
webMethods Service Development Help

Version 9.10

April 2016

This document applies to webMethods Service Development Version 9.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2008-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: DES-SD-OLH-910-20160415

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

webMethods Service Development Help Version 9.10 3

Table of Contents

About this Guide..31
Document Conventions.. 31
Online Information.. 32

About webMethods Service Development.. 33
Before You Use Designer for Service Development.. 34
Opening the Service Development Perspective...34

Working with webMethods Integration Server... 37
Working with Server Definitions... 38

Creating Server Definitions... 38
Fetching Server Definitions from an Integration Server.. 40
Importing Server Definitions.. 41
Exporting Server Definitions..42
Removing Server Definitions...42
Editing Server Definitions.. 43
Considerations for Process Development... 43

Setting a Default Server Definition...43
Placing a Server Definition Offline... 44
Bringing a Server Definition Online..44

Connecting to an Integration Server.. 45
Connecting to an Integration Server via Preferences... 45

Disconnecting from an Integration Server..45
Disconnecting from an Integration Server via Preferences...46

Refreshing an Integration Server... 46
Notification of Server Shutdown...46
Opening Integration Server Administrator.. 47
Viewing Integration Server Properties..47
Changing Passwords..47

Password Requirements..47
Changing Your Password..48
Synchronizing Passwords..49

Working with Elements... 51
About Element Names..52

Package Names and Element Names.. 52
Creating New Elements..52

Guidelines for Naming Elements...53
Guidelines for Working with Elements... 54
Opening Elements.. 55
Closing Elements..55
Editing and Saving Elements... 56

M
Table of Contents

webMethods Service Development Help Version 9.10 4

Adding Comments for an Element... 56
Configuring Dependency Checking for Elements...57
Controlling the Reuse of Elements Published to CentraSite..58
Allowing Editing of Derived Elements.. 59
Moving and Copying Elements...60

Guidelines for Moving and Copying All Types of Elements.. 62
Guidelines for Moving and Copying Services... 62
Guidelines for Copying Elements Between Servers... 63
Notes for Moving and Copying Adapter Notifications and Related Elements....................64

Renaming Elements... 64
Deleting Elements...65
Finding Dependents and References...67

What Is a Dependent?.. 67
Finding Dependents.. 68
What Is a Reference?... 69
Finding References... 70

Inspecting Pipeline References.. 70
Inspecting Pipeline References...72

Finding Elements.. 73
Searching for Elements in Package Navigator... 73
Performing a Quick Search of Elements in Package Navigator..74
Locating Invoked Services.. 74
Locating Referenced Document Types... 74
Linking Open Editors...75

Filtering Displayed Elements.. 75
Hiding or Displaying Automatically Generated Flow Services..75
Creating Working Sets..76
Caching Elements...76

Clearing the Designer Cache..77
Exporting Elements...77
Viewing Server Files for an Element..78
Using Property Templates with Elements...78

Creating Property Templates...78
Applying Property Templates to Elements.. 79
Editing Property Templates... 79
Deleting Property Templates... 80
Importing Property Templates... 80
Exporting Property Templates... 81

Assigning and Managing Permissions for Elements...83
What Is an ACL?..84

What Happens When a Client Runs a Service with ACLs?..84
Is ACL Usage Required?.. 86
Creating ACLs... 86
ACLs and Inheritance..86

M
Table of Contents

webMethods Service Development Help Version 9.10 5

Default ACLs and Inheritance... 87
Assigning ACLs.. 87
Viewing ACL Information for a Server..88
ACLs and Locking.. 89
ACLs and Running/Debugging Services.. 89
ACLs and Creating, Viewing, and Deleting Elements.. 90
Troubleshooting ACL Usage...90

Locking and Unlocking Elements.. 93
What Is a Lock?... 94
About Locking Elements...95

Locking Elements in Designer...95
Guidelines for Locking Java and C/C++ Services.. 96
Guidelines for Locking Templates... 97
System Locking Elements... 97

Viewing the Status of Locked Elements...98
Viewing Lock Status of Elements..98
Listing All of Your Locked Elements... 98

Copying, Moving, or Deleting Locked Elements.. 99
Unlocking Elements.. 99

Unlocking Elements in Designer... 99
Automatically Unlocking an Element Upon Saving... 100

Troubleshooting...100
Lock and Unlock Problems... 100
Package Management Problems.. 101
Save Problems.. 102
Other Problems... 102
Frequently Asked Questions... 102

Using the Local Service Development Feature.. 105
About the Local Service Development Workflow... 106
How Does Local Service Development Differ from the VCS Integration Feature?................. 106
Supported Platforms and Eclipse Plug-ins...108
Supported Elements... 108
Supported and Unsupported Actions... 109
Prerequisites... 109
Permissions and Locking..111

Permissions... 111
System Locking and Local Service Development...111

Setting an Integration Server as the Local Development Server... 112
Creating a Local Service Development Project..112
Adding Folders and Elements to the VCS... 114
Modifying Packages, Folders, or Elements in the VCS... 115
Checking Out an Element from the VCS... 116
Checking In Packages and Element to the VCS... 117
Getting the Latest Version from the VCS...118

M
Table of Contents

webMethods Service Development Help Version 9.10 6

Getting a Specific Version from the VCS...119
Copying Packages from the VCS to Integration Server...119
Reloading a Package... 120
Comparing Revisions of an Element..121
Building Java and C Services.. 122
Deleting a Package Associated with a Local Service Development Project.......................... 123
Deleting a Local Service Development Project.. 123

Using the VCS Integration Feature to Check Elements In and Out of a VCS.........................125
VCS Integration Supported Features... 126
VCS Integration Unsupported Features... 127
Locking Locally vs VCS Locking.. 127
System Locking and VCS Integration Feature...128
About Unlocking Elements with Integration Server Administrator.. 128
Adding New Packages and Elements to a VCS.. 128
Adding Existing Packages and Elements to a VCS...129
Modifying Elements that are in the VCS..129
Checking Out Packages and Elements..130
Checking In Packages and Elements.. 131
Reverting Changes to a Checked Out Package or Element..132
Getting the Latest Version from the VCS...133
Getting an Earlier Version from the VCS... 134
Deleting Packages and Elements from the VCS... 136
Restoring Deleted Items... 137

Restoring a Deleted Package... 137
Restoring a Deleted Folder or Element.. 138

Copying and Moving Folders or Elements... 138
Renaming Packages, Folders, and Elements.. 139
Viewing the History of a Folder or Element... 139

Version History Details.. 140
Working with Blaze Rules Services..141
Working with Web Service Descriptors.. 141
Working with webMethods Adapter Connections...141
Working with Java Services... 142

Copying Java Services..142
Moving Java Services... 142
Labeling Java Services in the VCS...142

Managing Packages...145
Creating a Package..146

Guidelines for Naming Packages..146
Documenting a Package.. 147

Accessing Package Documentation..148
Viewing Package Settings, Version Number, and Patch History..148
Assigning a Version Number to a Package... 149
About Copying Packages Between Servers...150

M
Table of Contents

webMethods Service Development Help Version 9.10 7

Copying Packages...150
Reloading a Package... 152
Comparing Packages... 152
Deleting a Package.. 152
Exporting a Package.. 153
About Package Dependencies... 153

Identifying Package Dependencies... 154
Removing Package Dependencies... 155

Assigning Startup, Shutdown, and Replication Services to a Package..................................156
What Is a Startup Service?... 156

Assigning a Startup Service...156
Removing a Startup Service.. 157

What Is a Shut Down Service?...157
Assigning a Shutdown Service.. 158
Removing a Shutdown Service..158

What Is a Replication Service?...158
Assigning a Replication Service...159
Removing a Replication Service.. 159

Building Services...161
A Process Overview... 162
Package and Folder Requirements..163
About the Service Signature.. 163

Guidelines for Specifying Input Parameters..164
Guidelines for Specifying Output Parameters... 166
Declaring Input and Output Parameters... 166

Using a Specification as a Service Signature..167
Using an IS Document Type to Specify Service Input or Output Parameters.......... 168
Inserting Input and Output Parameters..168

About Service Run-Time Parameters...169
Maintaining the State of Service... 170

Specifying the Run-Time State for a Service...170
About Service Caching..171

When Are Cached Results Returned?...171
Types of Services to Cache...173
Controlling a Service’s Use of Cache.. 174
Specifying the Duration of Cached Results... 174
Refreshing Service Cache by Using the Prefetch Option.. 175
Configuring Caching of Service Results.. 175

Specifying the Execution Locale... 175
About URL Aliases for Services..177

Creating a Path Alias for a Service... 178
Automatically Saving or Restoring the Pipeline at Run Time..179

Configuring Saving or Restoring of the Service Pipeline at Run Time..................... 180
Specifying the Default Format for an XML Document Received by the Service.....................181

M
Table of Contents

webMethods Service Development Help Version 9.10 8

About Automatic Service Retry.. 182
About the Maximum Retry Period... 183
Configuring Service Retry... 184

About Service Auditing... 185
Service Auditing Use Cases..186

Error Auditing..186
Service Auditing..187
Auditing for Recovery...187
Auditing Long-Running Services..188

Configuring Service Auditing... 188
Logging Input and Output Fields...189

Selecting Input or Output Fields for Logging... 190
Logged Field Data Types in JDBC.. 190

Assigning a Custom Value to an Auditing Context... 191
About Universal Names for Services or Document Types... 192

Implicit and Explicit Universal Names... 193
Assigning, Editing, or Viewing an Explicit Universal Name...194
Deleting an Explicit Universal Name...195
The Universal Name Registry... 195

Services You Use to Interact with the Universal Name Registry..............................195
About Service Output Templates..196

Creating an Output Template.. 196
Assigning an Output Template to a Service..197

Printing a Flow Service.. 198
Comparing Flow Services...199

Building Flow Services... 201
What Is a Flow Service?.. 202

What Is a Flow Step?... 203
What Is the Pipeline?.. 204

Building Services Using the Tree Tab or Layout Tab... 205
Creating a New Flow Service...206

Creating an Empty Flow Service...206
Creating a Flow Service from an XML Document, DTD, or XML Schema...................... 207
Creating a Flow Service from an XML Document...207
Creating a Flow Service from a DTD..208
Creating a Flow Service from an XML Schema Definition..209
Inserting Flow Steps..216
Changing the Position of a Flow Step.. 216
Changing the Level of a Flow Step.. 217

Setting Properties for a Flow Step... 217
The INVOKE Step.. 218

Specifying the Service Property.. 218
Invoking a Built-In Service...219
Invoking a Service on Another Integration Server.. 219

M
Table of Contents

webMethods Service Development Help Version 9.10 9

Building an Invoke Step.. 219
The BRANCH Step...221

Branching on a Switch Value.. 221
Specifying the Switch Value...222
Specifying the Label Value...222

Branching on an Expression... 224
Branching on Null and Empty Values... 225
Specifying a Default Step..226
Using a SEQUENCE as the Target of a BRANCH... 227
Building a BRANCH Step..228

The REPEAT Step..231
Specifying the REPEAT Condition.. 232
Setting the REPEAT Counter.. 232
When Does REPEAT Fail?... 233
Using REPEAT to Retry a Failed Step... 233
Using REPEAT to Retry a Successful Step.. 236

The SEQUENCE Step..238
Using SEQUENCE to Specify an Exit Condition...238

The LOOP Step..240
Specifying the Input Array...241
Collecting Output from a LOOP Step..242
About the Pipeline for a LOOP Step...242
Building a LOOP Step...243

The EXIT Step..245
Building an EXIT Step...246

The MAP Step.. 248

Working in the Layout Tab... 249
What Is the Layout Tab.. 250

When Should You Use Layout Tab?... 250
What Does a Flow Service Look Like in the Layout Tab?... 250

Viewing Flow Steps in the Layout Tab..251
Viewing Steps that Contain Child Steps in the Layout Tab...252

Show or Hide the Grid Lines in the Flow Service Editor..253
Building a Flow Service in the Layout Tab...254

Inserting a Flow Step.. 254
Inserting a Flow Step Using the Palette View..254
Inserting a Flow Step Using the Context Menu... 255

Notes for Inserting a Child Step into a BRANCH Step... 255
Changing the Order of Steps in a Flow Service... 255

Mapping Data in Flow Services... 257
What Does the Pipeline View Contain?... 258

Pipeline View for an INVOKE Step... 259
Pipeline View for a MAP Step...260
Scrolling in Pipeline View.. 261

M
Table of Contents

webMethods Service Development Help Version 9.10 10

Viewing Full Namespace Path of Referenced Document Types.....................................262
Printing the Pipeline.. 262

Basic Mapping Tasks..263
About Linking Variables.. 263

Creating a Link Between Variables... 266
What Happens When Integration Server Executes a Link?..268

Example of Copying By Reference..268
Preventing Pipeline Values from Being Overwritten...270

Linking to Document and Document List Variables.. 270
Linking Variables of Different Data Types... 271

Converting a String List to a Document List in the Pipeline.....................................272
Converting Two String Lists to a Document List in the Pipeline...............................272

Linking to and from Array Variables in the Pipeline.. 273
Creating a Link to or from an Array Variable... 274
Default Pipeline Rules for Linking to and from Array Variables............................... 276

Deleting a Link Between Variables... 279
Linking Variables Conditionally..279

Linking Multiple Source Variables to a Target Variable.. 280
Applying a Condition to a Link...281

About Assigning Values to Pipeline Variables..281
Assigning a Value to a Pipeline Variable.. 282
Assigning Global Variables to Pipeline Variables..284
Copying Assigned Values Between Pipeline Variables... 285

Dropping Variables from the Pipeline...286
Adding Variables to the Pipeline.. 287
Working with Transformers...288

Using Built-In Services as Transformers...289
Inserting a Transformer... 289
Linking Variables to a Transformer... 290
Transformers and Array Variables...291

Example of Dimensionality Mismatch.. 292
Validating Input and Output for Transformers... 293
Copying Transformers... 293
Renaming Transformers.. 294
Debugging Transformers... 295

Performing Data Validation...297
Blueprints or Models Against which Data is Validated... 298
Performing Input/Output Validation...299

Specifying Input/Output Validation via the Input/Output Tab... 300
Specifying Input/Output Validation via the INVOKE Step..300

Performing Pipeline Validation..301
Performing Document Validation.. 301
Performing XML Validation in Integration Server... 302
Performing Validation from within a Java Service..303

M
Table of Contents

webMethods Service Development Help Version 9.10 11

Validation Errors..304
Validation Exceptions..304
Preventing Running Out of Memory Error During Validation..305

Building Java Services..307
Overview of Building Java Services...308
Java Service Editor...309

Source Tab.. 310
Protected Sections of a Java Service..311
Editable Sections of a Java Service.. 311

Service Development Projects in the Local Workspace...312
About the Service Development Project Name...312
Format of a Service Development Project.. 313

How Java Services Are Organized on Integration Server..314
Creating a Java Service... 314

Notes about Creating and Editing Java Services in Designer.. 315
Using an IData Object for the Java Service Input and Output... 316
Generating Java Code from Service Input and Output Parameters.......................................318

Example of Java Code Generated from Service Signature.. 319
Editing an Existing Java Service..320
Adding Classes to the Service Development Project...321
Compiling a Java Service...323

Performance When Compiling a Java Service... 324
Generating Code a Java Service Can Use to Invoke a Specified Service............................. 324

Generating Java Code to Invoke a Service.. 325
Example of Java Code Generated for Invoking a Service.. 325

Deleting a Java Service... 326

Building Java Services in Your Own IDE..329
How Java Services are Organized on Integration Server.. 330
Requirements for the Java Service Source Code..332
IData Object for Java Service Input and Output.. 333
Adding Comments to Your Java Code for the jcode Utility.. 333

Example of Code Commented for the jcode Utility... 335
Using the jcode Utility...337

Using jcode make/makeall to Compile Java Source...338
Using jcode frag/fragall to Split Java Source for Designer..340
Using jcode comp to Create Java Source from Fragments.. 341
Using jcode Shortcut Commands..342

Building C/C++ Services... 343
The Java Code for a C/C++ Service..344
Overview of Building C/C++ Services.. 344
Prerequisites for Building C/C++ Services... 345
C/C++ Service Editor..346

Source Tab.. 347

M
Table of Contents

webMethods Service Development Help Version 9.10 12

Protected Sections of a C/C++ Service... 348
Editable Sections of a C/C++ Service... 349

Service Development Projects in the Local Workspace...349
About the Service Development Project Name...350
Format of a Service Development Project.. 350

How C/C++ Services Are Organized on Integration Server... 351
Creating a C/C++ Service.. 351

Editing an Existing C/C++ Service.. 354
Generating C/C++ Code from Service Input and Output Parameters.................................... 354
Adding Classes to the Service Development Project...355
Building the C/C++ Source Code...356
Compiling the C/C++ Source Code..358

Performance When Compiling a C/C++ Service...359
Generating Code a C/C++ Service Can Use to Invoke a Specified Service.......................... 359
Debugging C/C++ Services.. 360

Building Services from .NET Methods...363
Environment Setup for Creating .NET Services... 364
.NET Service Editor..364

.NET Properties Tab.. 365
Creating a .NET Service...366
Modifying the .NET Assembly Information... 367
Modifying the Class Lifetime for a .NET Service..369
Running a .NET Service in Designer... 370

Building XSLT Services...373
What Is XSLT?..374
What Is an XSLT Service?... 374
How Does an XSLT Service Work?... 375
What Is a Translet?.. 375
About the XSLT Service Editor.. 376
Overview of Building XSLT Services..376
Creating an XSLT Service..377
XSLT Service Signature... 378
Running an XSLT Service.. 380
Debugging an XSLT Service.. 381

Creating a Launch Configuration for an XSLT Service... 381
Debugging an XSLT Service... 381

Guidelines for the XSLT Style Sheet..382
Using Name/Value Pairs with an XSLT Service...382

Passing Name/Value Pairs from the Pipeline to the Style Sheet.................................... 383
Specifying New Values for Name/Value Pair... 383
Defining Name/Value Pair as an XSLT Parameter.. 384

Passing Name/Value Pairs from the Style Sheet to the Pipeline.................................... 384
Sample Style Sheet: Adding Name/Value Pairs to the Pipeline......................................385

Configuring XSLT Transformer Factory Settings..389

M
Table of Contents

webMethods Service Development Help Version 9.10 13

Managing Cloud Connector Services..391
Creating a Cloud Connector Service..392
Editing a Cloud Connector Service for a SOAP-Based Provider... 393
Editing a Cloud Connector Service for a REST-Based Provider..397

Viewing the Constraints Applied to Variables..402

Running Services...405
Using Launch Configurations to Run Services...406

Creating a Launch Configuration for Running a Service...407
Supplying Input Values to a Service.. 408

Entering Input for a Service.. 408
Specifying a Value for a String Variable.. 410
Specifying Values for a String List Variable... 411
Specifying Values for a String Table Variable.. 413
Specifying Values for a Document Variable that Has Defined Content.................... 416
Specifying Values for a Document Variable with No Defined Content..................... 417
Specifying Values for a Document List Variable.. 419
Specifying a Value for an Object Variable... 421
Specifying Values for an Object List Variable.. 422

Saving Input Values...423
Loading Input Values...423

Running a Service.. 424
Viewing Results from Running a Service...425

Messages Tab... 425
Call Stack Tab... 426
Pipeline Tab... 426
Saving the Results.. 427
Restoring the Results.. 428
Running Services from Results view.. 428
Removing the Results from Results View...428
Pinning a Result to Results View..429
Sorting Results by Element Names in Results View...429

Running Services from a Browser..429

Debugging Flow Services... 431
About Debugging Flow Services.. 432

About Debug Sessions..432
About the Debug Perspective... 433
About Debug View...433

Creating Launch Configurations for Debugging Flow Services..435
Debugging a Flow Service... 436
Stepping Through Flow Services... 437

Stepping Through a Flow Service...438
Stepping Into and Out of a Child Service... 438
Stepping Into and Out of a MAP Step.. 439

M
Table of Contents

webMethods Service Development Help Version 9.10 14

Using Breakpoints When Debugging Flow Services..440
Breakpoint States.. 441
Setting and Removing Breakpoints on Flow Step...441
Setting and Removing Breakpoints on a Transformer.. 442
Enabling and Disabling Breakpoints in a Flow Service...443
Skipping Breakpoints in a Flow Service..443

Disabling and Enabling Flow Steps and Transformers.. 443
Disabling and Enabling Conditions...444
Modifying the Flow Service Pipeline while Debugging...445

Changing Variable Values... 445
Dropping Variables.. 447

Saving and Restoring the Flow Service Pipeline while Debugging..448
Saving the Flow Service Pipeline while Debugging.. 448

Saving the Pipeline to a File while Debugging.. 449
Restoring the Flow Service Pipeline while Debugging..449

Loading a Saved Pipeline while Debugging.. 450
Viewing Service Results from a Flow Service Debug Session.. 450
Using the Server Log for Debugging... 450

Writing Information to the Server Log... 452
Writing an Arbitrary Message to the Log... 452
Dumping the Pipeline to the Log... 453

Debugging Java Services... 455
About Debugging a Java Service while its Class Runs in Designer...................................... 456
About Test Harnesses.. 457

Creating a Test Harness... 458
About Java Application Launch Configuration..459

Creating a Java Application Launch Configuration... 460
Updating a Java Application Launch Configuration.. 461

How to Suspend Execution of a Java Class while Debugging...462
Debugging a Java Service while its Class Runs in Designer...462

Viewing Service Results from Debugging a Java Service.. 464
About Debugging a Java Service while it Runs in Integration Server.................................... 465

Benefits of Debugging Java Services Running in Integration Server..............................465
Drawbacks of Debugging Java Services Running in Integration Server......................... 465
Setting Up Integration Server Version 9.7 or Later for Remotely Debugging a Java
Service... 466
Setting Up Integration Server Version 9.0, 9.5.x, or 9.6 for Remotely Debugging a Java
Service... 467
Creating a Java Project for an IS Package in Designer... 468
Creating a Remote Java Application Launch Configuration..469
Debugging a Java Service while it Runs in Integration Server....................................... 469

Working with REST..473
Creating a REST Resource..474
About the REST Resource Folder..475

M
Table of Contents

webMethods Service Development Help Version 9.10 15

Working with REST API Descriptors... 477
Overview of Creating a REST API Descriptor..478
Creating a REST API Descriptor..479
Editing General Information for a REST API Descriptor.. 481
Changing the Available MIME Types for a REST API Descriptor.. 483
Working with REST Resources in a REST API Descriptor.. 484

Adding REST Resources to a REST API Descriptor.. 484
Removing REST Resources from a REST API Descriptor... 484
Setting the Path or Suffix for a REST Resource...485
Working with Operations... 486

Changing the MIME Types for an Operation in a REST Resource..........................486
About the Operation Parameters... 487
Reviewing and Changing the Assigned Source for an Operation Parameter...........488

About Operation Responses... 489
Adding an Operation Response...489
Removing an Operation Response..490

About REST Definitions..491
Viewing the Swagger Document for a REST API Descriptor... 491
Mapping Integration Server Data Types to Swagger Data Types.. 491

Working with OData Services...495
Understanding OData Service Terminology... 496
Supported and Unsupported OData Features..497
Overview of Creating an OData Service.. 498
Creating an OData Service.. 499

Creating an OData Service Using an External Source Type.. 500
Adding OData Elements to the OData Service..501
Adding Properties to the OData Elements... 502
Adding Associations to OData Elements... 503
Editing the OData Service..503
Synchronizing the External Entity Type..504
How Integration Server Processes an OData Service Request...504
Querying Data Using $filter.. 505

Working with Document Types.. 507
Creating an IS Document Type..508

Creating an Empty IS Document Type... 508
Adding Fields to an IS Document Type... 509

Creating an IS Document Type from an XML Document, DTD, or XML Schema........... 510
Creating an IS Document Type from an XML Document...511
Creating an IS Document Type from a DTD..511
Creating an IS Document Type from an XML Schema Definition............................ 513

Creating IS Document Types from JSON Objects.. 520
Mapping JSON Data Types... 520
Generating Fields from Unquoted Fields in a JSON Object.................................... 521

M
Table of Contents

webMethods Service Development Help Version 9.10 16

Creating an IS Document Type from a JSON Object.. 521
Creating an IS Document Type from a Broker Document Type......................................523
Creating an IS Document Type from an E-form Template.. 525

Notes About IS Document Types Created from E-form Templates..........................530
Creating a Document Type from a File in webMethods Content Service Platform..........530
Creating a Document Type from a Flat File Schema..534
Determining How to Represent Complex Types in Document Types..............................535
Derived Types and IS Document Types... 537

*doctype Fields in IS Document Types and Document Fields................................. 538
*doctype Fields in IS Document Types..538
*doctype Fields in Document Fields.. 539

Registering Document Types with Their Schema Types...539
Generating Fields for Substitution Groups..541
*Any Fields in Document Types and Document Fields...542
About Run-time Processing for an IS Document Type that Complies with the Content
Model... 543

Editing Document Types...543
Important Considerations When Modifying Publishable Document Types...................... 544

About Universal Names and Document Types.. 545
Printing an IS Document Type... 545
Working with Publishable Document Types... 546

Making a Document Type Publishable..547
About the Associated Provider Definition...551
About the Envelope Field...553
About the Properties Field... 554
About Adapter Notifications and Publishable Document Types............................... 555

Making a Document Type Unpublishable..556
About the Encoding Type for a Publishable Document Type..556

Using Protocol Buffers as the Encoding Type... 557
Encoding Documents as Protocol Buffers during Document Publishing.................. 559
Decoding Protocol Buffers..560
Setting the Encoding Type for a Publishable Document Type................................. 562

About the Type of Document Storage...563
Document Storage Versus Broker Client Queue Storage..564
Setting the Document Storage Type for a Publishable Document Type.................. 565

About the Time-to-Live for a Publishable Document Type..566
Setting the Time to Live for a Publishable Document Type..................................... 566

About Run-Time Validation for a Published Document... 567
Specifying Document Validation for Instances of a Publishable Document Type..... 568

Deleting Publishable Document Types...568
About Testing Publishable Document Types..569

Creating a Launch Configuration for a Publishable Document Type...............................570
Testing a Publishable Document Type..572

About Synchronizing Publishable Document Types...574
Synchronization Status..574

M
Table of Contents

webMethods Service Development Help Version 9.10 17

Synchronization Actions.. 576
Combining Synchronization Action with Synchronization Status.....................................577
Synchronizing a Single Publishable Document Type..579
Synchronizing Multiple Document Types Simultaneously... 581
Synchronizing Document Types in a Cluster.. 583
Synchronizing Document Types Across a Gateway... 583
Importing and Overwriting References During Synchronization......................................583

What Happens When You Overwrite Elements on the Integration Server?............. 584
What Happens If You Do Not Overwrite Elements on the Integration Server?.........584

Publishing Documents as JMS Messages... 584
Creating a Launch Configuration to Publish a Document as a JMS Message................ 585
Publishing a Document as a JMS Message... 587

Working with XML Document Types..589
What Is an XML Document Type?... 590

What Is XMLData?.. 590
Why Use XML Document Types Instead of IS Document Types?... 591

Differences Between XML Document Types and IS Document Types............................592
Limitations of XML Document Type Usage...593

Creating an XML Document Type..593

Working with Specifications...597
Creating a Specification..598

Working with Variables... 601
Creating a Document Reference or a Document Reference List Variable............................. 602
Using XML Namespaces and Namespace Prefixes with Variables..603

Guidelines for Using XML Namespaces and Prefixes with Web Service Descriptors..... 604
Assigning XML Namespaces and Prefixes to Variables... 604

Assigning Display Types to String Variables..605
About Variable Constraints... 605

Considerations for Object Constraints...606
Applying Constraints to a Variable.. 607
Customizing a String Content Type.. 609
Viewing the Constraints Applied to Variables..610

Working with Schemas... 613
What Does an IS Schema Look Like?...614

Schema Browser... 615
Component Details.. 619

Creating an IS Schema.. 620
Creating an IS Schema from XML Schemas that Reference Other Schemas................ 623

About Editing Simple Type Definitions... 624
Editing a Simple Type Definition... 625

About Schema Domains...626

M
Table of Contents

webMethods Service Development Help Version 9.10 18

Working with JMS Triggers.. 629
About SOAP-JMS Triggers...630
Overview of Building a Non-Transacted JMS Trigger.. 632
Standard JMS Trigger Service Requirements..633
Creating a JMS Trigger.. 633

Adding JMS Destinations and Message Selectors to a JMS Trigger.............................. 636
Creating a Destination on the JMS Provider... 638
About Durable and Non-Durable Subscribers..640
Creating a Message Selector...641

Adding Routing Rules to a Standard JMS Trigger..641
Creating a Local Filter..641

Managing Destinations and Durable Subscribers on the JMS Provider through Designer.....642
Modifying Destinations or Durable Subscribers via a JMS Trigger in Designer...............643

Building Standard JMS Triggers with Multiple Routing Rules.. 644
Guidelines for Building a JMS Trigger that Performs Ordered Service Execution...........644

Enabling or Disabling a JMS Trigger... 645
JMS Trigger States..646

Setting an Acknowledgement Mode...646
About Join Time-Outs...647

Join Time-Outs for All (AND) Joins...648
Join Time-Outs for Only One (XOR) Joins... 648
Setting a Join Time-Out.. 648

About Execution Users for JMS Triggers...649
Assigning an Execution User to a JMS Trigger.. 650

About Message Processing..650
Serial Processing...650
Concurrent Processing.. 651
Message Processing and Message Consumers...651

Message Processing and Load Balancing...652
About Batch Processing for Standard JMS Triggers...652

Guidelines for Configuring Batch Processing.. 653
Using Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger.......... 653
Retrieving Multiple Messages for a JMS Trigger with Each Request..............................654
Configuring Message Processing..656

Fatal Error Handling for Non-Transacted JMS Triggers...657
Configuring Fatal Error Handling for Non-Transacted JMS Triggers...............................658

Transient Error Handling for Non-Transacted JMS Triggers.. 659
About Retry Behavior for Trigger Services... 660
Service Requirements for Retrying a Trigger Service...660
Handling Retry Failure...661

Overview of Throw Exception for Retry Failure... 661
Overview of Suspend and Retry Later for Retry Failure.. 662

Configuring Transient Error Handling for a Non-Transacted JMS Trigger.......................663
Exactly-Once Processing for JMS Triggers..665

M
Table of Contents

webMethods Service Development Help Version 9.10 19

Duplicate Detection Methods for JMS Triggers...666
Configuring Exactly-Once Processing for a JMS Trigger..666

Disabling Exactly-Once Processing for a JMS Trigger.. 668
Debugging a JMS Trigger.. 668

Enabling Trace Logging for All JMS Triggers... 668
Enabling Trace Logging for a Specific JMS Trigger..669

Building a Transacted JMS Trigger.. 669
Prerequisites for a Transacted JMS Trigger... 670
Properties for Transacted JMS Triggers... 670
Steps for Building a Transacted JMS Trigger... 671
Fatal Error Handling for Transacted JMS Triggers... 673

Configuring Fatal Error Handling for Transacted JMS Triggers............................... 674
Transient Error Handling for Transacted JMS Triggers...675

Overview of Recover Only for Transaction Rollback... 676
Overview of Suspend and Recover for Transaction Rollback..................................677
Configuring Transient Error Handling for Transacted JMS Triggers.........................678

Working with webMethods Messaging Triggers...681
Overview of Building a webMethods Messaging Trigger... 682

webMethods Messaging Trigger Requirements.. 683
Trigger Service Requirements...684

Creating a webMethods Messaging Trigger...684
Creating Conditions... 686
Using Filters with a Subscription...689
Creating Filters for Use with Universal Messaging... 690

Universal Messaging Provider Filters and Encoding Type.......................................690
Examples of Universal Messaging Provider Filters for Use with Protocol Buffers.... 692

Creating Filters for Use with Broker..693
Using Hints in Filters..694
Detecting Deadletters with Hints..695

Using Multiple Conditions in a webMethods Messaging Trigger.....................................696
Using Multiple Conditions for Ordered Service Execution....................................... 696
Ordering Conditions in a webMethods Messaging Trigger...................................... 697

Disabling and Enabling a webMethods Messaging Trigger... 698
Disabling and Enabling a webMethods Messaging Trigger in a Cluster or Non-Clustered
Group... 699

About Join Time-Outs...699
Join Time-Outs for All (AND) Join Conditions...700
Join Time-Outs for Only One (XOR) Join Conditions... 700
Setting a Join Time-Out.. 701

About Priority Message Processing... 701
Enabling and Disabling Priority Message Processing for a webMethods Messaging
Trigger..702

About Execution Users for webMethods Messaging Triggers..703
Assigning an Execution User to a webMethods Messaging Trigger............................... 704

About Capacity and Refill Level for the webMethods Messaging Trigger Queue...................705

M
Table of Contents

webMethods Service Development Help Version 9.10 20

Guidelines for Setting Capacity and Refill Levels for webMethods Messaging
Triggers.. 706
Setting Capacity and Refill Level for a webMethods Messaging Trigger........................ 706

About Document Acknowledgements for a webMethods Messaging Trigger.........................707
Setting the Size of the Acknowledgement Queue...708

About Message Processing..708
Serial Processing...709

Serial Processing in a Cluster or Non-Clustered Group of Integration Servers........709
Serial Processing with the Broker in a Clustered or a Non-Clustered Group of
Integration Servers.. 710
Serial Processing with Universal Messaging in a Clustered or a Non-Clustered
Group of Integration Servers.. 712

Serial Triggers Migrated to Integration Server 9.9 or Later from 9.8 or Earlier.........713
Concurrent Processing.. 713
Selecting Message Processing... 714
Changing Message Processing When Broker Is the Messaging Provider...................... 715
Changing Message Processing When Universal Messaging Is the Messaging
Provider..715

Synchronizing the webMethods Messaging Trigger and Named Object on Universal
Messaging.. 717

Fatal Error Handling for a webMethods Messaging Trigger...718
Configuring Fatal Error Handling for a webMethods Messaging Trigger.........................719

About Transient Error Handling for a webMethods Messaging Trigger..................................719
Service Requirements for Retrying a Trigger Service for a webMethods Messaging
Trigger..720
Handling Retry Failure...721

Overview of Throw Exception for Retry Failure... 721
Overview of Suspend and Retry Later for Retry Failure.. 722

Configuring Transient Error Handling for a webMethods Messaging Trigger.................. 724
About Retrying Trigger Services and Shutdown Requests... 726

Exactly-Once Processing for webMethods Messaging Triggers.. 727
Duplicate Detection Methods for a webMethods Messaging Trigger.............................. 728
Configuring Exactly-Once Processing for a webMethods Messaging Trigger................. 729
Disabling Exactly-Once Processing for a webMethods Messaging Trigger.................... 730

Modifying a webMethods Messaging Trigger...730
Modifying a webMethods Messaging Trigger in a Cluster or Non-Clustered Group........ 731

Deleting webMethods Messaging Triggers.. 732
Deleting webMethods Messaging Triggers in a Cluster or Non-Clustered Group........... 732

Running a webMethods Messaging Trigger with a Launch Configuration..............................733
Creating a Launch Configuration for a webMethods Messaging Trigger........................ 734
Running a webMethods Messaging Trigger..735
Testing Join Conditions... 737

Transient Error Handling During Trigger Preprocessing...739
Server and Trigger Properties that Affect Transient Error Handling During Trigger
Preprocessing... 740

M
Table of Contents

webMethods Service Development Help Version 9.10 21

Overview of Transient Error Handling During Trigger Preprocessing.....................................741

Working with Web Services..743
What Are Web Service Descriptors?..744
About Provider Web Service Descriptors...745

Service Signature Requirements for Service First Provider Web Service Descriptors.... 746
Using XML Namespaces with Prefixes with Fields in Service Signatures................747
Handling Incomplete Service Signatures Using Wrapper Services..........................747

Creating a Service First Provider Web Service Descriptor... 748
Protocol Mismatch Between Transport and Primary Port.. 752

Creating a WSDL First Provider Web Service Descriptor... 752
About Consumer Web Service Descriptors..759

Creating a Consumer Web Service Descriptor... 759
Supporting Elements for a Consumer Web Service Descriptor............................... 766

About Web Service Connectors.. 767
Refreshing a Web Service Connector...768
Invoking a Web Service Using a Web Service Connector.. 769
About Response Services... 769

About Refreshing a Web Service Descriptor..770
How Refresh Affects a Web Service Descriptor... 773
Considerations for Refreshing a Web Service Descriptor...777
Refreshing a Web Service Descriptor...778

Viewing the WSDL Document for a Web Service Descriptor...780
WS-I Compliance for Web Service Descriptors... 782

Modifying WS-I Compliance for a Web Service Descriptor...782
Reporting the WS-I Profile Conformance for a Web Service Descriptor......................... 783

Changing the Target Namespace for a Web Service Descriptor..783
Viewing the Namespaces Used within a WSDL Document... 784
Enabling MTOM/XOP Support for a Web Service Descriptor.. 784

Enabling SOAP Attachments for a Web Service Descriptor... 785
Using pub.string:base64Encode with MTOM Implementations.......................................785

Adding SOAP Headers to the Pipeline.. 785
Validating SOAP Response..786
Validating Schemas Associated with a Web Service Descriptor.. 787

Enabling Xerces Schema Validation for a Web Service Descriptor................................ 788
Working with Binders..789

Binders and Mixed Use...790
Existing Web Service Descriptors with Mixed Use Binders..................................... 790

Binders and Mixed Style... 790
Adding a Binder to Web Service Descriptor... 791
Copying Binders Across Provider Web Service Descriptors... 793
Changing the Binder Transport... 793
Deleting a Binder from a Web Service Descriptor.. 794
Deleting an Operation from a Binder.. 794
Modifying the SOAP Action for an Operation in a Binder... 795

M
Table of Contents

webMethods Service Development Help Version 9.10 22

Assigning a Web Service Endpoint Alias to a Binder... 796
Configuring Use of the Client Side Queue..797

Working with Operations.. 798
Adding Operations...798

Adding an IS Service as an Operation.. 799
Adding an Operation from another Provider Web Service Descriptor......................799
Using a 6.5 SOAP-MSG Style Service as an Operation..800

Modifying the Signature of a 6.5 SOAP-MSG Style Operation......................... 801
Deleting Operations...803
Viewing the Operation Input and Output...804

Adding Headers to an Operation... 804
Adding a Header to an Operation...805

About SOAP Fault Processing... 806
About SOAP Fault Elements...808

Adding a Fault Element to an Operation... 809
The $fault Variable.. 810
Modifying a Returned SOAP Fault..812

Viewing Document Types for a Header or Fault Element.. 812
Working with Handlers..813

Setting Up a Header Handler..814
Registering a Header Handler...814
Adding a Handler to a Web Service Descriptor.. 815
Deleting a Handler from a Web Service Descriptor.. 815

Working with Policies..815
Attaching a Policy to a Web Service Descriptor... 816
Removing a Policy from a Web Service Descriptor.. 817

About Pre-8.2 Compatibility Mode..817
Setting Compatibility Mode..818
Features Impacted by Compatibility Mode..819

Working with UDDI Registry...825
Opening UDDI Registry View... 826
Connecting to a UDDI Registry..827
Disconnecting from a UDDI Registry... 828
Refreshing a UDDI Registry Session... 828
Browsing for Web Services in a UDDI Registry...828

Applying a Filter to UDDI Registry..828
Clearing an Applied Filter..829

Creating a Web Service Descriptor from a UDDI Registry.. 829
Publishing a Service to UDDI Registry.. 830
Deleting a Service from UDDI Registry..831

Working with Flat Files... 833
Concepts... 834

What Is a Flat File Schema?.. 834
What Is a Flat File Dictionary?..834

M
Table of Contents

webMethods Service Development Help Version 9.10 23

When Should I Create a Flat File Dictionary?... 835
Creating Flat File Schemas..835

Creating the Flat File Schema.. 836
Specifying a Record Parser.. 837

Specifying a Delimited Record Parser for the Schema..838
Specifying a Fixed Length Record Parser for the Schema......................................841
Specifying a Variable Length Record Parser for the Schema..................................843

Specifying a Record Identifier... 846
Defining the Schema Structure... 847
Setting a Default Record...847
Allowing Undefined Data... 848
Creating an Area... 849
Specifying a Floating Record.. 849
Editing a Flat File Schema..850

Testing Flat File Schemas.. 850
Creating a Launch Configuration for a Flat File Schema..851
Testing a Flat File Schema... 851

Creating Flat File Dictionaries.. 852
Creating a Flat File Dictionary.. 853
Adding Elements to the Flat File Dictionary..854
Setting Properties for the Flat File Dictionary... 854
Editing a Flat File Dictionary... 855

Defining Flat File Elements.. 856
Adding a Record Definition... 856
Adding a Record Reference..857
Adding a Composite Definition..858
Adding a Composite Reference.. 858
Adding a Field Definition... 859
Adding a Field Reference... 860

Working with Adapters..863
About Adapter Connections..864
About Adapter Services..864
About Adapter Listeners... 865
About Adapter Notifications.. 865

Subscribing to Events...867
What Happens When an Event Occurs?... 868
Subscribing to Events...869

Creating Event Filters..870
Creating Event Filters for Services... 874

Viewing and Editing Event Subscriptions...874
Suspending Event Subscriptions..875
Deleting an Event Subscription.. 875
Building an Event Handler..875
Invoking Event Handlers Synchronously or Asynchronously... 876

M
Table of Contents

webMethods Service Development Help Version 9.10 24

About Alarm Events..877
About Audit Events...877
About Audit Error Events..878
About Exception Events... 878
About Guaranteed Delivery Events.. 878

Guaranteed Delivery Events and Transaction Events...879
About JMS Delivery Failure Events..880
About JMS Retrieval Failure Events.. 880
About Port Status Events... 881
About Replication Events... 881
About Security Events.. 882
About Session Events.. 883
About Stat Events...883
About Transaction Events...883

Submitting and Receiving XML Documents... 885
Submitting and Receiving XML in a String Variable...887

Sample Client Code to Submit an XML Document in a String Variable.......................... 887
Considerations When Coding the Target Service to Receive the XML Document that is
Passed in a String Variable...887

Submitting and Receiving XML in $xmldata.. 888
Sample Client Code to Submit an XML Document in $xmldata......................................888
Considerations When Coding the Target Service to Receive the XML Document that is
Passed in $xmldata...889

Submitting and Receiving XML via HTTP..890
Creating a Client that Submits an XML Document via HTTP... 890
Using pub.client:http to Submit an XML Document via HTTP.. 891
About the xmlFormat Value...892
Submitting and Receiving XML via $xmldata without Parsing.. 894

Using pub.clilent:http to Submit $xmldata via HTTP..894
Submitting and Receiving XML via FTP.. 896

Naming the File that the Client is to Submit via FTP..896
Actions a Client Takes to Submit an XML Document via FTP.. 896
Actions a Client Takes to Retrieve Output from the Target Service................................ 897
Considerations When Coding the Target Service to Receive the XML Document.......... 898

Submitting and Receiving XML via E-mail... 898
Actions a Client Must Take to Submit an XML Document via Email............................... 899
Using pub.client:smtp to Submit an XML Document via Email....................................... 899
Considerations When Coding the Target Service to Receive the XML Document.......... 900

Working with Load and Query Services... 903
What Are the Load and Query Services?.. 904
Basic Concepts...904
About the pub.xml:loadXMLNode Service..905
About the pub.xml:loadEnhancedXMLNode Service..905
About the pub.xml:queryXMLNode Service..906

M
Table of Contents

webMethods Service Development Help Version 9.10 25

Building Services that Retry...907
Requirements for Retrying a Service... 908
Example Service that Throws an Exception for Retry..909

Creating Client Code... 913
Building a Java Client...914

Limitations when Generating Java Client Code.. 914
Files that Designer Generates for a Java Client...915
Generating Java Client Code..915

Building a C/C++ Client..916
Prerequisites for Generating C/C++ Client Code..916
Limitations when Generating C/C++ Client Code... 916
Files that Designer Generates for a C/C++ Client.. 917
Generating C/C++ Client Code... 917

Building a Browser-Based Client..918
Prerequisites for Building Browser-Based Client Code...918
URL Client Uses to Invoke Services...918
How Input Values are Passed to the Service the Browser-Based Client Invokes............920

When Browser-Based Clients Pass Multiple Values for the Same Input Variable.... 921
When Browser-Based Clients Pass Multiple Input Variables with the Same
Name.. 922

How Integration Server Returns Output from the Service the Client Invoked................. 923
Building a REST Client...924

Comparing Integration Server Packages and Elements..925
Working with the Compare Editor.. 926

Change List Panel...927
Content Panel..928
Merging IS Elements... 929

Comparing Packages and Elements.. 929
Comparing Flow Services or Document Types...930
Comparing Integration Server Packages or Folders... 930

Document Expansion Preferences...933

Integration Server Preferences.. 935

Service Development Preferences...937
Adapter Service/Notification Editor Preferences.. 938
Compare Editor Preferences.. 939
Element Property Templates Preferences..939
Flow Service Editor Preferences.. 940
HTML Generation Preferences...941
Java/C Service Editors Preferences...942
Launching Preferences...942
Local Service Development Preferences... 943

M
Table of Contents

webMethods Service Development Help Version 9.10 26

Package Navigator Preferences...943
Publishable Document Type Preferences.. 945
REST API Descriptor Preferences... 946
Results View Preferences.. 946
Run/Debug Preferences... 947
Schema Editor Preferences..947
Web Service Descriptor Editor Preferences...948

Properties..949
Integration Server Properties..950

Event Manager Properties...950
My Locked Elements... 951
Server ACL Information...952
Server Information... 952

Package Properties.. 953
Package Information..953
Package Dependencies...953
Package Settings...954
Package Permissions.. 956
Package Replication Services...956
Package Startup/Shutdown Services.. 957

Element Properties... 959
Element Information...959
Element Permissions...959
Element General Properties.. 960

Document Type Properties... 961
General Properties for IS Document Types.. 961
webMethods Messaging Properties.. 964
Universal Name Properties... 966

Flat File Dictionary Properties.. 967
General Properties for a Flat File Dictionary...967

Flat File Element Properties...967
Record Definition Properties... 968
Record Reference Properties..971
Composite Definition Properties..973
Composite Reference Properties.. 976
Field Definition Properties... 978
Field Reference Properties..981

Flat File Schema Properties...984
General Properties for a Flat File Schema... 984
Default Record Properties... 984
Settings Properties.. 985
Schema Definition Properties..986

JMS Trigger Properties...987
General Properties for Non-Transacted JMS Triggers..987

M
Table of Contents

webMethods Service Development Help Version 9.10 27

General Properties for Transacted JMS Triggers..990
Message Processing Properties..991
Fatal Error Handling Properties...992
Transient Error Handling with a Non-Transacted JMS Trigger..993
Transient Error Handling with a Transacted JMS Trigger... 995
Exactly Once Processing Properties...996
webMethods Broker Properties... 998

Link Properties..998
General Properties for Links... 999

OData Service Properties...1000
General Properties for OData Services...1000
OData Element Properties.. 1001

Entity Type Properties.. 1001
Complex Type Properties...1001

External Entity Type Properties...1001
Simple Property Properties... 1002

General Properties for Simple Property... 1002
Facets Properties for Simple Property... 1003

Complex Property Properties.. 1004
Association Properties...1004

General Properties for Association.. 1004
OData Association End Properties...1004
OData Association Navigation Properties.. 1005

REST API Descriptor Properties.. 1005
General Properties for REST API Descriptors.. 1005
REST Resource Properties... 1006
Operation Properties..1007
REST Definition Properties... 1007
REST Definition Parameter Properties..1008

Schema Properties... 1008
General Properties for IS Schemas.. 1008

Schema Component Properties... 1010
All Content Model..1010
Any Attribute Declaration...1010
Any Element Declaration...1012
Attribute Declaration.. 1015
Attribute Reference..1016
Choice Content Model...1018
Complex Type Definition... 1019
Element Declaration.. 1020
Element Reference..1022
Empty Content...1024
Mixed Content Model.. 1025
Sequence Content Model..1025
Simple Type Definition...1025

M
Table of Contents

webMethods Service Development Help Version 9.10 28

Service Properties.. 1026
General Properties for Services.. 1027
Run Time Properties for Services... 1027
Transient Error Handling Properties..1032
Audit Properties... 1033
Universal Name Properties for Services... 1037
Output Template Properties for Services.. 1038

Specification Properties.. 1038
General Properties for Specifications..1038

Transformer Properties... 1039
General Properties for Transformers...1039

Variable Properties..1040
General Properties for Variables... 1040
Constraints Properties for a Variable.. 1042
Constraints Applied to Variables... 1045

Web Service Connector Properties.. 1045
General Properties for Web Service Connectors.. 1045
Run Time Properties... 1046
Audit Properties... 1049
Universal Name Properties... 1050
Output Template Properties...1051

Web Service Descriptor Properties.. 1051
General Properties for Web Service Descriptors.. 1052
Web Service Descriptor Operation Properties.. 1055

Operation Properties.. 1055
Body Element Properties... 1056
Header Element Properties..1057
Fault Element Properties..1058

Web Service Descriptor Binder Properties..1059
General Properties for Binders.. 1059
JMS Settings Properties for a Binder...1062
JMS Message Details Properties for a Binder... 1064

Web Service Descriptor Header Handler Properties...1065
webMethods Messaging Trigger Properties... 1066

General Properties for webMethods Messaging Triggers... 1066
Trigger Queue Properties.. 1069
Message Processing Properties..1069
Fatal Error Handling Properties...1070
Transient Error Handling Properties..1071
Exactly Once Properties..1072

webMethods Flow Steps... 1075
BRANCH... 1076

Branching on a Switch Value.. 1076
Branching on Expressions...1077

M
Table of Contents

webMethods Service Development Help Version 9.10 29

BRANCH Properties.. 1078
Conditions that Will Cause a BRANCH Step to Fail... 1079

EXIT.. 1079
EXIT Properties... 1079
Examples of When to Use an EXIT Step... 1080

INVOKE...1081
INVOKE Properties..1081
Conditions that Will Cause an INVOKE Step to Fail...1082

LOOP.. 1082
LOOP Properties... 1083
Conditions that Will Cause a LOOP Step to Fail.. 1083

MAP.. 1084
MAP Properties... 1084
Example of When to Use a MAP Step... 1085

REPEAT.. 1085
REPEAT Properties... 1086
When Does REPEAT Fail?... 1087
Examples of When to Use a REPEAT Step... 1088

SEQUENCE.. 1088
SEQUENCE Properties... 1089
Conditions that Will Cause the SEQUENCE Step to Fail... 1090

Data Types.. 1091
Data Types in IData Objects.. 1092
Java Classes for Objects... 1094
How Designer Supports Tables.. 1096

Icons.. 1097
Package Navigator View Icons...1098
UDDI Registry View Icons.. 1102
Flat File Element Icons...1102
Flow Step Icons..1103
OData Service Icons...1104
REST API Descriptor Icons..1105
Schema Component Icons... 1106

Toolbars.. 1111
Compare Editor Toolbar..1112
Document Type Editor Toolbar...1112
Flat File Schema and Dictionary Editors Toolbars... 1113
Package Navigator View Toolbar... 1114
Pipeline View Toolbar... 1114
REST API Descriptor Toolbar...1116
Service Editor Toolbar.. 1116
Results View Toolbar.. 1117
Specification Editor Toolbar.. 1118

M
Table of Contents

webMethods Service Development Help Version 9.10 30

UDDI Registry View Toolbar...1119
Variables View Toolbar... 1120
Web Service Descriptor Editor Toolbar.. 1120

Keyboard Shortcuts...1123

Conditional Expressions...1125
Guidelines for Writing Expressions and Filters.. 1126
Syntax... 1127

Comparing Java Objects to Constants... 1128
Verifying Variable Existence.. 1130

Operators for Use in Conditional Expressions... 1130
Relational Operators..1130

Standard Relational Operators...1131
Lexical Relational Operators.. 1133

Logical Operators.. 1135
Operator Precedence in Conditional Expressions..1137
Addressing Variables.. 1138

Addressing Variables that Contain Special Characters...1139
Typing Special Characters in Expressions...1140

Rules for Use of Expression Syntax with the Broker... 1141

Regular Expressions... 1145
Using a Regular Expression in a Mask..1146
Regular Expression Operators... 1146

Validation Content Constraints.. 1153
Content Types...1154
Constraining Facets..1164

webMethods Query Language..1169
Overview... 1170
Object References.. 1170
Sibling Operators.. 1171
Object Properties.. 1173
Property Masking..1174

M
Odd Header

webMethods Service Development Help Version 9.10 31

About this Guide

webMethodsService Development provides tools and features that developers can use to
build and test services. webMethodsService Development also provides tool to connect
to Integration Server, manage packages, and create the elements needed to support
services such as document types, triggers, and web service descriptors. You can learn
more by looking in Contents for Software AG Products > webMethods Service Development
Help.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

M
Even Header

webMethods Service Development Help Version 9.10 32

Convention Description

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

About webMethods Service Development

webMethods Service Development Help Version 9.10 33

1 About webMethodsService Development

■ Before You Use Designer for Service Development .. 34

■ Opening the Service Development Perspective .. 34

M
Even Header

About webMethods Service Development

webMethods Service Development Help Version 9.10 34

Software AG Designer provides a set of Service Development features that you can use
to build, edit, and debug services and integration logic. It provides a collection of editors
and views in which you can develop the logic and supporting objects (referred to as
elements) for an integration solution. It also provides tools for running and debugging
the solutions you create.

Designer lets you rapidly construct integration logic with an easy-to-use implementation
language called the webMethods flow language. Flow language provides a set of simple
but powerful constructs that you use to specify a sequence of actions (steps) that
the Integration Server will execute at run time. Designer also has extensive data
transformation and mapping capabilities that allow you to quickly drag-and-drop data
fields from one step to the next.

Besides providing tools for constructing flow services, Designer provides additional
editors and tools for creating various elements that support the execution of an
integration solution. For example, you use Designer to create the document types and
schemas used for data validation and to define triggers that launch the execution of
services when certain messages are received.

Before You Use Designer for Service Development
Designer builds and edits services and other elements directly on a webMethods
Integration Server. To use Designer for service development, you must

Have access to an Integration Server on which you can build and debug services.

Have a user account on that webMethods Integration Server.

Belong to a group that is a member of the “Developers” ACL (access control list) on
that Integration Server.

Create a server definition that defines the connection between Designer and
Integration Server

If you do not have access to a Integration Server or you do not have an appropriate user
account or access rights, see your server administrator.

Note: This guide describes features and functionality that may or may not be
available with your licensed version of webMethods Integration Server. For
information about the licensed components for your installation, see the
Settings > License page in the webMethods Integration Server Administrator.

Opening the Service Development Perspective
Software AG Designer provides a Service Development perspective that contains the
views, editors, and tabs needed to build services and other supporting elements.

M
Odd Header

About webMethods Service Development

webMethods Service Development Help Version 9.10 35

To open the Service Development perspective

1. In Designer, select Window > Open Perspective > Other.

2. In the Open Perspective dialog box, select Service Development. Click OK.

Designer switches to the Service Development perspective.

M
Even Header

webMethods Service Development Help Version 9.10 36

M
Odd Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 37

2 Working with webMethods Integration Server

■ Working with Server Definitions ... 38

■ Connecting to an Integration Server .. 45

■ Disconnecting from an Integration Server ... 45

■ Refreshing an Integration Server ... 46

■ Notification of Server Shutdown .. 46

■ Opening Integration Server Administrator .. 47

■ Viewing Integration Server Properties ... 47

■ Changing Passwords ... 47

M
Even Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 38

webMethods Integration Server provides an environment for the orderly, efficient, and
secure, execution of services. It decodes client requests, identifies the requested services,
invokes the services, passes data to them in the expected format, encodes the output
produced by the services, and returns output to the clients.

Using Designer, you build and edit services, document types, and other elements directly
on an Integration Server. You connect Designer to Integration Server through server
definitions. A server definition specifies the location and characteristics of the Integration
Server to which Designer is connecting.

Note: Designer can connect to the equivalent or previous versions of Integration
Server only. For example, Designer version 9.10 can connect to Integration
Server version 9.10 or any previous versions of Integration Server back to and
including version 9.0. However, Designer cannot connect to a higher version
of Integration Server. For example, Designer 9.9 cannot connect to Integration
Server 9.10.

Working with Server Definitions
A server definition specifies the location and characteristics of an to which Designer
connects. You connect to Designer through server definitions. You create and view
server definitions on the Window > Preferences >Software AG>Integration Servers page.

Creating Server Definitions
By default, a new Designer installation includes a single server definition named
Default. This server is marked as the default server and is configured to use
localhost:5555.

If your Designer installation needs to connect to more Integration Servers, you can create
additional server definitions.

To create a server definition

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG >Integration Servers.

3. Click Add.

4. In the Add Integration Server dialog box, enter the following information:

Field Description

Name Name to use for this Integration Server.

M
Odd Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 39

Field Description

Note: The name cannot contain control characters, special
characters, and characters outside of the basic ASCII
character set, such as multi-byte characters.

Host Host name (e.g., workstation5.webmethods.com)
or IP address (e.g. 132.906.19.22 or
2001:db8:85a3:8d3:1319:8a2e:370:7348) of the
Integration Server to connect to.

The host names or IP addresses can include upper and lower
case alphabetic characters, digits (0-9), hyphens (-), and
periods (.) but cannot include spaces. For IPv6, IP addresses
can also include colons (:) and brackets ([]).

Port Port number to connect to on the Integration Server.

User Indicates the name of a valid user account on the Integration
Server. The user name must be a member of a group belonging
to the Developers ACL.

Use the exact combination of upper- and lower-case characters
with which it was originally defined. Integration Server user
names are case sensitive.

Password The password for user. Use the exact combination of upper-
and lower-case characters with which it was originally
defined. Integration Server passwords are case sensitive.

Connect
immediately

Indicates whether Designer should connect to the Integration
Server immediately after you add or edit a definition and click
OK on the Add Integration Server or Edit Integration Server
dialog box.

Connect at
startup

Indicates whether Designer should automatically connect to
the Integration Server at Designer startup.

Secure
Connection

Indicates whether the session will be opened through HTTP or
HTTPS. If you want to open an HTTPS session on the selected
server using the Secure Socket Layer (SSL), select this check
box. If you want to open an HTTP session on the server, clear
this check box.

5. To test this connection, click Verify Server.

6. Click OK.

M
Even Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 40

By default, Designer will automatically connect to the Integration Server. If Designer
does not automatically connect to the server, click Connect on the Preferences page.

Fetching Server Definitions from an Integration Server
You can obtain a server definition by fetching it from another Integration Server. Keep the
following points in mind when fetching server definitions:

For the fetch process to work, the WmDesigner package must be installed and
running on the other Integration Server, and the server definition you are trying to
fetch must have been previously defined on the copy of Designer running on the
other server.

If the Integration Server from which you want to fetch definitions contains remote
server definitions, make sure that the remote server definitions use host names or
addresses that can be resolved by the machine retrieving the definitions.

To fetch to an Integration Server definition from another Integration Server

1. In Designer, select Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Click Fetch.

4. In the Fetch dialog box, enter the following information about the Integration Server
from which you want to fetch a server definition.

Field Description

Host Name or IP
Address

Host name (e.g., workstation5.webmethods.com)
or IP address (e.g. 132.906.19.22 or
2001:db8:85a3:8d3:1319:8a2e:370:7348) of the
Integration Server to connect to.

The host names or IP addresses can include upper and lower
case alphabetic characters, digits (0-9), hyphens (-), and
periods (.) but cannot include spaces. For IPv6, IP addresses
can also include colons (:) and brackets ([]).

Port Port number on which Integration Server listens for requests.

Secure
Connection

Indicates whether to connect to Integration Server through an
HTTP or HTTPS connection. Select the check box to connect
through an HTTPS connection.

User The name of a valid user account on this server.

M
Odd Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 41

Field Description

Use the exact combination of upper- and lower-case characters
with which it was originally defined. Integration Server user
names are case sensitive.

Note: The server is installed with a default user account called
“Developer” that has developer privileges.

Password The password for the user account in User. Use the exact
combination of upper- and lower-case characters with which it
was originally defined. Integration Server passwords are case
sensitive.

5. Click Connect.

Designer populates the boom half of the FetchIntegration ServerDefinitions dialog with
a list of server definitions available on the other Integration Server.

6. Select one or more definitions to fetch, and click OK.

Designer refreshes the Integration Servers page, this time including the fetched
definitions. Designer automatically tries to connect to the fetched servers.

7. For any server definitions that have the status No user or password, select the
definition, click Edit, supply the user ID and password, and click OK.

Importing Server Definitions
You can import server definitions from a properties file. A properties file can contain one
or more server definitions.

The default properties file name is logicalServer.properties. It resides in the top level of
the Designer folder in the following directory: <workspace_location >\.metadata\.plugins
\com.softwareag.is.core. The file contains the initial installed server definition, which
specifies a host name and port of localhost:5555, is named Default, and is marked as the
default server.

You can use properties files to make existing server definitions available to other
Designer users in cases where it is not possible to fetch server definitions.

When you import servers definitions, you overwrite all existing definitions in your
workspace.

To import a server definition properties file

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Click Import.

M
Even Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 42

4. In the Open window, navigate to the .properties file you want to import.

5. Click OK to import the data from the selected .properties file into your Preferences
> Software AG > Integration Servers screen.

Exporting Server Definitions
You can export server definitions to a properties file. When you export server definitions,
you export all definitions in your workspace.

You can save the file with any name and in any location, but the file must be saved with
a .properties extension.

To export server definitions to a properties file

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Click Export.

4. In the Save As dialog box, navigate to the folder where you want to save the
server definition you are exporting, and type a file name. You do not have to type
the .properties extension.

You can also click an existing .properties file if you want to overwrite it with the new
definitions.

5. Click OK to save the .properties file.

Removing Server Definitions
To remove a server definition

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Select the server definition you want to remove.

4. Click Remove.

Designer prompts you to confirm that you want to remove this server definition. If
this server definition is the default, Designer will remind you that you need to define
a new default after this server definition has been deleted.

5. If the server definition you deleted was the default, you need to define a new default.
For instructions on defining a default server definition, see "Seing a Default Server
Definition" on page 43.

M
Odd Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 43

Editing Server Definitions
You can change the properties of a server definition by editing it.

Sometimes there are changes on the associated Integration Server that require you to
update the server definition. For example, if the port number changes, you must update
the server definition to reflect that change.

Other times, you might decide to change the name of the server definition, or to change
whether Designer automatically connects to this Integration Server at Designer startup
or when the definition is updated.

If a server definition displays a status of No userid or password, you can edit the definition
to add the user and password.

For a detailed description of the fields you can change, see " Integration Server
Preferences" on page 935.

To edit a server definition

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Select the server definition that you want to edit.

4. Click Edit.

5. Enter new values in the fields you want to change.

6. In the Edit Integration Server dialog, click OK.

7. In the Preferences page, click OK.

Considerations for Process Development
If you will be working in Process Development, you might want to make the following
changes your server definitions to:

Specify a server definition as the default.

Place server definitions offline.

Bring server definitions online.

Setting a Default Server Definition
By default, a new Designer installation includes a server definition named Default.
This server is marked as the default server and is configured to use localhost:5555 .
If a user creates or edits a process and no server definitions are connected, Designer
automatically connects to the default server definition.

M
Even Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 44

If you update the configuration so that a different server definition is the default, and
a user subsequently creates a step when Designer is not connected to an Integration
Server, Designer will use the new default server for the new steps. In contrast, Designer
will continue to use the original servers for existing steps.

There must be one and only one default Integration Server defined at all times.

To set a default server definition

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Check the Default box for the server definition you want to be the default.

Designer prompts you to verify that you want to replace the existing default with the
new one.

4. Click OK.

Placing a Server Definition Offline
Typically, when you work with Designer, it is connected to the Integration Servers
defined by the server definitions on the Integration Servers Preferences page. Process
Development users, however, can perform tasks without being connected to an
Integration Server. By placing a server definition offline, you can prevent Designer from
trying to connect to the associated server and prompting you for credentials.

When you select the Offline check box for a server definition, Designer terminates
any existing connections to the host:port combination specified in this definition. For
example, if server definition A and server definition B both specify localhost:5555,
selecting the Offline check box to the right of A will terminate the server connections for
both A and B.

Refer to the webMethods BPM Process Development Help for more information.

To place a server definition in offline status

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Select the Offline check box to the right of server definition you want to take offline.

4. Click OK.

Bringing a Server Definition Online
Designer must be connected to an Integration Server so that you can view and update
Integration Server assets such as flow services, document types, JMS triggers, and web
service descriptors. There may be times, however, when you find that a server definition
that you need to work with is offline.

M
Odd Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 45

To bring a server definition online

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Clear the Offline check box to the right of server definition you want to bring online.

4. If Designer issues a message stating that you must enter a user name and password,
click the Edit buon and provide the user name and password.

5. Click OK.

Connecting to an Integration Server
When you connect to an Integration Server, you create a session on that Integration
Server. You maintain a session on that server until you exit Designer or disconnect from
the server. You can have open sessions on multiple servers at a time.

To connect to an Integration Server

1. In Package Navigator view, select the server to which you want to connect.

2. Right click, and select Connect to server.

Connecting to an Integration Server via Preferences
Designer must be connected to an Integration Server so that you can view and update
Integration Server assets such as flow services, document types, JMS triggers, and web
service descriptors.

To connect to an Integration Server

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. On the Integration Servers page, select the server to which you want to connect and
click Connect.

Disconnecting from an Integration Server
While you have an open session on a server through Designer, you are using a licensed
seat for that server. At times when you are not actively using Designer, you may want to
close your session to free a seat on the server for others to use.

To disconnect from an Integration Server

1. In Package Navigator view, select the Integration Server from which you want to
disconnect.

M
Even Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 46

2. Right click, and select Disconnect from server.

Disconnecting from an Integration Server via Preferences
While you have an open session on a server through Designer, you are using a licensed
seat for that server. At times when you are not actively using Designer, you may want to
close your session to free a seat on the server for others to use.

To disconnect from an Integration Server

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. On the Integration Servers page, select the server from which you want to disconnect
and click Disconnect.

Refreshing an Integration Server
Package Navigator view is not dynamically updated when other users lock, unlock, add,
delete, or rename elements on a server. You can refresh an Integration Server to reflect
any changes made to the contents of the servers with which you are working.

To refresh an Integration Server

1. In Package Navigator view, select the Integration Server you want to refresh.

2. Right click, and select Refresh.

Notification of Server Shutdown
If the server administrator shuts down the server on which you have an open session,
Designer does one of the following:

If the server administrator specified a time delay before shutdown, Designer
displays a message notifying you when the shutdown process began and how many
minutes remain before the server shuts down. After you receive notification of server
shutdown, save any work that you want to keep and then close your session. If you
do not close your session, Designer notifies you when the server has shut down.

If the server administrator performed an immediate shutdown, Designer displays
a message stating that your connection to the server has been lost. (Designer also
displays this message if the network connection to the server is lost.)

Designer restores your connection to the server when the server restarts. If you did not
save your work before shut down occurred, Designer prompts you to save your work
after the connection is re-established.

M
Odd Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 47

Opening Integration Server Administrator
There may be times when you need to perform administrator tasks on an Integration
Server.

To open Integration Server Administrator

In Package Navigator view, right-click the Integration Server for which you want to
open Integration Server Administrator and select Open Administration View.

Viewing Integration Server Properties

To view Integration Server properties

In Package Navigator view, right-click the Integration Server for which you want to
open Integration Server Administrator and select Properties.

Designer displays the Properties screen, from which you can display information
about the following areas of the Integration Server: Event Manager, Locked
Elements, Server ACLs, and Server Information. Refer to " Integration Server
Properties" on page 950 for a description of these properties.

Changing Passwords
You can change the password for your user account. If you forget your password,
contact the server administrator.

Important: You cannot use Designer to change passwords of users that are stored in
an external directory. For information about managing users stored in an
external directory, see webMethods Integration Server Administrator’s Guide.

Password Requirements
For security purposes, Integration Server places length and character restrictions on
passwords. Integration Server contains a default set of password requirements; however,
your server administrator can change these. For more information about these password
requirements, contact your server administrator.

The default password requirements provided by webMethods Integration Server are as
follows:

M
Even Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 48

Requirement Default

Minimum length 8

Minimum number of alphabetic characters 3

Minimum number of uppercase characters 2

Minimum number of lowercase characters 2

Minimum number of numeric characters 1

Minimum number of special characters (non-
alphabetic and non-numeric characters, such as *. ?,)

Note: The use of special characters is regulated by the
following restrictions:

A password cannot begin with an asterisk (*).

Passwords cannot contain quotation marks ("),
backslashes (\), ampersands (&), or less-than
signs (<). Use the wa.server.illegalUserChars
configuration property to restrict the use of
additional characters.

1

To ensure the security of your password, follow the additional guidelines below:

Do not choose obvious passwords, such as your name, address, phone number,
license plate, name of your spouse or child, or a birthday

Do not use any word that can be found in the dictionary.

Do not write your password down.

Do not share your password with anyone.

Change your password frequently.

Changing Your Password

Note: If you are outside of the corporate firewall, do not change your password
unless you use SSL to open the session on the Integration Server. If you do not
use SSL, your password can be exposed in unencrypted form.

To change your password

1. In Designer: Window > Preferences

M
Odd Header

Working with webMethods Integration Server

webMethods Service Development Help Version 9.10 49

2. In the preferences navigation tree, select Software AG > Integration Servers.

3. Select the server definition for which you want to change the password and click
Change Password.

4. In the Change Password dialog box, in the Old password field, type your current
password.

5. In the New password field, type your new password.

6. In the Confirm new password field, retype your new password. Click OK.

Important: The server administrator can disable the feature for changing your password
from Designer. If the feature is disabled and you try to change your
password, you will receive a message stating that the administrator has
disabled the feature.

Synchronizing Passwords
The password stored locally in secure storage and in Integration Server can become out
of sync. This mismatch of credentials occurs due to either of the following reasons:

The password change operation is not successful due to machine or network failure
between the time the new password is stored locally in secure storage and its new
value is updated in Integration Server.

The password to connect to Integration Server is changed using the change
password functionality in another instance of Designer.

In both these instances, Designer will not be able to connect to Integration Server. To
synchronize the passwords and reconnect to Integration Server, edit the disabled server
definitions in Designer and provide the right credentials. For information on editing the
server definitions, refer to "Editing Server Definitions" on page 43.

M
Even Header

webMethods Service Development Help Version 9.10 50

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 51

3 Working with Elements

■ About Element Names ... 52

■ Creating New Elements ... 52

■ Guidelines for Working with Elements ... 54

■ Opening Elements .. 55

■ Closing Elements ... 55

■ Editing and Saving Elements ... 56

■ Adding Comments for an Element ... 56

■ Configuring Dependency Checking for Elements .. 57

■ Controlling the Reuse of Elements Published to CentraSite ... 58

■ Allowing Editing of Derived Elements .. 59

■ Moving and Copying Elements .. 60

■ Renaming Elements ... 64

■ Deleting Elements .. 65

■ Finding Dependents and References .. 67

■ Inspecting Pipeline References ... 70

■ Finding Elements ... 73

■ Filtering Displayed Elements ... 75

■ Hiding or Displaying Automatically Generated Flow Services ... 75

■ Creating Working Sets ... 76

■ Caching Elements .. 76

■ Exporting Elements .. 77

■ Viewing Server Files for an Element ... 78

■ Using Property Templates with Elements .. 78

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 52

An element is an item that exists in the Package Navigator view in Software AG
Designer. Elements include folders, services, specifications, document types, triggers,
and web service descriptors. In the Package Navigator view, servers and packages are
not considered to be elements.

About Element Names
The fully qualified name of an Integration Server element is composed of two parts:
a folder identifier , consisting of the folder path in which the element resides, and the
element name . Integration Server represents elements in the following format:

folder .subfolder1 .subfolder2 :element

For example, if the HomeLoan service is in the Personal folder, which is contained in the
Finance folder, the fully qualified service name is:

Finance.Personal:HomeLoan

Designer ensures that the fully qualified name of each element within the server
is unique. Depending on the action you are performing on the element, Designer
accomplishes this either by alerting you that the action cannot be completed or by
appending a number to the name of the element after the action is performed. For
example, if you are copying a flow service named checkOrder2 to a destination that
already contains a flow service with that name, Designer copies the service and names
the copy checkOrder2_1.

Package Names and Element Names
The name of the package to which an element belongs has no bearing on the names of
the elements that package contains (that is, the package name is not part of the fully
qualified name of the element). Nor does it affect how the element is referenced by a
client application. For example, if you move a service called Personnel:GetDeptNames from
a package called Admin to a package called EmployeeData, client applications would
still reference the service as Personnel:GetDeptNames.

Creating New Elements
When creating elements, keep the following points in mind:

The names of non-folder elements must be unique across all packages. If you try
to create an element using a name that already exists at that level in any package,
Designer creates the element and names it Untitled.

Designer places some restrictions on the characters you can use in element and
package names. For more information about these restrictions, see "Guidelines for
Naming Elements" on page 53.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 53

Before you can create a new Java or C service, ensure that all services in the folder in
which you want to create the new service and of the type you want to create (Java or
C) are unlocked. Alternatively, you can ensure that you have all the services locked.
For more information, see "Guidelines for Locking Java and C/C++ Services" on page
96.

To create a new element

1. In the Package Navigator view of Designer, click File > New and then click the
element you want to create.

You can also click Other to view all the elements that you can create in Designer. The
New dialog box appears. Click the type of element you want to create and then click
Next.

2. On the New Element dialog box, follow the prompts given by Designer for the type of
element you are creating.

3. To create an element such as a flow service or a Java service using a predefined
template, select the template from the Choose template list. If you want to apply the
default properties to the element, select Default from the Choose template list.

Note: The Choose template field appears only for those elements that support
property templates. The default value for this field is Default.

4. When you have supplied all the information that Designer needs to create the
element, click Finish. Designer refreshes the Package Navigator view and displays
the new element.

Note: When Designer creates web service connectors as part of creating a consumer
web service descriptor, Designer applies the default property template to
the web service connector. You can modify the properties of the element
by changing them in the Properties view or apply a different template after
the element is created. For more information about applying templates, see
"Applying Property Templates to Elements" on page 79.

Guidelines for Naming Elements
Designer places some restrictions on the characters you can use in element and package
names. Specifically, element and package names cannot contain:

Reserved words and characters that are used in Java or C/C++ (such as for, while, and
if).

Digits as their first character (This does not apply to packages.)

Spaces.

Control characters and special characters like periods (.), including:

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 54

? ' - # =) (. / \ ;

& @ ^ ! | } { ` > <

% * : $] [" + , ~

Characters outside of the basic ASCII character set, such as multi-byte characters.

If you specify a name that disregards these restrictions, Designer displays an error
message. When this happens, use a different name or try adding a leer or number to
the name to make it valid.

Guidelines for Working with Elements
When performing actions on one or more elements, keep the following points in mind:

You must have at least List access to view elements, Read access to select elements
to move or copy, Write access to the location to which you want to move/copy
elements, and Write access to elements you want to rename or delete. If you select
multiple elements and you do not have the required access to one or more of
them, you will not be able to perform the action. You must either ask your system
administrator to give you the required access to the elements or select only elements
for which you have the proper access.

Designer prompts you to save changes to an element before allowing you to perform
an action on the element, close the element in the editor, close your session on the
current server, or exit Designer.

The actions you can perform on items depend on the type and combination of
items you select. If an action is not allowed for one or more elements in a selection,
Designer makes the action unavailable for use. For example, Designer disables the
cut, copy, paste, and delete actions if you select a server. Designer also prevents you
from selecting multiple elements when doing so could cause confusion or undefined
results. For example, you cannot select a server and any other element, a package
and any other element, or a folder and one or more elements contained within that
folder.

If you select multiple elements and Designer encounters an error while performing
the specified action on one or more of the elements, Designer displays a dialog box
listing the elements for which the action failed. You can obtain more information
about why the action failed by clicking Details.

The elements you want to move, copy, rename, save, or delete must be unlocked, or
locked by you. If you configured Integration Server to work with a version control
system (VCS), you must first check out the element before editing it and then check it
back in.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 55

You cannot undo a move, copy, rename, or delete action using the Edit > Undo
command.

If you select a publishable document type that is associated with an adapter
notification, Designer handles actions performed on the document type as follows:

For non-copy actions, you must also select the adapter notification before you can
perform a non-copy action on the document type.

For copy actions, you can select the publishable document type without selecting
its associated adapter notification. However, the copied publishable document
type loses its association with the adapter notification.

Opening Elements
When opening elements from the Package Navigator view, keep the following points in
mind:

Double-click a folder to expand or collapse the contents of the folder in the Package
Navigator view.

If you have enabled the Version Control System (VCS) Integration feature of
Designer, Designer might exhibit slowdowns, error messages (such as “Server
version has changed” and “Session already in use”), and may stop responding
completely when you expand a large element (such as a folder) in the Package
Navigator view. This condition occurs because Designer checks the lock status of
each element within the expanded element in the Integration Server.

To open elements in the editor

In Package Navigator view, double-click the element you want to open.

Tip: You can also use the Open Integration Server Element dialog box to easily
locate and open an element by typing any portion of the element name. To
open the Open Integration Server Element dialog box, right-click anywhere in
the Package Navigator view and select Open Elements from the context menu
or press the CTRL+SHIFT+A keys in the keyboard.

Closing Elements
Keep the following points in mind when closing elements:

You do not need to close elements when you exit Designer. Designer remembers
which elements were open and displays them when you restart Designer.

If you close an element without saving changes made to the element, Designer will
prompt you to save changes.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 56

To close an element

Do one of the following:

To... Click...

Close the active element (that is, the element
whose tab is highlighted)

File > Close.

Close all elements File > Close All.

Editing and Saving Elements
To edit an element, you must first lock it (or check it out). You must also have Write
access to the element.

Changes that you make to an element are not wrien to Integration Server until you
explicitly save your work. If you aempt to close Designer, close your session on the
current server, close an unsaved element in the editor, or perform an action on an
element without saving your changes, Designer will prompt you to save changes first.

To save changes to elements

To save changes to elements

To... Click...

Save changes to the current element File > Save.

Save all elements you have edited, on all servers File > Save All.

Adding Comments for an Element
If you want to include any instructions on usage of an element, descriptive comments, or
notes, you can use the Comments tab.

Note: The contents of the Comments property that was available in the Properties
view in previous versions of Service Development are available in the
Comments tab starting from version 9.7.

To add comments for an element

1. In the Package Navigator view, open the element for which you want to specify a
comment.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 57

2. Click the Comments tab.

3. Specify notes or comments about the element.

4. Click File > Save.

Configuring Dependency Checking for Elements
Designer automatically checks for dependents when you delete, rename, or move
elements in the Package Navigator view. This dependency checking acts as a safeguard
to prevent you from inadvertently affecting other elements on the Integration Server.
This is especially important during collaborative development on the same Integration
Server.

You can have Designer prompt you before deleting, moving, or renaming an element
with dependents. You can also have Designer update local references when pasting
elements.

The dependency checking options are enabled by default.

To specify dependency checking safeguards

1. In Designer, click Window > Preferences.

2. In the Preference navigation tree, click Software AG>Service Development> Package
Navigator.

3. Under Preferences for the Package Navigator view, do the following:

Select... To...

Confirm before
deleting

Instruct Designer to notify you before deleting an
element used by other elements, such as flow services, IS
document types, specifications, or triggers.

If Designer finds elements that depend on the element
being deleted, Designer lists those dependents and
prompts you to delete the element anyway or cancel the
action. If you clear this check box, Designer deletes the
element without prompting you.

Prompt before
updating dependents
when renaming/
moving

Instruct Designer to alert you when dependents (that is,
other elements that use the selected element, such as flow
services, IS document types, or triggers) exist.

If dependents exist, Designer lists those dependents
before renaming or moving the selected element and
prompts you to:

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 58

Select... To...

Rename/move the selected element and update
references in dependent elements.

Rename/move the selected element without updating
references to it.

Cancel the action.

If you clear this check box, Designer automatically
updates dependents without prompting you.

Update local
references when
pasting multiple
elements

Instruct Designer to update references when copying and
pasting a group of elements that refer to each other.

If you clear this check box, Designer retains the original
references in the copied elements.

4. Click OK.

Controlling the Reuse of Elements Published to CentraSite
You can control whether or not assets you have published to CentraSite can be reused in
BPM processes or CAF projects. You do this by designating an asset as public or private.

In Designer, when an element is public, you can drag it from the CentraSite Registry
Explorer view to a BPM process or CAF project. When an element is private, you cannot
drag it from the CentraSite Registry Explorer view to a BPM process or CAF project, or
any other location.

Use the public seing for assets you want to be reused more widely within your
organization, beyond the bounds of the current project.

All published assets are available for Impact Analysis, whether they are private or
public.

Although changing the public/private status will immediately change whether or
not you can drag an element to a BPM process or CAF project, the element's status in
CentraSite will not change until the next publication of assets to CentraSite.

To control the reuse of the published asset for an element

1. In the Package Navigator view, select the element you want to work with.

2. In the Properties view, next to the Reuse property, do one of the following:

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 59

To... Select...

Allow the published asset to be dragged from
the CentraSite Registry Explorer view to a BPM
process or a CAF project

Public

Prevent the published asset from being dragged
from theCentraSite Registry Explorer view to a
BPM process or a CAF project

Private

3. Click File > Save.

Allowing Editing of Derived Elements
For an element created from an external source, such as a document type created from
an XML schema definition, you can control whether the content and structure of the
element can be modified. When Integration Server creates the element, the Linked to
source property is set to true which indicates that the element content accurately reflects
the source file. When the Linked to source property is set to true, you can edit the element
properties, however, you cannot edit the element content. For example, for a document
type created from an XML schema definition, you can change the element permissions
or storage type, but you cannot add or edit fields or change the order of fields in the
document type.

If you want to edit the content of an element linked to its source, you must first break the
association with source by seing Linked to source to false. A value of false indicates that
the content and structure of the element may not reflect the source from which it was
created. The content and structure can be edited.

Keep the following points in mind when allowing editing for elements derived from a
source:

Changing the value of the Linked to source property to false cannot be undone.

You cannot change the Linked to source property from false to true.

To allow editing of a derived element

1. In the Package Navigator view, select the element for which you want to allow
editing.

2. In the Properties view, next to Linked to source, select False.

3. When Designer prompts you to confirm the change, click OK if you want to proceed.
Otherwise, click Cancel.

4. Click File > Save.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 60

Moving and Copying Elements
You can move or copy elements between packages and, in most cases, across servers.
Before moving or copying elements, review the following guidelines and notes:

"Guidelines for Moving and Copying All Types of Elements" on page 62

"Guidelines for Moving and Copying Services" on page 62

"Guidelines for Copying Elements Between Servers" on page 63

"Notes for Moving and Copying Adapter Notifications and Related Elements" on
page 64

"ACLs and Creating, Viewing, and Deleting Elements" on page 90

To move or copy elements

1. In the Package Navigator view, select the elements that you want to move or copy.

2. Do one of the following:

To... Click...

Move the element Edit > Cut.

Copy the element Edit > Copy.

Tip: You can cancel a cut action by pressing ESC.

3. If the elements you want to move or copy contain unsaved changes, Designer alerts
you that you must first save the changes. Click OK to close the alert dialog box. Then,
save the changes and repeat the move/copy action.

4. If you do not have Read access to the elements you are moving or copying, or
Write access to the location you are moving/copying them to, Designer displays a
message that identifies the elements that are preventing the action from completing
successfully. Click OK and then either obtain the proper access from your system
administrator or select only those elements to which you have proper access.

5. Select the location where you want to move or copy the elements.

6. Click Edit > Paste.

7. If the destination already contains an element with the same name as an element you
are moving or copying, do one of the following:

If you are moving the element, Designer alerts you that the element cannot be
moved. Click OK to close the alert dialog box. Rename the element if desired and
repeat the move action.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 61

If you are copying the element, Designer copies the element and appends a
number to the name of the copied element. (For example, if you are copying
a flow service named checkOrder2 to a destination that already contains a
flow service with that name, Designer copies the service and names the copy
checkOrder2_1.) Rename the element if desired.

For more information about renaming elements, see "Renaming Elements" on page
64.

8. If one of the elements you moved or copied is a Java service, perform the following
as necessary:

If you are moving or copying the Java service to a folder with other Java services
that are system locked or locked by another user, Designer alerts you that the
element cannot be moved/copied. Click OK and then ask the owner of the lock to
remove the lock.

If the Java service you are moving or copying contains a shared source that
conflicts with the shared source of an existing Java service in the destination
folder, Designer alerts you that there is a conflict. Click OK to use the destination
folder’s shared source, or click Cancel to cancel the entire move action.

Note: If no shared Java source conflict exists, Designer moves the Java service
and its shared source to the destination folder. If a conflict does exist,
you must re-specify the shared source in the copy of the service. Using
the Designer Java Service Editor, you can copy the information from the
Source tab of the original service to the Source tab of the copy. For more
information about the Source tab of the Java Service Editor, see "Source
Tab" on page 310

9. If you selected the Prompt before updating dependents when renaming/moving check
box in the Package Navigator preferences and any dependent elements on the
current server contain unsaved changes, Designer alerts you to save them. Select the
elements and click OK to save the changes or Cancel to cancel the entire move or copy
action.

10. If the Move and Rename Dependencies dialog box appears, do one of the following:

To... Click...

Move the selected element and update references to
dependent elements

Update Usages

Move the selected element in the Package Navigator
view without updating references to dependent
elements

Ignore Usages

Cancel the entire move action Cancel

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 62

For more information about dependency safeguards, see "Configuring Dependency
Checking for Elements" on page 57.

Tip: You can also move elements by clicking and dragging them to their new
location.

Guidelines for Moving and Copying All Types of Elements
You must have Read access to the elements you are moving or copying and Write
access to the packages, folders, or servers to where you want to move/copy them. For
more information about Write access and ACLs assigned to elements, see "Assigning
and Managing Permissions for Elements" on page 83.

When you move or copy an element, Designer automatically changes the element’s
fully qualified name to reflect its new location.

You cannot move an element to a location that already contains an element with
the same name. If you copy the element, however, Designer copies the element and
appends a number to the end of the name of the copied element.

You cannot move multiple elements with the same name to a single location.

When you copy multiple elements to another location on the same server and the
elements contain references to each other, Designer updates the references if you
have selected Update local references when pasting multiple elements preference. For
example, if you copy a folder that contains two services and one of the services
invokes the other, Designer will update the reference to the invoked service.

Guidelines for Moving and Copying Services
When you move or copy a service, Designer does not move/copy any output
templates that are associated with that service.

If you move a service, or a folder containing a service, Designer retains the service’s
explicit universal name. If you copy a service or a folder containing a service,
Designer does not retain the service’s explicit universal name. You must restore the
universal name by editing the service’s properties. For more information, see "About
Universal Names and Document Types" on page 545.

When you move or copy a Java service, Designer automatically recompiles the
service and any Java services that remain in the source folder. When you delete a
Java service, Designer recompiles any Java services that remain in the source folder.

You cannot move or copy a Java service to a folder that contains other Java services
that are system locked or locked by another user. If you aempt to do so, Designer
cancels the entire move/copy action.

When you move or copy a Java service, Designer will also move or copy the service’s
Shared fields to the destination folder, unless the destination folder already contains

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 63

Shared fields with different values. In this case, you must first manually copy the
Shared fields into the destination folder and then move or copy the Java service

Guidelines for Copying Elements Between Servers
You cannot copy or move a web service descriptor element between servers.

When you cut and paste or drag elements between servers, Designer retains a copy
of the elements on the source server. That is, a move (cut and paste or drag) action is
the same as a copy action.

Designer does not automatically copy an element’s references to the destination
server. Instead, it displays a dialog box after the copy alerting you to any unresolved
references. You must copy the references to the destination server manually.

Designer does not automatically update references when copying across servers.
Therefore, if you are copying multiple elements from one server to another using
Designer and the elements reference each other, you should paste the elements into a
location with the same name on the destination server.

If you are copying an add-in element that has a component that resides on the
server, and the destination server does not have that add-in component installed,
Designer displays an error message stating that you are aempting to copy an
unknown element. Designer does not copy the add-in elements but does copy other
elements in the selection. Elements you copy to a folder on a different server adopt
the ACL access permissions of the destination folder, even if they had explicitly
assigned ACLs on the source server. Folders you copy to a package on a different
server inherit the default ACLs for top-level folders.

When you copy a webMethods messaging trigger to another server, the trigger will
be pasted in a disabled state. To create the subscriptions identified in the trigger, you
must enable the trigger. When you copy a package to another server, the triggers
contained in the package will maintain their original state.

If you are configuring a cluster, use the package replication feature in the Integration
Server Administrator to populate the cluster nodes. See webMethods Integration Server
Administrator’s Guide for more information about this feature.

When you move or copy a publishable document type to a destination on the
same server, the moved or copied document type remains publishable. When
you copy a publishable document type to a different server, Designer converts the
publishable document type to an IS document type on the destination server. For
more information about making IS document types publishable and synchronizing
them with Broker document types, see "Working with Publishable Document Types"
on page 546.

Tip: To retain the status of a publishable document type and its link to a Broker
document type, use the package replication functionality in the Integration
Server Administrator instead of using Designer to move or copy the
package containing the publishable document type. For information about
package replication, see webMethods Integration Server Administrator’s Guide.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 64

Notes for Moving and Copying Adapter Notifications and Related
Elements

Although you cannot move an adapter notification’s publishable document type
without also moving its associated adapter notification, you can copy it. If you do so,
the copied document type remains publishable but is no longer associated with the
adapter notification.

When you move or copy an adapter notification, Designer also moves/copies its
associated publishable document type and prompts you to indicate whether to
move/copy the associated Broker document type.

You cannot move or copy adapter notifications, adapter notification publishable
document types, or adapter services across servers. If you are selecting multiple
elements and your selection contains any of these elements, Designer alerts you that
the move/copy action cannot be completed.

You cannot move or copy a listener or connection element.

Renaming Elements
When renaming elements, keep the following points in mind:

You can rename any elements for which you have Write access to the element and
its parent folder. When renaming a folder, you must also have Write access to all
elements within the folder. For more information about Write access and ACLs
assigned to elements, see "Assigning and Managing Permissions for Elements" on
page 83.

When you rename a folder, Designer automatically renames all of the elements in
that folder (that is, changes their fully qualified names).

If the folder you want to rename contains elements with unsaved changes, you must
save the changes before you can rename the folder.

Element names must be unique across all packages. If you try to rename an element
using a name that already exists, Designer reverts the element back to its original
name.

When you rename an adapter notification, Designer also renames its associated
publishable document type and prompts you to indicate whether to rename the
associated Broker document type.

You cannot rename a listener or connection element.

When you rename a publishable document type, Designer checks for dependents
such as triggers and services that use the publishable document type. (Designer
performs dependency checking only if you select the Prompt before updating
dependents when renaming/moving preference.) If Designer finds elements that use
the publishable document type, Designer gives you the option of updating the

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 65

publishable document type name in each of these elements. If you do not update the
references, all of the references to the publishable document type will be broken.

Important: You must manually update any services that invoke the pub.publish services
and specify this publishable document type in the documentTypeName or the
receivedDocumentTypeName parameter.

To rename an element

1. In Package Navigator view, select the element that you want to rename. Right-click
the element and click Rename.

2. If the element you want to rename contains unsaved changes, Designer alerts you
that the element cannot be renamed until you save the changes. Click OK to close the
alert dialog box. Then, save the changes and repeat the rename action.

3. Edit the name and press ENTER.

If an element already exists with that name at the same level, Designer displays a
message alerting you that the rename action could not be completed. Click OK to
close the message dialog box and repeat the rename action.

4. If you selected the Prompt before updating dependents when renaming/moving check box
in the Package Navigator preferences and any dependent elements on the current
server contain unsaved changes, Designer alerts you to save the elements that will be
affected by the rename action. Select the elements and click OK to save the changes or
Cancel to cancel the entire rename action.

5. If the Move and Rename Dependencies dialog box appears, do one of the following:

To... Click...

Rename the selected element in Package Navigator view
and update references to dependent elements

Update Usages.

Rename the selected element without updating references
to dependent elements

Ignore Usages.

Cancel the entire rename action Cancel.

For more information about dependency safeguards, see "Configuring Dependency
Checking for Elements" on page 57.

Deleting Elements
When deleting elements, keep the following points in mind:

You can delete any elements to which you have Write access for the element and
its parent folder. When deleting a folder, you must also have Write access to all

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 66

elements within the folder. For more information about Write access and ACLs
assigned to elements, see "Assigning and Managing Permissions for Elements" on
page 83

When you delete a folder or the last Java service in a folder, Designer also deletes the
shared source for that folder. If you cancel the delete action, no elements (including
non-Java service elements) are deleted.

You can only delete an adapter notification’s publishable document type if you
delete its associated adapter notification.

When you delete an adapter notification, Designer also deletes its associated
publishable document type and prompts you to indicate whether to delete the
associated Broker document type.

You cannot delete a listener or connection element.

If you delete a dictionary, the dependency manager will list all flat file schemas
and dictionaries that will be impacted by the deletion, and prompts you to confirm
the deletion. However, it does not identify the names of the records, fields, or
composites that reference the dictionary; that is your responsibility.

If you delete a publishable document type, Designer prompts you to keep or delete
the associated Broker document type.

If you delete a publishable document type and Broker document type associated
with a trigger or a flow service, you might break any integration solution that
uses the document type.

If you delete the Broker document type, you might negatively impact any
publishable document types created from that Broker document type on other
Integration Servers. When the developers synchronize document types with
Broker and they choose to Pull fromBroker, publishable document types associated
with the deleted Broker document type will be removed from their Integration
Servers.

To delete elements

1. In Package Navigator view, select the elements that you want to delete.

2. Select Edit > Delete.

3. If you have selected the Confirm before deleting check box in the Preferences dialog box
for Package Navigator view, do the following:

a. If any elements on Integration Server have unsaved changes, Designer prompts
you to save changes. Select the elements whose changes you want to save and
click OK.

b. If other elements are dependents of the elements you are deleting, Designer
indicates which items will be affected by the deletion.

c. If you are deleting a publishable document type, Designer prompts you to keep
or delete the associated Broker document type. Do one of the following:

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 67

To... Do this...

Delete the publishable document type
on Integration Server but leave the
corresponding document type on the
Broker

Clear the Delete
associatedBrokerdocument type on
theBroker check box.

Delete the publishable document
type on Integration Serverand the
corresponding document type on the
Broker

Select the Delete
associatedBrokerdocument type on
theBroker check box.

d. Click Continue to delete the selected elements.

4. If you did not select the Confirm before deleting preference and one of the elements
that you want to delete is a publishable document type, Designer prompts
you to keep or delete the associated Broker document type. Select the Delete
associatedBrokerdocument type on theBroker check box, if you want to delete the
publishable document type and the Broker document type. Click OK.

Finding Dependents and References
Before performing an action on a selected element, you can determine whether other
elements will be affected by the change by finding dependents and references of the
element. In Designer, a dependent is an element that uses a selected element, and a
reference is an element that is used by a selected element.

What Is a Dependent?
To determine how a selected element is used by other elements on the server, you can
find dependents of the selected element. A dependent is an element that uses a selected
element. For example, suppose that the flow service ServiceA invokes the flow service
receivePO. The ServiceA service uses the receivePO service. This makes ServiceA a dependent of
the flow service receivePO. If you delete receivePO, ServiceA will not run.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 68

Dependent elements

During debugging, you might want to locate all of the dependents of a given service
or IS document type. Or, before editing an IS document type, you might want to know
what elements, such as specifications, webMethods messaging triggers, or flow services,
will be affected by changes to the IS document type.

In addition to finding a dependent IS element, Designer also finds the Dynamic Server
Pages (DSPs) that depend on the service. For example, suppose that the DSP page
myPage.dsp resides in Integration Server_directory\instances\instance_name \packages
\myPackage\pub and uses the service myFolder:submitMyPage. If you find dependents for
the myFolder.submitMyPage service, Designer also returns the following as a dependent:

Integration Server_directory\instances\instance_name\ \packages\myPackage\pub
\myPage.dsp

Note: Designer does not consider a Java service that invokes another services to
be a dependent. For example, if Java service A invokes service B, and you
instruct Designer to find dependents of service B, service A will not appear as
a dependent.

Finding Dependents
To find dependents of a selected element

1. In Package Navigator view, right-click the element for which you want to find
references and select Find Dependents.

2. If any elements on Integration Server have unsaved changes, Designer prompts you
to save changes. Select the elements whose changes you want to save, and then click
OK.

Designer displays the dependents of the selected element on the Search view.

3. After Designer finds the dependents of the selected element, you may do either of
the following:

To jump to an element in Package Navigator view, right-click that element in the
results, and select Show In > Package Navigator.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 69

To see all dependents of a found dependent click next to the item in the results
list.

What Is a Reference?
To determine how a selected element uses other elements on the server, you can
find references of the selected element. A reference is an element that is used by a
selected element. For example, the flow service ServiceA invokes the services receivePO,
pub.schema:validate, processPO and submitPO. Additionally, in its input signature, ServiceA
declares a document reference to the IS document type PODocument. The services
receivePO, validate, ProcessPO, and SubmitPO, and the IS document type PODocument, are
used byServiceA. The elements receivePO, validate, ProcessPO, SubmitPO, and PODocument are
references of ServiceA.

Elements as references

During debugging of a complex flow service, you might want to locate all of the
services, IS document types, and specifications used by the flow service. Use the Find
References command to locate the references.

You can also use the Find References command to locate any unresolved references. An
unresolved reference is an element that does not exist in the Package Navigator view yet
is still referred to in the service, IS document type, or specification that you selected.
The element might have been renamed, moved, or deleted. To prevent unresolved
references, specify the dependency checking safeguards. For more information about
these safeguards, see "Configuring Dependency Checking for Elements" on page 57.

Note: Designer does not consider document references to schema types to be
references, nor does it consider services invoked within a Java service to be
references of the Java service. For example, if Java service A invokes service B,
and you instruct Designer to find references for service A, service B will not
appear as a reference of A.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 70

Finding References
To find references of a selected element

1. In Package Navigator view, right-click the element for which you want to find
references and select Find References.

2. If any elements on Integration Server have unsaved changes, Designer prompts you
to save changes. Select the elements whose changes you want to save, and then click
OK.

Designer displays the references of the selected element on the Search view.

3. After Designer finds the references of the selected element, you may do either of the
following:

To jump to an element in Package Navigator view, right-click that element in the
results, and select Show In > Package Navigator.

To see all references of a found reference, click next to the item in the results
list.

Inspecting Pipeline References
A pipeline reference is where a variable in a document reference or document reference
list in Pipeline view is linked to another variable, assigned a value, or dropped.
For example, in its input signature, ServiceA declares a document reference to the IS
document type PODocument. If ServiceA contains an INVOKE or MAP step in which a
variable in the document reference is linked to another pipeline variable, then that link is
a pipeline reference. In the following illustration of the Pipeline view, the link between
PONum and num is a pipeline reference.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 71

Pipeline reference

Pipeline references are also those locations where you modify the value of a variable
in a document reference or document reference list by assigning a value using or
dropping a value using on the Pipeline view toolbar. The following image of Pipeline
view identifies these types of pipeline references.

Examples of pipeline references

When you edit an IS document type, the changes affect any document reference and
document reference list variables defined by that IS document type. The changes
might make pipeline references invalid. For example, suppose the input signature
for ServiceA contains a document reference variable POInfo based on the IS document
type PODocument. The IS document type PODocument contains the field PONum . In the
pipeline for ServiceA, you link the PONum field to another pipeline variable. If you edit

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 72

the PODocument IS document type by deleting the PONum field, the pipeline reference
(the link) for the field in the ServiceA pipeline is broken (that is, it is invalid) because the
pipeline contains a link to a field that does not exist.

When you edit an IS document type, you might want to check all dependent pipeline
modifiers for validity. You can use the Inspect Pipeline References command to locate any
broken or invalid pipeline references. You can use this command to:

Search for invalid pipeline references in a selected flow service.

Search for invalid pipeline references involving document reference and document
reference list variables defined by a selected IS document type.

Inspecting Pipeline References
When inspecting pipeline references, keep the following points in mind:

You can inspect pipeline references in a selected flow service. You can also inspect
pipeline references for document reference or document reference list variables
based on a selected IS document type. The search results include only flow services,
document reference variables, or document reference list variables that contain
invalid pipeline modifiers.

Values assigned to document reference or document reference list variables in the
pipeline are not considered pipeline references. That is, when a value is assigned to
a document reference or document reference list variable using on the Pipeline
view toolbar, Designer does not treat the assigned value as a pipeline reference.

The search results will not show data type and dimensionality mismatches. For
example, suppose that you link a String named Number to the PONum String list
within the document reference PODocument . This dimensionality mismatch will not
appear in the search results.

When you inspect pipeline references in a flow service, Designer inspects references
across all packages on Integration Server.

When you inspect pipeline references for an IS document type, you can inspect
references across a specific package or all packages.

To inspect pipeline references

In Package Navigator view, right-click the flow service or IS document type for
which you want to find invalid pipeline references and select Inspect Pipeline References.

The Search view displays all invalid pipeline references for the selected service or IS
document type.

If you inspected a flow service, the search results contain all of the document
references that have invalid pipeline references in that flow.

If you inspected an IS document type, the search results contain all of the flow
services that have invalid pipeline references to that IS document type.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 73

After Designer finds the pipeline references of the selected element, you can jump to
an element in Package Navigator view. Right-click that element in the results, and
select Show In > Package Navigator.

Finding Elements
You can find elements and fields within Designer using the following methods:

Searching for elements in the Package Navigator view. When creating and editing
elements, you might lose track of where you saved certain elements. For example,
suppose that you do not remember the folder to which you saved a service called
Test. You can use either the Search dialog box or the Open Integration Server Element
dialog box to search for elements.

Locate an invoked service from the editor. You can highlight the location of an invoked
service in the Package Navigator view. This is especially helpful when working with
a flow wrien by another party or complex flows that make multiple invokes.

Locate a referenced document type from the editor. You can highlight the location of a
referenced document type in the Package Navigator view. This is especially helpful
when working with services with complex signatures, mapping data, or working
with flow services wrien by other developers.

Linking open editors. If you have a lot of elements open, you might want to quickly
bring the editor for an element to the top of the stack of open editor views.

Searching for Elements in Package Navigator

Note: You cannot search for Trading Networks (TN) document types on Integration
Server.

To search for elements in Package Navigator

1. In Designer: Search >Integration Server.

2. In Search string, type any portion of the fully qualified name of the element that you
want to find. You can also use valid Perl regular expressions to specify the search
string.

Note: The search is case sensitive. Be sure to use the appropriate combination of
upper and lower case leers while specifying the search string.

3. In the Search on this server only list, select the Integration Server to which you want to
limit the scope of the search.

4. If you want to limit the scope of the search to a specific package, select the package in
the Search in this package only list.

5. Click Search.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 74

Performing a Quick Search of Elements in Package Navigator
You can quickly search for an element in an Integration Server that you are connected to
using the Open Integration Server Element dialog box. You can search for an element in
only one Integration Server at a time.

You can use asterisks (*) to search for any string and question mark (?) to search for
any character in the Open Integration Server Element dialog box. You can also use
appropriate uppercase or mixed case leers to specify search paerns. For example:

Specify PO for element names such as ProcessOrders, which contain the leers "P"
and "O".

Specify GePrO for element names such as GetProcessOrders, which contain the leers
Ge, Pr, and O.

To perform a quick search of elements

1. Right-click anywhere in the Package Navigator view and select Open Elements from
the context menu. Designer displays the Open Integration Server Element dialog
box.

2. In the Select an element to open field, type any portion of the name of the element that
you want to open. Designer displays the list of elements in the Integration Server
that correspond to the name or search paern you type.

3. Select the element and click Open to open the element in the editor. To select multiple
elements, press the CTRL key while selecting.

Note: You can also select an element and click Show in > Package Navigator to
locate the element in Package Navigator view.

Locating Invoked Services
To locate an invoked service

1. In the flow editor, select the INVOKE step containing the service you want to locate.

2. Select Navigate > Show In > Package Navigator. Designer locates and selects the service in
Package Navigator view.

Locating Referenced Document Types
To locate a referenced document type

1. In the editor, select the document reference that you want to locate.

2. Select Navigate > Show In > Package Navigator. Designer locates and selects the IS
document type in the Package Navigator view.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 75

Linking Open Editors
To link open editors

1. On the Package Navigator toolbar, click .

2. In Package Navigator view, select the element whose editor you want to view. If
the element is open, Designer brings its editor to the front. Designer displays the
element in the navigation tree as you select the editor for that element.

Filtering Displayed Elements
You can filter the Package Navigator view to display only elements of a specified type.

To filter the displayed elements

1. On the Package Navigator toolbar, click .

2. In the Choose Elements to Display dialog box, do one of the following:

To display all elements, select Show all elements.

To display only specific types of elements, select Show selected elements only.
Then, select the elements that you want to display in Package Navigator view.

3. If you want to filter services that Integration Server generates automatically, select
the Hide generated flow services check box.

4. Click OK.

Hiding or Displaying Automatically Generated Flow Services
When you create a step in a process using the Process Development perspective,
Integration Server automatically generates flow services for each step. You can instruct
Designer to hide or display these automatically generated flow services in Package
Navigator view.

To hide or display automatically generated flow services

1. In Designer, click Window > Preferences.

2. In the Preferences dialog box, select Software AG>Service Development> Package
Navigator.

3. To hide flow services automatically generated by Integration Server, select the Hide
generated flow services check box. To show automatically generated flow services,
clear the Hide generated flow services check box.

4. Click OK.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 76

Creating Working Sets
A working set is a subset of elements on one or more Integration Servers. You can create
a working set to limit the contents of Package Navigator to only those elements you
want to see and work with.

To create a working set

1. On the Package Navigator toolbar, click and select Select working set.

2. In the Select Working Set dialog box, click New.

3. In the New Working Set dialog box, select Integration ServerElements. Click Next.

4. In the Working Set Name field, enter a name for the working set.

5. Under Working Set Content, select the elements to add to the working set. Click Finish.

6. If you want to use the new working set, in the Select Working Set dialog box, select the
working set and click OK. Otherwise, click Cancel.

Caching Elements
You can improve performance in Designer by caching Package Navigator elements that
are frequently used. When elements are located in the Designer cache, Designer does not
need to request them from the Integration Server and can therefore display them more
quickly.

Keep in mind that increasing the cache reduces the amount of available memory. If you
experience memory problems, consider decreasing the number of cached elements.

To cache elements

1. In Designer, click Window > Preferences.

2. In the Preferences dialog box, select Software AG>Service Development> Package
Navigator.

3. In the Number of elements to cache field, type the number of elements that you want to
cache per Designer session. The total number of cached elements includes elements
on all the Integration Servers to which you are connected.

The minimum number of elements is 0. The default is 100 elements. The higher the
number of elements, the more likely an element will be in the cache, which reduces
network traffic and speeds up Designer.

4. Click OK. The caching seings take effect immediately.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 77

Clearing the Designer Cache
When you clear the Designer cache, you remove Package Navigator view elements from
the memory for all servers. The following elements are not removed:

Flow services with breakpoints. (If you want to clear the flow service from the cache,
remove the breakpoint and clear the cache again.)

Flow services that are currently being debugged (for example, a service that has been
stepped into.)

Unsaved elements.

Keep in mind that the cache is automatically cleared when you close Designer or when
you refresh your connection to Integration Server.

To clear the Designer cache

1. In Designer, click Window > Preferences.

2. In the Preferences dialog box, select Software AG>Service Development> Package
Navigator.

3. Click Clear Cache. All cached elements are removed from memory.

Note: Clearing cached elements from Designer is different from clearing the
contents of the pipeline from Integration Server cache. If you want to clear the
contents of the pipeline from a server’s cache, see "About Service Caching" on
page 171.

Exporting Elements
Folders or elements in a package, can be exported to your hard drive so that they can
be shared with partners or developers. A folder or element is exported to a ZIP file and
saved on your hard drive. The ZIP file can then be unzipped into the ns directory of a
package on the server. Locking information is not exported.

To export an element or folder

1. In Package Navigator view, select the folder or element that you want to export to
your hard drive.

2. Right-click the element or folder and click Export from Server.

3. In the Save As dialog box, select the location on your hard drive where you want the
exported element or folder to reside. Click Save.

This exports the element or folder to a ZIP file and saves it on your hard drive. The
ZIP file can then be published on another server.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 78

Note: The Export from Server option is not the same as the File > Export option. With
File > Export, you can export files from the Workbench to the file system.

Viewing Server Files for an Element
You can view the names of the server files associated with every Integration Server
element. This is convenient when an element is system locked and you need to convey
the element’s file names to the server administrator.

To view server files for an element

1. In the Package Navigator view, select the elements for which you want to view the
server file names.

2. Right-click the element and click Lock Properties.

The Lock Contents Results dialog box shows the server files associated with the
element. These server files are system locked (that is, they are not writable on the
server).

Using Property Templates with Elements
Element property templates are sets of pre-defined property values for elements. You
can create a template for a particular element and apply the template when creating
new instances of the element instead of seing the properties each time you create an
element. You can create multiple templates for an element type.

Each element has a default properties template associated with it. The default template
of an element applies the default property values to the element. You cannot modify
default templates. If you do not apply any template to an element, Designer applies the
default template to the element. You can reset an element to its default property values
by applying the default template.

Note: You can create property templates for flow, C/C++, and Java services.

Creating Property Templates
To create an element property template

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG>Service Development> Element
Property Templates.

3. Click New. In the New Template dialog, enter the following information:

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 79

Field Description

Name Name of the template.

Element Type The element type for which you are creating the template.

Note: You can create property templates for flow, C/C++, and
Java services.

Description Description of the template.

Template
Properties

Next to each property, specify the value you want to use in the
template. For each property, Designer displays a default value.
You can edit the fields and specify values for the properties.
For more information about specifying the properties, see
"Properties" on page 949.

Note: You will not be able to specify values for properties that
must be unique for each element such as Universal name
and Output template when defining templates.

4. Click OK.

5. In the Preferences page, click OK.

Applying Property Templates to Elements
You can apply property templates to existing elements. You can also reset an element to
its default property values by applying the default template.

To apply an element property template to an existing element

1. In the Package Navigator view, right-click the element to which you want to apply
the property template and select Apply template.

2. Do one of the following:

a. Select the template that you want to apply to the element.

b. Select Default to apply the default template to the element.

Editing Property Templates
You can change the values of the properties specified in an element property template
definition by editing it.

M
Even Header

Working with Elements

webMethods Service Development Help Version 9.10 80

To edit an element property template

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG>Service Development> Element
Property Templates.

3. Select the property template that you want to edit.

4. Click Edit.

5. In the Edit Template dialog, enter new values for the properties that you want to
change and click OK.

6. In the Preferences page, click OK.

Deleting Property Templates
To delete an element property template

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG>Service Development> Element
Property Templates.

3. Select the property template that you want to delete.

4. Click Remove.

5. In the Preferences page, click OK.

Note: When you delete a template, the elements that use the deleted template will
be reset to use the default template.

Importing Property Templates
You can share the templates across different instances of the Designer, through import
and export operations.

To import an element property template

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG>Service Development> Element
Property Templates.

3. Click Import.

4. In the Open dialog, navigate to and select the .xml template file you want to import.

5. Click OK to import the template. The template is added to the templates list in the
Preferences window.

M
Odd Header

Working with Elements

webMethods Service Development Help Version 9.10 81

Exporting Property Templates
You can export property template definitions to XML files so that they can be shared
across different instances of the Designer.

To export an element property template

1. In Designer: Window > Preferences

2. In the preferences navigation tree, select Software AG>Service Development> Element
Property Templates.

3. Click Export.

4. In the Save As dialog box, navigate to the folder where you want to save the exported
template definition and enter a file name. Click Save.

This exports the template definition to a .xml file.

M
Even Header

webMethods Service Development Help Version 9.10 82

M
Odd Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 83

4 Assigning and Managing Permissions for Elements

■ What Is an ACL? ... 84

■ Assigning ACLs .. 87

■ Viewing ACL Information for a Server ... 88

■ ACLs and Locking .. 89

■ ACLs and Running/Debugging Services .. 89

■ ACLs and Creating, Viewing, and Deleting Elements ... 90

■ Troubleshooting ACL Usage .. 90

M
Even Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 84

You can limit access to elements to groups of users by using access control lists (ACLs).
Typically created by a system administrator, ACLs allow you to restrict access on
a broader level. For example, if you have a production package and a development
package on the Integration Server, you can restrict access to the production package to
users in an Administrators ACL, and restrict access to the development package to users
in a Developers ACL.

Within ACLs, you can also assign different levels of access, depending on the access that
you want different groups of users to have. For example, you may want a “Tester” ACL
to only have Read and Execute access to elements. Or, you may want a “Contractor”
ACL that denies List access to sensitive packages on the Integration Server, so that
contractors never see them in Designer.

What Is an ACL?
An ACL controls access to packages, folders, and other elements (such as services, IS
document types, and specifications) at the group level. An ACL identifies groups of
users that are allowed to access an element (Allowed Groups) and/or groups that are not
allowed to access an element (Denied Groups). When identifying Allowed Groups and
Denied Groups, you select from groups that you have defined previously.

There are four different kinds of access: List, Read, Write, and Execute.

List controls whether a user sees the existence of an element and its metadata; that is,
its input and output, seings, and ACL permissions. The element will be displayed
on screens in Designer and the Integration Server Administrator.

Read controls whether a user can view the source code and metadata of an element.

Write controls whether a user can update an element. This access also controls
whether a user can lock, rename, or delete an element or assign an ACL to it.

Execute controls whether a user can execute a service or a web service descriptor.

For more details about these types of access, see webMethods Integration Server
Administrator’s Guide.

What Happens When a Client Runs a Service with ACLs?
When a client requests that Integration Server invoke a service, the server checks the
ACL assigned to the service. If the client is a member of an allowed group and is not a
member of a denied group, the server executes the service. If the client is not a member
of an allowed group, the server denies the request to invoke the service and stops
executing.

By default, when a client requests a service, Integration Server checks only the ACL
of the externally invoked service (the service requested directly by the client). The
server does not check the ACLs of any of the internally invoked services (those services
invoked by the externally invoked service). However, you can set up the security
seings for a service so that Integration Server checks the ACL assigned to the service

M
Odd Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 85

every time it is invoked, whether directly by a client or by another service. For details, see
"Assigning ACLs" on page 87.

The following diagram illustrates the points at which ACL checking occurs when a client
requests a service.

ACL checking when a client requests a service

Stage Description

1 The client (such as another application or a DSP) requests the Purch:SubmitPO
service on the local webMethods Integration Server. Integration Server
checks the ACL of the Purch:SubmitPO service (the externally invoked
service). The server executes the service only if the client is invoking the
service on the behalf of a user that is a member of an allowed group and is
not a member of a denied group for the ACL assigned to the service.

2 The Purch:SubmitPO service invokes the Purch:LogPO service. Because the
Purch:LogPO service is invoked by the externally invoked service and is
located on the same server as the externally invoked service, Integration
Server considers the Purch:LogPO service to be internally invoked.
Consequently, the server does not check the ACL of the Purch:LogPO service
before executing it.

3 The Purch:SubmitPO service invokes the Purch:CreditAuth service. Like the
Purch:LogPO service, Integration Server considers the Purch:CreditAuth service
to be an internally invoked service. Consequently, the server does not check
the ACL of the Purch:CreditAuth service before executing it.

4 The Purch:SubmitPO service invokes the Purch:SendPO service. Like the
Purch:LogPO and Purch:CreditAuth services, Integration Server considers the

M
Even Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 86

Stage Description
Purch:SendPO service to be an internally invoked service. The server does not
check the ACL of the Purch:SendPO service before executing it.

Note: If the security seings for the Purch:LogPO, Purch:CreditAuth, or Purch:SendPO
services specify that ACL checking occurs every time the service is invoked
(Enforce execute ACL option is set to Always), Integration Server would perform
ACL checking when the externally invoked service (Purch:SubmitPO) invoked
these services. For more information about requiring ACL checking, see
"Assigning ACLs" on page 87.

Note: Any service that the Purch:SubmitPO flow service invokes could also be
invoked directly by the client. For example, if the client directly invokes the
Purch:SendPO service, the server checks the ACL of the Purch:SendPO service. If
the client is invoking the service on the behalf of a user that is a member of an
allowed group and not a member of a denied group, then the server executes
the Purch:SendPO service.

Is ACL Usage Required?
No. However, there are default ACL seings for elements shipped with Integration
Server and default seings for new elements that you create. For details on default
ACLs, see webMethods Integration Server Administrator’s Guide.

Creating ACLs
You create ACLs using the Integration Server Administrator. For details, see webMethods
Integration Server Administrator’s Guide.

ACLs and Inheritance
When you assign an ACL to a folder, it affects the subfolders and services in the folder.
The subfolders and services that do not have an assigned ACL inherit the ACLs that
you assign to the folder. (Subfolders and services with an assigned ACL are not affected
by the ACL assigned to the folder.) When a subfolder or service inherits the ACL of a
folder, “ inherited” is displayed next to the ACL in the List ACL, Read ACL, Write ACL, or
Execute ACL fields in the Permissions page of the Properties for elementName dialog box.

When you remove an ACL from a service or subfolder, the service or subfolder inherits
the ACL assigned to the folder in which the service or subfolder is located. When you
remove the ACL assigned to the top-level folder (the uppermost folder in a package),
Integration Server applies the default ACL to the folder and its contents for which an
ACL is not specified. (The default ACL restricts access to a service to any user with a
valid user name and password for the Integration Server.)

M
Odd Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 87

Default ACLs and Inheritance
If the element is a top-level folder, its default ACL is that specified by a configuration
file, not by its parent (the package). If the element is a subfolder, it shares its default
ACL seings with other folders at the same level in the folder hierarchy. For details
about inheritance, as well as the default ACLs that are installed with the webMethods
Integration Server, see webMethods Integration Server Administrator’s Guide.

Note: An element can inherit access from all elements except a package.

Assigning ACLs
You can assign an ACL to a package, folder, services, and other elements in the Package
Navigator view. Assigning an ACL restricts or allows access to an element for a group of
users.

Keep the following points in mind when assigning ACLs:

You can assign only one ACL per element.

You can only assign an ACL to an element for List, Read, or Write access if you are
a member of that ACL. For example, if you want to allow DevTeam1 to edit the
ProcessPO service, you must be a member of the DevTeam1 ACL. That is, your user
name must be a member of a group that is in the Allowed list of the DevTeam1 ACL.

The ACLs assigned to an element are mutually exclusive; that is, an element can
have different ACLs assigned for each level of access. For example, the following
element has the Developers ACL assigned for Read access and the Administrators
ACL assigned for Write access.

ACL usage is not required. For more information, see "Is ACL Usage Required?" on
page 86.

To assign an ACL to an element

1. Make sure that the ACL you want to assign exists on the Integration Server. If not,
create the ACL in the Integration Server Administrator. For details, see webMethods
Integration Server Administrator’s Guide.

2. In Package Navigator view, select the package or folder to which you want to assign
an ACL and select File > Properties. In the Properties for elementName dialog box,
select Permissions.

3. On Permissions, select the ACLs that you want to assign for each level of access.

M
Even Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 88

For this
permission...

Specify...

List ACL The ACL whose allowed member can see that the element
exists and view the element’s metadata (input, output, etc.).

Read ACL The ACL whose allowed member can view the source code
and metadata of the element.

Write ACL The ACL whose allowed member can lock, check out, edit,
rename, and delete the element.

Execute ACL The ACL whose allowed member can execute the service.
This level of access only applies to services and web service
descriptors.

4. Under Enforce execute ACL, specify when Integration Server performs ACL checking.
Select one of the following:

Select... To specify that...

When top-level
service only

Integration Server performs ACL checking against the service
when it is directly invoked from a client or DSP. For example,
suppose a client invokes the OrderParts service on server A.
After checking port access, server A checks the Execute ACL
assigned to OrderParts to make sure the requesting user is
allowed to run the service. It does not check the Execute ACL
when other services invoke OrderParts.

Always Integration Server performs ACL checking against the service
when it is directly invoked from a client as well as when it
is invoked from other services. For example, suppose the
OrderParts service is invoked from a browser, as well as by
the ProcessOrder and AddToDatabase services. If Always is set on
OrderParts, the server performs ACL checking on OrderParts
three times (once when it is invoked from the browser and
twice when it is invoked by ProcessOrder and AddToDatabase).

5. Click OK.

Viewing ACL Information for a Server
You can view the users and groups that make up the ACLs on a server.

M
Odd Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 89

To view ACL information for an Integration Server

1. In Package Navigator view, select the Integration Server.

2. Click File > Properties.

3. In the Properties for serverName dialog box, select Server ACL Information.

The Server ACL Information page lists the ACLs contained in the Integration Server
to which you are connected. This information is read only; to edit ACLs, users, and
groups, use the Integration Server Administrator.

ACLs and Locking
As explained previously, locking allows you to control access at the individual user
level, while ACLs allow you to control access by groups of users. Following are
guidelines to keep in mind as you use ACLs with locking:

To lock an element, you must be the member of the ACL that is assigned for Write
access to that element.

To lock a Java or C service within a folder, you must be the member of the ACL that
is assigned for Write access for all Java or C services in that folder. This is because
locking and unlocking actions for Java/C services are at the folder level. For details,
see "Guidelines for Locking Java and C/C++ Services" on page 96.

To edit ACL permissions for an element, you must lock the element (except for
packages and folders, which cannot be locked).

Note: When an Integration Server has the VCS Integration feature enabled, an
element is locked when it is checked out of the version control system. With
the appropriate ACL permissions, you are able to check out (lock) and check
in (unlock) elements, folders and packages.

ACLs and Running/Debugging Services
Keep the following in mind when you run and debug services:

To step through a top-level service, you must have Execute, Read, and List access to
the service.

To step through all the services within a top-level service, you must have Execute,
List, and Read access to all services invoked by the top-level service. If you do not
have access to services invoked by the top-level service, Designer “steps over” those
services. (Integration Server performs ACL checking for a child service when the
Enforce execute ACL property for the service is set to Always.) Designer executes the
top-level service and continues to the next flow step. Designer does not step into the
top-level service.

M
Even Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 90

To debug a service by sending an XML file to a service, you must have Read access
to the service.

To set a breakpoint in a service, you must have Read access to the service.

ACLs and Creating, Viewing, and Deleting Elements
Keep the following guidelines in mind when you create, view, or delete elements:

To create or paste an element, you must have Write access to its parent folder. If you
are not a member of the ACL assigned for Write access to the folder, contact your
server administrator.

To copy an element, you must have Read access to it and Write access to its parent
folder.

To rename or delete an element, you must have Write access to it and its parent
folder.

To copy a package, you must be a member of a group assigned to the Replicators
ACL.

When you create a folder and assign an ACL to it, any elements that you create
within that folder inherit its ACL, until you explicitly set the ACL to something else.
For details about inheritance, see webMethods Integration Server Administrator’s Guide.

You may not see all of the elements on the Integration Server in the Package
Navigator view because you may not have List access to all of them. You can only
see those elements to which you have at least List access.

Troubleshooting ACL Usage
I receive a “Cannot perform operation without Write ACL privileges” message when I try to create an
element.
You are not a member of the ACL assigned to the folder in which you want to save the
element. To verify, check the Permissions specified in the Properties for elementName
dialog box. If you had previously been able to save the element, the ACL seings
may have changed on the server since you last saved it. For more information, see
"Troubleshooting" on page 100 section in Locking and Unlocking Elements.

I receive an “element already exists” message when I try to create an element.
There may be an element with the same name on the Integration Server, but you may
not be able to see it because you do not have List access to it. Try a different element
name, or contact your server administrator.

I can’t assign an ACL to an element.
Make sure that you have locked the element and that you are a member of the List,
Read, or Write ACL that you want to assign. To verify, select the Integration Server
and click File > Properties. In the Properties for serverName dialog box, select Server

M
Odd Header

Assigning and Managing Permissions for Elements

webMethods Service Development Help Version 9.10 91

ACL Information. Integration Server. The Server ACL Information page lists the ACLs
contained in the Integration Server to which you are connected. This information is read
only; to edit ACLs, users, and groups, use the Integration Server Administrator.

I can’t see the source of a flow or Java service. However, I can see the input and output.
You do not have Read access to the service. Contact your server administrator to obtain
access.

I receive an exception when I try to lock an element.
The element may be locked by someone else, system locked (marked read only on the
server), or you may not have Write access. Refresh the Package Navigator view. If a
lock is not shown but you still cannot lock the element, reload the package. In addition,
make sure that you are a member of the ACL assigned for Write access to the element.
To verify, select the element and click File > Properties. Select Permissions in the Properties
for elementName dialog box.

I receive an error when I debug a service.
You must have a minimum of Read access to step through a service. If you don’t have
Read access to the service when you are stepping through, or stepping into a service,
you will receive an error message.
If you do have Read access to a service but you do not have Read access to a service
it invokes, Designer “steps over” the invoked service but does not display an error
message.
You must also have Read access to a service to set a breakpoint in the service or send an
XML document to the service.

I receive an exception when I try to go to a referenced service from the pipeline.
You do not have List access to the referenced service. Contact your server administrator.

I receive a “Couldn’t find in Package Navigator view” message when I try to find a service in the
Package Navigator view. However, I know it is on the Integration Server.
If you do not see the service listed in the Package Navigator view, you probably do not
have List access to that service. Contact your server administrator.

I can’t copy and paste a Java service.
Check to make sure that you have Write access to all Java services in the folder into
which you want to paste the service, as well as Write access to the folder itself.

M
Even Header

webMethods Service Development Help Version 9.10 92

M
Odd Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 93

5 Locking and Unlocking Elements

■ What Is a Lock? ... 94

■ About Locking Elements .. 95

■ Viewing the Status of Locked Elements .. 98

■ Copying, Moving, or Deleting Locked Elements .. 99

■ Unlocking Elements .. 99

■ Troubleshooting .. 100

M
Even Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 94

In Software AG Designer, you can manage changes to elements during development
by locking them. This prevents two different users from editing an element at the
same time. You can lock elements such as flow services, Java services, schemas, and
specifications.

All elements in Designer’s Package Navigator view are read-only until you lock them.
You can edit an element only if you own the lock on the element. However, you can use
and run a service regardless of its lock status, as long as you have Execute access to the
service.

Local locking on Integration Server is the default locking mode of Integration Server and
Designer.

If you enable Designer’s VCS Integration feature, elements are locked and unlocked
when you check them out of or into your version control system repository. When
an Integration Server has the VCS Integration feature enabled, system locking is
effectively disabled for elements that are checked into the version control system.
The VCS Integration feature will override any read/write status changes applied
manually by a server administrator. For more information about implementing
the VCS Integration feature, see Configuring the VCS Integration Feature in the
Software AG_directory_documentation directory.

Note: If you are using the local service development feature in Designer, the locking
mode must be set to system. To do so, set the wa.server.ns.lockingMode
parameter to system.

What Is a Lock?
A lock on an element prevents another user from editing that element. There are two
types of locks: user locks and system locks. When an element is locked by you, you have a
user lock. The element is read-only to all other users on the Integration Server. Another
user cannot edit the element until you unlock it.

When an element’s supporting files (node.xml, for example) are marked read-only on
the Integration Server, the element is system locked. For example, the server administrator
has the ability to mark an element’s supporting files on the server as read-only, in which
case they are system locked. To edit the element, you must ask the server administrator
to remove the system lock (that is, make the element’s files writable), and then you must
reload the package in which the element resides.

Elements are shown in the following ways in Designer’s Package Navigator:

Element Status Can I edit? How do I gain rights to edit?

Not locked No Right-click the element and
then select Lock.

M
Odd Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 95

Element Status Can I edit? How do I gain rights to edit?

Locked by you Yes N/A

Locked by another
user

No Contact the user to unlock.

Locked by the system No Contact the server
administrator to unlock.

About Locking Elements
Before you edit an element, you must lock it. Locking ensures that you are the only
person working on a particular element at a time, preventing the loss of changes.
Elements can only be locked by one user at a time. If the element you need is already
locked, request that the current owner of the lock release it. If the element is system
locked, request that the server administrator release it by making the corresponding
server files writable.

Elements are locked by webMethods user name (the name you use to log on to the
Integration Server). Because of this, it is important that you use a distinct user name to
log on to the server. If you change user names, you will be unable to edit or unlock items
that you locked using your old user name.

Locking Elements in Designer
When locking elements, keep the following points in mind:

When you create a new element, it is locked automatically for you.

In order to lock an element, you must have Write access rights to it. For details, see
"Assigning and Managing Permissions for Elements" on page 83.

When you lock an element, Designer obtains and locks the latest version of the
element that has been saved on the webMethods Integration Server.

Elements generated by a service (including an adapter service) are not locked
automatically.

When you select multiple elements to lock, some elements in the selection may not
be available to lock because they may be system locked, locked by another user,
elements to which you do not have Write access, or elements that cannot directly be
locked. Designer will notify you that these elements cannot be locked and will lock
the rest.

M
Even Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 96

When you lock an adapter notification, Designer also locks its associated publishable
document type. You cannot directly lock the publishable document type associated
with an adapter notification.

When you lock a folder or package, you only lock existing, unlocked elements within
it. Other users can still create new elements in that folder or package.

When you lock a Java or C/C++ service, Designer locks all other Java or C/C++
services within the folder. This means that other users cannot create Java and C/C+
+ services in a folder or package that contains the Java or C/C++ services. To create
these services, all existing Java and C/C++ services in the folder must be unlocked
and the user must have Write access to all Java and C/C++ services in the folder. For
details, see "Guidelines for Locking Java and C/C++ Services" on page 96.

You cannot lock a listener or connection element.

To lock an element

1. In the Package Navigator or in the editor, select the elements that you want to lock.

2. Right-click the elements and then click Lock.

If the elements were successfully locked, a green check mark appears next to their
icons in Package Navigator view. If one or more of the elements could not be locked
(for example, if they are system locked, locked by another user, or elements to which
you do not have Write access), Designer displays a dialog box listing them. For
information about troubleshooting lock problems, see "Lock and Unlock Problems"
on page 100.

Guidelines for Locking Java and C/C++ Services
When you lock Java and C/C++ services, there are special considerations to keep in
mind.

Locking and unlocking actions on Java and C/C++ services are folder-wide. All Java and C/C
++ services in a folder share the same .java and .class files on the Integration Server.
These files, located in the \code subdirectory of a package, correspond to all services
(except flow services) in a folder. Therefore, when you lock a Java/C service, all Java/
C services in that folder are locked.

For example, if you lock a Java service in a folder A, all Java and C/C++ services in
folder A are locked by you. Similarly, if another user has locked a Java service in
folder B, you cannot add, edit, move, or delete any Java or C/C++ services in folder B.

Locking actions on Java and C/C++ services are ACL dependent. If you want to lock one or
more Java or C/C++ services within a folder, you must have Write access to all Java
and C/C++ services in that folder. This is because Java and C/C++ services within a
folder share the same .java and .class files.

The jcode development environment operates independently of locking. If you use jcode to
develop Java services, you do not have the locking functionality that is available in
the Integration Server. When you use jcode, you may compile a service that is locked

M
Odd Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 97

by another user, overwriting that user’s changes to the service. Therefore, if you use
jcode, do not use the locking features in the Integration Server.

Before you save a Java or C/C++ service, multiple corresponding files must be writable on the
server.A single Java or C/C++ service corresponds to the following files:

.java

.class

.ndf

.frag (may not be present)

Before you save a Java or C/C++ service, all of the preceding files must be writable.
Therefore, make sure that all system locks are removed from those files before
saving.

Guidelines for Locking Templates
A template can be used with one or more services on the Integration Server. Currently,
you cannot lock a template as an entity, only the service to which it is aached.
Following are considerations for working with templates in a cooperative development
environment.

To create or edit a template for a service, you must have the service locked.

The template for a service can change without your knowledge. Since a template can be
aached to one or more services, keep in mind that a shared template can change
without your knowledge. For example, if your template is aached to a service that
another user locks and edits, that user can change your template.

System Locking Elements
If you are a server administrator, you can system lock an element by using the server’s
file system to make the element’s supporting server files read-only. If you do not know
the names of the files that correspond to a particular element, use the Lock Properties
command from the right-click menu. For details, see "Viewing Lock Status of Elements"
on page 98. Usually, a system lock is not reflected in Software AG Designer or the
Integration Server Administrator until you reload the package in which the element
resides.

Important: Before you system lock an element, always verify that it is not locked by a
user on the Integration Server. If an element becomes system locked while a
user is editing it, the user will not know until he or she tries to save changes
to the element. If this occurs, make the element’s corresponding files writable
on the server. After this is done, the user can save his or her changes to the
element.

Note: System locking is not supported if you are running webMethods Integration
Server as root on a Unix system.

M
Even Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 98

Viewing the Status of Locked Elements
The lock status of an element tells you whether an element is available for locking. If an
element is locked, the lock status tells you who owns the lock and when they locked it.

When viewing an element’s lock status, keep the following points in mind:

If the element has been system locked since you last reloaded the package, Designer
will not show the system lock status in the Lock Properties dialog box until you
reload the package.

When another user unlocks an element, you must refresh the Package Navigator
to reflect the updated status. Similarly, when the server administrator removes a
system lock from an element, you must reload the package in which the element
resides to reflect the updated status.

Viewing Lock Status of Elements
You can view the lock status of an element in Package Navigator view.

To view the lock status of an element

In Package Navigator view, right-click the element for which you want to view the
status, and then click Lock Properties.

The Lock Contents Results dialog box displays the following information about the
locked element:

The person who owns the lock on the element.

The host on which the locked element resides.

The date the element was locked.

A list of server-side files that are part of the element.

Listing All of Your Locked Elements
You can view a list of all the elements that are locked by you in the Package Navigator
view.

To list all of your locked elements

1. In Package Navigator view, select the server for which you want to view your locked
elements.

2. Click File > Properties > My Locked Elements.

You can unlock individual elements from the My Locked Elements page by pressing
the CTRL key as you click each element and then clicking Unlock. You can unlock all

M
Odd Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 99

elements by clicking Unlock All. For more information about unlocking elements, see
"Unlocking Elements" on page 99.

Copying, Moving, or Deleting Locked Elements
You can copy a locked element to another folder or package. However, you cannot
move, rename, or delete an element unless it is locked by you or unlocked.

Unlocking Elements
After you edit an element and save changes to the server, you should unlock it to make
it available to other users. There are several ways to unlock elements, depending on
whether you are a member of the Developers ACL or the Administrators ACL. If you are
a developer, you can unlock elements in Designer. If you are an administrator, you can
unlock elements in the Integration Server Administrator as well as in Designer.

Unlocking Elements in Designer
You must explicitly unlock elements. Disconnecting from the server does not unlock
your element(s), because locks are maintained from session to session.

When unlocking elements, keep the following points in mind:

Save changes to the elements before you aempt to unlock them.

When you unlock a single Java or C service, Designer unlocks all other Java or C
services within the folder. For details, see "Guidelines for Locking Java and C/C++
Services" on page 96.

If a Java or C service in a folder has unsaved changes, you will not be able to unlock
other Java or C services within that folder. Save the changes and then unlock the
services.

When you unlock an adapter notification, Designer also unlocks its associated
publishable document type. You cannot directly unlock the publishable document
type associated with an adapter notification.

You cannot unlock a listener or connection element.

To unlock elements using Designer

1. In Package Navigator view, select the elements that you want to unlock.

2. Right-click the elements and then select Unlock.

3. If the elements you want to unlock contain unsaved changes, Designer alerts you
that the elements cannot be unlocked until you save the changes. Click OK to close
the alert dialog box. Then, save the changes and repeat the unlock action.

M
Even Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 100

4. If one of the elements you selected to unlock is a publishable document type
associated with an adapter notification, and you did not also select the adapter
notification, Designer alerts you that the elements cannot be unlocked. Click OK to
close the alert dialog box. Then, reselect the elements (including the appropriate
adapter notifications) and repeat the unlock action.

Package Navigator view refreshes and the green check mark next to the element
disappears.

Automatically Unlocking an Element Upon Saving
You can choose to automatically unlock flow services, IS document types, and
specifications after you save changes to them. This prevents you from forgeing to
unlock them; however, it may not be the best option if you save periodically while
editing an element.

Important: When an Integration Server has the VCS Integration feature enabled, the
Automatically unlock upon save preference must be disabled.

To automatically unlock elements after saving

1. In Designer: Window > Preferences

2. In the preference navigation tree: Software AG>Service Development> Package Navigator

3. Under Preferences, select the Automatically unlock upon save check box.

4. Click Apply to save your changes. Or click OK to save your changes and close the
Preferences dialog box.

Troubleshooting
This following sections address common problems that may arise when implementing
cooperative development with webMethods components.

Lock and Unlock Problems
The Lock for Edit and Unlock commands are disabled.
Possible causes are:

The Integration Server to which you are connected may have the
watt.server.ns.lockingMode property configured to “none” or “system.” For
details, contact your server administrator.

You have selected multiple elements to lock or unlock and your selection
contains of one or more of the following:

A server

M
Odd Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 101

A folder or package and its contents

A package and any other element

An adapter notification record

When I try to lock an element, I get an exception message.
The element may be locked by someone else, system-locked (marked read-only on the
server), or you may not have Write access. Refresh the Package Navigator. If a lock is not
shown but you still cannot lock the element, reload the package. In addition, make sure
that you are a member of the ACL assigned for Write access to the element by checking
the element’s Permissions property in the Properties view.

I cannot unlock a Java or C service.
If there is another Java or C service that is locked by another user or system locked in the
same folder, then you cannot unlock any Java or C services in that folder. This is because
those services share the same .java and .class files on the Integration Server.

I cannot unlock elements since I changed my user name.
You can only unlock elements that you have locked with your current user name for the
session. If you have changed user names, log back in to the server with your old user
name and then unlock the elements.
If the administrator has deleted your user name, contact him or her to unlock the
elements on the server. You can assist the administrator by using the Lock Status
command to identify the names of the system-locked files on the server that need to be
unlocked.

Another user unlocked an element, but it still shows as locked in the Package Navigator view.
If it is a Java or C service, reload the package in the Package Navigator view. If it is any
other element, use the Refresh command to refresh the Package Navigator.

I receive an “element failed to unlock” message when I try to unlock elements in the Integration
Server Administrator.
This indicates that the server files for the locked element were deleted from the server.
You need to update the Integration Server Administrator’s list of unlocked elements by
clicking Sync to Name Space on the Packages >Management > Locked Elements screen. The
Sync to Name Space command runs automatically when the server is started or restarted.

Package Management Problems
I can’t preserve locking information when I replicate and publish a package.
This is expected behavior and is part of the feature’s design. You can, however, preserve
system locks (read-only file aributes).

When I disable a package, it does not preserve locking information.
This is expected behavior and prevents conflicts if another package with the same folder
and element names gets installed.

M
Even Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 102

Save Problems
When I try to save an element that I have locked, I get an exception message.
During the time that you had the lock, the element became system-locked, its ACL
status changed, or a server administrator removed your lock and another user locked
the element. If the exception message indicates that a file is read-only, then one or all
of the files that pertain to that element on the server are system-locked. Contact your
administrator to remove the system lock. After this is done, you can save the element
and your changes will be incorporated.
If the exception message indicates that you cannot perform the action without ACL
privileges, then the ACL assigned to the element has been changed to an ACL in which
you are not an Allowed user. To preserve your changes to the element, contact your
server administrator to:

1. Remove your lock on the element.

2. Lock the element.

3. Edit the ACL assigned for Write access to the element, to give you access.

4. Unlock the element.
You can then save your changes to the element.

When I try to save a template, I get an error message.
The template file on the server is read-only. Contact your server administrator to make
the file writable.

Other Problems
I can’t delete a package.
One of the elements in that package is system-locked (read-only) or locked by another
user. Contact your administrator or contact the user who has the element locked in the
package.

The webMethods Integration Server went down while I was locking or unlocking an element.
The action may or may not have completed, depending on the exact moment at which
the server ceased action. When the server is back up, restore your session and look at the
current status of the element.

Frequently Asked Questions
What is the difference between a system-locked element and a read-only element?
None. “System lock” is a term used to denote an element that has read-only files on the
webMethods Integration Server. The server administrator usually applies system locks
to files (makes them read-only).

M
Odd Header

Locking and Unlocking Elements

webMethods Service Development Help Version 9.10 103

Can I select multiple elements to lock or unlock in Package Navigator view simultaneously?
Yes, you can select multiple elements to lock or unlock in the Package Navigator view of
Designer, as long as your selection does not contain the following:

A server

A folder or package and its contents

A package and any other element

An adapter notification record
You can also lock or unlock all elements in a package or folder that have not been
previously locked/unlocked by right-clicking the package or folder and selecting Lock or
Unlock.

Where is the lock information stored (such as names of elements that are locked, when they were
locked, etc.)?
If you are using the VCS Integration feature, lock information is stored internally
in Repository version 4 and in the VCS repository. If you are using local service
development, lock information is stored in the VCS repository only.

Important: It is not recommended that you use locking and unlocking functionality
in an Integration Server cluster. Locking information for elements could
be inadvertently shared with another Integration Server in the cluster.
Use a standalone Integration Server, not a cluster, during development to
eliminate these issues.

Should I archive derived files?
Generally, you should not archive derived files such as the .class file that is generated
when you compile a Java service.

What happens to the locks on elements when I replicate a package?
Locking information is not preserved when you replicate and publish a package. This is
expected behavior and is part of the feature’s design. You can, however, preserve system
locks (read-only file aributes).

M
Even Header

webMethods Service Development Help Version 9.10 104

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 105

6 Using the Local Service Development Feature

■ About the Local Service Development Workflow ... 106

■ How Does Local Service Development Differ from the VCS Integration Feature? 106

■ Supported Platforms and Eclipse Plug-ins .. 108

■ Supported Elements ... 108

■ Supported and Unsupported Actions ... 109

■ Prerequisites ... 109

■ Permissions and Locking ... 111

■ Setting an Integration Server as the Local Development Server ... 112

■ Creating a Local Service Development Project ... 112

■ Adding Folders and Elements to the VCS ... 114

■ Modifying Packages, Folders, or Elements in the VCS ... 115

■ Checking Out an Element from the VCS ... 116

■ Checking In Packages and Element to the VCS ... 117

■ Getting the Latest Version from the VCS .. 118

■ Getting a Specific Version from the VCS .. 119

■ Copying Packages from the VCS to Integration Server .. 119

■ Reloading a Package ... 120

■ Comparing Revisions of an Element ... 121

■ Building Java and C Services .. 122

■ Deleting a Package Associated with a Local Service Development Project 123

■ Deleting a Local Service Development Project ... 123

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 106

The local service development feature is a Designer feature that you can use to develop
Integration Server packages locally as Eclipse projects. With this feature, you can check
package elements and their supporting files in to and out of a version control system
(VCS) directly from Designer.

To connect Designer to a VCS client, the local service development feature uses the
following components:

A local development package, which is an Integration Server package that is
intended to be used with the local service development feature.

A local development project, which is an Eclipse project that contains the associated
local development package.

A local development server, which is an Integration Server instance that is installed
in the same installation directory as the Designer instance you are using.

About the Local Service Development Workflow
The typical work flow for using the local service development feature within Designer is
as follows:

1. Define a local service development project in the Eclipse workspace and select the
VCS client you want to use. For details, see "Creating a Local Service Development
Project" on page 112.

2. Select the package, folder, or element that you want to place in your VCS, and then
check the selected item in to your VCS repository. For details, see "Adding Folders
and Elements to the VCS" on page 114.

3. Check out the package, folder, or element for modification on your local
development server. For details, see "Checking Out an Element from the VCS" on
page 116 and "Copying Packages from the VCS to Integration Server " on page
119.

4. Modify the item, save your changes, and check the item back in to your VCS
repository. For details, see "Modifying Packages, Folders, or Elements in the VCS" on
page 115 and "Checking In Packages and Element to the VCS" on page 117.

How Does Local Service Development Differ from the VCS
Integration Feature?
The local service development feature is not the same as the VCS Integration feature.
The following table describes the differences:

Important: The WmVCS package, which provides the functionality for using the VCS
Integration Feature, is deprecated as of Integration Server version 9.9.
Software AG recommends that you use the local service development feature

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 107

(Local Version Control Integration) to check package elements and their
supporting files into and out of a version control system (VCS) directly from
Designer.

Characteristic Local Service Development VCS Integration

Installation method Installed as a plug-in to
Designer

Provided by way of the
WmVCS Integration Server
package

Tasks required
to support new
versions of VCS
clients

Reinstall the VCS client
plug-in; no Designer
upgrade needed

Update the WmVCS
package every time a new
version of the VCS client is
released

Where configured Designer Integration Server

Number of VCS
clients permied to
connect to

Permits Designer to
connect to multiple VCS
clients

Permits Integration Server
to connect to only one of the
supported VCS clients

How version control
tasks are performed

Locally, within the Eclipse
framework (commands
are sent directly between
Designer and the VCS
client)

Through Integration Server

Menus and
commands used

Uses the VCS client’s
menus and commands,
which may already be
familiar to you

Uses its own commands to
access the VCS client, which
may require extra time to
learn

VCS clients
supported

Concurrent Versions
System (CVS)

Subversion (SVN)

Microsoft Team
Foundation Server

Eclipse Git Team
Provider (EGit)

Microsoft Visual
SourceSafe

IBM Rational ClearCase

Subversion (SVN)

Exposed Java API that
you can use to develop a
connection to other VCS
clients

Method of
communicating with
VCS client

Communicates through
Eclipse plug-ins that
support versions of the
clients; plug-ins are

Communicates directly with
the VCS client

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 108

Characteristic Local Service Development VCS Integration
either installed by default
with Eclipse or available
through third-party
providers

Assets permied to
maintain

Permits check-in and
check-out of all contents
of a package, including
Integration Server assets
and other items that
Integration Server does not
maintain, such as HTML
files

Requires manual check-in
and check-out of items that
Integration Server does not
maintain

Supported Platforms and Eclipse Plug-ins
The version of the VCS clients supported by the local service development feature
depends on the Eclipse plug-ins supported for each VCS client. The local service
development feature supports the following Eclipse plug-ins:

VCS Eclipse Plug-in Version

CVS CVS 1.4.x

SVN Polarion Software Subversive SVN plug-in and connector 3.0.x

SVN Subclipse 1.10.x

Team Foundation
Server

Team Foundation Server plug-in for Eclipse Version 12.0.x

Git Eclipse Git Team Provider 3.4.x

Supported Elements
The local service development feature works with all of the packages and IS elements
displayed in the Package Navigator view, as well as package contents that are not visible
in the Package Navigator view, such as supporting files associated with the folder or
element.

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 109

Note: The local service development feature works with the local development
server only. The feature does not work with packages in other servers listed in
the Package Navigator view.

Supported and Unsupported Actions
The local service development feature supports the following actions:

Create a project and share it with a VCS.

Check packages, folders, and elements in to and out of a VCS.

Retrieve a specific version of a package, folder, or element from the VCS repository.

Copy a package from the VCS repository to your local development Integration
Server.

Reload a package on the local development Integration Server.

Delete a package associated with a local service development project.

Delete a local service development project.

Restore a deleted element from the VCS repository using the VCS client’s explorer
view.

View history from the VCS client’s explorer view.

The local service development feature does NOT support the following actions:

Display differences between versions.

Merge partial changes from different revisions.

Move, copy, rename, or delete items from the VCS client’s explorer views. You must
perform these actions in the Package Navigator in Designer.

Prerequisites
Before you use the local service development feature, you must:

Ensure that you are running Service Development version 9.0 or higher in Designer
and Integration Server version 9.0 or higher. The local service development
functionality is not available with the previous versions of these products.

Ensure that Integration Server is installed in the same installation directory as the
Designer instance you are using. If you selected Local Version Control Integration (or
Designer Workstation in versions prior to 9.8) from the Software AG Installer, this was
already done for you.

Ensure that the wa.server.ns.lockingMode parameter is set to system on the
Integration Server used as the local development server. If you set any other value

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 110

for this parameter, the Local Service Development feature may not work as expected.
For more information about this parameter, see webMethods Integration Server
Administrator’s Guide.

Install the Workstation local service development feature as described in Installing
Software AG Products.

Ensure that the VCS Integration feature is not configured on the local development
server.

Install the correct version of the VCS client that you want to use, and if necessary,
install the correct Eclipse plug-in for that client. For details about supported Eclipse
plug-ins and VCS versions, see "Supported Platforms and Eclipse Plug-ins" on page
108.

Important: If you are using Subversion as your VCS client, Software AG
recommends that you use Subversion 1.7 or higher. Using versions of
Subversion prior to 1.7 might cause issues while refreshing web service
descriptors and web service connectors.

In Designer, configure your workspace to be refreshed automatically by selecting
the Refresh using native hooks or polling or Refresh automatically check box in Window >
Preferences > General > Workspace.

In Designer, remove .BAK and .bak from the list of resource name paerns to
exclude from the VCS. To do this, clear the .BAK and .bak check boxes in Window >
Preferences > Team > Ignored Resources.

If you are using CVS as your VCS client, in Designer, clear the Prune empty directories
check box in Window > Preferences >Team > CVS > Files and Folders.

If you are using EGit as your VCS client, clear the Auto share projects located in a git
repository check box in Window > Preferences >Team > Git > Projects.

If you are using EGit as your VCS client, to create a new repository location while
creating the local service development project, select Create new local Git repository
in the Git Repositories view and set Integration Server_directory\instances\default
\packages directory as the local repository directory. You can also use the Create
Repository field in the Configure Git Repository screen of the Share Project wizard
to set the packages directory as the local Git repository while creating the local
service development project. You can use this local Git repository for all further local
development operations.

If you are using Team Foundation Server as your VCS client, in Designer, clear
the Connect mapped projects to TFS automatically check box in Window > Preferences
>Team > Team Foundation Server before sharing the local service development project.
Otherwise, Team Foundation Server might throw an exception when sharing the
local service development project.

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 111

Permissions and Locking
Two mechanisms exist to control access to an element and to avoid editing conflicts:

Access control lists (ACLs), which grant permission to view and edit an element

Locking, which assures that only one developer at a time can edit an element

Permissions
Access control lists (ACLs) determine the level of access to packages, folders, and other
elements (such as services, IS document types, and specifications) at the group level.
ACL seings are stored on the local development Integration Server, not with the
elements themselves. This means that ACL information does not get checked in to the
VCS repository when you check in an element. When another user checks the element
out of the VCS repository, that user’s local development server uses the default ACL
to determine access to that element. You can preserve ACL seings for an element by
deploying the element from the local development server and then seing the element’s
ACL seings manually on the production server. For more information about ACLs, see
"Assigning and Managing Permissions for Elements" on page 83.

System Locking and Local Service Development
Designer and Integration Server support the concept of system locking. When an
element’s server-side files are marked read-only on Integration Server, the element is
system locked. Files are generally system locked when a server administrator accesses
the file through the server’s operating system and marks the files as read-only. You
cannot edit an element until the server administrator makes the element’s server-side
files writable and you reload the package in which the element resides.

System locking is disabled for elements that are checked into the VCS with the local
service development feature. The local service development feature will override any
read/write status changes applied manually by a server administrator.

Note: On the Integration Server used as the local development server, the
wa.server.ns.lockingMode parameter must be set to system. If you set any
other value for this parameter, the Local Service Development feature may not
work as expected. For more information about this parameter, see webMethods
Integration Server Administrator’s Guide.

Note: If you are using Team Foundation Server as your VCS client, Integration
Server system locks all elements and marks them as read-only. To unlock an
element in preparation for editing it, select the Check out for edit option from
the Team menu.

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 112

Setting an Integration Server as the Local Development
Server
A local development server is an Integration Server instance that is installed in the
same installation directory as the Designer instance you are using. The local service
development feature works with the local development server only. In versions prior
to 9.10, Designer used only the Integration Server instance named “default” as the local
development server. However, from version 9.10 release, you can set any Integration
Server instance as the local development server as long as it is installed in the same
installation directory as the Designer instance you are using.

By default, a new Designer installation includes a single server definition named
Default. This server is marked as the default server and is configured to use
localhost:5555.

If your Designer installation needs to connect to more Integration Servers, you can
configure additional Integration Server instances on the Window > Preferences > Software
AG > Integration Servers page. If there are multiple Integration Server instances configured,
only one instance will be active at a time. The default Integration Server instance will
be treated as the default local development server. However, you can set any of the
available local Integration Server instances as the local development server.

To set an Integration Server as the local development server

In Package Navigator view, right-click the Integration Server instance that you want
to use as a local development server and select Use as Local Version Control Integration
Server.

The server icon changes to indicating that it is an active local development
server.

Note: The Use as Local Version Control Integration Server option is available only if
the selected Integration Server is connected and is installed in the same
installation directory as the Designer instance.

Creating a Local Service Development Project
To use the local service development feature in Designer, you must first define a project
in the workspace that represents a package in Integration Server. By creating the local
service development project and adding it to the VCS, you can share your files using
your VCS client. When you create a project for a package, the package along with its
contents are added to the VCS.

Keep the following points in mind when creating a local service development project:

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 113

The package for which you want to create a local development project must exist and
be located in the Integration Server_directory\instances\default\packages directory
folder of the local development Integration Server.

The package for which you want to create a local development project must not be
present in the VCS.

A project with the same name as the package must not be present in your Eclipse
workspace.

To create a local service development project

1. In Package Navigator view, right-click the package for which you want to create a
local service development project and select Create Local Service Development Project.

Designer creates the local service development project and displays the Share Project
wizard.

2. From the list of VCS client plug-ins, select the VCS client that you want to use to
share the new project. Click Next.

3. The screens that appear next are specific to the VCS client that you selected. Enter
the relevant information and credentials of your VCS client.

4. In the confirmation screen, ensure that the displayed information is correct and click
Finish.

Designer creates a project in your workspace with the same name as the package.

In Package Navigator view, the icon representing the package that you have shared
to the VCS changes to showing that the package is shared. The package and
the elements contained in the package will now be available in the VCS. Designer
displays icon overlays that are specific to your VCS for the files in the shared
package in Package Navigator view. These icon overlays indicate the VCS status of
the files in your workspace.

5. If you are using Team Foundation Server as your VCS client, you must do the
following after the project is created:

a. Add the content of the project to the Team Foundation Server repository. To
do this, right-click the project in Package Explorer view or Navigator view and
select Team > Check In Pending Changes.

b. Set the working folder of the local service development project to the
Integration Server_directory \instances\default\packages directory. To do this,
from the Team Explorer view, open the Source Control editor. Right-click the
local service development project in the Source Control editor, and select Set
Working Folder.

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 114

Adding Folders and Elements to the VCS
Keep the following points in mind when you add a folder or element to a VCS
repository:

When you add a folder, all of the supported elements within the folder’s hierarchy
are added to the VCS repository.

When you add a folder or an element in a folder, all of the folders in the path to the
folder or element will also be added to the VCS repository. However, the remaining
contents of the package, as well as folders that are not part of the path to the element,
will not be added to the repository.

When a folder containing coded services (Java and C/C++ for example) is added
to the VCS repository, all of the coded services in that folder will be added to the
repository when you check in or commit the folder.

You must save the changes, if any, to the package, folder, or element before adding it
to the VCS repository. If not, your unsaved changes will not be reflected in the VCS.

When you create a local service development project for a package, any folders or
elements contained in the package at the time will also be available in the VCS. Any
element that you add to the package after you create the local service development
must be specifically added to the VCS.

To add a folder or element to the VCS

Perform one of the following actions:

In Package Navigator view, right-click the folder or element that you want to
add to the VCS. From the context menu, select Team, and select the check in or
commit option specific to your VCS client. To select multiple folders or elements,
press the CTRL key while selecting.

--OR--

In Package Navigator view, right-click the folder or element and select Show Files.
Designer highlights all the server files associated with the folder or element in
the Navigator view. Right-click these files in Navigator view, select Team, and
select the check in or commit option specific to your VCS client.

Note: You can also add any file that is outside the package namespace structure
or that is not an IS asset (that is, it does not appear in the Package
Navigator view of Designer). For example, an html file (output template
files for a service) in the pub folder of a package. To do this, right-click
the files in Navigator view, select Team, and select the check in or commit
option specific to your VCS client.

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 115

Modifying Packages, Folders, or Elements in the VCS
Keep the following points in mind when you modify elements in a VCS repository:

If you check out a package or a folder, Designer checks out all of the folders and
elements within the package or folder, along with their supporting files.

If you check out a service, Designer checks out the node.ndf file for that service.
Depending on the service type, Designer also checks out other supporting files such
as flow.xml and java.frag files.

When you edit elements locally and check the elements back in to the VCS
repository, Designer informs you of any possible conflicts that exist between your
local version and the version in the repository. Depending on the VCS client you
are using, the client may either merge the changes so they are reflected both locally
and in the repository, or prompt you to decide the appropriate action to resolve the
conflict.

If your VCS client is Team Foundation Server, you must first check out the asset
before modifying it.

If your VCS client is SVN or CVS:

If the element you want to modify already exists in your
Integration Server_directory\instances\default\packages directory, you can
modify the element without checking it out.

If the element you want to modify does not exist in your
Integration Server_directory\instances\default\packages directory, you must
first check out the element from the VCS repository. Then, you must move the
package to the Integration Server_directory\instances\default\packages directory
of the Integration Server assigned to be the local service development server. For
information about copying packages from VCS, see "Copying Packages from the
VCS to Integration Server " on page 119.

The changes that you made to the package, folder, or element are reflected in the
VCS only after you commit your changes to the VCS.

To modify a package, folder, or element that is in the VCS

1. In Designer, in the VCS repository view specific to your VCS client, right-click the
package, folder, or element whose contents you want to modify.

2. From the Team menu, select the appropriate option to check out the files. The options
available in the Team menu depend on the VCS client that you use.

If you are checking out a package or a folder, all the contents of the package or folder
also gets checked out. The element(s) that are checked out are now available for
editing in your Eclipse workspace.

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 116

3. After you complete your modifications, in Package Navigator view, right-click the
checked-out package, folder, or element and check in or commit these files to the
VCS using the option that is specific to your VCS client, available in the Team menu.

Note: You can also right-click the checked-out package, folder, or element and
select Show Files. You can select multiple folders or elements by pressing
the CTRL key while selecting. Designer highlights all the server files
associated with the package, folder, or element in the Navigator view.
Right-click these files in Navigator view and check in or commit these files
to the VCS using the option that is specific to your VCS client, available in
the Team menu.

If you are checking in a package or folder, all the contents within it are also checked
in.

Checking Out an Element from the VCS
Keep the following points in mind when checking out an element from the VCS:

The package, folder, or element that you want to check out must exist in the VCS
repository.

When you check out a package or a folder, all the contents of the package or folder
are also checked out.

After the check-out procedure is completed, a small check mark or ‘>’ mark appears
on the icon of the checked-out element in the Navigator view.

If you are using Team Foundation Server as your VCS client:

When you check out a package, it is added to the
Integration Server_directory\instances\default\packages directory because
the workspace of your local service development project is set to the
Integration Server_directory\instances\default\packages directory.

If an element or a package with the same name already exists in the
Integration Server_directory\instances\default\packages directory, Designer will
merge the two elements or the contents of the two packages.

After checking out, you must right-click the package in Navigator
view and select Load IS Package to load the package in the
Integration Server_directory\instances\default\packages directory.

If you are using CVS or SVN as your VCS client, if a package or an element with
the same name already exists in the Integration Server_directory\instances\default
\packages directory, Designer replaces the package or the element with the one from
the VCS.

You cannot directly clone a remote Git repository to the
Integration Server_directory\instances\default\packages directory. To synchronize
a remote Git repository with your local Git repository, you must first fetch the

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 117

contents of the remote Git repository by adding a link to the Remotes node.
Then, you must import the required projects to the workspace to view them in
Package Explorer view or Navigator view. You must also load the package(s) in the
Integration Server_directory\instances\default\packages directory by right-clicking
the package in Navigator view and selecting Load IS Package.

To check out a package, folder, or element from the VCS

1. In Designer, in the VCS repository view specific to your VCS client, right-click the
package, folder, or element that you want to check out. To select multiple folders or
elements, press the CTRL key while selecting.

2. From the Team menu, select the appropriate option to check out the files. The options
available in the Team menu depend on the VCS client that you use.

Designer displays the Progress Monitor dialog box. Click Run in Background to
continue working in Designer.

Important: Software AG recommends that you do not perform any operation on
the asset on which Designer is performing the VCS operation because it
might result in the asset becoming corrupted.

The element(s) that are checked out are now available for editing in your Eclipse
workspace.

Note: If you are checking out a package that you have not checked in
previously, you must move this package from your workspace to the
Integration Server_directory\instances\default\packages directory of your
local service development Integration Server.

Checking In Packages and Element to the VCS
Keep the following points in mind when checking in a package, folder, or an element to
the VCS:

When you check in a package or a folder, all the contents of the package or folder are
also checked in.

If a folder or element does not exist in the VCS, checking it in adds the folder or
element to the VCS repository.

If a package, folder, or element has unsaved changes, you must save the changes
before checking it in. If not, your unsaved changes will not be reflected in the VCS.

When checking in a Java or C/C++ service, you must check in from the package level
so that all files associated with the Java or C/C++ service are also checked in.

After the check in procedure is completed, the small check mark or ‘>’ mark that
indicates that the element is checked out is removed from the element icon in the
Navigator view.

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 118

To check in a package, folder, or element to the VCS

1. In Designer, in Package Navigator view, right-click the package, folder, or element
that you want to check in and from the Team menu, select the appropriate option to
check in the files. The options available in the Team menu depend on the VCS client
that you use.

Note: You can also right-click the package, folder, or element that you want
to check in and select Show Files. You can select multiple folders or
elements by pressing the CTRL key while selecting. Designer highlights
all the server files associated with the package, folder, or element in the
Navigator view. Right-click these files in Navigator view and, from the
Team menu, select the appropriate option to check in the files.

