xml file.

Platforms All

Value For example:

<property name="project.java.midlet.name"
value="com.softwareag.mobile.helloworld.MyApplication"/>

Default None.

Note: You must specify this property for a project.

Code Conversion Properties

The code conversion properties configure how Mobile Designer creates the generated
C#, C++ or Java code for the project.

java.parser.retain.comments

Specifies whether to retain comments when compiling to Java, C# or C++.

Using webMethods Mobile Designer Version 9.10 222

Project Properties Reference

Platforms All

Values B true retains comments when compiling to Java, C# or C++.

Mobile Designer attempts to keep comments connected to the line
where the comments are relevant, typically the line of code that
follows the comment. However, due to the fundamental difference
between Java, C# and C++, some comments might get misplaced or
lost.

Note: If a project has been built without comments and the
property is set to true, the cached parsed-Java files do not
contain comments to use. To resolve this issue, clear out the
project's _temp__bcdfs_cache_ folder.

B false removes comments when compiling to Java, C# or C++.

Default true

cpp.no.selfprotect

Indicates whether to add a safeguard to every method call.

Platforms All

Values B true indicates that you do not want to use the safeguard.

When set to false, the cross compiler might inject the macro line, but
it does nothing.

B false adds the safeguard to every method call using the injected
macro line.

CautionAdding the injected macro line to every method call adds
overhead to all methods and increases the output size.

Default false

cross.compiler.extractinners

Indicates whether to extract inner classes included in the Java source code.

Platforms All

Values B true extracts the inner classes.

Using webMethods Mobile Designer Version 9.10 223

Project Properties Reference

Note: The examination required to perform this action increases the
processor time.

B false does not extract the inner classes.

Default true

cross.compiler.nodatestamp

Specifies whether to exclude timestamps at the top of every generated C++ (CPP) and H
file.

Platforms All

Values B trueindicates that timestamps are not included.

If you are storing the files in a source control system, omitting this
header information reduces the file differences that occur with each
cross compilation.

B false indicates that timestamps are included.

Default false

cross.compiler.render.selfprotect

Indicates whether to add an extra line at the top of every non-static method to prevent
self-destruction of the object during the method call.

Platforms All

Values B true indicates that the extra line is added.

This is part of a fix needed to prevent object self-deletion on the rare
occasion that an object nulls all references to itself. The injected line
is a macro whose actual contents you can remove by the value of the
cpp.no.selfprotect property.

B false indicates that the extra line is not added.

Default true

Using webMethods Mobile Designer Version 9.10 224

Project Properties Reference

Cross-Compiler Properties

The webMethods Mobile Designer cross-compiler libraries contain code to support the
Mobile Information Device Profile (MIDP) and Connected Limited Device Configuration
(CLDC) standards and Java functionality. However, your application might not require
the entire library, or you might want to override default values. In this case, you can use
the cross-compiler properties to customize your use of the cross-compiler library, for
example, to disable areas of the libraries or to override default functionality.

The following lists the types of cross-compiler project properties you can set.
"2D and 3 D Rendering" on page 225
"Debugging" on page 228

"Extra Libraries and Custom Code" on page 229
"Java Classes" on page 233

"Makefile Additions" on page 236
"Optimization" on page 239

"Orientations" on page 241

"Screen and Display Handling" on page 242
"Threading" on page 244

"User Input" on page 246

"Android" on page 246

"10S" on page 253

"Windows RT and Windows 8" on page 257

2D and 3 D Rendering

project.handset.bitmapsystemfont

Deprecated. Specifies whether you want Mobile Designer to embed a bitmap font in the
final build.

Note: By default, Mobile Designer renders system liquid crystal display user
interface (LCDUI) fonts using a bitmap font rendering system.

Platforms All

Using webMethods Mobile Designer Version 9.10 225

Project Properties Reference

Value B true if an application uses system fonts and you want to embed a
bitmap font resource.

B false if an application does not use system fonts. Specifying false
saves resource space.

To use native fonts, see the project.runtime.render.system.font.using.native.font

property.

Default The default is based on the platform:
Platform Default
i0S true
Other platforms false

project.runtime.attempts.2d.graphics.over.3d

Deprecated. Specifies whether you want the application to attempt to use the system’s
underlying 3D API, for example OpenGL-ES, to perform all standard 2D Mobile
Information Device Profile (MIDP) rendering calls.

Platforms i0S

Value B true to use the system’s underlying 3D API to perform all standard
2D MIDP calls.

The application translates images into textures and maps all graphical
method calls to a corresponding 3D call. This can help access the
underlying 3D hardware.

Note: The texture map size can exceed the equivalent pixel buffer
memory allocation. Some platforms require 2D textures. As
a result, an image that is 257x17 can turn into a texture map
that is 512x32, resulting in a large memory increase required
for images in your application, resulting in a large increase
in the amount of memory that your application requires for
images. Essentially, for both the width and height, the size is
rounded up to the nearest power of two.

Note: For the iOS platform, the application must perform all
rendering on the same thread as the OpenGL-ES library,
which is not multi-thread safe or capable.

B false if you do not want the application to use the system’s
underlying 3D API to perform standard 2D MIDP calls.

Using webMethods Mobile Designer Version 9.10 226

Project Properties Reference

Default false

project.runtime.attempts.2d.graphics.over.3d.free.immutable.image.memory

Deprecated. Specifies whether the application frees the internal memory store of all
immutable images after rendering the images and creating the associated 3D texture
map.

Note: This property is only relevant when project.runtime.attempts.2d.graphics.over.3d is

set to true.

Platforms All

Value B true if you want the application to free the memory store. Specifying
true reduces the memory overhead of the image rendering.

Note: When this property is true, the application cannot use the
Image.getRGB method with the image.

B false if you do not want the application to free the memory store.

Default false

project.runtime.render.system.font.using.native.font

Deprecated. Specifies whether the LCDUI Font class uses the device's native font-
rendering mechanism.

Platforms i0S

Value ® true if an application uses the device’s native font-rendering
mechanism.

B falseif an application does not use the device’s native font-
rendering mechanism.

Note: For more information about using system fonts, see
project.handset.bitmapsystemfont.

Default false

project.runtime.uses.2d.graphics

Deprecated. Specifies whether the application uses 2D graphics and that you want the
application to prepare the renderer for their display.

Using webMethods Mobile Designer Version 9.10 227

Project Properties Reference

Platforms All

Value B true if an application uses 2D graphics.

B false if an application does not use 2D graphics.

Default true

project.runtime.uses.3d.graphics

Deprecated. Specifies whether the application uses 3D graphics and that you want the
application to prepare the renderer for their display.

Platforms All

Value ® trueif an application uses 3D graphics.

B false if an application does not use 3D graphics.

Default false

Debugging

project.handset.log.debug.filename

Provides the file name to use for the debug log file in which to log debug information
when the application uses the debug function call.

Note: To have debug statements written to an output file, you must set the
project.handset.log.debug.to.file property to true.

Platforms iOS
Value File name for the debug log file

Default LOG_debug.txt

project.handset.log.debug.to.file

Specifies whether you want the application to write debug statements to an output file
when debugging the application through the Mobile Designer Multi Build dialog box.

Using webMethods Mobile Designer Version 9.10 228

Project Properties Reference

Platforms i0S

Value B true to write debug statements to an output file.

By default, the output file name is LOG_debug.txt. You can specify
an alternate name using the "project.handset.log.debug.filename" on
page 228 property.

B false if you do not want the application to write debug statements to

an output file.

Default false

Extra Libraries and Custom Code

project.handset.hook.startup

Specifies whether you want Mobile Designer to invoke the startup hook, which is a
native function, when the application is starting before the J2ME initialization occurs.

When creating the code to invoke, implement the following function in your native code
or patch in the created StubInfo.cpp file:

void hookStartUp (void) ;

Caution: Mobile Designer invokes the native code before setting up the J2ME
environment, for example, before initializing static data or generating system
output streams. Do not include code related to the J2ME library or to the
mobile application in the native code.

Platforms All

Value B true to invoke native code before the J2ME application code is
started.

Mobile Designer invokes hookStartUp() at the beginning of the
application in these locations:

m IniOS at the start of applicationDidFinishLaunching
m On all other platforms at the start of main or its equivalent

B false if you do not want Mobile Designer to invoke native code
before the J2ME application code is started.

Default false

Using webMethods Mobile Designer Version 9.10 229

Project Properties Reference

project.handset.push.notifications

Specifies whether the application receives push notifications.

Note: Use of this property requires the Wireless Messaging API (WMA) library for
J2ME and the project.handset.uses. WMA property set to true.

Platforms Android
i0S
Windows Phone 8

Value m true if the application receives push notifications.

B false if the application does not receive push notifications.

Default false

project.handset.uses.camera

Specifies whether the application uses Mobile Media API (MMAPI) to access the camera
functionality.

Platforms All

Value B true if the application uses MMAPI to access the camera.

B false if the application does not use MMAPI to access the camera.

Default false

project.handset.uses.Database

Specifies whether your mobile application uses the com.softwareag.mobile.runtime.database
classes, which Mobile Designer provides. For more information, see "Run-Time
Database Classes" on page 76.

Platforms All

Value B true if your application uses the database classes.

B false if your application does not use the database classes.

