
webMethods EntireX

EntireX Web Services Wrapper

Version 9.10

April 2016

This document applies to webMethods EntireX Version 9.10 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2016 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXWEBSERVICESWRAPPER-910-20181116

Table of Contents

EntireX Web Services Wrapper .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Introduction to Web Services in EntireX ... 5
Introduction ... 6
Supported Features .. 8
Web Services ... 9
The Simple Object Access Protocol (SOAP) ... 10
Web Services Registries and CentraSite ... 11
Web Service Architecture ... 11
General SOAP Architecture ... 12

3 Using the EntireX Web Services Wrapper ... 13
Generating Web Services from Software AG IDL File ... 14
Deploying Web Services ... 20
Testing Web Services .. 21
Developing Web Service Client Applications .. 22
Undeploying Web Services .. 22
Removing Web Services ... 23

4 Using the Web Services Wrapper in Command-line Mode .. 25
Command-line Options .. 26
Example for Generating Web Services ... 26
Further Examples ... 27

5 Web Services Stack Configuration Editor ... 29
Introduction .. 30
Services Page .. 31
EntireX Settings Page ... 37
Password Callback Class .. 38

6 Software AG IDL to WSDL Mapping .. 41
Mapping IDL Data Types to WSDL Data Types .. 42
Default Namespace .. 46
Min/Max Occurrence .. 48
Default Service Name ... 48

iii

iv

EntireX Web Services Wrapper

The EntireXWeb ServicesWrapper is awizard that generates and optionally deploysWeb services
(EntireX Workbench file with extension .aar) to offer an RPC server - for example a COBOL or
Natural RPC server - as aWeb service. The generatedXML/SOAPmapping file (EntireXWorkbench
filewith extension .xmm) can also be used to enable RPC clients - for example a COBOLorNatural
client - consuming (or calling) a Web service.

Introduction to the Web Services Wrapper.Introduction

Using the Web Services Wrapper.Using

Using the Web Services Wrapper in command-line mode.Command-line Mode

With the Configuration Editor you can configure Web service
archives before you deploy them to Software AGWeb Services
Stack.

Web Services Stack Configuration
Editor

Mapping Software AG IDL data types to WSDL.IDL to WSDL Mapping

Related Literature

■ Software AG IDL Extractors
■ IDL Editor
■ EntireX XML Mapping Editor
■ Administering the EntireXXML/SOAP Listener in theUNIX andWindows administration sections
■ EntireX RPC Servers, Listeners and Bridges
■ RPC-ACI Bridge

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://documenta-
tion.softwareag.com. The site requires credentials for SoftwareAG's Product Support site Empower.
If you do not have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

EntireX Web Services Wrapper2

About this Documentation

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.asp and give us
a call.

Software AG TECHcommunity

You can finddocumentation and other technical information on the SoftwareAGTECHcommunity
website at http://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

■ Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3EntireX Web Services Wrapper

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

4

2 Introduction to Web Services in EntireX

■ Introduction .. 6
■ Supported Features ... 8
■ Web Services ... 9
■ The Simple Object Access Protocol (SOAP) ... 10
■ Web Services Registries and CentraSite .. 11
■ Web Service Architecture .. 11
■ General SOAP Architecture ... 12

5

Introduction

The EntireXWeb ServicesWrapper is awizard that generates and optionally deploysWeb services
(EntireX Workbench file with extension .aar) to offer an RPC server - for example a COBOL or
Natural RPC server - as aWeb service. The generatedXML/SOAPmapping file (EntireXWorkbench
filewith extension .xmm) can also be used to enable RPC clients - for example a COBOLorNatural
client - consuming (or calling) a Web service. This section covers the following topics:

■ Generating Web Services
■ Deploying Web Services
■ Consuming (or Calling) Web Services from RPC Clients

Generating Web Services

Web services are generated from Software AG IDL, XML/SOAPmapping files or Natural subpro-
grams. The generated result is a Web service archive (Workbench file with extension .aar) that
contains the relevant artifacts of theWeb service such as an XML/SOAPmapping file (Workbench
file with extension .xmm), WSDL file and additional configuration files, for example services.xml:

See Generating Web Services from Software AG IDL File.

EntireX Web Services Wrapper6

Introduction to Web Services in EntireX

Deploying Web Services

The Web service archive is deployed for execution by the wizard or - in an extra deployment step
- in a Web Services Stack with the XML/SOAP Listener running, for example, in an application
server:

See Deploying Web Services.

Consuming (or Calling) Web Services from RPC Clients

To enable an RPC client - for example a COBOL or Natural client - consuming (or calling) a Web
service, the generated XML/SOAP mapping file (Workbench file with extension .xmm) is used
together with XML/SOAP RPC Server:

7EntireX Web Services Wrapper

Introduction to Web Services in EntireX

See also Developing Web Service Client Applications.

Supported Features

EntireX supports a number of advancedWeb services features in combinationwith theWeb Services
Stack. This includes support for

■ SOAP 1.2 according to http://www.w3.org/TR/soap12-part1/ in addition to SOAP 1.1. No extra
configuration is needed.

■ SOAP 1.2 messaging
■ SOAP 1.2 binding in WSDL 1.1
■ Multiple transports (HTTP, HTTPS, TCP). See Transports.
■ The Web Services Stack also supports the Representational State Transfer (REST) style of mes-
saging.

■ WSDL1.1; The generateddescriptions are compliantwith theWeb ServicesDescriptionLanguage
(WSDL 1.1 - http://www.w3.org/TR/wsdl). They contain both SOAP 1.1 and SOAP 1.2 binding
definitions and endpoints. Example (excerpt from a WSDL file):

...
<wsdl:service name="Calc">

<wsdl:port name="CalcSOAP11port_http" binding="ns0:CalcSOAP11Binding">
<soap:address location="http://host:port/wsstack/services/Calc" />

</wsdl:port>
<wsdl:port name="CalcSOAP12port_http" binding="ns0:CalcSOAP12Binding">

<soap12:address location="http://host:port/wsstack/services/Calc" />
</wsdl:port>

EntireX Web Services Wrapper8

Introduction to Web Services in EntireX

</wsdl:service>
...