2. Designer displays the Progress Monitor dialog box. Click Run in Background to
continue working in Designer.

Important: Software AG recommends that you do not perform any operation on
the asset on which Designer is performing the VCS operation because it
might result in the asset becoming corrupted.

Note: You can also check in any folders or elements that are outside the package
namespace structure or files that are not IS assets (that is, they do not
appear in the Package Navigator view of Designer). To do this, right-click
the files in Navigator view, select Team, and select the check in or commit
option specific to your VCS client.

Getting the Latest Version from the VCS
Use the following procedure to replace packages, folders, and elements on the
Integration Server used as the local service development server with the most recent
version in the VCS repository.

To get the latest version of a package, folder, or element from the VCS

1. Close the respective editor if you have any of the elements on which you are
performing the get latest operation open in the Package Navigator view.

2. In Package Navigator view, right-click the package, folder, or element for which you
want to retrieve the latest version and select Team > Get Latest Version.

Note: The menu option Get Latest Version might differ depending on the VCS
client that you use.

Designer displays the Progress Monitor dialog box. Click Run in Background to
continue working in Designer.

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 119

Important: Software AG recommends that you do not perform any operation on
the asset on which Designer is performing the VCS operation because it
might result in the asset becoming corrupted.

Designer retrieves the latest version of the package, folder, or element and displays a
confirmation message.

Note: Designer automatically rebuilds the Java and C/C++ services in a local
service development package, when you get the latest version of the
package from the VCS, if you have the Build Automatically workspace
preference (Project > Build Automatically) selected.

Getting a Specific Version from the VCS
Use the following procedure to replace packages, folders, and elements in Integration
Server with an earlier version in the VCS repository.

To retrieve a specific version from the VCS, you must know the VCS version number,
date, workspace version, or VCS label of the earlier version of file depending on the
options that your VCS client provides. You can obtain this information by right-clicking
the package, folder, or element in the Navigator view and selecting Team > View History or
similar option that is specific to your VCS client.

Note: Designer automatically rebuilds the Java and C/C++ services in a local service
development project or package, when you retrieve a specific version of the
project or package from the VCS, if you have the Build Automatically workspace
preference (Project > Build Automatically) selected.

To get a specific version of a package, folder, or element from the VCS

1. Close all open editors in the Package Navigator view.

2. In Package Navigator view, right-click the package, folder, or element for which you
want to retrieve a specific version, and select Team > Get Specific Version or similar
option that is specific to your VCS client.

Copying Packages from the VCS to Integration Server
When you check out a package that you have not checked in previously, the package is
available in your project workspace. You can move this package from your workspace
to the Integration Server_directory\instances\default\packages directory of your local
service development Integration Server using the following procedure.

Keep the following points in mind when copying packages from the VCS to Integration
Server:

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 120

You must add VCS project nature to the packages that are not created in the local
Integration Server but are available in t he VCS if you want to copy or move these
packages to Integration Server. To do this, right-click the package in the Package
Explorer view and select Add VCS Project Nature.

If you are using Team Foundation Server or EGit as your VCS client,
the workspace of the local service development project is set to the
Integration Server_directory\instances\default\packages directory. When you
check out a package, it is added to the Integration Server_directory\instances
\default\packages directory. Hence, you will not see the Move Project to IS
Package option described below. However, you can load the package in the
Integration Server_directory\instances\default\packages directory by right-clicking
the package in Navigator view and selecting Load IS Package. After you load the
package, the Load IS Package option will change to Reload IS Package.

If a package with the same name already exists in the
Integration Server_directory\instances\default\packages directory, the behavior of
Designer depends on your VCS client:

If you are using Team Foundation Server as your VCS client, Designer will merge
the contents of the two packages.

If you are using CVS or SVN as your VCS client, Designer will replace the
existing package with the package from the VCS repository.

Designer automatically builds the Java and C/C++ services when you move the
associated project to the Integration Server_directory\instances\default\packages
directory, if you have the Build Automatically workspace preference (Project > Build
Automatically) selected.

To copy a package from the VCS repository to Integration Server

1. From your VCS repository, get the latest version of the package that you want to
copy to your Integration Server_directory \instances\default\packages directory.

Designer copies the package to your workspace.

2. In Navigator view, right-click the package and select Move Project to IS Package.

The package is now available in the Integration Server_directory\instances\default
\packages directory.

If the package that you copy from the VCS repository is not enabled, Designer
displays a message informing you that the package is in a disabled state. You can use
Integration Server Administrator to enable the package. For more information about
enabling a package, see webMethods Integration Server Administrator’s Guide.

Reloading a Package
If you make any changes to the package and/or it's contents in your workspace, you
must reload the package on the local development server to activate the changes and

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 121

to make sure that the changes are reflected in the Integration Server_directory\instances
\default\packages directory.

To reload a package

1. In Navigator view, right-click the package that you need to reload and select Load IS
Package.

2. If you need to replace the package in the Integration Server_directory \instances
\default\packages directory, right-click the package in Navigator view and select
Reload IS Package.

If the package that you copy from the VCS repository is not enabled, Designer
displays a message informing you that the package is in a disabled state. Use
Integration Server Administrator to enable the package. For more information about
enabling a package, see webMethods Integration Server Administrator’s Guide.

Note: Designer automatically rebuilds the Java and C/C++ services in a local
service development package, when you reload the package on the
local development server, if you have the Build Automatically workspace
preference (Project > Build Automatically) selected.

Comparing Revisions of an Element
You can use the compare tool to compare two revisions of an element in a local service
development project.

Important: Revision compare is currently supported only for document types and flow
services that are part of a local service development project.

Keep the following points in mind when you use revision compare:

The Compare Element(s) With > Revision option is available for a document type or flow
service in a local service development project only if:

You have checked out the element to the Project Explorer; and

You have reloaded the element on the local development server to make sure that
the changes are reflected in the Integration Server_directory \instances\default
\packages directory.

Revision compare is not supported for TFS.

To compare the local service development project revision of an element with a specified revision of
the element

1. In the Package Navigator view, select an element in a local service development
project, right-click, and select Compare Element(s) With > Revision.

2. In the dialog box that opens, specify the revision of the element that you want to
compare with by choosing one of the following options:

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 122

Select the Head Revision.

Specify the Date and time values corresponding to the revision.

Specify a Revision number or use the Browse buon to browse the VCS and select
a revision of the element.

3. Click OK to display the list of differences in a compare editor. For information on the
compare editor, see "Working with the Compare Editor" on page 926.

Building Java and C Services
When you check out a project containing Java or C/C++ services from the VCS
repository, the services might not be operational. That is, the projects might not contain
the .java and .class files that Integration Server needs to execute the service. Hence,
before executing the Java or C/C++ services, you must build those services.

Designer automatically rebuilds the Java and C/C++ services in a local service
development package, when you perform any VCS operations on the package or project
in the local development server

Before checking out Java or C/C++ services, you must:

Ensure that the system environment variable PATH is set to include
JDK_directory\bin.

--OR--

Ensure that the wa.server.compile property is set to JDK_directory\javac
-classpath {0} -d {1} {2} in the config.ini file that is located in the
Software AG_directory\eclipse\v36\configuration directory.

For example,
watt.server.compile=C\:\\softwareag\\jvm\\jvm160_32\\bin\\javac
-classpath {0} -d {1} {2}

To ensure that Designer automatically builds the Java and C/C++ services, you must do
the following:

Add VCS project nature to the packages that contain the Java or C/C++ services, if
these packages are not created in the local Integration Server but are available in the
VCS repository. To do this, right-click the package in the Package Explorer view and
select Add VCS Project Nature.

Select the Build Automatically workspace preference. To do this, select Project > Build
Automatically.

Upon building a Java service, Designer creates the .java and .class files. In case of C/C++
services, Designer generates the Java class associated with the C/C++ service.

M
Odd Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 123

Deleting a Package Associated with a Local Service
Development Project
When you delete a package that is associated with a local service development project,
the associated project in your workspace is also deleted.

To delete a package associated with a local service development project

1. In Package Navigator view, right-click a package associated with a local service
development project and select Delete.

2. Designer displays a confirmation message asking if you want to delete the associated
local service development project as well. Click Yes to confirm the deletion.

Designer displays a message stating that the deletion is complete and that the
deleted package has been copied to the recovery area of the Integration Server. Click
OK.

Note: If you delete a package using Integration Server Administrator or a built-
in service and if you aempt to perform any operations on the deleted
package from Navigator view, Designer will display a message stating that
the project is deleted from the local service development workspace. For
the project to function correctly, you must restore the deleted packages.

Deleting a Local Service Development Project
If you have already shared a package to a VCS client and you want to move it to another
VCS client, you must first disconnect from the current VCS client. You can then delete
the local service development project only and not the package associated with it. You
can share the package to another VCS client using the procedure given in "Creating a
Local Service Development Project" on page 112.

To delete a local service development project

1. In Package Navigator view, right-click a local service development project and select
Team > Disconnect or Team > Disconnect Project Permanently. The menu options depend
on the VCS client that you use.

Important: When disconnecting a local service development project from the VCS,
any pending changes you have in this project will be lost. If you want
your changes to be updated in the VCS repository, make sure that you
check in your pending changes to the VCS before disconnecting the
project from the VCS.

2. Depending on the VCS client you are using, do the following:

M
Even Header

Using the Local Service Development Feature

webMethods Service Development Help Version 9.10 124

For CVS, select Also delete the CVS meta information from the file system

For SVN, select Also delete the SVN meta-information from the file system

3. If a confirmation message appears, click OK. The package is now disconnected from
the VCS.

Note: If you want to connect to a VCS again, you need to share the project to the
VCS by right-clicking the project in Package Explorer view or Navigator
view and clicking Team > Share Project.

4. To delete the local service development project, right-click the project in Navigator
view and select Delete.

5. Click OK to confirm the deletion of the project.

The local service development project is deleted, but the associated
package will still be available in the Package Navigator view and in the
Integration Server_directory\instances\default\packages directory.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 125

7 Using the VCS Integration Feature to Check Elements
In and Out of a VCS

■ VCS Integration Supported Features ... 126

■ VCS Integration Unsupported Features ... 127

■ Locking Locally vs VCS Locking .. 127

■ System Locking and VCS Integration Feature .. 128

■ About Unlocking Elements with Integration Server Administrator .. 128

■ Adding New Packages and Elements to a VCS .. 128

■ Adding Existing Packages and Elements to a VCS .. 129

■ Modifying Elements that are in the VCS ... 129

■ Checking Out Packages and Elements ... 130

■ Checking In Packages and Elements .. 131

■ Reverting Changes to a Checked Out Package or Element ... 132

■ Getting the Latest Version from the VCS .. 133

■ Getting an Earlier Version from the VCS ... 134

■ Deleting Packages and Elements from the VCS ... 136

■ Restoring Deleted Items .. 137

■ Copying and Moving Folders or Elements ... 138

■ Renaming Packages, Folders, and Elements .. 139

■ Viewing the History of a Folder or Element ... 139

■ Working with Blaze Rules Services ... 141

■ Working with Web Service Descriptors .. 141

■ Working with webMethods Adapter Connections .. 141

■ Working with Java Services ... 142

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 126

Designer enables you to create, maintain, and manage custom integration packages
for use by the webMethods Integration Server. Often, many enterprise organizations
employ a version control system (VCS) for the development of software solutions,
providing automatic auditing, versioning, and security to software development
projects. Such products include Microsoft Visual SourceSafe and IBM Rational
ClearCase.

With the VCS Integration feature installed in your development environment, you can
check packages or elements in to and out of your version control system (VCS). For
example, to modify a flow service element, you would:

1. Check out the flow service. This automatically checks out its supporting files
(node.ndf and flow.xml).

2. Modify the flow service in Designer and save the changes.

3. Check in the flow service element. This also checks in the node.ndf and flow.xml files
and makes the files read-only when they are checked in.

Alternatively, if you want to work on other elements in addition to the flow service, you
can check out the entire package.

For information about configuring VCS to work with Integration Server, see Configuring
the VCS Integration Feature.

Note: The VCS Integration feature provides functionality similar to that of local
service development. However, the VCS Integration feature and local
service development are not the same. For information about how the VCS
Integration feature compares to local service development, see "How Does
Local Service Development Differ from the VCS Integration Feature?" on page
106.

Important: The WmVCS package, which provides the functionality for using the VCS
Integration Feature, is deprecated as of Integration Server version 9.9.
Software AG recommends that you use the local service development feature
(Local Version Control Integration) to check package elements and their
supporting files into and out of a version control system (VCS) directly from
Designer.

VCS Integration Supported Features
The use of a shared VCS repository greatly enhances team development of software
solutions. The webMethods Version Control System Integration (VCS Integration)
feature enables you to interact directly with a resident VCS repository in the following
ways:

Check in

Check out

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 127

Revert changes

Delete

Get latest version

Get earlier version

View history

VCS Integration Unsupported Features
The VCS Integration feature is intended for the control of webMethods packages and
their contents in development environments only. The feature does not support:

The ability to "diff" or merge files.

The ability to move checked out elements loaded from an earlier VCS version.

Static viewing of previous versions.

VCS integration of files outside the package namespace structure (that is,
components that do not appear in the Package Navigator view of Designer, or that
exist outside the ..\packages\ns or the ..\packages\code\source directories).

VCS integration of backup files generated by Designer or Integration Server.

The ability to resolve conflicting files automatically. File conflicts between the VCS
repository and your local file system must be resolved manually.

Locking Locally vs VCS Locking
In a shared development environment, there is typically a mechanism for a developer
to lock a file during modification, and to unlock it when the modifications are complete.
This prevents other developers from working on the file at the same time.

Designer and Integration Server provide basic locking and unlocking of project files on
the Integration Server only, with no built-in interaction with an external VCS. When
locking and unlocking is used, Integration Server files must be checked in to and out of
the VCS manually, outside of the Integration Server or Designer.

The VCS Integration feature extends and is fully compatible with the basic locking
functionality of Integration Server and Designer. When the VCS Integration feature
is not installed or is disabled on an Integration Server, only the basic locking and
unlocking functionality will be available in Designer.

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 128

System Locking and VCS Integration Feature
Designer and Integration Server support the concept of system locking. When an
element’s server-side files are marked read-only on the Integration Server, the element
is system locked. Files are generally system locked when a server administrator accesses
the file through the server’s operating system and marks the files as read-only. You
cannot edit an element until the server administrator makes the element’s server-side
files writable and you reload the package in which the element resides.

When an Integration Server has the VCS Integration feature enabled, system locking is
effectively disabled for elements that are checked into the version control system with
the VCS Integration feature. The VCS Integration feature will override any read/write
status changes applied manually by a server administrator.

About Unlocking Elements with Integration Server
Administrator
The Integration Server Administrator enables you to unlock server files from the
Packages > Management > Locked Elements page. However, because of architectural
considerations, this unlocking mechanism is not tightly integrated with the VCS
Integration feature.

As a result, Software AG strongly recommends that you do not use Integration Server
Administrator to unlock elements that are managed with the VCS Integration feature.
Doing so generally causes the element to enter an ambiguous state within Designer; the
lock status may not be correct, and some VCS Integration feature menu commands may
not be available.

If these conditions occur, refresh the Package Navigator view of Designer. If the
condition persists, apply the Check In command. If you are still having problems, check
in the element with the VCS client and restart the Integration Server.

Adding New Packages and Elements to a VCS
With the VCS Integration feature enabled, any new packages (or the supported elements
within them) that you create in Designer are automatically added to the VCS and
marked as checked out.

New packages and elements are added to the VCS regardless of how the package
or element was created; it makes no difference if the package or element is created
manually by the user, copied from another package or element, moved, renamed, or
created from an adapter notification or a publishable document type. For information on
the specific files that are subject to the VCS Integration feature, see Configuring the VCS
Integration Feature.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 129

Note: The VCS Integration feature automatically adds C/C++ services to the VCS
when they are created, but thereafter, you must check in and check out the
supporting files for C/C++ services manually using the VCS client.

Adding Existing Packages and Elements to a VCS
Packages and the supported elements within them that were created prior to the
installation of the VCS Integration feature can be added by applying the Check In or
Check Out command, subject to the following behavior:

When either command is applied to a package or a folder, all of the supported
elements within the container’s hierarchy are added to the VCS.

When either command is applied to a folder or an element in a folder, the package
and all of the folders in the path to the folder or element will also be added to the
VCS. However, the remaining contents of the package and those higher-level folders
will not be added to the VCS.

When a folder containing coded services (Java and C/C++ for example) is added to
the VCS, all of coded services in that folder will be added to the VCS.

When you apply the Check Out command, the selected item is added to the VCS and
then placed in a checked out state.

Be sure to check in the elements when you have finished working with them. For
more information, see "Checking In Packages and Elements" on page 131. For more
information on which element types are subject to the VCS Integration feature, see
Configuring the VCS Integration Feature.

Modifying Elements that are in the VCS
When you modify a webMethods solution that you have checked out from the VCS
repository, keep the following points in mind:

Make sure to check in any elements that you modified with programs other than
Designer (for example, HTML pages and DSPs).

Make sure to check in any elements (flow services, documents, or other elements in
the Package Navigator view) that you modified with Designer.

If you have previously worked with an earlier version of Designer, you may be
experienced in checking individual files in and out of your VCS (such as flow.xml and
source code files). However, the VCS Integration feature works at the package, folder,
and element level. Individual files are checked into and out of your VCS automatically
when you work with the package, folder, or element that contains them.

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 130

If you check out … Integration Server checks out these files for you…

A package or a folder All of the folders and elements within the package or
folder, along with their supporting files.

A service The node.ndf file for that service

Other supporting files, depending on the service type,
such as flow.xml and java.frag files

Important: The VCS Integration feature requires that you disable the Automatically Unlock
Upon Save option in Designer, if you have implemented it. For information
on disabling this option, see "Automatically Unlocking an Element Upon
Saving" on page 100.

Checking Out Packages and Elements
Keep the following points in mind when checking out packages and elements from the
VCS.

The VCS Integration feature does not work with all files in the Integration Server
directory structure. When you check out a package or element from the VCS
repository, you must use the VCS client to manually check out any of its associated
unsupported files that you want to work with, such as:

IntegrationServer_directory \instances\instance_name \config*.cnf

If your package contains C/C++ services, you must check out those services manually
with your VCS client and rebuild those services (for example, recompile the program
to generate the DLL).

Although packages and folders are never shown as checked out in the Package
Navigator view, you can apply the Check Out command to a package or folder to
check out all of the elements within the package or folder.

When you check out a package or element from ClearCase, the check out is
performed on the branch of the package or element that is currently present in the
underlying view.

When you check out an individual Java service, all coded services in the folder
containing the Java service are checked out. If, for example, the folder contains three
Java services and a C service, all four services are checked out when you check out
any of the three Java services. When you check in any of the Java services in a folder,
all coded services in the folder are checked in.

If a package or element does not exist in the VCS, applying the Check Out command
adds the package or element to the VCS repository. For more information about this
behavior, see "Adding New Packages and Elements to a VCS" on page 128.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 131

Although the Check Out command can be applied at the package and folder level,
the check mark is not applied to package and folder icons, only to the checked out
elements within the package or folder.

To check out a package, folder, or element

In Package Navigator view, right-click the package, folder, or element you want to
work with and select Check Out.

If a package or folder contains elements that are not supported by the VCS
Integration feature (such as an adapter connection), you will receive a message
naming the elements that will not be checked out. Checking out a package with
many elements might take a significant amount of time. Designer will not be
available during the check out procedure.

After the check out procedure is completed, a small check mark appears to the right
of each checked out element’s icon in the Package Navigator view.

Checking In Packages and Elements
The VCS Integration feature adds packages and elements to your VCS when you apply
the Check In or Check Out command to a file, a folder, or a package.

Keep the following points in mind when checking packages, folders, and elements into a
VCS:

Because the VCS Integration feature does not work with all files in the Integration
Server directory structure, use the VCS client to manually check in any of the
unsupported files that it uses (such as dynamic server pages, HTML documents,
templates, and configuration files). For more information, see Configuring the VCS
Integration Feature.

Although packages and folders are never shown as checked out in the Package
Navigator view, you can apply the Check In command to a package or folder to check
in all of the elements within the package or folder.

If your package contains C/C++ services, you must check in those services manually
with your VCS client.

When you check in a package or element to ClearCase, the check in is performed
on the branch of the package or element that is currently present in the underlying
view.

If a package or element does not exist in the VCS, applying the Check In command
adds the package or element to the VCS repository. For more information about this
behavior, see "Adding New Packages and Elements to a VCS" on page 128.

If a package or element has unsaved changes applied to it, you must save the
changes to the package or element before you can check it in.

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 132

To check in a package, folder, or element

1. In Package Navigator view, right-click the package, folder, or element that you want
to check in, and select Check In.

2. In the Comment for Check In dialog box, enter a comment that describes the changes
made to the package or element. This comment will be displayed in the revision
history for the element. If you do not enter a comment, the revision history will
display only user, time, and date information for this check in.

3. Click OK. The small check mark is removed from the right of the package or
element’s icon in the Package Navigator view.

Notes:

If the version of the file you checked out is not the same as the one that is currently
available, another user has checked in the file in between. Your check in will not be
done and an error message will be displayed.

If you check in a package that existed before VCS Integration, the manifest.v3 file
will not get checked into the VCS.

If you have made no changes to the package, folder, or element, the comment you
enter will be ignored by Visual SourceSafe unless you configure Visual SourceSafe to
check in unchanged files.

Checking in a package with many elements might take a significant amount of time.
Designer will not be available during the check in procedure.

Reverting Changes to a Checked Out Package or Element
There may be times when you want to discard the changes made to a checked out
package or element and return the package or element to its original version. This is
commonly done when testing potential changes to files in the VCS repository.

The Revert Changes command discards all changes made to a package or element and
replaces the Integration Server instance of the package or element with the most recent
version checked into the VCS repository. This provides you with a sandbox feature
for testing proposed changes. Only packages or elements that are checked out can be
reverted.

Keep the following points in mind before reverting changes to a checked out package,
folder, or element:

Access Control List (ACL) permission seings are not revertible. If you make
changes to ACL permissions for an element, and then revert the element, the ACL
permissions will remain unchanged.

You can use the Revert Changes command to reverse a check out command that you
applied by mistake, even if no changes are made to the file.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 133

Although folders are never shown as checked out in the Package Navigator view,
you can apply the Revert Changes command to a folder to revert changes to all of the
elements in the folder’s hierarchy.

Reverting changes to a newly created element (prior to initial check in) may cause
the element to be corrupted. Software AG recommends that you check in a new
element immediately after creation and then check it out again before you enter any
modifications.

When you apply the Revert Changes command to a package, or to a folder in a
package, all of the supported elements within the container’s hierarchy that are
currently checked out are reverted.

The Revert Changes command reloads the entire package containing the element; this
may cause sessions currently using services in the package to fail.

To revert changes to a checked out package, folder, or element

1. In Package Navigator view, right-click the package, folder, or element for which you
want to revert changes, and select VCS > Revert Changes.

2. In the Revert Node alert window, click OK to confirm reverting the element to the
most recent version in the VCS repository.

The small check mark is removed from the right of the element’s icon in the Package
Navigator view, the checked out files are replaced with the most recent version
checked in to the VCS repository, and the entire package is reloaded.

Note: When you work with a package with many elements, it may take a
significant amount of time to check the package in or out. Designer will
not be available during the check in or check out procedure.

Getting the Latest Version from the VCS
The VCS Integration feature provides the Get Latest Version command to replace
packages, folders, and elements on Integration Server with the most recent version in the
VCS repository (referred to as a sync operation in some VCS programs).

Keep the following points in mind when retrieving the latest version of a package,
folder, or element from a VCS repository.

You cannot apply the Get Latest Version command to checked out packages, folders,
or elements. You cannot apply the command to a package or a folder if any of the
supported elements within the container’s hierarchy are checked out.

Although packages and folders are never shown as checked out in the Package
Navigator view, you can apply the Get Latest Version command to a package or folder
to get the latest version of all of the elements within the package or folder.

For ClearCase, the Get Latest Version command updates the package, folder, or
element in the branch configured for the view. Do not use the Get Latest Version

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 134

command for Dynamic Views because Dynamic Views always contain the latest
version.

Some folders or elements might be deleted after you apply the Get Latest Version
command. This will occur when there is no current version of that folder or element
(that is, it has been deleted from the VCS repository since the last update).

The Get Latest Version command reloads the entire package containing the element.
This might cause sessions currently using services in the package to fail.

To get the latest version of package, folder, or element

In Package Navigator view, right-click the package, folder, or element for which you
want to retrieve the latest version, and select VCS > Get Latest Version.

Note: If a folder contains locked non-Java elements and you apply the Get Latest
Version command to an unlocked Java element in that folder, the error
message “Subnode(s) checked out” displays. Check in all elements in the
folder and try again.

Getting an Earlier Version from the VCS
The VCS Integration feature provides the Get Earlier Version command to replace
packages, folders, and elements on the Integration Server with an earlier version in the
VCS repository.

Keep the following points in mind when retrieving an earlier version of a package,
folder, or element:

To retrieve an earlier version, you must know the date or VCS label of the earlier
version. You can obtain this information with the View History command. (For more
information, see "Viewing the History of a Folder or Element" on page 139.)

The VCS Integration feature does not provide the ability to assign VCS labels; you
must use your VCS client to assign a label if one does not exist. To eliminate any
problems, Software AG recommends that you apply the version label at the package
level, thereby including all folders and elements within the package hierarchy.

You cannot apply the Get Earlier Version command to checked out packages, folders,
or elements.

You cannot apply the command to a package or a folder if any of the supported
elements within the container’s hierarchy are checked out.

Most VCS servers will not permit you to copy, move, delete, or rename earlier
versions of elements. Software AG recommends that you do not apply any of these
actions to an earlier version file, as unpredictable results might occur.

Although packages and folders are never shown as checked out in the Package
Navigator view, you can apply the Get Earlier Version command to a package or folder
to get an earlier version of all of the elements within the package or folder.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 135

For ClearCase, the Get Earlier Version command loads the version of the branch
indicated by the ClearCase Branch Name field in Integration Server Administrator
(see Configuring the VCS Integration Feature). If no branch is identified in that field,
ClearCase loads the main ClearCase branch. Do not use the Get Earlier Version
command for Dynamic Views because Dynamic Views always contain the latest
version.

Some folders or elements might be deleted after you apply the Get Earlier Version
command. This will occur when there is no earlier version of that folder or element
(that is, it has been added to the VCS repository since the creation of the version
being retrieved).

When you apply the Get Earlier Version command to a Java service, the earlier version
will be loaded for all Java services in that folder, as well as for all folders and
elements contained in the folder.

The Get Earlier Version command also reloads the entire package containing the
element. This might cause sessions currently using services in the package to fail.

To get an earlier version of a package, folder, or element

1. In Package Navigator view, right-click the package, folder, or element for which you
want to retrieve the latest version, and select VCS > Get Earlier Version.

2. In the Get Earlier Version dialog box, do one of the following:

Select... To...

Date Retrieve an earlier version using the date (Visual SourceSafe).

In the field next to Date, enter the VCS repository date and time of the
version you want to retrieve.

You must type the date and time using the Designer format MM/
DD/YY HH:MM:SS, where HH:MM:SS is in 24-hour time format. For
example, in the History dialog box, the VCS time is presented in the
format:
User: UserName Date: 1/13/06 Time: 2:56p

This signifies January 13, 2006, 14:56 hours. You must type the date into
the Date field in this format:
01/13/06 14:56

Do not include the time zone (for example, EST) when typing the date
and time. The precision of the specified time (that is, whether minutes
and seconds are accepted, or minutes only) is determined by the time
format of the VCS application. For example, Visual SourceSafe dates
files with minutes only.

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 136

Select... To...

Label Get an earlier version by providing the VCS label (Visual SourceSafe
and ClearCase) or to get an earlier version by providing a version
number (ClearCase).

In the field next to Label, enter the VCS label text or version number.

3. Click OK. All supported and checked in elements are updated to the specified
version in the VCS repository.

Notes:

If a folder contains locked elements that are not Java services and you apply the Get
Earlier Version command to an unlocked Java service in that folder, the error message
“Subindex() checked out” displays. Check in all elements in the folder and try again.

If you edit an element that you retrieved using the Get Earlier Version command, the
VCS Integration feature will not view it as the most current version and therefore
will not allow you to check it in. When you aempt to check in the element, an “out
of date” error message displays. Update the element to the latest version before
applying your changes.

Deleting Packages and Elements from the VCS
The VCS Integration feature enhances the existing Delete command to delete packages,
folders, and elements from both Integration Server and the VCS repository.

Keep the following points in mind when deleting items from an Integration Server on
which the VCS Integration feature is configured:

The Delete command can be applied to packages, folders, and elements regardless of
the checked in/checked out status of the elements.

You cannot delete packages or elements checked out by other users.

When the Delete command is applied to a package, Integration Server saves a copy of
the package in the package recovery area of Integration Server.

When the Delete command is applied to a folder or element in a folder (a service, for
example), the folder or element is deleted completely from the Integration Server.
For those VCS servers that support restorable deletion, the element is deleted from
the repository view but not destroyed.

When you apply the Delete command to a package, or to a folder in a package, all
of the elements within the container’s hierarchy (both VCS elements and non-VCS
elements) are deleted.

For ClearCase, the Delete command removes the package, folder, or element from the
versioned object base (VOB), so that the package, folder, or element is removed from
all branches.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 137

Visual SourceSafe and ClearCase do not support entry of a delete comment. The VCS
history will show only the VCS user name and the time of deletion.

Note: Do not apply the Delete command to any earlier version packages or elements
that are checked out, as unpredictable results may occur.

To delete a package, folder, or element from both Integration Server and the VCS

1. In Package Navigator view, select the package, folder, or element you want to delete.

2. Select Edit > Delete.

The Delete Confirmation dialog box appears. If you are deleting a publishable
document type, Designer prompts you to delete the associated Broker document
type as well. For more information about deleting Broker document types, see
"Deleting Elements" on page 65.

3. Click OK.

If a VCS package or element is checked out by another user, the package or element
will not be deleted, and an error message appears. In addition, any parent folders
leading to the checked out element will not be deleted.

When deleting a package, a message box appears stating that the deletion is
complete and that the deleted package has been copied to the recovery area of the
Integration Server. If this message appears, click OK.

Restoring Deleted Items
After you delete a package, folder, or element from both Integration Server and the
VCS repository, you may want to restore the package, folder, or element back into the
Integration Server from the VCS server.

Restoring a Deleted Package
To restore a deleted package

1. Use Integration Server Administrator to recover the deleted package.

Note: Packages are best restored with the Recover Packages feature of the
Integration Server Administrator (only administrator users can recover a
package)

2. In the Service Development perspective, refresh the Package Navigator view to
display the recovered package.

3. Right-click the package and select Check In.

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 138

Restoring a Deleted Folder or Element
You can restore a deleted folder or element (a service, for example) in the VCS repository
if you did not subsequently delete it completely from the VCS repository.

To restore a folder or element that has been deleted from both Integration Server and the VCS

1. With your VCS client, restore the folder or element in the VCS repository.

Important: If the folder or element contains subfolders or individual files, be sure
you restore all of the folder or element contents, typically by applying a
recursive restore. If you restore a service, for example, without restoring
its node.ndf file, the service will not be recognized by Integration Server.

2. Using the VCS client, check out the restored element to its original location in the ..
\packages\ns directory. You may receive a message that the folder or element does
not exist, with a request to create the folder or element. If so, respond so that all
folders, elements, and files are created.

3. In Package Navigator, right-click the package that contained the deleted element and
select Reload Package. This displays the restored element in the Package Navigator
view.

Note: At this point, although the restored element is in a checked out state on
the VCS server, it does not display the checked out symbol in the Package
Navigator view.

4. In Package Navigator view, right-click the restored element and select Check In.

Copying and Moving Folders or Elements
The VCS Integration feature integrates with the copy, paste, and move functionality of
Designer. The results of all these actions are applied to the VCS repository. You cannot
copy and paste, move an earlier version of a package, folder, or element.

Important: When you move or rename a folder or element, you are effectively creating a
new entity in the VCS repository. Therefore, the previous folder or element
is deleted and a new entity is created. This means that a new revision history
is started for the moved or renamed entity as well. If you want to view
previous revision information for a moved or renamed folder, or element,
you must locate the deleted version of the file in the VCS repository and
view the revision history there.

Because the default behavior of the VCS Integration feature is to add any new folder
or element to the VCS repository, a copied or moved folder or element automatically
appears in the VCS repository in its new location. In the case of a moved item, the
previous location is deleted from both Designer and the VCS repository.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 139

A copied folder or element is always placed in a checked out state in its new location. A
moved folder or element retains its checked in or checked out state; special conditions
apply when you copy or move a coded service. For more information on copying and
moving coded services, see "Working with Java Services" on page 142.

When you move an element that has dependents, the dependents will not be updated
until you check in the moved element. This may cause failure of any services that use the
dependent elements.

Renaming Packages, Folders, and Elements
The VCS Integration feature integrates with the rename functionality of Designer. The
results of all these actions are applied to the VCS repository. You cannot rename an
earlier version of a package, folder, or element.

When you rename a package, folder, or element, the renamed item retains its checked in
or checked out state, and the new name is applied in the VCS repository. Also, note that
when you rename an element that has dependents, the dependents will not be updated
until you check in the renamed element. This may cause failure of any services that use
the dependent elements.

Viewing the History of a Folder or Element
The VCS Integration feature provides the View History command to display the revision
history of a selected folder or element. The View History command is not available at the
package level.

If the folder or element exists in the VCS repository, the lock status and VCS revision
history is displayed.

If the folder or element is not contained in the VCS repository (that is, it exists only
on Integration Server), only the lock status of the element is displayed.

If a selected element contains more than one file (for example, a flow.xml file and
node.ndf file in a flow service), the VCS revision history presents information for
each file.

For ClearCase, the View History command displays the history of the folder or element
in all branches that contain the file.

Note: Technically, folders are not checked in or checked out of the VCS repository;
it is actually the elements within the folder that are checked in or out. When
viewing the history for a folder, you are actually viewing the history of the
node.idf file within the folder.

When you move or rename a folder or element, the previous folder or element is deleted
and a new entity is created. This means that a new revision history is started for the
moved or renamed entity as well. If you want to view previous revision information for

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 140

a moved or renamed folder, or element, you must locate the deleted version of the file in
the VCS repository and view the revision history there.

To view the history of an element

1. In Package Navigator view, right-click the element for which you want to view
history and select View History.

The elementName History dialog box appears. If necessary, you can copy text from the
dialog box and paste it into another program. For more information about version
history details, see "Version History Details" on page 140.

2. When you have finished viewing the history information, click OK.

Version History Details
The following table identifies the available version history information for files,
supporting folders, and elements in the VCS repository.

Information Definition

User The VCS user account name under which the revision was
executed.

Date The date applied to the revision by the VCS server.

Time The time applied to the revision by the VCS server.

Checked In The full VCS project path for the checked in file.

Comment Text entered by the user at check in time. This may contain no
text if the user did not enter a comment.

dev_user The Designer user under which the revision was executed.

is_host The name of the host on which Integration Server is running.

dev_host The name of the host on which Designer is running.

is_time The date and time applied to the revision by Integration Server.

Label The VCS label applied to the file. If no VCS label exists, this entry
is not displayed.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 141

Information Definition

Label
Comment

Text entered by the user when the label was applied. This may
contain no text if the user did not enter a comment.

Working with Blaze Rules Services
When you deploy a rule from Blaze Advisor, a new package, a folder, a subfolder and
a rule node are created in Integration Server. However, only the package is checked in
to the VCS repository, during the rule deployment. You must check in or check out the
folders, subfolders, and rule node manually.

Working with Web Service Descriptors
When a web service descriptor is created in Designer, a web service descriptor node and
associated schemas and document types are created in Integration Server. However,
only the web service descriptor node is checked in to the VCS repository. You must
check in or check out the associated schemas and document types manually.

Working with webMethods Adapter Connections
After they are created, adapter connections appear within a designated package in the
Package Navigator view of Designer. Adapter connections are the one exception to the
rule that all elements shown in the Package Navigator view of Designer are subject to
VCS commands.

Because they are created and maintained in the Integration Server Administrator,
adapter connections cannot be checked in or out of the VCS repository from Designer.
You must create, configure, and modify adapter connections using the Integration Server
Administrator (you must have webMethods administrator privileges to access the
adapter administration screens).

If you want to maintain your adapter connection files in the VCS repository, you must
do so manually with your VCS client.

Note: Because the adapter connection appears within a package, there will be a
corresponding folder created within the VCS repository. However, this folder
contains only the *.ndf file that defines the folder; no adapter connection files
are placed there.

Also note that a publishable document type for an adapter notification cannot be
directly checked in to and out of the VCS repository. It is automatically checked in or out
when you use the VCS client to manually check in or check out its associated adapter
notification.

M
Even Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 142

Working with Java Services
When you copy or move a Java service that is registered in a VCS repository, the
service’s checked in or checked out status in the destination folder is affected according
to the action taken. In addition, certain restrictions apply to the labeling of Java services.

Copying Java Services
When you copy a Java service, the copied service is added to the VCS repository and
placed in a checked out state in its new folder location, regardless of the check in/check
out status of the source Java service. All other Java services in the destination folder will
be checked out if they are not already checked out.

You cannot copy or move an earlier version of a coded service retrieved from the VCS.

Moving Java Services
The ability to move a Java service is available only with the latest version of a Java
service. If you load an earlier version of a Java service, it cannot be moved.

When you move a Java service, the results are influenced by the state of the Java service
before it is moved (that is, checked in or checked out), and the contents and state of the
destination folder.

When a checked out Java service is moved, it will always be checked out in the
destination folder. If there are other coded services in the destination folder they too
will be checked out (if they are not already checked out).

When a checked in Java service is moved to a destination folder that contains no
other checked out coded services, its checked in state will be maintained.

When a checked in Java service is moved to a destination folder that contains one or
more checked out coded services, its state will change to checked out.

Note: When you move a Java service, its VCS revision history is reset. To retrieve
the earlier information, you must find the previous version of the file as a
deleted item in its previous VCS location and view the revision history there.

Labeling Java Services in the VCS
The VCS Integration feature enables you to get an earlier version of VCS files by
specifying a label, as described in "Geing the Latest Version from the VCS" on page
133. VCS labels must be created with the VCS client; the VCS Integration feature does
not enable you to create VCS labels from within Designer.

M
Odd Header

Using the VCS Integration Feature to Check Elements In and Out of a VCS

webMethods Service Development Help Version 9.10 143

The files supporting a Java service are stored in two locations within the package
directory structure in the VCS repository:

..\package \code\source

..\package \ns\folderName \JavaServiceNameFolder

The files in these directories must have the same label for the entire Java service to be
retrieved by label.

To minimize any problems, Software AG recommends that you apply the version label
at the package level, thereby including all folders and elements within the package
hierarchy.

M
Even Header

webMethods Service Development Help Version 9.10 144

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 145

8 Managing Packages

■ Creating a Package ... 146

■ Documenting a Package .. 147

■ Viewing Package Settings, Version Number, and Patch History ... 148

■ Assigning a Version Number to a Package ... 149

■ About Copying Packages Between Servers .. 150

■ Reloading a Package ... 152

■ Comparing Packages ... 152

■ Deleting a Package .. 152

■ Exporting a Package .. 153

■ About Package Dependencies ... 153

■ Assigning Startup, Shutdown, and Replication Services to a Package 156

M
Even Header

Managing Packages

webMethods Service Development Help Version 9.10 146

A package is a container that is used to bundle services and related elements, such as
specifications, IS document types, IS schemas, and triggers. When you create a folder,
service, IS document type, or any element, you save it in a package.

Packages are designed to hold all of the components of a logical unit in an integration
solution. For example, you might group all the services and files specific to a particular
marketplace in a single package. By grouping these components into a single package,
you can easily manipulate them as a unit. For example, you can copy, reload, distribute,
or delete the set of components (the “package”) with a single action.

Although you can group services using any package structure that suits your purpose,
most sites organize their packages by function or application. For example, they might
put all purchasing-related services in a package called “PurchaseOrderMgt” and all
time-reporting services into a package called “TimeCards.”

On the server, a package represents a subdirectory within the
IntegrationServer_directory \instances\instance_name \packages directory. All the
components that belong to a package reside in the package’s subdirectory.

Creating a Package
When you want to create a new grouping for services and related files, create a package.
When you create a package, Designer creates a new subdirectory for the package in the
file system on the machine where the Integration Server is installed. For information
about the subdirectory and its contents, see webMethods Integration Server Administrator’s
Guide.

To create a package

1. In Designer: File > New > Package

2. In New Integration Server Package dialog box, select the Integration Server on which
you want to create the package.

3. In the Name field, type the name for the new package using any combination
of leers, numbers, and the underscore character. For more information, see
"Guidelines for Naming Packages" on page 146.

4. Click Finish. Designer refreshes the Package Navigator view and displays the new
package.

Guidelines for Naming Packages
Keep the following guidelines in mind when naming new packages:

Start all package names with an uppercase leer and capitalize the first leer of
subsequent words (for example, PurchaseOrder).

Keep package names short. Use abbreviations instead of full names. For example,
instead of ProcessPurchaseOrder, use ProcessPO.

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 147

Make sure the package name describes the functionality and purpose of the services
it contains.

Avoid creating package names with random capitalization (for example,
cOOLPkgTest).

Avoid using articles (for example, “a,” “an,” and “the”) in the package name. For
example, instead of TestTheService, use TestService.

Do not use the prefix “Wm” in any case combination. Integration Server and
Designer use the “Wm” prefix for predefined packages that contain services, IS
document types, and other files. Additionally, custom packages with a “Wm” prefix
can be problematic when deploying the packages using Deployer.

Avoid using control characters and special characters like periods (.) in a package
name. The wa.server.illegalNSChars seing in the server.cnf file (which is located
in the IntegrationServer_directory \instances\instance_name \config directory) defines
all the characters that you cannot use when naming packages. Additionally, the
operating system on which you run the Integration Server might have specific
requirements that limit package names.

Documenting a Package
You can communicate the purpose and function of a package and its services to other
developers by documenting the package.

To create documentation for a package

1. Document the package in one or more web documents (such as HTML pages).
Be sure to name the home page for the package documentation index.html. The
index.html file can contain links to the other web documents for the package. An
index.html file exists for each package installed by the Integration Server.

2. Place the documents in the pub subdirectory for the package on the Integration
Server.

For example, place the package documentation for a package named
“PurchaseOrders” in the following directory: IntegrationServer_directory \instances
\instance_name \packages\PurchaseOrders\pub

Tip: An alternate location for package documentation is the
IntegrationServer_directory \instances\instance_name \packages\doc
directory. Typically, this directory is used for reference material such as
PDFs that do not need to be published to the web.

M
Even Header

Managing Packages

webMethods Service Development Help Version 9.10 148

Accessing Package Documentation
To access documentation for a package

Enter the URL for the package documentation. The URLs for package documentation
have the following format:

hp://serverName :port /PackageName /DocumentName

where:

serverName :port is the name and port address of Integration Server on which
the package resides.

PackageName is the name of the package for which you want
documentation.

DocumentName is the name of the web document you want to access. If you do
not specify a DocumentName , Integration Server automatically
displays the index.html file.

Viewing Package Settings, Version Number, and Patch
History
For each package, Designer tracks and displays seings, version number, and a history
of installed patches. A patch is a partial upgrade, change, or fix to the contents of a
package.

You might want to check the seings or patch history of a package for the following
reasons:

To determine which version of the package is installed.

To avoid overwriting the installed package with a lower version of the same
package.

To view the changes that are included in each version of the package.

To inform Software AG Global Support which versions of predefined packages are
installed on your Integration Server.

To view package settings, version number, and patch history

1. In Package Navigator view, select the package whose properties you wish to view.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Package Settings.

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 149

The Package Settings page displays the version and patch history for the package
since the last full release of the package. (A full release of a package incorporates all
previous patches for the package.) For more information about package seings, see
"Package Properties" on page 953.

Note: When the server administrator installs a full release of a package (a release
that includes all previous patches for the package), the Integration Server
removes the existing patch history. This helps the server administrator avoid
potential confusion about version numbers and re-establish a baseline for
package version numbers.

Assigning a Version Number to a Package
You can assign a version number to a package to identify different versions of the
package. For example, you might want to assign a new version number to a package
when you add new services to the package or after you fix bugs in a package. You
might find assigning version numbers especially helpful if you work in a development
environment where more than one person makes changes to a package.

Keep the following in mind when assigning version numbers to packages:

By default, Designer assigns the version number 1.0 to each package that you create.

When you change the version number of a package, make sure that you update the
package dependencies for other packages that depend on the earlier version of this
package.

Assign and change package version numbers through Designer only when the
packages are in a development stage. To avoid difficulties installing package
releases, do not change version numbers on packages you receive from trading
partners, packages to which you subscribe, or packages installed with Integration
Server.

To assign a version number to a package

1. In Package Navigator view, select the package to which you want to assign a version
number.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Package Settings.

4. In the Package Version field, type the version number you want to assign to the
package. Be sure to format the version number in one of the following ways: X.X or
X.X.X (for example, 1.0, 2.1, 2.1.3, or 3.1.2).

5. Click OK.

M
Even Header

Managing Packages

webMethods Service Development Help Version 9.10 150

About Copying Packages Between Servers
You can copy a package to another Integration Server in one of two ways:

From Designer.

You can copy a package and its contents to another Integration Server from within
Designer by performing a copy or a drag-and-drop action. Copying packages using
either of these methods provides a quick way to share a set of services and their
supporting files with other developers in a development environment.

From Integration Server Administrator.

You can also copy a package from within the Integration Server Administrator
by replicating the package. You can then send, or publish, the package to other
Integration Servers. Copying packages using this method allows you to customize
the way in which packages are replicated and published. This method is useful
for managing releases between development and production environments, for
deploying releases to partners or customers, or for distributing package updates to
developers working in large, collaborative environments.

For information about replicating packages and managing releases from within
Integration Server Administrator, see webMethods Integration Server Administrator’s
Guide.

Copying Packages
When copying packages, keep the following points in mind:

You can copy a package to a different server only if you are a member of a group
assigned to the Replicators ACL on the source and destination servers and you are
logged on to both servers.

Before you copy a package that contains elements with unsaved changes, you must
save the changes.

You cannot undo a copy action using the Edit > Undo command.

If you copy a package that depends on other packages to load (that is, the package
has package dependencies), and the required packages are not present on the
destination server, the package will be copied but it will not be enabled.

You cannot copy a package to another server if the destination server already
contains a package with that name.

Note: Because UNIX directories are case sensitive, Integration Servers running
in a UNIX environment will allow packages with similar names to
reside on the same server. For example, you can copy a package named
orderProcessing to a server that contains a package named OrderProcessing.

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 151

When you copy a package from another Integration Server, it is possible that an
HTTP URL alias associated with the new package has the same name as an HTTP
URL alias already defined on your Integration Server. If Integration Server detects a
duplicate alias name, it will write a message to the server.log.

When you copy a package from another Integration Server, it is possible that a port
alias for a port in the new package has the same alias as a port already defined on
your Integration Server. A port alias must be unique across the Integration Server.
If Integration Server detects a duplicate port alias, it will not create the port and will
write the following warning to the server.log:

[ISS.0070.0030W] Duplicate alias duplicateAliasName encountered creating protocol
listener on port portNumber

Note: If you want the port to be created when the package is loaded, use
Integration Server Administrator to delete the existing port with that alias,
create a new port that has the same properties as the just deleted port,
and then reload the package containing the port with the duplicate alias.
Integration Server creates the port when the package is reloaded.

When you copy a package from a version of Integration Server prior to version 9.5
SP1 to an Integration Server version 9.5 SP1, Integration Server creates an alias for
each port associated with the package. Integration Server assigns each port an alias.
For information about the naming conventions used Integration Server, see the
webMethods Integration Server Administrator’s Guide.

If the package you are copying is associated with an e-mail listener, Integration
Server will install the package but will not enable the listener. This is because the
password required for the Integration Server to connect to the e-mail server was
not sent with other configuration information about the listener. To enable the
listener, go to the Security > Ports > Edit E-mail Client Configuration Screen and update the
Password field to specify the password needed to connect to the e-mail server.

To copy a package between servers

1. In Package Navigator view, select the package you want to copy.

2. Click Edit > Copy.

3. If the package you want to copy contains elements with unsaved changes, Designer
alerts you that the package cannot be copied until you save the changes. Click OK to
close the alert dialog box. Then, save the changes and repeat the copy action.

4. Select the server where you want to copy the package.

5. Click Edit > Paste.

M
Even Header

Managing Packages

webMethods Service Development Help Version 9.10 152

Reloading a Package
Sometimes, you need to reload a package on the server to activate changes that have
been made to it outside of Designer. You need to reload a package if any of the following
occurs:

A Java service that was compiled using jcode is added to the package.

New jar files are added to the package.

Any of the configuration files for the package are modified.

Note: Reloading a package is not the same as refreshing the Package Navigator
view. When you refresh the Package Navigator view, Designer retrieves
a fresh copy of the contents of all the packages from the memory of the
Integration Server. When you reload a package, Integration Server removes
the existing package information from memory and loads new versions of the
package and its contents into its memory.

To reload a package

1. In Package Navigator view, select the package you want to reload.

2. Right-click the package and click Reload Package.

Comparing Packages
You can use the compare tool to compare two packages on the same server or on
different servers. For more information, see "Comparing Integration Server Packages
and Elements" on page 925.

Deleting a Package
When you no longer need the services and files in a package, you can delete the package.
Deleting a package removes the package and all of its contents from the Package
Navigator view.

When you delete a package from Designer, Integration Server saves a copy of the
package. If you later want to recover the package and its contents, contact your server
administrator. Only Integration Server Administrator users can recover a package.
For more information about recovering packages, see webMethods Integration Server
Administrator’s Guide.

Before you delete a package, make sure that:

Other users or other services do not use (depend on) the services, templates, IS
document types, and schemas in the package. You can use the Package Dependencies

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 153

option to identify other services that are dependent on a service in a package that
you want to delete. For more information, see "Identifying Package Dependencies"
on page 154.

All elements in the package that you want to delete are unlocked, or locked by you.
If the package contains elements that are locked by others or system locked, you
cannot delete the package.

To delete a package

1. In Package Navigator view, select the package you want to delete.

2. Click Edit > Delete.

Exporting a Package
Packages can be exported to your hard drive so that they can be shared with partners or
developers. You can install an exported package on another server by using the package
publishing functionality in the Integration Server Administrator. Locking information is
not exported.

To export a package

1. In Package Navigator view, select the package you want to export to your hard
drive.

2. Right-click the package and click Export from Server.

3. In the Save As dialog box, select the location on your hard drive where you want the
exported package to reside. Click Save.

This exports the package to a ZIP file and saves it on your hard drive. The ZIP file
can then be published on another server.

Note: The Export from Server option is not the same as the File > Export option. With
File > Export, you can export files from the Workbench to the file system.

About Package Dependencies
If a package needs elements from another package to load before it can load, you must
set up package dependencies. For example, you must identify package dependencies if
a startup service for a package invokes a service in another package. The startup service
cannot execute if the package containing the invoked service has not yet loaded.

Additionally, you should set up a package dependency if a service uses a document type
from a different package as the input or output signature.

You must also identify package dependencies if Java services in a package need to access
Java classes contained in another package.

M
Even Header

Managing Packages

webMethods Service Development Help Version 9.10 154

Important: Other webMethods components might include packages that register new
types of elements in Designer. You should save instances of these new
element types in packages that list the registering package as a package
dependency. The registering package needs to load before your packages so
that Designer can recognize instances of the new element type. For example,
if you create new flat file schemas, you must save the flat file schemas in
packages that identify the WmFlatFile package as a package dependency.

Identifying Package Dependencies
Keep the following in mind when creating package dependencies:

When you identify a package dependency, you must indicate the version number
of the package that needs to load first. For example, the “Finance” package might
depend on version 2.0 of the “FinanceUtil” package. It is possible that the services
and elements needed by a dependent package are contained in more than one
version of the same package. For example, the “Finance” package might depend on
version 2.0 or later of the “FinanceUtil” package.

Make sure that you do not create circular package dependencies. For example, if
you identify “FinanceUtil” as a dependent package for the “Finance” package, do
not identify “Finance” as a dependent package for the “FinanceUtil” package. If you
create circular package dependencies, neither package will load the next time you
start the Integration Server.

If you create new adapter services and adapter notifications, you should save
them in packages that identify the webMethodsAdapterName package as a package
dependency.

Only one version of a package can be installed at one time. If the available version
of the package specified in the package dependency is not the correct version,
Integration Server does not load the dependent package. Integration Server writes a
dependency load error for the dependent package to the server log.

To identify a package dependency

1. In Package Navigator view, select the package for which you want to specify
package dependencies.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Package Dependencies.

4. Click .

5. In the Add Dependent Package dialog box, enter the following information:

In this field... Enter...

Package The name of the package you want Integration Server to load
prior to loading the package selected in the Package Navigator

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 155

In this field... Enter...
view. Type the name of the package in the Package field or
click Browse to choose the dependent package.

Version The version number of the package you specified in the
Package field.

More than one version of the same package might contain
the services and elements that a dependent package needs
Integration Server to load first. A dependency declared on a
version is satisfied by a package with a version that is equal to
or greater than the specified version. For example, to specify
versions 3.0 or later of a package, type 3.0 for the version
number. To specify versions 3.1 or later, type 3.1.0 for the
version number.

You can also use an asterisk (*) as a wildcard in the version
number to indicate that any version number equal to or
greater than the specified version will satisfy the package
dependency. If any version of the package satisfies the
package dependency, type *.* as the version number.

6. Click OK.

7. Click OK in the Properties for PackageName dialog box.

Removing Package Dependencies
Use the following procedure to remove a package dependency that is no longer
needed. For example, if you delete the service in “Finance” that invokes the service
in “FinanceUtil,” then you would no longer need a package dependency on the
“FinanceUtil” package. Another case where you would remove the package dependency
is if you move the services in the “FinanceUtil” package into the “Finance” package.

To remove a package dependency

1. In Package Navigator view, select the package for which you want to remove a
package dependency.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Package Dependencies.

4. Select the package dependency you want to remove and click .

5. Click Yes to confirm the deletion.

6. Click OK in the Properties for PackageName dialog box.

M
Even Header

Managing Packages

webMethods Service Development Help Version 9.10 156

Assigning Startup, Shutdown, and Replication Services to a
Package
You can set up services to automatically execute each time Integration Server loads,
unloads, or replicates a package. These types of services are called startup, shutdown, or
replication services.

What Is a Startup Service?
A startup service is one that Integration Server automatically executes when it loads a
package into memory. The server loads a package:

At server initialization (if the package is enabled).

When someone uses Designer or the Integration Server Administrator to reload a
package.

When someone uses Designer or the Integration Server Administrator to enable a
package.

A startup service is one that Integration Server automatically executes when it loads a
package into memory. The server loads a package:

Assigning a Startup Service
Keep the following guidelines in mind when assigning startup, shutdown, and
replication services to packages:

When you assign a startup or shutdown service to a package, you can only assign
a service that resides in the same package. For example, a startup service for the
“Finance” package must be located in the “Finance” package.

Because services in a package are not made available to clients until the package’s
startup services finish executing, you should avoid implementing startup services
that access busy remote servers. They will delay the availability of other services in
that package.

You can assign one or more startup services to a package; however, you cannot
specify the order in which the services execute. If you have a series of startup
services that need to execute in a specific order, create a “wrapper” service that
invokes all the startup services in the correct order. Designate the “wrapper” service
as the startup service for the package.

If a startup service invokes a service in another package, make sure to identify the
other package as a package dependency for the package containing the startup
service.

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 157

To assign a startup service

1. In Package Navigator view, select the package to which you want to assign startup
services.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Startup/Shutdown Services.

4. Under Startup services, select the service from the Available Services list, and click .

Repeat this step for each service you want to add as a startup service for the package.

Note: A service that you just created does not appear in the Available Services list
if you have not refreshed your session on the server since you created the
service.

5. Click OK.

Removing a Startup Service
If you remove a startup service that invoked a service in another package and the
package was identified as a package dependency, make sure you remove the package
dependency after you remove the startup service.

To remove a startup service

1. In Package Navigator view, select the package for which you want to remove startup
services.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Startup/Shutdown Services.

4. Under Startup services, select the service you want to remove from the Selected
services list, and click .

5. Click OK.

What Is a Shut Down Service?
A shutdown service is one that the Integration Server automatically executes when it
unloads a package from memory. The server unloads a package from memory:

At server shutdown or restart.

When someone uses the Integration Server Administrator to disable the package.

When someone uses the Integration Server Administrator to reload a package before
it is removed from memory.

Shutdown services are useful for executing clean-up tasks such as closing files and
purging temporary data. You could also use them to capture work-in-progress or state
information before a package unloads.

M
Even Header

Managing Packages

webMethods Service Development Help Version 9.10 158

Assigning a Shutdown Service
When you assign a shutdown service to a package, you can only assign a service that
resides in the same package. For example, a shutdown service for the “Finance” package
must be located in the “Finance” package.

To assign a shutdown service

1. In the Package Navigator view, select the package to which you want to assign
shutdown services.

2. Click File > Properties.

3. In the Properties for the PackageName dialog box, select Startup/Shutdown Services.

4. Under Shutdown Services, select the service from the Available services list, and click
.

Repeat this step for each service you want to add as a shutdown service for the
package.

Removing a Shutdown Service

To remove a shutdown service

1. In the Package Navigator view, select the package for which you want to remove
shutdown services.

2. Click File > Properties.

3. In the Properties for the PackageName dialog box, select Startup/Shutdown Services.

4. To remove a shutdown service, under Shutdown services, select the service you want
to remove from the Selected services list, and click .

5. Click OK.

What Is a Replication Service?
A replication service is one that Integration Server automatically executes when it
prepares to replicate a package. A replication service executes when the Integration
Server Administrator creates a package release (full release or patch) or creates a
package archive.

Replication services provide a way for a package to persist state or configuration
information so that these are available when the published package is activated on the
remote server.

Note: The term replication service does not refer to the services contained in
pub.replicator or to services that subscribe to replication events (replication event
services).

M
Odd Header

Managing Packages

webMethods Service Development Help Version 9.10 159

Assigning a Replication Service
When you assign a replication service to a package, you can assign any service from any
loaded package on Integration Server, including the current package.

To assign a replication service

1. In the Package Navigator view, select the package to which you want to assign
replication services.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Replication Services.

4. Click .

5. In the Select a replication service dialog box, select the service that you want to use
as a replication service.

6. Click OK.

Repeat these steps for each service you want to add as a replication service.

Removing a Replication Service

To remove a replication service

1. In the Package Navigator view, select the package for which you want to remove
replication services.

2. Click File > Properties.

3. In Properties for PackageName dialog box, select Replication Services.

4. Select the replication service you want to remove and click .

5. Click Yes to confirm the deletion.

6. Click OK.

M
Even Header

webMethods Service Development Help Version 9.10 160

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 161

9 Building Services

■ A Process Overview ... 162

■ Package and Folder Requirements ... 163

■ About the Service Signature .. 163

■ About Service Run-Time Parameters .. 169

■ Specifying the Default Format for an XML Document Received by the Service 181

■ About Automatic Service Retry .. 182

■ About Service Auditing ... 185

■ About Universal Names for Services or Document Types ... 192

■ About Service Output Templates ... 196

■ Printing a Flow Service .. 198

■ Comparing Flow Services .. 199

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 162

Services are method-like units of logic that operate on documents. They are executed
by Integration Server. You build services to carry out work such as extracting data
from documents, interacting with back-end resources (for example, submiing a query
to a database or executing a transaction on a mainframe computer), and publishing
documents to the Broker. Integration Server is installed with an extensive library of
built-in services for performing common integration tasks. Adapters and other add-on
packages provide additional services that you use to interact with specific resources or
applications. webMethods graphical implementation language, flow, enables you to
quickly aggregate services into powerful sequences called flow services.

A Process Overview
Building a service is a process that involves the following basic stages:

Stage 1 Creating a new service on webMethods Integration Server.

During this stage, you create the new service on the webMethods
Integration Server where you will do your development and
debugging. For information about creating a flow service, see "Creating
a New Flow Service" on page 206. For information about creating a
Java service, see "Creating a Java Service" on page 314.

Stage 2 Adding logic to the new service.

During this stage, you specify the work that you want the service to
perform.

If you are building a flow service, you add logic by inserting flow steps
into the service. For more information, see "Building Flow Services" on
page 201.

If you are building a Java service, you add logic to the source code for
the service. For more information, see "Building Java Services" on page
307.

Stage 3 Declaring the service signature.

During this stage, you define the service’s inputs and outputs. For
information about this stage, see "About the Service Signature" on page
163.

Stage 4 Mapping pipeline data.

If you are building a flow service, during this stage, you route input
and output variables between services that are invoked in the flow. For
information about this stage, see "Mapping Data in Flow Services" on
page 257.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 163

Stage 5 Specifying the run-time parameters.

During this stage, you assign parameters that configure the run-time
environment for this service. For information about this stage, see
"About Service Run-Time Parameters" on page 169.

Stage 6 Formaing service output.

During this stage you can create an output template to format the
service output. For information about this stage, see "About Service
Output Templates" on page 196 or refer to the Dynamic Server Pages
and Output Templates Developer’s Guide.

Stage 7 Debugging.

During this stage you can use the tools provided by Designer to run
and debug your flow service. For information about this stage, see
"Running Services" on page 405, "Debugging Flow Services" on page
431, and "Debugging Java Services" on page 455.

Note: You can create templates with a set of pre-defined values for element
properties. You can then apply the template when creating new instances of
the element instead of seing the properties each time you create an element.
For more information about the element property templates, see "Using
Property Templates with Elements" on page 78.

Package and Folder Requirements
Before you create a new service, you must:

Make sure the package in which you want to create the service already exists. If the package
does not already exist, create it using Designer. For more information about creating
a package, see "Creating a Package" on page 146.

Make sure the folder in which you want to create the service already exists and that you have
Write ACL access to it.If the folder does not already exist, create it using Designer. For
information about creating folders, see "Creating New Elements" on page 52. For
information about ACL permissions, see "Assigning and Managing Permissions for
Elements" on page 83.

Once the package and folder are in place, use the File > New command to start the process
of creating a new service. For details, see "Creating New Elements" on page 52.

About the Service Signature
Input and output parameters are the names and types of fields that the service requires
as input and generates as output. Some systems refer to input and output parameters

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 164

as “imports” and “exports.” These parameters are also collectively referred to as a
signature. You declare a signature for all types of services: flow services, Java services,
and services wrien in other supported programming languages.

For example, a service that takes two string values—an account number (AcctNum) and
a dollar amount (OrderTotal)—as input and produces an authorization code (AuthCode)
as output, has the following input and output parameters:

Input Parameters Output Parameters

 Name Data Type Name Data Type

 AcctNum String AuthCode String

 OrderTotal String

Although you are not required to declare input and output parameters for a service (the
Integration Server will execute a service regardless of whether it has a specification or
not), there are good reasons to do so:

Declaring parameters makes the service’s input and outputs visible to Designer.
Without declared input and output parameters, you cannot:

Link data to and/or from the service using the Pipeline view.

Assign default input values to the service on the Pipeline view.

Validate the input and output values of the service at run time.

Log the input and output document fields of the service.

Run or debug the service in Designer and enter initial input values.

Generate skeleton code for invoking the service from a client.

Declaring parameters makes the input and output requirements of your service
known to other developers who may want to call your service from their programs.

For these reasons, it is strongly recommended that you make it a practice to declare a
signature for every service that you create.

Designer supports several data types for use in services. Each data type supported by
Designer corresponds to a Java data type and has an associated icon. When working in
the editor, you can determine the data type for a field by looking at the icon next to the
field name.

Guidelines for Specifying Input Parameters
When you define the input parameters for a service, keep the following points in mind:

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 165

Specify all inputs that a calling program must supply to this service. For example, if a flow
service invokes two other services, one that takes a field called AcctNum and another
that takes OrderNum , you must define both AcctNum and OrderNum as input
parameters for the flow service.

Note: The purpose of declaring input parameters is to define the inputs that a
calling program or client must provide when it invokes this flow service.
You do not need to declare inputs that are obtained from within the flow
itself. For example, if the input for one service in the flow is derived from
the output of another service in the flow, you do not need to declare that
field as an input parameter.

When possible, use variable names that match the names used by the services in the flow.
Variables with the same name are automatically linked to one another in the
pipeline. (Remember that variable names are case sensitive.) If you use the same
variable names used by flow’s constituent services, you reduce the amount of
manual data mapping that needs to be done. When you specify names that do not
match the ones used by the constituent services, you must use the Pipeline view to
manually link them to one another.

Avoid using multiple inputs that have the same name. Although Designer permits you
to declare multiple input parameters with the same name, the fields may not be
processed correctly within the service or by services that invoke this service.

Make sure the variables match the data types of the variables they represent in the flow. For
example, if a service in the flow expects a document list called LineItems , define
that input variable as a document list. Or, if a service expects a Date object called
EmploymentDate , define that input variable as an Object and apply the java.util.Date
object constraint to it. For a complete description of the data types supported by
Designer, see "Data Types" on page 1091.

Declared input variables appear automatically as inputs in the pipeline. When you select the
first service or MAP step in the flow, the declared inputs appear under Pipeline In.

Trigger services have specific input parameter requirements. If you intend to use a
service with a webMethods messaging trigger or a JMS trigger, make sure the
input signature conforms to the requirements for each of those trigger types. For
more information about creating webMethods messaging trigger, see "Creating
a webMethods Messaging Trigger " on page 684. For more information about
creating JMS triggers, see "Working with JMS Triggers" on page 629.

Important: If you edit a cached service by changing the inputs (not the pipeline),
you must reset the server cache. If you do not reset it, the old cached
input parameters will be used at run time. To reset the service cache from
Designer, select the service and then click the Reset buon next to Reset
Cache in the Properties view. To reset the service cache from Integration
Server Administrator, select Service Usage under Server in the Navigation
panel. Select the name of the service and an information screen for that
service appears. Click Reset Server Cache.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 166

Guidelines for Specifying Output Parameters
On the output side of the Input/Output tab you specify the variables that you want the
service to return to the calling program or client. The guidelines for defining the output
parameters are similar to those for defining input parameters:

Specify all of the output variables that you want this service to return to the calling program
or client.

Make sure the names of output variables match the names used by the services that produce
them. Like input variables, if you do not specify names that match the ones
produced by the flow’s constituent services, you must use the Pipeline view to
manually link them to one another.

Avoid using multiple outputs that have the same name. Although Designer permits you
to declare multiple output parameters with the same name, the fields may not be
processed correctly within the service or by services that invoke this service.

Make sure the variables match the data types of the variables they represent in the service.
For example, if a service produces a String called AuthorizationCode , make sure
you define that variable as a String. Or, if a service produces a Long object called
EmployeeID , define that output variable as an Object and apply the java.lang.Long
object constraint to it. For a complete description of the data types supported by a
service, see "Data Types" on page 1091

Declared output variables appear automatically as outputs in the pipeline.When you select
the last service or MAP step in a flow, the declared output variables appear under
Pipeline Out.

Declaring Input and Output Parameters
You declare the input and output parameters for a service using the Input/Output tab.
On the left side of this tab, you define the variables that the service requires as input.
On the right side, you define the variables the service returns to the client or calling
program.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 167

Input/Output tab

For a flow service, the input side describes the initial contents of the pipeline. In other
words, it specifies the variables that this flow service expects to find in the pipeline at
run time. The output side identifies the variables produced by the flow service and
returned to the pipeline.

You can declare a service signature in one of the following ways:

Reference a specification.A specification defines a set of service inputs and outputs.
You can use a specification to define input and output parameters for multiple
services. When you assign a specification to a service, you cannot add, delete, or
modify the declared variables using the service’s Input/Output tab.

Reference an IS document type. You can use an IS document type to define the input
or output parameters for a service. When you assign an IS document type to the
Input or Output side of the Input/Output tab, you cannot add, modify, or delete the
variables on that half of the tab.

Manually insert input and output variables. Drag variables from the Palee view to the
Input or Output sides of the Input/Output tab.

Using a Specification as a Service Signature
You can use a specification as the service signature. A specification is a “free-standing” IS
element that defines a set of service inputs and outputs.

Keep the following points in mind when using a specification to define the service
signature:

A specification wholly defines the input and output parameters for a service that
references it. This means that you cannot directly alter the service’s input and output
parameters through the service Input/Output tab. (Designer displays the parameters,
but does not allow you to change them.) To make changes to the input and output
parameters of the service, you must modify the specification (which affects all

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 168

services that reference it) or detach the specification so you can manually define the
parameters on the service’s Input/Output tab.

Any change that you make to the specification is automatically propagated to all
services that reference that specification.

If the specification resides in a different package than the service, you must set up
a package dependency. For more information about package dependencies, see
"About Package Dependencies" on page 153.

To assign a specification to a service

1. In the Package Navigator view, open the service to which you want to assign a
specification.

2. Click the Input/Output tab.

3. In the Specification Reference field, type the fully qualified name of the specification,
or click to select it from a list.

4. Click OK.

Using an IS Document Type to Specify Service Input or Output Parameters
You can use an IS document type as the set of input or output parameters for a service or
specification. If you have multiple services with identical input parameters but different
output parameters, you can use an IS document type to define the input parameters
rather than manually specifying individual input fields for each service.

If the service uses an IS document type from a different package, you must set up a
package dependency. For more information about package dependencies, see "About
Package Dependencies" on page 153.

When an IS document type is assigned to the input or output of a service, you cannot
add, delete, or modify the fields on that half of the Input/Output tab.

To use an IS document type as service input or output parameters

1. In the Package Navigator, double-click the service to which you want to assign the IS
document type.

2. Click the Input/Output tab.

3. In the Input or Output field, type the fully qualified name of the IS document type
or click to select it from a list. You can also drag an IS document type from the
Package Navigator to the box below the Validate input or Validate output check boxes on
the Input/Output tab.

4. Click File > Save.

Inserting Input and Output Parameters
You can define a service signature by dragging variables from the Palee view to the
Input or Output side of the Input/Output tab.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 169

To declare input and output parameters for a service

1. In the Package Navigator view, open the service for which you want to declare input
and output parameters.

2. Click the Input/Output tab.

3. If the Palee view is not visible, display it by clicking on the right side of the
editor.

4. In the Palee view, select the type of variable you want to define and drag it to the
Input or Output side of the Input/Output tab.

5. Type a name for the variable and press ENTER.

6. With the variable selected, set variable properties and apply constraints using the
Properties view.

7. If the variable is a document or document list, add child variables to define the
content of the document or document list. Use to indent each member beneath the
document or document list variable.

Note: You can add a document reference to a service signature by selecting an
IS document type in the Package Navigator view and dragging it to the
Input/Output tab.

8. Click File > Save.

About Service Run-Time Parameters
As a developer of a service, you can use the Properties view to specify the following
service behavior:

State of a service. You can maintain whether or not you want the server to treat it as a
“stateless” service at run time.

Caching of service results. You can cache service results to improve the response time
of stateless services.

Execution locale of a service. You can set the type of locale in which the Integration
Server executes at run time.

Creating a URL alias for a service. You can create an alias for the path portion of the URL
used to invoke a service.

Saving and restoring of the pipeline. You can save the pipeline or restore a previously
saved pipeline at run time.

XML format for the service input. If the service receives an XML document, you can
specify the format that Integration Server uses for the document when it passes
the document to the service. The format you specify determines whether or
notIntegration Server parses XML document before passing it to the service.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 170

Important: The run-time parameters should only be set by someone who is thoroughly
familiar with the structure and operation of the selected service. Improper
use of these options can lead to a service failure at run time and/or the return
of invalid data to the client program.

Maintaining the State of Service
When a remote client opens a session on a webMethods Integration Server, the server
automatically builds a session object for that client. The server uses this object to
maintain specific information about the client requesting the service, such as user name
and password. The server maintains the session object for the duration of the session
(that is, until the client program explicitly closes the session on the server or the session
times out due to client inactivity).

When you develop services in a language such as Java or C/C++, you can use the “put”
method to write information to the session object. You might do this to store information
that a sequence of services needs to maintain a connection to an external system.

A service that is an atomic unit of work (that is, one that is wholly self contained and
not part of a multi-service transaction to an external system) does not to need to have
its session object maintained when it is finished executing. For best performance, use
stateful services if your Integration Server receives requests from repeating clients. The
client can connect to Integration Server, be authenticated just once, and then issue many
service invocations during the same session. Use stateless services if clients typically
send a single invocation request to Integration Server at a time. Using a stateless service
prevents the creation of sessions that will sit unused, taking up resources in Integration
Server.

Specifying the Run-Time State for a Service
Configure run-time seings for a service in the Properties view.

To configure a service’s run-time state

1. In the Package Navigator, open the service that you want to configure.

2. In the Run time category of the Properties view, do one of the following to set the
Stateless property:

If the service is a self-contained, atomic unit of work and does not need access
to state information, select True. The server will remove the client session
immediately after the service executes, and no session information will be
maintained for the service.

If the service is part of a multi-service transaction or if you are unsure of its state
requirements, select False. The server will build and maintain a session object for
this service.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 171

Important: Do not use the stateless option unless you are certain that the service
operates as an atomic unit of work. If you are unsure, set the Stateless
property in the Run time category to False.

3. Click File > Save.

About Service Caching
Caching is an optimization feature that can improve the performance of stateless
services. When you enable caching for a service, Integration Server saves the entire
contents of the pipeline after invoking the service in a local cache for the period of time
that you specify. The pipeline includes the output fields explicitly defined in the cached
service, as well as any output fields produced by earlier services in the flow. When
the server receives subsequent requests for a service with the same set of input values, it
returns the cached result to the client rather than invoking the service again.

Caching can significantly improve response time of services. For example, services that
retrieve information from busy data sources such as high-traffic commercial web servers
could benefit from caching. The server can cache the results for flows, Java services, and
C/C++ services.

When Are Cached Results Returned?
When you enable caching for a service in Designer, Integration Server handles the
cached results differently, depending on whether the service has input parameters. It is
recommended that a cached service has input parameters.

When a cached service has input parameters, at run time Integration Server scopes the
pipeline down to only the declared input parameters of the service. Integration Server
compares the scoped-down inputs to the previously stored copy of the inputs. If a
cached entry exists with input parameters that have the same values, Integration Server
returns the cached results from the previous service invocation.

Note: If a cached entry with input parameter values that are identical to the current
invocation does not exist in the cache, Integration Server executes the service
and stores the results in the cache.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 172

Pipeline Inputs Are Compared to the Cached Copy at Run Time

When a cached service does not have input parameters (for example, a date/time service)
and previous results do not exist in the cache, at run time Integration Server executes the
service and stores the results. When the service executes again, Integration Server uses
the cached copy. In other words, Integration Server does not use the run-time pipeline
for the current service invocation; you will always receive cached results until the cache
expires.

Note: When returning cached results for a service, by default, Integration Server
returns a referenced to the cached results instead of the actual value of the
cached results. If a subsequent step in the service modifies the returned
result, Integration Server changes the cached value as well, which affects
all references to the cached value. If any other service uses the cached
results, those services will begin using the updated cache value. To configure
Integration Server to return the actual value instead of a reference, you need
to modify the service results cache. For information about modifying the
service results cache to return values instead or references, see webMethods
Integration Server Administrator’s Guide.

Important: If a cached service input signature includes a Document Reference or
Document Reference List variable and the referenced document type
changes or is modified, you must reset the service cache. If you do not
reset it, Integration Server uses the old cached input parameters at run
time until such time as the cached results expire. You can reset the cache

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 173

from Designer or Integration Server Administrator. For more information
about reseing service cache from Integration Server Administrator, see
webMethods Integration Server Administrator’s Guide.

Types of Services to Cache
While caching service results can improve performance, not all services should be
cached. You should never cache services if the cached results might be incorrect for
subsequent invocations or if the service performs tasks that must be executed each time
the service is invoked. Following are guidelines for you to consider when determining
whether to cache the results for a service.

Services suited for caching:

Services that require no state information. If a service does not depend on state
information from an earlier transaction in the client’s session, you can cache its
results.

Services that retrieve data from data sources that are updated infrequently. Services whose
sources are updated on a daily, weekly, or monthly basis are good candidates for
caching.

Services that are invoked frequently with the same set of inputs. If a service is frequently
invoked by clients using the same input values, it is beneficial to cache the results.

Services that you should not cache:

Services that perform required processing. Some services contain processing that must be
processed each time a client invokes it. For example, if a service contains accounting
logic to perform charge back and you cache the service results, the server does not
execute the service, so the service does not perform charge back for the subsequent
invocations of the service.

Services that require state information. Do not cache services that require state
information from an earlier transaction, particularly information that identifies the
client that invoked it. For example, you do not want to cache a service that produced
a price list for office equipment if the prices in the list vary depending on the client
who initially connects to the data source.

Services that retrieve information from frequently updated sources. If a service retrieves
data from a data source that is updated frequently, the cached results can become
outdated. Do not cache services that retrieve information from sources that are
updated in real time or near real time, such as stock quote systems or transactional
databases.

Services that are invoked with unique inputs. If a service handles a large number of
unique inputs and very few repeated requests, you will gain lile by caching its
results. You might even degrade server performance by quickly consuming large
amounts of memory.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 174

Controlling a Service’s Use of Cache
You use the properties in the Properties view to enable caching and to configure the
way in which you want it to operate with the selected service. You use these seings
to strike the right balance between data currency and memory usage. To gauge the
effectiveness of your cache seings, you can monitor its performance by viewing service
statistics with the Integration Server Administrator and then adjusting your caching
values accordingly.

Note: If you do not have administrator privileges on your Integration Server, work
with your server administrator to monitor and evaluate your service’s use of
cache.

When returning results for a cached service, Integration Server returns a reference to the
cached results instead of the actual value of the cached results. If a subsequent step in
the service modifies the returned result, Integration Server changes the cached value as
well, which affects all references to the cached value. If any other service uses the cached
results, those services will begin using the updated cache value. To address this issue,
you can do one of the following:

Do not change the results of a cached service in a subsequent step in the flow service.

Configure the ServiceResults cache to return the actual value instead of a reference,
you need to modify the service results cache. For more information about changing
the ServiceResults cache, see the webMethods Integration Server Administrator’s Guide.

Important: Integration Server resets the cache for a service automatically whenever any
edits are made to the service. However, if the input signature includes a
document reference variable and the referenced document type changes, you
must reset the service cache. If you do not reset it, Integration Server uses
the old cached input parameters at run time until such time as the cached
results expire. To reset the service cache from Designer, select the service
and then click Reset next to Reset Cache in the Properties view. To reset the
service cache from Integration Server Administrator, select Service Usage
under Server in the Navigation panel. Select the name of the service and an
information screen for that service appears. Click Reset Server Cache.

Specifying the Duration of Cached Results
Integration Server maintains results in cache for the period of time you specify in the
Cache expire property on the Properties view. The expiration timer begins when the
server initially caches a result, and it expires when the time you specify elapses. (The
server does not reset the expiration timer each time it satisfies a service request with a
cached result.) The minimum cache expiration time is one minute.

Note: The cache may not be refreshed at the exact time specified in Cache expire. It
may vary from 0 to 15 seconds, according to the cache sweeper thread. For
details, see the wa.server.cache.flushMins seing in Integration Server.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 175

Refreshing Service Cache by Using the Prefetch Option
You use the Prefetch property to specify whether or not you want the server to
automatically refresh the cache for this service when it expires. If you set Prefetch to True,
the server automatically re-executes the service (using the same set of inputs as before)
to update its results in cache. This action also resets the cache expiration timer.

Keep the following points in mind when using Prefetch:

Use Prefetch carefully. Overuse can quickly exhaust the memory available for cache.

Do not use Prefetch with Java or C/C++ services that invoke access-controlled
services. Such services will fail during prefetch because the embedded service will be
invoked without the proper access privileges. To avoid this problem, enable Prefetch
on the invoked services rather than on the Java or C/C++ services that call them.

When you enable Prefetch, you must also set the Prefetch activation property to specify
when the server should initiate a prefetch. This seing specifies the minimum
number of times a cached result must be accessed (hit) in order for the server to
prefetch results. If the server retrieves the cached results fewer times than specified
in the Prefetch activation property, the server will not prefetch the service results when
the cache expires.

The cache may not be refreshed at the exact time the last hit fulfills the Prefetch
activation requirement. It may vary from 0 to 15 seconds, according to the cache
sweeper thread. For details, see the wa.server.cache.flushMins seing in Integration
Server.

Configuring Caching of Service Results
Configure cache seings for a service in the Properties view.

To enable caching of pipeline contents after a service is invoked

1. In the Package Navigator, open the service for which you want to configure caching.

2. In the Run time category of the Properties view, set Cache results to True.

3. In the Cache expire field, type an integer representing the length of time (in minutes)
that you want the results for this service to be available in cache.

4. If you want to use prefetch, set Prefetch to True, and then in the Prefetch activation
property, specify the minimum number of hits needed to activate the use of prefetch.

5. Click File > Save.

Specifying the Execution Locale
When you create a service, you can set the locale property to indicate the locale policy
in which the service executes at run time. The locale policy of a service refers to the

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 176

language, regional, or cultural seings of a specific target market (the end user). Each
locale consists of five sections: language, extended language, script, region, and variant.

Locales can influence the following:

String display of numeric values and date/time values

Parsing of dates and numbers from strings

Default currency (pounds, Euros, dollars)

Default measuring system (metric or customary)

Default system resources (such as fonts, character encoding, etc.)

Collation (sorting) of lists

User interface/content language

Integration Server recognizes the following locale policies at run time:

Server locale uses its default JVM locale.

User locale uses the client locale.

Root locale uses neutral or POSIX locale.

Null locale uses no locale policy.

You can also configure Integration Server to recognize custom locales. By default, the
service uses the null locale. That is, it uses no locale policy.

To specify the execution locale of a service

1. In the Package Navigator, open the service that you want to configure.

2. In the Run time category of the Properties view, do one of the following to specify the
Execution Locale property:

Select... To...

[$default] Default Runtime Locale Use the server’s default JVM locale.

[$user] Default User Locale Use the client locale.

[$null] No Locale Policy Use no locale policy.

[root locale] Use the neutral or POSIX locale.

[<ISO code>] <Language> Use a specific locale.

Open locale editor... Define a custom locale.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 177

3. If you selected Open locale editor, complete the following in the Define Custom Locale
dialog box.

In this field... Do the following...

Language Select one of the ISO 639 codes that represent the language.
(2- or 3-leer codes)

Extended
Language

For future release.

Script Optional. Select one of the 4-leer script codes in the ISO
15924 registry.

Region Optional. Select one of the ISO 3166-2 country codes.

IANA Variant Optional. Add or remove a variant code registered by the
IANA.

4. Click OK. Integration Server will execute the service in the specified locale.

About URL Aliases for Services
Using a URL alias for a service is convenient because it saves you from specifying full
path information for the service every time you have to enter the service URL. Also, if
a service URL has an alias, you can update the path information for the service without
having to modify the alias. Another benefit to using aliases is the added security; they
prevent the external world from seeing the service names in a URL.

You can create URL aliases for services from Designer and from Integration Server.
Create an alias from Integration Server if you want to assign aliases to resources other
than services, or if you want to assign more than one alias to a resource. See webMethods
Integration Server Administrator’s Guide for more information.

When you create a URL alias, you specify an alias for the path portion of the URL used
to invoke a service. The path portion of the URL consists of the invoke directive and the
fully qualified service name.

Example

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 178

Item Description

1 Identifies the webMethods Integration Server on which the service you
want to invoke resides.

2 Specifies the path portion of the URL, which includes the invoke directive
“invoke.” The path also identifies the folder in which the service resides
and the name of the service to invoke. Separate subfolders with periods.
These fields are case sensitive. Be sure to use the same combination
of upper and lower case leers as specified in the folder name on
webMethods Integration Server.

To create an alias for a service URL, use the HTTP URL alias property in the Properties
view. When you specify an alias in the HTTP URL alias property and save the service,
Integration Server creates an HTTP path alias for the service URL. The target of the alias
is the path that invokes the service. The path alias is the string that you entered in the
property field.

For example, if the name of the service is folder.subFolder:serviceName, then the path
to invoke the service is invoke/folder.subFolder/serviceName. If you enter “test” in the
HTTP URL alias property and save the service, then the two following URLs will point to
the same service:

hp://IS_server:5555/invoke/folder.subFolder/serviceName

hp://IS_server:5555/test

Creating a Path Alias for a Service
Use the HTTP URL alias property in the Properties view to create a path alias to use when
invoking the service in a URL.

When creating a path alias for a service, keep the following in mind:

When you add, edit, or delete an HTTP URL alias property in a service, the property is
automatically updated on the Integration Server when the service is saved.

Integration Server stores the HTTP URL alias information in the node.ndf file of the
service. Because the property is encoded in the node.ndf file, it is propagated across
servers through package replication.

URL aliases for services are saved in memory on the Integration Server. The server
checks for URL aliases before processing HTTP GET or POST requests.

When specifying the alias URL, you must spell it exactly as it is defined on the
server. Alias URLs are case sensitive.

URL alias strings must be unique on the server. The server cannot register a URL
alias if one already exists with the same name on the server, even if it belongs to a
different package.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 179

To troubleshoot alias URLs that cannot register, open the Package > Management
> PackageName screen in the Integration Server Administrator and view the
information under Load Warnings. The alias URLs that generated warnings when the
package was installed are displayed here with a brief explanation.

To create an alias for a service URL

1. In the Package Navigator, open the service that you want to configure.

2. In the Run time category of the Properties view, next to the HTTP URL alias property,
enter an alias string for the URL that will invoke the service.

Important: Do not use reserved characters in the URL alias string. Alias strings that
contain reserved characters are invalid and will not work.

3. On the File menu, click Save.

Automatically Saving or Restoring the Pipeline at Run Time
Use the Pipeline debug property to save or restore the pipeline for a flow service at run
time. The ability to save and restore the pipeline is especially useful when you are
testing and debugging the service.

If you set Pipeline debug to Save, Integration Server saves the entire contents of the
pipeline to a file just before the service executes. You can use the data in the saved
pipeline file to debug and troubleshoot the service or to restore the pipeline. For more
information about debugging and troubleshooting services, see "Saving and Restoring
the Flow Service Pipeline while Debugging" on page 448.

You can use the Pipeline debug property to specify that Integration Server restore the
pipeline for the service automatically at run time. When you restore the service pipeline
using this property, Integration Server either merges or overwrites the pipeline using the
contents from a previously saved pipeline file.

Restoring the service pipeline is useful when debugging or troubleshooting the service
or you just want to inspect the values of the pipeline file. For more information about
debugging and troubleshooting services, see "Saving and Restoring the Flow Service
Pipeline while Debugging" on page 448.

Important: The pipeline debug options you select can be overwrien at run time by
the value of the wa.server.pipeline.processor property set in the server
configuration file. This property globally enables or disables the Pipeline
debug seings. The default enables the Pipeline debug feature on a service-
by-service basis. For more information on seing properties in the server
configuration file, see webMethods Integration Server Administrator’s Guide.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 180

Configuring Saving or Restoring of the Service Pipeline at Run Time

To configure saving or restoring of the service pipeline at run time

1. In the Package Navigator, open the service that you want to configure.

2. Under the Run time category in the Properties view, select one of the following from
the Pipeline Debug property:

Select... To...

None Run the service without saving or restoring the pipeline. This
is the default.

Save Save the pipeline to a file when the service executes.

When the service executes, the contents of the pipeline
are saved to a file on webMethods Integration Server.
The file is saved as folderName .serviceName .xml in the
IntegrationServer_directory \instances\instance_name \pipeline
directory. If the file does not exist, the service creates it. If the
file already exists, the service overwrites it.

Restore
(Override)

Restore the pipeline from a file when the service executes.

When the service executes, the server loads the
pipeline file, folderName .serviceName .xml, from the
IntegrationServer_directory \instances\instance_name \pipeline
directory. The server will throw an exception if the pipeline
file does not exist or cannot be found.

Restore (Merge) Merge the pipeline with one from a file when the service
executes.

When this option is selected and the input parameters in the
file match the input parameters in the pipeline, the values
defined in the file are used in the pipeline. If there are input
parameters in the pipeline that are not matched in the file, the
input parameters in the pipeline remain in the pipeline.

When the service executes, the server loads the
pipeline file, folderName .serviceName .xml, from the
IntegrationServer_directory \instances\instance_name \pipeline
directory. The server will throw an exception if the pipeline
file does not exist or cannot be found.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 181

Specifying the Default Format for an XML Document
Received by the Service
For a service that receives an XML document, you can specify the format for the XML
document that Integration Server passes to the service. The XML format that you select
determines:

Whether Integration Server parses the XML document automatically before passing
it to the service

Which XML parser Integration Server uses. When parsing an XML document,
Integration Server uses either the legacy XML parser or the enhanced XML parser.
For more information about the XML parsers, see webMethods Integration Server
Administrator’s Guide.

The name and data type of the variable that Integration Server adds to the pipeline
with the contents of the XML document

The Default xmlFormat property specifies the default handling for XML documents
received by the service. Keep the following points in mind when seing the Default
xmlFormat property value for a service:

You can specify a default XML format for flow services and Java services only. The
Default xmlFormat property is not available for C/C++ services, .NET services, or web
service connectors.

The default XML format specified for a service by the Default xmlFormat property can
be overridden by the value of the xmlFormat argument in the URL of an individual
client request. However, the client request should specify the xmlFormat argument
only when it is recommended in the documentation for the service. A client should
specify the xmlFormat only when knowing how the service will respond. For more
information see "Submiing and Receiving XML via HTTP" on page 890

The XML format determines whether or not Integration Server parses the document.
If parsing is not needed, it can unnecessarily slow down the execution of a service.
For example, an application might handle the XML as a simple String. In this case,
the automatic parsing is unnecessary and should be avoided.

Make sure the input signature of the service contains an input parameter that
matches the variable name and data type that Integration Server produces for the
default format.

To specify the default XML format for a service

1. In the Package Navigator view of the Service Development perspective, open the
service for which you want to set the default XML format.

2. In the Run time category in the Properties view, next to Default xmlFormat, specify one
of the following:

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 182

Select... To specify that the default XML format is...

<blank> Determined by the value of the wa.server.hp.xmlFormat
server configuration parameter. This is the default.

For more information about the wa.server.hp.xmlFormat
server configuration parameter, see webMethods Integration
Server Administrator’s Guide.

bytes A byte array. Integration Server passes the XML document
directly to the service as a byte array without parsing the
XML. Integration Server places the byte array in the input
pipeline of the target service in a variable named xmlBytes .

enhanced A node parsed by the enhanced XML parser. Integration
Server parses the XML automatically using the enhanced XML
parser. Integration Server uses the default options specified for
enhanced XML parsing on the Settings > Enhanced XML Parsing
page in Integration Server Administrator. Integration Server
passes the XML document to the target service as an enhanced
node that implements the org.w3c.dom.Node interface.
Integration Server places the node in the input pipeline of the
target service in a variable named node .

node A node parsed by the legacy XML parser. Integration
Server parses the XML automatically using the legacy
parser and passes it to the target service as a node of type
com.wm.lang.xml.Node. Integration Server places the node
in the input pipeline of the target service in a variable named
node

stream An InputStream. Integration Server passes the XML document
directly to the service as an XML stream without parsing
the XML. Integration Server places the XML stream in the
input pipeline of the target service as an InputStream named
xmlStream .

3. Click File > Save.

About Automatic Service Retry
You can set Integration Server so that it retries a service if the service fails because of a
transient error. A transient error is an error that arises from a temporary condition that
might be resolved or restored quickly, such as the unavailability of a resource due to

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 183

network issues or failure to connect to a database. The service might execute successfully
if Integration Server waits a short interval of time and then retries the service.

To set up automatic service retry:

Configure each service you want Integration Server to automatically retry by
specifying:

Retry interval, which defines how long Integration Server waits before trying to
re-execute the service.

Maximum retry aempts, which is the number of times you want Integration
Server to try to re-execute the service.

For more information, see "Configuring Service Retry" on page 184.

Configure the wa.server.invoke.maxRetryPeriod server configuration parameter
to set the maximum retry period. The maximum retry period is the total amount of
time that can elapse for Integration Server to make all possible retry aempts. For
more information, see "About the Maximum Retry Period" on page 183.

Build your service so that it throws an ISRuntimeException when a transient error
occurs. For more information, see "Building Services that Retry" on page 907.

At run time, when a service that is coded for retry determines that a transient error
occurred, it throws an ISRuntimeException to signal Integration Server to retry the
service. When a service throws an ISRuntimeException, Integration Server waits the
length of the retry interval and then re-executes the service using the original input
pipeline passed to the service. Integration Server continues to retry the service until the
service executes successfully or Integration Server makes the maximum number of retry
aempts. If the service throws an ISRuntimeException during the final retry aempt,
Integration Server treats the last failure as a service error. The service ends with a service
exception.

Integration Server generates the following journal log message between retry aempts:
[ISS.0014.0031V3] Service serviceName failed with ISRuntimeException.
Retry x of y will begin in retryInterval milliseconds.

Note: If service auditing is also configured for the service, Integration Server adds
an entry to the service log for each failed retry aempt. Each of these entries
will have a status of “Retried” and an error message of “Null”. However, if
Integration Server makes the maximum retry aempts and the service still
fails, the final service log entry for the service will have a status of “Failed”
and will display the actual error message.

About the Maximum Retry Period
Integration Server uses the same server thread for the initial service execution and the
subsequent retry aempts. Integration Server returns the thread to the server thread
pool only when the service executes successfully or the retry aempts are exhausted. To
prevent the execution and re-execution of a single service from monopolizing a server
thread for a long time, Integration Server enforces a maximum retry period when you

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 184

configure service retry properties. The maximum retry period indicates the total amount
of time that can elapse if Integration Server makes the maximum retry aempts. By
default, the maximum retry period is 15,000 milliseconds (15 seconds).

When you configure service retry, Integration Server verifies that the retry period for
that service will not exceed the maximum retry period. Integration Server determines
the retry period for the service by multiplying the maximum retry aempts by the retry
interval. If this value exceeds the maximum retry period, Designer displays an error
indicating that either the maximum aempts or the retry interval needs to be modified.

Note: The wa.server.invoke.maxRetryPeriod server parameter specifies the
maximum retry period. To change the maximum retry period, change the
value of this parameter.

Configuring Service Retry
When configuring service retry, keep the following points in mind:

You can configure retry aempts for flow services, Java services, and C services only.

Only top-level services can be retried. That is, a service can be retried only when it is
invoked directly by a client request. The service cannot be retried when it is invoked
by another service (that is, when it is a nested service).

If a service is invoked by a trigger (that is, the service is functioning as a trigger
service), Integration Server uses the trigger retry properties instead of the service
retry properties.

Unlike webMethods messaging triggers, you cannot configure a service to retry until
successful.

To catch a transient error and re-throw it as an ISRuntimeException, the service must
do one of the following:

If the service is a flow service, the service must invoke
pub.flow:throwExceptionForRetry. For more information about the
pub.flow:throwExceptionForRetry, see the webMethods Integration Server Built-In Services
Reference.

If the service is wrien in Java, the service can use
com.wm.app.b2b.server.ISRuntimeException (). For more information about
constructing ISRuntimeExceptions in Java services, see webMethods Integration
Server Java API Reference for the com.wm.app.b2b.server.ISRuntimeException
class.

The service retry period must be less than the maximum retry period. For more
information, see "About the Maximum Retry Period" on page 183.

To configure service retry

1. In Package Navigator view, open the service for which you want to configure service
retry.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 185

2. Under Transient error handling in the Properties view, in the Max retry attempts property,
specify the number of times Integration Server should aempt to re-execute the
service. The default is 0, which indicates that Integration Server does not aempt to
re-execute the service.

3. In the Max interval property, specify the number of milliseconds Integration Server
should wait between retry aempts. The default is 0 milliseconds, which indicates
that Integration Server re-executes the service immediately.

4. Click File > Save.

Tip: You can invoke the pub.flow:getRetryCount service to retrieve the current retry
count and the maximum specified retry aempts. For more information about
this service, see the webMethods Integration Server Built-In Services Reference. For
more information about building a service that retries, see "About Automatic
Service Retry" on page 182.

About Service Auditing
Service auditing is a feature in Integration Server that you can use to track which
services executed, when services started and completed, and whether services succeeded
or failed. You perform service auditing by analyzing the data stored in the service log.
The service log can contain entries for service start, service end, and service failure.
The service log can also contain a copy of the input pipeline used to invoke the service
as well as select fields from input and output service signatures. At run time, services
generate audit data at predefined points. Integration Server captures the generated audit
data and stores it in the service log. If the service log is a database, you can re-invoke
services using the webMethods Monitor.

Note: When Integration Server logs an entry for a service, the log entry contains the
identify of the server that executed the service. The server ID in the log entry
always uses the Integration Server primary port, even if a service is executed
using another (non-primary) Integration Server port.

Each service has a set of auditing properties located in the Audit category on the service’s
Properties view. These properties determine when a service generates audit data and
what data is stored in the service log. For each service, you can decide:

Whether the service should generate audit data during execution. That is, do you
want the service to generate audit data to be captured in the service log? If so, you
must decide whether the service will generate audit data every time it executes or
only when it is invoked directly by a client request (HTTP, FTP, SMTP, etc.) or a
trigger.

The points during service execution when the service should generate audit data to
be saved in the service log. You might want a service to produce audit data when it
starts, when it ends successfully, when it fails, or a combination of these.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 186

Whether to include a copy of the service input pipeline in the service log. If the
service log contains a copy of the input pipeline, you can use the webMethods
Monitor to perform more extensive failure analysis, examine the service’s input data,
or re-invoke the service.

Keep in mind that generating audit data can impact performance. Integration Server
uses the network to send the audit data to the service log and uses memory to actually
save the data in the service log. If a large amount of data is saved, performance can be
impacted. When you configure audit data generation for services, you should balance
the need for audit data against the potential performance impact.

Note: The service log can be a flat file or a database. If you use a database, the
database must support JDBC. You can use Integration Server to view the
service log whether it is a flat file or a database. If the service log is a database,
you can also use the webMethods Monitor to view audit data and re-invoke
the service. Before you configure service auditing, check with your Integration
Server Administrator to learn what kind of service log exists. For more
information about the service log, see the webMethods Audit Logging Guide.

Service Auditing Use Cases
Before you set properties in the Audit category on the Properties view, decide what
type of auditing you want to perform. That is, decide what you want to use the service
log for. The following sections describe four types of auditing and identify the Audit
properties you would select to be able to perform that type of auditing.

Error Auditing
In error auditing, you use the service log to track and re-invoke failed services. To use
the service log for error auditing, services must generate audit data when errors occur,
and the Integration Server must save a copy of the service’s input pipeline in the service
log.

With webMethods Monitor, you can only re-invoke top-level services (those services
invoked directly by a client or by a webMethods messaging trigger). Therefore, if your
intent with error auditing is to re-invoke failed services, the service needs to generate
audit data only when it is the top-level service and it fails.

To make sure the service log contains the information needed to perform error auditing,
select the following Audit properties.

For this property... Select this option...

Enable auditing When top-level service only

Note: If you want to be able to audit all failed invocations of
this service, select Always.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 187

For this property... Select this option...

Include pipeline On errors only

Log on Error only

To use the service log for error auditing, use a database for the service log.

Service Auditing
When you perform service auditing, you use the service log to track which services
execute successfully and which services fail. You can perform service auditing to analyze
the service log and determine how often a service executes, how many times it succeeds,
and how many times it fails. To use the service log for service auditing, services need to
generate audit data after execution ends.

To make sure the service log contains the information needed to perform service
auditing, select the following Audit properties.

For this property... Select this option...

Enable auditing When top-level service only

Log on Error and success

Include pipeline Never

Note: Configure a service to save a copy of the input pipeline
only if you intend to re-invoke the service using the
resubmission capabilities of the webMethods Monitor.

To use the service log for service auditing, you can use either a flat file or a database as
the service log.

Auditing for Recovery
Auditing for recovery involves using the service log to track executed services and
service input data so that you can re-invoke the services. You might want to audit for
recovery in the event that a resource experiences a fatal failure, and you want to restore
the resource to its pre-failure state by resubmiing service invocations.

When auditing for recovery, you want to be able to resubmit failed and successful
services. The service log needs to contain an entry for each service invoked by a client
request or a trigger. The service log also needs to contain a copy of each service’s input
pipeline.

To use the service log to audit for recovery, select the following Audit properties.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 188

For this property... Select this option...

Enable auditing When top-level service only

Log on Error and success

Include pipeline Always

To use the service log to audit for recovery, use a database for the service log.

Auditing Long-Running Services
If a service takes a long time to process, you might want to use the service log to verify
that service execution started. If the service log contains a start entry for the service but
no end or error entry, then you know that service execution began but did not complete.
To enable auditing of long-running services, select the Error, success, and start option for
the Log on property.

Note: Typically, you will audit long-running services in conjunction with error
auditing, service auditing, or auditing for recovery.

Configuring Service Auditing
When you configure auditing for a service, you can determine if and when a service
generates audit data and whether the service log includes a copy of the service’s input
pipeline or select fields. Make sure that you select options that will provide the service
log with the audit data you require.

Keep the following points in mind when configuring service auditing:

Before you select options for generating audit data, check with your Integration
Server Administrator to determine what kind of service log exists. A service log can
be a flat file or a database.

The options you select in the Audit category of the Properties view can be overwrien
at run time by the level set for the Service Logger in Integration Server. View the
Service Logger level on the Setting > Logging > View Service Logger Details page of
Integration Server Administrator.

The service generates audit data only when it satisfies the selected option under
Enable auditing and the selected option in the Log on property. For example, if When
top-level service only is selected and the service is not the root service in the flow
service, it will not generate audit data.

The pipeline data saved in the service log is the state of the pipeline just before the
invocation of the service. It is not the state of the pipeline at the point the service
generates audit data.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 189

Including the pipeline in the service log is useful only when the service log is a
database. Integration Server cannot save the pipeline to a flat file service log.

When a service generates audit data, it also produces an audit event. If you want
the audit event to cause another action to be performed, such as sending an e-mail
notification, write an event handler. Then subscribe the event handler to audit
events. For more information about events and event handlers, see "Subscribing to
Events" on page 867

If you want audit events generated by a service to pass a copy of the input pipeline
to any subscribed event handlers, set Include pipeline to On errors only or Always.

Integration Server can also log select fields from the service signature. Logged fields
can be viewed in the webMethods Monitor. For information about field logging, see
"Logging Input and Output Fields" on page 189.

You can associate a custom value with an auditing context. The custom value can be
used to search for service audit records in the webMethods Monitor. For information
about creating and logging custom values for auditing contexts, see "Assigning a
Custom Value to an Auditing Context" on page 191.

To configure service auditing, you must have write access to the service and own the
lock on the service or have it checked out.

For detailed information about the Audit properties, see "Audit Properties" on page
1033.

To configure service auditing

1. In the Package Navigator, double-click the service for which you want to configure
service auditing.

2. In the Audit category of the Properties view, select an Enable auditing option to
indicate when you want the service to generate audit data.

3. For Log on, select an option to determine when the service generates audit data.

4. For Include pipeline, select an option to indicate when Integration Server should
include a copy of the input pipeline in the service log.

5. Click File > Save.

Logging Input and Output Fields
You can select input and output fields from service signatures for logging. Values of
logged fields can be viewed in webMethods Monitor. You can also create aliases for the
logged fields, which makes them easier to locate in webMethods Monitor.

When Integration Server logs data for a field depends on the value of the Log on
property. To use the Service logger to audit for both input and output service signatures,
select the following Log On properties:

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 190

Log on... Data logged at the start of the
service...

Data logged at the end of the
service...

Error None Input and output data

Error, Success None Input and output data

Error, Success, Start Input data Output data

Selecting Input or Output Fields for Logging
When selecting fields for logging, keep the following points in mind:

Input and output parameters must be defined for the service on the Input/Output
tab.

Audit logging must be enabled for the service. The Enable auditing property for the
service must be set to When top-level service only or Always.

The Integration Server Service logger must be enabled. The Service logger must be
configured to write to a database so you can use the webMethods Monitor to view
audit data. You may have to check with your Integration Server Administrator to
learn how the Service logger is configured. For more information about the enabling
and configuring the Service logger, see the webMethods Audit Logging Guide.

You can create the same alias for more than one field, but this is not recommended.
Having the same alias might make monitoring the fields at run time difficult.

To select service input or output fields for logging

1. In the Package Navigator view, open the service for which you want to select fields
for logging.

2. Click the Logged Fields tab.

3. On the Logged Fields page, click Expand to expand the Inputs and Outputs trees to
display the fields available in the service signature.

4. Select the check boxes next to the fields you want to log.

5. If you want to define an alias for a field, type an Alias name.

The alias defaults to the name of the selected field, but it can be modified to any alias
for viewing in webMethods Monitor.

Logged Field Data Types in JDBC
When the value for a logged field is wrien to the database, it is saved as one of the
JDBC data types: VARCHAR, FLOAT or DATE. Integration Server converts the data type
for each logged field as follows:

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 191

Data Type in Input or Output Document JDBC Type in Database

String, String List or Table VARCHAR

Object or Object List, Java wrapper type:

java.lang.Boolean VARCHAR

java.lang.Byte VARCHAR

java.lang.Character VARCHAR

java.lang.Double FLOAT

java.lang.Float FLOAT

java.lang.Integer FLOAT

java.lang.Long FLOAT

java.lang.Short FLOAT

java.util.Date DATE

byte[] VARCHAR

UNKNOWN VARCHAR

Integration Server calls the toString() method on objects that do not have a defined
Java wrapper type. If you are logging one of your own types and you implement the
toString() method, the server saves the value returned by your implementation to the
audit log. If you do not supply a toString implementation, the server saves the output of
java.lang.Object.toString() to the database.

Assigning a Custom Value to an Auditing Context
You can assign a custom value to an auditing context. If Integration Server is configured
to write service audit data to a database, you can use the custom value as search criteria
to locate and view all corresponding service audit records. You search logged audit data
using the webMethods Monitor.

To write custom values for the current auditing context to the server log, use the
Integration Server built-in service pub.flow:setCustomContextID. For instructions about
using this service, see the webMethods Integration Server Built-In Services Reference. For

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 192

information about using the webMethods Monitor, see the webMethods Monitor
documentation.

About Universal Names for Services or Document Types
Every service and document type on a webMethods Integration Server has a universal
name in addition to its regular webMethods name. A universal name is a unique public
identifier that external protocols (such as SOAP) use to reference a service or document
type on an Integration Server.

The structure of a universal name is the same as the structure of a QName in an XML
namespace and consists of two parts: a namespace name and a local name.

The namespace name is a qualifier that distinguishes a webMethods service from
other resources on the Internet. For example, there might be many resources with the
name AcctInfo. A namespace name distinguishes one AcctInfo resource from another
by specifying the name of the collection to which it belongs, similar to the way in
which a state or province name serves to distinguish cities with the same name (for
example, Springfield, Illinois, versus Springfield, Ontario).

Like namespaces in XML, the namespace portion of a universal name is expressed as
a URI. This notation assures uniqueness, because URIs are based on globally unique
domain names.

The namespace portion of the universal name can consist of any combination of
characters that form a valid absolute URI (relative URIs are not supported). For
example, the following are all valid namespace names:

http://www.gsx.com

http://www.gsx.com/gl/journals

http://www.ugmed.ch/résumè

For a complete description of what makes up a valid URI, see RFC 2396 Uniform
Resource Identifiers (URI): Generic Syntax.

The local name uniquely identifies a service or document type within the
collection encompassed by a particular namespace. Many webMethods users use
a service’s unqualified name as its local name. Under this scheme, a service named
gl.journals:closeGL would have a local name of closeGL.

Local names follow the same construction rules as NCNames in XML. Basically, a
local name can be composed of any combination of leers, digits, or the following
symbols:

. (period)

- (dash)

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 193

_ (underscore)

Additionally, the local name must begin with a leer or an underscore. The
following are examples of valid local names:

addCustOrder

authorize_Level1

générent

For specific rules relating to NCNames, see “NCName” definition in the Namespaces
in XML specification.

Implicit and Explicit Universal Names
Every service or document type that exists on Integration Server has an explicit or an
implicit universal name.

An explicit universal name is a universal name that you specifically assign to a service
or document type with Designer. When you assign an explicit universal name, you
must specify both the namespace name and the local name.

An implicit universal name is automatically derived from the name of the service or
the document type. The implicit name acts as the universal name when a service
or document type does not have an explicit universal name. The server derives an
implicit name as follows:

The namespace name is the literal string http://localhost/ followed by the fully
qualified name of the folder in which the service or document type resides on the
Integration Server.

The local name is the unqualified name of the service or document type.

The following table shows the implicit names for a variety of service names:

 The service’s implicit universal name is...

Fully qualified service name Namespace name Namespace name

gl.journals:jrnlEntry http://localhost/gl.journals jrnlEntry

gl.journals.query:viewJournals http://localhost/
gl.journals.query

viewJournals

orders:postPO http://localhost/orders postPO

Note: It is possible for an implicit name to match the explicit name of another
service. When this condition exists, the explicit name takes precedence. That
is, when a universal name is requested, Integration Server searches its registry

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 194

of explicit names first. If it does not find the requested name there, it looks for
a matching implicit name.

Assigning, Editing, or Viewing an Explicit Universal Name
To ensure interoperability with other vendor’s implementations of SOAP, Software AG
recommends that you always assign explicit universal names to those document types
that you want to make available to SOAP clients.

When you assign an explicit universal name, you must enter values in both the
Namespace name and Local name fields. If you specify one field but not the other, you will
receive an error message when you aempt to save the service or document type. You
will not be permied to save it until you specify both parts of the universal name.

If you move a service or document type, or a folder containing a service or document
type, Designer retains the explicit universal name. If you copy a service or document
type, or a folder containing a service or document type, Designer does not retain the
explicit universal name.

Earlier versions of the webMethods SOAP implementation did not include the http://
localhost/ prefix as part of an implicit name. However, the server is backward
compatible. It will resolve QNames that clients submit in either the old form (without
the hp prefix) or the new form (with the hp prefix).

To assign, edit, or view a universal name

1. In Package Navigator view, double-click the service or document type whose
universal name you want to assign, edit, or view.

2. In the editor, click the service’s or document type’s title bar to give the service or
document type the focus.

3. If you want to assign or edit the universal name, specify the following in the
Universal Name category of the Properties view:

In this field... Specify...

Namespace
name

The URI that will be used to qualify the name of this service or
document type. You must specify a valid absolute URI.

Local name A name that uniquely identifies the service or document
type within the collection encompassed by Namespace name.
The name can be composed of any combination of leers,
digits, or the period (.), dash (-) and underscore (_) characters.
Additionally, it must begin with a leer or the underscore
character.

Note: Many webMethods users use the unqualified portion of
the service name as the local name.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 195

4. Click File > Save.

Deleting an Explicit Universal Name
To delete a universal name

1. In the Package Navigator, open the service or document type whose universal name
you want to delete.

2. In the Universal Name category of the Properties view, clear the seings in the
Namespace name and Local name fields.

3. Click File > Save.

The Universal Name Registry
Integration Server maintains a registry, called the Universal Name Registry, which maps
explicit universal names to the services and document types that they represent. The
registry is generated each time the Integration Server is started and is maintained in
memory while the server is running.

When you use the Designer to assign, modify, or delete a universal name, you update
the Universal Name Registry. To view the contents of the registry, you can execute the
servicepub.universalName:list in Designer and view the contents of the names variable on
the Input/Output tab. (This service resides in the WmPublic package.)

Services You Use to Interact with the Universal Name Registry
The following services can be used to display the Universal Name Registry or locate the
name of a service or document type associated with an explicit universal name. For more
information about these services, see the webMethods Integration Server Built-In Services
Reference.

Service Description

pub.universalName:list Returns a document list containing the entries for
the service in the current registry. Each document
in the list represents an entry in the registry and
contains a service’s fully qualified webMethods
name and both parts of its explicit universal name.

pub.universalName:listAll Returns a document list containing the entries
for services and document types in the current
registry. Each document in the list represents
an entry in the registry and contains the fully
qualified webMethods name and both parts of

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 196

Service Description
its explicit universal name for each service and
document type.

pub.universalName:find Returns the fully qualified service name for a
specified explicit universal name.

pub.universalName:findDocumentType Returns the fully qualified document type name
for a specified explicit universal name.

About Service Output Templates
An output template is a web document that is embedded with special codes (tags) that
Integration Server processes. These tags instruct Integration Server to perform a specific
action and substitute the result of that action in the web document. Typically, you use
tags in output templates to insert service output values in web documents returned to
clients.

Output templates are used most frequently to customize the HTML page that a service
returns to a browser-based application. However, they can also be used to generate an
XML document or any other formaed string. For example, you may have a service
that retrieves a record from a relational database and uses an output template to format
the record as an XML document or a comma-delimited record before returning it to the
requester.

Output templates are optional. If a service has an output template assigned to it, the
server automatically applies the template to the results of the service (that is, the
contents of the pipeline) whenever that service is invoked by an HTTP client. If a service
does not have an output template, the server simply returns the results of the service in
the body of an HTML document, formaed as a two-column table.

Creating an Output Template
You can use Designer to create an output template, or you can create an output template
file using an ordinary text editor.

When you create an output template, keep the following points in mind:

You must give the output template file a name that is unique within the package in
which it resides.

If you want the template to produce output in XML, WML, or HDML, you must
include a <meta> tag in the first line of the template’s contents that sets the value
of Content Type accordingly (for example, <meta hp-equiv="Content-Type"
content="text/xml">).

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 197

The default encoding that Integration Server uses to interpret data posted in the
resulting browser page is Unicode (UTF-8). If you want to change the encoding to
something other than UTF-8, you must insert a <meta> tag that sets the encoding (for
example, <meta hp-equiv="Content-Type" charset=iso-8859-1">).

If you specify a file encoding other than UTF-8 in the <meta> tag of your template’s
content, the characters that you use in your template (including the data inserted
into your template using %VALUE% statements) are limited to those in the character
set of the encoding you choose.

You can reference one output template from within another.

The following procedure describes how to create an output template using Designer.

To create an output template

1. Lock and open the flow service whose output you want to format using an output
template.

2. In the Properties view, in the Name field under Output template, type the name of the
file that will contain the output template tags. Alternatively, you can accept the name
that Designer suggests.

3. In the Template source field, do the following:

a. Click .

b. On the Template Source dialog, type or paste all literal text exactly as you want it
to appear in the service output, including HTML, XML, WML, or HDML content
as desired. Then, embed any output template tags where you want the server
to execute them at run time. For details about template tags, see Dynamic Server
Pages and Output Templates Developer’s Guide.

c. Click Save.

Designer creates the file in the format FolderName_ServiceName.html and stores
the file in the IntegrationServer_directory \instances\instance_name \packages
\packageName \templates directory.

Assigning an Output Template to a Service
Assigning an output template to a service causes the output of the service to be
formaed according to the tags the template contains.

When you assign an output template to a service, keep the following points in mind:

A service can have at most one output template assigned to it at a time.

You can assign the same output template to more than one service.

The output template file must reside in the IntegrationServer_directory \instances
\instance_name \packages\packageName \templates directory, where packageName is
the package in which the service is located.

M
Even Header

Building Services

webMethods Service Development Help Version 9.10 198

Note: If you assign an output template to a service and later copy that service
to a different package, you must copy the output template file to
the IntegrationServer_directory \instances\instance_name \packages
\packageName \templates directory of the new package. (If you copy an
entire package, any output templates will be included automatically.)
If the template file has a file extension other than .html, rename the file
extension as “.html” so that Designer will recognize its contents.

The server treats the case of the file name differently depending on which operating
system you are using. For example, on a case-insensitive system such as Windows,
the server would see the names “template” and “TEMPLATE” as the same name.
However, on a case-sensitive system such as UNIX, the server would see these as
two different names. If you are trying to assign an existing output template and you
enter a file name in the wrong case on a UNIX system, the wrong file name could be
assigned as the output template for your service.

To assign an output template to a service

1. Lock and open the flow service whose output you want to format using an output
template.

2. In the Properties view, in the Name field under Output template, type the name of an
existing output template file that you want to assign to the service. You do not need
to include the path information or the file name extension.

3. If you want to edit the template, do the following:

a. In the Template source field, click .

b. On the Template Source dialog, edit the literal text or tags as desired. For details
about template tags, see Dynamic Server Pages and Output Templates Developer’s
Guide.

c. Click Save.

Note: Changes you make to an output template affect all the services in the
package that use the template, not just the service that is currently open
in the editor.

Printing a Flow Service
You can use the View as HTML command to produce a printable version of a flow
service. The resulting HTML page displays all aspects of a flow (its input and output
parameters, its flow steps, and pipeline behavior).

Note: The View as HTML feature is available only for flow services.

M
Odd Header

Building Services

webMethods Service Development Help Version 9.10 199

To print a flow service

1. In Package Navigator view, right-click the flow service that you want to print and
select View as HTML.

Designer creates an HTML page and displays it in your default browser.

2. Use your browser's print command to print the flow.

Comparing Flow Services
You can use the compare tool to compare two flow services on the same server or on
different servers. For more information, see "Comparing Integration Server Packages
and Elements" on page 925.

M
Even Header

webMethods Service Development Help Version 9.10 200

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 201

10 Building Flow Services

■ What Is a Flow Service? .. 202

■ Building Services Using the Tree Tab or Layout Tab ... 205

■ Creating a New Flow Service .. 206

■ Setting Properties for a Flow Step ... 217

■ The INVOKE Step .. 218

■ The BRANCH Step .. 221

■ The REPEAT Step ... 231

■ The SEQUENCE Step ... 238

■ The LOOP Step ... 240

■ The EXIT Step ... 245

■ The MAP Step .. 248

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 202

A flow service is a service that is wrien in the webMethods flow language. This simple
yet powerful language lets you encapsulate a sequence of services within a single service
and manage the flow of data among them.

What Is a Flow Service?
A flow service is a service that is wrien in the webMethods flow language. You can use
a flow service to encapsulate a sequence of services within a single service and manage
the flow of data among them. For example, you might create a flow service that takes
a purchase order from a buyer and executes the following series of services before
submiing it to an internal ordering system:

1. Gets a purchase order submied by a buyer

2. Logs the order in an audit-trail file

3. Performs a credit check

4. Posts the order to the ordering system

Flow services encapsulate other services

Any service can be invoked within a flow (including other flow services). For instance,
a flow might invoke a service that you create, any of the built-in services provided with
the Integration Server, and/or services from a webMethods add-on product such as the
webMethods Adapter for JDBC.

You create flow services using Designer. They are saved in XML files on Integration
Server.

Important: Flow services are wrien as XML files in a format that is understood by
Designer. Create and maintain flow services using Designer. You cannot
create or edit a flow service with a text editor.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 203

What Is a Flow Step?
A flow service contains flow steps. A flow step is a basic unit of work (expressed in
the webMethods flow language) that webMethods Integration Server interprets and
executes at run time. The webMethods flow language provides flow steps that invoke
services and flow steps that let you edit data in the pipeline.

webMethods flow language also provides a set of control steps that allow you to direct
the execution of a flow service at run time. The control steps allow you to:

Conditionally execute a specified sequence based on a field value.

Retry a specified sequence until it succeeds.

Repeat a specified sequence (loop) for each element in an array field.

In the following flow service, control steps have been inserted to loop through a subset
of the flow service and branch to one of two services in the last step of the loop.

Control steps are used to direct the execution of a flow

A flow service can contain the following types of flow steps:

Invocation Steps

 INVOKE Executes a specified service. For more information about this
step, see "The INVOKE Step" on page 218.

Data-Handling Steps

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 204

 MAP Performs specified editing operations on the pipeline (such
as mapping variables in the pipeline, adding variables to the
pipeline, and dropping variables from the pipeline). For more
information about this step, see "The MAP Step" on page 248.

Control Steps

 BRANCH Executes a specified flow step based on the value of a specified
variable in the pipeline. For more information about this step, see
"The BRANCH Step" on page 221.

 LOOP Executes a set of flow steps once for each element in a specified
array. For more information about this step, see "The LOOP Step"
on page 240.

 REPEAT Re-executes a set of flow steps up to a specified number of times
based on the successful or non-successful completion of the set.
For more information about this step, see "The REPEAT Step" on
page 231.

SEQUENCE
Groups a set of flow steps into a series. The SEQUENCE step is
implicit in most flow services (that is, the steps in a flow service
are treated as a series). However, at times it is necessary to
explicitly group a subset of flow steps using SEQUENCE so that
they can be treated as a unit. For more information about this
flow step, see "The SEQUENCE Step" on page 238.

 EXIT Controls the execution of a flow step (for example, abort an
entire flow service from within a series of deeply nested steps,
throw an exception without writing a Java service, or exit a
LOOP or REPEAT without throwing an exception). For more
information about this step, see "The EXIT Step" on page 245.

What Is the Pipeline?
The pipeline is the general term used to refer to the data structure in which input and
output values are maintained for a flow service. It allows services in the flow to share
data.

The pipeline starts with the input to the flow service and collects inputs and outputs
from subsequent services in the flow. When a service in the flow executes, it has access
to all data in the pipeline at that point.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 205

The pipeline holds the input and output for a flow service

When you build a flow service, you use Designer to specify how information in the
pipeline is mapped to and from services in the flow.

Building Services Using the Tree Tab or Layout Tab
In the flow service editor, you can view and build flow services using the Tree tab or
Layout tab.

On the Tree tab, Designer lists flow steps sequentially from top to boom, and
executes steps in that order. The Tree tab provides a more condensed view of a flow
service.

On the Layout tab, a flow service looks similar to a flow chart. Designer displays
flow steps from left to right. Lines connect the flow steps and show the order in

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 206

which the flow steps execute. Designer displays shapes for flow steps as well as for
the start and end of the flow service. Steps such as BRANCH, LOOP, and REPEAT
that can contain child steps can be collapsed or expanded.

Because the Tree tab and Layout tab provide the same capabilities for building a flow
service, work in whichever tab you find easier to use. You can easily switch between the
tabs when building a flow service.

Designer uses the Tree tab as the default tab for building and viewing flow services. For
this reason, unless specifically stated otherwise, the procedures in the webMethods Service
Development Help are wrien for working in the Tree tab in the flow service editor. For
information about working in the Layout tab in the flow service editor, see "Working in
the Layout Tab" on page 249.

Creating a New Flow Service
You can create a new flow service in the following ways:

Create an empty flow service and define it yourself by inserting flow steps.

Create a flow service from a source file, such as an XML Schema, DTD, or XML
document. If you are building a flow service that extracts data from an XML
document, you can select a source file from which to automatically generate the logic
(that is, the set of flow steps) that will get data from a specified document, rather
than building this logic manually.

Creating an Empty Flow Service
When you create an empty flow service, you must insert the flow steps manually.

To create an empty flow service

1. In Designer: File > New > Flow Service

2. In the New Flow Service dialog box, select the folder in which you want to save the
flow service.

3. In the Element name field, type a name for the flow service using any combination of
leers, numbers, and/or the underscore character. For information about restricted
characters, see "About Element Names" on page 52.

4. If you have a template you want to use to initialize a default set of properties for the
service, select if from the Choose template list.

5. Click Next.

6. On the Select the Source Type panel, select Empty Flow.

7. Click Finish to create the empty flow service.

8. To insert flow steps, see "Inserting Flow Steps" on page 216.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 207

Creating a Flow Service from an XML Document, DTD, or XML
Schema
You can create a flow service based on the structure of a source file, such as an XML
Schema definition, DTD, or XML document to automatically generate a service that
receives an XML node as input. When creating a flow service this way, Designer
generates IS document types, associated schemas, and an XML node based on the source
file you provide. Designer adds the XML node as input to the flow service and creates
references to the IS document types in the flow service output signature.

Important: The flow steps produced by this option are no different than those
produced by manually inserting INVOKE pub.xml:loadXMLNode and INVOKE
pub.xml:queryXMLNode steps in a flow service. After Designer inserts the set of
default steps into your flow service, you can edit the default steps and insert
additional steps just as you would any ordinary flow service.

Creating a Flow Service from an XML Document
When you create a flow service using the structure of an existing XML document,
Designer uses the DTD or XML Schema definition referenced in the XML document
you specify to create the elements for the flow service. If the XML document does not
reference a DTD or XML Schema definition, Designer creates the document type using
the structure of the XML document.

To create a flow service from an XML document

1. In Designer: File > New > Flow Service

2. In the New Flow Service dialog box, select the folder in which you want to save the
flow service.

3. In the Element name field, type a name for the flow service using any combination of
leers, numbers, and/or the underscore character. For information about restricted
characters, see "About Element Names" on page 52.

4. If you have a template you want to use to initialize a default set of properties for the
service, select if from the Choose template list.

5. Click Next.

6. On the Select the Source Type panel, select XML and click Next.

7. On the Select a Source Location panel, under Source location, do one of the following
in the File/URL field:

To create the flow service from an XML document that resides on the Internet,
type the URL of the resource. (The URL you specify must begin with http: or
https:.)

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 208

To create the flow service from an XML document on your local file system, type
in the path and file name, or click the Browse buon to navigate to and select the
file.

8. Click Finish to create the flow service.

Note: Before running a flow service that expects an XML document as input,
you must first create a launch configuration that specifies the XML file,
and then debug the service in Designer. For information about creating a
launch configuration, see "Creating a Launch Configuration for Running a
Service" on page 407.

Creating a Flow Service from a DTD
When you create a flow service from a DTD, Designer uses the elements and aributes
defined by the DTD you specify to create the elements for the flow service.

To create a flow service from a DTD

1. In Designer: File > New > Flow Service

2. In the New Flow Service dialog box, select the folder in which you want to save the
flow service.

3. In the Element name field, type a name for the flow service using any combination of
leers, numbers, and/or the underscore character. For information about restricted
characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select the Source Type panel, select DTD and click Next.

6. On the Select a Source Location panel, under Source location, do one of the following
next to File/URL:

To create the flow service from an DTD that resides on the Internet, type the URL
of the resource. (The URL you specify must begin with http: or https:.)

To create the flow service from a DTD on your local file system, type in the path
and file name, or click the Browse buon to navigate to and select the file.

7. Click Next.

8. Under Select the root node, select the root element of the DTD.

9. Under Element reference handling, select one of the following:

Select Only generate document types for elements with multiple references to instruct
Integration Server to create a separate document type for a referenced element
only when the DTD contains multiple references to that element.

If an element is referenced multiple times, Integration Server creates a separate
document type for the element. Integration Server replaces each element
reference with a document reference field.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 209

If an element is referenced only once, Integration Server defines the element in
line by replacing the element reference with a document field.

Select Always generate document types for referenced elements to instruct Integration
Server to always create a separate document type for a referenced element even if
it is referenced only once. In the document type, Integration Server replaces each
element reference with a document reference field.

10. Click Finish to create the flow service.

Integration Server generates the IS document type and IS schema. Designer displays
any errors or warnings that occur during document type generation.

Note: If the flow service expects an XML document as input, you must create a
launch configuration and debug the service in Designer before running it.
For more information, see "Creating a Launch Configuration for Running a
Service" on page 407.

Creating a Flow Service from an XML Schema Definition
When you create a flow service from an XML Schema definition, Integration Server also
creates one or more IS document types and IS schemas.

Keep the following points in mind when creating flow service from an XML Schema
definition:

You can specify whether Integration Server enforces strict, lax, or no content model
compliance when generating the document type that is referenced in the flow
service. Content models provide a formal description of the structure and allowed
content for a complex type. The type of compliance that you specify can affect
whether Integration Server generates an IS document type or flow service from a
particular XML Schema definition successfully. Currently, Integration Server does
not support repeating model groups, nested model groups, or the any aribute. If
you select strict compliance, Integration Server does not generate an IS document
type or flow service from any XML schema definition that contains those items.

Integration Server can create separate IS document types for named complex types
or expand documents inline within one document type. For more information,
see "Determining How to Represent Complex Types in Document Types" on page
535.

Integration Server can create one field for a substitution group or create fields
for every member element in a substitution group. For more information, see
"Generating Fields for Substitution Groups" on page 541.

To create a flow service from an XML Schema definition in CentraSite, Designer
must be configured to connect to CentraSite.

When creating a flow service from an XML Schema definition that contains a large
number of complex type definitions, and you want Integration Server to create a
separate IS document for each complex type definition, you may need to increase

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 210

the number of elements that Designer maintains in cache. If the cache is not large
enough to include all of the generated IS document types, then Designer will have
to repeatedly retrieve the document types from Integration Server while creating the
flow service. This increases network traffic and can prolong the time needed to create
the flow service. If the cache is large enough to contain all of the IS document types
and other elements generated by Designer while creating a flow service, Designer
might create the flow service more quickly. To increase the number of elements
cached by Designer, see "Caching Elements" on page 76.

To create an IS document type from an XML Schema definition

1. In Designer: File > New > Document Type

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element name field, type a name for the flow service using any combination of
leers, numbers, and/or the underscore character. For information about restricted
characters, see "About Element Names" on page 52.

4. If you have a template you want to use to initialize a default set of properties for the
service, select if from the Choose template list.

5. Click Next.

6. On the Select a Source Type panel, select XML Schema. Click Next.

7. On the Select a Source Location panel, under Source location, do one of the following
to specify the source file for the flow service:

To use an XML schema definition in CentraSite as the source, select CentraSite.

To use an XML schema definition that resides on the Internet as the source, select
File/URL. Then, type the URL of the resource. (The URL you specify must begin
with http: or https:.)

To use an XML Schema definition that resides on your local file system as the
source, select File/URL. Then, type in the path and file name, or click the Browse
buon to navigate to and select the file.

8. Click Next.

9. If you selected CentraSite as the source, under Select XML Schema fromCentraSite,
select the XML Schema definition in CentraSite that you want to use to create the
flow service. Click Next.

If Designer is not configured to connect to CentraSite, Designer displays the
CentraSite> Connections preference page and prompts you to configure a connection
to CentraSite.

10. On the Select Processing Options panel, under Schema domain, specify the schema
domain to which any generated IS schemas will belong. Do one of the following:

To add the IS schema to the default schema domain, select Use default schema
domain.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 211

To add the IS schemas to a specified schema domain, select Use specified schema
domain and provide the name of the schema domain in the text box. A valid
schema domain name is any combination of leers, numbers, and/or the
underscore character. For information about restricted characters, see "About
Element Names" on page 52.

11. Under Content model compliance, select one of the following to indicate how strictly
Integration Server represents content models from the XML Schema definition in the
resulting IS document type.

Select... To...

Strict Generate the IS document type only if Integration Server can
represent the content models defined in the XML Schema
definition correctly. Document type generation fails if
Integration Server cannot accurately represent the content
models in the source XML Schema definition.

Currently, Integration Server does not support repeating
model groups, nested model groups, or the any aribute.
If you select strict compliance, Integration Server does
not generate an IS document type from any XML schema
definition that contains those items.

Lax When possible, generate an IS document type that correctly
represents the content models for the complex types defined
in the XML schema definition. If Integration Server cannot
correctly represent the content model in the XML Schema
definition in the resulting IS document type, Integration
Server generates the IS document type using a compliance
mode of None.

When you select lax compliance, Integration Server will
generate the IS document type even if the content models in
the XML schema definition cannot be represented correctly.

None Generate an IS document type that does not necessarily
represent or maintain the content models in the source XML
Schema definition.

When compliance is set to none, Integration Server generates
IS document types the same way they were generated in
Integration Server releases prior to version 8.2.

12. If you selected strict or lax compliance, next to Preserve text position, do one of the
following to specify whether document types generated from complex types that
allow mixed content will contain multiple *body fields to preserve the location of text
in instance documents.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 212

Select the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content preserves the locations
for text in instance documents. The resulting document type contains a *body
field after each field and includes a leading *body field. In instance documents for
this document type, Integration Server places text that appears after a field in the
*body .

Clear the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content does not preserve the
locations for text in instance documents. The resulting document type contains a
single *body field at the top of the document type. In instance documents for this
document type, text data around fields is all placed in the same *body field.

13. If this document type will be used as the input or output signature of a service
exposed as a web service and you want to enable streaming of MTOM aachment
for elements of type base64Binary, select the Enable MTOM streaming for elements of type
base64Binary check box.

For more information about streaming of MTOM aachments, see "Working with
Web Services" on page 743.

14. If you want Integration Server to use the Xerces Java parser to validate the XML
Schema definition, select the Validate schema using Xerces check box.

Note: Integration Server automatically uses an internal schema parser to validate
the XML Schema definition. However, the Xerces Java parser provides
stricter validation than the Integration Server internal schema parser. As a
result, some schemas that the internal schema parser considers to be valid
might be considered invalid by the Xerces Java parser.

15. Click Next.

16. On the Select Root Node panel, under Select the root node, select the elements that you
want to use as the root elements for the IS document type. The resulting IS document
type will contain all of the selected root elements as top-level fields in the generated
IS document type

To select multiple elements, press the CTRL key while selecting elements.

If Integration Server determines that the XML Schema definition is invalid, the Select
Root Node panel displays an error message to that effect. Click Cancel to abandon
the aempt to create a document type.

17. Under Element reference handling, select one of the following to determine how
Integration Server handles references to global elements of complex type:

Select... To...

Only generate document
types for elements with
multiple references

Instruct Integration Server to create a separate
document type for a referenced element only when

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 213

Select... To...
the XML Schema definition contains multiple
references to that element.

If an element is referenced multiple times,
Integration Server creates a separate document type
for the element. Integration Server replaces each
element reference with a document reference field.

If an element is referenced only once, Integration
Server defines the element in line by replacing the
element reference with a document field.

Always generate document
types for referenced
elements

Instruct Integration Server to always create a
separate document type for a referenced element
even if it is referenced only once. In the document
type, Integration Server replaces each element
reference with a document reference field

Note: Integration Server always replaces an element reference to an element
declaration of simple type with an inline field of type String.

18. Under Complex type handling, select one of the following to indicate how Integration
Server handles references to named complex type definitions:

Select... To...

Expand complex types inline Use a document field defined in line to represent
the content of a referenced complex type
definition.

Generate document types for
complex types

Create a separate IS document type to represent
the content for a referenced complex type
definition. The resulting IS document type for the
root element represents the element of complex
type using a document reference field. In turn,
this document reference field refers to the IS
document type created for the complex type
definition.

Integration Server generates a separate IS
document type for any types derived from the
referenced complex types. For more information
about derived types, see "Derived Types and IS
Document Types" on page 537.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 214

Note: Integration Server always represents an anonymous complex type using a
document field defined inline.

19. If you selected Generate document types for complex types and you want to register each
document type with the complex type definition from which it was created, select
the Register document type with schema type check box.

Note: If you want derived type support for document creation and validation,
select the Register document types with schema type check box. For more
information, see "Registering Document Types with Their Schema Types"
on page 539.

20. If you want Integration Server to generate IS document types for all complex types
in the XML Schema definition regardless of whether the types are referenced by
elements or other type definitions, select the Generate document types for all complex
types in XML Schema check box.

If you leave this check box cleared, Integration Server generates a separate IS
document type for a complex type only if the complex type is referenced or is
derived from a referenced complex type.

21. If any of the root elements you selected for the IS document type contain a
namespace URI and you want to create a new namespace prefix for it, click Next.
Otherwise, continue with step 22.

22. On the Assign Prefixes panel, if you want the IS document type to use different
prefixes than those specified in the XML schema definition, select the prefix you
want to change and enter a new prefix. Repeat this step for each namespace prefix
that you want to change.

Note: The prefix you assign must be unique and must be a valid XML NCName
as defined by the specification hp://www.w3.org/TR/REC-xml-names/
#NT-NCName.

23. Click Finish.

Integration Server generates the flow service, IS document type(s), and IS schema
and saves it on the server. Designer displays them in the Package Navigator view.

Notes:

Integration Server uses the internal schema parser to validate an XML schema
definition. If you selected the Validate schema using Xerces check box, Integration
Server also uses the Xerces Java parser to validate the XML Schema definition. With
either parser, if the XML Schema does not conform syntactically to the schema for
XML Schemas defined in XML Schema Part 1: Structures (which is located at hp://
www.w3.org/TR/xmlschema-1), Integration Server does not create an IS schema.
Instead, Designer displays an error message that lists the number, title, location,
and description of the validation errors within the XML Schema definition. If only
warnings occur, Designer generates the IS schema.

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 215

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations
for this version are listed at hp://xerces.apache.org/xerces2-j/xml-
schema.html.

When validating XML schema definitions, Integration Server uses the Perl5 regular
expression compiler instead of the XML regular expression syntax defined by the
World Wide Web Consortium for the XML Schema standard. As a result, in XML
schema definitions consumed by Integration Server, the paern constraining facet
must use valid Perl regular expression syntax. If the supplied paern does not use
proper Perl regular expression syntax, Integration Server considers the paern to be
invalid.

Note: If the wa.core.datatype.usejavaregex configuration parameter is set to
true, Integration Server uses the Java regular expression compiler instead
of the Perl5 regular expression compiler. When the parameter is true,
the paern constraining facet in XML schema definitions must use valid
syntax as defined by the Java regular expression.

If you selected strict compliance and Integration Server cannot represent the content
model in the complex type accurately, Integration Server does not generate any IS
document types for the flow service.

If you selected lax compliance and indicated that Integration Server should preserve
text locations for content types that allow mixed content (you selected the Preserve
text position check box), Integration Server adds *body fields in the document type
only if the complex type allows mixed content and Integration Server can correctly
represent the content model declared in the complex type definition. If Integration
Server cannot represent the content model in an IS document type, Integration
Server adds a single *body field to the document type.

The contents of an IS document type with a Model type property value other than
“Unordered” cannot be modified.

If the XML schema definition contains an element reference to an element
declaration whose type is a named complex type definition (as opposed to an
anonymous complex type definition), Integration Server creates an IS document type
for the named complex type definition. In the IS document type for the root element,
Integration Server uses document reference field to represent the element reference.
An exception to this behavior is the situation in which the element reference is the
only reference to the complex type definition and the Only generate document types
for elements with multiple references option is selected. In this situation, Integration
Server uses document field defined in line to represent the content of the referenced
complex type.

Integration Server uses the prefixes declared in the XML Schema or the ones you
specified as part of the field names. Field names have the format prefix :elementName
or prefix :@aributeName .

If the XML Schema does not use prefixes, the Integration Server creates prefixes for
each unique namespace and uses those prefixes in the field names. Integration Server

http://xerces.apache.org/xerces2-j/xml-schema.html
http://xerces.apache.org/xerces2-j/xml-schema.html

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 216

uses “ns” as the prefix. The first namespace is “ns1” and the second namespace is
“ns2”.

Before running a flow service that expects an XML document as input, you must first
create a launch configuration that specifies the XML file, and then debug the service
in Designer. For information about creating a launch configuration, see "Creating a
Launch Configuration for Running a Service" on page 407.

Inserting Flow Steps
Flow steps call previously built services and direct the flow of data within a flow service.
You can use the buon on flow service toolbar or the Palee view to insert flow steps
into a flow service.

The Palee view is located at the right of the flow service editor. Click to show the
Palee view. Click to hide the Palee view.

To insert a flow step

1. In the Package Navigator view, open the flow service in which you want to insert
flow steps.

2. Do one of the following:

Click the buon next to on the flow service editor toolbar and select the
flow step that you want to insert.

In the Palee view, select the flow step that you want to insert and drag it to the
flow service editor.

Changing the Position of a Flow Step
Integration Server executes flow steps in the order in which they appear in the editor.

To move a step up or down in a flow service

1. On the Tree tab, select the flow step that you want to move.

2. Use the following toolbar buons to move the step.

To... Click this button...

Move the flow step up in the list

Move the flow step down in the list

Tip: You can also move a flow step by dragging it up or down with your
mouse.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 217

Changing the Level of a Flow Step
Some flow steps have subordinate steps on which they operate. Subordinate steps are
referred to as children. For example, when you use the LOOP step, the set of steps that
make up the loop are referred to as children of that LOOP step.

Children are specified by indenting them beneath their parent flow step. In the following
example, the top step has three children. Note that one of its children is a BRANCH
step, which has its own set of children.

Child steps are indented beneath their parent step

To promote or demote a flow step within a parent/child hierarchy

1. On the Tree tab, select the flow step that you want to move.

2. Use the following toolbar buons to move the step left or right beneath the current
parent step.

To... Click this button...

Demote a flow step in the hierarchy (that is, make the
selected step a child of the preceding parent step)

This buon will only be available if you select a step that can
become a child.

Promote a flow step in the hierarchy (that is, move the step
one level up in the hierarchy)

Setting Properties for a Flow Step
Every flow step is associated with a unique set of properties. The properties for a flow
step are displayed in the Properties view. Values that you specify in the Properties view
apply only to the selected step in the editor.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 218

Although each type of flow step has a set of unique properties, they all have the
following properties:

Property Description

Comments Assigns an optional descriptive comment to the selected flow step.

Label Assigns a name to the selected flow step. When a label is assigned,
that label appears next to the step in the editor. The label allows
you to reference that flow step in other flow steps. In addition,
you use the label to control the behavior of certain flow steps. For
example, the BRANCH step uses the Label property to determine
which alternative it is supposed to execute.

See "The BRANCH Step" on page 221 and "The EXIT Step" on
page 245 for additional information about this use of the label
property.

The INVOKE Step
Use the INVOKE step to request a service within a flow. You can use the INVOKE step
to:

Invoke any type of service, including other flow services and web service connectors.

Invoke any service for which the caller of the current flow has access rights on the
local webMethods Integration Server.

Invoke built-in services and services on other webMethods Integration Servers.

Invoke flow services recursively (that is, a flow service that calls itself). If you use
a flow service recursively, bear in mind that you must provide a means to end the
recursion.

Invoke any service, validating its input and/or output.

Specifying the Service Property
The INVOKE step’s Service property specifies which service will be invoked at run time.
When you insert an INVOKE step, Designer automatically assigns the name of that
service to the Service property.

If you want to change the service assigned to an INVOKE step, you edit the Service
property. You edit this property in one of two ways:

By clicking Service. Service property’s edit buon () and selecting a service from
the Select dialog box. This is the preferred method.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 219

By typing the name of a service in the Service text box. When you specify a service in
this manner, keep the following points in mind:

You must specify the service’s fully qualified name in folderName :serviceName
format.

Example purchasing.orders:getOrders

You must specify the service’s name exactly as it is defined on the server. Service
names are case sensitive.

Invoking a Built-In Service
There is an extensive set of built-in services that you can invoke from a flow service.
The webMethods library includes services for doing such things as transforming data
values, performing simple mathematical operations, extracting information from XML
documents, and accessing databases.

Built-in services reside in the WmPublic package. For a complete description of these
services, see the webMethods Integration Server Built-In Services Reference.

Note: If you are using any adapters (for example, the webMethods Adapter for
JDBC), you will have additional built-in services, which are provided by the
adapters. See the documentation provided with those adapters for details.

Invoking a Service on Another Integration Server
You can use the built-in service pub.remote:invoke to invoke a service on a remote
Integration Server and return the results. The remote server is identified by an alias,
which is configured on the Remote Servers screen in the Integration Server Administrator.
The pub.remote:invoke service automatically handles opening a session and authentication
on the remote server.

The pub.remote:invoke service resides in the WmPublic package and requires the alias of
the remote server and the fully qualified name of the service that you want to invoke as
input. For a complete description of this service, see the webMethods Integration Server
Built-In Services Reference.

Building an Invoke Step
Use the following procedure to invoke a service within a flow service. For information
about how to can specify input/output validation for the service, see "Specifying Input/
Output Validation via the INVOKE Step" on page 300.

To build an INVOKE step

1. Open the flow service in which you want to invoke another service. In the editor,
select the step immediately above where you want to insert the INVOKE step.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 220

2. Do one of the following:

Click the buon next to on the flow service editor toolbar and click . In
the Open dialog box, navigate to the service you want to invoke.

Click by the side of the flow service editor to open the Palee view and select
the flow step that you want to insert and drag it to the flow service editor.

Select one or more services in Package Navigator view and drag them to the
desired position within the flow in the editor. The services must reside on the
same server as the flow service.

3. Complete the following fields in the Properties view:

For this property... Specify...

Service The fully qualified name of the service that will be
invoked at run time. When you insert a service, Designer
automatically assign the name of that service to the Service
property. If you want to change the service that is invoked,
specify the service’s fully qualified name in the format
folderName :serviceName or click and select a service
from the list.

Timeout Optional. Specifies the maximum number of seconds
that this step should run. If this time elapses before
the step completes, Integration Server issues a
FlowTimeoutException and execution continues with the
next step in the service.

If you want to use the value of a pipeline variable for this
property, type the variable name between % symbols. For
example, %expiration%. The variable you specify must be
a String.

If you do not need to specify a time-out period, leave
Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of
the wa.server.threadKill.timeout.enabled configuration
parameter in webMethods Integration Server Administrator’s
Guide.

Validate input Whether or not you want the server to validate the input
to the service against the service input signature. Select
True to validate the input. Select False if you do not want to
validate the input.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 221

For this property... Specify...

Validate output Whether or not you want the server to validate the output
of the service against the service output signature. Select
True to validate the output. Select False if you do not want
to validate the output.

4. If necessary, on the Pipeline view, link Pipeline In variables to Service In variables. Link
Service Out variables to Pipeline Out variables. For more information about linking
variables to a service, see "About Linking Variables" on page 263.

5. Click File > Save.

Tip: In Designer, clicking the buon next to or opening the Palee view
displays a list of commonly used services. You can edit the Window >
Preferences >Software AG>Service Development> Flow Service Editor preferences to
customize this list of services to suit your needs.

The BRANCH Step
The BRANCH step allows you to conditionally execute a step based on the value of a
variable at run time. For example, you might use a BRANCH step to process a purchase
order one way if the PaymentType value is “CREDIT CARD” and another way if it is
“CORP ACCT”.

When you build a BRANCH step, you can:

Branch on a switch value.Use a variable to determine which child step executes. At
run time, the BRANCH step matches the value of the switch variable to the Label
property of each of its targets. It executes the child step whose label matches the
value of the switch.

Branch on an expression. Use an expression to determine which child step executes. At
run time, the BRANCH step evaluates the expression in the Label property of each
child step. It executes the first child step whose expression evaluates to “true.”

Important: You cannot branch on a switch value and an expression for the same
BRANCH step. If you want to branch on the value of a single variable and
you know the possible run-time values of the switch variable exactly, branch
on the switch value. If you want to branch on the values of more than one
variable or on a range of values, branch on expressions.

Branching on a Switch Value
When you branch on a switch value, you branch on the value of a single variable in the
pipeline.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 222

To branch on a switch value

1. Create a list of the conditional steps (target steps) and make them children of the
BRANCH step.

2. In the Properties view for the BRANCH step, specify in the Switch property the name
of the pipeline variable whose value will act as the switch. For more information
about this property, see "Specifying the Switch Value" on page 222.

3. In the Label property of each target step, specify the value that will cause that step to
execute. For more information about this property, see "Specifying the Label Value"
on page 222.

Simple BRANCH step that branches on a switch value

Specifying the Switch Value
The variable you use as the switch variable:

Must be a String or constrained Object variable.

Must be a variable that can exist in the pipeline when the BRANCH step is executed
at run time.

Must be formaed as document /documentVariable , if you are specifying a field in a
document as the switch variable (for example, BuyerInfo /AccountNum).

Specifying the Label Value
At run time, the BRANCH step compares the value of the switch variable to the Label
property of each of its targets. It executes the target step whose label matches the value
of the switch variable.

You can use a regular expression to specify the matching value for a BRANCH step. To
do so, use the following syntax to specify the value in Label:

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 223

/RegularExpression /

For example, if you want to select a step based on whether a PO number starts with the
string “REL” you use /^REL/ as the value of Label. For more information, see "Regular
Expressions" on page 1145.

Unlike other flow steps whose children execute in sequence at run time, only one child
of a BRANCH step is executed: the target whose label matches the value of the switch
variable. If none of the targets match the switch variable, none of them are performed,
and execution “falls through” to the next step in the flow service. For example, in the
following flow service, execution passes directly to the LogTransaction service if the value
of PaymentType is “COD.”

An unmatched value will fall though the BRANCH

Keep the following points in mind when assigning labels to the targets of the BRANCH
step:

You must give each target step a label unless you want to match an empty string. For
that case, you leave the Label property blank. For more about matching an empty
string, see "Branching on Null and Empty Values" on page 225.

Each Label value must be unique within the BRANCH step.

When you specify a literal value as the Label of a child step, the value you specify
must match the run-time value of the switch variable exactly. The Label property is
case sensitive.

You can use a regular expression as the value of Label instead of a literal value.

You can match a null value by using the $null value in the Label property. For more
information about specifying a null value, see "Branching on Null and Empty
Values" on page 225.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 224

You can designate a default step for all unmatched cases by using the $default
value in the Label property. For more information about using the $default seing,
"Specifying a Default Step" on page 226.

Branching on an Expression
When you branch on an expression, you assign an expression to each child of a branch
step. At run time, the BRANCH step evaluates the expressions assigned to the child
steps. It executes the first child step with an expression that evaluates to true.

To branch on an expression

1. Create a list of the conditional steps (target steps) and make them children of the
BRANCH step.

2. In the Properties view for the BRANCH step, set Evaluate labels to True.

3. In the Label property of each target, specify the expression that, when true, will
cause the target step to execute. The expressions you create can include multiple
variables and can specify a range of values for variables. Use the syntax provided by
webMethods to create the expression. For more information about expression syntax,
see "Conditional Expressions" on page 1125.

Simple BRANCH step that branches on an expression

Keep in mind that only one child of a BRANCH step is executed: the first target step
whose label contains an expression that evaluates to true. If none of the expressions
evaluate to true, none of the child steps are invoked, and execution falls through to
the next step in the flow service. You can use the $default value in the Label property
to designate a default step for cases where no expressions evaluate to true. For more
information about using the $default value, see "Specifying a Default Step" on page
226.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 225

Important: The expressions you create for the children of a BRANCH step need to be
mutually exclusive (only one condition should evaluate to true at run time).

Branching on Null and Empty Values
When you build a BRANCH step, you can include target steps that match null or empty
switch values. The BRANCH step considers a switch value to be null if the variable does
not exist in the pipeline or is explicitly set to null. The BRANCH step considers a switch
value to be an empty string if the variable exists in the pipeline but its value is a zero
length string. To branch on null or empty values, set the Label property for the target
step as follows.

To BRANCH on... Do the following...

A null value Set the Label property to $null. At run time, the BRANCH step
executes the target step with the $null label if the switch variable is
explicitly set to null or does not exist in the pipeline.

You can use $null with any type of switch variable.

An empty
string

Leave the Label property blank (empty). At run time, the
BRANCH step executes the target step with no label if the switch
variable is present, but contains no characters.

You can use an empty value only when the switch variable is of
type String.

Important: If you branch on expressions (Evaluate labels is set to True), you cannot branch
on null or empty values. When executing the BRANCH step and evaluating
labels, Integration Server ignores target steps with a blank or $null label.

The following example shows a BRANCH step used to authorize a credit card number
based on the buyer’s credit card type (CreditCardType). It contains three target steps. The
first target step handles situations where the value of CreditCardType is null or where
CreditCardType does not exist in the pipeline. The second target step handles cases
where the value of CreditCardType is an empty string. (Note that the first two target
steps are EXIT steps that will return a failure condition when executed.) The third target
step has the $default label, and will process all specified credit card types.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 226

BRANCH that contains target steps to match null values or empty strings

Specifying a Default Step
If you want to prevent the service from falling through a BRANCH step when an
unmatched value occurs at run time, include a default target step to handle unmatched
cases. To specify the default alternative of a BRANCH step, set the Label property to
$default.

The following example shows a BRANCH step that is used to authenticate payment for
an order based on the type of payment (PaymentType). It contains three target steps. The
first target step handles orders paid for by Credit Card. The second target step handles
orders paid for through a Corporate Account. The third target step has the $default label
and will process all other payment types.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 227

The default step is set to $default

Important: You can only have one default target step for a BRANCH step. Designer
always evaluates the default step last. The default step does not need to be
the last child of the BRANCH step.

Using a SEQUENCE as the Target of a BRANCH
In many cases, you may want a BRANCH step to conditionally execute a series of
multiple steps rather than just a single step. For these cases, you can use the SEQUENCE
step as the target step and group a series of flow steps beneath it.

The following example illustrates a service that accepts a purchase order and processes
it one of three ways depending on the payment type specified in the PaymentType
variable. Because a series of steps are needed to process the PO in each case, the targets
of the BRANCH are defined as SEQUENCE steps, and the appropriate series of steps are
specified as children beneath each SEQUENCE.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 228

Use a SEQUENCE step as the target for a multi-step alternative

Define a multi-step alternative in a SEQUENCE

The SEQUENCE step that you use as a target for a BRANCH can contain any valid flow
step, including additional BRANCH steps. For additional information about building a
SEQUENCE, see "The SEQUENCE Step" on page 238.

Building a BRANCH Step
Use the following procedure to build a BRANCH step in a flow service.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 229

To build a BRANCH step

1. If you are inserting a BRANCH step into an existing flow service, display that
service in the editor and highlight the step immediately above where you want the
BRANCH step inserted.

2. Do one of the following:

Click the buon next to on the flow service editor toolbar and click .

Click by the side of the flow service editor to open the Palee view. Click
and drag it to the flow service editor.

3. Complete the following fields on the Properties view:

For this property... Specify...

Comments An optional descriptive comment for this step.

Scope The name of a document (IData object) in the pipeline to
which you want to restrict this step. If you want this step
to have access to the entire pipeline, leave this property
blank.

Timeout Optional. Specifies the maximum number of seconds
that this step should run. If this time elapses before
the step completes, Integration Server issues a
FlowTimeoutException and execution continues with the
next step in the service.

If you want to use the value of a pipeline variable for this
property, type the variable name between % symbols. For
example, %expiration%. The variable you specify must be
a String.

If you do not need to specify a time-out period, leave
Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of
the wa.server.threadKill.timeout.enabled configuration
parameter in webMethods Integration Server Administrator’s
Guide.

Label An optional name for this specific step, or a null,
unmatched, or empty string ($null, $default, blank). For
more information about branching on null or empty
values, see "Branching on Null and Empty Values" on page
225.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 230

For this property... Specify...

If you use this step as a target for another BRANCH or an
EXIT step, you must specify a value in the Label property.
For more information about the EXIT step, see "The EXIT
Step" on page 245.

Switch The name of the String or constrained Object variable
whose value will be used to determine which child step to
execute at run time. Do not specify a switch variable if you
set the Evaluate labels property to True.

Evaluate label Whether or not you want to evaluate labels of child
steps as conditional expressions. Select True to branch on
expressions. Select False (the default) if you want to branch
on the switch value.

4. Insert the conditional steps that belong to the BRANCH (that is, its children) using
the following steps:

a. Insert a flow step by clicking the buon next to on the flow service editor
toolbar and clicking the required flow step.

b. Indent the flow step using on the flow service editor toolbar to make it a child
of the BRANCH step.

c. In the Label property on the Properties view, specify the switch value that will
cause this step to execute at run time.

To match... Specify...

That exact string A string

The String representation of the object’s value

Example for Boolean objecttrue

Example for Integer object123

A constrained
object value

Any string fiing the criteria specified by the regular
expression

Example/^REL/

A regular
expression

An empty string A blank field

A null value $null

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 231

To match... Specify...

Any unmatched value (that is, execute the step if the value
does not match any other label)

$default

d. Set other properties as needed.

Important: If you are branching on expressions, make sure the expressions you
assign to the target steps are mutually exclusive. In addition, do not
use null or empty values as labels when branching on expressions.
The BRANCH step ignores target steps with a $null label or blank
label.

5. Click File > Save.

The REPEAT Step
The REPEAT step allows you to conditionally repeat a sequence of child steps based on
the success or failure of those steps. You can use REPEAT to:

Re-execute (retry) a set of steps if any step within the set fails. This option is useful to
accommodate transient failures that might occur when accessing an external system
(for example, databases, ERP systems, web servers, or web services) or device.

Re-execute a set of steps until one of the steps within the set fails.This option is useful for
repeating a process as long as a particular set of circumstances exists (for example,
data items exist in a data set).

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 232

Use REPEAT to re-execute one or more steps

Specifying the REPEAT Condition
When you build a REPEAT step, you set the Repeat on property to specify the condition
(success or failure) that will cause its children to re-execute at run time.

If you set “Repeat on”
to…

The REPEAT step…

FAILURE Re-executes the set of child steps if any step in the set fails.

SUCCESS Re-executes the set of child steps if all steps in the set
complete successfully.

Setting the REPEAT Counter
The REPEAT step’s Count property specifies the maximum number of times the server
re-executes the child steps in the REPEAT step.

If you set “Count” to… The REPEAT step…

0 Does not re-execute children.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 233

If you set “Count” to… The REPEAT step…

Any value > 0 Re-executes children up to this number of times.

-1 or blank Re-executes children as long as the specified Repeat on
condition is true.

Important: Note that children of a REPEAT always execute at least once. The Count
property specifies the maximum number of times the children can be re-
executed. At the end of an iteration, the server checks to see whether the
condition (that is, failure or success) for repeating is satisfied. If the condition
is true and the Count is not met, the children are executed again. This process
continues until the repeat condition is false or Count is met, whichever occurs
first. (In other words, the maximum number of times that children of a
REPEAT will execute when Count is > -1, is Count+1.)

When Does REPEAT Fail?
The following conditions cause the REPEAT step to fail:

If “Repeat on” is set to… The REPEAT step fails if…

SUCCESS A child within the REPEAT block fails.

FAILURE The Count limit is reached before its children execute
successfully.

If the REPEAT step is a child of another flow step, the failure is propagated to its parent.

Using REPEAT to Retry a Failed Step
If your flow invokes services that access external systems, you can use the REPEAT step
to accommodate network errors, such as busy servers or connection errors, at run time.
If you use the REPEAT step for this purpose, keep the following points in mind:

The following types of failures satisfy the FAILURE condition:

Expiration of a child step’s Timeout limit

An exception thrown by a Java service

A document query that returns an unpermied null value

If you specify multiple children under a REPEAT step, the failure of any one of the
children will cause the entire set of children to be re-executed.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 234

The REPEAT step immediately exits a set of children at the point of failure (that is, if
the second child in a set of three fails, the third child is not executed).

When Repeat on is set to FAILURE, the failure of a child within a REPEAT step does
not cause the REPEAT step itself to fail unless the Count limit is also reached.

The Timeout property for the REPEAT step specifies the amount of time in which the
entire REPEAT step, including all of its possible iterations, must complete. When
you use REPEAT to retry on failure, you may want to leave the Timeout value at 0
(no limit) or set it to a very high value. You can also set the property to the value
of a pipeline variable by typing the name of the variable between % symbols. The
variable you specify must be a String.

As a developer, you must be thoroughly familiar with the processes you include
within a REPEAT step. Make certain that the child steps you specify can safely be
repeated in the event that a failure occurs. You don’t want to use REPEAT if there is
the possibility that a single action, such as accepting an order or crediting an account
balance, could be applied twice.

To build a REPEAT step that re-executes failed steps

1. If you are inserting a REPEAT step into an existing flow service, display that service
in the editor and highlight the step immediately above where you want the REPEAT
step inserted.

2. Do one of the following:

Click the buon next to on the flow service editor toolbar and click .

Click by the side of the flow service editor to open the Palee view. Click
and drag it to the flow service editor.

3. Complete the following fields on the Properties view:

For this property... Specify...

Comments An optional descriptive comment for this step.

Scope The name of a document (IData object) in the pipeline to
which you want to restrict this step. If you want this step to
have access to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that
this step should run. If this time elapses before the step
completes, Integration Server issues a FlowTimeoutException
and execution continues with the next step in the service.

If you want to use the value of a pipeline variable for this
property, type the variable name between % symbols. For
example, %expiration%. The variable you specify must be a
String.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 235

For this property... Specify...

If you do not need to specify a time-out period, leave Timeout
blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of
the wa.server.threadKill.timeout.enabled configuration
parameter in webMethods Integration Server Administrator’s
Guide.

Label An optional name for this specific REPEAT step, or a null,
unmatched, or empty string ($null, $default, blank).

Important: If you use this step as a target for a BRANCH or EXIT
step, you must specify a value in the Label property.
For more information about the BRANCH and EXIT
steps, see "The BRANCH Step" on page 221 or "The
EXIT Step" on page 245.

Count The maximum number of times you want the children to
be re-executed. If you want to use the value of a pipeline
variable for this property, type the variable name between %
symbols (for example, %servicecount%). The variable you
specify must be a String.

If you want the children re-executed until they are all
successful (that is, no maximum limit), set this value to –1.

Repeat interval The length of time (in seconds) that you want the server to
wait between iterations of the children.

If you want to use the value of a pipeline variable for this
property, type the variable name between % symbols (for
example, %waittime%). The variable you specify must be a
String.

Repeat on FAILURE

4. Beneath the REPEAT step, use the following steps to insert each step that you want
to repeat:

a. Insert a flow step using the buons on the flow service editor toolbar.

b. Indent that flow step using on the flow service editor toolbar. (Make it a child
of the REPEAT step.)

c. Set the properties for the child step as needed.

5. Click File > Save.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 236

Using REPEAT to Retry a Successful Step
Apart from using REPEAT to retry a failed step, you can also use it as a looping device
to repeat a series of steps until a failure occurs.

If you use the REPEAT step to re-execute successful child steps, keep the following
points in mind:

The success condition is met if all children of the REPEAT step execute without
returning a single exception.

If one child in the set fails, the REPEAT step exits at the point of failure, leaving the
remaining children unexecuted.

The failure of a child does not cause the REPEAT step to fail; it merely ends the loop.
(In this case, the REPEAT step itself succeeds and execution of the flow proceeds
normally).

