
Flat File Schema Developer’s Guide

Version 9.10

April 2016

This document applies to webMethods Integration Server and Software AG Designer Version 9.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: IS-FFS-DG-910-20160415

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Flat File Schema Developer’s Guide Version 9.10 3

Table of Contents

About this Guide..7
Document Conventions.. 7
Online Information.. 8

Concepts... 9
What is a Flat File?..10
What is a Flat File Schema?..10
How Is a Flat File Schema Used to Parse Records?.. 11

Record Parsers..12
Record Identifiers.. 13
Extractors...13
Undefined Data..14
Default Records...15

What is a Flat File Dictionary?...15
When Should I Create a Flat File Dictionary?.. 16

Processing Flat Files Overview..17
Overview of Processing Flat Files..18

Formatting Inbound and Outbound Data.. 19
Processing Inbound Flat Files..19

Handling Large Flat Files.. 21
Processing Outbound Flat Files... 22

Working with Elements in Flat File Schemas and Dictionaries.. 25
Overview... 26
Floating Records...26

Examples: Parsing Inbound Floating Records.. 27
Examples: Parsing Outbound Floating Records... 29

Extractors.. 30
Validators.. 31

Conditional Validators.. 31
Field Validators.. 34

Length Validator..34
Code List Validator... 34
Byte Count Validator.. 35

Format Services..35
Creating Format Services..36
Working with Format Error Messages...36
Disabling Format Services.. 36
Managing Dictionary Dependencies on Format Services... 36

Managing Flat File Dictionary Dependencies...37
Customizing the Flat File Configuration Settings... 37

M
Table of Contents

Flat File Schema Developer’s Guide Version 9.10 4

Sending and Receiving Flat Files.. 43
Overview... 44
Flat File Content Handler and Content Type... 44
Choosing the Service to Receive the Flat File from the Content Handler................................44
Submitting a Flat File to Integration Server in a String Variable.. 45
Submitting a Flat File to Integration Server via HTTP... 46

Building a Client that Posts a Flat File to a Service... 46
Submitting a Flat File to Integration Server via FTP..47

FTPing a File From a webMethods Integration Server... 48
Getting Results from an FTP’d Document.. 49

Submitting a Flat File to Integration Server via File Polling... 50
Submitting a Flat File to Integration Server via an E-mail Message.. 50

Requirements for Submitting a Flat File Document via an E-mail Message..................... 50
Getting Results from an E-mailed Document..51

Validation Errors.. 53
Validation Error Contents..54

General Error Entries in the errors Array..55
Entries for Conditional Validator Errors in the errorDetails Array...................................... 55

Validation Error Codes..58

Programming Creating Flat File Schemas and Dictionaries... 61
Overview... 62
Creating Flat File Dictionary Entries, Dictionaries, and Schemas.. 62

Creating Flat File Dictionary Entries... 63
Creating an Entire Flat File Dictionary with Data..63
Creating an Empty Flat File Dictionary... 65
Creating a Flat File Schema... 65

Modifying Flat File Dictionary Entries, Dictionaries, and Schemas.. 66
Modifying an Existing Flat File Dictionary Entry..66
Modifying an Existing Flat File Dictionary... 68
Modifying an Existing Flat File Schema..69

Deleting Flat File Dictionary Entries, Dictionaries, and Schemas.. 71
Sample Flow Services for Working with XML Files..71

Creating a Service that Retrieves the XML File..72
Retrieving Namespace Data to Write to an XML File... 73

Flat File Byte Count Parser.. 75
Overview... 76
Configuring the flat file byte count parser.. 76
Handling Partial Characters..77

Reading Partial Characters... 77
Writing Partial Character Encodings... 78

Stateful Encodings..80
Writing Stateful Encodings.. 80

M
Table of Contents

Flat File Schema Developer’s Guide Version 9.10 5

Index.. 83

M
Even Header

Flat File Schema Developer’s Guide Version 9.10 6

M
Odd Header

Flat File Schema Developer’s Guide Version 9.10 7

About this Guide

The webMethods Integration Server provides the WmFlatFile package to enable
you to exchange and process flat files using its built–in services. This guide contains
information about how Integration Server processes flat files and how to create services
that send and receive flat files.

To use this guide effectively, you should be familiar with the basic concepts described in
webMethods Integration Server Administrator’s Guide and webMethods Service Development
Help.

Note: This guide describes features and functionality that may or may not be
available with your licensed version of webMethods Integration Server. For
information about the licensed components for your installation, see the
Settings > License page in the webMethods Integration Server Administrator.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

M
Even Header

Flat File Schema Developer’s Guide Version 9.10 8

Convention Description

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 9

1 Concepts

■ What is a Flat File? ... 10

■ What is a Flat File Schema? ... 10

■ How Is a Flat File Schema Used to Parse Records? .. 11

■ What is a Flat File Dictionary? .. 15

M
Even Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 10

What is a Flat File?
Flat files present complex hierarchical structural data in a record–based storage format.
Unlike XML, flat files do not embed structural data (metadata) within the data. The data
in the flat file has been “flaened” by removing the hierarchical relationship between
records, leaving the records intact as a single logical record of application data.

All flat files consist of a list of records containing fields and composites:

Fields are atomic pieces of data (for example, ID and ID qualifier, Date and time).

Composites contain multiple fields (for example, ID and ID qualifier, Date and time).
The fields within a composite are referred to as subfields.

Records (also known as segments) are sequences of fields and/or composites.

For example, the following flat file data and its list of delimiters enables you to see how
elements (records, composites, and fields) within a flat file can be identified.

To communicate using flat files, you must create a flat file schema that contains a
particular flat file’s structural information, including how to identify records and
separate those records into fields.

The flat file schema enables receivers of flat file documents to parse and validate
inbound flat files for use by their back–end systems. The flat file schema also enables
senders of documents to convert outbound documents to flat file format. Once converted
to flat file format, the files can be delivered to another back–end system.

What is a Flat File Schema?
A flat file schema is the blueprint that contains the instructions for parsing or creating a
flat file and is created as a namespace element in the Integration Server. This blueprint
details the structure of the document, including delimiters, records, and repeated record
structures. A flat file schema also acts as the model against which you can validate an
inbound flat file.

A flat file schema consists of hierarchical elements that represent each record, field,
and subfield in a flat file. Each element is a record, composite, or field. Additionally, each
element is either a reference or a definition. A definition is an element that is defined in

M
Odd Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 11

the flat file schema. A reference is an element that is defined in a flat file dictionary and
referenced from the flat file schema. You configure each element with the necessary
constraints.

Flat file schemas contain information about the constraints at the document, record, and
field levels of flat files. A flat file schema can define three types of constraints:

Structural constraints describe the sequence of records, composites, and fields in a flat
file. For example, a flat file schema might describe an address record that consists of
a Street Address field, followed by a City field, State field, and ZIP Code field. You
define structural constraints for each parent element (an element that contains other
records, composites, or fields) in the flat file schema.

Content type constraints describe the possible values or minimum/maximum values
for elements in a flat file. For example, the State field might have a content constraint
specifying that its value must be exactly two digits. These types of constraints are
referred to as validators.

Conditional constraints describe the valid combinations of fields and subfields allowed
in records and composites. For example, you can use the Required (R) conditional
validator to require that at least one of the specified fields be present.

When validating an inbound flat file, Integration Server compares the records,
composites, and fields in a flat file with the constraints described for those records and
fields in the flat file schema. An inbound flat file is considered valid when it complies
with the constraints outlined in its related flat file schema. For more information about
data validation, see "Validation Errors" on page 53.

How Is a Flat File Schema Used to Parse Records?
To parse a flat file, use the pub.flatFile:convertToValues service in the WmFlatFile package.
This service uses a flat file schema to parse flat files inbound to the Integration
Server. The convertToValues service uses a record parser (Delimited, Fixed Length, or
Variable Length) to parse the records in a flat file. For more information about the
pub.flatFile:convertToValues service, see the webMethods Integration Server Built-In Services
Reference.

After each record in a flat file has been parsed, each record must be identified. This is
done using the record identifier. Identifying the record provides the definition of that
record, as defined in the flat file schema using the flat file schema editor. The field values
then are pulled from the record using the extractors defined in the flat file schema.

If the record cannot be identified (known as undefined data) and you have selected a
default record, the field values are extracted from the record using the definition of the
default record. If the record cannot be identified and you have not selected a default
record, the field values are not extracted from the record. You can also format flat file
data to meet the requirements of your back–end system or application using the Format
Service property in the Flat File Structure tab of the flat file schema editor. For information
about how to specify field format services, see "Format Services" on page 35.

M
Even Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 12

Finally, the parsed record is placed in the output data based on the structure defined
in the flat file schema. This process is repeated until all records in the flat file have been
parsed.

Record Parsers
A record parser breaks a flat file into individual records. When defining a flat file
schema, you can specify one of the following record parsers:

Delimited Record Parser. This parser expects a specific delimiter to indicate the end of a
record. For a record delimiter, you can specify:

A character (for example, !) or character representation (for example, \r\n for
carriage return)

Hexadecimal value (for example, 0X09)

Octal value (for example, 009)

Unicode characters (for example, \uXXXX , where XXXX represents the unicode
value of the character)

The occurrence of the record delimiter signals the end of one record and the
beginning of the next record.

Fixed Length Record Parser. This parser splits a file into records of the same pre-
specified length.

Note: This parser measures the lengths and positions of records in terms of bytes,
rather than characters. Prior to 6.5, Service Pack 2, the parser measured
lengths and positions in terms of characters. This change does not affect
users who currently parse/compose flat files using single-byte encodings
because one byte equals one character. In this case, there is no functional
difference between specifying bytes or characters.

The parser supports both single-byte and multi-byte encodings. Multi-
byte encoded files must run on JVM version 1.4 or later. (The behavior of
delimited fields and records remain the same.) For details, see "Flat File
Byte Count Parser" on page 75.

Variable Length Record Parser. This parser expects each record to be preceded by two
bytes that indicate the length of the record. Each record may be a different length.

EDI Document Type Record Parser. This parser is used only for EDI flat files and
provides additional functionality needed to properly parse EDI documents.
Documents using this record parser should be created using the webMethods
Module for EDI, not the WmFlatFile package. For more information, see the
webMethods Module for EDI Installation and User’s Guide.

M
Odd Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 13

Record Identifiers
A record identifier looks at a record and extracts an identifier out of the data. Integration
Server uses that identifier to connect the record definition in a flat file schema with a
particular record in the flat file. The name of the record definition must match the value
obtained by the record identifier. When creating a flat file schema, you can choose from
one of two methods of record identification:

Starts at position record identifiers compare the value that occurs in the record, at the
specified offset, to all the record names defined in the flat file schema. Note that the
Starts at position identifier cannot distinguish between all types of record names. For
example, if you name records “Rec1” and “Rec,” some instances of “Rec1” may be
identified as “Rec,” because “Rec1” begins with “Rec.”

Nth Field record identifiers use the value of the specified field as the record identifier.
These identifiers count from zero (0). For example, if 2 is specified, the third field is
used as the record identifier.

Integration Server processes the longer record identifiers first and then the shorter
record identifiers.

Integration Server does not perform any kind of normalization on input provided in
the flat file schema or when comparing or processing values retrieved from a file. You
must enter carefully the exact Unicode character values you want to search for in an
instance of the flat file you are describing. For example, you should differentiate wide
(sometimes called multi–byte or zenkaku) characters from their narrow (or single–byte)
equivalents when processing Asian characters. Another example is the use of Unicode
combining and pre–composed sequences. In all cases, fields are matched using a strict
binary comparison of Unicode character values in the separate fields.

Note: Exercise care when selecting the encoding of the file being processed.
Some encodings are very similar to one another. For example, the Shift–
JIS and MS932 encodings commonly used with Japanese language text are
very similar, but they map some characters differently. This can result in
Integration Server not finding a match where you otherwise would expect one
to exist.

Extractors
Integration Server uses extractors take data out of a parsed record and place it in the
output of the pub.flatFile:convertToValues service. If extractors are not defined in the flat file
schema, the parser returns a series of records that contain no fields or composites. For
information about the pub.flatFile:convertToValues service, see webMethods Integration Server
Built-In Services Reference.

Integration Server extracts fields and composites from a record based on the position
of the field delimiter. From the beginning of the record to the first field delimiter is the
first field in the record. From the first field delimiter to the second field delimiter is the

M
Even Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 14

second field in the record, and so on. Everything from the last field delimiter to the
record delimiter (the end of the record) is considered part of the final field.

Note: Although fixed length and variable length record parsers do not use record
delimiters, they can have field delimiters.

Integration Server can also extract fields from a record based on a substring of the
original record starting at a particular byte count and ending at a particular byte count.
You specify the start of the field by specifying the number of bytes from the beginning of
the record to the start of the field and specifying the number of bytes from the beginning
of the record to the end of the field.

If a value is a composite, it is simply a field that can be further parsed into more fields.
Instead of a field delimiter, a subfield delimiter is used to separate a composite into
fields. Fields are extracted from a composite based on either the position of the subfield
delimiter in the composite or on a substring of the composite. Keep in mind that all
positions used in extracting fields from a composite are referenced from the beginning of
the composite, not the start of the record.

Undefined Data
In some cases, the data resulting from the pub.flatFile:convertToValues service might contain
records that were not recognized, known as undefined data. This could be a result of the
complexity of the flat file, or of the lack of detail in the flat file schema (such as no record
identifier). When the pub.flatFile:convertToValues service processes an unrecognized record,
it puts a placeholder named unDefData in the resulting IS document (IData object) and
stores the record as a string in the pipeline.