■ WS-I Basic Profile: If the WSDL generation format document/literal is used, the generated Web
service is compliant with WS-I Basic Profile 1.1 (see http://www.ws-i.org).

■ WS-Policy (WS-Addressing,WS-Security,WS-ReliableMessaging)
■ WS-Policy Attachment to WSDL 1.1

Web Services
Web services are programmable, distributed application components accessible on theWeb using
solely standard internet protocols. In contrast to the current “document Web”, which specializes
in human interaction,Web services are designed to be accessed by programs to form a new applic-
ation architecture, the “application Web”.

Generally speaking, a Web service application consists of three major Web service components:

■ AWeb service registry,which stores information aboutWeb service providers andWeb services.
■ AWeb service client, which makes use of a service offered on the Web using a standard mes-
saging and transport protocol.Web service clients can searchWeb service registries to finddesired
services.

■ AWeb service, which is accessible via a standardmessaging and transport protocol.Web services
publish information about themselves in a Web service registry. A Web service must provide
a precise technical description of its interfaces to be used by clients.

9EntireX Web Services Wrapper

Introduction to Web Services in EntireX

The standards on which Web services are based today are:

■ HTTP and SMTP for basic network transport services,
■ XML as data format,
■ the Simple Object Access Protocol (SOAP) for XML messaging and RPC,
■ the Web Service Description Language (WSDL) for service descriptions and
■ Universal Description, Discovery and Integration (UDDI) for Web service registries.

The Simple Object Access Protocol (SOAP)

SOAP (originally Simple Object Access Protocol) (SOAP 1.1) is a messaging and RPC protocol
designed for integrating heterogeneous Web services in the internet. It defines a message format
in the ExtensibleMarkup Language (XML) that can be transported over existing internet transport
protocols (HTTP, SMTP, FTP or others). By using standardXML, SOAPmessages are self-describing,
that is, they carry enough information for a receiver to decompose and process the message in a
standard way. By using standard internet protocols, SOAP seamlessly fits into existing internet
infrastructure (for example, routers, firewalls, Web servers).

Formore details, see theWorldWideWebConsortium's note at http://www.w3.org/TR/2000/NOTE-
SOAP-20000508/.

EntireX Web Services Wrapper10

Introduction to Web Services in EntireX

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Web Services Registries and CentraSite

Web services created with EntireX can be registered in any UDDI registry, including CentraSite.
CentraSite offers enhanced registry functionality, and also repository functionality that enables
you to store Web services artifacts and register interdependencies for impact analysis.

Web Service Architecture

SOAP is one of the basic technologies required to buildWeb services. It is combinedwith the related
technologies Web services description language (e.g. WSDL) for describing Web services, and
Web service registries (e.g. UDDI based) for storing information about Web services.

■ AWeb service provider publishes a description of the service it offers to aWeb services registry;
■ AWeb service client contacts a Web services registry to find the service, and
■ uses the Web service description to actually bind to the Web service.

SOAP can be used for publish, find and bind operations.

The following level of SOAP and Web services functionality is provided:

■ SOAP enabling of EntireX RPC servers
■ generation of WSDL service descriptions for EntireX RPC servers
■ generation, configuration and deployment of Web services into the Software AGWeb Services
Stack runtime

11EntireX Web Services Wrapper

Introduction to Web Services in EntireX

General SOAP Architecture

EntireX uses the Software AGWeb Services Stack (WSS). WSS is a toolkit that provides function-
ality for execution, configuration and management of Web services.

The core part of the WSS runtime is the SOAP engine, which is based on Apache Axis2.

TheEntireXWorkbenchprovides functionality to create, configure, and deploy EntireXWeb services.
EntireX Web services are packaged into a service archive (extension .aar).

Incoming SOAP requests are processed by the WSS SOAP engine. The SOAP request is given to
the XML/SOAP Runtime, which validates the request and transforms it into an RPC request. The
result of the RPC request in turn is transformed into a SOAP response message and sent back to
the client. If an error occurs, a SOAP fault message is sent back to the client.

EntireX Web Services Wrapper12

Introduction to Web Services in EntireX

3 Using the EntireX Web Services Wrapper

■ Generating Web Services from Software AG IDL File ... 14
■ Deploying Web Services ... 20
■ Testing Web Services ... 21
■ Developing Web Service Client Applications ... 22
■ Undeploying Web Services .. 22
■ Removing Web Services ... 23

13

Generating Web Services from Software AG IDL File

A typical scenario starts from an existing (legacy) server application "wrapped" with EntireX
technology and accessible to RPC clients via the EntireX RPC protocol. The interface of the (legacy)
server is described by an IDL file (see Software AG IDL File in the IDL Editor documentation). If
there is a related client-side mapping file (Natural | COBOL), this is also used (internally). Using
the EntireX Web Services Wrapper, the (legacy) server is exposed as a Web service. For example,
the following files are generated from example.idl:

■ a SOAP mapping (example.xmm)
■ a WSDL description (example.wsdl)
■ a service archive for the Web Services Stack (example.aar)

This section covers the following topics:

■ Generating a Web Service
■ Generating a Web Service with HTTP Basic Authentication and UsernameToken Authentication for
EntireX Authentication
■ Generating a Web Service for EntireX Security or Natural Security

Generating a Web Service

This section describes the general approach for generating a Web service archive with the Web
Services Wrapper.

To generate a Web service

1 Before the wizard is started for the first time, initialize the preference pagesWindow > Pref-
erences > Software AG > EntireX andWindow > Preferences > Software AG > EntireX >
Web Services Wrapperwith values appropriate for your environment.