To build a REPEAT step that repeats a set of successful steps

1. If you are inserting a REPEAT step into an existing flow service, display that service
in the editor and highlight the step immediately above where you want the REPEAT
step inserted.

2. Do one of the following:

Click the buon next to on the flow service editor toolbar and click .

Click by the side of the flow service editor to open the Palee view. Click
and drag it to the flow service editor.

For this property... Specify...

Comments An optional descriptive comment for this step.

Scope The name of a document (IData object) in the pipeline to
which you want to restrict this step. If you want this step to
have access to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that
this step should run. If this time elapses before the step
completes, Integration Server issues a FlowTimeoutException
and execution continues with the next step in the service.

If you want to use the value of a pipeline variable for this
property, type the variable name between % symbols. For
example, %expiration%. The variable you specify must be a
String.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 237

For this property... Specify...

If you do not need to specify a time-out period, leave Timeout
blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of
the wa.server.threadKill.timeout.enabled configuration
parameter in webMethods Integration Server Administrator’s
Guide.

Label An optional name for this specific step, or a null, unmatched,
or empty string ($null, $default, blank).

Important: If you use this step as a target for a BRANCH or EXIT
step, you must specify a value in the label property.
For more information about the BRANCH and EXIT
steps, see "The BRANCH Step" on page 221 or "The
EXIT Step" on page 245.

Count The maximum number of times you want the children to
be re-executed. If you want to use the value of a pipeline
variable for this property, type the variable name between %
symbols (for example, %servicecount%). The variable you
specify must be a String.

If you want the children re-executed until any one of them
fails (that is, no maximum limit), set this value to –1.

Repeat interval The length of time (in seconds) that you want the server to
wait between iterations of the children.

If you want to use the value of a pipeline variable for this
property, type the variable name between % symbols (for
example, %waittime%). The variable you specify must be a
String.

Repeat on SUCCESS

4. Beneath the REPEAT step, use the following steps to insert each step that you want
repeat:

a. Insert a flow step using the buons on the flow service editor toolbar.

b. Indent that flow step using on the editor toolbar to make it a child of the
REPEAT step.

c. Set the properties for the child step as needed.

5. Click File > Save.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 238

The SEQUENCE Step
You use the SEQUENCE step to build a set of steps that you want to treat as a group.
Steps in a group are executed in order, one after another. By default, all steps in a
flow service, except for children of a BRANCH step, are executed as though they were
members of an implicit SEQUENCE step. That is, the flow steps execute in order, one
after another. However, there are times when it is useful to explicitly group a set of flow
steps. The most common reasons to do this are:

To group a set of steps as a single alternative beneath a BRANCH step. For details
about this use of the SEQUENCE step, see "Using a SEQUENCE as the Target of a
BRANCH" on page 227.

To specify the conditions under which Integration Server will exit a sequence of
steps without executing the entire set.

Using SEQUENCE to Specify an Exit Condition
In an implicit sequence, when a step fails, Integration Server automatically exits the
sequence. (This is the same behavior as an explicit sequence for which the Exit on
property is set to FAILURE.) By grouping steps into an explicit sequence, you can override
this default behavior and specify the condition on which the SEQUENCE exits. To do
this, you set the Exit on parameter as follows:

Set “Exit on” to… If you want Integration Server to…

FAILURE Exit the SEQUENCE when a step in the SEQUENCE fails.
Execution continues with the next flow step in the flow service.
This is the default behavior for a SEQUENCE.

Exiting upon failure is useful if you have a series of steps that
build upon one another. For example, if you have a set of steps
that gets an authorization code and then submits a PO, you will
want to skip the PO submission if the authorization step fails.

When a SEQUENCE exits under this condition, the SEQUENCE
step fails.

Note: A failure by a transformer in a MAP step causes the
containing SEQUENCE to exit when Exit on is set to
FAILURE.

Note: When a SEQUENCE step exits on failure, Integration Server
rolls back the pipeline contents, returning the pipeline to the
state it was in before the SEQUENCE step executed.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 239

Set “Exit on” to… If you want Integration Server to…

SUCCESS Exit the sequence when any step in the SEQUENCE succeeds.
Execution continues with the next step in the flow service.

Exiting upon success is useful for building a set of alternative
steps that are each aempted at run time. Once one of the
members of the set runs successfully, the remaining steps in the
SEQUENCE are skipped.

If a child step in a SEQUENCE configured to exit on success fails,
any changes that the child step made to the pipeline are rolled
back (undone), and processing continues with the next child step
in the SEQUENCE.

Note: Successful execution by a transformer in a MAP step does
not cause the containing SEQUENCE to exit when Exit on is
set to SUCCESS.

If all the child steps fail in a SEQUENCE configured to exit
upon success, Integration Server considers the SEQUENCE step
successful.

Note: If you do not want a SEQUENCE configured to exit on
success to be successful if all the child steps fail, insert an
EXIT step as the last step in the SEQUENCE. Configure
the EXIT step to exit from the flow and signal a failure.
Specifically, set the Exit from property to $flow and the
Signal property to FAILURE. At run time, if all the other
child steps in the SEQUENCE fail and the child EXIT step
succeeds, Integration Server exits the SEQUENCE with a
failure condition. Integration Server throws an exception
after the exiting the SEQUENCE.

DONE Execute every step in the SEQUENCE.

Integration Server considers a SEQUENCE step configured to exit
on done to be successful as long as it executes all of its children
within the specified time-out limit. The success or failure of a
child step within the SEQUENCE is not taken into consideration.
If a child step fails, any changes that it made to the pipeline are
rolled back (undone), and processing continues with the next
child step in the SEQUENCE.

Integration Server considers a SEQUENCE step configured to exit
on done to fail if all of the child steps do not execute within the
specified time-out limit.

Note: Rollback operations are performed on the first level of the pipeline only. That
is, first-level variables are restored to their original values before the step

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 240

failed, but the server does not roll back changes to any documents to which
the first-level variables refer.

The LOOP Step
The LOOP step repeats a sequence of child steps once for each element in an array that
you specify. For example, if your pipeline contains an array of purchase-order line items,
you could use a LOOP step to process each line item in the array.

To specify the sequence of steps that make up the body of the loop (that is, the set of
steps you want the LOOP to repeat), you indent those steps beneath the LOOP as shown
in the following example.

Simple LOOP step

You may include any valid flow step within the body of a LOOP, including additional
LOOP steps. The following example shows a pair of nested LOOPs. Note how the
indentation of the steps determines the LOOP to which they belong.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 241

Nested LOOP steps

Specifying the Input Array
The LOOP step requires you to specify an input array that contains the individual
elements that will be used as input to one or more steps in the LOOP. At run time,
the LOOP step executes one pass of the loop for each member in the specified array.
For example, if you want to execute a LOOP for each line item stored in a purchase
order, you would use the document list in which the order’s line items are stored as the
LOOP’s input array.

You specify the name of the input array on the LOOP step’s Properties view. The array
you specify can be any of the following data types:

String list

String table

Document list

Object list

LOOP properties

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 242

When you design your flow, remember that because the services within the loop operate
against individual elements in the specified input array, they must be designed to take
elements of the array as input, not the entire array.

For example, if your LOOP executes against a document list called LineItems that
contains children called Item , Qty , and UnitPrice , you would specify LineItems as the
Input array for the LOOP step, but services within the loop would take the individual
elements of LineItems (for example, Item , Qty , UnitPrice , and so forth) as input.

Note: The LOOP step is not thread-safe when the input array is a child of another
variable (for example, a String list that is a child of a Document). Because
the LOOP step changes the dimensionality of the input and output arrays
during execution of the step, any threads invoking services that access the
parent variable can experience the input array variable as either an array or a
scalar. This results in unpredictable behavior for threads accessing the parent
variable.

If the input array is a top-level variable in the pipeline, any thread that
accesses the pipeline object (IData) for the service containing the LOOP step
might also experience unpredictable behavior. Consequently, do not code
other services that might concurrently access the object, such as a document,
document list, or pipeline, that contains the input array. For information
about the changes in dimensionality of inputs in a LOOP step, see "About the
Pipeline for a LOOP Step" on page 242.

Collecting Output from a LOOP Step
If your LOOP step produces an output variable, the server can collect that output into an
array in the pipeline.

To do this, you use the Output array parameter to specify the name of the array variable
into which you want the server to collect output for each iteration of the loop. For
example, if your loop checks inventory status of each line item in a purchase order
and produces a String called InventoryStatus each time it executes, you would specify
InventoryStatus as the value of Output array. At run time, the server will automatically
transform InventoryStatus to an array variable that contains the output from each
iteration of the loop.

To collect output from each pass of the loop, specify the name of the output variable that
you want the server to collect for each iteration.

About the Pipeline for a LOOP Step
In the body of a LOOP step, the field used as the input array is reduced dimensionally.
For example, if the input array is a String list, the input is represented as a String within
the body of the LOOP. If the input array is a String table, the input is a String list within
the body of the LOOP. This is because a LOOP step operates on each element in the
input array.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 243

The field used as the output array is also reduced dimensionally within the body of a
LOOP step. While the LOOP step produces an array, each iteration of the LOOP step
produces one element in the array. If the output array is a String list, within the body of
the LOOP it is a String. If the output array is a String table, within the body of the LOOP
the output is a String list.

In the following example, the LOOP step executes the pub.math:addInts service for each
item in the input array named myInputList . The LOOP step collects the output into an
array named myOutputList . Inside the LOOP step, the pub.math:addInts service operates
on one element of myInputList and produces one element of myOutputList . That is,
the pub.math:addInts service takes a String as input and produces a String as output.
Consequently, in the pub.math:addInts service pipeline, the input is a String named
myInputList and the output is a String named myOutputList . If you viewed the pipeline
after the LOOP step completes, myInputList and myOutputList would appear as String
lists.

Building a LOOP Step
Use the following procedure to build a LOOP step in a flow service.

To build a LOOP step

1. If you are inserting a LOOP step into an existing flow service, display that service
in the editor and select the step immediately above where you want the LOOP step
inserted.

2. Do one of the following:

Click the buon next to on the flow service editor toolbar and click .

Click by the side of the flow service editor to open the Palee view. Click
and drag it to the flow service editor.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 244

3. Complete the following fields on the Properties view:

For this property… Specify…

Comments An optional descriptive comment for this step.

Scope The name of a document (IData object) in the pipeline to
which you want to restrict this step. If you want this step
to have access to the entire pipeline, leave this property
blank.

Timeout Optional. Specifies the maximum number of seconds
that this step should run. If this time elapses before
the step completes, Integration Server issues a
FlowTimeoutException and execution continues with the
next step in the service.

If you want to use the value of a pipeline variable for this
property, type the variable name between % symbols. For
example, %expiration%. The variable you specify must be
a String.

If you do not need to specify a time-out period, leave
Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of
the wa.server.threadKill.timeout.enabled configuration
parameter in webMethods Integration Server Administrator’s
Guide.

Label An optional name for this specific LOOP step, or a null,
unmatched, or empty string ($null, $default, blank).

Important: If you use this step as a target for a BRANCH or
EXIT step, you must specify a value in the Label
property. For more information about the BRANCH
and EXIT steps, see "The BRANCH Step" on page
221 or "The EXIT Step" on page 245.

Input array The name of the array variable on which the LOOP will
operate. This variable must be one of the following types:
String list, String table, Document list, or Object list.

Output array The name of the element that you want the server to collect
each time the LOOP executes. You do not need to specify

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 245

For this property… Specify…
this property if the loop does not produce output values or
if you are collecting the elements of Input array.

4. Build the body of the loop using the following steps:

a. Insert a flow step using the buons on the flow service editor toolbar.

b. Indent the flow step using on the flow service editor toolbar to make it a child
of the LOOP step.

c. Set the properties for the child step as needed.

5. Use the Pipeline view to link the elements of the input array to the input variables
required by each child of the LOOP step. For more information about using the
Pipeline view, see "Mapping Data in Flow Services" on page 257.

Important: When you build a LOOP step, make sure that you specify the output array
variable in the LOOP Output array property before creating a link to the output
array variable within a MAP or INVOKE step in the body of the LOOP.
If you specify the output array variable after creating a link to it, the link
will fail at run time. You can debug the step in Designer to see if the link
succeeds. If the link fails, delete the link to the output array variable and then
recreate it.

The EXIT Step
The EXIT flow step allows you to exit the entire flow service or a single flow step. You
specify whether you want to exit from:

The nearest ancestor (parent) LOOP or REPEAT flow step to the EXIT flow step.

The parent flow step of the EXIT flow step.

A specified ancestor flow step to the EXIT flow step.

The entire flow service.

When you use the EXIT step, you indicate whether exiting should return a successful
condition or a failure condition. If the exit is considered a failure, an exception is thrown.
You can specify the text of the error message that is displayed by typing it directly or by
assigning it to a variable in the pipeline.

Examples of when to use the EXIT step include to:

Exit an entire flow service from within a series of deeply nested steps.

Throw an exception when you exit a flow or a flow step without having to write a
Java service to call Service.throwError().

Exit a LOOP or REPEAT flow step without throwing an exception.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 246

The following flow service contains two EXIT steps that, if executed, will exit the nearest
ancestor LOOP step. If the value of CreditCardType is null or an empty string, the
matching EXIT step executes and exits the LOOP over the '/PurchaseOrdersList' step.

Use the EXIT step to exit the nearest ancestor LOOP step

Building an EXIT Step
Use the following procedure to build an EXIT step in a flow service

To build an EXIT step

1. If you are inserting an EXIT step into an existing flow service, display that service
in the editor and select the step immediately above where you want the EXIT step
inserted.

2. Do one of the following:

Click the buon next to on the flow service editor toolbar and click .

Click by the side of the flow service editor to open the Palee view. Click
and drag it to the flow service editor.

3. Complete the following fields on the Properties view:

For this property… Specify…

Comments An optional descriptive comment for this step.

M
Odd Header

Building Flow Services

webMethods Service Development Help Version 9.10 247

For this property… Specify…

Label An optional name for this specific step, or a null, unmatched, or
empty string ($null, $default, blank).

Important: If you use this step as a target for a BRANCH step, you
must specify a value in the Label property. For more
information about the BRANCH step, see "The BRANCH
Step" on page 221.

Exit from The flow step from which you want to exit. Specify one of the
following:

 Specify To exit from the...

 $loop Nearest ancestor LOOP or REPEAT flow step.

 $parent Parent flow step, regardless of the type of step.

 $flow Entire flow.

 Label Nearest ancestor flow step that has a label that
matches this value.

Note: If the label you specify does not match the label
of an ancestor flow step, the flow will exit with
an exception.

Signal Whether the exit is to be considered a success or a failure.
Specify one of the following:

 Specify To...

 SUCCESS Exit the flow service or flow step with a success
condition.

 FAILURE Exit the flow service or flow step with a failure
condition. An exception is thrown after the exit.
You specify the error message with the Failure
message property.

Failure message The text of the exception message you want to display. If you
want to use the value of a pipeline variable for this property,
type the variable name between % symbols (for example,
%mymessage%). The variable you specify must be a String.

M
Even Header

Building Flow Services

webMethods Service Development Help Version 9.10 248

For this property… Specify…

This property is not used when Signal is set to SUCCESS.

4. Click File > Save.

The MAP Step
The MAP step lets you adjust the contents of the pipeline at any point in a flow service.
When you build a MAP step, you can:

Prepare the pipeline for use by a subsequent step in the flow service by linking,
adding, and dropping variables in the pipeline.

Clean up the pipeline after a preceding step by removing fields that the step added
but are not needed by subsequent steps.

Move variables or assign values to variables in the pipeline.

Initialize the input values for a flow service.

Invoke several services (transformers) in a single step.

Map documents from one format to another. For example, you can map a document
in an XML format to an ebXML format or a proprietary format.

Tip: The MAP step is especially useful for hard coding an initial set of input values
in a flow service. To use it in this way, insert the MAP step at the beginning
of your flow, and then use the Set Value modifier to assign values to the
appropriate variables in Pipeline Out.

For more information about the MAP step, see "Mapping Data in Flow Services" on page
257.

M
Odd Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 249

11 Working in the Layout Tab

■ What Is the Layout Tab .. 250

■ What Does a Flow Service Look Like in the Layout Tab? ... 250

■ Show or Hide the Grid Lines in the Flow Service Editor ... 253

■ Building a Flow Service in the Layout Tab .. 254

M
Even Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 250

The Layout tab is a graphical view of a flow service that Designer displays in the flow
service editor. You use the Layout tab to create flow services.

What Is the Layout Tab
The Layout tab, like the Tree tab, is a view of a flow service that Designer displays in
the flow service editor. You can use either page to build or edit a flow service. However,
Layout tab provides a more graphical view in which to create flow services.

In the Layout tab, a flow service looks similar to a flow chart. Designer displays shapes
for flow steps as well as for the start and end of the flow service. Lines connect the flow
steps and show the order in which the flow steps execute.

Note: Designer uses the Tree tab as the default tab for building and viewing flow
services. For this reason, unless specifically stated otherwise, the procedures
in the webMethods Service Development Help are wrien for working in the Tree
tab in the flow service editor.

When Should You Use Layout Tab?
Because the Layout tab and the Tree tab provide the same capabilities for building
a flow service, work in whichever page you find easier to use. You can easily switch
between tabs when building a flow service. For example, you might find it easier to
insert the flow steps and define the basic structure of a flow service in the Layout tab,
but use the Tree tab to perform data mapping.

You might prefer to use the Layout tab if:

You find that building a flow service as a flow chart is easier than building a flow
service as a sequence of statements. You might be able to more easily envision the
processes a flow service performs if you view the flow service as a diagram instead
of as a series of line-by-line steps.

You need to design a business process with someone unfamiliar with programming
or unfamiliar with webMethods Integration Server. People who are not familiar with
programming might be more comfortable with flow charts.

You need to show diagrams of how the flow service works to management. (Flow
services can be printed.)

What Does a Flow Service Look Like in the Layout Tab?
The Layout tab uses specific shapes and structures for the elements of a flow service,
such as the start and end of a flow service, parent steps, child steps, and the order in
which flow steps run. Designer displays flow steps sequentially from left to right, and

M
Odd Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 251

executes steps in that order. (In tree view, Designer evaluates the target steps from top to
boom.)

The following illustration identifies the basic elements of a flow service in the Layout
tab.

Basic elements of a flow service in the Layout tab

Designer automatically inserts the start and end symbols when you create a flow service.
When you insert a step into a flow service, Designer automatically draws the lines
connecting the flow step to the rest of the steps in the service.

Note: Designer automatically draws, redraws, and deletes lines when you insert,
move, or delete steps in a flow service. You cannot move or delete lines.

Viewing Flow Steps in the Layout Tab
In the Layout tab, the way in which flow steps are displayed depends on the type of
step. For example, Designer displays an invoke step as a small square box in the flow
service while more complex steps, such as BRANCH or LOOP, are displayed in larger
boxes that you can collapse and expand as necessary to view and edit the step.

Tip: When you move the mouse pointer over any flow step box in the Layout tab,
the properties for the step appear in a tool tip.

Each box also displays an additional property that is relevant to the flow step type, such
as Input array for LOOP and Switch for BRANCH.

Flow steps in the Layout tab

M
Even Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 252

Each box that contains a flow step displays properties for the step, such as Label and
Comments. The following table indicates which property is shown for each flow step.

This step... Displays this property...

BRANCH Switch specifies the name of the variable whose value causes the
execution of one of the BRANCH step's children at run time. If
you branch on expressions, this property is blank.

EXIT Signal specifies whether the exit is considered a success or a
failure. A SUCCESS condition exits the flow service or step. A
FAILURE condition exits the flow service or step and throws an
exception.

INVOKE Service specifies the name of the service that is invoked at run
time.

LOOP Input array specifies the name of the array against which the
selected LOOP step will run. Type the name of this variable
exactly as it will appear in the pipeline at run time.

MAP Label

REPEAT Repeat on

SEQUENCE none

Viewing Steps that Contain Child Steps in the Layout Tab
Steps such as BRANCH, LOOP, REPEAT, and SEQUENCE can contain child steps.
Designer displays each step as a box in the flow service. Designer uses a solid line with
arrows to indicate the path of data within the flow step. In a BRANCH step, Designer
also uses dashed lines to enclose the children under the parent step. You can close these
steps by clicking the minimize icon in the right corner.

M
Odd Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 253

Basic elements of a step that contains child steps in the Layout tab

The following table identifies the buons and icons that you can use when building a
flow step that contains child steps.

Button Description

Displays the step or child step in the editor while hiding the rest of
the flow service. Use this buon to view and edit the step or child
step in isolation.

Displays the previous view of the flow step or child step in the
editor. Use this buon to navigate back one level in the step or child
step.

Displays the full view of the flow service.

Collapses the expanded step.

Collapses the child step.

Represents a point in the flow service where Designer evaluates the
label or expression of the step and determines whether or not to
execute the child step.

Show or Hide the Grid Lines in the Flow Service Editor
You might find that grid lines are helpful in the Layout tab when building or viewing
a flow service. You can show and hide grid lines easily in Designer by selecting View >

M
Even Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 254

Grid. You can also use the Flow Service Editor preferences page to enable the grid and to
customize grid line seings.

To enable and customize the grid in the flow service editor

1. In Designer: Window > Preferences >Software AG>Service Development> Flow Service Editor

2. In the Flow Services Editor preferences dialog box, under Grid Properties, select
Enable Grid.

3. In the Grid Width and Grid Height text boxes, specify the size of the grid.

4. To save your changes, click Apply.

5. Click OK.

Building a Flow Service in the Layout Tab
Building a flow service in the Layout tab consists of the same stages as building a flow
service in the Tree tab: creating the flow service, inserting flow steps, seing properties,
declaring the service input and output parameters, mapping pipeline data, and seing
run-time parameters. With the exception of how you insert and move flow steps, the
procedures for completing each stage are the same in the Layout tab as they are in the
Tree tab.

Tip: You might find it easier to build services in the Layout tab if you have a larger
view of the flow service. Use the and buons on the Palee view to
zoom in on or zoom out of the flow service.

Inserting a Flow Step
There are three ways in which you can insert flow steps into a flow service:

Using the Palee view. You select the step in the Palee view and then drop it into
the flow service editor. When you select a step and you move the mouse over the
flow service in the editor, Designer displays a line to indicate where you can insert
the step. To place a flow step, you click the area where you want to insert the step.

Using the context menu. You right-click the area where you want to insert the step
and then select the step in the context menu.

Using the buon on flow service toolbar. You click the buon next to on the
flow service editor toolbar and select the flow step that you want to insert.

Inserting a Flow Step Using the Palette View

To insert a flow step in the Layout tab using the Palette view

1. Open the service in which you want to insert a step. In the editor, make sure that you
are in the Layout tab.

M
Odd Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 255

2. In the Palee view, select the step you want to insert.

3. In the editor, click the area where you want to insert the step.

When you move the mouse pointer over the flow service, a line appears highlighting
the places where you can insert the step. To insert a child step in a collapsed flow
step, move the mouse pointer over the flow step box and click.

4. Designer inserts the step and automatically draws lines to connect the step to the rest
of the steps in the flow service.

5. Click File > Save.

Inserting a Flow Step Using the Context Menu

To insert a flow step in the Layout tab using the context menu

1. Open the service in which you want to insert a step. In the editor, make sure that you
are in the Layout tab.

2. In the editor, right-click the area where you want to insert the step. On the context
menu, select Insert and then select the step you want to insert.

If you right-clicked on an existing step, click Insert and then select Before, After, or
Into, depending on where you want to place the step. Then, select the step you want
to insert.

3. Designer inserts the step and automatically draws lines to connect the step to the rest
of the steps in the flow service.

4. Click File > Save.

Notes for Inserting a Child Step into a BRANCH Step
When you build a BRANCH step in the Layout tab, keep the following points in mind:

You can insert a flow step as a child (target) of the BRANCH, or insert a flow step
into an existing target.

In the Layout tab, Designer evaluates the target steps of a BRANCH from top to
boom. At run time, Designer executes the first target with a matching switch value
or an expression that evaluates to true.

A target with the $default label will be evaluated last, regardless of its position.

A target without the $default label has a dashed line at the boom of the BRANCH to
indicate the flow of execution.

Changing the Order of Steps in a Flow Service
In the Layout tab, the arrows connecting the flow steps indicate the order in which the
steps execute. You can move, or relocate, steps in a flow service to change the order in

M
Even Header

Working in the Layout Tab

webMethods Service Development Help Version 9.10 256

which steps execute. You can also relocate a step to make it a child of another step in the
flow service.

To change the order of a step in a flow service on the Layout tab

1. On the Layout tab, select the step whose execution order you want to change.

2. Use the Cut, Copy, and Paste buons on the toolbar or the Cut, Copy, and Paste
options on the context menu to change the location of the flow step.

For more information, see "Moving and Copying Elements" on page 60.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 257

12 Mapping Data in Flow Services

■ What Does the Pipeline View Contain? ... 258

■ Basic Mapping Tasks ... 263

■ About Linking Variables ... 263

■ About Assigning Values to Pipeline Variables ... 281

■ Dropping Variables from the Pipeline .. 286

■ Adding Variables to the Pipeline .. 287

■ Working with Transformers .. 288

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 258

Because systems rarely produce data in the exact format that other systems need,
you commonly need to build flow services that perform data transformations. Data
transformation resolves differences in the way data is represented within documents
that applications and systems exchange. In Designer, data transformations can be
accomplished by mapping data. By mapping, you can accomplish the following types of
transformations:

Name transformations. This type of transformation resolves differences in the way
data is named. For example, one service or document format might use telephone as
the name of the variable for telephone number information and another might use
phoneNumber . When you perform name transformations, the value and position of
a variable in the document structure remains the same, but the name of the variable
changes.

Structural transformations.This type of transformation resolves differences in the
data type or structure used to represent a data item. For example, one service or
document format might put the telephone number in a String called telephone , and
the next may expect to find it nested in a Document named customerInfo . When you
perform structural transformations, the value of the variable remains the same, but
the data type or position of the variable in the Document structure changes.

Value transformations.This type of transformation resolves differences in the way
values are expressed (for example, when systems use different notations for values
such as standard codes, units of currency, dates, or weights and measures). When
you perform value transformations, the name and position of the variable remain the
same, but the data contained in the variable changes. For example, you can change
the format of a date, concatenate two Strings, or add the values of two variables
together.

When you build flow services or convert between document formats, you may need to
perform one, two, or all of the above types of data transformation. The webMethods
flow language provides two ways for you to accomplish data transformations between
services and document formats in the pipeline: you can map variables to each other
(create links) or you can insert transformers, which are services invoked within a MAP
step.

What Does the Pipeline View Contain?
The Pipeline view offers a graphical representation of all of your data through which
you can map data and inspect the contents of the pipeline. You use the tools on this view
to route variables (data) between services or between document formats.

The Pipeline view displays the pipeline for invoked services (INVOKE steps) or MAP
steps in a flow service. The contents of the Pipeline view are different for INVOKE steps
than for MAP steps.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 259

Pipeline View for an INVOKE Step
For an INVOKE step, the Pipeline view depicts two stages of the pipeline with respect to
the selected service in the editor.

Pipeline view for an INVOKE step

This
stage...

Represents...

1 The expected state of the pipeline just before the selected service
executes.

Pipeline In depicts the set of variables that are expected to be in the
pipeline before the service executes (based on the declared input and
output parameters of the preceding services).

Service In depicts the set of variables the selected service expects as
input (as defined by its input parameters).

In the Pipeline view, you can insert “pipeline modifiers” at this
stage to adjust the contents of the pipeline to suit the requirements
of the service. For example, you can link variables, assign values
to variables, drop variables from the pipeline, or add variables to
the pipeline. Modifications that you specify during this stage are
performed immediately before the service executes at run time.

2 The expected state of the pipeline just after the service executes.

Service Out depicts the set of variables that the selected service
produces as output (as defined by its output parameters).

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 260

This
stage...

Represents...

Pipeline Out depicts the set of variables that are expected to be in the
pipeline after the service executes. It represents the set of variables
that will be available to the next service in the flow. If the selected
service (INVOKE step) is the last step in the flow service, Pipeline Out
displays the output variables for the flow service (as declared on the
Input/Output tab).

In the Pipeline view, you can insert “pipeline modifiers” at this stage
to adjust the contents of the pipeline. For example, you can link
variables, assign values to variables, drop variables from the pipeline,
or add variables to the pipeline. Modifications that you specify during
this stage are performed immediately after the service executes at run
time.

Note: Designer displays small symbols next to a variable icon to indicate validation
constraints. Designer uses to indicate an optional variable. Designer uses the
‡ symbol to denote a variable with a content constraint. Designer also uses

 to indicate that the variable has a default value that can be overridden
assigned to it and to indicate that the variable has a null value that cannot
be overridden assigned to it. A combination of the and symbols next to
a variable icon indicates that the variable has a fixed default value that is not
null and cannot be overridden. For information about applying constraints to
variables, see "About Variable Constraints" on page 605.

Pipeline View for a MAP Step
For a MAP step, the Pipeline view displays a single stage of the pipeline. The Pipeline
view contains two sets of variables: Pipeline In and Pipeline Out. Between these sets of
variables, the Pipeline view contains a column named Transformers.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 261

Pipeline view for a MAP step

The Pipeline In column represents input to the MAP step. It contains the names of all
of the variables in the pipeline at this point in the flow.

The Transformers column displays any services inserted in the MAP step to complete
value transformations. For more information about invoking services in a MAP step,
see "Working with Transformers" on page 288.

The Pipeline Out column represents the output of the MAP step. It contains the names
of variables that will be available in the pipeline when the MAP step completes.

When you first insert a MAP step into your flow, Pipeline In and Pipeline Out are identical.
However, if the MAP step is the only step in the flow service or is the last step in the
flow service, Pipeline Out also displays the variables declared as output in the flow
service.

Scrolling in Pipeline View
By default, you scroll vertically or horizontally through the entire Pipeline view.
However, you can enable horizontal and vertical scrolling for each column in Pipeline
view. Independent scrolling is especially useful when mapping a large amount of data
in the Pipeline view.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 262

To enable independent scrolling in Pipeline view

Right-click anywhere inside the Pipeline view and select Enable independent
scrolling to scroll through each column in Pipeline view horizontally and vertically
independent of other columns.

Tip: While scrolling through a large amount of data, if you do not want
Designer to display the links if the source or target variables are not
visible, right-click anywhere inside the Pipeline view and select Hide links if
variables are not visible.

Viewing Full Namespace Path of Referenced Document Types
By default, Designer displays only the names of the document reference or document
reference list variables in Pipeline view. However, you can choose to view or hide the
full namespace path of the referenced document types in Pipeline view. If you choose to
view the full namespace path of the referenced document types in Pipeline view, they
appear in parenthesis after the name of the document reference or document reference
list variables, for example, contactInfo (DocTypesAndSpecs:address)

The Show Referenced Document Type Name seing applies to:

All document reference or document reference list variables in Pipeline view and not
just the selected nodes.

All MAP and INVOKE steps of all flow services.

This seing remains in effect even after you shutdown and restart Integration Server.

Note: You can also use the Flow Service Editor preferences page to view or hide the
full namespace path of the referenced document types in Pipeline view.

To view or hide the full namespace path of the referenced document types in Pipeline view

Right-click anywhere inside the Pipeline view and select Show Referenced Document
Type Name.

Printing the Pipeline
The following procedure describes how to use the View as HTML command to produce a
printable version of the pipeline.

To print the pipeline

1. In the Package Navigator view, open the flow service for which you want to print the
pipeline.

2. In the editor, select the INVOKE or MAP step for which you want to print the
pipeline.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 263

3. Scroll or resize the Pipeline view to display the portion of the pipeline you want to
view as HTML.

4. Right-click anywhere inside the Pipeline view and click View as HTML.

Designer creates an HTML page and displays it in your default browser.

5. Use your browser's print command to print the pipeline.

Basic Mapping Tasks
Basic mapping tasks are the tasks you perform to manage the pipeline contents and the
values of variables in the pipeline. In the Pipeline view, you can perform the following
basic mapping tasks:

Link variables to each other. You can copy the value of a variable in one service or
document format to a variable in another service or document format.

Assign values to variables. You can hard code variable values or assign a default value
to variables.

Drop variables from the pipeline. You can remove pipeline variables that are not used by
subsequent services in a flow.

Add variables to the pipeline. You can add variables that were not declared as input or
output parameters of the flow service. You can also add input and output variables
for services that the flow service invokes (internally invoked services).

About Linking Variables
When you want to copy the value of a variable in a service or document format to
another variable, you link the variables. Designer connects service and pipeline variables
in the Pipeline view with a line called a link. Creating a link between variables copies the
value from one variable to another at run time.

Within a flow, Designer implicitly links variables whose names are the same and
whose data types are compatible. For example, the service in the following flow takes
a variable called AcctNumber . Because a variable by this name already exists in Pipeline
In, it is automatically linked to the AcctNumber variable in Service In. Designer connects
implicitly linked variables with a gray link.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 264

Implicit links between pipeline and service variables

Note: The Pipeline view does not display implicit links for a MAP step.

In cases where the services in a flow do not use the same names for a piece of
information, use the Pipeline view to explicitly link the variables to each other. Explicit
linking is how you accomplish name and structure transformations required in a flow.
Designer connects explicitly linked variables with a solid black line.

On the input side of the Pipeline view, use to link a variable from the pipeline to the
service. In the following example, the service expects a value called OrderTotal , which is
equivalent to the pipeline variable BuyersTotal (that is, they are simply different names
for the same data). To use the value of BuyersTotal as the value for OrderTotal , you
“link” the pipeline variable to the service using .

At run time, the server will copy the value from the source variable (BuyersTotal) to the
target variable (OrderTotal) before executing the service.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 265

Linking the pipeline to service input

Important: Do not link variables with different Object constraints. If you link variables
with different Object constraints and input/output validation is selected, the
run-time result is undefined.

All the output variables that a service produces are automatically placed in the pipeline.
Just as you can link variables from the Pipeline In stage to a service’s input variables, you
can link the output from a service to a different variable in Pipeline Out.

In the following example, a variable called TransNumber is linked to the field Num
in a Document called TransactionRecord . At run time, the server will copy the value of
TransNumber to Num , and both TransNumber and Num will be available to subsequent
services in the flow.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 266

Linking service output to the pipeline

Creating a Link Between Variables
When you link variables in the pipeline, keep the following points in mind:

The variable that you are linking from is the source. For example, when you link a
variable in Pipeline In to one in Service In, the Pipeline In variable is the source. When
you link a variable in Service Out to one in Pipeline Out, the Service Out variable is the
source.

The variable you are linking to is the target. For example, when you link a variable
in Pipeline In to one in Service In, the Service In variable is the target. When you link a
variable in Service Out to one in Pipeline Out, the Pipeline Out variable is the target.

A Service In variable can be the target of more than one link only if you use array
indexing or if you place conditions on the links to the variable.

By linking variables to each other, you are copying data from the source variable
to the target variable. (Documents, however, are copied by reference. For more
information, see "What Happens When Integration Server Executes a Link?" on page
268.)

Target variables can be connected to only one source variable. After you draw a
link to a target variable, you cannot draw another link to the target variable. (Two
exceptions to this rule involve array variables and conditional links. For more
information about linking array variables, see "Linking to and from Array Variables

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 267

in the Pipeline" on page 273. For more information about placing conditions on
links between variables, see "Linking Variables Conditionally" on page 279.

You cannot create a link to a variable if you already assigned a value to a variable.

After a link executes, both the source and target variables exist in the pipeline. The
target variable does not replace the source variable.

You cannot create a link to a variable if the variable has a fixed null or default value
assigned to it. Designer uses the symbol next to the variable icon to indicate
that the variable has a fixed value that you cannot override by linking it to another
variable.

To create a link between variables

1. In the flow service editor, select the INVOKE or MAP step containing the variables
you want to link.

2. Open the Pipeline view.

3. If you want to create a link between a variable in Pipeline In and one in Service In, do
the following:

a. In Pipeline In, click the pipeline variable you want to use as the source variable.

b. In Service In, click the input variable you want to use as the target variable.

c. Click on the Pipeline view toolbar.

4. If you want to create a link between a variable in Service Out and one in Pipeline Out,
do the following:

a. In Service Out, click the output variable you want to use as the source variable.

b. In Pipeline Out, click the pipeline variable you want to use as the target variable.

c. Click on the toolbar.

5. Click File > Save.

Notes:

If the variable types are incompatible and cannot be linked to one another, Designer
prevents you from creating a link between the variables and displays a message
stating that the operation is not allowed.

If you created a link to or from an array variable, you must specify which element in
the array you are linking to or from. For more information about array linking, see
"Linking to and from Array Variables in the Pipeline" on page 273.

If you want to place a condition on the execution of the link, see "Linking Variables
Conditionally" on page 279.

Do not link variables with different Object constraints. If you link variables with
different Object constraints and input/output validation is selected, the run-time
result is undefined.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 268

Tip: You can also use your mouse to link variables to one another. To do this, select
the source variable and drag your mouse to the appropriate target variable.

What Happens When Integration Server Executes a Link?
When executing a link between variables at run time, Integration Server does one of the
following:

Copies the value from the source variable to the target variable. For example, when
you link a source String variable to a target String variable, Integration Server copies
the value of the source String to the target String. This is called “copying by value.”

Creates a reference to the source variable and uses the reference as the value of the
target variable. For example, when executing a link between a source Document and
a target Document, Integration Server creates a reference to the source Document
value and uses the reference as the value of the target Document. This is called
“copying by reference.”

Integration Server copies by value when the source or target variable is a String. (An
exception to this behavior is that when executing a link from a String to an Object, the
Integration Server copies by reference.)

When executing links between all other types of variables, Integration Server copies by
reference. Copying by reference significantly reduces the memory and time required for
executing a link at run time.

When a value is copied by reference, any changes you make to the value of the source
variable in subsequent flow steps affect the target variable. This is because the value
of the source variable is the value of the target variable. The target variable does not
contain a copy of the source variable value. If, in a later flow step, you used to assign
a value to the source variable, you would be changing the value of the target variable as
well. (The target variable references the value of the source variable.)

Example of Copying By Reference
The following images show a series of MAP steps in a flow service. In this example, the
value of the source variable is changed after the link to the target variable executes. This
action changes the value of the target variable as well.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 269

Step 1: The value of String1 is set to “original value”

Step 2: Document1 is linked to Document2

Step 3: The value of String1 is changed to “modified” after the link executes

When this flow service executes, it returns the following results.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 270

Results of flow service

In Step 3, the value of the String1 in Document1 was set to “modified.” However, the
value of String1 in Document2 changed also. This is because in Step 2 of the flow service,
the value of Document1 was copied to Document2 by reference. Changes to the value of
Document1 in later flow steps also change the value of Document2.

Preventing Pipeline Values from Being Overwritten
To prevent the value of the target variable from being overwrien by changes to the
value of the source value in subsequent steps in the flow service as demonstrated in
"Example of Copying By Reference" on page 268, you can do one of the following:

When working with Document variables, link each child of the Document variable
individually. This method can be time consuming and might significantly increase
the memory and time required to run the service. However, this might be the best
approach if the target Document variable needs only a few values from the source
Document variable.

After you link the source variable to a target variable, use the Drop modifier to drop
the source variable. Only the target variable will have the reference to the data. This
method ensures that the value of the target variable will not be overwrien in a
subsequent step, but does not increase the memory and time required to execute the
service.

Create a service that performs a copy by value. Insert this service (as an INVOKE
step or as a transformer) and link the variables to the service instead of linking them
to each other. (In the case of Document variables, you could create a Java service that
clones the IData object underlying the Document.) In situations where you link one
Document variable to another, using a “cloning” service would require less time
than linking the contents of a Document variable field by field.

Linking to Document and Document List Variables
When working with Document variables in the pipeline, you can link a source variable
to the Document variable or to the children of the Document variable. Keep the
following points in mind when linking to or from Document, Document List, Document
Reference, or Document Reference List variables:

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 271

A Document (or a Document List) and its children cannot both be targets. After a
Document or Document List is the target of a link, its children cannot be the targets
of links.

After the child variable of a Document or Document List is the target of a link, the
parent Document or Document List cannot be a target of a link.

If you link from a Document variable to another Document variable, the structure
of the source Document variable overwrites the structure of the target Document
variable.

You cannot link a nested Document List to a target Document List when the
Document Lists have different sizes. A nested Document List is one that is contained
within a parent Document List. Document Lists are considered to have different
sizes when they have a different number of entries within the lists. If you need to
move values from the source Document List to the target, create user code that uses a
LOOP flow step to assign values from the source to the target one by one.

When a Document Reference or Document Reference List refers to an IS document
type that contains identically named variables that are of the same data type and
both identically named variables are assigned a value or are linked to another
variable, Integration Server might not maintain the order of the document contents
in the pipeline when the service executes. For example, Integration Server might
group all of the identical variables at the end of the document. To prevent the change
in the order of document contents, set default values for the identically named
variables. To do this, insert a MAP step in the service before the step in which you
want link or assign a value to the variables. In the MAP step, under Pipeline Out,
select the Document Reference variable and click on the Pipeline view toolbar.
In the Enter Input for dialog box, assign default values to the identically named
variables.

Linking Variables of Different Data Types
In the Pipeline view, you can link different, but compatible, data types to one
another. For example, you could link a String value called AccountNumber to a String
List called Accounts . At run time, the server automatically performs the structural
transformation necessary to link the data in AccountNumber to Accounts . (In this case,
the transformation will result in a single-element String List.) By linking different data
types to one another, you can perform structural transformations.

If you link variables of different data types, keep the following points in mind:

Not all data types can be linked to one another. You cannot link a Document (IData
object) to a String, for instance. If two data types are incompatible, Designer will not
allow you to link them to each other.

You can only link a variable to another variable of the same primitive type. The
primitive type refers to the data type of the variable when all dimensionality is
removed. For example, the primitive type for a String List or a String Table would be
String. Two exceptions to this rule are the following:

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 272

Any variable can be linked to an Object or an Object List variable

An Object can be linked to any data type.

If there is a type mismatch between the Object or Object List and the other variable at
run time, Integration Server does not execute the link.

Object and Object List variables constrained with an assigned Java class should be
linked only to other Object and Object List variables of the same Java class or to
Object and Object List variables of unknown type. Although Designer permits a
link between constrained Objects with different Java classes, the run-time result is
undefined. For more information about specifying Java classes for Objects, see "Java
Classes for Objects" on page 1094.

When you link between scalar and array variables, you can specify which element
of the array variable you want to link to or from. Scalar variables are those that hold a
single value, such as String, Document, and Object. Array variables are those that hold
multiple values, such as String List, String Table, Document List, and Object List. For
example, you can link a String to the second element of a String List. Alternatively,
you can link the second element in a String List to a String.

When you link between scalar and array variables and you do not specify which
element in the array variable that you want to link to or from, Designer uses the
default behavior to determine the value of the target variable.

Converting a String List to a Document List in the Pipeline
You can convert a String List to a Document List in the pipeline by mapping a String List
to a String in a Document List. In the following image, aList is the String List you want
to convert to a Document List. The variable documentList is the Document List to which
you want to copy the values contained in the String List. documentList has a String child
aString . To convert the String List to a Document List, link aList to aString .

Converting a String List to a Document List

Converting Two String Lists to a Document List in the Pipeline
Two String Lists can be combined into one Document List in the pipeline by linking each
String List to a String nested in a Document List. For example, suppose that you had

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 273

String List variables named aList and bList , and documentList had two String children
named aString and bString . You could combine the two String Lists by linking aList to
aString and bList to bString .

Converting two String Lists to a Document List

Tip: You can also convert a String List to a Document List (IData[] object) by
invoking the built-in service pub.list:stringListToDocumentList. You can insert the
service as an INVOKE step or as a transformer. For more information about
transformers, see "Working with Transformers" on page 288. For more
information about built-in services, see the webMethods Integration Server Built-
In Services Reference.

Linking to and from Array Variables in the Pipeline
When you link to or from an array variable (String List, String Table, Document List,
or Object List), you can specify which element in the array you want to link to or from.
After you link the variables, you specify the index that represents the position of the
element in the array.

For String Lists and Object Lists, you can specify the index for the list element you
want to link. For example, you can link the third element in a String List to a String.

For String Tables, you can specify the row and column indexes for the cells you want
to link. For example, you can link the value of the element in the third column of the
second row of a String Table to a String.

For Document Lists, you can specify the index for the Document that you want
to link. For example, you can link the second Document in a Document List to a
Document variable.

For a variable in a Document List, you can specify the index of the Document that
contains the value that you want to link to or from. For example, if the Document
List POItems contains the String ItemNumber , you can link the ItemNumber value
from the second POItems Document to a String variable.

For example, suppose that a buyer’s address information is initially stored in a String
List. However, the information might be easier to work with if it were stored in a

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 274

Document. To map the information in the String List to a Document, create a link
between the String List and each field in the Document. Then, specify an index value for
each link. In the following pipeline, the elements in buyerAddress String List are mapped
to the address Document.

You can specify an index value when linking to or from an array variable

Note: Designer uses blue links in the Pipeline view to indicate that properties
(conditions or index values for arrays) have been applied to the link between
variables.

Creating a Link to or from an Array Variable
When you are linking to or from an array variable, keep the following points in mind:

To link to or from an element in an array variable, you need to know the index for
the element’s position in the array. Array index numbering begins at 0 (the first
element in the array has an index of 0, the second element has an index of 1, and so
on).

To dynamically specify the index, you can set the index to the value of a pipeline
variable. The variable you specify must be a String. To use a pipeline variable,
specify the variable name enclosed in percent signs (%). For example, if the pipeline
contains the variable itemNumber that will contain the index you want to use at run
time, specify %itemNumber% for the index. For the link to execute successfully at run
time, the value of the variable must be a non-negative integer.

If you link to an array variable and specify an index that does not exist, Designer
increases the length of the array to include the specified array index. For example,
suppose that a String List has length 3. You can link to the String List and specify an
index of 4; that is, you can link to the fifth position in the String List. At run time, the
Integration Server increases the length of the String List from 3 to 5.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 275

Each element in an array can be the source or target of a link; that is, each element in
the array can be the start or end of a link. For example, if a source String List variable
contains three elements, you can link each of the three elements to a target variable.

If the source and target variables are arrays, you can specify an index for each
variable. For example, you can link the third element in a source String List to the
fifth element in target String List.

If you do not specify an array index for an element when linking to or from arrays,
the default behavior of the Pipeline view will be used. For information about the
default behavior of the Pipeline view, see "Default Pipeline Rules for Linking to and
from Array Variables" on page 276.

If you are linking to or from a String Table, you need to specify an index value for the
row and column.

When you link a Document or Document List variable to another Document
or Document List variable, the structure of the source variable determines the
structure of the target variable. For more information, see "Linking to Document and
Document List Variables" on page 270.

At run time, the link (copy) fails if the source array index contains a null value or
if you specify an invalid source or target index (such as a leer or non-numeric
character). Integration Server generates journal log messages (at debug level 6 or
higher) when links to or from array variables fail.

The following procedure explains how to link to or from an array variable.

To create a link to or from an array variable

1. Create a link between the variables using the procedure described in "Creating a
Link Between Variables" on page 266.

2. In Pipeline view, click the link that connects the variables.

3. In the Properties view, click the Indices value and click . The Link Indices dialog
box appears.

4. If the source variable is an array variable, under Source, type the index that contains
the value you want to link. If the source variable is a String Table, you need to
specify a row index and a column index.

5. If the target variable is an array variable, under Destination, type the index to which
you want to link the source value. If the target variable is a String Table, you need to
specify a row index and a column index.

6. Click OK.

Tip: You can also open the Link Indices dialog box by selecting the link between
the variables and clicking on the Pipeline view toolbar.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 276

Default Pipeline Rules for Linking to and from Array Variables
When you create links between scalar and array variables, you can specify which
element of the array variable you want to link to or from. Scalar variables are those that
hold a single value, such as String, Document, and Object. Array variables are those that
hold multiple values, such as String List, String Table, Document List, and Object List.
For example, you can link a String to the second element of a String List.

If you do not specify which element in the array variable that you want to link to or
from, Designer uses the default rules in the Pipeline view to determine the value of the
target variable. The following table identifies the default pipeline rules for linking to and
from array variables.

If you link… To… Then…

A scalar
variable

An array variable that is
empty (the variable does
not have a defined length)

The link defines the length of the
array variable; that is, it contains
one element and has length of
one. The first (and only) element
in the array is assigned the value
of the scalar variable.

If you link… To… Then…

A scalar
variable

An array variable with a
defined length

The length of the array is
preserved and each element of
the array is assigned the value of
the scalar variable.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 277

If you link… To… Then…

An array
variable

A scalar variable The scalar variable is assigned
the first element in the array.

If you link… To… Then…

An array
variable

An array variable that
does not have a defined
length

The link defines the length of
the target array variable; that
is, it will be the same length as
the source array variable. The
elements in the target array
variable are assigned the values
of the corresponding elements in
the source array variable.

If you link… To… Then…

An array
variable

An array variable that has
a defined length

The length of the source array
variable must equal the length
of the target array variable. If
the lengths do not match, the
link will not occur. If the lengths
are equal, the elements in the
target array variable are assigned
the values of the corresponding
elements in the source array
variable.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 278

If you link… To… Then…

No link occurs.

A source variable that is the child of a Document List is treated like an array because
there is one value of the source variable for each Document in the Document List. For
example:

If you link… To…

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 279

Where the value of DocumentList1
is...

Then the value of StringList1 is…

Deleting a Link Between Variables
When you delete link in Pipeline view, the variables are no longer linked. Designer also
deletes any properties you applied to the link.

To delete a link between variables

1. In the flow service editor, select the INVOKE or MAP step containing the variables
with the link you want to delete.

2. In the Pipeline view, select the link that you want to delete.

3. Click Edit > Delete.

Tip: You can also delete a link by selecting it and then pressing the DELETE key.

Linking Variables Conditionally
You can place conditions on the links you draw between variables. At run time,
Integration Server evaluates the condition and executes the link (copies the value) only if
the condition evaluates to true.

A condition consists of one or more expressions that you write using the syntax that
Designer provides. An expression can check for the existence of a variable in the
pipeline, check for the value of a variable, or compare a variable to another variable.
For example, in the following service, you might want to link the BuyersTotal variable
in Pipeline In to the OrderTotal variable in Service In only if the BuyersTotal has a value

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 280

that is not null. After you link two variables, you would edit the properties and add the
condition that needs to be true.

A blue link indicates that a condition is applied to the link connecting the variables

Designer uses a blue link in the Pipeline view to indicate that properties (that is,
conditions or index values for arrays) have been applied to a link between variables.

Note: You cannot add conditions to the links between implicitly linked variables.

Linking Multiple Source Variables to a Target Variable
By applying conditions to the links between variables, you can link more than one
source variable to the same target variable. When you draw more than one link to the
same target variable, at most, only one of the conditions you apply to the links can be
true at run time. The conditions must be mutually exclusive.

At run time, Integration Server executes all conditional links whose conditions evaluate
to true. If more than one conditional link to the same target variable evaluates to true,
the value of the target variable will be the result of whichever link executes last. Because
the order in which links are executed at run time is not guaranteed, the final value of the
target variable may vary.

Tip: If the conditions for links to the same target variable are not mutually
exclusive, consider using a flow service containing a BRANCH step instead.
In BRANCH steps, child steps are evaluated in a top to boom sequence.
Integration Server executes the first child step that evaluates to true and skips

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 281

the remaining child steps. For more information about the BRANCH step, see
"The BRANCH Step" on page 221.

Applying a Condition to a Link
Keep the following points in mind when making a conditional link:

You can only add conditions to the links between explicitly linked variables. You
cannot add conditions to the links between implicitly linked variables.

When drawing more than one link to the same target variable, make sure that the
conditions assigned to each link are mutually exclusive.

You can temporarily disable the condition placed on a link. For more information,
see "Disabling and Enabling Conditions" on page 444.

To apply a condition to the link between variables

1. Create a link between the variables using the procedure described in "Creating a
Link Between Variables" on page 266.

2. In Pipeline view, click the link that connects the variables.

3. In the Properties view, set the Evaluate copy condition property to True.

4. In the Copy condition property text box, type the condition you want to place on
the link. For information about the syntax used in conditions, see "Conditional
Expressions" on page 1125.

About Assigning Values to Pipeline Variables
You can assign values to variables in Service In or Pipeline Out using on the Pipeline
view toolbar. When you assign a value to a variable, you can:

Explicitly “hard code” a specific value in a variable.

Initialize a set of input variables by assigning values to all of the input variables.

Assign a default value to a variable. That is, a value that is only assigned if the
variable is null at run time.

Assign a variable the value of another pipeline variable by referencing the variable.
You might do this if you wanted to derive the default variable value from another
variable in the pipeline at run time.

Assign a variable the value of a global variable. You might do this for values that
will change after you deploy a solution such as connection credentials. Instead of
changing the value assigned to the pipeline variable in each service that establishes
a connection, you change the value once in the global variable definition. For more
information about global variables, see "Assigning Global Variables to Pipeline
Variables" on page 284

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 282

By using to assign a value to a variable, you instruct Integration Server to write a
specific value to that variable at run time. This action occurs just before the selected
service is executed (if you assign the value to a variable in Service In) or immediately
after the selected service is executed (if you assign the value to a variable in Pipeline Out).

Assigning a Value to a Pipeline Variable
You can assign values to variables that are in Service In or Pipeline Out when the variable
is not linked or when the variable is only implicitly linked to another value in the
pipeline.

You cannot assign values to:

Variables that are explicitly linked to another value in the pipeline

Variables that have been dropped from the pipeline

Object variables constrained as a byte []

Unconstrained Objects (Objects of unknown type)

An XML document variable or an XML document list variable

You cannot assign a value to a pipeline variable if the variable has a fixed null or default
value assigned to it. Designer uses the symbol next to the variable icon to indicate that
the variable has a fixed value that you cannot override by linking it to another variable.

To assign a value to a pipeline variable

1. In the flow service editor, select the INVOKE or MAP step containing the variable
you want to alter.

2. In Pipeline view, select the variable to which you want to assign a value. The variable
must be in either Service In or Pipeline Out.

3. Click on the Pipeline view toolbar.

Designer displays the Enter Input for dialog box.

4. Assign values using the Enter Input for dialog box. For specific information for how to
assign a value based on a variable’s data type, see one of the following:

For this type of variable... See...

String "Specifying a Value for a String Variable" on page
410

String List "Specifying Values for a String List Variable" on page
411

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 283

For this type of variable... See...

String Table "Specifying Values for a String Table Variable" on
page 413

Document "Specifying Values for a Document Variable that
Has Defined Content" on page 416 or "Specifying
Values for a Document Variable with No Defined
Content" on page 417

Document Reference "Specifying Values for a Document Variable that
Has Defined Content" on page 416 or "Specifying
Values for a Document Variable with No Defined
Content" on page 417

Document List "Specifying Values for a Document List Variable" on
page 419

Document Reference
List

"Specifying Values for a Document List Variable" on
page 419

Object "Specifying a Value for an Object Variable" on page
421

Object List "Specifying Values for an Object List Variable" on
page 422

Notes:

The Include empty values for String Type check box is disabled when assigning values
to pipeline variables of type String, String List, String Table, Document, Object, and
Object List. It is available only when assigning values to Document List variables.
For more information, see "Specifying Values for a Document List Variable" on page
419.

The check boxes next to each element in the tree are disabled when assigning values
to pipeline variables of type String, String List, String Table, Document, Object, and
Object List. The check box is only enabled for top-level Document variables within
a Document List and is used along with the Include empty values for String Type check
box. For more information, see "Specifying Values for a Document List Variable" on
page 419.

The Perform pipeline variable substitution check box indicates whether you want
Integration Server to perform pipeline variable substitution at run time. To use a
variable when assigning a String value, you type the name of the pipeline variable
enclosed in % symbols (for example, %Phone%). If you specify a pipeline variable

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 284

enclosed in % symbols for a String value, you must select the Perform pipeline variable
substitution check box for the variable substitution to occur.

The Perform global variable substitution check box indicates whether you want
Integration Server to perform global variable substitution at run time. To use a global
variable when assigning a String value, you type the name of the global variable
enclosed in % symbols (for example, %myFTPUsername%). If you specify a global
variable enclosed in % symbols for a String value, you must select the Perform global
variable substitution check box for the variable substitution to occur.

If a pipeline variable and global variable have the same name and you select both
Perform global variable substitution and Perform pipeline variable substitution, Integration
Server uses the value of the pipeline variable.

The Overwrite pipeline value check box indicates whether you want the server to use
the value you specify even when the variable has a pipeline value at run time.

Select the check box to have Integration Server always use the value you specify.

Clear the check box if you want Integration Server to use the value you specify
only if the variable does not contain a value at run time.

Assigning Global Variables to Pipeline Variables
A global variable is a key/value pair that you define using Integration Server
Administrator. You can use a global variable in a flow service by assigning the global
variable to a variable in the pipeline (specifically a variable in Service In or Pipeline Out).
At run time, Integration Server uses the value of the global variable as the value of the
pipeline variable.

Using global variables makes it easy to change the value assigned to a pipeline variable
at run time or after you deploy a solution to a different Integration Server. Instead
of changing the hard-coded value of a pipeline variable, you change the value of the
global variable. For example, you could create global variables for the connection
parameters required by pub.client:ftp service. You might create global variables for the
FTP server name, a user on the FTP server, and password for that user. In flow services
that invoke pub.client:ftp you could assign the global variables to the serverhost , username ,
and password input parameters. After deploying the flow service to different servers,
you may need to use different values for the serverhost , username , and password input
parameters. You can use Integration Server Administrator to change the value of the
global variables on the target servers. This is more efficient than editing the services to
change the hard-coded values.

Keep the following points in mind when using global variables in flow services:

You can use global variables to specify values for variables of type String, String List,
and String Table only.

To specify a global variable as the value for a pipeline variable, you enclose the name
of the global variable in % symbols (for example, %myFTPServer%).

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 285

You must select the Perform global variable substitution check box for the variable
substitution to occur at run time.

If the specified global variable has the same name as a pipeline variable name you
select the Perform global variable substitution check box and the Perform pipeline variable
substitution check box, Integration Server uses the value of the pipeline variable at run
time.

If the global variable that you specified for performing a variable substitution is not
defined in Integration Server, at run time Integration Server throws an exception and
service execution fails.

You can mix literal and global variables. For example, if you specify (%areaCode
%) %Phone%, the resulting String would be formaed to include the parentheses
and space. If you specify %firstName% %initial%. %lastName%, the period and
spacing would be included in the value.

For more information about defining global variables, see webMethods Integration Server
Administrator’s Guide.

Copying Assigned Values Between Pipeline Variables
You can copy the value assigned to a variable by copying the icon next to the
variable. You can assign this value to other variables of the same data type in Service In or
Pipeline Out by pasting the icon.

When you copy assigned values from one pipeline variable to another, keep the
following points in mind:

You can only copy and paste set values between variables of the same data type. For
example, you can only copy the set value assigned to a String variable to another
String variable.

You can only copy and paste set values between variables if the target variable has
the same structure as the source variable or has no defined structure. For example,
you can copy the set value of a String List variable with length 3 to another String
List variable only if the target String List also has length 3 or has an undefined length
(no defined structure).

If you are copying a set value between Document variables, the source Document
variable and the target Document variable must have the same structure or the
target Document variable must have no structure defined. For example, if the source
Document variable contains three String variables named city , state , and zip as
children, the target Document variable must have three String variables named city ,
state , and zip as children.

You cannot copy an assigned value to a pipeline variable if the variable has a fixed
null or default value assigned to it. Designer uses the symbol next to the variable
icon to indicate that the variable has a fixed value that you cannot override by
linking it to another variable.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 286

To copy a set value

1. In the flow service editor, select the INVOKE or MAP step containing the variable
with the value you want to copy and paste.

2. In the Pipeline view, select the assigned value icon that you want to copy.

3. Right-click and select Copy.

4. Select the variable to which you want to assign the copied value, right-click and
select Paste.

Dropping Variables from the Pipeline
You can remove a variable from Pipeline In or Pipeline Out by dropping the variable.
You can drop variables to eliminate pipeline variables that are not used by subsequent
services in a flow. Dropping unneeded variables reduces the size of the pipeline at run
time and reduces the length and complexity of the Pipeline In and Pipeline Out displays,
which can make the Pipeline view much easier to use when you are working with a
complex flow.

Keep the following points in mind when dropping variables from the pipeline:

You can only drop variables from Pipeline In and Pipeline Out. In a MAP step, you can
only drop variables from Pipeline In.

Once you drop a variable from the pipeline, it is no longer available to subsequent
services in the flow. Do not drop a variable unless you are sure the variable is not
used by services invoked after the point where you drop it.

At run time, Integration Server removes a dropped variable from the pipeline
just before it executes the selected service (if you drop a variable in Pipeline In) or
immediately after it executes the selected service (if you drop a variable in Pipeline
Out).

If you drop a linked variable from Pipeline In, Integration Server executes the link
before it drops the variable. However, Integration Server server does not link a null
value to the destination variable.

You cannot drop a pipeline variable if the variable has a fixed null or default value
assigned. Designer uses the symbol next to the variable icon to indicate that the
variable has a fixed value that you cannot override by linking it to another variable.

You cannot drop a pipeline variable in a child flow service if the variable exists in the
parent flow service. That is, a child flow service cannot drop an “upstream” variable.

To drop a variable from the pipeline

1. In the flow service editor, select the INVOKE or MAP step whose pipeline variables
you want to drop.

2. In the Pipeline view, select the variable that you want to drop.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 287

3. Click on the toolbar.

Adding Variables to the Pipeline
In the Pipeline view, you can add variables that were not declared as input or output
parameters for the flow service itself or any of its constituent services. You can add
variables that were omied from a service’s input or output parameters or create
temporary variables for use within the flow. For example, you might aach a variable
to each of the children in a BRANCH step to mark the path taken by the service at run
time.

Variables that you add to the pipeline can be used just like any declared variable in the
flow.

Keep the following points in mind when adding variable to the pipeline:

If you create a new variable in a flow, you must immediately do one of the following:

Link a variable to it

Assign a value to it

Drop it

If you do not take one of these steps, Designer automatically clears it from the
pipeline.

You might want to drop a variable immediately after adding it if a service produces
a variable that is not declared in the service input or output parameters. The variable
will not appear in the Pipeline view if it is not an input or output parameter. By
adding and then immediately dropping the variable, you can delete the variable if it
does exist in the pipeline.

To add a variable to the pipeline

1. In the flow service editor, select the INVOKE or MAP step that represents the stage
of the pipeline at which you want to add a new variable.

2. Do one of the following in the Pipeline view:

Select the point in the pipeline where you want to add the new variable (Pipeline
In, Service In, Service Out, or Pipeline Out). Click and select the type of variable
that you want to create.

In the Palee view that is part of Pipeline view, under Variables, select the
variable that you want to add and then select the point in the pipeline where you
want to add it. The Palee view is located within the Pipeline view. Click to
show the Palee view. Click to hide the Palee view.

3. Type a name for the variable and press ENTER.

4. With the variable selected, set variable properties and apply constraints using the
Properties view.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 288

5. If the variable is a Document or a Document List, add more variables to define its
contents. Then use to indent each member variable beneath the Document or
Document List variable.

6. Do one of the following with the new variable:

Link the variable to another variable.

Assign a value to the variable using on the Pipeline view toolbar.

Drop the variable.

Working with Transformers
Transformers are services that are inserted into and executed within a MAP step. You
can use any service as a transformer. This includes any Java, C, or flow service that you
create and any built-in services in WmPublic, such as the pub.date.getCurrentDateString and
pub.string.concat. Additionally, you can insert multiple transformers into a single MAP
step. By using multiple transformers, you can perform multiple data transformations on
the pipeline contents in a single flow step.

Transformers act as collection of INVOKE steps embedded in a single MAP step.
However, transformers in a MAP step are independent of each other, do not execute in
a specific order, and might not execute in the same order each time the MAP step runs.
Consequently, the output of one transformer cannot be used as the input to another
transformer. These characteristics make transformers different than a set of INVOKE
steps that execute sequentially in a flow service. Because transformers are contained
within a MAP step, they do not appear as a separate flow step in the editor.

The purpose of transformers is to accomplish multiple data transformations on the
pipeline data in a single step as opposed to using succession of INVOKE steps. As a
result, transformers are well suited to use when mapping data from one document
format to another. When mapping data between formats, you often need to perform
several name, structure, and value transformations. With the use of transformers, the
flow service in which you map data between formats could potentially consist of a
single MAP step in where transformers and links between variables handle all of the
data transformations. This provides a single view of document-to-document mapping.
For example, you could create a flow service that uses transformers to convert data
between document formats (such as an IDOC to an XML document or RoseaNet PIP
to a proprietary format). Each time you need to convert between the specific document
formats, you could invoke the mapping service.

Note: When determining which services to use as transformers, Software AG
recommends avoiding services that are subject to transient failures, such as a
connection failure, as these services may be difficult to debug when used as a
transformer.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 289

Using Built-In Services as Transformers
Integration Server provides several built-in services specifically designed to translate
values between formats. These services can be found in the following folders in the
WmPublic package:

This folder… Contains services to…

pub.date Transform time and date information from one format to another.

pub.list Transform a String List to a Document List (IData[] object) and
append items to a Document List (IData[] object) or a String List.

pub.math Perform simple arithmetic calculations (add, subtract, multiply,
and divide) on integers and decimals contained in String
variables.

pub.string Transform String values in various ways (for example, pad,
substring, concat, replace through a lookup table).

For more information about built-in services, see the webMethods Integration Server Built-
In Services Reference.

Inserting a Transformer
When inserting transformers, keep the following points in mind:

Transformers can be inserted in a MAP step only.

Any service can be used as a transformer, including flow services, C services, and
Java services.

The transformers in a single MAP step operate on the same set of pipeline data.

Transformers in a MAP step are independent of each other and do not execute in a
specific order. As a result, the output of one transformer cannot be used as the input
of another transformer in the same MAP step.

Software AG recommends avoiding the use of a service as a transformer if the
service is subject to transient failures, such as a connection failures, as these services
might be hard to debug when used as a transformer.

To insert a transformer

1. In the flow service editor, select the MAP step in which you want to insert a
transformer.

2. In the Pipeline view, do one of the following:

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 290

Click the buon adjacent to on the Pipeline view toolbar and select the
service you want to use as a transformer. If the service you want to insert does
not appear in the list, click Browse to select a service on Integration Server.

In the Palee view that is located within the Pipeline view, select the folder
containing the service you want to add as a transformer. Select the service and
click in the Transformers area of Pipeline view.

In Package Navigator view, select the service you want to use as a transformer
and drag it to the Transformers area of Pipeline view.

3. To set properties for the transformer, select it and then specify the following
information in the Properties view:

For this property... Specify...

Service The fully qualified name of the service that will be invoked
at run time as a transformer. When you insert a transformer,
Designer automatically assigns the name of that service
to the service property. If you want to change the service
that is invoked by a transformer, specify the service’s fully
qualified name in the folderName:serviceName format or click

 to select a service from a list.

Validate input Whether Integration Server validates the input to the
transformer against the signature of the service. Select True
to validate the input of the transformer, otherwise select
False.

Validate output Whether Integration Server validates the output of the
transformer against the signature of the service. Select True
to validate the output of the transformer, otherwise select
False.

4. Link pipeline variables to the transformer variables. See " Linking Variables to a
Transformer" on page 290.

Linking Variables to a Transformer
When you map data to and from a transformer, you create links between the pipeline
variables and the transformer. Keep the following points in mind when you create links
between pipeline and transformer variables:

You must explicitly link pipeline variables to the input and output variables of a
transformer. Designer does not perform any implicit linking with transformers.
Even if the pipeline variables have the same name and data type as the transformer
variables, no implicit linking occurs.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 291

Designer does not automatically add the output of a transformer to the pipeline. If
you want the output of a transformer to appear in the pipeline, you need to explicitly
link the output variable to a Pipeline Out variable.

If you do not link any output variables or the transformer does not have any
declared output variables, the transformer service will not run.

You can link a transformer output variable to more than one Pipeline Out variable.

You can assign a value to a transformer input value using on the Pipeline view
toolbar.

To prevent the Pipeline view from becoming cluered, the Pipeline view may not
display all the links between the transformer and the pipeline variables. To view all
the links, double-click the transformer or click next to the transformer name.

Use the following procedure to link pipeline and transformer variables when the
transformer is not expanded. If the transformer is expanded (that is, you can see all of
the input and output variables for the transformer), you link variables just as you would
for an INVOKE step.

To create a link between a pipeline variable and a transformer

1. To create a link between a Pipeline In variable and a transformer variable, do the
following:

a. In Pipeline In, select the variable you want to use as input to the transformer and
drag your mouse to the collapsed transformer. Designer displays the Link dialog
box.

b. In the Link To list, select the transformer variable to which you want to link the
Pipeline In variable.

In the Link Tolist, Designer displays the phrase “has already been chosen” next to
variables that are already linked to other variables transformer.

2. To create a link between a transformer output variable and a Pipeline Out variable, do
the following:

a. Select the collapsed transformer and drag your mouse to the variable in Pipeline
Out to which you want to link the transformer variable. Designer displays the
Link dialog box.

b. In the Link From list, select the transformer variable that you want to link to the
selected Pipeline Out variable.

Transformers and Array Variables
When creating links between pipeline variables and transformers, dimensional
differences between the source and target variables may cause an exception. If the target
variable dimensionality is greater than the source variable dimensionality, an exception
will not be thrown. However, if the source variable dimensionality is greater than the
target variable dimensionality, Integration Server throws an exception.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 292

Dimensionality refers to the number of arrays to which a variable belongs. For example,
the dimensionality of a single String is 0, that of a single String List or Document List is
1, and that of a single String Table is 2. A String that is a child of a Document List has a
dimensionality of 1. A String List that is a child of a Document List has a dimensionality
of 2.

Example of Dimensionality Mismatch
In the following example, the unitPrice variable cannot be linked to num1 because the
unitPrice variable has a dimensionality of 1 (String (0) + Document List (1) = 1) and num1
has a dimension of 0.

unitPrice cannot be linked to num1 because of dimensionality differences

To solve this, you can either:

Change the service invoked by the transformer to accept arrays as data, or

Create a flow service in which a LOOP step loops over the array variable. Then,
(in the same flow service) invoke the service you originally wanted to use as a
transformer, and make that INVOKE step a child of the LOOP. Finally, insert the
resulting flow service as a transformer in the MAP.

Of the two options, changing the service to accept arrays as data results in faster
execution of flow services.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 293

Validating Input and Output for Transformers
As with any service you insert using an INVOKE, you can validate the inputs and
outputs of the transformer service before and/or after it executes. To indicate that you
want to validate a transformer’s inputs and outputs, you change the properties of the
transformer. You do not have to use validation for all of the transformers you insert into
a MAP step.

When Integration Server validates a transformer’s inputs and outputs at run time,
Integration Server validates the transformer input and output values against the
signature of invoked service. Variables in the service signature may specify content or
structural constraints.

Note: If the Validate input and/or Validate output check boxes are selected on the
Input/Output tab of the service acting as a transformer, Integration Server
automatically validates the input and/or output for the service every time the
service executes. If you set up validation via the properties for a transformer
when it is already set up for validation via the service’s Input/Output tab,
Integration Server performs validation twice. This can slow down the
execution of a transformer and, ultimately, the flow service.

To specify input/output validation for a transformer

1. In the flow service editor, select the MAP step containing the transformer you want
to validate.

2. In the Pipeline view, under Transformers, select the transformer for which you want
to specifying input/output validation.

3. In the Properties view, do the following:

If you want Integration Server to perform input validation, set the Validate input
property to True.

If you want Integration Server to perform output validation, set the Validate output
property to True.

Copying Transformers
You may want to use the same transformer more than once in a MAP step. For example,
you might want to convert all the dates in a purchase order to the same format. Instead
of inserting the service repeatedly, you can copy and paste the transformer service.

You can copy transformers between MAP steps in the same flow or MAP steps in
different flow services.

You can copy multiple transformers at a time.

M
Even Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 294

Copying a transformer does not copy the links between transformer variables and
pipeline variables or any values you might have assigned to transformer variables
using .

To copy a transformer

1. In the flow service editor, select the MAP step containing the transformer service you
want to copy.

2. In the Pipeline view, under Transformers, select the transformer that you want to
copy. Right-click and select Copy.

3. Do one of the following:

To paste the transformer in the same MAP step, right- click anywhere under
Transformers and select Paste.

To paste the transformer in another MAP step, select that MAP step. In Pipeline
view, right- click anywhere under Transformers and select Paste.

4. Link the input and output variables of the transformer. See " Linking Variables to a
Transformer" on page 290.

Renaming Transformers
If Integration Server displays the message “Transformer not found” when you try to
expand a transformer or when you point the mouse to the transformer, then the service
referenced by the transformer has been renamed, moved, or deleted. You need to change
the Service property of the transformer so that the transformer points to the moved, or
renamed service.

If the service referenced by the transformer has been deleted, you may want to delete the
transformer.

Tip: You can enable safeguards so that you do not inadvertently affect or break
other services when you move, rename, or delete a service. For more
information, see "Configuring Dependency Checking for Elements" on page
57.

To rename a transformer

1. Use Package Navigator view to determine the new name or location of the service
called by the transformer.

2. Open the flow service containing the transformer you want to rename.

3. In the flow service editor, select the MAP step containing the transformer. Then, in
Pipeline view, select the transformer you want to rename.

4. In the Service property in the Properties view, delete the old name and type in the
service’s new fully qualified name in the folderName:serviceNam e format, or click
to select a service from a list.

M
Odd Header

Mapping Data in Flow Services

webMethods Service Development Help Version 9.10 295

Debugging Transformers
When you debug a flow service, you can use the following debugging techniques with
transformers:

Step into a MAP step and step through the execution of each transformer. For more
information about stepping into and out of a MAP step, see "Stepping Into and Out
of a MAP Step" on page 439.

Set a breakpoint on a transformer so that service execution stops when the
transformer is encountered. For more information about seing breakpoints, see
"Seing and Removing Breakpoints on Flow Step" on page 441.

Disable a transformer so that it does not execute at run time. For more information
about disabling transformers, see "Disabling and Enabling Flow Steps and
Transformers" on page 443.

M
Even Header

webMethods Service Development Help Version 9.10 296

M
Odd Header

Performing Data Validation

webMethods Service Development Help Version 9.10 297

13 Performing Data Validation

■ Blueprints or Models Against which Data is Validated ... 298

■ Performing Input/Output Validation .. 299

■ Performing Pipeline Validation ... 301

■ Performing Document Validation .. 301

■ Performing XML Validation in Integration Server ... 302

■ Performing Validation from within a Java Service ... 303

■ Validation Errors ... 304

■ Validation Exceptions ... 304

■ Preventing Running Out of Memory Error During Validation ... 305

M
Even Header

Performing Data Validation

webMethods Service Development Help Version 9.10 298

Data validation is the process of verifying that run-time data conforms to a predefined
structure and format. Data validation also verifies that run-time data is a specific data
type and falls within a defined range of values.

By performing data validation, you can make sure that:

The pipeline, a document (IData object), or an XML document contains the data
needed to execute subsequent services. For example, if a service processes a
purchase order, you might want to verify that the purchase order contains a
customer name and address.

The data is in the structure expected by subsequent services. For example, a service
that processes a purchase order might expect the customer address to be a document
field with the following fields: name, address, city, state, and zip.

Data is of the type and within a value range expected by a service. For example, if a
service processes a purchase order, you might want to make sure that the purchase
order does not contain a negative quantity of an item (such as -5 shirts).

By using the data validation capabilities built into Integration Server, you can decide
whether or not to execute a service based on the validity of data. The validation
capabilities can also eliminate extra validation code from your services.

Blueprints or Models Against which Data is Validated
During validation, run-time data is compared to a blueprint or model. The blueprint or
model is a formal description of the structure and the allowable content for the data. The
blueprint identifies structural and content constraints for the data being validated. The
validation engine in Integration Server considers the data to be valid when it conforms
to the constraints specified in the blueprint. A blueprint can be an IS schema, an IS
document type, or a set of input and output parameters.

The blueprint used to validate data depends on the type of validation you are
performing. In Integration Server, you can perform the following types of validation:

Input/Output validation. The validation engine in Integration Server validates the input
and/or output of a service against the signature of the service.

Document validation. The validation engine in Integration Server validates the structure
and content of a document (IData object) in the pipeline against an IS document
type.

Pipeline validation. The validation engine in Integration Server validates the structure
and content of the pipeline against an IS document type.

XML validation. The validation engine in Integration Server validates the structure and
content of an XML document against an IS schema or IS document type.

For input/output, document, and pipeline validation, the blueprint used for data
validation requires constraints to be applied to its variables. Constraints are the
restrictions on the structure or content of variables. Structural constraints specify
the existence and structure of variables at run time. Content constraints describe the

M
Odd Header

Performing Data Validation

webMethods Service Development Help Version 9.10 299

data type for a variable and the possible values for the variable at run time. For more
information see, "About Variable Constraints" on page 605.

Performing Input/Output Validation
In input/output validation, the validation engine in Integration Server validates the
inputs and/or outputs of a service against the declared input and output parameters
of the service. If you specify that you want to validate the inputs to the service, the
validation engine validates the service input values immediately before the service
executes. If you specify that you want to validate the outputs of the service, the
validation engine validates the service output values immediately after the service
executes. An input or output value is invalid if it does not conform to the constraints
applied to the input or output parameter.

For input/output validation, the service’s declared input and output parameters act as
the blueprint or model against which input/output values are validated. To effectively
use the input and output parameters as the blueprint for validation, you need to apply
constraints to the parameters. For information about applying constraints to variables,
see "About Variable Constraints" on page 605. For information about declaring
service input and output parameters, see "Declaring Input and Output Parameters" on
page 166.

Note: The declared input and output parameters for a service are sometimes called
the signature of the service.

You can specify that you want to perform input/output validation for a service in the
following ways:

Input/Output tab. Set properties on the Input/Output tab to instruct the validation engine
in Integration Server to validate the inputs and/or outputs of the service every time
the service executes. If a client calls the service and the inputs are invalid, the service
fails and does not execute.

INVOKE step properties. Set up input/output validation via the INVOKE step properties
to instruct the validation engine to validate the service input and/or output only
when it is called from within another flow service. At run time, if the inputs and/or
outputs of the service are invalid, the INVOKE flow step that calls the service fails.

To determine which method to use, decide whether or not you want the service input
and output values validated every time the service runs. If you want to validate the
input and output values every time the service runs, specify validation via the Input/
Output tab. For example, if your service requires certain input to exist or fall within a
specified range of values, you might want the pipeline validated every time the service
runs.

If the input and/or output values do not need to be validated every time the service
executes, set up validation via the INVOKE step properties. Specifying input/output
validation via the INVOKE step properties allows you to decide on a case-by-case basis
whether you want validation performed

M
Even Header

Performing Data Validation

webMethods Service Development Help Version 9.10 300

Note: If you specify input/output validation via the INVOKE step and an input
or output value is invalid, the service itself does not actually fail. The
validation engine validates input values before Integration Server executes
the service. If the service input is not valid, the INVOKE flow step for the
service fails. Similarly, the validation engine validates output values after
Integration Server executes the service. If the service output is not valid,
the INVOKE flow step for the service fails. Whether or not the entire flow
service fails when an individual flow step fails depends on the exit conditions
for the service. For information about specifying exit conditions, see "Using
SEQUENCE to Specify an Exit Condition" on page 238.

Specifying Input/Output Validation via the Input/Output Tab
You can specify that you want the inputs and/or outputs of a service validated every time
it executes by seing properties on the Input/Output tab of the service. Every time the
service executes, the validation engine validates the input and/or output values of the
service against the input and output parameters declared for the service.

To set up input and output validation via the Input/Output tab

1. In the Package Navigator view, open the service for which you want to validate
input and/or output.

2. Select the Input/Output tab.

3. If you want to validate the input of the service every time the service executes, select
the Validate input check box.

4. If you want to validate the output of the service every time the service executes,
select the Validate output check box.

5. Select File > Save.

Specifying Input/Output Validation via the INVOKE Step
You can specify input/output validation by seing properties for the INVOKE step that
calls the service. Each time you insert a service into a flow, you can decide whether you
want the validation engine to validate service inputs and/or outputs at run time.

To set up input and output validation via the INVOKE step

1. In the flow service editor, select the INVOKE step for the service for which you want
to validate input and/or output values.

2. In the Properties view under General, do the following:

To validate input to the service, select True for Validate input.

To validate the output of the service, select True for Validate output.

3. Select File > Save.

M
Odd Header

Performing Data Validation

webMethods Service Development Help Version 9.10 301

Important: Keep in mind that the Validate input and Validate output properties are
independent of any validation seings that you might have already set in the
service. If you select the Validate input and/or Validate output check boxes on
the Input/Output tab of the invoked service, Integration Server performs input/
output validation every time the service executes. If you also specify input/
output validation via the INVOKE step, duplicate validation will result,
possibly slowing down the execution of the service.

Performing Pipeline Validation
Pipeline validation is the process of verifying the contents of the pipeline against an IS
document type. By validating pipeline data, you can:

Ensure a higher degree of accuracy for pipeline content.

Execute or not execute a service based on the validity of the pipeline data.

Eliminate extra validation code in your service.

In pipeline validation, an IS document type is the blueprint or model against which you
validate the pipeline. The constraints applied to the variables in the IS document type
determine what can and cannot be included in the pipeline. For more information about
applying constraints to variables, see "About Variable Constraints" on page 605.

To validate the pipeline, invoke the built-in service pub.schema:validatePipeline. This service
instructs the validation engine to compare the pipeline contents against a specified IS
document type. The pipeline is valid when it conforms to the structural and content
constraints applied to the IS document type. The pub.schema:validatePipeline service
returns a string that indicates whether validation was successful and an IData array
(errors variable) that contains any validation errors. For more information about the
pub.schema:validatePipeline service, see the webMethods Integration Server Built-In Services
Reference.

If you want to validate only String, String list, or String table variables in the pipeline,
use the pub.schema:validatePipeline service. Define an IS document type that contains the
variables you want to validate and apply constraints to the variables. Then use this
IS document type as the blueprint for the pub.schema:validatePipeline service. Integration
Server validates only the variables in the IS document type. The validation engine
ignores other variables that exist in the pipeline at run time. (An IS document type
implicitly allows unspecified variables to exist at run time.)

Performing Document Validation
You might want to validate an individual document (IData object) in the pipeline instead
of the entire pipeline. Use the pub.schema:validate service to validate a single document
(IData object) in the pipeline against an IS document type.

M
Even Header

Performing Data Validation

webMethods Service Development Help Version 9.10 302

For example, suppose that you invoke the pub.client.ldap:search service in a flow to retrieve
an IData object from an LDAP directory service. If you want to validate that object
before you use it in other services, invoke the pub.schema:validate service after retrieving
the object. As another example, you might want to validate an XML document that
has been converted to a document (IData object). You would use the pub.schema:validate
service to validate the resulting document (IData object) against an IS document type.

The pub.schema:validate service considers a document (IData object) to be valid when it
complies with the structural and content constraints described in the IS document type
it is validated against. This service returns a string that indicates whether validation was
successful and an IData array that contains any validation errors. When you insert the
pub.schema:validate service into a flow service, you can specify the maximum number of
errors that the service can collect. You can also specify whether the pub.schema:validate
service should fail if the document (IData object) is invalid.

For more information about the pub.schema:validate service, see the webMethods Integration
Server Built-In Services Reference

Note: The validation engine in Integration Server can perform document (IData
object) validation automatically when a document is published. For more
information, see "About Run-Time Validation for a Published Document" on
page 567.

Performing XML Validation in Integration Server
Validate XML to ensure that the structure and content of the XML are valid. To validate
an XML document, invoke the pub.schema:validate service. This service instructs the
validation engine to validate an XML document by comparing it to a specified IS
schema or an IS document type. The XML document is valid if it complies with the
structural and content constraints described in the IS schema or IS document type.
The pub.schema:validate service returns a string that indicates whether validation was
successful and an errors variable (an IData array) that contains any validation errors.

By validating an XML document, you can ensure that the XML document contains the
elements and aributes that:

Are organized in the structure or format that subsequent services expect

Contain values that are of the data type that subsequent services expect

For example, if you receive an XML document containing new employee information,
you might want to validate the information to ensure it contains an employee name,
address, telephone number, and date of birth before executing subsequent services.
Additionally, you might want to validate the date of birth to make sure that it conforms
to a specific date format.

Integration Server performs XML validation for web service requests that it receives an
for web service requests that it produces automatically. Integration Server validates the
request and response against the collection of IS elements that represent the WSDL on

M
Odd Header

Performing Data Validation

webMethods Service Development Help Version 9.10 303

Integration Server, such as IS document types, IS schemas, service signatures, and the
web service descriptor.

Note: When validating supplied XML, if the XML contains an element defined to
be of simple type with a paern constraining facet, by default, Integration
Server uses Perl paern matching to evaluate element content. However,
if wa.core.datatype.usejavaregex is set to true, during XML validation,
Integration Server uses the Java regular expression compiler and Integration
Server performs paern matching as described by java.util.regex.paern.

Note: If you want Integration Server to skip validation of references to elements
that are not namespace qualified made from within a namespace- qualified
element, set the watt.core.validation.skipNoNamespaceReference server
configuration property to true.

Performing Validation from within a Java Service
You can use built-in services pub.schema:validate and pub.schema:validatePipeline to perform
validation from within a Java service. In the following example, the pub.schema:validate
service is used to validate the results of the pub.xml:xmlNodeToDocument service against a
specification for an OAG purchase order.
 .
 .
 .

 IData validInput;
 IData dtrResult;
 .
 .
 .

// initialize the folder and document type name to point to a document
// type that exists on the server
 String ifc = "OAG.PO"
 String rec = "purchaseOrder"

// put the result from the xmlNodeToDocument service (i.e, the object to
// be validated) into the key named <object>
 IDataCursor validCursor = validInput.getCursor();
 IDataCursor dtrCursor = drtResult.getCursor();

if (dtrCursor.first("boundNode")) {
 // assumption here that there's data at the current cursor position
 validCursor.insertAfter("object", dtrCursor.getValue());
}

dtrCursor.destroy();

// set <conformsTo> parameter to point to the document type to validate
// against this document type must exist on the server.
validCursor.insertAfter("conformsTo", ifc+":"+rec);

// set the <maxErrors> parameter to the number of allowed validation

M
Even Header

Performing Data Validation

webMethods Service Development Help Version 9.10 304

// errors
validCursor.insertAfter("maxErrors", "1000");
validCursor.destroy();
// invoke pub.schema.validate to validate contents of <object>
IData validResult = context.invoke("pub.schema", "validate", validInput);
// check <isValid> to see whether <object> is valid and process
// accordingly
IDataCursor validCursor = validResult.getCursor();
if(validCursor.first("isValid"))
{
 if (IDataUtil.getString(validCursor).equals("false"))
 {
 IData [] vr = IDataUtil.getIDataArray(validCursor, "errors");
 System.out.println (vr.length+" ERROR(s) found with example");
 for (int j=0; j < vr.length; j++)
 {
 System.out.println(vr[j].toString());
 }
 }
}
validCursor.destroy();
 . . .

For additional information about pub.schema:validate and pub.schema:validatePipeline, see the
Schema services in the webMethods Integration Server Built-In Services Reference.

Validation Errors
During data validation, the validation engine generates errors when it encounters values
that do not conform to the structural and content constraints specified in the blueprint.
The format in which the validation engine returns errors depends on whether validation
was performed using the built-in services or by checking the declared input and output
parameters for the service.

When the validation engine performs data validation by executing the built-in
services pub.schema:validate or pub.schema:validatePipeline, errors are returned in the
errors output variable (an IData list). For each validation error, the errors variable
lists the error code, the error message, and the location of the error.

When the validation engine performs validation by comparing run-time data to
the declared input and output parameters, the validation engine returns all the
validation errors in a string. This string contains the error code, error message, and
error location for each error found during input/output validation.

Validation Exceptions
If you use the pub.schema:validate and pub.schema:validatePipeline services to perform data
validation, you can determine whether the service should succeed or fail if the data
being validated is invalid. You might want a service to succeed even if the data is
invalid. In the pub.schema:validate and pub.schema:validatePipeline services, the value of the

M
Odd Header

Performing Data Validation

webMethods Service Development Help Version 9.10 305

failIfInvalid input variable determines whether a service fails because of an invalid
object.

If the pub.schema:validate and pub.schema:validatePipeline service fails, Integration Server
throws a validation exception. A validation exception is generated if one of the following
is true:

Errors are detected in the object (XML node, pipeline, or document (IData object))
that is passed (for example, null value).

The basic validation contract is violated (for example, a binary tree is passed instead
of a document (IData object) as expected).

You specify that the service should fail if the object to be validated (XML node,
pipeline, or document (IData object)) did not conform to the IS schema or IS
document type (for example, failIfInvalid = true). If this is the reason for the
exception, Integration Server inserts the validation errors into the exception message.

Preventing Running Out of Memory Error During Validation
During validation of an XML node, a large maxOccurs value for an element in the IS
schema used as the blueprint can cause an out of memory error or a stack overflow.
To prevent a stack overflow or out of memory error, you can set a threshold value for
maxOccurs. When the validation engine encounters a maxOccurs value greater than the
threshold value, it proceeds as if the maxOccurs value was equal to 'unbounded'.

To set a maxOccurs threshold value, you can edit the server configuration parameter
wa.core.schema.maxOccursThresholdValue. By default, this parameter does not have a
value.

To set a maxOccurs threshold value

1. Start Integration Server and open the Integration Server Administrator.

2. In the Settings menu of the navigation area, click Extended.

3. Click Edit Extended Settings. The server displays the Extended Settings screen.

4. In the text area under Extended Settings, type
watt.core.schema.maxOccursThresholdValue=value where value is the number
you want to use as the maxOccurs threshold.

5. Click Save Changes.

M
Even Header

webMethods Service Development Help Version 9.10 306

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 307

14 Building Java Services

■ Overview of Building Java Services .. 308

■ Java Service Editor .. 309

■ Service Development Projects in the Local Workspace .. 312

■ How Java Services Are Organized on Integration Server ... 314

■ Creating a Java Service .. 314

■ Using an IData Object for the Java Service Input and Output .. 316

■ Generating Java Code from Service Input and Output Parameters .. 318

■ Editing an Existing Java Service ... 320

■ Adding Classes to the Service Development Project .. 321

■ Compiling a Java Service .. 323

■ Generating Code a Java Service Can Use to Invoke a Specified Service 324

■ Deleting a Java Service ... 326

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 308

This topic describes the use of Java services in a Service Development Project and how to
use the Java Service Editor to create and edit Java services.

Overview of Building Java Services
Before you can create Java services using the Java Service Editor, you must meet the
following prerequisites:

Integration Server must have a Java compiler that is the same version as the Java
compiler used in the Designer local workspace.

Designer must have a connection to the Integration Server on which you want the
Java service to reside.

In Designer you use the Java Service Editor to build Java services. For more information,
see "Java Service Editor" on page 309. The following are the basic tasks you perform
to create a Java service:

Task
1

Ensure that the IS package and folder in which you want to create the Java
service exists.

If not, create them. For more information, see "Package and Folder
Requirements" on page 163.

Task
2

Use Designer to add the Java service element. For more information, see
"Creating a Java Service" on page 314.

Designer creates a Service Development Project in your local workspace for
the Java service. For more information, see "Service Development Projects
in the Local Workspace" on page 312.

Do the following to build the logic for the Java service:

Define the input and output parameters for the service. For more
information, see "About the Service Signature" on page 163.

Optionally, generate starter code for the service based on the declared
input and output parameters. For more information, see "Generating Java
Code from Service Input and Output Parameters" on page 318.

Add additional Java code and modify the generated Java code as
necessary. You can use the webMethods Integration Server Java API in
your service. For more information, see the webMethods Integration Server
Java API Reference.

Task
3

Provide classes required to compile the Java service. You add any
additional third-party classes to:

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 309

Service Development Project in Designer so that Designer can locally
compile the service. For more information, see "Adding Classes to the
Service Development Project" on page 321.

Integration Server so that the server can compile the service. For more
information, see information about managing IS packages and how
Integration Server stores IS package information in webMethods Integration
Server Administrator’s Guide.

Task
4

Compile the Java service. Designer automatically compiles the service
when you save it. For more information, see "Compiling a Java Service" on
page 323.

Task
5

Debug the Java service. For more information, see "Debugging Java
Services" on page 455.

Designer also provides the ability for you to generate code that invokes a Java service.
You can generate code that a client would use to invoke the Java service and code
that another service would use to invoke the Java service. For more information, see
"Building a Java Client" on page 914 and "Generating Code a Java Service Can Use to
Invoke a Specified Service" on page 324.

Java Service Editor
Use the Designer Java service editor to create new Java services and to edit existing Java
services. If you aempt to edit a Java service that you do not have locked for edit, you
can still open it in the Java service editor. However, the source code, properties, inputs,
and outputs will be read only.

The Java service editor has four tabs:

Source tab contains the code for the Java service. For more information about the
Source tab, see "Source Tab" on page 310

Input/Output tab contains the input and output signature of the Java service. For more
information about declaring the input and output parameters for a service, see
"About the Service Signature" on page 163.

Logged Fields tab indicates the input and output parameters for which Integration
Server logs data. For more information about logging the contents of input and
output fields, see "Logging Input and Output Fields" on page 189.

Comments tab contains the comments or notes, if any, for the Java service.

Note: You can use the Designer Java service editor to edit Java services that you
created in Developer. Additionally, you can use Designer to edit Java services
you created with your own IDE, provided that you properly commented them

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 310

as described in "Building Java Services in Your Own IDE" on page 329 and
"Adding Comments to Your Java Code for the jcode Utility" on page 333.

Source Tab
You specify the code for the Java service on the Source tab, which extends the standard
Eclipse Java editor. Because the Eclipse Java editor requires source files to be in the local
workspace, Designer also requires source files to be in the local workspace. To achieve
this, Designer adds Java classes to a Service Development Project, which is a project with
extensions to support Java services. For more information, see "Service Development
Projects in the Local Workspace" on page 312.

The full capabilities of the Eclipse Java editor are available, for example, source
formaing, code completion, etc. However, unlike the Eclipse Java editor, the Designer
Java service editor protects the sections of a Java service that contain required code to
prevent structural damage to the service. The following illustrates the contents of the
Source tab for a newly created service.

Java package definition
package orders.orderStatus

Add additional imports
here

import com.wm.data.*;
import com.wm.util.Values;
import com.wm.app.b2b.server.Service;
import
com.wm.app.b2b.server.ServiceException;

Class definition
public final class orderStatus_checkStatus_SVC

Add extends and
implements here

Primary method definition
{
 /**
 * The primary method for the java service
 *
 * @param pipeline
 * The IData pipeline
 * @throws ServiceException
 */
 public static final void
 orderStatus_checkStatus(IData pipeline)
 throws ServiceException {

Add source code for the
primary Java service
method here

 }
 // --- <<IS-BEGIN-SHARED-SOURCE-AREA>> ---

Add shared code here
 // --- <<IS-END-SHARED-SOURCE-AREA>> ---
 }

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 311

Final “}”
}

Protected Sections of a Java Service
The Java service editor shades the protected sections of the Java service. By default, it
uses gray for the shading; you can update your preferences to select a different color. For
more information, see "Java/C Service Editors Preferences" on page 942. The sections
of the Java service that the Java service editor protects are:

Java package definition, which is the required code that defines the Java package for
the Java service.

Class definition, which is the required code that defines the final class for the Java
service.

Primary method definition, which is the required code that defines the static and final
method for the Java service. It defines a single input parameter, an IData object.

The IData object is the universal container that services use to receive input from and
deliver output to other programs. It contains an ordered collection of key/value pairs
on which a service operates. An IData object can contain any number of key/values
pairs.

You define the data to pass into the service via the IData object by defining input
parameters on the Input/Output tab of the editor. You add code to the primary method
that modifies the key/value pairs in the IData object. The IData object then becomes
the output of the service. The service returns the output parameters you define on
the Input/Output tab.

Note: You can set the Java service editor preferences so that Designer uses
Values in and return out for the input/output rather than an IData
object. For more information, see "Java/C Service Editors Preferences" on
page 942.

Final brace “}”. The Java service editor does not allow you to add code after the final
brace “}”.

Editable Sections of a Java Service
You can modify the following sections of the Java service:

imports, where you can specify the names of additional Java packages whose classes
you want to make available to the current class.

Note: By default, Designer adds some required imports that you cannot delete.
Although the Java service editor will allow you to remove the imports,
when you save the service, Designer adds the required imports back to the
service.

extends, where you can specify a super class for the implementation.

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 312

implements, where you can specify the Java interfaces that the Java service
implements.

source code, where you add the code for the primary Java service method.

shared code, where you can specify declarations, methods, etc. that will be shared by
all services in the current folder.

Note: You cannot enter or paste special characters including '{' in the extends or
implements section of a Java service.

The toolbar and icons that the Source tab uses are the same as the buons and icons used
in the standard Eclipse Java editor. For a description, see the Eclipse Java Development
User Guide.

Service Development Projects in the Local Workspace
Because the Java service editor depends on files residing in the local workspace,
Designer creates a Service Development Project in the local workspace to store files
associated with a Java service. Also, if a Java service requires additional class or jar
files so that Designer can compile the service, you add class and jar files to the Service
Development Project.

When you first open a Java service, either when you edit it for the first time or by
initially creating it, Designer adds a Java class associated with the Java service to a
Service Development Project. If a Service Development Project does not already exist for
a Java service, Designer creates one. You can view Service Development Projects using
the Project Explorer view, the Package Explorer view, or the Navigator view.

About the Service Development Project Name
The Service Development Projects correspond to IS packages. To ensure that the project
names are unique, Designer uses the following naming convention, where packageName
is the name of the IS package where the service resides, hostName is the host name of the
Integration Server on which the service resides, and portNumber is the port number of
the Integration Server:

<packageName >[<hostName >_<portNumber >]

For example, if the host name of the Integration Server is “ServerA”, its port is “5555”
and the IS package is named “MyPackage”, the Service Development Project will have
the following name:

MyPackage[ServerA_5555]

If Designer has a second Integration Server connection to a server with host name
“ServerB” that also uses port “5555” and has a Java service in an identically named
package, “MyPackage”, the Service Development Project name will be unique in

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 313

the workspace because it includes the server identification. In this case, the Service
Development Project will have the following name:

MyPackage[ServerB_5555]

Format of a Service Development Project
The Service Development Project contains:

JRE system library

“src” folder that contains Java packages

Designer creates Java packages that correspond to a Java service's IS namespace
and places them within the “src” folder of the project. For example, if a Java
service resides in the folder folderA.folderB, Designer creates the Java package
“folderA.folderB” within the Service Development Project.

Default .jar files that Designer includes in the project’s classpath

Designer adds several default .jar files to the project. These files, for example,
IS_CLIENT and IS_SERVER, are listed in uppercase.

“class” folder where you can add any additional Java classes that your Java services
require; see "Adding Classes to the Service Development Project" on page 321

“lib” folder where you can add any additional Java classes that are packaged in jar
files; see "Adding Classes to the Service Development Project" on page 321

Note: You might still need to add additional classes and jar files to Integration
Server so that Integration Server can compile the service. For more
information, see information about managing IS packages and how
Integration Server stores IS package information in webMethods Integration
Server Administrator’s Guide.

The following shows the format of a Service Development Project and an example.

Format Example
- projectName
 + JRE System Library
 - src
 +javaPackageName(1)
 .
 .
 .
 +javaPackageName (n)
 + classes
 + defaultJarFile(1)
 .
 .
 .
 + defaultJarFile (n)
 + lib

- MyPackage[ServerA_5555]
 - JRE System Library
 - src
 - folderA
 - folderA.folderB
 + classes
 + IS_CLIENT
 + IS_SERVER
 .
 .
 .
 + lib

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 314

How Java Services Are Organized on Integration Server
A Java service is a public static method in a Java class file on Integration Server. Java
services follow a simple naming scheme:

The service name represents the Java method name.

The interface name represents the fully-qualified Java class name.

Because Java class names cannot contain the “.” character, services that reside in nested
folders are implemented in a class that is scoped within a Java package. For example,
a service named recording.accounts:createAccount is made up of a Java method called
createAccount in a Java class called accounts within the recording package.

All Java services that reside in the same folder are methods of the same class.

When you build a Java service with Designer, the system automatically combines your
service into the class file associated with the folder in which you created it.

Creating a Java Service
Use the Designer Java service editor to create a new Java service. Before you can create a
Java service, make sure the following items are true:

Designer is using the Service Development perspective. If not, switch to it by
selecting Window > Open Perspective >Service Development.

The Integration Server on which you want the Java service to reside is running and
that it is connected to Designer.

The IS package and folder in which you want to create the Java service already
exists. For more information, see "Package and Folder Requirements" on page 163.

All Java services in the folder in which you want to create the new service are
unlocked. Alternatively, you can ensure that you have all the Java services locked.
For more information, see "Guidelines for Locking Java and C/C++ Services" on page
96.

If you want to use Unicode characters in the Java service, change the Text file encoding
preference. To do so, select Window > Preferences > General > Workspace and for Text file
encoding clear Default (Cp1252), select Other, and then select or type a new encoding.

To create a Java service

1. In Designer: File > New > Java Service.

2. In the Create New Java Service wizard, expand the IS package in which you want the
service to reside and select the folder in which you want to create the service.

3. In the Element name field, type the name you want to assign to the Java service.

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 315

4. If you have a template you want to use to initialize a default set of properties for the
service, select if from the Choose template list.

5. Click Finish.

6. Specify the input parameters and output parameters for the Java service on the Input/
Output tab. For more information, see "About the Service Signature" on page 163.

7. Optionally, specify usage notes or comments in the Comments tab.

8. Specify service properties using the Properties view. For more information, see:

"About Service Run-Time Parameters" on page 169

"About Automatic Service Retry" on page 182

"About Service Auditing" on page 185

"About Universal Names for Services or Document Types" on page 192

"About Service Output Templates" on page 196.

9. Optionally, generate starter code for the service based on the declared input and
output parameters. For more information, see "Generating Java Code from Service
Input and Output Parameters" on page 318.

10. Add and modify the Java code on the Source tab.

You can use the webMethods Integration Server Java API in your service. For more
information, see webMethods Integration Server Java API Reference.

11. Select File > Save.

Designer compiles the Java service on Integration Server and displays compilation
error messages from the server in a popup window. Designer also writes the error
messages to the Designer log file making them visible within the Error Log View.

Designer also compiles the Java service locally in the Service Development Project.
Additionally, if the workspace preference Build Automatically is selected, Designer
rebuilds other classes in the Service Development Project at the same time. Designer
adds compilation errors from the local compilation to the Problems view. If
Problems view is not already open, you can open it by selecting Window > Show View
> Problems. To view the line of code that caused the error, double click on the error
in the Problems view and Designer shifts focus to the Java service editor, with the
cursor positioned at the line of code that caused the error.

Note:

For more information, see "Compiling a Java Service" on page 323.

Notes about Creating and Editing Java Services in Designer
Keep the following points in mind when you use Designer to create or edit a Java
service:

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 316

When you create a new Java service, Designer adds a Java class associated with
the Java service to a Service Development Project in your local workspace. If an
appropriate Service Development Project that corresponds to the service’s IS package
does not yet exist, Designer creates one for the service. For more information, see
"Service Development Projects in the Local Workspace" on page 312.

Designer adds initial code to the Java service. For all Java services, Designer adds the
Java package definition, class definition, primary method definition, and a minimum
set of imports. If the service is the second or subsequent Java service created in the
same IS folder, Designer also adds any shared code defined in other Java services in
the IS folder, additional imports, extends, and implements.

Because Designer is connected to Integration Server, when you save the service in
Designer, your changes are also immediately saved in Integration Server.

Additionally, when you save a Java service, Designer compiles it both in the
Service Development Project in Designer and on Integration Server. When Designer
compiles the service locally, by default, it also rebuilds other classes in the Service
Development Project.

If your Java service requires additional classes to compile, you must add them, either
as individual class files or in jar files, to both the Service Development Project and
to Integration Server. If you set up IS package dependencies for the Java service in
Integration Server and there are classes and/or jar files in the IS packages required so
that the service can compile, you must manually add them to Service Development
Project. For more information, see "Adding Classes to the Service Development
Project" on page 321. For more information about adding classes to Integration
Server and how Integration Server stores package information, see webMethods
Integration Server Administrator’s Guide.

When a folder contains multiple Java services, Designer adds an empty
implementation of all of the Java services in the folder to each Java service. This
allows a Java service in a folder to invoke another Java service in the same folder
directly using methodName (pipeline) where methodName is the local name of the Java
service.

Using an IData Object for the Java Service Input and Output
An IData object is the universal container that Java services use for service input and
output. A Java service method signature takes exactly one argument of type IData, and
the same IData object contains the output from the service. An IData object contains an
ordered collection of key/value pairs on which a service operates. For a key/value pair:

The key must be a String.

The value can be any Java object (including an IData object).

Tip: You can use Designer to generate code for geing input from and writing
output to an IData object. After generating the code, you can copy and paste it

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 317

into the Java service you are creating. For more information, see "Generating
Java Code from Service Input and Output Parameters" on page 318.

Sample Code for Getting and Setting Input Values

A Java service is a method that is public and static. It takes a single instance of
com.wm.data.IData as input and must place output in the same IData object. The
following code shows a sample:
public final static void myservice (IData pipeline)
 throws ServiceException
 {
 return;
 }

When the Java service is invoked, Integration Server passes the IData object to it. The
service needs to get the input values it needs from the key/value pairs within the IData
object. The following sample code uses methods of the IDataCursor class to position
the cursor and uses the getValue method to get the input value of the myVariable input
variable from the IData object:
public final static void myservice (IData pipeline)
 throws ServiceException
{
 IDataCursor myCursor = pipeline.getCursor();
 if (myCursor.first("inputValue1")) {
 String myVariable = (String) myCursor.getValue();
 .
 .
 }
 myCursor.destroy();
 .
 .
 return;
 }

A service returns output by inserting it into the same IData object that was used for the
input values. All of the service outputs must be wrien to the IData object. For example:
public final static void myservice (IData pipeline)
 throws ServiceException
 {
 IDataCursor myCursor = pipeline.getCursor();
 if (myCursor.first("inputValue1")) {
 String myVariable = (String) myCursor.getValue();
 .
 .
 }
 myCursor.last();
 myCursor.insertAfter("outputValue1", myOutputVariable);
 myCursor.destroy();
 return;
 }

Note: Integration Server passes everything that the Java service puts into the
pipeline (that is, the IData object) as output, regardless of what is declared
as its input/output parameters. Declaring a service's input and output
parameters does not filter what variables the service actually receives or

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 318

outputs at run time. It simply provides a formal description of what the
service requires as input and produces as output.

Creating IData Objects

Use the IDataFactory class to create IData objects. For example:
public final static void myservice (IData pipeline)
 throws ServiceException
 {
 myIDataObject = IDataFactory.create();
 IDataCursor myCursor = myObject.getCursor();
 myCursor.insertAfter("VA", new Double("0.045"));
 myCursor.insertAfter("MD", new Double("0.05"));
 myCursor.insertAfter("DE", new Double("0.0"));
 return;
 }

Getting and Setting Elements in an IData Object

Use the IDataCursor class to get values from and set values into IData elements (that is,
key/value pairs). Geing or seing values in IData elements takes two steps.

First, position the cursor at the IData element you want to get or set. The IDataCursor
class contains methods for performing basic cursor operations such as placing the cursor
at the first, last, or next element in an IData object.

After positioning the cursor, use the getValue or setValue methods to read or write the
value of the element, respectively. This class also provides methods for inserting new
elements, geing key names, and deleting elements.

For more information about using the cursor classes, see webMethods Integration Server
Java API Reference.

Generating Java Code from Service Input and Output
Parameters
If you know the set of input and output parameters that a Java service will use before
you start coding it, you can declare the service’s input/output parameters first and
generate Java code from it. The generated code obtains the specified input values from
the service’s input signature and assigns them to variables in your service. It also puts
the set of output values into the output signature.

You do not have to generate code for all the input and output parameters. You can
choose to generate code for only the input parameters, only the output parameters, or
you can select one or more input/output parameters for which to generate code.

When Designer generates code from the service input/output parameters, it puts the
code on the clipboard. From there, you can paste it into the Source tab of your service,
or if you are building a Java service in your own IDE, you can paste it into the service in
your IDE. After pasting the generated code, you can modify it as necessary.

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 319

To generate starter code from a Java service’s input/output parameters

1. Open the Java service by double clicking it in the Package Navigator view.

2. Select the Input/Output tab and define the inputs and outputs for the service if they are
not already specified. For more information, see "About the Service Signature" on
page 163.

3. If you want to generate code for a subset of the input/output parameters, on the
Input/Output tab select the parameters for which you want to generate code. To select
more than one variable, press the CTRL key as you select parameters.

4. Right click in the editor to view the context menu, and select Generate Code.

5. In the Code Generation window, select For implementing this service and click Next.

6. For Specification, select the Input and/or Output check boxes to reflect the parameters
for which you want to generate code.

7. For Which Fields? select one of the following:

All Fields if you want to generate code for all of the parameters identified by your
Specification selection.

Selected Fields if you want to generate code for only the parameters you selected
before starting the code generation.

8. Click Finish. Designer generates code and places it on the clipboard.

9. Select the Source tab. Alternatively, if you are building a Java service using your own
IDE, open the Java service in your IDE.

10. Paste the contents of the clipboard into your source code.

Example of Java Code Generated from Service Signature
Suppose you have a service that has the following input and output parameters:

Input Parameters Output Parameters
String
Document
 String
 String

input1
inDoc
 in1
 in2

String
Document
 String
 String

output1
outDoc
 out1
 out2

The following shows code that Designer generated for the above input and output
parameters:
// pipeline
IDataCursor pipelineCursor = pipeline.getCursor();
 String input1 = IDataUtil.getString(pipelineCursor, "input1");

 // inDoc
 IData inDoc = IDataUtil.getIData(pipelineCursor, "inDoc");
 if (inDoc != null)
 {
 IDataCursor inDocCursor = inDoc.getCursor();

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 320

 String in1 = IDataUtil.getString(inDocCursor, "in1");
 String in2 = IDataUtil.getString(inDocCursor, "in2");
 inDocCursor.destroy();
 }
pipelineCursor.destroy();

// pipeline
IDataCursor pipelineCursor_1 = pipeline.getCursor();
IDataUtil.put(pipelineCursor_1, "output1", "output1");

// outputDoc
IData outputDoc = IDataFactory.create();
IDataCursor outputDocCursor = outputDoc.getCursor();
IDataUtil.put(outputDocCursor, "out1", "out1");
IDataUtil.put(outputDocCursor, "out2", "out2");
outputDocCursor.destroy();
IDataUtil.put(pipelineCursor_1, "outputDoc", outputDoc);
pipelineCursor_1.destroy();

Editing an Existing Java Service
Use the Designer Java service editor to edit an existing Java service. You can use the
Designer Java service editor to edit Java services that were created in Designer or
Developer. Additionally, you can use Designer to edit Java services you created with
your own IDE, provided that you properly commented them as described in "Building
Java Services in Your Own IDE" on page 329 and "Adding Comments to Your Java
Code for the jcode Utility" on page 333.

Before you can edit an existing Java service, make sure that:

The Integration Server on which you the Java service resides is running and that it is
connected to Designer.

You have the Java service locked for edit. If you aempt to edit a Java service that
you do not have locked for edit, you can still open it in the Java service editor.
However, the source code, properties, inputs, and outputs will be read only.

If you want to use Unicode characters in the Java service, change the Text file encoding
preference. To do so, select Window > Preferences > General > Workspace and for Text file
encoding clear Default (Cp1252), select Other, and then select or type a new encoding.

To edit an existing Java service

1. Ensure the Designer is using the Service Development perspective. If not, switch to it
by selecting Window > Open Perspective >Service Development.

2. Double click the Java service in the Package Navigator view to open it.

3. Update the input parameters and output parameters for the Java service on the Input/
Output tab. For more information, see "About the Service Signature" on page 163.

4. Modify service properties using the Properties view. For more information, see:

"About Service Run-Time Parameters" on page 169

"About Automatic Service Retry" on page 182

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 321

"About Service Auditing" on page 185

"About Universal Names for Services or Document Types" on page 192

"About Service Output Templates" on page 196.

5. Modify the Java code on the Source tab.

You can use the webMethods Integration Server Java API in your service. For more
information, see the webMethods Integration Server Java API Reference.

6. Select File > Save.

Designer compiles the Java service on Integration Server and displays compilation
error messages from the server in a pop up window. Designer also writes the error
messages to the Designer log file making them visible within the Error Log View.

Designer also compiles the Java service locally in the Service Development Project.
Additionally, if the workspace preference Build Automatically is selected, Designer also
rebuilds other classes in the Service Development Project at the same time. Designer
adds compilation errors from the local compilation to the Problems view. You can
open Problems view by clicking Window > Show View > Problems. To view the line
of code that caused the error, double click on the error in the Problems view and
Designer shifts focus to the Java service editor, with the cursor positioned at the line
of code that caused the error.

The first time you edit a Java service in your workspace, Designer adds a Java class
associated with the Java service to a Service Development Project in your local
workspace. If an appropriate Service Development Project that corresponds to the
service’s IS package does not yet exist, Designer creates one for the service. For more
information, see "Service Development Projects in the Local Workspace" on page
312.

Adding Classes to the Service Development Project
If a Java service requires additional classes to compile, you must add them to the
following locations:

Service Development Project in the local workspace so that Designer can compile the
service.

Integration Server so that the server can compile the service. Designer does not
automatically propagate classes that you add to the Service Development Project
to Integration Server; you must add them to Integration Server manually. For more
information about adding classes to Integration Server, see information about
managing IS packages and how Integration Server stores IS package information in
webMethods Integration Server Administrator’s Guide.

Keep the following points in mind when adding classes to the Service Development
Project:

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 322

You add individual class files to the “classes” folder of the Service Development
Project.

If you have Java classes that are packaged together in jar files, you add the jar files to
the “lib” folder of the Service Development Project.

If you set up IS package dependencies for a Java service in Integration Server and
there are classes and/or jar files in the IS packages required so that the service can
compile, you must manually add them to Service Development Project.

To add classes and jar files to the Service Development Project

1. Open the Project Explorer view.

2. Expand the Service Development Project for the Java service.

Service Development Project names use the following format, where packageName
is the name of the IS package where the service resides, hostName is the host name
of the Integration Server on which the service resides, and portNumber is the port
number of the Integration Server:

<packageName >[<hostName >_<portNumber >]

For example, if you want to add class and jar files for the order.orderStatus:checkStatus
service that resides in the IS package “Accounting” on the Integration Server with
the host name and port number “ServerA:5555”, you would expand the Service
Development Project with the following name:

Accounting[ServerA_5555]

For more information, see "Service Development Projects in the Local Workspace" on
page 312.

3. If you want to add class files to the Service Development Project, drag them from the
file system into the “classes” folder of the Service Development Project in the Project
Explorer view.

When adding class files, ensure that you keep the structure of the Java package
intact. For example, if you want to add com.accounting.orders.statusClass.class, you
must first create the “com”, “accounting”, and “orders” folders within the “classes”
folder as shown below:
- classes
 - com
 - accounting
 - orders

Then add the statusClass.class file to the “orders” folder.

Important: The Java source files for these classes should not be maintained within the
Service Development Project.

4. If you want to add jar files to the Service Development Project, drag them from the
file system into the “lib” folder of the Service Development Project in the Project
Explorer view.

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 323

If you have the Build Automatically Workspace preference selected, after adding new
class and/or jar files to the Service Development Project, Designer automatically
rebuilds the project. If you have the Build Automatically preference turned off, you
can force a rebuild by selecting Project > Build Project. You set the Build Automatically
preference using Window > Preferences > General > Workspace.

After the project is rebuilt, Designer removes the errors from the Problems view.
However, the errors might still exist for the Folder class that resides in Integration
Server. To correct the error, ensure Integration Server has access to the required
class and jar files, open the Java service in the Designer, and save it again to force the
compilation of the service on Integration Server.

Compiling a Java Service
When you save a Java service, Designer automatically compiles the Java service in the
Service Development Project and on Integration Server.

Before a Java service can be compiled, keep the following requirements and points in
mind:

You must add any additional Java classes that the Java service requires to both the
Service Development Project and to Integration Server. For more information, see
"Adding Classes to the Service Development Project" on page 321. For more
information about adding classes to Integration Server, see information about
managing IS packages and how Integration Server stores IS package information in
webMethods Integration Server Administrator’s Guide.

Integration Server must have a Java compiler that is the same version as the Java
compiler used in the Designer local workspace.

When compiling the Java service locally, Designer uses the default Java compiler
seings. You can update these seings by updating the Service Development
Project’s Java Compiler properties.

By default, the Service Development Project uses the default JRE that is configured
for Designer. You can configure a different JRE using the Service Development
Project’s Java Build Path properties and seing a new JRE on the Libraries tab.

Important: You do not need to use the jcode utility to compile and transfer the Java
service to Integration Server. The jcode utility is only necessary when you
are using an IDE other than Designer. For more information about building
Java services using your own IDE, see "Building Java Services in Your Own
IDE" on page 329.

To compile a Java service

1. If the service is not open in the Java service editor, open it by double clicking the Java
service in the Package Navigator view.

2. Select File > Save to save and compile the Java service.

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 324

Designer displays compilation errors from compiling the service in:

Problems view for compilation errors from locally compiling the service

If Problems view is not already open, you can open it by selecting Window > Show
View > Problems.

To view the line of code that caused the error, double click on the error in the
Problems view and Designer shifts focus to the Java service editor, with the cursor
positioned at the line of code that caused the error.

Popup window for compilation errors from Integration Server

Designer writes the error messages from the server to the Designer log file, making
them visible within the Error Log View.

If you receive errors because the Java compiler cannot be found in Integration Server,
ensure you have a Java compiler installed on the same machine as Integration Server
and that you have added the location of the Java compiler to the system path.

Performance When Compiling a Java Service
When Designer compiles the service locally, by default, it also rebuilds other classes
in the Service Development Project. If you notice slower performance when you save,
you can prevent Designer from rebuilding the other classes by updating the workspace
preferences. Note that sometimes it is only the first aempt to save a Java service that
takes a long time and future compilations might go faster.

If you want to turn off the rebuild of other classes in the Service Development Project,
select Window > Preferences > General > Workspace and clear the Build Automatically check
box. This preference affects all projects in the workspace. If you turn off automatic
builds, you can manually force a build by selecting Project > Build Project.

Generating Code a Java Service Can Use to Invoke a
Specified Service
You can have Designer generate Java code that invokes a selected service, which you can
then add to a Java service. Designer generates code that:

Creates an IData object based on the service’s declared input parameters

Invokes the selected service passing it the IData object and catching exceptions

Retrieves the returned IData object from the selected service

Uses the key/value pairs in the returned IData object to assign variables based on the
declared output parameters of the selected service

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 325

You do not have to generate code for all the input and output parameters. You can select
to generate code for only the input parameters, only the output parameters, or you can
select one or more input/output parameters for which to generate code.

When Designer generates code from the service input/output parameters, it puts the
code on the clipboard. From there, you can paste it into a Java service and modify it as
necessary.

Generating Java Code to Invoke a Service
To generate Java code to invoke a service

1. Open the service that you want to invoke by double clicking it in the Package
Navigator view.

2. If you want to generate code for a subset of the input/output parameters, on the
Input/Output tab select the parameters for which you want to generate code. To select
more than one variable, press the CTRL key as you select parameters.

3. Right click in the editor to view the context menu, and select Generate Code.

4. In the Code Generation window, select For calling this service from another service and
click Next.

5. For Specification, select the Input and/or Output check boxes to reflect the parameters
for which you want to generate code.

6. For Which Fields? select one of the following:

All Fields if you want to generate code for all of the parameters identified by your
Specification selection.

Selected Fields if you want to generate code for only the parameters you selected
before starting the code generation.

7. Click Finish. Designer generates code and places it on the clipboard.

8. Paste the contents of the clipboard into a Java service.

Example of Java Code Generated for Invoking a Service
Suppose you have a service that has the following input and output parameters:

Input Parameters Output Parameters
String
Document
 String
 String

input1
inDoc
 in1
 in2

String
Document
 String
 String

output1
outDoc
 out1
 out2

The following shows code that Designer generated for the above input and output
parameters:
// input

M
Even Header

Building Java Services

webMethods Service Development Help Version 9.10 326

IData input = IDataFactory.create();
IDataCursor inputCursor = input.getCursor();
IDataUtil.put(inputCursor, "input1", "input1");

// inDoc
IData inDoc = IDataFactory.create();
IDataCursor inDocCursor = inDoc.getCursor();
IDataUtil.put(inDocCursor, "in1", "in1");
IDataUtil.put(inDocCursor, "in2", "in2");
inDocCursor.destroy();
IDataUtil.put(inputCursor, "inDoc", inDoc);
inputCursor.destroy();

// output
IData output = IDataFactory.create();
try{
 output = Service.doInvoke("Folder2.subFolder", "selectedService",
 input);
}catch(Exception e){}
IDataCursor outputCursor = output.getCursor();
 String output1 = IDataUtil.getString(outputCursor, "output1");

 // outputDoc
 IData outputDoc = IDataUtil.getIData(outputCursor, "outputDoc");
 if (outputDoc != null)
 {
 IDataCursor outputDocCursor = outputDoc.getCursor();
 String out1 = IDataUtil.getString(outputDocCursor, "out1");
 String out2 = IDataUtil.getString(outputDocCursor, "out2");
 outputDocCursor.destroy();
 }
outputCursor.destroy();

Deleting a Java Service
When deleting a Java service, keep the following points in mind:

When you delete a Java service, Designer recompiles any Java services that remain in
the source folder.

When you delete a folder or the last Java service in a folder, Designer also deletes the
shared source for that folder.

When a package containing a Java service is deleted, Designer deletes the
corresponding Java projects from the file system.

To delete a Java service

1. In Package Navigator view, select the Java service that you want to delete.

2. Select Edit > Delete.

3. If you have selected the Confirm before deleting check box in the Preferences dialog box
for Package Navigator view, do the following:

a. If the Java service you want to delete have unsaved changes, Designer prompts
you to save changes. Select the Java service that you want to save and click OK.

M
Odd Header

Building Java Services

webMethods Service Development Help Version 9.10 327

b. If there are IS asset dependencies for the Java service you are deleting, Designer
indicates which items will be affected by the deletion. Click Continue.

4. Click OK to confirm the deletion.

M
Even Header

webMethods Service Development Help Version 9.10 328

M
Odd Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 329

15 Building Java Services in Your Own IDE

■ How Java Services are Organized on Integration Server .. 330

■ Requirements for the Java Service Source Code ... 332

■ IData Object for Java Service Input and Output .. 333

■ Adding Comments to Your Java Code for the jcode Utility .. 333

■ Using the jcode Utility .. 337

M
Even Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 330

As an alternative to creating Java Services using the Designer Java Service Editor, you
can use your own IDE.

Note: For information about creating Java services using Designer, see "Building
Java Services" on page 307.

When you use your own IDE, you must create the Java code yourself, compile it, and
store the compiled class file and other service information in Integration Server. To help
you with these tasks, Integration Server provides the jcode utility.

The following describes the basic steps for building a Java service with your own IDE.

1. Understand how Java service are stored in Integration Server. For a description, see
"How Java Services are Organized on Integration Server " on page 330.

2. Optionally create an empty Java service using Designer that you can use as a
guideline for coding your own service. For more information, see "Building Java
Services" on page 307.

3. Write the Java code for your service using your own IDE.

Define the input and output parameters for the service. The service must use
an IData object for service input and output. For more information, see "IData
Object for Java Service Input and Output" on page 333.

Ensure your code meets requirements described in "Requirements for the Java
Service Source Code" on page 332.

Add comments to the code that identify various fragments, for example, imports
or service inputs and outputs. For more information, see "Adding Comments to
Your Java Code for the jcode Utility" on page 333. These comments are used
by the jcode utility, which you use in the next step.

4. Use the jcode utility to compile the Java service and store its service information in
Integration Server.

5. Reload the package to load the compiled Java service into memory so that it is
executable.

How Java Services are Organized on Integration Server
A Java service is a public static method of a Java class file on Integration Server. Java
services use the following naming scheme:

The service name represents the Java method name.

The Integration Server folder name represents the fully qualified Java class name.

All Java services that reside in the same Integration Server folder are methods of the
same class.

Services that reside in nested folders are implemented in a class that is scoped
within a Java package. The Java package name corresponds to the nested

M
Odd Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 331

folder names that contain the Java service folder. For example, a service named
recording.accounts:createAccount is made up of a Java method called createAccount in a Java
class called accounts within the recording Java package.

When building a Java service in your own IDE, it is helpful to understand how Java
services are stored in Integration Server. Integration Server stores information about
services within its packages directory, specifically in the namespace (ns) and code
directories of a package.

The Namespace Directory

Each package on Integration Server has a namespace directory, called “ns.” The following
is an example of the namespace directory for a package called “purch”:

Integration Server_directory\instances\instance_name \packages\purch\ns

The ns directory contains information about the services and folders in the package.
For a service, the ns directory contains information about properties of the service (for
example, statelessness) and the input and output parameters of the service (if they have
been defined).

When you build a Java service in your own IDE, you must use the jcode utility to
generate the service and folder information for the namespace directory, including the
node.ndf file so that the Java service becomes a part of the Integration Server namespace.
Additionally, Designer obtains the service information from the ns directory. After
running the jcode utility to populate the namespace for a service, you can view and/or
edit the service in Designer. For more information, see "Using the jcode Utility" on page
337 and "Using jcode frag/fragall to Split Java Source for Designer " on page 340.

Important: Although you might want to examine the contents of the Integration Server
namespace directories, do not manually modify this information. Only
modify this information using the appropriate Software AG tools and/or
utilities. Inappropriate changes, especially to the ns directory of the WmRoot
package, can disable Integration Server.

The Code Directory

The source and compiled code for a Java service is stored in the code directory of a
package.

Each package on the server has a code\source subdirectory that holds the Java
source code for that package, if it is available. The following shows the path to the
code\source subdirectory for the purch package:

Integration Server_directory\instances\instance_name \packages\purch\code\source

When you build a Java service in your own IDE, save its source file in the code
\source directory (subject to the normal Java constraints based on package
declarations). You must name the files and intermediate directories according to the
name of the service you are installing.

M
Even Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 332

The following shows the location of the source for the recording.accounts:createAccount
service:

Integration Server_directory\instances\instance_name \packages\purch\code\source
\recording\accounts.java

The source code for the createAccount service is a method in accounts.java.

The code\classes subdirectory contains the compiled code for a Java service (that
is, the class file). The following shows the directory path to the classes in the purch
package:

Integration Server_directory\instances\instance_name \packages\purch\code\classes

When you build a Java service in your own IDE, you need to add the Java class file to
the code\classes subdirectory. You can do so by using the jcode utility to compile the
Java source. For more information, see "Using the jcode Utility" on page 337 and
"Using jcode frag/fragall to Split Java Source for Designer " on page 340.

The following shows the location of the class file for the recording.accounts:createAccount
service:

Integration Server_directory\instances\instance_name \packages\purch\code\classes
\recording\accounts.class

The createAccount service is a method of the accounts class.

Requirements for the Java Service Source Code
When you build a Java service in your own IDE, ensure it meets the following
requirements:

The Java service must take a single IData object as input. For more information, see
"IData Object for Java Service Input and Output" on page 333

The following code shows the basic framework for a Java service that takes a single
instance of com.wm.data.IData as input and returns output in the pipeline.
public final static void myservice (IData pipeline)
 throws ServiceException
 {
 return;
 }

Note: Services can throw ServiceException. Do not call Service.throwError.

The Java class must import the following Java packages.
com.wm.data.*;
com.wm.app.b2b.server.ServiceException;
com.wm.app.b2b.server.Service;

The Java class must be public.

For performance reasons, it is recommended that you make the Java class final.

M
Odd Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 333

Note: Integration Server provides classes that you can use with Java services that
you build. For a description of these classes, see webMethods Integration Server
Java API Reference.

IData Object for Java Service Input and Output
An IData object is the universal container that Java services use for service input and
output. A Java service method signature takes exactly one argument of type IData, and
the same IData object contains the output from the service. An IData object contains an
ordered collection of key/value pairs on which a service operates. For a key/value pair:

The key must be a String.

The value can be any Java object (including an IData object).

When you build a Java service in your own IDE, you must code the service to get the
input values from the IData object that gets passed into the method that implements the
service. You must also code the service to write all output values to this IData object.

For more information about how to work with the IData object for input and output,
including sample code for geing and seing values in the IData object, see "Using an
IData Object for the Java Service Input and Output" on page 316.

Adding Comments to Your Java Code for the jcode Utility
When you build a Java service in your own IDE, you use the jcode utility to perform
actions against the service. For more information, see "Using the jcode Utility" on page
337. Before you can use the jcode utility, you must add specially formaed Java
comments (jcode tags) to the Java source code to designate the following segments of
code:

Imports. Add the following comments to mark the beginning and end of the import
section.
// --- <<IS-START-IMPORTS>> ---
imports
// --- <<IS -END-IMPORTS>> ---

Service definitions and service inputs and outputs. Add the following comments to mark
the beginning and end of the logic for one method in the class. This results in a Java
service in Integration Server.
// --- <<IS-START(serviceName)>> ---
service logic
// --- <<IS-END>> --

Shared code. Add the following comments to mark the beginning and end of the
shared code within the class.
// --- <<IS-START-SHARED>> --
shared code
// --- <<IS-END-SHARED>> ---

M
Even Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 334

For example, the following code fragment shows the tags used to mark the beginning
and end of the import section.
 .
 .
 .
// --- <<IS-START-IMPORTS>>

 import com.wm.data.*;
 import java.util.*;
// --- <<IS-END-IMPORTS>>

 .
 .
 .

Template for Using jcode Tags in a Java Service

The following code is a template that shows the jcode tags (or comments) that you need
to add to the Java source so that the jcode utility can identify code segments. For sample
code that uses these jcode tags, see "Example of Code Commented for the jcode Utility"
on page 335.
package Interface1;
/**
 * This is an example of an empty Java source code file that includes
 * the jcode tags (comments) that the jcode utility requires.
 */
import com.wm.app.b2b.server.Service;
import com.wm.app.b2b.server.ServiceException;
import com.wm.data.IData;
import com.wm.data.IDataCursor;
// --- <<IS-START-IMPORTS>>

// --- <<IS-END-IMPORTS>>

public class Interface0
{
 public static void Service1 (IData pipeline)
 throws ServiceException
 {
// --- <<IS-START(Service1)>>

// --- <<IS-END>> --
 return;
 }
 public static void Service2 (IData pipeline)
 throws ServiceException
 {
// --- <<IS-START(Service2)>>

// --- <<IS-END>> ---
 return;
 }
// --- <<IS-START-SHARED>>
--
// --- <<IS-END-SHARED>>

}

M
Odd Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 335

Example of Code Commented for the jcode Utility
The following is a complete example of Java source code that includes jcode tags
(comments) that the jcode utility requires.
package recording;
/**
* This is an example of Java source code that includes jcode tags
* (comments) that the Integration Serverjcode utility requires. Note that, unless
* noted otherwise, when using the frag or fragall command of the
* jcode utility, the utility strips out all comments in the Java source
* file.
*/
/**
* == IMPORTS ==
* Wrap imports the START-IMPORTS and END-IMPORTS tags.
*/
// --- <<IS-START-IMPORTS>> ---
import com.wm.app.b2b.server.Service;
import com.wm.app.b2b.server.ServiceException;
import com.wm.data.IData;
import com.wm.data.IDataCursor;
import com.wm.data.IDataUtil;
import java.util.*;
// --- <<IS-END-IMPORTS>> ---
/**
* == CLASS NAMING ==
* This class contains the definition of all the Java services
* within the recording.accounts folder (note the declaration for the
* recording Java package at the top). Each service is defined by a
* method. The service will have the same name as the method name.
* /
public class accounts
{
 /* *
 * == INDIVIDUAL SERVICES ==
 * The createAccount service expects three parameters: a string
 * ("name", a string array ("references"), and a document. The
 * service returns two strings ("message" and "id") .
 *
 * Wrap the start and end of the service with the
 * IS-START(<serviceName>)and IS-END tags, where <serviceName>
 * is the method/service name.
 * Note that the two lines immediately before start tag and after
 * the end tags are mandatory.
 *
 * Also note the use of comments to establish a signature for the
 * service. Each signature line has the following format:
 *
 * [direction] type:dimension:option name
 *
 * where:
 * - direction: is "i" for input or "o" for output
 * - type: is one of the following:
 * "field" for instances of java.lang.String
 * "document type" for instances of com.wm.data.IData
 * "object" for instances of any other class
 * - option: is one of the following:
 * "required" if the parameter is required
 * "optional" if the parameter is optional
 * - name: is the name of the parameter

M
Even Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 336

 *
 * To indicate nesting, use a single "-" at the beginning of
 * each line for each level of nesting.
 * /
 public static void createAccount (IData pipeline)
 throws ServiceException
 {
 // --- <<IS-START(createAccount)>> ---
 // [i] field:0:required name
 // [i] field:1:required references
 // [i] record:0:required data
 // [i] - field:1:required address
 // [i] - field:1:required phone
 // [o] field:1:required message
 // [o] field:1:required id
 IDataCursor idc = pipeline.getCursor();
 String name = IDataUtil.getString(idc, "name");
 String [] refs = IDataUtil.getStringArray(idc, "references");
 IData data = IDataUtil.getIData(idc, "data");
 // Service logic that takes action on the input information
 // goes here. Note that when you use the jcode utility to
 // fragment the service, it does not strip comments inside
 // the service body. As a result, the comments are
 // preserved and will display if you use Designer
 // to view the service.
 idc.last();
 idc.insertAfter ("message", "createAccount not fully implemented");
 idc.insertAfter ("id", "00000000");
 idc.destroy();
 // --- <<IS-END>> -- -
 return ;
 }
 /* *
 * == COMPLEX SIGNATURES = =
 * The getAccount service takes a single string "id", and returns
 * a complex structure representing the account information.
 * Note the use of the helper functions (defined below).
 * /
 public static void getAccount (IData pipeline)
 throws ServiceException
 {
 // --- <<IS-START(getAccount)>> -- -
 // [i] field:0:required id
 // [o] record:1:required account
 // [o] - field:0:required name
 // [o] - field:1:required refs
 // [o] - record:0:required contact
 // [o] -- field:0:required address
 // [o] -- field:0:required phone
 IDataCursor idc = pipeline.getCursor();
 if(idc.first("id"))
 {
 try
 {
 String id = IDataUtil.getString(idc);
 IData data = getAccountInformation(id);
 idc.last();
 idc.insertAfter ("account", data);
 }
 catch (Exception e)
 {
 throw new ServiceException(e.toString());
 }

M
Odd Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 337

 }
 idc.destroy();
 // --- <<IS-END>> -- -
 }
 /* *
 * == SHARED SOURCE ==
 * Wrap the start and end of the shared code with the
 * IS-START-SHARED and IS-END-SHARED tags. The shared code includes
 * both global data structures and non-public functions that are
 * not exposed as services.
 */
 // --- <<IS-START-SHARED>> ---
 private static Vector accounts = new Vector();
 private static IData getAccountInformation (String id) {
 throw new RuntimeException ("this service is not implemented yet");
 }
 // --- <<IS-END-SHARED>> ---
}

Using the jcode Utility
When building a Java service in your own IDE, use the jcode utility to perform actions
that Designer performs when using Designer to build a Java service. These actions
include compiling the Java service and saving it as code fragments that Designer uses to
display the service in the Designer Java Service Editor.

Before you use the jcode utility, add specially formaed Java comments (jcode tags)
to the Java source code to designate various segments of the source code. For more
information, see "Adding Comments to Your Java Code for the jcode Utility" on page
333.

The following table describes the main functions of the jcode utility.

jcode Command Use to...

make
makeall

Examine a package to determine the source files that have been
updated since the last compilation, then compile those source
files and save the resulting class files in the classes directory of
the package.

Use make to compile the source files in a single folder of a
package.

Use makeall to compile the source files in all the folders of a
package.

For more information, see "Using jcode comp to Create Java
Source from Fragments" on page 341.

frag
fragall

Split the source files in a package into fragments that the jcode
utility then stores in the namespace (ns) directory of the package.
As a result, when you view the service in Designer, Designer
displays the code from the updated fragments.

M
Even Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 338

jcode Command Use to...

Use frag to fragment the source files in a single folder of a
package.

Use fragall to fragment the source files in all the folders of a
package.

For more information, see "Using jcode comp to Create Java
Source from Fragments" on page 341.

comp Build a composite from the code fragments defined in the
namespace (ns) directory of a package to rebuild the Java source.
The jcode utility saves the resulting Java source is in the source
directory of the package.

Note: Use this command if the Java source is lost or corrupted in
some way and you need to recreate it.

For more information, see "Using jcode comp to Create Java
Source from Fragments" on page 341.

When building a Java service in your own IDE, you use the two-step process of making
(compiling) and fragmenting the source code often. To make these actions easier, the
jcode utility supports the shortcut commands described in the following table. For
more information about these shortcuts, see "Using jcode Shortcut Commands" on page
342.

jcode Shortcut Use to...

update Compile and fragment only source files that have changed for a
single package.

upall Compile and fragment only source files that have changed for all
Integration Server packages.

hailmary Compile and fragment all source files (whether they have
changed or not) for all Integration Server packages.

Using jcode make/makeall to Compile Java Source
Use the jcode make or makeall command to examine source files for one or more
folders in a package and compile the source files that have been modified since the last
compilation. The jcode utility saves the resulting class files in the classes directory of the
package. After compiling the Java source, reload the Integration Server package so that
the next time a service is invoked, Integration Server executes the updated class file.

M
Odd Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 339

The jcode utility reports which files were compiled, as well as any errors that it
encountered during the compiling process.

Important: Before you can compile a Java service using the jcode utility, you must
set the environment variable, IS_DIR, to point to the directory in which
Integration Server is installed.

Specifying the Compiler the jcode make/makeall Command Uses

By default, the jcode utility uses one of the following to compile the Java source, based
on the seings of the wa.server.compile and wa.server.compile.unicode server
configuration parameters.

If the wa.server.compile and wa.server.compile.unicode parameters are omied
from the Integration Server configuration or if they are empty, by default the jcode
utility uses the JVM internal Java compile tool to compile the Java source.

If the wa.server.compile parameter specifies a compiler command, the jcode utility
uses that compiler command to compile Java source that is not stored in Unicode
encoding.

If the wa.server.compile.unicode parameter specifies a compiler command, the
jcode utility uses that compiler command to compile Java source that is stored in
Unicode encoding.

For more information about the wa.server.compile and wa.server.compile.unicode
server configuration parameters, see webMethods Integration Server Administrator’s Guide.

If you want the jcode utility to use a different compiler than the default, update the
jcode.bat file, which resides in the following location:

Integration Server_directory\instances\instance_name \bin

where instance_name is the name of the Integration Server instance.

In the jcode.bat file, update the line with the Java command to specify the
wa.server.compile system property that is set to the compiler you want to use. The
property must have the following format:
"-Dwatt.server.compile="path_to_your_java_compile -classpath {0}
-d {1} {2}"

For example:
"-Dwatt.server.compile="C:\java\jdk1.6.0_11\bin\javac -classpath {0}
-d {1} {2}"

Using this example, the Java command would be the following:
"%JAVA_DIR%\bin\java" -Dwatt.server.compile="C:\java\jdk1.6.0_11\bin\javac
-classpath {0} -d {1} {2}"
-classpath "%IS_DIR%\..\common\lib\ext\mail.jar;%IS_DIR%\..\common\lib\ext\
enttoolkit.jar;%IS_DIR%\..\common\lib\wm-g11nutils.jar;%IS_DIR%\..\common\
lib\ext\icu4j.jar;%IS_DIR%\..\common\lib\wm-isclient.jar;%IS_DIR%\lib\
wm-isserver.jar" com.wm.app.b2b.server.NodeUtil "%IS_DIR%" %1 %2 %3 %4 %5

M
Even Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 340

The wa.server.compile property specifies the compiler command that you want
Integration Server to use to compile Java services. For more information about this
property, see the webMethods Integration Server Administrator’s Guide.

Important: If the Java source code contains any non-ASCII characters, set the property
wa.server.java.source=Unicode | UnicodeBig | UnicodeLile. The default
value is file.encoding. When Unicode is set, the compile command line
specified in the property wa.server.compile.unicode is used. The default
value of this property is the following:

“javac -encoding Unicode -classpath {0} -d {1} {2}”

Command Syntax for jcode make

Use the jcode make command to compile Java source for a single folder of an Integration
Server package (that is, a single Java source file).
jcode make package folder

package is the name of an Integration Server package.

folder is the name of the folder in the specified package. This folder contains the
source you want to compile.

Command Syntax for jcode makeall

Use the jcode makeall command to compile Java source for all folders of an Integration
Server package.
jcode makeall package

package is the name of the Integration Server package containing the source code you
want to compile.

Using jcode frag/fragall to Split Java Source for Designer
Use the jcode frag or fragall command to split Java source files for one or more folders
in a package into fragments. The jcode utility saves the resulting fragments and service
signature (input and output parameters) in the namespace (ns) directory of the package.
Because Designer obtains the service information from the ns directory, after running
the frag or fragall command, if you view the service in Designer, Designer displays the
code from the updated fragments.

The jcode utility does not modify the original Java source.

Important: Before you use the jcode utility to update the Java code fragments and
service signature, you must add specially formaed Java comments (jcode
tags) to the Java source code to designate various segments of the source
code. For more information, see "Adding Comments to Your Java Code for
the jcode Utility" on page 333.

M
Odd Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 341

Command Syntax for jcode frag

Use the jcode frag command to fragment the Java source for a single folder (that is, a
single Java source file).
jcode frag package folder

package is the name of an Integration Server package.

folder is the name of the folder in the specified package. This folder contains the
source you want to fragment.

Command Syntax for jcode fragall

Use the jcode fragall command to fragment the Java source for all folders of an
Integration Server package.
jcode fragall package

package is the name of the Integration Server package containing the source code you
want to fragment.

Using jcode comp to Create Java Source from Fragments
Use the jcode comp command to build a composite from fragments in the namespace
(ns) directory to rebuild a Java source file. The jcode utility saves the resulting Java
source in the source directory of the package.

Important: The existing source file, if there is one, is overwrien by the source file
that the jcode utility produces. User locks in Designer will not prevent this
because the jcode utility operates independently of locking functionality.

Note: When building a Java service in your own IDE, you cannot use the comp
command if you have not previously used the frag/fragall to split the source
into fragments.

Command syntax for jcode comp

Use the jcode comp command to build a Java source file based on the current fragments
for the Java service in the namespace (ns) directory of an Integration Server package.
jcode comp package folder

package is the name of an Integration Server package.

folder is the name of the folder in the specified package. This folder identifies the
Java source that you want to rebuild.

M
Even Header

Building Java Services in Your Own IDE

webMethods Service Development Help Version 9.10 342

Using jcode Shortcut Commands
When building a Java service in your own IDE, it is common to use the two-step process
to make (compile) Java source, then fragment the Java source. As a result, the jcode
utility supports the shortcut commands to make this process easier.

Command Syntax for jcode update

Use the jcode update shortcut command to compile and fragment only source files that
have changed for a specified Integration Server package.
jcode update package

package is the name of the Integration Server package containing the source code you
want to compile and fragment.

Command Syntax for jcode upall

Use the jcode upall shortcut command to compile and fragment only source files that
have changed for all Integration Server packages.
jcode upall

Command Syntax for jcode hailmary

Use the jcode hailmary shortcut command to compile and fragment all source files
(whether they have changed or not) in all Integration Server packages.
jcode hailmary

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 343

16 Building C/C++ Services

■ The Java Code for a C/C++ Service ... 344

■ Overview of Building C/C++ Services .. 344

■ Prerequisites for Building C/C++ Services ... 345

■ C/C++ Service Editor ... 346

■ Service Development Projects in the Local Workspace .. 349

■ How C/C++ Services Are Organized on Integration Server .. 351

■ Creating a C/C++ Service .. 351

■ Generating C/C++ Code from Service Input and Output Parameters 354

■ Adding Classes to the Service Development Project .. 355

■ Building the C/C++ Source Code .. 356

■ Compiling the C/C++ Source Code ... 358

■ Generating Code a C/C++ Service Can Use to Invoke a Specified Service 359

■ Debugging C/C++ Services ... 360

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 344

A C/C++ service is a Java service that calls a C program that you have created. Designer
generates the Java code needed to successfully call the C program.

You use Designer to build a set of starter files that you can use to create a C/C++ service.

These files include:

A Java service that calls the C program that you have created.

A C/C++ source-code template that you use to create your C program.

A make file you use to compile the finished program and place it on the server.

The Java Code for a C/C++ Service
When you create a C/C++ service, Designer creates a Java service. This Java service calls
the C program that you have created.

The C service is the means by which your C program is exposed to clients. The C service
also supplies the input/output parameters for the C program, which makes it possible to
include it in a flow service and link its inputs and output on the Pipeline view.

Designer generates all the Java code needed to successfully call your C program. You
may add your own custom code to the C/C++ service editor if you want to execute any
special procedures before or after executing the C program.

Overview of Building C/C++ Services
In Designer, you use the C/C++ service editor to build C/C++ services. For more
information about the C/C++ service editor, see "C/C++ Service Editor" on page 346.
The following are the basic tasks you perform to create a C/C++ service:

Task 1 Complete the prerequisite activities mentioned in "Prerequisites for
Building C/C++ Services" on page 345.

Task 2 Use Designer to create the C/C++ service element. For more
information, see "Creating a C/C++ Service" on page 351.

Task 3 Generate starter code for the service based on the declared input and
output parameters. For more information, see "Generating C/C++ Code
from Service Input and Output Parameters" on page 354.

Task 4 Add additional code or modify the generated code, if necessary. You
can use the Integration Server C/C++API in your service. For more
information, see webMethods Integration Server C/C++ API Reference.

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 345

Task 5 Specify service properties such as the run time seings, service retry,
service auditing, and permissions using the Properties view. For more
information, see "Building Services" on page 161.

Task 6 Provide classes required to compile the C/C++ service. You add any
additional third-party classes to:

Service Development Project in Designer so that Designer can locally
compile the service. For more information, see "Adding Classes to the
Service Development Project" on page 355.

Integration Server so that the server can compile the service. For
more information, see information about managing IS packages and
how Integration Server stores IS package information in webMethods
Integration Server Administrator’s Guide.

Task 7 Compile the C/C++ service. Designer automatically compiles the
service when you save it. For more information, see "Compiling the C/
C++ Source Code" on page 358.

Task 8 Debug the C/C++ service. The primary way to debug a C/C++ service is
to debug the Java class associated with the C/C++ service that Designer
maintains in a Service Development Project. For more information, see
"Debugging C/C++ Services" on page 360.

Prerequisites for Building C/C++ Services
Keep the following points in mind when creating C/C++ services using the C/C++ service
editor:

You must have a C/C++ compiler installed on the host where Integration Server is
installed.

You must complete the procedures specified in Integration Server_directory/sdk/c/
README and/or Integration Server_directory/sdk/cpp/doc/README to build the
platform support libraries needed by Integration Server and Designer.

Designer must be connected to the Integration Server in which you want the C/C++
service to reside.

The package in which you want to create the service must already exist. For more
information about creating a package, "Creating a Package" on page 146. (If you do
not have Developer or Administrator privileges, ask your server administrator to do
this.)

The directory for this package must contain a “code/libs” directory. When you
compile your C/C++ service, the make file places the compiled service (a DLL) in

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 346

this directory. If the package does not already have a code/libs directory, create one
before you begin building the service.

The folder in which you want to create the service must already exist. For more
information, see "Creating New Elements" on page 52.

The specification that you want to use to define the inputs and outputs for the
service must exist. For more information about specifying a specification, see "Using
a Specification as a Service Signature" on page 167.

If you are running the Integration Server as an NT service, you must complete one of
the following:

Set the Windows system environment variable PATH to include
Integration Server_directory\lib

-OR-

Copy the wmJNI.dll and wmJNIc.dll files located in
Integration Server_directory\lib to the Integration Server_directory

C/C++ Service Editor
Use the Designer C/C++ service editor to create new C/C++ services and to edit existing
C/C++ services.

The C/C++ service editor has four tabs:

Source tab contains the code for the C/C++ service. For more information about the
Source tab, see "Source Tab" on page 347

Input/Output tab contains the input and output signature of the C/C++ service. For
more information about declaring the input and output parameters for a service, see
"About the Service Signature" on page 163.

Logged Fields tab indicates the input and output parameters for which Integration
Server logs data. For more information about logging the contents of input and
output fields, see "Logging Input and Output Fields" on page 189.

Comments tab contains the comments or notes, if any, for the C/C++ service.

Note: You can use the Designer C/C++ service editor to edit the C/C++ services
that you created in Developer. Additionally, you can use Designer to edit C/
C++ services you created with your own IDE, provided that you properly
commented them as described in "Building Java Services in Your Own IDE"
on page 329 and "Adding Comments to Your Java Code for the jcode Utility"
on page 333.

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 347

Source Tab
You specify the code for the C/C++ service in the Source tab, which extends the standard
Eclipse Java editor. Because the Eclipse Java editor requires source files to be in the local
workspace, Designer also requires source files to be in the local workspace. To achieve
this, Designer adds Java classes to a Service Development Project, which is a project with
extensions to support Java services. For more information, see "Service Development
Projects in the Local Workspace" on page 349.

The full capabilities of the Eclipse Java editor are available. These include source code
formaing and code completion. However, unlike the Eclipse Java editor, the Designer
C/C++ service editor protects the sections of a C/C++ service that contain required code
to prevent structural damage to the service. The following illustrates the contents of the
Source tab for a newly created service.

Package definition
package orders.orderStatus;

Add additional imports
here

import com.wm.data.*;
import com.wm.util.Values;
import com.wm.app.b2b.server.Service;
import com.wm.app.b2b.server.ServiceException;
import com.wm.app.b2b.server.Session;
import com.wm.util.JournalLogger;
import com.wm.util.DebugMsg;

Class definition
public final class checkStatus_SVC

Add extends and
implements here

Primary method
definition

{
 /**
 * The primary method for the C service
 *
 * @param in
 *
 The input Values
 * @return The output Values
 */
 public static final Values checkStatus(Values in)
{
 // --- <<IS-GENERATED-CODE-1-
START>> ---
 Values out = in;
 // --- <<IS-GENERATED-CODE-1-END>> ---

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 348

 out = ccheckStatus(Service.getSession(),
 in);

Add source code for the
primary method here

// --- <<IS-GENERATED-CODE-2-START>> ---
 return out;
// --- <<IS-GENERATED-CODE-2-END>> ---
 }

Add shared code here // --- <<IS-BEGIN-SHARED-SOURCE-AREA>> ---0
 static {
 try {
 System.loadLibrary("orders_orderStatus");
 JournalLogger.log(DebugMsg.LOG_MSG,
 JournalLogger.FAC_PACKAGE,
 JournalLogger.INFO,
 "Loading
native library: orders_orderStatus");
 } catch (UnsatisfiedLinkError e)
{
 JournalLogger.logError(DebugMsg.LOG_MSG,
 JournalLogger.FAC_PACKAGE,
 e.getMessage());
 }
 }
 native static Values ccheckStatus(Session
session, Values in);
// --- <<IS-END-SHARED-SOURCE-AREA>> ---

Final “}”
}

Protected Sections of a C/C++ Service
The C/C++ service editor protects certain sections of the C/C++ service and marks these
sections by highlighting them in a different color. By default, it uses gray for the shading
but you can update your preferences to select a different color. For more information,
see "Java/C Service Editors Preferences" on page 942. The sections of the C/C++
service that the C/C++ service editor protects are:

Package definition, which is the required code that defines the Java package for the C/
C++ service.

Class definition, which is the required code that defines the final class for the C/C++
service.

Primary method definition, which is the required code that defines the static and final
method for the C/C++ service. It defines a single input parameter, a Values object.

The Values object is the universal container that services use to receive input from
and deliver output to other programs. It contains an ordered collection of key/value

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 349

pairs on which a service operates. A Values object can contain any number of key/
values pairs.

You define the data to pass into the service via the Values object by defining input
parameters on the Input/Output tab of the editor. You add code to the primary method
that modifies the key/value pairs contained in the Values object. The Values object
then becomes the output of the service. The service returns the output parameters
you define on the Input/Output tab.

Final brace “}”. The C/C++ service editor does not allow you to add code after the final
brace “}”.

Editable Sections of a C/C++ Service
You can modify the following sections of the C/C++ service:

imports, where you can specify the names of additional Java packages whose classes
you want to make available to the current class.

Note: By default, Designer adds some required imports that you cannot delete.
Although you can remove the imports in the C/C++ service editor,
Designer adds the required imports back when you save the service.

extends, where you can specify a super class for the implementation.

implements, where you can specify the Java interfaces that the C/C++ service
implements.

Note: You cannot enter or paste special characters including '{' in the extends or
implements section of a C/C++ service.

source code, where you add the code for the primary C/C++ service method.

shared code, where you can specify declarations, methods, etc. that will be shared by
all services in the current folder.

Note: The shared code section of the C/C++ service editor contains the code that
loads the library that contains the C/C++ program.

The toolbar and icons that the Source tab uses are the same as the buons and icons used
in the standard Eclipse Java editor. For a description, see the Eclipse Java Development
User Guide.

Service Development Projects in the Local Workspace
Because the C/C++ service editor requires that some files exist in the local workspace,
Designer creates a Service Development Project in the local workspace to store files
associated with a C/C++ service. Also, if a C/C++ service requires additional class or jar
files so that Designer can compile the service, you add class and jar files to the Service

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 350

Development Project. Designer creates one Service Development Project per package
containing a C/C++ service.

When you create a C/C++ service, Designer adds a Java class associated with the C/C+
+ service to a Service Development Project. If a Service Development Project does not
already exist for a C/C++ service, Designer creates one. You can use the Project Explorer,
Package Explorer, or Navigator views to view the Service Development Projects.

About the Service Development Project Name
The Service Development Projects correspond to Integration Server packages. To ensure
that the project names are unique, Designer uses the following naming convention,
where packageName is the name of the IS package where the service resides, hostName is
the host name of the Integration Server on which the service resides, and portNumber is
the port number of the Integration Server:

<packageName >[<hostName >_<portNumber >]

For example, if the host name of the Integration Server is “ServerA”, its port is “5555”
and the IS package is named “MyPackage”, the Service Development Project will have
the following name:

MyPackage[ServerA_5555]

Format of a Service Development Project
The Service Development Project contains:

JRE system library

“src” folder that contains Java packages

Designer creates Java packages that correspond to a C/C++ service's IS namespace
and places them within the “src” folder of the project. For example, if a C/C+
+ service resides in the folder folderA.folderB, Designer creates the Java package
“folderA.folderB” within the Service Development Project.

Default .jar files that Designer includes in the project’s classpath

Designer adds several default .jar files to the project. These files are listed in
uppercase (for example, IS_CLIENT and IS_SERVER).

“class” folder where you can add any additional Java classes that your C/C++ service
require; see "Adding Classes to the Service Development Project" on page 355

“lib” folder where you can add any additional Java classes that are packaged in jar
files; see "Adding Classes to the Service Development Project" on page 355

Note: You might still need to add additional classes and jar files to Integration
Server so that Integration Server can compile the service. For more
information about managing IS packages and how Integration Server stores IS
package information, see webMethods Integration Server Administrator’s Guide.

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 351

The following shows the format of a Service Development Project and an example.

Format Example
- projectName
 + JRE System Library
 - src
 +javaPackageName(1)
 .
 .
 .
 +javaPackageName (n)
 + classes
 + defaultJarFile(1)
 .
 .
 .
 + defaultJarFile (n)
 + lib

- MyPackage[ServerA_5555]
 + JRE System Library
 - src
 - folderA
 - folderA.folderB
 + classes
 + IS_CLIENT
 + IS_SERVER
 .
 .
 .
 + lib

How C/C++ Services Are Organized on Integration Server
A C/C++ service is a public static method in a Java class file on Integration Server. C/C++
services follow a simple naming scheme:

The service name represents the Java method name.

The interface name represents the fully-qualified Java class name.

Because Java class names cannot contain the “.” character, services that reside in nested
folders are implemented in a class that is scoped within a Java package. For example,
a service named recording.accounts:createAccount is made up of a Java method called
createAccount in a Java class called accounts within the recording package.

All C/C++ services that reside in the same folder are methods of the same class.

When you build a C/C++ service with Designer, the system automatically combines your
service into the class file associated with the folder in which you created it.

Creating a C/C++ Service
Before you can create a C/C++ service, make sure the following conditions are true:

The Integration Server on which you want the C/C++ service to reside is running and
connected to Designer.

You have locked all C/C++ services in the folder in which you want to create the new
service. For more information, see "Guidelines for Locking Java and C/C++ Services"
on page 96.

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 352

If you want to use Unicode characters in the C/C++ service, you need to change the
text file encoding preference. To do so, in the Workspace preferences, select Other
under Text file encoding and select or type a new encoding.

To create a C/C++ service

1. In the Package Navigator view of Designer, select File > New > C Service.

2. In the New C Service dialog box, select the folder in which you want to save the
service.

3. In the Element name field, type the name for the C/C++ service.

4. If you have a template you want to use to initialize a default set of properties for
the service, select it from the Choose template list. If you want to apply the default
properties to the service, select Default from the Choose template list.Click Next.

5. Select the platform that describes the machine on which your Integration Server is
running (Designer needs to know this in order to build the right make file). Click
Next.

6. Select the specification that defines the inputs and outputs for this service.

7. Click Finish. Designer refreshes the Package Navigator view and displays the new
service in the C/C++ service editor.

8. Specify service properties using the Properties view.

To... See...

Specify the service run-time parameters "About Service Run-Time
Parameters" on page 169

Configure the service to retry
automatically if the service fails because
of an ISRuntimeException

"About Automatic Service Retry"
on page 182

Track when the service is started and
completed and whether the service
succeeded or failed

"About Service Auditing" on page
185

Assign a universal name to the service "About Universal Names for
Services or Document Types" on
page 192

Assign an output template to the service "About Service Output Templates"
on page 196

9. Optionally, generate starter code for the service based on the declared input and
output parameters.

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 353

Designer adds initial code to the C/C++ service. For all C/C++ services, Designer adds
the package definition, class definition, primary method definition, and a minimum
set of imports. If the service is the second or subsequent C/C++ service created in the
same IS folder, Designer also adds any shared code defined in other C/C++ services
in the IS folder, additional imports, extends, and implements.For more information,
see "Generating C/C++ Code from Service Input and Output Parameters" on page
354.

10. Add and modify the code on the Source tab. You can specify declarations, methods,
etc. to the initial code that Designer generates.

You can use the webMethods Integration Server Java API in your service. For more
information, see webMethods Integration Server Java API Reference.

11. Optionally, specify usage notes or comments in the Comments tab.

12. Select File > Save.

Designer compiles the C/C++ service on Integration Server and displays the
compilation error messages from the server. Designer also writes the error messages
to the Designer log file making them visible within the Error Log view.

When you create a C/C++ service, Designer generates a source code file and a make
file and places these files in the following directory:

Integration Server_directory\instances\instance_name \packages\packageName\code
\source

The names of the files will match the service name you specified in Designer.
The source code file will be named <servicename> .c and the make file will be
<servicename> .mak.

Designer also compiles the C/C++ service locally in the Service Development
Project. Additionally, if the workspace preference Build Automatically is selected,
Designer rebuilds other classes in the Service Development Project at the same time.
Designer adds compilation errors from the local compilation to the Problems view. If
Problems view is not already open, you can open it by selecting Window > Show View
> Problems. To view the line of code that caused the error, double click on the error
in the Problems view and Designer shifts focus to the C/C++ service editor, with the
cursor positioned at the line of code that caused the error. For more information, see
"Compiling the C/C++ Source Code" on page 358.

Note: If your C/C++ service requires additional classes to compile, you must
add them, either as individual class files or in jar files, to both the Service
Development Project and to Integration Server. If you have set up IS
package dependencies for a C/C++ service and if the service requires
classes or jar files in these IS packages to compile, you must manually
add the classes or jar files to Service Development Project. For more
information, see "Adding Classes to the Service Development Project" on
page 355. For more information about adding classes to Integration
Server and how Integration Server stores package information, see
webMethods Integration Server Administrator’s Guide.

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 354

Editing an Existing C/C++ Service
You can use the Designer C/C++ service editor to edit C/C++ services that were created
in Designer or Developer. Additionally, you can use Designer to edit C/C++ services you
created with your own IDE, provided that you properly commented them as described
in "Building Java Services in Your Own IDE" on page 329 and "Adding Comments to
Your Java Code for the jcode Utility" on page 333.

Keep the following points in mind when editing an existing C/C++ service:

You have the C/C++ service locked for edit. If you aempt to edit a C/C++ service
that you have not locked for edit, you can still open it in the C/C++ service editor.
However, the source code, properties, inputs, and outputs will be read only.

If you want to use Unicode characters in the C/C++ service, you need to change the
text file encoding preference. To do so, in the Workspace preferences, select Other
under Text file encoding and select or type a new encoding.

Important: Software AG recommends that you do not update the service signature of
the C/C++ service in the Input/Output tab of the C/C++ service editor.

Generating C/C++ Code from Service Input and Output
Parameters
If you know the set of input and output parameters that a C/C++ service will use before
you start coding it, you can declare the service’s input/output parameters first and
generate C/C++ code from it. The generated code obtains the specified input values from
the service’s input signature and assigns them to variables in your service. It also puts
the set of output values into the output signature.

You do not have to generate code for all the input and output parameters. You can
choose to generate code for only the input parameters, only the output parameters, or
you can select one or more input/output parameters for which to generate code.