You can select a default record when creating a flat file schema. Any record that cannot
be recognized will be parsed using this default record. If a default record is not selected,
unrecognized records will be placed into the output IS document in the unDefData field,
which might produce errors.

Note: If the file is encoded using a multi-byte encoding, and if you use a fixed length
or variable length parser, the service puts two placeholders into the pipeline:
unDefData and unDefBytes .

For some types of documents, undefined data should not be allowed in the document
and if encountered should generate validation errors in the output. In other cases,
undefined data is expected and should not generate validation errors. In still other cases,
all unidentified records should be parsed using a default record definition, as described
in "Default Records" on page 15.

You can choose whether you want errors to be generated for a flat file schema when
undefined data is encountered. For more information about configuring a flat file
schema to allow undefined data, see webMethods Service Development Help.

To work with undefined data produced by processing a flat file, you must:

M
Odd Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 15

1. Configure the flat file schema and the records in the flat file schema to allow
undefined data.

2. In the service that processes the flat file, parse the undefined data in each record
based on the document structure.

3. In the service that processes the flat file, write logic to handle the parsed data, such
as logic to map the parsed data to another service or perform error handling.

Default Records
If the pub.flatFile:convertToValues service cannot recognize a record (for example, the record
does not have a record identifier), the record will be treated as undefined data. To avoid
this, you can specify a default record definition. The pub.flatFile:convertToValues service uses
the default record definition to parse all unrecognized records of a particular type. In
fact, if your flat file schema does not contain any record identifiers, you must specify a
default record.

Note: A default record can only be defined in a flat file dictionary.

For example, if you have a CSV (comma separated values) flat file that simply lists the
name, address, and phone number of a group of customers, none of the records would
have a record identifier:
John Doe, 123 Main St Washington DC, 888–555–1111;
Jane Smith, 321 Oak Dr Memphis TN, 800–555–2222;

If you specified a default record definition to parse this particular type of record, the
file can be properly parsed and converted to an IS document (IData object) named
recordWithNoID . By default, each recordWithNoID document appears as a child of the
document above it, in an array. To modify this default behavior, see "Customizing the
Flat File Configuration Seings" on page 37.

If a default record has not been specified, the record will be treated as undefined data, as
described in "Undefined Data" on page 14.

What is a Flat File Dictionary?
A flat file schema can contain either record definitions or references to record definitions
that are stored elsewhere in the namespace in a flat file dictionary. A flat file dictionary is
simply a repository for elements that you reference from flat file schemas. This allows
you to create record definitions in a dictionary that can be used across multiple flat file
schemas. Reusing record definitions reduces the amount of memory consumed by a flat
file schema.

Flat file dictionaries are created as namespace elements in the Integration Server and
contain definitions of records, composites, and fields. When you change a definition in a
flat file dictionary that is referenced in multiple flat file schemas, the element definition
is updated automatically in all of the flat file schemas.

M
Even Header

Concepts

Flat File Schema Developer’s Guide Version 9.10 16

Note: You can reference a flat file dictionary definition in any flat file schema
regardless of whether the dictionary and schema are located in the same
package.

When creating an element definition in a flat file dictionary, you specify only certain
properties. You then specify the remaining properties in the instance of the element
definition in a particular flat file schema.

When Should I Create a Flat File Dictionary?
The decision to define records in a flat file dictionary versus in a flat file schema depends
on the type of flat files that you intend to parse. The Electronic Document Interchange
(EDI) ANSI X12 standard defines a large set of document structures that reuse the same
record, field, and composite definitions many times. Defining these records, fields, and
composites in a dictionary allows for them to be reused throughout the entire set of
EDI ANSI X12 document flat file schemas. Reusing definitions reduces the amount of
memory consumed by Integration Server.

EDI ANSI X12 also has different versions of these documents (for example, 4010). Each
version of the document set should have its own dictionary. In this way, you can be
certain that changes to a record, field, or composite between versions are maintained.

A more complex scenario would involve multiple families of documents and multiple
versions of those families. An example of this is EDI ANSI X12 and UN/EDIFACT
documents. One dictionary should be created for each version of EDI ANSI X12
documents and one dictionary should be created for each version of EDI UN/EDIFACT
documents. A separate dictionary would not be required for each flat file schema in the
same version. All flat file schemas in one version of the same family should use the same
dictionary.

In a scenario in which you intend to parse only one flat file, or flat files that do not share
record, composite, or field definitions, you can define these elements directly in the flat
file schema. This allows for the entire document to be edited in a single view, without
referencing a flat file dictionary.

If a clear choice does not exist between these two scenarios, the best approach is to create
the definitions in the flat file dictionary and reference them in a flat file schema. The
definitions then can be reused at a later time.

M
Odd Header

Processing Flat Files Overview

Flat File Schema Developer’s Guide Version 9.10 17

2 Processing Flat Files Overview

■ Overview of Processing Flat Files ... 18

■ Processing Inbound Flat Files ... 19

■ Processing Outbound Flat Files ... 22

M
Even Header

Processing Flat Files Overview

Flat File Schema Developer’s Guide Version 9.10 18

Overview of Processing Flat Files
Using the services in the webMethodsWmFlatFile package, you can exchange all types
of flat files and process certain types of flat files. You create flat file schemas to convert
and validate inbound flat files and to create outbound flat files.

The following diagram summarizes the services that the WmFlatFile package provides
to process flat files: pub.flatFile:convertToValues and pub.flatFile:convertToString. For descriptions,
see the table that follows the diagram below.

Note: If you are also using Trading Networks, see the sections about flat file TN
document types in webMethods Trading Networks User’s Guide and webMethods
Trading Networks Administrator’s Guide for information about how Trading
Networks processes flat files.

Processing Flat Files

M
Odd Header

Processing Flat Files Overview

Flat File Schema Developer’s Guide Version 9.10 19

Item Description

Flat File (ffData) Flat file input with type of String, InputStream, or
ByteArray (received by the Integration Server via File
Polling, HTTP, FTP, etc. For more information, see
"Sending and Receiving Flat Files" on page 43.)

Conversion/
Validation Services

WmFlatFile package provides services
(pub.flatFile:convertToValues and pub.flatFile:convertToString)
that parse, validate, and convert inbound flat files to
IS documents (IData objects), and construct outbound
documents from IS documents. For more information
about these services, see webMethods Integration Server
Built-In Services Reference.

Flat File Schema Flat File schema containing the structure of the flat file.

IS Doc (ffValues) An IS document (IData object) represents the structure
and values of your flat file for eventual mapping or other
processing. All inbound documents must be converted to
IS documents before being processed further.

Formatting Inbound and Outbound Data
You can format flat file data to meet the requirements of your back–end system or
application. The Format Service property in the flat file schema editor enables you to
specify the service you want to invoke for a particular field when convertToValues or
convertToString is called. For example, when using the convertToValues service to convert
a date field in a flat file into an IS document, you can specify that a particular format
service be invoked for that field during parsing. To alter the format of the date field,
you might invoke a service that changes the format of the field from YYYYMMDD to
MMDDYYYY.

For information about how to specify field format services, see "Format Services" on
page 35.

Processing Inbound Flat Files
To process an inbound flat file, use the pub.flatFile:convertToValues service. This service
uses a flat file schema to parse flat files inbound to an Integration Server. The input
of this service is a flat file and the name of a flat file schema, and the output of this
service is an IS document (IData object). The output IS document is created based on
the structure defined in the flat file schema. You can also validate the flat file against
the flat file schema. During validation, the constraints placed on the records and fields

M
Even Header

Processing Flat Files Overview

Flat File Schema Developer’s Guide Version 9.10 20

cause the flat file schema to generate errors as output. For more information about
the pub.flatFile:convertToValues service, see webMethods Integration Server Built-In Services
Reference.

Note: Validation is turned off by default. To enable validation, you must set the
validate variable of the convertToValues service to true.

Invoke the pub.flatFile:convertToValues service as part of customized flow services. You
can then use Integration Server services to process the resulting data as necessary, (for
example, map data from one format to another). The general process for inbound flat
files is as follows:

Inbound Flat File Process

The flat file schema provides the pub.flatFile:convertToValues service with the information
necessary to detect the boundaries between records and fields. After a record boundary
is detected, the service matches the record in the flat file with a record defined in the flat
file schema using the record identifier.

Note: When parsing a file, the flat file parser ignores any data that appears before
the first valid record in the file.

Processing a flat file consists of the following basic steps:

Step 1 Create a flat file schema. Before you start working with an inbound
flat file, you must create a flat file schema to be used for
conversion and validation of the document. Use the Software AG
Designer to create the flat file schemas used to parse, convert, and

M
Odd Header

Processing Flat Files Overview

Flat File Schema Developer’s Guide Version 9.10 21

validate inbound flat files. For steps to create flat file schemas, see
webMethods Service Development Help.

Step 2 Integration Server receives the flat file.Integration Server provides
a number of ways to send and receive flat files. For more
information, see "Sending and Receiving Flat Files" on page
43.

Step 3 Parse, convert, and validate flat file. To parse a flat file using a flat file
schema and to convert the data into IS documents (IData objects),
you call the pub.flatFile:convertToValues service.

During flat file parsing, you have the option of validating the flat
file against the document, record, and/or field constraints you
defined in a flat file schema.

To validate a flat file against the flat file schema used to
parse the file, you must set the validate variable of the
pub.flatFile:convertToValues service to true, which returns errors
describing how the given ffData violates the constraints described
in the flat file schema. For a list of validation error codes and
messages, see "Validation Errors" on page 53.

For more information about the pub.flatFile:convertToValues service,
see webMethods Integration Server Built-In Services Reference.

Step 4 Process the IS document produced by the pub.flatFile:convertToValues
service. In many cases it is necessary to map the output of the
ffValues document produced by the pub.flatFile:convertToValues service
to another format, such as your back-end or user-defined format.

To assist with mapping the data, create an IS document type from
your flat file schema. You can add a document reference variable
that references the resulting IS document type to the pipeline. You
can then map the ffValues document to the document reference
variable.

Handling Large Flat Files
By default, Integration Server processes all flat files in the same manner, regardless of
their size. Integration Server receives a flat file and keeps the file content in memory
during processing. However, if you receive large files, Integration Server can encounter
problems when working with these files because the system does not have enough
memory to hold the entire parsed file.

If some or all of the flat files that you process encounter problems because of memory
constraints, you can set the iterator variable in the pub.flatFile:convertToValues service
to true to process top level records (children of the document root) in the flat file
schema one at a time. After all child records of the top level record are parsed, the

M
Even Header

Processing Flat Files Overview

Flat File Schema Developer’s Guide Version 9.10 22

pub.flatFile:convertToValues service returns and the iterator moves to the top level of the
next record in the schema, until all records are parsed. This parsing should be done in
a flow service using a REPEAT step where each time the pub.flatFile:convertToValues service
returns, the results are mapped and dropped from the pipeline to conserve memory. If
the results were kept in the pipeline, out–of–memory errors might occur.

The pub.flatFile:converToValues service generates an output object (ffIterator variable) that
encapsulates and keeps track of the input records during processing. When all input
data has been parsed, this object becomes null. When the ffIterator variable is null, you
should use an EXIT step to exit from the REPEAT step and discontinue processing.

Processing Outbound Flat Files
To process an outbound flat file, use the pub.flatFile:convertToString service. This service uses
a flat file schema to create a flat file outbound from Integration Server. The input of this
service is an IS document (IData object) and a flat file schema, and the output of this
service is a flat file. For more information about the pub.flatFile:convertToString service, see
webMethods Integration Server Built-In Services Reference .

Note: The flat file resulting from pub.flatFile:convertToString will be only as complete as
the information translated from the original flat file to the IS document. If you
specified only certain parts of the flat file to translate to the IS document (via
the flat file schema), only those parts will be translated back to the flat file.

The general process for outbound documents is as follows:

Outbound Flat File Process

To create and send an outbound flat file, use the following basic steps:

Step 1 Create a flat file schema to be used for conversion of the object. You
use Software AG Designer to create the flat file schemas used to

M
Odd Header

Processing Flat Files Overview

Flat File Schema Developer’s Guide Version 9.10 23

create outbound flat files. For steps to create flat file schemas, see
webMethods Service Development Help.

Step 2 Convert the IS document to a flat file. Invoke the pub.flatfile:convertToString
service to convert an IS document (IData object) to an outbound
flat file using the flat file schema you created. This service enables
you to specify delimiters to be used as record, field, and subfield
separators as well as optionally specify an outputFileName so that
the output also will be wrien to a file.

Note: You can build the document (IData object) to be converted to
a flat file using IS document type from the flat file schema.
Add a document reference variable that points to the IS
document type in the pipeline. Build the document by
using the pipeline to map data into the document reference
variable. Then, in the pipeline for the pub.flatFile:convertToString
service, map the document reference variable to the ffValues
input variable.

Step 3 Send the flat file. You can send a flat file using many methods,
including via HTTP, SMTP, and FTP. For more information, see
"Sending and Receiving Flat Files" on page 43.