2 Select the IDL file to be processed. From the context menu of this IDL file, choose Properties.

EntireX Web Services Wrapper14

Using the EntireX Web Services Wrapper

■ Change the EntireX settings if necessary.
■ If necessary, change theWeb service generation settings using theWSDL tab (ServiceName
and Service URL).

■ ChooseOK to leave the Properties dialog.

3 Select the IDL file to be processed. If there is a related client-side mapping file (Natural |
COBOL), this is also used (internally). From the context menu of the IDL file, chooseWeb
Service > Generate Web Service....

15EntireX Web Services Wrapper

Using the EntireX Web Services Wrapper

You can select more than one Software AG IDL File in the IDL Editor documentation to merge
all IDL files into one Web service. As a result you will get multiple XML mapping files, one
WSDL file and one Web service archive. Merging does not support the use of the same IDL
program name in different IDL libraries.

4 The EntireX Web Services Wrapper is launched:

You can enter a service name. The default name is the name of the selected IDL file.

If you checkDeploy service, an additional confirmation page is displayed. See Deploying
Web Services for this dialog.

If you check Register service to CentraSite, a confirmation page is displayed. See CentraSite
Integration for this dialog.

If you uncheck Use defaults for the Configure EntireX Service section, you can select the
following configuration items:

EntireX Web Services Wrapper16

Using the EntireX Web Services Wrapper

■ General service parameters (XML-INIT.xml)
An additional configuration page is appended.

The parameters on this page are described in theWeb Services Stack Configuration Editor.
See also XML/SOAP Listener Initialization Parameters.

■ Set connection and security parameters in mapping file
An additional configuration page is appended.

The parameters on this page are described in theWeb Services Stack Configuration Editor.
See also Service Parameters.

17EntireX Web Services Wrapper

Using the EntireX Web Services Wrapper

■ Send connection and security parameters with SOAP message
An additional configuration page is appended.

The selected parameters are generated in alphabetical order and are enclosed by xsd:all in
the SOAP header section of the generated WSDL file. Example:

<xsd:schema targetNamespace="urn:com.softwareag.entirex.xml.rt">
<xsd:element name="EntireX">
<xsd:complexType >
<xsd:all >
<xsd:element name="exx-brokerID" type="xsd:string"/>
<xsd:element name="exx-natural-library" type="xsd:string"/>

...
<xsd:element name="exx-userID" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Aweb service client will then be able to set these parameters in the SOAP header of the SOAP
message. See alsoTheHTTP InterfaceunderReference - HTTP and Java Interface in the XML/SOAP
Wrapper documentation.

5 ChooseNext, enter your configuration parameters and select the methods for which theWeb
service is to be generated.

6 Choose Finish to generate the Web service (XML/SOAP mapping file (Workbench file with
extension .xmm), WSDL file and Web service archive (Workbench file with extension .aar)).

EntireX Web Services Wrapper18

Using the EntireX Web Services Wrapper

Generating a Web Service with HTTP Basic Authentication and UsernameToken Authentication for
EntireX Authentication

This section describes specific settings required when you generate a Web service archive (Work-
bench file with extension .aar) with theWeb ServicesWrapper for HTTP Basic Authentication and
UsernameToken Authentication.

To generate a Web service with HTTP Basic Authentication and UsernameToken Authentication

■ In general, follow the steps under Generating a Web Service.

In step 4, checkGeneral service parameters (XML-INIT.xml) and in the additional configur-
ation page enable User Name Token and Basic Authentication.

The priority of credentials settings is as follows:

1. exx-userID, exx-password, exx-rpc-userID, exx-rpc-password (highest priority)

2. UsernameToken

3. Basic Authentication (lowest priority)

Generating a Web Service for EntireX Security or Natural Security

This section describes specific settings required when you generate a Web service archive (Work-
bench file with extension .aar) with the Web Services Wrapper for EntireX Security or Natural
Security.

To generate a Web service for EntireX Security or Natural Security

■ In general, follow the steps under Generating a Web Service. In step 4, check Set connection
and security parameters in mapping file and in the additional configuration page enable
Use Security and/orNatural Logon. If required, also set the Natural library.

19EntireX Web Services Wrapper

Using the EntireX Web Services Wrapper

Deploying Web Services

■ Prerequisites
■ Deploying the Web Service

Prerequisites

The following resources are required to deploy and run a Web service:

■ An application serverwhere theWeb Services Stack is installed (wsstack.war). TheWeb Services
Stack is accessible by default at the URL http://<host-name>:<port-number>/wsstack/sagdeployer
with port number 10010. The default port can be changed during installation. In the case of de-
ployment in custom application servers, the port is configured by the corresponding server
administration tools. For more details see theWeb Services Stack documentation in the Software
AG Infrastructure Administrator's Guide, also available under http://documentation.software-
ag.com > Guides for Tools Shared by Software AG Products.

■ The EntireX Runtime (entirex.jar) containing the XML/SOAP Listener. This must be located in
theWEB-INF\lib folder of theWeb Services StackWeb application. SeeAdministering the EntireX
XML/SOAP Listener in the UNIX and Windows administration sections.

■ The Eclipse plug-ins of the Web Services Stack must be installed.
■ EntireX Broker and the RPC server hosting the server implementation are up and running. See
Setting up Broker Instances in the platform-specific Administration documentation and EntireX
RPC Servers, Listeners and Bridges.

EntireX Web Services Wrapper20

Using the EntireX Web Services Wrapper

http://documentation.softwareag.com/
http://documentation.softwareag.com/

Deploying the Web Service

Deploying a Web service means sending a Web service archive (Workbench file with extension
.aar) to a running Web Services Stack Web application. The Web Services Stack Web application
stores the Web service archive in theWEB-INF/services folder of the Web Services Stack Web ap-
plication.

To deploy a Web service

1 From the context menu of the generated Web service archive, choose Software AGWeb
Services Stack > Deploy Web Service Package. In a wizard you can select hostname, port
number, and a servlet address of the Web Services Stack Deployment Servlet. You also need
to supply your credentials (user ID and password).