When Designer generates code from the service input/output parameters, it puts the
code on the clipboard. From there, you can paste it into your service and modify it as
necessary.

Generating the code from the service input and output parameters is an optional task.
It helps save time when you are reusing the input and output parameters of a C/C++
service.

To generate starter code from a C/C++ service’s input/output parameters

1. In the Service Development perspective, open the C/C++ service by double clicking it
in the Package Navigator view.

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 355

2. If you want to generate code for a subset of the input/output parameters, on the
Input/Output tab, select the parameters for which you want to generate code. To select
more than one variable, press the CTRL key as you select parameters.

3. Right click in the editor to view the context menu, and select Generate Code.

4. In the Code Generation dialog box, select For implementing this service and click Next.

5. For Specification, select the Input and/or Output check boxes to select the parameters
for which you want to generate code.

6. For Which fields? select one of the following:

All fields if you want to generate code for all of the parameters identified by your
Specification selection.

Selected fields if you want to generate code for only the parameters you selected
before starting the code generation.

7. Click Finish. Designer generates code and places it on the clipboard.

8. Select the Source tab.

9. Paste the contents of the clipboard into your source code.

10. Save the C/C++ service.

Adding Classes to the Service Development Project
If a C/C++ service requires additional classes to compile, you must add them to the
following locations:

Service Development Project in the local workspace so that Designer can compile the
service.

Integration Server so that the server can compile the service. Designer does not
automatically propagate classes that you add to the Service Development Project
to Integration Server; you must add them to Integration Server manually. For more
information about adding classes to Integration Server, see information about
managing IS packages and how Integration Server stores IS package information in
webMethods Integration Server Administrator’s Guide.

Keep the following points in mind when adding classes to the Service Development
Project:

You add individual class files to the “classes” folder of the Service Development
Project.

If you have Java classes that are packaged together in jar files, you add the jar files to
the “lib” folder of the Service Development Project.

If you have set up IS package dependencies for a C/C++ service and if the service
requires classes or jar files in these IS packages to compile, you must manually add
the classes or jar files to Service Development Project.

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 356

To add classes and jar files to the Service Development Project

1. Open the Project Explorer view.

2. Expand the Service Development Project for the C/C++ service.

3. If you want to add class files to the Service Development Project, drag them from the
file system into the “classes” folder of the Service Development Project in the Project
Explorer view.

When adding class files, ensure that you keep the structure of the Java package
intact. For example, if you want to add com.accounting.orders.statusClass.class, you
must first create the “com”, “accounting”, and “orders” folders within the “classes”
folder as shown below:
- classes
 - com
 - accounting
 - orders

Then add the statusClass.class file to the “orders” folder.

Important: Do not maintain the Java source files for these classes within the Service
Development Project.

4. If you want to add jar files to the Service Development Project, drag them from the
file system into the “lib” folder of the Service Development Project in the Project
Explorer view.

If you have the Build automatically Workspace preference selected, after adding new
class and/or jar files to the Service Development Project, Designer automatically
rebuilds the project. If you have the Build automatically preference turned off, you
can force a rebuild by selecting Project > Build Project. You set the Build automatically
preference using Window > Preferences > General > Workspace.

After the project is rebuilt, Designer removes the compilation errors, if any, from the
Problems view. However, the errors might still exist for the Folder class that resides
in Integration Server.

To correct the error, first, ensure that Integration Server has access to the required
class and jar files. Then, open the C/C++ service in the Designer and save it again to
force the compilation of the service on Integration Server.

Building the C/C++ Source Code
When you create a C/C++ service, Designer generates a source code file and a make file
and places these files in the following directory:

Integration Server_directory\instances\instance_name \packages\packageName\code
\source

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 357

The names of the files will match the service name you specified in Designer. The source
code file will be named <servicename> .c and the make file will be <servicename> .mak.

You create the C/C++ program in the serviceName Impl.c file, not the original file. The
serviceName Impl.c file is the file in which the make file expects to find your source code.
This step is taken to maintain a copy of the original source file to which you can refer, or
revert to, during the development process.

To build the C/C++ source code

1. Locate the source code and make files. The source code file will be named
<servicename> .c and the make file will be <servicename> .mak.

2. Copy the source code file to a new file (in the same directory) with the following file
name:

serviceNameImpl.c

For example, if your service name is PostPO, you would create a copy of PostPO.c
and name it PostPOImpl.c.

3. Edit the serviceNameImpl.c file as necessary to build your service.

This file contains instructive comments that will guide the development process. You
can also refer to webMethods Integration Server C/C++ API Reference for information
about how to use the webMethods C/C++ API to make the data in your service
available to other services.

4. Edit the make file to customize it for your development environment. Set the
following path seings:

Set... To...

JDKDIR The directory that contains the Java Development Kit.

SEVRDIR The directory in which webMethods Integration Server is
installed.

Important: The source code file serviceName.c contains code based on the
specification you used to define the inputs and outputs for the service.
If you edit the specification, you need to regenerate the source code file.
Designer does not update the serviceName.c file automatically. For
more information about generating source code files for a C/C++ service,
see "Creating a C/C++ Service" on page 351.

5. After you finish coding your service, run your make file to compile it. Following is a
typical make command:

make –f SalesTax.mak

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 358

The make file compiles your program and puts the finished DLL in the code\libs
directory in the package in which the service resides. If this directory does not exist
when you run the make file, your program will not compile successfully.

6. Once your program compiles successfully, restart Integration Server to reload the
code\libs directory. This makes the service available for execution and allows you to
test it with Designer. For details on testing, see "Debugging C/C++ Services" on page
360.

Compiling the C/C++ Source Code
When you save a C/C++ service, Designer automatically compiles the C/C++ service in
the Service Development Project and on Integration Server.

Keep the following points in mind when you are compiling a C/C++ service:

You must add any additional Java classes that the C/C++ service requires to both
the Service Development Project and to Integration Server. For more information,
see "Adding Classes to the Service Development Project" on page 355. For more
information about adding classes to Integration Server, see information about
managing IS packages and how Integration Server stores IS package information in
webMethods Integration Server Administrator’s Guide.

Make sure you have a C/C++ compiler installed on the host where Integration Server
is installed.

When compiling the C/C++ service locally, Designer uses the default Java compiler
seings. You can update these seings by updating the Service Development
Project’s Java Compiler properties.

By default, the Service Development Project uses the default JRE that is configured
for Designer. You can configure a different JRE using the Service Development
Project’s Java Build Path properties and seing a new JRE on the Libraries tab.

To compile a C/C++ service

1. If the service is not open in the C/C++ service editor, open it by double clicking the C/
C++ service in the Package Navigator view.

2. Select File > Save to save and compile the C/C++ service.

Designer displays compilation errors from compiling the service in:

Problems view for compilation errors from locally compiling the service

If Problems view is not already open, you can open it by selecting Window > Show
View > Problems.

To view the line of code that caused the error, double click on the error in the
Problems view. Designer shifts focus to the C/C++ service editor, with the cursor
positioned at the line of code that caused the error.

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 359

Compiler Messages window for compilation errors from Integration Server

Designer writes the error messages from the server to the Designer log file, making
them visible within the Error Log View.

If you receive errors because the Java compiler cannot be found in Integration Server,
ensure you have a Java compiler installed on the same machine as Integration Server
and that you have added the location of the Java compiler to the system path.

Performance When Compiling a C/C++ Service
When Designer compiles the service locally, by default, it also rebuilds other classes in
the Service Development Project. If you notice slower performance when you save the
service, you can prevent Designer from rebuilding the other classes by updating the
workspace preferences. Note that sometimes it is only the first aempt to save a C/C++
service that takes a long time and future compilations might go faster.

If you want to turn off the rebuild of other classes in the Service Development Project,
select Window > Preferences > General > Workspace and clear the Build Automatically check
box. This preference affects all projects in the workspace. If you turn off automatic
builds, you can manually force a build by selecting Project > Build Project.

Generating Code a C/C++ Service Can Use to Invoke a
Specified Service
You can have Designer generate the code that invokes a selected service, which you can
then add to a C/C++ service. Designer generates code that:

Creates a Values object based on the service’s declared input parameters

Invokes the selected service passing it the Values object and catching exceptions

Retrieves the returned Values object from the selected service

Uses the key/value pairs in the returned Values object to assign variables based on
the declared output parameters of the selected service

You do not have to generate code for all the input and output parameters. You can select
to generate code for only the input parameters, only the output parameters, or you can
select one or more input/output parameters for which to generate code.

When Designer generates code from the service input/output parameters, it puts the
code on the clipboard. From there, you can paste it into a C/C++ service and modify it as
necessary.

To generate code to invoke a service

1. In the Package Navigator view, open the service that you want to invoke.

M
Even Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 360

2. If you want to generate code for a subset of the input/output parameters, on the
Input/Output tab, select the parameters for which you want to generate code. To select
more than one variable, press the CTRL key as you select parameters.

3. In the editor, right click the service to view the context menu, and select Generate
Code.

4. In the Code Generation window, select For calling this service from another service and
click Next.

5. For Specification, select the Input and/or Output check boxes to reflect the parameters
for which you want to generate code.

6. For Which Fields? select one of the following:

All Fields if you want to generate code for all of the parameters identified by your
Specification selection.

Selected Fields if you want to generate code for only the parameters you selected
before starting the code generation.

7. Click Finish. Designer generates code and places it on the clipboard.

8. Paste the contents of the clipboard into a C/C++ service.

Debugging C/C++ Services
A C/C++ service is a Java service that calls the C program that you have created.
Designer generates the Java code needed to successfully call your C program. In
Designer, the primary way to debug a C/C++ service is to debug the Java class associated
with the C/C++ service that Designer maintains in a Service Development Project.

When debugging a C/C++ service in this way, you can debug the primary method
and shared code of the Java class that represents the C/C++ service. To debug the Java
class, you launch it in debug mode and use the JDT debugger to suspend/resume the
execution of the Java class, inspect variables, and evaluate expressions.

The actions you take when debugging a C/C++ service are:

Optionally set breakpoints to identify locations where you want the debugger
to suspend execution when running the Java class in debug mode. For more
information, see "How to Suspend Execution of a Java Class while Debugging" on
page 462.

Generate a test harness, which is a Java class that you generate for the C/C++ service
you want to debug. The logic that Designer generates for the test harness sets up the
inputs, invokes the Java class, and displays the outputs.

Optionally create a Java Application launch configuration to configure seings for
debugging the Java class. For example, you might want to set JVM arguments to
match the seings Integration Server uses so that your test more closely matches
how the C/C++ service would execute in Integration Server. For more information,
see "About Java Application Launch Configuration" on page 459. If you do not

M
Odd Header

Building C/C++ Services

webMethods Service Development Help Version 9.10 361

create a launch configuration, Designer creates one on the fly and saves it locally in
an unexposed location of your workspace.

Launch the test harness in debug mode. The test harness prompts for input values and
then launches the Java class you want to debug in debug mode.

By default, the debugger executes the Java class using the JRE in the Service
Development Project where the C/C++ service resides. You can change the Service
Development Project’s JRE by updating the project’s Java Build Path property. You
can also specifically identify the JRE to use for debugging by identifying the JRE in
the Java Application launch configuration.

If the Java class being debugged invokes a service, the invoked service runs in
Integration Server. The debugger treats the statement to invoke a service like any
executable line of code in the Java class; that is, you can Step Over it and see results
from it. You cannot use the debugger to Step Into the invoked service.

If the debugger suspends execution of the service, Designer switches to the Debug
perspective. The Debug view will show the test harness class and be positioned at
the statement where the execution was suspended. You can use the other views in
the Debug perspective to inspect the state of the C/C++ service to this point. You
can use the actions in the Debug view toolbar to resume the execution. For more
information about suspending execution, see "How to Suspend Execution of a Java
Class while Debugging" on page 462.

When the execution of the C/C++ service completes, the debugger displays a window
that contains the service results.

For more information about debugging the C/C++ service by debugging its Java
wrapper, see "Debugging Java Services" on page 455.

M
Even Header

webMethods Service Development Help Version 9.10 362

M
Odd Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 363

17 Building Services from .NET Methods

■ Environment Setup for Creating .NET Services .. 364

■ .NET Service Editor ... 364

■ Creating a .NET Service .. 366

■ Modifying the .NET Assembly Information ... 367

■ Modifying the Class Lifetime for a .NET Service ... 369

■ Running a .NET Service in Designer ... 370

M
Even Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 364

A .NET service is a service that calls methods imported from .NET assemblies. Designer
provides the .NET service editor for creating, viewing, and editing .NET services in your
IS package.

Environment Setup for Creating .NET Services
The following system requirements must be met before using Designer to create .NET
services:

The webMethods Package for Microsoft .NET must be installed on the same
Integration Server where the .NET services will reside. The webMethods Package for
Microsoft .NET is composed of the following elements:

webMethods Package for Microsoft .NET, which is an Integration Server package

webMethods for Microsoft Code Generator Package, which is an Integration
Server package

webMethods add-in for Microsoft Visual Studio .NET

The Microsoft .NET Framework, which includes the Common Language Runtime
(CLR), must be installed.

Make sure to install the webMethods Package for Microsoft .NET and the
Microsoft .NET Framework on the same computer as the instance of Integration Server
to which Designer is connected.

For more information about using the Microsoft .NET application platform
with webMethods components and how to install the webMethods Package for
Microsoft .NET, see the webMethods Package for Microsoft .NET Installation and User's
Guide.

.NET Service Editor
Use the Designer .NET service wizard to create .NET services. After you have created
a .NET service, use the .NET service editor to view and/or edit the service. If you aempt
to edit a .NET service that you do not have locked for edit, you can still open it in
the .NET service editor. However, the .NET properties, inputs, and outputs will be read
only.

The .NET service has three tabs:

.NET Properties tab contains information about the specific .NET method that a service
calls. For more information, see ".NET Properties Tab" on page 365.

Input/Output tab contains the input and output signature of the .NET service. For
more information about declaring the input and output parameters for a service, see
"About the Service Signature" on page 163.

M
Odd Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 365

Logged Fields tab indicates the input and output parameters for which Integration
Server logs data. For more information about logging the contents of input and
output fields, see "Logging Input and Output Fields" on page 189.

Comments tab contains the comments or notes, if any, for the .NET service.

Note: You can use the Designer .NET editor to edit .NET services that you created in
Developer.

.NET Properties Tab
The .NET Properties tab of the .NET service editor contains information about the
specific .NET method that the service calls:

Property Description

Domain Name The name of the application domain in which the .NET service
is to run.

Assembly Path The location of the directory that holds the .NET assembly
in which the method called by the .NET service resides. For
information about changing this property, see "Modifying
the .NET Assembly Information" on page 367.

Note: Changes you make to this property apply to all .NET
services that call methods in the same class definition.

Assembly
Name

The name of the .NET assembly in which the method called by
the .NET service resides. For information about changing this
property, see "Modifying the .NET Assembly Information" on
page 367.

Note: Changes you make to this property apply to all .NET
services that call methods in the same class definition.

Domain
Configuration
File

The configuration file associated with the domain. The file
must be located in the assembly path. Enter only the file name.
For more information about domain configuration file, see the
webMethods Package for Microsoft .NET Installation and User's
Guide.

Class Name The name of the class that owns the method called by the .NET
service.

This field is read-only.

M
Even Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 366

Property Description

How Integration Server maintains the instance data for the
class that owns the method called by the .NET service.

A brief description of each seing follows. For a more
detailed description of each and instructions for updating
this property, see "Modifying the Class Lifetime for a .NET
Service" on page 369.

Class
Lifetime

Description

Global Integration Server maintains a single version of
the instance data that it is uses for all users that
invoke a service associated with the class.

Session Integration Server maintains separate versions
of the instance data for individual users and
uses the instance data when a user invokes a
service associated with the class.

Single-Use Integration Server uses the instance data for
only a single invocation of a service associated
with the class.

Class Lifetime

Static Integration Server does not maintain instance
data.

Class Timeout
(Mins)

The number of minutes that Integration Server maintains
instance data for the class that owns the method called by
the .NET service. This property is only available when you
select Session for the Class Lifetime field. For more information
about seing the Class Timeout property, see "Modifying the
Class Lifetime for a .NET Service" on page 369.

Method Name The name of the method called by the .NET service. This field
is read-only.

Creating a .NET Service
You create a .NET service using the .NET service wizard. Using the wizard, you scan
existing .NET assemblies to determine the methods they contain. You can then import
the methods into Designer. Using the Designer .NET service editor, you can create .NET

M
Odd Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 367

services that call those methods. For more information about the editor, see ".NET
Service Editor" on page 364.

Before you can create a .NET service, make sure the .NET Common Language Runtime
(CLR) is loaded (i.e., started). If it is not, use Integration Server Administrator to load it.
For instructions, see webMethods Package for Microsoft .NET Installation and User's Guide.

You can invoke .NET services from flow services. You can also execute them from
Designer. For more information, see "Running a .NET Service in Designer " on page
370.

To create .NET services from a method

1. In the Service Development perspective, select File > New > .NET Service.

2. In the Create New .NET Service wizard, expand the IS package in which you want
the new service(s) to reside and select the folder in which you want to create the
service(s).

3. Click Next.

4. In the Assemblies for Auto Conversion panel, locate a .NET assembly on a drive
where the CLR can access it.

This panel depicts the white-listed directories. The only files displayed in this
dialog box are assembly DLLs or EXEs. You can select multiple .NET assemblies for
importation.

5. After you have selected assemblies, click Next.

6. In the Select Specific .NET Services panel, select the methods you want to import
into Designer. By default, all methods in all selected assemblies are selected. You can
select or clear whole assemblies, whole classes, or individual methods as needed.

7. Click Finish. Designer creates a .NET service for each method and places it in the
specified folder.

For assemblies that are not located in the same windows domain or on the same
machine as the CLR, the CLR might fail to load an assembly and issue a security error if
the assembly was compiled with the unsafe option or if user permissions for the remote
directory do not permit access. To resolve either condition, copy the assembly to the
machine where the CLR resides, set directory permissions appropriately, or configure a
trust relationship between the domains.

You can view the variables for the resulting .NET service in the Input/Output tab. In
addition to the variables supported by a specific method, there are standard variables
that are part of each .NET service.

Modifying the .NET Assembly Information
When you create a .NET service to call a Microsoft .NET method, Integration Server
stores information that the .NET CLR needs to load the method into its processing space.
If you change the location or name of the .NET assembly in which the method resides,

M
Even Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 368

use the .NET Properties tab to modify the information so that Integration Server can
continue to call the method. If you do not update the information, aempts to call that
method from Integration Server will fail.

Note: When you create multiple .NET services from an assembly, as described in
"Creating a .NET Service" on page 366, all the services share information
about the assembly. When you change shared information for one .NET
service, Integration Server changes the information for all .NET services
associated with the assembly.

To change information about a .NET method

1. In the Service Development perspective, open the .NET service by double clicking it
in the Package Navigator view.

2. Click the .NET Properties tab.

3. Perform one or more of the following actions:

To... Do this...

Change the assembly
path name

In the Assembly Path field, type the new location of the
directory that holds the .NET assembly in which the
method resides.

Change the assembly
name

In the Assembly Name field, type the new name of
the .NET assembly in which the method resides.

Change the domain
name

In the Domain Name field, type the new domain name.

Change the domain
configuration file

In the Domain Configuration File field, type the name of
the new domain configuration file.

4. Select File > Save.

5. Stop and restart the CLR to clear the cache and make sure the correct assembly is
loaded.

6. Reload the webMethods Package for Microsoft .NET (WmDotNet package) in
Integration Server Administrator.

For instructions for how to stop and restart the CLR, see webMethods Package for
Microsoft .NET Installation and User's Guide.

M
Odd Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 369

Modifying the Class Lifetime for a .NET Service
The Class Lifetime property indicates how you want Integration Server to maintain
instance data for a .NET class running on the CLR. The instance data is a set of variables
associated with the .NET class. When a .NET service executes, the CLR uses the instance
data for the class that owns the method called by the .NET service.

Note: When you set the Class Lifetime property for a service, Designer automatically
sets the Class Lifetime property of all .NET services associated with the same
class to the same seing.

To modify the Class Lifetime for a .NET Service

1. In the Service Development perspective, open the .NET service by double clicking it
in the Package Navigator view.

2. Click the .NET Properties tab.

3. Set the Class Lifetime property to indicate how you want Integration Server to
maintain instance data for a class.

Class Lifetime Description

Global Integration Server creates a single instance of the class, or
object, which has an unlimited lifetime. The class shares
instance data among all sessions. You can create only one
instance of a global object of a given type.

Use this seing when you want Integration Server use the
same instance data for all users in multiple sessions.

Session Integration Server creates a separate object for each user. The
object exists until the user session is closed or until the object
times out.

The default timeout value for the object is three minutes. Use
the Class Timeout property to specify a different timeout value
for an object.

Single-Use Integration Server creates and destroys an object each time
a .NET service calls a method in the class. Instance data might
be kept during the lifetime of the object.

Static Integration Server does not create an object to save instance
data. All methods of the class are static.

M
Even Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 370

Class Lifetime Description

Use this seing when the .NET service calls a method that does
not require any session data to be kept.

4. If you set the lifetime to Session, specify a value for the Class Timeout (Mins) property
to define the timeout value for objects.

Set a high enough value so that Integration Server does not prematurely destroy
objects under normal usage. The default is 3 (i.e., three minutes).

Note: Integration Server starts counting the minutes for the timeout when an
instance of the class is created. Whenever a .NET service accesses the class,
Integration Server resets the count.

5. Select File > Save.

Important: If you set the Class Lifetime property to Global or Session, the instance data
can be used across multiple invocations of methods in a class. If multiple
services are using a given global object or a session object at the same time,
those objects need to be thread safe.

Running a .NET Service in Designer

To run a .NET service in Designer

1. In Package Navigator view, select the .NET service you want to run.

2. In Designer: Run > Run As > Run Service

3. If multiple launch configurations exist for the service, use the Select Launch
Configuration dialog box to select the launch configuration that you want Designer
to use to run the service.

4. If the launch configuration is set up to prompt the user for input values or there is
no launch configuration, in the Enter Input for serviceName dialog box, specify input
values for the service.

a. In the domainName field, type the domain name of a new or existing application
domain name on Integration Server.

Note: If you do not specify an application domain, the service runs in the
default webmDomain application domain.

b. In the marshallingType list, select one of the following:

M
Odd Header

Building Services from .NET Methods

webMethods Service Development Help Version 9.10 371

Value Marshalling Type

refid Reference ID

xml XML marshalling

c. If there are any other input fields, specify values for them.

5. Click OK to run the service.

M
Even Header

webMethods Service Development Help Version 9.10 372

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 373

18 Building XSLT Services

■ What Is XSLT? ... 374

■ What Is an XSLT Service? .. 374

■ How Does an XSLT Service Work? ... 375

■ What Is a Translet? .. 375

■ About the XSLT Service Editor .. 376

■ Overview of Building XSLT Services ... 376

■ Creating an XSLT Service ... 377

■ XSLT Service Signature ... 378

■ Running an XSLT Service .. 380

■ Debugging an XSLT Service .. 381

■ Guidelines for the XSLT Style Sheet ... 382

■ Using Name/Value Pairs with an XSLT Service .. 382

■ Configuring XSLT Transformer Factory Settings ... 389

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 374

You can use Designer to create XSLT services that transform XML source data according
to instructions in an associated style sheet.

What Is XSLT?
XSLT (EXtensible Stylesheet Language Transformations) is a language used to transform
XML documents into other XML documents or formats. It is an industry standard for
XML data mapping, based on its flexibility and reusability. Integration Server supports
that flexibility by providing a straightforward mechanism for converting XML data
within Designer.

What Is an XSLT Service?
An XSLT service transforms XML source data by applying the instructions in an
associated document or style sheet. The XML data can be transformed into HTML for
display as a web page, into plain text, or into different XML formats, depending on the
XSLT code in the style sheet. You can create multiple XSLT services, each with its own
style sheet, that define different types of transformations.

The XSLT rules for a specific XML transformation are stored in the service’s style sheet.
At run time, the service uses the XSLT style sheet to transform XML data passed to the
service.

XSLT services support the following standards:

Java API for XML Processing (JAXP)

XSL Transformations (XSLT) Version 1.0

XML Path Language (XPath) Version 1.0

An XSLT service is identified in the Package Navigator view of Designer with this
icon: . If you rename, move, or delete an XSLT service, Designer automatically
updates any references to it and renames the style sheet file to match the service name.

You can drag and drop an XSLT service into a flow service and call it as a step in the
service, invoke it from a Java service, or invoke it directly using an HTTP request. The
XSLT service must reside on the same server as the flow service.

Note: XSLT services cannot be invoked by a trigger. Triggers pass documents to
their associated services. Any input supplied by a trigger would be invalid
because XSLT services use fixed input and output variables.

By default, Integration Server uses an interpretive processor to perform the
transformation. But, to save processing time, you can instruct Integration Server to
use a compiling processor to create a compiled style sheet or translet. The compilation
processor runs just one time and produces a translet that can be reused during
subsequent transformations.

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 375

To instruct Integration Server to use the compiling processor, you use the
useCompilingProcessor input parameter of an XSLT service. For more information about
useCompilingProcessor , see "XSLT Service Signature" on page 378.

Note: You can use a compiling processor to create a translet only if you are using
style sheets that conform to XSLT Version 1.0.

How Does an XSLT Service Work?
An XSLT service applies the rules in its XSLT style sheet to transform XML data.

When executed, the XSLT service calls an external XSLT engine to convert the XML data.
The external XSLT engine must be Java API for XML Processing (JAXP)-compatible. By
default, Integration Server includes the Xerces parser and the Xalan XSLT style sheet
processor from the Apache Software Foundation. The Java archives for Xerces and Xalan
are located in the Software AG_directory\common\lib\ext directory.

To use a more current version of the Xalan or other 3rd-party XSLT processor,
you must place all the related jar files in the Integration Server_directory\instances
\instance_name \packages\WmXSLT\code\jars directory and configure the transformer
factory seings to specify the appropriate XSLT transformer class. You must also identify
a package dependency on the WmXSLT package for XSLT services in custom packages.
For more information about identifying package dependencies, see "About Package
Dependencies" on page 153.

Note: Transforming a very large XML file can exceed the memory parameters
set in Integration Server, resulting in the following error message:
“Could not run filename. java.lang.reflect.InvocationTargetException:
OutOfMemoryError”. If this occurs, edit the wrapper.java.maxmemory
property in the custom_wrapper.conf file. For information about changing the
JVM heap size by editing the Java properties in the custom_wrapper.conf file,
see the webMethods Integration Server Administrator’s Guide.

What Is a Translet?
A translet is a compiled java class that you can use to perform XSL transformations. By
default, Integration Server uses an interpretive processor to process a style sheet. But
for greater efficiency, you can instruct Integration Server to use a compiling processor
provided by Xalan. The compiling processor compiles the style sheet into a translet. The
style sheet compilation is performed only once per style sheet (unless the style sheet is
modified) and the resultant translet is reused during subsequent transformations. As a
result, transformations are performed more quickly.

Integration Server writes the translet to the same folder that contains the associated style
sheet. The translet will be available even after Integration Server restarts and can be used
in subsequent transformations.

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 376

To instruct Integration Server to use the compiling processor, you use
the useCompilingProcessor input parameter. For more information about
useCompilingProcessor , see "XSLT Service Signature" on page 378.

About the XSLT Service Editor
When you create an XSLT service, Designer creates its associated style sheet. The style
sheet is empty by default. You can type in XSLT code and build the style sheet from
scratch, or you can import an existing style sheet as a basis for the new document. You
use the Source tab in the XSLT style sheet editor in Designer to add or edit the contents
of a style sheet. The style sheet editor includes standard editing functions, as well as
features for supporting the XSLT programming language, such as highlighting certain
elements in color.

The XSLT style sheet contains XSLT template rules and instructions for transforming
XML data provided as input to the XSLT service. You can enter and modify the code in
the service’s style sheet using the XSLT service editor in Designer.

Designer provides the full capabilities of the Eclipse XSLT editor, for example, source
formaing, code completion, undo and redo, find and replace etc.

You can also use the Comments tab to specify comments or notes, if any, for the XSLT
service

You can use the Window > Preferences > XML > XSL page to customize the XSLT service
editor. You can also access the preferences page by right-clicking inside the XSLT editor
and selecting Preferences.

Overview of Building XSLT Services
The following are the basic tasks you perform to create an XSLT service:

Task 1 Create an XSLT service and the associated XSLT style sheet. For more
information, see "Creating an XSLT Service" on page 377.

Task 2 Edit the XSLT style sheet and write the XSLT transformation code.

Information about writing XSLT code is outside the scope of this help.
However, for some suggestions for creating a well-formed style sheet,
see "Guidelines for the XSLT Style Sheet" on page 382.

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 377

Creating an XSLT Service
When you create an XSLT service, you are creating a style sheet containing the XSLT
transformation rules.

To create an XSLT service

1. In the Package Navigator view of Designer, select File > New > XSLT Service.

2. In the New XSLT Service dialog box, select the folder in which you want to save the
service.

3. In the Element name field, type the name for the XSLT service. It would be helpful if
you give the service a name that describes the type of transformation that the style
sheet defines. Click Next.

4. Do one of the following to create the style sheet:

To create an empty XSLT style sheet, select None. This is the default.

To import the text of another XSLT file to use as a basis for this service’s style
sheet, select XSLT file. Click Browse to locate and select the file whose contents you
want to import.

To use a template you want to use to initialize a default set of properties for the
service, select Use template and select the appropriate template.

Note: Designer lists the templates that are defined on the Window > Preferences
> XML > XSL > Templates page.

5. Click Finish.

Designer refreshes the Package Navigator view and displays the new service in the
XSLT service editor.

Designer saves the style sheet as a text file using the naming convention
serviceName .xsl. It is stored in the same directory as the service’s node.ndf
file, that is, within the \ns directory of the package containing the service. For
example, when you save the XSLT service com.example.inventory:convert, Designer
names the style sheet file convert.xsl and stores it in the following directory:
Integration Server_directory\instances\instance_name \packages\packageName \ ns
\folderName \com\example\inventory\convert.

Important: Do not rename the style sheet file. When an XSLT service is executed, it
looks in the service directory for a style sheet called serviceName .xsl that
contains instructions for transforming the XML data. If the appropriately
named file is not in that location, the service creates an empty style sheet
file, and ignores the renamed one. However, you can rename an XSLT
service; Designer automatically renames the style sheet file to match the
new service name.

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 378

You can specify service properties such as the run time seings, service retry, service
auditing, and permissions using the Properties view. For more information, see
"Building Services" on page 161.

XSLT Service Signature
All XSLT services use the same set of input and output parameters.

The standard input variables for the XSLT service are described below. These specify the
type of XML input the service expects, as well as any name/value pairs.

Input Parameters

xmldata byte[] Optional. XML to transform.

xmlUrl String Optional. URL of the XML to transform.

filename String Optional. Fully qualified name of the file that
contains the XML to transform. The file must be located
on the local machine.

xmlStream Input stream Optional. XML to transform.

node com.wm.lang.xml.Node Optional. Node that contains the
XML to transform.

xslParamInput Document Optional. Name/value pairs to pass to the style
sheet. For instructions on seing up your style sheet to
work with this input variable, see "Passing Name/Value
Pairs from the Pipeline to the Style Sheet" on page 383.

encoding String Optional. Default character set to use for
encoding the data transferred during this session.
Specify an IANA-registered character set (for example,
ISO-8859-1). If you do not set encoding , the default JVM
encoding is used.

$useCache String Optional. Specifies whether to use the cached
version of the style sheet or the most recent version. To
use this parameter, add $useCache to the input pipeline
of the XSLT service and set the value to false to always
call the most recent version of the style sheet.

Important: By default, the XSLT transformation engine
caches style sheets, which improves performance

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 379

significantly. However, if you are working on
the XSLT service in a development environment
and making frequent changes to the style sheet,
it is convenient to always specify the most recent
version when you call the XSLT service from a flow
service.

useCompilingProcessor Boolean Optional. Specifies whether or not to use the
Xalan compiling processor (XSLTC), which creates and
uses compiled style sheets or translets. Set to:

true to use the
org.apache.xalan.xsltc.trax.TransformerFactoryImpl
class as a transformer factory.

If no translet currently exists for the style sheet, the
processor creates one. If a translet exists and the style
sheet has changed since the translet was created, the
processor replaces the existing translet with a new one.
If the style sheet has not changed since the translet was
created, the processor reuses the existing translet.This
seing overrides the seing specified on the home page
of the WmXSLT package.

false to use the transformer factory that is specified on
the home page of the WmXSLT package. The default is
false.

Note: The compiling processor is only supported by
the Xalan processor that supports XSLT 1.0.
Consequently, to create translets you must only use
style sheets that are XSLT 1.0 compatible.

loadExternalEntities String Optional. Specifies whether or not to load external
entities (file URIs, HTTP URLs, and so on) referenced
in the XML that the service receives or in the XSLT style
sheet the service uses to transform the XML. Set to:

true to load content from all external entities that are
referenced in the XSLT style sheet or in the XML. This is
the default.

false to not load content from external entities that are
referenced in the XSLT style sheet or in the XML. Use
this seing to prevent aacks from external entities by
blocking those entities.

Important: To help prevent an external entity aack in a
production environment, set loadExternalEntities

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 380

to false in each instance of the transformSerialXML
service.

Output Parameters

results String String that contains the transformed XML.

xslParamOutput Document Conditional. Document that contains name/value
pairs that were returned by the style sheet. This value is
present only if you add name/value pairs to it from your
style sheet. For more information about passing name/value
pairs from the style sheet to the pipeline and for instructions
on seing up your style sheet to work with this parameter,
see "Using Name/Value Pairs with an XSLT Service" on page
382.

Usage Notes

The xmldata , xmlUrl , filename , xmlStream , and node input parameters are mutually
exclusive. Use any one of these parameters to specify the type of XML input.

If the loadExternalEntities input parameter is set to false, you can have the service load,
read, and transform content from a trusted external entity by doing one of the following:

Place the trusted external entity file in the Integration Server installation directory or
subdirectories.

Include the trusted external entity in the list of trusted entities identified in the server
parameter wa.core.xml.allowedExternalEntities. For more information about this
parameter, see webMethods Integration Server Administrator’s Guide.

If the loadExternalEntities input parameter is not specified in the service
signature, Integration Server checks the value of the server parameter
wa.core.xml.expandGeneralEntities. If this parameter is set to false, the service
blocks all external entities that are not included in the list of trusted entities
specified in wa.core.xml.allowedExternalEntities. For more information about
wa.core.xml.expandGeneralEntities, see webMethods Integration Server Administrator’s
Guide.

Running an XSLT Service
When you run an XSLT service using Run > Run As > Run Service, Designer calls the
service (just as an ordinary Integration Server client would) and receives its results.
To run an XSLT service, you need to specify an XML file to use as input. The service
executes once, from beginning to end (or until an error condition forces it to stop) on
the Integration Server on which you have an open session. Integration Server validates
the XSLT code in the style sheet at run time and displays an error message when it

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 381

encounters invalid code. Results from the service are returned to Designer and displayed
in the Results view.

For more information about debugging services, see "Running Services" on page 405.

Debugging an XSLT Service
You can debug an XSLT service using the Eclipse debugging framework using Run >
Debug Configurations in Designer. In order to debug an XSLT service, you must first create
a launch configuration. You can then debug the XSLT service using the re-usable launch
configuration.

Note: You cannot use the Eclipse debugging framework for XSLT services in which
you have performed pipeline customizations. For more information about
customizing an XSLT service in the pipeline, see "Passing Name/Value Pairs
from the Style Sheet to the Pipeline" on page 384.

Creating a Launch Configuration for an XSLT Service
To debug an XSLT service in Designer, you create and then run a launch configuration.
You can specify input values for debugging the XSLT service in the launch configuration.
Use the following procedure to create a re-usable launch configuration that you can run
to debug an XSLT service.

To create a launch configuration for debugging an XSLT service

1. In the Service Development perspective of Designer, select Run > Debug Configurations.

2. On the Configurations tree, select XSL and click .

3. In the Name field, specify a name for the new launch configuration.

4. In the XML Input File field, select a source XML file.

5. Under Transformation Pipeline, click Add Files. Browse to your local workspace to select
the .xsltservice source file corresponding to the XSLT service that you want to debug.

6. Specify transformation parameters if required.

7. Click Apply.

8. Click Debug to debug the XSLT service now. Otherwise, click Close.

Debugging an XSLT Service
To debug an XSLT service using a launch configuration

1. In the Service Development perspective of Designer, select Run > Debug Configurations.

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 382

2. On the Configurations tree, select XSL and open the launch configuration that you
want to run to debug the XSLT service.

3. Click Debug to debug the XSLT service using this launch configuration.

Guidelines for the XSLT Style Sheet
The XSLT style sheet contains the XSLT rules and instructions that the XSLT service
applies to the provided XML. Some suggestions for creating a well-formed style sheet
are:

Use the XSL style sheet element as the topmost element. For example:
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <! -- XSLT code goes here -->
</xsl:stylesheet>

This explicitly defines the XSLT namespace and version.

Use the xsl: prefix for all standard XSLT elements as defined in the hp://
www.w3.org/1999/XSL/Transform conventions. The prefix prevents conflicts
between the standard XSLT elements and any locally defined elements that have
the same name. For example, without the prefix to distinguish them, the <xsl:key
attribute=”value”> element, used for cross-referencing data, could be confused
with a <key> element defined for a hardware business.

Use valid XSLT code. Integration Server validates the code at run time.

Using Name/Value Pairs with an XSLT Service
The XML data passed to an XSLT service for transformation might contain
elements that include a name/value pair, which consists of an XML aribute and its
corresponding value. For example, in the XML element <customer custid=”wm339”>,
custid=”wm339” is a name/value pair.

Using the appropriate instructions in the XSLT style sheet in conjunction with the XSLT
service xslParamInput parameter, you can:

Override the value of a name/value pair defined in the style sheet. By passing a
new value from the pipeline to the style sheet you can specify values during the
transformation that were not available when you wrote the style sheet, and run
different transformations without changing the underlying XSLT style sheet.

Define a new name/value pair in the style sheet, and pass it to the pipeline when you
run the service.

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 383

Passing Name/Value Pairs from the Pipeline to the Style Sheet
An XSLT service can pass name/value pairs from the pipeline to the style sheet to use
while transforming the XML data.

First, using the xslParamInput input variable, specify a new value for the name/value
pair you want to override. Then, define the name/value pair as an XSLT parameter in the
XSLT style sheet. An XSLT parameter is an XSLT element similar to a variable, except
that its value can be changed at the time the XSLT style sheet is processed.

At run time, the value of the XSLT parameter defined in the style sheet is replaced with
the new value defined in the xslParamInput variable. The tasks that you need to perform
to pass name/value pairs from the pipeline to the style sheet are:

Task
1

In the Pipeline, specify new values for each name/value pair you want to
override in the style sheet. For more information about specifying new
values for each name/value pair you want to override in the style sheet, see
"Specifying New Values for Name/Value Pair" on page 383.

Task
2

Define each name/value pair as an XSLT parameter in the style sheet.
For more information about defining each name/value pair as an XSLT
parameter in the style sheet, see "Defining Name/Value Pair as an XSLT
Parameter" on page 384.

Specifying New Values for Name/Value Pair

To specify new values for each name/value pair you want to override in the style sheet

1. Open the flow service that contains the XSLT service as a flow step.

2. In the flow service editor, select the INVOKE step that contains the XSLT service you
want to alter.

3. Select the xslParamInput parameter of the XSLT service in the pipeline.

4. Using the Enter Input for variableName dialog box, enter the name of the XML aribute
in the Name field.

5. In the Value field do one of the following to supply the new value.

If you want to assign a literal value to the variable, type that value. The value
must be of the same data type as the variable.

If you want to derive the value from a String variable in the pipeline, type the
name of that variable enclosed in % symbols (for example, %Phone%). Then, select
the Perform pipeline variable substitution check box.

If you want to derive the value from a global variable, type the name of that
global variable enclosed in % symbols (for example, %myFTPServer%. Then, select
the Perform global variable substitution check box.

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 384

Note: If a pipeline variable and a global variable have the same name and you
select both the Perform global variable substitution and Perform pipeline variable
substitution check boxes, Integration Server uses the value of the pipeline
variable.

6. If you want Integration Server to use the specified value only if the variable does not
contain a value at run time, clear the Overwrite pipeline value check box. (If you select
this check box, Integration Server will always apply the specified value.)

7. Click OK.

Defining Name/Value Pair as an XSLT Parameter

To define each name/value pair as an XSLT parameter in the style sheet

1. In the service’s XSLT style sheet, use the xsl:param element to define a
corresponding XSLT parameter for each name/value pair you defined using
xslParamInput . For example:
<xsl:param name="name1"/>
<xsl:param name="name2"/>
<xsl:param name="name3"/>
.
.
.
<xsl:param name="nameN"/>

2. At run time, the XSLT service will pass the new value from the pipeline to the style
sheet. The style sheet will use the new value during the transformation of the XML
data.

Passing Name/Value Pairs from the Style Sheet to the Pipeline
You can write an XSLT style sheet that will create new name/value pairs and pass
them to the service to put in the pipeline. You do this using an XSLT extension, which
is an element that is wrien to support a particular function and that is not part of the
standard XSLT specification.

Use the XSLT extension mechanism method named IOutputMap.put(Object name,
Object value) to add name/value pairs to an output object of type IOutputMap. The
IOutputMap interface (com.wm.pkg.xslt.extension.IOutputMap) defines method put().

For more information about the extension, see the webMethods WmXSLT
Package Java API Reference, located in the Integration Server_directory\instances
\instance_name \packages\WmXSLT\pub\doc\api directory.

To pass name/value pairs from the XSLT style sheet to the pipeline

1. Open the XSLT style sheet.

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 385

2. Identify the IOutputMap put() method as an extension function by declaring a
namespace that corresponds to the IOutputMap interface. Do this by adding the
following namespace aribute within the xsl:stylesheet element:
xmlns:IOutputMap="com.wm.pkg.xslt.extension.IOutputMap"

3. Define an XSLT parameter named $output in the style sheet, as follows:
<xsl:param name="output"/>

Note: After you define an XSLT parameter, you identify it to the XSLT processor
as a variable, rather than text, by prefixing the name with a dollar sign.

Internally, the $output parameter is of type com.wm.pkg.xslt.extension.IOutputMap.

If you are using the XALAN compiling processor, you must use the xsltc:cast function
to explicitly cast the $output object into com.wm.pkg.xslt.extension.IOutputMap. For example:
 <xsl:variable name="outputVariable"
select="xsltc:cast('com.wm.pkg.xslt.extension.IOutputMap', $output)"/>

4. For each new name/value pair you want to add to the $output parameter, insert the
following xsl:value-of element, where key identifies a name/value pair and xpath
is any valid XPATH expression:
<xsl:value-of select="IOutputMap:put($output,'key',string(xpath))"/>

The style sheet passes the contents of the $output parameter to the xslParamOutput
variable of the service, and the service puts the resulting document in the pipeline.

If you are using the XALAN compiling processor, you must use the outputVariable
variable (described in the previous step) when adding name/value pairs to the
output. For example:
<xsl:value-of select="IOutputMap:put($outputVariable,'key',
string(xpath))"/>

Sample Style Sheet: Adding Name/Value Pairs to the Pipeline
The XSLT style sheet below uses the IOutputMap interface and extension functions from
the Java classes Date and IntDate to add name/value pairs to the pipeline. IntDate is a
simple class that converts a set of integers into a Date object.
<?xml version="1.0" ?>
<!--Declares namespaces for the XSL elements and Java functions-->
<xsl:stylesheet version="1.1"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:IOutput="com.wm.pkg.xslt.extension.IOutputMap"
 xmlns:Date="java.util.Date"
 xmlns:IntDate="com.wm.pkg.xslt.samples.date.IntDate"
 exclude-result-prefixes="IOutput Date IntDate">
<!--Defines the XSLT parameters-->
 <xsl:param name="output"/>
 <xsl:param name="year"/>
 <xsl:param name="month"/>
 <xsl:param name="day"/>
 <xsl:param name="hour"/>
 <xsl:param name="minute"/>
 <xsl:param name="second"/>

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 386

 <xsl:param name="date" select=
"IntDate:getDate($year,$month,$day,$hour,$minute,$second)"/>
 <xsl:output method="xml" indent="yes" />

 <xsl:template match="/" >
 <!--Converts the results of each parameter to a text string and adds
 it to the $output variable-->
 <xsl:value-of select="IOutput:put($output, 'year', $year)" />
 <xsl:value-of select="IOutput:put($output, 'month', $month)" />
 <xsl:value-of select="IOutput:put($output, 'day', $day)" />
 <xsl:value-of select="IOutput:put($output, 'hour', $hour)" />
 <xsl:value-of select="IOutput:put($output, 'minute', $minute)" />
 <xsl:value-of select="IOutput:put($output, 'second', $second)" />
 <xsl:value-of select="IOutput:put($output, 'date', $date)"/>
 <xsl:apply-templates />
 </xsl:template>

 <!-- Adds a new element with a matching name for each text string
 in the result tree.-->
 <xsl:template match="*">
 <xsl:element name="{name()}">
 <xsl:apply-templates />
 </xsl:element>
 </xsl:template>

 <xsl:template match="date" xml:space="preserve">
 <!--For each variable, produces a text string consisting of a label
 for the variable followed by the value of the variable-->
 <xsl:text>year : </xsl:text><xsl:value-of select="$year"/>
 <xsl:text>month : </xsl:text><xsl:value-of select="$month"/>
 <xsl:text>day : </xsl:text><xsl:value-of select="$day"/>
 <xsl:text>hour : </xsl:text><xsl:value-of select="$hour"/>
 <xsl:text>minute : </xsl:text><xsl:value-of select="$minute"/>
 <xsl:text>second : </xsl:text><xsl:value-of select="$second"/>

 <!--Invokes a Date function and prints the resulting values-->
 <xsl:text>converts to</xsl:text>

 <xsl:value-of select="Date:toString($date)"/>
 </xsl:template>
</xsl:stylesheet>

The following sample shows the IntDate class updated to use the compiling processor.
<?xml version="1.0" ?>
<!--Declares namespace for the XSL elements and Java functions-->
<xsl:stylesheet version="1.1"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsltc="http://xml.apache.org/xalan/xsltc"
 xmlns:IOutput="com.wm.pkg.xslt.extension.IOutputMap"
 xmlns:Date="java.util.Date"
 xmlns:IntDate="com.wm.pkg.xslt.samples.date.IntDate"
 exclude-result-prefixes="IOutput Date IntDate">

 <!--Defines the XSLT parameters -->
 <!--Explicitly casts $output-->
 <xsl:param name="output" select=
"xsltc:cast('com.wm.pkg.xslt.extension.IOutputMap', $output)" />
 <xsl:param name="year"/>
 <xsl:param name="month"/>
 <xsl:param name="day"/>
 <xsl:param name="hour"/>
 <xsl:param name="minute"/>

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 387

 <xsl:param name="second"/>
 <xsl:param name="date" select=
 "IntDate:getDate($year,$month,$day,$hour,$minute,$second)"/>
 <xsl:output method="xml" indent="yes" />

 <xsl:template match="/" >
 <!--Converts the results of each parameter to a text string and adds
 it to the $output variable-->
 <xsl:value-of select="IOutput:put($output, 'year', $year)" />
 <xsl:value-of select="IOutput:put($output, 'month', $month)" />
 <xsl:value-of select="IOutput:put($output, 'day', $day)" />
 <xsl:value-of select="IOutput:put($output, 'hour', $hour)" />
 <xsl:value-of select="IOutput:put($output, 'minute', $minute)" />
 <xsl:value-of select="IOutput:put($output, 'second', $second)" />
 <xsl:value-of select="IOutput:put($output, 'date', $date)" />
 <xsl:apply-templates />
 </xsl:template>

 <!--Adds a new element with a matching name for each text string in
 the result tree-->
 <xsl:template match="*">
 <xsl:element name="{name()}">
 <xsl:apply-templates />
 </xsl:element>
 </xsl:template>

 <xsl:template match="date" xml:space="preserve">
 <!--Produces text string consisting of label for variable followed
 by value of variable-->
 <xsl:text>year : </xsl:text><xsl:value-of select="$year"/>
 <xsl:text>month : </xsl:text><xsl:value-of select="$month"/>
 <xsl:text>day : </xsl:text><xsl:value-of select="$day"/>
 <xsl:text>hour : </xsl:text><xsl:value-of select="$hour"/>
 <xsl:text>minute : </xsl:text><xsl:value-of select="$minute"/>
 <xsl:text>second : </xsl:text><xsl:value-of select="$second"/>

 <!--Invokes Date function and prints resulting values-->
 <xsl:text>converts to</xsl:text>
 <xsl:value-of select="Date:toString($date)"/>
 </xsl:template>
</xsl:stylesheet>

When you run the service, provide the following input:

filename packages/WmXSLT/pub/samples/xdocs/date.xml

xslParamInput year 1997

 month 05

 day 21

 hour 12

 minute 12

M
Even Header

Building XSLT Services

webMethods Service Development Help Version 9.10 388

 second 12

The service uses the style sheet to transform the XML data from the source file specified
in filename , converts the data into an XML string, and puts the string in the pipeline as
the results parameter. The service also generates the name/value pairs and puts them
in the xslParamOutput document. The Results view will display results similar to the
following:

M
Odd Header

Building XSLT Services

webMethods Service Development Help Version 9.10 389

Configuring XSLT Transformer Factory Settings
You can use Integration Server Administrator to specify which transformer factory you
want Integration Server to use.

To configure transformer factory settings

1. Open Integration Server Administrator if it is not already open.

2. In the Packages menu of the Navigation panel, click Management.

3. In the Package List, find the row for the WmXSLT package and click the home icon for
the package.

4. Click Edit Transformer Factory Settings.

5. From the Transformer Factory list, select a factory or select Other and type in the name
of the factory you want to use.

6. In the Transformer Factory Attributes field, optionally enter any factory aributes you
want to specify. The aributes must take the form aribute=value . You can only
specify aributes that accept strings or boolean values. For more information about
possible aributes, refer to the documentation from your XSLT processor vendor.

7. Click Save Changes.

M
Even Header

webMethods Service Development Help Version 9.10 390

M
Odd Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 391

19 Managing Cloud Connector Services

■ Creating a Cloud Connector Service ... 392

■ Editing a Cloud Connector Service for a SOAP-Based Provider ... 393

■ Editing a Cloud Connector Service for a REST-Based Provider ... 397

M
Even Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 392

You create and manage cloud connector services using Designer.

Keep the following points in mind when creating a cloud connector service:

Before you create a cloud connector service, ensure that the CloudStreams connector
associated with your desired cloud application provider is installed. Also ensure that
a cloud connection pool is created for that connector.

If you are working with a SOAP-based provider, you should create at least one
cloud connector service for each operation defined in the cloud connector descriptor.
The operations contain a reference to a SOAP operation, defined in the connector’s
WSDL. For more information about SOAP operations, see "Editing a Cloud
Connector Service for a SOAP-Based Provider" on page 393.

If you are working with a REST-based provider, you should create at least one
cloud connector service for each REST resource. For more information about REST
resources, see "Editing a Cloud Connector Service for a REST-Based Provider" on
page 397.

Note: Information about cloud connector services is located in webMethods
Service Development Help and also in the documentation specific to your
CloudStreams provider (for example, webMethods CloudStreams Provider
for Salesforce.com Installation and User's Guide). Both documents include the
Managing Cloud Connector Services topic, which provides information
about how to create a cloud connector service for the operations defined in
the WSDL of the CloudStreams provider or for the REST resources, using
Designer. The documentation specific to your CloudStreams provider
also contains information about how to create a cloud connection and
configure the session management parameters, using the Integration Server
Administrator.

Creating a Cloud Connector Service
You create a cloud connector service using Designer.

To create a cloud connector service

1. Open the Service Development perspective in Designer if it is not already open.

2. Navigate to and expand the package in which you want the cloud connector service
to reside. Right-click the folder in which you want to create the service and select
New > Cloud Connector Service.

Designer displays the New Cloud Connector Service wizard.

3. On the Cloud Connector Service page of the wizard, in the Element name field, type
the name you want to assign to the cloud connector service. Click Next.

4. On the Connector page of the wizard, select the CloudStreams Connector associated
with the cloud application provider you want to access. Click Next.

M
Odd Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 393

Tip: If the list of available connectors is long and you know the name of the
connector you want to use, you can locate the connector quickly by typing
its name in the box below Available Connectors. You can also use this
technique when selecting the connection pool and service in the next steps.

5. On the Connection Pool page of the wizard, select the connection pool for connecting
to the cloud application provider. Click Next.

6. On the Select Service page of the wizard, select the cloud virtual service that you
want the cloud connector service to invoke.

Note: If only one cloud virtual service is available to select, this page will not
appear.

7. Click Finish.

Designer creates the cloud connector service and displays the service details in the
cloud connector service editor.

8. Edit the cloud connector service as follows:

For this type of provider... Follow the steps described in...

SOAP-based Editing a Cloud Connector Service for a SOAP-Based
Provider

REST-based "Editing a Cloud Connector Service for a REST-Based
Provider" on page 397

Editing a Cloud Connector Service for a SOAP-Based
Provider
Editing a cloud connector service for a SOAP-based provider consists of specifying the
operation, the business object associated with the operation, the headers to include in
the service, the input/output signature that determines how the user interacts with the
service, optional parameters to include in the input/output signature, and descriptive
comments or usage notes, if any. You edit a cloud connector service using the service
editor in Designer.

Keep the following points in mind when editing a cloud connector service:

Before you edit a cloud connector service, create the service as described in "Creating
a Cloud Connector Service" on page 392.

webMethods CloudStreams provides a default connector virtual service for policy
enforcements, called WmCloudStreams.SoapVS. If this service does not meet the
needs of your CloudStreams project, ensure that an appropriate connector virtual

M
Even Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 394

service has been created for your project. For more information about CloudStreams
connector virtual services, see Administering webMethods CloudStreams.

In pipeline, document, and input/output validation, the data validation applies
constraints to its variables. Constraints are the restrictions on the structure or
content of variables. For more information about icons for constrained variables, see
"Viewing the Constraints Applied to Variables" on page 402.

To edit a cloud connector service for a SOAP-based provider

1. Open Designer if it is not already open.

2. Navigate to and open the cloud connector service you created in "Creating a Cloud
Connector Service" on page 392.

The service opens in the cloud connector service editor.

3. On the Operation tab, from the Connector Virtual Service list, select the connector
virtual service to be used for policy enforcement.

For more information about CloudStreams connector virtual services, see
Administering webMethods CloudStreams.

4. To configure the operation, business object, fields, and data types of fields, click
next to Operation. Designer displays the Operation and Business Object Configuration
wizard.

a. Select the operation you want the cloud connector service to execute, and then
click Next.

When you change an operation, Designer clears all the metadata that were
associated with the previously selected operation, including the headers,
parameters, and data types of fields. You can select the metadata that the
updated operation requires in the next steps.

Note: Designer displays the appropriate pages of the Operation and Business
Object Configuration wizard depending on whether the selected
operation requires metadata, such as a business object, fields, and data
types of fields.

b. In the Select the Business Object page, select a business object and click Next.

c. In the Select Fields page, specify the fields or parameters to use in the request/
response body for the object.

The mandatory fields or parameters for the business object are selected by
default, and cannot be cleared.

d. You can add new custom fields by clicking and entering the custom field
details in the Add a new custom field dialog box. You can add custom fields only
for the operations that support custom fields. Custom field names should be
unique within the available fields. While adding a custom field as the child of
another custom field, the field name must be unique among all the children of

M
Odd Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 395

the parent field. The following table lists the different toolbar buons available in
the Select Fields page:

Select... To...

Collapses all of the expanded fields.

Add a new custom field.

Edit a custom field.

Delete a custom field.

Move a custom field down in the list.

Move a custom field up in the list.

Promote a custom field in the hierarchy (that is, move the
field one level up in the hierarchy).

Demote a custom field in the hierarchy (that is, make
the selected custom field a child of the preceding parent
custom field).

e. If you want to configure concrete types for the abstract types in the operation you
selected, click Next. If the operation you selected does not have any abstract type
field, click Finish.

f. In the Configure Data Types of Fields page, select a value from the list of values
next to the abstract type to configure concrete types for the abstract types in the
operation.

g. Click Finish. Designer displays a confirmation message. Click OK to update the
operation. Designer replaces the existing operation and associated metadata with
the updated or default information.

5. On the Headers tab, do the following:

a. To include a header as part of the service signature, select the Active check box
next to the header.

b. To specify a default value for the header variable, click the Default Value box next
to the variable and type or paste a default value. If the variable is null in the
input pipeline, this default value will be used at run time. The value given at
run time always take precedence over the default value. However, if the existing
default value is of type "fixed default", the overwrite will fail.

M
Even Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 396

c. Repeat the above steps in the Output section of the tab to select the SOAP
headers whose contents you want to add to the service’s output pipeline.

Note: If the operation you selected on the Operation tab has mandatory headers,
Designer displays those headers in gray. You cannot edit or delete a
mandatory header.

6. If the operation you selected has predefined input parameters (for example, the
Query and QueryAll operations have the where and limit parameters), you can
configure them on the Parameters tab as follows:

a. To specify a default value for a parameter, click the Default Value box next to the
parameter. Then, type or paste a default value. If the variable is null in the input
pipeline, this default value will be used at run time. The value given at run time
always take precedence over the default value. However, if the existing default
value is of type "fixed default", the overwrite will fail.

b. If a predefined parameter is not mandatory, you can activate/de-activate the
parameter by clicking the Active check box.

If a predefined parameter is mandatory, Designer displays the parameter in
gray and the Active check box is selected. You cannot de-activate or delete a
mandatory parameter.

c. To move a parameter up in the list, select the parameter and click . To move a
parameter down in the list, select the parameter and click .

7. If you want to add other parameters to the service signature, such as variables to be
replaced at run time with a user’s input, do the following on the Parameters tab:

a. Click .

b. Assign a name to the new parameter. If you want to rename the parameter later,
click its name and type a new name.

c. To specify a default value for the parameter, click the Default Value box next to the
parameter. Then, type or paste a default value. If the variable is null in the input
pipeline, this default value will be used at run time. The value given at run time
always take precedence over the default value. However, if the existing default
value is of type "fixed default", the overwrite will fail.

d. You can activate/de-activate the parameter by clicking the Active check box, or
you can delete it by selecting the parameter and clicking .

e. To move a parameter up in the list, select the parameter and click . To move a
parameter down in the list, select the parameter and click .

8. On the Input/Output tab, do the following:

a. To have the server validate the input to the service against the service input
signature, select the Validate input check box.

M
Odd Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 397

b. To have the server validate the output to the service against the service output
signature, select the Validate output check box.

c. Review the service’s input and output signature and make any necessary
changes as follows:

To change the... Go to the...

Virtual service name, operation, business
object, fields, and data types of fields

Operation tab

List of headers in the requestHeaders or
responseHeaders sections, or their default
values

Headers tab

List of parameters in the parameters section, or
their default values

Parameters tab

The requestBody and responseBody sections are derived from the operation you
selected on the Operation tab. The value of $connectionAlias is derived from the
connection pool you specified when you first created the cloud connector service.
The fault section is derived from the operation response. You cannot change
these values in the editor.

9. On the Logged Fields tab, do the following:

a. Select the check boxes next to the fields you want to log at run time.

b. If you want to create an alias for a logged field to make it easier to locate in
Designer, click the Alias box next to a field and type the alias name.

For more information about logged fields, see the section on logging input and
output fields in Designer.

10. On the Summary tab, review the details about the cloud connector service.

11. On the Comments tab, enter descriptive comments or usage notes, if any.

12. Click File > Save to save your changes.

Editing a Cloud Connector Service for a REST-Based
Provider
Editing a cloud connector service for a REST-based provider consists of specifying
the resource, the type of processing for requests or responses, the headers to include
in the service, the input/output signature that determines how the user interacts with
the service, default values for parameters included in the input/output signature, and

M
Even Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 398

descriptive comments or usage notes, if any. You edit a cloud connector service using the
service editor in Designer.

Keep the following points in mind when editing a cloud connector service:

Before you edit a cloud connector service, create the service as described in "Creating
a Cloud Connector Service" on page 392.

webMethods CloudStreams provides a default connector virtual service for policy
enforcements, called WmCloudStreams.RestVS. If this service does not meet the
needs of your CloudStreams project, ensure that an appropriate connector virtual
service has been created for your project. For more information about CloudStreams
connector virtual services, see Administering webMethods CloudStreams.

In pipeline, document, and input/output validation, the data validation applies
constraints to its variables. Constraints are the restrictions on the structure or
content of variables. For more information about icons for constrained variables, see
"Viewing the Constraints Applied to Variables" on page 402.

To edit a cloud connector service for a REST-based provider

1. Open Designer if it is not already open.

2. Navigate to and open the cloud connector service you created in "Creating a Cloud
Connector Service" on page 392.

The service opens in the cloud connector service editor.

3. On the Resource tab, do the following:

a. From the Connector Virtual Service list, select the connector virtual service to be
used for policy enforcements.

For more information about CloudStreams connector virtual services, see
Administering webMethods CloudStreams.

b. Click next to Resource Name. Designer displays the Resource and Business
Object Configuration wizard.

c. Select the REST resource you want the cloud connector service to process, and
then click Next.

When you change a resource, Designer clears all the metadata that were
associated with the previously selected resource, including the headers,
parameters, and data types of fields. You can select the metadata that the
updated resource requires in the next steps.

Note: Designer displays the appropriate pages of the Resource and Business
Object Configuration wizard depending on whether the selected
resource requires metadata, such as a business object, fields, and data
types of fields.

d. In the Select the Business Object page, select a business object and click Next.

M
Odd Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 399

e. In the Select Fields page, specify the fields or parameters to use in the request/
response body for the object.

The mandatory fields or parameters for the business object are selected by
default, and cannot be cleared.

f. If you want to configure concrete types for the abstract types in the resource you
selected, click Next. If the resource you selected does not have any abstract type
field, click Finish.

g. In the Configure Data Types of Fields page, select a value from the list of values
next to the abstract type to configure concrete types for the abstract types in the
resource.

h. Click Finish. Designer displays a confirmation message. Click OK to update the
resource. Designer replaces the existing resource and associated metadata with
the updated or default information.

i. In the Request Processing section, select an appropriate parsing type. The parsing
type determines how the service accepts the input.

Option Meaning

Document Builds the request message as an IS document
type. Select this option when the provider’s
XML file includes a schema or specification
describing the content of the request.

Binary Stream Builds the request message as a binary stream.
Select this option when you expect the pipeline
to contain an input stream for which no
document type exists or when it is not practical
to provide a schema description of the content.

For example, the content that is posted for
the Salesforce.com “createBatch” resource
has a complex structure of fields and rows. A
batch of new accounts can be created, and each
account can have dozens of fields with precise
formaing requirements (for example, date
fields). Aachments can even be included in the
batch file. The stream option is the best option
for this type of resource.

Note: If the resource you selected does not contain any requests or responses,
the Request Processing or Response Processing fields are not available.

j. In the Response Processing section, select an appropriate serialization type. The
serialization type constructs the cloud connector service’s output signature and
determines how the cloud connector service should return data to the user.

M
Even Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 400

Option Meaning

Document Formats the response message as an IS document
type. Select this option when the provider’s XML
file includes a schema or specification describing
the content of the response.

Binary Stream Formats the response message as a binary
stream. Select this option when you expect
the pipeline to contain an output stream for
which no document type exists or when it is not
practical to provide a schema description of the
content.

Note: This option works in conjunction with the
response’s parsing type property. If you
select Stream as the response’s serialization
type, Designer also selects Stream as the
response’s parsing type.

Note: If the resource you selected does not contain any requests or responses,
the Request Processing or Response Processing fields will not be
available.

4. On the Headers tab, Designer displays the default HTTP transport headers for the
resource, along with their default values. At run time, while processing the headers,
webMethods CloudStreams substitutes values as necessary (for example, replaces
the “cn.sessionToken” value in the X-SFDC-Session header with the actual runtime
session ID). In order to customize the headers, do the following:

a. To specify a default value for the header variable, click the Default Value box to
the right of the variable and type or paste the new value. If the variable is null
in the input pipeline, this value will be used at run time. If the variable has an
existing default value defined in the Cloud Connector Descriptor, this value will
overwrite the existing value at run time. However, if the existing default value is
of type “fixed default”, the overwrite will fail as mentioned earlier.

b. To add a custom header to the service’s input pipeline, in the Input section of the
tab, click . Type a name for the header and provide a default value if desired.

c. To move a header up in the list, select the header and click . To move a header
down in the list, select the header and click .

d. To include a header as part of the service signature, select the Active check box
next to the header.

e. To delete a custom header that you added, select the header and click .

M
Odd Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 401

Note: You cannot delete the resource’s required headers.

f. Repeat the above steps in the Output section of the tab to select the HTTP
transport protocol headers whose contents you want to add to the service’s
output pipeline.

Note: A provider’s response headers only appear in the pipeline signature
if they are added as active output headers in the Output section.
Any unspecified headers returned by the native provider will not be
included in the pipeline.

5. On the Parameters tab, Designer displays the configured resource parameters. In
order to customize the parameters, do the following:

a. Review the details about the resource parameters. Designer displays the
parameter name and description, the data type used to represent the kind of
information the parameter can hold, the parameterization style of the request,
and the dynamic default value needed to access the resource.

Currently, three parameter styles are supported: URI_CONTEXT ,
QUERYSTRING_PARAM and CFG_PARAM .

For more information about the supported parameter styles, see the section
Understanding REST Parameters in the document Administering webMethods
CloudStreams.

b. To specify a default value for the parameter, click the Default Value box to the right
of the parameter. Then, type or paste the default value. The default value is used
at run time, if the parameter value is not explicitly specified in the input pipeline.
Also, this default value will overwrite any existing default value that is defined
in the Cloud Connector Descriptor, at run time. However, if the existing default
value is of type “fixed default”, the overwrite will fail as mentioned earlier.

Note: You cannot specify a default value for a parameter with data type as
"Record".

6. On the Input/Output tab, do the following:

a. To have the server validate the input to the service against the service input
signature, select the Validate input check box.

b. To have the server validate the output to the service against the service output
signature, select the Validate output check box.

c. Review the service’s input and output signature and make any necessary
changes as follows:

M
Even Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 402

To change the... Go to the...

List of headers in the requestHeaders or
responseHeaders section, or their default
values

Headers tab

Default value of a parameter in the
parameters section, or their default values

Parameters tab

The requestBody and responseBody sections are derived from the REST resource
you selected on the Resource tab. The value of $connectionAlias is derived from
the connection pool you specified when you first created the cloud connector
service. The status, statusMessage, and fault values are derived from the resource
response. You cannot change these values in the editor.

7. On the Logged Fields tab, do the following:

a. Select the check boxes next to the fields you want to log at run time.

b. If you want to create an alias for a logged field to make it easier to locate in
Designer, click the Alias box next to a field and type the alias name.

For more information about logged fields, see the section on logging input and
output fields in Designer.

8. On the Summary tab, review the details about the cloud connector service.

9. On the Comments tab, enter descriptive comments or usage notes, if any.

10. Click File > Save to save your changes.

Viewing the Constraints Applied to Variables
Designer displays small symbols next to a variable icon to indicate the constraints
applied to the variable. Designer displays variables in the following ways:

Variable Constraint Status Variable Properties

Required field. The Required property is set to True.

Optional field. The Required property is set to False.

Required field
with content
type constraint.

The Content type property specifies an IS
schema or XML schema.

M
Odd Header

Managing Cloud Connector Services

webMethods Service Development Help Version 9.10 403

Variable Constraint Status Variable Properties

Optional field
with content
type constraint.

The Required property is set to False, and the
Content type property specifies an IS schema
or XML schema.

Required field
with default
value.

The Fixed property is set to False, and the
defaultValue property specifies a default
value.

The variable has a default value, but you can
override this default value with any other
valid values while executing the service or
mapping the variables.

Required field
with fixed value.

The Fixed property is set to True, and the
defaultValue property .specifies a null value.

The variable has a null value assigned to
it by default and you cannot override this
value. You cannot map this variable to another
variable or assign any input values to this
variable during service execution.

Required field
with fixed
default value.

The Fixed property is set to True, and the
defaultValue property specifies a default value.

The variable has a default value and you
cannot override this value. You cannot map
this variable to another variable or assign any
input values to this variable during service
execution.

M
Even Header

webMethods Service Development Help Version 9.10 404

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 405

20 Running Services

■ Using Launch Configurations to Run Services .. 406

■ Supplying Input Values to a Service .. 408

■ Running a Service .. 424

■ Viewing Results from Running a Service .. 425

■ Running Services from a Browser ... 429

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 406

When you run a service, Designer invokes the service (just as an ordinary IS client
would) and receives its results. The service executes once, from beginning to end (or
until an error condition forces it to stop). The service executes on the Integration Server
on which you have an open session, or if you using a launch configuration, on the
Integration Server specified in the launch configuration.

Results from the service are returned to Designer and displayed in Results view. This
allows you to quickly examine the data that the service produces and optionally change
it or save it to a file. You can use the saved data as input for a later debug session or to
populate the pipeline during a debugging session.

Using Launch Configurations to Run Services
In Designer, you create launch configurations to run services. A launch configuration
contains the information Designer needs to execute a service. You can create one or more
launch configurations for each service.

When running the service, Designer invokes the service (just as an ordinary IS client
would) and receives its results. The service executes once, from beginning to end (or
until an error condition forces it to stop) on the Integration Server on which the service
resides.

Note: You also create launch configurations to debug flow services. You can use a
launch configuration created for running a service when you debug a flow
service. Similarly, you can use a launch configuration that you created for
debugging a flow service when you run a service. For more information about
launch configurations for debugging flow services, see "Creating Launch
Configurations for Debugging Flow Services" on page 435.

Designer requires launch configurations to run services. However, if a service does not
have an associated launch configuration and you bypass the Run Configurations dialog
boxes when running the service, Designer creates one on the fly and saves it in your
workspace. You can use this configuration from one session to the next. In fact, Designer
reuses this configuration every time you run or debug the service without creating
another launch configuration.

By default, Designer saves launch configurations locally in an unexposed location in
your workspace. However, you might want to share launch configurations with other
developers. You can specify that Designer save a launch configuration to a shared file
within your workspace; this location will be exposed. On the Common tab in the Run
Configurations dialog box, select the Shared file option and provide a workspace location
in which to save the file.

You might consider creating a launch configuration for each set of data that you
routinely use to test your service. This will provide you with a ready-made set of test
cases against which to verify the service when it is modified by you or other developers
in the future. Many sites establish a workspace project directory just for holding sets of
test data that they generate in this manner.

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 407

Creating a Launch Configuration for Running a Service
Use the following procedure to create a launch configuration for use in running a
service.

To create a launch configuration for running a service

1. In Designer: Run > Run Configurations

2. In the Run Configuration dialog box, select IS Service and click to add a new launch
configuration.

3. In the Name field, specify a name for the launch configuration

4. On the Service tab, in the Integration Server list, select the Integration Server on which
the service for which you are creating a launch configuration resides.

5. In the Service field, enter the name of the service for which you are creating a launch
configuration of click Browse to select the service.

6. Specify input values to pass the service.

a. On the Input tab, select Use IData.

b. Specify the input values to save with the launch configuration by doing one of
the following:

Type the input value for each service input parameter. For more information
about providing input values, see "Entering Input for a Service" on page
408.

To load the input values that match the structure of the service input
signature from a file, click Load to locate and select the file containing the
input values.

To load input values from a file and replace the service input signature with
the structure and data types in the file, click Load and Replace.

If Designer cannot parse the input data, it displays an error message indicating
why it cannot load the data. For more information about loading input values
from a file, see "Loading Input Values" on page 423.

c. If you want to pass empty variables (variables that have no value) to the service,
select the Include empty values for String Type check box. When you select this
option, empty strings are passed with a zero-length value. If you do not select
this option, Designer excludes empty value from the IData it passes to the service
as input.

7. If you want to save the input values that you have entered, click Save. Input values
that you save can be recalled and reused in later tests.

8. Click Apply.

9. If you want to execute the launch configuration, click Run. Otherwise, click Close.

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 408

Supplying Input Values to a Service
When you create a launch configuration, run a service, or debug a service you need
to pass input to the service. You can provide a value for every input parameter in the
service signature. You can save a set of input values to a file and reuse them in later tests
or with other launch configurations. When debugging a flow service, as an alternative
you can pass the service an XML document as input.

Entering Input for a Service
When you create a launch configuration for a service, run a service, or debug a service
Designer displays a screen for specifying input values for the variables in the service’s
input signature. Designer validates the input values you specify. If specified values do
not match the input parameter data type, Designer displays a message to that effect.

Although you can specify input values for most input variables, you cannot specify input
values for:

Document List variables that have no defined content

Object variables constrained as a byte []

Unconstrained Objects (Objects of unknown type)

If the inputs to the service contain one of these variables for which you cannot specify
input, to test the service create another service that generates the input values for the
service. Then construct a test harness, which is a flow service that executes both the
service that generates the test input values and the service you want to test. Finally, to
test the service, execute the test harness.

To enter input values for a service

1. Do one of the following to display a window for providing inputs:

Open an IS Service launch configuration to run a service as described in
"Creating a Launch Configuration for Running a Service" on page 407.

Run a service as described in "Running a Service" on page 424.

Open an IS Service launch configuration to debug a flow service as described in
"Creating Launch Configurations for Debugging Flow Services" on page 435.

Launch a Java class in debug mode as described in "Debugging a Java Service
while its Class Runs in Designer " on page 462.

2. If you are working with a launch configuration, select the Input tab to display the
screen you use to specify input.

Note: If you are running or debugging the service, Designer displays the Enter
Input for serviceName dialog box that you use to specify input.

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 409

3. To load input values from a file, do one of the following:

If you want to use inputs that match the structure of the service input signature,
on the Input tab click Load.

If you want the data structure of the input values in a file to overwrite the
structure of the service input signature, click Load and Replace.

4. Select or clear the Include empty values for String Types check box to indicate how to
handle variables that have no value.

If you want to use an empty String (i.e., a String with a zero-length), select the
Include empty values for String Types check box. Also note that Document Lists that
have defined elements will be part of the input, but they will be empty.

If you want to use a null value for the empty Strings, clear the check box. String-
type variables will not included in the input document.

Note: The seing applies to all String-type variables in the root document of
the input signature. The seing does not apply to String-type variables
within Document Lists. You define how you want to handle String-type
variables within Document Lists separately when you assign values to
Document Lists variables. For more information, see "Specifying Values for
a Document List Variable" on page 419.

5. Enter values for the input variables. For specific information for how to specify a
value based on a variable’s data type, see one of the following:

For this type of variable... See...

String "Specifying a Value for a String Variable" on page
410

String List "Specifying Values for a String List Variable" on
page 411

String Table "Specifying Values for a String Table Variable" on
page 413

Document

Document Reference

"Specifying Values for a Document Variable that
Has Defined Content" on page 416 or

"Specifying Values for a Document Variable with
No Defined Content" on page 417

Document List

Document Reference List

"Specifying Values for a Document List Variable"
on page 419

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 410

For this type of variable... See...

Object "Specifying a Value for an Object Variable" on
page 421

Object List "Specifying Values for an Object List Variable" on
page 422

6. To save the input values to a file for use in later debugging, click Save or Save Inputs.
In the Save As dialog box, specify the name and location of the file to which you want
the values saved. Click Save.

Specifying a Value for a String Variable
Use the following procedure to specify a value for a String variable. You perform this
procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value, pipeline
variable, or global variable to a variable in the pipeline.

To specify a value for a String variable

1. In the Value column for the String variable:

If you want to assign a literal value to the variable, type a String value in the
Value column.

If you want to derive the value from a String variable in the pipeline, type the
name of that variable enclosed in % symbols (for example, %Phone%).

If you want to derive the value from a global variable, type the name of that
global variable enclosed in % symbols (for example, %myFTPServer%).

You can mix literal values and variable names. For example, if you specify
(%areaCode%) %Phone%, the resulting String would be formaed to include the
parentheses and space. If you specify %firstName% %initial%. %lastName%,
the period and spacing would be included in the value.

2. If you specified a pipeline variable as the value of the String variable (for example,
%Phone%), select the Perform pipeline variable substitution check box so that during
service execution Integration Server replaces the pipeline variable name with the
run-time value of the variable.

Note: The Perform pipeline variable substitution check box is not available when
using a launch configuration.

3. If you specified a global variable as the value of the String variable (for example,
%myFTPUserName%), select the Perform global variable substitution check box so that

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 411

Integration Server replaces the variable name with the global variable value at run
time.

Note: The Perform global variable substitution check box is not available when using
a launch configuration.

Note: If a pipeline variable and a global variable have the same name and you
select both the Perform global variable substitution and Perform pipeline variable
substitution check boxes, Integration Server uses the value of the pipeline
variable.

4. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box.
(If you select this check box, Integration Server will always apply the value you
specified.)

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

5. Do one of the following:

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box.

Specifying Values for a String List Variable
Use the following procedure to specify values for a String List variable. You perform this
procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value, pipeline
variable, or global variable to a variable in the pipeline.

To specify values for a String List variable

1. Select the String List variable.

2. Do the following to append, insert, and delete Strings within the String List:

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 412

To... Do this...

Append a String to the end of the list Click Add Row and specify a value in
the Value column.

Insert a String into the middle of the
list

Select the String below where you want
to add the new one and click Insert
Row.

Remove a String from the list Select the String and click Delete Row.

When specifying a value in the Value column:

If you want to assign a literal value to the variable, type a String value in the
Value column.

If you want to derive the value from a String variable in the pipeline, type the
name of that variable enclosed in % symbols (for example, %Phone%).

If you want to derive the value from a global variable, type the name of that
global variable enclosed in % symbols (for example, %myFTPServer%).

You can mix literal and pipeline variables. For example, if you specify
(%areaCode%) %Phone%, the resulting String would be formaed to include the
parentheses and space. If you specify %firstName% %initial%. %lastName%,
the period and spacing would be included in the value.

3. If you assigned a value using the % symbol along with a pipeline variable (for
example, %Phone%), select the Perform pipeline variable substitution check box so that
during service execution Integration Server replaces the pipeline variable name with
the run-time value of the variable.

Note: The Perform pipeline variable substitution check box is not available when
using a launch configuration.

4. If you specified a global variable as the value of the String variable (for example,
%myFTPUserName%), select the Perform global variable substitution check box so that
Integration Server replaces the global variable name with the global variable value at
run time.

Note: The Perform global variable substitution check box is not available when using
a launch configuration.

Note: If a pipeline variable and a global variable have the same name and you
select both the Perform global variable substitution and Perform pipeline variable
substitution check boxes, Integration Server uses the value of the pipeline
variable.

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 413

5. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box. (If
you select this check box, Integration Server always applies the value you specified.)

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

6. After adding the String List elements you want and specifying values, do one of the
following:

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box.

Specifying Values for a String Table Variable
Use the following procedure to specify values for a String Table variable. You perform
this procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value, pipeline
variable, or global variable to a variable in the pipeline.

To specify values for a String Table variable

1. Select the String Table variable.

Designer displays a table for the String Table variable at the boom of the dialog box.
Use the table to add rows and columns and assign values.

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 414

2. Do the following to add/insert/delete rows and columns in the table:

To... Do this...

Append a row to the end of the table Click Add Row.

Insert a row in the middle In the table viewer, select the row below
where you want to add the new one
and click Insert Row.

Remove a row Select the row in the table viewer and
click Delete Row.

Add a column to the table Click Add Column.

Remove a column from the table Click Delete Column.

3. Type values in the cells of the table.

If you want to assign a literal value, type a String value.

If you want to derive the value from a String variable in the pipeline, type the
name of that variable enclosed in % symbols (for example, %Phone%).

If you want to derive the value from a global variable, type the name of that
global variable enclosed in % symbols (for example, %myFTPUserName%.).

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 415

You can mix literal and pipeline variables. For example, if you specify
(%areaCode%) %Phone%, the resulting String would be formaed to include the
parentheses and space. If you specify %firstName% %initial%. %lastName%,
the period and spacing would be included in the value.

4. If you assigned a value using the % symbol along with a pipeline variable (for
example, %myFTPServer%), select the Perform pipeline variable substitution check box so
that during service execution Integration Server replaces the pipeline variable name
with the run-time value of the variable.

Note: The Perform pipeline variable substitution check box is not available when
using a launch configuration.

5. If you specified a global variable as the value of the String variable (for example,
%myFTPUserName%), select the Perform global variable substitution check box so that
Integration Server replaces the variable name with the global variable value at run
time.

Note: The Perform global variable substitution check box is not available when using
a launch configuration.

Note: If a pipeline variable and a global variable have the same name and you
select both the Perform global variable substitution and Perform pipeline variable
substitution check boxes, Integration Server uses the value of the pipeline
variable.

6. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box.
(If you select this check box, Integration Server will always apply the value you
specified.)

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

7. After adding the table rows and columns you want and assigning values, do one of
the following:

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box.

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 416

Specifying Values for a Document Variable that Has Defined Content
You can assign values to Document variables that have defined content, including
referenced documents and recursive documents. If part of the document tree is
collapsed, you can expand it.

Tip: Click to view and/or update your preferences for how Designer displays
and expands the contents of Document variables.

Note: If the Document variable has no defined content, you can add String name/
value pairs and then assign values. For more information, see "Specifying
Values for a Document Variable with No Defined Content" on page 417.

Use the following procedure to specify values for a Document variable. You perform this
procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value to a pipeline
variable

To specify values for a Document variable that has defined content

1. Select the variables within the Document, and provide values. For help for how to
specify a value based on the variable’s data type, see one of the following:

For this type of variable... See...

String "Specifying a Value for a String Variable" on
page 410

String List "Specifying Values for a String List Variable" on
page 411

String Table "Specifying Values for a String Table Variable"
on page 413

Document
Document Reference

"Specifying Values for a Document Variable that
Has Defined Content" on page 416 or

"Specifying Values for a Document Variable
with No Defined Content" on page 417

Document List
Document Reference List

"Specifying Values for a Document List
Variable" on page 419

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 417

For this type of variable... See...

Object "Specifying a Value for an Object Variable" on
page 421

Object List "Specifying Values for an Object List Variable"
on page 422

2. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box.
(If you select this check box, Integration Server will always apply the value you
specified.)

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

3. After assigning values, do one of the following:

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box.

Specifying Values for a Document Variable with No Defined Content
If the Document variable has no defined content, you can add String name/value pairs
and then assign values.

Note: If the Document already has defined content, see "Specifying Values for a
Document Variable that Has Defined Content" on page 416.

Use the following procedure to specify values for a Document variable. You perform this
procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value to a pipeline
variable

To specify String name/value pairs for a Document variable with no defined content

1. Select the Document variable that has no defined content.

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 418

Designer displays a document viewer at the boom of the screen. You use the
document viewer to add String name/value pairs.

2. Do the following to append, insert, and delete String name/value pairs:

To... Do this...

Append a name/value pair to the end Click Add Row.

Insert a name/value pair in the
middle

In the document viewer, select the
name/value pair below where you want
to add the new one and click Insert
Row

Remove a name/value pair Select the name/value pair in the
document viewer and click Delete
Row

3. For each name/value pair you added, in the Name column type a name.

Note: If you leave a Name column empty, Designer will discard the row.

4. For each name/value pair you added, in the Value column type a value:

If you want to assign a literal value, type a String value.

If you want to derive the value from a String variable in the pipeline, type the
name of that variable enclosed in % symbols (for example, %Phone%).

You can mix literal and pipeline variables. For example, if you specify
(%areaCode%) %Phone%, the resulting String would be formaed to include the
parentheses and space. If you specify %firstName% %initial%. %lastName%,
the period and spacing would be included in the value.

5. If you assigned a value using the % symbol along with a pipeline variable (for
example, %Phone%), select the Perform pipeline variable substitution check box so that the
server performs variable substitution at run time.

Note: The Perform pipeline variable substitution check box is not available when
using a launch configuration.

6. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box.
(If you select this check box, Integration Server will always apply the value you
specified.)

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 419

7. After assigning values, do one of the following:

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box.

Specifying Values for a Document List Variable
You can assign values to Document List variables that have defined content, including
referenced document lists. When seing values, if part of a document tree is collapsed,
you can expand.

Tip: Click to view and/or update your preferences for how Designer displays
and expands the contents of Document variables.

Use the following procedure to specify values for a Document List variable. You perform
this procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value to a pipeline
variable

To specify values for a Document List variable

1. Select the Document List variable.

2. Do the following to append, insert, and delete Documents within the Document List:

To... Do this...

Append a Document to the end of
the list

Click Add Row.

Insert a Document into the middle of
the list

Select the Document below where you
want to add the new one and click

Insert Row

Remove a Document from the list Select the Document and click Delete
Row

3. Assign values to the Document variables you added to the list.

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 420

How you assign values is based on the data type of a variable. For help for how to
specify a value for the variable, see one of the following:

For this type of variable... See...

String "Specifying a Value for a String Variable" on
page 410

String List "Specifying Values for a String List Variable" on
page 411

String Table "Specifying Values for a String Table Variable"
on page 413

Document

Document Reference

"Specifying Values for a Document Variable that
Has Defined Content" on page 416 or

"Specifying Values for a Document Variable
with No Defined Content" on page 417

Document List

Document Reference List

"Specifying Values for a Document List
Variable" on page 419

Object "Specifying a Value for an Object Variable" on
page 421

Object List "Specifying Values for an Object List Variable"
on page 422

4. For each top-level Document that you added to the Document List, select how you
want to handle String variables within that Document that have no value.

If you want to use empty Strings (i.e., a String with a zero-length), select either
the check box next to the top-level Document in the tree or the Include empty
values for String Types check box. Designer will select both check boxes.

If you want to use null values, clear the check box next to the top-level Document
in the tree or the Include empty values for String Types check box. Designer will clear
both check boxes.

Designer allows you to define this seing for each Document within a Document
List.

5. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box.
(If you select this check box, Integration Server will always apply the value you
specified.)

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 421

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

6. After assigning values, do one of the following:

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box.

Specifying a Value for an Object Variable
You can set values for most constrained Objects. You cannot assign values to:

Objects constrained as a byte []

Unconstrained Objects (Objects of unknown type)

When you set values for constrained Objects, Designer automatically validates the
values. If the value is not of the type specified by the Object constraint, Designer
displays a message identifying the variable and the expected type.

Use the following procedure to specify value for an Object variable. You perform this
procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value to a pipeline
variable

To specify a value for an Object variable

1. In the Value column, specify a value that is of the type defined by the Object
constraint.

2. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box.
(If you select this check box, Integration Server will always apply the value you
specified.)

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

3. Do one of the following:

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 422

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box

Specifying Values for an Object List Variable
You can set values for most constrained Object Lists. You cannot assign values to:

Object Lists constrained as a byte []

Unconstrained Object Lists (Object Lists of unknown type)

When you set values for constrained Object Lists, Designer automatically validates the
values. If the value is not of the type specified by the Object List constraint, Designer
displays a message identifying the variable and the expected type.

Use the following procedure to specify values for an Object List variable. You perform
this procedure from:

The Input tab if you are working with a launch configuration

The Enter Input for serviceName dialog box if you are running or debugging a service

The Enter Input for variableName dialog box if you are assigning a value to a pipeline
variable

To specify values for an Object List variable

1. Select the Object List variable.

2. Do the following to append, insert, and delete Objects within the Object List:

To... Do this...

Append an Object to the end of the
list

Click Add Row.

Insert an Object into the middle of
the list

Select the Object below where you want
to add the new one and click Insert
Row

Remove an Object from the list Select the Object and click Delete Row

3. If you want Integration Server to use the value you specified only when the variable
does not contain a value at run time, clear the Overwrite pipeline value check box.

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 423

(If you select this check box, Integration Server will always apply the value you
specified.)

Note: The Overwrite pipeline value check box is not available when using a launch
configuration.

4. After adding the Object List elements you want and specifying values, do one of the
following:

If you are working with a launch configuration, click Apply on the Input tab to
save the value you entered. You can continue to specify values or click Run to
execute the service.

If using the Enter Input for serviceName dialog box, continue to specify input
values, or if you are finished, click OK to close the dialog box and execute the
service.

If using the Enter Input for variableName dialog box, click OK to close the dialog box.

Saving Input Values
You can save the input values that you provide when creating a launch configuration,
debugging a service, or when running a service, document type, or webMethods
messaging trigger to a file. This enables you to reuse them in later tests or in other
launch configurations.

When saving input values to a file, keep the following points in mind:

Empty variables (variables that do not have a value) are only saved if the Include
empty values for String Types check box is selected. If you do not select this check box,
Designer does not save empty variables in the file.

You can store the file in any directory that is accessible to the computer on which
Designer is running. Because these files are not actual run-time components, they
do not need to be saved in Integration Server’s namespace or even on the server
machine itself.

Designer saves the data in XML format

Loading Input Values
When creating a launch configuration, debugging a service, or running a service,
webMethods messaging trigger, or document type, you can reload input values that you
have saved to a file instead of rekeying the values each time.

When you load input values from a file using the Load command, keep the following
points in mind:

Designer only loads variables whose name and type match those displayed in
the Input dialog box. Variables that exist in the file, but not in the dialog box, are

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 424

ignored. In the case of Object variables without constraints or Object variables of
type byte[], the values in the file are not used.

Values from the file replace those already in the Input tab or Enter Input dialog box.

Variables that exist in the Input tab or Enter Input dialog box, but not in the file, are set
to null.

For flow services, besides loading values saved via the launch configuration
or Enter Input dialog box, you can also load values that were saved using
pub.flow:savePipelineToFile service. In addition, you can change values in the pipeline
during debugging.

When you load input values from a file using the Load and Replace command, Designer
overwrites the structure and data types of the input signature with the structure and
data types defined in the file. This might be useful when the service input signature
includes a document with an undefined structure. You can use Load and Replace to pass
in documents with various content and content structure and therefore test or run the
service with a variety of input data.

Running a Service
When you run a service, you can select the launch configuration that Designer uses to
run the service. If a launch configuration does not exist for a service, Designer creates a
launch configuration and immediately prompts you for input values and then runs the
service. Designer saves the launch configuration in your workspace.

Note: If a flow service expects an XML document as input, you must create a launch
configuration and debug the service.

To run a service

1. In Package Navigator view, select the service you want to run.

2. In Designer: Run > Run As > Run Service

3. If multiple launch configurations exist for the service, use the Select Launch
Configuration dialog box to select the launch configuration that you want Designer to
use to run the service.

4. If the launch configuration is set up to prompt the user for input values or there is
no launch configuration, in the Enter Input for serviceName dialog box, specify input
values for the service.

If the service has no input parameters, Designer displays the No input dialog box
stating a message to that effect. If you do not want Designer to display this message
when the service is run again, select the Do not show this dialog again check box. You
can reverse this selection by selecting Always show the No input dialog on the Run/
Debug preferences page.

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 425

5. Click OK. For more information about supplying input values, see "Entering Input
for a Service" on page 408.

Note: If you type in input values, Designer discards the values you specified
after the run. If you want to save input values, create a launch
configuration. For instructions, see "Creating a Launch Configuration for
Running a Service" on page 407.

Designer runs the service and displays the results in the Results view. If the launch
configuration specifies an XML file to use as input, Designer submits the file to the
server, which parses it into a node object and then passes it to the selected service.

Viewing Results from Running a Service
When you run a service, Designer displays the results in Results view.

The Results view contains a list of the recently run services and displays the results for
the selected service.

You can specify the number of service results that Designer displays in the Results view
using the Number of results to display option in the Results View preferences page.

Important: If you are executing large documents multiple times, Software AG
recommends that you set the Number of results to display option in the Results
View preferences page to a smaller value, preferably 1, to ensure that the
performance is not affected.

Note: You can open the Results View preferences page by clicking the View Menu
buon () and selecting Preferences.

For each service execution, the Results view can display the following tabs:

Messages tab displays any messages from Designer about the launch configuration
and any exceptions thrown by the service during execution.

Call Stack tab identifies the flow step that generated the error and lists its antecedents;
the Call Stack tab is only applicable to a flow service.

Pipeline tab displays the contents of the pipeline at the time the service finished
executing.

Messages Tab
The Messages tab in the Results view displays the time the launch configuration started
and completed executing, the name and location of the launch configuration, and
any error and exception messages that Integration Server generated during service
execution. If you did not use a launch configuration when running or debugging the

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 426

service, Designer displays the name and location of the launch configuration it created to
execute the service.

Call Stack Tab
The Call Stack tab identifies which service generated the error and lists its antecedents.
Call Stack also identifies the flow step that executed when the error occurred. Results
view contains a Call Stack tab only for a flow service and only if the flow service throws
an exception.

Keep the following points in mind when looking at the Call Stack tab.

The call stack is LIFO based. That is, the top entry in the stack identifies the last
(that is, most recent) service invoked. The boom entry identifies the parent service
(the one that you originally invoked from Designer). If the parent itself throws the
exception, it will be the only entry in the call stack.

You can go to the flow step that was executing when the error occurred by clicking
 on the Results view toolbar. To view the service in Package Navigator view,

right-click the service and select Show In > Navigator.

Pipeline Tab
The Pipeline tab in the Results view contains the contents of the pipeline after the service
finishes executing.

Keep the following points in mind when examining the Pipeline tab in the Results view.

The Pipeline tab shows all variables that the service placed in the pipeline, not just
those that were declared in the service’s input/output parameters.

Variables that a service explicitly drops from the pipeline do not appear on the
Pipeline tab.

When you select a variable in the Pipeline tab, Designer displays details about the
variable value in the details panel in the lower half of the Pipeline tab. For array
variables, Designer displays the index number and position for each item in the
array. You can copy and paste values from the details panel in the Pipeline tab.

You can browse the contents of the Pipeline tab, but you cannot edit it directly.
However, if you debug a flow service, you can edit the contents of the pipeline. For
more information, see "Modifying the Flow Service Pipeline while Debugging" on
page 445.

You can save the contents of the Pipeline tab to a file and use that file to restore the
pipeline at a later point. For additional information about saving and restoring the
contents of the Pipeline tab in the Results view, see "Saving the Results" on page
427 and "Restoring the Results" on page 428.

When a failure occurs within a Java service, the Pipeline tab represents the state of
the pipeline at the point when that Java service was initially called. If the Java service

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 427

made changes to these values before throwing the exception, those changes will note
be reflected on the Pipeline tab.

If you run a flow service and an error occurs, the Pipeline tab will only show results
up to the point of the error.

Variables with object types that Designer does not directly support will appear in the
Pipeline tab, but because Designer cannot render the values of such objects, a value
does not appear in the Value column. Instead, the Value column displays the object’s
Java class message.

Variables that contain com.wm.util.Table objects appear as Document Lists in the
Pipeline tab.

Saving the Results
You can save the results pipeline to a file. You might do this so that you can compare
saved result pipelines to each other.

When you save a pipeline, it is saved in a file in XML format. The file you create can be
used to:

Dynamically load the pipeline at run time in a flow service by using the
pub.flow:restorePipelineFromFile service.

Load a set of input values when creating a launch configuration or when running or
debugging a service.

You can view a pipeline file with an ordinary text editor. When saving the pipeline, keep
the following points in mind:

Only XML-codable variables are saved. This includes, Strings, String Lists, String
Tables, Documents, and Document Lists. Variables that are not XML codable are not
saved.

Empty variables and null variables are saved.

Use the following procedure to save the results pipeline to a pipeline file.

To save the results pipeline

On the Pipeline tab in the Results view, do one of the following:

Click... To...

Save the pipeline to your local file system.

Specify a location and name for the file in the Save As dialog box.
Click Save.

Save the pipeline to IntegrationServer_directory \instances
\instance_name \pipeline directory on the machine on which
Integration Server resides.

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 428

Click... To...

In the Save Pipeline to serverName dialog box, specify the name for
the file containing the pipeline contents.

Restoring the Results
When you load a pipeline file into the Pipeline tab in the Results view, the contents of
the pipeline file completely replaces the results pipeline.

To restore service results

On the Pipeline tab in the Results view, do one of the following:

Click... To...

Restore the pipeline from a file in your local file system.

In the Open dialog box, navigate to and select the file. Click Open.

To restore the pipeline from the
IntegrationServer_directory \instances\instance_name \pipeline
directory on the machine on which Integration Server resides.

In the Restore Pipeline from serverName dialog box, specify the name
for the file containing the pipeline contents.

Running Services from Results view
You can re-execute a launch configuration or a flow service using the same set of inputs
as before from the Results view.

To rerun services from Results view

In the Results view, select the service or element that you want to re-execute and
click on the Results view toolbar. Integration Server re-executes the service or
element using the same set of inputs as before.

Removing the Results from Results View
You can delete a result or all the results from the Results view.

To remove results from Results view

In the Results view, do one of the following:

M
Odd Header

Running Services

webMethods Service Development Help Version 9.10 429

Click... To...

Remove the selected result from the Results view.

To remove all results from the Results view.

Pinning a Result to Results View
You can pin a result to the Results view. This ensures that the particular result is
available for your reference in the Results view even after several other service
executions. You can unpin the result from Results view when you no longer need to
refer to it. When you pin a result, the next time you execute a service, Designer shows
the results in a new Results view.

When you pin a result to the Results view, Designer closes the pane that displays the list
of the recently run services and displays only the pinned result. You will not be able to
perform operations such as re-executing the service or element from Results view and
removing service results from Results view.

To pin a result to Results view

In the Results view, select the service result that you want to pin and click on the
Results view toolbar. You can unpin a result from Results view by clicking the same
buon.

Sorting Results by Element Names in Results View
By default, Designer sorts the results in the Results view by timestamp. You can sort the
results alphabetically by element names. Even if the results are sorted alphabetically,
Designer uses timestamp information to remove the results from Results view to limit
the number of results displayed in the Results view to the value specified in the Number
of results to display preferences.

To sort results by element names

On the Results view toolbar, click to sort the results by element names instead of
timestamp. To sort the results by timestamp, click the same buon again.

Running Services from a Browser
You can use the Run in Browser command to run a service from a browser (that is, to
simulate a browser-based client). When you use this command, Designer prompts
you for the service’s input values, builds the URL necessary to invoke the service with
the inputs you specify, and then passes the URL to your browser. When you use this

M
Even Header

Running Services

webMethods Service Development Help Version 9.10 430

command to run a service, your browser (not Designer) actually invokes the service and
receives its results.

If you are developing services that will be invoked by browser-based clients, particularly
ones whose output will be formaed using output templates, you will want to test those
services using the Run in Browser command to verify that they work as expected.

To run a service using a browser as the client

1. In Package Navigator view, select the service you want to run.

2. In Designer: Run > Run As > Run in Browser

If you have unsaved edits, Designer prompts you to save them.

3. If the service has input parameters, type the input values for each variable in the
Input dialog box or click the Load buon to retrieve the values from a file. For more
information, see "Entering Input for a Service" on page 408.

Note: Run in Browser only submits String and String List inputs to the service. If
you want to pass other types of inputs, use the Run > Run As > Run Service
option or set the values in the service instead of entering it in the Enter Input
for serviceName dialog box.

4. If you want to pass empty variables (variables that have no value) to the service,
select the Include empty values for String Types check box. When you select this option,
empty Strings are passed with a zero-length value. If you do not select this option,
Designer excludes empty variables from the query string that it passes to the
browser.

5. If you want to save the input values that you have entered, click Save. Input values
that you save can be recalled and reused in later tests. For more information about
saving input values, see "Saving Input Values" on page 423.

6. Click OK. Designer builds the URL to invoke the service with the inputs you have
specified, launches your browser, and passes it the URL.

If the service executes successfully, the service results appear in your browser. If
an output template is assigned to the service, the template will be applied to the
results before they are returned.

If the service execution fails with an error, an error message is displayed in the
browser.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 431

21 Debugging Flow Services

■ About Debugging Flow Services .. 432

■ Creating Launch Configurations for Debugging Flow Services ... 435

■ Debugging a Flow Service ... 436

■ Stepping Through Flow Services ... 437

■ Using Breakpoints When Debugging Flow Services ... 440

■ Disabling and Enabling Flow Steps and Transformers .. 443

■ Disabling and Enabling Conditions .. 444

■ Modifying the Flow Service Pipeline while Debugging .. 445

■ Saving and Restoring the Flow Service Pipeline while Debugging ... 448

■ Viewing Service Results from a Flow Service Debug Session .. 450

■ Using the Server Log for Debugging ... 450

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 432

Designer provides a range of tools to assist you during the debugging phase of
development. For example, you can:

Run flow services, specify their input values, and inspect their results.

Examine the call stack and the pipeline when an error occurs.

Execute services in debug mode, a mode that lets you monitor a flow service’s
execution path, execute its steps one at a time, specify points where you want to
halt execution, and examine and modify the pipeline before and after executing
individual flow service steps.

About Debugging Flow Services
When you debug a flow service, Designer provides tools that you can use to monitor
the execution path of the flow service and examine the service pipeline at various points
during service execution. While debugging, you can also use Designer to save or modify
the current pipeline.

About Debug Sessions
A debug session starts when you use a launch configuration to debug a service. Designer
requires a launch configuration for debugging a flow service. If a service does not have
a launch configuration, Designer creates one automatically. Designer saves the launch
configuration to your workspace.

Designer creates a debug session for each launch configuration that you use for
debugging a service. You can use multiple launch configurations simultaneously and
have multiple debug sessions for the same launch configuration. This translates to
multiple debug sessions for the same service. Debug view displays all of the debug
sessions. The name of the launch configuration used for a debug session appears as a top
level node in the Debug view. The launch configuration can appear in the Debug view
multiple times, once for each debug session.

Once started, debug sessions can suspend, resume, or terminate.

A debug session suspends for the following reasons:

The launch configuration specifies that the debug session should stop at the first flow
step.

A step command finishes executing (Step Over, Step Into, or Step Return). Designer
suspends the debug session immediately before executing the next step in the flow
service. A breakpoint is encountered.

A debug session resumes when you select Run > Resume or execute a step command.

A debug session terminates for the following reasons:

The flow service that you are debugging executes to completion (error or success).

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 433

You select the Step Over command for the last step in the flow service.

You forcefully terminate the debug session by selecting Run > Terminate.

You exit Eclipse.

About the Debug Perspective
When you debug a service, use the Debug perspective. The Debug perspective contains
various views for helping you debug your service. The following table briefly describes
the views available in the Debug perspective. With the exception of Results view, these
views are part of the Eclipse Debugging framework.

View Description

Debug view Displays the debug sessions and contains tools to manage
the debugging. When debugging a service in Designer, the
Debug view displays the stack frames associated with each
launch configuration. Debug view contains commands to
start, stop, and step through a service.

Breakpoints view Displays all the breakpoints currently set in your
workspace.

Results view Displays the results of running or debugging a service via
a launch configuration in Designer.

Variables view Displays information about the set of variables for the
selected stack frame in Debug view. When using Designer
to debug a service, Variables view displays the contents
of the pipeline prior to the execution of the flow step in
the selected stack frame in Debug view. The details pane
in Variables view displays detailed information about
the selected variable. You can edit the variable value in
the detail pane. You can save or modify the contents of
Variables view before resuming execution. Variables view
will be blank after the service executes to completion.

About Debug View
When debugging a service, Designer displays the debugging progress and the flow
service editor (including the flow step that is about to be executed) in Debug view. Keep
the following information in mind when looking at Debug view while debugging a flow
service:

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 434

For each launch configuration that you use to debug a service, Debug view contains
a launch configuration stack frame.

The launch configuration stack frame contains an Integration Server thread stack
frame. The launch configuration can appear in the Debug view multiple times, once
for each debug session.

The Integration Server server thread stack frame contains the service thread stack
frame.

If a debug session is suspended, the service thread stack frame displays
“(suspended)” after the service name.

The service thread stack frame contains the name of the flow service and the step at
which the debug session is suspended.

If you stepped into a child INVOKE service or into a transformer in a MAP step,
Debug view displays the parent service (and its flow step) and the child service
(and its flow step) under the service thread stack frame. Designer displays the child
service above the parent service because the child service is at the top of the call
stack structure. Designer highlights the child step at which the debug session is
suspended. Variables view displays the contents of the pipeline that will be passed to
the child service.

If you stepped into a MAP step to invoke a transformer, under the service thread
stack frame, Designer displays MAPINVOKE before Designer executes the
transformer. Designer displays MAPCOPY right after the service executes but before
Designer executes the links from the transformer to the variables in Pipeline Out.

Debug view with three debug sessions

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 435

Creating Launch Configurations for Debugging Flow
Services
You can use the same launch configuration to run and debug flow services. When using
a launch configuration to debug a service, Designer stops at the first flow step (the
default) or executes the service until it encounters a breakpoint.

Designer requires launch configurations to debug flow services. However, if a flow
service does not have an associated launch configuration and you bypass the Debug
Configurations dialog boxes when debugging the service, Designer creates one on the fly
and saves it locally. You can use this configuration from one session to the next. In fact,
Designer reuses this configuration every time you debug the service without creating a
launch configuration.

By default, Designer saves launch configurations in an unexposed location of your
workspace. However, you might want to share launch configurations with other
developers. You can specify that Designer save a launch configuration to a shared file.
On the Common tab in the Debug Configurations dialog box, select the Shared file option
and provide a workspace location in which to save the file.

You might consider creating a launch configuration for each set of data that you
routinely use to debug your service. This will provide you with a ready-made set of test
cases against which to verify the service when it is modified by you or other developers
in the future. Many sites establish a workspace project directory just for holding sets of
test data that they generate in this manner.

Use the following procedure to create a launch configuration for use in debugging a flow
service.

To create a launch configuration for debugging a flow service

1. In Designer: Run > Debug Configurations

2. In the Debug Configuration dialog box, select IS Service and click to add a new
launch configuration.

3. In the Name field, specify a name for the launch configuration

4. On the Service tab, in the Integration Server list, select the Integration Server on which
the service for which you are creating a launch configuration resides.

5. In the Service field, enter the name of the service for which you are creating a launch
configuration of click Browse to select the service.

6. If you want Designer to stop at the first flow step when using the launch
configuration, select the Stop at first flow step check box.

If you clear the Stop at first flow step check box, Designer executes the service until
the service ends or hits a breakpoint. If you want to debug the service by stepping
through one flow step at a time, select the Stop at first flow step check box.

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 436

7. If you want Designer to pass the service an IData that contains input values for each
input variable in the service signature, do the following:

a. On the Input tab, select Use IData.

b. Specify the input values to save with the launch configuration by doing one of
the following:

Type the input value for each service input parameter. For more information
about providing input values, see "Entering Input for a Service" on page 408.

To load the input values from a file, click Load to locate and select the file
containing the input values. If Designer cannot parse the input data, it
displays an error message indicating why it cannot load the data. For more
information about loading input values from a file, see "Loading Input
Values" on page 423

To load input values from a file and replace the service input signature with
the structure and data types in a file, click Load and Replace.

c. If you want to pass empty variables (variables that have no value) to the service,
select the Include empty values for String Type check box. When you select this
option, empty strings are passed with a zero-length value. If you do not select
this option, Designer excludes empty value from the IData it passes to the service
as input.

8. If you want Designer to send the flow service an XML document a input, do the
following:

a. Select Use XML.

b. In the Location field, enter the path and file name of the XML document to use as
input or click Browse to locate and select the XML file.

Designer displays the contents of the XML document on the Input tab.

9. If you selected the Use IData option and you want to save the input values that you
have entered, click Save. Input values that you save can be recalled and reused in
later tests.

10. Click Apply.

11. If you want to execute the launch configuration, click Debug. Otherwise, click Close.

Debugging a Flow Service
While debugging a service, you can:

Execute a flow service one flow step at a time and view the results of each step.

Set breakpoints to specify points in a flow service at which processing should stop.

Change the values passed to each step in the flow service.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 437

Use the following procedure to debug a flow service.

To debug a flow service

1. In Package Navigator view, select the service you want to debug.

2. In Designer: Run > Debug As > Debug Flow Service

3. If multiple launch configurations exist for the service, use the Select Launch
Configuration dialog box to select the launch configuration that you want Designer to
use to debug the service.

4. If the launch configuration is set up to prompt the user for input values or there is
no launch configuration, in the Enter Input for serviceName dialog box, specify input
values for the service. Click OK. For more information about supplying input values,
see "Entering Input for a Service" on page 408.

Designer does one of the following:

If the launch configuration specifies that execution should stop at the first flow
step when debugging, Designer prompts you to switch to the Debug perspective.
Designer suspends flow service execution immediately before executing the
first flow step. For more information about stepping through a flow service, see
"Stepping Through Flow Services" on page 437.

If you are not using an existing launch configuration to debug the service (that
is, Designer created one for you automatically), Designer suspends flow service
execution immediately before executing the first flow step.

If the launch configuration does not stop a the first flow step, Designer executes
the flow service until a breakpoint hit occurs. Designer prompts you to switch to
the Debug perspective. To resume service execution after Designer encounters a
breakpoint, select Run > Resume.

If the flow service does not stop at the first flow step and does not contain a
breakpoint, Designer executes the flow service to completion.

Stepping Through Flow Services
You use the Step Over, Step Into, and Step Out commands during a debug session to
interactively execute a flow service one flow step at a time. Stepping through a flow is an
effective debugging technique because it allows you to examine (and optionally modify)
the data in the pipeline before and after each step. Additionally, if you are trying to
isolate an error, step mode can quickly help you pinpoint the offending flow step.

If you want to... Use...

Execute the current flow step Step Over

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 438

If you want to... Use...

Open a child flow a so that you can debug the individual flow
steps within it

Step Into

Return to the parent flow from a child that you have stepped into Step Return

Stepping Through a Flow Service
When stepping through a flow service, keep the following points in mind:

To step through a top-level service, you must have Execute, Read, and List access to
the service. To step through all the services within a top-level service, you must have
Execute, List, and Read access to all services that the top-level service invokes.

If the debug launch configuration is not configured to stop at the first flow step or
there is not an enabled breakpoint in the flow service or one of its child services,
Designer will execute the service to completion and will not suspend at any flow
step.

When you step through a flow step, Designer executes the step and then suspends
the debug session.

The Variables view displays the pipeline that will be passed to the next step in the
flow service. You can modify, save, or restore the data while debugging the service.

If you step over a flow step that contains an enabled breakpoint, Designer suspends
service execution at the breakpoint.

To step through a flow service

1. Debug the service as described in "Debugging a Flow Service" on page 436.

2. In Debug view, select the flow step in the debug session for the service that you want
to step through.

3. In Designer, select Run > Step Over or click on the Debug view toolbar.

Designer executes the current step and then stops.

Stepping Into and Out of a Child Service
Many times, the flow service you are debugging invokes other flow services (child
services). In these cases it is useful to step through the individual flow steps within a
child service, too. You do this with the Step Into and Step Return commands.

To step into and out of a child flow

1. Debug the service as described in "Debugging a Flow Service" on page 436.

2. In Debug view, step to the flow step that invokes the child flow service.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 439

3. In Designer, select Run > Step Into or click on the Debug view toolbar.

Designer opens the child flow service and selects (but does not execute) the first step.

4. To execute the first step in the child flow service, select Run > Step Over or click
on the Debug view toolbar. Repeat this step for each flow step that you want to
individually execute within the child flow service.

5. If you want to return to the parent flow service without stepping through the entire
child, select Run > Step Return or click on the Debug view toolbar. Designer
executes the remaining steps in the child flow service, returns to the parent, and then
selects (but does not execute) the next step in the parent flow.

Notes:

If you select Step Over on the last step in the child flow service, Designer
automatically returns you to the parent.

You can use Step Into to step into a child flow that is nested within a child that you
have stepped into.

If you select Step Return without executing the entire child flow service and the child
flow service subsequently contains an enabled breakpoint, Designer stops debugging
when it hits the breakpoint.

Stepping Into and Out of a MAP Step
You can use the step commands to debug individual transformers within a MAP step.

To step into and out of a MAP step

1. Debug the service as described in "Debugging a Flow Service" on page 436.

2. In Debug view, step to the MAP flow step.

3. In Designer, select Run > Step Into or click on the Debug view toolbar.

In Pipeline view, Designer highlights the links to the transformer (but does not
execute) a transformer in the MAP step. Keep in mind that transformers in a MAP
step are independent of each other and do not execute in a specific order.

4. If the transformer is a flow service and you want to step into the transformer, do the
following:

a. Select Run > Step Into or click on the Debug view toolbar. Designer executes the
links to the transformer and steps into the transformer (flow service). Continue
stepping through the transformer using Step Into or Step Over.

To return to the MAP step pipeline, select Run > Step Return or click on the
Debug view toolbar.

b. Select Run > Step Over or click to execute the links between the transformer to
the variables in Pipeline Out.

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 440

c. Repeat the above steps each transformer that you want to individually execute
in the MAP step. If you want to execute the next transformer without stepping
through transformer and link execution, select Run > Step Over.

5. If the transformer is not a flow service or you do not want to step into it, select Run >
Step Over or click on the Debug view toolbar.

6. If you want to return to the parent without stepping through the entire MAP, select
Run > Step Return or click on the Debug view toolbar. This executes the remaining
transformers in the MAP, returns to the parent flow service, and selects (but does not
execute) the next step in the parent flow service.

Notes:

If you select Step Return, Designer executes the remaining steps in the MAP and
returns to the parent automatically. However, Designer stops executing if it
encounters an enabled breakpoint.

You can use Step Into to step into a transformer that is not a flow service.

In Debug view, under the service thread stack frame, Designer displays
MAPINVOKE before Designer executes the transformer. Designer displays
MAPCOPY right after the service executes but before Designer executes the links
from the transformer to the variables in Pipeline Out.

Using Breakpoints When Debugging Flow Services
Within Designer, a breakpoint is a point in a flow service where you want processing
to halt when you debug that flow service. Breakpoints can help you isolate a section of
code or examine data values at a particular point in the execution path. For example, you
might want to set a pair of breakpoints before and after a particular segment of a flow
so that you can examine the pipeline in the Variables view before and after that segment
executes.

When you execute a service that contains a breakpoint or call a child service that
contains a breakpoint, the service is executed up to, but not including, the designated
breakpoint step. At this point, processing stops and the debug session suspends. To
resume processing, you can execute one of the step commands or select Run > Resume.
After you resume the debug session, Designer stops at any subsequent breakpoints.

When working with breakpoints, keep the following points in mind:

Breakpoints are persistent in Designer.

Breakpoints are also local to yourDesigner workspace. Breakpoints that you set in
your workspace do not affect other developers or users who might be executing or
debugging services in which you have set breakpoints.

Breakpoints are only recognized when you execute a service in debug session.
Breakpoints are ignored when you run a service.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 441

To set a breakpoint in a service, you must have Read access to a service. However, if
the service is invoked within another service (a top-level service) to which you have
Read access, you can set a breakpoint on the service within the top-level service.

When you delete a flow step or transformer that contains a breakpoint, Designer
removes the breakpoint.

You can use breakpoints as markers in your flow services. To do this, assign a
breakpoint to the flow step that you want to use as a marker. In Breakpoints view,
you can quickly go to the flow step by right-clicking the breakpoint and selecting Go
to File or by double-clicking the breakpoint.

Breakpoints can be used in flow services that contain transactions, however,
the breakpoint must be set before the transaction starts or after the transaction
commits or rolls back. Do not set breakpoints within the transaction. If you do so,
transactionality will not be honored and the flow service may throw an exception.

You can use Breakpoints view to manage your existing breakpoints.

You can import/export breakpoints from one workspace to share them with other
developers.

Breakpoint States
Breakpoints can have the following states.

Icon State Description

Enabled/Non-
Execution

The breakpoint is enabled, but there is no
debug session in progress.

Disabled/Non-
Execution

The breakpoint is disabled and there is no
debug session in progress.

Skip/Enabled Indicates the breakpoint is enabled but will be
skipped.

Skip/Disabled Indicates the breakpoint is disabled and will be
skipped.

Setting and Removing Breakpoints on Flow Step
You can set or remove a breakpoint on a flow step by toggling the breakpoint. During
debugging, processing will halt immediately before this flow step.

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 442

To toggle a breakpoint on a flow step

Open the flow service in which you want to set a breakpoint and do one of the
following:

On the Tree tab, right-click the step at which you want to set the breakpoint and
select Toggle Breakpoint. Designer displays or removes in the vertical margin
next to the flow step.

On the Tree tab, right-click in the vertical margin next to the flow step at which
you want to set a breakpoint and select Toggle Breakpoint. Alternatively, double-
click in the margin next to the flow step. Designer displays or removes in the
vertical margin next to the flow step.

On the Layout tab, double-click the connection line in front of the flow step
at which you want to set a breakpoint and select Toggle Breakpoint. Designer
displays or removes right before the flow step.

On the Layout tab, select the connection line in front of the flow step at which
you want to set a breakpoint. Right-click and select Toggle Breakpoint. Designer
displays or removes right before the flow step.

Note: You can also use Breakpoints view to remove breakpoints or select Run >
Remove All Breakpoints.

Setting and Removing Breakpoints on a Transformer
You can set a breakpoint on a transformer in a MAP step. When you execute a service
that contains a breakpoint or calls a service that contains a breakpoint on a transformer,
the service is executed up to, but not including, the designated breakpoint transformer.

Transformers in a MAP step execute in an arbitrary order. You cannot assume an order
of execution. Consequently, some of the transformers in the MAP step might execute
before Designer reaches the breakpoint, even if the transformers appear below the
breakpoint in the Pipeline view. Likewise, transformers above the breakpoint might not
execute before the breakpoint is encountered and the debug session suspends. These
will execute when the debug session resumes.

You set or remove a breakpoint on a transformer by toggling the breakpoint state.

To toggle a breakpoint on a transformer

1. Open the flow service in which you want to set a breakpoint.

2. In the editor, select the MAP step containing the transformer that will function as the
breakpoint.

3. In Pipeline view, right-click the name of the transformer that will function as the
breakpoint and select Toggle Breakpoint. Designer displays or removes next to the
transformer name.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 443

Enabling and Disabling Breakpoints in a Flow Service
You can enable or disable a breakpoint to instruct Designer to stop at or ignore the
breakpoint.

To enable or disable a breakpoint on a flow step or transformer

1. Open the flow service and navigate to the breakpoint. If a breakpoint is set on a
transformer, select the MAP step and open Pipeline view.

2. Do one of the following:

To disable a breakpoint, right-click the breakpoint and select Disable Breakpoint.

To enable a breakpoint, right-click the breakpoint and select Enable Breakpoint.

Note: You can also enable and disable breakpoints using Breakpoints view.

Skipping Breakpoints in a Flow Service
You can use Designer to change the breakpoint state of all breakpoints to “skip”.
Designer does not execute breakpoints with a skip state regardless of whether the
breakpoint is enabled or disabled. Designer debugs services as if the breakpoints did not
exist or were disabled. By instructing Designer to skip all breakpoints, you can debug
the service without halting execution for a breakpoint without removing or changing the
enabled/disabled state of the breakpoint.

To skip all breakpoints

In Designer: Run > Skip All Breakpoints

Disabling and Enabling Flow Steps and Transformers
As part of debugging services, you can disable flow steps and transformers. Disabled
flow steps and transformers do not execute. Disabling a step or transformer is useful in
many debugging situations. For example, you might want to disable one or more steps
to isolate a particular segment of a flow, similar to the way you might “comment out” a
section of source code in a program you are debugging.

Keep the following points in mind when disabling and enabling flow steps and
transformers:

Disabling a step or transformer sets a persistent aribute that is saved in the flow
service. Once you disable a step or transformer, it remains disabled until you
explicitly re-enable it with Designer.

Steps and transformers that you disable are not executed at run time.

The symbol appears next to disabled steps and transformers.

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 444

If you disable a parent step (for example, a LOOP or a BRANCH), Designer disables
its children automatically.

If you disable a MAP step, Designer disables the transformers in the MAP step
automatically.

Disabling a step or transformer removes a breakpoint hosted by that step or
transformer.

Important: The run-time effect of disabling a step is the same as deleting it. Disabling a
key step or forgeing to re-enable a disabled step or transformer can break
the logic of a service and/or cause the service to fail. Designer allows you to
disable any step or transformer in a flow service, but it is your responsibility
to use this feature carefully.

To disable or enable a flow step or transformer

1. Open the flow service that you want to edit.

2. Do one of the following:

In the editor select the step that you want disable or enable.

In the editor select the MAP step containing transformers that you want to
disable or enable.

3. Right-click the step or transformer and do one of the following:

Select Disable Step to disable the step or transformer.

Select Enable Step to re-enable the step or transformer.

Disabling and Enabling Conditions
When you link variables to each other, you can apply a condition to the link that
connects the variables. At run time, this condition needs to be true for the value of the
source variable to be copied to the target variable. During debugging, you might want
to disable or remove the condition from the link to make sure that Designer properly
copies data between variables. By disabling the condition, you instruct Designer to
ignore the condition placed on the link and automatically execute the link.

Disabling the condition preserves the wrien expression. When you enable the
condition, you do not need to rewrite the expression.

The Pipeline view uses a blue link (line) to indicate that properties (such as conditions
and array indexes) have been applied to the link between variables. Designer retains the
blue color even when you disable the applied condition to remind you that properties
have been set.

To disable or enable a condition placed on a link between variables

1. Open the flow service that you want to edit.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 445

2. In the editor, select the INVOKE or MAP step that contains the link with the
condition you want to disable or enable.

3. In the Pipeline view, select the link with the condition that you want to disable.

4. In the General category of the Properties view, do one of the following:

To disable the condition, set the Evaluate copy condition property to False.

To re-enable the condition, set the Evaluate copy condition property to True.

Modifying the Flow Service Pipeline while Debugging
During debugging, you can modify the contents of the pipeline and submit those
changed values to the next step in the flow service. For example, if you want to see the
effect that different values for a variable have on the rest of the service, you can modify
the values in the pipeline and continue debugging. You can also drop values from the
pipeline. This functionality is useful for debugging.

When modifying the pipeline, keep the following points in mind:

You can only modify the pipeline when a subsequent step in the service exists to
which to pass the pipeline values. You cannot modify the values of the pipeline after
the service ends. However, if you debug the service using the step commands, you
can modify the pipeline values for the next flow step in the service.

You cannot modify the values of unconstrained Objects and Object lists. However,
you can drop them from the pipeline.

You cannot modify the values of recursive documents at the top level. However, you
can expand the document and set values at the individual element level.

When you modify values or drop variables from the pipeline, the changes only apply
to the current debugging session. The service is not permanently changed.

You can only modify or drop existing variables. You cannot add new variables to the
pipeline.

You can load an entirely different pipeline for Designer to pass to the next step in the
flow service.

You can save the contents of the pipeline to a file. You may want to save the results
of specific flow steps to a file to compare with other services or to use in later debug
sessions.

Changing Variable Values
Keep the following points in mind when changing the values of variables while
debugging the service:

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 446

When you modify values in the pipeline, the changes only apply to the current
debugging session. Neither the service nor launch configuration is permanently
changed.

You can only modify existing variables. You cannot add new variables to the
pipeline.

You cannot modify the values of unconstrained Objects and Object lists. However,
you can drop them from the pipeline.

You cannot modify the values of recursive documents at the top level. However, you
can expand the document and set values at the individual element level.

Variables that contain com.wm.util.Table objects appear as document lists in Variables
view.

You can edit rows and columns for String Table and Document List variables.

You can use the step tools to step to the location in the service at which you want
to change the pipeline. You can also set a breakpoint on the flow step at which you
want to change the pipeline values.

You can only change the pipeline for the top-most stack frame in the debug session.

To change the value of variable while debugging

1. Debug the service as described in "Debugging a Flow Service" on page 436.

2. In the debug session, use the step command or a breakpoint to reach the step for
which you want to change variable values in the flow service.

3. In Variables view, right-click the variable whose value you want to change and select
Change Value.

The following table lists where you can find more information about how to update
values based on the data type of the variable.

For this type of variable... See...

String "Specifying a Value for a String Variable" on page 410

String List "Specifying Values for a String List Variable" on page
411

String Table "Specifying Values for a String Table Variable" on
page 413

Document
Document Reference

"Specifying Values for a Document Variable that Has
Defined Content" on page 416

"Specifying Values for a Document Variable with No
Defined Content" on page 417

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 447

For this type of variable... See...

Document List
Document Reference List

"Specifying Values for a Document List Variable" on
page 419

Object "Specifying a Value for an Object Variable" on page
421

Object List "Specifying Values for an Object List Variable" on
page 422

4. Continue debugging the service using the step commands or selecting Run > Resume.

Note: You can also change a variable value by selecting the variable and then
modifying the value in the detail pane.

Dropping Variables
When dropping variables from the pipeline while debugging the service, keep the
following points in mind:

You can only modify the pipeline when a subsequent step in the service exists to
which to pass the pipeline values. You cannot modify the values of the pipeline after
the service ends. However, if you debug the service using the step commands, you
can modify the pipeline values for the next flow step in the service.

When drop variables from the pipeline, the changes only apply to the current
debugging session. The service is not permanently changed.

You can only drop existing variables. You cannot add new variables to the pipeline.

You can only change the pipeline for the top-most stack frame in the debug session.

To drop values from the pipeline while debugging

1. Debug the service as described in "Debugging a Flow Service" on page 436.

2. In the debug session, use the step command or a breakpoint to reach the step for
which you want to drop a pipeline variable.

3. In Variables view, select the variable you want to drop from the pipeline and click
on the Variables view toolbar. Designer removes the variable from Variables view.

4. Continue debugging the service using the step commands or selecting Run > Resume.

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 448

Saving and Restoring the Flow Service Pipeline while
Debugging
Because the pipeline contains the data that a service operates against, the ability to
save and restore the pipeline when you are debugging a service is something you may
frequently want to do. For example, if a service is failing intermiently at run time,
you may want to save the pipeline so you can capture and examine the data that it was
running against after a failure.

Saving the Flow Service Pipeline while Debugging
You can save the pipeline to a file, which you can use to restore the pipeline to its current
state at a later point in time. This is useful when you want to debug another service
against the current set of pipeline values or if you want to restore the pipeline to this
exact state later in the debugging process. There are three ways to save the contents of
the pipeline:

Manually save the contents when you debug a service using Designer.

Automatically save the pipeline at run time using the Pipeline debug property. For
more information about this property, see "Automatically Saving or Restoring the
Pipeline at Run Time" on page 179.

Programmatically save the pipeline at run time by invoking pub.flow:savePipelineToFile
at the point where you want to capture the pipeline. For more information about
using this service, see the webMethods Integration Server Built-In Services Reference.

When you save a pipeline, it is saved in a file in XML format. The file you create can be
used to:

Manually load the pipeline into Variables view while debugging a service.

Automatically load the pipeline at run time using the Pipeline debug property.

Load a default set of input values when creating a launch configuration.

Load a set of input values into the Input dialog box when debugging a service with
Designer.

Dynamically load the pipeline at run time using the pub.flow:restorePipelineFromFile
service.

Note: When using MTOM streaming for SOAP aachments, messageContext
variables and/or XOPObject fields will not be available in the saved pipeline.
A messageContext variable is used by many pub.soap services to hold the SOAP
message on which the service acts. XOPObject fields are Objects that use the
com.wm.util.XOPObject Java wrapper type. For more information about
MTOM Streaming, see the Web Services Developer’s Guide.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 449

Saving the Pipeline to a File while Debugging
When saving the pipeline during a debugging session, keep the following points in
mind:

Only XML-codable variables are saved. This includes, Strings, String lists, String
tables, documents, and document lists. Variables that are not XML codable are not
saved.

Empty variables and null variables are saved.

To save the pipeline to a file while debugging

1. Debug the service as described in "Debugging a Flow Service" on page 436.

2. In the debug session, use the step command or a breakpoint to reach the step for
which you want to save the pipeline.

3. Do one of the following:

To save the pipeline to your local file system, click on the Variables view
toolbar. Specify a location and name for the file in the Save As dialog box. Click
Save.

To save the pipeline to the IntegrationServer_directory \instances
\instance_name \pipeline directory on the machine on which Integration Server
reside, click on the Variables view toolbar. In the Save Pipeline to serverName
dialog box, specify the name for the file containing the pipeline contents.

4. Continue debugging the service using the step commands or selecting Run > Resume.

Restoring the Flow Service Pipeline while Debugging
Restoring a pipeline is useful when you simply want to inspect the values in a particular
pipeline file (perhaps one that contains the pipeline from a failed service). Additionally,
it is useful in many debugging situations. For example, you can use it to replace the
existing pipeline with a different set of values when stepping though a flow service with
the debugging tools.

There are three ways to restore the contents of the pipeline:

Manually load the saved pipeline into the Variables view while debugging in
Designer.

Automatically load the saved pipeline at run time by using the Pipeline debug
property.

Programmatically load a saved pipeline at run time by invoking
pub.flow:restorePipelineFromFile at the point where you want to modify the pipeline. For
more information about using this service, see the webMethods Integration Server Built-
In Services Reference.

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 450

Note: When using MTOM streaming for SOAP aachments, messageContext
variables and/or XOPObject fields will not be available in the saved pipeline.
A messageContext variable is used by many pub.soap services to hold the SOAP
message on which the service acts. XOPObject fields are Objects that use the
com.wm.util.XOPObject Java wrapper type. For more information about
MTOM Streaming, see the Web Services Developer’s Guide.

Loading a Saved Pipeline while Debugging
When you load a pipeline file into Variables view, the contents of the pipeline file
completely replaces the current pipeline. Designer passes the new set of values to the
next step. If you want to merge the contents of the file with the existing pipeline, use the
pub.flow:restorePipelineFromFile service instead and set its merge parameter to “true.”

To load a pipeline file into Variables view while debugging

1. Debug the service as described in "Debugging a Flow Service" on page 436.

2. In the debug session, use the step command or a breakpoint to reach the step for
which you want to load the saved pipeline.

3. Do one of the following:

To load the pipeline from your local file system, click on the Variables view
toolbar. In the Open dialog box, navigate to and select the file. Click Open.

To load the pipeline from the IntegrationServer_directory \instances
\instance_name \pipeline directory on the machine on which Integration Server
reside, click on the Variables view toolbar. In the Load IData from Server dialog
box, specify the name for the file containing the pipeline contents.

4. Continue debugging the service using the step commands or selecting Run > Resume.

Viewing Service Results from a Flow Service Debug Session
When you execute a service by debugging it, Designer displays the results in Results
view. The Results view when debugging a flow service is the same as when running a
service. For more information, see "Viewing Results from Running a Service" on page
425.

Using the Server Log for Debugging
Integration Server maintains a log file that contains information about activity on the
server. By default, Integration Server creates one server log per day. The server log file
resides in the following location:

Integration Server_directory\instances\instance_name \logs

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 451

You can optionally redirect server log messages to the console rather than to a file by
using the –log startup switch with a value of none. For more information about this
switch, see information about starting Integration Server in webMethods Integration Server
Administrator’s Guide.

Content of the Server Log

The server log contains operational and error information that the server’s major
subsystems write to the log. For example, the package subsystem logs information into
server log when it loads and unloads packages; the flow manager records information in
the log when it processes a flow service; the HTTP port records requests that it receives,
and so forth.

Additionally, you can code your service to log information that is useful for debugging.
For information, see "Writing Information to the Server Log" on page 452.

Note: The server logs exceptions thrown by individual services, to the error log. For
more information about using the error log, see webMethods Integration Server
Administrator’s Guide.

Debug Level Defines What and How Much the Server Logs

To define the type and amount of information that the server logs, set the server’s debug
level. The debug level seings range from Off, indicating you want the server to log
nothing, to Trace, indicating that you want the server to maintain an extremely detailed
log.

Use the Integration Server AdministratorSettings > Logging > View Server Logger Details
screen to set debug levels that Integration Server uses for each of its facilities. When
debugging an issue, you can use this screen to increase the logging level for a specific
Integration Server facility. For example, you might set the logging level for the Services
facility to Trace.

When you have not defined a specific debug level for a facility, Integration Server uses a
default debug level. You configure the default by seing the logging level for the Default
facility on the Settings > Logging > View Server Logger Details screen. Integration Server also
uses the Default facility seing as the value of the wa.debug.level server configuration
parameter. If you do not define a default debug level, Integration Server uses Info, which
means the server logs informational, warning, error, and fatal messages.

When you start the server, you can temporarily override the default debug level by
specifying an alternative level on the startup command. This seing remains in effect
until you shutdown and restart the server.

For more information about the available debug levels, seing the debug level, and
configuring server logging, see webMethods Integration Server Administrator’s Guide.

Important: Because debug levels above Info can produce lots of detail and can quickly
generate an extremely large log file, do not run your server at the Debug or
Trace levels except for brief periods when you are aempting to troubleshoot
a particular issue.

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 452

Writing Information to the Server Log
Integration Server provides built-in services that allow you to write information to the
server log at run time. These can be useful during debugging because you can use them
to build signals that indicate whether certain segments of code were executed. You can
also use them to record the run-time value of a specific variable.

There are two ways to write information to the server log at run time. You can:

Write an arbitrary message to the log using pub.flow:debugLog.

Dump the contents of the entire pipeline to the log using pub.flow:tracePipeline.

Writing an Arbitrary Message to the Log
To write an arbitrary message to the server log, invoke the pub.flow:debugLog built-in
service. You can invoke pub.flow:debugLog from a flow service or a coded service (such as
a Java service). When this service executes, it inserts a text string that you specify into
the server log. You might use it to post progress messages at certain points in a service
(to indicate whether certain segments of code were executed) or to record the value of a
particular variable in the log file so you can examine it after the service executes. In the
following example, the last two messages are progress messages that were posted to the
server log using pub.flow:debugLog.
2012-03-28 16:56:12 EDT [ISS.0028.0005C] Loading LogDemo package
2012-03-28 16:56:53 EDT [ISC.0081.0001E] New LogDemo:demoService
2012-03-28 16:57:56 EDT [ISP.0090.0004C]
begin database update
2012-03-28 16:57:56 EDT [ISP.0090.0004C]
database update completed

To use pub.flow:debugLog to write an arbitrary message to the server log

1. In your service, invoke pub.flow:debugLog at the point where you want the service to
write a message to the server log.

2. Set the following parameters:

Key Description

message A String that defines the message that you want wrien to
server log. This can be a literal string. However, for debugging
purposes, it is often useful to link this parameter to a pipeline
variable whose run-time value you want to capture.

function (Optional) A String that identifies your service as the
component that posted the message to the log. When
displaying the server log, the server lists the String you specify
in the second column of the message.

M
Odd Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 453

Key Description

Assigning a value to function makes it easier for you to locate
your service’s message when you examine the server log.
Although you can assign a text string of any length to function ,
the server displays only the first six characters.

If you do not assign a value to function , debugLog omits the
label.

level (Optional) A String specifying the debug levels under which
this message is to be recorded in the log. If the server is
running at a debug level lower than the value set in level , the
message is not recorded in the log file.

If you do not specify level , the Fatal level is assumed, which
means that the message is recorded in the log file regardless
of which debug level the server is running at. For more
information about debug level, see webMethods Integration
Server Administrator’s Guide.

3. Save the service. (If you are using your own IDE, you will need to recompile the
service, reregister it on Integration Server, and reload its package.)

4. Execute the service.

For additional information about pub.flow:debugLog, see the webMethods Integration Server
Built-In Services Reference.

Dumping the Pipeline to the Log
Sometimes when you are debugging a service, it is useful to obtain a snapshot of
the entire pipeline at a certain point in the service. You can do this by invoking
pub.flow:tracePipeline, which puts a copy of the current pipeline in server log. You can
invoke pub.flow:tracePipeline from a flow service or a coded service (such as a Java service).

The following example shows the start and end pipeline that was wrien to the server
log with pub.flow:tracePipeline.
2012-03-28 17:37:10 EDT [ISP.0090.0001C] --- START tracePipeline
[3/28/12 5:37 PM] ---
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 0 filename = D:\Program Files\
Software AG\IntegrationServer\packages\Examples\pub\goes\catalogue.xml
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 0 Buyer = Caroline Wielman
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 0 Address =>
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 Street1 = 15788 Cedar Avenue
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 City = Apple Valley
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 State = MN
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 postalCode = 55124
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 0 Order =>
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 Date = 5/25/2002
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 Items[0] =>
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Code = 965003
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Description = MaxGear D LtWt D

M
Even Header

Debugging Flow Services

webMethods Service Development Help Version 9.10 454

Carabiner
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Qty = 300
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Price = 8.50
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Total = 2800
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 Items[1] =>
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Code = 896301
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Description = Hikes 10.5x50
Standard Rope
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Qty = 50
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Price = 175
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Total = 8750
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 1 Items[2] =>
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Code = 965007
2012-03-28 17:37:10 EDT [ISP.0090.0008C] 2 Description = MaxGear D Quick
Lock Carabiner
2002-05-28 17:37:10 EDT [ISP.0090.0008C] 2 Qty = 500

To use pub.flow:tracePipeline, take the following general steps

1. In your service, invoke pub.flow:tracePipeline at the point where you want the service to
dump a copy of the pipeline to the server log.

2. Set the following parameters:

Key Description

level (Optional) A String specifying the debug levels under which
the pipeline is to be wrien to the log. If the server is running
at a debug level lower than the value set in level , the pipeline
is not wrien to the log file.

If you do not specify level , Fatal is assumed, which means that
the pipeline is wrien to the log file regardless of which debug
level the server is running at. For more information about
debug level, see webMethods Integration Server Administrator’s
Guide.

3. Save the service. (If you are using your own IDE, you will need to recompile the
service, reregister it on Integration Server, and reload its package.)

4. Execute the service. For additional information about pub.flow:tracePipeline, see the
webMethods Integration Server Built-In Services Reference.

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 455

22 Debugging Java Services

■ About Debugging a Java Service while its Class Runs in Designer .. 456

■ About Test Harnesses .. 457

■ About Java Application Launch Configuration ... 459

■ How to Suspend Execution of a Java Class while Debugging .. 462

■ Debugging a Java Service while its Class Runs in Designer .. 462

■ About Debugging a Java Service while it Runs in Integration Server 465

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 456

Designer provides the ability to debug a Java service by debugging the Java class
associated with the Java service maintained in the Service Development Project.

About Debugging a Java Service while its Class Runs in
Designer
In Designer, the primary way to debug a Java service is to debug the Java class
associated with the Java service that Designer maintains in a Service Development
Project.

Note: As a secondary method of debugging a Java service, you can debug a Java
service that is running in Integration Server. This method requires setup on
the Integration Server to change the way the server starts and that can affect
the server’s performance. For more information, see "About Debugging a Java
Service while it Runs in Integration Server " on page 465.

The functionality that Designer provides to debug a Java service by debugging its
Java class is an extension of the Eclipse Java Development Tools (JDT) debugger. The
JDT debugger acts on Java classes that are in the local workspace; it cannot debug the
Java service in Integration Server. As a result, to debug a Java service, you use the
JDT debugger to debug the service’s Java class that Designer maintains in a Service
Development Project. Debugging the Java class might produce different results than
when the Java service executes in Integration Server, depending on differences in
JVM system properties, date/time, time zone information, locale, language seings,
encodings, etc.

When debugging a Java service in this way, you can debug the primary method
and shared code of the Java class that represents the Java service. To debug the Java
class, you launch it in debug mode and use the JDT debugger to suspend/resume the
execution of the Java class, inspect variables, and evaluate expressions.

The actions you take to use the debugger are:

Optionally set breakpoints to identify locations where you want the debugger
to suspend execution when running the Java class in debug mode. For more
information, see "How to Suspend Execution of a Java Class while Debugging" on
page 462.

Generate a test harness, which is a Java class that you generate for the Java service
you want to debug. The logic that Designer generates for the test harness sets up the
inputs, invokes the Java class, and displays the outputs.

Optionally create a Java Application launch configuration to configure seings for
debugging the Java class. For example, you might want to set JVM arguments to
match the seings Integration Server uses so that your test more closely matches
how the Java service would execute in Integration Server. For more information,
see "About Java Application Launch Configuration" on page 459. If you do not

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 457

create a launch configuration, Designer creates one on the fly and saves it locally in
an unexposed location of your workspace.

Launch the test harness in debug mode. The test harness prompts for input values and
then launches the Java class you want to debug in debug mode.

By default, the debugger executes the Java class using the JRE in the Service
Development Project where the Java service resides. You can change the Service
Development Project’s JRE by updating the project’s Java Build Path property. You
can also specifically identify the JRE to use for debugging by identifying the JRE in
the Java Application launch configuration.

If the Java class being debugged invokes a service, the invoked service runs in
Integration Server. The debugger treats the statement to invoke a service like any
executable line of code in the Java class; that is, you can Step Over it and see results
from it. You cannot use the debugger to Step Into the invoked service.

If the debugger suspends execution of the service, Designer switches to the Debug
perspective. The Debug view will show the test harness class and be positioned
at the statement where the execution was suspended. You can use the other views
in the Debug perspective to inspect the state of the Java service to this point. You
can use the actions in the Debug view toolbar to resume the execution. For more
information about suspending execution, see "How to Suspend Execution of a Java
Class while Debugging" on page 462.

When the execution of the Java service completes, the debugger displays a window
that contains the service results.

About Test Harnesses
A test harness is a Java class that you generate for a Java service you want to debug.

To debug a Java service in Designer, you use the Java Development Tools (JDT)
debugger, which acts on Java classes in the local workspace. As a result, when
debugging a Java service you actually debug the copy of a service’s Java class that
Designer maintains in a Service Development Project. However, to do so, you first need
to generate a test harness for the Java class. The test harness sets the input parameters for
the Java class you are debugging and then launches the Java class in debug mode.

When you generate a test harness, Designer stores the Java class for the test harness in
the same Service Development Project and Java package where the Java class for the
service being debugged resides. Designer uses the following format to name the test
harness Java class:

<serviceName >_TestHarness.java

For example, if you generate a test harness for the service named “checkStatus”,
Designer assigns the test harness Java class the name “checkStatus_TestHarness.java”.

When you launch the test harness, by default, it firsts prompts you to supply login
credentials for Integration Server. The test harness must have login credentials so that
it can connect to Integration Server to obtain the service’s input signature. If the Java

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 458

service has an input signature, the test harness then prompts you to supply input values.
You can type in values or load values from a file. After the test harness has the input
values, it executes the Java class you want to debug in debug mode. You can use the
debugger to debug your Java class. When execution of the Java class completes, the test
harness displays the outputs from the Java class in a popup window.

You can update the logic that Designer generates for a test harness to make the following
modifications:

Change the Integration Server to which the test harness connects.

By default, the test harness aempts to connect to the Integration Server used to
create the test harness. You can specify a different Integration Server.

Update the test harness to connect to Integration Server using SSL.

By default, the test harness does not use SSL when connecting to Integration Server.
You can uncomment logic in the generated test harness so that it uses SSL.

Provide a user name and password for the Integration Server.

Provide Integration Server credentials to prevent the test harness from prompting
for the user name and password. This is useful if you plan to launch the test harness
several times to debug a Java class. However, if you want to share the test harness
with other users, do not supply your user name and password because this presents
a security risk.

For instructions for how to generate a test harness, see "Creating a Test Harness" on page
458.

Creating a Test Harness
Use the following procedure to create a test harness for a Java class that you want to
debug.

To create a test harness

1. In the Package Navigator view, right click the Java service for which you want to
generate a test harness and select Generate Code.

Alternatively, if the Java service is open in the editor, you can right click in the editor
and select Generate Code.

2. In the Code Generation window, select For debugging this service and click Finish.

Designer generates the test harness with a single main primary method and displays
it in the JDT debugger editor.

3. Optionally update the Integration Server to which the test harness will connect to
obtain the input parameters of the Java class to debug.

a. Locate the following statements in the test harness Java class:
// Connect to server - edit for alternate server
String server = "serverHost:portNumber "; //$NON-NLS-1$

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 459

By default, the code identifies the Integration Server associated with the Java
service for which you generated the test harness.

b. Replace the host name and port number with the host name and port number of
an alternate Integration Server.

4. If you want the test harness to use SSL when connecting to Integration Server:

a. Locate the following statements in the test harness Java class:
// To use SSL:
//
// context.setSecure(true);
// Optionally send authentication certificates
//
// String cert = "c:\\myCerts\\cert.der"; //$NON-NLS-1$
// String privKey = "c:\\myCerts\\privkey.der"; //$NON-NLS-1$
// String cacert = "c:\\myCerts\\cacert.der"; //$NON-NLS-1$
// context.setSSLCertificates(cert, privKey, cacert);

b. Remove the // from the context.setSecure(true) statement to uncomment it.

c. If you want to send authentication certificates, update the certificates information
and remove the // from the lines to uncomment them.

5. If you want to provide Integration Server credentials:

a. Locate the following statements in the test harness Java class:
// Set username and password for protected services
String username = null;
String password = null;

b. Specify a user name and password on these lines.

Important: If you want to share the test harness with other users, do not supply your
user name and password because this presents a security risk.

6. Select File > Save to save any changes you made.

About Java Application Launch Configuration
When debugging a Java class, the Java Development Tools (JDT) debugger requires
a Java Application launch configuration. If you do not create one, Designer will
automatically create one on the fly and save it locally. You can use this configuration
from one session to the next. In fact, Designer reuses this configuration every time you
debug the service without creating a launch configuration.

You cannot use the same launch configuration that you use to run a Java service. To run
a Java service, you create an IS Service launch configuration, which defines seings for
how the service is to run on Integration Server. For debugging Java services, you need
a Java Application launch configuration, which defines seings for how the Java class
executes in the Service Development Project.

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 460

The following lists the tabs available when creating a Java Application launch
configuration and the type of information you specify on each:

Main tab. Specify the name of the Service Development Project that contains the Java
class you want to debug and the fully-qualified name of the Java class.

Select the Stop in main check box if you want the debugger to suspend execution
in the main method when you launch the Java class in debug mode. For more
information, see "How to Suspend Execution of a Java Class while Debugging" on
page 462.

Arguments tab. Specify Program and JVM arguments to use when debugging. You
might want to set JVM arguments to match the seings Integration Server uses
so that your test more closely matches how the Java service would execute in
Integration Server.

JRE tab. Specifies the JRE to use when executing the Java class in debug mode. By
default, it is set to the JRE in the Service Development Project. You can specify an
alternative JRE to use when debugging.

Classpath tab. Specifies the location of class files to use when executing the Java class
in debug mode.

Source tab. Specifies the location of source files to display in the Debug view. If you
want to debug the source associated with any third-party jar files, you can specify
them on this tab.

Environment tab. Specifies the environment variable values to use when executing the
Java class in debug mode.

Common tab. By default, Designer saves launch configurations to an unexposed
location of the workspace. However, you might want to share launch configurations
with other developers. You can specify that Designer save a launch configuration to a
shared file using the Shared file option and providing a workspace location in which
to save the file.

Creating a Java Application Launch Configuration
Use the following procedure to create a Java Application launch configuration.

To create a Java Application launch configuration

1. In Designer: Run > Debug Configurations

2. In the Debug Configurations dialog box, select Java Application and click to add a
new launch configuration.

3. On the Main tab in the Project field, specify the Service Development Project that
contains the test harness and the Java class that you want to debug.

4. In the Main Class field, specify the fully-qualified name for the test harness Java class.

5. Select the Stop in main check box if you want the debugger to suspend execution in
the main method of the test harness when you launch it in debug mode. For more

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 461

information, see "How to Suspend Execution of a Java Class while Debugging" on
page 462.

6. On the JVM tab, optionally specify any Program or JVM arguments you want to use.

7. On the JRE tab, specify whether to use the default JRE or an alternate JRE that you
identify.

To use the default JRE, that is the JRE in the Service Development Project, select
Project JRE.

To identify an alternate JRE, select Alternate JRE and click Installed JREs to select
the JRE to use.

8. On the Classpath tab, optionally add, re-arrange, or remove the class files to use when
executing the Java class in debug mode.

9. On the Source tab, optionally update the source lookup path.

10. On the Environment tab, optionally add environment variables.

11. On the Common tab, if you want to share this launch configurations with other
developers, select the Shared file check box and specify a workspace location in which
to save the configuration.

12. Click Apply.

13. Click Debug to immediately launch the test harness Java class in debug mode using
this launch configuration, or click Close.

Updating a Java Application Launch Configuration
You can update any existing Java Application launch configuration, including those
that Designer created on the fly. Use the following procedure to update an existing Java
Application launch configuration.

To update a Java Application launch configuration

1. In Designer: Run > Debug Configurations

2. In the Debug Configurations dialog box, under Java Application select the launch
configuration you want to edit.

The panels on the right display the information for the selected launch configuration.

3. Update the information for the launch configuration. For more information on what
to specify, see "Creating a Java Application Launch Configuration" on page 460.

4. Click Apply.

5. Click Debug to immediately launch the test harness Java class in debug mode using
this launch configuration, or click Close.

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 462

How to Suspend Execution of a Java Class while Debugging
When you launch a Java class in debug mode, it runs until the execution is suspended.
When the execution is suspended, Designer switches to the Debug perspective, allowing
you to use the views in the perspective to inspect the state of the Java class. If the
execution is never suspended, the Java class runs from beginning to end without
switching to the Debug perspective, and as a result, never allowing you to inspect the
state of the Java class in the middle of execution.

To suspend the Java class, you must do at least one of the following before launching the
Java class in debug mode:

Set breakpoints in the Java class.

To set breakpoints, open the Java service in the Java service editor and double click
in the left margin next to the executable lines of code where you want breakpoints.

Designer displays the breakpoint enabled icon () in the margin.

When you launch the Java class in debug mode and the debugger encounters a
breakpoint, it suspends execution. At that time, if the Debug perspective is not
already in use, Designer switches to it. The Debug view will show the test harness
class and be positioned at the statement for which you created the breakpoint.

Select “Stop in main” in the Java Application launch configuration.

Create or update the Java Application launch configuration that you want to use for
debugging the Java class so that the Stop in main check box is selected on the Main tab.

When this option is selected and you launch the test harness in debug mode, the
debugger suspends execution at the first executable line in the main method of the
test harness, and Designer switches to the Debug perspective. The Debug view
will show the test harness class and be positioned at the first statement in the main
method. Also, the test harness will be opened in the Java editor, and it will be
positioned to the first executable line in the main method.

When a Java class is suspended, use the views in the Debug perspective to inspect the
state of the Java class and the actions in the Debug view toolbar to resume the execution.
For more information about using the debugger, see the Eclipse Java Development User
Guide.

Debugging a Java Service while its Class Runs in Designer
Use the following procedure to debug a Java service by debugging the Java class in the
Service Development Project.

Note: As a secondary method of debugging a Java service, you can debug a Java
service that is running in Integration Server. This method requires setup on
the Integration Server to change the way the server starts and that can affect

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 463

the server’s performance. For more information, see " About Debugging a Java
Service while its Class Runs in Designer " on page 456.

To debug a Java service

1. Open the Java service you want to debug by double clicking the service in the
Package Navigator view.

2. Optionally, set breakpoints in the primary method of the Java service.

To do so, in the Java service editor double click in the left margin next to the
executable lines of code where you want breakpoints. Designer displays the
breakpoint-enabled icon () in the margin. For more information, see “"How to
Suspend Execution of a Java Class while Debugging" on page 462 and the Eclipse
Java Development User Guide.

3. Generate the test harness. For instructions, see "Creating a Test Harness" on page
458.

4. Optionally, create a Java Application launch configuration. For instructions, see
"Creating a Java Application Launch Configuration" on page 460“0.

If you do not create a Java Application launch configuration, Designer will create one
automatically when you perform the next step.

5. Open the test harness in the editor, or select it in the Project Explorer view or
Package Explorer view, and then select Run > Debug As > Java Application.

If you have no launch configuration for this test harness, Designer creates one
and uses it

If you have a single launch configuration for this test harness, Designer uses it.

If you have multiple launch configurations for this test harness, Designer
prompts you to select the launch configuration you want to use.

6. If you did not update the test harness to provide Integration Server login credentials,
the test harness prompts you for the credentials. Specify the user name/password to
connect to Integration Server and click OK.

7. If the Java service being tested has declared input parameters, the test harness
displays an Enter Input for serviceName dialog box to prompt you for input values. To
specify inputs, do one of the following:

Type values into the Values column. For more information, see "Entering Input
for a Service" on page 408.

To load the input values that match the structure of the service input signature
from a file, click Load to locate and select the file containing the input values.

To load input values from a file and replace the service input signature with the
structure and data types in the file, click Load and Replace.

For more information about loading inputs from a file, see "Loading Input Values"
on page 423.

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 464

8. Optionally, click Save Inputs to save the input values that you have specified so
that you can use them to load input values in the future. For more information, see
"Saving Input Values" on page 423.

9. Click OK to start launch the Java class in debug mode.

The debugger executes the Java class. If you have set breakpoints or used the Stop in
main option, the debugger suspends execution where you specified. If execution is
suspended, Designer switches to the Debug perspective. For more information, see
"How to Suspend Execution of a Java Class while Debugging" on page 462.

10. If execution suspends, use the views in the Debug perspective to inspect the state of
the Java service and the actions in the Debug view toolbar to resume the execution.
For more information about using the debugger, see the Eclipse Java Development User
Guide.

When the execution ends, Designer displays the Output for serviceName window with
the service results.

11. In the Output for serviceName window, optionally click Save Inputs to save the service
results to a file.

This might be useful if you are testing another service that takes the results of this
service as input. When debugging the next service you can load the results as input
to execute that service.

12. Click OK to close the Output for serviceName window.

Viewing Service Results from Debugging a Java Service
When the Java Development Tools (JDT) debugger completes execution of a Java class
that was launched in debug mode, the test harness obtains the outputs from the Java
class and displays them in the Output for serviceName window. Designer does not display
the results in the Results view.

In the Output for serviceName window, you can click Save Inputs to save the service results
so that you can load them as inputs when running or debugging another service. This
might be useful if you are testing another service that takes the results of this service as
input.

To view service results

In the Output for serviceName window, you can click Save Inputs to save the service
results so that you can load them as inputs when running or debugging another
service. This might be useful if you are testing another service that takes the results
of this service as input.

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 465

About Debugging a Java Service while it Runs in Integration
Server
As an alternative to debugging a Java service by using a test harness and debugging
the local Java class in the Service Development Project, you can set up your Integration
Server so that you can debug a Java service remotely. That is, use the features of
Designer to debug a service that is running in Integration Server.

To debug a Java service using this method, you need to:

For Integration Server version 9.7 or later, update and run startDebugMode.bat.
For more information, see "Seing Up Integration Server Version 9.7 or Later for
Remotely Debugging a Java Service" on page 466.

For Integration Server version 9.0, 9.5.x, or 9.6, update the Integration Server
setenv.bat/sh file to enable a debug port. For more information, see "Seing Up
Integration Server Version 9.0, 9.5.x, or 9.6 for Remotely Debugging a Java Service"
on page 467.

Create a Java project in Designer from an existing source, which is the IS package
in Integration Server. For more information, see "Creating a Java Project for an IS
Package in Designer " on page 468.

Create a Remote Java Application launch configuration to use when debugging the
Java service. For more information, see "Creating a Remote Java Application Launch
Configuration" on page 469.

Open the Java service in Designer to set breakpoints and then execute it in debug
mode.

Important: Never remotely debug a Java service that is running on your production
Integration Server. You should always use a development system.

Benefits of Debugging Java Services Running in Integration Server
The benefit of debugging a Java service in this way is that because the service is running
in Integration Server, you can mimic the production environment more closely. There
might be times when you cannot reproduce an issue when debugging using the Java
class in the Service Development Project. In this situation, you can aempt to remotely
debug the Java service.

Drawbacks of Debugging Java Services Running in Integration
Server
The drawbacks of debugging a Java service that is running in Integration Server are:

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 466

It requires more manual setup both in Integration Server and in Designer.

If Integration Server and Designer run on different machines:

You must logically map a drive from Designer to the Integration Server. For more
information, see "Creating a Java Project for an IS Package in Designer " on page
468.

If you use a firewall, you might need to open a firewall port to use while
debugging. For more information, see either "Seing Up Integration Server
Version 9.7 or Later for Remotely Debugging a Java Service" on page 466 or
"Seing Up Integration Server Version 9.0, 9.5.x, or 9.6 for Remotely Debugging a
Java Service" on page 467.

If you set breakpoints in a Java service, the execution suspends every time you
execute the Java service, whether you are debugging it from Designer, running it
from Integration Server Administrator, or running it from an IS client.

Running Integration Server with the debug port enabled degrades the server’s
performance.

Setting Up Integration Server Version 9.7 or Later for Remotely
Debugging a Java Service
When using Designer to debug a Java service that is running in Integration Server
version 9.7, you can set the port number and run the startDebugMode.bat/sh file to
connect to a debug port.

To configure Integration Server version 9.7 or later for remotely debugging a Java service

1. Shut down Integration Server.

2. If you need to change the port number, perform the following:

a. Open the startDebugMode.bat/sh file in a text editor. You can find the
startDebugMode.bat/sh file in the following location:

Software AG_directory\profiles\IS_instance_name \bin

b. Locate and change the DEBUG_PORT property to specify the port on which the
server should listen for the debugger to aach. The default is 10033.

c. Save your changes and close the startDebugMode.bat/sh file.

3. If Integration Server and the debugging tool are on different machines and you
require a firewall port, open a firewall port for the debug port.

4. Run startDebugMode.bat/sh.

Integration Server logs the following on your console:
"Debug enabled (portNumber)"
Listening for transport dt_socket at address: portNumber

Integration Server restarts.

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 467

Setting Up Integration Server Version 9.0, 9.5.x, or 9.6 for Remotely
Debugging a Java Service
When using Designer to debug a Java service that is running in Integration Server
version 9.0, 9.5.x, or 9.6 and later, make sure the Integration Server debug port is enabled
at start up. You enable the debug port by updating the Integration Server setenv.bat (on
Windows) or setenv.sh (on UNIX/Linux) file.

Important: Before performing the following procedure, make a backup copy of your
setenv.bat/sh file.

To set up Integration Server 9.0, 9.5.x, or 9.6 for remotely debugging a Java service

1. Shut down Integration Server.

2. Open the .bat/sh file in a text editor. You can find the setenv.bat/sh file in the
following location:

On versions 9.0 to 9.5.x:

IntegrationServer_directory \bin

On version 9.6:

IntegrationServer_directory \instances\instance_name \bin

3. Locate and change the DEBUG_ENABLED property to true.

4. If you want to change the port number, locate and change the DEBUG_PORT
property. The default is 9191.

5. Save your changes and close the setenv.bat/sh file.

6. If Integration Server and Designer are on different machines, if required, open a
firewall port for the debug port.

7. If you are running Integration Server as a service, you must update the service for
the changes in the setenv.bat file to take effect.

To update the service, open a command window, navigate to the following location:

On versions 9.0 to 9.5.x:

Integration Server_directory\support\win32

On version 9.6:

Integration Server_directory\instances\instance_name \support\win32

8. Run this command:

installSvc.bat update

9. Restart Integration Server.

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 468

Integration Server logs the following on your console:
"Debug enabled (portNumber)"
Listening for transport dt_socket at address: portNumber

Creating a Java Project for an IS Package in Designer
In Designer, you need to create a Java project for the IS package that contains the Java
service that you want to debug. This allows you to edit the Java service from Designer
to set breakpoints. You set breakpoints to suspend the execution of the Java service
during debugging, allowing you to inspect the state of the Java service in the middle of
execution.

Note: When opening a remote Java service in Designer, only add breakpoints; do
not make other edits. To edit a Java service, follow the procedure described in
"Editing an Existing Java Service" on page 320.

When creating the Java project in Designer, you create it from an existing source, which
is the IS package on Integration Server.

If your Integration Server runs on a different machine than Designer, before performing
the following procedure, map a logical drive from the machine on which Designer is
running to the Integration Server machine that contains the IS package. To map a drive
from Windows Explorer, use Tools > Map Network Drive. The mapped logical drive should
be a shared drive that allows you to access the IS package. You can find IS packages in
the following directory on the Integration Server machine:

IntegrationServer_directory \packages

To create a Java project for an IS package

1. Ensure Designer is using the Java perspective. If not, switch to it by selecting Window
> Open Perspective > Java.

2. Select File > New > Java Project.

3. In the Project name field, type the name of the IS package that contains the Java
service you want to debug.

4. Clear the Use default location check box.

5. Click Browse adjacent to the Location field. Navigate to and select the IS package that
contains the Java service you want to debug. You can locate the IS packages in the
following directory:

Integration Server_directory\packages

Note: If your Integration Server runs on a different machine than Designer, to
access the directory containing the IS package when you click Browse, use
the logical drive that you mapped before starting this procedure.

6. Click Next.

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 469

7. In the New Java Project window, select the Libraries tab.

8. Click Add External Jars and add the following jar files:

Integration Server_directory\lib\wm-isserver.jar

Software AG_directory\common\lib\wm-isclient.jar

9. Click Finish.

Creating a Remote Java Application Launch Configuration
To remotely debug a Java service on Integration Server from Designer, you need a
Remote Java Application launch configuration that identifies the Integration Server
debug port. After you create the launch configuration, you can then use it when
executing the Java service from Designer, accessing Integration Server via the debug
port.

When you execute the Java service in this way, if you have breakpoints set in the service,
when execution suspends, you can use the Debug perspective to inspect the state of the
Java service in the middle of execution.

Use the following procedure to create a Remote Java Application launch configuration.

To create a Remote Java Application launch configuration

1. In Designer: Run > Debug Configurations

2. In the Debug Configurations dialog box, select Remote Java Application and click to
launch configuration.

3. In the right panel in the Name field, type a name for the launch configuration.

4. On the Connect tab in the Project field, specify the Java project you created for IS
package that contains the Java service you want to debug.

5. In the Connection Type field, select Standard (Socket Attach).

6. In the Host field, specify the name of remote Integration Server.

7. In the Port field, specify the port number of the Integration Server debug port that
you defined.

8. Click Apply.

9. Click Close.

Debugging a Java Service while it Runs in Integration Server
Before you can remotely debug a Java service, complete the following setup:

For Integration Server version 9.7 and later, modify and run the
startDebugMode.bat/sh file. For more information, see "Seing Up Integration Server
Version 9.7 or Later for Remotely Debugging a Java Service" on page 466.