M
Even Header

Flat File Schema Developer’s Guide Version 9.10 24

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 25

3 Working with Elements in Flat File Schemas and
Dictionaries

■ Overview ... 26

■ Floating Records .. 26

■ Extractors ... 30

■ Validators .. 31

■ Format Services ... 35

■ Managing Flat File Dictionary Dependencies .. 37

■ Customizing the Flat File Configuration Settings ... 37

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 26

Overview
This chapter explains the following flat file schema and dictionary elements and
provides examples and points to keep in mind when creating these elements:

Floating records

Extractors

Validators

Format services

Floating Records
You can use the Floating Record property to designate any single record of a given flat file
schema to be a floating record. By designating a floating record, you enable that record
to appear in any position within a flat file without causing a parsing validation error.

If you do not use this property, validation errors will occur if the record structure of an
inbound document does not match the record structure defined in its flat file schema.
For example, consider the following EDI document and its flat file schema (where all
records are mandatory except the record NTE):

Flat file schema definition Input EDI
document

Output IS document

Rec1
Rec2
Rec3

NTE

Rec1
NTE
Rec2

Rec3

Rec1
NTE

The parser generates a validation
error because it expects NTE to
be the last record, not the second
record. In addition, it ignores Rec2
and Rec3.

To solve this problem, you would designate NTE to be a floating record so it may appear
anywhere in the EDI document without causing a validation error. (The position in
which it appears in the parsed record is explained in the following sections.) The parser
creates a container for NTE records, and places each NTE record that appears in an EDI
document into this container at run time. If a flat file schema contains multiple instances
of the designated floating record at multiple record levels, the system creates a container
for each record level. This property appears in the Properties view of the flat file schema
editor.

This problem can also occur while converting outbound IS documents (IData
objects) into string documents. The parser supports floating records for both

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 27

inbound and outbound parsing (i.e., while executing the pub.flatFile:convertToValues and
pub.flatFile:convertToString services, respectively).

For examples, see "Examples: Parsing Inbound Floating Records" on page 27 and
"Examples: Parsing Outbound Floating Records" on page 29.

Examples: Parsing Inbound Floating Records
When the pub.flatFile:convertToValues service receives a document that includes floating
records, the parser handles them as shown in the following examples. Assume that the
Floating Record property is set to the record NTE.

Example 1

Flat file schema definition Input EDI
document

Output IS document

Rec1
NTE[] Max Occurs 99
Rec2
 Rec3
 Rec4
Rec5

Rec1
Rec2
Rec3
Rec4
NTE (1)
NTE (2)
NTE (3)
Rec5

Rec1
NTE []
 NTE (1)
 NTE (2)
 NTE (3)
Rec2
 Rec3
 Rec4
Rec5

In accordance with the schema definition, the parser creates an NTE array as the
first record, and places NTE (1), NTE (2), and NTE (3) into it. A validation error is
generated if more than 99 NTE records appear in the document. NTE records are not
allowed prior to the Rec1 record.

Example 2

Flat file schema definition Input EDI document Output IS document
Rec1
NTE [] Max Occurs 99
Rec2 [] Max Occurs 99
 NTE [] Max Occurs 99
 Rec3
 Rec4
Rec5

Rec1
NTE (1)
Rec2
Rec3
NTE (2)
Rec4
NTE (3)
Rec2
NTE (4)
Rec5
NTE (5)

Rec1
NTE []
 NTE (1)
 NTE (5)
Rec2 []
 Rec2
 NTE []
 NTE (2)
 NTE (3)
 Rec3
 Rec4
 Rec2
 NTE []
 NTE (4)
Rec5

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 28

How Example 2 was Parsed

1. The first six records of the EDI document were parsed as follows:

Input EDI document Output IS document
Rec1
NTE (1)
Rec2
Rec3
NTE (2)
Rec4

Rec1
NTE [] <== NTE container for Rec1.
 NTE (1)
Rec2 []
 Rec2
 NTE [] <== NTE container for Rec2 array.
 NTE (2)
 Rec3
 Rec4

a. The positions of the first three records (Rec1, NTE (1), and Rec2) match the
schema. In accordance with the schema definition, the parser:

Creates an NTE container (an array) under Rec1, and places NTE (1) into it.

Creates a Rec2 array, and places Rec2 into it.

b. Even though the schema definition says the next record should be an NTE
(followed by Rec3), the next record in the document is Rec3 (followed by NTE
(2)). This is valid; the parser simply:

Places Rec3 into the Rec2 array, as specified in the schema definition.

Creates another NTE container (an array) under Rec2, as specified in the
schema definition. To determine which container to put NTE (2) in, he
parser looks for the last defined container at the current level. Thus, the
parser places NTE (2) in this container.

c. The parser places the next record, Rec4, in the Rec2 array, in accordance with the
schema definition.

2. Parsing NTE (3):

Input EDI document Output IS document
Rec1
NTE (1)
Rec2
Rec3
NTE (2)
Rec4
NTE (3)

Rec1
NTE []
 NTE (1)
Rec2 []
 Rec2
 NTE []
 NTE (2)
 NTE (3) <== added to this container at
 current level
 Rec3
 Rec4

To determine which container to put NTE (3) in, the parser looks for the last defined
container at the current level. Thus, the parser places NTE (3) in the same container
as NTE (2).

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 29

3. Parsing Rec2 and NTE (4):

Input EDI document Output IS document
Rec1
NTE (1)
Rec2
Rec3
NTE (2)
Rec4
NTE (3)
Rec2
NTE (4)

Rec1
NTE []
 NTE (1)
Rec2 []
 Rec2
 NTE []
 NTE (2)
 NTE (3)
 Rec3
 Rec4
 Rec2
 NTE [] <== creates an NTE container for
 second Rec2
NTE (4)

In accordance with the schema definition, the parser adds another Rec2 to the Rec2
array. Just as with the first Rec2 in the array, the parser also creates another NTE
container, for the second Rec2.

4. Parsing Rec5 and NTE (5):

Input EDI document Output IS document
Rec1
NTE (1)
Rec2
Rec3
NTE (2)
Rec4
NTE (3)
Rec2
NTE (4)
Rec5
NTE (5)

Rec1
NTE []
 NTE (1)
 NTE (5) <== this container is same level as
 Rec5 (current level)
Rec2 []
 Rec2
 NTE []
 NTE (2)
 NTE (3)
 Rec3
 Rec4
 Rec2
 NTE []
 NTE (4)
Rec5

a. In accordance with the schema definition, the parser places Rec5 under Rec1.

b. To determine which container to put NTE (5) in, the parser looks for the last
defined container at the current level. Thus, the parser places NTE (5) in the
same container as NTE (1).

Examples: Parsing Outbound Floating Records
When the pub.flatFile:convertToString service converts an IS document (an IData object) to a
string, the parser places each floating record immediately following its parent record (as
defined in the IS document).

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 30

In the following examples, assume that the Floating Record property is set to the record
NTE.

Example 1:

Flat file schema definition Input IS document Output string
Rec1
Rec2
NTE []
Rec3
Rec4

Rec1
Rec2
Rec3
 NTE []
 NTE(1)
 NTE(2)
Rec4

Rec1!Rec2!Rec3!NTE(1)!NTE(2)!
Rec4

Because NTE(1) and NTE(2) are children of Rec3, the parser places them after Rec3 in
the string.

Example 2:

Flat file schema definition Input IS document Output string
Rec1
Rec2
NTE []
Rec3
Rec4

Rec1
Rec2
Rec3
Rec4
NTE []
 NTE(1)
 NTE(2)

Rec1!NTE(1)!NTE(2)!Rec2!Rec3!
Rec4

Because NTE(1) and NTE(2) are children of Rec1, the parser places them after Rec1 in
the string.

Extractors
Extractors represent the location of a field within a record, or of a subfield within a
composite. You extract fields from a composite using a Nth field extractor, while you
extract fields from a record using Nth field, ID Node, or Fixed Position extractors.

Note: To use Nth Field or ID Node extractors for a field or composite in a record,
the field delimiter must be specified. To use these extractors for a field in
a composite, the subfield delimiter must be specified. If these extractors
are used without the appropriate delimiter set, the field values will not be
returned correctly.

Nth Field. Counting from zero (0), Position indicates the position of the field that you
want to extract from the record. This value cannot be null and must be an integer
greater than or equal to zero (0). For example, if you type 1, the second field will
be extracted. This option is available only if you specified a field delimiter when
configuring your flat file schema. This extractor returns the field as a key–value

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 31

pair. The key is the name of the field. The value is the String value of the field.
Software AG recommends that you use this extractor instead of ID node.

ID Node. This extractor is a variation of the Nth Field extractor and is available for
backward compatibility for users of the webMethods Module for EDI. Counting
from zero (0), Position indicates the position of the field that you want to extract
from the record. This value cannot be null and must be an integer greater than or
equal to zero (0). This extractor returns the field as a key–value pair. The key is the
name of the field. The value is an IS document (IData object) containing a key–value
pair in which the key is always “code,” and the value is the String value of the field.
Software AG does not recommend that you use the ID node extractor.

Fixed Position. Counting from zero (0), extracts a fixed number of bytes from a record.

Start Position. First byte to extract from the record.

End Position. First byte that is not included in the extraction. If you enter a
negative number (for example, –1), the extractor returns all bytes from the byte
specified in the Start Position to the last byte in the record or composite.

For example:
record = webMethods
Start Position = 1
End Position = 7
Extracted bytes = ebMeth

Validators
Different types of validators are available for records, composites, fields, and multi-byte
encoded records. You validate:

Records and composites using conditional validators.

Fields using either length or code list validators.

Multi-byte encoded records, you use the byte count validator.

Conditional Validators
Regardless of what type of flat file you are processing, you follow the syntax rules
created by the EDI Standards bodies ANSI X12 or UN/EDIFACT to specify conditional
validators for a flat file record or composite. In these rules, 0n and 0n0 represent the
number of the field defined in the record or composite, where n is the number of the
field in the composite or record. For example, in the following flat file:

Record1*FieldA*FieldB*FieldC*FieldD*FieldE;

To validate fields using the ANSI X12 conditional validator, you might enter the
following in the Validator property:

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 32

To validate the appropriate fields using the UN/EDIFACT conditional validator, you
might enter the following in the Validator property:

The record definition has five fields defined. Each with an Nth Field extractor, the first
extracting field A, the second field B and so on. Both of these validators indicate that
if Field A is present, Field B is required. If Field C is present, Field D and Field E are
required. However, if Field D and Field E are present, Field C need not be present.

The conditional validator refers to the location of the field in the definition, not the
location of the data in the flat file. For example, if you switched the extractors for the
first and second field such that the first field extracted the value Field B and the second
field extracts the value Field A, the conditional validator would indicate that if Field B is
present Field A is required.

Example:
Record1 - conditional validator C0102
FieldA - Nth field extractor, position 1
FieldB - Nth field extractor, position 2

This indicates that if FieldA is present Field B also must be present. If you switched the
position of these fields in the record, you would get the following.

Example:
Record1 - conditional validator C0102
FieldB - Nth field extractor, position 2
FieldA - Nth field extractor, position 1

This now indicates that if Field B is present Field A also must be present.

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 33

ANSI X12 Rule
Name (and
Code)

UN/EDIFACT Rule
Name (and Code)

Definition

Required (R) One or more (D3) At least one of the specified fields must be
present.

ANSI X12 Example:R030405

UN/EDIFACT Example:D3(030,040,050)

Conditional
(C)

If first, then all
(D5)

If a specified field is present, all of
the fields specified in a dependent
set of fields also must be present. If
a dependent field is present, the first
specified field need not be present.

ANSI X12 Example:C030405

UN/EDIFACT Example:D5(030,040,050)

Exclusion (E) One or none (D4) At most, only one of the specified fields
can be present.

ANSI X12 Example:E030405

UN/EDIFACT Example:D4(030,040,050)

List
Conditional
(L)

If first, then at
least one (D6)

If a specified field is present, at least one
of the fields specified in a dependent
set of fields also must be present. If
a dependent field is present, the first
specified field need not be present.

ANSI X12 Example:L030405

UN/EDIFACT Example:D6(030,040,050)

Paired (P) All or none (D2) All of the specified fields must be present
or absent.

ANSI X12 Example:P030405

UN/EDIFACT Example:D2(010,020)

N/A One and only one
(D1)

Exactly one field may be present.

UN/EDIFACT Example:D1(030,040,050)

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 34

ANSI X12 Rule
Name (and
Code)

UN/EDIFACT Rule
Name (and Code)

Definition

NA If first, then none
(D7)

If the first field is present, all others
cannot be included.

UN/EDIFACT Example:D7(030,040,050)

Field Validators
You validate fields using either a length validator or a code list validator.

Length Validator
For a length validator, you specify the maximum and minimum number of characters
this field can contain to be considered valid.

Minimum length. Minimum number of characters that this field can contain to be
considered valid. If the field contains fewer characters than the number entered, an
error will be generated. You can enter zero (0).

Maximum length. Maximum number of characters that this field can contain to be
considered valid. If the field contains more characters than the number entered,
an error will be generated. If you enter a negative number (for example, –1), a
maximum length error will never be generated for this field, regardless of its value.

Code List Validator
In the Conditions box, type the appropriate code list conditions. The code list is a comma–
separated list of the allowed values for this field. If the value of the field is not contained
in the code list, errors will be generated.

Note: This validator validates only in ascending order and according to the ASCII
values.

You can specify three different types of code lists:

Simple Code List. A comma separated list of valid codes.

Range List. A range list, which can occur within any type of code list, validates that a
string value is between a given start string and end string. The range is specified as
start string:end string . Values are considered to be valid for a given range if all of the
following conditions are true:

The value is the same length as the start and end strings of the range.