2 Choose Finish to send the Web service archive to the selected deployment connection point.

Notes:

1. Formore information, seeDeployWeb Services Stack in the Software AG Infrastructure Administrat-
or's Guide, also available under http://documentation.softwareag.com > Guides for Tools Shared
by Software AG Products.

2. You can verify the deployment of your service with context menu item Software AGWeb
Services Stack >ViewWeb Services Stack... or Software AGWeb Services Stack > ViewWeb
Service.

3. An advanced Web service application (e.g. requiring WS-Security) may need special settings
in the Web service archive before you deploy it to the Web Services Stack. You can manage the
settings with theWeb Services Stack Configuration Editor.

Testing Web Services

■ Testing a Web Service with the XML Tester
■ WSDL Query of Web Services

Testing a Web Service with the XML Tester

To test a Web Service with the XML Tester

■ From the context menu of the generatedWeb service archive (Workbench files with extension
.aar), choose Test EntireXWeb Service. This starts the EntireX XML Tester. If the Web service
archive contains multiple XMM/SOAPmapping files (Workbench file with extension .xmm),
select the one you want. Refer to the documentation of the XML Tester to create a sample
document.

21EntireX Web Services Wrapper

Using the EntireX Web Services Wrapper

http://documentation.softwareag.com/

WSDL Query of Web Services

You can retrieve the WSDL of a Web service deployed in the Web Services Stack running in a
servlet engine.

To query the WSDL of a Web Service

■ Use a browser and append "?wsdl" to the Web service URI. Example:

http://host:port/wsstack/service/myService?wsdl

The returnedWSDLwill return to the requestor all relevant configuration information of the
Web service, for example all endpoints through which the Web service is accessible and
policies that are in effect for the Web service.

Developing Web Service Client Applications

Once the Web service is up and running and its WSDL is accessible (using HTTP), Web service
client applications can be developed. See alsoWriting Web Service Client Applications in the IDL
Extractor for WSDL documentation.

Undeploying Web Services

Undeploying a Web service means informing a running Web Services Stack Web to remove a de-
ployedWeb service. TheWeb Services StackWeb removes the correspondingWeb service archive
from the WEB-INF/services folder of the Web Services Stack Web.

To undeploy a Web service

■ ChooseWindows > Preferences > Software AG >Web Services Stack > Undeploy Web
Service Package...

Notes:

1. Formore information, seeDeployWeb Services Stack in the Software AG Infrastructure Administrat-
or's Guide, also available under http://documentation.softwareag.com > Guides for Tools Shared
by Software AG Products.

2. You can verify the undeployment with the help of a browser. The undeployed Web service
should disappear from the list of the deployedWeb services (e.g. http://localhost:10010/wsstack/ser-
vices/listServices).

EntireX Web Services Wrapper22

Using the EntireX Web Services Wrapper

http://documentation.softwareag.com/

Removing Web Services

When a Web service is removed from an Eclipse project, usingWeb Services Stack > Remove
Web Service, the following artifacts are additionally deleted depending on the source of the gen-
erated Web service.

Additionally Deleted ArtifactsGenerated from

Natural/COBOL ■ IDL file
■ XMM/SOAP mapping file
■ Servermapping file (if applicable, seeClient-sideMapping forNatural | COBOL)
■ WSDL file

IDL File ■ XMM/SOAP mapping file
■ WSDL file

XMM File ■ WSDL file (if applicable)

23EntireX Web Services Wrapper

Using the EntireX Web Services Wrapper

24

4 Using the Web Services Wrapper in Command-line Mode

■ Command-line Options ... 26
■ Example for Generating Web Services ... 26
■ Further Examples .. 27

25

The Web Services Wrapper generates a WSDL file, a mapping file (extension .xmm) and a service
archive (extension .aar) to deploy into the common Web Services Stack.

Command-line Options

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax. The
table below shows the command-line option for the Web Services Wrapper.

DescriptionOptionCommandTask

Output directory, absolute path (fully qualified,
must exist). Ignored if the input is part of a project
in the Eclipse workspace. Same as -o.

-out-wsdlGenerate
WSDL, mapping and
archive files from
specified IDL file. Service URL. Same as -u.-url

Service name.-service=<service>

Use the file-specific properties. This optionmakes
the others superfluous, but is only available if the
input is part of an Eclipse project.

-properties

Example for Generating Web Services

<workbench> -wsdl /Demo/example.idl -properties

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The name of the IDL file includes the project name. In the example, the project Demo is used. If
the IDL file name describes a file within the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

The generated mapping file gets the name of the IDL file. The WSDL file and the service archive
get the name of the service, if specified, otherwise they get the name of the IDL file.

EntireX Web Services Wrapper26

Using the Web Services Wrapper in Command-line Mode

<workbench> -wsdl /Demo/example.xmm -properties

This command generates theWSDL file and the service archive from the mapping file. If a service
name is specified, the WSDL file and the service file get the name of the service, otherwise they
get the name of the mapping file.

Status and processing messages are written to standard output (stdout), which is normally set to
the executing shell window.

Further Examples

Windows

Example 1

<workbench> -wsdl C:\Temp\example.idl

Uses the IDL file C:\Temp\example.idl and generates the files (EXAMPLE.wsdl and example.xmm)
in parallel to the IDL file. Slashes and backslashes are permitted in the file name. Output to
standard output:

Using workspace file:/C:/myWorkspace/.
LIBRARY = EXAMPLE

Program = CALC
Program = SQUARE

WSDL file "C:\Temp\EXAMPLE.wsdl" created.
Exit value: 0

Example 2

<workbench> -wsdl -help

or

<workbench> -help -wsdl

Both show a short help for the Web Services Wrapper.