M
Even Header

Debugging Java Services

webMethods Service Development Help Version 9.10 470

For Integration Server version 9.6, 9.5.x, and 9.0, update the setenv.bat/sh file. For
more information, see "Seing Up Integration Server Version 9.0, 9.5.x, or 9.6 for
Remotely Debugging a Java Service" on page 467.

Create a Java project in Designer for the IS package containing the Java service you
want to debug. For more information, see "Creating a Java Project for an IS Package
in Designer " on page 468.

Create a Remote Java Application launch configuration to use when remotely
debugging the Java service. For more information, see "Creating a Remote Java
Application Launch Configuration" on page 469.

After the setup is complete, you can debug the Java service. To do so, open the
remote Java service to set breakpoints. Then run the Remote Java Application launch
configuration, which you created earlier, in debug mode and execute the Java service.
The debug session suspends execution at any breakpoints you set in any of the Java
services in the Java project identified in the launch configuration. In Designer you can
use the Debug perspective to inspect the state of the service execution.

To debug a Java service while it runs in Integration Server

1. Set breakpoints in the remote Java service by performing the following:

a. From the Package Explorer view, expand the Java project you created for the IS
package that contains the Java service you want to debug.

b. Expand the code/source folder to locate the Java service you want to debug.

c. Double click the Java service’s .java file to open the service in the Java editor.

d. To set breakpoints, double click in the left margin next to the executable lines
of code where you want breakpoints. Designer displays the breakpoint enabled
icon () in the margin. For more information, see the Eclipse Java Development
User Guide.

Important: After seing breakpoints, service execution will be suspended every time
the service is executed. That is whether it is executed from Designer,
Integration Server Administrator, or from an IS client.

2. Establish a listener that waits for the Java service to execute by running the launch
configuration in debug mode.

a. In Designer: Run > Debug Configurations.

b. In the Debug Configurations dialog box, under Remote Java Application select the
launch configuration you created for debugging the Java service.

c. In the right panel, click Debug.

3. Execute the service in any way you want. For example, you can:

In Designer in the Package Explorer view, select the Java service and then select
Run As > Runs Service.

M
Odd Header

Debugging Java Services

webMethods Service Development Help Version 9.10 471

Debug a flow service that invokes the Java service. While stepping through the
flow service using the flow service debugger, when the step invokes the Java
service executes, control is transferred to the Remote Java Application debugger.

Invoke the service from an IS client.

4. Switch to Debug perspective by selecting Window > Open Perspective > Debug.

Integration Server suspends the execution where you specified breakpoints. In Designer
you can use the Debug perspective to inspect the state of the Java service. Use the actions
in the Debug view toolbar to resume the execution. For more information about using
the views in the Debug perspective, see the Eclipse Java Development User Guide.

M
Even Header

webMethods Service Development Help Version 9.10 472

M
Odd Header

Working with REST

webMethods Service Development Help Version 9.10 473

23 Working with REST

■ Creating a REST Resource ... 474

■ About the REST Resource Folder ... 475

M
Even Header

Working with REST

webMethods Service Development Help Version 9.10 474

REST (Representational State Transfer) is an architectural style that requires web
applications to support the HTTP GET, POST, PUT, and DELETE methods and to use a
consistent, application-independent interface. Integration Server can act as a REST server
or a REST client.

When Integration Server acts as a REST client, Integration Server sends specifically
formaed requests to the REST server.

For Integration Server to act as a REST server, it must host services that perform the
GET, PUT, POST, and DELETE functions. These services perform functions that are
specific to your application. At a minimum, these services must:

Be located in a REST resource folder whose fully qualified name is unique across the
entire Integration Server namespace.

Be named _get, _put, _post, _delete, or _default.

Accept certain predefined input parameters that are passed in through the REST
request.

Note: While the services _get, _put,_post, _delete, or _default might appear to be regular
services, it is the naming convention and location of the services that instruct
Integration Server to treat them as a REST resource.

When Integration Server acts as a REST client, Integration Server sends specifically
formaed requests to the REST server.

Note: For more information about working with REST services in Integration
Server, see the REST Developer’s Guide.

Creating a REST Resource
You can use Designer to generate a REST resource automatically, specifically the REST
resource folder, the flow services that correspond to HTTP methods, and, if selected, the
_default flow service. When Designer generates the REST resource folder and services,
Designer assigns each service the required names and creates an input signature that
accepts the predefined parameters for a REST request.

Keep the following points in mind when using Designer to create a REST resource:

The REST resource name must be unique across the entire Integration Server
namespace. That is the fully-qualified name of the REST resource must be unique on
the Integration Server.

You can select the HTTP methods for which you want Designer to create a service.

You can instruct Designer to create a _default service to handle the HTTP methods for
which there is not a specific service.

M
Odd Header

Working with REST

webMethods Service Development Help Version 9.10 475

The format of the request URI depends on the location of the REST resource. For
more information about the format of the request URI, see the REST Developer’s
Guide.

To create a REST resource

1. In the Service Development perspective, select File > New > REST Resource.

2. In the New REST Resource dialog box, select the package or folder in which you
want to create the REST resource.

3. In the Rest resource name field, type a name for the REST resource using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. Under HTTP methods, select the check box next to the methods for which you want to
create a separate service. Select the Default check box to create a service that handles
any methods that are not selected.

Note: You can select Default only if at least one of the HTTP methods is not
selected.

6. Click Finish.

Designer creates the REST resource folder and generates services for the selected
HTTP methods.

Notes:

The signatures for the flow services generated by Designer contain only the input
parameters $resourceID and $path which are required by Designer acting as the
REST server. These parameter are optional and can be deleted.

You might delete $resourceID and/or $path if your REST application does not use the
values supplied by those variables.

The _default service also contains a required input parameter named $hpMethod .

After creating the services, you need to modify the service signature to include any
additional input parameters expected by the service and any output parameters
produced by the service.

The services generated by Designer are empty. You must add processing logic to the
generated services.

About the REST Resource Folder
Designer uses the icon to indicate that a folder is a REST resource folder. Prior to
Designer version 9.10, Designer used a regular folder icon for a REST resource folder.
As of version 9.10, Designer uses the icon for a REST resource.

M
Even Header

Working with REST

webMethods Service Development Help Version 9.10 476

When you change the contents of a folder, Designer analyzes the contents of each
existing folder. If the folder contains any child service considered to be a REST resource,
specifically _get, _put, _post, _delete, or _default, Designer changes the regular folder icon to
the REST resource folder icon. However, if a folder contains a _delete service and other
services used with OData, specifically _retrieve, _update, and _insert, Designer does not
change the folder icon to be that of a REST resource folder icon.

Note: If you upgrade to Integration Server version 9.10 or later from a version of
Integration Server prior to 9.10, Designer uses the above logic to convert
regular folders to REST resource folders.

If the contents of a REST resource folder change such that Designer no longer considers
the folder and its contents to be a REST resource, Designer replaces the REST resource
folder icon with the regular folder icon. For example, suppose that a REST resource
folder named topics contains services named _get, _delete, and _default. If you delete all of
the services from topics, Designer uses the regular folder icon for the topics folder.

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 477

24 Working with REST API Descriptors

■ Overview of Creating a REST API Descriptor ... 478

■ Creating a REST API Descriptor ... 479

■ Editing General Information for a REST API Descriptor .. 481

■ Changing the Available MIME Types for a REST API Descriptor .. 483

■ Working with REST Resources in a REST API Descriptor .. 484

■ About REST Definitions ... 491

■ Viewing the Swagger Document for a REST API Descriptor .. 491

■ Mapping Integration Server Data Types to Swagger Data Types .. 491

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 478

A REST API descriptor provides a way of describing the operations provided by
one or more REST resources together with information about how to access those
operations, the MIME types the resources consume and produce, and the expected
input and output for the operations. Fundamentally, a REST API descriptor is composed
of REST resources and information about how to access those resources. Using this
information, Integration Server creates and maintains a Swagger document for the REST
API descriptor. Integration Server generates the Swagger document based on version 2.0
of the Swagger specification.

Note: Documentation for the REST API descriptor assumes back knowledge of
REST concepts and the Swagger specification version 2.0.

Overview of Creating a REST API Descriptor
Creating a REST API descriptor consists of the following general steps.

Stage 1 Creating REST resources.

During this stage, you create the REST resources and services
that you want to expose in the REST API descriptor. For more
information about creating REST resources, see "Creating a REST
Resource" on page 474.

Stage 2 Create a REST API descriptor on Integration Server.

During this stage, you create the REST API descriptor, specifying
information such as supported MIME types, protocols, and
host:port. Additionally, you add REST resources to the REST
API descriptor. Integration Server uses this information in the
Swagger document that it dynamically generates for the REST API
descriptor.

Stage 3 Modify information for the REST resources within the REST API
descriptor.

During this stage, you add or remove REST resources to the REST
API descriptor. You can also specify a path or suffix for a REST
resource to replace the default path and suffix.

Stage 4 Modify the operations for the REST resources in the REST API
descriptor.

During this stage, you can change the MIME types consumed or
produced by a specific operation. You can also review the source
values assigned to parameters and add or remove operation
responses.

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 479

Creating a REST API Descriptor
When you create a REST API descriptor, you select the REST resources that you want to
include. You can also specify the MIME types that can be consumed and produced by
the operations in the REST API descriptor, the supported protocols, and the base path
for the REST API descriptor.

Keep the following in mind when creating a REST API descriptor:

A REST resource must already exist on Integration Server.

A REST API descriptor can include a REST resource with a _default service, however
Integration Server does not create an operation that corresponds to the _default
service.

A REST API descriptor does not support duplicate variable names in the input
parameters or output parameters. The REST API descriptor uses only the first
variable with a particular name and ignores subsequent identically named variables.
For example, if the input parameters include a String variable and a String List
variable named “myField, the REST API descriptor uses only the first occurring
“myField” in the REST definitions. However, if the output parameters also include
a String variable named “myField”, the REST API descriptor includes the output
“myField” in the REST definitions.

To create a REST API descriptor

1. In the Service Development perspective of Designer, select File > New > REST API
Descriptor.

2. In the Create a New REST API Descriptor dialog box, select the folder in which you
want to save the REST API descriptor.

3. In the Element name field, type a name for the REST API descriptor using any
combination of leers, numbers, and the underscore character. For more information
about restricted characters, see "Guidelines for Naming Elements" on page 53.

4. Click Next.

5. In the Specify REST API Descriptor General Details panel, provide the following
information:

In this field... Specify...

Title A title for the application represented by the REST
API descriptor.

Description A description of the application represented by the
REST API descriptor.

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 480

In this field... Specify...

Application Version A version number for the application. The default is
1.0.

Note: The Application Version is not the version of the
Swagger specification.

Host:Port Name The host and port for the Integration Server on
which the application resides in the format: host :port

By default, the REST API descriptor uses the
primary host:port of the Integration Server to which
Designer is connected.

Path The base path for the REST API descriptor. The
default is “/rest”. The path must begin with a
“/” (slash).

The default value for Path is the REST directive
used on the Integration Server to which Designer is
connected. Integration Server obtains this value from
the wa.server.RESTDirective server configuration
parameter.

Consumes Select the MIME types that operations in the REST
API descriptor can consume.

The MIME types you select here apply to all the
operations in the REST API descriptor. However,
you can override the MIME types on a per operation
basis. For more information, see "Changing the
MIME Types for an Operation in a REST Resource"
on page 486.

If you do not see the MIME type you want to use
listed, you can update the list of available MIME
types. For more information, see "Changing the
Available MIME Types for a REST API Descriptor"
on page 483.

Produces Select the MIME types that operations in the REST
API descriptor can produce.

The MIME types you select here apply to all the
operations in the REST API descriptor. However,
you can override the MIME types on a per operation
basis. For more information, see "Changing the

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 481

In this field... Specify...
MIME Types for an Operation in a REST Resource"
on page 486.

If you do not see the MIME type you want to use
listed, you can update the list of available MIME
types. For more information, see "Changing the
Available MIME Types for a REST API Descriptor"
on page 483.

6. Click Next.

7. In the Select the REST Resources panel, select one or more REST resources to include
in the REST API descriptor.

8. Click Finish.

Designer creates the REST API descriptor using the information you provided along
with the selected REST resources.

Editing General Information for a REST API Descriptor
When you create a REST API descriptor, Integration Server uses the general information
that you supplied such as title, path, version, and MIME types to populate the General
tab in the REST API descriptor editor. You can change this information at any time.
Integration Server updates the Swagger document displayed on the Swagger tab
dynamically.

To edit the general information for a REST API descriptor

1. In the Package Navigator view of Designer, open and lock the REST API descriptor
for which you want to edit general information.

2. On the General tab, edit the general information for the REST API descriptor by
changing one or more of the following:

In this field... Specify...

Title A title for the application represented by the REST
API descriptor.

Description A description of the application represented by the
REST API descriptor.

Application Version A version number for the application. The default is
1.0.

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 482

In this field... Specify...

Note: The Application Version is not the version of the
Swagger specification.

Host:Port Name The host and port for the Integration Server on
which the application resides in the format: host :port

By default, the REST API descriptor uses the
primary host:port of the Integration Server to which
Designer is connected.

Path The base path for the REST API descriptor. The
default is “/rest”. The path must begin with a
“/” (slash).

The default value for Path is the REST directive
used on the Integration Server to which Designer is
connected. Integration Server obtains this value from
the wa.server.RESTDirective server configuration
parameter.

Consumes Select the MIME types that operations in the REST
API descriptor can consume.

The MIME types you select here apply to all the
operations in the REST API descriptor. However,
you can override the MIME types on a per operation
basis. For more information, see "Changing the
MIME Types for an Operation in a REST Resource"
on page 486.

If you do not see the MIME type you want to use
listed, you can update the list of available MIME
types. For more information, see "Changing the
Available MIME Types for a REST API Descriptor"
on page 483.

Produces Select the MIME types that operations in the REST
API descriptor can produce.

The MIME types you select here apply to all the
operations in the REST API descriptor. However,
you can override the MIME types on a per operation
basis. For more information, see "Changing the
MIME Types for an Operation in a REST Resource"
on page 486.

If you do not see the MIME type you want to use
listed, you can update the list of available MIME

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 483

In this field... Specify...
types. For more information, see "Changing the
Available MIME Types for a REST API Descriptor"
on page 483.

3. Click File > Save.

Changing the Available MIME Types for a REST API
Descriptor
The MIME types preference determines the list of available MIME types for a REST API
descriptor. The MIME types specified in the preference determine the contents of the
Consumes and Produces fields in the REST API Descriptor wizard, on the General tab in
the REST API descriptor editor, and for an operation on the REST Resources tab.

Note: You can access the MIME types preference by clicking the in the upper
right corner of the General tab in the REST API descriptor editor.

To change the available MIME types

1. In Designer, click Window > Preferences.

2. In the Preferences dialog box, select Software AG>Service Development> REST API
Descriptor.

3. Under MIME types, do one of the following:

To... Do this...

Add a MIME type Click Add. In the Add new MIME type dialog box,
enter the MIME type and click OK.

Edit a MIME type Select the MIME type that you want to edit and click
Edit. In the Edit MIME type dialog box, modify the
selected MIME type and click OK.

Delete a MIME type Select the MIME type that you want to delete and
click Remove.

Restore the default
MIME types

Click Restore Defaults.

4. Click Apply to save your changes to the list of available MIME types.

5. Click OK.

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 484

Working with REST Resources in a REST API Descriptor
After you create a REST API descriptor, you can add more REST resources to the
descriptor, remove REST resource from the descriptor, set a path or suffix for the
resource, and work with the operations in the descriptor.

Adding REST Resources to a REST API Descriptor
You can add additional REST resources to any REST API descriptor. Keep the following
information in mind when selecting REST resources to add to a REST API descriptor:

A REST API descriptor can include a REST resource with a _default service, however
Integration Server does not create an operation that corresponds to the _default
service.

A REST API descriptor does not support duplicate variable names in the input
parameters or output parameters. The REST API descriptor uses only the first
variable with a particular name and ignores subsequent identically named variables.
Note that a variable in the input parameters can have the same name as a variable in
the output parameters.

To add a REST resource to a REST API descriptor

1. In the Package Navigator view, lock and open the REST API descriptor to which you
want to add a REST resource.

2. Click the REST Resources tab.

3. On the REST API descriptor toolbar, click or right-click in the REST Resources
tab and select Add REST Resource.

4. In the Select one or more REST resources to include in the REST API descriptor
dialog box, select one or more REST resources to add to the REST API descriptor and
click OK.

Designer adds the REST resource to the REST API descriptor and adds an operation
for each service that corresponds to an HTTP method.

5. Click File > Save.

Removing REST Resources from a REST API Descriptor
You can remove REST resources form a REST API descriptor. However, a REST API
descriptor must contain at least one REST resource. Designer prevents you from deleting
the last REST resource in a REST API descriptor.

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 485

To remove a REST resource from a REST API descriptor

1. In the Package Navigator view, lock and open the REST API descriptor from which
you want to remove a REST resource.

2. Click the REST Resources tab.

3. Select the REST resource that you want to remove.

4. Click on the REST API descriptor editor toolbar or right-click the selected REST
resource and select Delete.

Designer removes the selected REST resource from the REST API descriptor.

5. Click File > Save.

Setting the Path or Suffix for a REST Resource
You can set the path or suffix used for a REST resource included in a REST API
descriptor.

By default, each REST resource in a REST API descriptor derives its path from
the namespace of the REST resource. For example, if the REST resource is named
myREST.myRESTResource, the path is “/myREST.myRESTResource”. However, you might
not want to expose the namespace of the REST resource in the Swagger document. You
can override the default path with a path that you specify. For example, you could use /
customers/premium or /myPath.

By default, there is no suffix for the REST resources in a REST API descriptor. However,
if you want users who invoke the REST resource to include query parameters, you
can specify that information in the suffix. Integration Server appends the suffix to the
path. For example, if you want the request to invoke a REST resource to include the
$resourceID, specify a suffix of: /{$resourceID}. If you want the request URL to
include the $resourceID and the $path, specify a suffix of /{$resourceID}/{$path}.

If you change the path and/or suffix, make sure that Integration Server can resolve the
resulting resource path. The path must be invokable by Integration Server.

Note: The values that you specify for the path and/or suffix apply only to the REST
resource as it used in this REST API descriptor. It does not affect the same
REST resource used in another REST API descriptor or the REST resource
itself.

To set the path or suffix for a REST resource

1. In the Package Navigator view, lock and open the REST API descriptor for which
you want to specify a path and/or suffix for a REST resource.

2. Click the REST Resources tab.

3. Select the REST resource for which you want to specify a path and/or suffix.

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 486

4. To specify a path for the REST resource, in the Properties view, next to Path, type the
path that you want to use for the REST resource.

If you do not include “/” as the first character in the Path property, Integration Server
adds it in the Swagger document.

5. To specify a suffix for the REST resource, next to Suffix, type the suffix than you want
to use for the REST resource.

6. Click File > Save.

Working with Operations
In a REST API descriptor, each included REST resource lists the supported operations
which can be GET, PUT, POST, and DELETE. Each operation corresponds to a _get, _put,
_post, or _delete service contained in the REST resource. For each operation, Designer
displays the parameters used by the operation and the responses returned by the
operation. Designer also displays a description of the operation which Designer obtains
from Comments tab for the corresponding service. For each operation in a REST API
descriptor, you can do the following:

Change the MIME types that the operation consumes or produces

Review the assigned source of the parameter and change the source if necessary.

Add and remove responses.

Changing the MIME Types for an Operation in a REST Resource
When you create a REST API descriptor, you specify the MIME types that the APIs can
consume and produce. Each REST resource in the REST API descriptor inherits these
MIME types. However, for an individual operation in a REST resource included in a
REST API descriptor, you can select different MIME types that the operations in the
REST resource consume or produce.

Note: The MIME types set for a REST resource operation in a descriptor override the
MIME types set for the parent REST API descriptor. That is, the consumes and
produces MIME types specified for an individual REST resource operation
replace the MIME types specified for the REST API descriptor.

To change the MIME types for an operation in a REST resource

1. In the Package Navigator view, lock and open the REST API descriptor that contains
the REST resource operation which you want to specify MIME types.

2. Click the REST Resources tab.

3. Select the REST resource that contains the operation for which you want to specify
MIME types.

4. Expand the operation for which you want to specify MIME types.

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 487

5. To change the MIME types that the operation can consume, next to Consumes, select
the MIME types that the operation can consume.

If no MIME types are selected, the operation can consume the MIME types listed on
the General tab of the REST API descriptor.

If you do not see the MIME type you want to use listed, you can update the list of
available MIME types. For more information, see "Changing the Available MIME
Types for a REST API Descriptor" on page 483.

6. To change the MIME types that the operation can produce, next to Produces, select
the MIME types that the operation con produce.

If no MIME types are selected, the operation can produce the MIME types listed on
the General tab of the REST API descriptor.

If you do not see the MIME type you want to use listed, you can update the list of
available MIME types. For more information, see "Changing the Available MIME
Types for a REST API Descriptor" on page 483.

7. Click File > Save.

About the Operation Parameters
When you select the Parameters for an operation, Designer displays a list of the input
parameters in the REST resource service that corresponds to the operation. For each
parameter, Designer displays the following information:

Name, which matches the name of the input parameter in the corresponding service.

Source, which indicates the source of the parameters in the incoming request. The
source corresponds to the “in” field for a fixed field in a parameter object as defined
by the Swagger specification. A parameter can have one of the following source
values:

QUERY

HEADER

PATH

FORMDATA

BODY

Designer assigns the parameter a Source value. If an input parameter for a service
is a document or document reference, Designer assigns the parameter a source of
BODY. You cannot change the source of a parameter set to BODY.

Type, which specifies the data type of the parameter. For a mapping of Integration
Server data types to Swagger data types, see "Mapping Integration Server Data
Types to Swagger Data Types" on page 491.

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 488

Description, which provides a description of the parameter. Designer obtains the
description from the Comments property for the parameter in the corresponding
REST resource service.

Required, which indicates whether or not the parameter is required in the input.
Designer obtains this value from the Required property for the parameter in the
corresponding REST resource service.

You can change the name, description, or required values for a parameter by modifying
the parameter in the corresponding REST resource service. However, you can only
change the source for a parameter in the REST API descriptor. Additionally, you can
only change the source if the source value is not set to BODY.

Reviewing and Changing the Assigned Source for an Operation Parameter
Designer assigns each parameter a source. The source value for a parameter indicates
how the input parameter is sent in a request. If an input parameter for a service exposed
as an operation is a document or document reference, Designer assigns the parameter a
source of BODY. A source parameter of BODY cannot be changed. By default, Designer
assigns all other parameters a source of FORMDATA.

When you add a REST resource to a REST API descriptor, you should verify that each
parameter uses the source value that matches the service implementation exposed by the
operation. You can only change the assigned source for a parameter if the source value is
not BODY.

Note: There can only be one BODY parameter in the parameters list for an
operation. If one of the parameter has a source set to BODY, you cannot edit
the source for any of the other parameters listed for the operation.

To review and change the source for a parameter

1. In the Package Navigator view, lock and open the REST API descriptor that contains
the REST resource operation for which you want to change the parameter source.

2. Click the REST Resources tab.

3. Expand the REST resource for which you want to view and change the parameter
source.

4. Expand the operation for which you want to view and/or change the assigned
source.

5. Click Parameters.

Designer displays the parameters for the operation.

6. To change the source for a parameter, click the cell for the parameter in the Source
column and select the source you want to assign to the parameter. You can specify
QUERY, HEADER, PATH, or FORMDATA.

7. Repeat step 6 for each parameter in the operation.

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 489

8. Click File > Save.

About Operation Responses
An operation response is a possible response a client can expect when invoking an
operation in the REST API descriptor. When you add a REST resource to a REST API
descriptor, Designer creates two responses for each operation in the REST resources:

Successful with a returned HTTP status code of 200.

Access Denied with a returned HTTP status code of 401.

You can add or delete operation responses. For example, you might want to have a
response for successful execution of an operation and a separate response for each
known error the operation can return. Designer requires that an operation have at least
one response. If an operation has only one response, it is a best practice to make sure
that the response is for successful execution of the operation.

When an operation returns output, the returned output needs to have some explanation,
such as the returned parameters. In general, Integration Server derives the output from
the output signature of a service corresponding to the REST operation. If a service has
output parameters, Integration Server generates a REST definition that corresponds to
the output signature.

When an operation returns output with the response and the operation has output
parameters, the HTTP status code includes a hyperlink. When clicked, Designer opens
the REST Definitions tab and displays the response document for the operation.

Adding an Operation Response
You can add a response to any operation in a REST resource that is included in a REST
API descriptor.

To add a response to an operation

1. In the Package Navigator view, lock and open the REST API descriptor that contains
the REST resource operation for which you want to add a response.

2. Click the REST Resources tab.

3. Expand the REST resource for which you want to add an operation response.

4. Expand the operation for which you want to add the operation response.

5. Click Responses.

Designer displays the responses for the operation.

6. Click .

7. In the Add Response dialog box, supply the following information:

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 490

In this field... Specify...

Code The HTTP status code that the operation can return

Description Short description of the response.

Return Output Whether or not the operation returns output with the
response. Select one of the following:

True if the operation returns output with the response.

Typically a REST operation returns output for successful
HTTP status code, such as status code of 200.

False if the operation does not return output with the
response. This is the default.

8. Click File > Save.

Removing an Operation Response
You can remove an operation from a response, including any operations that Designer
adds by default. However, each operation must have at least one response. If an
operation has only one response, it is a best practice to make sure that the response is for
successful execution of the operation.

To remove a response from an operation

1. In the Package Navigator view, lock and open the REST API descriptor that contains
the REST resource operation for which you want to add a response.

2. Click the REST Resources tab.

3. Expand the REST resource for which you want to add an operation response.

4. Expand the operation for which you want to add the operation response.

5. Click Responses.

Designer displays the responses for the operation.

6. Click .

Designer deletes the operation response. Designer disables if the operation
contains only one response.

7. Click File > Save.

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 491

About REST Definitions
The REST Definitions tab for a REST API descriptor provides a consolidated view of
the parameters used by the operations for the REST resources included in the REST API
descriptor. The contents of the REST Definitions tab become the definitions object in the
Swagger document.

Integration Server creates a REST definition for each of the following:

Input parameter that is a Document, Document List, Document Reference, or
Document Reference List.

An input signature that includes the above along with one or more scalar
parameters. The REST definition includes the scalar parameters and a reference to
the REST definition created for the Document, Document List, Document Reference,
or Document Reference.

Output parameters returned by an operation.

The REST Definitions tab is read only. For information about REST Definitions
properties, see "REST Definition Properties" on page 1007 and "REST Definition
Parameter Properties" on page 1008.

Viewing the Swagger Document for a REST API Descriptor
Integration Server dynamically generates a Swagger document for the RSET API
descriptor whenever you make or save updates to the REST API descriptor or to the
REST resources that correspond to operations in the descriptor. Designer displays the
Swagger document on the Swagger tab.

To view the Swagger document for a REST API descriptor

1. In the Package Navigator view, open the REST API descriptor for which you want to
view the Swagger document.

2. Click the Swagger tab.

The Swagger document is display only.

Mapping Integration Server Data Types to Swagger Data
Types
Integration Server maps IS data types to Swagger data types as follows:

M
Even Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 492

IS Data Type Swagger Data Types Swagger Data Format

String string

String List string

String Table string

Object string binary

Object List string binary

Document ref

Document List ref

Document Reference ref

Document Reference List ref

java.lang.Byte string byte

java.lang.Boolean boolean

java.util.Date string date

byte[] string byte

java.lang.integer integer int32

java.lang.Short integer int32

java.lang.Long integer int64

java.lang.Double number double

java.lang.Character string

java.math.BigDecimal number double

java.math.BigInteger integer int64

M
Odd Header

Working with REST API Descriptors

webMethods Service Development Help Version 9.10 493

Note: For any parameter that is an array, for the corresponding parameter in the
Swagger document, Integration Server sets the “type” as array.

M
Even Header

webMethods Service Development Help Version 9.10 494

M
Odd Header

Working with OData Services

webMethods Service Development Help Version 9.10 495

25 Working with OData Services

■ Understanding OData Service Terminology ... 496

■ Supported and Unsupported OData Features ... 497

■ Overview of Creating an OData Service ... 498

■ Creating an OData Service .. 499

■ Adding OData Elements to the OData Service ... 501

■ Adding Properties to the OData Elements .. 502

■ Adding Associations to OData Elements ... 503

■ Editing the OData Service ... 503

■ Synchronizing the External Entity Type ... 504

■ How Integration Server Processes an OData Service Request .. 504

■ Querying Data Using $filter .. 505

M
Even Header

Working with OData Services

webMethods Service Development Help Version 9.10 496

OData (Open Data Protocol) enables applications to expose data or resources as a data
service that clients can access within corporate networks and across the Internet. It
provides a REST-based protocol for performing create, read, update and delete (CRUD)
operations against resources that are exposed as data services.

Integration Server acts as an OData service provider and supports OData version 2.0.

You can use the Service Development perspective in Designer to create OData services.
An OData service can be described as an endpoint service that is based on the OData
protocol and allows access to data. The OData service exposes an OData entity data
model that contains data organized and described in a standard manner.

The OData service consists of a set of entity types, external entity types, and complex
types, their properties, and the associations between the entity types. When you create
an OData service, Integration Server, acting as an OData service provider, generates the
required OData service implementations as flow services that can perform the CRUD
operations for each entity type.

These flow services will:

Be located in a folder whose fully qualified name is unique across the entire
Integration Server namespace.

Be named _insert, _retrieve, _update, and _delete to perform the create, read, update, and
delete operations respectively.

Accept certain predefined input parameters that are passed in through the OData
request.

Note: While the services _retrieve, _update, _insert, and _delete might appear to
be regular flow services, it is the naming convention and location of the
services that instruct Integration Server to treat them as OData service
implementations.

Understanding OData Service Terminology
Before creating an OData service, you may find it helpful to first understand the
following terminology related to OData support in Integration Server:

OData Service. Service that is based on the OData protocol and exposes an OData
entity data model that contains data organized and described in a standard manner.

OData Elements. Represents entity types and complex types in an OData service.

Entity Type. Entity types are named structured types with a key. For example,
uniquely identifiable records such as a Customer or Employee.

External Entity Type. External entity types are entity types available through an
external source provider. For example, if you select to use webMethods Adapter for
JDBC as your external source provider or source type, you can use Database Tables
as entity types to create your entities.

M
Odd Header

Working with OData Services

webMethods Service Development Help Version 9.10 497

Complex Type. Structural types consisting of a list of properties but with no key. For
example, Address, which includes city, street, state, and country. You can access a
complex type only when they are added as a complex property to an entity type.

Properties. Used to define the characteristics of OData elements. For example, a
Customer entity type may have properties such as CustomerId, Name, and Address.
Properties can be simple or complex. Simple property can contain primitive types
(such as a string, an integer, or a Boolean value). Complex property can contain
structured data such as a complex type.

Associations. Represents the relationship between two entity types. For example,
relationship between Customer and Order. An association has two ends and
each end specifies the entity type aached to that end. Associations can be Single
(unidirectional) or Bidirectional depending on the number of entity types that can be
at that end of the association.

Navigation Property. Represents the association end and allows navigation from an
entity to related entities. For example, Product can have a navigation property
to Category and Category can, in return, have a navigation link to one or more
products.

Supported and Unsupported OData Features
The OData service implementation in Integration Server supports the following OData
features:

ATOM, JSON, and XML formats for representing the resources that are exposed as
data services.

CRUD operations for each entity type.

System query options such as $select, $filter, $orderby, $top, $skip, $format,
$inlinecount, and $count.

Association and navigation properties.

The OData service implementation in Integration Server does NOT support the
following actions:

Rename, copy, or move OData services.

Copy and paste OData elements, such as entity types and complex types, within and
outside the OData service editor.

Rename OData associations and navigation properties.

Rename External Entity Types.

The following OData features are NOT supported:

Function Imports

Referential constraints

M
Even Header

Working with OData Services

webMethods Service Development Help Version 9.10 498

Annotations

Collection type data type

Lambda query operators

Overview of Creating an OData Service
Creating an OData service is a process that involves the following basic stages.

Stage 1 Create a new OData service on Integration Server.

During this stage, you use the Service Development perspective to
create a new OData service. You can choose to create an empty OData
service or use an external source type.

Stage 2 Add OData elements to the OData service in the OData service editor.

During this stage, you specify the OData elements, namely Entity Type,
External Entity Type, and Complex Type that define the entity model that
this OData service exposes.

Stage 3 Specify properties for the OData elements.

During this stage, you specify the properties that define the structure
and characteristics of entity types and complex types. You also set the
properties for each simple and complex property in the Properties view.

Stage 4 Define the associations between the entity types.

During this stage, you specify the associations that represents the
relationship between two entity types. You also set the properties for
each association in the Properties view.

Upon defining the associations, Designer creates the OData navigation
elements under the corresponding entity types.

Stage 5 Save the OData service.

During this stage, you save the OData service after ensuring that the
OData service you have created contains all the elements, properties,
and associations required to expose an OData entity data model.

Stage 6 Add processing logic to the generated services.

During this stage, you add processing logic to the OData service
implementations that Integration Server generates upon saving the
OData service.

M
Odd Header

Working with OData Services

webMethods Service Development Help Version 9.10 499

Creating an OData Service
You use the Service Development perspective in Designer to create an OData service
and specify the entity types, external entity types, complex types, properties, and
associations.

To create an OData service

1. In the Service Development perspective, select File > New > OData Service.

2. In the New OData Service dialog box, select the folder in which you want to create
the OData service.

3. In the Element name field, type a name for the OData service using any combination
of leers, numbers, and/or the underscore character. For information about restricted
characters, see "Working with Elements" on page 51.

4. Click Finish.

Alternatively, you can also click Next.

a. In the Select a Source Type screen, select Empty OData Service

b. Click Finish.

Designer creates the OData service and displays the details in the OData service
editor. You must now add OData elements, specify their properties, and define the
association between the entity types.

To add OData elements, see "Adding OData Elements to the OData Service" on
page 501.

To specify the properties of OData elements, see "Adding Properties to the
OData Elements" on page 502.

To define associations between OData elements, see "Adding Associations to
OData Elements" on page 503.

5. Click File > Save to save the OData service.

Designer creates a folder with the same name as the OData service, with a prefix of
an “_” (underscore). Inside this folder, Designer creates folders for each entity type.
These folders contain OData service implementations that are named _insert, _retrieve,
_update, and _delete can perform the create, read, update, and delete operations for
each entity.

The signatures for the OData service implementations generated by Designer contain
document variables generated using the entity types and its properties. You must
not modify the signature of the generated OData service implementations. You must
only add processing logic to these services.

M
Even Header

Working with OData Services

webMethods Service Development Help Version 9.10 500

Creating an OData Service Using an External Source Type
You use the Service Development perspective in Designer to create an OData service
using an external source type and specify the entity types, external entity types, complex
types, properties, and associations.

Before you create an OData Service using an external source, ensure that the selected
OData enabled external source type is configured to Integration Server with a valid
connection. For example, if you choose to use webMethods Adapter for JDBC as your
external source provider, ensure that you create a connection in Integration Server for
Adapter for JDBC.

To create an OData service using an External Source Type

1. In the Service Development perspective, select File > New > OData Service.

2. In the New OData Service dialog box, select the folder in which you want to create
the OData service.

3. In the Element name field, type a name for the OData service using any combination
of leers, numbers, and/or the underscore character. For information about restricted
characters, see "Working with Elements" on page 51

4. Click Next.

5. In the Select The Source Type screen, select External Source Type.

List of the available external source types appear.

6. Select the external source that you want to use as the external source type for the
OData service. Click Next.

7. In the Select a Connection Alias screen, select the connection to use with the source
type from the Connection Name list and click Next.

Designer retrieves the entity details from the database and displays it in the Select
the Entity and Properties screen.

8. In the Select the Entity and Properties screen, select the entities that you want to
include in your OData service. You can also change the Java Type for the entity
selected.

Note: If go back to the previous screens and return to the Select the Entity and
Properties screen, the entity list does not get refreshed. To get the new list
of entities, start creating the OData service again.

9. Click Finish.

Designer creates the OData service and displays the details in the OData service
editor. You can now add additional OData elements, specify properties, and define
the association between the entity types.

M
Odd Header

Working with OData Services

webMethods Service Development Help Version 9.10 501

To add OData elements, see "Adding OData Elements to the OData Service" on
page 501.

To specify the properties of OData elements, see "Adding Properties to the
OData Elements" on page 502.

To define associations between OData elements, see "Adding Associations to
OData Elements" on page 503.

10. Click File > Save to save the OData service.

Designer creates a folder with the same name as the OData service, with a prefix of
an “_” (underscore). Inside this folder, Designer creates folders for each entity type.
These folders contain OData service implementations that are named _insert, _retrieve,
_update, and _delete can perform the create, read, update, and delete operations for
each entity.

The signatures for the OData service implementations generated by Designer contain
document variables generated using the entity types and its properties. You must
not modify the signature of the generated OData service implementations. Also,
Integration Server adds the processing logic to these services.

Adding OData Elements to the OData Service
Entity types are named structured types with a key. For example, uniquely identifiable
records such as a Customer or Employee. Complex types are structural types consisting
of a list of properties but with no key. For example, Address, which includes city, street,
state, and country. External entity types are entity types available through an external
source provider. For example, if you choose to use webMethods Adapter for JDBC as
your external source provider or source type, you can use Database Tables as entity
types to create your entities.

To add OData elements to an OData service

1. Open the OData service to which you want to add an OData element.

2. In the Palee view of the OData editor, under OData Elements perform one of the
following:, select the type of element you want to add and drag it to the Tree tab of
the OData service.

For details about adding each type of element, see the following steps.

Note: If the Palee view is not visible, display it by clicking on the right side of
the editor.

3. To add an entity type as an OData element, do the following:

a. Select Entity Type and drag it to the Tree tab.

b. Provide a name for the entity type.

M
Even Header

Working with OData Services

webMethods Service Development Help Version 9.10 502

Note: The name of an entity type must be unique among all the entity types
in the OData service.

4. To add the external entity type as an OData element, do the following:

a. Select External Entity Type and drag it to the Tree tab.

b. Select an external source from the list and click Next

c. In the Select a Connection Alias dialog box, select the connection to use with the
source type from the Connection Name list and click and click Next.

d. In the Select the Entity and Properties dialog box, select the entities that you want
to include in your OData service. You can also change the Java Type for the entity
selected.

e. Click Finish.

The selected external entity types appear on the Tree tab of the OData service.

5. To add a complex type as an OData element, do the following:

a. Select Complex Type and drag it to the Tree tab.

b. Provide a name for the complex type.

Note: The name of the complex type element must be unique across all of the
complex types in the OData service.

6. Click File > Save to save the OData elements.

Adding Properties to the OData Elements
Entity types and complex types contain properties that define their characteristics. For
example, a Customer entity type may have properties such as CustomerId, Name, and
Address. Simple property can contain primitive types (such as a string, an integer, or a
Boolean value). Complex property can contain structured data such as a complex type.

To add properties

1. Open the OData service and select the entity type or complex type to which you
want to add property.

2. In the Palee view of the OData editor, under Properties, select Simple and/or Complex
properties and drag it to the Tree tab to add simple and complex properties to the
OData service.

Note: If the Palee view is not visible, display it by clicking on the right side of
the editor.

The entity type and complex type elements can have one or more properties. Each
entity type should have at least one property that is a key.

M
Odd Header

Working with OData Services

webMethods Service Development Help Version 9.10 503

Note: You cannot add properties to external entity type.

3. Click File > Save to save the properties.

Adding Associations to OData Elements
You can specify an association to represent the relationship between two entity types
(such as Customer and Order). Each association has two ends and each end of the
association must specify the entity type aached to that end. Associations can be Single
or Bidirectional depending on the number of entity types that can be at the end of the
association.

To add associations

1. Open the OData service and select the entity type, external entity type, or complex
type to which you want to add association.

2. In the Palee view of the OData editor, under Associations, select Single or
Bidirectional and drag it to the Tree tab.

Note: If the Palee view is not visible, display it by clicking on the right side of
the editor.

3. In the Entity Association dialog box, select the principal and dependent entity types
for the ends of the association.

4. Click OK.

Designer creates the associations and displays the OData navigation elements under
the corresponding entity types. In case of unidirectional association, a navigation
element is added only to the specific entity type that is the association end. In case of
bidirectional association, navigation elements are added to both entity types that are
at the association ends.

5. Click File > Save to save the association.

Editing the OData Service
You can use the OData service editor to modify an OData service.

Keep the following points in mind when editing an OData service:

Do not modify the signature of the generated OData service implementations. You
must only add processing logic to these services.

To modify the signature of any of the generated OData service implementations, you
must modify the entities and their associations in the OData service.

M
Even Header

Working with OData Services

webMethods Service Development Help Version 9.10 504

To edit an OData Service

1. In the Package Navigator view, navigate to and open the OData service that you
want to edit. The OData service opens in the OData service editor.

2. Make the necessary modifications to the OData elements, properties, or associations.
You can also modify the corresponding properties in the Properties view, if required.

3. Click File > Save.

4. Refresh the OData service to update the corresponding OData service
implementations by right-clicking the OData service in the Package Navigator view
and selecting Refresh.

Synchronizing the External Entity Type
You can use the OData Sync feature to synchronize the properties of a selected external
entity type with the latest changes made at the external source provider level. You can
also use the Sync feature to edit the properties of an external entity type.

To sync and edit an external entity type

1. In the Package Navigator view, navigate to and open the OData service which
contains the external entity that you want to edit. The OData service opens in the
OData service editor.

2. Select the external entity that you want to edit and click the Sync icon on the
Designer toolbar or right-click and select Sync.

3. In the External Entity Sync dialog box, you can make the following modifications to
the selected external entity:

Select new properties available for the entity.

Remove the existing properties.

Change the data type for the Java Type.

Click the key icon to make or remove a property as primary key.

4. When you finish making changes to the external entity, click Sync.

The updated the external entity is displayed in the OData service editor.

How Integration Server Processes an OData Service Request
Integration Server uses Apache Olingo 2.0.1 libraries to process OData service requests.
To do this, Integration Server uses the odata directive. A directive is a way to access or
invoke resources.

You can specify the odata directive as follows:

M
Odd Header

Working with OData Services

webMethods Service Development Help Version 9.10 505

http://host :port /odata/parent_context /resource

Here, parent_context is the OData service node in the Integration Server namespace
and resource refers to the name of an entity type or a collection of instances of an entity
type.

For example:
http://localhost:5555/odata/container:company/Products

Note: When processing an OData service request, Integration Server checks the user
name associated with the request against the appropriate access control list
(ACL) associated with the service. If the user belongs to a group that is listed
in the ACL, the server accepts the request. Otherwise the server rejects the
request. Ensure that the OData service has the required ACLs associated with
it so that Integration Server processed the requests.

Querying Data Using $filter
You can use filter expressions in OData requests to filter and return only those results
that match the expressions specified. You do this by adding the $filter system query
option to the end of the OData request.

You can specify the $filter query option in an OData request as follows:
http://host :port /odata/parent_context /resource ?$filter=expressions

Here, parent_context is the OData service node in the Integration Server namespace,
resource refers to the name of an entity type or a collection of instances of an entity
type, and expressions are the filter expressions.

Integration Server supports the following logical operators:

Operator Description Example Requests...

eq Equals
http://localhost:5555/odata/
OData.svc/Customers?
$filter=Name eq ‘Smith’

All customers
whose name is
‘Smith’.

ne Not
equal

http://localhost:5555/odata/
OData.svc/Customers?
$filter=Name ne ‘Smith’

All customers
whose name is not
‘Smith’.

gt Greater
than

http://localhost:5555/odata/
OData.svc/Products?
$filter=Price gt 1000

All products with
price greater than
1000.

M
Even Header

Working with OData Services

webMethods Service Development Help Version 9.10 506

Operator Description Example Requests...

ge Greater
than or
equal

http://localhost:5555/odata/
OData.svc/Products?
$filter=Price ge 1000

All products with
price greater than
or equal to 1000.

lt Less
than

http://localhost:5555/odata/
OData.svc/Products?
$filter=Price lt 1000

All products with
price less than
1000.

le Less
than or
equal

http://localhost:5555/odata/
OData.svc/Products?
$filter=Price le 1000

All products with
price less than or
equal to 1000.

and Logical
and

http://localhost:5555/odata/
OData.svc/Products?
$filter=Category eq 'laptop'
and Price lt 1000

All products of
category laptop
and price less than
1000.

or Logical
or

http://localhost:5555/odata/
OData.svc/Customers?
$filter=City eq 'Paris' or
City eq 'London'

All customers from
the city of Paris or
London.

Note: You can also use custom filters instead of OData built-in filters while using
the $filter system query option. To use your custom filters, set the Use custom
filter property of the OData service to True. You can then specify custom filter
queries as the value for the $filter parameter of the _retrieve and _update OData
service implementations.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 507

26 Working with Document Types

■ Creating an IS Document Type ... 508

■ Editing Document Types .. 543

■ About Universal Names and Document Types .. 545

■ Printing an IS Document Type ... 545

■ Working with Publishable Document Types ... 546

■ Deleting Publishable Document Types .. 568

■ About Testing Publishable Document Types ... 569

■ About Synchronizing Publishable Document Types .. 574

■ Publishing Documents as JMS Messages ... 584

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 508

An IS document type contains a set of fields used to define the structure and type of
data in a document (IData object). You can use an IS document type to specify input or
output parameters for a service or specification. You can also use an IS document type to
build a document or document list field and as the blueprint for pipeline validation and
document (IData object) validation.

IS document types can provide the following benefits:

Using an IS document type as the input or output signature for a service can reduce
the effort required to build a flow.

Using an IS document type to build document or document list fields can reduce
the effort needed to declare input or output parameters or the effort/time needed to
build other document fields.

IS document types improve accuracy, because there is less opportunity to introduce
a typing error typing field names.

IS document types make future changes easier to implement, because you can make a
change in one place (the IS document type) rather than everywhere the IS document
type is used.

Creating an IS Document Type
You can create an IS document type in the following ways:

Create an empty IS document type and define the structure of the document type
yourself by inserting fields.

Create an IS document type from a source file, such as an XML Schema, DTD, XML
document, an event type, JSON object, or e-form template. The structure and content
of the IS document type will match that of the source file.

Create an IS document type from a Broker document type.

Create an IS document type from a flat file schema.

Creating an Empty IS Document Type
When you create an empty IS document type, you insert fields to define the contents and
structure of the IS document type.

To create an empty IS document type

1. In the Service Development perspective, select File > New > Document Type

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 509

3. In the Element name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select the Source Type panel, select None.

6. Click Finish to create the empty IS document type.

Adding Fields to an IS Document Type
By adding fields to an IS document type, you define the structure and content of
instances of the IS document type.

Note: When defining an IS document type, avoid adding identically named fields to
the IS document. In particular, avoid adding identically named fields that are
the same data type. While Designer allows this, the identically named fields
may cause some anomalies especially with regards to mapping data in the
pipeline.

Keep the following points in mind if you intend to make the IS document type
publishable:

If you intend to use Broker as the messaging provider, keep in mind that the Broker
has restrictions for field names. When a document is published to Broker, fields with
names that do not meet these restrictions will be passed through byBroker. If you
create a trigger that subscribes to the publishable document type, any filters that
include field names containing restricted characters will be saved on the Integration
Server only. The filters will not be saved on the Broker, possibly affecting Integration
Server performance. For more information, see .

If you intend to use Universal Messaging as the messaging provider and use
protocol buffers as the encoding type, keep in mind that some field names might not
work with protocol buffers. If a publishable document type contains fields that use
unsupported characters, these fields and their contents will be passed through to
Universal Messaging. Subscribing triggers will decode the field properly. However,
Universal Messaging cannot filter on the contents of these fields.

Note: If a publishable document types uses protocol buffers encoding type,
Software AG recommends using a leer as the first character of a
field name and avoiding special characters with the exception of the _
(underscore) character.

To add fields to the IS document type

1. In Package Navigator view, double-click the document type to which you want to
add fields.

The document type opens in the Tree tab of the document type editor.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 510

2. Drag the document type field that you want to define from the Palee to the Tree tab
in the editor.

3. Type the name of the field and then press ENTER.

Note: Designer prevents the insertion of fields named _env in an IS document
type. For details about the _env field, see "About the Envelope Field" on
page 553.

4. With the field selected, set field properties and apply constraints in the Properties
view (optional).

5. If the field is a document or a document list, repeat the preceding steps to define
and set the properties and constraints for each of its members. Use to indent each
member field beneath the document or document list field.

6. Enter comments or notes, if any, in the Comments tab.

7. Select File > Save.

Note: Designer displays small symbols next to a field icon to indicate validation
constraints. Designer uses to indicate an optional field. Designer uses the
‡ symbol to denote a field with a content constraint. For information about
applying constraints to fields, see "About Variable Constraints" on page
605.

Creating an IS Document Type from an XML Document, DTD, or XML
Schema
You can create an IS document type based on the structure and content of a source file,
such as an XML Schema definition, DTD, or XML document. Keep the following points
in mind when creating an IS document type from a source file.

When you base the IS document type on an XML Schema definition or a DTD,
Integration Server creates an IS document type and an IS schema. The IS document
type has the same structure and field constraints as the source document. The IS
schema contains the elements, aributes, and data types defined in the XML Schema
or DTD. The IS document type, which displays the fields and structure of the source
document, uses links to the IS schema to obtain content type information about
named simple types.

When creating a field from an aribute declaration, Integration Server inserts the
@ symbol at the beginning of the field name. For example, an aribute named
myAttribute in the source file corresponds to a field named @myAribute in the IS
document type.

If an IS document type was created from a source, Designer displays the location
of the source in the Source URI property. Designer also sets the Linked to source
property to true which prevents any editing of the document type contents. To edit
the document type contents, you first need to make the document type editable by

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 511

breaking the link to the source. For information about allowing editing of elements
derived from a source, see "Allowing Editing of Derived Elements" on page 59

Integration Server does not create IS document types or IS schemas from an XML
schema definition (XSD) if the XSD contains a type definition derived by extension
and that type definition contains a direct or indirect reference to itself. If Integration
Server encounters a type definition that contains a recursive extension while creating
an IS document type or an IS schema from an XSD, Integration Server throws a
StackOverflowError and does not continue creating the IS document type or IS
schema.

Creating an IS Document Type from an XML Document
You can create an IS document type that matches the structure and fields in an XML
document.

To create an IS document type from an XML document

1. In the Service Development perspective, select File > New > Document Type

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element Name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select the Source Type panel, select XML. Click Next.

6. On the Select a Source Location panel, under Source location, do one of the following
in the File/URL field:

To create the IS document type from an XML document that resides on the
Internet, type the URL of the resource. (The URL you specify must begin with
http: or https:.)

To create the IS document type from an XML document on your local file system,
type in the path and file name, or click the Browse buon to navigate to and select
the file.

7. Click Finish to create the IS document type.

If you want to add or edit fields in the IS document type, see "Creating an Empty IS
Document Type" on page 508.

Creating an IS Document Type from a DTD
When creating an IS document type from a DTD, keep in mind that Integration Server
assumes that the DTD is UTF8-encoded. If the DTD is not UTF8-encoded, add the XML
prolog to the top of the DTD and explicitly state the encoding. For example, for a DTD
encoded in 8859-1, you would insert the following at the top of the document:
<?xml version="1.0" encoding="8859-1" ?>

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 512

To create an IS document type from a DTD

1. In the Service Development perspective, select File > New > Document Type

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select the Source Type panel, select DTD. Click Next.

6. On the Select a Source Location panel, under Source location, do one of the following
next to File/URL:

To create the IS document type from an DTD that resides on the Internet, type
the URL of the resource. (The URL you specify must begin with http: or
https:.)

To create the IS document type from a DTD on your local file system, type in the
path and file name, or click the Browse buon to navigate to and select the file.

7. Click Next.

8. Under Select the root node, select the root element of the DTD.

9. Under Element reference handling, select one of the following:

Select Only generate document types for elements with multiple references to instruct
Integration Server to create a separate document type for a referenced element
only when the DTD contains multiple references to that element.

If an element is referenced multiple times, Integration Server creates a separate
document type for the element. Integration Server replaces each element
reference with a document reference field.

If an element is referenced only once, Integration Server defines the element in
line by replacing the element reference with a document field.

Select Always generate document types for referenced elements to instruct Integration
Server to always create a separate document type for a referenced element even if
it is referenced only once. In the document type, Integration Server replaces each
element reference with a document reference field.

10. Click Finish.

Integration Server generates the IS document type and IS schema. Designer displays
any errors or warnings that occur during document type generation.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 513

Creating an IS Document Type from an XML Schema Definition
Keep the following points in mind when creating an IS document type from an XML
Schema definition:

You can specify whether Integration Server enforces strict, lax, or no content model
compliance when generating the document type. Content models provide a formal
description of the structure and allowed content for a complex type. The type of
compliance that you specify can affect whether Integration Server generates an IS
document type from a particular XML Schema definition successfully. Currently,
Integration Server does not support repeating model groups, nested model groups,
or the any aribute. If you select strict compliance, Integration Server does not
generate an IS document type from any XML schema definition that contains those
items.

Integration Server can create separate IS document types for named complex types
or expand documents inline within one document type. For more information,
see "Determining How to Represent Complex Types in Document Types" on page
535.

Integration Server can create one field for a substitution group or create fields
for every member element in a substitution group. For more information, see
"Generating Fields for Substitution Groups" on page 541.

To create an IS document type from an existing event type, use the event type as the
source. Make sure you have access to the Event Type Store.

To create an IS document type from an XML Schema definition in CentraSite,
Designer must be configured to connect to CentraSite.

You can also create an IS document type from an XML Schema definition asset in
CentraSite by dragging and dropping the schema asset from the Registry Explorer
view into Package Navigator view.

When creating an IS document type from an XML Schema definition that contains a
large number of complex type definitions, and you want Integration Server to create
a separate IS document for each complex type definition, you may need to increase
the number of elements that Designer maintains in cache. If the cache is not large
enough to include all of the generated IS document types, then Designer will have
to repeatedly retrieve the document types from Integration Server while creating the
IS document type. This increases network traffic and can prolong the time needed
to generate the IS document type. If the cache is large enough to contain all of the
IS document types and other elements generated by Designer while creating an
IS document type, Designer might create the IS document type more quickly. To
increase the number of elements cached by Designer, see "Caching Elements" on
page 76.

To create an IS document type from an XML Schema definition

1. In the Service Development perspective, select File > New > Document Type

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 514

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

If you are creating an IS document type from an event type, you may want to use the
event type name as the name for the IS document type.

4. Click Next.

5. On the Select a Source Type panel, select XML Schema. Click Next.

6. On the Select a Source Location panel, under Source location, do one of the following
to specify the source file for the document type:

To use an XML schema definition in CentraSite as the source, select CentraSite.

To use an XML Schema definition that resides on the Internet as the source, select
File/URL. Then, type the URL of the resource. (The URL you specify must begin
with http: or https:.)

To use an XML Schema definition that resides on your local file system as the
source, select File/URL. Then, type in the path and file name, or click the Browse
buon to navigate to and select the file.

To use an existing event type as the source, navigate to the Event Type Store and
select the XML Schema definition for the event type.

The default location of the Event Type Store is: Software AG_directory\common
\EventTypeStore

7. Click Next.

8. If you selected CentraSite as the source, under Select XML Schema fromCentraSite,
select the XML Schema definition in CentraSite that you want to use to create the IS
document type. Click Next.

If Designer is not configured to connect to CentraSite, Designer displays the
CentraSite> Connections preference page and prompts you to configure a connection
to CentraSite.

9. On the Select Processing Options panel, under Schema domain, specify the schema
domain to which any generated IS schemas will belong. Do one of the following:

To add the IS schema to the default schema domain, select Use default schema
domain.

To add the IS schemas to a specified schema domain, select Use specified schema
domain and provide the name of the schema domain in the text box. A valid
schema domain name is any combination of leers, numbers, and/or the
underscore character. For information about restricted characters, see "About
Element Names" on page 52.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 515

10. Under Content model compliance, select one of the following to indicate how strictly
Integration Server represents content models from the XML Schema definition in the
resulting IS document type.

Select... To...

Strict Generate the IS document type only if Integration Server can
represent the content models defined in the XML Schema
definition correctly. Document type generation fails if
Integration Server cannot accurately represent the content
models in the source XML Schema definition.

Currently, Integration Server does not support repeating
model groups, nested model groups, or the any aribute.
If you select strict compliance, Integration Server does
not generate an IS document type from any XML schema
definition that contains those items.

Lax When possible, generate an IS document type that correctly
represents the content models for the complex types defined
in the XML schema definition. If Integration Server cannot
correctly represent the content model in the XML Schema
definition in the resulting IS document type, Integration Server
generates the IS document type using a compliance mode of
None.

When you select lax compliance, Integration Server will
generate the IS document type even if the content models in
the XML schema definition cannot be represented correctly.

None Generate an IS document type that does not necessarily
represent or maintain the content models in the source XML
Schema definition.

When compliance is set to none, Integration Server generates
IS document types the same way they were generated in
Integration Server releases prior to version 8.2.

11. If you selected strict or lax compliance, next to Preserve text position, do one of the
following to specify whether document types generated from complex types that
allow mixed content will contain multiple *body fields to preserve the location of text
in instance documents.

Select the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content preserves the locations
for text in instance documents. The resulting document type contains a *body
field after each field and includes a leading *body field. In instance documents for

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 516

this document type, Integration Server places text that appears after a field in the
*body .

Clear the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content does not preserve the
locations for text in instance documents. The resulting document type contains a
single *body field at the top of the document type. In instance documents for this
document type, text data around fields is all placed in the same *body field.

12. If this document type will be used as the input or output signature of a service
exposed as a web service and you want to enable streaming of MTOM aachment
for elements of type base64Binary, select the Enable MTOM streaming for elements of type
base64Binary check box.

For more information about streaming of MTOM aachments, see the Web Services
Developer’s Guide

13. If you want Integration Server to use the Xerces Java parser to validate the XML
Schema definition, select the Validate schema using Xerces check box.

Note: Integration Server automatically uses an internal schema parser to validate
the XML Schema definition. However, the Xerces Java parser provides
stricter validation than the internal schema parser. As a result, some
schemas that the internal schema parser considers to be valid might be
considered invalid by the Xerces Java parser.

14. Click Next.

15. On the Select Root Node panel, under Select the root node, select the elements that you
want to use as the root elements for the IS document type. The resulting IS document
type will contain all of the selected root elements as top-level fields in the generated
IS document type

To select multiple elements, press the CTRL key while selecting elements.

If you are creating an IS document type from an event type, select the element whose
name is the event type name as the root node. For example, if the event type name is
PartInventoryLow, select the PartInventoryLow element as the root element.

If Integration Server determines that the XML Schema definition is invalid, the Select
Root Node panel displays an error message to that effect. Click Cancel to abandon
the aempt to create a document type.

16. Under Element reference handling, select one of the following to determine how
Integration Server handles references to global elements of complex type:

Select... To...

Only generate document
types for elements with
multiple references

Instruct Integration Server to create a separate
document type for a referenced element only when
the XML Schema definition contains multiple
references to that element.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 517

Select... To...

If an element is referenced multiple times, Integration
Server creates a separate document type for the
element. Integration Server replaces each element
reference with a document reference field.

If an element is referenced only once, Integration
Server defines the element in line by replacing the
element reference with a document field.

Always generate document
types for referenced
elements

Instruct Integration Server to always create a separate
document type for a referenced element even if
it is referenced only once. In the document type,
Integration Server replaces each element reference
with a document reference field

Note: Integration Server always replaces an element reference to an element
declaration of simple type with an inline field of type String.

17. Under Complex type handling, select one of the following to indicate how Integration
Server handles references to named complex type definitions:

Select... To...

Expand complex types
inline

Use a document field defined in line to represent
the content of a referenced complex type definition.

Generate document types
for complex types

Create a separate IS document type to represent the
content for a referenced complex type definition.
The resulting IS document type for the root element
represents the element of complex type using a
document reference field. In turn, this document
reference field refers to the IS document type
created for the complex type definition.

Integration Server generates a separate IS document
type for any types derived from the referenced
complex types. For more information about derived
types, see "Derived Types and IS Document Types"
on page 537.

Note: Integration Server always represents an anonymous complex type using a
document field defined inline.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 518

18. If you selected Generate document types for complex types and you want to register each
document type with the complex type definition from which it was created, select
the Register document type with schema type check box.

Note: If you want derived type support for document creation and validation,
select the Register document types with schema type check box. For more
information, see "Registering Document Types with Their Schema Types"
on page 539.

19. If you want Integration Server to generate IS document types for all complex types
in the XML Schema definition regardless of whether the types are referenced by
elements or other type definitions, select the Generate document types for all complex
types in XML Schema check box.

If you leave this check box cleared, Integration Server generates a separate IS
document type for a complex type only if the complex type is referenced or is
derived from a referenced complex type.

If you are creating an IS document type from an event type, clear the Generate
document types for all complex types in XML Schema check box.

20. Click Next.

21. On the Assign Prefixes panel, if you want the IS document type to use different
prefixes than those specified in the XML schema definition, select the prefix you
want to change and enter a new prefix. Repeat this step for each namespace prefix
that you want to change.

Note: The prefix you assign must be unique and must be a valid XML NCName
as defined by the specification hp://www.w3.org/TR/REC-xml-names/
#NT-NCName.

22. Click Finish. Integration Server generates the IS document type(s) and IS schema and
saves it on the server. Designer displays them in the Package Navigator view.

Notes:

Integration Server uses the internal schema parser to validate the XML schema
definition. If you selected the Validate schema using Xerces check box, Integration
Server also uses the Xerces Java parser to validate the XML Schema definition. With
either parser, if the XML Schema does not conform syntactically to the schema for
XML Schemas defined in XML Schema Part 1: Structures, Integration Server does
not create an IS document type or an IS schema. Instead, Designer displays an error
message that lists the number, title, location, and description of the validation errors
within the XML Schema definition.

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations
for this version are listed at hp://xerces.apache.org/xerces2-j/xml-
schema.html.

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://xerces.apache.org/xerces2-j/xml-schema.html
http://xerces.apache.org/xerces2-j/xml-schema.html

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 519

When validating XML schema definitions, Integration Server uses the Perl5 regular
expression compiler instead of the XML regular expression syntax defined by the
World Wide Web Consortium for the XML Schema standard. As a result, in XML
schema definitions consumed by Integration Server, the paern constraining facet
must use valid Perl regular expression syntax. If the supplied paern does not use
proper Perl regular expression syntax, Integration Server considers the paern to be
invalid.

Note: If the wa.core.datatype.usejavaregex configuration parameter is set to
true, Integration Server uses the Java regular expression compiler instead
of the Perl5 regular expression compiler. When the parameter is true,
the paern constraining facet in XML schema definitions must use valid
syntax as defined by the Java regular expression.

If you selected strict compliance and Integration Server cannot represent the content
model in the complex type accurately, Integration Server does not generate any IS
document types.

If you selected lax compliance and indicated that Integration Server should preserve
text locations for content types that allow mixed content (you selected the Preserve
text position check box), Integration Server adds *body fields in the document type
only if the complex type allows mixed content and Integration Server can correctly
represent the content model declared in the complex type definition. If Integration
Server cannot represent the content model in an IS document type, Integration
Server adds a single *body field to the document type.

The contents of an IS document type with a Model type property value other than
“Unordered” cannot be modified.

If the XML schema definition contains an element reference to an element
declaration whose type is a named complex type definition (as opposed to an
anonymous complex type definition), Integration Server creates an IS document type
for the named complex type definition. In the IS document type for the root element,
Integration Server uses document reference field to represent the element reference.
An exception to this behavior is the situation in which the element reference is the
only reference to the complex type definition and the Only generate document types
for elements with multiple references option is selected. In this situation, Integration
Server uses document field defined in line to represent the content of the referenced
complex type.

Integration Server uses the prefixes declared in the XML Schema or the ones you
specified as part of the field names. Field names have the format prefix :elementName
or prefix :@aributeName .

If the XML Schema does not use prefixes, the Integration Server creates prefixes for
each unique namespace and uses those prefixes in the field names. Integration Server
uses “ns” as the prefix for the first namespace, “ns1” for the second namespace,
“ns2”.

If the XML Schema definition contains a user-specified namespace prefix and
a default namespace declaration, both pointing to the same namespace URI,

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 520

Integration Server uses the user-specified namespace prefix and not the default
namespace.

If the namespace prefix in the XML Schema as well as the default namespace point
to the same namespace URI, Integration Server gives preference to the user-specified
namespace prefix over the default namespace.

Creating IS Document Types from JSON Objects
You can create an IS document type based on the contents of a source JSON object.

When creating an IS document type from a JSON object, keep in mind that Designer
displays the location of the source JSON object in the Source URI property. Designer also
sets the Linked to source property to true which prevents any editing of the document
type contents. To edit the document type contents, you first need to make the document
type editable by breaking the link to the source. For information about allowing editing
of elements derived from a source, see "Allowing Editing of Derived Elements" on page
59.

Mapping JSON Data Types
Integration Server maps IS data type from JSON data types as follows:

JSON data type IS data type

object Document

string String

number (real) Float or Double Java wrapper, depending on the
option you select for mapping real numbers.

number (integer) Integer or Long Java wrapper, depending on the
option you select for mapping integers.

true/false Boolean Java wrapper type

array Array of an Integration Server data type.

If the JSON object contains a two-dimensional string
array, Integration Server sets the corresponding field
in the IS document type to String Table.

If the JSON object contains a string array, Integration
Server sets the corresponding field in the IS
document type to String List.

If the JSON object contains a array having different
types of objects (example, integer, string, etc.),

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 521

JSON data type IS data type
Integration Server sets the corresponding field in the
IS document type to Object List with Java wrapper
type as UNKNOWN.

Note: Designer does not support the following multi-
dimensional arrays in JSON objects:

Two-dimensional arrays of data types other
than string

Multi-dimensional arrays of three or more
dimensions (three-dimensional, four-
dimensional, etc.)

array of null Object List

null Not supported.

Note: If JSON text begins with an array at the root and the array is unnamed, when
parsing the JSON text, Integration Server uses a fixed name of $rootArray for
the array value. The $rootArray field appears in the pipeline. When creating
a JSON response, if the pipeline contains $rootArray with an array value at
its root, Integration Server discards the $rootArray name and transforms the
array value into a JSON array.

Generating Fields from Unquoted Fields in a JSON Object
The JSON standard requires that field names be enclosed in double quotes. However,
when creating an document type from a JSON object you may want to create fields for
fields in the that are not enclosed in quotes in the source JSON object.

The server configuration parameter wa.server.json.allowUnquotedFieldNames
determines whether Integration Server generates fields for unquoted fields. a If
wa.server.json.allowUnquotedFieldNames is set true and a JSON object with
unquoted fields is used as the source for a document type, the resulting document
type contains fields that correspond to the unquoted fields as well as the quoted fields.
When wa.server.json.allowUnquotedFieldNames is set false and a JSON object with
unquoted fields is used as the source for a document type, Designer throws an exception
and does not create the document type.

Creating an IS Document Type from a JSON Object
Perform the following procedure to create an IS document type from a JSON object.

To create an IS document type from a JSON object

1. In the Service Development perspective, select File > New > Document Type.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 522

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select the Source Type panel, select JSON and click Next.

6. On the Select a Source Location panel, under Source location, select File/URL.

7. Enter the path to and name of the JSON object or click Browse to navigate to and
select the source file.

8. Click Next.

9. On the Select Java Wrapper Type panel, under Java wrapper type for real numbers select
how Integration Server should map real numbers from the JSON object to fields in
the IS document type as follows:

Select To convert real numbers in the JSON object to...

Double Double Java wrapper type.

Float Float Java wrapper type.

Note: The default seing for Java wrapper type for real numbers is set by the
wa.server.json.decodeRealAsDouble server configuration parameters. For
example, if wa.server.json.decodeRealAsDouble is set to true, Designer
displays Double as the default for Java wrapper type for real numbers. You can
override this seing by selecting Float.

For more information about the wa.server.json.decodeRealAsDouble
server configuration parameter, see webMethods Integration Server
Administrator’s Guide.

10. On the Select Java Wrapper Type panel, under Java wrapper type for integers select how
Integration Server should map integers from the JSON object to the fields in the IS
document type as follows:

Select To convert integers in the JSON object to...

Long Long Java wrapper type.

Integer Integer Java wrapper type.

Note: The default seing for Java wrapper type for integers is set by the
wa.server.json.decodeIntegerAsLong server configuration parameter. For

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 523

example, if wa.server.json.decodeIntegerAsLong is set to true, Designer
displays Long as the default for Java wrapper type for integers. You can
override this seing by selecting Integer.

For more information about the wa.server.json.decodeIntegerAsLong
server configuration parameter, see webMethods Integration Server
Administrator’s Guide.

11. Click Finish. Integration Server creates the document type. Designer refreshes the
Package Navigator view automatically and displays the new document type.

Creating an IS Document Type from a Broker Document Type
You can create an IS document type from a Broker document type in Designer, if the
Integration Server is connected to a Broker. The IS document type retains the structure,
fields, data types, and publication properties defined in the Broker document type.

When you create an IS document type from a Broker document type, you create a
publishable document type. A publishable document type is an IS document type with
specific publishing properties, such as storage type and time to live. Additionally, a
publishable document type on an Integration Server is bound to a Broker document
type. An instance of a publishable document type can be published to a Broker or locally
within an Integration Server. For more information about publishable document types,
see "Working with Publishable Document Types" on page 546.

To create an IS document type from a Broker document type

1. In the Service Development perspective, select File > New > Document Type

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select a Source Type panel, select Broker Document Type, and click Next.

Note: The Broker Document Type option is enabled only if your Integration Server
is connected to a Broker.

6. On the Select a Broker Document Type panel, do one of the following to specify the
source file for the document type:

a. Select the Broker document type from which you want to create an IS document
type, from the displayed list of Broker document types on the Broker territory to
which the Integration Server is connected.

You can also type a search string in the Enter Broker document type name field to
filter the list of Broker document types.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 524

b. If you want to replace existing elements in the Integration Server namespace with
identically named elements referenced by the Broker document type, select the
Overwrite existing elements when importing referenced elements check box.

Important: Overwriting the existing elements completely replaces the existing
element with the content of the referenced element. Any elements
on the Integration Server that depend on the replaced element, such
as flow services, IS document types, and specifications, might be
affected. For more information about overwriting referenced elements,
see "Importing and Overwriting References During Synchronization"
on page 583.

7. Click Finish. Designer refreshes the Package Navigator view automatically and
displays the new document type.

Notes:

When you create an IS document type from a Broker document type that references
other elements, Designer will also create an element for each referenced element.
Integration Server will contain a document type that corresponds to the Broker
document type and one new element for each element the Broker document type
references. Designer also creates the folder in which the referenced element was
located. Designer saves the new elements in the package you selected for storing the
new publishable document type.

For example, suppose that the Broker document type references a document type
named address in the customerInfo folder. Designer would create an IS document
type named address and save it in the customerInfo folder. If a field in the Broker
document type was constrained by a simple type definition declared in the IS
schema purchaseOrder, Designer would create the referenced IS schema purchaseOrder.

You can associate only one IS document type with a given Broker document type.
If you try to create a publishable document type from a Broker document type that
is already associated with a publishable document type on your Integration Server,
Designer displays an error message.

If you did not select the Overwrite existing elements when importing referenced elements
check box and the Broker document type references an element with the same name
as an existing Integration Server element, Designer will not create the publishable
document type. For more information about overwriting referenced elements, see
"Importing and Overwriting References During Synchronization" on page 583

In the Publication category of the Properties panel, the Provider definition property
displays the name of the Broker document type used to create the publishable
document type. Or, if you are not connected to a Broker, this field displays Not
Publishable. You cannot edit the contents of this field. For more information about the
contents of this field, see "About the Associated Provider Definition" on page 551.

Once a publishable document type has an associated Broker document type, you
need to make sure that the document types remain in sync. That is, changes in one
document type must be made to the associated document type. You can update one

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 525

document type with changes in the other by synchronizing them. For information
about synchronizing document types, see "About Synchronizing Publishable
Document Types" on page 574.

Creating an IS Document Type from an E-form Template
You can create a publishable IS document type from an e-form template stored on the
file system or in a content repository.

Keep the following information in mind when creating an IS document type from an e-
form template:

To use an e-form in a repository as the source, a content repository must be set up
and the e-form environment must be deployed to the Integration Server on which
you want to create the IS document type. For more information about configuring
and deploying an e-forms environment, see Implementing E-form Support for BPM.

When creating an IS document type from an e-form template, Integration Server
extracts an XML schema definition from the template and uses the XML schema
definition to create the IS document type and its supporting IS schema. Typically,
when using an XML schema definition as the source file, Designer prompts you for
design-time decisions such as whether or not to expand complex types inline, how to
handle element references, and the use of prefixes. However, when the source file is
an e-form template, Designer makes the following design-time decisions:

Complex types are expanded in-line.

If the XML schema contains only one reference to a particular global element of
complex type, Integration Server represents the element reference as a document
defined line.

Integration Server generates a separate IS document type for a named complex
type only if the complex type is referenced or is derived from a referenced
complex type.

The IS document type uses the prefixes defined in the XML schema definition.

Integration Server assigns the IS schema to a unique schema domain whose
name is based on the path to and name of the e-form template.

When you create the IS document type, make sure to select the root node. This will
do the following:

Ensure that the IS document type matches the e-form template. If you select a
node that is not the root node, the resulting IS document type will not match the
structure and content of the e-form template. At run-time, processes or services
that receive instances of the e-form template will fail due to the mismatch.

Ensure that the fields in the IS document type have the same properties as the
corresponding elements in the e-form template. If you select a node that is
not the root node, the properties for fields in the IS document type might not
match the corresponding e-form template. For example, suppose that the e-form
template specifies that a field allows null values and is required. If the root node

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 526

is not selected, the corresponding field in the IS document type might disallow
null values (Allow null = false) and indicate the field is optional (Required = false).

For an IS document type created from a source, Designer displays the location of the
source in the Source URI property. Designer also sets the Linked to source property
to true which prevents any editing of the document type contents. To edit the
document type contents, you first need to make the document type editable by
breaking the link to the source. For information about allowing editing of elements
derived from a source, see "Allowing Editing of Derived Elements" on page 59.

To create an IS document type from an e-form template

1. In the Service Development perspective, select File > New > Document Type

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select the Source Type panel, select one of the following:

Select... To...

Adobe
LiveCycle E-
Form Template

Use an Adobe LiveCycle E-Form Template stored on the
file system or My webMethods Server as the source for the
document type.

Microsoft
InfoPath E-Form
Template

Use a Microsoft InfoPath E-Form Template stored on the
file system or My webMethods Server as the source for the
document type.

6. On the Select a Source Location panel, under Source location, select one of the
following to specify the location of the e-form template:

Select... To...

File/URL Use an e-form template on a file system. Enter the path to and
name of the e-form template or click Browse to navigate to and
select the source file.

Click Next.

My webMethods
Server

Use an Adobe LiveCycle E-Form Template or Microsoft
InfoPath E-Form Template in the My webMethods Server
content repository. Select the content repository that contains
the e-form template and click Next.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 527

7. On the Select Processing Options panel, under Content model compliance, select one of
the following to indicate how strictly Integration Server represents content models
from the XML Schema definition in the resulting IS document type.

Select... To...

Strict Generate the IS document type only if Integration Server can
represent the content models defined in the XML Schema
definition correctly. Document type generation fails if
Integration Server cannot accurately represent the content
models in the source XML Schema definition.

Currently, Integration Server does not support repeating
model groups, nested model groups, or the any aribute.
If you select strict compliance, Integration Server does
not generate an IS document type from any XML schema
definition that contains those items.

Lax When possible, generate an IS document type that correctly
represents the content models for the complex types defined
in the XML schema definition. If Integration Server cannot
correctly represent the content model in the XML Schema
definition in the resulting IS document type, Integration Server
generates the IS document type using a compliance mode of
None.

When you select lax compliance, Integration Server will
generate the IS document type even if the content models in
the XML schema definition cannot be represented correctly.

None Generate an IS document type that does not necessarily
represent or maintain the content models in the source XML
Schema definition.

When compliance is set to none, Integration Server generates
IS document types the same way they were generated in
Integration Server releases prior to version 8.2.

8. If you selected strict or lax compliance, next to Preserve text position, do one of the
following to specify whether document types generated from complex types that
allow mixed content will contain multiple *body fields to preserve the location of text
in instance documents.

Select the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content preserves the locations
for text in instance documents. The resulting document type contains a *body
field after each field and includes a leading *body field. In instance documents for

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 528

this document type, Integration Server places text that appears after a field in the
*body .

Clear the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content does not preserve the
locations for text in instance documents. The resulting document type contains a
single *body field at the top of the document type. In instance documents for this
document type, text data around fields is all placed in the same *body field.

9. If this document type will be used as the input or output signature of a service
exposed as a web service and you want to enable streaming of MTOM aachment
for elements of type base64Binary, select the Enable MTOM streaming for elements of type
base64Binary check box.

For more information about streaming of MTOM aachments, see the Web Services
Developer’s Guide

10. Click Next.

11. On the Select Root Node panel, under Select the root node, select the root node for the
XML schema definition used in the e-form template.

The standard name for a root node is as follows:

Adobe LiveCycle E-Form Template: xdp

Microsoft InfoPath E-Form Template: myFields

Keep in mind that the e-form template developer can change the root node.

On the Select a Source Location panel, Designer displays the path to and name of
the XML schema definition extracted from the e-form template in the File/URL field.
Designer creates a set of temporary files containing the XML Schema definition in
the workspace. Designer removes the files after creating the IS document type.

12. Under Element reference handling, select one of the following to determine how
Integration Server handles references to global elements of complex type:

Select... To...

Only generate document
types for elements with
multiple references

Instruct Integration Server to create a separate
document type for a referenced element only when
the XML Schema definition contains multiple
references to that element.

If an element is referenced multiple times, Integration
Server creates a separate document type for the
element. Integration Server replaces each element
reference with a document reference field.

If an element is referenced only once, Integration
Server defines the element in line by replacing the
element reference with a document field.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 529

Select... To...

Always generate document
types for referenced
elements

Instruct Integration Server to always create a separate
document type for a referenced element even if
it is referenced only once. In the document type,
Integration Server replaces each element reference
with a document reference field

Note: Integration Server always replaces an element reference to an element
declaration of simple type with an inline field of type String.

13. Under Complex type handling, select one of the following to indicate how Integration
Server handles references to named complex type definitions:

Select... To...

Expand complex types
inline

Use a document field defined in line to represent
the content of a referenced complex type definition.

Generate document types
for complex types

Create a separate IS document type to represent the
content for a referenced complex type definition.
The resulting IS document type for the root element
represents the element of complex type using a
document reference field. In turn, this document
reference field refers to the IS document type
created for the complex type definition.

Integration Server generates a separate IS document
type for any types derived from the referenced
complex types. For more information about derived
types, see "Derived Types and IS Document Types"
on page 537.

Note: Integration Server always represents an anonymous complex type using a
document field defined inline.

14. If you selected Generate document types for complex types and you want to register each
document type with the complex type definition from which it was created, select
the Register document type with schema type check box.

Note: If you want derived type support for document creation and validation,
select the Register document types with schema type check box. For more
information, see "Registering Document Types with Their Schema Types"
on page 539.

15. If you want Integration Server to generate IS document types for all complex types
in the XML Schema definition regardless of whether the types are referenced by

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 530

elements or other type definitions, select the Generate document types for all complex
types in XML Schema check box.

If you leave this check box cleared, Integration Server generates a separate IS
document type for a complex type only if the complex type is referenced or is
derived from a referenced complex type.

16. Click Finish.

Notes About IS Document Types Created from E-form Templates
Keep the following points in mind when working with IS document types created from
e-form templates:

When an e-form template serves as the source, Designer creates a publishable IS
document type. Designer adds the envelope (_env) field to the IS document type
automatically. This field is a document reference to the pub:publish:envelope document
type.

If Integration Server is connected to a Broker at the time you create an IS document
type from an e-form template, the resulting IS document type will be publishable to
the Broker and will have an associated Broker document type.

After the IS document type exists, any modifications to the content or structure of
the IS document type will make it out of sync with the e-form template from which it
was created. This makes it unusable with the associated e-form. When an instance of
the e-form template is received, it will not match the IS document type

Any changes to the e-form template after using it to create the IS document type
results in the template being out of sync with its document type. If the source e-form
template changes, delete the IS document type and the associated IS schemas. Then,
recreate the IS document type from the latest version of the e-form template.

When metadata about an IS document type created from an e-form template is
published to the CentraSite registry, CentraSite uses the following name for the asset
corresponding to the IS document type: e-formTemplateName:ISDocumentTypeName .

This allows multiple e-form templates to have the same name and for each template
to be associated with one or more IS document types. Consequently, when searching
the metadata repository for a specific e-form template name, consider using the
“Contains” clause to search for the e-form template instead of the “Equals” clause.

For more information about using e-forms, refer to Implementing E-form Support for BPM.

Creating a Document Type from a File in webMethods Content
Service Platform
You can create an IS document type from any file in the webMethods Content Service
Platform. The contents of the resulting IS document type consist of fields for the
metadata that the Content Service Platform maintains about the file. Integration Server

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 531

also adds a field named contentID . At run time, the contentID field contains a unique
identifier for the instance of the content type.

To create an IS document type from a file in the webMethods Content Service Platform

1. In the Service Development perspective, select File > New > Document Type

2. In the New Document Type dialog box, select the folder in which you want to save
the IS document type.

3. In the Element name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select a Source Type panel, select webMethodsContent Service Platform and click
Next.

6. In the From Repository list, select the content repository that contains the content type
template from which you want to create a document type.

7. Click Next.

8. If you want to filter the contents of selected repository, type search criteria in the text
box.

9. Select the content type from which you want to create a document type and click
Next.

10. In the Description field, type a description for the IS document type. This is optional.

The description will appear in the Comment property for the IS document type. If you
do not enter a description, the Comment property contains a message indicating the
source of the IS document type.

11. Click Next.

12. On the Select Processing Options panel, under Content model compliance, select one of
the following to indicate how strictly Integration Server represents content models
from the XML Schema definition in the resulting IS document type.

Select... To...

Strict Generate the IS document type only if Integration Server can
represent the content models defined in the XML Schema
definition correctly. Document type generation fails if
Integration Server cannot accurately represent the content
models in the source XML Schema definition.

Currently, Integration Server does not support repeating
model groups, nested model groups, or the any aribute.
If you select strict compliance, Integration Server does

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 532

Select... To...
not generate an IS document type from any XML schema
definition that contains those items.

Lax When possible, generate an IS document type that correctly
represents the content models for the complex types defined
in the XML schema definition. If Integration Server cannot
correctly represent the content model in the XML Schema
definition in the resulting IS document type, Integration Server
generates the IS document type using a compliance mode of
None.

When you select lax compliance, Integration Server will
generate the IS document type even if the content models in
the XML schema definition cannot be represented correctly.

None Generate an IS document type that does not necessarily
represent or maintain the content models in the source XML
Schema definition.

When compliance is set to none, Integration Server generates
IS document types the same way they were generated in
Integration Server releases prior to version 8.2.

13. If you selected strict or lax compliance, next to Preserve text position, do one of the
following to specify whether document types generated from complex types that
allow mixed content will contain multiple *body fields to preserve the location of text
in instance documents.

Select the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content preserves the locations
for text in instance documents. The resulting document type contains a *body
field after each field and includes a leading *body field. In instance documents for
this document type, Integration Server places text that appears after a field in the
*body .

Clear the Preserve text position check box to indicate that the document type
generated for a complex type that allows mixed content does not preserve the
locations for text in instance documents. The resulting document type contains a
single *body field at the top of the document type. In instance documents for this
document type, text data around fields is all placed in the same *body field.

14. If this document type will be used as the input or output signature of a service
exposed as a web service and you want to enable streaming of MTOM aachment
for elements of type base64Binary, select the Enable MTOM streaming for elements of type
base64Binary check box.

For more information about streaming of MTOM aachments, see the Web Services
Developer’s Guide

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 533

15. Click Next.

16. On the Select Root Node panel, under Select the root node, select the root node from
which to create the IS document type.Designer displays the metadata fields from
the content type. If the content type is associated with an e-form template, Designer
displays those elements as well.

17. Under Element reference handling, select one of the following to determine how
Integration Server handles references to global elements of complex type:

Select... To...

Only generate document
types for elements with
multiple references

Instruct Integration Server to create a separate
document type for a referenced element only when
the XML Schema definition contains multiple
references to that element.

If an element is referenced multiple times, Integration
Server creates a separate document type for the
element. Integration Server replaces each element
reference with a document reference field.

If an element is referenced only once, Integration
Server defines the element in line by replacing the
element reference with a document field.

Always generate document
types for referenced
elements

Instruct Integration Server to always create a separate
document type for a referenced element even if
it is referenced only once. In the document type,
Integration Server replaces each element reference
with a document reference field

Note: Integration Server always replaces an element reference to an element
declaration of simple type with an inline field of type String.

18. Under Complex type handling, select one of the following to indicate how Integration
Server handles references to named complex type definitions:

Select... To...

Expand complex types
inline

Use a document field defined in line to represent
the content of a referenced complex type definition.

Generate document types
for complex types

Create a separate IS document type to represent the
content for a referenced complex type definition.
The resulting IS document type for the root element
represents the element of complex type using a
document reference field. In turn, this document

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 534

Select... To...
reference field refers to the IS document type
created for the complex type definition.

Integration Server generates a separate IS document
type for any types derived from the referenced
complex types. For more information about derived
types, see "Derived Types and IS Document Types"
on page 537.

Note: Integration Server always represents an anonymous complex type using a
document field defined inline.

19. If you selected Generate document types for complex types and you want to register each
document type with the complex type definition from which it was created, select
the Register document type with schema type check box.

Note: If you want derived type support for document creation and validation,
select the Register document types with schema type check box. For more
information, see "Registering Document Types with Their Schema Types"
on page 539.

20. If you want Integration Server to generate IS document types for all complex types
in the XML Schema definition regardless of whether the types are referenced by
elements or other type definitions, select the Generate document types for all complex
types in XML Schema check box.

If you leave this check box cleared, Integration Server generates a separate IS
document type for a complex type only if the complex type is referenced or is
derived from a referenced complex type.

21. Click Finish.

Notes:

When a content type in the Content Service Platform serves as the source, Designer
creates a publishable IS document type. Designer adds the envelope (_env) field
to the IS document type automatically. This field is a document reference to the
pub:publish:envelope document type.

If Integration Server is connected to a Broker at the time you create an IS document
type from an content type in the Content Service Platform, the resulting IS document
type will be publishable to the Broker and will have an associated Broker document
type.

Creating a Document Type from a Flat File Schema
You can create an IS document type from a flat file schema that resides on the same
Integration Server. You can use this IS document type to represent the structure of the

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 535

flat file. This can be helpful when mapping to or from services that consume or produce
flat files.

You can also use the pub.flatFile:generate:createDocumentType to create an IS document type
from a flat file schema.

To create a document type from a flat file schema

1. In the Package Navigator of Designer, open the flat file schema from which you want
to create an IS document type.

2. On the Flat File Schema editor toolbar, click .

Integration Server creates an IS document type named flatFileSchema DT in the same
location as the flat file schema.

3. Select File > Save.

Determining How to Represent Complex Types in Document Types
Integration Server processes complex types from an XML Schema in one of two ways,
depending on an option you select when you create a new IS document type. One way
is to expand the complex type as an “inline” document in the editor. The other way
is to generate a separate IS document type for each complex type in the schema, with
references to those document types.

Example XML Schema
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://usecases/xsd2doc/01"
 xmlns:uc="http://usecases/xsd2doc/01" >
 <xsd:element name="eltA" type="uc:documentX" />
 <xsd:complexType name="documentX">
 <xsd:sequence>
 <xsd:element name="eltX_E" type="xsd:string" />
 <xsd:element name="eltX_F" type="uc:documentY" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="documentY">
 <xsd:sequence>
 <xsd:element name="eltY_G" type="xsd:string" />
 <xsd:element name="eltY_H" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

If you select the option to expand complex types inline, the schema processor generates
the document type as follows. In this example, the schema processor expanded the
complex types named documentX and documentY inline within the new IS document
type:

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 536

Complex types expanded inline

If you select the option to generate complex types as separate document types, the
schema processor generates the document types as follows. In this example, the
schema processor generated three IS document types—one for the complex type
named documentY, one for the complex type named documentX (with a reference to
documentY), and one for the root element eltA (with references to documentX and
documentY):

Complex types generated as separate document types

The schema processor generates all three document types in the same folder.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 537

Note: If the complex type is anonymous, the schema processor expands it inline
rather than generate a separate document type.

If the XML Schema you are using to generate an IS document type contains recursive
complex types (that is, element declarations that refer to their parent complex types
directly or indirectly), you can avoid errors in the document type generation process by
selecting the option to generate complex types as separate document types. (Selecting
the option to expand complex types inline will result in infinitely expanding nested
documents.)

Derived Types and IS Document Types
In an XML schema definition, new complex types can be derived from an existing
complex type. The new derived complex types (or simply derived types) are created
by either extending or restricting the base complex type. When extended, the derived
type contains additional elements or aributes that are not defined for the base type.
When restricted, the derived type contains a subset of the original elements or aributes
defined for the base type.

When you generate an IS document type from an XML schema definition that contains
derived types and you select the Generate document types for complex types option,
Integration Server creates an IS document type for the base type and one for each
derived type. IS document types that represent derived types are referred to as derived
document types.

For example, an XML schema might contain a complex type that defines the structure
of an address and a derived type that extends the Address complex type to define an
address that is specific to the United States:
<xsd:element name="purchaseOrder">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string"/>
 <xsd:element name="invoiceAddress" type="order:Address">
 </xsd:sequence>
</xsd:element>
<xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="USAddress">
 <xsd:complexContent>
 <xsd:extension base="order:Address">
 <xsd:equence>
 <xsd:element name="state"/>
 <xsd:element name="zip"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

If you generate an IS document type from this XML schema definition and you select
the Generate document types for complex types option, Integration Server creates an

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 538

IS document type for the base Address complex type and another for the derived
USAddress complex type.

When data conforms to the derived version rather than the base, an XML document or
IData object should indicate the specific derived version that is in use:

In an XML document, the xsi:type aribute is included to specify the derived type
being used for a complex type. For example, the following XML line indicates that
the invoice address will use the alternate format defined by the USAddress complex
type:
<invoiceAddress xsi:type="order:USAddress">

In a document (IData object), Integration Server uses the *doctype field, which contains
the name of the derived document type that represents the structure of a Document
field.

*doctype Fields in IS Document Types and Document Fields
When you generate an IS document type from an XML schema definition that contains
derived types and you select the Generate document types for complex types option,
Integration Server creates an IS document type for the base type and one for each
derived type. If you also select the Register document types with schema type option,
Integration Server registers the generated IS document types with the XML schema
types. For more information about derived types, see "Derived Types and IS Document
Types" on page 537. For more about registration, see "Registering Document Types
with Their Schema Types" on page 539.

When IS document types are registered with their XML schema types, Integration
Server adds a *doctype field to the IS document type. Additionally, at run time when
the pipeline contains a Document field that conforms to the base IS document type,
Integration Server adds the *doctype field to the Document field. Integration Server
uses the *doctype field when converting IData objects to XML, converting XML to IData
objects, and validating IData objects.

*doctype Fields in IS Document Types
When IS document types are registered with their XML schema types, Integration
Server adds a *doctype field to the IS document type of both the base document type and
derived document types. When using the IS document type in Designer, Designer lists
the valid values you can select for the *doctype field.

For a base document type, the list contains the fully-qualified names of all the
derived document types that can be substituted for the base type.

For a derived document type, the list contains only the fully-qualified name of the
derived document type itself.

The *doctype field is of use when using an IS document type for a base type. Integration
Server uses the derived document type you select to validate documents (IData objects)
against the IS document type. It also uses the derived document type you specify when
converting documents (IData objects) to XML. As a result, the derived document type

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 539

that you select in Designer should correspond to the schema type name that Integration
Server should use for the <xsi:type> aribute in the XML.

For example, you might have a Document field for an invoice address. To indicate that
the structure of the invoice address uses a derived type that represents an address in the
United States, for the *doctype field select the name of the appropriate derived document
type (e.g., docType_Ref_order_USAddress).

*doctype Fields in Document Fields
When converting XML to a document (IData object), a complex type in the XML is
represented in the IData object as a Document field. During the conversion while
parsing the XML, Integration Server checks complex types for the xsi:type aribute.
An xsi:type aribute specifies that the type in the instance document overrides the
type definition that was defined in the schema. When Integration Server converts
a complex type that corresponds to a derived type, it adds the *doctype field to the
Document field in the IData object. Integration Server sets the *doctype field to indicate
that the Document field is an instance of a derived type instead of the base type.
Specifically, Integration Server sets the *doctype field to the fully-qualified name of the
IS document type that corresponds to the value of the schema type name specified in the
<xsi:type> aribute.

For example, a complex type in XML being converted might include the following:
<invoiceAddress xsi:type="order:USAddress"

When Integration Server generates the Document field for the invoice address, it
will add a *doctype field and set its value to the fully-qualified name of the derived
document type that corresponds to the schema type name “order:USAddress” (e.g.,
orders:docType_Ref_order_USAddress).

When working with a Document field that was converted from XML, do not delete or
edit the *doctype field.

Note: When converting XML to a document (IData object), if Integration Server
encounters an <xsi:type> aribute in a simple type, Integration Server
ignores it. No *doctype field is added.

Registering Document Types with Their Schema Types
When creating IS document types from XML schema definitions, you can have
Integration Server register the IS document types with the XML schema types. To
register IS document types, you must select the Generate document types for complex types
and the Register document types with schema type options. By registering the IS document
types, you establish a one-to-one mapping between each generated IS document type
and its corresponding complex type within the XML schema definition.

Note: When creating a web service descriptor from a WSDL, Integration Server
registers each document type that it creates with the associated schema type
defined in the WSDL.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 540

It is important to register IS document types when the XML schema definition uses
derived types so that Integration Server can later perform data conversion. That is so
that Integration Server can convert data that conforms to the IS document types and
the XML schema definition from a document (IData object) to XML, and vice versa. It is
also important so that Integration Server can validate documents (IData objects) that use
derived types. For more information about derived types and derived document types,
see "Derived Types and IS Document Types" on page 537 and "*doctype Fields in IS
Document Types and Document Fields" on page 538.

The rest of this section illustrates what happens when Integration Server registers IS
document types with their XML schema types and how the registration is used during
data conversion. The following shows a portion of an XML schema definition that is
used for the illustration.
<xsd:element name="purchaseOrder">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string"/>
 <xsd:element name="invoiceAddress" type="order:Address">
 </xsd:sequence>
</xsd:element>
<xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
<xsd:complexType name="USAddress">
 <xsd:complexContent>
 <xsd:extension base="order:Address">
 <xsd:sequence>
 <xsd:element name="state"/>
 <xsd:element name="zip"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

When you create IS document types from the above XML schema definition, selecting
the Generate document types for complex types and the Register document types with schema
type options, Integration Server:

Creates an IS document type for the base Address complex type and another for the
derived USAddress complex type.

Adds a *doctype field to IS document types created for the base Address complex
type and the derived USAddress complex type.

Registers the Address complex type with the IS document type it generates for the
Address complex type.

Registers the USAddress complex type with the derived IS document type it
generates for the derived USAddress complex type. For example, this might
establish a mapping between the complex type order:USAddress and the IS
document type docTypeRef_order_USAddress.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 541

Because the IS document types were registered with the XML schema types, Integration
Server can later:

Convert XML data based on the schema to a document (IData object) and validate
the document

When an element in an XML instance is based on a derived type, the XML uses
the xsi:type aribute to identify the derived type for the element. When the
IS document type associated with derived type is registered, Integration Server
can locate the correct IS document type to use for the conversion, as well as set
the *doctype field to indicate the IS document type that defines the format in the
resulting document (IData object).

For example, if Integration Server converts an XML document that uses the
USAddress complex type, when parsing the XML, Integration Server finds the
<invoiceAddress xsi:type=”order:USAddress” element. Integration Server
uses the value of the xsi:type aribute, that is order:USAddress, and looks up
the registration to determine the corresponding IS document type. After Integration
Server determines the IS document type, it can then do the conversion using the IS
document type that corresponds to order:USAddress.

During the conversion, Integration Server sets the *doctype field to the fully-
qualified name of the IS document type it found in the registration. As a result, when
Integration Server validates the IData object, it determines the correct IS document
type to use for validation by using the value in the *doctype field.

Note: When converting XML to an IData object, if Integration Server encounters
an <xsi:type> aribute in a simple type, Integration Server ignores it. No
*doctype field is added.

Convert Document fields based on the IS document types to XML

When a Document field is based on a derived document type, the Document field
contains a *doctype field to identify the name of the derived document type that
defines the Document field’s structure. Integration Server can look up the document
type name in the registration to determine the corresponding Qualified Name
(QName) of the complex type in the schema. Integration Server uses this QName to
populate the xsi:type aribute that it places in the XML it is generating.

For example, if Integration Server converts a Document field containing a *doctype
field that has a value that is the fully-qualified name of the IS document type,
“docType_Ref_order_USAddress”, it uses the value of the *doctype field and looks
up the registration to determine the corresponding Qualified Name (QName), which
it uses to populate the xsi:type aribute in the resulting XML.

Generating Fields for Substitution Groups
Integration Server processes substitution group elements in one of two ways, depending
on the value of the wa.core.schema.generateSubstitutionGroups property:

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 542

When this property is set to true, the schema processor imports all substitution
group members (a non-abstract head element and substitutable elements) as optional
fields, even though they are defined as required elements in the XML Schema
definition.

Note: Because all the substitution group members are imported as optional,
during validation, Integration Server might consider some documents to
be valid even though the documents are actually invalid. For example,
suppose the original XML schema definition required the head element
or one of the member elements to be present. If none of the substitution
group elements are present in the instance document, Integration Server
considers the document to be valid because the corresponding fields
are optional in resulting IS document type. Additionally, if the instance
document contains more than one member of the substitution group,
Integration Server considers the document to be valid because the
corresponding fields are optional.

When this property is set to false, the resulting document type contains a field that
corresponds to the head element in the substitution group, but does not contain any
elements for members of the substitution group. This is the default.

When generating fields for a substitution group, Integration Server exhibits the
following behavior:

If the head element is declared as abstract, Integration Server does not include that
element in the IS document type.

Normally, when Integration Server creates a document type for a content model
that contains multiple occurrences of an element, Integration Server aggregates the
repeated fields into a single array. For example, if Integration Server encounters two
elements named "myElement", Integration Servercollects them into a single array
named "myElement". However, when Integration Server creates a document type for
a substitution group, if the same element is included in the substitution group more
than once via two different substitution group members, Integration Server does not
aggregate the elements into an array.

Integration Server cannot create an IS document type from an XML Schema
definition that contains a substitution group with a recursive reference to another
substitution group. For example, if a member of the substitution group contains a
reference to the head element, Integration Server enters a loop which eventually
results in a stack overflow error.

*Any Fields in Document Types and Document Fields
If the XML Schema definition used to create an IS document type contains a content
model with an any element declaration, Integration Server represents the element type
contains a content model with a field of type Object named *any . The <any> element
declaration in an XML Schema definition acts as placeholder for one or more unknown

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 543

elements in an instance document. In an <any> declaration, the namespace aribute
value determines the namespaces to which the matching element can or cannot belong.

At run time, when Integration Server converts an XML node to a document it replaces
the *any field with a field or fields for the replacement elements. Integration Server
validates that the replacement element is allowed or not allowed based on the
namespace aribute value specified for the <any> element.

Note: When Integration Server converts an XML node to a document (IData),
Integration Server treats the matching element as if the processContents
aribute for the <any> declaration was set to “skip”. A value of “skip”
specifies that the replacement element must be well-formed XML but the
Integration Server does not verify that the replacement element is schema-
valid.

About Run-time Processing for an IS Document Type that Complies
with the Content Model
If the IS document type accurately represents the content model for the complex type
from which it was created (the Model type property value is not “Unordered”), when
Integration Server converts an XML node to a document (IData), Integration Server
matches up the contents of an element in the XML node with the content model of the IS
document type. If a mismatch occurs and Integration Server is unable to map the XML
node contents to the IS document type, Integration Server appends the remaining data
to the resulting document (IData). Integration Server stops aempting to map the XML
node content to a field in the IS document type. This mismatch does not result in an
error at the time the document is created. However, the document would fail validation
by the pub.schema:validate service.

Editing Document Types
When you make a change to an IS document type, keep the following points in mind:

Any change is automatically propagated to all services, specifications, document
fields, and document list fields that use or reference the IS document type. (This
happens when you save the updated IS document type to the server.) To view a list
of elements that use the IS document type and will be affected by any changes, use
the Find Dependents command on the right-click menu.

If you use an IS document type as the blueprint for pipeline or document validation,
any changes you make to the IS document type can affect whether the object being
validated (pipeline or document) is considered valid.

The contents of an IS document type with a Model type property value other than
“Unordered” cannot be modified.

For an IS document type from a source file such as an XML schema definition or
a WSDL document, Designer displays the location of the source file in the Source

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 544

URI property. Designer also sets the Linked to source property to true which prevents
any editing of the document type contents. To edit the document type contents, you
first need to make the document type editable by breaking the link to the source.
For information about allowing editing of elements derived from a source, see
"Allowing Editing of Derived Elements" on page 59. However, Software AG does not
recommend editing the contents of document types created from WSDL documents.

Important Considerations When Modifying Publishable Document
Types
Keep the following information in mind when modifying a publishable document type.

When you modify a publishable document type (for example, delete a field or
change a property), the publishable document type may no longer synchronized
with the corresponding provider definition (Broker document type or Universal
Messaging channel). For information about how to synchronize document types, see
"About Synchronizing Publishable Document Types" on page 574.

Any change is automatically propagated to all services, specifications, document
fields, and document list fields that use or reference the IS document type. (This
happens when you save the updated IS document type to the server.) To view a list
of elements that use the IS document type and will be affected by any changes, use
the Find Dependents command on the right-click menu.

If you make the document unpublishable by changing the Publishable property to
false, publishing services and processes that use the publishable document type
will fail. For more information about making a document type unpublishable, see
"Making a Document Type Unpublishable" on page 556.

When you change the messaging connection alias assigned to a publishable
document type, you might need to synchronize the publishable document type with
its associated provider definition.

When you change the messaging connection alias assigned to a publishable
document type, Integration Server reloads any webMethods messaging triggers that
subscribe to the publishable document type.

Changes you make to the contents of a publishable document type might require
you to modify the filter for the document type in a trigger condition. For example,
if you add, rename, or move fields you need to update any filter that referred to the
modified fields. You might also need to modify the service specified in the trigger
condition for the webMethods messaging trigger.

When you change the encoding type of a publishable document type, you might
need to synchronize the publishable document type with the provider definition on
Universal Messaging.

You might also need to change the provider filters for any webMethods messaging
triggers that subscribe to the publishable document type. When the encoding type
is IData, it is optional to include _properties in the provider filter. However, when
the encoding type is protocol buffers, you need to include _properties in the provider

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 545

filter. If you want a provider filter that operates on the contents of _properties to work
regardless of the encoding type, always include _properties in the filter expression.

For an IS document type created from an e-form template, any modifications to the
content or structure of the IS document type will make it out of sync with the e-form
template from which it was created. This makes it unusable with the associated e-
form. When an instance of the e-form template is received, it will not match the IS
document type.

About Universal Names and Document Types
Every service and document type on a webMethods Integration Server has a universal
name in addition to its regular webMethods name. A universal name is a unique public
identifier that external protocols (such as SOAP) use to reference a service or document
type on a webMethods Integration Server. For more information about assigning
a universal name to a document type, see "About Universal Names for Services or
Document Types" on page 192.

Printing an IS Document Type
You can use the View as HTML command to produce a printable version of an IS
document type.

To print an IS document type

1. In Package Navigator view, open the IS document type you want to print.

2. Right-click anywhere inside the Document Type Editor and select View as HTML.

Designer expands any document and document list fields in the IS document type,
generates HTML content, and displays the HTML in a new editor.

If the Display Properties check box is selected on the HTML Generation preference
page in Service Development preferences, Designer includes the properties for
the document type and all of the variables in the document type. You can expand/
collapse the properties for individual variables or the parent document type. You can
also click Expand all properties or Collapse all properties to expand or collapse properties
for the document type and its contents.

For more information about HTML generation preferences, see "HTML Generation
Preferences" on page 941.

3. To print the HTML page, right-click anywhere in the editor and select Print.

Note: Designer prints the contents of the editor only. Variables and properties
that are collapsed will not be expanded in the printed version of the
HTML.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 546

Working with Publishable Document Types
A publishable document type is an IS document type with specified publication
properties such as storage type, time-to-live, and a message connection alias. In an
integration solution that uses the publish-and-subscribe model, services publish
instances of publishable document types, and triggers subscribe to publishable
document types. A trigger specifies a service that the Integration Server invokes to
process the document.

For example, you might create a publishable document type named EmpRec that
describes the layout of an employee record. You might create a trigger that specifies
that Integration Server should invoke the addEmployeeRecord service when instances of
the EmpRec are received. When a service or adapter notification publishes a document
of type EmpRec, that document would be queued for the subscribers of document type
EmpRec. Integration Server would pass the document to the subscribing trigger and
invoke the addEmployeeRecord service.

In a business process, a published document can start or join a process.

In a publication environment that includes Broker or Universal Messaging, each
publishable document type is associated with a messaging provider. You create an
association between a publishable document type and messaging provider by assigning
a messaging connection alias to the document type. A messaging connection alias
specifies the configuration information necessary to create a connection to the messaging
provider. The messaging connection alias assigned to a publishable document type
determines the messaging provider that will receive and route published documents

The messaging connection alias is used by:

A publishing service to publish an instance of the publishable document type to the
messaging provider

A webMethods messaging trigger to retrieve published instances of the publishable
document type from the messaging provider.

Once you assign a messaging connection alias to a publishable document type, the
messaging provider creates a provider definition, that corresponds to the publishable
document type. On Broker, the corresponding provider definition is a Broker document
type. On Universal Messaging, the corresponding provider definition is a channel. A
publishable document type and its corresponding provider definition must remain in
sync. Designer provides tools that you can use to synchronize a publishable document
type with its provider definition.

If the publishable document type uses Universal Messaging as the messaging provider,
you can specify an encoding type of IData or protocol buffers for instances of the
publishable document type. Integration Server uses the encoding type to serialize and
deserialize published and received documents. The encoding type you select determines
the filtering that the Universal Messaging can preform prior to enqueuing a message

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 547

for subscribers. For more information, see "About the Encoding Type for a Publishable
Document Type" on page 556.

When you build an integration solution that uses publication and subscription, you need
to create the publishable document types before you create triggers, services that process
documents, and services that publish documents.

Making a Document Type Publishable
Keep the following points in mind when making a document type publishable:

You can only make an IS document type publishable if you own the lock on the IS
document type (or you have it checked out) and you have write permission to the IS
document type.

If you want to publish instances of the document type to a webMethods messaging
provider (Broker or Universal Messaging), make sure that a messaging connection
alias exists for the provider. If no messaging connection alias exists, all publishable
document types will be publishable locally only.

Instances of a publishable document type that uses Universal Messaging the
messaging provider cannot be published locally.

If an IS document type contains a field named _env , you need to delete that field
before you can make the IS document type publishable. For more information about
the _env field, see "About the Envelope Field" on page 553.

Broker prohibits the use of certain field names, for example, Java keywords, @,
*, and names containing white spaces or punctuation. If you make a document
type publishable and it contains a field name that is not valid on the Broker, you
cannot access and view the field via any Broker tool. Additionally, Broker cannot
apply a filter to the contents of the field. However, the Broker transports the
contents of the field, which means that any other Integration Server connected
to that Broker has access to the field as it was displayed and implemented on the
original Integration Server. Use field names that are acceptable to the Broker. See
Administering webMethods Broker for information on naming conventions for Broker
elements.

The protocol buffers encoding type, which can be used with publishable document
types that work with Universal Messaging, does not support certain field names
or data types. These fields cannot be represented in protocol buffers and will be
passed through to Universal Messaging . Universal Messaging cannot filter on the
contents of these fields. However, subscribing triggers that receive the document will
decode the field and include it in the pipeline. For more information about protocol
buffers and supported field names and data types. see "Using Protocol Buffers as the
Encoding Type" on page 557

If a document type contains a _properties field at the top-level and the associated
messaging provider is Universal Messaging, Integration Server and Universal
Messaging treat the contents of _properties as custom header fields in the published

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 548

document. For more information about the _properties field, see "About the
Properties Field" on page 554.

Designer makes an IS document type generated from an e-form template a
publishable document type automatically.

You can make a document type publishable when the Linked to source property is
set to true. When a document type is linked to its source, you cannot change the
structure or contents of the document type. However, Designer does not consider the
addition of the _env field to be a structural change that breaks the association with
the source file.

To make a document type publishable

1. In the Package Navigator view of the Service Development perspective, double-click
the document type that you want to make publishable.

The document type opens in the Document Type Editor window.

2. In the Properties view, set the Publishable property to True.

3. Next to Connection alias name, do one of the following:

Select the name of the messaging connection alias with which instances of this
document type will be published.

Select DEFAULT (defaultAliasName) to use the default messaging connection
alias.

Leave the Connection alias name property blank to use the default messaging
connection alias.

To publishable instances of this document locally only, leave the Connection alias
name property blank and make sure there is no configured default messaging
connection alias.

Note: You can publish a document associated with a Broker connection alias
locally by seing the local input parameter of the publishing service to
true.

4. Next to Encoding type, select one of the following to indicate the format used to
encode and decode instances of this publishable document type.

Select... To encode and decode published documents as...

IData A serialized IData object. An IData object is the universal
container that Integration Server uses to receive input and
deliver output. An IData object contains an ordered collection
of key/value pairs. This is the default.

When a document is encoded as IData, triggers that subscribe
to the document type can specify provider filters for the
_properties header only.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 549

Select... To encode and decode published documents as...

Protocol buffers A protocol buffer. Protocol buffers is an approach to encoding
and decoding structured data developed by Google.

When a document is encoded as a protocol buffer, triggers that
subscribe to the document type can specify provider filters
for the body of the message only. Note that the body of the
message includes the headers as well.

For more information about seing the encoding type, see "About the Encoding
Type for a Publishable Document Type" on page 556.

5. Next to the Discard property, select one of the following to indicate how long
instances of this publishable document type remain on the provider before the
messaging provider discards them.

Select... To...

False Specify that the messaging provider should never discard
instances of this publishable document type.

True Specify that the messaging provider should discard instances
of this publishable document type after the specified time
elapses.

In the fields next to Time to live specify the time-to-live value
and time units.

6. Next to the Storage type property, select the storage method to use for instances of
this publishable document type.

Select... To...

Volatile Specify that instances of this publishable document type are
volatile. Volatile documents are stored in memory.

Guaranteed Specify that instances of this publishable document type are
guaranteed. Guaranteed documents are stored on disk.

For more information about selecting a storage type, see "Seing the Document
Storage Type for a Publishable Document Type" on page 565.

7. Select File > Save. Designer displays beside the document type name in the
Package Navigator to indicate it is a publishable document type.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 550

8. If you selected protocol buffers as the encoding type and a field in the publishable
document type cannot be represented in protocol buffers, Designer displays a
warning message to that effect. Click OK to dismiss the message.

Notes:

In the Connection alias type property, Designer displays Broker or Universal Messaging
to indicate which messaging provider is used by the selected alias.

In the Properties view, the Provider definition property displays the name of the
corresponding object created on the messaging provider.

Universal Messaging creates a channel that corresponds to the document type.
The channel name uses the following naming convention: wm/is/folderName/
subFolderName/documentTypeName. If a channel with that name already exists,
Integration Server does not create a new channel.

Note: When the Universal Messaging server is in a cluster, Universal
Messaging creates the channel on all of the servers in the cluster.

Broker has a Broker document type that corresponds to the publishable
document type. The Broker document type uses the following naming
convention: wm::is::folderName::documentTypeName. If a document type with this
name already exists on the Broker, Integration Server appends “_1” to the Broker
document type name.

If the messaging connection alias specified in the Connection alias name property is not
enabled at the time you make the document type publishable, one of the following
occurs:

If the Connection alias type is Broker, the publishable document type can be used
only in local publishes. The Provider definition property displays “Publishable
Locally Only”. Later, when the messaging connection alias is enabled, you can
create a corresponding Broker document type by pushing the document type to
the Broker during synchronization.

If the Connection alias type is Universal Messaging, the Provider definition property
displays the name of the channel. However, the channel may not exist on
Universal Messaging. Later, when the messaging connection alias is enabled,
you can create a channel by pushing the document type to Universal Messaging
during synchronization.

When you make a document type publishable, the Integration Server adds an
envelope field (_env) to the document type automatically. When a document is
published, Integration Server and/or the messaging provider populate this field with
metadata about the document. For more information about this field, see "About the
Envelope Field" on page 553.

If you selected protocol buffers as the encoding type, Integration Server creates
a message descriptor for the publishable document type. For more information
about using protocol buffers as the encoding type, see "Using Protocol Buffers as the
Encoding Type" on page 557.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 551

Once a publishable document type corresponds to an associated provider definition,
you need to make sure that the document type and provider definition remain
in sync. You can update one with changes in the other by synchronizing them.
For information about synchronizing document types, see "About Synchronizing
Publishable Document Types" on page 574

If you change messaging connection alias assigned to a publishable document type,
you might need to synchronize the publishable document type with its associated
provider definition.

Once a document type is publishable, any changes to the content, structure, or
properties can impact the corresponding provider definition, subscribing triggers,
or publishing services. For more information about editing a publishable document
type, see "Important Considerations When Modifying Publishable Document Types"
on page 544.

About the Associated Provider Definition
For a document type, the contents of the Provider definition property can indicate the
following:

Whether or not the document type is publishable.

To which messaging provider the document type is published.

Whether the publishable document type was created from a Broker document type
that was itself created from an IS document type.

Whether the publishable document type was created from a Broker document type
created in an earlier version of a webMethods component.

Whether instances of the publishable document type can be used in local publishes
only. If the publishable document type can be used only in local publishes, there is
no corresponding provider definition.

The following table lists and describes the possible contents of the Provider definition
property.

Provider definition property Description

wm/is/folderName/
documentTypeName

The name of the channel on Universal
Messaging that corresponds to the publishable
document type.

wm::is::folderName::documentTypeName The name of the Broker document type that
corresponds to the publishable document type.

The wm::is prefix indicates that the Broker
document type was created from an IS
document type. (Either the current document
type or an IS document type created and made

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 552

Provider definition property Description
publishable on another Integration Server.)
This prefix does not specify which Integration
Server the source IS document type is located
on.

On the Broker, all document types created
from an IS document type are located in the is
folder, which is a subfolder of the wm folder.
The folderName::documentTypeName portion of the
name further identifies where the document
type is located on the Broker.

Example:

wm::is::customerSync::Customer::updateCustomer

Indicates the Broker document type
updateCustomer is located in the following series
of folders wm::is::customerSync::Customer.

folderName::documentTypeName The name of the Broker document type that
corresponds to the publishable document type.

The absence of the wm::is prefix indicates that
the publishable document type was generated
from a Broker document type created with an
earlier version of a webMethods component.

Example:

Customer::getCustomer

Indicates the Broker document type getCustomer
is located in the Customer:: folder.

Publishable Locally Only Indicates that instances of the publishable
document type can be used in local publishes
only. This publishable document type does not
have a corresponding Broker document type.

When you made this document type
publishable, Integration Server was not
connected to the Broker specified in the
messaging connection alias.

Note: If you want instances of this publishable
document type to be published to the
Broker, you need to create a Broker
document type for this publishable
document type. When the messaging

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 553

Provider definition property Description
connection alias is enabled, you can
create the provider definition by pushing
the publishable document type to the
provider during synchronization. For
more information about synchronizing,
see "About Synchronizing Publishable
Document Types" on page 574.

Not Publishable Indicates that this IS document type is not
publishable. For information about making an
IS document type publishable, see "Making
a Document Type Unpublishable" on page
556.

About the Envelope Field
All publishable document types contain an envelope (_env) field. This field is a
document reference to the pub:publish:envelope document type. The envelope is much
like a header in an e-mail message. The pub:publish:envelope document type defines the
content and structure of the envelope that accompanies the published document. The
envelope records information such as the sender’s address, the time the document was
sent, sequence numbers, and other useful information for routing and control.

Because the _env field is needed for publication, Designer controls the usage of the _env
field in the following ways:

You cannot insert an _env field in a document type. Designer automatically inserts
the _env field as the last field in the document type when you make the document
type publishable.

You cannot copy and paste the _env field from one document type to another. You
can copy and paste this field to the Input/Output tab or into a specification.

You cannot move, rename, cut, or delete the _env field from a document type.
Designer automatically removes the _env field when you make a document type
unpublishable.

The _env field is always the last field in a publishable document type.

For more information about the _env field and the contents of the pub:publish:envelope
document type, see the webMethods Integration Server Built-In Services Reference.

Note: If an IS document type contains a field named _env , you need to delete that
field before you can make the IS document type publishable.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 554

About the Properties Field
You can add a _properties document field to a publishable document type to have
custom header fields added to documents published to Universal Messaging. When a
service publishes an instance of the document type, Integration Server adds the contents
of _properties as name=value pairs to the header. Specifically, Integration Server adds
child fields of _properties and their specified values to the header. For example, suppose
that a publishable document type contains a _properties document with a child field
named myField . If you set myField to 5, when Integration Server publishes the document
it adds myField='5' to the document header.

A webMethods messaging trigger can create a provider filter to be used with the custom
header fields. The filter allows the webMethods messaging trigger to indicate which
documents it wants to receive based on the header contents. Universal Messaging saves
the filter along with the subscription to the document type. When Universal Messaging
receives an instance of the publishable document type, Universal Messaging applies the
filter to the custom header fields. Universal Messaging enqueues the document for the
trigger only if the filter criteria is met.

Note: Integration Server uses the contents of _properties as custom header fields
document when the document is published to Universal Messaging only. For
all messaging providers, Integration Server includes _properties in the body of
the published document.

For the contents of the _properties field to be added to the message header of a published
document, _properties :

Must be a Document or Document reference variable.

Must be at the top-level of the publishable document type. That is, _properties cannot
be a child of another document in the document type.

Can include any number of fields.

Can contain fields of type String.

Can contain Object fields with a Java wrapper type of:
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.util.Date

Should not contain fields of type Document, Document List, Document Reference,
or Document Reference List. When creating the message header, Integration Server
ignores the content of fields of these types in _properties . Integration Server includes

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 555

the entire contents of _properties the published document, but Integration Server
only uses scalar fields that are direct children of _properties in the message header.

For information about creating a filter for use with custom header fields, see .

About Adapter Notifications and Publishable Document Types
Adapter notifications determine whether an event has occurred on the adapter's resource
and then sends the notification data to Integration Server in the form of a published
document. For example, if you are using the JDBC Adapter and a change occurs in
a database table that an adapter notification is monitoring, the adapter notification
publishes a document containing data from the event and sends it to Integration Server.

There are two types of adapter notifications:

Polling notifications, which poll the resource for events that occur on the resource.

Listener notifications, which work with listeners to detect and process events that
occur on the adapter resource.

Each adapter notification has an associated publishable document type . When you
create an adapter notification in Designer, Integration Server automatically generates a
corresponding publishable document type. Designer assigns the publishable document
type the same name as the adapter notification, but appends PublishDocument to the
name. You can use the adapter notification publishable document type in triggers and
flow services just as you would any other publishable document type.

The adapter notification publishable document type is directly tied to its associated
adapter notification. Integration Server automatically propagates the changes from the
adapter notification to the publishable document type. That is, when working in Package
Navigator view, Designer treats an adapter notification and its publishable document
type as a single unit. If you perform an action on the adapter notification, Designer
performs the same action on the publishable document type. For example, if you rename
the adapter notification, Designer automatically renames the publishable document
type. If you move, cut, copy, or paste the adapter notification Designer moves, cuts,
copies, or pastes the publishable document type.

The Connection alias name property for the adapter notification publishable document
type will initially have the default messaging connection alias that is configured in
Integration Server. This means that the default messaging connection alias will be used
to publish and receive instances of the adapter notification publishable document type.
Any changes to the Connection alias name property of the adapter notification publishable
document type will be propagated to its associated adapter notification.

For information about how to create and modify adapter notifications, see the
appropriate adapter user’s guide.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 556

Making a Document Type Unpublishable
You can change any publishable document type to a regular IS document type by
making the publishable document type unpublishable. Keep the following points in
mind when changing the publication status of a publishable document type:

webMethods messaging triggers, publishing services, and processes can only use
publishable document types. When you make an IS document type unpublishable,
webMethods messaging triggers, publishing services, and steps in a process that use
that IS document type will fail.

If a publishing service specifies the publishable document type and you make the
document type unpublishable, the publishing service will not execute successfully.
The next time the service executes, Integration Server throws a service exception
stating that the specified document type is not publishable.

You can only change the publishable status of an IS document type if you own
the lock on the IS document type (or you have it checked out) and you have write
permission to the IS document type.

If you make a publishable document type unpublishable and the assigned messaging
connection alias is not available, the messaging provider will not remove the
provider definition automatically. You will need to remove it manually using the
Broker interface in My webMethods or the Universal Messaging Enterprise Manager.

To make a publishable document type unpublishable

1. In the Package Navigator view of the Service Development perspective, double-click
the document type that you want to make unpublishable.

The document type opens in the Document Type Editor window.

2. In the Properties view, set the Publishable property to False.

3. Select File > Save.

Designer displays the Delete Confirmation dialog box. This dialog box prompts you
to indicate whether the associated provider definition should be deleted or retained.

4. If you would like to delete the associated provider definition from the messaging
provider, select the Delete associated provider definition check box.

5. Click OK.

About the Encoding Type for a Publishable Document Type
The encoding type indicates how Integration Server encodes and decodes published
instances of the document type. For a publishable document type that uses Universal
Messaging as the messaging provider, you can specify an encoding type. You can specify
one of the following encoding types:

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 557

IData, the universal container in Integration Server for sending and receiving data.
When a document type uses IData as the encoding type, Integration Server encodes
published instances of the document type as a serialized IData object.

Protocol buffers, a format for serializing structured data developed by Google and
implemented by Integration Server. When a document type uses protocol buffers
as the encoding type, Integration Server encodes the published instances of the
document type as protocol buffer.

Note: When a publishable document type uses Broker as the messaging provider,
Integration Server always encodes published documents as a Broker Event.
Integration Server encodes locally published documents as IData.

The encoding type for a publishable document type also determines the scope of the
message to which Universal Messaging applies a provider filter. In turn, this affects the
provider filters that you can build for the webMethods messaging triggers that subscribe
to the document type.

When IData is the encoding type, Universal Messaging can filter on the custom
header fields added via _properties only. The provider filter created by a
webMethods messaging trigger can include _properties header fields only.

When protocol buffers is the encoding type, Universal Messaging can filter on the
body of the document only. However, when creating the published document,
Integration Server includes the _properties headers in the body of the document as
well. The provider filter created by a webMethods messaging trigger can include
body and _properties header fields.

For more information about creating filters for use with Universal Messaging, see .

Note: You can only specify an encoding type for a publishable document type
in Integration Server and Designer versions 9.7 or later. Additionally, the
publishable document type must use Universal Messaging version 9.7 or later
as the messaging provider.

Using Protocol Buffers as the Encoding Type
If a publishable document type uses Universal Messaging as the messaging provider,
you can use protocol buffers as the encoding type. The primary reason to encode
published documents as protocol buffers is to leverage the filtering capabilities of
Universal Messaging. When protocol buffers is the encoding type, webMethods
messaging triggers that subscribe to the publishable document type can create provider
filters for the body of the document. Note that the body of the published document
contains the _properties headers and the _env field, as well as the document body
fields.When a document type uses IData as the encoding type, webMethods messaging
triggers that subscribe to the publishable document type can create provider filters
for the header of the published document only. By creating provider filters for the
body as well as the header of the document, triggers can be more selective about which
documents they receive.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 558

When you save a publishable document type for which protocol buffers is the encoding
type, Integration Server creates a message descriptor that represents the structure of
the document type as a protocol buffer. Integration Server saves the message descriptor
along with other metadata in the node.ndf file for the publishable document type. When
an instance of the publishable document type is published, Integration Server uses the
message descriptor to encode the document as a protocol buffer and then sends the
document to Universal Messaging. When a trigger receives the published document,
Integration Server uses the message descriptor to decode the document from a protocol
buffer.

Note: The message descriptor is a binary representation of the message structure
and is not visible within Designer.

When creating the message descriptor, Integration Server includes only fields that
can be represented in the protocol buffers format. Not all field names, data types,
and structures that are valid for a publishable document type can be represented in
the protocol buffer message descriptor. When publishing a document, Integration
Server places fields that cannot be represented in a protocol buffer message descriptor
in an UnknownFieldSet. An UnknownFieldSet is a collection of fields that may be
present while encoding or decodeing the document but are not present in the message
descriptor. Integration Server encodes the UnknownFieldSet as a serialized IData byte
array. The UnknownFieldSet, which is included in the published document, is passed
through to the subscribers. Universal Messaging cannot use provider filters to filter
on the contents of the UnknownFieldSet. However, a webMethods messaging trigger
that receives the document will be able to decode the UnknownFieldSet and include its
contents in the pipeline.

If you encode documents as protocol buffers to make use of provider filters for the
document body, you may want to delegate as much filtering to the Universal Messaging
as possible. If so, make sure the fields on whose contents you want Universal Messaging
to filter can be represented within a protocol buffer message descriptor. Universal
Messaging can only filter on fields that can be represented in the protocol buffer
message format.

The following list identifies limitations for representing a fields in a protocol buffer
descriptor:

Field names must meet the following criteria to be encoded:

First character must be a leer (a-z or A-Z).

Subsequent characters must be a leer, number, or underscore symbol (_).

If the field name does not meet the preceding criteria, Designer displays the
following message when you save the publishable document type: Cannot create
field ''fieldName '' in publishable document type ''publishableDocumentTypeName '';
this field name is not valid for use with protocol buffer encoding. The Universal
Messaging provider will transport the field contents as part or the UnknownFieldSet,
which will be visible to Integration Server clients only.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 559

Note: Integration Server reserves the use of field names that begin with the
underscore character for Integration Server usage, for example _env and
_properties .

Fields at the same level that share the same name, such as fields at the top-level
of the document type or sibling fields in a Document variable, cannot be encoded
with protocol buffers. Integration Server encodes the identically named fields as
part of the IData byte array for the UnknownFieldSet. For information about how
Integration Server decodes the contents of fields with the same name, see "Decoding
Protocol Buffers" on page 560.

If the publishable document type contains duplicate variables, Designer displays the
following message when you save the publishable document type: Cannot create
field ''fieldName '' in publishable document type ''publishableDocumentTypeName '';
field with duplicate names are not permied with protocol buffer encoding.

Fields must be defined to be data type supported by protocol buffers encoding.

String tables cannot be encoded with protocol buffers and will be defined as byte
array within the message descriptor and passed through as a serialized IData
object.

Objects and Object Lists defined to be an unknown Java wrapper type cannot be
encoded with protocol buffers. Instead, unknown Objects and Object Lists will
be defined as byte array within the message descriptor and passed through as a
serialized IData object.

Note: An Object or Object List field is unknown when the Java wrapper type
property for the fields is set to UNKNOWN. For more information about
assigning a Java wrapper type to a field, see "Applying Constraints to a
Variable" on page 607.

To generate additional logging information in the Sever log when Integration Server
creates the protocol buffer descriptor set the logging level for the server log facility 0154
Protocol Buffer Encoding (Universal Messaging) to Debug or Trace. Increased logging can
help you to locate problems that occur during protocol buffer encoding.

Encoding Documents as Protocol Buffers during Document Publishing
When Integration Server publishes an instance of a publishable document type for
which the encoding type is set to protocol buffers, Integration Server encodes the
document using the message descriptor created for the publishable document type. The
message descriptor is a representation of the publishable document type in the protocol
buffer format.

Integration Server only encodes fields with names and data that are represented in the
message descriptor in the protocol buffer. Fields whose name or data type cannot be
protocol buffer encoded will be passed through in the UnknownFieldSet . Integration
Server encodes the UnknownFieldSet field as a serialized IData byte array.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 560

For more information about fields that cannot be represented in protocol buffers, see
"Using Protocol Buffers as the Encoding Type" on page 557.

However, at the time Integration Server publishes a document, there might be additional
fields that cannot be encoded as protocol buffers. Integration Server adds these fields to
UnknownFieldSet.

The following contents of a published document will not be encoded as protocol buffers:

Undeclared fields. Any fields that are in the published document but are not defined
in the publishable document type will be added to the UnknownFieldSet. On the
subscribing side, Integration Server decodes these undeclared fields and adds them
immediately before the _env field.

Fields with a null value. Even if Integration Server can represent the field in protocol
buffers, null values cannot be included in protocol buffers. Fields with null values
will be added to the UnknownFieldSet. On the subscribing side, Integration Server
decodes these fields as null at their original position as defined in the publishable
document type.

Any list field in which one of the elements is a null value. The entire list is encoded
as a single serialized IData and placed in the UnknowFieldSet. On the subscribing
side, Integration Server decodes the list field into its original position as defined in
the publishable document type.

In addition, document encoding can fail if Integration Server encounters an unexpected
data type. For example, if publishable document type defines a field named myString
to be a String but at run time, the data type of myString is not an instance of String,
Integration Server cannot encode myString because it is not the expected data type. In
fact, document encoding fails entirely and publication fails with the following error:

Protocol buffer coder cannot handle data type dataTypeName for field fieldName in
document type: publishableDocumentType . Error: errorMessage

Decoding Protocol Buffers
When a webMethods messaging trigger receives a document encoded as a protocol
buffer, Integration Server decodes the document using the publishable document type
of which the received document is an instance. During decoding, Integration Server
uses the message descriptor created for the publishable document type. The message
descriptor is a representation of the publishable document type as a protocol buffer. The
IData that results from the decoding will be available in the pipeline when the trigger
service executes.

Following are notes about how Integration Server handles certain aspects of decoding:

Any undeclared fields that were in the published document will follow the last
defined field and immediately precede the _env field in the decoded IData.
Undeclared fields, also called unspecified fields, are those fields that existed in the
published document but for which there is not a field in the publishable document
type.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 561

If a published document contains multiple fields that refrence a single ojbect,
Integration Server decodes the fields as distinct objects instead of as a single object
with multiple fields referencing the object.

For example, suppose that a publishable document type has String fields abc and
xyz and is used in a flow service. At some point in the flow service, in a MAP step,
abc is mapped to xyz . As a result, xyz references abc . The value of xyz is the value
of abc . Any subsequent change to the value of abc in the flow service also changes
the value of xyz . When a document with multiple references is published, encoded,
and then decoded, Integration Server replaces the reference from xyz to abc with the
actual value of abc . After decoding, abc and xyz have the same value initially. But if
the value of abc later changes, it will not affect the value of xyz .

If a list field, such as String List, contains an empty element in the list but later
elements in the list contain values, when Integration Server decodes the list, it
condenses the list to fill empty elements. Integration Server condenses the list, first to
last, leaving no empty elements in the list.

If a published document contains... Integration Server decodes it as...

When decoding values for duplicate fields, Integration Server does not maintain
order of the values if one of the fields is empty . Integration Server decodes later
occurrence of the field at/in the position of the empty duplicate field.

The following table provides examples of how Integration Server decodes lists.

If a published document contains... Integration Server decodes it as...

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 562

If a published document contains... Integration Server decodes it as...

In addition, document decoding can fail if Integration Server encounters an unexpected
data type. For example, if publishable document type defines a field named myString to
be a String but, in the received document, the data type of myString is not an instance
of String, Integration Server cannot decode myString because it is not the expected data
type. In fact, trigger processing fails with the following error:

Protocol buffer coder cannot handle data type dataTypeName for field fieldName in
document type: publishableDocumentType . Error: errorMessage

Often, when the above error occurs, it indicates that the publishable document types
on the sending and receiving Integration Servers and the provider definition are out
of sync. If the publishable document types were the same on the Integration Servers,
during encoding, the publishing Integration Server would have caught the mismatch
between the data type specified in the publishable document type and the data
published in the instance document.

Setting the Encoding Type for a Publishable Document Type
The encoding type determines the format that Integration Server uses to encode and
decode instances of this publishable document type. Keep the following points in mind
when seing the encoding type:

You can only set the encoding type for publishable document types that use
Universal Messaging 9.7 or later as the messaging provider. Publishable document
types that use Broker as the messaging provider always use IData encoding.

Integration Server and Designer must be version 9.7 or later.

The encoding type that you specify affects the scope of filtering that Universal
Messaging performs and affects the provider filters you can create for webMethods
messaging triggers that subscribe to the publishable document type. If you change
the encoding type for a publishable document type for which there are already
subscribers, the provider filters created in webMethods messaging triggers might not
work properly.

For more information about encoding type and filters, see " Universal Messaging
Provider Filters and Encoding Type" on page 690.

If you want to use protocol buffers as the encoding type and use a provider filter, the
Universal Messaging configuration properties must be set to true, the defaults, on
Universal Messaging:

Global Values > ExtendedMessageSelector

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 563

Protobuff Config > Filter ProtobufEvents

Use Universal Messaging Enterprise Manager to view and edit the configuration
properties for the realm to which Integration Server connects.

Changing the encoding type causes the publishable document type to be out of sync
with the provider definition on Universal Messaging.

You can only set the encoding type for a publishable document type if you own
the lock on the IS document type (or you have it checked out) and you have write
permission to the IS document type.

To set the encoding type for a publishable document type

1. In the Package Navigator view of the Service Development perspective, double-click
the document type for which you want to set the encoding type.

The document type opens in the Document Type Editor window.

2. In the Properties view, under webMethods Messaging, next to Encoding type, select one
of the following:

Select... To encode and decode published documents as...

IData A serialized IData object. An IData object is the universal
container that Integration Server uses to receive input and
deliver output. An IData object contains an ordered collection
of key/value pairs. This is the default.

Protocol buffers A protocol buffer. Protocol buffers is an approach to encoding
and decoding structured data developed by Google.

3. Select File > Save.

4. If you selected protocol buffers as the encoding type and a field in the publishable
document type cannot be represented in protocol buffers, Designer displays a
warning message to that effect. Click OK to dismiss the message.

5. Synchronize the publishable document type with its provider definition.

For information about synchronizing document types, see "About Synchronizing
Publishable Document Types" on page 574

About the Type of Document Storage
For a publishable document type, you can set the storage type to determine how
Integration Server and the messaging provider store instances of this document.
The storage type also determines how quickly the document moves through the
webMethods system. You can select one of the following storage types:

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 564

Volatile storage specifies that instances of the publishable document type are stored in
memory. Volatile documents move through the webMethods system more quickly
than guaranteed documents because resources do not return acknowledgements
for volatile documents. (An acknowledgement indicates that the receiving resource
successfully stored or processed the document and instructs the sending resource to
remove its copy of the document from storage.) However, if a volatile document is
located on a resource that shuts down, the volatile document is not recovered when
the resource restarts.

Integration Server provides at-most-once processing for volatile documents. That
is, document delivery and processing are aempted but not guaranteed for volatile
documents. Integration Server might process multiple instances of a volatile
document, but only if the document was published more than once. Specify volatile
storage for documents that have a short life or are not critical.

Guaranteed storage specifies that instances of the publishable document type are
stored on disk. Resources return acknowledgements after storing or processing
guaranteed documents. Because guaranteed documents are saved to disk and
acknowledged, guaranteed documents move through the webMethods system more
slowly than volatile documents. However, if a guaranteed document is located on
a resource that shuts down, the resource recovers the guaranteed document upon
restart.

webMethods components provide guaranteed document delivery and guaranteed
processing (either at-least-once processing or exactly-once processing) for
guaranteed documents. Guaranteed processing ensures that once a trigger receives the
document, it is processed. Use guaranteed storage for documents that you cannot
afford to lose.

Note: Some Broker document types have a storage type of Persistent. The
Persistent storage type automatically maps to the guaranteed storage type
in the Integration Server.

Document Storage Versus Broker Client Queue Storage
The Broker can override the storage type assigned to a document with the storage
type assigned to the client queue. A client queue can have a storage type of volatile or
guaranteed. Volatile client queues can contain volatile documents only. Guaranteed
client queues can contain guaranteed documents and volatile documents.

When the Broker receives a document, it places the document in client queue created for
the subscriber (such as a trigger). If the Broker receives a guaranteed document to which
a volatile client queue subscribes, the Broker changes the storage type of the document
from guaranteed to volatile before placing it in the volatile client queue. The Broker does
not change the storage type of a volatile document before placing it in a guaranteed
client queue.

The following table indicates how the client queue storage type affects the document
storage type.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 565

If document storage type
is...

And the client queue storage
type is...

The Broker saves the document
as...

Volatile VolatileVolatile

Guaranteed Volatile

Volatile VolatileGuaranteed

Guaranteed Guaranteed

Note: On the Broker, each client queue belongs to a client group. The client queue
storage type property assigned to the client group determines the storage
type for all of the client queues in the client group. You can set the client
queue storage type only when you create the client group. By default, the
Broker assigns a client queue storage type of guaranteed for the client group
created for Integration Servers. For more information about client groups, see
Administering webMethods Broker.

Setting the Document Storage Type for a Publishable Document Type
Keep the following points in mind when seing the storage type for a publishable
document type:

You can only change the document storage type for a publishable document type if
you own the lock on the IS document type (or you have it checked out) and you have
write permission to the IS document type.

For documents published to the Broker, the storage type assigned to a document can
be overridden by the storage type assigned to the client queue on the Broker.

Changing a webMethods Messaging property may cause the publishable document
type to be out of sync with the associated provider definition. For information about
synchronizing document types, see "About Synchronizing Publishable Document
Types" on page 574.

To assign the storage type for a publishable document type

1. In Package Navigator view of the Service Development perspective, double-click the
publishable document type for which you want to set the storage type.

The document type opens in the Document Type Editor window.

2. In the Properties view, under webMethods Messaging, next to the Storage type property,
select one of the following:

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 566

Select... To...

Guaranteed Specify that instances of this publishable document type
should be stored on disk.

Volatile Specify that instances of this publishable document type
should be stored in memory.

3. Select File > Save.

About the Time-to-Live for a Publishable Document Type
The time-to-live value for a publishable document type determines how long instances
of that document type remain on the messaging provider. The time-to-live commences
when the Broker receives a document from a publishing Integration Server. If the time-
to-live expires before the messaging provider delivers the document and receives an
acknowledgement of document receipt, the messaging provider discards the document.
This happens for volatile as well as guaranteed documents.

For example, suppose that the time-to-live for a publishable document type is 10
minutes. When the messaging provider receives an instance of that publishable
document type, the messaging provider starts timing. If 10 minutes elapse and the
messaging provider has not delivered the document or received an acknowledgement of
document receipt, the provider discards the document.

For a publishable document type, you can set a time-to-live value or indicate that the
messaging provider should never discard instances of the document type.

Setting the Time to Live for a Publishable Document Type
Keep the following points in mind when seing the time-to-live for a publishable
document type:

You can only change the time-to-live for an IS document type if you own the lock on
the IS document type (or you have it checked out) and you have write permission to
the IS document type.

Changing a webMethods Messaging property causes the publishable document type
to be out of sync with the associated provider definition. For information about
synchronizing document types, see "About Synchronizing Publishable Document
Types" on page 574.

To set a time-to-live value for a publishable document type

1. In Package Navigator view of the Service Development perspective, double-click the
publishable document type for which you want to set a time to live.

The document type opens in the Document Type Editor window.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 567

2. In the Properties view, under webMethods Messaging, next to the Discard property,
select one of the following:

Select... To...

False Specify that the messaging provider should never discard
instances of this publishable document type.

True Specify that the messaging provider should discard instances
of this publishable document type after the specified time
elapses.

In the Time to live property, specify the time-to-live value and
units in which the time should be measured.

3. Select File > Save.

About Run-Time Validation for a Published Document
In a publish-and-subscribe solution, Integration Server validates a published document
against the associated publishable document type. Validation occurs immediately after
the publishing service executes. If Integration Server determines that the published
document is invalid (that is, the published document does not conform to the associated
publishable document type), the publishing service returns a service exception that
indicates the validation error. Integration Server does not publish the document.

While document validation ensures that document subscribers receive valid documents
only, it can be an expensive operation in terms of resources and performance. In some
situations, you might not want to validate the published document. For example,
you might want to disable document validation when publishing documents that
were already validated. Suppose that a back-end resource, created and validated the
document and then sent it to Integration Server. If Integration Server in turn, publishes
the document to Broker, you might not need to validate the document when publishing
it because it was already validated by the back-end resource. You might also want to
disable all document validation when publishing native Broker events.

Integration Server provides two seings that you can use to configure validation for
published documents.

A global seing named wa.server.publish.validateOnIS that indicates whether
Integration Server always performs validation, never performs validation, or
performs validation on a per document type basis. You can set this property using
Integration Server Administrator. For more information about seing this property,
see webMethods Integration Server Administrator’s Guide.

A webMethods messaging property for publishable document types that indicates
whether instances of a publishable document type should be validated. Integration

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 568

Server honors the value of this property (named Validate when published) only if the
wa.server.publish.validateOnIS is set to perDoc (the default).

Note: When deciding whether to disable document validation, be sure to weigh
the advantages of a possible increase in performance against the risks of
publishing, routing, and processing invalid documents.

Specifying Document Validation for Instances of a Publishable Document Type
You can only change the Validate when published property for an IS document type if you
own the lock on the IS document type (or you have it checked out) and you have write
permission to the IS document type.

To specify validation for instances of a publishable document type

1. In Package Navigator view of the Service Development perspective, double-click the
publishable document type for which you want to specify validation.

The document type opens in the Document Type Editor window.

2. In the Properties view, under webMethods Messaging, set the Validate when published
property to one of the following:

Select... To...

True Perform validation for published instances of this publishable
document type.

This is the default.

False Disable validation for published instances of this publishable
document type.

3. Select File > Save.

Deleting Publishable Document Types
Before you delete a publishable document type, keep the following in mind:

When you delete a publishable document type that has a corresponding provider
definition, you can choose whether to delete both the publishable document type
and the provider definition or just the publishable document type.

If you intend to delete the associated provider definition as well, make sure that the
connection alias to the messaging provider is enabled.

If the Integration Server is a member of a cluster or the client prefix for the associated
messaging connection alias is shared, you can delete the publishable document type
but you cannot remove the associated provider definition.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 569

You can only delete a publishable document type if you own the lock (or have the
publishable document type checked out) and have Write permission to it.

If you delete a Broker document type that is required by another Integration
Server, you can synchronize (push) the document type to the Broker from that
Integration Server. If you delete a Broker document type that is required by a non-
IS Broker client, you can recover the document from the Broker .adl backup file. See
Administering webMethods Broker for information about importing .adl files.

To delete a publishable document type

1. In Package Navigator view, select the document type you want to delete.

2. Select Edit > Delete.

If you enabled the deleting safeguards in the Preferences dialog box, and the
publishable document type is used by other elements, Designer displays a dialog box
listing all dependent elements, including triggers and flow services. For information
about enabling safeguards to check for dependents when deleting an element, see
"Configuring Dependency Checking for Elements" on page 57.

If the document type is associated with a provider definition, Designer displays the
Delete Confirmation dialog box.

3. If you would like to delete the associated provider definition from the messaging
provider, select the Delete associated provider definition check box.

4. Do one of the following:

Click... To...

Continue Delete the element from the Integration Server. References in
dependent elements remain.

Cancel Cancel the operation and preserve the element in the Integration
Server.

OK Delete the element from Integration Server. (The OK buon
only appears if the publishable document type did not have any
dependents.)

About Testing Publishable Document Types
To test a publishable document type in Designer, you must create a launch configuration
for the document type. In the launch configuration, you can specify input values
and publishing method. Designer uses this information to create an instance of the
publishable document type. Integration Server then publishes the document locally or to
a messaging provider. Designer displays the results of the publish in the Results view.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 570

Testing a publishable document type provides a way for you to publish a document
without building a service that does the actual publishing. By testing a publishable
document type you can also test the webMethods messaging triggers that subscribe
to the document type. If you select a publication action where you wait for a reply
document, you can verify whether or not reply documents are received.

Creating a Launch Configuration for a Publishable Document Type
Use the following procedure to create a re-usable launch configuration that you can run
to test a publishable document type.

To create a launch configuration for a publishable document type

1. In the Service Development perspective, select Run > Run Configurations.

2. On the Configurations tree, select IS Document (Publishable), and then click .

A new configuration entry appears below IS Document (Publishable) and the launch
configuration options appear on the right-hand side of the dialog box.

3. In the Name field, enter a new name for your launch configuration. The Publishable
tab displays the name of the Integration Server where the document type resides as
well as the name of the document type.

4. In the Integration Server list, select the Integration Server on which the publishable
document type for which you are creating a launch configuration resides.

5. In the Publishable Document Type field, click Browse to navigate to and select the
publishable document type for which you want to create a launch configuration.

6. Click the Input tab and specify input values for the publishable document type.

a. Enter valid values for the fields defined in the publishable document type or click
Load to retrieve the values from a file. For information about loading input values
from a file, see "Loading Input Values" on page 423.

b. Select the Prompt for data at launch check box if you want to view or edit the input
data before the launch configuration runs. This option is selected by default.

c. If you want to save the input values that you have entered, click Save. Input
values that you save can be recalled and reused in later tests. For information
about saving input values, see "Saving Input Values" on page 423.

d. Click Apply. When you enter values for constrained objects in the Input tab,
Integration Server automatically validates the values. If the value is not of the
type specified by the object constraint, Designer displays a message identifying
the variable and the expected type.

7. Click the Action tab and specify publish seings for the document type.

a. Select the type of publishing for the document.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 571

Note: The options available here are enabled or disabled, depending on the
messaging provider of the publishable document type or the version of
Integration Server to which your Designer is connected.

Select... To...

Publish locally to
thisIntegration Server

Publish an instance of the publishable
document type to the same Integration Server
to which you are connected.

Publish to the Provider Publish an instance of this publishable
document type to the messaging provider
specified by the messaging connection alias
assigned to the document type.

Deliver to a destination Deliver an instance of the publishable
document type to a specific destination on the
messaging provider.

Note: This option is disabled if your Designer
is connected to a version of Integration
Server prior to 9.8 and the messaging
provider is Universal Messaging.

Publish locally to
thisIntegration Serverand wait
for a Reply

Publish an instance of the publishable
document type to the same Integration Server
to which you are connected and wait for a
response document.

Publish to the Provider and
wait for a Reply

Publish an instance of this publishable
document type to the messaging provider and
wait for a response document.

Deliver to a destination and
wait for a Reply

Deliver an instance of the publishable
document type to a specific destination on
the messaging provider and wait for a reply
document.

Note: This option is disabled if your Designer
is connected to a version of Integration
Server prior to 9.8 and the messaging
provider is Universal Messaging.

b. If you selected either Deliver to a destination or Deliver to a destination and wait for
a Reply, in the Destination ID field, specify the destination to which you want to
deliver the document. You can either enter the destination name or click Browse

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 572

to select the destination. If you click Browse, Designer displays all the available
Destination IDs.

Note: If your Designer is connected to Integration Server version 9.8 and
the messaging provider is Universal Messaging, the Browse buon is
disabled. You can, however, enter destination ids in the Destination IDs
field.

Note: Integration Server assigns trigger clients names according to the client
prefix set for the Broker connection alias.

c. If you selected a publication action in which you wait for a reply, you need to
select the document type that you expect as a reply. You can enter the document
type name or click Browse to select the document type.

If you click Browse, Designer displays all the publishable document types on the
Integration Server to which you are currently connected. In the Elements Name
field, type the fully qualified name of the publishable document type that you
expect as a reply or select it from the Folder list. If the service does not expect a
specific document type as a reply, leave this field blank.

d. Under Set how long Designerwaits for a Reply, select one of the following:

Select... To...

Wait indefinitely Specify that Designer should wait indefinitely
for a reply document. Designer will wait for
the response for the length of your session on
the Integration Server. When you end your
session or close Designer, Designer stops
waiting for the reply.

Wait for Specify the length of time that Designer
should wait for the reply document.

Next to the Wait for option, enter how long
you want Designer to wait for the reply
document.

8. Optionally, click the Common tab to define general information about the launch
configuration and to save the launch configuration to a file.

9. Click Apply.

10. Click Run to test the publishable document type now. Otherwise, click Close.

Testing a Publishable Document Type
Keep the following points in mind when testing a publishable document type:

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 573

If your publishable document type expects Object variables that do not have
constraints assigned or an Object defined as a byte[], you will not be able to enter
those values in the Input dialog box. To test these values, you must write a Java
service that generates input values for your service and a flow service that publishes
the document. Then, create a flow service that first invokes the Java service and then
the publishing flow service.

If you selected a publication action in which you wait for a reply, and Designer
receives a reply document, Designer displays the reply document as the value of the
receiveDocumentTypeName field in the Results view.

If Designer does not receive the reply document before the time specified for next
Wait for elapses, Designer displays an error message stating that the publish and
wait (or deliver and wait) has timed out. The Results view displays null next to the
receiveDocumentTypeName field to indicate that the Integration Server did not receive
a reply document.

To test a publishable document type

1. In the Package Navigator view of the Service Development perspective, select the
publishable document type that you want to test.

2. Select Run > Run As > Publishable Document.

3. Do one of the following:

If a launch configuration exists and Prompt for data at launch is not enabled, the
configuration runs. If Prompt for data at launch is enabled, the Input dialog box
appears. View and edit the input data for the launch configuration, then click
Run.

If more than one launch configuration exists, select the one you want to run from
the Launch Configurations dialog box, and then click Run.

If a launch configuration does not exist, Designer uses the default launch
configuration. When the Input dialog box appears, enter launch configuration
data for the test in the Input dialog box and then click Run.

Note: The input data is not saved after the default launch configuration
runs. If you want to save the input data in a launch configuration, see
"Creating a Launch Configuration for a Publishable Document Type"
on page 570 for instructions about creating and saving a launch
configuration.

Notes:

Designer displays the instance document and publishing information in the Results
view.

If you selected a publication action in which you wait for a reply, and Designer
receives a reply document, Designer displays the reply document as the value of the
receiveDocumentTypeName field in the Results view.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 574

If Designer does not receive the reply document before the time specified next
Wait for elapses, Designer displays an error messages stating that the publish and
wait (or deliver and wait) has timed out. The Results view displays null next to the
receiveDocumentTypeName field to indicate that the Integration Server did not receive
a reply document.

About Synchronizing Publishable Document Types
When you synchronize document types, you make sure that a publishable document
type matches its associated provider definition. You will need to synchronize document
types when:

You make changes to the publishable document type, including changes to the
messaging properties of the publishable document type.

You made a document type publishable when Integration Server was not connected
to the messaging provider (Broker or Universal Messaging).

You install packages containing publishable document types on Integration Server.

You make changes to the Broker document type. (This is usually the result of
a developer on another Integration Server updating that server’s copy of the
publishable document type and pushing the change to the Broker document type.)

You change the client group for the Broker messaging connection alias.

Synchronization Status
Each publishable document type on your Integration Server has a synchronization
status to indicate whether it is in sync with the provider definition, out of sync with the
provider definition, or not associated with a provider. The following table identifies each
possible synchronization status for a document type.

Status Description

Updated Locally The publishable document type has been modified on
Integration Server.

Updated on the
Provider

The publishable document type has been modified on the
messaging provider.

Note: This status applies to publishable document types
associated with a Broker connection alias only.

Updated Both
Locally and on the
Provider

The publishable document type and the provider definition
have both been modified since the last synchronization. You
must decide which definition is the required one and push to

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 575

Status Description
or pull from the Broker accordingly. Information in one or the
other document type is overwrien.

Note: This status applies to publishable document types
associated with a Broker connection alias only.

Created Locally The publishable document type was made publishable when
the messaging provider was not connected or the publishable
document type was loaded on Integration Server via package
replication. An associated provider definition may or may not
exist on the messaging provider.

If the messaging provider is Broker and an associated
provider definition exists on the Broker, synchronize the
document types by pulling from the Broker.

If an associated provider definition does not exist on the
messaging provider or the messaging provider is Universal
Messaging, create (and synchronize) the provider definition
by pushing to the provider.

Removed from
Provider

The provider definition associated with the publishable
document type was removed from the messaging provider.

If you want to recreate the provider definition, push the
publishable document type to the provider.

If you want to delete the publishable document type on
Integration Server and the messaging provider is Broker, pull
from the provider.

If you want to delete the publishable document type on
Integration Server and the messaging provider is Universal
Messaging, delete the publishable document type manually.
For more information about deleting a publishable document
type, see "Deleting Publishable Document Types" on page
568.

In Sync with
Provider

The IS document type and the provider definition are already
synchronized. No action is required.

Note: When you switch the Broker configured for the Integration Server to a Broker
in a different territory, the Integration Server displays the synchronization
status as it was before the switch. This synchronization status may be
inaccurate because it does not apply to elements that exist on the second
Broker.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 576

Synchronization Actions
When you synchronize document types, you decide for each publishable document type
whether to push or pull the document type to the messaging provider. When you push
the publishable document type to the messaging provider, you update the provider
definition with the publishable document type on your Integration Server. When you
pull the document type from the messaging provider, you update the publishable
document type on your Integration Server with the provider definition.

The following table describes the actions you can take when synchronizing a publishable
document type.

Action Description

Push to
Provider

Update the provider definition with information from the
publishable document type.

Pull from
Provider

Update the publishable document type with information from the
provider definition.

Note: You can only pull from the messaging provider when the
publishable document type uses Broker as the messaging
provider.

Skip Skip the synchronization action for this document type. (This
action is only available when you synchronize multiple document
types at one time.)

Integration Server does not automatically synchronize document types because
you might need to make decisions about which version of the document type is
correct. This is especially true when using Broker as the messaging provider. For
example, suppose that Integration Server1 and Integration Server2 contain identical
publishable document types named Customer:getCustomer. These publishable document
types have an associated Broker document type named wm::is::Customer::getCustomer.
If a developer updates Customer:getCustomer on Integration Server2 and pushes the
change to the Broker, the Broker document type wm::is::Customer::getCustomer is updated.
However, the Broker document type is now out of sync with Customer:getCustomer
on Integration Server1. The developer using Integration Server1 might not want
the changes made to the Customer:getCustomer document type by the developer using
Integration Server2. The developer using Integration Server1 can decide whether to
update the Customer:getCustomer document type when synchronizing document types
with the Broker.

Note: For a subscribing Integration Server to process an incoming document
successfully, the publishable document type on a subscribing Integration
Server needs to be in sync with the corresponding document types on the

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 577

publishing Integration Server and the messaging provider. If the document
types and/or provider definition are out of sync, the subscribing Integration
Server may not be able to process the incoming documents. In this case, the
subscribing Integration Server logs an error message stating that the “Broker
Coder cannot decode document; the document does not conform to the
document type, documentTypeName .”

Combining Synchronization Action with Synchronization Status
The effect of a synchronization action on a publishable document type or a provider
definition depends on the synchronization status of the publishable document type. The
following table describes the result of the push or pull action for each possible document
type status.

Note: You can only pull from the messaging provider when the publishable
document type uses Broker as the messaging provider.

Status Action Result

Updated Locally Push to
Provider

Updates the provider definition with changes
made to the publishable document type.

 Pull from
Provider

Restores the publishable document type to the
previously synchronized version. Any changes
made to the publishable document type are
overwrien.

Updated on
Provider

Push to
Provider

Restores the provider definition to the
previously synchronized version. Any
changes made to the provider definition are
overwrien.

 Pull from
Provider

Updates the publishable document type with
changes made to the provider definition
(Broker document type).

Updated Both
Locally and on the
Provider

Push to
Provider

Updates the provider definition with changes
made to the publishable document type. Any
changes made to the provider definition prior
to synchronization are overwrien.

 Pull from
Provider

Updates the publishable document type with
changes made to the provider definition
(Broker document type). Any changes made

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 578

Status Action Result
to the publishable document type prior to
synchronization are overwrien.

Created Locally Push to
Provider

If no associated provider definition exists,
this action creates an associated provider
definition. If an associated provider definition
already exists, this action updates the
definition with the changes in the publishable
document type.

Note: If publishable document types for
this provider definition exist on other
Integration Servers, this action changes the
synchronization status of those publishable
document types to Updated on the Provider.

 Pull from
Provider

If an associated provider definition exists, this
action establishes the association between the
document type and the provider definition.
If changes have been made to the provider
definition, this action updates the publishable
document type as well.

If an associated provider definition does
not exist, this action deletes the publishable
document type.

Note: If publishable document types for
this provider definition exist on other
Integration Servers, this action does not
affect the synchronization status of those
publishable document types.

Removed from
Provider

Push to
Provider

Recreates the provider definition.

 Pull from
Provider

Deletes the publishable document type.

In Sync with the
Provider

Push to
Provider

Pushes the publishable document type to
the messaging provider. Even though no
changes were made to the provider definition,
if other Integration Servers contain publishable
document types associated with the provider
definition, the status of those publishable

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 579

Status Action Result
document types becomes “Updated on
Provider”.

Tip: If a publishable document type is in sync
with the provider definition, set the action
to Skip.

 Pull from
Provider

Updates the publishable document type
with the provider definition even though no
changes are made.

Tip: If a publishable document type is in sync
with the provider definition, set the action
to Skip.

Note: For a publishable document type created for an adapter notification, you
can select Skip or Push to Provider only. A publishable document type for an
adapter notification can only be modified on the Integration Server on which
it was created.

Synchronizing a Single Publishable Document Type
You can synchronize a single publishable document type with its corresponding
provider definition. When you synchronize one publishable document type, keep the
following points in mind:

If you want to Pull from Provider, you need to have write access to the publishable
document type and own the lock on it. For more information about locking elements
and access permissions (ACLs), see "About Locking Elements" on page 95 and
"Assigning ACLs" on page 87.

When you Pull from Provider, Designer gives you the option of overwriting elements
with the same name that already exist on the Integration Server. The provider
definition (Broker document type) might reference elements such as an IS schema
or other IS document types. If the Integration Server you are importing to already
contains any elements with the referenced names, you need to know if there is
any difference between the existing elements and those being imported from the
messaging provider (Broker). If there are differences, you need to understand what
they are and how importing them will affect any integration solution that uses them.
For more information about overwriting existing elements, see "Importing and
Overwriting References During Synchronization" on page 583.

For a publishable document type created for an adapter notification, you can select
Push to Provider or Skip only.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 580

If the Linked to source property is set to true for the publishable document type, the
action you can take depends on the source for the publishable document type. You
can select:

Pull from Provider only if the Source URI is a Broker document type.

Push to Provider only if the Source URI is a URI other than a Broker document type.

When Linked to source is true, the content and structure of the document type cannot
be modified. For information about allowing editing of an element created from a
source file, see "Allowing Editing of Derived Elements" on page 59.

To synchronize a single publishable document type

1. In Package Navigator view, select the publishable document type that you want to
synchronize.

2. Select File > Sync Document Types > Selected. Designer displays the Synchronize
dialog box. The Synchronize dialog box displays the synchronization status of the
document type, as described in "Synchronization Status" on page 574.

3. Under Action, do one of the following:

Select... To...

Push to
Provider

Update the provider definition with the publishable document
type.

Pull from
Provider

Update the publishable document type with the provider
definition. This option is available when the provider
definition is a Broker document type only.

Note: The result of a synchronization action depends on the document status.
For more information about how the result of a synchronization status
depends on the synchronization status, see "Combining Synchronization
Action with Synchronization Status" on page 577.

4. If you select Pull from Provider, as the action, Designer enables the Overwrite existing
elements when importing referenced elements check box.

5. If you want to replace existing elements in the Integration Server with identically
named elements referenced by the provider definition (Broker document type),
select the Overwrite existing elements when importing referenced elements check box. See
"Importing and Overwriting References During Synchronization" on page 583 for
more information about this topic.

6. Click Synchronize to synchronize the document type and provider definition.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 581

Synchronizing Multiple Document Types Simultaneously
You can synchronize multiple publishable document types with their corresponding
provider definitions at one time. For each publishable document type, you can specify
the direction of the synchronization. You can push the publishable document type to the
messaging provider or pull the provider definition from the messaging provider. If you
do not want to synchronize some publishable document types that are out of sync, you
can skip them during synchronization.

When synchronizing multiple document types at once, you can do one of the following:

Synchronize out-of-sync document types only. Use this option to view and synchronize
all publishable document types that are out sync with their associated provider
definition.

Synchronize all publishable document types. Use this option to view and synchronize all
publishable document types regardless of sync status.

Keep the following points in mind when synchronizing multiple document types at one
time:

If you want to Pull from Provider, you must have write access to the publishable
document type. The publishable document type must be either unlocked, or you
must have locked it yourself.

The Pull from Provider action is available for publishable document types that use
Broker as the messaging provider only. Pull from provider can be selected only when
the corresponding provider definition is a Broker document type.

When you pull document types from Broker, Designer gives you the option of
overwriting elements with the same name that already exist on the Integration
Server. The provider definition (Broker document type) might reference elements
such as an IS schema or other IS document types. If the Integration Server to which
you are importing already contains any elements with the referenced names, you
need to know if there is any difference between the existing elements and those
being imported from the Broker. If there are differences, you need to understand
what they are and how importing them will affect any integration solution that uses
them. For more information about overwriting existing elements, see "Importing and
Overwriting References During Synchronization" on page 583.