The character value in the same position in the start and end string comes from
the same character set (a–z, A–Z or 0–9).

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 35

The value is lexically greater than or equal to the start string and lexically less
than or equal to the value of the end string.

For example A0:Z9 is valid, because the first character of each string comes from the
set A–Z, and the second character of each string comes from the set 0–9. A2:2B is
not valid because the first character of the start string does not come from the same
character set as the first character of the end string.

Partition List. A partition joins together multiple code lists within one field, separated
by a pipe (|). For example, if you enter ABC,DEF|1,2, the allowed values of the field
are ABC1, ABC2, DEF1, and DEF2. Each set of code lists must have the same number
of bytes.

The code list validator allows for the right hand side of the partition to be optional.
For example, if you enter ABC,DEF|1,,2, the allowed values of the field are:

ABC1, ABC2, ABC, DEF1, DEF2, and DEF.

The extra comma in 1,,2 indicates that the values 1 and 2 are optional.

Byte Count Validator
You use the byte count validator for multi-byte encoded records. You specify the
maximum and minimum number of bytes this field can contain to be considered valid.

Minimum length. Minimum number of bytes that this field can contain to be considered
valid. If the field contains fewer bytes than the number entered, an error will be
generated. You can enter zero (0).

Maximum length. Maximum number of bytes that this field can contain to be
considered valid. If the field contains more bytes than the number entered, an error
will be generated. If you enter a negative number (for example, –1), a maximum
length error will never be generated for this field, regardless of its value.

Format Services
You can use the Format Service property in the Properties view of the flat file dictionary
editor or flat file schema editor to specify the service you want to invoke for a particular
field when pub.flatFile:convertToValues or pub.flatFile:convertToString is called.

Important: If a particular field does not have a value (that is, a value is not returned in
an IS document (IData object) for pub.flatFile:convertToValues or is not present in
the input data for pub.flatFile:convertToString) the format service assigned to that
field will not be executed.

A format service formats the string and optionally ensures that the value of the string
meets the restrictions specified in the format service. For example, when using the
pub.flatFile:convertToValues service to convert a date field in a flat file into an IS document
(IData object), you can specify that a particular format service be invoked for that field

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 36

during parsing. To alter the format of the date field, you might invoke a service that
changes the format of the field from YYYYMMDD to MMDDYYYY.

Note: If you are using webMethods Module for EDI, you can use the built-in
format services provided in the WmEDI package to format fields. For more
information, see the webMethods Module for EDI Installation and User’s Guide
and the webMethods Module for EDI Built-In Services Reference.

Creating Format Services
To create a format service for use with a field in a flat file schema or dictionary, the
service must implement the pub.flatFile:FormatService service as its template specification
for the format service (located on its Input/Output tab).

Working with Format Error Messages
If the validate input variable of your format service was set to true to validate the format
and value of a field, and that field does not meet the criteria specified in the service, you
will receive an error message in the errorMessage output variable of the format service
indicating why this field could not be validated.

Disabling Format Services
To disable the format service for a particular field, you simply clear the text box
and save the flat file schema or dictionary. To disable all format services within the
WmFlatFile package regardless of what is specified in each field definition, open
Integration Server_directory\instances\instance_name \packages\WmFlatFile\config
\ff.cnf and set the enableFormaing variable to false.

For more detailed information about format services, see the description of
pub.flatFile:FormatService in webMethods Integration Server Built-In Services Reference

Managing Dictionary Dependencies on Format Services
If you move or rename a format service, the Integration Server’s dependency manager
will ask whether it should update all the flat file schemas and flat file dictionaries that
use that format service with the new location or name of the format service.

If you delete a format service, the dependency manager will list all schemas and
dictionaries that will be impacted by the deletion, and prompts you to confirm the
deletion.

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 37

Managing Flat File Dictionary Dependencies
If you move or rename a dictionary, Integration Server’s dependency manager will ask
whether it should update all the flat file schemas and dictionaries that use this dictionary
with the new location or name of the dictionary.

The dependency manager also manages dictionary dependencies on format services in
a similar way, see "Managing Dictionary Dependencies on Format Services" on page
36.

Customizing the Flat File Configuration Settings
You can customize some aspects of your flat file experience.

The WmFlatFile package provides the following flags you can use to customize some
aspects of the package’s default behavior. You implement these flags in the configuration
file:

Integration Server_directory\instances\instance_name \packages\WmFlatFile\config
\ff.cnf

Flag Value

recWithNoIDLike46 Determines how the pub.flatFile:convertToValues service
handles recordWithNoID records.

If recWithNoIDLike46=false (the default), each
recordWithNoID record appears as a child of the
record above it, in an array.

If recWithNoIDLike46=true, the services
mimics the handling of recordWithNoID that was
implemented in version 4.6 of the Integration
Server. That is, all recordWithNoID records
appeared as children of the root. In addition, when
the pub.flatFile:convertToValues service returned only
one recordWithNoID record, it returned it as a
single record, not as an array.

alwaysSortFields Determines whether the pub.flatFile:convertToString
service checks the order of the fields in composites
and records that it receives as input (in ffValues)
against the flat file schema that is specified in the
ffSchema input parameter.

If alwaysSortFields=false, the
pub.flatFile:convertToString service does not check the

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 38

Flag Value
order of the fields in the composites and records. It
assumes that the fields in composites and records
are in the same order as the flat file schema. This is
the default.

If alwaysSortFields=true, the
pub.flatFile:convertToString service checks the order
of the fields in the composites and records.
It aempts to match the order of the fields in
composites and records to the order of the fields in
composites and records in the flat file schema.

allowSubfieldDelimiterIn
NonCompositeField

Determines whether Integration Server Flat
File Adapter allows subfield delimiters in non-
composite elements.

If
allowSubfieldDelimiterInNonCompositeField=false,
subfield delimiters are not allowed in a non-
composite element. This is the default.

If
allowSubfieldDelimiterInNonCompositeField=true,
subfield delimiters are allowed in a non-composite
element.

dontTrimControlCharacters Determines how whitespace and control characters
are handled by the service wm.b2b.edi:convertToString
when the parameter spacePad is set to left or right.

If dontTrimControlCharacters=true, and
spacePad is set to left or right, the service does not
truncate control characters from delimited fields.

If dontTrimControlCharacters=false, and
spacePad is set to left or right, control characters
are treated as whitespace and truncated.

recordIdentifierCheck Determines whether the pub.flatFile:convertToString
service includes the record identifier in the string
output parameter.

If recordIdentifierCheck=false, the
pub.flatFile:convertToString service includes the record
identifier in the string output parameter. This is
the default.

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 39

Flag Value

If recordIdentifierCheck=true, the
pub.flatFile:convertToString service does not include the
record identifier in the string output parameter.

spacePadJustifies Controls how the input parameter spacePad
justifies fixed length fields handled by the services
pub.flatFile:convertToString and wm.b2b.edi:convertToString.

If spacePadJustifies=true and:

spacePad is set to left, fixed length fields are left
justified.

spacePad is set to right, fixed length fields are
right justified.

If spacePadJustifies=false and:

spacePad is set to left, fixed length fields are
right justified.

spacePad is set to right, fixed length fields are
left justified.

This is the default.

spacePadJustifies has no effect when spacePad is set
to none.

UNAOnlyForImmediateUNB Controls how EDIFACT documents with multiple
interchanges are validated when an interchange
does not contain a UNA segment.

When none of the interchanges contain a UNA
segment, each interchange is validated against the
default delimiters regardless of the value of this
property.

If UNAOnlyForImmediateUNB=true, each UNB
segment is validated against its corresponding
UNA segment. When there is no corresponding
UNA segment, EDI Module uses the default
delimiters for validation.

If UNAOnlyForImmediateUNB=false, each UNB
segment is validated against its corresponding
UNA segment. When there is no corresponding
UNA segment, EDI Module uses the delimiters set
in the previous UNA segment for validation. This
is the default.

M
Even Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 40

Flag Value

useAlternateCodeSets Determines whether to enable the use of alternate
code sets.

If useAlternateCodeSets=true, use of alternate
code sets is enabled. This is the default.

If useAlternateCodeSets=false, use of alternate
code sets is disabled.

useG11NEncodings and
alwaysUseWebMEncodings

Determines whether the pub.flatFile:convertToValues
and pub.flatFile:convertToString services use the
webMethods charset or the default charset
provided by JVM.

If useG11NEncodings=true and either
the encoding name begins with WM_ OR
alwaysUseWebMEncodings=true, the
pub.flatFile:convertToValues and pub.flatFile:convertToString
services use the webMethods charset.

If useG11NEncodings=false, the
pub.flatFile:convertToValues and pub.flatFile:convertToString
services use the default charset provided
by JVM, regardless of the value assigned to
alwaysUseWebMEncodings.

The default value for alwaysUseWebMEncodings is
false and useG11NEncodings is true.

Example:
alwaysUseWebMEncodings=false
useG11NEncodings=true

useReadableDelimiterReporting Controls how the delimiter record parser parses
non-readable delimiters, such as \r (carriage
return), \n (line feed), or \t (tab).

true (the default): The parser reports the
delimiters as human-readable characters, e.g.,
the carriage return character is represented as \r.
This variable does not impact human-readable
delimiters such as | or *.

false: The parser reports the delimiters as the
actual delimiter character. For example, if the
delimiter is a carriage return, the value reported
will be the non-readable carriage return code
(decimal 13 or hexadecimal OD).

M
Odd Header

Working with Elements in Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 41

Flag Value

Note: If you use webMethods Module for EDI, set this
variable to false.

This impacts how you can use the delimiter
information in flow mapping. If you use the
delimiters directly in flows with variable
substitution, non-printable characters
will not be substituted correctly when
useReadableDelimiterReporting=true .

For example, when the output of the
pub.flatFile:convertToValues service shows that the
record delimiter is \n and a user flow has an input
set to the following:

abc%@delimiters\record%def

the resulting value will be as follows:

If useReadableDelimiterReporting=true , the resulting
value is abc\ndef.

If useReadableDelimiterReporting=false , the resulting
value is
abc
def

Note: When processing many small files, a file polling port might
become disabled and the following exception might be returned:
java.lang.IllegalArgumentException: Comparison method violates
its general contract. If this occurs, modify the custom_wrapper.conf
file to pass the following Java system property to Integration Server:
java.util.Arrays.useLegacyMergeSort=true. For information about how to pass
Java system properties to Integration Server, see webMethods Integration Server
Administrator’s Guide

M
Even Header

Flat File Schema Developer’s Guide Version 9.10 42

M
Odd Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 43

4 Sending and Receiving Flat Files

■ Overview ... 44

■ Flat File Content Handler and Content Type ... 44

■ Choosing the Service to Receive the Flat File from the Content Handler 44

■ Submitting a Flat File to Integration Server in a String Variable .. 45

■ Submitting a Flat File to Integration Server via HTTP ... 46

■ Submitting a Flat File to Integration Server via FTP ... 47

■ Submitting a Flat File to Integration Server via File Polling ... 50

■ Submitting a Flat File to Integration Server via an E-mail Message .. 50

M
Even Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 44

Overview
The webMethods Integration Server provides the following automated mechanisms for
sending and receiving any type of flat file.

Submit a flat file to a service in a String variable (of any name), which the target
service can convert into an IData object using pub.flatFile:convertToValues.

Post a flat file to a service via HTTP.

FTP a flat file to a service.

Submit a flat file to a service via File Polling.

Send a flat file to a service as an e-mail message aachment.

For general steps to configure ports, which is not included in this guide, see webMethods
Integration Server Administrator’s Guide.

Note: If you use Trading Networks, you can send flat files directly to Trading
Networks. For more information about how Trading Networks processes flat
files, see sections about flat file TN document types in webMethods Trading
Networks User’s Guide and webMethods Trading Networks Administrator’s Guide.

Flat File Content Handler and Content Type
You submit a flat file to a flow service using one of the methods discussed in this
chapter. The WmFlatFile package registers a content handler for the content type
“application/x–wmflatfile.” This content handler passes the contents of the flat file
to the service specified in the submit method in an InputStream named ffdata . If an
InputStream or ByteArray named ffreturn is present when the service completes
execution, the InputStream is read and the results are returned to the invoker of the
service, for example, HTTP, FTP, etc.

The WmFlatFile package provides services that can be called within customized flow
services or the File Polling processing service to initially accept and consume inbound
flat files. These services are described in "Choosing the Service to Receive the Flat File
from the Content Handler" on page 44. For more information about File Polling, see
"Submiing a Flat File to Integration Server via File Polling" on page 50.

Choosing the Service to Receive the Flat File from the
Content Handler
Those methods that use the flat file content handler must do the following:

Accept an InputStream object called ffdata .

M
Odd Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 45

Return data in an InputStream or a ByteArray called ffreturn .

The WmFlatFile package provides the pub.flatFile:convertToValues service to be used within
flow services to initially accept inbound flat files. Details about using this service to
process inbound documents are provided in "Processing Inbound Flat Files" on page 19.

Submitting a Flat File to Integration Server in a String
Variable
One way to submit a flat file to the Integration Server is to pass the entire document to
a service in a String variable. This approach does not use the flat file content handler,
so the restrictions outlined in the previous section do not apply. Instead, the invoked
service must expect the contents of the flat file to be in a specific pipeline variable. The
Java client must place the source file in the pipeline as a String. The invoked service then
processes the input data and can place parameters in the pipeline that will be returned
to the Java client as determined by the specific scenario.