27EntireX Web Services Wrapper

Using the Web Services Wrapper in Command-line Mode

Linux

Example 1

<workbench> -wsdl /Demo/example.idl

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demo/example.idl is used from file system. The generated output (EXAMPLE.wsdl and
example.xmm) will be stored in /Demo, parallel to the IDL file.

Example 2

<workbench> -wsdl -help

or

<workbench> -help -wsdl

Both show a short help for the Web Services Wrapper.

EntireX Web Services Wrapper28

Using the Web Services Wrapper in Command-line Mode

5 Web Services Stack Configuration Editor

■ Introduction .. 30
■ Services Page .. 31
■ EntireX Settings Page .. 37
■ Password Callback Class .. 38

29

With theWeb Services Stack Configuration Editor, an Eclipse plug-in, you can configure individual
Web services or groups of Web services in the services.xml file that is part of a Web service archive
(Workbench file with extension .aar). Using an external configuration file of the XML/SOAP
Listener allows you later to override settings of a Web service archive for different Web server
environments without modifying the archive itself. See also Configuring Web Services in the UNIX
and Windows Administration documentation.

For more information on the Configuration Editor see the separateWeb Services Stack document-
ation in the Software AG Infrastructure Administrator's Guide, also available under http://document-
ation.softwareag.com > Guides for Tools Shared by Software AG Products.

Introduction

To invoke the Web Services Stack Configuration Editor

■ Use the context menu of a Web service archive (Workbench file with extension .aar) that was
generated with the EntireXWorkbench to open theWeb Services Stack Configuration Editor:

The following pages are provided to configure different aspects of the Web service:

■ Archive Page
Displays the contents of the Web service archive (Workbench files with extension .aar). In gen-
eral it allows you to add additional files to the archive or remove files from the archive. Specific-
ally you can add additional EntireX files (Workbench files with extension .idl, and .xmm) to the
Web service.

EntireX Web Services Wrapper30

Web Services Stack Configuration Editor

http://documentation.softwareag.com/
http://documentation.softwareag.com/

■ Services Page
See Services Page. Allows you to update and provide further configuration settings that apply
to a Web service contained in the Web service archive (Workbench file with extension .aar).

■ Operations Page
Allows you to provide additional configuration settings that apply to an operation of a Web
service contained in the Web service archive.

■ services.xml Page
Allows you to view the Web services archive's configuration file in text form (XML format).

■ EntireX Settings Page
See EntireX Settings Page. Provides configuration and settings for the XML/SOAP Listener. See
Administering the EntireXXML/SOAPListener in theUNIX andWindows administration sections.

Notes:

1. The Services Page corresponds to theOperation Page. This means most settings and configur-
ation options of the services and operation page are identical. You can override Web Service
configuration settings for service and/or operation.

2. Web services createdwith theWeb ServicesWrapper have specific configuration settings defined
during generation. See Generating Web Services from Software AG IDL File. These are:
■ ServiceLifecycle class: com.softwareag.entirex.xml.rt.WSSServiceLifeCycle
■ Session Scope: Application
■ MessageReceiver class: com.softwareag.entirex.xml.rt.EntireXMessageReceiver

Do notmodify these settings.

3. The global configuration for the Web services engine is done in the configuration file axis2.xml.
See also Configuring Web Services in the UNIX and Windows Administration documentation.

Services Page

This section covers the following topics:

■ Transports
■ WS-Addressing
■ WS-Security

31EntireX Web Services Wrapper

Web Services Stack Configuration Editor

■ WS-ReliableMessaging

Transports

Web services can be configured to be accessible over multiple transport protocols. The default
transport is HTTP.

■ HTTP
No additional configuration is required.

■ HTTPS
This requires that HTTPS is configured for the servlet engine that is running the Web Services
Stack.

■ TCP
Additional configuration of the Web Services Stack in axis2.xml is necessary to enable support
of this transport.

For more details see the Web Services Stack documentation in the Software AG Infrastructure Ad-
ministrator's Guide, also available under http://documentation.softwareag.com > Guides for Tools
Shared by Software AG Products.

WS-Addressing

To enableWS-Addressing headers for aWeb service, check the EnableWS-Addressing check box
in sectionModules. This inserts aWS-Addressingpolicy into services.xml and enables the addressing
module of the Web Services Stack that processes addressing SOAP headers.

<wsp:Policy wsu:Id="User defined"
xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy

xmlns:wsu="http://docs.oasis-open.org/.../...wssecurity-utility-1.0.xsd">
<wsp:ExactlyOne>

<wsp:All>
<wsaws:UsingAddressing

xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>
<module ref="addressing"/>

EntireX Web Services Wrapper32

Web Services Stack Configuration Editor

http://documentation.softwareag.com/

WS-Security

WS-Security can be configured to ensure integrity, confidentiality and allow authentication of
messages exchanged between Web services clients and Web services. To enable WS-Security for
a Web service, check the Enable WS-Security check box in sectionModules. This enables further
configuration options in section Security on the Services page. This section covers the following
topics:

■ Overview
■ Security Binding
■ Message-level Security Options
■ Token Assertions
■ Encrypt/Sign Message Part
■ Security Model Configuration
■ Encryption/Signing
■ Other Security Options

Overview

WS-Security policy assertions can be defined for a service to accept and enforce SOAP messages
containing a WS-Security SOAP header. With WS-Security the message exchange between a Web
service client and a service can be secured in the following aspects:

■ confidentiality: messages (or parts of messages) are encrypted on transport or on message level
■ integrity: messages (or parts of messages) are signed on transport or on message level
■ authentication: the sender of a message supplied authentication information on transport or on
message level that allows the service to perform authentication

The following security policies are supported:

■ Security bindings
TransportBinding, SymmetricBinding and AsymmetricBinding, which specify the mechanism
used to ensure confidentiality and integrity.
■ TransportBinding
The message exchange is secured on transport level (HTTPS). As a prerequisite, the secure
transport needs to be enabled and configured for the servlet engine that hosts theWeb Services
Stack service runtime.