Default false

Using webMethods Mobile Designer Version 9.10 230

Project Properties Reference

Note: If you specify a value for the mobilesupportclient.runtime.dir property, the value of
this property is automatically set to true because the Mobile Support Client
library requires the com.softwareag.mobile.runtime.database classes.

project.handset.uses.FCPIM

Specifies whether your application uses the Personal Information Management (PIM)
library for J2ME.

Platforms Android
i0S
Windows Phone 8

Value B true if your application uses the PIM library.

When you set this property to true, necessary permissions or
requests are added to native builds.

B false if your application does not use the PIM library.

Note: If your applications uses the PIM library, but you set this
property to false (or it defaults to false), your application
will fail to compile.

Default false

project.handset.uses.libJPEG

Deprecated. Specifies whether you want Mobile Designer to include the libjpeg library in
the project.

Platforms All

Value B trueif an application uses the JPEG images that are loaded using the
Image.createlmage methods.

B false if an application does not require loading JPEG images using
the Image.createlmage methods.

ImportantWhen the property is false, attempting to load an image
using an Image.createlmage method causes the method to
return a null value.

Default true

Using webMethods Mobile Designer Version 9.10 231

http://libjpeg.sourceforge.net/

Project Properties Reference

project.handset.uses.Location

Specifies whether an application requires the Location API library for J2ME to compile
and that you want Mobile Designer to initialize static values for the library.

Platforms All

Value B true if an application uses the Location library.

B false if an application does not use the Location library. Specifying
false reduces the final size of your project’s binaries.

Importanttf an application uses the Location library, and you set the

property to false, Mobile Designer cannot compile the
application.

Default true

project.handset.uses.Sensors

Specifies whether an application requires the Mobile Sensor API library for J2ME to
compile and that you want Mobile Designer to initialize static values for the library.

Platforms All

Value B true if the application uses the Sensors library.

B false if the application does not use the Sensors library. Specifying
false reduces the final size of your project’s binaries.

Importanttf the application uses the Sensors library, and you set the
property to false, Mobile Designer cannot compile the
application.

Default true

project.handset.uses.WebServices

Specifies whether an application requires the Web Service API library.

Note: The JSON library is also part of the Web Service API library.

Platforms All

Value ® true if the application uses the Web Service API library.

Using webMethods Mobile Designer Version 9.10 232

Project Properties Reference

B false if the application does not use the Web Service API library.

Default false

project.handset.uses.WMA

Specifies whether an application requires the Wireless Messaging API (WMA) library
for J2ME to compile and that you want Mobile Designer to initialize static values for the
library. WMA enables sending Short Message Service (SMS), Multimedia Messaging
Service (MMS), and Cell Broadcast Service (CBS) formats.

Platforms All

Value B true if the application uses the WMA library.

B false if the application does not use the WMA library. Specifying
false reduces the final size of your project’s binaries.

Importanttf the application uses the WMA library, and you set the
property to false, Mobile Designer cannot compile the
application.

Default true

Java Classes

cpp.class.forname.inclusion.list

Deprecated. Specifies a list of classes that you want to be made available to be referenced
at run time using Class.forName. Using this property to explicitly specify a list of classes
prevents the application from unnecessarily linking to every known class whether the
application uses the class or not.

Platforms All

Value A semicolon-separated list of classes, for example:

java.lang.Object;com.mypackage.MyCanvas

Default An empty String

cpp.class.forname.interfaces.inclusion.list

Deprecated. Identifies the names of the interfaces that your application uses. Using
this property to explicitly specify the list of interfaces prevents the application from

Using webMethods Mobile Designer Version 9.10 233

Project Properties Reference

unnecessarily linking to every known interface whether the application uses the
interface or not.

Platforms All
Value A semicolon-separated list of interfaces

Default An empty String

cpp.class.newinstance.inclusion.list

Deprecated. Controls the list of classes implemented in the Class.newInstance method.

Platforms All

Value A semicolon-separated list of classes

Caution:List only classes that have default constructors, that is, no
parameters. Compilation errors will occur if you specify a class
that does not have a default constructor.

Default The value of the cpp.class. forname.inclusion.list property

cpp.no.extraexceptions

Specifies whether you want the application to perform the Java-required NullPointer
and ArrayIndexOutOfBounds exception checks for every array access.

Platforms All

Value B trueif an application code-base is safe and does not need Java-
required NullPointer and ArrayIndexOutOfBounds exception
checks.

B false if you want an application to perform the Java-required
NullPointer and ArrayIndexOutOfBounds exception checks.

Default false

cpp.no.lcduiforms

Deprecated. Specifies whether you want the application to include extra code in the
libraries to support the liquid crystal display user interface (LCDUI) forms.

Using webMethods Mobile Designer Version 9.10 234

Project Properties Reference

Platforms All

Value B true if an application does not use LCDUI forms. Specifying false
reduces the final size of your project’s binaries.

B false if an application uses LCDUI forms.

Default false

csharp.class.forname.inclusion.list

Deprecated. Specifies a list of classes that you want to be made available to be referenced
at run time using Class.forName. Using this property to explicitly specify a list of classes
prevents the application from unnecessarily linking to every known class whether the
application uses the class or not.

Platforms All

Value A semicolon-separated list of classes, for example:

java.lang.Object;com.mypackage.MyCanvas

Default An empty String

csharp.class.forname.interfaces.inclusion.list

Deprecated. Identifies the names of the interfaces that your application uses. Using
this property to explicitly specify the list of interfaces prevents the application from
unnecessarily linking to every known interface whether the application uses the
interface or not.

Platforms All
Value A semicolon-separated list of interfaces

Default An empty String

csharp.class.newinstance.inclusion.list

Deprecated. Controls the list of classes implemented in the Class.newlnstance method.

Platforms All

Value A semicolon-separated list of classes

Using webMethods Mobile Designer Version 9.10 235

Project Properties Reference

Caution:List only classes that have default constructors, that is, no
parameters. Compilation errors will occur if you specify a class
that does not have a default constructor.

Default The value of the csharp.class.forname.inclusion.list property

project.javac.encoding

Specifies the character encoding used in your application’s Java source code.

Note: Mobile Designer also supports other Java supported character sets such as
UTF-8 and SJIS for the Shift-]IS, Japanese character set.

Platforms All
Value Character encoding

Default 8859 1 for ISO 8859-1, Latin Alphabet No. 1

Makefile Additions

Note: Makefiles are now deprecated and will be removed in a later version of
Mobile Designer. At this point, Mobile Designer will instead make use of
the generated project file to build the mobile application (i.e. Xcode for iOS
builds, VisualStudio for Windows Phone builds).

Use the Makefile Additions properties to link to third-party native-platform libraries
and/or to include more complex native alterations to your applications.

Note: Unless indicated otherwise, Mobile Designer duplicates your settings in the
corresponding Visual Studio or Xcode project.

project.cpp.additional.compiler.options

Specifies extra compiler flags or settings that you want Mobile Designer to include when
compiling an application.

Note: Mobile Designer does not include the flags and settings in the Visual Studio or
Xcode project.

Platforms All

Using webMethods Mobile Designer Version 9.10 236

Project Properties Reference

Value Flags and settings as required by the specified makefile for the target
platform
Default An empty String

project.cpp.additional.defines

Specifies #define statements that you want Mobile Designer to use when compiling an
application.

Platforms All
Value A semicolon-separated list of #define statements

Default An empty String

project.cpp.additional.includes.path

Identifies the name of an Ant path that includes a list of folders or files that you want
Mobile Designer to reference for all C++ #include statements in a project.

Platforms All
Value Name of the Ant path

Default An empty String

project.cpp.additional.libs.path

Identifies the name of an Ant path that includes a list of folders containing additional
libraries used in a project.

Platforms All
Value Name of the Ant path

Default null

project.cpp.additional.libs.post

Identifies libraries to add to the end of the referenced library list in the makefile. The
libraries you specify with this property are placed after the default libraries that Mobile
Designer automatically includes.

Using webMethods Mobile Designer Version 9.10 237

Project Properties Reference

Platforms All

Value A semicolon-separated list of libraries

Do not include file extensions or makefile-specific encoding. Mobile
Designer will set the appropriate value for a platform. For example,

if you set project.cpp.additional.libs.post tomylibl;mylib2,
Mobile Designer might change the value to "-Imylib1 -Imylib2" on one
platform, and "mylib1.lib mylib2.1ib" on a different platform.

Default An empty String

project.cpp.additional.libs.pre

Identifies libraries to add to the beginning of the referenced library list in the makefile.
The libraries you specify with this property are placed before the default libraries that
Mobile Designer automatically includes.

Platforms All

Value A semicolon-separated list of libraries

When specifying the libraries, do not include file extensions

or makefile-specific encoding.Mobile Designer will set the
appropriate value for a platform. For example, if you set
project.cpp.additional.libs.pretomylibl;mylib2, Mobile
Designer might change the value to "-Imylibl -Imylib2" on one
platform, and "mylib1.lib mylib2.1ib" on a different platform.

Default An empty String

project.cpp.additional.linker.options

Specifies linker flags or settings that you want Mobile Designer to include when
generating the final binary and linking the compiled code with the defined external C++
libraries.

Note: Mobile Designer does not include the flags and settings that you specify in the
Microsoft Visual Studio or Apple Xcode project.