When you use this approach, you should code the target service to execute
pub.flatFile:convertToValues to convert the String variable (i.e., the flat file) to an IS document
(IData object). For more information about using convertToValues, see webMethods
Integration Server Built-In Services Reference.

The following code fragment illustrates how a Java client might submit a flat file to the
purch:postOrder service on the Integration Server. In this example, the client 1) loads the
flat file into a String, 2) puts the String into the element orders in an IS document (IData
object) named “inputs,” and 3) invokes purch:postOrder on the server at localhost:5555.
import com.wm.app.b2b.client.*;
import com.wm.util.*;
import com.wm.data.*;
import java.io.*;
public class ArbitraryFlatFileClient
.
.
//—Load FF into orders string
String orders = YourLoadFlatFileMethod(orderFile);
//—Put input values into IData object
IData inputs = IDataFactory.create();
IDataCursor inputsCursor = inputs.getcursor();
inputsCursor.last();
inputsCursor.insertAfter("orders", orders);
inputsCursor.insertAfter("authCode", authCode);
//—Submit request to server
c.connect("localhost:5555", "null", null);
IData outputs = c.invoke("purch", "postOrder", inputs);
c.disconnect();
if (inputsCursor.first("response"))
{
//...process response
}

The Integration Server invokes postOrder to pass the flat file to convertToValues. This will
produce an “orders” string that can be mapped to the ffdata input variable in the

M
Even Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 46

convertToValues service. As discussed in "Processing Flat Files Overview" on page 17, this
service will produce an IS document (IData object).

Submitting a Flat File to Integration Server via HTTP
A client can post a flat file to a service via HTTP. To use this approach, you must have a
client that can do the following:

Send a string of data (a flat file) to the Integration Server using the HTTP POST
method.

–AND–

Set the value of the Content–Type request–header field to “application/x–wmflatfile.”

When the Integration Server receives an HTTP POST request where Content–Type is
application/x–wmflatfile, it passes the body of the request as an InputStream to the
service specified in the request’s URL. Because most browsers do not allow you to
modify the Content–Type header field, they are not suitable clients for this type of
submission. Clients that you might use to submit a flat file in this manner include PERL
scripts (which allow you to build and issue HTTP requests) or the Integration Server
service, pub.client:http.

Building a Client that Posts a Flat File to a Service
Regardless of which client you use, if you want to post a flat file to a service through
HTTP, you must specify certain information.

To build a client

1. Submit a POST request to the Integration Server.

2. Address the request to the URL of an service (for example, http://rubicon:5555/
invoke/purch/postOrder).

3. Set the Content–Type header field to “application/x–wmflatfile.”

4. Contain flat file data in the body of the message. The data must be the only text that
appears in the body of the request. Do not assign it to a name=value pair.

The following example describes the values that you set if you use pub.client:http to POST a
flat file to a service.

Set this variable... To

url This is the URL of the service that you want to invoke.

webMethods services can be invoked via a URL. The format
for specifying the URL is hp://hostname:port/ invoke/
folder.subfolder/service name , where hostname is the name of
the machine running the Integration Server, port is the port

M
Odd Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 47

Set this variable... To
on which the Integration Server is running, folder.subfolder
is the path to the service folder names, and service name
is the name of the service to invoke. The following value
would invoke the “ProcessFlatFile” flow service located in the
“MyFFProcessing” package on the “rubicon” server with port
number “5555.” For example,
http://rubicon:5555/invoke/MyFFProcessing/ProcessFlatFile

method “post”

headers.Content–
Type

Name: Content–type

Value: The specific content type for the document
(application/x-wmflatfile)

data.string

–OR–

data.bytes

This is the flat file that you want to post.

You also will set any optional HTTP variables, such as authorization information, that
are required by your application. The invoked service will have an InputStream ffdata
object in the pipeline that contains the flat file data.

Submitting a Flat File to Integration Server via FTP
You can FTP a flat file to the Integration Server’s FTP listening port. By default the FTP
port is assigned to port “8021.” However, this assignment is configurable, so you should
check with your Integration Server administrator to see which port is used for FTP
communications on your Integration Server.

When the Integration Server receives a flat file on the FTP listening port, it passes it as an
InputStream to the service in the directory to which the file was FTP’d.

To submit a flat file to the Integration Server via FTP, the service to which you want to
pass the document must take an InputStream as input for the ffdata variable.

If you want to submit a flat file to a service through FTP, the application must specify
certain information.

To submit a flat file via FTP

1. Initiate an FTP session on the Integration Server’s FTP listening port.

2. Point to the directory that contains the service to which you want to pass the flat file.
For example,

M
Even Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 48

cd \ns\Purchasing\SubmitOrder

Note: Note that the root directory for this operation is your Integration Server’s
namespace directory (ns), not the root directory of the target machine.
Therefore, if you want to FTP a file to a service in the Purchasing
folder, you use \ns\Purchasing\ServiceName as the path to that
service, not Integration Server_directory\instances\instance_name \ns
\Purchasing\ServiceName . Each folder in Designer is treated as a
directory when FTPing to the Integration Server. For example, for the
purchasing.purchaseRequests:rfq service, the directory name would be \ns
\purchasing\purchaseRequests\rfq.

3. Copy the flat file to this directory using the following command:

putsourceflatfile.txt destinationflatfile.txt;file content type

Where sourceflatfile.txt is the name of source file that you want to pass to the
Integration Server, destinationflatfile.txt is the name of the destination file, and
application:x–wmflatfile indicates the content type of the file submied. For example,
to put a document called PurchaseOrder.txt on the Integration Server as
Partner1PO.txt, you would use the following FTP command:

put PurchaseOrder.txt Partner1PO.txt;application:x–wmflatfile

Note that the file you FTP to the Integration Server is never actually wrien to the
server’s file system. The file you send and the output file it produces (see below) are
wrien to a virtual directory system maintained in your Integration Server session.

FTPing a File From a webMethods Integration Server
The pub.client folder contains built–in services that you can use to FTP a file from the
Integration Server. To use the pub.client:ftp service, you must set the variables listed in the
following table.

Set this
variable...

To set...

serverhost This is the name of the machine running the Integration Server.

serverport This is the port on the Integration Server that is listening for FTP
traffic.

username This is the valid user name on the target machine.

password This is the valid password for the username in username .

command “put”

M
Odd Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 49

Set this
variable...

To set...

dirpath If you are sending to the Integration Server, this is the local path
to the service that should be invoked after receiving the flat file.
For example, \ns\Purchasing\SubmitOrder. If sending to
another type of server, this is the working directory of the FTP
server.

localfile This is the name of the source file.

remotefile This is the name of the remote file in which you want to save the
data you sending. For example, destinationflatfile.txt.
If you are sending to the Integration Server, the file name
should be followed by the content–type. For example,
destinationflatfile.txt;application:x–wmflatfile.

For more information about these services, see the webMethods Integration Server Built-In
Services Reference.

Getting Results from an FTP’d Document
The results from a service executed by an FTP request are wrien to the same virtual
directory to which the flat file was initially FTP’d. The name of the output file to which
results are wrien is sourcefile.txt.out.

You retrieve this document using the FTP “get” command. For example, if you put a
document called “PurchaseOrder.txt” on the Integration Server, you would use the
following FTP command to get its results:

getPurchaseOrder.txt.out

“PurchaseOrder.txt.out” is the name of the flat file initially FTP’d to the service. This file
contains the value of the output variable ffreturn of the invoked service.

It is a good practice to make each file name that you FTP to the Integration Server
unique (perhaps by aaching a timestamp to the name) so that you do not inadvertently
overwrite other FTP’d documents or their results during an FTP session.

Important: When you end the FTP session, the Integration Server automatically deletes
the original file and its results from your session.

M
Even Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 50

Submitting a Flat File to Integration Server via File Polling
You can send a flat file to the Integration Server via a File Polling processing service. For
general steps to configure the File Polling listener port, see webMethods Integration Server
Administrator’s Guide.

To poll specifically for flat files, you must specify the Default Content Type as
“application/x–wmflatfile”. When a file with this content type is posted to the directory
on the Integration Server that you are monitoring for flat files (Monitoring Directory),
the Integration Server executes the service that you specified as the Processing Service.

Because the content type is “application/x–wmflatfile”, when the Integration Server
receives the flat file in the appropriately configured monitoring directory, it passes the
document as an InputStream to the service configured in the pipeline variable ffdata .

The File Polling processing service of Integration Server processes files in the order in
which they are received. Integration Server determines the order for processing files
by comparing the timestamps of the files in the monitoring directory. In a high speed
environment, where many files are placed in the monitoring directory at once, resulting
in some of the files having the same timestamp, Integration Server processes the files
alphabetically.

Submitting a Flat File to Integration Server via an E-mail
Message
You can send a flat file document as an aachment to an e–mail message to an e–mail
mailbox and have the Integration Server automatically retrieve the e–mail message and
process the flat file it contains. To do this, your Integration Server must be configured
with an e–mail port that monitors the mailbox to which the flat file will be sent. (Consult
your Integration Server administrator to see whether an e-mail port has been set up on
your Integration Server.)

When a flat file arrives in the e–mail port’s mailbox, the Integration Server automatically
retrieves the message and passes that document as an InputStream to the service
specified on the e–mail’s subject line (or, if a service is not specified on the subject line,
the e–mail port’s default service).

Requirements for Submitting a Flat File Document via an E-mail
Message
To submit a flat file to the Integration Server via an e–mail message, your client program
must specify certain information.

M
Odd Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 51

To submit a flat file via e-mail

1. Put the flat file in an e–mail aachment.

2. Set the e–mail’s Content–Type header to “application/x–wmflatfile.”

3. Specify the name of the service that will process the file in the e–mail’s subject line.
If you leave the subject line empty, the document will be processed by the global
service if one is defined or, if not, by the default service assigned to the e–mail port
(if one has been assigned). For more information about specifying the port’s default
service, see webMethods Integration Server Administrator’s Guide.

The service that will process the flat file must take an InputStream as input in the ffdata
variable.

The following example describes the values that you would set if you used pub.client:smtp
to e-mail a flat file to a service. For more information about using this service, see the
webMethods Integration Server Built-In Services Reference.

Set this variable... To...

to A String specifying the e–mail address monitored by the
Integration Server’s e–mail port.

subject A String specifying the fully qualified name of the service
to which the Integration Server will pass the aached
document. For example,

orders:ProcessPO

If you do not specify subject , the e–mail port invokes its
default service (if one has been assigned to it).

from A String containing the e–mail address to which the results
of the service will be sent.

aachments.contenype The specific content type for the document (“application/x–
wmflatfile”).

aachments.filename A string specifying the fully qualified name of the file
containing the flat file.

Getting Results from an E-mailed Document
If your e–mail port has been configured to return results, the results from a service
invoked through the port are wrien to sourcefile .txt.out, and then sent as an aachment
of an e–mail message to the sender of the original message.

M
Even Header

Sending and Receiving Flat Files

Flat File Schema Developer’s Guide Version 9.10 52

This file contains the value of the output variable ffreturn of the invoked service. ffreturn
can be either an InputStream or a byte array.

Important: By default, the e–mail port does not return any results from requests that it
receives. If you want the port to return results, you must explicitly configure
it to do so. For more information about configuring the e–mail port to return
results, see webMethods Integration Server Administrator’s Guide.

M
Odd Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 53

A Validation Errors

■ Validation Error Contents ... 54

■ Validation Error Codes ... 58

M
Even Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 54

Validation Error Contents
When the validate variable of the pub.flatFile:convertToValues service is set to true and an
object within the flat file does not conform to the flat file schema, the service generates
errors when validating the flat file. If the service finds that an object is invalid, it returns
validation errors in the errors output of the convertToValues service.

Example of Validation Results

This errors array contains the following types of information about the errors that
occurred in a record during validation.

Each error in a record generates one entry in the errors array. For more information
about the fields in the errors array, see "General Error Entries in the errors Array" on
page 55.

Each error in a child record also generates one item within the parent record, which
appears nested in the error array in the variable childErrors .

M
Odd Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 55

Errors with conditional validators can generate detail information about the
conditions violated in a child errorDetails array, one entry in the array for each
violated condition. The pub.flatFile:convertToValues service only generates details
about violated conditions when the flag/detailedErrors input variable of the
pub.flatFile:convertToValues service is set to true. For more information, see "Entries for
Conditional Validator Errors in the errorDetails Array" on page 55.

General Error Entries in the errors Array
An entry in the errors array contains the following information. For information about
errorDetails entries, see "Entries for Conditional Validator Errors in the errorDetails
Array" on page 55.

Variable in
errors

Description

errorPosition Indicates where the error occurred within the parent element.
For a record, this indicates the position of the record within the
flat file. For a composite, this indicates the position of the field
within the composite. For a nested child record, this indicates the
position of the field within the record.

errorMessage A brief description of the error.

errorCode A number indicating the type of error. For a list, see "Validation
Error Codes" on page 58.

reference The name of the element in the flat file schema that contained the
error.

badData The value of the data that failed validation.

childErrors (Array). Indicates that a field or subfield within the record or
composite generated a validation error.

Entries for Conditional Validator Errors in the errorDetails Array
The errorDetails array includes detail information about the conditions that were
violated when the following are true:

When you set the validate and flag/detailedErrors input variables of the
pub.flatFile:convertToValues service to true.

–AND–

M
Even Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 56

The pub.flatFile:convertToValues service encounters errors with conditional validator.

The following shows a sample of the errors array that includes the errorDetails array,
which contains details about violated conditions. See the table below the sample for
more information.