■ SymmetricBinding
The confidentiality of the message exchange is achieved onmessage level, using a symmetric
encryption key that is shared between Web service client and service.

33EntireX Web Services Wrapper

Web Services Stack Configuration Editor

■ AsymmetricBinding
The confidentiality of themessage exchange is achieved onmessage level using, an asymmetric
encryption key (that is, client and service use different private/public key pairs for encryption
and decryption).

■ Timestamps
A service can have a policy that requires that timestamps are added to messages.

■ Authentication
Policies can be defined that require messages exchanged contain authentication information
such that receivers can authenticate the sender. The following authentication methods are sup-
ported:
■ HTTP basic authentication
■ client certificates for the HTTPS transport
■ user-name token contained in the message
■ digital signatures and X509 tokens contained in the message

Security Binding

Message exchange can be secured either on transport level or onmessage level. You can configure
three different "bindings" for secure message exchange:

■ No Binding
Message exchange is not secured.

■ Transport Security with SSL
Message exchange is secured on transport level using HTTPS transport (SSL/TLS). To be able
to configure transport security, the servlet engine must have HTTPS configured and enabled
as a prerequisite. In addition, HTTPS must be configured for the Web Services Stack in the
global configuration file axis2.xml. This is not configured by default. As an option you can
specify whether a client certificate has to be provided on the transport.

■ Message-level Security with Symmetric Binding
Message exchange is secured using a symmetric key. Additional keystore configuration is re-
quired for symmetric binding, see Encryption/Signing. See Encryption/Signing.

■ Message level Security with Asymmetric Binding
Message exchange is secured using an asymmetric key. Additional keystore configuration is
required for asymmetric binding see Encryption/Signing. See Encryption/Signing.

EntireX Web Services Wrapper34

Web Services Stack Configuration Editor

Message-level Security Options

■ Encrypt body
The message body must be encrypted.

■ Sign body
The message body must be signed.

■ Sign entire headers and body
The message headers and body must be signed

Token Assertions

■ Username Token
The Web service requires a username token in the message header.

■ Secure Conversation
The Web service provides secure communication over one or more messages.

Encrypt/Sign Message Part

■ Xpath expressions can be specified to identify parts of amessage that are signed and/or encrypted.

Security Model Configuration

■ User
The alias of the public key in the keystore that is used for encryption. For decryption, a private
key is required. The password for accessing the private key is queried at runtime, using the
Password Callback Class.

■ Password Callback Class
This is the name of a class that implements a password callback handler that is called by the
Web Services Stack runtime to query a password for accessing a private key in the keystore for
signing, or decrypting or a password for username token authentication. The password callback
handler class implementation needs to be provided by the application writer. See Password
Callback Class.

Encryption/Signing

■ Certificate Alias
The alias of the private key in the keystore that is used for signing outgoing messages. The alias
name is also used as the username that is used for authentication. The password for accessing
the private key is queried at runtime using the Password Callback Class. To verify a signature,
a corresponding public key is used.

35EntireX Web Services Wrapper

Web Services Stack Configuration Editor

■ Keystore
The location of a Java keystore. This can be a relative path to a Java keystore contained in the
Web service archive (Workbench file with extension .aar), or an absolute path to a keystore
located in the file system.

■ Keystore Password
The password required to access keys in the keystore.

■ Truststore
The location of a Java truststore. This can be a relative path to a Java truststore contained in the
Web service archive (Workbench file with extension .aar), or an absolute path to a truststore
located in the file system.

■ Truststore Password
The password required to access keys in the truststore.

Other Security Options

■ Include Timestamp
The Web service requires a (signed) timestamp in the message header.

■ Use Client Certificate

WS-ReliableMessaging

AWS-ReliableMessaging policy assertion can be defined for a service. This service then only accepts
SOAP requests using the WS-ReliableMessaging protocol.

Example: WS-ReliableMessaging policy assertion

<wsp:Policy wsu:Id="ReliableMessaging" ↩
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 ↩
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
<wsrm:RMAssertion xmlns:wsrm= ↩
"http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:InactivityTimeout Milliseconds="600000"/>
 </wsrm:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

EntireX Web Services Wrapper36

Web Services Stack Configuration Editor

EntireX Settings Page

The EntireX Settings page allows you to specify EntireX specific settings of the Web Services
archive (Workbench file with extension .aar). The page contains two sections:

■ Service Parameters
■ XML/SOAP Listener Initialization Parameters

Service Parameters

UnderConfiguration, a combo box is available with general settings for all XMM/SOAPmapping
files in the Web service archive (Workbench file with extension .aar); Specific settings for an
XMM/SOAP mapping file supersede the general settings.

DescriptionParameter

The broker to be used.Broker ID

The user ID used for calling the broker.User ID

The password used for calling the broker.Password

Sets the compression level. SeeUsing Compression underWriting Advanced Applications
- EntireX Java ACI.

Compression Level

Determines the translation processing of the broker. Valid values:
true|false|<character encoding>. If a character encoding is set, this character

Use Codepage

encoding is used for RPC message. See method useCodePage and
setCharacterEncoding in the documentation on class BrokerService (EntireX
Java ACI).

Possible values: true|false. To use EntireX Security. See EntireX Security for EntireX
Broker.

Use Security

This is the triplet of server class/server name/service.Server Address

The RPC user ID specified here is used for EntireX Security.RPC User ID

The RPC Password specified here is used for EntireX Security.RPC Password

The Natural library. Works only if exx-natural-security is true. SeeUsing Natural
Security in the Java Wrapper documentation.

Natural Library

Possible values: true|false. To use Natural Security. See Using Natural Security in the
Java Wrapper documentation.

Natural Logon

37EntireX Web Services Wrapper

Web Services Stack Configuration Editor

XML/SOAP Listener Initialization Parameters

DescriptionParameter

Sets the value of the default wait time field to the argument (see
setDefaultWaittime of class BrokerService).