Platforms All

Value Flags and settings as required by the specified makefile for the target
platform

Using webMethods Mobile Designer Version 9.10 238

Project Properties Reference

Default An empty String

project.handset.custom.stubfolder

Specifies a stub makefile and/or project template to override those that Mobile Designer

supplies.

Platforms i0S

Value Path to the copy of the stub makefile and/or project template you want
to use

Default An empty String

Optimization

project.handset.bitmapsystemfont

Deprecated. Specifies whether the application uses system fonts and that you want
Mobile Designer to embed a bitmap font resource in the final build of an application.

Note: Mobile Designer renders the system liquid crystal display user interface
(LCDUI) fonts using a bitmap font rendering system.

Platforms All

Value B true if an application uses system fonts and you want to embed a
bitmap font resource.

B false if an application does not use system fonts. Specifying false
saves resource space.

Note: To use native fonts, see the
project.runtime.render.system.font.using.native.font property.

Default The default is based on the platform:
Platform Default
iO0S true
Other platforms false

Using webMethods Mobile Designer Version 9.10

239

Project Properties Reference

project.in.code.manifest

Specifies whether you want Mobile Designer to delete the META-INF folder, which
determines how your application can access the manifest properties.

Platforms All

Value ® true to keep the META-INF folder. The application can manually
access the manifest.mf file using the following path:

/META-INF/MANIFEST.MF

B false if you want Mobile Designer to delete the META-INF
folder. The application can access the manifest properties using the
MIDlet.getAppProperty method.

Default true

project.runtime.http.connection.timeout.ms

Specifies the number of milliseconds an application waits for an HTTP or HTTPS
connection before assuming a timeout has occurred.

Platforms Android
i0S
Windows 8
Windows RT
Windows Phone

Value Numeric value
Default The default value is based on the platform.

Platform Default

Android 15000
i0S

Windows 8 30000
Windows RT
Windows Phone

Using webMethods Mobile Designer Version 9.10

240

Project Properties Reference

Orientations

project.handset.landscape.mode

Specifies whether you want the application to operate the device’s screen in landscape
mode or portrait mode.

Platforms Android
i0S

Value B true if the application uses landscape mode.

B false if the application uses portrait mode.

Default false

project.handset.orientation.limiter

Specifies a bit field that indicates the device orientations that the application supports.
The orientations are clockwise from standard portrait.

Platforms i0OS

Windows 8
Windows RT
Windows Phone 8
Value Bit field
Set this bit... To indicate this orientation is supported...
0 All orientations
1 0°
2 90°
4 180°
8 270°
Default 0

Using webMethods Mobile Designer Version 9.10 241

Project Properties Reference

Note: If an application supports multiple orientations, but not all, set all the bits
that correspond to the supported orientations. For example, if an application
supports 0° (bit 1) and 180° (bit 4), set the value to 5.

project.handset.portrait.mode.orientation

Specifies the degree of rotation required to force a device’s screen display to portrait
mode.

Platforms All

Value Value to indicate the orientation
Use this For this orientation...
value...

0 0°

1 90°

2 180°

3 270°
Default 0

Screen and Display Handling

project.runtime.callserially.stack.size

Deprecated. Specifies the maximum number of Display.callSerially method calls that an
application can stack during its execution. If the specified value is exceeded, the call is
ignored and a warning message is passed to the console.

Platforms All
Value 0 or positive number

Default 4

Using webMethods Mobile Designer Version 9.10 242

Project Properties Reference

project.runtime.canvas.total

Deprecated. Specifies the maximum number of canvases an application can create at one
time.

Note: The number of canvases an application uses at any one time impacts the
management of repaints. Set the project.runtime.uses.threaded.repaint property to
handle the load.

Platforms All
Value Numeric value

Default 1

project.runtime.statusbar.visible

Specifies whether you want the application to leave room so that a device's status bar
displays. The status bar is where a device displays information, such as battery strength,
signal strength, and the time.

Platforms Android
iOS
Value B true if you want the status bar visible.

B false if you do not want the status bar visible.

Default Depends on whether the application uses the Native user interface
library (com.softwareag.mobile.runtime.nui) for its user interface:

®m If an application uses the NativeUI library, the default is true.

m If an application does not use the NativeUI library, the default is
false.

project.runtime.uses.threaded.repaint

Deprecated. Specifies whether you want the application to manage repaint calls on the
application thread or use a second thread for repaint calls.

Note: To manage repaint actions, you might also need to specify the number of
canvases allowed in your mobile application. For more information, see the
project.runtime.canvas.total property.

Using webMethods Mobile Designer Version 9.10 243

Project Properties Reference

Platforms All

Value B true if you want the application to use a secondary thread for the
repaint calls.

B false if you want the application to use the application thread for
repaint calls.

Default false

Threading

project.handset.primary.thread.sleep.time.ms

Deprecated. Specifies the number of milliseconds for the primary thread sleep time that
occurs on the device.

Note: Yield is the acknowledgment to the system that the thread is giving up its
hold on the CPU. The value for yield is 0 (zero).

Platforms i0S
Value Numeric value

Default 5

project.handset.thread.stacksize

Specifies the number of bytes to allocate for the stack when the application creates a
thread.

Platforms All

Value Numeric value

Default The default is based on the platform:
Platform Default
i0S 524288
Other platforms 32768

Using webMethods Mobile Designer Version 9.10 244

Project Properties Reference

project.handset.wait.for.thread.termination

Deprecated. Specifies whether the application waits for running threads to terminate
before exiting the application.

Platforms All

Value B true causes the application to wait for threads to terminate before
exiting. Your mobile application and all of its threads need to detect
any incoming destroyApp calls and terminate gracefully.

B false if you do not want the application to wait for threads to
terminate before exiting.

Default false

project.runtime.object.wait.sleep.time.ms

Deprecated. Specifies the number of milliseconds that you want a thread to sleep while
waiting for an object to receive a wait notification.

Note: Yield is the acknowledgment to the system that the thread is giving up its
hold on the CPU. The value for yield is 0 (zero).

Platforms All
Value Numeric value

Default 5

project.runtime.sync.lock.sleep.time.ms

Deprecated. Specifies the number of milliseconds that you want a thread to sleep while
waiting to attain ownership of a lock.

Note: Yield is the acknowledgment to the system that the thread is giving up its
hold on the CPU. The value for yield is 0 (zero).

Platforms All
Value Numeric value

Default 0 (zero)

Using webMethods Mobile Designer Version 9.10 245

Project Properties Reference

project.runtime.uses.user.threading

Deprecated. Specifies whether the application uses an internal user threading model or
native threading model.

Platforms iOS (not the simulator)

Value B trueif an application uses an internal user threading model.

Using an internal user defined threading model can help avoid
potential thread limitations.

B false if an application uses a native threading model.

Default false

User Input

project.handset.threaded.inputs

Deprecated. Specifies whether the system should route touch screen events through the
MIDlet’s primary thread or through a secondary thread.

Platforms i0S

Value B true to route touch screen events through the MIDlet’s primary
thread.

B false to route touch screen events through a secondary thread.

Default false

Android

android.apk

Specifies a file name that Mobile Designer uses to override the name for the Android
application package file.

Platforms Android

Value File name for the Android application package file

Using webMethods Mobile Designer Version 9.10 246

Project Properties Reference

Default File name as specified by the Multi Build dialog

android.backkey.valid

Specifies the action to take when the user presses the Back key, that is, whether to handle
the Back key like all other keys or to terminate the application.

Platforms Android

Value B true to use the Back key like other keys.

B false to terminate the application.

Default true

android.clean.source.folder

Deprecated. Specifies whether you want Mobile Designer to clean the source tree of
files that were created when applying patches before Mobile Designer creates the final
Android application package file (apk).

Platforms Android

Value B true to clean the source tree. Specify true to prevent files created
when applying patches from being incorporated into the final
application package file.

B false toleave the source tree as is before creating the final
application package file.

Default true

android.direct.to.surfaceview

Deprecated. Specifies whether you want the application to direct Canvas.paint method
calls directly to the device’s screen or to use blitting to copy the surface to the screen.

Platforms Android

Value B true to direct Canvas.paint to render directly to the screen.

B false to direct Canvas.paint to render to an off-screen bitmap, which is
then blitted to the screen.

Default false

Using webMethods Mobile Designer Version 9.10 247

Project Properties Reference

android.manifest.permissions

Specifies permissions that you want Mobile Designer to include in the
AndroidManifest.xml file.

Platforms Android
Value A semicolon-separated list of permissions

Default An empty String

android.manifest.xml

Specifies an override for the default AndroidManifest.xml file that Mobile Designer
generates.

Platforms Android

Value The path to an alternate XML file to use instead of the default
AndroidManifest.xml file

Default An empty String

android.min.sdk.version

Specifies the value that you want Mobile Designer to insert into the
AndroidManifest.xml file for the minsdkversion setting, which defines the Android
application programming interface (API) level.

Platforms Android

Value Value for minSdkversion

Default 4

android.nativeui.navview.version

Deprecated. Specifies the rendering style for the native user interface view
(nUINavView).

Platforms Android

Value B 1 to specify the pop-up Menu navigation view from the Android SDK
version 3.x or earlier.

Using webMethods Mobile Designer Version 9.10 248

Project Properties Reference

B 2 to specify the always visible navigation view in the Android SDK
version 4.x or later.