Example of Validation Results with Conditional Validation Errors

Portion of the array Description

 errors For a description of this portion of the errors array, see
"General Error Entries in the errors Array" on page
55.

When the flag/detailedErrors input variable of the
pub.flatFile:convertToValues service is set to false, this is
the only information generated in the errors array about
violated conditions.

M
Odd Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 57

Portion of the array Description

When the flag/detailedErrors is true, the
pub.flatFile:convertToValues service generates the detail in
errorDetails array described below.

 errorDetails To provide information about the conditions that were
violated, the convertToValues service generates an entry in
the errorDetails array for each violated condition.

 Variable in
errorDetails

Description

 errorPosition Always zero; the errorPosition is
not meaningful at this level of the
errorDetails array.

 errorMessage A brief description of the condition that
was violated.

 errorCode A number indicating the type of error.
For a list, see "Validation Error Codes" on
page 58.

 reference Always null; the reference is not
meaningful at this level of the
errorDetails array.

 badData Always null; the badData is not
meaningful at this level of the
errorDetails array.

 condition The condition that was violated.

 errorDetails Details about how the condition was
violated. See the description below.

 errorDetails The child errorDetails array contains detail about how
the condition was violated. The convertToValues service
generates an entry for each way the condition was
violated.

 Variable in
errorDetails

Description

M
Even Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 58

Portion of the array Description

 errorPosition Indicates the position in the record
that contains the field that caused the
condition to be violated.

 errorMessage A brief description of the condition that
was violated.

 errorCode A number indicating the type of error.
For a list, see "Validation Error Codes" on
page 58.

 reference The name of the element in the flat file
schema that contained the error.

 badData The value of the data that failed
validation.

Validation Error Codes
The following table describes the validation error codes that you might receive when
the validate variable of the pub.flatFile:convertToValues service is set to true and you are
validating a flat file or testing a flat file schema.

Error
Code

Description

1 In the flat file schema, the Mandatory drop-down menu was set to true for
this element, but the element does not occur in the flat file.

2 Reserved for future use.

3 Unexpected element. This field is not allowed in the record or composite
in which it appears.

4 In the flat file schema, a length validator was specified in the Validator
property for this field. The value in the flat file exceeded the maximum
length specified.

5 In the flat file schema, a length validator was specified in the Validator
property for this field. The value in the flat file did not meet the minimum
length specified.

M
Odd Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 59

Error
Code

Description

6 Reserved for future use.

7 In the flat file schema, a code list validator was specified in the Validator
property for this field. The value in the flat file was not listed in the flat
file schema as a valid value.

8 Reserved for future use.

9 Reserved for future use.

10 In the flat file schema, a conditional validator was specified in the Validator
property for this composite or record. The contents of this composite
or record did not meet the conditional requirements. The errorMessage
variable contains the number of the condition that failed. If you had a
validation string of C010203R0405 and both conditions failed, the error
message would state that rules 0 and 1 were violated. If only the second is
violated, it states that the rule 1 was violated.

If you require more detail about conditional validator errors, set the flag/
detailedErrors input variable of the pub.flatFile:convertToValues service to true.
For a description of the error details that convertToValues service generates
when you set flag/detailedErrors to true, see "Entries for Conditional
Validator Errors in the errorDetails Array" on page 55.

11 Indicates that this record is not defined anywhere in the flat file schema.
You will receive this error only when you have not specified a Default
Record or selected Allow Undefined Data where this record appears in the flat
file. If you have specified either of these properties, you will not receive
this error.

12 Indicates that this record is defined in this flat file schema, but it occurs in
the flat file in a location prohibited by the flat file schema.

13 Reserved for future use.

14 In the flat file schema, you specified a maximum repeat value in the Max
Repeat property for a particular record. The number of record instances in
the flat file exceeded the specified maximum number of repeats.

15 Reserve for future use.

M
Even Header

Validation Errors

Flat File Schema Developer’s Guide Version 9.10 60

Error
Code

Description

16 Within a record, this indicates that the record contains a composite or
field error. For a composite, this indicates the that composite contains a
subfield error.

17 A string could not be formaed into the intended format. A format
service reported that the data could not be formaed properly. For
information about field format services, see "Format Services" on page 35.

18 Indicates that a conditional validation rule requires a field, but that field is
not present in the data.

19 Indicates that a field is excluded by a conditional validation rule, but the
field is present in the data.

M
Odd Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 61

B Programming Creating Flat File Schemas and
Dictionaries

■ Overview ... 62

■ Creating Flat File Dictionary Entries, Dictionaries, and Schemas ... 62

■ Modifying Flat File Dictionary Entries, Dictionaries, and Schemas .. 66

■ Deleting Flat File Dictionary Entries, Dictionaries, and Schemas .. 71

■ Sample Flow Services for Working with XML Files ... 71

M
Even Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 62

Overview
You can use the services in the pub.flatFile.generate folder of the WmFlatFile package to
programmatically create, modify, and delete:

Flat file dictionary entries

Entire flat file dictionaries

Flat file schemas

To specify the data for the flat file dictionary entries, entire flat file dictionaries, or flat
file schemas, you can:

Create the information in an XML file and execute a service you create that retrieves
the XML data from the XML file, then invokes the appropriate services in the
pub.flatFile.generate folder to make the changes in the Integration Server namespace.
When creating the XML data, it should conform to the following XML schema:

Integration Server_directory\instances\instance_name\packages\WmFlatFile\pub
\FFGeneration.xsd

Create a service that maps the data to an IS document (IData object), convert the IData object
to an XML string, and then invoke the appropriate services in the pub.flatFile.generate
folder to make the changes in the Integration Server namespace. The IS document
type to which the IData object must conform is provided in the WmFlatFile package:

For a flat file dictionary entry or dictionary, use the pub.flatFile.generate:FFDictionary
IS document type.

For a flat file schema, use the pub.flatFile.generate:FFSchema IS document type.

The sample.flatFile.generateFFSchema folder, which is in the WmFlatFileSamples package,
contains sample services that illustrate how to use the services in the pub.flatFile.generate
folder. The sample services are the sample.flatFile.generateFFSchema:delimited service and the
sample.flatFile.generateFFSchema:fixedLength service.

For detailed descriptions of the services in the sample.flatFile folder and the services in
the pub.flatFile folder listed in the following sections in this chapter, see the webMethods
Integration Server Built-In Services Reference.

Creating Flat File Dictionary Entries, Dictionaries, and
Schemas
To create a flat file dictionary entry, entire flat file dictionary, or flat file schema, you
supply the data for the item you want to create; then invoke the appropriate service to
create the item in the Integration Server namespace.

M
Odd Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 63

Creating Flat File Dictionary Entries
The following describes the basic steps to create flat file dictionary entries when using
either an XML file or mapping data.

Using this method Follow this procedure

XML File 1. Supply the data for the entries you want to create by
creating the XML file that contains the data and that
conforms to the XML schema:

Integration Server_directory\instances
\instance_name\packages\WmFlatFile\pub
\FFGeneration.xsd

2. Retrieve the contents of the XML file as an XML string. For
more information, see "Creating a Service that Retrieves the
XML File" on page 72.

3. Create the entries in the Integration Server namespace by
invoking the pub.flatFile.generate:updateFFDictionaryEntryFromXML
service.

Mapping Data 1. Map the data for the entries you want to create to an IData
object that conforms to the pub.flatFile.generate:FFDictionary IS
document type.

2. Convert the IData object to an XML string by invoking the
pub.xml:documentToXMLString service. When you invoke this
service:

Set the encode input variable to true.

Set the documentTypeName input variable to
pub.flatFile.generate:FFDictionary.

For more information about the pub.xml:documentToXMLString
service, see the webMethods Integration Server Built-In
Services Reference.

3. Create the entries in the Integration Server namespace by
invoking the pub.flatFile.generate:updateFFDictionaryEntryFromXML
service.

Creating an Entire Flat File Dictionary with Data
The following describes the basic steps to create an entire flat file dictionary when using
either an XML file or mapping data. This procedure describes how to create a flat file

M
Even Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 64

dictionary that contains data. If you want to create an empty flat file dictionary, see
"Creating an Empty Flat File Dictionary" on page 65.

Important: The flat file dictionary you are creating must not already exist in the
Integration Server namespace. If the flat file dictionary already exists, the
pub.flatFile.generate:saveXMLAsFFDictionary service throws an exception.

Using this method Follow this procedure

XML File 1. Supply the data that includes all entries for the dictionary
you want to create by creating an XML file that contains the
data and that conforms to the XML schema:

Integration Server_directory\instances
\instance_name\packages\WmFlatFile\pub
\FFGeneration.xsd

2. Retrieve the contents of the XML file as an XML string. For
more information, see "Creating a Service that Retrieves the
XML File" on page 72.

3. Create the dictionary in the Integration Server namespace
by invoking the pub.flatFile.generate:saveXMLAsFFDictionary
service.

Mapping Data 1. Map the data for all entries for the dictionary you
want to create to an IData object that conforms to the
pub.flatFile.generate:FFDictionary IS document type.

2. Convert the IData object to an XML string by invoking the
pub.xml:documentToXMLString service. When you invoke this
service:

Set the encode input variable to true.

Set the documentTypeName input variable to
pub.flatFile.gnerate:FFDictionary.

For more information about the pub.xml:documentToXMLString
service, see the webMethods Integration Server Built-In
Services Reference.

3. Create the dictionary in the Integration Server namespace
by invoking the pub.flatFile.generate:saveXMLAsFFDictionary
service.

M
Odd Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 65

Creating an Empty Flat File Dictionary
The following describes how to create an empty flat file dictionary. If you want to create
a flat file dictionary that contains data, see "Creating an Entire Flat File Dictionary with
Data" on page 63.

Important: The flat file dictionary you are creating must not already exist in the
Integration Server namespace. If the flat file dictionary already exists, the
pub.flatFile.generate:createFFDictionary service throws an exception.

Follow this procedure

1. Create the empty dictionary in the Integration Server namespace by invoking the
pub.flatFile.generate:createFFDictionary service.

Creating a Flat File Schema
The following describes the basic steps to create a flat file schema when using either an
XML file or mapping data:

Important: The flat file schema you are creating must not already exist in the
Integration Server namespace. If the flat file schema already exists, the
pub.flatFile.generate:saveXMLAsFFSchema service throws an exception.

Using this method Follow this procedure

XML File 1. Supply the data for the flat file schema you want to create
by creating an XML file that contains the data and that
conforms to the XML schema:

Integration Server_directory\instances
\instance_name\packages\WmFlatFile\pub
\FFGeneration.xsd

2. Retrieve the contents of the XML file as an XML string. For
more information, see "Creating a Service that Retrieves the
XML File" on page 72.

Mapping Data 1. Map the data for the flat file schema you want
to create to an IData object that conforms to the
pub.flatFile.generate:FFSchema IS document type.

2. Convert the IData object to an XML string by invoking
pub.xml:documentToXMLString service. When you invoke this
service:

M
Even Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 66

Using this method Follow this procedure

Set the encode input variable to true.

Set the documentTypeName input variable to
pub.flatFile.generate:FFSchema.

For more information about the pub.xml:documentToSXLString
service, see the webMethods Integration Server Built-In
Services Reference

3. Create the dictionary in the Integration Server namespace
by invoking the pub.flatFile.generate:saveXMLAsFFSchema
service.

Modifying Flat File Dictionary Entries, Dictionaries, and
Schemas
This section describes how to modify an existing flat file dictionary entry, entire flat file
dictionary, or flat file schema.

Modifying an Existing Flat File Dictionary Entry
To modify an existing flat file dictionary entry, you first retrieve from the Integration
Server namespace the dictionary entry that you want to modify. You make your
modifications to the data; then invoke the appropriate service to write the changes back
to the Integration Server namespace. The following describes the basic steps to modify a
dictionary entry either using an XML file or mapping data.

Using this method Follow this procedure

XML File 1. Retrieve the existing information for the dictionary entry
from the Integration Server namespace by invoking the
pub.flatFile.generate:getFFDictionaryEntryAsXML service and write
it to an XML file. For more information, see "Retrieving
Namespace Data to Write to an XML File" on page 73.

2. Update the data for the dictionary entry in the XML file.
The XML file must conform to the XML schema:

Integration Server_directory\instances
\instance_name\packages\WmFlatFile\pub
\FFGeneration.xsd

3. Retrieve the contents of the XML file as an XML string. For
more information, see "Creating a Service that Retrieves the
XML File" on page 72.

M
Odd Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 67

Using this method Follow this procedure

4. Update the dictionary entry in the Integration
Server namespace by invoking the
pub.flatFile.generate:updateFFDictionaryEntryFromXML service.

Mapping Data 1. Retrieve the existing information for the dictionary entry
from the Integration Server namespace by invoking the
pub.flatFile.generate:getFFDictionaryEntryAsXML service. The data
is returned as an XML string in the FFXML variable.

2. To convert the XML string in the FFXML variable to an
IData object:

a. Invoke the pub.xml:xmlStringToXMLNode service to convert
the XML string to an XML node.

b. Invoke the pub.xml:XMLNodeToDocumentservice to convert
the XML node to an IData object. When you invoke this
service:

Set the makeArrays input variable to false.

Set the documentTypeName input variable to
pub.flatFile.generate:FFDictionary.

This creates an IData object that conforms to the
pub.flatFile.generate:FFDictionary IS document type.

For more information about the pub.xml:xmlStringToXMLNode
and pub.xml:XMLNodeToDocument services, see the webMethods
Integration Server Built-In Services Reference.