Default Wait Time

The parameter indicates whether a non-conversational call is finalized with a
logoff call to free Broker resource (default), or bymeans of timeout. The default

Behavior of
Non-conversation Calls

value for this parameter is "nonConv-with-logoff", which defines that a
non-conversational call will finish with an additional logoff call (two calls per
message). Set to "nonConv-without-logoff" to specify that a non-conversational
call will finish without logoff call (one call per message); Broker will clean up
resources by means of timeout.

Use credentials retrieved from Username Token for EntireX server call.User Name Token:

Use credentials retrieved from Basic Authentication for EntireX server call.Basic Authentication:

Password Callback Class

This section provides an example of a password callback handler.

/*
/*
* PasswordCallbackHandler.java -
* com.softwareag.wsstack.test.PasswordCallbackHandler class
*
* Server/Client Password Callback Handler, responsible for delivering
* passwords for accessing a private signing or decryption key from a
* keystore or a password for a username token.
*/

package com.softwareag.wsstack.test;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class PasswordCallbackHandler implements CallbackHandler
{

/*
* Handles all supported callbacks
* @see javax.security.auth.callback.CallbackHandler#handle(
* javax.security.auth.callback.Callback[])
*/

public void handle(Callback[] callbacks) throws IOException,

EntireX Web Services Wrapper38

Web Services Stack Configuration Editor

UnsupportedCallbackException
{

try {
for (int i = 0; i < callbacks.length; i++) {

WSPasswordCallback pwcb = (WSPasswordCallback)callbacks[i];
//get the type of the callback: SIGNATURE, DECRYPT, USERNAME_TOKEN
int usage = pwcb.getUsage();
String id = pwcb.getIdentifer();
if (usage == WSPasswordCallback.SIGNATURE) {
//supply password for signing key
if ("client".equals(id)) pwcb.setPassword("apache"); else
if ("service".equals(id)) pwcb.setPassword("apache");

} else
if (usage == WSPasswordCallback.DECRYPT) {
//supply password for decryption key
if ("client".equals(id)) pwcb.setPassword("apache"); else
if ("service".equals(id)) pwcb.setPassword("apache");

} else
if (usage == WSPasswordCallback.USERNAME_TOKEN_UNKNOWN) {
// verify username token on the server side
if (id != null) {
//get the password from the request
String pass = pwcb.getPassword();
// authenticate the user
if (id.equals("client") && pass.equals("apache")) {

return;
} else {

throw new UnsupportedCallbackException(callbacks[i],
"authentication failed");

}
}

} else
if (usage == WSPasswordCallback.USERNAME_TOKEN) {
// supply password for username token on the client side
if (id != null) {
// supply the password
String pass = pwcb.getPassword();
if (pass == null) {

if ("client".equals(id)) pwcb.setPassword("apache"); else
if ("service".equals(id)) pwcb.setPassword("apache");
pass = pwcb.getPassword();

}
}

}
} // for

}
catch (Throwable e) {
throw new RuntimeException(e);

}
return;

} // handle
}

39EntireX Web Services Wrapper

Web Services Stack Configuration Editor

40

6 Software AG IDL to WSDL Mapping

■ Mapping IDL Data Types to WSDL Data Types .. 42
■ Default Namespace ... 46
■ Min/Max Occurrence .. 48
■ Default Service Name .. 48

41

Mapping IDL Data Types to WSDL Data Types

The generation of WSDL depends on the optionGenerate simple types under Preferences >
Mapping.

■ IfGenerate simple types is checked, the description is extended by xsd:simpleType definition
if more detailed information such as length or format is available for an element.

■ If this option is not checked, an element is representedwith name and type; no further information
is available.

In the table below, the following metasymbols and informal terms are used for the IDL.

■ The metasymbols "[" and "]" surround optional lexical entities.
■ The informal term number (or in some cases number1. number2) is a sequence of numeric characters,
for example 123.

WSDL (Generate simple types not
Checked)WSDL (Generate simple types Checked)XMMDescriptionIDL Data Type

stringAlphanumericAnumber <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="number"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

EntireX Web Services Wrapper42

Software AG IDL to WSDL Mapping

WSDL (Generate simple types not
Checked)WSDL (Generate simple types Checked)XMMDescriptionIDL Data Type

stringAlphanumeric
variable length

AV <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name" type="xsd:string"/>

stringAlphanumeric
variable length
with
maximum
length

AV[number] <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value=" number "/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

binaryBinaryBnumber <xsd:element name="name" ↩
type="xsd:base64Binary"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">
<xsd:length value="base64Length"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Note: base64Length = 4 * rounded up(number /3)

binaryBinary
variable length

BV <xsd:element name="name" ↩
type="xsd:base64Binary"/>

<xsd:element ↩
name="name" type="xsd:base64Binary"/>

binaryBinary
variable length
with
maximum
length

BV[number] <xsd:element name="name" ↩
type="xsd:base64Binary"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">
<xsd:maxLength value="base64Length"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:element>

Note: base64Length = 4 * rounded up(number /3)

date:yyyy-
MM-dd

DateD <xsd:element name="name" ↩
type="xsd:date"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:date">
<xsd:pattern value="[0-9]{4}-((0[1-9])|
(1[012]))-((0[1-9])|([12][0-9])|(3[01]))"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

43EntireX Web Services Wrapper

Software AG IDL to WSDL Mapping

WSDL (Generate simple types not
Checked)WSDL (Generate simple types Checked)XMMDescriptionIDL Data Type

floatFloating point
(small)

F4 <xsd:element name="name" ↩
type="xsd:float"/>

<xsd:element name="name" type="xsd:float"/>

floatFloating point
(large)

F8 <xsd:element name="name" ↩
type="xsd:double"/>

<xsd:element name="name" type="xsd:double"/>

integerInteger (small)I1 <xsd:element name="name" ↩
type="xsd:byte"/>

<xsd:element name="name" type="xsd:byte"/>

integerInteger
(medium)