Default 2

android.nativeui.view.header.version

Deprecated. Specifies the rendering style for the Android native user interface view
display (nUIViewDisplay) header.

Platforms Android

Value B 1 to specify the Android OS 2.3.4 and earlier, API level 10 or lower,
thin grey header.

B 2 to specify the Android OS 3.0 and higher, API level 11 and higher,
larger black header with app icon and back chevron.

Default 2

android.orientation.forced

Specifies whether you want the application to force the screen orientation to portrait
or landscape, or whether you want the application to allow the screen to automatically
rotate based on the device’s orientation.

Platforms Android

Value B portrait to force the screen display to use portrait mode.
B landscape to force the screen display to use landscape mode.

® An empty string to allow the screen to automatically rotate.

Default An empty String

android.package

Specifies the name of the Java package that Mobile Designer uses for Android builds.

Platforms Android
Value Name of the Java package to use for Android builds

Default com.softwareag.mobile.runtime

Using webMethods Mobile Designer Version 9.10 249

Project Properties Reference

android.package.name

Specifies a String to override the name for the Android application package (APK) file.

Platforms Android

Value String to use for the APK file name
Default Value of the android.package property with the selected.jarname
appended to it

For example, if android.package is “com.softwareag.mobileruntime”
and selected.jarname is “myproject”, the APK name would default to
“com.softwareag.mobileruntime.myproject”.

android.target.sdk.version

Deprecated - will always build against newest installed. Specifies the value that

you want Mobile Designer to insert into the AndroidManifest.xml file for the
targetSdkVersion setting. The targetsdkversion setting indicates the highest
Android application programming interface (API) level for which you have ensured
your mobile application is backward compatible. In other words, you have ensured that
your application runs as expected at the level you specify in targetSdkversion down
to the level you specify for the android.min.sdk.version property.

Newer versions of the Android platform include behavior that mimics the expected
functionality of older versions to support backward compatibility. However, the newer
Android platform only uses the backward compatible behavior required to support

the API level specified in targetsdkversion. For example, if a device is running
Android level 15, but your application has been tested for level 11 and you want
backward capability for level 11, set the android. target.sdk.version property to 11.
In turn, Mobile Designer inserts the value 11 for the targetsdkversion setting in the
AndoidManifest.xml file. As a result, the Android level 15 platform mimics the expected
behavior of Android level 11 platform when running your application.

Platforms Android

Value An integer that designates the Android API level that you want to
use for the <uses-sdk> element's targetSdkversion setting in the
AndroidManifest.xml file.

Default Value of the android.min.sdk.version property

Using webMethods Mobile Designer Version 9.10 250

Project Properties Reference

android.uses.surfaceview

Deprecated. Specifies whether you want the application to use the Android SurfaceView
rendering model for 2D graphics.

Note: Applications use the Android SurfaceView rendering model for 3D graphics
by default.

Platforms Android

Value B true to enable using the SurfaceView rendering model for 2D
graphics.

Note: Although automatically enabled for 3D graphics, setting this
to true for 2D graphics will switch the rendering model to
SurfaceView from the normal View.

B false to disable using the SurfaceView rendering model for 2D
graphics.

Default Value of the project.runtime.uses.3d.graphics property

project.additional.libs.path

Specifies the name of an Ant path that includes a list of folders or direct file locations
where required native-shared libraries are located.

Platforms Android

Value Name of an Ant path

Default project.cpp.additional.libs.path

project.android.sdk.version.override

Specifies the version of the SDK that you want to use for compiling.

Platforms Android
Value Version of the version of the SDK you want to use for compiling

Default 21

Using webMethods Mobile Designer Version 9.10 251

Project Properties Reference

android.push.additional.icon.pre21api

If set, nominates an additional icon that will be copied to the application as res/raw/
pushiconpre21.png and used as the in-application notification icon for incoming Push
Messages for devices with device API earlier than 21. If this parameter is unset (default),
then the the icon set in "android.push.additional.icon" or the application's main icon will
be used instead.

Platforms Android
Value Icon res/raw/pushiconpre2l.png

Default not set

android.push.message.key

Determines the most important key within an incoming Push Message. This is
the one that is returned to the application as the "primary message text" through
MessageConnectionHandler.received TextMessage().

Platforms Android
Value Primary message text

Default collapse key

android.push.additional.icon

If set, nominates an additional icon that will be copied to the application

as res/raw/pushicon.png and used as the in-application notification icon

for incoming Push Messages. If this parameter is unset, then the icon set in
"android.push.additional.icon.pre21lapi" or the application's main icon will be used
instead.

Platforms Android

Value Icon res/raw/pushicon.png

Default not set

android.push.icon.reference

This should not normally need to be set by the user. It will point to the icon used for
Push Notifications within the application. Setting android.push.additional.icon will

Using webMethods Mobile Designer Version 9.10 252

Project Properties Reference

automatically change this value to "R.raw.pushicon". Advanced usage may include the
use of ternary operators or method calls to specify an int value from R.java.

Platforms Android
Value R.raw.pushicon

Default R.raw.icon

i0S

ios.app.delegate.name

Specifies the name of the application delegate that you want the application to use.

Platforms iOS
Value Name of an alternative delegate application

Default xXyzApp

ios.background.music

Specifies whether the application allows users to continue playing their audio in the
background while the application is running.

Platforms i0S

Value B true to allow the user to play music, which is not a part of the
application, in the background while the application is running.

Specifying true also ensures that the audio supports the iPhone's
Ring/Silent switch setting.

B false if you do not want to allow a user to play music while the
application is running.

Default false

ios.deployment.target

Specifies the minimum iOS firmware version that the application supports.

Using webMethods Mobile Designer Version 9.10 253

Project Properties Reference

Platforms i0S

Value Version number

When specifying a version, use the number only, such as 6. 0.

Default 6.0

ios.extra.frameworks

Deprecated. Injects a reference to one or more third-party frameworks into the makefile
and Xcode project files. For more information, see "Linking to External (3rd Party)
Native Libraries/Frameworks" on page 85.

Platforms i0S

Value Path to the framework, for example, " /Users/mycompany/Desktop/
MyFramework.framework".

To specify multiple frameworks, separate each path using the
character defined in Ant path.separator property. In the following
example, path.separator is set to a colon (:).

"/Users/mycompany/Desktop/MyFramework. framework: /Users/
mycompany/Desktop/Another. framework"

Note: You must include the ".framework" portion when specifying a
path.

Default An empty string

ios.in.code.default

Deprecated. Specifies whether you want to use the Default.png image within your
application code.

Note: iOS applications have a Default.png that defines the initial splash screen that
displays when the application loads. By default, the Default.png is a black
image with the Software AG logo on it. You can override this default image
for your application by adding your own Default.png file in the Resource
Handler.

Platforms i0S

Value B true if you want to use the Default.png image within your
application code.

Using webMethods Mobile Designer Version 9.10 254

Project Properties Reference

B false if you do not need to use the Default.png image within your
application.

Default true

ios.in.code.icon

Deprecated. Specifies whether you want to use the icon.png image within your
application code.

Platforms i0S

Value B true if you want to use the icon.png image within your application
code.

B false if you do not need to use the icon.png image within your
application.

Default false

ios.info.plist.output.format

Specifies the format you want Mobile Designer to use for the final packaged Info.plist.

Platforms i0S

Value B binary to maintain the Info.plist file in binary format.

B xml to maintain the Info.plist file in XML format.

Default binary

ios.retained.png.list

Specifies a list of portable network graphic (PNG) files that you want Mobile Designer to
retain a .png file rather than generated _png files.

For information about _png files, see the i0s.in.code.default property.
Platforms iOS
Value A semicolon-separated list of PNG files

Default An empty String

Using webMethods Mobile Designer Version 9.10 255

Project Properties Reference

ios.sdk.version

Specifies the version of the iOS SDK that you want Mobile Designer to use when
compiling the application.

Platforms i0S

Value Version number of the iOS SDK

Default Latest version of the SDK

Mobile Designer looks for the installed iOS SDK versions and selects
the version with the highest version number

ios.use.retina.display

Specifies whether the application supports the high-resolution retina display of an iOS
device.

Platforms i0S

Value ® true if the application supports the high-resolution retina display.
B false if the application does not support the high-resolution retina
display.
Default false

ios.use.root.view.controller

Deprecated. Specifies whether the application uses the iOS rootViewController property.

Platforms i0S

Value B true to use the rootViewController property.

When an application uses the Native User Interface (NativeUI) library
(com.softwareag.mobile.runtime.nui) for its user interface, using this setting
allows the application to better support rotation of the device. That

is, the application is better able to display overlays and NativeUI
extensions, for example, the built-in camera and volume selector.

B false if you do not want to use the rootViewController property.

Use this setting when the application does not use the NativeUI
library, when the application does not support rotation, or if you

Using webMethods Mobile Designer Version 9.10 256

Project Properties Reference

want to maintain backwards compatibility for an application you
developed using Mobile Designer 9.6 or earlier.

Default Depends on whether the application uses the NativeUI library
(com.softwareag.mobile.runtime.nui) for its user interface:

®m If an application uses the NativeUI library, the default is true.

®m If an application does not use the NativeUI library, the default is
false.

project.handset.nativehook

Deprecated. Specifies whether the application requires a callback method that executes
from the core user interface thread.