For a publishable document type created for an adapter notification, you can
only select Push to Provider or Skip. A publishable document type for an adapter
notification can only be modified on the Integration Server on which it was created.

If the Linked to source property is set to true for the publishable document type, the
action you can take depends on the source for the publishable document type. You
can select:

Pull from Provider only if the Source URI is a Broker document type.

Push to Provider only if the Source URI is a URI other than a Broker document type.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 582

Note: When synchronizing multiple document types, Designer does not prevent
Integration Server from overwriting publishable document types for which
Linked to source is true.

When you switch the Broker configured for Integration Server to a Broker in a
different territory, Integration Server displays the synchronization status as it was
before the switch. This synchronization status may be inaccurate because it does not
apply to elements that exist on the second Broker.

The result of a synchronization action depends on the document status. For
more information about how the result of a synchronization status depends
on the synchronization status, see "Combining Synchronization Action with
Synchronization Status" on page 577.

To synchronize multiple document types

1. In Designer, do one of the following:

To view and synchronize only out-of-sync document types, select File > Sync
Document Types > All Out-of-Sync. Designer displays the Sync All Out of Sync
Document Types dialog box.

To view and synchronize all document types, regardless of sync status, select
File > Sync Document Types > All. Designer displays the Sync All Document Types
dialog box.

2. If you want to specify the same synchronization action for all of the publishable
document types, do one of the following:

Select... To...

Set All to Push Change the Action for all publishable document types in the
list to Push to Provider.

Note: When you select Set All to Push, Designer sets the
publication action for adapter notification document
types to Skip.

Set All to Pull Change the Action for all publishable document types in the
list to Pull from Provider.

Set All to Skip Change the Action for all publishable document types in the
list to Skip.

3. If you want to specify a different synchronization action for each publishable
document type, use the Action column to select the synchronization action.

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 583

Select... To...

Push to
Provider

Update the provider definition with the publishable document
type.

Pull from
Provider

Update the publishable document type with the provider
definition.

Skip Skip the synchronization action for this document type.

4. If you want to replace existing elements in Package Navigator view with identically
named elements referenced by the Broker document type, select the Overwrite
existing elements when importing referenced elements check box. For more information
about importing referenced elements during synchronization, see "Importing and
Overwriting References During Synchronization" on page 583.

5. Click Synchronize to perform the specified synchronization actions for all the listed
publishable document types.

Synchronizing Document Types in a Cluster
Universal Messaging and Broker can be used with an Integration Server cluster and a
non-clustered group of Integration Servers that receive message from Broker in a load-
balanced fashion. A change in a publishable document type on one Integration Server
does not automatically result in a change to all Integration Servers in the cluster. You
must synchronize each Integration Server with the messaging provider individually.

Synchronizing Document Types Across a Gateway
webMethods does not support synchronization of document types across a gateway. (A
gateway connects two Broker territories.) If you set up two or more Broker territories
connected by gateways, the only way to synchronize document types is to replicate
packages between Integration Servers in each territory. For information about
replicating and loading packages from one Integration Server to another see webMethods
Integration Server Administrator’s Guide.

Importing and Overwriting References During Synchronization
When you create a publishable document type from a Broker document type or
synchronize a publishable document type by pulling a Broker document type from the
Broker, you must decide if you want to overwrite any existing elements associated with
the Broker document type.

For example, suppose that you are creating a publishable document type from a Broker
document type that was created on another Integration Server. The Broker document

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 584

type might reference elements such as an IS schema or other IS document types.
However, the Integration Server on which you are creating the publishable document
type might already contain elements with the referenced names. Before you overwrite
the existing elements, you need to know if there are any differences between the existing
elements and those being imported from the Broker. If there are differences, you need
to understand what they are and how importing them will affect any elements that use
them, such as services, IS document types, or triggers.

When you create a new document type from a Broker document type or when
you synchronize document types, you can use the Overwrite existing elements when
importing referenced elements check box to indicate whether existing elements should be
overwrien by imported elements of the same name.

What Happens When You Overwrite Elements on the Integration Server?
If you choose to overwrite existing elements when you are creating a document type
or synchronizing, Integration Server does the following when it encounters existing
elements with the same names as referenced elements:

If the Write ACL of a referenced element is set to WmPrivate, the Integration Server
skips that element. The Integration Server considers the element to be in sync.

If the lock can be obtained for all referenced elements and the current user has write
permission for the elements, the Integration Server overwrites the existing elements
and synchronization (or document type creation) succeeds.

During synchronization, if Integration Server cannot overwrite one of the elements
referenced by the Broker document type, the synchronization fails. The Integration
Server does not update any of the referenced elements or the publishable document
type. Similarly, when you create a publishable document type from a Broker document
type, if the Integration Server cannot overwrite one of the elements referenced by the
Broker document type, the Integration Server does not create the publishable document
type.

What Happens If You Do Not Overwrite Elements on the Integration Server?
If you choose not to overwrite elements when you create a publishable document
type from a Broker document type, Integration Server will not create the publishable
document type if the Broker document type references elements with the same name as
existing element son the Integration Server.

If you choose not to overwrite elements when you synchronize document types by
pulling from the Broker, Integration Server does not synchronize any document
type that references existing elements on the Integration Server. Integration Server
synchronizes only those document types that do not reference elements.

Publishing Documents as JMS Messages
You can create a launch configuration that publishes an instance of an IS document type
to a JMS provider. By using a launch configuration to publish the JMS message, you

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 585

can test the document type in a JMS solution without needing to build a service that
sends the document type as JMS message. You can also test any JMS triggers that receive
messages from the destination specified in the launch configuration and subsequently
any services or business processes that might be invoked by the JMS trigger.

In the launch configuration, you specify the JMS connection alias to use to send the JMS
message, the destination for the JMS message, and contents for the document, message
header, and message properties. When you run the launch configuration, Integration
Server uses the supplied information to create a JMS message in which the document
contents become the body of the JMS message. Integration Server sends the JMS message
to the JMS provider in the assigned JMS connection alias.

Creating a Launch Configuration to Publish a Document as a JMS
Message
Keep the following information in mind when creating a re-usable launch configuration
that publishes an instance of an IS document type as a JMS message:

You can publish any IS document type as a JMS message including publishable
document types.

Before you create the launch configuration, a JMS connection alias that you want the
launch configuration to use to send the message must already exist.

Use the following procedure to create a re-usable launch configuration that you can run
to publish a document as a JMS message to a JMS provider.

To create a launch configuration to publish a document as a JMS message

1. In Package Navigator view in the Service Development perspective, open the IS
document type that you want to publish as a JMS message.

2. Select Run > Run Configurations to open the Run Configurations dialog box.

3. On the Configurations tree, select IS Document (Publish as JMS Message), and then click
.

A new configuration entry appears below IS Document (Publish as JMS Message) and
the launch configuration options appear on the right-hand side of the dialog box.

4. In the Name field, enter a new name for your launch configuration. The Document
tab displays the name of the Integration Server where the document resides as well
as the name of the document that you want to publish.

You can change the document specified in the Document Type field by clicking Browse.

5. Click the JMS Settings tab and specify the JMS message details:

a. In the JMS connection alias name field, click . In the Select a JMS connection
alias for documentName dialog box, select the JMS connection alias that you want
this launch configuration to use to receive messages from the JMS provider. Click
OK.

M
Even Header

Working with Document Types

webMethods Service Development Help Version 9.10 586

If a JMS connection alias has not yet been configured on Integration Server,
Designer displays a message stating the JMS subsystem has not been configured.
For information about creating a JMS connection alias, see webMethods Integration
Server Administrator’s Guide.

b. In the Destination name field, do one of the following to specify the destination:

If the JMS connection alias uses JNDI to retrieve administered objects, specify
the lookup name of the Destination object.

If the JMS connection alias uses the native webMethods API to connect
directly to Broker, specify the provider-specific name of the destination.

If the JMS connection alias creates a connection on Broker or Universal
Messaging, click to select from a list of existing destinations. After you
select the destination, click OK.

c. From the Destination type list, do the following:

Select Queue to send the message to a particular queue.

Select Topic to send the message to a topic.

You need to specify a destination type only if you specified a JMS connection alias
name that uses the native webMethods API.

Note: Designer populates Destination type automatically if you selected a
destination from the list of existing destinations on the JMS provider.

d. Select Prepare message for BPM to add information to the JMS message that enables
Process Engine to start a process instance when it receives the message. When
this check box is selected, the published JMS message includes the documentType
property which specifies the fully qualified name of the IS document type used
to create the JMS message. Process Engine uses the document type name to map
the JMS message to the correct process model and start a process instance.

e. Under JMS Message Header and Properties, specify the values for the pre-defined
and custom properties that you want to add to the JMS message header. Click

 to add a row to specify custom properties. Click to insert a row and to
delete a row.

6. Click the Input tab and specify input values for the document, which will form the
contents of the JMS message body.

a. Enter valid values for the fields defined in the document or click Load to retrieve
the values from a file. For information about loading input values from a file, see
"Loading Input Values" on page 423.

b. If you want to save the input values that you have entered, click Save. Input
values that you save can be recalled and reused in later runs. For information
about saving input values, see "Saving Input Values" on page 423.

c. Click Apply. When you enter values for constrained objects in the Input tab,
Integration Server automatically validates the values. If the value is not of the

M
Odd Header

Working with Document Types

webMethods Service Development Help Version 9.10 587

type specified by the object constraint, Designer displays a message identifying
the variable and the expected type.

7. Optionally, click the Common tab to define general information about the launch
configuration and to save the launch configuration to a file.

8. Click Apply.

9. Click Run to run the launch configuration to publish the IS document as a JMS
message now. Otherwise, click Close.

Publishing a Document as a JMS Message
Keep the following information in mind when publishing a document as a JMS message.

You can publish any IS document type as a JMS message including publishable
document types.

The JMS connection alias that you want to use to send the JMS message must already
exist.

To publish a document as a JMS message

1. In Package Navigator view, select the document that you want to publish as a JMS
message.

2. In Designer: Run > Run As > Publish as JMS Message.

3. Do one of the following:

In the Input dialog box, view and edit the input data for the launch
configuration, then click Run.

If more than one launch configuration exists, select the one you want to run from
the Select Launch Configuration dialog box, and then click OK.

If a launch configuration does not exist, Designer creates a new launch
configuration. Enter launch configuration data in the Input dialog box and
then click OK. For more information about the data needed by the launch
configuration, see "Creating a Launch Configuration to Publish a Document as a
JMS Message" on page 585.

Note: The input data is saved automatically after the launch configuration
runs. To save the input data in a launch configuration, see "Saving
Input Values" on page 423.

Designer creates and publishes a JMS message. Designer displays the JMS message
in the Results view.

M
Even Header

webMethods Service Development Help Version 9.10 588

M
Odd Header

Working with XML Document Types

webMethods Service Development Help Version 9.10 589

27 Working with XML Document Types

■ What Is an XML Document Type? .. 590

■ Why Use XML Document Types Instead of IS Document Types? .. 591

■ Creating an XML Document Type ... 593

M
Even Header

Working with XML Document Types

webMethods Service Development Help Version 9.10 590

An XML document type is an asset in the IS namespace created from an XML Schema
definition. When you create an XML document type from an XML schema definition,
Integration Server creates a collection of XML document types to represent the structure,
content, and constraints defined in an XML schema definition. Each XML document
type corresponds to a global element declaration, global aribute declaration, or global
complex type definition in an XML Schema definition.

What Is an XML Document Type?
When you create an XML document type from an XML schema definition, Integration
Server creates a collection of assets to represent the XML schema definition, which can
include:

XML document types, each of which corresponds to a global element declaration,
global aribute declaration, or global complex type definition in an XML schema
definition.

XML fields each of which corresponds to global element declaration with simple
content.

IS schemas which contain the global simple type definitions for a particular
namespace in the XML schema definition.

Like IS document types, XML document types can be used to define the structure of
document being created from an XML node or a document being converted to XML,
define service signatures, build a document or document list field, or perform data
validation. However, XML document types more accurately represent XML Schema
definitions and provide support for XML schema constructs/feature that are not
supported through IS document types.

What Is XMLData?
At run time, instances of XML document types and XML fields are of contained in an
XMLData object. XMLData is an IData object that uses a specific encoding format to
represent the XML Information Set (XML Infoset). The format facilitates all the features
of XML Infoset and XML Schema, including support for capabilities such as nested
model groups and substitution groups. The format also eliminates the need to specify an
association between prefixes and namespace URIs.

Unlike the traditional encoding used for XML representation with raw IData, the
encoding format for XMLData is not public and is subject to change at any time. The
various built-in services that support XMLData, including those in the pub.xmldata folder
in the WmPublic package, and flow MAP step operations are the only supported means
of accessing and modifying XMLData. Directly manipulating an XMLData object as one
can a traditional IData object will lead to unexpected results.

M
Odd Header

Working with XML Document Types

webMethods Service Development Help Version 9.10 591

Why Use XML Document Types Instead of IS Document
Types?
While XML document types and IS document types have similar uses and, in some
cases, similar sources as both can be created from an XML schema definition, XML
document types offer the following distinct benefits:

Improved XML namespace handling. XML document types do not use prefixes from
the XML schema definition in the names of document types or fields (variables).
Instead IS uses the following format for XML document type names, XML field
names, and names of fields within XML document types: NCName#NamespaceURI.
This naming convention ensures that XML document types, XML fields, and fields
within a document type have a unique name, preventing the conflicts that arise
when IS document types are generated using one set of prefixes and the instance
XML documents use a different set of prefixes.

Nested and repeating model group support. IS can create XML document types
from XML schema definitions that contain nested model groups or repeating model
groups. An IS document type cannot correctly represent nested and repeating model
groups.

Any aribute support. IS can create XML document types from XML schema
definitions that contain the anyAttribute element. An IS document type cannot
correctly represent the anyAttribute element.

Improved support for substitution groups.

Improved support for any element.

Support for xsi:nil and xsi:type on simple types (String fields). IS document tyeps
support xsi:nil and xsi:type on complex types (Document fields) only.

Improved handling of identically named fields at the same level.

If you want your solutions to incorporate or leverage any above the above items,
consider using XML document types instead of IS document types in your solutions.

Note: XML document types and instance documents based on XML document types
are intended to implement XML Schema and XML as closely as possible.
Behavior that is inconsistent with XML Schema and XML will be treated
as known issues that need resolution. Implementations should not exploit
behavior that is inconsistent with XML and XML schema as it may have
unpredictable results.

M
Even Header

Working with XML Document Types

webMethods Service Development Help Version 9.10 592

Differences Between XML Document Types and IS Document Types
In addition to improved namespace handling and support for XML schema constructs
such as nested model groups, repeating model groups, and any aribute, XML
document types and IS document types have the following differences:

XML document types can be created from XML schema definitions only.

Integration Server uses the names in an XML Schema definition to name the
generated IS assets, including the XML document types. This is unlike IS document
types where you can specify the name of the first IS document type generated
from an XML schema definition but Integration Server creates the names of any
subsequent IS document types.

XML document types do not use prefixes from the XML schema definition in the
names of XML document types. XML fields, or fields withing XML document types.
Instead IS uses the following format for XML document type names, XML field
names, and names of fields within XML document types: NCName #NamespaceURI .
Integration Server document types use prefixes from the XML schema definition in
field (variable) names.

In XML document types, aribute names do not include the @ symbol to indicate
that it is an aribute.

XML document types do not contain *body , *doctype , or *any fields.

XML document types provide improved handling of identically named fields at
the same level. In XML document types, Integration Server maintains a particle
ID for each field. To view the particle ID, hover the cursor over the name of
the field. Designer displays properties for the field including the following for
the name: {ID }NCName #NamespaceURI where ID is a number representing
the occurrence of the field in the document type or the pipeline. For example,
{2}myLocalName#myNamespaceName indicates the second occurrence of a field
named myLocalName#myNamespaceName.

In IS document types, all occurrences of identically named fields at the same level
are collected into a single array. This approach may not preserve order during
runtime.

Note: Integration Server creates arrays for XML document types when
an individual element has a maxOccurs greater than 1. If there
are two fields named myLocalName#myNamespaceName
and each has a maxOccurs greater than 1, Integration Server
creates {1}myLocalName#myNamespaceName as an array and
{2}myLocalName#myNamespaceName as an array.

The contents of XML document types and XML fields cannot be edited.

M
Odd Header

Working with XML Document Types

webMethods Service Development Help Version 9.10 593

A Document Reference or Document Reference List variable contained in an IS
document type or in a service signature can reference an XML document type that
corresponds to a complex type definition or a root XML document type only.

Limitations of XML Document Type Usage
Although XML document types and IS document types can be used in nearly identical
ways, there are some limitations in the usage of XML document type:

XML document types cannot be made publishable. That is, an XML document type
cannot become a publishable document type.

XML document type cannot be used in web services, which includes the signatures
of services used as operations, headers, faults, and the pub.soap.handler* services.

XML document types cannot be used as the top-level element in a service signature.
That is, on the Input/Output tab, you cannot specify an XML document type for the
Input field or Output field.

XML document types should not be created from an XML schema definition in an
Event Type Store.

XML document types should not be created from e-forms.

Creating an XML Document Type
When you create an XML document type you specify the following:

The destination folder in which you want Designer to place the generated XML
document types, XML fields, IS schemas, and folders.

The source XML schema definition.

Whether or not Integration Server use the Xerces Java parser to validate the XML
Schema definition before creating XML document types.

There are no additional options, making the process of creating an XML document type
less complex than that of creating an IS document type.

When you create an XML document type, keep the following information in mind:

You can create only one set of XML document types per folder. If you used folderA
as the destination for the XML document types and other assets created for
mySchema.xsd, you cannot use folderA as the destination for the XML document
types and other assets generated from another XML schema definition. However,
you could use a subfolder in folderA as the destination for the XML document type
and other assets created for another XML schema definition.

Do not use a folder created by Integration Server to store assets generated for an
XML schema definition as the destination folder for new XML document types.

M
Even Header

Working with XML Document Types

webMethods Service Development Help Version 9.10 594

To create an XML document type from an XML Schema definition in CentraSite,
Designer must be configured to connect to CentraSite.

To create an XML document type

1. In the Service Development perspective of Designer, click File > New > XML Document
Type.

2. In the Create a New XML Document Type dialog box, select the folder in which
you want to save the XML document types, XML fields, IS schemas, and folders
generated from the XML schema definition.

3. Click Next.

4. On the Select a Source Location panel, under Source location, do one of the following
to specify the source XML schema definition for the XML document type:

To use an XML schema definition in CentraSite as the source, select CentraSite.

To use an XML schema definition that resides on the Internet as the source, select
File/URL. Then, type the URL of the resource. (The URL you specify must begin
with http: or https:.)

To use an XML Schema definition that resides on your local file system as the
source, select File/URL. Then, type in the path and file name, or click the Browse
buon to navigate to and select the file.

5. If you want Integration Server to use the Xerces Java parser to validate the XML
Schema definition, select the Validate schema using Xerces check box.

Note: Integration Server automatically uses an internal schema parser to validate
the XML Schema definition. However, the Xerces Java parser provides
stricter validation than the Integration Server internal schema parser. As a
result, some schemas that the internal schema parser considers to be valid
might be considered invalid by the Xerces Java parser.

6. If you selected CentraSite as the source, click Next. Then, under Select a Schema,
select the XML schema definition that you want to use as the source and click Finish.

If Designer is not configured to connect to CentraSite, Designer displays the
CentraSite> Connections preference page and prompts you to configure a connection
to CentraSite.

7. Click Finish.

Notes:

Integration Server uses the internal schema parser to validate an XML schema
definition. If you selected the Validate schema using Xerces check box, Integration
Server also uses the Xerces Java parser to validate the XML Schema definition. With
either parser, if the XML Schema does not conform syntactically to the schema
for XML Schemas defined in XML Schema Part 1: Structures (which is located at

M
Odd Header

Working with XML Document Types

webMethods Service Development Help Version 9.10 595

hp://www.w3.org/TR/xmlschema-1), Integration Server does not create an XML
document type. Instead, Designer displays an error message that lists the number,
title, location, and description of the validation errors within the XML Schema
definition. If only warnings occur, Designer generates the XML document type and
the other assets.

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations
for this version are listed at hp://xerces.apache.org/xerces2-j/xml-
schema.html.

When validating XML schema definitions, Integration Server uses the Perl5 regular
expression compiler instead of the XML regular expression syntax defined by the
World Wide Web Consortium for the XML Schema standard. As a result, in XML
schema definitions consumed by Integration Server, the paern constraining facet
must use valid Perl regular expression syntax. If the supplied paern does not use
proper Perl regular expression syntax, Integration Server considers the paern to be
invalid.

Note: If the wa.core.datatype.usejavaregex configuration parameter is set to
true, Integration Server uses the Java regular expression compiler instead
of the Perl5 regular expression compiler. When the parameter is true,
the paern constraining facet in XML schema definitions must use valid
syntax as defined by the Java regular expression.

http://www.w3.org/TR/xmlschema-1/
http://xerces.apache.org/xerces2-j/xml-schema.html
http://xerces.apache.org/xerces2-j/xml-schema.html

M
Even Header

webMethods Service Development Help Version 9.10 596

M
Odd Header

Working with Specifications

webMethods Service Development Help Version 9.10 597

28 Working with Specifications

■ Creating a Specification ... 598

M
Even Header

Working with Specifications

webMethods Service Development Help Version 9.10 598

A specification is a “free-standing” element that defines a set of service inputs and
outputs. The specification defines the entire service signature. If you have multiple
services with the same input and output requirements, you can point each service to a
single specification rather than manually specify individual input and output fields in
each service.

Using specifications to define service signatures provides the following benefits:

It reduces the effort required to build each service signature.

It improves accuracy, because there is less opportunity to introduce a typing error
when defining a field name.

It makes future signature changes easier to implement, because you can make the
change in one place (the specification) rather than in each individual service. Any
change that you make to the specification is automatically propagated to all services
that reference that specification when you save the specification.

Creating a Specification
When you create a specification, you can define the specification content by:

Manually inserting input and output variables.

Referencing an IS document type for the input and/or output signature.

Referencing a specification to use as the entire signature.

Typically, you do not build a specification by referencing another specification.
However, it is useful to do this in the situation where you will use the specification with
a group of services whose requirements are expected to change (that is, they match
an existing specification now but are expected to change at some point in the future).
Referencing a specification gives you the convenience of using an existing specification
and the flexibility to change the specification for only that single group of services in the
future.

To create a specification

1. In Designer: File > New > Specification

2. In the New Specification dialog box, select the folder in which you want to save the
specification.

3. In the Element Name field, type a name for the specification using any combination of
leers, numbers, and/or the underscore character. For information about restricted
characters, see "About Element Names" on page 52.

4. Click Finish.

5. To define the specification content by referencing another specification, in the
Specification Reference field in the Input/Output tab, type the fully qualified name of
the specification, or click to select it from a list.

M
Odd Header

Working with Specifications

webMethods Service Development Help Version 9.10 599

6. To use an IS document type to define the input content for a specification, in the Input
field, type the fully qualified name of the IS document type or click to select it
from a list.

7. To use an IS document type to define the output content for a specification, in the
Output field, type the fully qualified name of the IS document type or click to
select it from a list.

8. To define the specification by inserting variables manually, do the following for each
variable that you want to add:

a. In the Palee view, select the type of variable you want to define and drag it to
the Input or Output side of the Input/Output tab.

If the Palee view is not visible, display it by clicking on the right side of the
specification editor.

b. Type a name for the variable and press ENTER.

c. With the variable selected, set variable properties and apply constraints using the
Properties view.

d. If the variable is a document or document list, repeat steps a–c to define and set
the properties and constraints for each of its members. Use to indent each
member beneath the document or document list variable.

9. Optionally, enter comments or notes for the specification in the Comments tab.

10. Click File > Save.

M
Even Header

webMethods Service Development Help Version 9.10 600

M
Odd Header

Working with Variables

webMethods Service Development Help Version 9.10 601

29 Working with Variables

■ Creating a Document Reference or a Document Reference List Variable 602

■ Using XML Namespaces and Namespace Prefixes with Variables ... 603

■ Assigning Display Types to String Variables ... 605

■ About Variable Constraints ... 605

M
Even Header

Working with Variables

webMethods Service Development Help Version 9.10 602

A variable can be a String, String list, String table, document, document list, document
reference, document reference list, Object, or Object list. Variables are used to declare the
expected content and structure of service signatures, document contents, and pipeline
contents. In addition to specifying the name and data type of a variable, you can set
properties that specify an XML namespace, indicate whether the variable is required at
runtime, and indicate whether the variable can be null at runtime.

Select a variable in the editor to set general properties and constraints for the variable.

Note: Specific properties in the Properties view are enabled or disabled, depending
on the type of variable you have selected.

Creating a Document Reference or a Document Reference
List Variable
You can use an IS document type (including a publishable document type) to build a
document reference or document reference list field. By referencing an IS document
type instead of creating a new one, you can reduce the time required to create fields and
maintain beer consistency for field names. You might find referencing fields especially
useful for information that is repeated over and over again, such as address information.

Keep the following points in mind when using IS document types to create document
references or document reference lists.

If you are creating a document reference or document reference list field based on
an IS document type, you cannot directly add, delete, or modify its members in the
Input/Output tab. To edit the referenced document or document list, select it in the
Package Navigator view, lock it, and then edit its fields in the editor.

You can also add a document reference by dragging an IS document type from the
Package Navigator view to the Document Type editor.

To use a document type to build a document reference or document reference list

1. In Package Navigator view, open the document type that you want to reference.

2. On the editor palee, click and drag one of the following into the editor window:

Click and drag... To...

Document Reference Create a document field based on an IS document
type.

Document Reference List Create a document list field based on an IS document
type.

M
Odd Header

Working with Variables

webMethods Service Development Help Version 9.10 603

3. In the Element Name field, type the fully qualified name of the IS document type or
select it from the list.

4. Click OK.

5. Type the name of the field.

6. Click File > Save.

Using XML Namespaces and Namespace Prefixes with
Variables
You can assign an XML namespace and prefix to a variable by specifying a URI for the
XML namespace property and by using the following format for the variable name:

prefix:variableName

This creates a QName for the variable in which portions of the variable name are used as
the prefix and local name and the value of the XML namespace property is the namespace
name. For example, suppose that a variable is named eg:account and the XML namespace
property is set to hp://www.example.com. The prefix is eg , the localname is account
and the namespace name is hp://www.example.com.

When generating XML Schema definitions and WSDL documents, Integration Server
uses the value of the XML Namespace property along with the variable name (the prefix
and local name) to create a qualified name (QName) for the variable.

Integration Server also uses namespace prefixes assigned to variables in an IS document
type when converting an XML document or XML node to a document (IData object).
Integration Server obtains the namespace prefix to be used in the resulting document
(IData) from the variable name in the document type rather than relying on the prefix
present in the actual XML node. For example, suppose that Integration Server converts
an XML node to a document (IData) using a document type to specify the structure
to be imposed on the resulting document (IData). The document type contains a field
named eg:account for which the XML Namespace property is set to www.example.com.
The XML node contains an element named otherPrefix:account in which otherPrefix is
defined to represent the namespace hp://www.example.com. The resulting document
(IData) contains a field named eg:account based on the document type field instead of
otherPrefix:account as it appears in the original XML node.

Note: Integration Server automatically assigns an XML namespace to a variable
when it creates a provider web service descriptor WSDL or a consumer web
service descriptor from an existing WSDL. Integration Server also assigns
an XML namespace from a schema when it creates a document type from an
existing XML schema definition.

M
Even Header

Working with Variables

webMethods Service Development Help Version 9.10 604

Guidelines for Using XML Namespaces and Prefixes with Web
Service Descriptors
Use the following guidelines for assigning XML namespaces and prefixes to variables
that will be used with web service descriptors:

If an IS service signature contains a variable name in the format prefix :localName , you
must specify a URI as the value of the XML namespace property for that variable.

If an IS service is exposed as an RPC/Literal or RPC/Encoded web service operation,
then the top-level field name in the service signature should not be in the format
prefix :localName and should not be associated with an XML namespace.

If an IS service is exposed as a Document/Literal web service operation, then any
field name in the service signature can be in the format prefix :localName , but it must
also be associated with an XML namespace.

Assigning XML Namespaces and Prefixes to Variables
Use the XML Namespace property to assign a namespace name to a variable. If you
intend to use the variable with a web service descriptor (for example, in the signature
of a service used as an operation or in an IS document type used for a header or
fault), review the information described in "Guidelines for Using XML Namespaces
and Prefixes with Web Service Descriptors" on page 604 before assigning XML
namespaces and namespace prefixes to a variable.

Keep the following points in mind when assigning XML namespaces and prefixes to a
variable:

The variable name must be in the format: prefix:variableName

You must specify a URI in the XML namespace property.

Do not use the same prefix for different namespaces in the same document type,
input signature, or output signature.

To assign an XML namespace and prefix to a variable

1. In the editor, select the variable to which you want to assign an XML namespace.

2. In the Properties view, click the XML namespace browse buon () and then enter a
value for the XML namespace.

3. To assign a prefix to a variable, rename the variable to use the following format in
which the namespace prefix precedes the variable name: prefix :variableName .

4. Click OK.

5. Click File > Save.

M
Odd Header

Working with Variables

webMethods Service Development Help Version 9.10 605

Assigning Display Types to String Variables
Assign a string display type to the string variable to define how you want to input data
for the field.

To assign a string display type to a String variable

1. In the editor, select the String variable to which you want to assign properties.

2. In the Properties view, under General, assign one of the following values to the String
display type field:

Select... If you want the input...

Text Field (default) Entered in a text field

Password Entered as a password, with asterisks reflected instead of
characters

Large Editor Entered in a large text area instead of a text field. This is
useful if you expect a large amount of text as input for the
field, or you need to have TAB or new line characters in the
input

Pick List To be limited to a predefined list of values

Next to Pick list choices, click to define the values that
will appear as choices when Designer prompts for input at
run time.

Note: These options are not available for Objects and Object lists.

3. Click File > Save.

About Variable Constraints
In pipeline, document, and input/output validation, the blueprint used for data
validation requires constraints to be applied to its variables. Constraints are the
restrictions on the structure or content of variables. You can apply the following types of
constraints to variables:

Structural constraints specify the existence and structure of variables at run time. For
example, if the flow service in which you are validating the pipeline processes a
purchase order, you might want to check that values for the purchaseOrderNumber ,
accountNumber , and customerName variables exist at run time.

M
Even Header

Working with Variables

webMethods Service Development Help Version 9.10 606

For document and document list variables, you can also specify the structure of the
variable; that is, you can specify what variables can be contained in the document
(IData object) or document list (IData[] object) at run time. For example, you
could specify that the lineItem document variable must contain the child variables
itemNumber , quantity , size , color , and unitPrice . You could also specify that the
lineItem document can optionally contain the child variable specialInstructions .

Content constraints describe the data type for a variable and the possible values for
the variable at run time. You can apply content constraints to String, String list,
String table, Object, and Object list variables.

When you specify a content constraint for a String, String list or String table variable,
you can also apply a constraining facet to the content. A constraining facet places
limitations on the content (data type). For example, for a String variable named
itemQuantity , you might apply a content constraint that requires the value to
be an integer. You could then apply constraining facets that limit the content of
itemQuantity to a value between 1 and 100.

You can use simple types from an IS schema as content constraints for String, String
list, or String table variables.

For pipeline and document validation, the IS document type used as the blueprint needs
to have constraints applied to its variables. For input/output validation, constraints need
to be applied to the declared input and output parameters of the service being validated.
For more information about data validation, see "Performing Data Validation" on page
297.

Note: When you create an IS document type from an XML Schema or a DTD, the
constraints applied to the elements and aributes in the original document are
preserved in the new IS document type. For more information about creating
IS document types, see "Creating an IS Document Type" on page 508.

Considerations for Object Constraints
Constraints for Object and Object list variables correspond to Java classes, whereas
constraints for String variables correspond to simple types in XML schemas. When you
apply constraints to Objects and perform validation, the data is validated as being of the
specified Java class. For details on the Java classes you can apply to an Object or Object
list, see "Java Classes for Objects" on page 1094.

A constrained Object is validated when one of the following occur:

A service runs with the Validate input or Validate output check box selected on the
Input/Output tab.

A service runs via the INVOKE step in a flow service with the Validate input or Validate
output properties set on the INVOKE step.

The pub.schema:validate service runs.

M
Odd Header

Working with Variables

webMethods Service Development Help Version 9.10 607

A document is published. When this occurs, the contents of the document are
validated against the specified document type.

During debugging, when you enter values for a constrained Object or Object list in
the Input dialog box.

When you assign a value to an Object or Object list variable in the Pipeline view
using on the toolbar.

Applying Constraints to a Variable
Keep the following points in mind when applying constraints to a variable:

The Required property appears for variables in document types if one or more of the
following are true:

The document type was created using a version of Integration Server prior to
version 8.2.

The document type was created using Developer.

The Model type property of the document type is Unordered.

The Min occurs, Max occurs, and Model type variable properties are display-only.
These properties appear only for a variable in an IS document type with a Model type
property value of Sequence, Choice, or All.

Variables defined in an IS document type with a Model type property value other than
“Unordered” cannot be modified.

To apply constraints to a variable

1. Select the variable to which you want to apply constraints.

You can apply constraints to variables in IS document types, variables in a
specification, and variables declared on the Input/Output tab.

2. In the Properties view, under Constraints, define the following properties:

Property Description

Required Specifies whether the selected variable is required to exist at
run time.

 Select... To...

 True Require the selected variable to exist at run time.

 False Make the existence of the variable optional at run
time.

M
Even Header

Working with Variables

webMethods Service Development Help Version 9.10 608

Property Description

Allow null Specifies whether a variable is allowed to have a null value.

 Select... To...

 True Allow the variable to have a null value.

 False Have the validation engine generate an error when
the variable has a null value.

Allow
unspecified fields

If the variable is a document or document list, specifies
whether the variable can contain undeclared child variables.

 Select... To...

 True Allow the variable to contain undeclared child
variables.

 False Treat any child variables that exist in the pipeline
but do not appear in the declared document field as
errors at run time.

 Note: The state of the Allow unspecified fields property
determines whether the document is open or closed.
An open document permits undeclared fields (variables)
to exist at run time. A closed document does not allow
undeclared fields to exist at run time. Integration Server
considers a document to be open if the Allow unspecified
fields property is set to True and considers a document to
be closed if the Allow unspecified fields property is set to
False.

3. If the selected variable is a String, String list, or String table, and you want to specify
content constraints for the variable, click and then do one of the following:

If you want to use a content type that corresponds to a built-in simple type in
XML Schema, in the Content type list, select the type for the variable contents. To
apply the selected type to the variable, click OK.

If you want to customize the content type by changing the constraining facets
applied to the type, see "Customizing a String Content Type" on page 609.

If you want to use a simple type from an IS schema as the content constraint,
click Browse. In the Browse dialog box, select the IS schema containing the simple
type you want to apply. Then, select the simple type you want to apply to the
variable. To apply the selected type to the variable, click OK.

M
Odd Header

Working with Variables

webMethods Service Development Help Version 9.10 609

Note: A content type corresponds to a simple type from an XML Schema
definition. All of the choices in the Content type list correspond to simple
types defined in XML Schema Part 2: Datatypes.

4. If the selected variable is an Object or Object list, for the Java wrapper type property,
select the Java class for the variable contents. If you do not want to apply a Java class
or if the Java class is not listed, select UNKNOWN.

For more information about supported Java classes for Objects and Object lists, see
"Java Classes for Objects" on page 1094.

5. Repeat this procedure for each variable to which you want to apply constraints in the
IS document type, specification, service input, or service output.

6. Click File > Save.

Customizing a String Content Type
Instead of applying an existing content type or simple type to a String, String list, or
String table variable, you can customize an existing type and apply the new, modified
type to a variable. You customize a content type or simple type by changing the
constraining facets applied to the type.

When you customize a type, you actually create a new content type. Designer saves
the changes as a new content type named contentType_ customized. For example,
if you customize the string content type, Designer saves the new content type as
string_customized.

When customizing a content type, keep the following points in mind:

When you edit the constraining facets, you can only make the constraining facet
values more restrictive. The constraining facets cannot become less restrictive.

The constraining facets you can specify depend on the content type. Note that
content types and constraining facets correspond to datatypes and constraining
facets defined in XML Schema. For more information about constraining facets for a
datatype, see the specification XML Schema Part 2: Datatypes (hp://www.w3.org/TR/
xmlschema-2/).

The customized content type applies only to the selected variable. To make changes
that affect all variables to which the content type is applied, edit the content type
in the IS schema. (String content types are simple types from IS schemas.) For more
information about editing simple type definitions, see "About Editing Simple Type
Definitions" on page 624.

To customize a content type

1. Select the variable to which you want to apply a customized content type.

2. In the Constraints category on the Properties view, click the Content type browse
buon () and then do one of the following to select the content type you want to
customize:

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

M
Even Header

Working with Variables

webMethods Service Development Help Version 9.10 610

In the Content type list, select the content type you want to customize.

If you want to customize a simple type from an IS schema, click Browse. In the
Browse dialog box, select the IS schema containing the simple type. Then, select
the simple type you want to customize and apply to the variable. Click OK.

3. Click Customize. Designer makes the constraining facet fields below the Content type
list available for data entry (that is, changes the background of the constraining
facet fields from grey to white). Designer changes the name of the content type to
contentType _customized.

4. In the fields below the Content type list, specify the constraining facet values you want
to apply to the content type.

5. Click OK. Designer saves the changes as a new content type named
contentType _customized.

Note: The constraining facets displayed below the Content type list depend on
the primitive type from which the simple type is derived. Primitive types
are the basic data types from which all other data types are derived. For
example, if the primitive type is string, Designer displays the constraining
facets enumeration, length, minLength, maxLength, and pattern. For more
information about primitive types, refer to XML Schema Part 2: Datatypes at
hp://www.w3.org/TR/xmlschema-2/.

Viewing the Constraints Applied to Variables
Designer displays small symbols next to a variable icon to indicate the constraints
applied to the variable. Designer displays variables in the following ways:

Variable Constraint status Variable Properties

Required field. The Required property is set to
True.

Optional field. The Required property is set to
False.

Required field with
content type constraint.

The Content type property specifies
an IS schema or XML schema.

Optional field with
content type constraint

The Required property is set to False
and the Content type property
specifies an IS schema or XML
schema.

http://www.w3.org/TR/xmlschema-2/

M
Odd Header

Working with Variables

webMethods Service Development Help Version 9.10 611

Variable Constraint status Variable Properties

Required field with
default value.

The Required property is set to
True. The variable has a default
value, but you can override this
default value with any other valid
values while executing the service
or mapping the variables.

Required field with
fixed default value of
null.

The Required property is set to
True. You cannot override the
default null value assigned to the
variable by mapping it to another
variable or by assigning any input
values to this variable during
service execution.

Note: By default, Designer hides the
variables with this constraint.
To display these variables in
the content and structure of
service signatures, document
and pipeline contents, and in the
Run Configurations, Enter Input
for serviceName , and Enter Input
for variableName dialog boxes,
select the Show variables with fixed
values property on the Service
Development Preferences page.

Required field with
fixed default value.

The Required property is set to
True. You cannot override the
default value assigned to the
variable by mapping it to another
variable or by assigning any input
values to this variable during
service execution.

Note: By default, Designer hides the
variables with this constraint.
To display these variables in
the content and structure of
service signatures, document
and pipeline contents, and in the
Run Configurations, Enter Input
for serviceName , and Enter Input
for variableName dialog boxes,
select the Show variables with fixed

M
Even Header

Working with Variables

webMethods Service Development Help Version 9.10 612

Variable Constraint status Variable Properties
values property on the Service
Development Preferences page.

Note: Designer displays the ‡ symbol next to String, String List, and String table
variables with a content type constraint only. Designer does not display the
‡ symbol next to Object and Object list variables with a specified Java class
constraint. Object and Object lists with an applied Java class constraint have
a unique icon. For more information about icons for constrained Objects, see
"Java Classes for Objects" on page 1094.

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 613

30 Working with Schemas

■ What Does an IS Schema Look Like? .. 614

■ Creating an IS Schema ... 620

■ About Editing Simple Type Definitions ... 624

■ About Schema Domains .. 626

M
Even Header

Working with Schemas

webMethods Service Development Help Version 9.10 614

An IS schema is a “free-standing” element in Package Navigator view that acts as
the blueprint or model against which you validate an XML document. The IS schema
provides a formal description of the structure and content for a valid instance document
(the XML document). The formal description is created through the specification of
constraints. An IS schema can contain the following types of constraints:

Structural constraints in an IS schema describe the elements, aributes, and types that
appear in a valid instance document. For example, an IS schema for a purchase order
might specify that a valid <lineItem> element must consist of the <itemNumber>,
<size>, <color>, <quantity>, and <unitPrice> elements in that order.

Content constraints in an IS schema describe the type of information that elements and
aributes can contain in a valid instance document. For example, the <quantity>
element might be required to contain a value that is a positive integer.

During data validation, Designer compares the elements and aributes in the instance
document with the structural and content constraints described for those elements and
aributes in the IS schema. Designer considers the instance document to be valid when it
complies with the structural and content constraints described in the IS schema.

You can create IS schemas from an XML schema, a DTD (Document Type Definition), or
an XML document that references an existing DTD.

What Does an IS Schema Look Like?
The appearance and content of an IS schema depends on whether you generate an IS
schema from an XML schema or a DTD. For example, if you create an IS schema from
an XML schema, the resulting IS schema displays type definitions, element declarations,
and aribute declarations. If you create an IS schema from a DTD, the resulting IS
schema displays element type declarations.

When you select an IS schema in Package Navigator view, Designer displays the
contents of the IS schema in the editor. The schema editor is divided into two areas: the
Schema browser on the left and the Component Details on the right. Above these areas,
the editor identifies the target namespace for the IS schema.

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 615

Schema editor

Schema Browser
The Schema browser displays the components of an IS schema in a format that mirrors
the structure and content of the source file. The Schema browser groups the global
element declarations, aribute declarations, simple type definitions, and complex type
definitions from the source file under the top-level headings ELEMENTS, ATTRIBUTES,
SIMPLE TYPES, and COMPLEX TYPES. For example, the ELEMENTS heading contains
all of the global element declarations from the XML schema or the DTD.

If the source file does not contain one of these global components, the corresponding
heading is absent. For example, if you create an IS schema from an XML schema
that does not contain any global aribute declarations, the Schema browser does not
display the ATTRIBUTES heading. An IS schema created from a DTD never displays
the SIMPLE TYPES or COMPLEX TYPES headings because DTDs do not contain type
definitions.

Note: A DTD does contain aribute declarations. However, the Schema browser
does not display the ATTRIBUTES heading for IS schemas generated from
DTDs. This is because an aribute declaration in a DTD associates the
aribute with an element type. Accordingly, the Schema browser displays

M
Even Header

Working with Schemas

webMethods Service Development Help Version 9.10 616

aributes as children of the element type declaration to which they are
assigned.

The Schema browser uses unique symbols to represent the components of the IS
schema. Each of these symbols relates to a component of an XML schema or a DTD.
The following table identifies the symbol for each component that can appear in an IS
schema.

Note: In the following table, global refers to elements, aributes, and types declared
or defined as immediate children of the <schema> element in an XML schema.
All element type declarations in a DTD are considered global declarations.

Symbol Description

ELEMENTS. Used to group together the global element
declarations in an IS schema. This symbol and category name do
not correspond to a component in an XML Schema definition or
a DTD.

Element declaration. An element declaration associates an element
name with a type definition. This symbol corresponds to the
<element> declaration in an XML schema definition and the
ELEMENT declaration in a DTD.

Element reference. An element reference is a reference from an
element declaration in a content specification to a globally
declared element.

In an IS schema generated from an XML schema, this symbol
corresponds to the ref="globalElementName" aribute in an
<element> declaration.

In an IS schema generated from DTD, this symbol appears next
to an element that is a child of another element. The parent
element has only element content.

Any element declaration. In XML schema definition, an <any>
element declaration is a wildcard declaration used as a
placeholder for one or more undeclared elements in an instance
document.

In a DTD, an element declared to be of type ANY can contain
any well-formed XML. This symbol corresponds to an element
declared to be of type ANY.

Because an <any> element declaration does not have a name, the
Schema browser uses 'Any' as the name of the element.

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 617

Symbol Description

ATTRIBUTES. Used to group together the global aribute
declarations in an IS schema. This symbol and category name do
not correspond to a component in an XML Schema definition or
a DTD.

Attribute declaration. An aribute declaration associates an
aribute name with a simple type definition. This symbol
corresponds to the XML schema <attribute> declaration or the
aribute in a DTD ATTLIST declaration.

Attribute reference. An aribute reference is a reference from a
complex type definition to a globally declared aribute. This
symbol corresponds to the ref="globalAributeName" aribute in
an aribute declaration.

DTDs do not have aribute references. Consequently, aribute
references do not appear in IS schemas generated from DTDs.

Any attribute declaration. An any aribute declaration is a wildcard
declaration used as a placeholder for undeclared aributes
in an instance document. This symbol corresponds to the
<anyAttribute> declaration in an XML schema definition.

Because an <anyAttribute> declaration does not specify an
aribute name, the Schema browser uses 'Any' as the name of the
aribute.

SIMPLE TYPES. Used to group together the global simple type
definitions in an IS schema. This symbol and category name do
not correspond to a component in an XML Schema definition or
a DTD.

Simple type definition. A simple type definition specifies the data
type for a text-only element or an aribute. Unlike complex type
definitions, simple type definitions cannot carry aributes. This
symbol corresponds to the <simpleType> element in an XML
schema definition.

If the simple type definition is unnamed (an anonymous type),
the Schema browser displays 'Anonymous' as the name of the
simple type definition.

COMPLEX TYPES. Used to group together the global complex type
definitions in an IS schema. This symbol and category name do

M
Even Header

Working with Schemas

webMethods Service Development Help Version 9.10 618

Symbol Description
not correspond to a component in an XML Schema definition or
a DTD.

Complex type definition. A complex type definition defines the
structure and content for elements of complex type. (Elements
of complex type can contain child elements and carry aributes.)
This symbol corresponds to the <complexType> element in an
XML schema definition.

If the complex type definition is unnamed (an anonymous type),
the Schema browser displays 'Anonymous' as the name of the
complex type definition.

Sequence content model. A sequence content model specifies that
the child elements in the instance document must appear in the
same order in which they are declared in the content model. This
symbol corresponds to the <sequence> compositor in an XML
schema or a sequence list in an element type declaration in a
DTD.

Choice content model. A choice content model specifies that only
one of the child elements in the content model can appear in the
instance document. This symbol corresponds to the <choice>
compositor in an XML schema definition or a choice list in a DTD
element type declaration.

All content model. An all content model specifies that child
elements can appear once, or not at all, and in any order in
the instance document. This symbol corresponds to the <all>
compositor in an XML schema definition.

Mixed content. Elements that contain mixed content allow
character data to be interspersed with child elements. This
symbol corresponds to the mixed="true" aribute in an XML
schema complex type definition or a DTD element list in which
the first item is �PCDATA.

Empty content. In an XML schema, an element has empty
content when its associated complex type definition does not
contain any element declarations. An element with empty
content may still carry aributes.

In a DTD, an element has empty content when it is declared to be
of type EMPTY.

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 619

Component Details
The Component Details area displays information that you use to examine and edit the
selected component in the Schema browser. The contents of Component Details varies
depending on what component you select. For example, when you select a globally
declared element of complex type, the Component Details looks like the following:

Schema editor for an element declaration

When you select a simple type definition, the Component Details looks like the
following:

M
Even Header

Working with Schemas

webMethods Service Development Help Version 9.10 620

Schema editor for a simple type definition

Creating an IS Schema
You can create IS schemas from XML schema definitions, DTDs, and XML documents
that reference an existing DTD. The resulting IS schema contains all of the defined types,
declared elements, and declared aributes from the source file.

You can create an IS schema from an XML Schema definition in CentraSite. To do so,
Designer must be configured to connect to CentraSite.

To create an IS schema

1. In the Package Navigator view of the Service Development perspective, click File >
New > Schema.

2. In the New Schema dialog box, select the folder in which you want to save the IS
document type.

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 621

3. In the Element Name field, type a name for the IS document type using any
combination of leers, numbers, and/or the underscore character. For information
about restricted characters, see "About Element Names" on page 52.

4. Click Next.

5. On the Select the Source Type panel, do one of the following:

Select... To...

XML Create an IS schema based on an existing DTD referenced by
an XML document.

Note: You can create an IS schema from an XML document
only if the XML document references an existing DTD.

DTD Create an IS schema based on a DTD.

XML Schema Create an IS schema based on an XML schema definition.

6. On the Select a Source Location panel, under Source location, do one of the following
to specify the source file for the IS schema:

To use an XML schema definition in CentraSite as the source, select CentraSite.

To use an XML document, DTD, or XML schema definition that resides on the
Internet as the source, select File/URL. Then, type the URL of the resource. (The
URL you specify must begin with http: or https:.)

To use an XML document, DTD, or XML Schema definition that resides on your
local file system as the source, select File/URL. Then, type in the path and file
name, or click the Browse buon to navigate to and select the file.

7. Click Next.

8. If you selected CentraSite as the source, under Select XML Schema fromCentraSite,
select the XML Schema definition in CentraSite that you want to use to create the IS
schema. Click Next.

If Designer is not configured to connect to CentraSite, Designer displays the
CentraSite> Connections preference page and prompts you to configure a connection
to CentraSite.

Note: You can also create an IS schema from an XML Schema definition asset in
CentraSite by dragging and dropping the schema asset from the Registry
Explorer view into Package Navigator view.

9. If the source file is an XML Schema definition, on the Select Schema Domain panel,
under Schema domain, specify the schema domain to which any generated IS schemas
will belong. Do one of the following:

M
Even Header

Working with Schemas

webMethods Service Development Help Version 9.10 622

To add the IS schema to the default schema domain, select Use default schema
domain.

To add the IS schemas to a specified schema domain, select Use specified schema
domain and provide the name of the schema domain in the text box. A valid
schema domain name is any combination of leers, numbers, and/or the
underscore character. For information about restricted characters, see "About
Element Names" on page 52.

For more information about schema domains, see "About Schema Domains" on page
626.

10. If the source file is an XML Schema definition and you want Integration Server to
use the Xerces Java parser to validate the XML Schema definition, select the Validate
schema using Xerces check box.

Note: Integration Server automatically uses an internal schema parser to validate
the XML Schema definition. However, the Xerces Java parser provides
stricter validation than theIntegration Server internal schema parser. As a
result, some schemas that the internal schema parser considers to be valid
might be considered invalid by the Xerces Java parser.

11. Click Finish.

Designer generates the IS schema using the document you specified and displays it
in the editor

Notes:

Integration Server uses the internal schema parser to validate an XML schema
definition. If you selected the Validate schema using Xerces check box, Integration
Server also uses the Xerces Java parser to validate the XML Schema definition. With
either parser, if the XML Schema does not conform syntactically to the schema for
XML Schemas defined in XML Schema Part 1: Structures (which is located at hp://
www.w3.org/TR/xmlschema-1), Integration Server does not create an IS schema.
Instead, Integration Server displays an error message that lists the number, title,
location, and description of the validation errors within the XML Schema definition.
If only warnings occur, Designer generates the IS schema.

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations
for this version are listed at hp://xerces.apache.org/xerces2-j/xml-
schema.html.

When validating XML schema definitions, Integration Server uses the Perl5 regular
expression compiler instead of the XML regular expression syntax defined by the
World Wide Web Consortium for the XML Schema standard. As a result, in XML
schema definitions consumed by Integration Server, the paern constraining facet
must use valid Perl regular expression syntax. If the supplied paern does not use
proper Perl regular expression syntax, Integration Server considers the paern to be
invalid.

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://xerces.apache.org/xerces2-j/xml-schema.html
http://xerces.apache.org/xerces2-j/xml-schema.html

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 623

Note: If the wa.core.datatype.usejavaregex configuration parameter is set to
true, Integration Server uses the Java regular expression compiler instead
of the Perl5 regular expression compiler. When the parameter is true,
the paern constraining facet in XML schema definitions must use valid
syntax as defined by the Java regular expression.

Integration Server does not create IS schemas from an XML schema definition (XSD)
if the XSD contains a type definition derived by extension and that type definition
contains a direct or indirect reference to itself. If Integration Server encounters a type
definition that contains a recursive extension while creating an IS schema from an
XSD, Integration Server throws a StackOverflowError and does not continue creating
the IS schema.

You might receive errors or warnings when creating an IS schema from a DTD. If
one or more errors occur, Designer does not generate an IS schema. If only warnings
occur, Designer generates the IS schema.

Creating an IS Schema from XML Schemas that Reference Other
Schemas
A schema author can insert the elements, aributes, and type definitions from another
schema into the schema they are creating. A schema author might do this to break up a
large XML schema into several small, more reusable XML schemas. When you generate
an IS schema from an XML schema that references another schema, Integration Server
either includes all of the schema components in a single IS schema, creates multiple IS
schemas, or creates no IS schema at all. The behavior of the Integration Server depends
on the mechanism the source XML schema uses to reference the other schema. The
following mechanisms can be used to reference an external schema:

Include. When you generate an IS schema from an XML schema that uses <include>
to include the contents of an external schema in the same namespace, the resulting IS
schema contains all of the defined types, declared elements, and declared aributes
from the source schema and the external schema. If the including, or root, XML
schema references an external schema that does not contain a target namespace
declaration, the external schema assumes the target namespace of the root schema.

Import. When you generate an IS schema from an XML schema that contains an
<import> element to import the contents of an external schema in a different
namespace, Integration Server creates one IS schema per namespace. For example,
if the source XML schema imports two XML schemas from the same namespace,
Integration Server creates an IS schema for the source XML schema and then a
second IS schema that includes the components from the two imported XML
schemas. Integration Server assigns each imported schema the name that you specify
and appends an underscore and a number to each name. For example, if you create
an IS schema named “mySchema” from mySchema.xsd, Integration Server generates
an IS schema named “mySchema_2” for the imported XML schema.

M
Even Header

Working with Schemas

webMethods Service Development Help Version 9.10 624

Redefine. Schema authors can also use <redefine> to include and then redefine type
definitions, model groups, and aribute groups from an external XML schema in the
same namespace. Integration Server creates one IS schema per namespace.

About Editing Simple Type Definitions
You can modify a simple type definition in an IS schema without editing the source
XML schema definition. You edit a simple type by adding or changing the value of one
or more constraining facets applied to the simple type. For example, you can modify a
simple type by adding an enumerated value, a paern constraint, or changing the length
constraint. Editing the simple type through Designer is an alternative to editing the
source XML schema definition and regenerating the IS schema.

You can edit any of the globally defined simple types (those that appear under the
SIMPLE TYPES heading) or anonymous simple types (those defined as part of an
element or aribute declaration.) A named simple type that appears as a child of an
element or aribute in the Schema browser cannot be edited. (These simple types are
global simple types used to define the element or aribute they appear under.) The
following illustration identifies the simple type definitions that you can and cannot edit.

Editable simple type definitions in an IS schema

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 625

You can edit any of the constraining facet values that appear in the Component
Details when you select an editable simple type definition in the Schema browser. The
constraining facets displayed in the Component Details depend on the primitive type
from which the simple type was derived. For example, if the simple type definition
is derived from string, the Component Details displays the enumeration, length,
minLength, maxLength, pattern, and whiteSpace facets. The Component Details only
displays constraining facet values set in the simple type definition. It does not display
constraining facet values the simple type definition inherited from the simple types from
which it was derived.

You can view the constraining facet values set in the type definitions from which
a simple type was derived by clicking Base Constraints. Base constraints are the
constraining facet values set in all the type definitions from which a simple type is
derived—from the primitive type to the immediate parent type. These constraint values
represent the cumulative facet values for the simple type.

When you edit the constraining facets for a simple type definition, you can only
make the constraining facets more restrictive. The applied constraining facets cannot
become less restrictive. For example, if the length value is applied to the simple type, the
maxLength or minLength values cannot be set because the maxLength and minLength facets
are less restrictive than length.

Tip: You can create a custom simple type to apply to a field as a content type
constraint. For information about creating a custom simple type, see
"Customizing a String Content Type" on page 609. For information about
applying constraints to fields, see "Applying Constraints to a Variable" on
page 607.

Editing a Simple Type Definition
When modifying a simple type definition, keep the following points in mind:

Changes to a simple type definition affect the elements and aributes for which the
simple type is the defined type. For example, if the aribute partNum is defined to be
of type SKU, changes to the SKU simple type definition affect the partNum aribute.

Changes to a global simple type definition in an IS schema do not affect simple types
derived from the global simple type; that is, the changes are not propagated to the
derived types in the IS schema.

Simple types in an IS schema can be used as content constraints for fields in pipeline
validation. Consequently, changes to a simple type also affect every field to which
the simple type is applied as a content constraint.

Changes to a simple type definition are saved in the IS schema. If you regenerate the
IS schema from the XML schema definition, your changes will be overwrien.

When you edit the constraining facets applied to a simple type definition, you can
only make the constraining facet values more restrictive. The constraining facets
cannot become less restrictive.

M
Even Header

Working with Schemas

webMethods Service Development Help Version 9.10 626

If you want to edit complex type definitions, aribute declarations, element
declarations, or the structure of the schema, you need to edit the XML schema and
then regenerate the IS schema.

For an IS schema from a source file such as an XML schema definition or a WSDL
document Designer displays the location of the source file in the Source URI property.
Designer also sets the Linked to source property to true which prevents any editing
of the simple type definitions in the IS schema. To edit the simple type definitions,
you first need to make the IS schema editable by breaking the link to the source.
For information about allowing editing of elements derived from a source, see
"Allowing Editing of Derived Elements" on page 59. However, Software AG does not
recommend editing the contents of IS schemas created from WSDL documents.

For more information about constraining facets, see the W3C specification XML
Schema Part 2: Datatypes.

To edit a simple type definition

1. In the Package Navigator view of the Service Development perspective, open the IS
schema that contains the simple type that you want to edit.

2. In the Schema Browser, select the simple type definition that you want to edit.

3. In Component Details, specify the constraining facets that you want to apply to the
simple type definition.

4. Click File > Save.

About Schema Domains
Each IS schema on Integration Server belongs to a schema domain. A schema domain is a
named collection of IS schemas.

Within each schema domain, the schema components such as element declarations,
aribute declarations, type definitions for an XML namespaces must be unique.
However, more than one schema domain can contain the same schema components for
an XML namespace. This allows Integration Server to maintain multiple IS schemas for
the same XML namespace.

If you want to maintain alternate definitions of schema components for an XML
namespaces, assign the IS schemas that contain those components to different schema
domains.

Integration Server contains a default schema domain in which any IS schemas created
prior to version 8.0 reside. You can place new schemas in the default schema domain or
you can specify a different schema domain. A schema domain name is any string that is
a valid name of an element in Integration Server.

When Integration Server consumes a WSDL document to create a web service
descriptor, Integration Server places any generated IS schemas in a unique schema

M
Odd Header

Working with Schemas

webMethods Service Development Help Version 9.10 627

domain for that web service descriptor. Integration Server uses a combination of
alphanumeric characters as the schema domain name.

When Integration Server creates an IS document type from an e-form template,
Integration Server places any generated IS schemas in a unique schema domain whose
name is based on the path to and name of the e-form template.

M
Even Header

webMethods Service Development Help Version 9.10 628

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 629

31 Working with JMS Triggers

■ About SOAP-JMS Triggers .. 630

■ Overview of Building a Non-Transacted JMS Trigger .. 632

■ Standard JMS Trigger Service Requirements ... 633

■ Creating a JMS Trigger .. 633

■ Managing Destinations and Durable Subscribers on the JMS Provider through Designer 642

■ Building Standard JMS Triggers with Multiple Routing Rules .. 644

■ Enabling or Disabling a JMS Trigger ... 645

■ Setting an Acknowledgement Mode .. 646

■ About Join Time-Outs .. 647

■ About Execution Users for JMS Triggers .. 649

■ About Message Processing ... 650

■ Fatal Error Handling for Non-Transacted JMS Triggers .. 657

■ Transient Error Handling for Non-Transacted JMS Triggers .. 659

■ Exactly-Once Processing for JMS Triggers ... 665

■ Debugging a JMS Trigger .. 668

■ Building a Transacted JMS Trigger ... 669

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 630

A JMS trigger subscribes to destinations (queues or topics) on a JMS provider and then
specifies how Integration Server processes messages the JMS trigger receives from those
destinations. Integration Server and Designer support two types of JMS triggers:

Standard JMS triggers use routing rules to specify which services can process messages
received by the trigger. The trigger service in the routing rule receives the entire JMS
message as an IData.

SOAP- JMS triggers are used to receive JMS messages that contain SOAP messages.
When a SOAP-JMS trigger receives a message, Integration Server extracts the SOAP
message from the JMS message and passes the SOAP message to the internal web
services stack. The web services stack processes the message according to the web
service descriptor specified in the SOAP-JMS request.

Note: WS endpoint triggers are SOAP-JMS triggers. However, WS endpoint
triggers can be created and managed using Integration Server
Administrator only. For more information about WS endpoint triggers, see
webMethods Integration Server Administrator’s Guide.

Standard JMS triggers and SOAP-JMS triggers can be transacted or non-transacted
triggers. The transactionality of a JMS trigger along with the trigger type affect the
properties and functionality that can be configured for the trigger.

Note: Information about using Integration Server for JMS is located in webMethods
Integration Server Administrator’s Guide, webMethods Service Development Help,
and Using webMethods Integration Server to Build a Client for JMS.

webMethods Integration Server Administrator’s Guide contains information
about how to configure Integration Server to work with a JMS provider,
how to create a WS endpoint trigger, and how to manage JMS triggers at
run time.

webMethods Service Development Help includes this Working with JMS
Triggers topic which provides procedures for using Designer to create
JMS triggers and set JMS trigger properties.

Using webMethods Integration Server to Build a Client for JMS contains
information such as how to build services that send and receive JMS
messages, how Integration Server works with cluster policies when
sending JMS messages, and detailed information regarding how
Integration Server performs exactly-once processing. For completeness,
Using webMethods Integration Server to Build a Client for JMS also includes
the Working with JMS Triggers topic that appears in webMethods Service
Development Help.

About SOAP-JMS Triggers
A SOAP-JMS trigger is a JMS trigger that receives SOAP over JMS messages and routes
the SOAP message to the web services stack for processing. More specifically, the

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 631

SOAP-JMS trigger receives JMS messages from a destination (queue or topic) on the
JMS provider. Note that a SOAP-JMS trigger can specify a message selector which
limits the messages the SOAP-JMS trigger receives from that destination. Integration
Server extracts the SOAP message and passes it to the internal web services stack for
processing. Integration Server also retrieves JMS message properties that it passes
to the web services stack, including targetService, soapAction, contentType, and
JMSMessageID. These properties specify the web service descriptor and operation
for which the SOAP request is intended. The web services stack then processes the
SOAP message according to the web service descriptor (for example, executing request
handlers) and invokes the web service operation specified in the SOAP request message.

A SOAP-JMS trigger is associated with one or more provider web service descriptors via
a provider web service endpoint alias. The provider web service endpoint alias specifies
the SOAP-JMS trigger that receives messages from destinations on the JMS provider.
The provider web service endpoint alias is assigned to a JMS binder in a provider web
service descriptor. In this way, SOAP-JMS triggers act as listeners for provider web
service descriptors.

Note: Even though a SOAP-JMS trigger is associated with one or more provider web
service descriptors, the SOAP-JMS trigger can pass any SOAP-JMS message to
the web services stack for processing.

The properties assigned to the SOAP-JMS trigger determine how Integration Server
acknowledges the message, provides exactly-once processing, or handles transient or
fatal errors.

While SOAP-JMS triggers and standard JMS triggers share many properties and
characteristics, some properties available to standard JMS triggers are not available to
SOAP-JMS triggers, specifically:

SOAP-JMS triggers can subscribe to one destination only. Consequently, SOAP-JMS
triggers do not have joins. Designer does not display the Join expires and Expire after
properties for a SOAP-JMS trigger.

SOAP-JMS triggers use web services to process the payload of the JMS message.
Designer does not display the Message Routing table for SOAP-JMS triggers.

SOAP-JMS triggers cannot be used to perform ordered service execution. Standard
JMS triggers use multiple routing rules and local filters to perform ordered service
execution. Because SOAP-JMS triggers do not use routing rules, SOAP-JMS triggers
cannot be used to perform ordered service execution.

A SOAP-JMS trigger, specifically a connection for a SOAP-JMS trigger, can process
only one message at a time. Batch processing is not available for SOAP-JMS triggers.
Designer does not display the Max batch processing property for SOAP-JMS triggers.

A transacted SOAP-JMS trigger (one that executes as part of a transaction) has
additional requirements and limitations when used with web service descriptors. For
more information, see the Web Services Developer’s Guide.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 632

Overview of Building a Non-Transacted JMS Trigger
Building a JMS trigger is a process that involves the following basic stages.

Stage 1 Create a new JMS trigger on Integration Server.

During this stage, you use Designer to create the new JMS trigger on the
Integration Server where you will do your development and testing.

Stage 2 Specify a JMS connection alias.

During this stage, you specify the JMS connection alias that Integration
Server uses to create connections to the JMS provider. The transaction
type of the JMS connection alias determines whether or not the JMS
trigger receives and processes messages as part of transaction.

Stage 3 Specify JMS destinations and message selectors.

During this stage, you specify the destinations (queues or topics) on
the JMS provider to which the JMS trigger subscribes. That is, the
destination is the source of the messages that the JMS trigger consumes.
You also specify any message selectors that you want the JMS provider
to use to filter the messages it enqueues for the JMS trigger.

Stage 4 Create routing rules (for standard JMS triggers only).

During this stage, you specify the service that Integration Server
invokes when the standard JMS trigger receives messages. You can also
specify a local filter that Integration Server applies to messages.

Stage 5 Set JMS trigger properties.

During this stage, you determine the type of message processing,
the acknowledgement mode, fatal and transient error handling, and
exactly-once processing.

Stage 6 Test and debug the JMS trigger.

During this stage, you test and debug the trigger using the tools
provided by Integration Server. For more information, see "Debugging
a JMS Trigger" on page 668.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 633

Standard JMS Trigger Service Requirements
The service that processes a message received by a standard JMS trigger is called a
trigger service. Each routing rule in a standard JMS trigger specifies a single trigger
service.

Before a JMS trigger can be enabled, the trigger service must already exist on the same
Integration Server.

The signature for the trigger service must reference one of the following specifications:

Use pub.jms:triggerSpec as the specification reference if the trigger service will process
one message at a time.

Use pub.jms:batchTriggerSpec as the specification reference if the trigger service will
process multiple messages at one time. That is, the trigger service will receive a
batch of messages as input and process all of those messages in a single execution. A
trigger that receives and processes a batch of messages is sometimes referred to as a
batch trigger.

Creating a JMS Trigger
When you create a JMS trigger, keep the following points in mind:

The JMS connection alias you want Integration Server to use to obtain connections
to and receive messages from the JMS provider must already exist. Although a JMS
connection alias does not need to be enabled at the time you create the JMS trigger,
the JMS connection alias must be enabled for the JMS trigger to execute at run time.

Note: If you want to manage destinations and durable subscribers on a
webMethods Broker that is used as a JMS provider, the JMS connection
alias must be enabled when you work with the JMS trigger.

If you use a JNDI provider to store JMS administered objects, the Connection
Factories that you want the JMS trigger to use to consume messages must already
exist.

If you use a JNDI provider to store JMS administered objects and the JMS provider
is not webMethods Broker, the destinations (queues and topics) from which this JMS
trigger will receive messages must already exist.

If the JMS provider is webMethods Broker, webMethods Universal Messaging, or
webMethods Nirvana the destinations (queues and topics) from which the JMS
trigger receives messages do not need to exist before you create the JMS trigger.
Instead, you can create destinations using the JMS trigger editor. You can also create,
modify, and delete durable subscribers via the JMS trigger. For more information,
see "Managing Destinations and Durable Subscribers on the JMS Provider through
Designer " on page 642.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 634

The transaction type of the JMS connection alias determines whether or not the
JMS trigger is transacted (that is, it receives and processes messages as part of a
transaction). Transacted JMS triggers have slightly different properties and operate
differently than non-transacted JMS triggers. For more information about building a
transacted JMS trigger, see "Building a Transacted JMS Trigger" on page 669.

The trigger service that you want to specify in the routing rule must already exist
on the same Integration Server on which you create the JMS trigger. For more
information, see "Standard JMS Trigger Service Requirements" on page 633.

A standard JMS trigger can contain multiple routing rules. Each routing rule must
have a unique name. For more information about using multiple routing rules, see
"Building Standard JMS Triggers with Multiple Routing Rules" on page 644.

A standard JMS trigger that contains an All (AND) or Only one (XOR) join can only
have one routing rule and cannot have a batch processing size (Max batch messages
property) greater than 1. A JMS trigger with an Any (Or) join can have multiple
routing rules. For more information about batch processing, see "About Batch
Processing for Standard JMS Triggers" on page 652.

Integration Server uses a consumer to receive messages for a JMS trigger.
This consumer encapsulates the actual javax.jms.MessageConsumer and
javax.jms.Session.

To create a JMS trigger

1. In the Package Navigator view of Designer, click File > New > JMS Trigger.

2. In the New JMS Trigger dialog box, select the folder in which you want to save the
JMS trigger.

3. In the Element name field, type a name for the JMS trigger using any combination of
leers, numbers, and/or the underscore character.

4. Click Finish.

5. In the JMS connection alias name field in the Trigger Seings tab, click .

Note: A transacted JMS connection alias cannot be assigned to a JMS trigger
if a cluster policy is applied to the connection factory used by the JMS
connection alias.

6. In the Select a JMS connection alias for triggerName dialog box, select the JMS
connection alias that you want this JMS trigger to use to receive messages from the
JMS provider. Click OK.

Designer sets the Transaction type property to match the transaction type specified for
the JMS connection alias.

If a JMS connection alias has not yet been configured on Integration Server, Designer
displays a message stating the JMS subsystem has not been configured. For
information abut creating a JMS connection alias, see webMethods Integration Server
Administrator’s Guide.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 635

7. In the JMS trigger type list, select one of the following:

Select To...

Standard Create a standard JMS trigger.

SOAP-JMS Create a SOAP-JMS trigger.

8. Under JMS destinations and message selectors, specify the destinations from which
the JMS trigger will receive messages. For more information, see "Adding JMS
Destinations and Message Selectors to a JMS Trigger" on page 636.

Note: For SOAP-JMS triggers, you can specify one destination only.

9. If you selected multiple destinations, select the join type. The join type determines
whether Integration Server needs to receive messages from all, any, or only one of
destinations to execute the trigger service.

Select... If you want...

All (AND) Integration Server to invoke the trigger service when the
trigger receives a message from every destination within
the join time-out period. The messages must have the same
activation.

Any (OR) Integration Server to invoke the trigger service when
the trigger receives a message from any of the specified
destinations.

This is the default join type.

Note: Using an Any (OR) join is similar to creating multiple
JMS triggers that listen to different destinations. While
a JMS trigger with an Any (OR) join will use fewer
resources (a single thread will poll each destination
for messages), it may cause a decrease in performance
(it may take longer for one thread to poll multiple
destinations).

Only one (XOR) Integration Server to invoke the trigger service when it
receives a message from any of the specified destinations.
For the duration of the join time-out period, the Integration
Server discards any messages with the same activation that
the trigger receives from the specified destinations.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 636

10. If this is a standard JMS trigger, under Message routing, add routing rules. For more
information, see "Adding Routing Rules to a Standard JMS Trigger" on page 641.

11. In the Properties view, set properties for the JMS trigger.

12. Enter comments or notes, if any, in the Comments tab.

13. Click File > Save.

Adding JMS Destinations and Message Selectors to a JMS Trigger
The destination is the queue or topic to which the JMS trigger subscribes on the JMS
provider. When a JMS trigger subscribes to a topic, you can also indicate whether
Integration Server creates a durable subscriber or a non-durable subscriber for the topic.

To add a JMS destination to a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger.

2. In the Trigger Seings tab, under JMS destinations and message selectors, click .

3. In the Destination Name column, do one of the following to specify the destination
from which you want the JMS trigger to receive messages.

If the JMS connection alias uses JNDI to retrieve administered objects, specify the
lookup name of the Destination object.

If the JMS connection alias uses the native webMethods API to connect directly to
Broker, specify the provider-specific name of the destination.

If the JMS connection alias creates a connection on Broker, Universal Messaging,
or Nirvana, click to select from a list of existing destinations. You can also
create a destination and then select it. After you select the destination, click OK.

If the Order By mode for the selected destination does not match the existing
message processing mode, Designer prompts you to change the processing
mode. This situation can occur only when the JMS provider is Broker.

For instructions for creating a destination, see "Creating a Destination on the JMS
Provider" on page 638.

4. In the Destination Name column, in the Destination Type column, select the type of
destination:

Select... If...

Queue The destination is a queue. This is the default.

Topic The destination is a topic.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 637

Select... If...

Topic (Durable Subscriber) The destination is a topic for which there is a
durable subscriber.

Note: Designer populates Destination Type automatically if you selected a
destination from the list of existing destinations on the JMS provider.

5. In the JMS Message Selector column, click . In the Enter JMS Message Selector
dialog box, enter the expression that you want to use to receive a subset of messages
from this destination and click OK.

For more information about creating a JMS message selector, see "Creating a
Message Selector" on page 641.

6. If you specified the destination type as Topic (Durable Subscriber), in the Durable
Subscriber Name column, do one of the following:

Enter a name for the durable subscriber.

If the JMS connection alias creates a connection on Broker, Universal Messaging,
or Nirvana click to select from a list of existing durable subscribers for the
topic. In the Durable Subscriber List dialog box select the durable subscriber and
click OK.

If the durable subscriber that you want this JMS trigger to use does not exist, you
can create it by entering in the name in the Durable Subscriber Name column. The
name must be unique for the connection where the connection name is the client
ID of the JMS connection alias. Broker, Universal Messaging, or Nirvana will
create the durable subscriber name using the client ID of the JMS connection alias
and the specified durable subscriber name.

Note: Designer populates Durable Subscriber Name automatically if you selected
a Topic (Durable Subscriber) destination from the list of existing
destinations on Broker or Universal Messaging.

7. If you want the JMS trigger to ignore messages sent using the same JMS connection
alias as the JMS trigger, select the check box in the Ignore Locally Published column.
This property applies only when the Destination Type is Topic or Topic (Durable
Subscriber).

Note: If the JMS connection alias specified for this trigger has the Create New
Connection per Trigger option enabled, then Ignore Locally Published will
not work. For the JMS trigger to ignore locally published messages, the
publisher and subscriber must share the same connection. When the JMS
connection alias uses multiple connections per trigger, the publisher and
subscriber will not share the same connection.

8. Repeat this procedure for each destination from which you want the JMS trigger to
receive messages.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 638

9. Click File > Save.

Notes:

If you specify a new durable subscriber name and the JMS connection alias that
the JMS trigger uses to retrieve messages is configured to manage destinations,
Integration Server creates a durable subscriber for the topic when the JMS trigger is
first enabled.

If you specify a destination type of Topic (Durable Subscriber) but do not specify a
durable subscriber name, Designer changes the destination type to Topic when you
save the JMS trigger.

Creating a Destination on the JMS Provider
If the JMS connection alias that the JMS trigger uses to retrieve messages is configured to
manage destinations, you can create a destination on the JMS provider while using the
JMS trigger editor.

Keep the following points in mind when creating destinations using Designer:

The JMS connection alias used by the JMS trigger must use Universal Messaging,
Nirvana, or Broker as the JMS provider.

Note: Prior to version 9.5 SP1, webMethods Universal Messaging was named
webMethods Nirvana.

The JMS connection alias used by the JMS trigger must be configured to manage
destinations.

The JMS connection alias must be enabled when you work with the JMS trigger.

If the JMS connection alias creates a connection on a Broker in a Broker cluster, you
will not be able to create a destination at the Broker.

To create a destination on the JMS provider

1. In the Package Navigator view of Designer, open the JMS trigger that uses a JMS
connection alias that connects to the JMS provider on which you want to create the
destinations.

2. In the Trigger Seings tab, under JMS destinations and message selectors, click .

3. In the Destination Name column, click .

4. In the Destination List dialog box, click Create New Destination.

5. In the Create New Destination dialog box, provide the following information:

In this field... Specify...

Destination Name A name for the destination.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 639

In this field... Specify...

Destination Key A name for the destination key. If you do not
specify a destination key, Integration Server uses the
destination name as the destination key.

In the Destination List, when a destination
has a destination key Designer displays the
destination name using this format: destinationKey
(destinationName)

Destination Type The type of destination. Select one of the following:

 Select... To...

 Queue The destination is a queue.

This is the default.

 Topic The destination is a topic.

 Topic (Durable
Subscriber)

The destination is a topic for which
you want to create a durable
subscriber.

Durable Subscriber Name A name for the durable subscriber. The name must be
unique for the connection, where the connection name
is the client ID of the JMS connection alias. The JMS
provider (Broker, Universal Messaging, or Nirvana)
will create the durable subscriber name using the
client ID of the JMS connection alias and the specified
durable subscriber name.

This field only applies if the destination is Topic
(Durable Subscriber).

Order By How Broker distributes messages received by this
destination.

This field only apples if the JMS provider used y the
trigger JMS connection alias is the Broker and the
destination is Queue.

 Select... To...

 Publisher Distribute messages received by
this destination one at a time in the

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 640

In this field... Specify...
order in which they were received
from the publisher.

 None Distribute the messages received by
this destination in any order.

This is the default.

 Note: An order mode of publisher maps to a serial
message processing mode. An order mode of none
maps to a concurrent message processing mode.

6. Click OK to create the destination.

7. If you want the current JMS trigger to retrieve messages from the new destination,
select the destination and click OK.

Designer adds the destination to the JMS destinations and message selectors list. If
the Order By mode for the new destination does not match the existing message
processing mode, Designer prompts you to change the processing mode.

Notes:

Integration Server adds the new destination to the Broker as a shared-state client.

If you specify a destination type of Topic (Durable Subscriber) but do not specify a
durable subscriber name, Designer changes the destination type to Topic when you
save the JMS trigger.

About Durable and Non-Durable Subscribers
When a JMS trigger receives messages from a topic, you can specify whether or not the
JMS trigger is a durable subscriber.

A durable subscriber establishes a durable subscription with a unique identity on the JMS
provider. A durable subscription allows subscribers to receive all the messages published
on a topic, including those published while the subscriber is inactive (for example, if the
JMS trigger is disabled). When the associated JMS trigger is disabled, the JMS provider
holds the messages in guaranteed storage. If a durable subscription already exists for the
specified durable subscriber on the JMS provider, this service resumes the subscription.

A non-durable subscription allows subscribers to receive messages on their chosen
topic only if the messages are published while the subscriber is active. A non-durable
subscription lasts the lifetime of its message consumer. Note that non-durable
subscribers cannot receive messages in a load-balanced fashion.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 641

Creating a Message Selector
If you want the JMS trigger to receive a subset of messages from a specified destination,
create a message selector. A message selector is an expression that specifies the criteria
for the messages in which the JMS trigger is interested.

The JMS provider applies the message selector to messages it receives. If the selector
evaluates to true, the message is sent to the JMS trigger. If the selector evaluates to false,
the message is not sent to the JMS trigger.

By creating message selectors, you can delegate some filtering work to the JMS provider.
This can preserve Integration Server resources that otherwise would have been spent
receiving and processing unwanted messages.

The message selector must use the message selector syntax specified in the Java Message
Service standard. The message selector can reference header and property fields in the
JMS message only.

Note: If you want to filter on the contents of the JMS message body, write a local
filter. Integration Server evaluates a local filter after the JMS trigger receives
the message from the JMS provider. Only standard JMS triggers can use local
filters.

Adding Routing Rules to a Standard JMS Trigger
The routing rule specifies the service that Integration Server invokes when the standard
JMS trigger receive a message from a destination.

To add a routing rule to a standard JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger.

2. In the Trigger Seings tab, under Message routing, click to add a new routing
rule.

3. In the Name column, type a name for the routing rule. By default Designer assigns
the first rule the name “Rule 1”.

4. In the Service column, click to navigate to and select the service that you want to
invoke when Integration Server receives messages from the specified destinations.

5. In the Local Filter column, click to enter the filter that you want Integration Server
to apply to messages this JMS trigger receives. For more information about creating a
local filter, see "Creating a Local Filter" on page 641.

6. Click File > Save.

Creating a Local Filter
You can further refine the messages received and processed by a standard JMS trigger
by creating local filters. A local filter specifies criteria for the contents of the message

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 642

body. Integration Server applies a local filter to a message after the JMS trigger receives
the message from the JMS provider. If the message meets the filter criteria, Integration
Server executes the trigger service specified in the routing rule. If the message does not
meet the filter criteria, Integration Server discards the message and acknowledges the
message to the JMS provider.

If a JMS trigger contains multiple routing rules to support ordered service execution,
you can use local filters to process a series of messages in a particular order. For more
information about ordered service execution, see "Building Standard JMS Triggers with
Multiple Routing Rules" on page 644.

When creating a local filter, you can omit the JMSMessage document from the filter
expression even though it is part of the pipeline provided to the JMS trigger service.
For example, a filter that matches those messages where the value of the myField field is
“XYZ” would look like the following:
%properties/myField% == "XYZ"

Note that even though the properties field is a child of the JMSMessage document, the
JMSMessage document does not need to appear in the filter expression.

The following filter matches those messages where the data document within the
JMSMessage /body document contains a field named myField whose value is “A”:
%body/data/myField% == "A"

Note: When receiving a batch of messages, Integration Server evaluates the local
filter against the first message in the batch only. Integration Server does not
apply the filter to subsequent messages in the batch. For more information
about batch processing, see "About Batch Processing for Standard JMS
Triggers" on page 652.

Managing Destinations and Durable Subscribers on the JMS
Provider through Designer
When editing a JMS trigger in Designer, you can create and manage destinations and
durable subscribers on webMethods Universal Messaging, webMethods Nirvana, or
webMethods Broker. Specifically, you can do the following:

Create a destination.

Create and delete a durable subscriber.

Select the destination from which you want the JMS trigger to receive messages from
a list of existing destinations.

Select a durable subscriber that you want the JMS trigger to use from a list of existing
durable subscribers for a specified topic.

Change the Shared State or Order By mode for a queue or durable subscriber by
changing the message processing mode of the JMS trigger. You can do this only
when Broker is the JMS provider only.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 643

Designer uses the JMS connection alias specified by the JMS trigger to make the changes
on the JMS provider. To manage destinations on the JMS provider, the JMS connection
alias that the JMS trigger uses must be

Configured to manage destinations

Enabled when you create and edit the JMS trigger.

To manage destinations on Broker, Integration Server must be version 8.0 SP1 or
higher.

To manage destinations on Universal Messaging, Integration Server must be version
9.0 SP1 or higher.

Note: Prior to version 9.5 SP1, webMethods Universal Messaging was named
webMethods Nirvana.

For a complete list of the requirements for using Designer to manage destinations
and durable subscribers on the JMS provider, see webMethods Integration Server
Administrator’s Guide.

Note: The ability to use Designer to manage JMS destinations on Broker,
Nirvana, and Universal Messaging is a design-time feature. In a production
environment, this functionality should be disabled.

Modifying Destinations or Durable Subscribers via a JMS Trigger in
Designer
If a JMS trigger uses a JMS connection alias that is configured to manage destinations,
you can modify the destination or durable subscribers while editing a JMS trigger.
Changes to destinations or durable subscriptions can result in unused durable
subscriptions on the JMS provider. Changing destinations can make the JMS trigger
out of sync with the destination. For example, when using the Broker, modifying the
destination could result in out of sync Shared State or Order By mode seings.

When you make a change that results in a change to a destination or durable subscriber,
Designer informs you about the necessary change and then prompts you to confirm
making change to the destination or durable subscriber on the JMS provider.

For example, if you change the name of the durable subscriber for a Topic (Durable
Subscriber) destination, Designer displays a message stating, “By making this change
the trigger will no longer subscribe to durable subscriber oldDurableSubscriberName .
Would you like to remove this durable subscriber from the JMS provider?” If you
confirm the change, Integration Server removes the durable subscriber from Broker. If
you do not confirm the change, the durable subscriber will remain on Broker. You will
need to use the Broker interface in My webMethods to remove the durable subscriber.

Note: If another client, such as another JMS trigger, currently connects to the queue
or durable subscriber that you want to modify or remove, then Integration
Server cannot update or remove the queue or durable subscriber. If the JMS

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 644

provider is Broker, updates must be made through My webMethods. If
the JMS provider is Universal Messaging, updates must be made through
Universal Messaging Enterprise Manager. If the JMS provider is Nirvana,
updates must be made through Nirvana Enterprise Manager.

For more information about managing destinations and durable subscriptions on the
JMS provider, see "Managing Destinations and Durable Subscribers on the JMS Provider
through Designer " on page 642.

Building Standard JMS Triggers with Multiple Routing Rules
A JMS trigger can contain more than one routing rule. Each routing rule can specify a
different local filter and a different service to invoke.

You might create multiple routing rules so that a JMS trigger processes a group of
messages in a specific order. Each routing rule might execute a different trigger service
based on the contents or type of message received. When a JMS trigger receives a
message, Integration Server determines which service to invoke by evaluating the local
filters for each routing rule.

Integration Server evaluates the routing rules in the same order in which the rules
appear in the editor. It is possible that a message could satisfy more than one routing
rule. However, Integration Server executes only the service associated with the first
satisfied routing rule and ignores the remaining routing rules. Therefore, the order in
which you list routing rules on the editor is important.

You might want to use multiple routing rules to control service execution when a
service that processes a message depends on successful execution of another service.
For example, to process a purchase order, you might create one service that adds a new
customer record to a database, another that adds a customer order, and a third that bills
the customer. The service that adds a customer order can only execute successfully if the
new customer record has been added to the database. Likewise, the service that bills the
customer can only execute successfully if the order has been added. You can ensure that
the services execute in the necessary order by creating a trigger that contains one routing
rule for each expected message.

Note: SOAP-JMS triggers do not have routing rules.

Guidelines for Building a JMS Trigger that Performs Ordered Service
Execution
Use the following general guidelines to build a JMS trigger that performs ordered
service execution.

Because the JMS provider cannot guarantee message order across destinations, the
JMS trigger must specify a single destination. That is, the JMS trigger cannot include
a join.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 645

Each routing rule, except the last one, must contain a local filter. For example, you
might create a filter based on a custom property that the sending client adds to
the message. Integration Server uses the local filters to differentiate between the
messages. Without a local filter, only the first routing rule would ever execute.

Routing rules must appear in the order in which you want the messages to be
processed. Each routing rule must have a unique name.

Set the Processing mode property to serial to ensure that the Integration Server
processes the messages in the same order in which the JMS trigger receives them.
Serial processing ensures that the services that process the messages do not execute
at the same time.

Set Max batch messages to 1 (the default). When a trigger service processes a batch of
messages, Integration Server only applies the filter to the first message in the batch.

Important: Messages must be sent to JMS provider in the same order in which you want
the messages to be processed.

Enabling or Disabling a JMS Trigger
You can enable or disable a JMS trigger.

Note: If you disable a SOAP-JMS trigger that acts as a listener for one or more
provider web service descriptors, Integration Server will not retrieve any
messages for those web service descriptors.

To enable or disable a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger that you want to
enable or disable.

2. In the Properties view, under General, set the Enabled property to one of the
following:

Select... To...

True Enable a JMS trigger that is currently disabled.

False Disable a JMS trigger that is currently enabled.

3. Click File > Save.

Notes:

When you disable a JMS trigger, Integration Server interrupts any server threads
that are processing messages. If the JMS trigger is currently processing messages,
Integration Server waits 3 seconds before forcing the JMS trigger to stop processing

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 646

messages. If it does not complete within 3 seconds, Integration Server stops the
message consumer used to receive messages for the JMS trigger and closes the JMS
consumer. At this point the server thread for the JMS trigger may continue to run to
completion. However, the JMS trigger will not be able to acknowledge the message
when processing completes. If the message is persistent, this can lead to duplicate
messages.

You can disable one or more JMS triggers using the pub.triggers:disableJMSTriggers
service.

You can enable one or more JMS triggers using the pub.triggers:enableJMSTriggers
service.

You can enable, disable, and suspend one or more JMS triggers using Integration
Server Administrator.

JMS Trigger States
A JMS trigger can have one of the following states:

Trigger State Description

Enabled The JMS trigger is running and connected to the JMS provider.
Integration Server retrieves and processes messages for the JMS
trigger.

Disabled The JMS trigger is stopped. Integration Server neither retrieves
nor processes messages for the JMS trigger. The JMS trigger
remains in this state until you enable the trigger.

Suspended The JMS trigger is running and connected to the JMS provider.
Integration Server has stopped message retrieval, but continues
processing any messages it has already retrieved. Integration
Server enables the JMS trigger automatically upon server restart
or when the package containing the JMS trigger reloads.

Note: You can suspend a JMS trigger using Integration Server
Administrator or the pub.triggers:suspendJMSTriggers service.

Setting an Acknowledgement Mode
Acknowledgment mode indicates how Integration Server acknowledges messages received
on behalf of a JMS trigger. A message is not considered to be successfully consumed
until it is acknowledged.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 647

Note: The Acknowledgement mode property is not available for transacted JMS
triggers. That is, if the JMS connection alias is of type XA_TRANSACTION or
LOCAL_TRANSACATION, Designer does not display the Acknowledgement
mode property.

To set an acknowledgment mode

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to set the acknowledgment mode.

2. In the Properties view, under General, select one of the following for Acknowledgement
mode:

Select... To...

CLIENT_ACKNOWLEDGE Acknowledge or recover the message only
after the JMS trigger processes the message
completely.

This is the default.

DUPS_OK_ACKNOWLEDGE Lazily acknowledge the delivery of messages.
This may result in the delivery of duplicate
messages.

AUTO_ACKNOWLEDGE Automatically acknowledge the message
when it is received by the JMS trigger.
Integration Server will acknowledge the
message before the trigger completes
processing. The JMS provider cannot
redeliver the message if Integration Server
becomes unavailable before message
processing completes.

3. Click File > Save.

About Join Time-Outs
When you create a standard JMS trigger that receives messages from two or more
destinations), you create a join. Consequently, you need to specify a join time-out. A join
time-out specifies how long Integration Server waits for additional messages to fulfill the
join. Integration Server starts the join time-out period when it receives the first message
that satisfies the join.

The implications of a join time-out are different depending on the join type.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 648

Note: You need to specify a join time-out only when the join type is All (AND) or Only
one (XOR). You do not need to specify a join time-out for an Any (OR) join.

Join Time-Outs for All (AND) Joins
A join time-out for an All (AND) join specifies how long Integration Server waits for
messages from all of the destinations specified in the join.

When a JMS trigger receives a message that satisfies part of an All (AND) join,
Integration Server stores the message. Integration Server waits for the JMS trigger to
receive messages from the remaining destinations specified in the join. Only messages
with the same activation ID as the first received message will satisfy the join.

If Integration Server receives messages from all of the destinations specified in the join
before the time-out period elapses, Integration Server executes the service specified
in the routing rule. If Integration Server doe not receive messages from all of the
destinations before the time-out period elapses, Integration Server discards the messages
and writes a log entry.

When the time-out period elapses, the next message that satisfies the All (AND) join causes
the time-out period to start again.

Join Time-Outs for Only One (XOR) Joins
A join time-out for an Only one (XOR) join specifies how long Integration Server discards
instances of the other messages received from the specified destinations.

When a JMS trigger receives a message that satisfies part of an Only one (XOR) join,
Integration Server executes the service specified in the routing rule. Integration Server
starts the join time-out when the JMS trigger receives the message. For the duration of
the time-out period, Integration Server discards any messages the JMS trigger receives
from a destination specified in the JMS trigger. Integration Server only discards those
messages with the same activation ID as the first message.

When the time-out period elapses, the next message that the JMS trigger receives that
satisfies the Only one (XOR) join causes the trigger service to execute and the time-out
period to start again.

Setting a Join Time-Out
When configuring JMS trigger properties, you can specify whether a join times out and
if it does, what the time-out period should be. The time-out period indicates how long
Integration Server waits for messages from the other destinations specified in the join
after Integration Server receives the first message.

Note: You need to specify a join time-out only when the join type is All (AND) or Only
one (XOR). You do not need to specify a join time-out for an Any (OR) join.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 649

To set a join time-out

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to set the join time-out.

2. In the Properties view, under General, next to Join expires, select one of the following:

Select... To...

True Specify that Integration Server should stop waiting for
messages from other destinations in the join after the time-out
period elapses.

In the Expire after property, specify the length of the join time-
out period. The default join time-out period is 1 day.

False Specify that the join does not expire. Integration Server should
wait indefinitely for messages from the additional destinations
specified in the join condition. Set the Join expires property to
False only if you are confident that all of the messages will be
received eventually.

Important: A join is persisted across server restarts.

3. Click File > Save.

About Execution Users for JMS Triggers
For a JMS trigger, the execution user indicates which credentials Integration Server
should use when invoking services associated with the JMS trigger. When a client
invokes a service via an HTTP request, Integration Server checks the credentials and
user group membership of the client against the Execute ACL assigned to the service.
Integration Server performs this check to make sure that the client is allowed to invoke
that service. When a JMS trigger executes, however, Integration Server invokes the
service when it receives a message rather than as a result of a client request. Integration
Server does not associate user credentials with a message. You can specify which
credentials Integration Server should supply when invoking a JMS trigger service by
seing an execution user for a JMS trigger.

You can instruct Integration Server to invoke a service using the credentials of one of
the predefined user accounts (Administrator, Default, Developer, Replicator). You can
also specify a user account that you or another server administrator defined. When
Integration Server receives a message for the JMS trigger, Integration Server uses the
credentials for the specified user account to invoke the service specified in the routing
rule.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 650

Assigning an Execution User to a JMS Trigger
Make sure that the user account you select includes the credentials required by the
execute ACL assigned to the services associated with the JMS triggers.

To assign an execution user for a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to assign the execution user.

2. In the Properties view, under General, in the Execution user property, type the name
of the user account whose credentials Integration Server uses to execute a service
associated with the JMS trigger. You can specify a locally defined user account or a
user account defined in a central or external directory.

3. Click File > Save.

About Message Processing
Message processing determines how Integration Server processes the messages received
by the JMS trigger. You can specify serial processing or concurrent processing.

In serial processing, Integration Server processes messages received by a JMS trigger
one after the other in the order in which the messages were received from the JMS
provider.

In concurrent processing, Integration Server processes messages received from the
JMS provider in parallel.

Serial Processing
In serial processing, Integration Server processes messages received by a JMS trigger
one after the other in the order in which the messages were received from the JMS
provider. Integration Server uses a single thread for receiving and processing a message
for a serial JMS trigger. Integration Server evaluates the first message it receives,
determines which routing rule the message satisfies, and executes the service specified
in the routing rule. Integration Server waits for the service to finish executing before
processing the next message received from the JMS provider.

If you want to process messages in the same order in which JMS clients sent the
messages to the JMS provider, you will need to configure the JMS provider to ensure
that messages are received by the JMS trigger in the same order in which the messages
are published.

For information about using serial JMS triggers in a cluster to process messages from
a single destination in publishing order, see the Using webMethods Integration Server to
Build a Client for JMS.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 651

Tip: If your trigger contains multiple routing rules to handle a group of messages
that must be processed in a specific order, use serial processing.

Concurrent Processing
In concurrent processing, Integration Server processes messages received from the
JMS provider in parallel. That is, Integration Server processes as many messages for
the JMS triggers as it can at the same time, using a separate server thread to process
each message. Integration Server does not wait for the service specified in the routing
rule to finish executing before it begins processing the next message. You can specify
the maximum number of messages Integration Server can process concurrently. This
equates to specifying the maximum number of server threads that can process messages
for the JMS trigger at one time.

Concurrent processing provides faster performance than serial processing. Integration
Server processes the received messages more quickly because it can process more than
one message for the trigger at a time. However, the more messages Integration Server
processes concurrently, the more server threads it dispatches, and the more memory the
message processing consumes.

Additionally, for JMS triggers with concurrent processing, Integration Server does not
guarantee that messages are processed in the order in which they are received.

A concurrent trigger can connect to the JMS provider through multiple connections,
which can increase trigger throughout. For more information about multiple
connections, refer to "Using Multiple Connections to Retrieve Messages for a Concurrent
JMS Trigger" on page 653.

Message Processing and Message Consumers
Integration Server uses a consumer to receive messages for a JMS trigger. This consumer
encapsulates the actual javax.jms.MessageConsumer and javax.jms.Session. The type of
message processing affects how Integration Server uses consumers to receive messages.

Serial JMS triggers have one consumer and will use one thread from the server thread
pool to receive and process a message.

Concurrent JMS triggers use a pool of consumers to receive and process messages. Each
consumer uses one thread from the server thread pool to receive and process a message.
For a concurrent JMS trigger, the Max execution threads property specifies how many
threads can be used to process messages for the trigger at one time. For concurrent JMS
triggers, Integration Server also dedicates a thread to managing the pool of consumers.
Consequently, the maximum number of threads that can be used by a JMS trigger is
equal to the Max execution threads value plus 1. For example, a concurrent JMS trigger
configured to use 10 threads at a time can use a maximum of 11 server threads.

When there are multiple connections to the Broker, the threads are divided among the
connections. Therefore, if a trigger is configured so that Connection count is 2 and Max

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 652

execution threads is set to 10, each connection will have 5 threads plus 1, for a total of 12
threads.

Message Processing and Load Balancing
Load balancing allows multiple consumers on one or more Integration Servers to
retrieve and process messages concurrently. Load balancing is necessary for concurrent
JMS triggers regardless of whether or not they are running in a cluster of Integration
Servers. This is because concurrent JMS triggers use multiple consumers. Each consumer
receives a message from the JMS provider, processes the message, and acknowledges
the message to the JMS provider. Each consumer needs to consume a message from
the same destination, but not process any duplicate message. For information about
configuring load-balancing, see webMethods Integration Server Administrator’s Guide.

About Batch Processing for Standard JMS Triggers
You can configure a standard JMS trigger and its associated trigger service to process
a group or “batch” of messages at one time. Batch processing can be an effective way
of handling a high volume of small messages for the purposes of persisting them or
delivering them to another back-end resource. For example, you might want to take
a batch of messages, create a packet of SAP IDocs, and send the packet to SAP with a
single call. Alternatively, you might want to insert multiple messages into a database at
one time using only one insert. The trigger service processes the messages as a unit as
opposed to in a series.

The Max batch messages property indicates the maximum number of messages that the
trigger service can receive at one time. For example, if the Max batch messages property
is set to 5, Integration Server passes the trigger service up to 5 messages received by the
JMS trigger to process during a single execution.

Integration Server uses one consumer to receive and process a batch of messages. During
pre-processing, Integration Server checks the maximum delivery count for each message
and, if exactly-once processing is configured, determines whether or not the message is
a duplicate. Integration Server then bundles the message into a single IData and passes
it to the trigger service. If the message has exceeded the maximum delivery count or is
a duplicate message, Integration Server does not include it in the message batch sent to
the trigger service.

Note: The wa.server.jms.trigger.maxDeliveryCount property determines the
maximum number of times the JMS provider can deliver a message to a JMS
trigger.

Integration Server acknowledges all the messages received in a batch from the JMS
provider at one time. This includes messages that failed pre-processing. As described by
the Java Message Service standard, when a client acknowledges one message, the client
acknowledges all of the messages received by the session. Because Integration Server
uses a consumer that includes a javax.jms.MessageConsumer and a javax.jms.Session,
when Integration Server acknowledges one message in the batch, it effectively
acknowledges all the messages received in the batch.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 653

If a batch of messages is not acknowledged or they are recovered back to the JMS
provider, the JMS provider can redeliver all of the messages in the batch to the JMS
trigger. However, when using webMethods Broker, Integration Server can acknowledge
individual messages that fail pre-processing.

Guidelines for Configuring Batch Processing
When configuring JMS trigger for batch processing, keep the following in mind:

The trigger service must be coded to handle multiple messages as input. That is, the
trigger service must use the pub.jms.batchTriggerSpec as the service signature.

When receiving a batch of messages, Integration Server evaluates the local filter in
the routing rule against the first message in the batch only.

A transacted JMS trigger can be used for batch processing if the JMS connection alias
used by the trigger connects to a JMS provider that supports reuse of transacted JMS
sessions. If the JMS provider does not support reuse of transacted JMS sessions, set
Max batch processing to 1.

Consult the documentation for your JMS provider to determine whether or not the
JMS provider supports the reuse of transacted JMS sessions. Note that webMethods
Broker version 8.2 and higher, webMethods Universal Messaging version 9.5 SP1
and higher, and webMethods Nirvana version 7 and higher support the reuse of
transacted JMS sessions.

A JMS trigger that contains an All (AND) or Only one (XOR) join cannot use batch
processing.

SOAP-JMS triggers cannot process messages in batches.

Using Multiple Connections to Retrieve Messages for a Concurrent
JMS Trigger
You can configure a concurrent JMS trigger to obtain multiple connections to the JMS
provider. Multiple connections can improve trigger throughput. Keep in mind, however,
that each connection used by the JMS trigger requires a dedicated Integration Server
thread, regardless of the current throughput.

For a JMS trigger to have multiple connections to the JMS provider, the JMS connection
alias used by the trigger must be configured to create a new connection for each trigger.
For more information about JMS connection aliases, refer to webMethods Integration
Server Administrator’s Guide.

A concurrent JMS trigger can use multiple connections to retrieve messages from a JMS
provider. For a trigger to use multiple connections, the following must be true:

The JMS trigger must be configured for concurrent processing. Serial JMS triggers
cannot use multiple connections.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 654

The JMS trigger must receive messages from a queue or from a topic with a durable
subscriber. JMS triggers that receive messages from non-durable subscribers (topics)
cannot use multiple connections.

The JMS trigger must not have the Ignore locally published option selected when
the JMS connection alias is configured to use the Create New Connection per Trigger
option. For the JMS trigger to ignore locally published messages, the publisher and
subscriber must share the same connection. When the JMS connection alias uses
multiple connections per trigger, the publisher and subscriber will not share the
same connection.

The JMS connection alias used by the JMS trigger must be configured to create an
individual connection for each trigger. To configure a JMS alias to create individual
connections for each JMS trigger, select the Create New Connection per Trigger option
on the Settings > Messaging > JMS Settings > JMS Connection Alias screen on Integration
Server Administrator.

Note: When using multiple connections to the Broker, Integration Server uses a
different client ID for each JMS trigger that uses the JMS connection alias.
However, when Integration Server connects to other JMS providers, it uses
the same client ID for each connection. Some JMS providers do not permit
multiple connections to use the same client ID to retrieve messages from a
Topic with a durable subscriber. Review the JMS provider documentation
before configuring the use of multiple connections for a JMS connection alias
and any concurrent JMS triggers that use the JMS connection alias.

Retrieving Multiple Messages for a JMS Trigger with Each Request
You can instruct Integration Server to retrieve multiple messages for a JMS trigger
with each request by using the prefetch cache. When a JMS trigger is configured to
use the prefetch cache, Integration Server retrieves multiple messages for the trigger
each time Integration Server requests more messages from the Broker. When the JMS
trigger needs a new message to process, the JMS trigger retrieves the message from the
local, prefetched cache instead of requesting a new message from the Broker. Use of the
prefetch cache may improve performance of the JMS trigger because it reduces the time
spent retrieving messages for the JMS trigger.

Using the prefetch cache is most likely to improve performance for JMS triggers that
process many small messages and have trigger services that execute quickly. If the JMS
trigger receives large messages or the JMS trigger has long-running trigger services,
using the prefetch cache may increase the overall time needed to retrieve and process
a message. For JMS triggers that fit this use case, including concurrent JMS triggers,
reducing the number of prefetched messages may actually decrease the time needed to
retrieve and process a message. You may need to set the number of prefetched messages
to 1 (one).

Note: This prefetch cache can be used with JMS triggers that receive messages from
Broker only.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 655

The use of the prefetch cache for a JMS trigger and the number of messages Integration
Server might retrieve with each request are determined by the Max prefetch size property
for the JMS trigger and the value of the wa.server.jms.trigger.maxPrefetchSize
parameter.

When the Max prefetch size property is greater than 0, Integration Server uses the
prefetch cache with the JMS trigger. The Max prefetch size property value specifies the
number of messages that Integration Server might retrieve and cache for the trigger.
The default is 10.

When the Max prefetch size property is set to -1, Integration Server uses the prefetch
cache with the JMS trigger. The wa.server.jms.trigger.maxPrefetchSize parameter
value determines how many messages Integration Server might retrieves and cache
for the JMS trigger.

When the Max prefetch size property is set to 0, Integration Server does not use the
prefetch cache with the JMS trigger.

When the prefetch cache is in use and the number of messages retrieved by Integration
Server is greater than one, the same server thread might process all of the messages
retrieved by the prefetch request. This is true even for concurrent JMS triggers. The first
thread for the concurrent JMS trigger processes the first set of prefetched messages. The
second thread for the concurrent JMS trigger processes the second set of prefetched
messages.

For example, suppose that the number of available messages is 22, Max execution threads
is 4, and Max prefetch size is 10. In the initial request for messages, the first server thread
may retrieve 10 messages. The same server thread will process these first 10 messages.
The second server thread may retrieve 10 messages, all of which will be processed by the
second server thread. The third server thread may retrieve the remaining 2 messages,
both of which will be processed by the third server thread. While the concurrent JMS
trigger can use up to 4 server threads, Integration Server might use only 3 server threads
to retrieve and process messages due to the way in which a JMS trigger processes
prefetched messages. A concurrent JMS trigger will use all of the configured execution
threads to process messages only when the number of messages on the Broker is greater
than the number of messages that can be prefetched.

Note: When you are working with a cluster of Integration Servers, the prefetch
behavior might appear at first to be misleading. For example, suppose
that you have a cluster of two Integration Servers. Each Integration Server
contains the same JMS trigger. Twenty messages are sent to a destination from
which JMS trigger receives messages. It might be expected the JMS trigger
on Integration Server 1 will receive the first message, the JMS trigger on
Integration Server 2 will receive the second message, and so forth. However,
what may happen is that the JMS trigger on Integration Server 1 will receive
the first 10 messages and the JMS trigger on Integration Server 2 will receive
the second 10 messages.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 656

Configuring Message Processing
Keep the following points in mind when configuring message processing for a JMS
trigger:

You can configure a standard JMS trigger and its associated trigger service to
process a group or “batch” of messages at one time. For information about batch
processing, see "About Batch Processing for Standard JMS Triggers" on page 652
and "Guidelines for Configuring Batch Processing" on page 653.

If the JMS provider from which the JMS trigger retrieves messages does not support
concurrent access by durable subscribers, you must set the Max execution threads
property to 1 for the concurrent JMS trigger. Consult the documentation for your
JMS provider for more information.

Non-durable subscribers, i.e., JMS triggers that subscribe to topics but do not specify
a durable subscriber, cannot receive messages in a load-balanced fashion. Because it
is possible for a JMS trigger using a non-durable subscriber to process duplicates of a
message, set Max execution threads to 1.

For a destination that acts as a shared state client, the serial processing mode
corresponds to a shared state order mode of publisher; a concurrent processing
mode corresponds to a shared state order mode of none.

If you use webMethods Broker as the JMS provider, changing the message
processing mode for a JMS trigger can create a mismatch with the corresponding
destination on the Broker. If you do not use Designer to make the changes, you need
to use the Broker interface of My webMethods to update the destination.

A concurrent JMS trigger can use multiple connections to retrieve messages from the
JMS provider. For information about requirements for using multiple connections,
see "Using Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger"
on page 653.

You can only use the Max prefetch property with webMethods Broker.

To configure message processing for a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to specify message processing.

2. In the Properties view, under Messaging processing, next to Processing mode, select one
of the following:

Select... To...

Serial Specify that Integration Server should process messages
received by the trigger one after the other.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 657

Select... To...

Concurrent Specify that Integration Server should process multiple
messages for this trigger at one time.

In the Max execution threads property, specify the maximum
number of messages that Integration Server can process
concurrently.

3. If you want this trigger to perform batch processing, next to Max batch messages,
specify the maximum number of messages that the trigger service can receive at one
time. If you do not want the trigger to perform batch processing, leave this property
set to 1. The default is 1.

4. If you want this trigger to use multiple connections to receive messages from the JMS
provider, next to Connection count, specify the number of connections you want the
JMS trigger to make to the JMS provider. The default is 1.

5. If you want Integration Server to use the prefetch cache with this JMS trigger, in the
Properties view, under webMethods Broker do one of the following for Max prefetch
size:

Specify the number of messages you want Integration Server to retrieve and
cache for this JMS trigger. The default is 10 messages.

Specify -1 if you want the value of wa.server.jms.trigger.maxPrefetchSize
parameter to determine how many messages Integration Server retrieves and
caches for the JMS trigger.

Specify 0 if you do not want to use the prefetch cache with this JMS trigger.

6. Click File > Save.

If the destination is Queue or Topic (Durable Subscriber) and the JMS trigger is
connected to the queue or durable subscriber, Designer prompts you to update
the corresponding destination on the Broker with the changed shared state order
mode, click Yes to update the destination. Click No to skip the destination update.
Note that messages might be lost while Designer and Integration Server make the
update because Integration Server deletes and recreates the subscription as part of
the update.

Note: A JMS trigger is connected to the Broker when the specified JMS
connection alias is enabled and connected to the Broker.

Fatal Error Handling for Non-Transacted JMS Triggers
You can specify that Integration Server suspend a JMS trigger automatically if a fatal
error occurs during trigger service execution. A fatal error occurs when the trigger
service ends because of an exception.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 658

If a trigger service ends because of an exception, and you configured the JMS trigger
to suspend on fatal errors, Integration Server suspends the trigger and acknowledges
the message to the JMS provider. The JMS trigger remains suspended until one of the
following occurs:

You enable the trigger using the pub.trigger:enableJMSTriggers service.

You enable the trigger using Integration Server Administrator.

Integration Server restarts or the package containing the trigger reloads. (When
Integration Server suspends a trigger because of a fatal error, Integration Server
considers the change to be temporary. For more information about temporary
vs. permanent state changes for triggers, see webMethods Integration Server
Administrator’s Guide.)

Automatic suspension of a trigger can be especially useful for serial triggers that are
designed to process a group of messages in a particular order. If the trigger service
ends in error while processing the first message, you might not want the trigger to
proceed with processing the subsequent messages in the group. If Integration Server
automatically suspends the trigger, you have an opportunity to determine why the
trigger service did not execute successfully.

Important: If you disable or suspend a SOAP-JMS trigger that acts as a listener for one
or more provider web service descriptors, Integration Server will not retrieve
any messages for those web service descriptors until the trigger is enabled.

You can handle the exception that causes the fatal error by configuring Integration
Server to generate JMS retrieval failure events for fatal errors and by creating an
event handler that subscribes to JMS retrieval failure events. Integration Server passes
the event handler the contents of the JMS message as well as information about the
exception.

Integration Server handles fatal errors for transacted JMS differently than for non-
transacted JMS triggers. For information about fatal error handling for transacted JMS
triggers, see "Fatal Error Handling for Transacted JMS Triggers" on page 673.

Configuring Fatal Error Handling for Non-Transacted JMS Triggers
To configure fatal error handling for a non-transacted JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to specify document processing.

2. In the Properties view, under Fatal error handling, set the Suspend on error property
to True if you want Integration Server to suspend the trigger when a trigger service
ends with an error. Otherwise, select False. The default is False.

3. Click File > Save.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 659

Transient Error Handling for Non-Transacted JMS Triggers
When building a JMS trigger, you can specify what action Integration Server takes when
the trigger service fails because of a transient error caused by a run-time exception. A
transient error is an error that arises from a temporary condition that might be resolved
or corrected quickly, such as the unavailability of a resource due to network issues or
failure to connect to a database. Because the condition that caused the trigger service
to fail is temporary, the trigger service might execute successfully if Integration Server
waits and then re-executes the service.

A run-time exception (specifically, an ISRuntimeException) occurs in the following
situations:

The trigger service catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

The web service operation that processes the message received by a SOAP-
JMS trigger catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

Note: For a service handler invoked by a SOAP-JMS trigger, Integration Server
treats all errors as fatal. Service handlers invoked by SOAP-JMS triggers
cannot be retried.

A pub.jms:send, pub.jms:sendAndWait, or pub.jms:reply service fails because a resource (such
as the JNDI provider or JMS provider) is not available.

If the JMS provider is not available, and the seings for the pub.jms* service indicate
that Integration Server should write messages to the client side queue, Integration
Server does not throw an ISRuntimeException.

A transient error occurs on the back-end resource for an adapter service. Adapter
services built on Integration Server 6.0 or later, and based on the ART framework,
detect and propagate exceptions that signal a retry automatically if a transient error
is detected on their back-end resource.

Note: A web service connector that sends a JMS message can throw an
ISRuntimeException, such as when the JMS provider is not available.
However, Integration Server automatically places the ISRuntimeException
in the fault document returned by the web service connector. If you want
the parent flow service to catch the transient error and re-throw it as an
ISRuntimeException, you must code the parent flow service to check the fault
document for an ISRuntimeException and then throw an ISRuntimeException
explicitly.

You can also configure Integration Server and/or a JMS trigger to handle transient errors
that occur during trigger preprocessing. The trigger preprocessing phase encompasses

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 660

the time from when a trigger first receives a message from it’s local queue on Integration
Server to the time the trigger service executes.

For more information about transient error handling for trigger preprocessing, see
"Transient Error Handling During Trigger Preprocessing" on page 739.

About Retry Behavior for Trigger Services
When you configure transient error handling for a non-transacted JMS trigger, you
specify the following retry behavior:

Whether Integration Server should retry trigger services for the standard JMS
trigger. Keep in mind that a trigger service can retry only if it is coded to throw
ISRuntimeExceptions. For more information, see "Service Requirements for Retrying
a Trigger Service" on page 660.

For a SOAP-JMS trigger, whether Integration Server should retry web service
operation that throw and an ISRuntimeException.

Note: Integration Server does not apply the SOAP-JMS trigger transient error
handling behavior to service handlers executed as part of processing web
services. Integration Server treats all errors thrown by service handler as
fatal errors.

The maximum number of retry aempts Integration Server should make for each
trigger service.

The time interval between retry aempts.

How to handle a retry failure. That is, you can specify what action Integration
Server takes if all the retry aempts are made and the trigger service or web service
operation still fails because of an ISRuntimeException. For more information about
handling retry failures, see "Handling Retry Failure" on page 661.

Service Requirements for Retrying a Trigger Service
To be eligible for retry, the trigger service or web service operation must do one of the
following to catch a transient error and re-throw it as an ISRuntimeException:

If the trigger service or web service operation is a flow service, the trigger
service must invoke pub.flow:throwExceptionForRetry. For more information about the
pub.flow:throwExceptionForRetry, see the webMethods Integration Server Built-In Services
Reference.

If the trigger service or web service operation is wrien in Java, the service can
use com.wm.app.b2b.server.ISRuntimeException(). For more information about
constructing ISRuntimeExceptions in Java services, see the webMethods Integration
Server Java API Reference for the com.wm.app.b2b.server.ISRuntimeException class.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 661

When a service invokes a pub.jms* service that sends a JMS message and the service fails
because a resource needed by the pub.jms* service is not available, Integration Server
automatically detects and propagates an ISRuntimeException.

Adapter services built on Integration Server 6.0 or later, and based on the ART
framework, detect and propagate exceptions that signal a retry if a transient error is
detected on their back-end resource. This behavior allows for the automatic retry when
the service functions as a trigger service.

Note: Integration Server does not retry a trigger service that fails because a
ServiceException occurred. A ServiceException indicates that there is
something functionally wrong with the service. A service can throw a
ServiceException using the EXIT step.

Handling Retry Failure
Retry failure occurs for a standard JMS trigger when Integration Server makes the
maximum number of retry aempts and the trigger service still fails because of an
ISRuntimeException. Retry failure occurs for a SOAP-JMS trigger when Integration
Server makes the maximum number of retry aempts to process a web service operation
and the operation still fails because of an ISRuntimeException.

When you configure retry properties, you can specify one of the following actions to
determine how Integration Server handles retry failure for a trigger.

Throw exception. When Integration Server exhausts the maximum number of retry
aempts, Integration Server treats the last trigger service or web service operation
failure as a service error. This is the default behavior.

Suspend and retry later. When Integration Server reaches the maximum number of
retry aempts, Integration Server suspends the trigger and then retries the trigger
service or web service operation at a later time.

Overview of Throw Exception for Retry Failure
The following table provides an overview of how Integration Server handles retry
failure when the Throw exception option is selected.

Step Description

1 Integration Server makes the final retry aempt and the trigger service or
web service operation fails because of an ISRuntimeException.

2 Integration Server treats the last trigger service or web service operation
failure as a ServiceException.

3 Integration Server rejects the message.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 662

Step Description

If the message is persistent, Integration Server returns an
acknowledgement to the JMS provider.

4 Integration Server generates a JMS retrieval failure event if the
wa.server.jms.trigger.raiseEventOnRetryFailure property is set to true
(the default).

5 If the JMS trigger is configured to suspend on error when a fatal
error occurs, Integration Server suspends the JMS trigger. Otherwise,
Integration Server processes the next message for the JMS trigger.

In summary, the default retry failure behavior (Throw exception) rejects the message and
allows the trigger to continue with message processing when retry failure occurs for a
trigger service.

Overview of Suspend and Retry Later for Retry Failure
The following table provides more information about how the Suspend and retry later
option works.

Step Description

1 Integration Server makes the final retry aempt and the trigger service or
web service operation fails because of an ISRuntimeException.

2 Integration Server suspends the JMS trigger temporarily.

Note: The change to the trigger state is temporary. Message processing
will resume for the trigger if Integration Server restarts, the trigger
is enabled or disabled, or the package containing the trigger
reloads. You can also enable triggers manually using Integration
Server Administrator or by invoking the pub.trigger:enableJMSTriggers
service.

Important: If you disable or suspend a SOAP-JMS trigger that acts as a
listener for one or more provider web service descriptors,
Integration Server will not retrieve any messages for those web
service descriptors until the SOAP-JMS trigger is enabled.

3 Integration Server recovers the message back to the JMS provider. This
indicates that the required resources are not ready to process the message
and makes the message available for processing at a later time. For serial
triggers, it also ensures that the message maintains its position at the top
of trigger queue.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 663

Step Description

4 Optionally, Integration Server schedules and executes a resource
monitoring service. A resource monitoring service is a service that you
create to determine whether the resources associated with a trigger
service are available. A resource monitoring service returns a single
output parameter named isAvailable .

5 If the resource monitoring service indicates that the resources are
available (that is, the value of isAvailable is true), Integration Server
enables the trigger. Message processing and message retrieval resume for
the JMS trigger.

If the resource monitoring service indicates that the resources are not
available (that is, the value of isAvailable is false), Integration Server waits
a short time interval (by default, 60 seconds) and then re-executes the
resource monitoring service. Integration Server continues executing the
resource monitoring service periodically until the service indicates the
resources are available.

Tip: You can change the frequency with which the resource
monitoring service executes by modifying the value of the
wa.server.jms.trigger.monitoringInterval property.

6 After Integration Server resumes the JMS trigger, Integration Server
passes the message to the trigger. The trigger and trigger service (or web
service operation) process the message just as they would any message
received by the JMS trigger.

Note: At this point, the retry count is set to 0 (zero).

In summary, the Suspend and retry later option provides a way to resubmit the message
programmatically. It also prevents the trigger from retrieving and processing other
messages until the cause of the transient error condition has been remedied.

Configuring Transient Error Handling for a Non-Transacted JMS
Trigger
The transient error handling and retry behavior that you specify for a non-transacted
JMS trigger determines how Integration Server handles retry failure caused by transient
errors during trigger service execution. The selected behavior also determines how
Integration Server handles transient errors that occur during trigger preprocessing.

For more information about transient error handling for trigger preprocessing, see
"Transient Error Handling During Trigger Preprocessing" on page 739.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 664

Note: If you do not configure service retry for a trigger, set the Max retry attempts
property to 0. Because managing service retries creates extra overhead, seing
this property to 0 can improve the performance of services invoked by the
trigger.

To configure transient error handling for a non-transacted JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to configure retry behavior.

2. In the Properties view, under Transient error handling, in the Max retry attempts field,
specify the maximum number of times Integration Server should aempt to re-
execute the trigger service. The default is 0 retries (the trigger service does not retry).

3. In the Retry interval property, specify the time period the Integration Server waits
between retry aempts. The default is 10 seconds.

4. Set the On retry failure property to one of the following:

Select... To...

Throw exception Specify that Integration Server should throw a service
exception when the last allowed retry aempt ends
because of an ISRuntimeException.

This is the default.

Suspend and retry later Specify that Integration Server should recover the
message back to the JMS provider and suspend the
trigger when the last allowed retry aempt ends
because of an ISRuntimeException.

Note: If you want Integration Server to automatically
enable the trigger when the trigger’s resources
become available, you must provide a resource
monitoring service that Integration Server can
execute to determine when to resume the trigger.

5. If you selected Suspend and retry later, then in the Resource monitoring service
property specify the service that Integration Server should execute to determine the
availability of resources associated with the trigger service. Multiple triggers can use
the same resource monitoring service. For information about building a resource
monitoring service, see Using webMethods Integration Server to Build a Client for JMS.

6. Click File > Save.

Notes:

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 665

Standard JMS triggers and services can both be configured to retry. When a trigger
invokes a service (that is, the service functions as a trigger service), Integration
Server uses the trigger retry properties instead of the service retry properties.

SOAP-JMS triggers and services used as operations in provider web service
descriptors can both be configured to retry. When a web service operation processes
a message received by a SOAP-JMS trigger, Integration Server uses the trigger retry
properties instead of the service (operation) retry properties.

Integration Server does not retry service handlers invoked by a SOAP-JMS trigger.

When Integration Server retries a trigger service and the trigger service is configured
to generate audit data on error, Integration Server adds an entry to the audit log for
each failed retry aempt. Each of these entries will have a status of “Retried” and an
error message of “Null”. However, if Integration Server makes the maximum retry
aempts and the trigger service still fails, the final audit log entry for the service
will have a status of “Failed” and will display the actual error message. Integration
Server makes the audit log entry regardless of which retry failure option the trigger
uses.

Integration Server generates the following journal log message between retry
aempts:

[ISS.0014.0031D] Service serviceName failed with ISRuntimeException. Retry x of y
will begin in retryInterval milliseconds.

You can invoke the pub.flow:getRetryCount service within a trigger service to determine
the current number of retry aempts made by Integration Server and the maximum
number of retry aempts allowed for the trigger service. For more information about
the pub.flow:getRetryCount service, see the webMethods Integration Server Built-In Services
Reference.

Exactly-Once Processing for JMS Triggers
Within Integration Server, exactly-once processing is a facility that ensures one-time
processing of a persistent message by a JMS trigger. The trigger does not process
duplicates of the message. Integration Server provides exactly-once processing when all
of the following are true:

The message is persistent.

The JMS trigger has an acknowledgement mode set to CLIENT_ACKNOWLEDGE.

Exactly-once properties are configured for the JMS trigger.

Note: Software AG recommends that if you want to use exactly-once processing
for JMS triggers subscribing to topics, make sure the topic uses a durable
subscriber.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 666

Duplicate Detection Methods for JMS Triggers
Integration Server ensures exactly-once processing by performing duplicate detection
and by providing the ability to retry trigger services. Duplicate detection determines
whether the current message is a copy of one previously processed by the trigger.

Duplicate messages can be introduced in to the webMethods system in the following
situations:

The sending client sends the same message more than once.

When receiving persistent messages from the JMS provider, Integration Server
and the JMS provider lose connectivity before the JMS trigger processes and
acknowledges the message. The JMS trigger will receive the message again when the
connection is restored.

Integration Server uses duplicate detection to determine the message’s status. The
message status can be one of the following:

New. The message is new and has not been processed by the trigger.

Duplicate. The message is a copy of one already processed the trigger.

In Doubt.Integration Server cannot determine the status of the message. The trigger
may or may not have processed the message before.

To resolve the message status, Integration Server evaluates, in order, one or more of the
following:

Delivery count indicates how many times the JMS provider has delivered the message
to the JMS trigger.

Document history database maintains a record of all persistent message IDs processed
by JMS triggers that have an acknowledgment mode of CLIENT_ACKNOWLEDGE and
for which exactly-once processing is configured.

Document resolver service is a service created by a user to determine the message
status. The document resolver service can be used instead of or in addition to the
document history database.

The steps that Integration Server takes to determine a message’s status depend on the
exactly-once properties configured for the JMS trigger.

Note: For detailed information about exactly-once processing for messages received
by JMS triggers, see Using webMethods Integration Server to Build a Client for
JMS.

Configuring Exactly-Once Processing for a JMS Trigger
Configure exactly-once processing for a JMS trigger when you want the trigger to
process persistent messages once and only once. If it is acceptable for a trigger service to

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 667

process duplicates of a message, you should not configure exactly-once processing for
the trigger.

Keep the following points in mind when configuring exactly-once processing:

Integration Server can perform exactly-once processing for persistent messages only.
The sending client must set the JMSDeliveryMode to persistent.

The JMS trigger must specify CLIENT_ACKNOWLEDGE for the acknowledgement mode.

You do not need to configure all three methods of duplicate detection. However,
if you want to ensure exactly-once processing, you must use a document history
database or implement a custom solution using the document resolver service.

A document history database offers a simpler approach than building a custom
solution and will typically catch all duplicate messages. There may be exceptions
depending on your implementation. For more information about these exceptions,
see "Building a Transacted JMS Trigger" on page 669. To minimize these
exceptions, it is recommended that you use a history database and a document
resolver service.

Stand-alone Integration Servers cannot share a document history database. Only a
cluster of Integration Servers or a non-clustered group of Integration Servers can
(and must) share a document history database.

Make sure the duplicate detection window set by the History time to live property is
long enough to catch duplicate messages but does not cause the document history
database to consume too many server resources. If sending JMS clients reliably send
messages once, you might use a smaller duplicate detection window. If the JMS
clients are prone to sending duplicate messages, consider seing a longer duplicate
detection window.

If you intend to use a document history database as part of duplicate detection, you
must first install the document history database component and associate it with a
JDBC connection pool. For instructions, see Installing Software AG Products.

Note: For detailed information about exactly-once processing for messages received
by JMS triggers, see Using webMethods Integration Server to Build a Client for
JMS.

To configure exactly-once processing for a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to configure exactly-once processing.

2. In the Properties view, under Exactly Once, set the Detect duplicates property to True.

3. To use a document history database as part of duplicate detection, do the following:

a. Set the Use history property to True.

b. In the History time to live property, specify how long the document history
database maintains an entry for a message processed by this trigger. This value
determines the length of the duplicate detection window.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 668

4. To use a service that you create to resolve the status of In Doubt messages, specify
that service in the Document resolver service property.

5. Click File > Save.

Disabling Exactly-Once Processing for a JMS Trigger
If you later determine that exactly-once processing is not necessary for a JMS trigger,
you can disable it.

To disable exactly-once processing for a JMS trigger

1. In the Package Navigator view of Designer, open the trigger for which you want to
configure exactly-once processing.

2. In the Properties view, under Exactly Once, set the Detect duplicates property to False.

Designer disables the remaining exactly-once properties.

3. Click File > Save.

Debugging a JMS Trigger
To debug and test a JMS trigger you can:

Instruct Integration Server to produce an extra level of verbose logging. You can
enable debug trace logging for all JMS triggers or for individual JMS triggers

Send messages to which the JMS trigger subscribes to the JMS provider. You can
create a service that sends the messages. Alternatively, you can create a launch
configuration that publishes a JMS message that contains an instance of a specified IS
document type to the JMS provider.

Enabling Trace Logging for All JMS Triggers
To enable debug trace logging for all JMS triggers

1. Open Integration Server Administrator if it is not already open.

2. In the Settings menu of the Navigation panel, click Extended.

3. Click Edit Extended Settings.

4. Under Extended Settings, type the following:
watt.server.jms.debugTrace=true

5. Click Save Changes.

6. Suspend and then enable all JMS triggers.

For information about suspending and enabling all JMS triggers at one time, see
webMethods Integration Server Administrator’s Guide.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 669

Enabling Trace Logging for a Specific JMS Trigger
To enable debug trace logging for a specific JMS trigger

1. Open Integration Server Administrator if it is not already open.

2. In the Settings menu of the Navigation panel, click Extended.

3. Click Edit Extended Settings.

4. Under Extended Settings, type the following:
watt.server.jms.debugTrace.triggerName =true

Where triggerName is the fully qualified name of the trigger in the format
folder .subfolder :triggerName .

5. Click Save Changes.

6. Disable and then enable the trigger.

Building a Transacted JMS Trigger
A transacted JMS trigger is a JMS trigger that executes within a transaction. A transaction
is a logical unit of work composed of one or more interactions with one or more
resources. The interactions within a transaction are either all commied or all rolled
back. A transaction either entirely succeeds or has no effect at all.

For a transacted JMS trigger, Integration Server uses a transacted JMS connection
alias to receive messages from the JMS provider and to process the messages. A JMS
connection alias is considered to be transacted when it has a transaction type of XA
TRANSACTION or LOCAL TRANSACTION.

The execution of a transacted JMS trigger is an implicit transaction. In an implicit
transaction, Integration Server starts and completes the transaction automatically,
without the need for executing any of the transaction management services.

Integration Server starts the implicit transaction when it uses the specified transacted
JMS connection alias to connect to the JMS provider and receive messages for the
transacted JMS trigger. Integration Server implicitly commits or rolls back the
transaction based on the success or failure of the trigger service.

Integration Server commits the transaction if the trigger service executes
successfully.

Integration Server rolls back the transaction if the trigger service fails with an
ISRuntimeException (a transient error). For detailed information about how
Integration Server handles a transient error within a transaction, see "Transient Error
Handling for Transacted JMS Triggers" on page 675.

Integration Server rolls back the transaction if the trigger service fails with a Service
Exception (a fatal error). For detailed information about how Integration Server

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 670

handles a fatal error within a transaction, see "Fatal Error Handling for Transacted
JMS Triggers" on page 673.

Because Integration Server handles the transaction implicitly, you do not need to use
any of the transaction management services, such as pub.art.transaction:startTransaction, in the
trigger service. However, if the trigger service includes a nested transaction, you can use
the transaction management services to explicitly manage the nested transaction.

Like a non-transacted JMS trigger, a transacted JMS trigger specifies a destination from
which it would like to receive documents and specifies routing rules to process messages
it receives. However, a transacted JMS trigger has some prerequisites as well as some
properties that are different from a non-transacted JMS trigger.

Prerequisites for a Transacted JMS Trigger
Before you build a transacted JMS trigger, make sure the following points are true:

A transacted JMS connection alias exists. A JMS connection alias is considered to
be transacted when it has a transaction type of XA TRANSACTION or LOCAL
TRANSACTION.

Note: A transacted JMS connection alias cannot be assigned to a JMS trigger
if a cluster policy is applied to the connection factory used by the JMS
connection alias.

The WmART package is installed and enabled.

Properties for Transacted JMS Triggers
Integration Server and Designer provide different properties for a transacted JMS trigger
than for a non-transacted JMS trigger. The following list identifies properties that are
specific to transacted JMS triggers, specific to non-transacted JMS triggers, or apply to
both but must be set to a particular value for transacted JMS triggers.

For transacted JMS triggers, message acknowledgement is handled by the
transaction; the acknowledgement mode does not apply. Consequently, Designer
does not display the Acknowledgement mode property for a transacted JMS trigger.

A transacted JMS trigger can only use Any (OR) joins, for which you do not need to
specify a join time-out. Because All (AND) and Only one (XOR) joins cannot be used,
Designer does not display the Join expires and Expire after properties for a transacted
JMS trigger.

A transacted JMS trigger can be used for batch processing if the JMS connection alias
used by the trigger connects to a JMS provider that supports reuse of transacted JMS
sessions. If the JMS provider does not support reuse of transacted JMS sessions, set
Max batch processing to 1.

Consult the documentation for your JMS provider to determine whether or not the
JMS provider supports the reuse of transacted JMS sessions. Note that webMethods
Broker version 8.2 and higher, webMethods Universal Messaging version 9.5 SP1

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 671

and higher, and webMethods Nirvana version 7 and higher support the reuse of
transacted JMS sessions.

Because a transaction is an all or nothing situation, a trigger service cannot retry
a message if a trigger service ends because of a transient error. Designer does not
display the retry properties (Max retry attempts, Retry interval, and On retry failure) for a
transacted JMS trigger.

You can specify how Integration Server handles a transient error that causes the
transaction to be rolled back. Designer displays an On transaction rollback property
that you can use to specify whether Integration Server simply recovers the message
from the JMS provider or whether it suspends the JMS trigger in addition to
recovering the message. For more information about transient error handling for
transacted JMS triggers, see "Transient Error Handling for Transacted JMS Triggers"
on page 675.

Steps for Building a Transacted JMS Trigger
Building a transacted JMS trigger is a process that involves the following basic stages.

Stage 1 Create a new JMS trigger on Integration Server.

Stage 2 Specify a JMS connection alias with a transaction type of XA
TRANSACTION or LOCAL TRANSACTION.

Stage 3 Specify the destination (queues or topics) on the JMS provider from
which you want to receive messages. You also specify any message
selectors that you want the JMS provider to use to filter messages for the
JMS trigger.

If this a SOAP-JMS trigger, you can specify one destination only.

Stage 4 For a standard JMS trigger, create routing rules and specify the services
that Integration Server invokes when the JMS trigger receives messages.

SOAP-JMS triggers do not use routing rules.

Stage 5 Set the following JMS trigger properties:

 Property name... Description

 Enabled Enables or disables a JMS trigger as follows:

If set to True, enables a JMS trigger that is
currently disabled.

If set to False, disables a JMS trigger that is
currently enabled.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 672

 Execution user Name of the user account whose credentials
Integration Server uses to execute a service
associated with the JMS trigger.

 Message processing Specifies whether Integration Server should
process messages serially or concurrently. When
set to:

Serial, Integration Server processes messages
received by the trigger one after the other.

Concurrent, Integration Server processes
multiple messages for the trigger at one time.

 Fatal error handling >
Suspend on error

Specifies whether you want Integration Server
to suspend the trigger when a trigger service
ends with an error. Select True or False.

 Transient error
handling

Specifies how Integration Server responds
when a transaction is rolled back due to a
transient error that occurs during processing
of a transacted JMS trigger. When the On
transaction rollback property is set to:

Recover only, Integration Server recovers the
message after a transaction is rolled back due
to a transient error. This is the default.

Suspend and recover, Integration Server
suspends the JMS trigger and recovers the
message after a resource monitoring service
indicates that the resources needed by the
trigger service are available.

 Exactly once Specifies whether you want the trigger to
process persistent messages once and only once.
Set Detect duplicates to True to configure exactly
once processing.

 Permissions In Designer, select the ACLs that you want to
assign for each level of access as follows:

For the List ACL permission, specify the
ACL whose allowed member can see that
the element exists and view the element’s
metadata (input, output, etc.).

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 673

For the Read ACL, specify the ACL whose
allowed member can view the source code and
metadata of the element.

For the Write ACL, specify the ACL whose
allowed member can lock, check out, edit,
rename, and delete the element.

For the Execute ACL, specify the ACL whose
allowed member can execute the service. This
level of access only applies to services and web
service descriptors.

Stage 6 Test and debug the JMS trigger. For more information, see "Debugging a
JMS Trigger" on page 668.

Fatal Error Handling for Transacted JMS Triggers
You can specify that Integration Server suspend a transacted JMS trigger automatically
if a fatal error occurs during trigger service execution. For a standard JMS trigger, a
fatal error occurs when the trigger service ends because of a ServiceException. For a
SOAP-JMS trigger, a fatal error occurs when the web service operation ends because of a
ServiceException.

When a transacted JMS trigger is configured to suspend when a fatal error occurs,
Integration Server does the following when the trigger service or web service operation
ends with a ServiceException:

Step Description

1 The trigger service for a transacted JMS trigger fails because of a
ServiceException. Or, a web service operation invoked via a transacted
SOAP-JMS trigger fails because of a ServiceException.

2 Integration Server rolls back the entire transaction and Integration Server
recovers the message back to the JMS provider. The JMS provider marks the
message as redelivered and increments the value of the JMSXDeliveryCount
property in the JMS message.

3 If the JMS trigger is configured to use a document history database for
exactly-once processing, Integration Server adds an entry with a status of
“completed” for the message to the document history database.

Because Integration Server does not acknowledge the message when it is
rolled back, the JMS provider makes the message available for redelivery
to the JMS trigger. However, a message that causes a trigger service to
end because of a Service Exception typically does not process successfully

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 674

Step Description
upon redelivery. Integration Server adds the “completed” entry so that the
message is treated as a duplicate when it is received from the JMS provider.
The message is rejected after it is resent.

If the JMS trigger does not use a document history database, Integration
Server continues to receive and aempt message processing until the
message processes successfully or the maximum delivery count has been
met. The maximum delivery count determines the maximum number of
time the JMS provider can deliver the message to the JMS trigger. It is
controlled by the wa.server.jms.trigger.maxDeliveryCount property.

4 Integration Server suspends the JMS trigger.

Important: If you disable or suspend a SOAP-JMS trigger that acts as a listener
for one or more provider web service descriptors, Integration Server
will not retrieve any messages for those web service descriptors
until the trigger is enabled.

5 The JMS trigger remains suspended until one of the following occurs:

You enable the trigger using the pub.trigger:enableJMSTriggers service.

You enable the trigger using Integration Server Administrator.

Integration Server restarts or the package containing the trigger reloads.
(When Integration Server suspends a trigger because of a fatal error,
Integration Server considers the change to be temporary. For more
information about temporary vs. permanent state changes for triggers, see
webMethods Integration Server Administrator’s Guide.)

You can handle the exception that causes the fatal error by configuring Integration
Server to generate JMS retrieval failure events for fatal errors and by creating an event
handler that subscribes to JMS retrieval failure events. Integration Server passes the
contents of the JMS message and exception information to the event handler.

Configuring Fatal Error Handling for Transacted JMS Triggers

To configure fatal error handling for a transacted JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want
to specify document processing.

2. In the Properties view, under Fatal error handling, set the Suspend on error property
to True if you want Integration Server to suspend the trigger when a trigger service
ends with an error. Otherwise, select False. The default is False.

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 675

3. Configure exactly-once processing for the JMS trigger. For more information about
configuring exactly-once processing, see "Configuring Exactly-Once Processing for a
JMS Trigger" on page 666.

4. Click File > Save.

Transient Error Handling for Transacted JMS Triggers
When building a transacted JMS trigger, you can specify what action Integration Server
takes when a transient error causes a trigger service or a web service operation to fail
and the entire transaction is rolled back.

A transient error is an error that arises from a temporary condition that might be resolved
or corrected quickly, such as the unavailability of a resource due to network issues or
failure to connect to a database. A transient error is caused by a run-time exception.
A run-time exception (specifically, an ISRuntimeException) occurs in the following
situations.

The trigger service catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

The web service operation that processes the message received by a SOAP-
JMS trigger catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

Note: For a service handler invoked by a SOAP-JMS trigger, Integration Server
treats all errors as fatal. Service handlers invoked by SOAP-JMS triggers
cannot be retried.

The pub.jms:send, pub.jms:sendAndWait, or pub.jms:reply service fails because a resource
(such as the JNDI provider or JMS provider) is not available.

If the JMS provider is not available, and the seings for the pub.jms* service indicate
that Integration Server should write messages to the client side queue, Integration
Server does not throw an ISRuntimeException.

A transient error occurs on the back-end resource for an adapter service. Adapter
services built on Integration Server 6.0 or later, and based on the ART framework,
detect and propagate exceptions that signal a retry automatically if a transient error
is detected on their back-end resource.

Note: A web service connector that sends a JMS message can throw an
ISRUntimeException, such as when the JMS provider is not available.
However, Integration Server automatically places the ISRuntimeException
in the fault document returned by the web service connector. If you want
the parent flow service to catch the transient error and re-throw it as an
ISRuntimeException, you must code the parent flow service to check the fault
document for an ISRuntimeException and then throw an ISRuntimeException
explicitly.

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 676

You can specify one of the following transient error handling options for a transacted
JMS trigger:

Recover only. After a transaction is rolled back, Integration Server receives the
message from the JMS provider almost immediately. This is the default.

Suspend and recover. After a transaction is rolled back, Integration Server suspends the
JMS trigger and receives the message from the JMS provider at a later time.

You can also configure Integration Server and/or a JMS trigger to handle transient errors
that occur during trigger preprocessing. The trigger preprocessing phase encompasses
the time from when a trigger first receives a message from it’s local queue on Integration
Server b to the time the trigger service executes.

For more information about transient error handling for trigger preprocessing, see
"Transient Error Handling During Trigger Preprocessing" on page 739.

Overview of Recover Only for Transaction Rollback
The following table provides an overview of how Integration Server handles transaction
rollback when the Recover Only option is selected for a transacted JMS trigger.

Step Description

1 The trigger service web service operation fails because of an
ISRuntimeException.

2 Integration Server rolls back the entire transaction.

When the transaction is rolled back, Integration Server recovers the
message back to the JMS provider automatically. The JMS provider
marks the message as redelivered and increments the delivery count
(JMSXDeliveryCount field in the JMS message).

At this point, a JMS provider typically makes the message available for
immediate redelivery.

3 Integration Server receives the same message from the JMS provider and
processes the message.

Because Integration Server receives the message almost immediately after
transaction roll back, it is likely that the temporary condition that caused the
ISRuntimeException has not resolved and the trigger service will end with a
transient error again. Consequently, seing On transaction rollback to Recover
only could result in wasted processing.

Note: Integration Server enforces a maximum delivery count, which
determines the maximum number of time the JMS provider can
deliver the message to the JMS trigger. If the maximum delivery
count has been met, the JMS provider will not deliver the message

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 677

Step Description
to the JMS trigger. Instead, the JMS provider will acknowledge and
remove the message. The maximum delivery count is controlled by
the wa.server.jms.trigger.maxDeliveryCount property.

Overview of Suspend and Recover for Transaction Rollback
The following table provides an overview of how Integration Server handles transaction
rollback when the Suspend and recover option is selected for a transacted JMS trigger.

Step Description

1 The trigger service or web service operation fails because of an
ISRuntimeException.

2 Integration Server rolls back the entire transaction.

When the transaction is rolled back, Integration Server recovers the
message back to the JMS provider automatically. The JMS provider
marks the message as redelivered and increments the delivery count
(JMSXDeliveryCount field in the JMS message).

3 Integration Server suspends the JMS trigger temporarily.

The JMS trigger is suspended on this Integration Server only. If the
Integration Server is part of a cluster, other servers in the cluster can retrieve
and process messages for the trigger.

Important: If you disable or suspend a SOAP-JMS trigger that acts as a listener
for one or more provider web service descriptors, Integration Server
will not retrieve any messages for those web service descriptors
until the SOAP-JMS trigger is enabled.

Note: The change to the trigger state is temporary. Message processing
will resume for the trigger if Integration Server restarts, the trigger
is enabled or disabled, or the package containing the trigger reloads.
You can also enable triggers manually using Integration Server
Administrator or by invoking the pub.trigger:enableJMSTriggers service.

4 Optionally, Integration Server schedules and executes a resource
monitoring service. A resource monitoring service is a service that you create
to determine whether the resources associated with a trigger service are
available. A resource monitoring service returns a single output parameter
named isAvailable .

M
Even Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 678

Step Description

5 If the resource monitoring service indicates that the resources are available
(that is, the value of isAvailable is true), Integration Server enables the
trigger. Message processing and message retrieval resume for the JMS
trigger.

If the resource monitoring service indicates that the resources are not
available (that is, the value of isAvailable is false), Integration Server waits
a short time interval (by default, 60 seconds) and then re-executes the
resource monitoring service. Integration Server continues executing the
resource monitoring service periodically until the service indicates the
resources are available.

Tip: You can change the frequency at which the resource
monitoring service executes by modifying the value of the
wa.server.jms.trigger.monitoringInterval property.

6 After Integration Server resumes the JMS trigger, Integration Server receives
the message from the JMS provider and processes the message.

Note: If the maximum delivery count has been met, the JMS provider will
not deliver the message to the JMS trigger. The maximum delivery
count determines the maximum number of time the JMS provider
can deliver the message to the JMS trigger. It is controlled by the
wa.server.jms.trigger.maxDeliveryCount property.

Configuring Transient Error Handling for Transacted JMS Triggers
The transient error handling and transaction rollback behavior that you specify for a
transacted JMS trigger determines how Integration Server handles transaction rollback
caused by transient errors during trigger service execution. The selected behavior also
determines how Integration Server handles transient errors that occur during trigger
preprocessing.

For more information about transient error handling for trigger preprocessing, see
"Transient Error Handling During Trigger Preprocessing" on page 739.

Use the following procedure to configure how Integration Server responds when a
transaction is rolled back due to a transient error that occurs during processing of a
transacted JMS trigger.

To configure transient error handling for a transacted JMS trigger

1. In the Package Navigator view of Designer, open the trigger for which you want to
configure transient error handling.

2. In the Properties view, under Transient error handling, in the On transaction rollback
property, select one of the following:

M
Odd Header

Working with JMS Triggers

webMethods Service Development Help Version 9.10 679

Select... To...

Recover only Specify that Integration Server recovers the message after a
transaction is rolled back due to a transient error.

This is the default.

Suspend and
recover

Specify that Integration Server does the following after a
transaction is rolled back due to a transient error:

Suspends the JMS trigger

Recovers the message after a resource monitoring service
indicates that the resources needed by the trigger service are
available.

3. If you selected Suspend and recover, in the Resource monitoring service property, specify
the service that Integration Server should execute to determine the availability of
resources associated with the trigger service or web service operation. Multiple
triggers can use the same resource monitoring service.

4. Click File > Save.

M
Even Header

webMethods Service Development Help Version 9.10 680

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 681

32 Working with webMethods Messaging Triggers

■ Overview of Building a webMethods Messaging Trigger ... 682

■ Creating a webMethods Messaging Trigger .. 684

■ Disabling and Enabling a webMethods Messaging Trigger ... 698

■ About Join Time-Outs .. 699

■ About Priority Message Processing ... 701

■ About Execution Users for webMethods Messaging Triggers ... 703

■ About Capacity and Refill Level for the webMethods Messaging Trigger Queue 705

■ About Document Acknowledgements for a webMethods Messaging Trigger 707

■ About Message Processing ... 708

■ Fatal Error Handling for a webMethods Messaging Trigger .. 718

■ About Transient Error Handling for a webMethods Messaging Trigger 719

■ Exactly-Once Processing for webMethods Messaging Triggers .. 727

■ Modifying a webMethods Messaging Trigger .. 730

■ Deleting webMethods Messaging Triggers .. 732

■ Running a webMethods Messaging Trigger with a Launch Configuration 733

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 682

A webMethods messaging trigger subscribes to one or more publishable document
types and processes instances of those document types. A webMethods messaging
trigger can receive documents published to a webMethods messaging provider
(webMethods Universal Messaging or webMethods Broker) or documents published
locally by the Integration Server on which the trigger resides.

Each webMethods messaging trigger is composed of two basic pieces:

A subscription to one or more publishable document types

A service that processes instances of those publishable document types.

When a webMethods messaging trigger receives a document to which it subscribes from
the messaging provider, Integration Server passes the document to the specified service
and then invokes the service.

Note: Prior to Integration Server and Software AG Designer versions 9.5 SP1, a
webMethods messaging trigger was called a Broker/local trigger.

Note: Information about webMethods messaging triggers is located in webMethods
Service Development Help and Publish-Subscribe Developer’s Guide. Both
documents include the Working with webMethods Messaging Triggers
topic. Publish-Subscribe Developer’s Guide contains information such as how
webMethods messaging triggers work, how Integration Server receives
documents from webMethods messaging triggers, how webMethods
messaging triggers with join conditions work, and how Integration Server
performs exactly-once processing.

Overview of Building a webMethods Messaging Trigger
Building a webMethods messaging trigger is a process that involves the following basic
stages:

Stage 1 Create a new webMethods messaging trigger on Integration Server.

During this stage, you create the new webMethods messaging trigger on
the Integration Server where you will do your development and testing.
For more information, see "Creating a webMethods Messaging Trigger "
on page 684.

Stage 2 Create one or more conditions for the webMethods messaging trigger.

During this stage, you create a trigger condition which associates
a subscription to a publishable document types with a service that
processes instances of that document types. You can also create filters to
apply to incoming documents and select join types.

Stage 3 Set webMethods messaging trigger properties.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 683

During this stage, you set parameters that configure the run-time
environment of this webMethods messaging trigger, such as trigger
queue capacity, document processing mode, fatal and transient error
handling, exactly-once processing, and priority level.

Stage 4 Run the webMethods messaging trigger.

During this stage you can use the tools provided by Designer to run
and debug the webMethods messaging trigger. For more information,
see "Running a webMethods Messaging Trigger with a Launch
Configuration" on page 733.

webMethods Messaging Trigger Requirements
AwebMethods messaging trigger must meet the following requirements:

The webMethods messaging trigger contains at least one condition.

Each condition in the webMethods messaging trigger specifies a unique name.

Each condition in the webMethods messaging trigger specifies a service.

Each condition in the webMethods messaging trigger specifies at least one
publishable document type.

If more than one condition in the webMethods messaging trigger specifies the same
publishable document type and the trigger receives messages from the Broker,
the filters in the conditions must be the same. Specifically, the contents of the Filter
column must be identical for each condition that subscribes to the publishable
document type. Software AG does not recommend using the same publishable
document type in more than one condition in the same trigger when receiving
messages from Broker.

Note: Provider filters must be identical if multiple conditions in the same trigger
specify the same publishable document type.

If more than one condition in the webMethods messaging trigger specifies the
same publishable document type and the trigger receives messages from Universal
Messaging, the provider filters must be identical in each condition but the local
filters can be different. Specifically, the contents of the Provider Filter (UM) column
must be identical for each condition that subscribes to the publishable document
type. The contents of the Filter column can be different.

The webMethods messaging trigger contains no more than one join condition.

The webMethods messaging trigger subscribes to publishable document types that
use the same messaging connection alias. For the publishable document types to
which the trigger subscribes, the value of the Connection alias name property can be:

The name of a specific messaging connection alias.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 684

DEFAULT where the default messaging connection alias is the same as the
alias specified for the other publishable document types to which the trigger
subscribes.

The syntax of a filter applied to a publishable document type is correct. That is, the
filter in the Filter column must be valid. Integration Server does not validate the
provider filter in the Provider Filter column.

When you save a webMethods messaging trigger, Integration Server evaluates the
webMethods messaging trigger to make sure the webMethods messaging trigger is
valid. If Integration Server determines that the webMethods messaging trigger or a
condition in the webMethods messaging trigger is not valid, Designer displays an
error message and prompts you to cancel the save or continue the save with a disabled
webMethods messaging trigger.

Trigger Service Requirements
The service that processes a document received by a webMethods messaging trigger is
called a trigger service. A condition specifies a single trigger service.

A trigger service for a webMethods messaging trigger must meet the following
requirements:

Before you can enable a webMethods messaging trigger, the trigger service must
already exist on the same Integration Server.

The input signature for the trigger service needs to have a document reference to the
publishable document type.

The name for this document reference must be the fully qualified name of the
publishable document type. The fully qualified name of a publishable document
type conforms to the following format: folder.subfolder:PublishableDocumentTypeName

For example, suppose that you want a webMethods messaging trigger
to associate the Customers:customerInfo publishable document type with the
Customers:addToCustomerStore service. On the Input/Output tab of the service, the input
signature must contain a document reference named Customers:customerInfo.

If you intend to use the service in a join condition (a condition that associates
multiple publishable document types with a service), the service’s input signature
must have a document reference for each publishable document type. The names of
these document reference fields must be the fully qualified names of the publishable
document type they reference.

Note: An XSLT service cannot be used as a trigger service.

Creating a webMethods Messaging Trigger
When you create a webMethods messaging trigger, keep the following points in mind:

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 685

The publishable document types and services that you want to use in conditions
must already existwebMethods messaging trigger.

A webMethods messaging trigger can subscribe to publishable document types only.
A webMethods messaging trigger cannot subscribe to ordinary IS document types.

A webMethods messaging trigger must meet the requirements specified in "
webMethods Messaging Trigger Requirements" on page 683.

Important: When you create webMethods messaging triggers, work on a stand-alone
Integration Server instead of an Integration Server in a cluster or non-
clustered group. Creating, modifying, disabling, and enabling webMethods
messaging triggers on an Integration Server in a cluster or non-clustered
group can create inconsistencies in the object that corresponds to the trigger
on the messaging provider.

To create a webMethods messaging trigger

1. In the Package Navigator view of Designer, click File > New >webMethods Messaging
Trigger.

2. In the Create a New webMethods Messaging Trigger dialog box, select the folder in
which you want to save the webMethods messaging trigger.

3. In the Element Name field, type a name for the webMethods messaging trigger using
any combination of leers, and/or the underscore character.

4. Click Finish.

Designer generates the new webMethods messaging trigger and displays it in the
Designer window.

5. Under Condition detail, build a condition to specify the document types to which
the webMethods messaging trigger subscribes and the trigger services that execute
when instances of those document types are received. For more information about
creating conditions, see "Creating Conditions" on page 686.

6. In the Properties view, set properties for the webMethods messaging trigger.

7. Click File > Save.

Notes:

Integration Server validates the webMethods messaging trigger before saving it. If
Integration Server determines that the webMethods messaging trigger is invalid,
Designer prompts you to save the webMethods messaging trigger in a disabled state.
For more information about valid webMethods messaging trigger, see " webMethods
Messaging Trigger Requirements" on page 683.

You can also use the pub.trigger:createTrigger service to create a webMethods messaging
trigger. For more information about this service, see the webMethods Integration Server
Built-In Services Reference.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 686

Creating Conditions
A condition associates one or more publishable document types with a a single service.
A webMethods messaging trigger subscribes to the publishable document type in a
subscription. The service, called a trigger services, processes instance of the document
type received by the trigger.

A condition can be a simple condition or a join condition. A simple a condition
associates one publishable document type with a service. A join associates more than
one publishable document types with a service and specifies how the trigger handles the
documents as a unit.

A webMethods messaging trigger must have at least one condition.

Keep the following points in mind when you create a condition for a webMethods
messaging trigger:

The publishable document types and services that you want to use in a condition
must already exist.

A webMethods messaging trigger can subscribe to publishable document types only.
A webMethods messaging trigger cannot subscribe to ordinary IS document types.

An XSLT service cannot be used as a trigger service.

Conditions must meet additional requirements identified in " webMethods
Messaging Trigger Requirements" on page 683.

Trigger services must meet additional requirements identified in "Trigger Service
Requirements" on page 684.

If a webMethods messaging trigger subscribes to a publishable document type that is
not in the same package as the trigger, create a package dependency on the package
containing the publishable document type from the package containing the trigger.
This ensures that Integration Server loads the package containing the publishable
document type before loading the trigger.

If a webMethods messaging trigger uses a trigger service that is not in the same
package as the trigger, create a package dependency on the package containing the
trigger service from the package containing the trigger. This ensures that Integration
Server loads the package containing the service before loading the trigger.

To create a condition for a webMethods messaging trigger

1. In the Package Navigator view of the Service Development perspective, open the
webMethods messaging trigger for which you want to set a condition.

2. Under Conditions, click to add a new condition.

3. Under Condition detail, in the Name field, type the name you want to assign to the
condition. Designer automatically assigns each condition a default name such as
Condition1 or Condition2 . You can keep this name or change it to a more descriptive
one.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 687

4. In the Service field, enter the fully qualified service name that you want to associate
with the publishable document types in the condition. You can type in the service
name, or click to navigate to and select the service.

5. Click under Condition detail to add a new document type subscription for this
webMethods messaging trigger .

6. In the Select dialog box, select the publishable document types to which you want
to subscribe. You can select more than one publishable document type by using the
CTRL or SHIFT keys.

Designer creates a row for each selected publishable document type. Designer enters
the name of the messaging connection alias used by each publishable document type
in the Connection Alias column.

7. In the Filter column next to each publishable document type, do the following:

If the publishable document type uses Broker as the messaging provider, specify
a filter that you want Integration Server and/or Broker to apply to each instance
of this publishable document type. For more information, see "Creating Filters
for Use with Broker " on page 693.

If the publishable document type uses Universal Messaging as the messaging
provider, specify the local filter that you want Integration Server to apply to each
instance of the publishable document type received by the trigger. For more
information, see "Creating Filters for Use with Universal Messaging " on page
690.

Create the filter in the Filter column using the conditional expression syntax
described in webMethods Service Development Help.

Filters are optional for a trigger condition. For more information about filters, see
"Using Filters with a Subscription" on page 689.

8. If the publishable document type uses Universal Messaging as the messaging
provider, in the Provider Filter (UM only) column, enter the filter that you want
Universal Messaging to apply to each instance of the publishable document type.
Universal Messaging enqueues the document for the trigger only if the filter criteria
is met. For information about the syntax for provider filters for Universal Messaging,
see the Universal Messaging documentation. For more information about using
filters in trigger conditions, see "Creating Filters for Use with Universal Messaging "
on page 690.

9. If you specified more than one publishable document type in the condition, select a
join type.

Join Type Description

All (AND) Integration Server invokes the trigger service when the server
receives an instance of each specified publishable document

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 688

Join Type Description
type within the join time-out period. The instance documents
must have the same activation ID. This is the default join type.

Any (OR) Integration Server invokes the trigger service when it receives
an instance of any one of the specified publishable document
types.

Only one (XOR) Integration Server invokes the trigger service when it receives
an instance of any of the specified document types. For
the duration of the join time-out period, Integration Server
discards any instances of the specified publishable document
types with the same activation ID.

10. Repeat this procedure for each condition that you want to add to the webMethods
messaging trigger .

11. Click File > Save.

Notes:

Integration Server validates the webMethods messaging trigger before saving it. If
Integration Server determines that the webMethods messaging trigger is invalid,
Designer prompts you to save the webMethods messaging trigger in a disabled
state. For more information about valid webMethods messaging triggers, see "
webMethods Messaging Trigger Requirements" on page 683.

Integration Server establishes the subscription locally by creating a trigger queue for
the webMethods messaging trigger.

If the trigger subscribes to one or more publishable document types that use Broker
as the messaging provider, one of the following happens upon saving the trigger.

If Integration Server is currently connected to the Broker, Integration Server
registers the trigger subscription with the Broker by creating a client for the
trigger on the Broker. Integration Server also creates a subscription for each
publishable document type specified in the webMethods messaging trigger
conditions and saves the subscriptions with the webMethods messaging
trigger client. Broker validates the filters in the webMethods messaging trigger
conditions when Integration Server creates the subscriptions.

If Integration Server is not currently connected to a Broker, the webMethods
messaging trigger will only receive documents published locally. When
Integration Server reconnects to a Broker, the next time Integration Server
restarts Integration Server will create a client for the webMethods messaging
trigger on the Broker and create subscriptions for the publishable document
types identified in the webMethods messaging trigger conditions. Broker
validates the filters in the webMethods messaging trigger conditions when
Integration Server creates the subscriptions.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 689

If the trigger subscribes to a publishable document type that uses Universal
Messaging as the messaging provider, one of the following happens upon saving the
trigger.

If Integration Server is currently connected to Universal Messaging, Integration
Server creates a named object on the channel that corresponds to the publishable
document type.

If Integration Server is not currently connected to Universal Messaging, you
need to synchronize the publishable document type with the provider when the
connection becomes available. Synchronizing creates the named object on the
channel that corresponds to the publishable document type.

If a publishable document type specified in a webMethods messaging trigger
condition does not exist on the Broker (that is, there is no associated Broker
document type), Integration Server still creates the trigger client on the Broker, but
does not create any subscriptions. Integration Server creates the subscriptions when
you synchronize (push) the publishable document type with the Broker.

If a publishable document type specified in a webMethods messaging trigger
condition does not exist on Universal Messaging, Designer displays an error stating
that a channel does not exist for the specified document type.

When creating a condition, you can specify the trigger service by dragging a service
from Package Navigator view and dropping it in the Service field. Additionally,
you can specify the document types to which the webMethods messaging trigger
subscribes by dragging one or more document types from Package Navigator view
and dropping them in the table in Condition detail.

If you need to specify nested fields in the Filter field, you can copy a path to the Filter
field from the document type. Select the field in the document type, right-click and
select Copy. You can then paste into the Filter field. However, you must add % as a
preface and suffix to the copied path.

Using Filters with a Subscription
You can further specify the documents that you want a trigger to receive and process by
creating a filter for the condition. A filter specifies criteria that the published document
must meet before the webMethods messaging trigger receives and/or processes the
document. You can use the following types of filters:

Provider filter. A provider filter is saved on the messaging provider. The messaging
provider applies the filter when it receives the document from the publisher. If the
document meets the filter criteria, the messaging provider enqueues the document
for the subscribing trigger.

Local filter. A local filter is saved on Integration Server. After a trigger receives a
document, Integration Server applies the filter to the document. If the document
meets the filter criteria, Integration Server executes the trigger.

How you create filters for a condition depends on the following:

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 690

The messaging provider used by the publishable document type.

If the messaging provider is Universal Messaging, the encoding type for the
publishable document type.

Creating Filters for Use with Universal Messaging
If a webMethods messaging trigger subscribes to publishable document types associated
with a Universal Messaging connection alias, you can create:

A provider filter that Universal Messaging applies to the documents that it receives.
Universal Messaging saves the filter along with the subscription to the document
type. When Universal Messaging receives an instance of the publishable document
type, Universal Messaging applies the filter. Universal Messaging enqueues the
document for the trigger only if the filter criteria is met.