I2 <xsd:element name="name" ↩
type="xsd:short"/>

<xsd:element name="name" type="xsd:short"/>

integerInteger (large)I4 <xsd:element name="name" ↩
type="xsd:int"/>

<xsd:element name="name" type="xsd:int"/>

stringKanjiKnumber <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="number"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

stringKanji variable
length

KV <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name" type="xsd:string"/>

stringKanji variable
length with
maximum
length

KV[number] <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="number"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

booleanLogicalL <xsd:element name="name" ↩
type="xsd:boolean"/>

<xsd:element name="name" type="xsd:boolean"/>

numericUnpacked
decimal

Nnumber1[.number2] <xsd:element name="name" ↩
type="xsd:decimal"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="number1 ↩

+ number2"/>
<xsd:fractionDigits value="number2"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Note: default of number2 is 0.

EntireX Web Services Wrapper44

Software AG IDL to WSDL Mapping

WSDL (Generate simple types not
Checked)WSDL (Generate simple types Checked)XMMDescriptionIDL Data Type

numericUnpacked
decimal
unsigned

NUnumber1[.number2] <xsd:element name="name" ↩
type="xsd:decimal"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="number1 ↩

+ number2"/>
<xsd:fractionDigits value="number2"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Note: default of number2 is 0.

numericPacked
decimal

Pnumber1[.number2] <xsd:element name="name" ↩
type="xsd:decimal"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="number1 ↩

+ number2"/>
<xsd:fractionDigits value="number2"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Note: default of number2 is 0.

numericPacked
decimal
unsigned

PUnumber1[.number2] <xsd:element name="name" ↩
type="xsd:decimal"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="number1 ↩

+ number2"/>
<xsd:fractionDigits value="number2"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Note: default of number2 is 0.

dateTime:yyyy-
MM-dd
'T'H:mm:ss

TimeT <xsd:element name="name" ↩
type="xsd:dateTime"/>

<xsd:element name="name">
 <xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 <xsd:pattern ↩
value="[0-9]{4}-((0[1-9])|(1[012]))-
 ↩
((0[1-9])|([12][0-9])|(3[01]))T(([01][0-9])|
 (2[0-3]))(:[0-5][0-9]){2}"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

45EntireX Web Services Wrapper

Software AG IDL to WSDL Mapping

WSDL (Generate simple types not
Checked)WSDL (Generate simple types Checked)XMMDescriptionIDL Data Type

unicodeUnicodeUnumber <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="number"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

unicodeUnicode
variable length

UV <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name" type="xsd:string"/>

unicodeUnicode
variable length
with
maximum
length

UVnumber <xsd:element name="name" ↩
type="xsd:string"/>

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="number"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Default Namespace

The Default Namespace used by Web Services Wrapper and the XML Mapping Editor is set to
“urn:com-softwareag-entirex-rpc:%l-%p”,

is replaced by the IDL library name, and%lwhere
is replaced by the IDL program name%p

If another namespace is required

■ Change the setting on Preferences page of XML Mapping Editor.

EntireX Web Services Wrapper46

Software AG IDL to WSDL Mapping

■ Change the setting on tabOverview in the XML Mapping Editor before generating the XML
Mapping File or creating the web service.

47EntireX Web Services Wrapper

Software AG IDL to WSDL Mapping

Min/Max Occurrence

minOccurs/maxOccurs in WSDL

The attributes for minOccurs and maxOccurs are only present inWSDL if the value is not the default
value (default = 1). This means that for disabled null value suppression, the attribute minOccurs
does not appear in WSDL.

minOccurs/maxOccurs for Arrays

The value of minOccurs is set to zero (by default) for request and response if null value suppression
for arrays is disabled (= "No Suppression"). You can change this setting globally in the Preferences.

Default Service Name

The default of service name is IDL file name. The service name can be changedwithinWeb Service
Wrapper Wizard.

EntireX Web Services Wrapper48

Software AG IDL to WSDL Mapping

	EntireX Web Services Wrapper
	Table of Contents
	EntireX Web Services Wrapper
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction to Web Services in EntireX
	Introduction
	Generating Web Services
	Deploying Web Services
	Consuming (or Calling) Web Services from RPC Clients

	Supported Features
	Web Services
	The Simple Object Access Protocol (SOAP)
	Web Services Registries and CentraSite
	Web Service Architecture
	General SOAP Architecture

	3 Using the EntireX Web Services Wrapper
	Generating Web Services from Software AG IDL File
	Generating a Web Service
	Generating a Web Service with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authentication
	Generating a Web Service for EntireX Security or Natural Security

	Deploying Web Services
	Prerequisites
	Deploying the Web Service

	Testing Web Services
	Testing a Web Service with the XML Tester
	WSDL Query of Web Services

	Developing Web Service Client Applications
	Undeploying Web Services
	Removing Web Services

	4 Using the Web Services Wrapper in Command-line Mode
	Command-line Options
	Example for Generating Web Services
	Further Examples
	Windows
	Example 1
	Example 2

	Linux
	Example 1
	Example 2

	5 Web Services Stack Configuration Editor
	Introduction
	Services Page
	Transports
	WS-Addressing
	WS-Security
	Overview
	Security Binding
	Message-level Security Options
	Token Assertions
	Encrypt/Sign Message Part
	Security Model Configuration
	Encryption/Signing
	Other Security Options

	WS-ReliableMessaging

	EntireX Settings Page
	Service Parameters
	XML/SOAP Listener Initialization Parameters

	Password Callback Class

	6 Software AG IDL to WSDL Mapping
	Mapping IDL Data Types to WSDL Data Types
	Default Namespace
	Min/Max Occurrence
	minOccurs/maxOccurs in WSDL
	minOccurs/maxOccurs for Arrays

	Default Service Name