Platforms i0S

Value B true if the application requires a callback method from the core user
interface thread. When you specify true, add the following function
to your code:

void objcNativeHook (void) ;

Calls to the objcThreadHook () function will trigger the
objcNativeHook (void) function, which the application calls using a
core user interface thread.

B false if the application does not require a callback from the core user
interface thread.

Default false

Windows RT and Windows 8

winrt.application.identity.string

Specifies the value Mobile Designer sets for the Identity Name field inside the
Package.appxmanifest file, which Mobile Designer generates during the build process.

Platforms Windows RT
Windows 8

Value Application name that you want Mobile Designer to use for the
Identity Name field in the package manifest file.

Default vendor .appname

Using webMethods Mobile Designer Version 9.10 257

Project Properties Reference

where:

®m vendor is the vendor named specified in the project.jad.vendor.name SDK
property. If the value contains spaces, Mobile Designer replaces each
space with a hyphen (-).

B appname is the text name of the application specified in the
project.jar.name project property.

Cross-Product Integration Properties

The cross-product integration properties configure how Mobile Designer works with
other products in the webMethods product suite.

mobilesupportclient.runtime.dir

Specifies whether to include the Mobile Support Client library in a mobile project. The
methods in this library facilitate data synchronization between mobile devices and back-
end databases by initiating synchronization requests with webMethods Mobile Support.

For more information about webMethods Mobile Support, see Developing Data
Synchronization Solutions with webMethods Mobile Support. For more information about the
Mobile Support Client library, see webMethods Mobile Support Client Java API Reference.

Note: The Mobile Support Client library requires the
com.softwareag.mobile.runtime.database classes. As a result, when you set
a value for the mobilesupportclient.runtime.dir property, the
project.handset.uses.Database is automatically set to true to indicate that the
mobile application uses the com.softwareag.mobile.runtime.database classes.

Platforms All

Values Root directory where the Mobile Support Client library
mdlibrary.properties file and src folder reside.

Example:

<property name="mobilesupportclient.runtime.dir”
value="c:/SoftwareAG/Mobile/SupportClient” />

Default None.

Using webMethods Mobile Designer Version 9.10 258

Project Properties Reference

Device-Specific Properties

The device-specific properties define information for specific devices in your project.
Store these properties in your project’s targets folder in the target device file for the
device to which the property pertains, device_name .xml.

project.handset.device_name .langgroups

Specifies one or more language groups that indicate the language(s) that your mobile
application supports for the device indicated in the property name.

When specifying the property, replace device name in the property name with the
name of a specific device. The value for a specific device is the value that you selected
from the Choose your handset list in the Add Handset dialog when you added the device
to the project. For example, for an Apple iPhone 5 phone, the property name is:

project.handset.IOS Apple iPhone5.langgroup

When you added the device to the project, Mobile Designer automatically added this
property to the target device file in your project’s targets folder.

project_folder /targets/device_file xml

Mobile Designer set the value of the property to the language groups you specified in
the Language Groups field of the Add Handset dialog. For more information, see "Adding
a Device to a Project” on page 92.

You can update the property if you want to add, change, or remove language codes. You
can specify the language groups you define with the project.langgroup.group_name property.

Platforms All

Value One or more language groups. To specify multiple language groups,
create a semicolon-separated list.

Example
Suppose you use the project.langgroup.group_name property to define the
following language groups:

<property name="project.langgroup.AMERICAN" value="en;fr;es"/>
<property name="project.langgroup.EUROPEAN"

value="en; fr;it;de;es"/>

<property name="project.langgroup.ASIAN" value="zh;ja"/>

To specify that the application supports the American and European
language groups for the IOS_Apple_iPhone5 device, use the following:

<property name="project.handset.IOS Apple iPhone5.langgroup"
value="AMERICAN; EUROPEAN" />

Default No default.

Using webMethods Mobile Designer Version 9.10 259

Project Properties Reference

This property must have a value.

project.manifest

Specifies the location of the manifest.mf file for a device.

Platforms All

Value Absolute path to the manifest file.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

Hook Point Properties

The hook point properties provide the names of Ant targets that you create and that you
want Mobile Designer to execute when it is executing Ant targets that are provided with
Mobile Designer, for example, the +Multi-Build Ant target. Using hookpoints allows you

to customize Mobile Designer processes. For more information about hookpoints, see
"Creating Custom Ant Scripts to Run at Predefined Hook Points" on page 153.

project.hookpoint.target.prebuildresources

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
before it executes the Resource Handler while processing the executing the +Multi-Build,
+Multi-Build-Last, +Activate-Handset, +Re-Activate-Handset, or +Run-Phoney-With-Re-Activation Ant
tasks.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.posthuildresources

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
after it executes the Resource Handler while processing the +Multi-Build, +Multi-Build-Last,
+Activate-Handset, +Re-Activate-Handset, or +Run-Phoney-With-Re-Activation Ant task.

Using webMethods Mobile Designer Version 9.10 260

Project Properties Reference

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.precompilation

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
before it performs platform-specific compilation for each build while processing the +Multi-
Build or +Multi-Build-Last Ant task.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.postcompilation

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
after it performs platform-specific compilation for each build while processing the +Multi-
Build or +Multi-Build-Last Ant task.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.postcrosscompiler

Specifies an Ant target that you created. Mobile Designer calls the Ant target you
specify after the cross compiler has converted the project's source to your build's target
language.

Note: Mobile Designer only calls this hook point for cross-compiled builds.

Platforms All

Using webMethods Mobile Designer Version 9.10 261

Project Properties Reference

Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.premakefilegeneration

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
before it generates the makefile and platform-specific project. Examples of platform-
specific projects are a Microsoft Visual Studio project for a Windows Phone platform,
Apple Xcode project for the iOS platform, or an Eclipse project for platforms like
Android.

Note: Mobile Designer only calls this hook point for cross-compiled builds.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.prepatch

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
after it applies the patches to your code.

Note: Mobile Designer only calls this hook point for cross-compiled builds.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.postpackaging

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
after it generates a platform-specific build bundle.

The output of the packaging process varies from platform to platform. For example, for
Android builds, the output is in an application package (apk) file.

Using webMethods Mobile Designer Version 9.10 262

Project Properties Reference

After Mobile Designer executes the Ant target specified by the
project.hookpoint.target.postpackaging property, if appropriate for the platform,
Mobile Designer performs any code signing.

Note: Mobile Designer only calls this hook point for cross-compiled builds.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.postbuild

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
after it packages and signs a build.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

project.hookpoint.target.postmultibuild

Specifies an Ant target that you created. Mobile Designer calls the Ant target you specify
after it creates all the builds you selected in the Multi-Build dialog.

Platforms All
Value Name of an Ant Target you defined

Default None. If you do not include this property, Mobile Designer does not
invoke a hook point.

Multi-Build Selection Properties

The Multi-Build selection properties contain values that you selected when building the
project. Some of the properties are also set when you activate a device in the project.

Using webMethods Mobile Designer Version 9.10 263

Project Properties Reference

Mobile Designer sets these properties based on the selections you make in the Multi
Build or Activate Handset dialogs. The properties are not set in either the _defaults_.xml
file or a target device file. The properties are not saved to any file. As a result, you cannot
override the settings.

You can use the properties in your Ant scripts so that at run time it can determine
information about the current build Mobile Designer is processing or the current device
being activated.

selected.handset

Specifies the device for which Mobile Designer is building the application or the
device Mobile Designer is activating. In other words, the value is the name of the
device you selected in the Multi Build or Activate Handset dialog, for example,
I0S_Apple_iPhone5. Mobile Designer sets this property.

Platforms All
Value Device you selected in the Multi Build or Activate Handset dialog

Default n/a

selected.jarname

Specifies the name of the JAR file that is listed in the Filename field of the Multi Build
dialog, for example, NativeUIDemo iPhone5 DE. This is the JAR file name that Mobile
Designer uses for the build. Mobile Designer sets this property.

Platforms All
Value JAR file name Mobile Designer is using for the build of the project

Default n/a

selected.langgroup

Specifies the language you selected in the Multi Build or Activate Handset dialog. This
is the language for which Mobile Designer is building the application or activating a
device. Mobile Designer sets this property.

Platforms All
Value Language you selected in the Multi Build or Activate Handset dialog

Default n/a

Using webMethods Mobile Designer Version 9.10 264

Project Properties Reference

selected.platform

Specifies the name of the platform that is listed in the Platform field of the Multi Build
dialog, for example, ios-app. This is the platform for which Mobile Designer is creating
the build. Mobile Designer sets this property.

Platforms All
Value Platform for which Mobile Designer is creating the build of the project

Default n/a

selected.target

Specifies the type of executable being built. Mobile Designer sets this property using the
value from the Target field of the Multi Build dialog, for example, release.

Platforms All
Value Type of executable listed in the Target field in the Multi Build dialog

Default n/a

selected.version

Specifies the version number for the application that you specified in the Multi Build
dialog, for example, 1.0.0. Mobile Designer sets this property.

Platforms All
Value Version number you specified in the Multi Build dialog

Default n/a

Phoney Properties

The Phoney properties customize the use of Phoney for the project.

phoney.base.params

Specifies Phoney startup options. The startup options you specify with this property are
used when you start Phoney via Software AG Designer.