Use the Provider Filter (UM only) column in the Condition detail table to specify a
provider filter. For information about the syntax for provider filters for Universal
Messaging, see the Universal Messaging documentation.

When you save a trigger, Integration Server does not evaluate the syntax of the
provider filter. Integration Server passes the filter directly to Universal Messaging.

Note: If the trigger contains multiple conditions that subscribe to the same
publishable document type, Integration Server does verify that the
provider filters are identical upon save. If the supplied provider filters are
identical, Integration Server saves the trigger. If the provider filters are not
identical, Integration Server throws an exception and considers the trigger
to be invalid.

A local filter that Integration Server applies to the published document header or
document body after the trigger receives the document. Use the Filter column in the
Condition detail table to specify a local filter.

Create the local filter using the conditional expression syntax described in
webMethods Service Development Help.

When you save a trigger, Integration Server evaluates the local filter to make
sure it uses the proper syntax. If the syntax is correct, Integration Server saves
the webMethods messaging trigger in an enabled state. If the syntax is incorrect,
Integration Server saves the webMethods messaging trigger in a disabled state

Universal Messaging Provider Filters and Encoding Type
The encoding type specified for the publishable document type to which the
webMethods messaging trigger subscribes determines the scope of the published
document to which Universal Messaging applies the filter.

When IData is the encoding type, Universal Messaging applies the filter to the
custom header fields added to a published document via the _properties field.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 691

The provider filter allows the webMethods messaging trigger to indicate which
documents it wants to receive based on the header contents.

When protocol buffers is the encoding type, Universal Messaging applies the filter to
the body of the document only.

Because Integration Server includes the headers in the body of the published
document as well as in the document header, you can still filter on the document
headers when the encoding type is protocol buffers.

When using protocol buffers to encode messages, there are additional considerations
for creating provider filters for Universal Messaging. Specifically, Universal
Messagingcannot filter on:

Fields that cannot be encoded as protocol buffers, including fields whose names
contain characters that are not valid for protocol buffers, data types that are not
supported by protocol buffers, and duplicate fields.

For information about fields that cannot be represented as protocol buffers, see the
information about seing an encoding type for a publishable document type in the
webMethods Service Development Help.

Undeclared fields that are not defined in the publishable document type but are in
the published document.

Fields that contain null values. Even if the field can be represented in protocol
buffers, at run time, a null value cannot be included in a protocol buffer message.
Consequently, Universal Messaging cannot apply a provider filter that checks for a
null value.

Any list data type where one of the elements in the list contains a null value.

Fields whose values are references to another field.

While Universal Messaging cannot filter on the contents of the fields identified above,
these fields and their contents will be passed through as an UnknownFieldSet which is
represented as an IData byte array. A webMethods messaging trigger that receives the
document will be able to decode the fields and include them in the pipeline.

For Universal Messaging to filter on protocol buffers, the following configuration
properties must be set to true, the defaults, on Universal Messaging:

Global Values > ExtendedMessageSelector

Protobuff Config > Filter ProtobufEvents

Use Universal Messaging Enterprise Manager to view and edit the configuration
properties for the realm to which Integration Server connects.

Note: When the encoding type is IData, it is optional to include _properties in the
provider filter. For example, if you want Universal Messaging to filter for
messages where the contents of the _properties /color field is equal to “blue”,
the provider filter would be: color=’blue’. However, when the encoding type
is protocol buffers, you need to include _properties in the provider filter. For
example, _properties.color=’blue’. If you want a provider filter that operates

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 692

on the contents of _properties to work regardless of the encoding type, always
include _properties in the filter expression.

Examples of Universal Messaging Provider Filters for Use with Protocol
Buffers
Following are examples of provider filters for protocol buffer encoded documents. The
Universal Messaging server applies the filter when it receives an instance of a document
in the trigger condition that contains the provider filter.

Filter Evaluates to true when...

stringField = ‘abc’ The value of stringField is “abc”.

stringField < ‘B’ The value of the stringField is less
than B

stringField < ‘5’ The value of the stringField is less
than 5.

stringField = ‘1’ The value of the stringField is “1”.

document.stringField=’abc’ In the Document field named
document , the value of the stringField
is “abc”.

stringList[1] = ‘b’ The value of the second element in
stringList is “b”

documentList[0].stringField = ‘a’ In the first element of the Document
list named documentList , the value of
stringField is “a”.

stringField1 = ‘a’ and stringField2 = ‘b’ The value of stringField1 is “a” and
the value of stringField2 is “b”.

stringField1 = ‘a’ or stringField2 = ‘b’ The value of stringField1 is “a” or the
value of stringField2 is “b”.

stringField1 = stringField2 The value of stringField1 is the same
as the value of stringField2 .

integerField = 5 The value of integerField is “5”.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 693

Filter Evaluates to true when...

Where integerField is an Object
field with the Java wrapper type
java.lang.Integer applied.

integerField > 1

Where integerField is an Object
field with the Java wrapper type
java.lang.Integer applied.

The value of integerField is greater
than 1.

boolean1 = true and boolean2 = false

Where boolean1 and boolean2 are Object
fields with the Java wrapper type
java.lang.Boolean applied.

The value of boolean1 is true and the
value of boolean2 is false.

For more information about server-side filtering on Universal Messaging, including
syntax, see the Universal Messaging documentation.

Creating Filters for Use with Broker
If a webMethods messaging trigger subscribes to publishable document types associated
with a Broker connection alias, you can specify a single filter that can be used by Broker
and/or Integration Server. Use the Filter column in the Condition detail table to specify
the filter.

The filter can be saved with the subscription on the Broker and with the webMethods
messaging trigger on the Integration Server. This is because some filter syntax that is
valid on Integration Server is not valid on Broker. For example, Broker prohibits the use
of certain words or characters in field names, such as Java keywords, @, *, and names
containing white spaces. The location of the filter and whether Broker and/or Integration
Server applies the filter, depends on the filter syntax, which is evaluated at design time.

When you save a webMethods messaging trigger, Integration Server and Broker
evaluate the filter in the Filter column.

Integration Server evaluates the filter to make sure it uses the proper syntax. If the
syntax is correct, Integration Server saves the webMethods messaging trigger in an
enabled state. If the syntax is incorrect, Integration Server saves the webMethods
messaging trigger in a disabled state.

Broker evaluates the filter syntax to determine if the filter syntax is valid on the
Broker. If Broker determines that the syntax is valid for the Broker, it saves the filter
with the document type subscription. If the Broker determines that the filter syntax
is not valid on the Broker or if aempting to save the filter on the Broker would
cause an error, Broker saves the subscription without the filter.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 694

Broker saves as much of a filter as possible with the subscription. For example,
suppose that a filter consists of more than one expression, and only one of the
expressions contains the syntax that the Broker considers invalid. Broker saves
the expressions it considers valid with the subscription on the Broker. (Integration
Server saves all the expressions.)

When a filter is saved only on Integration Server and not on Broker, the performance
of Integration Server can be affected. When the Broker applies the filter to incoming
documents, it discards documents that do not meet filter criteria. Integration Server
only receives documents that meet the filter criteria. If the subscription filter resides
only on Integration Server, Broker automatically places the document in the subscriber’s
queue. Broker routes all the documents to the subscriber, creating greater network traffic
between the Broker and the Integration Server and requiring more processing by the
Integration Server.

Using Hints in Filters
Hints are used to further define a filter. You add hints to the end of a subscription in the
Filter field.

Hints use the following syntax:
{hint: HintName=Value}

The table below identifies the HintNames that you can use with a document
subscription.

Hint Description

IncludeDeliver When set to true, the filter applies to documents that are
delivered to the client and documents that are delivered to
the subscription queue. By default, filters are only applied to
documents that are delivered to the subscription queue.

LocalOnly When set to true, the filter is applied only to documents that
originate from the Broker to which the Integration Server is
connected. Documents originating from a different Broker are
discarded.

DeadLetterOnly When set to true, a deadleer subscription is created for the
document type specified in the webMethods messaging trigger.
The webMethods messaging trigger that subscribes to this hint
receives messages that do not have subscribers.

To learn more about detecting deadleers, see the webMethods
Broker Java Client API Reference.

Keep the following points in mind when you add hints to filters:

Hints must be added at the end of the filter string in the Filter field.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 695

Hints must be in the following format:
{hint: HintName=Value}

For example, the following filter will match only those documents that originate
from the Broker to which the Integration Server is connected and the value of city is
equal to Fairfax.
%city% L_EQUALS "Fairfax" {hint:LocalOnly=true}

A filter can also contain a combination of subscription hints. For example, the
following filter will match only those documents that do not have a subscriber and
that originate from the Broker to which the Integration Server is connected.
{hint:DeadLetterOnly=true} {hint:LocalOnly=true}

Detecting Deadletters with Hints
A deadleer is an unclaimed published document. If there are no subscribers for a
document that is published, the Broker returns an acknowledgement to the publisher
and then discards the document. If, however, a deadleer subscription exists for the
document, the Broker deposits the document in the queue containing the deadleer
subscription.

A deadleer subscription allows you to trap unclaimed documents. Detecting and
trapping deadleers is a valuable way to quickly identify and resolve discrepancies
between a published document and the filtering criteria specified by a subscriber.

You create a deadleer subscription by inserting the DeadLetterOnly hint to the
subscription filter. For more information about creating deadleer subscriptions using
the DeadLetterOnly hint, see "Using Hints in Filters" on page 694.

When using the DeadLetterOnly hint, keep the following points in mind:

If the DeadLetterOnly hint is used in a filter that contains other expressions, the
other expressions are ignored by the Broker. Consider the following example:
%city% L_EQUALS "Fairfax" {hint:DeadLetterOnly=true} {hint:LocalOnly=true}

Broker will ignore the expression %city% L_EQUALS "Fairfax" in the filter and will
trap only those documents that do not have a subscriber and that originate from the
Broker to which the Integration Server is connected.

If the filter is registered on Integration Server but not on the Broker, the
DeadLetterOnly subscription traps only the documents that are rejected by
Integration Server. The filter does not trap the documents rejected by the Broker
unless the filter is registered on the webMethods messaging trigger.

Both the LocalOnly and IncludeDeliver hints are implied.

Note: If you are using Universal Messaging you can configure a dead events store.
For more information, see the Universal Messaging documentation.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 696

Using Multiple Conditions in a webMethods Messaging Trigger
You can build webMethods messaging triggers that can contain more than one
condition. Each condition can associate one or more documents with a service. You can
use the same service or different services for each condition. You can create only one join
condition in a webMethods messaging trigger, but a webMethods messaging trigger can
contain any number of simple conditions.

When a webMethods messaging trigger receives a document, Integration Server
determines which service to invoke by evaluating the webMethods messaging trigger
conditions. Integration Server evaluates the webMethods messaging trigger conditions
in the same order in which the conditions appear in the editor. It is possible that a
document could satisfy more than one condition in a webMethods messaging trigger.
However, Integration Server executes only the service associated with the first satisfied
condition and ignores the remaining conditions. Therefore, the order in which you list
conditions is important.

When you build a webMethods messaging trigger with multiple conditions, each
condition can specify the same service. However, you should avoid creating conditions
that specify the same publishable document type. If the conditions in a webMethods
messaging trigger specify the same publishable document type, Integration Server
always executes the condition that appears first. For example, if a webMethods
messaging trigger contained the following conditions:

Condition Name Service Document Types

ConditionAB serviceAB documentA or
documentB

ConditionA serviceA documentA

Integration Server will never execute serviceA. Whenever Integration Server receives
documentA, the document satisfies ConditionAB, and Integration Server executes serviceAB.

Using Multiple Conditions for Ordered Service Execution
You might create a webMethods messaging trigger with multiple conditions to handle
a group of published documents that must be processed in a specific order. For each
condition, associate one publishable document type with a service. Place your conditions
in the order in which you want the services to execute. In the Processing mode property,
specify serial document processing so that the webMethods messaging trigger will
process the documents one at a time, in the order in which they are received. The serial
dispatching ensures that the services that process the documents do not execute at the
same time. (This assumes that the documents are published and therefore received in the
proper order.)

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 697

Note: Using multiple conditions to achieve ordered service execution is only
supported for webMethods messaging triggers that receive messages from the
Broker.

You might want to use multiple conditions to control the service execution when a
service that processes a document depends on another service successfully executing.
For example, to process a purchase order, you might create one service that adds a new
customer record to a database, another that adds a customer order, and a third that bills
the customer. The service that adds a customer order can only execute successfully if the
new customer record has been added to the database. Likewise, the service that bills the
customer can only execute successfully if the order has been added. You can ensure that
the services execute in the necessary order by creating a webMethods messaging trigger
that contains one condition for each expected publishable document type. You might
create a webMethods messaging trigger with the following conditions:

Condition Name Service Document Types

Condition1 addCustomer customerName

Condition2 addCustomerOrder customerOrder

Condition3 billCustomer customerBill

If you create one webMethods messaging trigger for each of these conditions, you
could not guarantee that the Integration Server would invoke services in the required
order even if publishing occurred in that order. Specifying serial dispatching for the
webMethods messaging trigger ensures that a service will finish executing before the
next document is processed. For example, Integration Server could still be executing
addCustomer, when it receives the documents customerOrder and customerBill. If you specified
concurrent dispatching instead of serial dispatching, the Integration Server might
execute the services addCustomerOrder and billCustomer before it finished executing
addCustomer. In that case, the addCustomerOrder and billCustomer services would fail.

Important: An ordered scenario assumes that documents are published in the correct
order and that you set up the webMethods messaging trigger to process
documents serially. For more information about specifying the document
processing for a webMethods messaging trigger, see "Selecting Message
Processing" on page 714.

Ordering Conditions in a webMethods Messaging Trigger
The order in which you list conditions in the editor is important because it indicates
the order in which the Integration Server evaluates the conditions at run time. When
the Integration Server receives a document, it invokes the service specified in the first
condition that is satisfied by the document. The remaining conditions are ignored.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 698

To change the order of conditions in a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging
trigger.

2. Under Conditions, select the condition to be moved.

3. Click or to move the condition up or down.

4. Click File > Save to save the webMethods messaging trigger.

Disabling and Enabling a webMethods Messaging Trigger
You can use the Enabled property to disable or enable a webMethods messaging trigger.
When you disable a webMethods messaging trigger, Integration Server disconnects the
trigger client on the Broker. The Broker removes the document subscriptions created by
the trigger client. The Broker does not place published documents in client queues for
disabled webMethods messaging triggers. When you enable a disabled webMethods
messaging trigger, Integration Server connects the trigger client to the Broker and re-
establishes the document subscriptions on the Broker.

Note: You can also suspend document retrieval and document processing for a
webMethods messaging trigger. Unlike disabling a webMethods messaging
trigger, suspending retrieval and processing does not destroy the client queue.
The Broker continues to enqueue documents for suspended webMethods
messaging triggers. However, Integration Server does not retrieve or
process documents for suspended webMethods messaging triggers. For
more information about suspending webMethods messaging triggers, see
webMethods Integration Server Administrator’s Guide.

You cannot disable a webMethods messaging trigger during trigger service execution.

To disable or enable a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
that you want to disable or enable.

2. In the Properties view, under General, set Enabled to one of the following:

Select... To...

False Disable the webMethods messaging trigger.

True Enable the webMethods messaging trigger.

3. Click File > Save.

You can enable only valid webMethods messaging triggers. If the webMethods
messaging trigger is not valid, Designer displays an error message when you save

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 699

the webMethods messaging trigger prompting you to cancel the save or continue
the save with a disabled webMethods messaging trigger. For more information
about requirements for a valid webMethods messaging trigger, see " webMethods
Messaging Trigger Requirements" on page 683.

Disabling and Enabling a webMethods Messaging Trigger in a
Cluster or Non-Clustered Group
When a webMethods messaging trigger exists on multiple Integration Servers in a
cluster or in a non-clustered group, the subscriptions created by the webMethods
messaging trigger remain active even if you disable the webMethods messaging
trigger from one of the Integration Servers. This is because the client created for the
webMethods messaging trigger on the Broker is shared. The client on the Broker
becomes disconnected when you disable the webMethods messaging trigger on all
the servers in the cluster or non-clustered group of servers. Even when the shared
webMethods messaging trigger client becomes disconnected, the subscriptions
established by the webMethods messaging trigger remain active. The Broker continues
to enqueue documents for the webMethods messaging trigger. When you re-enable the
webMethods messaging trigger on any server in the cluster or non-clustered group, all
the queued documents that did not expire will be processed.

To disable a webMethods messaging trigger in a cluster or non-clustered group of
Integration Servers, disable the webMethods messaging trigger on each Integration
Server, and then manually remove the document subscriptions created by the
webMethods messaging trigger from the Broker.

About Join Time-Outs
When you create a join condition using an All (AND) join or an Only one (XOR), you
need to specify a join time-out. A join time-out specifies how long Integration Server
waits for the other documents in the join condition. Integration Server uses the join
time-out period to avoid deadlock situations (such as waiting for a document that never
arrives) and to avoid duplicate service invocation.

How the join time-out affects document processing by the webMethods messaging
trigger is different for each join type.

For an All (AND) join, the join time-out determines how long Integration Server
waits to receive an instance of each publishable document type in the condition.

For an Only one (XOR) join, the join time-out determines how long Integration
Server discards instances of publishable document types in the condition after it
receives an instance document of one of the publishable document types.

An Any (OR) join condition does not need a join time-out. Integration Server treats
an Any (OR) join condition like a webMethods messaging trigger with multiple
simple conditions that all use the same trigger service.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 700

Join Time-Outs for All (AND) Join Conditions
A join time-out for an All (AND) join condition specifies how long the Integration
Server waits for all of the documents specified in the join condition. When Integration
Server pulls a document from the webMethods messaging trigger queue, it determines
which condition the document satisfies. If the document satisfies an All (AND) join
condition, the Integration Server starts the join time-out period and moves the document
from the webMethods messaging trigger queue to the ISInternal database. Integration
Server assigns the document a status of “pending.” Integration Server then waits for the
remaining documents in the join condition. Only documents with the same activation ID
as the first received document will satisfy the join condition.

If Integration Server receives all of the documents specified in the join condition (and
processes the documents from the trigger queue) before the time-out period elapses,
it executes the service specified in the condition. If Integration Server does not receive
all of the documents before the time-out period elapses, Integration Server removes the
pending documents from the database and generates a journal log message.

When the time-out period elapses, the next document in the webMethods messaging
trigger queue that satisfies the All (AND) condition causes the time-out period to start
again. Integration Server places the document in the database and assigns a status of
“pending” even if the document has the same activation ID as an earlier document that
satisfied the join condition. Integration Server then waits for the remaining documents in
the join condition.

Join Time-Outs for Only One (XOR) Join Conditions
A join time-out for an Only one (XOR) join condition specifies how long Integration
Server discards instances of the other documents in the condition. When Integration
Server pulls the document from the webMethods messaging trigger queue, it determines
which condition the document satisfies. If that condition is an Only one (XOR) condition,
the Integration Server executes the service specified in the condition. When it pulls the
document from the webMethods messaging trigger queue, Integration Server starts the
time-out period. For the duration of the time-out period, Integration Server discards any
documents of the type specified in the join condition. Integration Server discards only
those documents with same activation ID as the first document.

When the time-out period elapses, the next document in the webMethods messaging
trigger queue that satisfies the Only one (XOR) condition causes the trigger service to
execute and the time-out period to start again. Integration Server executes the service
even if the document has the same activation ID as an earlier document that satisfied
the join condition. Integration Server generates a journal log message when the time-out
period elapses for an Only one (XOR) condition.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 701

Setting a Join Time-Out
When configuring webMethods messaging trigger properties, you can specify whether
a join condition times out and if it does, what the time-out period should be. The time-
out period indicates how long Integration Server waits for additional documents after
receiving the first document specified in the join condition.

To set a join time-out

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
that you want to set the join time-out.

2. In the Properties view, under General, set Join expires to one of the following:

Select... To...

True Indicate that Integration Server stops waiting for the other
documents in the join condition once the time-out period
elapses.

In the Expire after property, specify the length of the join time-
out period. The default time period is 1 day.

False Indicate that the join condition does not expire. Integration
Server waits indefinitely for the additional documents
specified in the join condition. Set the Join expires property to
False only if you are confident that all of the documents will be
received.

Important: A join condition is persisted across server restarts. To
remove a waiting join condition that does not expire,
disable, then re-enable and save the webMethods
messaging trigger. Re-enabling the webMethods
messaging trigger effectively recreates the webMethods
messaging trigger.

3. Click File > Save to save the webMethods messaging trigger.

About Priority Message Processing
Priority messaging determines the order in which a webMethods messaging trigger
receives and subsequently processes the documents from the messaging provider. How
priority messaging works depends on the messaging provider from which the trigger
receives documents.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 702

When priority messaging is enabled for a webMethods messaging trigger that receives
documents from Broker, Broker places documents in the trigger client queue using the
following criteria:

Message priority.Broker inserts documents with the highest priority at the top of the
client queue. A value of 0 is the lowest processing priority; a value of 9 indicates
expedited processing.

Message publication time.Broker orders documents with the same priority in the
client queue according to the time at which the document was published. Within
documents of the same priority, Broker inserts the most recently published
document after the earlier documents. This ensures that the webMethods messaging
trigger receives and processes the documents with the same priority in publication
order.

Integration Server receives and processes the documents following the order in which
the documents appear in the client queue on the Broker.

When priority messaging is enabled for a webMethods messaging trigger that receives
documents from a Universal Messaging server, Universal Messaging and Integration
Server adapt to expedite processing of higher priority documents over lower priority
documents.

Note: Priority messaging applies only to documents that are routed through the
Broker and Universal Messaging. Priority messaging does not apply to locally
published documents.

To use priority messaging, you configure both the publishing side and the subscribing
side.

On the publishing side, set a message priority level in the document envelope.
The priority level indicates how quickly the document should be processed once
it is published. A value of 0 is the lowest processing priority; a value of 9 indicates
expedited processing. The default priority is 4.

On the subscribing side, enable priority messaging for the webMethods messaging
trigger. This is necessary only for triggers that receive documents from Broker.

Note: All webMethods messaging triggers that receive documents from
Universal Messaging receive and process documents in priority fashion.
Priority messaging cannot be disabled for webMethods messaging triggers
that receive documents from Universal Messaging.

Enabling and Disabling Priority Message Processing for a
webMethods Messaging Trigger
When enabling or disabling priority message processing for a webMethods messaging
trigger, keep the following points in mind:

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 703

Priority messaging only applies to documents that are published to the Broker and
Universal Messaging. It does not apply to locally published documents.

All webMethods messaging triggers that receive documents from Universal
Messaging receive and process documents in priority fashion. Priority messaging
cannot be disabled for webMethods messaging triggers that receive documents from
Universal Messaging. That is, Integration Server ignores the value of the Priority
property if the webMethods messaging trigger subscribes to one or more publishable
document types associated with a Universal Messaging connection alias.

When you enable or disable priority messaging for a webMethods messaging trigger
that receives documents from Broker, Integration Server disconnects the trigger
client on the Broker and recreates the associated webMethods messaging trigger
client queue. Any documents that existed in the webMethods messaging trigger
client queue before you enabled or disabled priority messaging will be lost. For
this reason, you may want to ensure the webMethods messaging trigger queue on
Integration Server is empty before enabling or disabling priority messaging.

Priority messaging may consume Broker resources and can introduce latency into
document processing by webMethods messaging triggers. For more information
about how priority messaging may impact performance, refer to the webMethods
Broker Java Client API Reference.

To enable or disable priority message processing for a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to enable priority processing of documents.

2. In the Properties view, under General, set Priority enabled to one of the following:

Select... To...

True Enable priority processing.

False Disable priority processing.

3. Click File > Save to save the webMethods messaging trigger.

About Execution Users for webMethods Messaging Triggers
For a webMethods messaging trigger that receives documents from Universal
Messaging, the Execution user property indicates which credentials Integration Server
should use when invoking services associated with the trigger. When a client invokes a
service via an HTTP request, Integration Server checks the credentials and user group
membership of the client against the Execute ACL assigned to the service. Integration
Server performs this check to make sure that the client is allowed to invoke that
service. When a webMethods messaging trigger executes, however, Integration Server
invokes the service when it receives a message rather than as a result of a client request.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 704

Integration Server does not associate user credentials with a message. You can specify
which credentials Integration Server should supply when invoking a webMethods
messaging trigger service after receiving a document from Universal Messaging by
seing the Execution user property for the trigger.

You can instruct Integration Server to invoke a service using the credentials of one
of the predefined user accounts (Administrator, Default, Developer, Replicator). You
can also specify a user account that you or another server administrator defined.
When webMethods messaging trigger receives a message from Universal Messaging,
Integration Server uses the credentials for the specified user account to invoke the
service specified in the trigger condition.

Note: For a webMethods messaging trigger that receives locally published
messages or messages from the Broker, Integration Server, uses the user
account specified in the Run Trigger Service As User property on the Settings >
Resources > Store Settings page in Integration Server Administrator. For more
information about the Run Trigger Service As User property, see webMethods
Integration Server Administrator’s Guide.

Assigning an Execution User to a webMethods Messaging Trigger
Make sure that the user account you select includes the credentials required by the
execute ACL assigned to the services associated with the webMethods messaging
trigger.

Note: The Execution user property only applies to webMethods messaging triggers
that receive documents from Universal Messaging. The publishable document
type to which a trigger subscribes determine the messaging provider from
which the trigger receives documents. The Execution user property is display
only if a webMethods messaging trigger receives locally published documents
or documents published to Broker.

To assign an execution user for a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to set the execution user.

2. In the Properties view, under General, in the Execution user property, type the name
of the user account whose credentials Integration Server uses to execute a service
associated with the webMethods messaging trigger. You can specify a locally defined
user account or a user account defined in a central or external directory.

3. Click File > Save.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 705

About Capacity and Refill Level for the webMethods
Messaging Trigger Queue
On Integration Server, the webMethods messaging trigger queue contains documents
waiting for processing. Integration Server assigns each webMethods messaging trigger
a queue. A document remains in the webMethods messaging trigger queue until it is
processed by the webMethods messaging trigger.

You can determine the capacity of each webMethods messaging trigger queue. The
capacity indicates the maximum number of documents that Integration Server can store
for that webMethods messaging trigger.

For a webMethods messaging trigger that receives documents from the Broker, you
can also specify a refill level to indicate when Integration Server should retrieve more
documents for the webMethods messaging trigger. The difference between the capacity
and the refill level determines up to how many documents the Integration Server
retrieves for the webMethods messaging trigger from the Broker. For example, if you
assign the webMethods messaging trigger queue a capacity of 10 and a refill level of 4,
the Integration Server initially retrieves 10 documents for the webMethods messaging
trigger. When only 4 documents remain to be processed in the webMethods messaging
trigger queue, Integration Server retrieves up to 6 more documents. If 6 documents are
not available, Integration Server retrieves as many as possible.

For a webMethods messaging trigger that receives documents from the Broker, the
capacity and refill level also determine how frequently Integration Server retrieves
documents for the webMethods messaging trigger and the combined size of the
retrieved documents, specifically:

The greater the difference between capacity and refill level, the less frequently
Integration Server retrieves documents from the Broker. However, the combined size
of the retrieved documents will be larger.

The smaller the difference between capacity and refill level, the more frequently
Integration Server retrieves documents. However, the combined size of the retrieved
documents will be smaller.

Note: A refill level can be set for webMethods messaging triggers that receive
documents from the Broker only. Refill level does not apply to webMethods
messaging triggers that receive documents from Universal Messaging.

For a webMethods messaging trigger that receives messages from Universal Messaging,
Integration Server receives documents for the trigger one at a time until the trigger
queue is at capacity. After the number of documents in the trigger queue equals the
configured capacity, Integration Server stops receiving documents. When the number of
documents awaiting processing in the trigger queue is less than the configured capacity,
the trigger resumes receiving messages from Universal Messaging.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 706

Guidelines for Setting Capacity and Refill Levels for webMethods
Messaging Triggers
When you set values for capacity and refill level, you need to balance the frequency
of document retrieval with the combined size of the retrieved documents. Use the
following guidelines to set values for capacity and refill level for a webMethods
messaging trigger that retrieves messages from Broker.

If the webMethods messaging trigger subscribes to small documents, set a high
capacity. Then, set refill level to be 30% to 40% of the capacity. Integration Server
retrieves documents for this webMethods messaging trigger less frequently,
however, the small size of the documents indicates that the combined size of the
retrieved documents will be manageable. Additionally, seing the refill level to 30%
to 40% ensures that the webMethods messaging trigger queue does not empty before
the Integration Server retrieves more documents. This can improve performance for
high-volume and high-speed processing.

If the webMethods messaging trigger subscribes to large documents, set a low
capacity. Then, set the refill level to just below slightly less than the capacity.
Integration Server retrieves documents more frequently, however, the combined size
of the retrieved documents will be manageable and will not overwhelm Integration
Server.

Setting Capacity and Refill Level for a webMethods Messaging
Trigger
To set trigger queue capacity and refill level

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to specify the webMethods messaging trigger queue capacity.

2. In the Properties view, under Trigger queue, in the Capacity property, specify the
maximum number of documents that the trigger queue can contain. The default is
10.

3. In the Refill level property, specify the number of unprocessed documents that must
remain in this webMethods messaging trigger queue before Integration Server
retrieves more documents for the queue from the Broker. The default is 4.

The Refill level value must be less than or equal to the Capacity value.

Note: The Refill level property applies to webMethods messaging triggers that
receive documents from the Broker only. The Refill level property does not
apply to webMethods messaging triggers that receive documents from
Universal Messaging.

4. Click File > Save to save the webMethods messaging trigger.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 707

Notes:

The server administrator can use the Integration Server Administrator to gradually
decrease the capacity and refill levels of all webMethods messaging trigger queues.
The server administrator can also use the Integration Server Administrator to change
the Capacity or Refill level values for a webMethods messaging trigger. For more
information, see webMethods Integration Server Administrator’s Guide.

You can specify whether Integration Server should reject locally published
documents when the queue for the subscribing webMethods messaging trigger is at
maximum capacity. For more information about this feature, see the description for
the wa.server.publish.local.rejectOOS parameter in webMethods Integration Server
Administrator’s Guide.

About Document Acknowledgements for a webMethods
Messaging Trigger
When a trigger service finishes processing a guaranteed document, Integration
Server returns an acknowledgement to the messaging provider. Upon receipt of the
acknowledgement, the messaging provider removes its copy of the document from
storage. By default, Integration Server returns an acknowledgement for a guaranteed
document as soon as it finishes processing the document.

Note: Integration Server returns acknowledgements for guaranteed documents
only. Integration Server does not return acknowledgements for volatile
documents.

You can increase the number of document acknowledgements returned at one time by
changing the value of the Acknowledgement queue size property. The acknowledgement
queue is a queue that contains pending acknowledgements for guaranteed documents
processed by the webMethods messaging trigger. When the acknowledgement
queue size is greater than one, a server thread places a document acknowledgement
into the acknowledgement queue after it finishes executing the trigger service.
Acknowledgements collect in the queue until a background thread returns them as a
group to the sending resource.

If the Acknowledgement queue size is set to one, acknowledgements will not collect in the
acknowledgement queue. Instead, Integration Server returns an acknowledgement to the
sending resource immediately after the trigger service finishes executing.

If a resource or connection failure occurs before acknowledgements are sent or
processed, the transport redelivers the previously processed, but unacknowledged
documents. The number of documents redelivered to a webMethods messaging trigger
depends on the size on the number of guaranteed documents that were processed but
not acknowledged before failure occurred. If exactly-once processing is configured
for the webMethods messaging trigger, Integration Server detects the redelivered,
guaranteed documents as duplicates and discards them without re-processing them.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 708

For more information about exactly-once processing, see "Exactly-Once Processing for
webMethods Messaging Triggers" on page 727.

Increasing the size of a webMethods messaging trigger’s acknowledgement queue can
provide the following benefits:

Reduces network traffic. Returning acknowledgements one at a time for each
guaranteed document that is processed can result in a high volume of network
traffic. Configuring the webMethods messaging trigger so that Integration Server
returns several document acknowledgements at once can reduce the amount of
network traffic.

Increases server thread availability. If the size of the acknowledgement queue is set
to 1 (the default), Integration Server releases the server thread used to process
the document only after returning the acknowledgement. If the size of the
acknowledgement queue is greater than 1, Integration Server releases the server
thread used to process the document immediately after the thread places the
acknowledgement into the acknowledgement queue. When acknowledgements
collect in the queue, server threads can be returned to the thread pool more quickly.

Setting the Size of the Acknowledgement Queue
To set the size of the acknowledgement queue for a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to specify the size of the acknowledgement queue.

2. In the Properties view, under Trigger queue, in the Acknowledgement queue size
property, specify the maximum number of pending document acknowledgements
for the webMethods messaging trigger.

The value must be greater than zero. The default is 1.

3. Click File > Save to save the webMethods messaging trigger.

About Message Processing
Message processing determines the order in which Integration Server processes the
documents received by a webMethods messaging trigger.

In serial processing, Integration Server processes the documents received by a
webMethods messaging trigger one after the other, in the order in which the
documents were received.

In concurrent processing, Integration Server processes the documents by a
webMethods messaging trigger in parallel.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 709

Serial Processing
In serial processing, Integration Server processes the documents received by a
webMethods messaging trigger one after the other. Integration Server retrieves the first
document received by the webMethods messaging trigger, determines which condition
the document satisfies, and executes the service specified in the webMethods messaging
trigger condition. Integration Server waits for the service to finish executing before
retrieving the next document received by the webMethods messaging trigger.

In serial processing, Integration Server processes documents for the webMethods
messaging trigger in the same order in which it retrieves the documents from the
messaging provider. However, Integration Server processes documents for a serial
trigger more slowly than it processes documents for a concurrent trigger.

If your webMethods messaging trigger contains multiple conditions to handle a group
of published documents that must be processed in a specific order, use serial processing.
This is sometimes called ordered service execution. Only triggers that receive messages
from Broker can perform ordered service execution.

When a webMethods messaging trigger receives documents from Broker, the queue for
the serial trigger on the Broker has a Shared Document Order mode of “Publisher”.

When a webMethods messaging trigger receives documents from Universal Messaging,
the named object for a trigger with serial processing is a priority named object. That is,
in Universal Messaging Enterprise Manager, the named object for the trigger has the
Subscription Priority check box selected.

Serial Processing in a Cluster or Non-Clustered Group of Integration Servers
Serial document processing determines how the messaging provider distributes
guaranteed documents to the individual servers within a cluster or non-clustered group.
In a cluster or non-clustered group, the individual Integration Servers share the same
client. For example, if the messaging provider is the Broker, the servers act as a single
Broker client and share the same trigger client queues and document subscriptions. With
serial processing, servers in a cluster or non-clustered group can process documents
from a publisher in the same order in which the documents were published.

Note: In addition to the term “non-clustered group,” the terms “stateless cluster”
and “external cluster” are sometimes used to describe the situation in which a
group of Integration Servers function in a manner similar to a cluster but are
not part of a configured cluster.

For each webMethods messaging trigger, each server in the cluster or non-clustered
group maintains a trigger queue in memory. This allows multiple servers to process
documents for a single webMethods messaging trigger. The messaging provider
manages the distribution of documents to the individual webMethods messaging
triggers in the cluster or non-clustered group.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 710

How the messaging provider distributes documents for a serial trigger on the
Integration Servers in the cluster or group to ensure that documents from a single
publisher are processed in publication order varies:

Broker distributes documents so that the Integration Servers in the cluster or non-
clustered group process guaranteed documents from a single publisher in the same
order in which the documents were published. Multiple Integration Servers can
process documents for a single trigger, but only one Integration Server in the cluster
or non-clustered group processes documents for a particular publisher. For more
information, see "Serial Processing with the Broker in a Clustered or a Non-Clustered
Group of Integration Servers" on page 710

Universal Messaging distributes all the documents to which a particular serial
trigger subscribes to the same Integration Server in a cluster or non-clustered
group. Regardless of the document publisher, all of the published documents to
which a specific serial trigger subscribes are received and processed by the same
Integration Server. Because a serial trigger processes only one document at a time,
this distribution approach ensures that documents are processed in the same order
in which they were published. For more information, see "Serial Processing with
Universal Messaging in a Clustered or a Non-Clustered Group of Integration
Servers" on page 712.

Serial Processing with the Broker in a Clustered or a Non-Clustered Group of Integration Servers

To ensure that a serial webMethods messaging trigger processes guaranteed documents
from individual publishers in publication order, the Broker distributes documents
from one publisher to a single server in a cluster or non-clustered group. The Broker
continues distributing documents from the publisher to the same server as long as the
server contains unacknowledged documents from that publisher in the trigger queue.
Once the server acknowledges all of the documents from the publisher to the Broker,
other servers in the cluster or non-clustered group can process future documents from
the publisher.

For example, suppose that a cluster contains two servers: ServerX and ServerZ. Each
of these servers contains the webMethods messaging triggerprocessCustomerInfo. The
processCustomerInfowebMethods messaging trigger specifies serial document processing
with a capacity of 2 and a refill level of 1. For each publisher, the cluster must process
documents for this webMethods messaging trigger in the publication order. In this
example, the processCustomerInfo trigger client queue on the Broker contains documents
from PublisherA, PublisherB, and PublisherC. PublisherA published documents A1
and A2, PublisherB published documents B1, B2, and B3, and PublisherC published
documents C1and C2.

The following illustration and explanation describe how serial document processing
works in a clustered environment that uses Broker as the messaging provider.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 711

Serial processing in a cluster of Integration Servers

Step Description

1 ServerX retrieves the first two documents in the queue (documents A1 and
B1) to fill its processCustomerInfo trigger queue to capacity. ServerX begins
processing document A1.

2 ServerZ retrieves the documents C1 and C2 to fill its processCustomerInfo
trigger queue to capacity. ServerZ begins processing the document C1.

Even though document B2 is the next document in the queue, the Broker
does not distribute document B2 from PublisherB to ServerZ because
ServerX contains unacknowledged documents from PublisherB.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 712

Step Description

3 ServerX finishes processing document A1 and acknowledges document A1
to the Broker.

4 ServerX requests 1 more document from the Broker. (The
processCustomerInfowebMethods messaging trigger has refill level of 1.) The
Broker distributes document B2 from PublisherB to ServerX.

5 ServerZ finishes processing document C1 and acknowledges document C1to
the Broker

6 ServerZ requests 1 more document from the Broker. The Broker distributes
document A2to ServerZ.

ServerZ can process a document from PublisherA because the other server
in the cluster (ServerX) does not have any unacknowledged documents
from PublisherA. Even though document B3 is the next document in the
queue, the Broker does not distribute document B3to ServerZ because
ServerX contains unacknowledged documents from PublisherB.

Notes:

The Broker and Integration Servers in a cluster cannot ensure that serial
webMethods messaging triggers process volatile documents from the same
publisher in the order in which the documents were published.

When documents are delivered to the default client in a cluster, the Broker and
Integration Servers cannot ensure that documents from the same publisher are
processed in publication order. This is because the Integration Server acknowledges
documents delivered to the default client as soon as they are retrieved from the
Broker.

Serial Processing with Universal Messaging in a Clustered or a Non-Clustered Group of Integration
Servers

To provide processing in publishing order for a serial trigger in a cluster or a non-
clustered group of Integration Server, Universal Messaging routes all of the documents
to which a serial webMethods messaging trigger subscribes to the same Integration
Server. Because a serial trigger processes only one document at a time, this routing
approach ensures that documents from the same publisher are processed in the order in
which the documents were published.

To indicate that all of the documents for a serial trigger be sent to the same Integration
Server, Integration Server creates a priority named object on Universal Messaging
that corresponds to the serial trigger,. In Universal Messaging Enterprise Manager,
the named object for the trigger has the Subscription Priority check box selected. With a
priority named object, multiple consumers can connect to the named object but only
one consumer is active. The active consumer has priority over the other consumers,

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 713

which remain in fail-over mode. If the active consumer disconnects, one of the fail-
over consumers becomes the active consumer and begins receiving documents. When
a particular webMethods messaging trigger runs on multiple Integration Servers, each
instance of the trigger is a consumer. Each trigger instance can connect to the priority
named object but only one trigger at a time processes messages.

Note: If you do not need serial processing of documents by publisher, but you want
a trigger to process documents one at a time, select concurrent processing and
set Max execution threads to 1. This configuration allows the trigger on each
Integration Server in the cluster or group to process one document at a time.

Serial Triggers Migrated to Integration Server 9.9 or Later from 9.8 or Earlier
Prior toIntegration Server 9.9, when using Universal Messaging as the messaging
provider, a webMethods messaging trigger with serial processing corresponded
to a shared named object on Universal Messaging. As of Integration Server 9.9, a
webMethods messaging trigger with serial processing corresponds to a priority
named object on Universal Messaging. All webMethods messaging triggers created
on Integration Server 9.9 or later will correspond to a priority named object. However,
migrated serial triggers will still correspond to a shared named object. The trigger and
named object will be out of sync. To synchronize the migrated serial trigger and the
named object, you must do one of the following:

If you are using a fresh install of Universal Messaging 9.9 or later (that is, the
Universal Messaging server was not migrated), when you start Integration Server,
synchronize the publishable document types with the provider using Designer or
the built-in service pub.publish:syncToProvider. Synchronizing the publishable document
types causes Integration Server to reload the webMethods messaging triggers.
Integration Servercreates a priority named object for each serial trigger.

If you are using an installation of Universal Messaging 9.9 or later that was migrated
from an earlier version, you must delete and recreate the named object. For more
information about deleting and recreating a named object associated with a trigger,
see "Synchronizing the webMethods Messaging Trigger and Named Object on
Universal Messaging " on page 717.

Concurrent Processing
In concurrent processing, Integration Server processes the documents received by
a webMethods messaging trigger in parallel. Integration Server processes as many
documents in the webMethods messaging trigger queue as it can at the same time.
Integration Server does not wait for the service specified in the webMethods messaging
trigger condition to finish executing before it begins processing the next document in the
trigger queue. You can specify the maximum number of documents Integration Server
can process concurrently.

Concurrent processing provides faster performance than serial processing. The
Integration Server process the documents in the trigger queue more quickly because
the Integration Server can process more than one document at a time. However,

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 714

the more documents Integration Server processes concurrently, the more server
threads Integration Server dispatches, and the more memory the document processing
consumes.

Additionally, for concurrent webMethods messaging triggers, Integration Server does
not guarantee that documents are processed in the order in which they are received.

Concurrent document processing is equivalent to the Shared Document Order mode of
“None” on the Broker.

When receiving messages from Universal Messaging, the Universal Messaging window
size limits the number of documents that can be processed at one time by an individual
trigger. By default, the window size of a client queue for the trigger is set to the sum of
the Capacity and Max execution threads properties. For example, if the Capacity property
is set to 10 and Max execution threads is set to 5, the client queue window size is 15.
The window size set for a trigger overrides the default value specified in Universal
Messaging/

Selecting Message Processing
To select message processing

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to specify the message processing mode.

2. In the Properties view, under Message processing, select one of the following for
Processing mode:

Select... To...

Serial Specify that Integration Server should process documents
received by the webMethods messaging trigger one after the
other.

Concurrent Specify that Integration Server should process as many
documents received by the webMethods messaging trigger as
it can at once.

3. If you selected concurrent processing, in the Max execution threads property,
specify the maximum number of documents that Integration Server can process
concurrently. Integration Server uses one server thread to process each document in
the trigger queue.

4. If you selected serial processing and you want Integration Server to suspend
document processing and document retrieval automatically when a trigger service
ends with an error, under Fatal error handling, select True for the Suspend on error
property.

For more information about fatal error handling, see "Fatal Error Handling for a
webMethods Messaging Trigger " on page 718.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 715

5. Click File > Save to save the webMethods messaging trigger.

Notes:

If you selected serial processing, Integration Server creates a priority named object
on the channels that correspond to the publishable document types to which the
trigger subscribes.

If you selected concurrent processing, Integration Server creates a shared named
object on the channels that correspond to the publishable document types to which
the trigger subscribes

Integration Server Administrator can be used to change the number of concurrent
execution threads for a webMethods messaging trigger temporarily or permanently.
For more information, see webMethods Integration Server Administrator’s Guide.

Changing Message Processing When Broker Is the Messaging
Provider
After you perform capacity planning and testing for your integration solution, you
might want to modify the processing mode for a webMethods messaging trigger. Keep
the following points in mind before you change the processing mode for a webMethods
messaging trigger that receives documents from Broker:

When you change the processing mode for a webMethods messaging trigger,
Integration Server recreates the associated trigger client queue on the Broker.

Important: Any documents that existed in the trigger client queue before you
changed the message process mode will be lost.

If you created the webMethods messaging trigger on an Integration Server connected
to a configured Broker, you can only change the processing mode if Integration
Server is currently connected to the Broker.

If you change the document processing mode when Integration Server is not
connected to the configured Broker, Designer displays a message stating that the
operation cannot be completed.

Integration Server does not change the processing mode if the Broker connection
alias shares a client prefix.

Note: A Broker connection alias shares a client prefix if the Shared Client Prefix
property for the connection alias is set to Yes.

Changing Message Processing When Universal Messaging Is the
Messaging Provider
You can change the message processing after you create a webMethods messaging
trigger. For example, capacity planning might indicate that a concurrent trigger should

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 716

be changed to serial. Keep the following points in mind when changing the processing
mode from serial to concurrent or vice versa for a webMethods messaging trigger that
receives documents from Universal Messaging:

When you change the processing mode for a webMethods messaging trigger that
uses a Universal Messaging connection alias that does not share a client prefix,
Integration Server deletes and recreates the named object that corresponds to the
trigger on Universal Messaging. The trigger and its associated named object on
Universal Messaging remain in sync.

Note: A Universal Messaging connection alias does not share a client prefix if the
Shared Client Prefix property for the connection alias is set to No.

When you change the processing mode for a webMethods messaging trigger that
uses a Universal Messaging connection alias that shares a client prefix, Integration
Serverdoes not delete and recreate the named object that corresponds to the trigger
on Universal Messaging. As a result, the trigger on Integration Server will be out of
sync with the associated named object on Universal Messaging. If the same trigger
exists on other Integration Server, such as in a cluster or a non-clustered group of
Integration Server, the changed trigger will also be out of sync with the trigger on
other Integration Server. This affects document processing. One of the following
situations occurs:

If you changed the processing mode from serial to concurrent, the corresponding
named object on Universal Messaging remains a priority named object. The
trigger continues to process documents concurrently, However, if the trigger
exists on more than one Integration Server, such as in a cluster or a non-clustered
group of Integration Servers, Universal Messaging distributes documents to the
trigger on the first Integration Server to connect to Universal Messaging only.
This trigger has priority and will receive and process all the documents to which
the trigger subscribes. The other Integration Servers are connected to Universal
Messaging but are in fail-over mode and will not receive or process documents
unless the first trigger disconnects.

If you changed the processing mode from concurrent to serial, the corresponding
named object on Universal Messaging remains a shared named object.
Integration Server does not change the named object to be a priority named
object. Consequently, if the trigger exists on more than one Integration Server,
such as in a cluster or a non-clustered group of Integration Servers, Universal
Messaging distributes documents to the trigger on each connected Integration
Server. Universal Messaging does not distribute documents in a way that ensures
that processing order matches publication order.

For information about how to synchronize the trigger and the named object when
the processing mode is out of sync, see "Synchronizing the webMethods Messaging
Trigger and Named Object on Universal Messaging " on page 717.

Note: A Universal Messaging connection alias shares a client prefix if the Shared
Client Prefix property for the connection alias is set to Yes.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 717

Software AG does not recommend changing the processing mode for a trigger
when more than one Integration Server connects to the same named object that
corresponds to the trigger. For example, if the trigger is on an Integration Server that
is part of a cluster or a non-clustered group, more than one Integration Server can
share the same named object.

Synchronizing the webMethods Messaging Trigger and Named Object on
Universal Messaging
A webMethods messaging trigger and the associated named object on Universal
Messaging can get out of sync. For example, when you change the processing mode
for a webMethods messaging trigger a webMethods messaging trigger that uses a
Universal Messaging connection alias that shares a client prefix, Integration Serverdoes
not delete and recreate the named object that corresponds to the trigger on Universal
Messaging. As a result, the trigger on Integration Server is out of sync with the named
object on Universal Messaging. To synchronize the webMethods messaging trigger and
the associated named object, you must delete and recreate the named object.

Note: A webMethods messaging trigger with a serial processing mode corresponds
to a priority named object on Universal Messaging. A webMethods messaging
trigger with a concurrent processing mode corresponds to a shared named
object on Universal Messaging.

To synchronize the webMethods messaging trigger and the named object on Universal Messaging

Do one of the following:

If the webMethods messaging trigger resides on the only Integration Server
connected to Universal Messaging and the Shared Client Prefix property for the
Universal Messagingconnection alias is set to No, start the trigger to delete and
recreate the corresponding named object. You can start a trigger by disabling and
then enabling the Universal Messagingconnection alias used by the trigger.

Note: Integration Server starts triggers upon server restart.

If more than one Integration Server connects to Universal Messaging or the
Shared Client Prefix property for the Universal Messaging connection alias is set
to Yes, you must use Universal Messaging Enterprise Manager to delete the
named object. Make sure to delete the named object when the named object is
fully drained and no new documents will be sent to it. You many need to quiesce
document publishers before deleting the named object. Then create the named
object for the trigger by disabling and then enabling the Universal Messaging
connection alias used by the trigger.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 718

Fatal Error Handling for a webMethods Messaging Trigger
If a webMethods messaging trigger processes documents serially, you can configure
fatal error handling for the webMethods messaging trigger. A fatal error occurs when
the trigger service ends because of an exception. You can specify that Integration Server
suspend the webMethods messaging trigger automatically if a fatal error occurs during
trigger service execution. Specifically, Integration Server suspends document retrieval
and document processing for the webMethods messaging trigger if the associated
trigger service ends because of an exception.

When Integration Server suspends document processing and document retrieval for a
webMethods messaging trigger, Integration Server writes the following message to the
journal log:
Serial trigger triggerName has been automatically suspended due
to an exception.

Document processing and document retrieval remain suspended until one of the
following occurs:

You specifically resume document retrieval or document processing
for the webMethods messaging trigger. You can resume document
retrieval and document processing using Integration Server
Administrator, built-in services (pub.trigger:resumeProcessing or
pub.trigger:resumeRetrieval), or by calling methods in the Java API
(com.wm.app.b2b.server.dispatcher.trigger.TriggerFacade.setProcessingSuspended()
and
com.wm.app.b2b.server.dispatcher.trigger.TriggerFacade.setRetrievalSuspended()).

Integration Server restarts, the webMethods messaging trigger is enabled or disabled
(and then re-enabled), the package containing the webMethods messaging trigger
reloads. (When Integration Server suspends document retrieval and document
processing for a webMethods messaging trigger because of an error, Integration
Server considers the change to be temporary. For more information about temporary
vs. permanent state changes for webMethods messaging triggers, see webMethods
Integration Server Administrator’s Guide.)

For more information about resuming document processing and document retrieval, see
webMethods Integration Server Administrator’s Guide and the webMethods Integration Server
Built-In Services Reference.

Automatic suspension of document retrieval and processing can be especially useful
for serial webMethods messaging triggers that are designed to process a group of
documents in a particular order. If the trigger service ends in error while processing
the first document, you might not want to the webMethods messaging trigger to
proceed with processing the subsequent documents in the group. If Integration Server
automatically suspends document processing, you have an opportunity to determine
why the trigger service did not execute successfully and then resubmit the document
using webMethods Monitor.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 719

By automatically suspending document retrieval as well, Integration Server prevents the
webMethods messaging trigger from retrieving more documents. Because Integration
Server already suspended document processing, new documents would just sit in
the trigger queue. If Integration Server does not retrieve more documents for the
webMethods messaging trigger and Integration Server is in a cluster, the documents
might be processed more quickly by another Integration Server in the cluster.

Configuring Fatal Error Handling for a webMethods Messaging
Trigger
Keep the following points in mind when configuring fatal error handling for a
webMethods messaging trigger.

You can configure fatal error handling for serial webMethods messaging triggers
only.

Integration Server does not automatically suspend webMethods messaging triggers
because of transient errors that occur during trigger service execution. For more
information about transient error handling, see "About Transient Error Handling for
a webMethods Messaging Trigger " on page 719.

To configure fatal error handling for a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to specify the fatal error handling seing.

2. In the Properties view, under Fatal error handling, set the Suspend on error property to
True if you want Integration Server to suspend document processing and document
retrieval automatically when a trigger service ends with an error. Otherwise, select
False. The default is False.

3. Click File > Save to save the webMethods messaging trigger.

About Transient Error Handling for a webMethods Messaging
Trigger
When building a webMethods messaging trigger, you can specify whether or not
Integration Server retries a trigger service when the trigger service fails because of a
transient error caused by a run-time exception.

A run-time exception (specifically, an ISRuntimeException) occurs when the
trigger service catches and wraps a transient error and then reissues it as an
ISRuntimeException. A transient error is an error that arises from a temporary condition
that might be resolved or corrected quickly, such as the unavailability of a resource due
to network issues or failure to connect to a database. Because the condition that caused
the trigger service to fail is temporary, the trigger service might execute successfully if
the Integration Server waits and then re-executes the service.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 720

You can configure transient error handling for a webMethods messaging trigger to
instruct Integration Server to wait an specified time interval and then re-execute a
trigger service automatically when an ISRuntimeException occurs. Integration Server re-
executes the trigger service using the original input document.

When you configure transient error handling for a webMethods messaging trigger, you
specify the following retry behavior:

Whether Integration Server should retry trigger services for the webMethods
messaging trigger. Keep in mind that a trigger service can retry only if it is coded to
throw ISRuntimeExceptions.

The maximum number of retry aempts Integration Server should make for each
trigger service.

The time interval between retry aempts.

How to handle a retry failure. That is, you can specify what action Integration Server
takes if all the retry aempts are made and the trigger service still fails because of an
ISRuntimeException.

You can also configure Integration Server and/or a webMethods messaging trigger
to handle transient errors that occur during trigger preprocessing. The trigger
preprocessing phase encompasses the time from when a trigger first receives a message
from it’s local queue on webMethods messaging trigger to the time the trigger service
executes.

For more information about transient error handling for trigger preprocessing, see
"Transient Error Handling During Trigger Preprocessing" on page 739.

Service Requirements for Retrying a Trigger Service for a
webMethods Messaging Trigger
To be eligible for retry, the trigger service must do one of the following to catch a
transient error and reissue it as an ISRuntimeException:

If the trigger service is a flow service, the trigger service must
invoke pub.flow:throwExceptionForRetry. For more information about the
pub.flow:throwExceptionForRetry, see the webMethods Integration Server Built-In Services
Reference.

If the trigger service is wrien in Java, the service can use
com.wm.app.b2b.server.ISRuntimeException(). For more information about
constructing ISRuntimeExceptions in Java services, see the webMethods Integration
Server Java API Reference for the com.wm.app.b2b.server.ISRuntimeException class.

If a transient error occurs and the trigger service does not use
pub.flow:throwExceptionForRetry or ISRuntimeException() to catch the error and throw an
ISRuntimeException, the trigger service ends in error. Integration Server will not retry
the trigger service.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 721

Adapter services built on Integration Server 6.0 or later, and based on the ART
framework, detect and propagate exceptions that signal a retry if a transient error is
detected on their back-end resource. This behavior allows for the automatic retry when
the service functions as a trigger service.

Note: Integration Server does not retry a trigger service that fails because a
ServiceException occurred. A ServiceException indicates that there is
something functionally wrong with the service. A service can throw a
ServiceException using the EXIT step.

Handling Retry Failure
Retry failure occurs when Integration Server makes the maximum number of retry
aempts and the trigger service still fails because of an ISRuntimeException. When you
configure retry properties, you can specify one of the following actions to determine
how Integration Server handles retry failure for a webMethods messaging trigger.

Throw exception. When Integration Server exhausts the maximum number of retry
aempts, Integration Server treats the last trigger service failure as a service error.
This is the default behavior.

Suspend and retry later. When Integration Server reaches the maximum number of
retry aempts, Integration Server suspends the webMethods messaging trigger and
then retries the trigger service at a later time.

Overview of Throw Exception for Retry Failure
Throwing an exception when retry failure occurs allows the webMethods messaging
trigger to continue with document processing when retry failure occurs for a trigger
service. You can configure audit logging in such a way that you can use webMethods
Monitor to submit the document at a later time (ideally, after the condition that caused
the transient error has been remedied).

The following table provides an overview of how Integration Server handles retry
failure when the Throw exception option is selected.

Step Description

1 Integration Server makes the final retry aempt and the trigger service fails
because of an ISRuntimeException.

2 Integration Server treats the last trigger service failure as a service
exception.

3 Integration Server rejects the document.

If the document is guaranteed, Integration Server returns an
acknowledgement to the Broker.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 722

Step Description

If a trigger service generates audit data on error and includes a copy of the
input pipeline in the service log, you can use webMethods Monitor to re-
invoke the trigger service manually at a later time. Note that when you use
webMethods Monitor to process the document, it is processed out of order.
That is, the document is not processed in the same order in which it was
received (or published) because the document was acknowledged to its
transport when the retry failure occurred.

4 Integration Server processes the next document in the webMethods
messaging trigger queue.

Overview of Suspend and Retry Later for Retry Failure
Suspending a webMethods messaging trigger and retrying the trigger service later
when retry failure occurs provides a way to resubmit the document programmatically.
It also prevents the webMethods messaging trigger from retrieving and processing
other documents until the cause of the transient error condition has been remedied.
This preserves the publishing order, which can be especially important for serial
webMethods messaging triggers.

The following table provides more information about how the Suspend and retry later
option works.

Step Description

1 Integration Server makes the final retry aempt and the trigger service fails
because of an ISRuntimeException.

2 Integration Server suspends document processing and document retrieval
for the webMethods messaging trigger temporarily.

The webMethods messaging trigger is suspended on this Integration Server
only. If the Integration Server is part of a cluster, other servers in the cluster
can retrieve and process documents for the webMethods messaging trigger.

Note: The change to the webMethods messaging trigger state is temporary.
Document retrieval and document processing will resume for
the webMethods messaging trigger if Integration Server restarts,
the webMethods messaging trigger is enabled or disabled, or the
package containing the webMethods messaging trigger reloads.
You can also resume document retrieval and document processing
manually using Integration Server Administrator or by invoking the
pub.trigger:resumeRetrieval and pub.trigger:resumeProcessing public services.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 723

Step Description

3 Integration Server rolls back the document to the webMethods messaging
trigger document store. This indicates that the required resources are not
ready to process the document and makes the document available for
processing at a later time. For serial webMethods messaging triggers, it also
ensures that the document maintains its position at the top of webMethods
messaging trigger queue.

Note: When the
wa.server.dispatcher.messageStore.redeliverOriginalMessage
parameter is set to true,Integration Server stores and resubmits
the original message after retry failure. If the parameter is set to
false, Integration Server stores the message as it is at that point in
trigger service execution. If the trigger service modified the message,
Integration Server stores the modified message and uses that as
input for subsequent trigger service execution. The default value of
the wa.server.dispatcher.messageStore.redeliverOriginalMessage
parameter is false.

4 Optionally, Integration Server schedules and executes a resource
monitoring service. A resource monitoring service is a service that you create
to determine whether the resources associated with a trigger service are
available. A resource monitoring service returns a single output parameter
named isAvailable .

5 If the resource monitoring service indicates that the resources are available
(that is, the value of isAvailable is true), Integration Server resumes
document retrieval and document processing for the webMethods
messaging trigger.

If the resource monitoring service indicates that the resources are not
available (that is, the value of isAvailable is false), Integration Server waits
a short time interval (by default, 60 seconds) and then re-executes the
resource monitoring service. Integration Server continues executing the
resource monitoring service periodically until the service indicates the
resources are available.

Tip: You can change the frequency at which the resource
monitoring service executes by modifying the value of the
wa.server.trigger.monitoringInterval property.

6 After Integration Server resumes the webMethods messaging trigger,
Integration Server passes the document to the webMethods messaging
trigger. The webMethods messaging trigger and trigger service process the
document just as they would any document in the trigger queue.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 724

Step Description

Note: At this point, the retry count is set to 0 (zero).

Configuring Transient Error Handling for a webMethods Messaging
Trigger
The transient error handling behavior that you specify for a webMethods messaging
trigger determines how Integration Server handles transient errors that occur during
trigger service execution. The selected behavior also determines how Integration Server
handles transient errors that occur during trigger preprocessing.

For more information about transient error handling for trigger preprocessing, see
"Transient Error Handling During Trigger Preprocessing" on page 739.

To configure transient error handling for a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to configure retry behavior.

2. In the Properties view, under Transient error handling, select one of the following for
Retry until property:

Select... To...

Max attempts
reached

Specify that Integration Server retries the trigger service a
limited number of times.

In the Max retry attempts property, enter the maximum number
of times Integration Server should aempt to re-execute the
trigger service. The default is 0 retries.

Successful Specify that the Integration Server retries the trigger service
until the service executes to completion.

Note: If a webMethods messaging trigger is configured to retry
until successful and a transient error condition is never
remedied, a trigger service enters into an infinite retry
situation in which it continually re-executes the service
at the specified retry interval. Because you cannot disable
a webMethods messaging trigger during trigger service
execution and you cannot shut down the server during
trigger service execution, an infinite retry situation can
cause the Integration Server to become unresponsive to
a shutdown request. For information about escaping an
infinite retry loop, see "About Retrying Trigger Services
and Shutdown Requests" on page 726.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 725

3. In the Retry interval property, specify the time period the Integration Server waits
between retry aempts. The default is 10 seconds.

4. Set the On retry failure property to one of the following:

Select... To...

Throw
exception

Indicate that Integration Server throws a service exception
when the last allowed retry aempt ends because of an
ISRuntimeException.

This is the default.

For more information about the Throw exception option, see
"Overview of Throw Exception for Retry Failure" on page
721.

Suspend and
retry later

Indicate that Integration Server suspends the webMethods
messaging trigger when the last allowed retry aempt ends
because of an ISRuntimeException. Integration Server retries
the trigger service at a later time. For more information about
the Suspend and retry later option, see "Overview of Suspend
and Retry Later for Retry Failure" on page 722.

Note: If you want Integration Server to suspend the
webMethods messaging trigger and retry it later,
you must provide a resource monitoring service that
Integration Server can execute to determine when to
resume the webMethods messaging trigger. For more
information about building a resource monitoring
service, see Publish-Subscribe Developer’s Guide.

5. If you selected Suspend and retry later, then in the Resource monitoring service
property, specify the service that Integration Server should execute to determine the
availability of resources associated with the trigger service. Multiple webMethods
messaging triggers can use the same resource monitoring service.

6. Click File > Save.

Notes:

webMethods messaging triggers and services can both be configured to retry. When
a webMethods messaging trigger invokes a service (that is, the service functions as a
trigger service), the Integration Server uses the webMethods messaging trigger retry
properties instead of the service retry properties.

When Integration Server retries a trigger service and the trigger service is configured
to generate audit data on error, Integration Server adds an entry to the service log for
each failed retry aempt. Each of these entries will have a status of “Retried” and an
error message of “Null”. However, if Integration Server makes the maximum retry

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 726

aempts and the trigger service still fails, the final service log entry for the service
will have a status of “Failed” and will display the actual error message. This occurs
regardless of which retry failure option the webMethods messaging trigger uses.

Integration Server generates the following journal log message between retry
aempts:

[ISS.0014.0031D] Service serviceName failed with ISRuntimeException. Retry x of y
will begin in retryInterval milliseconds.

If you do not configure service retry for a webMethods messaging trigger, set
the Max retry attempts property to 0. This can improve the performance of services
invoked by the webMethods messaging trigger.

You can invoke the pub.flow:getRetryCount service within a trigger service to determine
the current number of retry aempts made by the Integration Server and the
maximum number of retry aempts allowed for the trigger service. For more
information about the pub.flow:getRetryCount service, see the webMethods Integration
Server Built-In Services Reference.

About Retrying Trigger Services and Shutdown Requests
While Integration Server retries a trigger service, Integration Server ignores requests to
shut down the server until the trigger service executes successfully or all retry aempts
are made. This allows Integration Server to process a document to completion before
shuing down.

Sometimes, however, you might want Integration Server to shut down without
completing all retries for trigger services. Integration Server provides a
server parameter that you can use to indicate that a request to shut down the
Integration Server should interrupt the retry process for trigger services. The
wa.server.trigger.interruptRetryOnShutdown parameter can be set to one of the
following:

Set to... To...

false Indicate that Integration Server should not interrupt the
trigger service retry process to respond to a shutdown request.
The Integration Server shuts down only after it makes all the
retry aempts or the trigger service executes successfully. This
is the default value.

Important: If wa.server.trigger.interruptRetryOnShutdown is
set to “false” and a webMethods messaging trigger
is set to retry until successful, a trigger service can
enter into an infinite retry situation. If the transient
error condition that causes the retry is not resolved,
Integration Server continually re-executes the service at
the specified retry interval. Because you cannot disable
a webMethods messaging trigger during trigger service

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 727

Set to... To...
execution and you cannot shut down the server during
trigger service execution, an infinite retry situation can
cause Integration Server to become unresponsive to a
shutdown request. To escape an infinite retry situation,
set the wa.server.trigger.interruptRetryOnShutdown
to “true”. The change takes effect immediately.

true Indicate that Integration Server should interrupt the trigger
service retry process if a shutdown request occurs. Specifically,
after the shutdown request occurs, Integration Server waits
for the current service retry to complete. If the trigger service
needs to be retried again (the service ends because of an
ISRuntimeException), the Integration Server stops the retry
process and shuts down. Upon restart, the transport (the
Broker or, for a local publish, the transient store) redelivers
the document to the webMethods messaging trigger for
processing.

Note: If the trigger service retry process is interrupted and the
transport redelivers the document to the webMethods
messaging trigger, the transport increases the redelivery
count for the document. If the webMethods messaging
trigger is configured to detect duplicates but does not
use a document history database or a document resolver
service to perform duplicate detection, Integration Server
considers the redelivered document to be “In Doubt”
and will not process the document. For more information
about duplicate detection and exactly-once processing,
see "Exactly-Once Processing for webMethods Messaging
Triggers" on page 727.

Note: When you change the value of the
wa.server.trigger.interruptRetryOnShutdown parameter, the change takes
effect immediately.

Exactly-Once Processing for webMethods Messaging
Triggers
Within Integration Server, exactly-once processing is a facility that ensures one-time
processing of a guaranteed document by a webMethods messaging trigger. The
webMethods messaging trigger does not process duplicates of the document.

Integration Server provides exactly-once processing for documents received by a
webMethods messaging trigger when all of the following are true:

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 728

The document is guaranteed.

Exactly once properties are configured for the webMethods messaging trigger.

Duplicate Detection Methods for a webMethods Messaging Trigger
Integration Server ensures exactly-once processing by performing duplicate detection
and by providing the ability to retry trigger services. Duplicate detection determines
whether the current document is a copy of one previously processed by the webMethods
messaging trigger. Duplicate documents can be introduced in to the webMethods
system when:

The publishing client publishes the same document more than once.

During publishing or retrieval of guaranteed documents, the sending resource
loses connectivity to the destination resource before receiving a positive
acknowledgement for the document. The sending resource will redeliver the
document when the connection is restored.

Note: Exactly-once processing and duplicate detection are performed for
guaranteed documents only.

Integration Server uses duplicate detection to determine the document’s status. The
document status can be one of the following:

New. The document is new and has not been processed by the webMethods
messaging trigger.

Duplicate. The document is a copy of one already processed the webMethods
messaging trigger.

In Doubt.Integration Server cannot determine the status of the document. The
webMethods messaging trigger may or may not have processed the document
before.

To resolve the document status, Integration Server evaluates, in order, one or more of
the following:

Redelivery count indicates how many times the transport has redelivered the
document to the webMethods messaging trigger.

Document history database maintains a record of all guaranteed documents processed
by webMethods messaging triggers for which exactly-once processing is configured.

Document resolver service is a service created by a user to determine the document
status. The document resolver service can be used instead of or in addition to the
document history database.

The steps that Integration Server performs to determine a document’s status depend on
the exactly-once properties configured for the subscribing trigger. For more information
about configuring exactly-once properties, see "Configuring Exactly-Once Processing for
a webMethods Messaging Trigger " on page 729.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 729

Note: For detailed information about exactly-once processing for webMethods
messaging triggers, see Publish-Subscribe Developer’s Guide.

Configuring Exactly-Once Processing for a webMethods Messaging
Trigger
Configure exactly-once processing for a webMethods messaging trigger when you want
the webMethods messaging trigger to process guaranteed documents once and only
once. If it is acceptable for a trigger service to process duplicates of a document, you
should not configure exactly-once processing for the webMethods messaging trigger.

Keep the following points in mind when configuring exactly-once processing:

Integration Server can perform exactly-once processing for guaranteed documents
only.

You do not need to configure all three methods of duplicate detection. However,
if you want to ensure exactly-once processing, you must use a document history
database or implement a custom solution using the document resolver service.

A document history database offers a simpler approach than building a custom
solution and will typically catch all duplicate messages. There may be exceptions
depending on your implementation. For more information about these exceptions,
see Publish-Subscribe Developer’s Guide. To minimize these exceptions, it is
recommended that you use a history database and a document resolver service.

If Integration Server connects to an 6.0 or 6.0.1 version of the Broker, you must
use a document history database and/or a document resolver service to perform
duplicate detection. Earlier versions of the Broker do not maintain a redelivery
count. Integration Server will assign documents received from these Brokers a
redelivery count of -1. If you do not enable another method of duplicate detection,
Integration Server assigns the document a New status and executes the trigger
service.

Stand-alone Integration Servers cannot share a document history database. Only a
cluster or a non-clustered group of Integration Servers can share a document history
database.

Make sure the duplicate detection window set by the History time to live property is
long enough to catch duplicate documents but does not cause the document history
database to consume too many server resources. If external applications reliably
publish documents once, you might use a smaller duplicate detection window. If the
external applications are prone to publishing duplicate documents, consider seing a
longer duplicate detection window.

If you intend to use a document history database as part of duplicate detection, you
must first install the document history database component and associate it with a
JDBC connection pool. For instructions, see Installing Software AG Products.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 730

To configure exactly-once processing for a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to configure exactly-once processing.

2. In the Properties view, under Exactly Once, set the Detect duplicates property to True.

3. To use a document history database as part of duplicate detection, do the following:

a. Set the Use history property to True.

b. In the History time to live property, specify how long the document history
database maintains an entry for a message processed by this webMethods
messaging trigger. This value determines the length of the duplicate detection
window.

4. To use a service that you create to resolve the status of In Doubt messages, specify
that service in the Document resolver service property.

5. Click File > Save.

Disabling Exactly-Once Processing for a webMethods Messaging
Trigger
If you later determine that exactly-once processing is not necessary for a webMethods
messaging trigger, you can disable it. When you disable exactly-once processing, the
Integration Server provides at-least-once processing for all guaranteed documents
received by the webMethods messaging trigger.

To disable exactly-once processing for a webMethods messaging trigger

1. In the Package Navigator view of Designer, open the webMethods messaging trigger
for which you want to configure exactly-once processing.

2. In the Properties view, under Exactly Once, set the Detect duplicates property to False.

Designer disables the remaining exactly-once properties.

3. Click File > Save.

Modifying a webMethods Messaging Trigger
After you create a webMethods messaging trigger, you can modify it by changing or
renaming the condition, specifying different publishable document types, specifying
different trigger services, or changing webMethods messaging trigger properties. To
modify a webMethods messaging trigger, you need to lock the webMethods messaging
trigger and have write access to the webMethods messaging trigger.

If your integration solution includes a messaging provider (Broker or Universal
Messaging), the messaging provider needs to be available when editing a webMethods
messaging trigger. Editing a webMethods messaging trigger when the messaging

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 731

provider is unavailable can cause the webMethods messaging trigger to become out
of sync with the associated object on the provider. Do not edit any of the following
webMethods messaging trigger components when the messaging provider used by the
publishable document types in the trigger are not available.

Any publishable document types specified in the webMethods messaging trigger.
That is, do not change the subscriptions established by the webMethods messaging
trigger.

Any filters specified in the webMethods messaging trigger.

The webMethods messaging trigger state (enabled or disabled).

The document processing mode (serial or concurrent processing).

Priority messaging state (enabled or disabled). This applies to webMethods
messaging triggers that receive documents from the Broker only.

If you edit any of these webMethods messaging trigger components when messaging
provider is unavailable and save the changes, the webMethods messaging trigger will
become out of sync with its associated object on the messaging provider. You will
need to synchronize the webMethods messaging trigger with its associated provider
object when the messaging provider becomes available. To synchronize, use Designer
to disable the webMethods messaging trigger, re-enable the webMethods messaging
trigger, and save. This effectively recreates the object on the messaging provider that is
associated with the webMethods messaging trigger. Alternatively, you can disable and
then enable the messaging connection alias used by the trigger. However, this restarts
all the triggers that use the messaging connection alias and may consume more time and
resources.

Note: If you changed the message processing mode for a webMethods messaging
trigger that uses a Universal Messaging connection alias with a shared
client prefix, you might need to use Universal Messaging Enterprise
Manager to delete and recreate the named object. For more information, see
"Synchronizing the webMethods Messaging Trigger and Named Object on
Universal Messaging " on page 717.

Modifying a webMethods Messaging Trigger in a Cluster or Non-
Clustered Group
Once you set up a cluster or a non-clustered group of Integration Servers, avoid editing
any of the webMethods messaging triggers in the cluster or non-clustered group.

Important: Modifying triggers on an Integration Server in a cluster or in a non-
clustered group of servers can cause the triggers to be out of sync with
the other servers in the cluster or non-clustered group. It can also create
inconsistencies with the associated object on the messaging provider.

In a clustered environment, you can modify selected webMethods messaging trigger
properties (capacity, refill level, maximum and execution threads) using the Integration

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 732

Server Administrator. For more information about editing webMethods messaging
trigger properties using the Integration Server Administrator, see webMethods Integration
Server Administrator’s Guide.

Deleting webMethods Messaging Triggers
Keep the following points in mind when deleting a webMethods messaging trigger:

When you delete a webMethods messaging trigger, Integration Server deletes the
queue for the webMethods messaging trigger on Integration Server.

If the messaging connection alias used by the publishable document type to which
the trigger subscribes does not share a client prefix, deleting the webMethods
messaging trigger causes the messaging provider to delete the associated provider
object (Broker client queue or Universal Messaging named object on a channel).

If the messaging connection alias used by the publishable document type to which
the trigger subscribes shares a client prefix, deleting the webMethods messaging
trigger does not cause the messaging provider to delete the associated provider
object (Broker client queue or Universal Messaging named object on a channel).

To delete a webMethods messaging trigger, you must lock it and have write access to
it.

You can also use the pub.trigger:deleteTrigger service to delete a webMethods messaging
trigger. For more information about this service, see the webMethods Integration Server
Built-In Services Reference.

To delete a webMethods messaging trigger

1. In the Package Navigator view of Designer, select the webMethods messaging
trigger that you want to delete.

2. Click Edit > Delete.

3. In the Delete Confirmation dialog box, click OK.

Deleting webMethods Messaging Triggers in a Cluster or Non-
Clustered Group
When a webMethods messaging trigger exists on multiple Integration Servers in a
cluster or non-clustered group of Integration Servers, the subscriptions created by
the webMethods messaging trigger remain active even if you delete the webMethods
messaging trigger from one of the Integration Servers. When deleting webMethods
messaging triggers from the servers in a cluster or non-clustered group, the associated
provider object remains connected to the cluster or non-clustered group until you
delete the webMethods messaging trigger on all of the servers. If you do not delete
the webMethods messaging trigger on all of the servers, the provider object for the
webMethods messaging trigger remains connected and the messaging provider
continues to enqueue documents for the webMethods messaging trigger.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 733

To delete a webMethods messaging trigger from a cluster or non-clustered group of
Integration Servers, delete the webMethods messaging trigger from each Integration
Server in the cluster, and then manually delete the provider object associated with
webMethods messaging trigger from the messaging provider.

Note: In addition to the term “non-clustered group,” the terms “stateless cluster”
and “external cluster” are sometimes used to describe the situation in which a
group of Integration Servers function in a manner similar to a cluster but are
not part of a configured cluster.

Running a webMethods Messaging Trigger with a Launch
Configuration
In Designer, you can run a webMethods messaging trigger to verify that the
subscription, filters, and trigger service work as expected. Designer requires launch
configurations to run webMethods messaging triggers. However, if a webMethods
messaging trigger does not have an associated launch configuration and you bypass the
Run Configurations dialog boxes when running the webMethods messaging trigger,
Designer creates a launch configuration on the fly and saves it in your workspace. You
can use this configuration from one session to the next. In fact, Designer reuses this
configuration every time you run the webMethods messaging trigger without creating
another launch configuration.

By default, Designer saves launch configurations locally in an unexposed location in
your workspace. However, you might want to share launch configurations with other
developers. You can specify that Designer save a launch configuration to a shared file
within your workspace; this location will be exposed. On the Common tab in the Run
Configurations dialog box, select the Shared file option and provide a workspace location
in which to save the file.

In a launch configuration for a webMethods messaging trigger, you specify:

The condition that you want Designer to test. Each launch configuration can specify
only one condition in the webMethods messaging trigger.

The document type whose subscription you want to test. For an Any (OR) or Only
one (XOR) join condition, you specify the document type for which you want to
supply input.

Input data that Designer uses to build a document. Designer evaluates the filter
using the data in the document and provides the document as input to the trigger
service.

You can create multiple launch configurations for each webMethods messaging trigger.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 734

Creating a Launch Configuration for a webMethods Messaging
Trigger
Use the following procedure to create a launch configuration for running a webMethods
messaging trigger.

To create a launch configuration for running a webMethods messaging trigger

1. In the Service Development perspective, select Run > Run Configurations

2. In the Run Configuration dialog box, select webMethods Messaging Trigger and click to
add a new launch configuration.

3. In the Name field, specify a name for the launch configuration.

4. On the webMethods Messaging Trigger tab, in the Integration Server list, select the
Integration Server on which the webMethods messaging trigger for which you are
creating a launch configuration resides.

5. In the webMethods Messaging Trigger field click Browse to navigate to and select the
trigger.

6. On the Input tab, in the Condition list, select the condition that you want to test using
the launch configuration.

7. If the condition is a join condition with an Any (OR) or Only one (XOR) join, do the
following:

a. Next to Document Type, click Select.

b. In the Select a Document Type dialog box, select the document type for which
you want to provide input data in this launch configuration.

For an Any (OR) join, select one document type.

For an Only one (XOR) join, select the document or document types that you
want to use to test the join condition.

c. Click OK.

8. On the Input tab, select the tab with the name of the IS document type for which you
want to provide input data.

If the selected condition uses an All (AND) join, Designer displays one tab for each
document type in the join condition. If the condition is an Only one (XOR) join and
you selected multiple document types for which to supply input data, Designer
displays one tab for each selected document type.

a. Select or clear the Include empty values for String Types check box to indicate how to
handle variables that have no value.

If you want to use an empty String (i.e., a String with a zero-length), select the
Include empty values for String Types check box. Also note that Document Lists
that have defined elements will be part of the input, but they will be empty.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 735

If you want to use a null value for the empty Strings, clear the check box.
String-type variables will not included in the input document.

Note: The seing applies to all String-type variables in the root document of
the input signature. The seing does not apply to String-type variables
within Document Lists. You define how you want to handle String-type
variables within Document Lists separately when you assign values to
Document Lists variables.

b. Specify the values to save with the launch configuration for the webMethods
messaging trigger by doing one of the following:

Type the input value for each field in the document type.

To load the input values from a file, click Load to locate and select the file
containing the input values. If Designer cannot parse the input data, it
displays an error message indicating why it cannot load the data.

Designer validates the provided input values. If provided values do not match
the input parameter data type, Designer displays a message to that effect. You
cannot use the launch configuration for the webMethods messaging trigger if the
provided input does not match the defined data type.

c. If you want Designer to give the user executing the launch configuration the
option of providing different input values than those saved with the launch
configuration, select the Prompt for data at launch check box. If you clear this check
box, Designer passes the webMethods messaging trigger the same set of data
every time the launch configuration executes.

9. Repeat the preceding step for each IS document type displayed on the Input tab.

10. If you want to save the input values that you have entered, click Save.

11. Click Apply.

12. If you want to execute the launch configuration, click Run. Otherwise, click Close.

Running a webMethods Messaging Trigger
Keep the following points in mind when running a webMethods messaging trigger:

When you run a webMethods messaging trigger, you can select the launch
configuration that Designer uses to run the webMethods messaging trigger. If a
launch configuration does not exist for a webMethods messaging trigger, Designer
creates a launch configuration and immediately prompts you for input values
and then runs the webMethods messaging trigger. Designer saves the launch
configuration in your workspace.

When you run a webMethods messaging trigger, you can only test one condition at a
time.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 736

When you run a webMethods messaging trigger with a join condition Designer
treats the activation IDs for the documents as identical. Designer ignores the value of
the activation field in the document envelope.

When you run a webMethods messaging trigger by running a launch configuration,
the webMethods messaging trigger is tested locally. That is, a document is not
routed through the messaging provider.

Note: To test a webMethods messaging trigger by publishing a document
to the messaging provider, test a publishable document type. You
test a publishable document type by creating and running a launch
configuration for the publishable document type.

Designer displays results for running the webMethods messaging trigger in the
Results view.

To run a webMethods messaging trigger

1. In Package Navigator view of the Service Development perspective, select the
webMethods messaging trigger you want to run.

2. Select Run > Run As >webMethods Messaging Trigger

3. If multiple launch configurations exist for the service, use the Select Launch
Configuration dialog box to select the launch configuration that you want Designer to
use to run the webMethods messaging trigger.

4. If the launch configuration is set up to prompt the user for input values or there is no
launch configuration, in the Enter Input for triggerName dialog box, in the Condition list,
select the condition that you want to test using the launch configuration.

5. If the condition is a join condition with an Any (OR) or Only one (XOR) join, do the
following:

a. Next to Document type, click Select.

b. In the Select a Document Type dialog box, select the document type for which
you want to provide input data.

For an Any (OR) join, select one document type.

For an Only one (XOR) join, select one or more document types to use to test
the join condition. Note that at run time, the trigger service processes only
one of the documents. The trigger discards the other document.

c. Click OK.

6. In the Enter Input for triggerName dialog box, select the tab with the name of the IS
document type for which you want to provide input data.

7. Select or clear the Include empty values for String Types check box to indicate how to
handle variables that have no value.

M
Odd Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 737

If you want to use an empty String (i.e., a String with a zero-length), select the
Include empty values for String Types check box. Also note that Document Lists that
have defined elements will be part of the input, but they will be empty.

If you want to use a null value for the empty Strings, clear the check box. String-
type variables will not included in the input document.

Note: The seing applies to all String-type variables in the root document of the
input signature. The seing does not apply to String-type variables within
Document Lists. You define how you want to handle String-type variables
within Document Lists separately when you assign values to Document
Lists variables. For more information, see webMethods Service Development
Help.

8. Specify the values to save with the launch configuration for the webMethods
messaging trigger by doing one of the following:

Type the input value for each field in the document type.

To load the input values from a file, click Load to locate and select the file
containing the input values. If Designer cannot parse the input data, it displays
an error message indicating why it cannot load the data.

Note: If you type in input values, Designer discards the values you specified
after the run. If you want to save input values, create a launch
configuration. For instructions, see "Running a webMethods Messaging
Trigger " on page 735.

9. Click OK.

Designer runs the trigger and displays the results in the Results view.

Testing Join Conditions
While running a launch configuration for a webMethods messaging trigger provides
verification of filters and the trigger service execution, it does not test all aspects of a
join condition. For example, running a webMethods messaging trigger does not test the
join expiration. In addition to running a launch configuration to test a join condition,
consider testing the join condition in the following ways:

Publish documents from Designer using a launch configuration.

You can publish documents by creating and running a launch configuration for a
publishable document type.

To test a join condition by publishing documents via a launch configuration, you
must use the same activation ID for all the documents specified in the join. If you re-
use an activation ID from one test to the next, make sure that the documents sent in
the first test are processed before starting the next test.

Create a service that publishes the documents.

M
Even Header

Working with webMethods Messaging Triggers

webMethods Service Development Help Version 9.10 738

You can also test join processing for a join condition by creating a flow service
that invokes a publish service for each of the document types specified in the join
condition. Integration Server automatically assigns an activation ID and uses that
activation ID for all the documents published in the same service.

During trigger processing and join processing, Integration Server writes messages to
the journal log. You can use the contents of the journal log to test and debug the join
conditions in the webMethods messaging trigger.

M
Odd Header

Transient Error Handling During Trigger Preprocessing

webMethods Service Development Help Version 9.10 739

33 Transient Error Handling During Trigger
Preprocessing

■ Server and Trigger Properties that Affect Transient Error Handling During Trigger
Preprocessing ... 740

■ Overview of Transient Error Handling During Trigger Preprocessing .. 741

M
Even Header

Transient Error Handling During Trigger Preprocessing

webMethods Service Development Help Version 9.10 740

Trigger preprocessing encompasses the time from when a trigger first receives a
message (document) from its local queue on Integration Server to the time Integration
Server invokes the trigger service. Transient errors can occur during this time. A
transient error is an error that arises from a temporary condition that might be resolved
or corrected quickly, such as the unavailability of a resource due to network issues or
failure to connect to a database. For example, if a document history database is used for
exactly-once processing, the unavailability of the database may cause a transient error.
Because the condition that caused the trigger preprocessing to fail is temporary, the
trigger preprocessing might complete successfully if Integration Server waits and then
re-aempts trigger preprocessing. To allow the preprocessing to complete successfully,
Integration Server provides some properties and seings for transient error handling.

Server and Trigger Properties that Affect Transient Error
Handling During Trigger Preprocessing
Integration Server and Designer provide properties that you can use to configure how
Integration Server handles transient errors that occur during the preprocessing phase of
trigger execution.

The wa.server.trigger.preprocess.suspendAndRetryOnError server configuration
property. This property determines if Integration Server suspends a trigger if an
error occurs during trigger preprocessing. This server configuration parameter acts
as a global on/off switch. When set to true, Integration Server suspends any trigger
that experiences an error during preprocessing. When set to false, Integration Server
uses the individual trigger properties to determine whether or not to suspend the
trigger.

The wa.server.trigger.preprocess.monitorDatabaseOnConnectionException server
configuration property. This property determines how Integration Server handles a
ConnectionException that causes a transient error. A ConnectionException occurs
when the document history database is not enabled or is configured incorrectly.

The On Retry Failure trigger property for webMethods messaging triggers and non-
transacted JMS triggers. When set to Suspend and retry later, Integration Server
suspends a trigger that encounters a transient error during trigger preprocessing.

Note: The On Retry Failure trigger property also determines how Integration
Server handles retry failure for a trigger service.

The On Transaction Rollback property for a transacted JMS trigger. When set to
Suspend and recover, Integration Server suspends a transected JMS trigger that
encounters a transient error during trigger preprocessing.

Note: The On Transaction Rollback property also determines how Integration
Server handles a transaction rollback caused by a transient error that
occurs during trigger execution.

M
Odd Header

Transient Error Handling During Trigger Preprocessing

webMethods Service Development Help Version 9.10 741

For a detailed explanation about how Integration Server uses these property seings
when a transient error occurs during trigger preprocessing, see "Overview of Transient
Error Handling During Trigger Preprocessing" on page 741.

Overview of Transient Error Handling During Trigger
Preprocessing
Following is an overview of how Integration Server performs transient error handling
for an ISRuntimeException that occurs during trigger preprocessing. Typically, transient
errors that occur during preprocessing occur during exactly-once processing. For
example, the document history database might not be available of the document resolver
service fails because of an ISRuntimeException.

Step Description

1 A transient error, specifically an ISRuntimeException, occurs during the
preprocessing phase of trigger execution.

2 Integration Server checks the values of
wa.server.trigger.preprocess.suspendAndRetryOnError server
configuration property and the On Retry Failure trigger property. If this
is a transacted JMS trigger, Integration Serverchecks the value of the On
Transaction Rollback property instead of the On Retry Failure property.

If one of the following is true, Integration Server suspends the trigger,
rolls the message back to the messaging provider, and proceeds as
described in step 3:

wa.server.trigger.preprocess.suspendAndRetryOnError is set to true.

On Retry Failure property is set to Suspend and retry later or On Transaction
Rollback property is set to Suspend and recover.

If none of the above are true, then Integration Server does not suspend the
trigger if a transient error occurs during trigger preprocessing. Instead,
Integration Server does one of the following:

If the trigger specifies a document resolver service, Integration Server
executes the document resolver service to determine the status of
the document. If the document resolver service ends because of an
ISRuntimeException, Integration Server assigns the document a status of
In Doubt, acknowledges the document, and uses the audit subsystem to
log the document.

If the trigger does not specify a document resolver service, Integration
Server assigns the document a status of In Doubt. Integration Server
throws an exception, acknowledges the document to the messaging

M
Even Header

Transient Error Handling During Trigger Preprocessing

webMethods Service Development Help Version 9.10 742

Step Description
provider, and uses the audit subsystem to log the document. This may
result in message loss.

Note: If the trigger is a webMethods messaging trigger, Integration
Server uses the audit subsystem to log the document. You can use
webMethods Monitor to resubmit the document.

3 Integration Server does one of the following once the trigger is suspended:

If the transient error (ISRuntimeException) is caused by a SQLException
(which indicates that an error occurred while reading to or writing from
the database), Integration Server suspends the trigger and schedules
a system task that executes an internal service that monitors the
connection to the document history database. Integration Server resumes
the trigger and re-executes it when the internal service indicates that the
connection to the document history database is available.

If the transient error (ISRuntimeException) is caused by a
ConnectionException (which indicates that document history
database is not enabled or is not properly configured), and the
wa.server.trigger.preprocess.monitorDatabaseOnConnectionException
property is set to true, Integration Server schedules a system task
that executes an internal service that monitors the connection to the
document history database. Integration Server resumes the trigger and
re-executes it when the internal service indicates that the connection to
the document history database is available.

If the transient error (ISRuntimeException)
is caused by a ConnectionException and the
wa.server.trigger.preprocess.monitorDatabaseOnConnectionException
property is set to false, Integration Server does not schedule a system
task to check for the database's availability and will not resume the
trigger automatically. You must manually resume the trigger after
configuring the document history database properly.

If the transient error (ISRuntimeException) is caused by some other type
of exception, Integration Server suspends the trigger and schedules a
system task to execute the trigger's resource monitoring service (if one
is specified). When the resource monitoring service indicates that the
resources used by the trigger are available, Integration Server resumes
the trigger and again receives the message from the messaging provider.
If a resource monitoring service is not specified, you will need to resume
the trigger manually (via Integration Server Administrator or the
pub.trigger* services).

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 743

34 Working with Web Services

■ What Are Web Service Descriptors? ... 744

■ About Provider Web Service Descriptors .. 745

■ About Consumer Web Service Descriptors ... 759

■ About Refreshing a Web Service Descriptor ... 770

■ Viewing the WSDL Document for a Web Service Descriptor .. 780

■ WS-I Compliance for Web Service Descriptors ... 782

■ Changing the Target Namespace for a Web Service Descriptor ... 783

■ Viewing the Namespaces Used within a WSDL Document ... 784

■ Enabling MTOM/XOP Support for a Web Service Descriptor .. 784

■ Adding SOAP Headers to the Pipeline .. 785

■ Validating SOAP Response ... 786

■ Validating Schemas Associated with a Web Service Descriptor .. 787

■ Working with Binders ... 789

■ Working with Operations .. 798

■ Adding Headers to an Operation ... 804

■ About SOAP Fault Processing ... 806

■ Viewing Document Types for a Header or Fault Element ... 812

■ Working with Handlers ... 813

■ Working with Policies ... 815

■ About Pre-8.2 Compatibility Mode ... 817

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 744

Web services are building blocks for creating open, distributed systems. A web service is a
collection of functions that are packaged as a single unit and published to a network for
use by other software programs. For example, you could create a web service that checks
a customer’s credit or tracks delivery of a package. If you want to provide higher-level
functionality, such as a complete order management system, you could create a web
service that maps to many different IS flow services, each performing a separate order
management function.

Designer uses web service descriptors to encapsulate information about web services
and uses web service connectors to invoke web services.

Note: Information about web services is located in webMethods Service Development
Help, Web Services Developer’s Guide, and webMethods Integration Server
Administrator’s Guide.

webMethods Service Development Help includes this Working with Web
Services topic which provides procedures for using Designer to create web
service descriptors, adding operations, binders, handlers, and policies to a
web service descriptor; and seing web service descriptor properties.

Web Services Developer’s Guide contains information such as how
Integration Server processes web services, how a SOAP fault is
represented in the pipeline, steps to configure MTOM streaming when
sending and receiving SOAP messages using web services, and how
to secure web services with WS-Security and WSSecurityPolicy. For
completeness, Web Services Developer’s Guide also contains the Working
with Web Services topic that appears in webMethods Service Development
Help.

webMethods Integration Server Administrator’s Guide contains information
about creating web service endpoint alias and configuring Integration
Server to use web services reliable messaging.

What Are Web Service Descriptors?
A web service descriptor (WSD) is an element on Integration Server that defines a web
service in IS terms. The WSD encapsulates all the information required by the provider
or the consumer (requester) of a web service. The WSD contains the message formats,
data types, transport protocols, and transport serialization formats that should be used
between the consumer (requester) and the provider of the web service. It also specifies
one or more network locations at which a web service can be invoked. In essence, the
WSD represents an agreement governing the mechanics of interacting with that service.

A provider web service descriptor defines a web service that is hosted on the Integration
Server, that is, a service “provided” to external users. A provider web service
descriptor will expose one or more IS services as operations, which can be published
to a registry as a single web service. External users can access the web service
through the registry and invoke the IS services remotely.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 745

A consumer web service descriptor defines an external web service, allowing Integration
Server to create a web service connector (WSC) for each operation in the web service.
The web service connector(s) can be used in Designer just like any other IS flow
service; when a connector is invoked it calls a specific operation of a web service.
In version 9.0 and later, Integration Server also creates a response service for each
operation in the web service. Response services are flow services to which you can
add custom logic to process asynchronous SOAP responses.

About Provider Web Service Descriptors
You can turn any service in any Integration Server package into a web service by using
the IS service as an operation in a provider web service descriptor. Integration Server
provides an environment for executing services efficiently and securely. It receives and
decodes requests from clients, calls the requested services, and encodes and returns the
output to the clients.

A provider web service descriptor (WSD) is created from one or more IS services or from
a single WSDL document, and is designed to allow the IS services to be invoked as
web services over a network. The provider web service descriptor contains all the data
required to create a WSDL document for the IS web service, as well as the data needed at
run time to process the request and response.

You can create a provider web service descriptor from a service that exists on Integration
Server or from a WSDL document.

A service first provider web service descriptor refers to provider web service descriptors
created from an existing service on Integration Server. In this case, you specify
the protocol, binding style/use, and host server when creating the WSD. The IS
service becomes an operation in the provider web service descriptor. Integration
Server uses the existing service signature as the input and output messages for the
operation. You can add operations and bindings to a service first provider web
service descriptor.

A WSDL first provider web service descriptor refers to a provider web service descriptor
created from an existing WSDL document, from a service asset in CentraSite, or
from a web service acquired from a UDDI registry. In this case, Designer uses the
message and operation definitions from the WSDL to generate a “placeholder” flow
service for each operation encountered in the WSDL, along with IS document types
defining the input and output signature of the generated flow services. You can then
implement any required logic within the placeholder flow service. Note that you
cannot add operations or bindings to a WSDL first provider WSD.

The provider web service descriptor can be published to a UDDI registry (or other
publicly accessible server) as a web service, which can be invoked remotely by an
external user. A web service provider can also distribute WSDL files directly to
consumers.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 746

Service Signature Requirements for Service First Provider Web
Service Descriptors
When you create a service first provider web service descriptor, you select one or more
services to use as operations. The service signature becomes the input and output
messages for the operations in the WSDL document. However, Integration Server allows
constructs within service signatures that cannot be represented in certain web service
style/use combinations.

When adding a service to or creating a service first provider web service descriptor,
Integration Server verifies that the service signature can be represented in the style/use
specified for the web service descriptor. If a service signature does not meet the style/use
signature requirements, Integration Server will not add the service as an operation. Or,
in the case of creating a service first provider WSD, Integration Server will not create the
WSD.

Following, is a list of service signature restrictions and requirements for each style/use.
Note that this list may not be exhaustive.

Signature Restrictions for Document/Literal

*body fields are not allowed at the top level

@aribute fields (fields starting with the “@” symbol) are not allowed at the top
level

String table fields are not allowed

Signature Restrictions for RPC/Encoded

* body fields are not allowed

@aribute fields are not allowed (fields starting with the “@” symbol)

Top-level fields cannot be namespace qualified

Top-level field names cannot be in the format prefix :localName

Signature Restrictions for RPC/Literal

*body fields are not allowed at the top level

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 747

Signature Restrictions for RPC/Literal

@aribute fields (fields starting with the “@” symbol) are not allowed at the top
level

String table fields are not allowed

List fields (String List, Document List, Document Reference List, and Object List)
are not allowed at the top level

Duplicate field names (identically named fields) are not allowed at the top level

Top-level fields cannot be namespace qualified

Top-level field names cannot be in the format prefix :localName

Using XML Namespaces with Prefixes with Fields in Service Signatures
You can associate the name of an Integration Server field (such as an IS document
variable) with an XML namespace. When you do this, the local name is the name of the
field and the XML namespace name is the URI that identifies the namespace. You can
also include a prefix as part of the name.

Assign XML namespaces and prefixes to Integration Server fields as follows:

To assign an XML namespace to an Integration Server field, complete the XML
Namespace property in the General category of the field’s Properties view.

To assign a prefix to an Integration Server field, precede the field name with the
prefix followed by a colon (for example, prefix :variableName).

Note: The style/use combinations RPC/Literal and RPC/Encoded prohibit top-level
field from being namespace qualified.

Handling Incomplete Service Signatures Using Wrapper Services
When you use a service as an operation in a web service descriptor, the service signature
must accurately and completely reflect the expected service input and output.

If the signature is not accurate or complete, the WSDL document created for the web
service descriptor will contain incorrect signature information. Clients generated from
the WSDL document may not execute as expected.

However, sometimes it may not be possible to make the service signature complete
before using it in a web service descriptor or you may not want to alter the service
signature. In these situations, you can expose the service as a web service by creating a
wrapper service. The wrapper service needs to declare the complete service signature

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 748

and invoke the service that you want to expose as a web service. You can then use the
wrapper service as an operation in a provider web service descriptor.

For example, suppose that you want to expose an XSLT service as a web service on
one Integration Server and invoke it from another. However, the XSLT source contains
an optional run-time property that is added to the pipeline at run time. This optional
property is not reflected in the input signature of the XSLT service. If you added the
XSLT service to a provider web service descriptor, the resulting WSDL document would
not list the property as part of the input message. Consequently, a consumer web service
descriptor and a web service connector created from the WSDL document would not
account for the property and invocation will fail.

To successfully use the XSLT service as a web service, you can do the following:

1. Create a wrapper flow service that:

Defines all of the input parameters of the XSLT service in its input signature.

Defines the run-time property of the XSLT source in its input signature.

Invokes the XSLT service.

2. On the Integration Server that hosts the wrapper flow service and the XSLT service,
create a provider web service descriptor from the wrapper flow service.

On the Integration Server from which you will invoke the web service, create a
consumer web service descriptor from the WSDL of the provider web service descriptor.
The web service connector that corresponds to the operation for the XSLT service will
display the complete input signature.

Creating a Service First Provider Web Service Descriptor
Keep the following points in mind when creating a service first provider WSD:

You must have Write access to the folder in which you want to store the provider
WSD.

The style and use selected for a provider WSD determines what types of fields and
field names are allowed in the service signature. Designer will not create a provider
WSD if the signature of the service does not meet the requirements of the selected
binding style/use. For more information, see "Service Signature Requirements for
Service First Provider Web Service Descriptors" on page 746.

Depending on the use and style that you specify, you may have to either rename
certain fields in the IS service or assign an XML namespace to them.

You must have at least one web service endpoint alias that specifies the JMS
transport before you can create a provider web service descriptor with a JMS binder.
For more information about creating a web service endpoint alias, see webMethods
Integration Server Administrator’s Guide.

When using an adapter service to create a provider web service descriptor, if the
service returns values in the pipeline that do not match the output signature, you

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 749

must change those variable properties to optional fields (where applicable), or else
wrap the service in a flow to add or drop variables to match the output signature.

Web service descriptors that are not running in compatibility mode can stream
MTOM aachments for both inbound and outbound SOAP messages. To stream
MTOM aachments, the object that represents the field to be streamed should be of
type com.wm.util.XOPObject Java class.

You can quickly create a service first provider WSD by right-clicking the service,
selecting Generate Provider WSD. Enter a name for the WSD in the Provide a Name
dialog box and click OK. Designer automatically creates a provider WSD in the same
folder as the selected IS service, using all the default options.

To create a service first provider web service descriptor

1. In the Package Navigator view of Designer, click File > New > Web Service Descriptor.

2. In the New Web Service Descriptor dialog box, select the folder in which you want to
save the provider WSD. Click Next.

3. In the Element Name field, specify a name for the provider web service descriptor
using any combination of leers, numbers, and/or the underscore character. Click
Next.

4. Under Create web service descriptor as, select Provider (Inbound Request).

5. Under Web service source, select Existing IS service(s).

6. Click Next.

7. Select one or more services to include as operations in the provider web service
descriptor. Click Next.

8. Provide the following information:

In this field... Specify...

SOAP version Whether SOAP messages for this web service should use SOAP
1.1 or SOAP 1.2 message format.

Transport The transport protocol used to access the web service. Select
one of the following:

HTTP

HTTPS

JMS

Use and style
for operations

The style/use for operations in the provider WSD. Select one of
the following:

Document - Literal

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 750

In this field... Specify...

RPC - Literal

RPC - Encoded

Endpoint The address at which the web service can be invoked. Do one
of the following:

To use a provider web service endpoint alias to specify the
address, select the Alias option. Then, in the Alias list, select
the provider web service endpoint alias.

To specify a host and port as the address, select the Host
option. Then, in the Host field specify the host name for the
Integration Server on which the web service resides. In the
Port field, specify an active HTTP or HTTPS listener port
defined on the Integration Server specified in the Host field.

Note: If you selected JMS as the transport, you must specify an
alias. After you select a provider web service endpoint
alias, Designer displays the initial portion of the JMS URI
that will be used as the address in the Port address (prefix)
field.

Directive The SOAP processor used to process the SOAP messages
received by the operation in the provider WSD. The Directive
list displays all of the SOAP processors registered on the
Integration Server. The default processor is ws - Web Services
SOAP Processor.

Target
namespace

The URL that you want to use as the target namespace for
the provider WSD. In a WSDL document generated for this
provider WSD, the elements, aributes, and type definitions
will belong to this namespace.

Note: If you specify a transport, but do not specify a host, port, or endpoint alias,
Integration Server uses the primary port as the port in the endpoint URL.
If the selected transport and the protocol of the primary port do not match,
web service clients will not execute successfully. For more information see
"Protocol Mismatch Between Transport and Primary Port" on page 752.

9. Under Enforce WS-I Basic Profile 1.1 compliance do one of the following:

Select Yes if you want Designer to validate all the web service descriptor objects
and properties against the WS-I requirements before creating the web service
descriptor.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 751

Select No if you do not want Designer to enforce compliance for WS-I Basic
Profile 1.1.

Note: WS-I compliance cannot be enforced if the WSDL contains a SOAP over
JMS binding.

10. If you want Integration Server to use the Xerces Java parser to validate the schema
elements that represent the signatures of the services used as operations, select the
Validate schema using Xerces check box.

11. Click Finish.

If Designer cannot create or cannot completely generate a web service descriptor,
Designer displays error messages or warning messages.

Notes:

If you selected the Validate schema using Xerces check box, when creating a service
first provider web service descriptor, Integration Server converts the signatures of
the services used as operations to XML schema elements. Then Integration Server
uses the Xerces Java parser to validate the schema elements. If the schema element
does not conform syntactically to the schema for XML Schemas defined in XML
Schema Part 1: Structures (which is located at hp://www.w3.org/TR/xmlschema-1),
Integration Server does not create the web service descriptor. Instead, Designer
displays an error message that lists the number, title, location, and description of the
validation errors.

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations
for this version are listed at hp://xerces.apache.org/xerces2-j/xml-
schema.html.

Set up a package dependency if an IS service uses a document type from a different
package as the input or output signature.

The Message Exchange Paern (MEP) that Integration Server uses for the operation
it creates from the service can be In-Out MEP or In-Only MEP. Integration Server
always uses In-Out MEP when the web service descriptor’s Pre-8.2 compatibility mode
property is true. When this property is false, Integration Server uses:

In-Out MEP when the service signature contains both input and output
parameters.

In-Only MEP when the service signature contains no output parameters.

Note: If you want to use Robust In-Only MEP rather than In-Only MEP,
after creating the web service descriptor for a service with no output
parameters, add a fault to the operation.

For more information about Integration Server MEP support, see the Web Services
Developer’s Guide.

http://www.w3.org/TR/xmlschema-1/
http://xerces.apache.org/xerces2-j/xml-schema.html
http://xerces.apache.org/xerces2-j/xml-schema.html

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 752

Protocol Mismatch Between Transport and Primary Port
If you specify a transport, but do not specify a host, port, or endpoint alias, Integration
Server uses the primary port as the port in the endpoint URL. However, if the selected
transport and the protocol of the primary port do not match, Designer displays the
following warning when you save the provider WSD:
Selected transport protocol does not match that of the primary port
on Integration Server.

For example, if you specify a transport of HTTPS when creating the provider WSD,
but do not specify a host, port, or endpoint alias and the primary port is an HTTP port,
Designer displays the above message.

You must resolve this mismatch before making a WSDL document for this provider
WSD available to web service consumers. Otherwise, the web service clients will not
execute successfully.

Creating a WSDL First Provider Web Service Descriptor
You can create a WSDL first provider web service descriptor from a WSDL document
accessed via a URL, from a UDDI registry, or from a service asset in CentraSite.

Keep the following points in mind when creating a WSDL first provider WSD:

You must have Write access to the folder in which you want to store the provider
WSD.

If the URL for the WSDL contains special characters that need to be encoded, specify
the encoding using the Encoding for WSDL URL option in the Web Service Descriptor
Editor Preferences page.

You must have at least one valid web service endpoint alias that specifies the
JMS transport before you can create a provider web service descriptor from a
WSDL document that contains a JMS binding. When you create a provider web
service descriptor from a WSDL document that specifies a SOAP over JMS binding,
Designer automatically assigns the first valid provider web service endpoint alias for
JMS to the web service descriptor binder. If there is not valid endpoint alias for JMS,
the web service descriptor cannot be created. For example, if the only web service
endpoint alias that exists for JMS specifies a SOAP-JMS trigger that no longer exists,
Integration Server does not consider the endpoint to be valid and does not create the
web service descriptor.

To create a WSDL first provider web service descriptor from a web service in a UDDI
registry, Designer must be configured to connect to that UDDI registry.

To create a WSDL first provider web service descriptor from a service asset in
CentraSite, Designer must be configured to connect to CentraSite.

You can also create a provider web service descriptor from a service asset in
CentraSite by dragging and dropping the service asset from the Registry Explorer
view into Package Navigator view. Designer prompts you for a name for the

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 753

web service descriptor and prompts you to indicate whether you want to create a
consumer or provider web service descriptor.

You can specify whether Integration Server enforces strict, lax, or no content model
compliance when generating IS document types from the XML Schema definition
contained or referenced in the WSDL document. Content models provide a formal
description of the structure and allowed content for a complex type. The type of
compliance that you specify can affect whether Integration Server generates an IS
document type from a particular XML Schema definition successfully.

Do not create a WSDL first provider web service descriptor from a WSDL that
specifies RPC-Encoded, contains aributes in its operation signature, and/or has
complex type definitions with mixed content. Integration Server might successfully
create a web service descriptor from such WSDLs. However, the web service
descriptor may exhibit unexpected runtime behavior.

To create a WSDL first provider web service descriptor

1. In Package Navigator view, click File > New > Web Service Descriptor.

2. In the New Web Service Descriptor dialog box, select the folder in which you want to
save the provider WSD. Click Next.

3. In the Element Name field, specify a name for the provider WSD using any
combination of leers, numbers, and/or the underscore character. Click Next.

4. Under Create web service descriptor as, select Provider (Inbound Request).

5. Under Web service source, select WSDL. Click Next.

6. Under Source location, do one of the following:

Select... To generate a provider web service descriptor from...

CentraSite A service asset in CentraSite

File/URL A WSDL document that resides on the file system or
on the Internet.

UDDI A WSDL document in a UDDI registry

7. Click Next.

8. If you selected CentraSite as the source, under Select Web Service fromCentraSite,
select the service asset in CentraSite that you want to use to create the web service
descriptor. Click Next.

Designer filters the contents of the Services folder to display only service assets that
are web services.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 754

If Designer is not configured to connect to CentraSite, Designer displays the
CentraSite> Connections preference page and prompts you to configure a connection
to CentraSite.

9. If you selected File/URL as the source, do one of the following:

Enter the URL for the WSDL document. The URL should begin with hp:// or
hps://. Click Next.

Click Browse to navigate to and select a WSDL document on your local file
system. Click Next.

10. If you selected UDDI as the source, under Select Web Service from UDDI Registry, select
the web service from the UDDI registry. Click Next.

If Designer is not currently connected to a UDDI registry, the Open UDDI Registry
Session dialog box appears. Enter the details to connect to the UDDI registry and
click Finish.

11. Under Content model compliance, select one of the following to indicate how strictly
Integration Server enforces content model compliance when creating IS document
types from the XML Schema definition in the WSDL document.

Select... To...

Strict Generate the IS document type only if Integration Server can
represent the content models defined in the XML Schema
definition correctly. Document type generation fails if
Integration Server cannot accurately represent the content
models in the source XML Schema definition.

Currently, Integration Server does not support repeating
model groups, nested model groups, or the any aribute.
If you select strict compliance, Integration Server does
not generate an IS document type from any XML schema
definition that contains those items.

Note: If Integration Server cannot generate an IS document
type that complies with the content model in the XML
schema definition in the WSDL document, Integration
Server will not generate the provider web service
descriptor.

Lax When possible, generate an IS document type that correctly
represents the content models for the complex types defined
in the XML schema definition from the WSDL document.
If Integration Server cannot correctly represent the content
model in the XML Schema definition in the resulting IS
document type, Integration Server generates the IS document
type using a compliance mode of None.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 755

Select... To...

When you select lax compliance, Integration Server will
generate the IS document type even if the content models in
the XML schema definition cannot be represented correctly.

None Generate an IS document type that does not necessarily
represent or maintain the content models in the source XML
Schema definition.

When compliance is set to none, Integration Server generates
IS document types the same way they were generated in
Integration Server releases prior to version 8.2.

12. Select the Enable MTOM streaming for elements of type base64Binary check box if you want
elements declared to be of type base64Binary in the WSDL or schema to be enabled
for streaming of MTOM aachments. For more information about MTOM streaming
for web services, see the Web Services Developer’s Guide.

13. If you want Integration Server to use the Xerces Java parser to validate any schema
elements in the WSDL document or any referenced XML Schema definitions before
creating the web service descriptor, select the Validate schema using Xerces check box.

Note: Integration Server automatically uses the internal schema parser to
validate the schemas in or referenced by a WSDL document. However, the
Xerces Java parser provides stricter validation than the Integration Server
internal schema parser. As a result, some schemas that the internal schema
parser considers to be valid might be considered invalid by the Xerces Java
parser. While validation by the Xerces Java parser can increase the time it
takes to create a web service descriptor and its associated elements, using
stricter validation can help ensure interoperability with other web service
vendors.

14. Under Enforce WS-I Basic Profile 1.1 compliance do one of the following:

Select Yes if you want Designer to validate all the WSD objects and properties
against the WS-I requirements before creating the WSD.

Select No if you do not want Designer to enforce compliance for WS-I Basic
Profile 1.1.

Note: WS-I Basic Profile 1.0 supports only HTTP or HTTPS bindings.
Consequently, WS-I compliance cannot be enforced if the WSDL contains a
SOAP over JMS binding.

15. Click Next if you want to specify different prefixes than those specified in the XML
schema definition. If you want to use the prefixes specified in the XML schema
definition itself, click Finish.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 756

16. On the Assign Prefixes panel, if you want the web service descriptor to use different
prefixes than those specified in the XML schema definition, select the prefix you
want to change and enter a new prefix. Repeat this step for each namespace prefix
that you want to change.

Note: The prefix you assign must be unique and must be a valid XML NCName
as defined by the specification hp://www.w3.org/TR/REC-xml-names/
#NT-NCName.

17. Click Finish.

Designer creates the provider web service descriptor and saves it to the folder you
specified. Designer also creates supporting IS elements, such as flow services, IS
document types, and IS schemas.

If Designer cannot create or cannot completely generate a provider web service
descriptor, Designer displays error messages or warning messages.

18. If Integration Server determines that an XML Schema definition included in or
referenced by the WSDL document is invalid or cannot be generated according to
the selected content model compliance option, Designer displays the validation
error message at the top of the Select Document Type Generation Options panel.
Click Cancel to abandon this aempt to create a consumer web service descriptor.
Alternatively, click Back to navigate to previous panels and change your selections.

19. If the WSDL document contains constructs that the current web services stack
does not support, Designer displays a message identifying the reasons the web
service descriptor cannot be created on the current web services stack. Designer
then prompts you to create the web service descriptor using an earlier version of the
web services stack. If you want to create the web service descriptor using the earlier
version of the web services stack, click OK. Otherwise, click Cancel.

Notes:

If the WSDL document contains a construct supported on the web services stack
available in Integration Server 7.x, 8.0, and 8.0 SP1 but not on the current web
services stack, Designer gives you the option of creating the web service descriptor
using the earlier version of the web services stack. If the WSDL document contains
any of the following, Designer prompts you to use an earlier version of the web
services stack:

Mixed “use” values across bindings and operations referenced by services in the
WSDL document.

Mixed “style” values across bindings referenced by services in the WSDL.

More than one operation with the same name in the same port type.

Bindings that do not contain all of the operations declared in the port type.

Services with multiple bindings that reference different port types.

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-NCName

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 757

Note: If you create the web services descriptor using the earlier version of the
web services stack, the Pre-8.2 compatibility mode property will be set to true
for the resulting web service descriptor.

Integration Server does not create a provider web service descriptor if the WSDL
document contains any bindings that are not supported by Integration Server.

Integration Server will create duplicate operations in case the WSDL document has
multiple port names for the same binding. To ensure that duplicate operations are
not created, modify the WSDL to make the port name unique for each binding.

Integration Server uses the internal schema parser to validate the XML schema
definition associated with the WSDL document. If you selected the Validate schema
using Xerces check box, Integration Server also uses the Xerces Java parser to validate
the XML Schema definition. With either parser, if the XML Schema does not
conform syntactically to the schema for XML Schemas defined in XML Schema Part
1: Structures (which is located at hp://www.w3.org/TR/xmlschema-1), Integration
Server does not create an IS schema or an IS document type for the web service
descriptor. Instead, Designer displays an error message that lists the number, title,
location, and description of the validation errors within the XML Schema definition.

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations
for this version are listed at hp://xerces.apache.org/xerces2-j/xml-
schema.html.

When validating XML schema definitions, Integration Server uses the Perl5 regular
expression compiler instead of the XML regular expression syntax defined by the
World Wide Web Consortium for the XML Schema standard. As a result, in XML
schema definitions consumed by Integration Server, the paern constraining facet
must use valid Perl regular expression syntax. If the supplied paern does not use
proper Perl regular expression syntax, Integration Server considers the paern to be
invalid.

Note: If the wa.core.datatype.usejavaregex configuration parameter is set to
true, Integration Server uses the Java regular expression compiler instead
of the Perl5 regular expression compiler. When the parameter is true,
the paern constraining facet in XML schema definitions must use valid
syntax as defined by the Java regular expression.

When creating the document types for the provider web service descriptor,
Integration Server registers each document type with the complex type definition
from which it was created in the schema. This enables Integration Server to provide
derived type support for document creation and validation.

If you selected strict compliance and Integration Server cannot represent the content
model in the complex type accurately, Integration Server does not generate any IS
document types or the web service descriptor.

The contents of an IS document type with a Model type property value other than
“Unordered” cannot be modified.

http://www.w3.org/TR/xmlschema-1/
http://xerces.apache.org/xerces2-j/xml-schema.html
http://xerces.apache.org/xerces2-j/xml-schema.html

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 758

For an IS document type from a WSDL document, Designer displays the location
of the WSDL in the Source URI property. Designer also sets the Linked to source
property to true which prevents any editing of the document type contents. To edit
the document type contents, you first need to make the document type editable by
breaking the link to the source. However, Software AG does not recommend editing
the contents of document types created from WSDL documents.

If the source WSDL document is annotated with WS-Policy:

Integration Server enforces the annotated policy at run time. However, if you
aach a policy from the policy repository to the web service descriptor, the
aached policy will override the original annotated policy.

Integration Server will only enforce supported policy assertions in the annotated
policy. For information about supported assertions, see the Web Services
Developer’s Guide.

Integration Server does not save the annotated policy in the policy repository.

The Message Exchange Paern (MEP) that Integration Server uses for an operation
defined in the WSDL can be In-Out MEP, In-Only MEP, or Robust In-Only MEP.
Integration Server always uses In-Out MEP when the web service descriptor’s
Pre-8.2 compatibility mode property is set to true. When this property is set to false,
Integration Server uses:

In-Out MEP when an operation has defined input and output.

In-Only MEP when an operation has no defined output and no defined fault.

Robust In-Only MEP when an operation has no defined output, but does have a
defined fault.

For more information about Integration Server MEP support, see the Web Services
Developer’s Guide.

If the WSDL is annotated with WS-Policy, Integration Server will only enforce
supported policy assertions. Currently Integration Server supports only WS-Security
policies. Also be aware that Integration Server does not save the WS-Policy that is
in the WSDL in the policy repository. Integration Server will enforce the annotated
policy unless a policy that resides in the Integration Server policy repository is
specifically aached to the web service descriptor. If you aach a policy to the web
service descriptor, the aached policy will override the original annotated policy.

Integration Server creates the docTypes and services folders to store the IS document
types, IS schemas, and skeleton services generated from the WSDL document.
These folders are reserved for elements created by Integration Server for the web
service descriptor only. Do not place an custom IS elements in these folders. During
refresh of a web service descriptor, the contents of these folders will be deleted and
recreated.

If an XML Schema definition referenced in the WSDL document contains the <!
DOCTYPE declaration, Integration Server issues a java.io.FileNotFoundException.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 759

To work around this issue, remove the <!DOCTYPE declaration from the XML
Schema definition.

About Consumer Web Service Descriptors
To use Integration Server and Designer to invoke web services located on remote
servers, create a consumer web service descriptor from a WSDL document, from a
service asset in CentraSite, or from the web service in the UDDI registry. A consumer
web service descriptor (WSD) defines an external web service. It contains all the data from
the WSDL document that defines the web service, as well as data needed for certain
Integration Server run-time properties.

Integration Server creates a web service connector (WSC) for each operation in the web
service. A web service connector is a flow service with an input and output signature
that corresponds to the input and output messages of the web service operation.

The web service connector is a flow service that:

Uses an input and output signature that corresponds to the input and output
messages of the web service operation.

Contains flow steps that create and send a message to the web service using the
transport, protocol, and location information specified in the web service.

Contains flow steps that extract data from the output message returned by the web
service.

When Integration Server executes a web service connector, the web service connector
calls a specific operation of a web service.

In versions 9.0 and later, Integration Server also creates a response service for each
operation in the WSDL document. Response services are flow services to which you can
add custom logic to process asynchronous SOAP responses. For more information about
response services, see "About Response Services" on page 769.

Creating a Consumer Web Service Descriptor
You can create a consumer WSD from a WSDL document accessible via a URL, a WSDL
document in a UDDI registry, or a service asset in CentraSite.

You must have Write access to the folder in which you want to store the consumer
web service descriptor.

If you are creating a consumer web service descriptor from a WSDL located on a
website, if the website on which the document resides is password protected, you
must download the WSDL document to your local file system and then create the
consumer web service descriptor.

If the URL for the WSDL contains special characters that need to be encoded, specify
the encoding using the Encoding for WSDL URL option in the Web Service Descriptor
Editor Preferences page.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 760

To create a consumer web service descriptor from a service asset in CentraSite,
Designer must be configured to connect to CentraSite.

You can also create a consumer web service descriptor from a service asset in
CentraSite by dragging and dropping the service asset from the Registry Explorer
view into Package Navigator view. Designer prompts you for a name for the
web service descriptor and prompts you to indicate whether you want to create a
consumer or provider web service descriptor.

To create a consumer web service descriptor from a web service in a UDDI registry,
Designer must be configured to connect to that UDDI registry.

You can specify whether Integration Server enforces strict, lax, or no content model
compliance when generating IS document types from the XML Schema definition
contained or referenced in the WSDL document. Content models provide a formal
description of the structure and allowed content for a complex type. The type of
compliance that you specify can affect whether Integration Server generates an IS
document type from a particular XML Schema definition successfully.

Do not create a consumer web service descriptor from a WSDL that specifies RPC-
Encoded, contains aributes in its operation signature, and/or has complex type
definitions with mixed content. Integration Server might successfully create a web
service descriptor from such WSDLs. However, the web service descriptor may
exhibit unexpected runtime behavior.

To create a consumer web service descriptor

1. In Package Navigator view, click File > New > Web Service Descriptor.

2. In the New Web Service Descriptor dialog box, select the folder in which you want to
save the consumer web service descriptor. Click Next.

3. In the Element Name field, specify a name for the consumer WSD using any
combination of leers, numbers, and/or the underscore character. Click Next.

4. Under Create web service descriptor as, select Consumer (Outbound Request).

5. Under Web service source, select WSDL. Click Next.

6. Under Source location, do one of the following:

Select... To generate a consumer web service descriptor from...

CentraSite A service asset in CentraSite

File/URL A WSDL document that resides on the file system or
on the Internet.

UDDI A WSDL document in a UDDI registry

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 761

7. If you specified CentraSite as the source, under Select web service fromCentraSite,
select the service asset in CentraSite that you want to use to create the web service
descriptor. Click Next.

Designer filters the contents of the Services folder to display only service assets that
are web services.

If Designer is not configured to connect to CentraSite, Designer displays the
CentraSite> Connections preference page and prompts you to configure a connection
to CentraSite.

8. If you specified File/URL as the source, do one of the following:

Enter the URL for the WSDL document. The URL should begin with hp:// or
hps://. Click Next

Click Browse to navigate to and select a WSDL document on your local file
system. Click Next

9. If you specified UDDI as the source, under Select web service from UDDI Registry, select
the web service from the UDDI registry. Click Next.

If Designer is not currently connected to a UDDI registry, the Open UDDI Registry
Session dialog box appears. Enter the details to connect to the UDDI registry and
click Finish.

10. Under Content model compliance, select one of the following to indicate how strictly
Integration Server enforces content model compliance when creating IS document
types from the XML Schema definition in the WSDL document.

Select... To...

Strict Generate the IS document type only if Integration Server can
represent the content models defined in the XML Schema
definition correctly. Document type generation fails if
Integration Server cannot accurately represent the content
models in the source XML Schema definition.

Currently, Integration Server does not support repeating
model groups, nested model groups, or the any aribute.
If you select strict compliance, Integration Server does
not generate an IS document type from any XML schema
definition that contains those items.

Note: If Integration Server cannot generate an IS document
type that complies with the content model in the XML
schema definition in the WSDL document, Integration
Server will not generate the consumer web service
descriptor.

Lax When possible, generate an IS document type that correctly
represents the content models for the complex types defined

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 762

Select... To...
in the XML schema definition from the WSDL document.
If Integration Server cannot correctly represent the content
model in the XML Schema definition in the resulting IS
document type, Integration Server generates the IS document
type using a compliance mode of None.

When you select lax compliance, Integration Server will
generate the IS document type even if the content models in
the XML schema definition cannot be represented correctly.

None Generate an IS document type that does not necessarily
represent or maintain the content models in the source XML
Schema definition.

When compliance is set to none, Integration Server generates
IS document types the same way they were generated in
Integration Server releases prior to version 8.2.

11. Under Document type generation, select the Enable MTOM streaming for elements of type
base64Binary check box if you want elements declared to be of type base64Binary in
the WSDL or schema to be enabled for streaming of MTOM aachments. For more
information about MTOM streaming for web services, see the Web Services Developer’s
Guide.

12. If you want to use the Xerces Java parser to validate any schema elements in the
WSDL document or any referenced XML Schema definitions before creating the web
service descriptor, select the Validate schema using Xerces check box.

Note: Integration Server uses an internal schema parser to validate the schemas
in or referenced by a WSDL document. However, the Xerces Java parser
provides stricter validation than the Integration Server internal schema
parser. As a result, some schemas that the internal schema parser considers
to be valid might be considered invalid by the Xerces Java parser. While
validation by the Xerces Java parser can increase the time it takes to
create a web service descriptor and its associated elements, using stricter
validation can help ensure interoperability with other web service vendors.

13. Under Enforce WS-I Basic Profile 1.1 compliance do one of the following:

Select Yes if you want Designer to validate all the WSD objects and properties
against the WS-I requirements before creating the WSD.

Select No if you do not want Designer to enforce compliance for WS-I Basic
Profile 1.1.

Note: WS-I Basic Profile 1.0 supports only HTTP or HTTPS bindings.
Consequently, WS-I compliance cannot be enforced if the WSDL contains a
SOAP over JMS binding.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 763

14. Click Next if you want to specify different prefixes than those specified in the XML
schema definition. If you want to use the prefixes specified in the XML schema
definition itself, click Finish.

15. On the Assign Prefixes panel, if you want the web service descriptor to use different
prefixes than those specified in the XML schema definition, select the prefix you
want to change and enter a new prefix. Repeat this step for each namespace prefix
that you want to change.

Note: The prefix you assign must be unique and must be a valid XML NCName
as defined by the specification hp://www.w3.org/TR/REC-xml-names/
#NT-NCName.

16. Click Finish.

Designer creates the consumer web service descriptor and saves it to the specified
folder. Designer also creates supporting IS elements, such as web service connectors,
IS document types, and response services and places them in the same folder. For
more information about what elements Integration Server creates, see "Supporting
Elements for a Consumer Web Service Descriptor" on page 766.

If Designer cannot create or cannot completely generate a consumer WSD, Designer
displays error messages or warning messages.

If Integration Server determines that an XML Schema definition included in or
referenced by the WSDL document is invalid or cannot be generated according to
the selected content model compliance option, Designer displays the validation
error message at the top of the Select Document Type Generation Options panel.
Click Cancel to abandon this aempt to create a consumer web service descriptor.
Alternatively, click Back to navigate to previous panels and change your selections.

Notes:

If the WSDL document contains a construct supported on the web services stack
available in Integration Server 7.x, 8.0, and 8.0 SP1 but not on the current web
services stack, Designer gives you the option of creating the web service descriptor
using the earlier version of the web services stack. If the WSDL document contains
any of the following, Designer prompts you to use an earlier version of the web
services stack:

Mixed “use” values across bindings and operations referenced by services in the
WSDL document.

Mixed “style” values across bindings referenced by services in the WSDL.

More than one operation with the same name in the same port type.

Bindings that do not contain all of the operations declared in the port type.

Services with multiple bindings that reference different port types.

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-NCName

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 764

Note: If you create the web services descriptor using the earlier version of the
web services stack, the Pre-8.2 compatibility mode property will be set to true
for the resulting web service descriptor.

Integration Server does not create binders for unsupported bindings in the WSDL
document. If the WSDL document does not contain any bindings supported by
Integration Server, Integration Server does not create a consumer web service
descriptor.

When creating the document types for the consumer web service descriptor,
Integration Server registers each document type with the complex type definition
from which it was created in the schema. This enables Integration Server to provide
derived type support for document creation and validation.

Integration Server uses the internal schema parser to validate the XML schema
definition associated with the WSDL document. If you selected the Validate schema
using Xerces check box, Integration Server also uses the Xerces Java parser to validate
the XML Schema definition. With either parser, if the XML Schema does not
conform syntactically to the schema for XML Schemas defined in XML Schema Part
1: Structures (which is located at hp://www.w3.org/TR/xmlschema-1), Integration
Server does not create an IS schema or an IS document type for the web service
descriptor. Instead, Designer displays an error message that lists the number, title,
location, and description of the validation errors within the XML Schema definition.

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations
for this version are listed at hp://xerces.apache.org/xerces2-j/xml-
schema.html.

When validating XML schema definitions, Integration Server uses the Perl5 regular
expression compiler instead of the XML regular expression syntax defined by the
World Wide Web Consortium for the XML Schema standard. As a result, in XML
schema definitions consumed by Integration Server, the paern constraining facet
must use valid Perl regular expression syntax. If the supplied paern does not use
proper Perl regular expression syntax, Integration Server considers the paern to be
invalid.

Note: If the wa.core.datatype.usejavaregex configuration parameter is set to
true, Integration Server uses the Java regular expression compiler instead
of the Perl5 regular expression compiler. When the parameter is true,
the paern constraining facet in XML schema definitions must use valid
syntax as defined by the Java regular expression.

If you selected strict compliance and Integration Server cannot represent the content
model in the complex type accurately, Integration Server does not generate any IS
document types or the web service descriptor.

For an IS document type from a WSDL document, Designer displays the location
of the WSDL in the Source URI property. Designer also sets the Linked to source
property to true which prevents any editing of the document type contents. To edit
the document type contents, you first need to make the document type editable by

http://www.w3.org/TR/xmlschema-1/
http://xerces.apache.org/xerces2-j/xml-schema.html
http://xerces.apache.org/xerces2-j/xml-schema.html

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 765

breaking the link to the source. However, Software AG does not recommend editing
the contents of document types created from WSDL documents.

The contents of an IS document type with a Model type property value other than
“Unordered” cannot be modified.

Operations and binders cannot be added, edited, or removed from a consumer web
service descriptor.

The Message Exchange Paern (MEP) that Integration Server uses for an operation
defined in the WSDL can be In-Out MEP, In-Only MEP, or Robust In-Only MEP.
Integration Server always uses In-Out MEP when the web service descriptor’s Pre-8.2
compatibility mode property is true. When this property is false, Integration Server
uses:

In-Out MEP when an operation has defined input and output.

In-Only MEP when an operation has no defined output and no defined fault.
The web service connector that Integration Server creates will no SOAP message-
related output parameters and, when executed, will not return output related to
a SOAP response.

Robust In-Only MEP when an operation has no defined output, but has a defined
fault. The web service connector that Integration Server creates will return
no output related to a SOAP response if the operation executes successfully.
However, if an exception occurs, the web service connector returns the SOAP
fault information as output.

For more information about Integration Server MEP support, see the Web Services
Developer’s Guide.

Integration Server creates response services for all In-Out and Robust In-Only MEP
operations in the WSDL document.

When creating a web service descriptor from a WSDL document, Integration Server
treats message parts that are defined by the type aribute instead of the element
aribute as an error and does not allow the web service descriptor to be created. You
can change this behavior by seing the wa.server.SOAP.warnOnPartValidation
parameter to true. When this parameter is set to true, Integration Server will return
a warning instead of an error and will allow the web service descriptor to be created.

If the WSDL document is annotated with WS-Policy:

Integration Server enforces the annotated policy at run time. However, if you
aach a policy from the policy repository to the web service descriptor, the
aached policy will override the original annotated policy.

Integration Server will only enforce supported policy assertions in the annotated
policy. Currently Integration Server supports only WS-Security policies.

Integration Server does not save the annotated policy in the policy repository.

If an XML Schema definition referenced in the WSDL document contains the <!
DOCTYPE declaration, Integration Server issues a java.io.FileNotFoundException.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 766

To work around this issue, remove the <!DOCTYPE declaration from the XML
Schema definition.

Supporting Elements for a Consumer Web Service Descriptor
When Designer creates a consumer web service descriptor, it also creates supporting IS
elements. Each of the IS elements that Designer creates corresponds to an element in the
WSDL document.

This IS element... Corresponds to this WSDL element...

consumerWsdName_ The WSDL document. All supporting IS elements for
the consumer web service descriptor are contained
in this new folder. The folder name is the same
as the web service descriptor, with a suffix of an
“_” (underscore).

docType folder All of the IS document types generated from the
messages in the WSDL document.

connectors
folder

All of the web service connectors generated from the
operations in the WSDL document.

responseServices
folder
(Available in
Integration
Server version
9.0 and later
only.)

All of the response services generated from
the operations in the WSDL document and the
genericFault_Response service.

Web service
connector

Each unique <operation> element in a <portType>
element; the web service connector name corresponds
to the portType name and operation name.

IS document
type

Each <message> element in the WSDL document. The
IS document type name corresponds to the message
name.

IS schema Each target namespace to which the element
declarations, aribute declarations, and type
definitions that define the message parts (input and
output signature) belong.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 767

This IS element... Corresponds to this WSDL element...

Note: Integration Server assigns any IS schemas to
a unique schema domain for that web service
descriptor.

Response
service
(Available in
Integration
Server version
9.0 and later
only.)

Each unique <operation> element in a <portType>
element; the response service name corresponds to the
portType name and operation name, with a suffix of
“_Response.

genericFault_
Response service

The default response service that Integration Server
invokes when Integration Server cannot determine the
specific response service for an asynchronous SOAP
response or if there are errors while processing the
response.

Note: The consumerWSDName_ folder and its subfolders docTypes, connectors, and
responseServices are reserved for elements created by Integration Server for
the web service descriptor only. Do not place any custom IS elements in these
folders.

About Web Service Connectors
A web service connector is a flow service that Integration Server creates at the time
it creates the consumer web service descriptor. A web service connector contains the
information and logic needed to invoke an operation defined in the WSDL document
used to create the consumer web service descriptor.

When creating a consumer web service descriptor from a WSDL document, Integration
Server creates a web service connector for each operation and portType combination
contained in the WSDL document. For example, if a WSDL document contains two
portType declarations and each portType contains three operations, Integration Server
creates six web service connectors.

A web service connector:

Uses an input and output signature that corresponds to the input message, output
message, and headers defined for the operation in the WSDL document. The web
service connector signature also contains optional inputs that you can use to control
the execution of logic in the web service connector.

Represents a SOAP fault structure in the output signature differently based on the
version of the Integration Server on which the web service descriptor is created. To

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 768

learn more about the output signature of a web service connector, see Web Services
Developer’s Guide.

Contains flow steps that create and send a message to the web service endpoint
using the transport, protocol, and location information specified in the web service’s
WSDL document in conjunction with input supplied to the web service connector.

Contains flow steps that extract data or fault information from the response message
returned by the web service.

Important: Do not edit the flow steps in a web service connector.

Note: A web service connector that worked correctly with previous versions of
Developer, Designer, and Integration Server should continue to work with
version 8.2 and later. In addition, any external clients created from WSDL
generated from previous versions of Developer and Integration Server should
continue to work as they did in the previous version.

For detailed information about a web service connector, such as a description of the web
service connector signature, see the Web Services Developer’s Guide.

Refreshing a Web Service Connector
When you create a consumer web service descriptor, Designer automatically generates
the web service connector(s). You must refresh the web service connectors after you have
added, deleted, or modified any of the following.

Header

Fault

Endpoint alias within a binder for a consumer web service descriptor

Refreshing the web service connectors overwrites all the existing web service connectors
for a consumer web service descriptor.

Keep the following points in mind when refreshing a web service connector:

When refreshing a web service connector, Integration Server deletes the
consumerWSDName_ folder and all elements contained in that folder and its
subfolders. Integration Server will not recreate any elements manually added to the
folder or its subfolders. Integration Server will not recreate modifications made to
any of the original elements in the consumerWSDName_ folder.

Refreshing a web service connector does not change the structure of the fault in
the output signature. That is, when you refresh a web service connector for a web
service descriptor created using an Integration Server version prior to 8.2, the web
service connector output signature retains the SOAP fault document that is specific
to the SOAP protocol (i.e., SOAP 1.1 or SOAP 1.2). Similarly, if you refresh a web
service connector for a web service descriptor created using Integration Server 8.2,
the web service connector’s output signature will continue to have the generic SOAP
fault structure. For more information about how the output signature of web service

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 769

connector depends on the version of the Integration Server on which the web service
descriptor is created, see Web Services Developer’s Guide.

If the Validate Schema using Xerces property is set to true for a web service descriptor,
Integration Server validates the schemas associated with a consumer web service
descriptor when you refresh the web service connector.

Refreshing web service connectors is different than refreshing a web service
descriptor. When refreshing web service connectors, Integration Server uses the
original WSDL document to recreate the web service connectors and the contents
of the consumerWSDName_ folder. When refreshing a web service descriptor,
Integration Server uses an updated version of the WSDL document to regenerate the
web service descriptor and its associated IS elements. For more information about
refreshing web service descriptors, see "About Refreshing a Web Service Descriptor"
on page 770.

If you are using the local service development feature, using versions of Subversion
prior to 1.7 as your VCS client might cause issues while refreshing web service
connectors. Software AG recommends that you use Subversion 1.7 or higher as your
VCS client.

To refresh a web service connector

1. In Package Navigator view, open the consumer WSD for which you want to refresh
web service connectors.

2. Click the Operations tab or the Binders tab.

3. Click or right-click and select Refresh Web Service Connectors.

Integration Server regenerates all web service connectors in the consumer WSD,
overwriting the existing web service connectors.

Invoking a Web Service Using a Web Service Connector
To invoke a web service, or more specifically, an operation in a web service, create a
flow service that invokes the web service connector that corresponds to the operation
you want to use. Because a web service connector is a flow service, you invoke the web
service connector in the same way in which you would a regular flow service.

Note: If the web service connector uses a JMS binding to send a message using
SOAP over JMS, you can specify how Integration Server proceeds when
the JMS provider is not available at the time the message is sent. For more
information, see "Configuring Use of the Client Side Queue" on page 797.

About Response Services
In versions 9.0 and later, Integration Server creates a responseServices folder along with
connectors and docTypes folders when you create a consumer web service descriptor.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 770

The responseServices folder contains a response service for each In-Out and Robust-
In-Only MEP operation in the WSDL document from which the consumer web service
descriptor is created. Response services are flow services to which you can add custom
logic to process asynchronous SOAP responses. Integration Server creates the response
services only if the consumer web service descriptor:

Is created on Integration Server version 9.0 or later.

Has the Pre-8.2 compatibility mode property set to false.

Integration Server invokes the response services for processing asynchronous SOAP
responses received for the associated consumer web service descriptor. That is,
Integration Server invokes a response service when Integration Server receives a SOAP
response with the endpoint URL pointing to a consumer web service descriptor and
if this SOAP response contains a WS-Addressing action through which the response
service can be resolved.

The responseServices folder also contains a genericFault_Response service, which is the
default response service that Integration Server invokes when Integration Server cannot
determine the specific response service for a SOAP response or if there are errors while
processing the response.

For more information about response services and how Integration Server processes
responses asynchronously, see the Web Services Developer’s Guide

About Refreshing a Web Service Descriptor
If the WSDL document used to create a web service descriptor changes, you may want
to refresh the web service descriptor to reflect the recent changes. For example, if you
created a WSDL first provider web service descriptor from a WSDL document that
has since changed to include a new operation or new input/output messages, you
can refresh the web service descriptor. Refreshing the web service descriptor does the
following:

Updates the web service descriptor or its associated IS elements to reflect changes in
existing elements in the updated WSDL document.

Adds elements, such as operations, headers, or binders, to the web service descriptor
to reflect new elements in the updated WSDL document.

Adds new IS elements, such as IS document types, IS schemas, and services, that
correspond to new elements in the updated WSDL document.

Removes web service descriptor elements or IS elements that correspond to elements
that have been removed from the updated WSDL document.

Preserves any changes you made to the web service descriptor since it was created
from the original WSDL document.

Refreshing a web service descriptor is different than refreshing web service connectors.
When refreshing a web service descriptor, Integration Server uses an updated version
of the WSDL document to regenerate the web service descriptor and its associated

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 771

IS elements. When refreshing web service connectors, Integration Server uses the
original WSDL document to recreate the web service connectors and the contents of
the consumerWSDName_ folder. For more information about refreshing web service
connectors, see "Refreshing a Web Service Connector" on page 768.

The following table provides an overview of the activities involved in refreshing a web
service descriptor.

Step Description

1 You select the web service descriptor that you want to refresh.
You can refresh WSDL first provider web service descriptors or
consumer web service descriptors created on Integration Server
version 7.1 or later.

Note: Service first provider web service descriptors are not created
from a WSDL document and therefore cannot be refreshed.

2 You specify the location of the WSDL document that you
want Integration Server to use when refreshing the web
service descriptor. If the web service descriptor was created on
Integration Server version 8.2 or later, Integration Server defaults
to the WSDL document at the location specified by the Source
URI property. If the web service descriptor was created before
Integration Server version 8.2, Designer prompts you to select
the location of the WSDL document to use as the source for the
refresh.

3 Integration Server creates a backup copy of the web service
descriptor and its associated elements, such as IS document types,
IS schemas, services, and web service connectors. Integration
Server uses the most recently saved version of the web service
descriptor and its associated elements as the backup copy.
Integration Server makes a backup copy in case it cannot refresh
the web service descriptor successfully.

4 Integration Server regenerates the web service descriptor using
the options specified in the New Web Service Descriptor wizard at
the time the web service descriptor was first created. For example,
if you specified Strict for the Content model compliance option,
Integration Server uses the Strict option when refreshing.

Note: If you want Integration Server to use different options than
the original ones when refreshing the web service descriptor,
do not refresh the web service descriptor. Instead, delete
the web service descriptor and then recreate it using the

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 772

Step Description
updated WSDL document and the different New Web
Service Descriptor wizard options.

5 During regeneration, Integration Server does the following:

If an existing element in the WSDL document has been modified,
Integration Server updates the corresponding elements in the
web service descriptor or its associated IS elements. For example,
suppose that a complex type definition changed and that type
definition was used in the input message for an operation.
During refresh, Integration Server would recreate the document
type that corresponds to the input signature.

If the WSDL document includes new information or elements,
Integration Server adds that information to the web service
descriptor or one if its associated IS elements. For example, if the
WSDL used to create a provider web service descriptor includes
a new operation, Integration Server generates a new skeleton
service and adds the service as an operation in the web service
descriptor.

 If information or an element has been removed from the updated
WSDL document, Integration Server removes the corresponding
web service descriptor information or associated IS element. For
example, suppose that the original WSDL document included a
header but the updated WSDL document does not include that
header. During refresh, Integration Server removes the header
from the web service descriptor and deletes the IS document
type that corresponds to the original header.

Note: Integration Server considers a renamed element to be a
new element. For example if the name of an operation
changed from “myOperation” to “yourOperation”,
Integration Server removes the operation “myOperation”
from the web service descriptor. Integration Server
creates a new service for “yourOperation” and adds that
service to the web service descriptor as an operation.

 Integration Server merges in changes that you made since the
web service descriptor was first created or since the last refresh.
For example, if you added logic to a skeleton service generated
for a WSDL first provider web service descriptor, Integration
Server adds that logic to the refreshed service. If you added a
header or fault to the web service descriptor, Integration Server
adds that header or fault to the refreshed web service descriptor.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 773

Step Description

Note: When refreshing a web service descriptor, Integration
Server does not preserve any changes made to IS
document types or IS schemas that were generated from
the WSDL document.

Integration Server sets the properties of the refreshed web
service descriptor to match the property values that were
specified before the web service descriptor was refreshed.
Integration Server also ensures that any services created from
the original WSDL document have the same properties after the
refresh.

6 Upon successful refresh of the web service descriptor, Integration
Server deletes the backup copy of the web service descriptor and
its associated elements. If Integration Server cannot successfully
refresh the web service descriptor, Integration Server reverts to the
backup copy.

How Refresh Affects a Web Service Descriptor
Integration Server handles the updating of each web service descriptor element or
associated IS element differently depending on:

The web service descriptor element, such as an operation, binder, or header.

The type IS element.

Whether the web service descriptor element or IS element changed since the web
service descriptor was first created.

Whether the updated WSDL document contains an element that corresponds to the
web service descriptor element or IS element.

The following table provides details about how Integration Server handles specific IS
elements during refresh.

For this element... During refresh Integration Server...

IS document
type

Deletes all of the document types thatIntegration Server
generated from the WSDL document. Integration Server
then creates new document types using the updated WSDL
document. Any changes made to the original document types
will be lost.

IS schema Deletes all of the IS schemas that Integration Server
generated from the WSDL document. Integration Server then

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 774

For this element... During refresh Integration Server...
creates new IS schemas using the updated WSDL document.
Any changes made to the original IS schemas will be lost.

Service Does one of the following for the skeleton services generated
for operations in the original WSDL document:

If logic has been added to the skeleton service or service
properties have been set and the corresponding operation
exists in the updated WSDL document, Integration Server
merges the logic into the refreshed service and ensures that
the property values match the values set prior to refreshing.

If logic has not been added to the skeleton service, service
properties have not been set, and the corresponding
operation exists in the updated WSDL document,
Integration Server recreates the empty skeleton service.

If a service corresponds to an operation that does not
exist in the updated WSDL document, Integration Server
removes the operation that corresponds to the service from
the web service descriptor. Integration Server keeps the
service in the “services” folder.

Note: Integration Server considers a renamed operation to
be a new operation.

Web service
connector

Deletes and recreates all web service connectors. Any
changes made to a web service connector, including changes
for pipeline mapping, will be lost.

connectors folder Deletes the connectors folder and all elements contained in
that folder and its subfolders. Integration Server will not
recreate any elements manually added to the folder or its
subfolders.

consumerWSDName _
folder

Deletes the consumerWSDName_ folder and all elements
contained in that folder and its subfolders. Integration
Server will not recreate any elements manually added to the
folder or its subfolders. Integration Server will not recreate
modifications made to any of the original elements in the
consumerWSDName_ folder.

docTypes folder Deletes the docTypes folder and all elements contained in
that folder and its subfolders. Integration Server will not
recreate any elements manually added to the folder or its
subfolders.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 775

For this element... During refresh Integration Server...

responseServices
folder

Does the following with the contents of the responseServices
folder:

For new operations in the updated WSDL document,
Integration Server adds new response services.

For modified operations, Integration Server updates the
response services including merging in any logic that was
added.

For deleted operations, Integration Server removes the
operation that corresponds to the service from the web
service descriptor. Integration Server keeps the response
service in the “responseServices” folder.

services folder Does the following with the contents of the services folder:

Adds new skeleton services for new operations in the
updated WSDL document.

For modified operations, updates the skeleton services
including merging in any logic that was added. For more
information, see the “Service” row in this table.

For deleted operations, Integration Server removes the
operation that corresponds to the service from the web
service descriptor. Integration Server keeps the service in
the “services” folder.

The following table provides details about how refreshing a web service descriptor
affects the contents of the web service descriptor itself.

For this web service
descriptor element

During refresh Integration Server...

Binders Updates the binders to reflect any new port information
in the WSDL document. Integration Server also updates
the operations for each binder to reflect any new or
removed operations in the updated WSDL document.
Integration Server updates the SOAP action values
assigned to operations in binders to reflect any changes
in the updated WSDL document.

Header/Fault For a header/fault defined in the WSDL document,
Integration Server does one of the following:

If the updated WSDL document does not contain the
header/fault, Integration Server removes the header/

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 776

For this web service
descriptor element

During refresh Integration Server...

fault from the web service descriptor. Integration
Server also deletes the document types used to define
the header/fault documents from the docTypes folder.

If the updated WSDL document contains the header/
fault, Integration Server keeps the header/fault in the
web service descriptor. Integration Server recreates
the document types used to define the header/fault
documents and places them in the docTypes folder.

If the updated WSDL contains a new header/fault,
Integration Server adds the header/fault to the web
service descriptor. Integration Server adds the new
document types used to define the header/fault
documents to the docTypes folder.

For a header/fault that was added manually after the
web service descriptor was created, Integration Server
adds the document types that define the header/fault to
the refreshed web service descriptor.

Note: If a header/fault that was added manually after
the web service descriptor was created has the
same name as a header/fault in the updated WSDL
document, Integration Server replaces the manually
added header/fault with the header/fault that
Integration Server generates programmatically
from the WSDL document. This might result in
broken mappings or unexpected behavior in the
handler service associated with the header/fault.

Handler Integration Server adds handlers defined in the
previous version of the web service descriptor to the
refreshed web service descriptor.

Operations Updates the operations to reflect any new or removed
operations in the updated WSDL document.

Policy Aaches any polices added in the previous version of
the web service descriptor to the refreshed version of
the web service descriptor.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 777

Considerations for Refreshing a Web Service Descriptor
Because refreshing a web service descriptor involves deleting, recreating, and merging
elements, it is possible that refreshing will result in broken mappings, services that do
not execute to completion successfully, and other issues that need to be resolved. Before
refreshing a web service descriptor, review the following considerations.

Refresh a web service descriptor only if you are familiar with the original WSDL
document, the changes in the updated WSDL document, and the web service
descriptor. Designer does not provide a list of changes to the web service descriptor
as part of the refresh. You will need to use your knowledge of the WSDL document
changes and the web service descriptor to ensure that operations, services, pipeline
mapping, and other aspects of the web service descriptor work as expected.

During refresh, mappings between variables might break or be lost. This is
particularly true when the web service descriptor has manually added headers
or faults and the updated WSDL document has new headers or faults of the same
name.

During refresh of a consumer web service descriptor, Integration Server deletes and
recreates the contents of the consumerWSDName_ . This includes all of the document
types, Integration Server schemas and web service connectors generated from the
original WSDL document. Any changes made to these elements will be lost. For
web service connectors, this includes maps (links) between variables in the pipeline,
variables added to the pipeline, variables dropped from the pipeline, and values
assigned to pipeline variables.

During refresh of a WSDL first provider web service descriptor, Integration Server
deletes and recreates the contents of the docTypes folder. Changes made to the IS
document types and IS schemas generated from the original WSDL document will
be lost.

Because Integration Server deletes and recreates the contents of the
consumerWSDName_ folder, docTypes folder, connectors folder, and services folder
during refresh, do not place any custom elements in these folders. These folders are
reserved for elements created by Integration Server for the web service descriptor
only. Before refreshing a web service descriptor, remove any custom elements from
these folders.

If you used an IS element created by Integration Server for the web service descriptor
with another IS element that is not associated with the web service descriptor,
refreshing the web service descriptor might break the other usages of the IS element.
For example, suppose that you used an IS document type created for an input
message as the input signature of a service not used as an operation in the web
service descriptor. If the input messages is removed from the updated WSDL
document upon refresh, the other service will have a broken reference. The service
will reference a document type that no longer exists.

If you refresh a WSDL first provider web service descriptor for which web service
clients have already been created, the web service clients will need to be recreated.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 778

Consumers will need to recreate their web service client using the new WSDL
document that Integration Server generates for the provider web service descriptor.

During refresh, Integration Server regenerates the web service descriptor using
the functionality and features available in the Integration Server version on which
the web service descriptor was originally created. After refreshing the web service
descriptor, the Created on version property value is the same version of Integration
Server as before the refresh. Refreshing a web service descriptor on the latest version
of Integration Server does not update the web service descriptor to include all the
web service features and functionality available in the current version of Integration
Server. If you want the web service descriptor to use the features available with the
current version of Integration Server, delete the web service descriptor and recreate it
using Designer and the current version of Integration Server.

If you are using the local service development feature, using versions of Subversion
prior to 1.7 as your VCS client might cause issues while refreshing web service
connectors. Software AG recommends that you use Subversion 1.7 or higher as your
VCS client.

Refreshing a Web Service Descriptor
To update a web service descriptor to use the latest version of a WSDL document, you
can refresh the web service descriptor. Keep the following points in mind when you
refresh a web service descriptor.

You can refresh any consumer web service descriptor or WSDL first provider web
service descriptor created on version 7.1 or later.

To refresh a web service descriptor, you do not need to have Write access to the
web service descriptor or any of its associated elements (document types, schemas,
services, or web service connectors).

When refreshing a web service descriptor Integration Server uses the same options
you selected in the New Web Service Descriptor wizard when you originally created
the web service descriptor. If you want to use different options, you must delete the
web service descriptor and recreate it using the updated WSDL document.

If the Validate Schema using Xerces property is set to true for a web service descriptor,
Integration Server validates the schemas associated with the web service descriptor
during refresh.

Any pre-requisites that existed for generating the original web service descriptor
apply to refreshing the web service descriptor. This includes, but is not limited to the
following:

To refresh a web service descriptor whose source is in a UDDI registry, Designer
must be configured to connect to that UDDI registry.

To refresh a web service descriptor whose source is a service asset in CentraSite,
Designer must be configured to connect to CentraSite.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 779

Before you can refresh a web service descriptor from a WSDL document that
contains a JMS binding, you must have at least one valid web service endpoint
alias that specifies the JMS transport.

For information about pre-requisites for creating a WSDL first provider web service
descriptor, see "Creating a WSDL First Provider Web Service Descriptor" on page
752. For information about pre-requisites for creating a consumer web service
descriptor, see "Creating a Consumer Web Service Descriptor" on page 759.

Refreshing a web service descriptor is different than refreshing web service
connectors. For more information about refreshing web service connectors, see
"Refreshing a Web Service Connector" on page 768.

Before refreshing a web service descriptor, review the information in
"Considerations for Refreshing a Web Service Descriptor" on page 777.

To refresh a web service descriptor

1. In Package Navigator view, lock the web service descriptor that you want to refresh.

2. Right-click the web service descriptor and select Refresh Web Service Descriptor.

3. Review the informational message about potential changes to the existing web
service descriptor and click OK to continue with refresh the web service descriptor.

4. If the Source URI property specifies a location for the original WSDL document,
Designer asks you if you want to use a different source file for refreshing the web
service descriptor. Click Yes to select a file at a new location as the source. Click No to
use the file at the specified location as the source.

If you selected No to use the specified location and Designer cannot read the WSDL
file at that location, Designer displays a message prompting you to cancel the refresh
or to select a new source location. Click Cancel to cancel the refresh. Click OK to
specify a new location.

5. If you indicated that you wanted to select a new source location in the previous step,
or if the Source URI property has no value, in the Refresh Web Service Descriptor
dialog box, select the location of the WSDL file do one of the following:

Select... To refresh a web service descriptor using...

CentraSite A service asset in CentraSite

File/URL A WSDL document that resides on the file system or
on the Internet.

UDDI A WSDL document in a UDDI registry

6. Click Next.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 780

7. If you selected CentraSite as the source, under Select Web Service fromCentraSite,
select the service asset in CentraSite that you want to use to create the web service
descriptor. Click Next.

Designer filters the contents of the Services folder to display only service assets that
are web services.

If Designer is not configured to connect to CentraSite, Designer displays the
CentraSite> Connections preference page and prompts you to configure a connection
to CentraSite.

8. If you selected File/URL as the source, do one of the following:

Enter the URL for the WSDL document. The URL should begin with hp:// or
hps://.

Click Browse to navigate to and select a WSDL document on your local file
system.

9. If you selected UDDI as the source, under Select Web Service from UDDI Registry, select
the web service from the UDDI registry. Click Next.

If Designer is not currently connected to a UDDI registry, the Open UDDI Registry
Session dialog box appears. Enter the details to connect to the UDDI registry and
click Finish.

10. Click Next if you want to specify different prefixes than those specified in the XML
schema definition. If you do not want to change the prefixes specified in the XML
schema definition, click Finish.

11. On the Assign Prefixes panel, if you want the web service descriptor to use different
prefixes than those specified in the XML schema definition or modified at the time of
creating the web service descriptor, select the prefix you want to change and enter a
new prefix. Repeat this step for each namespace prefix that you want to change.

Note: The prefix you assign must be unique and must be a valid XML NCName
as defined by the specification hp://www.w3.org/TR/REC-xml-names/
#NT-NCName.

12. Click Finish.

Designer refreshes the web service descriptor. If Designer cannot refresh a web
service descriptor, Designer rolls back to the last saved version of the web service
descriptor. If refresh is not successful, use the messages returned by Designer and
the messages in the error log to determine why.

Viewing the WSDL Document for a Web Service Descriptor
On the WSDL tab, you can view the WSDL document associated with a consumer or
provider web service descriptor.

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-NCName

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 781

For a consumer web service descriptor, the WSDL document is a local copy of the
original WSDL document used to create the consumer web service descriptor with
the following changes:

The addition of any headers or faults added to the consumer web service
descriptor.

Modifications to the editable properties of the provider web service descriptor or
its constituents, such as the use of a web service endpoint alias.

For a service first provider web service descriptor, the WSDL document contains
all the information a consumer needs to create a web service client that invokes the
operations described in the WSDL.

For a WSDL first provider web service descriptor, the WSDL document is the
original source WSDL with the following changes:

Addition of any headers or faults added to the provider web service descriptor.

Modifications to the editable properties of the provider web service descriptor or
its constituents, such as the use of a web service endpoint alias.

Modification to the name aribute in the wsdl:service element to reflect the
name of the web service descriptor.

Removed all soapjms wsdl extensions for JMS bindings contained in the original
wsdl:port, wsdl:service, or wsdl:binding elements.

Addition of soapjms wsdl extensions to the wsdl:binding element for JMS
bindings. This includes JMS transport properties defined in the web service
endpoint alias assigned to the binder that specifies the JMS transport.

Changes to the location aribute of the wsdl:port element to reflect any JMS
connection related seings for the JMS URI.

The displayed WSDL document contains all the information a consumer needs to
create a web service client that invokes the operations described in the WSDL.

For a web service descriptor created from a WSDL that contains relative URIs that
are anonymously addressable, Integration Server replaces any relative URIs with an
absolute URI using the base URI of the WSDL file.

If you aach a WS-Policy to a provider web service descriptor that is not running
in pre-8.2 compatibility mode (i.e., the Pre-8.2 compatibility mode property is set
to false), the generated WSDL will be annotated with the policy. If you aach
multiple policies to a web service descriptor, the generated WSDL will have policy
annotations of all the aached policies. The policy is annotated using PolicyURIs
aributes. Integration Server identifies the associated policies by specifying the
policy IDs in the PolicyURIs aributes.

You must save the web service descriptor before the policy annotations will be
included in the WSDL. If the web service descriptor is not saved after a policy
is aached to it, the WSDL on the WSDL tab will not yet include the policy
annotations. When you save the web service descriptor, Integration Server obtains

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 782

the policy from the policy files so that Designer can display it in the generated
WSDL.

When viewing the WSDL for a WSDL first provider web service descriptor that was
created from a policy annotated WSDL, the generated WSDL will be annotated with
the aached policies. The generated WSDL will not include the annotated policy from
which it was generated.

For a consumer web service descriptor, the generated WSDL will always contain the
original annotated policy from the source WSDL document.

To view the WSDL document for a web service descriptor

1. In Package Navigator view, open the web service descriptor for which you want to
view the WSDL document.

2. Click the WSDL tab.

Designer displays the WSDL document for the web service descriptor.

WS-I Compliance for Web Service Descriptors
The WS-I option specifies whether the web service descriptor enforces compliance with
the WS-I Basic Profile 1.1, a set of guidelines for using web services specifications to
maximize interoperability (including guidance for such core web services specifications
such as SOAP, WSDL, and UDDI).

As an example, using the RPC/Encoded style and use is not supported by the WS-
I profile. If a web service descriptor makes use of the RPC/Encoded style, and WS-I
compliance is enabled, Designer displays indicating that the WSD is not compliant and
prompts you to save the WSD as non-compliant.

Enforcing WS-I compliance also affects the contents and signature for operations in
the WSD. For example, the use of multiple top-level fields is not supported in the WS-
I profile; if a service (operation) in a provider WSD includes multiple top-level fields,
Designer prompts you to save the WSD as non-compliant

The WS-I compliance option is set to Yes or No when you create a web service descriptor
(No is the default). You can modify this option by changing the WS-I compliance property.

Note: The WS-I profile only address the SOAP 1.1 protocol.

Modifying WS-I Compliance for a Web Service Descriptor
The WS-I compliance option is set to Yes or No when you create a web service descriptor
(No is the default). You can modify this option by changing the WS-I compliance property.
Keep the following points in mind when determining whether to enforce WS-I
compliance:

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 783

The WS-I profiles only address the SOAP 1.1 protocol. If the web service descriptor
is using the SOAP 1.2 protocol, Designer will display an error message when True is
selected

WS-I Basic Profile 1.0 supports only HTTP or HTTPS bindings. Consequently, WS-I
compliance cannot be enforced if the WSDL contains a SOAP over JMS binding. The
WS-I compliance property cannot be set to true if a web service descriptor has a JMS
binder.

To modify WS-I compliance for a web service descriptor

1. In Package Navigator view, open and lock the web service descriptor for which you
want to change WS-I compliance enforcement.

2. In the Properties view, next to WS-I compliance, select True if you want Integration
Server to enforce WS-I Basic Profile 1.1 compliance. Otherwise, select False.

3. Click File > Save.

Reporting the WS-I Profile Conformance for a Web Service
Descriptor
You can analyze a web service descriptor for conformance to the WS-I Basic Profile 1.1.

To analyze whether the web service descriptor is WS-I Compliant, you must be
connected to the Internet. To enable connecting to the Internet, ensure that you
provide the appropriate proxy server seings in Window > Preferences > General > Network
Connections. For more information about seing the proxy server details, see Software AG
Designer Online Help.

To analyze a web service descriptor for WS-I Profile Conformance

1. In Package Navigator view, open and lock the web service descriptor that you want
to analyze for WS-I Profile Compliance.