3. Map data to the IData object to make your changes.

4. Convert the IData object to an XML string by invoking the
pub.xml:documentToXMLString service. When you invoke this
service:

Set the encode input variable to true.

Set the documentTypeName input variable to
pub.flatFile.generate:FFDictionary.

For more information about the pub.xml:documentToXMLString
service, see the webMethods Integration Server Built-In Services
Reference.

5. Update the dictionary entry in the Integration
Server namespace by invoking the
pub.flatFile.generate:updateFFDictionaryEntryFromXML service.

M
Even Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 68

Modifying an Existing Flat File Dictionary
To modify an existing flat file dictionary, you first retrieve from the Integration Server
namespace the item that you want to modify. You make your modifications to the data.
Delete the dictionary from the namespace before invoking the appropriate service to
write the changes back to the Integration Server namespace. The following describes the
basic steps to modify a flat file dictionary either using an XML file or mapping data.

Using this method Follow this procedure

XML File 1. Retrieve the existing information for the flat file dictionary
from the Integration Server namespace by invoking
the pub.flatFile.generate:findDependants service and write it
to an XML file. For more information, see "Retrieving
Namespace Data to Write to an XML File" on page 73.

2. Update the data for the flat file dictionary in the XML file.
The XML file must conform to the XML schema:

Integration Server_directory\instances
\instance_name\packages\WmFlatFile\pub
\FFGeneration.xsd

3. Retrieve the contents of the XML file as an XML string. For
more information, see "Creating a Service that Retrieves
the XML File" on page 72.

4. Delete the existing flat file dictionary from the
Integration Server namespace by invoking the
pub.flatFile.generate:deleteFFDictionary service.

5. Create the flat file schema in the Integration
Server namespace again by invoking the
pub.flatFile.generate:saveXMLAsFFDictionary service.

Mapping Data 1. Retrieve the existing information for the flat file dictionary
from the Integration Server namespace by invoking
the pub.flatFile.generate:findDependants service. The data is
returned as an XML string in the FFXML variable.

2. To convert the XML string in the FFXML variable to an
IData object:

a. Invoke the pub.xml:xmlStringToXMLNode service to convert
the XML string to an XML node.

b. Invoke the pub.xml:XMLNodeToDocument service to convert
the XML node to an IData object. When you invoke
this service:

M
Odd Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 69

Using this method Follow this procedure

Set the makeArrays input variable to false.

Set the documentTypeName input variable to
pub.flatFile.generate:FFDictionary.

This creates an IData object that conforms to the
pub.flatFile.generate:FFDictionary IS document type.

For more information about the pub.xml:xmlStringToXMLNode
and pub.xml:XMLNodeToDocument services, see the webMethods
Integration Server Built-In Services Reference.

3. Map data to the IData object to make your changes.

4. Convert the IData object to an XML string by invoking the
pub.xml:documentToXMLString service. When you invoke this
service:

Set the encode input variable to true.

Set the documentTypeName input variable to
pub.flatFile.generate:FFDictionary.

For more information about the pub.xml:documentToXMLString
service, see the webMethods Integration Server Built-In
Services Reference.

5. Delete the existing flat file dictionary from the
Integration Server namespace by invoking the
pub.flatFile.generate:deleteFFDictionary service.

6. Create the flat file dictionary in the Integration
Server namespace again by invoking the
pub.flatFile.generate:saveXMLAsFFDictionary service.

Modifying an Existing Flat File Schema
To modify an existing flat file dictionary or flat file schema, you first retrieve from
theIntegration Server namespace the item that you want to modify. You make your
modifications to the data. Delete the item from the namespace before invoking the
appropriate service to write the changes back to the Integration Server namespace. The
following describes the basic steps to modify a flat file schema either using an XML file
or mapping data.

Using this method Follow this procedure

XML File 1. Retrieve the existing information for the flat file schema
from the Integration Server namespace by invoking the
pub.flatFile.generate:getFFSchemaAsXML service and write

M
Even Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 70

Using this method Follow this procedure
it to an XML file. For more information, see"Retrieving
Namespace Data to Write to an XML File" on page 73.

2. Update the data for the flat file schema in the XML file.
The XML file must conform to the XML schema:

Integration Server_directory\instances
\instance_name\packages\WmFlatFile\pub
\FFGeneration.xsd

3. Retrieve the contents of the XML file as an XML string. For
more information, see "Creating a Service that Retrieves
the XML File" on page 72.

4. Delete the existing flat file schema from the
Integration Server namespace by invoking the
pub.flatFile.generate:deleteFFSchema service.

5. Create the flat file schema in the Integration
Server namespace again by invoking the
pub.flatFile.generate:saveXMLAsFFSchema service.

Mapping Data 1. Retrieve the existing information for the flat file schema
from the Integration Server namespace by invoking the
pub.flatFile.generate:getFFSchemaAsXML service. The data is
returned as an XML string in the FFXML variable.

2. To convert the XML string in the FFXML variable to an
IData object:

a. Invoke the pub.xml:xmlStringToXMLNode service to convert
the XML string to an XML node.

b. Invoke the pub.xml:XMLNodeToDocument service to convert
the XML node to an IData object. When you invoke
this service:

Set the makeArrays input variable to false.

Set the documentTypeName input variable to
pub.flatFile.generate:FFSchema.

This creates an IData object that conforms to the
pub.flatFile.generate:FFSchema IS document type.

For more information about the pub.xml:xmlStringToXMLNode
and pub.xml:XMLNodeToDocument services, see the webMethods
Integration Server Built-In Services Reference.

3. Map data to the IData object to make your changes.

M
Odd Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 71

Using this method Follow this procedure

4. Convert the IData object to an XML string by invoking the
pub.xml:documentToXMLString service. When you invoke this
service:

Set the encode input variable to true.

Set the documentTypeName input variable to
pub.flatFile.generate:FFSchema.

For more information about the pub.xml:documentToXMLString
service, see the webMethods Integration Server Built-In
Services Reference.

5. Delete the existing flat file schema from the
Integration Server namespace by invoking the
pub.flatFile.generate:deleteFFSchema service.

6. Create the flat file schema in the Integration
Server namespace again by invoking the
pub.flatFile.generate:saveXMLAsFFSchema service.

Deleting Flat File Dictionary Entries, Dictionaries, and
Schemas
To delete a flat file dictionary entry, entire flat file dictionary, or flat file schema, you
invoke the appropriate service.

For this item... Use this service to delete the item from the namespace

Flat file dictionary entry pub.flatFile.generate:deleteFFDictionaryEntry

Entire flat file dictionary pub.flatFile.generate:deleteFFDictionary

Flat file schema pub.flatFile.generate:deleteFFSchema

Sample Flow Services for Working with XML Files
This section shows sample flow services that show how to retrieve data from an
XML file in the local file system and how to retrieve data from the Integration Server
namespace that can be wrien to a file in the local file system.

M
Even Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 72

Creating a Service that Retrieves the XML File
The following shows a sample flow service for retrieving data from an XML file.

Sample code for retrieving data from an XML file

Flow
Operation

Description

1 Invoke the pub.file:getFile service to retrieve the XML file from the
local file system. The XML data must conform to the following XML
schema:

Integration Server_directory\instances\instance_name\packages
\WmFlatFile\pub\FFGeneration.xsd

For more information about this service, see the webMethods Integration
Server Built-In Services Reference.

2 Invoke the pub.string:bytesToString service to convert the file (in bytes
format) to a String. For more information about this service, see the
webMethods Integration Server Built-In Services Reference.

3 Invoke the appropriate service to make your changes to the Integration
Server namespace. In this sample, the flow service invokes the
pub.flatFile.generate:saveXMLAsFFSchema to save the XML data as a flat file
schema in the Integration Server namespace.

With the INVOKE saveXMLAsFFSchema flow operation selected, in the
pipeline, map the output from the pub.string:bytesToString service to the
FFXML input of the pub.flatFile.generate:saveXMLAsFFSchema service.

M
Odd Header

Programming Creating Flat File Schemas and Dictionaries

Flat File Schema Developer’s Guide Version 9.10 73

Retrieving Namespace Data to Write to an XML File
The following shows a sample flow service that retrieves data from the Integration
Server namespace that can be wrien to an XML file.

Sample code for retrieving namespace data that can be written to an XML file

Flow
Operation

Description

1 Invoke the appropriate service to retrieve the Integration Server
namespace data for a flat file dictionary entry, entire flat file
dictionary, or flat file schema. In this sample, the flow service invokes
the pub.flatFile.generate:findDependants service to retrieve the data for an
entire flat file dictionary.

2 Invoke the pub.string:stringToBytes service to convert the namespace data
(in String format) to a byte[]. For more information about this service,
see the webMethods Integration Server Built-In Services Reference.

With the INVOKE stringToBytes flow operation selected, in the pipeline,
map the FFXML output from the pub.flatFile.generate:findDependants
service to the input of the stringToBytes service.

3 Add code to or invoke a service that you create to write the byte[] to
an XML file.

M
Even Header

Flat File Schema Developer’s Guide Version 9.10 74

M
Odd Header

Flat File Byte Count Parser

Flat File Schema Developer’s Guide Version 9.10 75

C Flat File Byte Count Parser

■ Overview ... 76

■ Configuring the flat file byte count parser .. 76

■ Handling Partial Characters ... 77

■ Stateful Encodings ... 80

M
Even Header

Flat File Byte Count Parser

Flat File Schema Developer’s Guide Version 9.10 76

Overview
The flat file parser measures the lengths and positions of all records and fields in flat file
schemas in terms of bytes, not characters. Prior to Version 6.5, Service Pack 2, the parser
measured all lengths and positions in characters.

Note: This change does not affect users who currently parse flat files using single-
byte encodings because one byte equals one character. Thus, there is no
functional difference between parsing bytes and characters.

This parser supports both single-byte encodings (equivalent to character encodings)
and multi-byte encodings. With multi-byte encodings, a byte count can differ from
a character count since a single character can be encoded to multiple bytes. Both the
pub.flatFile:convertToValues and the pub.flatFile:convertToString services support byte-count
parsing for multi-byte encodings. In addition, pub.flatFile:convertToString includes an
optional seing that returns a document as a byte array instead of a string. For more
information about pub.flatFile:convertToString, see webMethods Integration Server Built-In
Services Reference.

Important: Multi-byte encoded files must run on JVM version 1.4 or later.

There is no change in the way in which the parser handles the following entities:

Delimited fields and records.

A delimiter may be a single character, but may not be byte based. Delimiter and
release character extractors still extract the specified character from the input file
based on a character position.

The field length validator.

The parser still uses the String.length() method to validate field lengths (in
characters). However, the byte count validator validates the total number of bytes in
a field.

Important: The parser does not support the writing or reading of binary data (e.g.,
COMP-3 COBOL fields), nor does it support multiple kinds of encodings
within one file.

Configuring the flat file byte count parser
To process multi-byte encoded files, you must configure the flat file byte count parser
to read the webMethods character set. The webMethods character set is included in the
Extended Character Set file which can be installed using the Software AG Installer.

For more information about Extended Character Set, see the Installing Software AG
Products document.

M
Odd Header

Flat File Byte Count Parser

Flat File Schema Developer’s Guide Version 9.10 77

To install the Extended Character Set

1. Download Installer from the Empower Product Support website.

2. If you are installing the Extended Character Set on an existing Integration Server,
shut down the Integration Server.

3. Start the Installer.

4. Choose the webMethods release that includes the Integration Server on which you
want to install the Extended Character Set.

5. Specify the webMethods installation directory that contains the host Integration
Server.

6. In the product selection list, select Infrastructure > Extended Character Set.

7. After the installation completes, close the Installer and start the host Integration
Server.

To verify that the host Integration Server contains the Extended Character Set, run
the built-in service, pub.flatFile:getSupportedEncodings. If the encoding output variable
contains an encoding with the prefix, "WM_" it indicates that the Extended Character Set is
installed.

For example, WM_UTF8 is the webMethods encoding for the Java default UTF-8.

Handling Partial Characters
The parser reads and writes only complete characters. Partial characters are characters
that violate character boundary conditions, as described below.

Reading Partial Characters
The following table describes how the parser reads partial characters:

Character Boundary Condition How the Parser Handles the Condition

Reading a fixed position field that
begins in the middle of a multi-byte
character.

The field starts on the next complete
character. The partial character is ignored.

Reading a fixed position field that
ends in the middle of a multi-byte
character.

The field ends on the previous complete
character. The partial character is not
included in the field.

https://empower.softwareag.com/

M
Even Header

Flat File Byte Count Parser

Flat File Schema Developer’s Guide Version 9.10 78

Character Boundary Condition How the Parser Handles the Condition

Reading a fixed position record
that begins or ends in the middle of
a multi-byte character.

If the bytes encode to an invalid character,
an exception is thrown.

Note: If the bytes that begin or end the record
are encoded to a valid character, it will
be the wrong character.

To illustrate a case where the parser reads fixed position records that begin and end in
the middle of a multi-byte character, consider the following multi-byte encoding:

12121212

These eight bytes represent four two-byte characters. If we specified a fixed length
file with a record length of three bytes instead of two bytes, the parser would read this
encoding as follows, producing an undesirable result:

Record 1: 121

Record 2: 212

Record 3: 12

Note that:

Record 1 contains one character, formed by the first two bytes of the file. The last
byte is a partial character; the parser ignores it.