Using webMethods Mobile Designer Version 9.10 265

Project Properties Reference

Platforms All

Value One or more of the startup options. For a list of the startup options, see
"Phoney Startup Options" on page 168.

Default -r =i -s 1 -rs 1 -so -ai -p ${project.temp.dir.root}/
_build info .txt

Project Language Properties

The project definition properties define settings for your project.

project.langgroup.group_name

Defines a language group that specifies one or more languages that your application
supports. When specifying the property, replace group name with the name you want
to give the language group. Set the value of the property to one or more language codes
that indicate the language(s) in the group. You can use this property multiple times to
define multiple language groups.

For example, you might want to set up three language groups to define languages for
different territories, an American territory, European territory, and Asian territory. To
do so, specify the following:

<property name="project.langgroup.AMERICAN" value="en;fr;es"/>

<property name="project.langgroup.EUROPEAN" value="en;fr;it;de;es"/>
<property name="project.langgroup.ASIAN" value="zh;ja"/>

When displaying the Multi Build dialog for the project, Mobile Designer lists each
language group. You can then select from those language groups to identify the
languages for which you want to create a build.

When specifying the project.handset.device_name.langgroups property to identify the language
groups that a specific device supports, you set the value to one or more language groups
you define using this project.langgroup. group name property.

Platforms All

Value One or more of the following language codes to define the languages
in the group. To specify multiple languages, use a semicolon-separated
list.

Default None.

Note: You must specify this property for a project.

Using webMethods Mobile Designer Version 9.10 266

Project Properties Reference

Resource Handler Properties

The resource handler properties provide information about the project’s resource
handler. For more information about how you define the resource handler for a project,
see "Defining Resources for a Mobile Application Project” on page 105.

debug.remember.resource.names

Specifies whether you want the Mobile Designer to record the names of the resources
included in the build.

Platforms All

Value B true if you want to record the names of the resources.

When the property is set to true, the Mobile Designer run-time
debug output references these names directly, instead of the ID
numbers.

Setting the property to true results in extra code and a larger data
pool resulting from all the resource names that are stored in the final
binary.

B false if you do not want to record the names of the resources.

You should set the property to false when preparing a release build.

Default false

mobiledesigner.run.reshandler.with.beanshell

Deprecated. Specifies whether to use the BeanShell provided with Mobile Designer.

Platforms All

Value B true if you want to use the BeanShell provided with Mobile Designer.
You do not have to use this if you are not using Software AG Designer
to develop your mobile applications.

B false if you do not want to use a BeanShell. The resource handler code
is compiled, and then run with the normal Java executable.

Default false

Using webMethods Mobile Designer Version 9.10 267

Project Properties Reference

project.audio.file.extensions

Specifies the file extension required for the audio files that a device supports.

Platforms All

Value File extension for the audio, for example .mp3, .wav, or .mid.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

project.audio.spec

Specifies the style of audio that a device supports.

Platforms All

Value Style of audio, for example mp3, wav, or midi.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

project.compiled.resources.info.format

Specifies the file format that you want Mobile Designer to use for the
_compiled_resources file. Mobile Designer saves this file in a project’s _temp_ directory.

Note: Set this property in the project’s _default_.xml file, and not in a specific target

device file, target_name .xml.

Platforms All

Value B txt if you want Mobile Designer to create a text format
compiled_resources file (_temp__compiled_resources.txt).

® xml if you want Mobile Designer to create an XML format
compiled_resources file (_temp__compiled_resources.xml).

Default txt

Using webMethods Mobile Designer Version 9.10 268

Project Properties Reference

project.jar.midlet.icon.spec

Specifies the icon(s) to use for the application’s MIDlet-icon for a specific device.

Platforms All

Value Name of the portable network graphic (.png) file(s) to use for the
application’s MIDlet-icon.

Use this property to include the required icon(s) so that the icon for
your application when it is installed on the target devices meets your
company and/or application branding requirements. A best practice
is to name the icons so that the name includes the size of the icon, for
example icon-64x64-24bit.png. Store the image files in a subfolder that
your resource handler can easily reference.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

In the device profiles that Mobile Designer provides, the provided
icons are Software AG and Mobile Designer icons.

project.java.reshandler.name

Specifies the Java package/class name of the resource handler class you created for your
project. For more information about creating a resource handler for your project, see
"Coding the Resource Handler" on page 106.

Platforms All
Value Name the Resource Handler class name.

Default None.

Note: You must specify this property for a project.

project.reshandler.additional.libs.path
Specifies the Ant path to additional libraries that your project’s resource handler
requires. This is not an Ant property. Use the following format to specify the Ant path:

<path id="project.reshandler.additional.libs.path">
<pathelement path="path"/>
</path>

For example:

Using webMethods Mobile Designer Version 9.10 269

Project Properties Reference

<path id="project.reshandler.additional.libs.path">
<pathelement path="${basedir}/reshandler/libs"/>
</path>

Platforms All
Value Path to the additional libraries for the project’s resource handler

Default None.

Note: If you use additional libraries for the resource handler, you must
specify this Ant path for a project.

project.reshandler.src.path

Specifies the path to the project’s resource handler script and any associated classes.
In other words, the path to the Java class you specify with the project.java.reshandler.name
property.

This is not an Ant property. Use the following format to specify the Ant path:

<path id="project.reshandler.src.path">
<pathelement path="path"/>
</path>

For example:

<path id="project.reshandler.additional.libs.path">
<pathelement path="${basedir}/reshandler"/>
</path>

Platforms All
Value Path to the Java class specified by the project.java.reshandler.name property

Default None.

Note: You must specify this Ant path for a project.

project.resource.dir.root

Specifies the path to the top-level folder that contains the resources (audio files, image
files, etc.) for your project. For example, you might have a resources folder that contains
subfolders with the resources:

MyProject
resources
audio
graphics
icons
text

Using webMethods Mobile Designer Version 9.10 270

Project Properties Reference

For this example, set the property to point to the top-level folder, "${basedir}/resources".
For more information about how to specify resources for your project, see "Setting
Project Properties for the Resource Handler" on page 112.

Platforms All
Value Path to the top-level folder that contains the project resource files.

Default None.

Note: You must specify this property for a project.

Run-Time Classes Properties

The run-time classes properties customize how the project uses the run-time classes that
Mobile Designer provides.
mobiledesigner.runtime.core.class.camera

Overrides the value that Mobile Designer sets for how mobile application uses a device’s
camera.

Note: The com.softwareag.mobile.runtime.media.CameraHandler class uses this property. For
more information, see "Run-Time Media Classes" on page 76.

Platforms All

Value B none if your application does not use the camera, or specific devices
that your project supports do not support a camera.

B jsrl35 specifies your application uses the Mobile Media API
(MMAPI) package for J2ME devices that support the camera.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.comms.httpconnection

Overrides the value that Mobile Designer sets for how the mobile application initiates
and manages HTTP connections.

Using webMethods Mobile Designer Version 9.10 271

Project Properties Reference

Note: The com.softwareag.mobile.runtime.comms.HttpConnectionHandler class uses this
property. For more information, see "Run-Time Comms Classes" on page 75.

Platforms All

Value B none if your application or specific devices that your project supports
are not using HTTP connections.

B httpstreanif your application is using HTTP connection streams.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.comms.messageconnection
Overrides the value that Mobile Designer sets for whether the application uses SMS

messaging.

Note: The com.softwareag.mobile.runtime.comms.MessageConnectionHandler class uses this
property. For more information, see "Run-Time Comms Classes" on page 75.

Platforms All

Value B none if your application or specific devices that your project supports
are not support SMS messaging.

B wma if your mobile application is using the J2ME Wireless Messaging
API for SMS messaging.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.datatypes

Overrides the value that Mobile Designer sets to determine which primitive
data types can be read when parsing your resources with the run-time
com.softwareag.mobile.runtime.storage.ResourceDataTypes class.

Note: The com.softwareag.mobile.runtime.storage.ResourceDataTypes class uses this
property. For more information, see "Run-Time Storage Classes" on page 78.

Using webMethods Mobile Designer Version 9.10 272

Project Properties Reference

Platforms All

Value B cldcll specifies your mobile application uses CLDC 1.1.

CLDC 1.1 supports integer numbers, float and double.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.graphics.canvas

Deprecated. Overrides the canvas that Mobile Designer sets for each device.

Note: The com.softwareag.mobile.runtime.core.CanvasBase class uses this property. For
more information, see "Run-Time Canvas Classes" on page 73.

Platforms All

Value B mnidpl canvas for javax.microedition.lcdui.Canvas (Mobile Information
Device Profile (MIDP)1.0]2ME devices)

B midp2 gamecanvas for java.microedition.lcdui.game.GameCanvas (Mobile
Information Device Profile (MIDP) 2.0 J2ME devices and most newer
smartphones)

B nokiaui fullcanvas for com.nokia.mid.ui.FullCanvas (older Nokia J2ME
devices)

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.graphics.dimensions

Overrides the value that Mobile Designer sets for the screen height and width.

Note: The com.softwareag.mobile.runtime.core.CanvasDimensions class uses this property.
For more information, see "Run-Time Canvas Classes" on page 73.

Platforms All

Using webMethods Mobile Designer Version 9.10 273

Project Properties Reference

Value B dynamic if the application responds to the device’s orientation
changing from portrait to landscape mode, or vice versa.

B fixed if the application has a fixed orientation either in portrait or
landscape mode.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.graphics.image
Deprecated. Overrides the value that Mobile Designer sets for how your mobile
application loads, draws, and manages images.

Note: The com.softwareag.mobile.runtime.media.ImageHandler class uses this property. For
more information, see "Run-Time Media Classes" on page 76.

Platforms All

Value B midpl provides the support for the Mobile Information Device Profile
(MIDP) 1.0 for J2ME.

MIDP1 devices cannot perform dynamic transformations. When
using this value, Mobile Designer creates multiple versions of
the images in memory for rendering at draw-time. Do not create
unnecessary transformations because the images consume heap-
space.

B midp2 provides the support for the Mobile Information Device Profile
(MIDP) 2.0 for J2ME.

B nokiaui is a Nokia UI API extension to MIDP 1.0.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.interrupts

Deprecated. Overrides the value that Mobile Designer sets for how your mobile
application detects interrupts.

Note: The com.softwareag.mobile.runtime.core.Canvaslinterrupts class uses this property. For
more information, see "Run-Time Canvas Classes" on page 73.

Using webMethods Mobile Designer Version 9.10 274

Project Properties Reference

Platforms All

Value B midpl canvas (thisis a fixed value)

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.keysandtouch

Deprecated. Overrides the value that Mobile Designer sets for how mobile application
detects keypress, touch, or pointer events.

Note: The com.softwareag.mobile.runtime.core.CanvasKeysandTouch class uses this property.
For more information, see "Run-Time Canvas Classes" on page 73.

Platforms All

Value B midpl canvas (thisis a fixed value)

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.serialize

Overrides the value that Mobile Designer sets for
com.softwareag.mobile.runtime.serialize.Serializer class.

Note: The com.softwareag.mobile.runtime.serialize.Serializer class uses this property. For

more information, see "Run-Time Serializer Class" on page 78.

Platforms All

Value B cldcll specifies your mobile application uses CLDC 1.1.
CLDC 1.1 supports integer numbers, float and double.
Default The default is based on the specific device and is set in the device’s

device profile. You can find the device profiles in the following
location:

Using webMethods Mobile Designer Version 9.10 275

Project Properties Reference

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.softkeys

Deprecated. Overrides the value that Mobile Designer sets for soft-key labels.

Note: The com.softwareag.mobile.runtime.core.CanvasSoftKeys class uses this property. For
more information, see "Run-Time Canvas Classes" on page 73.

Platforms All

Value B graphical

The graphical solution enables amending the soft-key texts for some
devices, while on some devices the soft keys do not trigger key
callback events.

B lcdui

In the 1cdui support, soft-key commands are created and
monitored using the optimal setting for each device. 1cdui uses the
CommandListener for optimization.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.sound

Deprecated. Overrides the value that Mobile Designer sets for how your application
controls sound and vibration functionality.

Note: The com.softwareag.mobile.runtime.media.AudioHandler class uses this property. For
more information, see "Run-Time Media Classes" on page 76.

Platforms All

Value ®m If your application does not use sound and vibration, specify none for
the value.

®m For smartphones, use jsr135 for the value.
®m For older legacy J2ME devices, specify one of the following values:

® nokiaui specifies your application uses the audio handler in the
Nokia user interface APL

Using webMethods Mobile Designer Version 9.10 276

Project Properties Reference

® samsung specifies your application uses the Samsung API
com.samsung.util package to deliver audio to the device.

®m sprint specifies your application uses the audio handler in the
com.sprintpcs.media package available on some Sprint Nextel J2ME
devices to deliver audio.

m vscl specifies your application uses the Vodafone Service Class

Library.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.threading

Overrides the default mechanism that used to manage the primary thread.

Note: The com.softwareag.mobile.runtime.core.CanvasThreading class uses this property. For
more information, see "Run-Time Canvas Classes" on page 73.

Platforms All

Value B threadif you want the mobile application to use java.lang.Thread to
manage the primary thread.

B Deprecated. timertask if you want the mobile application to use
java.lang.TimerTask to manage the primary thread.

Default The default is based on the specific device and is set in the device’s
device profile. You can find the device profiles in the following
location:

Mobile Designer_directory/Devices

mobiledesigner.runtime.core.class.ui

Deprecated. Specifies whether your application uses the CanvasNativeUl run-time class.

Platforms All

Value ® nui if your application uses the CanvasNativeUl class.

Using webMethods Mobile Designer Version 9.10 277

Project Properties Reference

B menu if your application uses older technology that uses a pixel-
pushing system for rendering and handling menu flow rather than
using the CanvasNativeUl class.

Default menu

project.numeric.keys.emulate.directionals

Deprecated. Specifies how the keypress response works in your application.

Note: The com.softwareag.mobile.runtime.core.CanvasCore class uses this property. For
more information, see "Run-Time Canvas Classes" on page 73.

Platforms All

Value B false to enable each keypress to return its own key code, for
example, pressing 2 on a standard keypad results in storing 2 in the
pressed key.

B 4way to enable the numeric keys instead of the directional keys and
fire the key code and the associated action, for example pressing 2 on
a standard keypad results in storing 2 and Up in the pressed key.

B 8way to enable the diagonals, for example, pressing 1 on a standard
keypad results in storing 1, Up, and Left in the pressed keys.

Note: Enabling 4way or 8way controls and referencing directions in an
application makes the porting process easier because standard
key variations are defined for directional control in Mobile
Designer.

Default 4dway

project.runtime.uses.nativeui

Deprecated. Specifies whether your application uses the
com.softwareag.mobile.runtime.core.CanvasNativeUl class. For more information about the
CanvasNativeUl class, see webMethods Mobile Designer Native User Interface Reference.

Platforms All

Value B true if your application uses the CanvasNativeUl class.

B false if your application does not use the CanvasNativeUl class.

Default false

Using webMethods Mobile Designer Version 9.10 278

Project Properties Reference

Run-Time Code Compilation Properties

The run-time code compilation properties customize how Mobile Designer compiles
your project.

project.runtime.additional.classes.path
Specifies the Ant path to additional precompiled classes to include when building the
project. This is not an Ant property. Use the following format to specify the Ant path:

<path id="project.runtime.additional.classes.path">
<pathelement path="path"/>
</path>

For example:

<path id="project.runtime.additional.classes.path">
<pathelement path="${basedir}/src/classes"/>
</path>

Platforms All

Value Path to the folder that contains the additional precompiled classes.

Default None.

Note: If you use additional precompiled classes, you must specify this
Ant path for a project.

project.runtime.additional.stubs.path

Specifies the Ant path to additional stubs that you want Mobile Designer to use when
compiling the run-time source code. This is not an Ant property. Use the following
format to specify the Ant path:

<path id="project.runtime.additional.stubs.path">

<pathelement path="path"/>
</path>

For example:

<path id="project.runtime.additional.stubs.path">
<pathelement path="${basedir}/stubs"/>
</path>

Important: This path is used in combination with default classpath entries that Mobile
Designer defines. If you set this Ant path, be careful to avoid any duplicate
class clashes.

Platforms All

Using webMethods Mobile Designer Version 9.10 279

Project Properties Reference

Value Path to the folder that contains the stubs.

Default None.

Note: If you want to use additional stubs, you must specify this Ant
path for a project.

project.runtime.project.src.path

Specifies the Ant path to the run-time code to include in the build of the project. This is
not an Ant property. Use the following format to specify the Ant path:

<path id="project.runtime.project.src.path">
<pathelement path="path"/>
</path>

For example:

<path id="project.runtime.project.src.path">
<pathelement path="${basedir}/src"/>
</path>

Platforms All
Value Path to the folder that contains the run-time code.

Default None.

Note: You must specify this Ant path for a project.

Android Project Properties

The Android properties customize how Mobile Designer build applications for Android
devices.

project.android.sdk.version.override

Overrides the default Android SDK that Mobile Designer uses for the project.

Platforms Android
Value API number of the SDK you want to use.
Default 21

For more information about the sdk.properties, see "Configuring Mobile Designer for
the Android SDK" on page 38.

Using webMethods Mobile Designer Version 9.10 280

Ant Target Summary

B Ant Target Summary

B AN Target SUMMATY .o 282

Using webMethods Mobile Designer Version 9.10 281

Ant Target Summary

Ant Target Summary

This section provides a diagram that shows the Ant targets you can use to compile
resources, build a mobile application project, activate a device, and use Phoney.

For each Ant target, the diagram indicate the steps Mobile Designer performs for

an Ant target. For example, for the ++Run-Phoney Ant target, Mobile Designer only
performs the “Run Phoney” step. Dashed lines indicate steps that Mobile Designer does
not perform. For example, for the +Multi-Build Ant target, there is a dashed line for the
“Display Activate Handset dialog (optional JPanel)” step because Mobile Designer does
not perform this step when running the +Multi-Build Ant target. For more details about the
steps, see one of the following:

For details about compiling resources only, see "Compiling Resources Using the
+Run-Reshandler Ant Target" on page 115.

For details about the build process, see "Steps in the Multi-Build Process" on page
134.

For details about the process to activate a device, see "Steps Performed to Activate
Handsets" on page 179.

For details about the actions taken when you run Phoney, see "Steps Performed for
Phoney Ant Targets" on page 166.

Use this diagram to compare the actions performed for each Ant target.