Record 2 contains one character, formed by the fifth and sixth bytes of the file. The
character formed by the third and fourth bytes is lost because these bytes span
Records 1 and 2, and cannot be properly decoded.

Record 3 contains one character, formed by the seventh and eighth bytes.

Writing Partial Character Encodings
Partial characters present a similar problem when writing to a fixed length file. The
parser considers all fixed position fields to be “self contained”. This means that all
encoding information for a fixed position field is contained in the byte range specified
for the field. Keep this in mind when writing multi-byte encodings to fixed length
fields because it is possible to specify a field or record that does not end on a character
boundary.

Consider a fixed length field that is 10 bytes, but the string for that field encodes to more
than 10 bytes. In this case, the parser will truncate the byte array to fit into 10 bytes. This
could result in the creation of invalid characters. Thus, the parser always truncates a
string on a character boundary; only complete characters are wrien to the output file.

M
Odd Header

Flat File Byte Count Parser

Flat File Schema Developer’s Guide Version 9.10 79

The following table describes how the parser writes partial characters:

Character Boundary Condition

Writing a string to a fixed position
field where the string is longer than
the fixed position field (where it
breaks at a character boundary).

Truncates the string to fit the field.

Writing to a fixed position field that
ends in the middle of a multi-byte
character.

The field ends on the previous complete
character. The partial character is not
included in the field, and is replaced
by one or more pad characters. For an
example, see below

Writing to a fixed position field in
the middle of a delimited field that
contains a stateful encoding.

Does not generate an error during
creation of the file. Parsing the created
file will likely result in an encoding error.

To illustrate a case where the parser writes to a fixed position field that ends in the
middle of a multi-byte character, consider the following multi-byte encoding:

Field Number of
Bytes in Field

Character 1 Character 2

Field1 4 12 12

Field2 4 12 345

The parser encodes this multi-byte encoding as follows:

Field Value

Field1 1212

Field2 12PP

The parser encodes Field1 properly; it considers character 1 and character 2 to be
complete characters.

The parser encodes Field2 as follows:

It considers character 1 to be a complete character

Since byte 3 does not begin on a character boundary, the parser considers character
2 to be a partial character. It truncates bytes, 3, 4, and 5 because those three bytes

M
Even Header

Flat File Byte Count Parser

Flat File Schema Developer’s Guide Version 9.10 80

would extend beyond the end of the field. It replaces these three bytes with two pad
characters (represented by PP).

Stateful Encodings
The parser can read any well-formed document that adheres to the rules of the
document’s particular kind of encoding. The parser can only write to files that have
fixed length fields or delimited records.

Note: Escape encodings behave similarly to stateful encodings. The parser truncates
characters preceding the escape sequence so that the integrity of the escape
sequence is maintained.

Stateful encodings have two specific bytes that indicate when the record’s state has
changed:

| is a “shift-in” byte that indicates a change from the normal state to an alternate
state

O (the character O, not zero) is a “shift-out” byte that indicates a change from the
alternate state to the normal state

Writing Stateful Encodings
Consider a record definition with the following four-byte fields:

Field Start
Position

End
Position

Record Value

A 0 3 Character value “AB” encodes to 5 bytes: |123O.
The character “A” is represented by bytes 1 and 2.
The character “B” is represented by byte 3.

B 4 8 Character value “C” encodes to 4 bytes: |45O.

The parser encodes this record as follows:

|12O|45O

Notice that the parser truncated byte 3 (the character “B”) from the first field so that
the field would fit within the four-byte limit. This truncation occurred on the character
boundary between the characters A and B, creating a properly encoded record.

Note: A different method of encoding, using a “padding” byte, would have
produced this result:

|123450P

M
Odd Header

Flat File Byte Count Parser

Flat File Schema Developer’s Guide Version 9.10 81

where P is an added padding byte, to extend the record length to the required
eight bytes. The parser does not use this method of encoding. Using this
method, extracting the value for the second field produces:

450P

The parser cannot properly write this byte sequence. All fixed position
fields must be encoded as if they were a stand-alone sequence of bytes. No
stateful encoding information may be carried from one fixed position field
to any other fixed position field. However, delimited fields may carry stateful
information from one field to the next field. In contrast, delimited records
may not carry stateful information from one record to the next record. Thus,
delimited fields are not necessarily “self contained”, but delimited records are.

M
Index

Flat File Schema Developer’s Guide Version 9.10 82

M
Index

Flat File Schema Developer’s Guide Version 9.10 83

Index

A
allowSubfieldDelimiterInNonCompositeFie ld
variable 38
alternate code sets, enabling use of 40
alwaysSortFields variable 37

B
byte count validator, field 35

C
choosing services to receive flat files 44
code list validator 34
code sets, alternate

enabling use of 40
composite

defined 10
extractors 30
reusing de finitions 15

concepts
flat file dictionaries 15
flat file schemas 10
flat files 10

conditional validators 31
configuration file

allowSubfieldDelimiterInNonCompositeField
variable 38
alwaysSortFields variable 37, 37
customizing 37
dontTrimControlCharacters variable 38
enableFormatting variable 36
recordIdentifierCheck variable 38
spacePadJustifies variable 39
UNAOnlyForImmediateUNB variable 39
useAlternateCodeSets variable 40
useReadableDelimiterReporting variable 40

constraint types in flat file schemas 11
content handler, flat file 44
content type, flat file 44
converting flat file to IS document (IData) 21
converting IS document (IData) to flat file 23
creating flat file dictionaries

adding entries programmatically 63
programmatically creating empty dictionaries 65
when to create 16

creating flat file schemas
programmatically 65

D
default records 15
deleting

flat file dictionaries programmatically 71
flat file dictionaries, managing dependencies on
37
flat file dictionary entries programmatically 71,
71
flat file schemas programmatically 71
fomat services, managing dependencies on 36

delimiters, using readable and non-readable
delimiters 40
diagrams

flat file processing 19
inbound conversion and validation 20
outbound conversion 22

dictio naries, flat file
managing dependencies on 37

dictionaries, flat file
creating empty dictionaries programmatically 65
creating programmatically 63
deleting programmatically 71
modifying programmatically 68
retrieving data from XML file 72

dictionary entries, flat file
creating programmatically 63
deleting programmatically 71
modifying programmatically 66
retrieving data from XML file 72

documentation
using effectively 7

dontTrimControlCharacters variable 38

E
elements 10

reusing definitions 15
extractors 30

F
ff.cnf configuration file

allowSubfieldDelimiterInNonCompositeField
variable 38
alwaysSortFields variable 37
customizing 37
dontTrimControlCharacters variable 38
enableFormatting variable 36
recordIdentifierCheck variable 38

M
Index

Flat File Schema Developer’s Guide Version 9.10 84

spacePadJustifies variable 39
UNAOnlyForImmediateUNB variable 39
useAlternateCodeSets variable 40
useReadableDelimiterReporting variable 40

field
defined 10
extractors 30
reusing definitions 15
sorting 37
validators 34

flat file dictionaries
creating empty dictionaries programmatically 65
creating entries programmatically 63
creating programmatically 63
defined 15
deleting entries programmatically 71
deleting programmatically 71
modifying entries programmatically 66
modifying programmatically 68
retrieving data from XML file 72

flat file dictionaries, retrieving data from XML file 72
flat file dictionary entries, retrieving data from XML
file 72
flat file schemas

constraints
content type 11
structural 11
syntax rule 11

creating programmatically 65
defined 10
deleting programmatically 71
identifying records 11
modifying programmatically 69
retrieving data for from XML file 72
validation 11

flat files
creating from IS documents (IData objects) 22
defined 10
processing 18
sending and receiving 44

content handler 44
content type 44
services for receiving 44
via a flow service 44
via a string variable 45
via e-mail 50
via file polling 50
via FTP 47
via HTTP 46

via Trading Networks 44
floating records

behavior of 26
examples of, inbound parsing 27
examples of, outbound parsing 29

flow services, requirements to receive flat files 44
format services 35

creating 36, 36
disabling 36
error messages 36
managing dependencies on 36
processing 19

H
handling large flat files 21

I
identifiers, record 13
identifying flat file schema records 11
inbound flat file processing 19

default records 15
diagram 20
how to 20
large files 21
parsing 20
undefined data 14
validation error codes 11
validation error contents 11

L
large flat file handling 21
length validator, field 34

M
modifying

flat file dictionaries programmatically 68
flat file dictionary entries programmatically 66
flat file schemas programmatically 69

O
outbound flat file processing 22

diagram 22
how to 22
parsing 23

P
parsers, record 12

M
Index

Flat File Schema Developer’s Guide Version 9.10 85

parsing
inbound flat files 20
outbound flat files 23

posting a flat file via HTTP 46
processing flat files 18

diagram 19
format services 19
inbound 19

default records 15
diagram 20
how to 20
large files 21
parsing 20
undefined data 14
validation error codes 58
validation error contents 54

out bound
how to 22

outbound 22
diagram 22
parsing 23

processing IS documents (IData) 21
programmatically

create empty flat file dictionaries 65
create flat file dictionaries 63
create flat file dictionary entries 63
create flat file schemas 65
delete flat file dictionaries 71
delete flat file dictionary entries 71
delete flat file schemas 71
modify flat file dictionaries 68
modify flat file dictionary entries 66
modify flat file schemas 69

R
record

default 15
defined 10
identifying 11
reusing definitions 15

record identifiers 13
records with no identifiers 15

record parsers 12
recordIdentifierCheck variable 38
records, floating

behavior of 26
examples of, inbound parsing 27
examples of, outbound parsing 29

reusing element definitions 15

S
schemas, flat file

creating programmatically 65
deleting programmatically 71
modifying programmatically 69
retrieving data for from XML file 72

sending and receiving flat files
content handler 44
content type 44
overview 44
services for receiving 44
via a flow service 44
via a string variable 45
via e-mail 50
via file polling 50
via FTP 47
via HTTP 46
via Trading Networks 44

sorting order of fields in composites and records 37
spacePadJustifies variable 39
submitting a flat file via a string variable 45
submitting a flat file via e-mail 50
submitting a flat file via file polling 50
submitting a flat file via FTP 47
submitting a flat file via HTTP 46

T
Trading Networks, sending flat files to 44

U
UNAOnlyForImmediateUNB variable 39
undefined data 14
updating

flat file dictionaries programmatically 68
flat file dictionary entries programmatically 66
flat file schemas programmatically 69

useAlternateCodeSets variable 40
useReadableDelimiterReporting variable 40

V
validation

defined 11
error codes 58
error contents 54

validators
about 31

M
Index

Flat File Schema Developer’s Guide Version 9.10 86

conditional 31
field 34

byte count 35
code list 34
length 34

X
XML files, retrieving data from 72

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Concepts
	What is a Flat File?
	What is a Flat File Schema?
	How Is a Flat File Schema Used to Parse Records?
	Record Parsers
	Record Identifiers
	Extractors
	Undefined Data
	Default Records

	What is a Flat File Dictionary?
	When Should I Create a Flat File Dictionary?

	Processing Flat Files Overview
	Overview of Processing Flat Files
	Formatting Inbound and Outbound Data

	Processing Inbound Flat Files
	Handling Large Flat Files

	Processing Outbound Flat Files

	Working with Elements in Flat File Schemas and Dictionaries
	Overview
	Floating Records
	Examples: Parsing Inbound Floating Records
	Examples: Parsing Outbound Floating Records

	Extractors
	Validators
	Conditional Validators
	Field Validators
	Length Validator
	Code List Validator
	Byte Count Validator

	Format Services
	Creating Format Services
	Working with Format Error Messages
	Disabling Format Services
	Managing Dictionary Dependencies on Format Services

	Managing Flat File Dictionary Dependencies
	Customizing the Flat File Configuration Settings

	Sending and Receiving Flat Files
	Overview
	Flat File Content Handler and Content Type
	Choosing the Service to Receive the Flat File from the Content Handler
	Submitting a Flat File to Integration Server in a String Variable
	Submitting a Flat File to Integration Server via HTTP
	Building a Client that Posts a Flat File to a Service

	Submitting a Flat File to Integration Server via FTP
	FTPing a File From a webMethods Integration Server
	Getting Results from an FTP’d Document

	Submitting a Flat File to Integration Server via File Polling
	Submitting a Flat File to Integration Server via an E-mail Message
	Requirements for Submitting a Flat File Document via an E-mail Message
	Getting Results from an E-mailed Document

	Validation Errors
	Validation Error Contents
	General Error Entries in the errors Array
	Entries for Conditional Validator Errors in the errorDetails Array

	Validation Error Codes

	Programming Creating Flat File Schemas and Dictionaries
	Overview
	Creating Flat File Dictionary Entries, Dictionaries, and Schemas
	Creating Flat File Dictionary Entries
	Creating an Entire Flat File Dictionary with Data
	Creating an Empty Flat File Dictionary
	Creating a Flat File Schema

	Modifying Flat File Dictionary Entries, Dictionaries, and Schemas
	Modifying an Existing Flat File Dictionary Entry
	Modifying an Existing Flat File Dictionary
	Modifying an Existing Flat File Schema

	Deleting Flat File Dictionary Entries, Dictionaries, and Schemas
	Sample Flow Services for Working with XML Files
	Creating a Service that Retrieves the XML File
	Retrieving Namespace Data to Write to an XML File

	Flat File Byte Count Parser
	Overview
	Configuring the flat file byte count parser
	Handling Partial Characters
	Reading Partial Characters
	Writing Partial Character Encodings

	Stateful Encodings
	Writing Stateful Encodings

	Index