Using webMethods Mobile Designer Version 9.10 282

Ant Target Summary

L D
@fa}‘o & N
O &
va c'§\ S
& Fo
SN ST &
PO S I A IR
) & o8 & \>§ R BN
SR MU IR R O 3
NPRSHPC O S NI
QS Q& L (1 ' &0 &\} Q$
X x ¥ % R x ® iy e .
x Steps within the process Hook points
B
4 7’ |
1
1
Project-level device_name.xml files
Project-level _defaults_.xml file
Mobile Designer device database
Mobile Designer sdk.properties
_ PreBuildResources
1 1
1 1
1 |
e
1 1
1 1
e
\ 11
> 1 1
(1
RN |
PrePatch
PreCompilation and
PreObfuscation
PostCompilation and
PostObfuscation
PostPackaging and
&=€— PostBuild
L\ G

—<&—PostMultiBuild

Using webMethods Mobile Designer Version 9.10

283

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Getting Started
	About Mobile Designer
	webMethods Mobile Designer Overview
	Mobile Designer Build-Time Component
	Mobile Designer Cross Compiler and Run-time Classes
	Mobile Designer Device Profiler
	Parameter-Driven Projects

	Configuring Mobile Designer
	About Configuring Mobile Designer
	Updating the sdk.properties File to Configure Mobile Designer
	Mobile Designer Configuration Properties (sdk.properties)
	JAD and Manifest Files
	Java Compiler Check
	KZip Property
	Localization Property
	Proguard Obfuscator Settings
	Project Build Settings
	Proxy Settings
	Platform-Specific Properties

	Environment Variable for Mobile Designer

	Setting Up Platforms
	Supported SDK Versions
	SDK Versions that Mobile Designer Supports

	Setting Up the Android Platform
	About Setting Up the Android Platform
	Installing the Android SDK on Windows
	Installing the Android SDK on Macintosh
	Installing the Android Development Tools Eclipse Plug-In
	Configuring Mobile Designer for the Android SDK
	Setting Up an Android Virtual Device (Emulator)
	Starting the Android Virtual Device (Emulator)
	Using the Android Emulator with a Proxy Server

	Setting Up the iOS Platform
	About Setting Up the iOS Platform
	Installing the Apple Xcode IDE
	About Signing iOS Applications
	Using an Existing Signing Environment
	Importing the Signing Environment from Another Macintosh
	Creating a New Signing Environment

	Configuring Mobile Designer for the iOS Platform

	Setting Up the Windows Phone 8 Platform
	About Setting Up the Windows Phone 8 Platform
	Enabling Hyper-V
	Installing the Windows Phone SDK Version 8
	Setting Up Visual Studio Express 2012 for Windows Phone
	Configuring Mobile Designer for the Windows Phone 8 Platform

	Setting Up the Windows RT/Windows 8 Platform
	About Setting Up the Windows RT/Windows 8 Platform
	Installing Visual Studio Express 2012 for Windows 8
	Configuring Mobile Designer for the Windows RT or Windows 8 Platform

	Creating Mobile Application Projects
	Setting Up a Mobile Application Project
	About Mobile Application Projects
	Using Software AG Designer with Mobile Designer
	Creating a New Mobile Project Using the Mobile Development Wizard
	Displaying the Ant View

	Creating a New Mobile Application Project
	Sample Projects Provided with Mobile Designer
	Expense Tracker
	Library JSON
	NativeUI Demo
	NativeUI Contacts
	NativeUI Exercise
	NativeUI Hello World
	NativeUI JSON
	NativeUI Location
	NativeUI My Graphical Element
	NativeUI My Native Element
	NativeUI PDF Demo
	NativeUI SOAP
	NativeUI Push Notifications
	NativeUI Database
	NativeUI JavaScript Map

	Coding a Mobile Application
	Mobile Designer-Provided Run-Time Classes
	Application and Parameter Classes
	Run-Time Canvas Classes
	Run-Time Comms Classes
	Run-Time Database Classes
	Run-Time Media Classes
	Run-Time Serializer Class
	Run-Time Storage Classes
	Run-Time Utility Classes

	Image Caching
	Managing the Image Cache
	Disabling Image Caching for the Whole Application
	Copying an Image for Drawing

	Mobile Designer Logging API
	DateFormat API
	Registering Applications for Data Sharing (custom URIs and MIME-types)
	Defining Data Sharing for an Application
	Handling Data Sharing Events
	Supported MIME-types

	Creating and Using Code Libraries
	Building a Library that You Want to Reference in Other Projects
	Referencing a Library
	Linking to External (3rd Party) Native Libraries/Frameworks
	iOS
	Android

	Using System.getProperty to Obtain Device Information
	Creating the User Interface

	Adding Devices to a Mobile Application Project
	Devices that a Mobile Application Supports
	Adding a Device to a Project
	Updating an Existing Device Profile in the Device Database
	Determining Device Settings by Running the Device Profiler
	Device Profiler Tests to Determine Device Settings

	Adding a Device Profile to the Device Databases
	Testing Settings in a Device Profile

	Defining Resources for a Mobile Application Project
	About the Resource Handler
	Coding the Resource Handler
	Using Resource Blocks and Resource Packs

	Storing Resource Files for the Project
	Splash Screens for Applications
	Android Splash Screen Requirements
	iOS Platform Splash Screen Requirements
	Windows Phone 8 Splash Screen Requirements
	Windows 8 (RT) Splash Screen Requirements

	Setting Project Properties for the Resource Handler
	Managing Memory for Your Resource Handler and Resources
	Accessing Resources in Your Application Code
	Compiling Resources Using the +Run-Reshandler Ant Target

	Setting Properties and Parameters for a Mobile Application Project
	About Properties and Parameters
	Where You Set Properties
	Project Properties You Must Set
	Setting Project Properties
	Where You Define Parameters
	Setting Parameters in the _defaults_.xml and Target Device Files
	Setting Parameters in the Resource Handler Code
	Using Parameters in Your Application Code

	Building and Compiling Mobile Application Projects
	Build Process Overview
	Build Ant Target Summary
	Steps in the Multi-Build Process

	Building Mobile Applications
	About Building a Mobile Application Project
	Before You Can Build a Mobile Application Project
	Building a Project for Multiple Target Devices
	Building a Project for the Last Target Devices
	Building a Project from the Command Line
	Using Native Tools to Create the Final Binary
	Generating Javadocs for a Project

	Customizing the Build Process
	About Customizing the Build Process
	Setting Properties at Build Time Using a Custom JPanel
	Coding Your Custom JPanel
	Setting JPanel Properties

	Creating Custom Ant Scripts to Run at Predefined Hook Points
	Hook Point Reference

	Creating Patch Files to Apply to the Cross-Compiled Code
	Creating a Patch

	Installing and Testing Mobile Applications
	Using Phoney for Debugging Your Mobile Application
	About Using Phoney to Debug Mobile Applications
	Phoney Ant Target Summary
	Steps Performed for Phoney Ant Targets
	Running Phoney from Software AG Designer
	Running Phoney from the Command Line
	Installing Certificates on Phoney
	Using Phoney to Monitor an Application’s Memory and Thread Usage

	Activating Devices
	About Activating Devices
	Activate Devices Ant Summary
	Steps Performed to Activate Handsets
	Activating a Device

	Installing Applications on Devices
	About Installing Applications on Devices
	Installing Applications on Android Devices
	Installing an APK File to an Emulated or Physical Device Using the Android Debug Bridge
	Installing an Application to an Emulated or Physical Device Using the ADT Eclipse Plug-In

	Installing Applications on iOS Devices
	Installing to a Simulated or Physical Device Using the Apple Xcode IDE
	Installing an Ad-Hoc Build to a Physical Device Using iTunes

	Installing a Windows Phone 8 Application to an Emulated or Physical Device
	Installing a Windows RT/Windows 8 Application to an Emulated or Physical Device
	Installing Custom SSL Certificates on Devices
	Installing Certificates on Android 4.0 and Later Physical Devices
	Installing Certificates on iOS Physical Devices
	Installing Certificates on Windows Phone Emulator

	Distributing Mobile Applications
	Distributing Applications Using webMethods Mobile Administrator
	Using Mobile Administrator to Manage and Distribute Mobile Applications
	Requirements for Using the Mobile Administrator Plug-in for a Project
	Activating the Mobile Administrator Plug-in for a Mobile Designer Project
	Setting Mobile Administrator Plug-in Project Properties
	Project Properties for the Mobile Administrator Plug-In
	Uploading Final Binaries to Mobile Administrator
	Remotely Building a Project
	Monitoring Jobs Used to Remotely Build Projects

	Project Properties Reference
	Build Results Properties
	Build Script Properties
	Code Conversion Properties
	Cross-Compiler Properties
	2D and 3 D Rendering
	Debugging
	Extra Libraries and Custom Code
	Java Classes
	Makefile Additions
	Optimization
	Orientations
	Screen and Display Handling
	Threading
	User Input
	Android
	iOS
	Windows RT and Windows 8

	Cross-Product Integration Properties
	Device-Specific Properties
	Hook Point Properties
	Multi-Build Selection Properties
	Phoney Properties
	Project Language Properties
	Resource Handler Properties
	Run-Time Classes Properties
	Run-Time Code Compilation Properties
	Android Project Properties

	Ant Target Summary
	Ant Target Summary