2. Click to check whether the web service descriptor is WS-I Profile Compliant.

If the web service descriptor is WS-I Compliant, Designer displays a confirmation
message.

If the web service descriptor is not WS-I Compliant, Designer displays the error
details in the Problems view.

Changing the Target Namespace for a Web Service
Descriptor
For a service first provider web service descriptor, you can change the target namespace
that Integration Server uses in the generated WSDL document. The target namespace

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 784

specifies the XML namespace to which the elements, aributes, and type definitions in
the WSDL belong.

You can only change the target namespace for service first provider WSD. For a WSDL
first provider WSD or a consumer WSD, the target namespace is determined by the
WSDL document used as the source.

To change the target namespace for a service first provider web service descriptor

1. In Package Navigator view, open and lock the service first provider WSD for which
you want to change the target namespace.

2. In the Properties view, in the Target namespace field, specify the URL that you want
to use as the target namespace for elements, aributes, and type definitions in the
WSDL generated for this provider WSD.

3. Click File > Save.

Viewing the Namespaces Used within a WSDL Document
You can view a list of all the XML namespaces used by the web service descriptor when
it is first created. You can also view the prefix associated with each XML namespace.

To view the namespaces and prefixes used in a web service descriptor

1. In Package Navigator view, open the service first provider WSD for which you want
to view the list of XML namespaces used in the original WSDL document.

2. In the Properties view, click the browse buon in the Namespaces field.

The Namespaces dialog box appears displaying a list of XML namespaces used
within the WSDL document. This is an array of namespace prefixes and their
associated XML namespace names. This information is not editable.

3. Click OK to close the dialog box.

Enabling MTOM/XOP Support for a Web Service Descriptor
The Message Transmission Optimization Mechanism (MTOM) feature provides
optimization of binary message transportation using XOP (XML-binary Optimized
Packaging). If aachments are enabled for the web service descriptor, instances of
XML-type base64Binary are transported using MIME aachments, which improves
the performance of large binary payload transport. Integration Server supports SOAP
aachments only for web service descriptors that specify style/use of RPC/Literal or
Document/Literal.

Integration Server supports streaming the SOAP aachments based on the MTOM/
XOP standards for both inbound and outbound messages. For more information about
the configuration required to enable MTOM streaming, see the Web Services Developer’s
Guide.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 785

Enabling SOAP Attachments for a Web Service Descriptor
Before enabling SOAP aachments for a web service descriptor, configure the
wa.server.SOAP.MTOMThreshold property with the appropriate value. This property
specifies the field size, in kilobytes, that determines whether Integration Server sends
base64binary encoded data in an outbound SOAP message as a MIME aachment
or whether it sends it inline in the SOAP message. For more information about this
property, see webMethods Integration Server Administrator’s Guide.

If you want to stream MTOM aachments, you have to do additional configuration. For
more information about the configuration required to enable MTOM streaming, see the
Web Services Developer’s Guide.

To enable SOAP attachments for a web service descriptor

1. In Package Navigator view, open and lock the web service descriptor for which you
want to enable or disable SOAP aachments.

2. In the Properties view, next to Attachment enabled, select True if you want to enable
SOAP aachments for the WSD. Otherwise, select False.

3. Click File > Save.

Using pub.string:base64Encode with MTOM Implementations
By default, the public service pub.string:base64Encode inserts a new line after 76 characters
of data. This is not the canonical lexical form expected by MTOM implementations. If
you use this public service rather than a custom service for base64 encoding, you can
use the optional input parameter useNewLine to remove the line break and the optional
input parameter encoding to change the encoding. The default value for useNewLine is
true, which keeps the line break at 76 characters. If you do not specify the encoding,
ASCII will be used.

If you use the public service pub.string:base64Decode for base64 decoding, you can use the
optional input parameter encoding to change the encoding. If you do not specify the
encoding, ASCII will be used.

Adding SOAP Headers to the Pipeline
For a web service descriptor, you can instruct Integration Server to add the contents
of SOAP headers to the pipeline, making the contents of the SOAP headers available
to subsequent services. The value of the Pipeline headers enabled property determines
whether or not Integration Server places the contents of the SOAP header in the pipeline
as a document named soapHeaders . The default value is false.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 786

If the Pipeline headers enabled property is set to true for a provider WSD, when an IS
service that corresponds to an operation in the WSD is invoked, Integration Server
places the contents of the SOAP request header in the input pipeline for the IS service.

If the Pipeline headers enabled property is set to true for a consumer WSD, when one of the
web service connectors is invoked, Integration Server places the contents of the SOAP
response header in the output pipeline for the web service connector.

For detailed information about the content and structure of the soapHeaders document
that Integration Server adds to the pipeline, see Web Services Developer’s Guide.

Note: For web service descriptors contained in packages created in versions of
Integration Server prior to 8.0, the Pipeline headers enabled property is set to
True.

To add SOAP headers to the pipeline

1. In Package Navigator view, open and lock the web service descriptor for which you
want to enable or disable adding SOAP headers to the pipeline.

2. In the Properties view, next to Pipeline headers enabled, select True if you want to
enable SOAP headers for the web service descriptor. Otherwise, select False.

3. Click File > Save.

Validating SOAP Response
For a consumer web service descriptor, you can indicate whether or not Integration
Server validates a SOAP response received by any web service connectors within the
consumer WSD.

The value of the wa.server.SOAP.validateResponse server configuration parameter
determines whether or not the Validate SOAP response property is honored or ignored.

When wa.server.SOAP.validateResponse is set to true, the value of the Validate SOAP
response property determines whether or not Integration Server validates the SOAP
response.

When wa.server.SOAP.validateResponse is set to false (or anything besides true),
Integration Server ignores the Validate SOAP response property and does not validate
the SOAP response.

By default, the wa.server.SOAP.validateResponse is set to true.

To validate SOAP responses received by web service connectors

1. In Package Navigator view, open and lock the consumer WSD for which you want to
enable or disable SOAP response validation.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 787

2. In the Properties view, next to Validate SOAP response, select True if you want
Integration Server to validate SOAP response messages received by web service
connectors included with this consumer WSD. Otherwise, select False.

3. Click File > Save.

Validating Schemas Associated with a Web Service
Descriptor
To help ensure interoperability between a web service descriptor and other web service
vendors or clients, you can use Integration Server to validate the schemas associated
with the web service descriptor. Integration Server provides an internal schema parser
that it uses to validate XML schema definitions at the following times:

When you create or refresh a consumer web service descriptor or WSDL first
provider web service descriptor from a WSDL document.

When you change the IS schemas, document types, or signatures of the services
associated with a web service descriptor.

While Integration Server uses an internal schema parser to validate the schemas
automatically, you can also instruct Integration Server to use the Xerces Java parser. The
Xerces Java parser provides stricter validation than that provided by the Integration
Server internal schema parser. As a result, some schemas that the internal schema parser
considers to be valid might be considered invalid by the Xerces Java parser.

Integration Server uses the Xerces Java parser to validate the schemas associated with a
web service descriptor at the following times:

When you create a consumer web service descriptor or WSDL first provider web
service descriptor from a WSDL document. In the New Web Service Descriptor
wizard, Designer provides an option named Validate Schema using Xerces. When
selected, Integration Server validates the schemas defined or referenced in the
WSDL document. If the Xerces Java parser determines the schema(s) are invalid,
Integration Server does not create the web service descriptor and Designer displays
the validation errors.

When you refresh a consumer web service descriptor or WSDL first provider web
service descriptor for which the Validate Schema using Xerces was selected at the time
the web service descriptor was created.

When you create a service first provider web service descriptor. In the New Web
Service Descriptor wizard, Designer provides an option named Validate Schema
using Xerces. When selected, as part of creating a service first provider web service
descriptor, Integration Server converts the signatures of the services used as
operations to XML schema elements. Then Integration Server uses the Xerces Java
parser to validate the schema elements. If the Xerces Java parser determines the
schema(s) are invalid, Integration Server does not create the web service descriptor
and Designer displays the validation errors.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 788

When the Validate Schema using Xerces property is set to true for a web service
descriptor and one of the following occurs:

You change the IS schemas, document types, or signatures of the services
associated with a web service descriptor.

You select an element declaration from an XML Schema definition to use as
the input or output signature of a 6.5 SOAP-MSG style operation. For more
information about using 6.5 SOAP-MSG style services as operations, see "Using a
6.5 SOAP-MSG Style Service as an Operation" on page 800.

You refresh the web service connectors for a consumer web service descriptor.

While validation by the Xerces Java parser can increase the time it takes to create,
update, or refresh a web service descriptor and increase the time to refresh or update
a web service connector, using stricter validation can help ensure interoperability with
other web service vendors.

Note: Integration Server uses Xerces Java parser version J-2.11.0. Limitations for this
version are listed at hp://xerces.apache.org/xerces2-j/xml-schema.html.

When validating XML schema definitions, Integration Server uses the Perl5 regular
expression compiler instead of the XML regular expression syntax defined by the World
Wide Web Consortium for the XML Schema standard. As a result, in XML schema
definitions consumed by Integration Server, the paern constraining facet must use
valid Perl regular expression syntax. If the supplied paern does not use proper Perl
regular expression syntax, Integration Server considers the paern to be invalid.

Note: If the wa.core.datatype.usejavaregex configuration parameter is set to true,
Integration Server uses the Java regular expression compiler instead of the
Perl5 regular expression compiler. When the parameter is true, the paern
constraining facet in XML schema definitions must use valid syntax as defined
by the Java regular expression.

Enabling Xerces Schema Validation for a Web Service Descriptor
When you create a web service descriptor from a WSDL document, you can specify
that Integration Server use the Xerces Java parser to validate the schemas associated
with the WSDL document. Once the web service descriptor exists, you can indicate that
Integration Server validate the schemas associated with the web service descriptor by
seing the Validate Schema using Xerces property to true. When the Validate Schema using
Xerces property is set to true, Integration Server validates the schemas associated with an
existing web service descriptor in the following situations:

You change the IS schemas, document types, or signatures of the services associated
with a web service descriptor

Note: Integration Server uses the internal schema processor to validate the
schemas at this point as well.

http://xerces.apache.org/xerces2-j/xml-schema.html

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 789

You select an element declaration from an XML Schema definition to use as the input
or output signature of a 6.5 SOAP-MSG style operation. For more information about
using 6.5 SOAP-MSG style services as operations, see "Using a 6.5 SOAP-MSG Style
Service as an Operation" on page 800.

You refresh the web service connectors for a consumer web service descriptor.

Integration Server sets the Validate Schema using Xerces property to true for all new web
service descriptors. If you migrated a web service descriptor from a previous version of
Integration Server, the migration utility set the value based on the version of Integration
Server from which the web service descriptor was migrated.

If the web service descriptor was migrated from Integration Server version 7.1.x, the
migration utility set the Validate Schema using Xerces property to true.

If the web service descriptor was migrated from Integration
Server version 8.x, the migration utility used the value of the
wa.server.wsdl.validateWSDLSchemaUsingXerces parameter to determine the
value of the Validate Schema using Xerces property. If the parameter was set to true,
the migration utility set the property to true. It the parameter was set to false, the
migration utility set the property to false.

Note: The wa.server.wsdl.validateWSDLSchemaUsingXerces parameter was
removed in Integration Server version 9.0.

To enable or disable schema validation by the Xerces Java parser

1. In Package Navigator view, open and lock the web service descriptor for which you
want to enable or disable schema validation by the Xerces Java parser.

2. In the Properties view, next to Validate schema using Xerces, select True if you want
Integration Server to use the Xerces Java parser to validate the XML Schema
definitions associated with the web service descriptor. Otherwise, select False. The
default is True.

3. Click File > Save.

Working with Binders
A binder is a webMethods term for a collection of related definitions and specifications
for a particular port. The binder is a container for the endpoint address, WSDL binding
element, transport protocol, and communication protocol information. Designer creates
at least one binder when it generates the web service descriptor based on the data in
the WSDL or IS service. The Binders tab displays the binders defined for a web service
descriptor.

You can add new binder definitions to a service first provider WSD. Binders cannot be
added to a WSDL first provider WSD or a consumer WSD.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 790

You can define a separate binder for each combination of endpoint address and protocol
information that you want the service first provider WSD to support.

Binders and Mixed Use
Integration Server and Designer do not support mixed “use” across binders and
operations in a single web service descriptor. That is, the binders in a web service
descriptor must specify the same value for the SOAP binding use property.

Integration Server and Designer enforce this restriction in the following way:

In a service first provider WSD, the first binder determines the “use” for all
subsequent binders. If the first binder specifies a SOAP binding use of “literal”, any
additional binder added to the provider WSD must specify literal as the SOAP binding
use.

When creating a WSDL first provider WSD or a consumer WSD from a WSDL
document, Integration Server will not create the WSD if the WSDL document
contains bindings with different use value or operations with different use values.
Integration Server throws the following exception:
[ISS.0085.9285] Bindings or operations with mixed "use" are not
supported.

Existing Web Service Descriptors with Mixed Use Binders
Integration Server continues to support existing web service descriptors that contain
binders with mixed use as long as the web service descriptors are not modified. Once the
WSD is modified, Designer will not save the WSD if it has mixed use binders.

To edit and save an existing provider WSD with mixed binders, create separate provider
web service descriptors for each binder use. For example, if a provider WSD contains
binder1 which specifies a “use” of literal and binder2 which specifies a “use” of
encoded, copy the provider WSD. In the provider WSD copy, remove binder1. In the
original provider WSD, remove binder2. The provider web service descriptors can then
be saved.

Binders and Mixed Style
Integration Server and Designer do not support mixed “style” across binders in a single
web service descriptor if the web service descriptor does not run in pre-8.2 compatibility
mode. That is, the binders in a web service descriptor for which the Pre-8.2 compatibility
mode property is set to false must specify the same value for the SOAP binding style
property.

Integration Server and Designer enforce this restriction in the following way:

In a service first provider web service descriptor, the first binder determines the
“style” for all subsequent binders. If the first binder specifies a SOAP binding style

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 791

of “document”, any additional binder added to the provider WSD must specify
document as the SOAP binding style.

When creating a WSDL first provider WSD from a WSDL document, Integration
Server will not create the WSD if the services reference bindings with different styles.

When creating a consumer WSD from a WSDL document, Integration Server will not
create the WSD if the services reference supported bindings that specify mixed style
values.

Note: The restriction on mixed binding styles across binders does not apply to web
service descriptors that run in pre-8.2 compatibility mode.

Adding a Binder to Web Service Descriptor
Keep the following points in mind when creating a new binder:

You can add a binder definition to a service first provider web service descriptor.

All existing operations will be duplicated within the new binder.

For a web service descriptor that runs in pre-8.2 compatibility mode (Pre-8.2
compatibility mode property is set to true), the new binder must specify the same “use”
as the binder that already exists in the provider WSD. For more information about
mixed use in binders, see "Binders and Mixed Use" on page 790.

For a web service descriptor that does not run in pre-8.2 compatibility mode (Pre-8.2
compatibility mode property is set to false), the new binder must specify the same
“style” and “use” as the binder that already exists in the provider WSD. For more
information about mixed styles in binders, see "Binders and Mixed Style" on page
790.

You can add a binder that specifies the JMS transport only if a valid provider web
service endpoint alias exists for the JMS transport. For example, if the only web
service endpoint alias that exists for JMS specifies a SOAP-JMS trigger that no
longer exists, Integration Server does not consider the endpoint alias to be valid.
Consequently, the endpoint alias cannot be assigned to a JMS binder. For more
information about creating a web service endpoint alias, see webMethods Integration
Server Administrator’s Guide

You can only add a JMS binder to a web service descriptor that does not run in
pre-8.2 compatibility mode (Pre-8.2 compatibility mode property is set to false).

In a JMS binder for a provider web service descriptor, the property values under JMS
Seings and JMS Message Details are set by the web service endpoint alias assigned
to the binder. The JMS Seings and JMS Message Details properties are read-only.

If the WS-I compliance property is set to True, you can only create binders that comply
with the WS-I profile.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 792

To add a binder to a service first provider web service descriptor

1. In the Package Navigator view in the Service Development perspective, open and
lock the provider WSD to which you want to add a binder.

2. In the Binders tab, click on the web service descriptor toolbar or right-click and
select Add Binder.

3. In the New Binder Options dialog box, specify the following information:

In this field... Specify...

SOAP Version Whether SOAP messages for this web service should use SOAP
1.1 or SOAP 1.2 message format.

Transport The transport protocol used to access the web service. Select
one of the following:

HTTP

HTTPS

JMS

Use and Style
for Operations

The style/use for operations in the provider WSD. Select one of
the following:

Document - Literal

RPC - Literal

RPC - Encoded

Endpoint The address at which the web service can be invoked. Do one
of the following:

To use a provider web service endpoint alias to specify the
address, select the Alias option. Then, in the Alias list, select
the provider web service endpoint alias.

To specify a host and port as the address, select the Host
option. Then, in the Host field specify the host name for the
Integration Server on which the web service resides. In the
Port field, specify an active HTTP or HTTPS listener port
defined on the Integration Server specified in the Host field.

Note: If you selected JMS as the transport, you must specify an
alias. After you select a provider web service endpoint
alias, Designer displays the initial portion of the JMS URI
that will be used as the address in the Port address (prefix)
field.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 793

In this field... Specify...

Directive The SOAP processor used to process the SOAP messages
received by the operation in the provider WSD. The Directive
list displays all of the SOAP processors registered on the
Integration Server. The default processor is ws - Web Services
SOAP Processor.

4. Click OK. Designer adds the new binder to the Binders tab.

5. Click File > Save.

Notes:

If you specify HTTP or HTTPS as the transport, but do not specify a host, port, or
endpoint alias, Integration Server uses the primary port as the port in the endpoint
URL. If the selected transport and the protocol of the primary port do not match,
web service clients will not execute successfully. For more information see "Protocol
Mismatch Between Transport and Primary Port" on page 752.

You can change the default name that Designer assigns to the binder. You can
rename the binder by changing the value of the Binder name property or by selecting
the new binder, right-clicking it, and selecting Rename.

Copying Binders Across Provider Web Service Descriptors
You can cut or copy an existing binder from another provider WSD and paste it into the
Binders tab of a service first provider WSD. (Note that drag and drop of binders is not
supported.)

Keep the following points in mind when pasting in a binder from another provider
WSD:

The endpoint, directive, WS-I, transport, and use-style values are the same as those
in the original (source) binder. You can modify these in the Properties view.

All operations in the cut or copied binder are carried with it. If a pasted binder
contains an operation that is not already in the web service descriptor, the operation
is added to the web service descriptor.

Changing the Binder Transport
You can change the specified transport of a binder in a service first provider web service
descriptor by changing the value of the binder Transport property. Keep the following
points in mind when changing the binder transport:

A binder can specify the JMS transport only if the web service descriptor does not
run in compatibility mode (the Pre-8.2 compatibility mode property is set to false).

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 794

You can change the transport to JMS only if a provider web service endpoint alias
that specifies the JMS transport exists already.

If you change the transport from HTTP or HTTPS to JMS, Designer automatically
assigns the first valid provider web service endpoint alias that specifies the JMS
transport to the Port alias property of the binder. If there is not valid endpoint alias
for JMS, the binder transport cannot be changed. For example, if the only web service
endpoint alias that exists for JMS specifies a SOAP-JMS trigger that no longer exists,
Integration Server does not consider the endpoint alias to be valid. Consequently, the
endpoint alias cannot be assigned to a JMS binder.

Additionally, Designer updates the Port address property to display the initial part of
the JMS URI, specifically “jms”:<lookup var>:<dest>?targetService.

If you change the transport from JMS to HTTP or HTTPS, Designer deletes the
values of the Port alias property and the Port address property. If you want to use a
web service endpoint alias to specify the hostname and port for the provider web
service endpoint URL, make sure to specify that alias in the Port alias property.

When you change the transport, Designer updates the Binding type and SOAP binding
transport properties to match the selected transport.

Deleting a Binder from a Web Service Descriptor
You can delete a binder from a service first provider web service descriptor.

A web service descriptor must contain at least one binder. If you delete the last binder in
a web service descriptor, you must add a new binder before the web service descriptor
can be saved (the binder can be empty).

To delete an operation from a binder in a provider web service descriptor

1. In the Package Navigator view in theService Development perspective, open and
lock the service first provider WSD from which you want to delete a binder.

2. In the Binders tab, select the binder to delete.

3. Click on the web service descriptor toolbar or right-click and select Delete.

4. Click File > Save.

Deleting an Operation from a Binder
If two binders share an operation, you can delete the operation from one binder but not
the other. The operation will still be in the provider WSD, but only be in one binder.

Keep the following in mind when deleting an operation from a binder:

You can delete operations from a service first provider web service descriptor only.

If other binders in the provider web service descriptor contain the operation, that
operation remains in the web service descriptor.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 795

If an operation only exists in one binder, deleting it from that binder removes it
entirely from the web service descriptor.

If you delete an operation from the Operations tab, it is deleted entirely from the
WSD and from all the binders that exist for that web service descriptor. For more
information about deleting operations, see "Deleting Operations" on page 803.

To delete an operation from a binder in a provider web service descriptor

1. In the Package Navigator view in the Service Development perspective, open and
lock the service first provider WSD.

2. In the Binders tab, expand the binder containing the operation to delete.

3. In the binder, select the operations you want to delete.

4. Click on the web service descriptor toolbar or right-click and select Delete.

Designer deletes the selected operation from the binder.

5. Click File > Save.

Modifying the SOAP Action for an Operation in a Binder
For a service first provider web service descriptor, you can change the SOAP action
specified for an operation in a binder. By default, the SOAP action uses the format
binderName _operationName to ensure that it is unique within a web service. At run
time, the values associated with a SOAP action are used to find the actual operation
being invoked. For more information about how Integration Server determines which
operation to invoke, see Web Services Developer’s Guide.

To modify the SOAP action property for an operation in a binder

1. In the Package Navigator view in the Service Developmentperspective, open and
lock the provider WSD.

2. In the Binders tab, select the binder containing the operation for which you want to
edit the SOAP action.

3. In the Properties view, next to the SOAP action property, click the browse buon.
Designer displays the SOAP Action dialog box which identifies the SOAP action
string associated with each operation in the selected binder.

4. For the operation whose SOAP action you want to change, enter the new SOAP
action value in the SOAP Action column. Make sure that the new SOAP Action value
is unique across the web service descriptor.

5. Click OK.

Designer applies the SOAP action change to the operation in this binder only.

6. Click File > Save.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 796

Assigning a Web Service Endpoint Alias to a Binder
You can associate a web service endpoint alias with a binder in a provider or consumer
web service descriptor. A web service endpoint alias represents the network address
and, optionally, any security credentials to be used with web services. The network
address properties can be used to enable dynamic addressing for web services. The
security credentials can be used to control both transport-level and message-level
security for web services.

For a consumer web service descriptor and its associated web service connectors
(WSC), the alias information (including the addressing information and any security
credentials), is used at run time to generate a request and invoke an operation of the web
service. For web service connectors behind a firewall, the endpoint alias also specifies the
proxy alias for the proxy server through which Integration Server routes the web service
request. For more information about proxy server usage, see webMethods Integration
Server Administrator’s Guide.

For a provider web service descriptor, the endpoint alias is used to construct the
“location=” aribute of the soap:address element within the wsdl:port element when
WSDL is requested for the web service. The security credentials may be used when
constructing a response to a web service request.

Note: After assigning an alias to a JMS binder in a provider web service descriptor,
if the web service endpoint alias specifies a SOAP-JMS trigger, the web service
descriptor, has a dependency on the SOAP-JMS trigger. Consequently, at
start up or when reloading the package containing the web service descriptor,
Integration Server must load the SOAP-JMS trigger before loading the web
service descriptor. If the SOAP-JMS trigger and web service descriptor are not
in the same package, you need to create a package dependency. The package
that contains the web service descriptor must have a dependency on the
package that contains the SOAP-JMS trigger.

For information about creating a web service endpoint alias, see webMethods Integration
Server Administrator’s Guide.

To assign a web service endpoint alias to a binder

1. In the Package Navigator view in the Service Development perspective, open and
lock the web service descriptor to which you want to associate the web service
endpoint alias.

2. In the Binders tab, select the binder to which you want to assign an endpoint alias.

3. In the Properties view, next to the Port alias property, select the web service endpoint
alias that you want to associate with the WSD. Designer lists only those endpoint
aliases of the same type as the WSD.

4. Click File > Save.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 797

Note: When the Port alias property is modified for a consumer web service
descriptor and, the web service descriptor is viewed on the WSDL tab, the
generated WSDL does not reflect the change to the port alias. However, the
new value will be used at run-time.

Configuring Use of the Client Side Queue
You can enable use of the client side queue for a JMS binder in a consumer web
service descriptor. The client side queue is a message store that contains JMS messages
sent during service execution when the JMS provider was not available. Each JMS
connection alias has its own client side queue. When the JMS provider becomes
available, Integration Server sends messages from the client side queue to the JMS
provider.

When use of the client side queue is enabled for a JMS binder and the JMS provider is
not available at the time a web service connector sends a message using the JMS binding,
Integration Server writes the message to the client side queue.

When use of the client side queue is disabled for a JMS binder and the JMS provider is
not available at the time the web service connector executes, Integration Server throws
an ISRuntimeException. Integration Server includes the exception in the fault document
returned to the web service connector.

Keep the following points in mind when enabling use of the client side queue for a JMS
binder:

The client side queue associated with the JMS binder is determined by the JMS
connection alias in the consumer web service endpoint alias for the binder. The
maximum size of the client side queue must be greater than zero. If the JMS
connection alias sets the size of the client side queue to zero (Maximum Queue Size is
set to 0), the client side queue is effectively disabled. Integration Server will not write
messages to a client side queue that has a maximum size of 0 messages. For more
information about configuring a JMS connection alias, see webMethods Integration
Server Administrator’s Guide

The client side queue can be used with web service connectors for In-Only and In-
Out operations. For an In-Out operation, the reply to destination for the web service
must be a non-temporary queue.

To configure the use of the client side queue for a JMS binder

1. In the Package Navigator view in theService Development perspective, open
and lock the web service descriptor containing the binder for which you want to
configure the use of the client side queue.

2. In the Binders tab, select the JMS binder for which you want to configure the use of
the client side queue.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 798

3. In the Properties view, next to the Use CSQ property, select True to enable use of the
client side queue. If you do not want Integration Server to use the client side queue
for JMS messages sent using the binding represented by this binder, select False.

4. Click File > Save.

Working with Operations
An operation is the WSDL element that exposes some functions of a web service and
defines how data is passed back and forth. In a web service descriptor, an operation
corresponds to a service on Integration Server.

Each operation contains a single request and a single response. Each request and
response contains a single, read-only body element and one or more header elements. A
response can also contain fault elements.

The body elements contain the application-defined XML data being exchanged in the
SOAP message:

In a service first provider WSD, the body elements represent the signature of the
service. The body element in the request contains the input properties. The body
element in the response contains the output properties.

In a WSDL first provider WSD or a consumer WSD, the input/output properties and
the body element are defined by the remote WSDL document. Neither the input/
output definitions nor the operations can be changed, added, or deleted.

A header element defines the format of the SOAP headers that may be present in a SOAP
message (request or response). Headers are optional and can be added to or deleted
from any web service descriptor.

A fault element provides a definition for a SOAP fault (that is, the response returned to
the sender when an error occurs while processing the SOAP message). Fault elements
are optional and can be added to or deleted from any web service descriptor.

Adding Operations
When you add operations to a service first provider WSD, the operations are also added
to every binder in the WSD. The values defined by a specific binder will apply to the
operation.

Note: You can add operations to a service first provider WSD only.

You can add operations by:

Adding one or more IS services from the Package Navigator. Each service will be
converted to an operation in the provider WSD.

Copying or moving an operation from another provider WSD.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 799

Adding a 6.5 SOAP-MSG Style Service as an operation.

Adding an IS Service as an Operation
Keep the following points in mind when adding an IS service as an operation to an
provider web service descriptor:

You can add operations to a service first provider WSD only.

A 6.5 SOAP-MSG style service can only be added as an operation if it meets the
requirements identified in "Using a 6.5 SOAP-MSG Style Service as an Operation" on
page 800.

Because Integration Server and Designer do not support mixed “use” across binders
and operations and mixed “style” across binders in a single web service descriptor,
the service signature must meet the style/use signature requirements established by
the existing binder. For more information, see "Service Signature Requirements for
Service First Provider Web Service Descriptors" on page 746.

To add an IS service to a service first provider web service descriptor

1. In Package Navigator view, open and lock the service first provider WSD to which
you want to add an IS service as an operation.

2. On the web service descriptor editor toolbar, click or right-click in the Operations
tab and select Add Operation.

3. In the Select one or more services to include in the web service descriptor dialog box,
select one or more services and click OK.

The specified operations are added to the provider WSD. The operations appear
in the Operations tab and are also added to each binder contained in the provider
WSD.

If a service signature does not meet the style/use signature requirements established
by the existing binder, Designer does not add the service as an operation.

Designer adds the new operation to all binders in the web service descriptor.

4. Click File > Save.

If the operation already exists in the web service descriptor, Designer adds it as a
copy and appends “_n ” to its name, where n is an incremental number.

Tip: You can also add operations by selecting one or more services in Package
Navigator view and dragging them into the Operations tab.

Adding an Operation from another Provider Web Service Descriptor
You can copy or move an operation from another web service descriptor to a service first
provider WSD.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 800

Keep the following points in mind when copying or moving an operation from one
provider WSD to another:

You can add operations to a service first provider WSD only.

Integration Server and Designer do not support mixed “use” across binders and
operations and mixed “style” across binders in a single web service descriptor. If the
service signature associated with the operation does not meet the style/use signature
requirements established by the existing binder, Designer will not add the operation.

To copy or move an existing operation from one provider web service descriptor to another

1. In Package Navigator view, open and lock the provider WSD that contains the
operation you want to copy or move.

2. In the Operations tab, select one or more operations. Click or on the web
service descriptor editor toolbar.

3. In Package Navigator view, open and lock the provider WSD into which you want to
paste the cut or copied operations (the target provider WSD).

4. In the Operations tab of the target WSD, click on the web service descriptor editor
toolbar.

5. Click File > Save.

Designer adds the specified operations to the provider WSD. Designer also adds the
operations to all binders in the target web service descriptor exactly as they existed
in the source web service descriptor. The binder values for each individual binder
apply to the operations within the binders.

If the operation being added already exists in the provider WSD, Designer adds it as
a copy and appends “_n ” to its name, where “n ” is an incremental number.

Using a 6.5 SOAP-MSG Style Service as an Operation
In webMethods Integration Server version 6.5, you could expose an IS service as a
SOAP-MSG web service. The 6.5 SOAP-MSG style services used the default SOAP
processor, specified SOAP version 1.1, and specified a style/use of Document/Literal.
You can migrate 6.5 SOAP-MSG style services to the web service descriptor framework
introduced in Integration Server 7.1 by adding the service as an operation to a provider
WSD. By migrating the service, you can leverage the inherent functionality of a provider
WSD, such as headers, handlers, faults, and WS-Security.

By default, Integration Server derives the input and output signatures for operations
from the services used to create the operation. Integration Server 6.5 required that an
IS service in the SOAP-MSG style use a signature that took a soapRequestData object
and a soapResponseData object as input and produced a soapResponseData object as
output. This signature requirement does not result in meaningful signature information
for the operation in WSDL documents generated for the provider WSD. To produce
a meaningful, descriptive signature for an operation that corresponds to a 6.5 SOAP-
MSG style service, you must select an IS document type or an XML schema element
declaration to represent the service input and output signature.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 801

Keep the following points in mind when adding a 6.5 SOAP-MSG style service as an
operation to a provider WSD:

You can add the 6.5 IS service to an existing provider WSD or create a new provider
WSD for the IS service. For information about adding an IS service as an operation
to a provider WSD, see "Adding an IS Service as an Operation" on page 799. For
information about creating a service first provider WSD, see "Creating a Service First
Provider Web Service Descriptor" on page 748.

The provider WSD must have a single binder with the following properties:

SOAP version = SOAP 1.1 protocol

SOAP binding style = document

SOAP binding use = literal

To produce a meaningful signature for the operation in a WSDL document, you
must select an IS document type or an XML schema element declaration to represent
the input and output signatures. For information about changing the input or output
signature for an operation, a provider WSD, see "Modifying the Signature of a 6.5
SOAP-MSG Style Operation" on page 801.

If you use an IS document type for the input and/or output signature, the IS
document type must satisfy the service signature requirements for the SOAP-MSG
style as specified in the Web Services Developer’s Guide version 6.5.

If you add any headers to the operation, any existing clients for the 6.5 service must
be modified to include the header in the SOAP request.

Any header handler processing that changes the SOAP message and occurs before
service invocation affects the SOAP message passed to the service. Note that 6.5
SOAP-MSG style services expect the SOAP message to be in a certain format.
Specifically, any changes to the SOAP body might affect the ability of the 6.5 SOAP-
MSG style service to process the request.

When a 6.5 SOAP-MSG style service is added as an operation, you can add fault
processing to the operation response. For fault processing to work, you need to
modify the 6.5 SOAP-MSG style service to detect a Fault condition, add Fault output
data to the pipeline, and drop the SOAP response message (soapResponseData object)
from the pipeline.

Modifying the Signature of a 6.5 SOAP-MSG Style Operation

A web service requires the input parameters from a signature and produces the output
parameters. By default, an operation derives the input and output signatures from
the services used to create the operation. However, in the case of a 6.5 SOAP-MSG
style service, the input and output signatures consist of a soapRequestData and
soapResponseData objects. In a WSDL document, this would result in an vague,
meaningless signature. To create a meaningful service signature for a 6.5 SOAP-
MSG style operation, you can override the original service signature by selecting an
element declaration in an XML schema definition or an IS document type as the service

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 802

signature. Overriding the service signature is necessary after adding a 6.5 SOAP-MSG
style service as an operation to a provider WSD.

Keep the following points when modifying the operation signature source:

You can only modify the operation signature source in a provider WSD that was
created from an IS service. You cannot add or modify the signature of a provider
WSD created from a WSDL URL or a UDDI Registry.

The XML schema definition you select must be located on the web and must be
network accessible to consumers of the WSDL. Do not use a local file URL to refer to
an external schema.

If you use an IS document type as the signature for an operation that corresponds to
an Integration Server 6.5 SOAP message service, the IS document type must satisfy
the service signature requirements for the SOAP MSG protocol a specified in the
Web Services Developer’s Guide version 6.5. For more information about adding an IS
6.5 SOAP message service as an operation, see "Using a 6.5 SOAP-MSG Style Service
as an Operation" on page 800.

An IS document type used to represent the input or output signature of an operation
cannot contain top-level fields named "*body" or top-level fields starting with "@".

To modify the signature type of a 6.5 SOAP-MSG style operation

1. In Package Navigator view, open and lock the provider web service descriptor
containing the operation whose signature you want to modify.

2. In the Operations tab, select and expand the operation whose signature you want to
modify.

3. Do one of the following:

To change the... Do this...

Input signature Expand Request and select the Body element.

Output signature Expand Response and select the Body element.

4. In the Properties view, next to the Signature field, click the browse buon.

5. In the Modify I/O Signature dialog box, do one of the following:

Select... To...

Original IS service Use the input or output signature from the originating IS
service as the input or output signature. This is the default.

Existing external
XML schema

Use an element declaration from an XML schema
definition as the input or output signature.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 803

Select... To...

Document type Use an IS document type as the input or output signature.

6. If you selected Existing external XML schema, do the following:

a. In the URL field, after http://, type the web location and name of the XML
schema definition that contains the element declaration you want to use to
describe the signature.

b. Click Load. Designer displays the global element declarations in the XML
Schema.

c. Select the global element declaration for the input or output signature.

7. If you selected Document type, select the IS document type that you want to use to
represent the input or output signature.

8. Click OK.

9. Click File > Save.

If you selected Existing external XML schema, Integration Server automatically uses
the internal schema parser to validate the schema. If the Validate schema using
Xerces property is set to True for the web service descriptor, Integration Server also
validates the specified XML Schema definition using the Xerces Java parser. If either
parser determines that the schema is invalid, Designer does not save the web service
descriptor and displays the validation errors.

Deleting Operations
Keep the following points in mind when deleting operations from a web service
descriptor:

You can delete operations from a service first provider WSD only.

When you delete an operation on the Operations tab, Designer removes the
operation from all the binders in the provider WSD.

If you delete an operation from within a binder (that is, you delete the operation in
the Binders tab), any other instances of that operation in other binders remain in the
web service descriptor. If an operation exists in only one binder and is deleted from
that binder, the operation is removed from the web service descriptor.

To delete an operation from a provider web service descriptor

1. In Package Navigator view, open and lock the provider WSD that contains the
operation to delete.

2. In the Operations tab, select the operation to be deleted.

3. Click on the web service descriptor editor toolbar. Designer deletes the selected
operation from the web service descriptor.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 804

4. Click File > Save.

Viewing the Operation Input and Output
You can view the input or output signature of an operation side-by-side with the
operations in a web service descriptor.

To view the operation input or output

1. In Package Navigator view, open the web service descriptor.

2. In the Operations tab, navigate to and select the Body element in the Request or
Response for an operation.

For a request, Designer displays the operation input. For a response, Designer
displays the operation output.

Adding Headers to an Operation
You can add headers to an operation to incorporate additional processing or
functionality for the SOAP message. A header element defines the format of the SOAP
headers that may be present in a SOAP message (request or response). Headers are
optional and can be added to or deleted the request or response in an operation.

For a service first provider web service descriptor, you can:

Add new headers

Edit any headers

Delete any headers

For a WSDL first provider web service descriptor, you can

Add new headers

Edit any headers that you add

Delete any headers that you add or any headers derived from the source WSDL

Edit the Must Understand and Role properties for headers derived from the source
WSDL

For a consumer web service descriptor, you can:

Add new headers to the request or response

Edit any headers that you add

Delete any headers that you add

Edit the Must Understand and Role properties for headers derived from the source
WSDL

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 805

Note: Integration Server considers all of the headers defined in a web service
descriptor to be required. If the header does not exist in the SOAP message at
run time, Integration Server throws an error.

While failure when a required header is missing is the correct behavior,
Integration Server provides a configuration property to control whether
missing required headers in a SOAP response results in an error. If you do not
want Integration Server to throw an error in case of missing required headers,
set the wa.server.SOAP.ignoreMissingResponseHeader server configuration
parameter to true.

Adding a Header to an Operation
Keep the following points in mind when adding headers to operations:

You can copy or move header document types between headers or between faults,
but not between a header and a fault. You can use the same document type for
a request and a response, subject to the handlers available in the web service
descriptor.

When adding a header element to a provider web service descriptor, be sure that the
header does not have the same name as any of the fault elements for that web service
descriptor.

An IS document type used as a header or fault for an operation with a binding style/
use of RPC/Encoded cannot contain fields named *body or @aribute fields (fields
starting with the “@” symbol).

You must set up a package dependency if you use an IS document type from a
different package as a header.

A header must have a registered header handler. However, you can add the header
to an operation and register a header handler for it later. A header without a handler
will be ignored or will cause the request to fail (depending on whether the Must
Understand property for the header is set to False or True).

After a header handler is registered in Integration Server, the IS document types
associated with the handler will be listed in the selection dialog box that is displayed
when you add a header. For more information about registering handlers, see the
Web Services Developer’s Guide.

The WS Security Handler does not expose supported headers.

If you add a response header to an operation that uses an In-Only Message Exchange
Paern (MEP), the MEP will change to In-Out MEP. For more information about
message exchange paerns, see the Web Services Developer’s Guide.

You can also add headers to an operation by dragging IS document types from the
Package Navigator view to the Operations tab.

Integration Server considers all of the headers defined in a web service descriptor to
be required.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 806

To add a header to an operation

1. In Package Navigator view, open and lock the web service descriptor to which you
want to add a header.

2. In the Operations tab, expand the operation and the request or response to which
you want to add the header.

3. Select the header icon and click (Add Header or Fault) on the web service descriptor
editor toolbar.

Because a header was selected when you clicked this buon, the document selection
dialog box displays only those IS document types supported by the header handlers
listed in the Handlers tab.

4. Select the IS document type to use as a header. Click OK.

5. Click File > Save.

Important: When you add a header (or a fault) to a consumer web service descriptor,
you must refresh the web service connector(s). See "Refreshing a Web
Service Connector" on page 768.

About SOAP Fault Processing
If an error occurs while processing a SOAP request, the response returned to the web
service client contains a SOAP fault. You can have the endpoint service signal a fault
using one of the following methods:

Specify a fault whose structure is defined by a fault element, using the fault reasons,
code, subcodes, node and role that Integration Server generates.

At design time, you can identify the structure of SOAP faults with which an
operation can respond by adding fault elements to the operation response in a web
service descriptor. Fault elements are optional and can be added to any web service
descriptor. For more information, see "About SOAP Fault Elements" on page 808.

To signal a fault that uses one of the fault elements, set up the endpoint service for
the operation so that it places an instance document of one of the fault elements
into the top level of the service pipeline. The name of the instance document must
match the name assigned to the fault element. Integration Server recognizes the fault
document in the pipeline, and when generating the fault detail, uses the IS document
type defined in the fault element for the structure of the instance document. If
the document has a name that matches a fault element, but a different structure,
unexpected results will occur.

Integration Server generates a SOAP response that contains a SOAP fault. The SOAP
fault contains the detail from the instance document and uses fault reasons, code,
subcodes, node and role that Integration Server generates.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 807

Specify a fault whose structure is defined by a fault element, but override the fault
reasons, code, subcodes, node and/or role that Integration Server generates.

Set up the endpoint service for an operation so that it places an instance document
of one of the defined fault elements into the $fault/detail variable. The name of the
instance document must match the name assigned to the fault element. Integration
Server recognizes the fault document in the $fault/detail variable, and when
generating the fault detail, uses the IS document type defined in the fault element for
the structure of the instance document. If the document has a name that matches a
fault element, but a different structure, unexpected results will occur.

To override the fault reasons, code, subcodes, node and/or role, set up the endpoint
service to also provide the corresponding values in fields within the $fault variable.
For a description of the $fault variable, see "The $fault Variable" on page 810.

Integration Server recognizes the $fault variable in the pipeline. Subsequently,
Integration Server generates a SOAP response that contains a SOAP fault using the
information from the $fault/detail variable. The SOAP fault contains the detail from
the instance document and uses values specified for fault reasons, code, subcodes,
node and/or role within the $fault variable to override the corresponding values that
Integration Server generates.

Note: If there is a top-level instance document for the fault, in addition to the
one in the $fault/detail variable, Integration Server ignores the top-level
document.

Specify a fault with a structure that was not previously defined using a fault
element. Optionally, override the fault reasons, code, subcodes, node and/or role that
Integration Server generates.

Although you can identify the structure of SOAP faults in advance, it is not required.
To signal a fault at run time, you can add fault information that does not match
defined fault elements to the $fault/detail variable in the pipeline. Be sure that the
name does not match any defined fault elements. Integration Server recognizes the
$fault/detail variable in the service pipeline. Because the document in the $fault/detail
variable does not match a defined fault element, Integration Server generates the
fault detail without using an IS document type for the structure.

To override the fault reasons, code, subcodes, node and/or role, set up the endpoint
service to provide the corresponding values in fields within the $fault variable. For
more information, see "The $fault Variable" on page 810.

Integration Server ignores any top-level instance document that might be in the
pipeline for a fault. Using the information from the $fault/detail variable, Integration
Server generates a SOAP response that contains a SOAP fault. If values are specified
for the fault reasons, code, subcodes, node and/or role within the $fault variable,
Integration Server uses those values instead of values it generates.

Additionally, faults can occur for the following reasons:

The endpoint service throws a service exception.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 808

In this case, Integration Server constructs a fault message out of the service
exception. If the pipeline also contains a $fault variable, Integration Server uses the
information specified in the $fault variable to override the fault information.

To make the $fault variable available, you can write a Java service that throws a
ServiceException, but before throwing the exception, places the $fault variable in the
pipeline.

Alternatively, for a flow service, you can use the EXIT with failure construct. As a
result, before exiting the flow service with a failure, you can place the $fault variable
into pipeline.

A request handler service ended in failure and signaled that a fault should be
generated.

When the request handler returns a status code 1 or 2, Integration Server generates a
SOAP fault, along with the fault code, subcodes, reasons, node, and role for the fault.
You can use the pub.soap.handler:updateFaultBlock service to modify the code, subcodes,
reasons, node, and/or role that Integration Server generates.

Note: When the request handler returns status code 3, you are expected to build
the SOAP fault. As a result, the pub.soap.handler:updateFaultBlock service is not
necessary.

You can invoke the pub.soap.handler:updateFaultBlock service in a response or fault
handler to update the fault created due to the failure in the request handler chain.
For more information about using the service, see "Modifying a Returned SOAP
Fault" on page 812. For more information about handlers, see the Web Services
Developer’s Guide.

About SOAP Fault Elements
To identify the information to provide in a SOAP fault at design time, you add fault
elements to the operation response in a web service descriptor. The fault element, which
is an IS document type, describes the expected structure of the Detail element in the
SOAP fault. Fault elements are optional and can be added to any web service descriptor.

When you create a service first provider web service descriptor, add fault elements to
represent the SOAP faults that an operation in the web service descriptor might return.
If an error occurs at run time, the underlying service that corresponds to the operation
can signal a fault by returning an instance document for one of the IS document types
used as a fault element. Integration Server recognizes the fault document in the service
pipeline and subsequently generates a SOAP response that contains a SOAP fault.
Within the SOAP fault, the Detail element contains the fault document.

When you create a WSDL first provider web service descriptor or a consumer web
service descriptor, Integration Server creates an IS document type for each message
element in the source WSDL document. If an operation in a WSDL defines a soap:fault
element, Integration Server generates an IS document type for the fault element.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 809

In a consumer web service descriptor, the web service connector that corresponds to the
operation includes logic to detect the fault element in the SOAP response. Integration
Server then places the contents of the fault document into the detail document in the
output parameter. The structure of the detail element matches the structure of the IS
document type used as the fault element.

Note: The structure of the SOAP fault returned by the web service connector
depends on the version of Integration Server on which the web service
descriptor was created. For more information, see Web Services Developer’s
Guide.

It is possible for a web service to return a fault that does not appear in a WSDL file. To
account for these SOAP faults, you can add fault elements to a WSDL first provider
web service descriptor or a consumer web service descriptor. For more information, see
"Adding a Fault Element to an Operation" on page 809.

Adding a Fault Element to an Operation
Keep the following points in mind when adding fault elements to an operation:

You add fault elements to an operation response.

The fault document must be an IS document type.

You must set up a package dependency if you use an IS document type from a
different package as a fault.

If you add a fault to an operation that uses an In-Only Message Exchange Paern
(MEP), the MEP will change to Robust In-Only MEP. For more information about
message exchange paerns, see the Web Services Developer’s Guide.

To add a fault element to an operation

1. In Package Navigator view, open and lock the web service descriptor to which you
want to add a fault element.

2. In the Operations tab, expand the operation and the response to which you want to
add the fault element.

3. Select the Fault icon and click (Add Header or Fault buon) on the web service
descriptor editor toolbar.

Because a fault was selected when you clicked this buon, Designer displays the
default document selector dialog.

4. Select the IS document type to use as the fault element. Click OK.

5. If you want to change the name of the fault element, with the fault element selected,
in the General category of the Properties view, update the Name property.

6. Click File > Save.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 810

Important: When you add a fault to a consumer web service descriptor, you must
refresh the web service connector(s). See "Refreshing a Web Service
Connector" on page 768.

Notes:

If you add a fault element to an operation in a consumer web service descriptor, and
then refresh the web service connector, Integration Server updates the logic of the
web service connector to look for and handle the fault at run time.

If you add a fault element to an operation in a WSDL first provider web service
descriptor, the WSDL document generated from the provider web service descriptor
will include the new faults as soap:fault elements in the operation.

You can add multiple fault elements to an operation in a web service descriptor.
At run time, if the service that corresponds to the operation returns multiple fault
documents, the SOAP fault in the resulting SOAP response will contain only one
fault document. Specifically, Integration Server returns the fault document that is
an instance of the IS document type that appears first in the operations list of fault
elements.

For example, suppose that an operation had three fault elements listed in this
order: faultA, faultB, and faultC. Note that each fault element corresponds to an
IS document type of the same name. At run time, execution of operation (service)
results in two fault documents—one for faultB and one for faultC. In the SOAP
response generated by Integration Server, the SOAP fault contains the faultB
document only.

The $fault Variable
Use the $fault variable to override values Integration Server generates for a fault. To do
so, specify the fault detail in the $fault/detail variable. Then, to override the fault reasons,
code, subcodes, node and/or role, provide the corresponding values.

The following shows the structure of the $fault variable.

Variable Description

$fault Document Fault information that overrides other fault information in the
service pipeline, if any.

 code Document Optional. The fault code and possible subcodes.
Integration Server uses values you specify to modify the fault
code and subcodes it generates for the fault.

Note: For a SOAP 1.1 fault, Integration Server ignores any
values specified for subcodes .

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 811

Variable Description

 namespaceName String The namespace name for the SOAP
fault code.

 localName String A code that identifies the fault.

 subcodes Document List Optional. Subcodes that
provide further detail. Each Document in
the subCodes Document List contains:

namespaceName for the subcode

localName that identifies the subcode

 reasons Document List Optional. Reasons for the SOAP fault. Integration
Server uses values you specify to modify the reasons it
generates for the fault.

Note: For a SOAP 1.1 fault, if you specify more than one reason,
Integration Server uses the first reason. Multiple reasons
are supported for SOAP 1.2 faults.

 @lang String Language for the human readable
description.

 *body String Text explaining the cause of the fault.

 node String Optional. The URI to the SOAP node where the fault
occurred. Integration Server uses value you specify to modify
the node it generates for the fault.

Note: For a SOAP 1.1 fault, Integration Server ignores any
values specified for node .

 role String Optional. The role in which the node was operating at
the point the fault occurred. Integration Server uses value you
specify to modify the role it generates for the fault.

 detail Document Fault information you want Integration Server to use.
This overrides any top-level instance document that defines
the fault detail.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 812

Modifying a Returned SOAP Fault
If a provider or consumer web service results in a fault, you can modify values in
the fault, if needed. For example, you might want to alter the fault code if your error
handling requires a specific code.

To update a SOAP fault, use the pub.soap.handler:updateFaultBlock service. For more
information about this service, see the webMethods Integration Server Built-In Services
Reference. You can invoke the updateFaultBlock service from a response handler or fault
handler service for a web service provider. Use the service to customize one or more of
the following SOAP fault fields:

Fault field you
can customize

Notes

fault
code and
subcodes

For a SOAP 1.1 fault, if you specify subcode values, the service
ignores them because subcodes are only applicable for a SOAP
1.2 fault.

fault reasons For a SOAP 1.1 fault, if you specify more than one reason, the
service only uses the first reason. Multiple reasons are supported
for SOAP 1.2 faults.

fault node For a SOAP 1.1 fault, if you specify a value for node, the service
ignores it because the fault node is only applicable for a SOAP
1.2 fault.

fault role The fault role is supported for both SOAP 1.1 and SOAP 1.2
faults.

Viewing Document Types for a Header or Fault Element
You can view an IS document type used for a header or fault element side-by-side with
the operations for a web service descriptor. The IS document type is read-only in the
Operations tab.

To view the document type for a header or fault element in an operation

1. In Package Navigator view, open the web service descriptor.

2. In the Operations tab, navigate to and select the header or fault element for which
you want to view the IS document type contents.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 813

Working with Handlers
When working with web services on Integration Server, the SOAP body portion of the
SOAP message contains the data representing the input and output signatures of the
underlying SOAP operation. In typical processing, Integration Server converts the SOAP
body between its XML representation in the SOAP message and the Document (IData)
representation used within Integration Server automatically.

In addition to the data contained in the SOAP body, a SOAP message might contain
data in the SOAP headers. The best way to access the SOAP headers is to use handlers.
A handler, sometimes called a header handler, provides access to the entire SOAP
message.

Handlers can be used to perform various types of processing, including processing
SOAP headers, adding SOAP headers, removing SOAP headers, passing data from the
header to the endpoint service or vice versa.

In Integration Server, a handler is a set of up to three handler services. The handler can
contain one of each of the following handler services:

Request handler service

Response handler service

Fault handler service

For detailed information about request, response, or fault handler services, see
Web Services Developer’s Guide.

Any IS service can be used as a handler service. However, handler services must use
a specific service signature. Integration Server defines the service handler signature
in the pub.soap.handler:handlerSpec specification. Integration Server also provides several
services that you can use when creating handler services. These services are located in
the pub.soap.handler folder in the WmPublic package.

When you register a handler, you name the handler, identify the services that function
as the request, response or fault handler services, and indicate whether the handler is for
use with provider web service descriptors or consumer web service descriptors.

You can assign multiple handlers to a web service descriptor. Designer displays the
handlers on the Handlers tab. The collection of handlers assigned to a web service
descriptor is called a handler chain. For a consumer web service descriptor, Integration
Server executes the handler chain for output SOAP requests and inbound SOAP
responses. For a provider web service descriptor, Integration Server executes the handler
chain for inbound SOAP requests and outbound SOAP responses.

When executing the handler chain, Integration Server executes request handler services
by working through the handler chain from top to boom. However, Integration Server
executes response handler services and fault handler services from boom to top.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 814

The order of handlers in the handler chain may be important, depending on what
processing the handlers are performing.

Setting Up a Header Handler
To create and implement a header handler, you need to:

Build the services for handling a request, handling a response, and handling a fault.
Use the pub.soap.handler:handlerSpec specification as the signature for a service that acts
as a header handler.

Register the combination of those services as a header handler.

Assign the header handler to the web service descriptor.

Registering a Header Handler
Register the handler as either a consumer or provider using
pub.soap.handler:registerWmConsumer or pub.soap.handler:registerWmProvider, respectively.
During registration:

You provide a logical name for the handler.

You specify the services for handling a request, a response, and a fault as input.

You optionally specify the list of QNames on which the handler operates.

Specify QNames only if you want to associate with handler with one or more
QNames. Registering QNames with a handler provides the following benefits:

Integration Server can perform mustUnderstand checking for the header with
the QName at run time. If a service receives a SOAP message in which a header
requires mustUnderstand processing by the recipient, Integration Server uses
the header QName to locate the handler that processes the header. Note that the
handler must be part of the handler chain for the WSD that contains the service.

When adding headers to a WSD, Designer populates the list of IS document
types that can be used as headers in the WSD with the IS document types
whose QNames were registered with the handlers already added to the WSD.
If you add a IS document type as a header to a WSD and the QName of that IS
document type is not associated with a handler, Designer adds the header but
display a warning stating that there is not an associated handler.

When consuming WSDL to create a provider or consumer WSD, Integration
Server automatically adds a handler to the resulting WSD if the WSDL contains a
QName supported by the handler.

Note: Integration Server stores information about registered header handlers
in memory. Integration Server does not persist registered header handler
information across restarts. Consequently, you must register header handlers
each time Integration Server starts. To accomplish this, create a service that

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 815

registers a header handler and make that service a start up service for the
package that contains the services that act as header handlers.

Adding a Handler to a Web Service Descriptor
To add a handler to a web service descriptor

1. In Package Navigator view, open and lock the web service descriptor to which you
want to add handlers.

2. In the Handlers tab, click on the web service descriptor toolbar. Or right-click and
select Add Handler.

3. Select the registered handler that you want to add to the web service descriptor.

4. Click File > Save.

5. Once a handler is added to a web service descriptor, you may optionally add
any headers associated with the handler to the request or response elements of
operations within the web service descriptor.

Note: You must set up a package dependency if the web service descriptor uses a
handler from a different package.

Deleting a Handler from a Web Service Descriptor
To delete a handler from a web service descriptor

1. In Package Navigator view, open and lock the web service descriptor from which
you want to remove handlers.

2. Click the Handlers tab.

3. Select the handler that you want to delete.

4. Click on the web service descriptor toolbar or right-click and select Delete.

Designer removes the selected handler is deleted from the Handlers tab and from the
web service descriptor. If the web service descriptor still contains a header associated
with the deleted handler, Designer displays a warning.

Working with Policies
WS-Policy is a model and syntax you can use to communicate the policies associated
with a web service. Policies describe the requirements, preferences, or capabilities of
a web service. You aach a policy to a policy subject, for example, a service, endpoint,
operation, or message. After aaching a policy to a policy subject, the policy subject
becomes governed by that policy.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 816

webMethods Integration Server provides support for Web Services Policy Framework (WS-
Policy) Version 1.2.

In Integration Server, a policy is specified using policy expressions in an XML file
called a WS-Policy file (more simply called policy file). Integration Server comes with
some policy files out of the box. Additionally, you can also create policy files. For more
information, see Web Services Developer’s Guide.

To have a web service governed by the policy in a WS-Policy file, you aach the policy to
the web service descriptor. You can aach WS-Policies at the binding operation message
type level, such as input, output, and fault, in a web service descriptor.

Attaching a Policy to a Web Service Descriptor
You can aach one or more policies to a single web service descriptor. Also, multiple
web service descriptors can share the same policy. You can aach any policy that resides
in the policy repository.

Keep the following points in mind when aaching policies to a web service descriptor:

To aach a policy to a web service descriptor, the Pre-8.2 compatibility mode property
of the web service descriptor must be set to false.

If you change the Pre-8.2 compatibility mode property of a web service descriptor
from false to true after a policy is aached to it, the policy subject will no longer be
governed by that policy.

For more information about Pre-8.2 compatibility mode property, see "About Pre-8.2
Compatibility Mode" on page 817.

When aaching policies, avoid aaching a policy that contains policy assertions that
Integration Server does not support. For information about supported assertions, see
the Web Services Developer’s Guide. If you aach a policy that contains unsupported
policy assertions, unexpected behavior may occur.

If you aach a policy to a WSDL first provider web service descriptor or a consumer
web service descriptor, the aached policy will override any annotated policy in the
source WSDL.

For a web service descriptor with a policy aached to it, the aached policy
always takes precedence at run time.

For a consumer web service descriptor, even though the consumer WSDL will
not show the aached policy, Integration Server will enforce the aached policy
at run time.

When you aach a policy to or remove a policy from a provider web service
descriptor, the WSDL generated for that web service descriptor is changed as well.
Any web service clients generated from the WSDL will need to be regenerated.

When you aach a policy to or remove a policy from a consumer web service
descriptor, you do not need to refresh the web service connectors to pick up the
policy change. Integration Server detects and enforces the policy change at run time.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 817

If the policy you are aaching contains WS-SecurityPolicy assertions and you also
want to use MTOM streaming, be aware that if the fields to be streamed are also
being signed and/or encrypted, Integration Server cannot use MTOM streaming
because Integration Server needs to keep the entire message in memory to sign and/
or encrypt the message.

To attach a policy to a web service descriptor

1. In Package Navigator view, open and lock the web service descriptor to which you
want to aach a policy.

2. In the Policies tab, click on the web service descriptor toolbar, or right-click and
select Attach Policy.

3. Select the policies that you want to aach to the web service descriptor.

Designer displays the policies that you selected in the Policies tab.

4. Against each policy in the Policies tab, select the appropriate check boxes to aach
a WS-Policy to Input, Output, and/or Fault message type. You can choose to aach a
policy to all message types or to any of the three message types. You must select at
least one message type for each policy in the Policies tab if you want the web service
descriptor to be governed by that policy.

Note: By default, all the three message types are selected.

5. Click File > Save.

Removing a Policy from a Web Service Descriptor
If you no longer want a web service descriptor to be governed by a particular policy, you
can detach or remove the policy from the web service descriptor.

To remove a policy from a web service descriptor

1. In Package Navigator view, open and lock the web service descriptor from which
you want to remove a policy.

2. Click the Policies tab.

3. Select the policy that you want to delete from the web service descriptor.

4. Click on the web service descriptor toolbar or right-click and select Delete.

About Pre-8.2 Compatibility Mode
Integration Server version 8.2 introduces support for web service features, such as SOAP
over JMS, and WS-Policy based WS-Security configuration, that are available through
the current web services stack. Some of the features and behavior included in the current
web services stack are not compatible with the features and run-time behavior of web

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 818

service descriptors created on the earlier version of the web services stack, specifically
the web services stack available in Integration Server versions 7.x, 8.0, and 8.0 SP1.

To ensure that web service descriptors developed on the earlier version of the
web services stack execute as expected, web service descriptors now have a Pre-8.2
compatibility mode property. This property determines the version of the web services
stack on which the web service descriptor runs. The version of the web service stack
used by the web service descriptor determines the design-time features and run-time
behavior for the web service descriptor. The value of the Pre-8.2 compatibility mode
property indicates the version of the web service stack with which the web service
descriptor is compatible:

When the Pre-8.2 compatibility mode property is set to true, the web service descriptor
runs on the earlier version of the web services stack, specifically the web services
stack available in Integration Server versions 7.x, 8.0, and 8.0 SP1. Web service
descriptors running in pre-8.2 compatibility mode have the same design-time
features and run-time behavior as web service descriptors run in versions of
Integration Server prior to version 8.2.

When the Pre-8.2 compatibility mode property is set to false, the web service descriptor
runs on the current version of the web services stack. web service descriptors that do
not run in pre-8.2 compatibility mode have the design-time features and run-time
behavior available in the current version of the web services stack.

Note: You can use Designer 8.2 or later with an Integration Server 8.2 or later to
create and edit a web service descriptor regardless of the compatibility mode.

Setting Compatibility Mode
Keep the following points in mind when seing the Pre-8.2 compatibility mode property for
a web service descriptor:

You can set the compatibility mode using Designer 8.2 or later only.

The compatibility mode alters the design-time features available for the web service
descriptor and might change the run-time behavior of the web service descriptor.

You can use the pub.utils.ws:setCompatibilityModeFalse service to change the Pre-8.2
compatibility mode property value for multiple web service descriptors at one time. For
more information, see the webMethods Integration Server Built-In Services Reference.

If you intend to change the compatibility mode of a web service descriptor for which
you published metadata to CentraSite, first retract metadata for the web service
descriptor. Next, change the compatibility mode. Finally, republish metadata for the
web service descriptor to CentraSite.

To set the compatibility mode for a web service descriptor

1. Open Designer.

2. In Package Navigator view, open and lock the web service descriptor for which you
want to change the compatibility mode.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 819

3. In the Properties view, next to Pre-8.2 compatibility mode, do one of the following:

Select True if you want the web service descriptor to run in pre-8.2 compatibility
mode. True indicates that Integration Server will deploy the web service
descriptor to the web services stack available in Integration Server versions 7.x,
8.0, and 8.0 SP1.

Select False if you do not want the web service descriptor to run in pre-8.2
compatibility mode. False indicates that Integration Server will deploy the web
service descriptor to the web services stack available in Integration Server 8.2 or
later.

Designer verifies that the web service descriptor can be deployed to the web services
stack that corresponds to the chosen compatibility mode and displays any errors or
warnings.

4. If Designer displays errors or warnings, do one of the following:

If errors occur, Designer determined that the web service descriptor cannot
be deployed to the corresponding web services stack successfully. Designer
displays the errors that identify the functionality that is incompatible with the
web services stack. Click OK to cancel the change to the Pre-8.2 compatibility
mode property.

If warnings occur, Designer determined that the web service descriptor can be
deployed to the corresponding web services stack successfully but some run-time
behavior might change. Designer displays any warnings about the functional
changes of the web service descriptor in the web services stack. Click OK to
proceed with the change to the Pre-8.2 compatibility mode property. Click Cancel to
cancel the change.

5. Click File > Save.

Features Impacted by Compatibility Mode
The following table identifies the web service features impacted by the compatibility
mode of the web service descriptor.

Name Description Behavior

Binders Multiple binders
with different
operations

In pre-8.2 compatibility mode, Integration
Server permits a single web service
descriptor to contain multiple binders with
different operations.

When not in pre-8.2 compatibility
mode, all the binders for a single web
service descriptor must contain the same
operations. Integration Server will not
save a service first provider web service

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 820

Name Description Behavior
descriptor if it contains multiple binders
that list different operations.

Binding
Styles

Mixed binding
styles in
web service
descriptors

In pre-8.2 compatibility mode, Integration
Server does not restrict the binding styles
in a web service descriptor. A web service
descriptor could contain binders that used
different binding styles.

When not in pre-8.2 compatibility mode,
Integration Server requires all binders
within a web service descriptor to use the
same binding style. That is, all the binders
in a single web service descriptor should
specify a binding style of RPC or Document
for all of the binders.

Binding
Styles

Mixed binding
styles in WSDLs

In pre-8.2 compatibility mode, Integration
Server creates web service descriptors from
WSDLs that contained bindings that used
different binding styles.

When not in pre-8.2 compatibility mode,
Integration Server requires all bindings
in the consumed WSDL to have the same
style. Integration Server will not create a
web service descriptor from a WSDL that
contains mixed styles across its bindings.

JMS Bindings Support for JMS
bindings and
JMS binders

In pre-8.2 compatibility mode, Integration
Server supports HTTP and HTTPS
bindings only.

Integration Server will not create a WSDL
first provider web service descriptor from
a WSDL document that contains a JMS
binding.

When creating a consumer web service
descriptor, Integration Server will not
create binders that correspond to JMS
bindings in the WSDL document. If
the WSDL document contains only
JMS bindings, Integration Server will
not create the consumer web service
descriptor.

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 821

Name Description Behavior

A web service descriptor cannot contain
any binders that specify the JMS
transport.

When not in pre-8.2 compatibility mode,
Integration Server supports JMS bindings
in addition to HTTP and HTTPS bindings.

Integration Server can create provider
web service descriptors from WSDL
documents that contain JMS bindings.

When creating a consumer web service
descriptor, Integration Server will create
binders that correspond to JMS bindings
in the WSDL document.

A web service descriptor can use binders
that specify JMS as the transport.

Message
Exchange
Paern
(MEP)
Support

Added In-
Only MEP and
Robust In-Only
MEP support

In pre-8.2 compatibility mode, Integration
Server supports only In-Out MEP for web
service operations.

When not in pre-8.2 compatibility mode,
Integration Server supports In-Only MEP
and Robust In-Only MEP, in addition to In-
Out MEP.

MTOM
Aachments

Streaming
MTOM
Aachments

In Pre-8.2 compatibility mode, Integration
Server supports MTOM aachments in
both inbound and outbound messages.
However, Integration Server cannot stream
the MTOM aachments. Integration Server
always holds the MTOM aachment in
memory.

When not in Pre-8.2 compatibility mode,
Integration Server can stream the MTOM
aachments for both inbound and
outbound SOAP messages.

Port types Port types in
web service
descriptors

In pre-8.2 compatibility mode, Integration
Server supports multiple port types. When
Integration Server generated a WSDL for
a multi-binder web service descriptor, the
resulting WSDL had multiple port types.

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 822

Name Description Behavior

When not in pre-8.2 compatibility mode,
Integration Server does not support
multiple port types. As a result, when
Integration Server generates a WSDL
for a multi-binder provider web service
descriptor, it changes the port type names
so that the generated WSDL has only a
single port type.

Port types Port types in
WSDLs

In pre-8.2 compatibility mode, Integration
Server creates web service descriptors from
WSDLs that contained multiple port types.

When not in pre-8.2 compatibility mode,
Integration Server does not support
creating web service descriptors from
WSDLs that contain multiple port types.

Provider
web service
descriptor

Provider
web service
descriptor with
no operations

In pre-8.2 compatibility mode, Integration
Server permits a provider web service
descriptor that does not contain any
operations.

When not in pre-8.2 compatibility mode,
Designer will not save a web service
descriptor if it does not contain at least one
operation.

Response
services

Response
services in
consumer
web service
descriptor

In pre-8.2 compatibility mode, Integration
Server does not create the responseServices
folder when creating a consumer web
service descriptor.

When not in pre-8.2 compatibility
mode, Integration Server creates
the responseServices folder that
contains response services for each
operation in the WSDL document and
a genericFault_Response service when
creating a consumer web service descriptor.

Service name Name aribute
in wsdl:service
element

In pre-8.2 compatibility mode, the local
name of the web service descriptor
determines the value of the name
aribute in the wsdl:service element in
the associated WSDL document. For

M
Odd Header

Working with Web Services

webMethods Service Development Help Version 9.10 823

Name Description Behavior
example, suppose that a web service
descriptor has the fully qualified name
folder.myFolder:myWebService. In the WSDL
document, the value of the name
aribute in the wsdl:service element is
"myWebService".

When not in pre-8.2 compatibility mode,
the fully qualified name of the web
service descriptor determines the value
of the name aribute in the wsdl:service
element. For example, suppose that a web
service descriptor has the fully qualified
name folder.myFolder:myWebService. In the
WSDL document, the value of the name
aribute in the wsdl:service element is
"folder.myFolder:myWebService".

Web service
handlers

Web service
handlers based
on JAX-RPC

In pre-8.2 compatibility mode, Integration
Server supports web service handlers based
on JAX-RPC.

When not in pre-8.2 compatibility mode,
Integration Server will not execute web
service handlers based on JAX-RPC.

Web service
handlers

Web service
handler chain
execution

In pre-8.2 compatibility mode, you can
use the WS-Security facility to secure a
web service. The WS-Security facility
secures web services using the WS-
Security handler. Because a handler is
used, Integration Server can perform
additional processing before and after the
security processing. That is, for inbound
messages Integration Server can invoke
handlers before invoking the WS-Security
handler to perform security processing. For
outbound messages, Integration Server can
invoke custom handlers after it invokes the
WS-Security handler, but before it sends
the outbound message.The order of the
handlers on the Handlers tab determines
the order in which Integration Server
invokes them.

When not in pre-8.2 compatibility mode,
for inbound messages, Integration Server

M
Even Header

Working with Web Services

webMethods Service Development Help Version 9.10 824

Name Description Behavior
always performs the security processing
first upon receiving the message. As a
result, Integration Server cannot invoke
custom handlers before the security
processing of an inbound message. For
outbound messages, Integration Server
always performs the security processing
last, right before it sends the message. As
a result, Integration Server cannot invoke
handlers after the security processing of an
outbound message.

WS-
Addressing

WS-Addressing In pre-8.2 compatibility mode, Integration
Server does not support WS-Addressing.

When not in pre-8.2 compatibility
mode, Integration Server implements
WS-Addressing by associating WS-
Addressing policies that conform to Web
Services Policy framework to web service
descriptors.

WS-Policy WS-Policy In pre-8.2 compatibility mode, Integration
Server does not support WS-Policy.

When not in pre-8.2 compatibility mode,
Integration Server supports the WS-Policy
framework.

WS-Security WS-Security
facility

In pre-8.2 compatibility mode, Integration
Server implemented WS-Security by
associating WS-Security handlers to web
service descriptors.

When not in pre-8.2 compatibility mode,
Integration Server implements WS-Security
by associating WS-Security policies that
conform to Web Services Policy framework
to web service descriptors.

M
Odd Header

Working with UDDI Registry

webMethods Service Development Help Version 9.10 825

35 Working with UDDI Registry

■ Opening UDDI Registry View .. 826

■ Connecting to a UDDI Registry ... 827

■ Disconnecting from a UDDI Registry ... 828

■ Refreshing a UDDI Registry Session .. 828

■ Browsing for Web Services in a UDDI Registry .. 828

■ Creating a Web Service Descriptor from a UDDI Registry .. 829

■ Publishing a Service to UDDI Registry .. 830

■ Deleting a Service from UDDI Registry ... 831

M
Even Header

Working with UDDI Registry

webMethods Service Development Help Version 9.10 826

A UDDI registry (Universal Description, Discovery, and Integration) is an XML-based
registry for businesses worldwide to list themselves on the Internet. It allows users to
view, find, and share web services.

When working with a UDDI registry from Designer you can:

Discover the web services published in a UDDI registry.

Designer displays a list of the web services that are published in a UDDI registry. By
default, Designer displays all published services, but you can use a filter to limit the
number of services shown.

Incorporate a web service into Integration Server.

You can incorporate a web service in the UDDI registry into your integration
solution by creating a consumer web service descriptor from the web service.
Designer automatically generates a web service connector for each operation in the
web service, which can be invoked in the same way as any other IS service. For more
information, see Web Services Developer’s Guide.

Publish services to a UDDI registry.

You can make a service that resides on Integration Server (such as a flow service,
Java service, C service, or adapter service) available as an operation of a web service
and then publish the web service to a UDDI registry.

Opening UDDI Registry View
To connect to a UDDI registry from Designer, you must open the UDDI Registry view.

The UDDI Registry view contains icons to represent the UDDI registry, the registered
business entities, and the web services published to the UDDI registry. The UDDI
Registry view also contains a toolbar with buons for performing various operations.

Note: If your UDDI registry is CentraSite, you will also be able to use the Registry
Explorer view in Designer in addition to the UDDI Registry view. The
Registry Explorer view displays the contents of the CentraSite registry to
which Designer is currently connected. To open the Registry Explorer view,
select Window > Show View > Other and in the Show View dialog box, select
CentraSite> Registry Explorer.

To open the UDDI Registry view

1. In Designer: Window > Show View > Other.

2. In the Show View dialog box, select Software AG Service Development> UDDI Registry.

3. Click OK. Designer displays the UDDI Registry view.

M
Odd Header

Working with UDDI Registry

webMethods Service Development Help Version 9.10 827

Connecting to a UDDI Registry
To use Designer to view or publish web services, you must first connect to a UDDI
registry.

Keep the following points in mind when connecting to a UDDI registry:

Designer supports UDDI v3 only. It will not connect to a registry based on earlier
versions of UDDI.

You must have a valid UDDI v3 registry account, configured with the proper
permissions to perform UDDI activities.

The specified UDDI v3 registry must contain at least one business entity. A business
entity is a logical grouping of web services, used to represent businesses and
providers within UDDI. You must publish each web service within a business entity.

You can only connect to one UDDI registry at a time from Designer. To connect to
another UDDI registry, you must first disconnect from the existing session.

While connecting to a UDDI registry, if you enter only the Inquiry URL, the UDDI
connection will be unauthenticated. You can only view entities or services that are
viewable anonymously as per the registry policies. To publish a web service, you
must authenticate the connection by providing Security URL, Publish URL, UDDI
user ID, and password.

To connect to a UDDI registry

1. In UDDI Registry view, right-click and select Open UDDI Registry Session.

2. In the Open UDDI Registry Session dialog box, select Add New Registry.

3. In the Registry Name field, enter a name for the UDDI registry.

4. Enter information in the following fields as appropriate:

In this field... Enter

Inquiry URL The URL configured for browsing the UDDI registry. This
field is mandatory.

Security URL The security URL for the UDDI registry. This field can be
mandatory or optional, depending on the registry.

Publish URL The URL configured for publishing services to the UDDI
registry. This field is mandatory if you want to publish a web
service descriptor to the UDDI registry.

5. Enter your UDDI registry user ID and password.

M
Even Header

Working with UDDI Registry

webMethods Service Development Help Version 9.10 828

6. Click Finish.

Disconnecting from a UDDI Registry

To disconnect from the UDDI registry

In UDDI Registry view, right-click and select Close UDDI Registry Session.

Refreshing a UDDI Registry Session
Designer refreshes the contents of the UDDI Registry view when you create a web
service automatically. However, you will need to refresh the UDDI registry session in
the following situations:

Other users add or delete web services from the UDDI registry.

Designer loses its connection to a UDDI registry.

The UDDI registry operates with some form of governance and a newly added web
service does not appear immediately.

To refresh a UDDI registry session

In UDDI Registry view, right-click and select Refresh UDDI Registry Display. Integration
Server refreshes the display of the UDDI registry.

Browsing for Web Services in a UDDI Registry
After you connect to a UDDI registry, you can browse for web services that you would
like to incorporate into your integration solution. You can discover web services by
scrolling through the UDDI Registry view. By default, the UDDI Registry view displays
all services published in the UDDI registry.

To help find a particular web service, you can reduce the number of displayed web
services by filtering the contents of the UDDI Registry view based on the value of a
specified web service property.

Applying a Filter to UDDI Registry
To make it easier to find a particular web service from the list of all the services
published in the UDDI registry, you can filter the contents of the UDDI Registry view.

When applying a filter to the UDDI Registry view, keep the following points in mind:

Designer continues to apply the specified filter until you explicitly clear the filter.
Designer saves the filter string across Designer and UDDI registry sessions.

M
Odd Header

Working with UDDI Registry

webMethods Service Development Help Version 9.10 829

If you publish a service that does not meet the criteria specified in the currently
applied filter, Designer does not display the newly published web service in the
UDDI Registry view.

Designer applies each filter that you create to the entire contents of the UDDI
registry. For example, if you apply two filters in succession, Designer clears the first
filter before applying the second filter. Designer does not apply the second filter to
the results of the first filter.

To filter the contents of the UDDI Registry view

1. In UDDI Registry view, right-click and select Filter UDDI Registry Display.

2. In the Filter UDDI Registry Display dialog box, in the Enter Filter Text field, type the
text to use as the filter criteria.

Integration Server treats the text as a partial string. For example, if you enter “vic”,
“victory” and “services” will both fit the search criteria. The percent sign (%) can be
used for an approximate search within the text. For example, for “a%n”, “ain” and
“Amazon” fit the search criteria.

3. Select the check boxes for WebService Name, WebService Description, or both to specify
which properties you want Designer to examine for the Enter Filter Text text string.

4. Click OK to apply the filter.

Clearing an Applied Filter
If you have applied a filter to limit the contents of the UDDI Registry view, Designer
continues to use this filter until you explicitly remove the filter. If the buon on the
UDDI Registry view toolbar is active, it indicates that Designer is using a filter to limit
the displayed web services.

To clear a filter

1. In UDDI Registry view, right-click and select Clear UDDI Filter.

2. Click OK to confirm removing the filter.

Designer removes the filter and displays all the published web services in the UDDI
registry.

Creating a Web Service Descriptor from a UDDI Registry
You can create a consumer or WSDL first provider web service descriptor from a web
service in the UDDI registry.

To create a web service descriptor from a web service in a UDDI registry

1. In UDDI Registry view, right-click and select Create Web Service Descriptor.

M
Even Header

Working with UDDI Registry

webMethods Service Development Help Version 9.10 830

2. In the New Web Service Descriptor dialog box, select either Provider (Inbound Request)
or Consumer (Outbound Request).

Follow the prompts that Designer displays and enter the required information for
the type of web service descriptor you are creating. Designer creates the provider
web service descriptor and saves it to the folder you specified. Designer also creates
supporting IS elements, such as flow services and IS document types.

Note: You can also create a web service descriptor by dragging and dropping a
service from the UDDI Registry view to a folder in the Package Navigator
view.

Publishing a Service to UDDI Registry
For a service (flow, Java, C, adapter) to be available as a web service through a UDDI
registry, you must first create a service first provider web service descriptor that uses
the IS service as an operation and then publish that web service descriptor to the UDDI
registry.

When you use Designer to publish a web service to a UDDI registry, the Integration
Server creates a WSDL file and adds it to the registry.

Keep the following points in mind when you publish a service to a UDDI registry using
Designer:

You can publish a service by creating a provider web service descriptor for the
service and dragging it directly from the Package Navigator view to the UDDI
Registry view or by right-clicking a provider web service descriptor in the Package
Navigator view and selecting Publish Web Services to a UDDI Registry. Designer
publishes the service in the UDDI registry with the following characteristics:

SOAP 1.1 as the protocol

SOAP Document/Literal as the style and use

hp://host:port as the as the address of the web service

You can publish a provider web service descriptor to the CentraSite UDDI registry in
two different ways:

By publishing the package that contains the provider web service descriptor via
metadata publishing.

By publishing the provider web service descriptor through the UDDI Registry
view.

If you want to publish IS assets in addition to web services, publish the provider web
service descriptor by publishing the entire package. If you expect to publish only
web services to CentraSite, publish the individual provider web service descriptor
through the UDDI Registry view. Typically, users choose one way or the other for

M
Odd Header

Working with UDDI Registry

webMethods Service Development Help Version 9.10 831

publishing web service assets. Software AG does not recommend using a mixture of
publishing methods.

Before publishing a service to a UDDI registry, be sure to create a provider web
service descriptor using the IS service as an operation of the web service.

To publish a service to a UDDI registry

1. From UDDI Registry view, connect to the UDDI registry in which you want to
publish the web service.

2. In Package Navigator view, copy the provider web service descriptor that contains
an operation for the IS service that you want to expose as a web service.

3. In UDDI Registry view, right-click the entity to which you want to publish the web
service and select Publish Web Service.

Designer publishes the service to the UDDI registry.

Notes:

The governance policies established in the registry may delay the display of the
published web service in the UDDI Registry view. Refresh the UDDI registry by
selecting Refresh UDDI Registry Display from the context menu to view the published
service.

If Designer cannot display the service you just published in the UDDI Registry view
because of the filter seing, Designer will display a message stating so. Clear the
applied filter by selecting Clear UDDI Filter from the context menu.

If you publish the same web service descriptor to a registry twice (without first
deleting the original version), two web services will exist with the same name in
the registry. However, the Service Key property values will be different for these
two services. If you cannot determine which version is the newest, delete both web
services from the UDDI registry and re-publish the new version.

Deleting a Service from UDDI Registry
Perform the following steps to delete a web service from a UDDI registry. When you
remove a web service from a registry, the associated web service descriptor and its
supporting elements still exist on the Integration Server but the web service is no longer
published in the UDDI registry.

Note: You cannot delete a web service from another business’ folder in the registry.
The Delete buon will be disabled.

To delete a web service from UDDI registry

1. In UDDI Registry view, right-click the web service that you want to remove and
select Delete.

2. Click Yes to confirm deleting the web service.

M
Even Header

webMethods Service Development Help Version 9.10 832

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 833

36 Working with Flat Files

■ Concepts .. 834

■ Creating Flat File Schemas ... 835

■ Testing Flat File Schemas .. 850

■ Creating Flat File Dictionaries .. 852

■ Defining Flat File Elements .. 856

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 834

You can translate documents into and from flat file formats using the functionality and
services provided in the webMethods Flat File package (WmFlatFile). You can also
use these services as templates to create services in Designer that can convert between
flat file documents and IS documents (IData objects). The services in the WmFlatFile
package also provide a way to manage dictionary entries, entire flat file dictionaries, and
flat file schemas.

To set up the translation, you use a flat file schema to define how to identify individual
records within a flat file and what data is contained in each of those records. For detailed
information about the services in the WmFlatFile package and processing flat files, see
webMethods Integration Server Built-In Services Reference.

Concepts
You can use the flat file features to translate documents into and from flat file formats.
To set up the translation, you use a flat file schema to define how to identify individual
records within a flat file and what data is contained in each of those records. You can
also create a flat file dictionary to contain the flat file elements (records, composites,
fields) that you want to make available for use in all flat file schemas.

What Is a Flat File Schema?
A flat file schema is the blueprint that contains the instructions for parsing or creating
a flat file. The schema exists as a namespace element in the webMethods Integration
Server. This blueprint details the structure of the document, including delimiters,
records, and repeated record structures. A flat file schema also acts as the model against
which you can validate an inbound flat file. A flat file schema consists of hierarchical
elements that represent each record, field, and subfield in a flat file. Each element is a
record, composite, or field, and either a definition or reference. You configure each element
with the necessary constraints. For more detailed information about flat files and flat file
schemas, see Flat File Schema Developer’s Guide.

What Is a Flat File Dictionary?
A flat file schema can contain either record definitions or references to record definitions
that are stored elsewhere in the namespace in a flat file dictionary. A flat file dictionary is
simply a repository for elements that you reference from flat file schemas. This allows
you to create record definitions in a dictionary that can be used across multiple flat file
schemas. Reusing record definitions reduces the amount of memory consumed by a flat
file schema.

Flat file dictionaries are created as namespace elements in Integration Server and contain
definitions of records, composites, and fields. When you change a definition in a flat
file dictionary that is referenced in multiple flat file schemas, the element definition is
updated automatically in all the flat file schemas.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 835

Note: You can reference a flat file dictionary definition in any flat file schema
regardless of whether the dictionary and schema are located in the same
package.

When creating an element definition in a flat file dictionary, you specify only certain
properties. You then specify the remaining properties in the instance of the element
definition in a particular flat file schema.

When Should I Create a Flat File Dictionary?
The decision to define records in a flat file dictionary versus in a flat file schema depends
on the type of flat files that you intend to parse. The Electronic Document Interchange
(EDI) ANSI X12 standard defines a large set of document structures that reuse the same
record, field, and composite definitions many times. Defining these records, fields, and
composites in a dictionary allows for them to be reused throughout the entire set of
EDI ANSI X12 document flat file schemas. Reusing definitions reduces the amount of
memory consumed by Integration Server.

EDI ANSI X12 also has different versions of these documents (for example, 4010). Each
version of the document set should have its own dictionary. In this way, you can be
certain that changes to a record, field, or composite between versions are maintained.

A more complex scenario would involve multiple families of documents and multiple
versions of those families. An example of this is EDI ANSI X12 and UN/EDIFACT
documents. One dictionary should be created for each version of EDI ANSI X12
documents and one dictionary should be created for each version of EDI UN/EDIFACT
documents. A separate dictionary would not be required for each flat file schema in the
same version. All flat file schemas in one version of the same family should use the same
dictionary.

In a scenario in which you intend to parse only one flat file, or flat files that do not share
record, composite, or field definitions, you can define these elements directly in the flat
file schema. This allows for the entire document to be edited in a single view, without
referencing a flat file dictionary.

If a clear choice does not exist between these two scenarios, the best approach is to create
the definitions in the flat file dictionary and reference them in a flat file schema. The
definitions then can be reused at a later time.

Creating Flat File Schemas
You can use Designer to create a flat file schema that Integration Server can use as a blue
print for parsing and creating flat files.

Building a flat file schema is a process that involves the following basic stages:

Stage 1 Create the flat file schema. During this stage, you create the new flat file
schema on the Integration Server where you will do your development

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 836

and testing. For more information, see "Creating the Flat File Schema" on
page 836.

Stage 2 Define the record parser and specify a record identifier for the flat file schema.
During this stage, you associate a record parser with the flat file schema
that will process flat files inbound to the Integration Server. You also
specify how you want the record to be identified after it is parsed. For
more information about defining the record parser, see "Specifying a
Record Parser" on page 837. For more information about specifying a
record identifier, see "Specifying a Record Identifier" on page 846.

Stage 3 Define the structure.During this stage, you specify the hierarchical structure
of the flat file by creating and nesting record definitions or record
references. For more instructions, see "Defining the Schema Structure" on
page 847.

Stage 4 Set properties for the flat file schema.During this stage, you set up the ACL
(access control lists) permissions, configure a default record, add areas,
and allow undefined data for your flat file schema or dictionary.

Stage 5 Test the flat file schema.During this stage, you can use the tools provided by
Designer to test the flat file schema. For more information, see "Testing a
Flat File Schema" on page 851.

Note: When validation is enabled, Integration Server can generate errors for
the Ordered, Mandatory, Validator, and Undefined Data properties. To enable
validation, you must set the validate variable of the convertToValues service to
True. For more information about this service, see webMethods Integration
Server Built-In Services Reference.

Creating the Flat File Schema
When you create a flat file schema, keep the following points in mind:

You must have Write access to the folder in which you want to store the flat file
schema.

You can quickly create a flat file schema by right-clicking the folder, selecting New >
Flat File Schema. Enter a name for the flat file schema in the Provide a Name dialog
box and click OK. Designer automatically creates a flat file schema in the selected
folder.

To create a flat file schema

1. In the Package Navigator view of Designer, click File > New > Flat File Schema.

2. In the New Flat File Schema wizard, select the folder in which you want to save the
flat file schema.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 837

3. In the Element name field, type a name for the flat file schema using any combination
of leers, numbers, and/or the underscore character. For information about restricted
characters, see "About Element Names" on page 52.

4. Click Finish.

Integration Server generates a flat file schema and Designer displays it in the
Package Navigator view.

5. Next, use the flat file schema editor to configure the record parser and record
identifier. See "Specifying a Record Parser" on page 837.

Specifying a Record Parser
Integration Server can exchange all types of flat files but can process only certain types
of flat files. Integration Server can process flat files in which:

The records in the flat file are defined using one of the following methods:

Delimiter. Each record in the flat file is separated by a delimiter.

Fixed length. Each record is a fixed number of bytes (for example, mainframe
punch or print records).

Variable length. Each record is preceded by two bytes that indicate the length of the
record. Records in the flat file can have different lengths.

EDI document type. This option is only for viewing existing EDI flat file schemas.

Note: If you are using the webMethods Module for EDI to process EDI
documents, you should use the wm.b2b.edi services to create your flat
file schemas. This help system does not provide information about
creating EDI flat file schemas for use with the webMethods Module for
EDI. For more information and steps, see the webMethods Module for
EDIINT Installation and User’s Guide. The EDI Document Type option is
displayed for you to view existing EDI flat file schemas.

Each distinct record structure has a record identifier. If no record identifier is
present, the record is parsed using a default record definition. For more information
about default records, see "Seing a Default Record" on page 847.

If the flat file contains record identifiers, the record identifiers must be located in the
same location in all records in the file.

Integration Server then can identify fields in these records based on either:

Delimiters. Each field is separated by a delimiter, and you can specify the Nth
delimited field in a record to represent the record identifier. This can be used only
when a field delimiter (and, if necessary, subfield delimiter) has been specified.

Byte position. Each field is defined by 1) the number of bytes from the beginning of
the record and 2) the field length. This can be used regardless of whether a field
delimiter has been specified.

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 838

Specifying a Delimited Record Parser for the Schema
Use this parser when each record is separated by a delimiter. For a record delimiter, you
can specify:

A character (for example, !) or character representation (for example, \r\n for
carriage return).

Hexadecimal value (for example, 0X09).

Octal value (for example, 009).

Unicode characters (for example, \uXXXX, where XXXX represents the Unicode
value of the character).

To configure a delimited record parser

1. In Package Navigator view, double-click the flat file schema that you want to
configure. The flat file schema opens in the flat file schema editor window.

2. In the Record Parse Type area, select Delimited.

3. Specify the following fields:

a. Record

Property Description

Character Character that separates records in a flat file
document.

--OR--

Character Position Starting from the beginning of the document and
counting from zero (0), the character position
at which the record delimiter for this document
is located. For example, if you specify 3 as the
character position, you have indicated that the
record delimiter appears in the fourth character
position from the beginning of the document.

Note: If records use a fixed position extractor, the
delimiter record parser does not include the
record delimiter character in the parsed record.
You will not be able to extract the record
delimiter character in a fixed position field.

b. Field or composite

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 839

Property Description

Character Optional. Character that separates fields in a flat file
document.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the character
position at which the field delimiter for this
document is located. For example, if you specify 4 as
the character position, you have indicated that the
field delimiter appears in the fifth character position
from the beginning of the document.

c. Subfield

Property Description

Character Optional. Character that separates subfields in a flat
file document. The default is a period “.”.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the character
position at which the subfield delimiter for this
document is located. For example, if you specify 5
as the character position, you have indicated that
the subfield delimiter appears in the sixth character
position from the beginning of the document.

d. Quoted release character

Property Description

Character Optional. Character used to enable a section of text
within a field to be represented as its literal value.
Any delimiter characters that appear within this
section will not be treated as delimiters.

For example, your field delimiter is (,) and your
release character is “. When you want to use (,)
within a field as text, you must preface it with
your quoted release character. When using the

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 840

Property Description
convertToValues service to create the strings Doe,
John and Doe, Jane, the record would appear
as “Doe, John”,“Doe, Jane”. When using the
convertToString service to create “Doe, John”,“Doe,
Jane”, the value of the record would be Doe, John
and Doe, Jane. When using the convertToString
service, if you have specified both the Release
Character and the Quoted Release Character, the
Quoted Release Character will be used.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the
character position at which the quoted release
character for this document is located. For
example, if you specify 5 as the character position,
you have indicated that the quoted release
character appears in the sixth character position
from the beginning of the document.

e. Release character

Property Description

Character Optional. Character used to enable a delimiter to
be used for its intended, original meaning. The
character following the release character will not
be treated as a delimiter. For example, your field
delimiter is + and your release character is \. When
using + within a field as text, you must preface
it with your release character. When using the
convertToValues service to create the strings a+b+c
and d+e+f, the record would appear as a\+b\+c
+d\+e\+f. When using the convertToString service to
create a\+b\+c+d\+e\+f, the value of the record
would be a+b+c and d+e+f.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the character
position at which the field delimiter for this
document is located.For example, if you specify 5
as the character position, you have indicated that

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 841

Property Description
the field delimiter appears in the sixth character
position from the beginning of the document.

4. Next, set the record identifier for the schema. See "Specifying a Record Identifier" on
page 846.

Specifying a Fixed Length Record Parser for the Schema
Use a fixed length record parser when each record is of a fixed length (for example,
mainframe punch or print records). This parser splits a file into records of the same pre-
specified length.

To configure a fixed length record parser

1. In Package Navigator view, double-click the flat file schema that you want to
configure. The flat file schema opens in the flat file schema editor window.

2. In the Record Parse Type area, select Fixed Length.

3. In the Record Length field, enter the length, in characters, of each record in the flat file.

4. Specify the following fields:

a. Field or composite

Property Description

Character Optional. Character that separates fields or
composites in a flat file document.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the
character position at which the field delimiter
for this document is located. For example, if you
specify 4 as the character position, you have
indicated that the field delimiter appears in the
fifth character position from the beginning of
the document.

b. Subfield

Property Description

Character Optional. Character that separates subfields in a
flat file document.

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 842

Property Description

--OR--

Character position Optional. Starting from the beginning of
the document and counting from zero (0),
the character position at which the subfield
delimiter for this document is located. For
example, if you specify 5 as the character
position, you have indicated that the subfield
delimiter appears in the sixth character position
from the beginning of the document.

c. Quoted release character

Property Description

Character Optional. Character used to enable a section of text
within a field to be represented as its literal value.
Any delimiter characters that appear within this
section will not be treated as delimiters.

For example, your field delimiter is (,) and your
release character is “. When you want to use
(,) within a field as text, you must preface it
with your quoted release character. When using
the convertToValues service to create the strings
Doe, John and Doe, Jane, the record would
appear as “Doe, John”,“Doe, Jane”. When
using the convertToString service to create “Doe,
John”,“Doe, Jane”, the value of the record would
be Doe, John and Doe, Jane.When using the
convertToString service, if you have specified both the
Release Character and the and the Quoted Release
Character, the Quoted Release Character will be
used.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the
character position at which the quoted release
character for this document is located. For
example, if you specify 5 as the character position,
you have indicated that the quoted release

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 843

Property Description
character appears in the sixth character position
from the beginning of the document.

d. Release character

Property Description

Character Optional. Character used to enable a delimiter to
be used for its intended, original meaning. The
character following the release character will not
be treated as a delimiter. For example, your field
delimiter is + and your release character is \. When
using + within a field as text, you must preface
it with your release character. When using the
convertToValues service to create the strings a+b+c
and d+e+f, the record would appear as a\+b\+c
+d\+e\+f. When using the convertToString service to
create a\+b\+c+d\+e\+f, the value of the record
would be a+b+c and d+e+f.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the
character position at which the field delimiter
for this document is located. For example, if you
specify 5 as the character position, you have
indicated that the field delimiter appears in the
sixth character position from the beginning of the
document.

5. Next, set the record identifier for the schema. See "Specifying a Record Identifier" on
page 846.

Specifying a Variable Length Record Parser for the Schema
This parser expects each record to be preceded by two bytes that indicate the length of
the record. Each record may be a different length.

To configure a variable length record parser

1. In Package Navigator view, double-click the flat file schema that you want to
configure. The flat file schema opens in the flat file schema editor window.

2. In the Record Parse Type area, select Variable length.

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 844

3. Specify the following fields:

a. Field or composite

Property Description

Character Optional. Character that separates fields or
composites in a flat file document.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the
character position at which the field delimiter
for this document is located. For example, if you
specify 4 as the character position, you have
indicated that the field delimiter appears in the
fifth character position from the beginning of the
document.

b. Subfield

Property Description

Character Optional. Character that separates subfields in a
flat file document.

--OR--

Character position Optional. Starting from the beginning of
the document and counting from zero (0),
the character position at which the subfield
delimiter for this document is located.For
example, if you specify 5 as the character
position, you have indicated that the subfield
delimiter appears in the sixth character position
from the beginning of the document.

c. Quoted release character

Property Description

Character Optional. Character used to enable a section of
text within a field to be represented as its literal
value. Any delimiter characters that appear within
this section will not be treated as delimiters.For

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 845

Property Description
example, your field delimiter is (,) and your
release character is “. When you want to use (,)
within a field as text, you must preface it with
your quoted release character. When using the
convertToValues service to create the strings Doe, John
and Doe, Jane, the record would appear as “Doe,
John”,“Doe, Jane”. When using the convertToString
service to create “Doe, John”,“Doe, Jane”, the
value of the record would be Doe, John and Doe,
Jane.When using the convertToString service, if you
have specified both the Release Character and the
and the Quoted Release Character, the Quoted
Release Character will be used.

--OR--

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the character
position at which the quoted release character for
this document is located. For example, if you specify
5 as the character position, you have indicated
that the quoted release character appears in the
sixth character position from the beginning of the
document.

d. Release character

Property Description

Character Optional. Character used to enable a delimiter to
be used for its intended, original meaning. The
character following the release character will not
be treated as a delimiter. For example, your field
delimiter is + and your release character is \. When
using + within a field as text, you must preface
it with your release character. When using the
convertToValues service to create the strings a+b+c and
d+e+f, the record would appear as a\+b\+c+d\+e\
+f. When using the convertToString service to create a
\+b\+c+d\+e\+f, the value of the record would be a
+b+c and d+e+f.

Character position Optional. Starting from the beginning of the
document and counting from zero (0), the character
position at which the field delimiter for this

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 846

Property Description
document is located. For example, if you specify 5
as the character position, you have indicated that
the field delimiter appears in the sixth character
position from the beginning of the document.

4. Next, set the record identifier for the schema. See"Specifying a Record Identifier" on
page 846.

Specifying a Record Identifier
When parsing a file, Integration Server looks at a record and extracts an identifier out
of the data. The server uses that identifier to connect the record definition in a flat file
schema with a particular record in the flat file. The name of the record definition must
match the value obtained by the record identifier. You can choose from one of two
methods of record identification:

Starts at position record identifiers compare the value that occurs in the record, at the
specified offset, to all the record names defined in the flat file schema. Note that the
Starts at position identifier cannot distinguish between all types of record names. For
example, if you name records “Rec1” and “Rec,” some instances of “Rec1” may be
identified as “Rec,” because “Rec1” begins with “Rec.”

Nth Field record identifiers use the value of the specified field as the record identifier.
These identifiers count from zero (0). For example, if 2 is specified, the third field is
used as the record identifier.

To set the record identifier for a schema definition

1. In Package Navigator view, double-click the flat file schema that you want to
configure. The flat file schema opens in the flat file schema editor window.

2. In the Record identifier area, set the record identifier to one of the following values:

Value Description

Starts at position Identifies the character position in the record
(counting from zero) where the record identifier is
located.

NthField Identifies the field in the record (counting from zero)
that contains the identifier.

3. Next, define the structure for the flat file schema. For instructions, see "Defining the
Schema Structure" on page 847.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 847

Defining the Schema Structure
The application receiving the flat file uses the structure that is defined in the flat file
schema to read the flat file. This structural information identifies the parent-child
relationships between different records in the flat file. By nesting record elements in the
flat file schema (adding record elements to a record) you can represent the hierarchical
structure of the data in the flat file.

Use the Structure tab in the flat file schema editor to add records to the flat file schema
and to define the hierarchical relationships between them.

To define the flat file schema

1. In Package Navigator view, double-click the flat file schema to which you want to
add an element. The schema opens in the flat file schema editor window.

2. To add the first record, click the name of the flat file schema in the Name column,
and then click . (You can also right-click an element and select New.)

3. Select one of the following elements:

Element See...

Record Definition "Adding a Record Definition" on page 856

Record Reference "Adding a Record Reference" on page 857

4. Add flat file elements to define the structure of the flat file schema. You can add
additional records. You can also further define records by adding child composite
and field definitions. For instructions about adding, configuring, and nesting flat file
elements in your flat file schema, see "Defining Flat File Elements" on page 856.

Setting a Default Record
You can select a default record from a flat file dictionary when creating a flat file schema.
This record is used to parse an undefined data record when the convertToValues service
fails to find a match between the flat file and the flat file schema. In other words,
Integration Server will use the default record to parse any records it does not recognize.

Keep the following in mind when deciding whether or not to set a default record:

If your flat file does not contain record identifiers, you must select a default record.
By selecting a default record, a CSV (comma separated values) file can be parsed
as a special case of record with no record identifier, but with fixed field and record
delimiters.

If you do not select a default record, unrecognized records are placed into the output
IS document with the undefined data tag, which might produce errors.

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 848

If the default record is specified when creating the flat file schema, any record that
cannot be recognized will be parsed using this default record. If a default record
is not selected, the record will be treated as undefined data. If the Undefined Data
property is set to False and the validate variable of the convertToValues service is set
to true, convertToValues will generate errors when it encounters undefined data. For
more information about the Undefined Data property, see "Allowing Undefined Data"
on page 848

To specify a default record

1. In the Package Navigator view of Designer, open the flat file schema to which you
want to add a default record.

2. In the Properties view under the Default Record area, click next to Set.

3. Browse to and select the default record for this flat file schema from a flat file
dictionary, then click Next.

4. Select the record definition to use as the default record, then click Finish.

5. Save the flat file schema.

Allowing Undefined Data
You can configure how Integration Server handles undefined data errors that are
generated at any location in the flat file schema.

When the convertToValues service processes an undefined record, it puts a placeholder
named unDefData in the resulting IS document and stores the record as a string in the
pipeline.

Note: If the file is encoded using a multi-byte encoding, and if you use a fixed length
or variable length parser, the service puts two placeholders into the pipeline:
unDefData and unDefBytes.

To specify how Integration Server handles undefined data

1. In the Package Navigator view of Designer, open the flat file schema to which you
want to specify how you want Integration Server to handle undefined data.

2. In the Properties view next to Allow undefined data, choose one of the following
options:

Select... To...

True Allow undefined data. If you select this option, you can
choose whether to allow undefined data at the record level.

False Not allow undefined data in any location in this flat file
schema. This is the default.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 849

Select... To...

If the validate variable of the convertToValues service is set to
true, the convertToValues service will generate errors when
undefined data is encountered.

3. Save the flat file schema.

Creating an Area
An area is a way to associate an arbitrary string with a given record. For example, you
may have an address record that needs to specify the shipping address in the document
header, but needs to specify the billing address in the document detail. To differentiate
these two records, you would create "Header" and "Detail" areas.

Note: Areas are used primarily for EDI document parsing.

To create an area

1. In the Package Navigator view of Designer, open the flat file schema to which you
want to add an area.

2. In the Properties view in the Settings area, click next to Areas.

3. Click to add a new area to the flat file schema. Click to insert a new area in a
specific location in the schema. Click to delete an existing area.

4. Save the flat file schema.

Specifying a Floating Record
Use the Floating Record property to designate any single record of a given flat file schema
to be a floating record. By designating a floating record, you enable that record to appear
in any position within a flat file without causing a parsing validation error.

Note: If you do not use this property, validation errors will occur if the record
structure of an inbound document does not match the record structure
defined in its flat file schema.

To specify a floating record

1. In the Package Navigator view of Designer, open the flat file schema to which you
want to add a floating record.

2. In the Properties view next to Floating Record, click .

3. Enter the name of the existing record that you want to designate as the floating
record, then click OK. If a floating record has an alternate name, specify the alternate

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 850

name in this field. For more information about alternate names, see "Record
Definition Properties" on page 968.

4. Save the flat file schema.

Editing a Flat File Schema
To edit a flat file schema, you must have the proper access permissions to do so and
have locked the flat file schema. For information about access control lists (ACLs) see
"Assigning and Managing Permissions for Elements" on page 83.

Editing a flat file dictionary is the same as editing a flat file schema except there is no
Structure tab in the dictionary editor.

You can do the following:

Edit any element properties. To do so, make the necessary changes on the Flat File
Structure tab and then save the flat file schema. For a list of these seings and
properties, see "Creating the Flat File Schema" on page 836.

Rename existing elements. To do so, right–click the element, and then select Rename.

Re–structure the elements. To rearrange the structure of your flat file schema, use the
buons at the top of the Flat File Structure tab.

Button Description

Select the element you want to delete, and click to delete.

Select the element you want to move, and click to move the
element up or down in the flat file schema structure.

Select the element you want to move, and click to move the
element left or right in the flat file schema structure.

Testing Flat File Schemas
You can test a flat file schema to verify that the parsing information and structure
defined for the flat file schema result in correctly parsed and processed flat file
documents. To test a flat file schema, create a launch configuration for the flat file
schema. The launch configuration specifies the encoding, whitespace handling, and flat
file to use when testing the flat file schema. Designer uses this information to parse and
process the supplied flat file using the flat file schema. Designer displays the test results
in the Results view.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 851

Creating a Launch Configuration for a Flat File Schema
Use the following procedure to create a launch configuration for testing a flat file
schema.

To create a launch configuration for a flat file schema

1. In the Service Development perspective, select Run > Run Configurations.

2. In the Run Configurations dialog box, select Flat File Schema and click .

3. In the Name field, specify a name for the new launch configuration.

4. On the Flat File tab, in the Integration Server list, select the Integration Server on which
the flat file schema for which you want to create a launch configuration resides.

5. In the Flat File Schema field, click Browse to navigate to and select the flat file schema,
then click OK.

Tip: If you select the flat file schema in Package Navigator view and then select
Run > Run Configurations, Designer populates the Integration Server and Flat
File Schema fields automatically.

6. On the Input tab, in the Skip whitespace list, select true if you want Designer to ignore
whitespace at the beginning of a record.

Note: If the flat file schema specifies a fixed length parser, Designer always
preserves whitespace when processing a flat file document. For fixed
length parsers, the Skip whitespace value is ignored.

7. In the Encoding list, select the encoding for the flat file that you will be testing.

8. Next to the File field, click the Browse buon to navigate to and select the flat file that
you want this launch configuration to use when testing the flat file schema.

9. Optionally, click the Common tab to specify general information about the launch
configuration and to save the launch configuration to a file.

10. Click Apply.

11. Click Run to test the flat file schema now. Otherwise, click Close.

Testing a Flat File Schema
By testing a flat file schema, you can discover any errors in the flat file schema that
prevent flat files from being parsed correctly. Keep the following points in mind when
testing a flat file schema:

When you test a flat file schema, you can select the launch configuration that
Designer uses. If a launch configuration does not exist for the flat file schema,
Designer creates a launch configuration and immediately prompts you for input

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 852

values. Designer then runs the launch configuration. Designer saves the launch
configuration in your workspace

Designer always performs validation when testing the flat file schema. To enable
validation when processing a flat fie document using the pub.flatFile:convertToValues
service, set the validate input parameter to true.

If the flat file schema specifies a fixed length parser, Designer always preserves
whitespace when processing a flat file document. For fixed length parsers, the Skip
whitespace value is ignored.

To test a flat file schema

1. In the Service Development perspective, in Package Navigator view, select the flat
file schema to test.

2. Select Run > Run As > Flat File Schema.

3. If multiple launch configurations exist for the flat file schema, in the Select Launch
Configurations dialog box, select the launch configuration that you want Designer to
use and click OK.

4. If the launch configuration is set up to prompt for input before running or there is
no launch configuration for the flat file schema, Designer displays the Enter Input
forflatFileSchemaName dialog box. If the launch configuration is not configured to
prompt for input, Designer runs the launch configuration.

5. To test the flat file schema using the input data provided in the launch configuration,
click OK to run the launch configuration. Otherwise, specify the following input data:

a. In the Skip whitespace list, select true if you want Designer to ignore whitespace at
the beginning of a record.

b. In the Encoding list, select the encoding for the flat file that you will be testing.

c. Next to the File field, click the Browse buon to navigate to and select the flat file
that you want this launch configuration to use when testing the flat file schema.

d. Click OK to run the launch configuration.

Designer displays the results in the Results view. The Pipeline tab contains the
document (IData) created by parsing and processing the supplied flat file. The Message
tab contains any errors encountered during parsing and processing.

Creating Flat File Dictionaries
You can use Designer to create a flat file dictionary that contains definitions of records,
composites, and fields that can be used across multiple flat file schemas.

Building a flat file dictionary is a process that involves the following basic stages:

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 853

Stage 1 Create the flat file dictionary. During this stage, you create the new flat file
dictionary on Integration Server. For more information, see "Creating a
Flat File Dictionary" on page 853.

Stage 2 Add Elements to the Flat File Dictionary. During this stage, you add elements
to the Record Definition, Composite Definition, or Field Definition
elements of the flat file dictionary. For more information, see "Adding
Elements to the Flat File Dictionary" on page 854.

Stage 3 Set Properties for the Flat File Dictionary. During this stage, you set up the
ACL (access control lists) permissions, configure the default record, allow
undefined data, and specify floating records for your flat file dictionary.
For more information, see "Seing Properties for the Flat File Dictionary"
on page 854.

Creating a Flat File Dictionary
You can create a flat file dictionary for use with flat file schemas. A flat file dictionary
contains definitions of records, composites, and fields that can be used across multiple
flat file schemas. Reusing these definitions reduces the amount of memory consumed by
a flat file schema. Flat file dictionaries can also contain references to composite and field
definitions in this dictionary and/or in other dictionaries.

For more information about the circumstances under which you might create and use a
flat file dictionary, see "When Should I Create a Flat File Dictionary?" on page 835.

To create a flat file dictionary

1. In the Package Navigator view of Designer, click File > New > Flat File Dictionary.

2. In the New Flat File Dictionary dialog box, type the name of the new flat file
dictionary. Select a folder in which to save the flat file dictionary. You must have
Write access to the folder in which you want to save the flat file dictionary and this
folder must be dependent on the WmFlatFile package.

For more information about package dependencies, see "About Package
Dependencies" on page 153.

3. Click Finish.

The flat file dictionary you created is automatically selected, and Designer displays
it in the Package Navigator view. You now can use the flat file dictionary editor to
configure the flat file dictionary.

Note: You can quickly create a flat file dictionary by right-clicking the folder,
selecting New > Flat File Dictionary. Enter a name for the flat file dictionary
in the New Flat File Dictionary dialog box and click Finish. Designer
automatically creates a flat file dictionary in the selected folder.

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 854

Adding Elements to the Flat File Dictionary
You can add elements to the Record Definition, Composite Definition, or Field Definition
elements of the flat file dictionary.

To add elements to the flat file dictionary

1. In the Package Navigator view of Designer, open the flat file dictionary to which you
want to add elements.

2. Select the element type to which you want to add an element (Record Definition,
Composite Definition, or Field Definition) and click in the flat file dictionary editor
toolbar.

The New Flat File Element dialog box displays the valid elements that you can add
to the element type you have selected. For more information about adding elements
to flat file dictionary, see"Defining Flat File Elements" on page 856.

3. After you have added all the elements to the flat file dictionary, save the dictionary.
You now can create flat file schemas based on this flat file dictionary.

Note: You cannot create references to the elements added to a dictionary until
you save the dictionary.

Setting Properties for the Flat File Dictionary
You use the Properties view of the flat file dictionary editor to set up the ACL (access
control lists) permissions, configure a default record, allow undefined data, and specify
floating records for your flat file dictionary.

To set properties for the flat file dictionary

1. In the Package Navigator, open the flat file dictionary for which you want to set the
properties. The flat file dictionary opens in the flat file dictionary editor window.

2. In the Properties view of the flat file dictionary editor, specify the properties for the
selected record.

For each of the following element levels, you can specify the following properties in
the Properties view:

Element Property

Record Definition Validator

Check Fields

Alternate Name

Description

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 855

Element Property

To define other properties, you must do so in the flat
file schema. For a list of all properties, see "Composite
Definition Properties" on page 973.

Composite Definition Validator

Check Fields

Alternate Name

Description

ID Code

To define other properties, you must do so in the flat
file schema. For a list of all properties, see "Composite
Definition Properties" on page 973.

Field Definition Validator

Format Service

Alternate Name

Description

ID Code

DataType

To define other properties, you must do so in the flat file
schema. For a list of all properties, see "Field Definition
Properties" on page 978.

3. After you have specified the properties for the selected record, save the dictionary.
You now can create flat file schemas based on this flat file dictionary.

Editing a Flat File Dictionary
You can edit, rename, or delete any element in a flat file dictionary from the dictionary
editor. Editing a flat file dictionary is very similar to editing a flat file schema. For more
information about editing, see "Editing a Flat File Schema" on page 850.

Note: To edit a flat file dictionary, you must have the proper access permissions and
must lock the flat file dictionary. For information about access permissions see
"Assigning and Managing Permissions for Elements" on page 83

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 856

Defining Flat File Elements
This topic applies to both flat file schemas and flat file dictionaries, unless otherwise
noted.

To add elements to a flat file schema you must be in the Flat File Structure tab of the flat
file schema editor.

To add elements to a flat file dictionary you must be in the flat file dictionary editor.

To add elements to a flat file schema or flat file dictionary

1. In Package Navigator view, double-click the flat file schema or flat file dictionary
to which you want to add an element. The schema or dictionary opens in the
appropriate editor window.

2. In the Flat File Structure tab of the flat file schema editor, or in the flat file dictionary
editor, select the element to which you want to add an element and click the in
the editor tool bar. (You can also right-click an element and select New.)

3. Select the element to which you want to add an element.

4. The New Flat File Element dialog box displays the valid elements that you can add
to the element type you have selected.

Element See...

Record Definition "Adding a Record Definition" on page 856

Record Reference "Adding a Record Reference" on page 857

Composite Definition "Adding a Composite Definition" on page 858

Composite Reference "Adding a Composite Reference" on page 858

Field Definition "Adding a Field Definition" on page 859

Field Reference "Adding a Field Reference" on page 860

Adding a Record Definition
To add a record definition

1. In Package Navigator view, double-click the flat file schema or flat file dictionary to
which you want to add a record definition. The schema or dictionary opens in the
appropriate editor window.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 857

2. In the Flat File Structure tab of the flat file schema editor, or in the flat file dictionary
editor, select the schema or dictionary and click in the editor tool bar. (You can
also right–click and select New.)

3. Select Record Definition and click Next.

4. Specify a name for the record definition in the Enter Record Definition Name dialog
box and click Finish.

Adding a Record Reference
For flat file schemas only.

In a flat file schema, you can create a reference to a record definition that is defined in a
flat file dictionary.

To add a record reference

1. In Package Navigator view, double-click the flat file schema to which you want
to add a record reference. The flat file schema opens in the flat file schema editor
window.

2. In the Flat File Structure tab of the flat file schema editor, select the schema and click
 in the editor toolbar. (You can also right–click and select New.)

3. Select Record Reference and click Next.

4. Navigate to the flat file dictionary in which the record is located, select the
dictionary, and then click Next.

5. Select the element that you want to reference and then click Next.

6. In the Enter Record Definition Name(s) dialog box, type the name of the record.

Important: This name must match the value of its record identifier exactly as it will
appear in the flat file. The name of a record reference does not have to
match the name of the record definition in the flat file dictionary. The
name of a record reference will be matched to the record identifier in the
record. The name of the record definition in the flat file dictionary does
not need to match the record identifier that appears in the flat file.

7. Click Finish.

The record is added to the flat file schema structure. The Referring To field indicates
the record definition to which the record reference refers. The Dictionary field
indicates the flat file dictionary to which the record reference refers. If the element is
a record definition, these two fields are empty.

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 858

Adding a Composite Definition
To add composite definition

1. In Package Navigator view, double-click the flat file schema or flat file dictionary to
which you want to add a composite definition. The schema or dictionary opens in
the appropriate editor window.

2. In the Flat File Structure tab of the flat file schema editor, or in the flat file dictionary
editor, select a record definition or composite definition and click in the editor
toolbar. (You can also right-click the element and select New.)

3. Select Composite Definition and click Next.

4. Under Enter Composite Definition Information, specify the following:

Property Description

Name Name for the composite definition.

Position Field number in the record that contains the composite
you want to extract. This pulls the subfield data from the
composite. If you leave this property empty, the composite
will not be extracted.

Mandatory Optional. Select the check box to require that this composite
appear in the flat file. If it is not selected, the composite is
not required to appear in the flat file. If it is selected and the
convertToValues service validate variable is set to true, errors
will be generated if the composite does not appear in the flat
file.

5. To add additional composite definitions at this level, click .

6. Click Finish to save the element definition.

Adding a Composite Reference
From a schema, you can add a composite reference that points to a dictionary. From a
dictionary, you can add a composite reference that points to the current dictionary, or to
another dictionary.

To add a composite reference

1. In Package Navigator view, double-click the flat file schema or flat file dictionary to
which you want to add a composite reference. The schema or dictionary opens in the
appropriate editor window.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 859

2. In the Flat File Structure tab of the flat file schema editor, or in the flat file dictionary
editor, select the record definition and click in the editor toolbar. (You can also
right-click the element and select New.)

3. Select Composite Reference and click Next.

4. Navigate to the flat file dictionary in which the element is located, select the
dictionary, and then click Next.

5. Select the element that you want to reference and then click Next.

6. Enter the details required in the Enter Composite Reference Name(s) as specified in
"Adding a Composite Definition" on page 858.

7. Click Finish.

Adding a Field Definition
To add a field definition

1. In Package Navigator view, double-click the flat file schema or flat file dictionary
to which you want to add a field definition. The schema or dictionary opens in the
appropriate editor window.

2. In the Flat File Structure tab of the flat file schema editor, or in the flat file dictionary
editor, select the record definition or composite definition and click in the editor
toolbar. (You can also right-click the element and select New.)

3. Under Enter Field Definition Information, specify the following.

Extractor Type Description

Fixed Position Counting from zero (0), indicates a fixed number of bytes to be
extracted from a record.

 Property Description

 Name Type the name of the field.

 Start Type the first byte to extract from the record.

 End Type the first byte that is not included in the
extraction. If you enter a negative number
(for example, –1), the extractor returns all
bytes from the byte specified in Start to the
last byte in the record or composite.

 Mandatory Optional. Select the check box to require
that this field appear in the flat file. If is

M
Even Header

Working with Flat Files

webMethods Service Development Help Version 9.10 860

Extractor Type Description
not selected, the field is not required to
appear in the flat file. If it is selected and the
convertToValues service validate variable is set
to true, errors will be generated if the field
does not appear in the flat file.

Nth Field Counting from zero (0), indicates the field that you want to
extract from the record.

 Property Description

 Name Type the name of the field.

 Position Type a value to indicate the position of
the field that you want to extract from
the record. This value cannot be null and
must be an integer greater than or equal
to zero (0). For example, if you type 1, the
second field will be extracted. This option
is available only if you specified a field
delimiter when configuring your flat file
schema. This extractor returns the field as a
key–value pair. The key is the name of the
field. The value is the String value of the
field.

 Mandatory Optional. Select the check box to require
that this field appear in the flat file. If is
not selected, the field is not required to
appear in the flat file. If it is selected and the
convertToValues service validate variable is set
to true, errors will be generated if the field
does not appear in the flat file.

4. To add additional field definitions at this level, click .

5. Click Finish to save the element definition.

Adding a Field Reference
From a schema, you can add a field reference that points to a dictionary. From a
dictionary, you can add a field reference that points to the current dictionary, or to
another dictionary.

M
Odd Header

Working with Flat Files

webMethods Service Development Help Version 9.10 861

To add a field reference

1. In Package Navigator view, double-click the flat file schema or flat file dictionary
to which you want to add a field reference. The schema or dictionary opens in the
appropriate editor window.

2. In the Flat File Structure tab of the flat file schema editor, or in the flat file dictionary
editor, select the record definition or composite definition and click in the editor
toolbar.

3. Select Field Reference and click Next.

4. Navigate to the flat file dictionary in which the element is located, select the
dictionary, and then click Next.

5. Select the element that you want to reference and then click Next.

6. Enter the details required in the Enter Field Reference Information as specified in
"Adding a Field Definition" on page 859.

7. Click Finish.

M
Even Header

webMethods Service Development Help Version 9.10 862

M
Odd Header

Working with Adapters

webMethods Service Development Help Version 9.10 863

37 Working with Adapters

■ About Adapter Connections ... 864

■ About Adapter Services ... 864

■ About Adapter Listeners .. 865

■ About Adapter Notifications ... 865

M
Even Header

Working with Adapters

webMethods Service Development Help Version 9.10 864

webMethods adapters connect resources in your enterprise to the webMethods product
suite and, through the suite, to each other. While Integration Server supports a variety of
standards such as XML, adapters support proprietary protocols for accessing packaged
applications such as SAP, Siebel, JD Edwards, Oracle Applications, and PeopleSoft;
databases such as Oracle, SQL Server, Informix, Sybase, and DB2; and mission-critical
programs on mainframes and UNIX systems. Adapters transform data from resource-
specific format into the format used within the webMethods product suite, and vice
versa. By using adapters you can incorporate resources into integration solutions
without having to build complex custom code. Adapters run on Integration Server.

Adapters convey data from resources to the webMethods product suite. Adapters
can either actively poll resources for new or changed data or passively receive new or
changed data from resources. For example, the webMethods Adapter for JDBC can
receive data from a database, transform it from the database-specific format into the
webMethods format, and send the transformed data to services on Integration Server for
further processing.

Adapters also convey data from the webMethods product suite to resources. For
example, a JDBC Adapter service can receive data from an Integration Server service,
transform it from webMethods format into the format required by the database, and
insert it into the database.

About Adapter Connections
An adapter connection is an object that contains parameters that adapter notifications
and listeners use to connect to an adapter resource. When you create an adapter service,
adapter polling notification, or listener, you specify the adapter connection that the
service or polling notification uses to connect to the resource.

You use Integration Server Administrator to create and manage adapter connections.
In Designer, you can view information about an adapter connection by clicking the
adapter connection in Package Navigator view. For information about creating adapter
connections, see the documentation provided with the adapter.

About Adapter Services
An adapter service defines an operation that the adapter will perform on an adapter
resource. Adapter services operate like flow services or Java services. Adapter services
have an input and output signature, can be invoked within a flow service, can be used as
an operation in a provider web service descriptor, and can generate audit logging data.
Designer provides facilities to create, configure, and run adapter services.

Each adapter comes with its own unique set of templates for use in creating adapter
services. For information about creating adapter services, see the documentation
provided with the adapter.

M
Odd Header

Working with Adapters

webMethods Service Development Help Version 9.10 865

About Adapter Listeners
An adapter listener is an object that uses an adapter connection to connect to an adapter
resource and wait for the resource to deliver data when an event occurs on the resource.
Listeners work with listener notifications to detect and process event data on the adapter
resource. When you create an adapter listener notification, you specify the adapter
listener that the adapter uses to connect to the adapter resource.

You use Integration Server Administrator to create and manage adapter listeners. In
Designer, you can view information about an adapter listener by clicking the adapter
listener in Package Navigator view. For information about creating adapter listeners, see
the documentation provided with the adapter.

About Adapter Notifications
An adapter notification contains information about an event that occurs on an adapter
resource and then sends the notification data to Integration Server in the form of a
published document. There are two types of adapter notifications:

Polling notifications poll the resource for events that occur on the resource.

When you create a polling notification in Designer, you specify the notification
template and the adapter connection to use to connect to the adapter resource.

Listener notifications work with listeners to detect and process events that occur on
the adapter resource.

When you create a listener notification in Designer, you specify the notification
template Andes listener to use to connect to the adapter resource.

When creating an adapter notification, Designer also creates a publishable document
type that describes the data generated by the adapter notification. At run time, the
notification publishes this document and sends it to Integration Server.

To process a document associated with an adapter notification, create a webMethods
messaging trigger to subscribe to the document type created for the notification. When
Integration Server receives a notification document, the subscribing trigger processes
the document by invoking the trigger service associated with the document type
subscription.

Each adapter comes with its own unique set of templates for use in creating
adapter notifications. For information about creating adapter notifications, see the
documentation provided with the adapter.

M
Even Header

webMethods Service Development Help Version 9.10 866

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 867

38 Subscribing to Events

■ What Happens When an Event Occurs? ... 868

■ Subscribing to Events .. 869

■ Viewing and Editing Event Subscriptions .. 874

■ Suspending Event Subscriptions ... 875

■ Deleting an Event Subscription .. 875

■ Building an Event Handler ... 875

■ Invoking Event Handlers Synchronously or Asynchronously ... 876

■ About Alarm Events ... 877

■ About Audit Events .. 877

■ About Audit Error Events ... 878

■ About Exception Events ... 878

■ About Guaranteed Delivery Events ... 878

■ About JMS Delivery Failure Events ... 880

■ About JMS Retrieval Failure Events .. 880

■ About Port Status Events ... 881

■ About Replication Events ... 881

■ About Security Events .. 882

■ About Session Events .. 883

■ About Stat Events .. 883

■ About Transaction Events .. 883

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 868

The Event Manager monitors Integration Server for events and invokes event handlers
when those events occur. An event is a specific action that the Event Manager recognizes
and an event handler can react to. An event handler is a service that you write to perform
some action when a particular event occurs. You then subscribe the event handlers to the
events about which they need to be notified.

You can use the Event Manager to manage all of your event subscriptions and perform
the following tasks:

Subscribe event handlers to events.

View or edit event subscriptions.

Suspend event subscriptions.

Delete event subscriptions.

Note: You can also use built-in services to add, modify, and delete event
subscriptions. These services are located in the pub.event folder. For more
information about built-in services, see the webMethods Integration Server Built-
In Services Reference.

Note: The Event Manager monitors local Integration Server events only. It does not
monitor EDA (Event Driven Architecture) events.

What Happens When an Event Occurs?
When an event occurs, the Event Manager automatically invokes all event handlers
that subscribe to the event. The event handlers receive an input object containing run-
time information. The exact content of this input object varies depending on the type of
event that occurred and, for audit events, the run-time properties set on both Integration
Server and the service that generated the event.

Other points to keep in mind about events and event handlers:

An event can have more than one subscriber, which means that a single event might
invoke several event handlers.

If an event invokes more than one event handler, all the event handlers execute
simultaneously. They do not execute serially and they are not invoked in any
particular order. (If you have a series of actions that must execute in a specific
sequence, you should encapsulate the entire sequence within a single event handler.)

An event handler can subscribe to more than one event.

An event handler can be invoked synchronously or asynchronously. For more
information, see "Invoking Event Handlers Synchronously or Asynchronously" on
page 876.

When event handlers run, they do not generate audit events.

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 869

If an event handler throws an exception, it generates an exception event. This is true
for all event handlers but exception event handlers. When an exception event handler
throws an exception, it does not generate an exception event.

Subscribing to Events
You can use the Event Manager in Designer to subscribe to an event on the current
server. This action registers the event handler with the Event Manager and specifies
which events will invoke it.

Use the following procedure to subscribe to an event on the current Integration Server.
Before you subscribe to an event, you must have completed the following:

Identified the event type you want to subscribe to.

Identified the service or services that generate an event you want to subscribe to (if
you want to subscribe to an audit event, exception event, or JMS delivery failure
event).

Wrien the event handler that will execute when the identified event occurs.

To subscribe to an event

1. In Package Navigator view, select the current Integration Server and select File >
Properties. In the Properties for serverName dialog box, select Event Manager.

2. In the View event subscribers for list, select the event type to which you want to
subscribe.

3. Click to add a new subscriber.

4. In the Add Event Subscriber dialog box, complete the following fields:

In this field... Specify...

Service The fully qualified name of the event handler that will
subscribe to the event (that is, the service that will execute
when the event occurs). You can either type the name in the
Service field or browse to locate and select the service from a
list.

Example:sgxorders.Authorization:LogAuthTrans

Filter A paern string to further limit the events this event handler
subscribes to. Filters vary depending on the event type you are
subscribing to.

For example, if you are subscribing to an audit or exception
event, create a filter to specify the names of services whose
events this event handler subscribes to (that is, the services

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 870

In this field... Specify...
that, when executed, will invoke the event handler specified in
Service).

You can use the * character as a wildcard (this is the only
wildcard character recognized by this paern string). The
paern string is case sensitive.

For more information about creating event filters, see
"Creating Event Filters" on page 870.

Comment An optional descriptive comment about this subscription.

Enabled Whether the subscription is active or inactive. Set to true
to activate the subscription. Set to false to deactivate the
subscription. (This allows you to temporarily suspend a
subscription without deleting it.)

5. Click OK. Subscriptions take effect immediately.

Note: Integration Server saves information for event types and event subscriptions
in the eventcfg.bin file. This file is generated the first time you start the
Integration Server and is located in the Integration Server_directory\config
directory. Copy this file from one Integration Server to another to duplicate
event subscriptions across servers.

Creating Event Filters
Event filters allow you to be very selective about the events to which you subscribe.
Event filters limit the events for an event type that invoke an event handler. By using
event filters, you can subscribe an event handler to only those events generated by a
particular service, package, user, or port. For example, you might want an event handler
to be invoked only when a specific service generates an audit event. Or, you might want
an event handler to be invoked only when a specific user logs on to the Integration
Server.

The following table identifies the information that you can filter on for each event type.
Notice that you cannot create a filter for some event types. For these event types, every
generated event invokes the event handlers subscribed to it.

Important: The asterisk (*) is the only wildcard character allowed in an event filter. All
other characters in the paern string are treated as literals. Paern strings are
case sensitive.

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 871

For this event
type...

You create a filter for...

Alarm Event The message generated by the alarm event. Create a filter that
specifies some of the text of the message. The event handler with
this filter will process all alarm events containing the specified
text.

The following filter specifies that any alarm events that generate
a message containing the word “port” will invoke the event
handler:
port

Audit Event The fully qualified name of the service that generates the audit
event. Create a filter to specify the services whose audit events
you want to invoke the event handler.

The following filter specifies that the service
sgxorders.Authorization:creditAuth will invoke the event handler:
sgxorders.Authorization:creditAuth

Audit Error Event The concatenated value of the destination and errorCode fields of
the audit error event. If the audit error event value matches the
filter, the event will be passed to the event handler. You can use
the asterisk (*) as a wildcard character in the filter.

You can use filters to limit the events that your event handler
will receive as follows:

If you set the filter to YourSearchTerm , the event handler will
receive events whose values contain onlyYourSearchTerm .

If you set the filter to YourSearchTerm* , the event handler will
receive events whose values begin with YourSearchTerm .

If you set the filter to *YourSearchTerm , the event handler will
receive events whose values end with YourSearchTerm .

If you set the filter to *YourSearchTerm* , the event handler will
receive events whose values contain YourSearchTerm anywhere
in the value.

Error Event The error message text. The following filter specifies that any
error event with a message that contains the word "missing" will
invoke the event handler.
missing

Exception Event The fully qualified name of the service that generates the
exception event. Create a filter to specify the services whose
exception events you want to invoke the event handler.

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 872

For this event
type...

You create a filter for...

The following filter specifies that all services that start with the
word “credit” and belong to any folder will invoke the event
handler:
:credit

GD End Event N/A

The filter for all GD End events is the following:
*

GD Start Event The fully qualified name of the service that is being invoked
using guaranteed delivery. Create a filter to specify the services
that, when invoked using guaranteed delivery, will invoke the
event handler.

The following paern string specifies that all services that start
with the word “sendPO” and belong to any folder will invoke the
event handler:
:sendPO

JMS Delivery
Failure Event

The name of the JMS connection alias used to send the message
to the JMS provider.

The following filter specifies that a JMS delivery failure
event involving a JMS connection alias with “XA” in the JMS
connection alias name will invoke the event handler:
XA

JMS Retrieval
Failure Event

The fully qualified name of the JMS trigger that called the trigger
service for which the error occurred.

The following filter specifies that a JMS retrieval failure event
involving a JMS trigger named “ordering:processTransaction” will
invoke the event handler:
ordering:processTransaction

Journal Event The major code and minor code of the generated event. The
format of the filter is <majorCode>.<minorCode>. For example,
the following filter specifies that any journal event with major
code of 28 followed by a minor code of 34 will invoke the event
handler:
28.34

Port Status Event N/A

The filter for all port status events is the following:
*

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 873

For this event
type...

You create a filter for...

Replication Event The name of the package being replicated. Create a filter to
specify the packages that, when replicated, will invoke the event
handler.

The following filter specifies that a replication event involving
the package named “AcmePartnerPkg” will invoke the event
handler:
AcmePartnerPkg

Security Event N/A

The filter for all security events is the following:
*

Session End
Event

N/A

The filter for all session end events is the following:
*

Session Expire
Event

N/A

The filter for all session expire events is the following:
*

Session Start
Event

The user name for the user starting the session on the Integration
Server or the groups to which the user belongs. Create a filter
to specify which users or which user groups invoke an event
handler when they start a session on the server.

The following filter specifies that a session start event generated
by a user in the “Administrators” group will invoke the event
handler.
Administrators

Stat Event N/A

The filter for all stat events is the following:
*

Tx End Event N/A

The filter for all Tx End events is the following:
*

Tx Start Event N/A

The filter for all Tx Start events is the following:
*

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 874

Creating Event Filters for Services
When you create a filter for a service name, you can be very selective about which
service’s events you subscribe to. You can use regular expressions to create event
filters for service names. The following examples show ways you can use regular
expressions as event filters to specify an event that a particular service generates. For
more information about regular expressions, see "Regular Expressions" on page 1145.

This filter... Will select events generated by...

sgxorders.Auth:creditAuth The service sgxorders.Auth:creditAuth.

sgxorders.Auth:credit* All services in the sgxorders.Auth folder, starting
with the characters “credit.”

sgxorders.Auth:* All services in the sgxorders.Auth folder.

sgxorders.* All services in the sgxorders folder and its
subfolders.

.Auth:credit* All services starting with the characters “credit”
that reside in any subfolder whose name starts the
characters “Auth.”

:credit All services starting with the characters “credit” in
any folder.

* All services.

Viewing and Editing Event Subscriptions

To view or edit an event subscription

1. In Package Navigator view, select the current Integration Server and select File >
Properties. In the Properties for serverName dialog box, select Event Manager.

2. In the View event subscribers for list, select the event type for which you want to view
subscriptions.

3. Click the subscription you want to edit, and then click .

4. Modify the fields in the Edit Event Subscriber dialog box as needed and then click
OK.

5. Repeat this procedure for each subscription that you want to view or edit.

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 875

6. Click OK when you finish viewing or editing event subscriptions. Your changes take
effect immediately.

Suspending Event Subscriptions
You can suspend an event subscription. By suspending an event subscription, you
temporarily stop the execution of the event handler without deleting or removing the
event handler. While the event subscription is suspended, the Event Manager does not
invoke the associated event handler when the server generates the event to which it is
subscribed. You can resume an event subscription at any time.

To suspend an event subscription

1. In Package Navigator view, select the current Integration Server and select File >
Properties. In the Properties for serverName dialog box, select Event Manager.

2. In the View event subscribers for list, select the event type for which you want to
suspend a subscription.

3. Click the subscription you want to edit, and then click .

4. In the Edit Event Subscriber dialog box, in the Enabled list, select false.

5. Repeat this procedure for each event subscription you want to suspend.

6. Click OK when you finish suspending event subscriptions. Your changes take effect
immediately.

Deleting an Event Subscription

To delete an event subscription

1. In Package Navigator view, select the current Integration Server and select File >
Properties. In the Properties for serverName dialog box, select Event Manager.

2. In the View event subscribers for list, select the event type for which you want to delete
a subscription.

3. Click the subscription you want to delete, and then click .

4. Repeat this procedure for each subscription that you want to delete.

5. Click OK when you finish deleting subscriptions. Your changes take effect
immediately.

Building an Event Handler
Building an event handler involves the following basic stages:

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 876

Stage 1 Creating an empty service. During this stage, you create the empty
service that you want to use as an event handler.

Stage 2 Declaring the input and output. During this stage, you declare the
input and output parameters for the event handler by selecting
the specification or IS document type for the event type in
pub.event. The specification and IS document type indicate the run-
time data that will be contained in the IData object passed to the
event handler.

Stage 3 Inserting logic, code, or services. During this stage, you insert the
logic, code, or services to perform the action you want the event
handler to take when the event occurs. If you are building a flow
service, make sure to link data between services and the pipeline.

Stage 4 Testing and debugging the service. During this stage, you use the
testing and debugging tools available in Designer to make sure
the event handler works properly.

Stage 5 Subscribing to the event. During this stage, you use the Event
Manager to subscribe the event handler to the event. This action
registers the event handler with the Event Manager and specifies
which events will invoke it. You can create filters to be more
selective about the events to which you subscribe.

Invoking Event Handlers Synchronously or Asynchronously
By default, Integration Server invokes event handlers that subscribe to events
synchronously. Once the event handler is invoked, Integration Server waits for a reply
before executing the next step in the flow service. This configuration is useful for
environments that do not allow the use of thread or for processes that require immediate
responses.

You can configure Integration Server to process the event handlers asynchronously. In
this case, once the event handler is invoked, Integration Server executes the next step in
the flow service immediately. The server does not wait for a reply before continuing the
execution of the service. Each process runs as a separate thread, thereby increasing the
performance significantly.

There are server configuration parameters specific to each event type that you can use
to specify whether the event handlers (services) that subscribe to the events are to be
invoked synchronously or asynchronously. These server configuration parameters will
be in the format: wa.server.event.eventType .async.

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 877

Set the value of the server configuration parameter specific to the event to true, if
you want Integration Server to invoke the event handlers that subscribe to the event
asynchronously. Set the value of the server configuration parameter specific to the event
to false, if you want Integration Server to invoke the event handlers that subscribe to the
event synchronously. The default value is true.

For more information about specifying the server configuration parameters, refer to
webMethods Integration Server Administrator’s Guide.

About Alarm Events
An alarm event occurs when Integration Server generates a message related to the status
of the server. An alarm event can be generated for the following reasons:

A client experiences a logon failure or is denied access to Integration Server. A client
cannot log on because of “invalid credentials.”

Errors occur in the Cluster Manager. The inability to add a port to a cluster can cause
errors in Cluster Manager.

A user tries to access a port and is denied access to the port. (This can happen when
a user tries to execute a service not allowed on the port.) This type of alarm event is
sometimes called a port access exception.

A port cannot be started. The most common reason a port cannot start is that the port
is being accessed by another application.

A service cannot be loaded or executed due to setup errors. For a flow service, a
possible error is a missing XML metafile. For a Java service, possible errors include a
missing class file or method.

You can use alarm events to invoke event handlers that execute when the server
generates messages related to the status of the server. For example, you might want to
create an event handler that notifies the administrator when a user is denied access to
the server or to a port, when a service fails to load or execute, or when a port does not
start. You can also create event handlers to send data to a network monitoring system.

About Audit Events
An audit event occurs when a service generates audit data. You can use the options in
a service’s Audit properties to specify when a service generates audit data. A service
can generate audit data once, twice, or zero times during execution. You can use audit
events to invoke other services when a particular service executes. For example, you
might want an audit event generated for a critical service to invoke a logging service or
a notification service. For more information about specifying when a service generates
audit data, see "Configuring Service Auditing" on page 188.

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 878

About Audit Error Events
An audit error event occurs in the following situations:

When a SQLException is encountered while trying to insert an audit record into the
audit logging database.

When Integration Server initializes and cannot connect to the audit logging database.

When the Service logger is configured to retry failed auditing aempts, the audit
error event is fired for the initial failure and each subsequent failure.

You can use audit error events to monitor your audit database for failures. For example,
you could create a service that sends an email or a text message to the database
administrator when the audit database becomes unavailable.

About Exception Events
An exception event occurs when a service throws an exception (including when a flow
service “exits on failure”). You can use exception events to invoke some prescribed
action, such as notifying an administrator, when a particular service fails.

Note: Keep in mind that event handlers are processed independently of the services
that invoke them. Event handlers are not designed to replace the error
handling and/or error recovery procedures that you would normally include
in your service.

If a nested service throws an exception, an exception event is generated by each service
in the call stack. For example, if service A1 calls service B1, and B1 throws an exception,
both B1 and A1 generate exception events (in that order).

About Guaranteed Delivery Events
A guaranteed delivery event occurs when a client uses guaranteed delivery to invoke a
service on a remote Integration Server, and when the server returns the service results to
the requesting client. There are two types of guaranteed delivery events:

GD Start events occur when a client uses guaranteed delivery to invoke a service on
a remote the Integration Server. In a flow service, executing the pub.remote.gd:start
service generates a GD Start event.

GD End events occur when a client receives the results of the service it requested
using guaranteed delivery. In a flow service, executing the pub.remote.gd:end service
generates a GD End event.

Each guaranteed delivery transaction generates a GD Start event and a GD End event.
You can subscribe to GD Start and GD End events to invoke event handlers that log

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 879

guaranteed delivery transactions to a file or database. You might also want to use
guaranteed delivery events to invoke event handlers that send notification. For example,
if you use guaranteed delivery to invoke a service that processes purchase orders, you
might want to send notification to a business account manager about purchase orders
from a particular client, or when the value of a purchase order is greater than a certain
amount.

Guaranteed Delivery Events and Transaction Events
Guaranteed delivery events are related to transaction events (Tx Start and Tx End).
Guaranteed delivery events begin when a client requests a guaranteed delivery
transaction (GD Start) and when the client receives the results of the guaranteed
delivery transaction (GD End). Transaction events occur when a service invoked using
guaranteed delivery begins executing (Tx Start event) and when the service finishes
executing (Tx End event).

The following diagram illustrates when guaranteed delivery events and transaction
events occur during a guaranteed delivery transaction. In the following scenario, a local
Integration Server uses guaranteed delivery to invoke a service on a remote server.

A Guaranteed Delivery Transaction generates Guaranteed Delivery Events and Transaction Events

Stage Description

Stage 1 Service A uses guaranteed delivery to invoke Service B on the
remote Integration Server. When the local server requests Service
B, the local server generates a GD Start event. By default, the GD
Start event is logged to the txoutyyyymmdd .log file.

Stage 2 The remote Integration Server receives the request and begins
executing Service B. When the remote server begins executing
Service B, the remote server generates a Tx Start event. By default,
the Tx Start event is logged to the txinyyyymmdd .log file.

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 880

Stage Description

Stage 3 The remote Integration Server finishes executing Service B and
generates a Tx End event. By default, the Tx End event is logged
to the txinyyyymmdd .log file.

Stage 4 The remote Integration Server sends the results of Service B to the
requesting client (here, the local Integration Server).

Stage 5 The local Integration Server receives the results of Service B and
generates a GD End event. By default, the GD End event is logged
to the txoutyyyymmdd .log file.

For details about guaranteed delivery, see the Guaranteed Delivery Developer’s Guide.

About JMS Delivery Failure Events
Integration Server generates a JMS delivery failure event when a message wrien to the
client side queue cannot be delivered to the JMS provider. When a transient error occurs,
several delivery aempts may have been made.

You might want to create an event handler for a JMS delivery failure event to send
notification or log information about the undelivered JMS message. You can also create
an event handler that aempts to re-send the message to the JMS provider.

About JMS Retrieval Failure Events
By default, Integration Server generates JMS retrieval failure events when errors occur
during message retrieval and JMS trigger processing. You can build event handlers that
subscribe to and handle the JMS retrieval failure events.

A JMS retrieval failure event occurs in the following situations:

A trigger service executed by a JMS trigger throws a non-transient error and the
wa.server.jms.trigger.raiseEventOnException property is set to true (the default).

A trigger service associated with a JMS trigger ends because of a
transient error, all retry aempts have been made, and the JMS trigger
is configured to throw an exception on retry failure. In addition, the
wa.server.jms.trigger.raiseEventOnRetryFailure property is set to true (the default).

The maximum delivery count from the JMS provider has been met for the message
and the wa.server.jms.trigger.raiseEventOnRetryFailure property is set to true (the
default).

The wa.server.jms.trigger.maxDeliveryCount property specifies the maximum
number of times the JMS provider can deliver a message to Integration Server. The

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 881

default is 100. In a JMS message, the property JMSXDeliveryCount specifies the
number of times the JMS provider delivered the message. Most JMS providers set
this value.

While performing exactly-once processing, the connection to the document
history database is unavailable, and transient error handling for the JMS trigger is
configured to Throw exception (non-transacted JMS trigger) or Recover only (transacted
JMS trigger). In addition, the wa.server.jms.trigger.raiseEventOnRetryFailure
property is set to true (the default).

While performing exactly-once processing, the document resolver service ends
with an ISRuntimeException, and transient error handling for the JMS trigger is
configured to Throw exception (non-transacted JMS trigger) or Recover only (transacted
JMS trigger). In addition, the wa.server.jms.trigger.raiseEventOnRetryFailure
property is set to true (the default).

While performing exactly-once processing, the document resolver service
ends with an exception other than an ISRuntimeException. In addition, the
wa.server.jms.trigger.raiseEventOnRetryFailure property is set to true (the default).

A service that functions as an event handler for a JMS retrieval failure event should
use the pub.event:jmsReceiveErrorEvent specification as its service signature. For more
information about the pub.event:jmsReceiveErrorEvent specification, see the webMethods
Integration Server Built-In Services Reference.

About Port Status Events
A port status event occurs each time the Integration Server updates the server statistics.
The port status event provides current status information about all of the configured
ports on the Integration Server.

You can use port status events to invoke services that send port status data to a network
monitoring system. You can also use port status events to invoke services that write port
status data to a log file.

Note: The wa.server.stats.pollTime property determines the frequency with which
the Integration Server updates server statistics. The default frequency is 60
seconds. If you change this value, you must restart the Integration Server
for the change to take effect. For more information about this property, see
webMethods Integration Server Administrator’s Guide.

About Replication Events
A replication event occurs when the pub.replicator:generateReplicationEvent executes. You
might want to generate and subscribe to replication events to invoke event handlers
that automate the completion of the package replication and distribution processes. For
example, you could create replication event handlers that do the following:

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 882

Notify package subscribers when a package is published.

Maintain a log of replicated packages.

Maintain a log of the packages distributed or “pushed” to your subscribers.

Maintain a log of the packages your partners pulled from you.

For more information about the pub.replicator:generateReplicationEvent service, see the
webMethods Integration Server Built-In Services Reference.

About Security Events
A security event occurs when an administrative or operational security action takes
place on Integration Server and that security action is configured for auditing.

Administrative actions refer to configuration changes related to Integration Server
security activities. Operational actions refer to successful and unsuccessful login
aempts and access to Integration Server services, documents, and portlets.

Administrative security events include:

Creating, modifying, and deleting packages, folders, and services.

Creating, deleting, or modifying authentication related information. This includes
creating new users, deleting users, changing their security aributes (for example,
passwords), seing or modifying the mapping between certificates and users, and so
on.

Creating, deleting, or modifying authorization related information. This includes
creating, modifying, and deleting ACLs.

Creating, deleting, or modifying port seings. This includes defining allowed or
denied actions on the port, port modes (allowed or denied by default in Integration
Server), and certificate handling.

Configuring SSL seings in Integration Server.

Modifying or reseing Outbound Passwords.

Operational security events include:

Successful logins to the Integration Server.

Unsuccessful login aempts to the Integration Server. The login aempt failure
could be because of incorrect password, disabled account, SSL failure, or expired
certificate.

Successful and unsuccessful accesses to services, files, and packages.

Modifying existing passwords.

Modifying messaging seings.

For information on configuring the Security logger, see webMethods Audit Logging Guide.

M
Odd Header

Subscribing to Events

webMethods Service Development Help Version 9.10 883

A service that functions as an event handler for a Security event should use the
pub.event:security specification as its service signature. For more information about the
pub.event:security service, see the webMethods Integration Server Built-In Services Reference.

About Session Events
A session event occurs when a client starts or ends a session on the Integration Server or
when the Integration Server terminates an inactive session. You can subscribe to any of
the following types of session events:

Session Start events occur when a developer uses Designer to open a session on the
Integration Server or when an IS client opens a session on the server to execute
services.

Session End events occur when a developer or IS client specifically issues a disconnect
instruction to the Integration Server.

Session Expire events occur when the Integration Server terminates an inactive session.

You can subscribe to session events to invoke event handlers that maintain your own log
files or event handlers that send notification about users opening sessions on the server.

About Stat Events
A stat event occurs each time the Integration Server updates the statistics log (stats.log).
The statistics log maintains statistical information about the consumption of system
resources. The wa.server.stats.pollTime property determines the frequency with which
the Integration Server updates statistics. The default frequency is 10 seconds.

You can use stat events to invoke event handlers that maintain your own log file or to
invoke event handlers that send server statistics to a network monitoring system.

Note: Integration Server provides an agent that you can configure for use with
a network monitoring system. For information about implementing
this agent, see the readme file in the agentInstall.jar file located in the
Integration Server_directory\lib directory.

About Transaction Events
A transaction event occurs when an Integration Server begins and finishes executing a
guaranteed delivery transaction. There are two types of transaction events:

Tx Start events occur when an Integration Server begins executing a service invoked
with guaranteed delivery.

M
Even Header

Subscribing to Events

webMethods Service Development Help Version 9.10 884

Tx End events occur when an Integration Server finishes executing a service invoked
with guaranteed delivery.

Transaction events result from guaranteed delivery transactions. Each guaranteed
delivery transaction generates a Tx Start event and a Tx End event. In fact, the
transaction events occur between the guaranteed delivery events. A Tx Start event
occurs immediately after a GD Start event and a Tx End event occurs immediately
before a GD End event. For more information about how transaction events relate to
guaranteed delivery events, see "Guaranteed Delivery Events and Transaction Events"
on page 879.

You can subscribe to Tx Start and Tx End events to invoke event handlers that log
guaranteed delivery transactions to a file or database. You might also want to use
transaction events to invoke event handlers that send notification.

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 885

39 Submitting and Receiving XML Documents

■ Submitting and Receiving XML in a String Variable .. 887

■ Submitting and Receiving XML in $xmldata .. 888

■ Submitting and Receiving XML via HTTP ... 890

■ Submitting and Receiving XML via FTP .. 896

■ Submitting and Receiving XML via E-mail ... 898

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 886

You can create a client that submits an XML document to a target service, which then
receives the XML document.

The following table describes the methods a client can use to submit an XML document
and how Integration Server passes the XML document to the target service based on the
method.

Method Integration Server Action

Submit the XML document
in an arbitrarily named
String variable

Integration Server passes the document as an XML
String to the target service. It is the responsibility of
the target service to parse the XML so that it is in a
format that can be manipulated.

For more information, see "Submiing and Receiving
XML in a String Variable" on page 887.

Submit the XML document
in a special String variable
named $xmldata

Integration Server automatically parses the XML and
passes it as a node to the target service.

For more information, see "Submiing and Receiving
XML in a String Variable" on page 887.

Note: For information about submiing the XML
document in the $xmldata variable, but bypass
the automatic parsing, see "Submiing and
Receiving XML via $xmldata without Parsing"
on page 894.

Post the XML document via
HTTP

Integration Server either automatically parses the
XML and passes it as a node to the target service
or passes the XML document directly to the target
service as an XML stream or byte array.

For more information, see "Submiing and Receiving
XML in a String Variable" on page 887.

FTP the XML document Integration Server automatically parses the XML and
passes it as a node to the target service.

For more information, see "Submiing and Receiving
XML in a String Variable" on page 887.

Send the XML document as
an email attachment

Integration Server automatically parses the XML and
passes it as a node to the target service.

For more information, see "Submiing and Receiving
XML in a String Variable" on page 887.

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 887

Submitting and Receiving XML in a String Variable
A client can submit an XML document to Integration Server by passing the entire XML
document to a target service in an arbitrarily named String variable.

Sample Client Code to Submit an XML Document in a String Variable
The following sample code fragment for a Java client illustrates how to submit an XML
document in a String variable named orders to the target service, purch:postOrder, on
Integration Server. This code fragment performs the following steps:

1. Loads the XML document into a String.

2. Puts the String into a variable named orders in an IData object named inputs .

3. Invokes purch:postOrder on the server at localhost:5555.
import com.wm.app.b2b.client.*;
import com.wm.util.*;
import com.wm.data.*;
import java.io.*;
public class ArbitraryXMLClient
 .
 .
 .
 //--Load XML into a String named orders
 String orders = YourLoadXMLMethod(orderFile);

 //--Put input values into the IData object
 IData inputs = IDataFactory.create();
 IDataCursor inputsCursor = inputs.getCursor();
 inputsCursor.insertAfter("orders", orders);
 inputsCursor.insertAfter("authcode", authcode);

 //--Submit request to the server at localhost:5555
 c.connect("localhost:5555", "null", null);
 IData outputs = c.invoke("purch", "postOrder", inputs);
 c.disconnect();
 .
 .
 .

Considerations When Coding the Target Service to Receive the XML
Document that is Passed in a String Variable
When a client submits an XML document to a target service in an arbitrarily named
String variable, the target service must take action to parse the XML so that the service
can then subsequently manipulate the data in the XML document.

Code the target service to invoke the pub.xml:xmlStringToXMLNode service, passing the
xmlStringToXMLNode service the String variable that contains the XML document. The

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 888

xmlStringToXMLNode service produces a node that the target service can subsequently
query or convert to an IData object.

For example, continuing with the previous example, the target service,
purch:postOrder, would pass the orders String, which contains the XML document, to
pub.xml:xmlStringToXMLNode.

After the XML document is represented as a node, the target service can invoke:

pub.xml:queryXMLNode to query the node

pub.xml:xmlNodeToDocument to convert the node to an IData object

For more information about the pub.xml:xmlStringToXMLNode. pub.xml:queryXMLNode, and
pub.xml:xmlNodeToDocument services, see webMethods Integration Server Built-In Services
Reference.

Submitting and Receiving XML in $xmldata
A client can submit an XML document to Integration Server by passing the entire XML
document to a target service in a String variable named $xmldata .

Submiing an XML document to Integration Server using the $xmldata variable is
similar to submiing it in an arbitrarily named String variable. However, the $xmldata
variable has special meaning to Integration Server. When Integration Server receives
the $xmldata variable, the server assumes the variable contains an XML document and
automatically parses the XML and passes it to the target service as a node.

Note: To use the $xmldata variable to submit an XML document, but bypass
automatic parsing so that Integration Server sends the body of the request
directly to the target service as a stream or byte array, your client must use
HTTP to invoke the target service. For more information, see "Submiing and
Receiving XML via $xmldata without Parsing" on page 894.

Sample Client Code to Submit an XML Document in $xmldata
The following sample code for a Java client that runs in Integration Server illustrates
how to read an XML document from a file, assign the XML to a variable named
$xmldata , and invoke the target service sales:getOrder passing it the $xmldata variable.
import com.wm.app.b2b.client.*;
import com.wm.util.*;
import com.wm.data.*;
import java.io.*;

public class ArbitraryXMLClient

{
 public static void main(String args[])
 throws Exception
 {
 //--Read the XML document from a specified file (or from stdin)
 Context c = new Context();

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 889

 IData inputs = IDataFactory.create();
 IDataCursor inputsCursor = inputs.getCursor();
 Reader in = null;
 if (args.length > 0)
 {
 in = new InputStreamReader(new FileInputStream(args[0]));
 }
 else
 in = new InputStreamReader(System.in);
 }
 char[] buf = new char[8192];
 int count = 0;
 StringBuffer sb = new StringBuffer();
 while((count = in.read(buf)) != -1)
 {
 sb.append(buf, 0, count);
 }

 //--Assign the XML document to a String variable
 String xmldata = sb.toString();
 //--Put the XML document into $xmldata in the IData object
 inputsCursor.insertAfter("$xmldata", xmldata);
 //--Submit the request to the sales:getOrder service on the server
 c.connect("localhost:5555", "null", null);
 IData outputs = c.invoke("sales", "getOrder", inputs);
 c.disconnect();

 //--Display the returned output values
 System.out.println(outputs);
 }
}

Important: This example shows a Java-based client. However, you can use any type of
IS client, including a browser-based client. For a browser-based client, post
the XML document as the value portion of a $xmldata=value pair. You can
post other name=value pairs with the request. For more information, see
"Building a Browser-Based Client" on page 918.

Considerations When Coding the Target Service to Receive the XML
Document that is Passed in $xmldata
BecauseIntegration Server passes the parsed XML document in the node variable, the
target service that receives the XML document must take a node variable as input.

The target service can then manipulate the data in the XML node. The target service can
pass the node to another service that takes node as input, for example:

pub.xml:queryXMLNode to query the node

pub.xml:xmlNodeToDocument to convert the node to an IData object

For more information about the pub.xml:queryXMLNode and pub.xml:xmlNodeToDocument
services, see webMethods Integration Server Built-In Services Reference.

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 890

Submitting and Receiving XML via HTTP
A client can post an XML document to a target service that receives the XML document
via HTTP.

When Integration Server receives an HTTP request and the Content-Type field in the
request header is text/xml or application/xml, Integration Server performs one of the
following actions:

Automatically parses the XML and passes it as a node to the target service.

Passes the XML document directly to the target service as an XML stream or byte
array.

The action that Integration Server takes depends on the xmlFormat value. By default,
Integration Server obtains the xmlFormat value from the Default xmlFormat property for
the target service. If no value is specified for the property, Integration Server obtains the
value from the wa.server.hp.xmlFormat server configuration parameter. However,
the client can override the assigned property by supplying the xmlFormat argument in
the URL it uses to invoke the target service. For more information about supplying the
xmlFormat value in the request URL, see "About the xmlFormat Value" on page 892.

Creating a Client that Submits an XML Document via HTTP
To submit an XML document to Integration Server via HTTP, create a client that sends
the XML document as a byte array to Integration Server using the HTTP POST or HTTP
PUT methods. When constructing the HTTP request, the client needs to:

Address the request to the URL of the target service. For example, if the
purch:postOrder service is to receive the XML document, the client might use the
following URL:

hp://rubicon:5555/invoke/purch/postOrder

Set the Content-Type header field in the HTTP request header to text/xml.

Because most browsers do not allow you to modify the Content-Type header field,
they are not suitable clients for this type of submission. Clients that you might use to
submit an XML document in this manner are PERL scripts, which allow you to build
and issue HTTP requests, or the Integration Serverpub.client:http service.

Place the XML document in the body of the HTTP request. Place an extra carriage
return/new line (\r\n) at the end of it to indicate the end of the XML document.

Important: The XML document must be the only text in the body of the request. Do
not assign the XML document to a name=value pair.

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 891

Using pub.client:http to Submit an XML Document via HTTP
If the client is a service running in an Integration Server, the client can invoke the
pub.client:http service to submit the XML document via HTTP.

The following table describes how to set the input variables for the pub.client:http service
to POST an XML document to a target service. For a full description of the pub.client:http
service, see webMethods Integration Server Built-In Services Reference

pub.client:http
input variable

Description

url Specify the URL of the target service that is to receive the XML
document.

In the URL, include the xmlFormat argument if you want to override
the behavior specified by the Default xmlFormat property for the target
service. For more information about the xmlFormat values, see
"About the xmlFormat Value" on page 892.

 If you want Integration Server to take action on the XML document
based on the specified Default xmlFormat property value for the
target service, use the following format for the URL:

hp://hostname :port /invoke/folder /serviceName

For example, the following URL invokes the purch:postOrder service
on the server at rubicon:5555.

hp://rubicon:5555/invoke/purch/postOrder

 If you want to override the Default xmlFormat property value
specified for the target service, use the following format for the
URL:

hp://hostname :port /invoke/folder /serviceName ?xmlFormat=format

Where format can be enhanced, node, stream, or bytes. For
more information about the xmlFormat value and how it impacts
processing of the XML document, see "About the xmlFormat Value"
on page 892.

Note: The client request should specify the xmlFormat argument
only when it is recommended in the documentation for
the target service. Furthermore, a client should specify
the xmlFormat only when knowing how the service will
respond.

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 892

pub.client:http
input variable

Description

method Specify post or put.

headers Specify information for the Content-Type field of the HTTP request
header.

 Key Value

 Content-Type text/xml or application/xml

data Specify the XML document to submit via HTTP. Use one of the
following keys:

 Key Value

 string A string containing the XML document to submit.

 bytes A byte array containing the XML document to
submit.

About the xmlFormat Value
When a client submits an XML document via HTTP, the action that Integration Server
takes when it receives the XML document is based on the xmlFormat value. The
xmlFormat value determines:

Whether Integration Server parses the XML document automatically before passing
it to the service

Which XML parser Integration Server uses. When parsing an XML document,
Integration Server uses either the legacy XML parser or the enhanced XML parser.
For more information about the XML parsers, see webMethods Integration Server
Administrator’s Guide.

The name and data type of the variable that Integration Server adds to the pipeline
with the contents of the XML document

The following table describes the actions that Integration Server can take based on the
xmlFormat value:

xmlFormat value Integration Server Action

bytes Integration Server passes the XML document directly to the
service as a byte array without parsing the XML. Integration

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 893

xmlFormat value Integration Server Action
Server places the byte array in the input pipeline of the target
service in a variable named xmlBytes .

enhanced Integration Server parses the XML using the enhanced XML
parser automatically. Integration Server uses the default options
specified for enhanced XML parsing on the Settings > Enhanced
XML Parsing page in Integration Server Administrator. Integration
Server passes the XML document to the target service as a
org.w3c.dom.Node object named node .

For more information about configuring the enhanced XML
parser, see webMethods Integration Server Administrator’s Guide.

node Integration Server parses the XML using the legacy XML
parser automatically and passes it to the target service as a
com.wm.lang.xml.Node named object node .

stream Integration Server passes the XML document directly to the
service as an XML stream without parsing the XML. Integration
Server places the XML stream in the input pipeline of the target
service as an InputStream named xmlStream .

Note: If parsing is not needed, it can unnecessarily slow down the execution of a
service. For example, an application might handle the XML as a simple String.
In this case, the automatic parsing is unnecessary and should be avoided.

By default, Integration Server obtains the xmlFormat value from the Default xmlFormat
property assigned to the target service. However, the client can override the Default
xmlFormat property value by supplying the xmlFormat argument in the URL it uses
to invoke the target service. The following shows the URL format when using the
xmlFormat argument:

hp://hostname :port /invoke/folder /serviceName ?xmlFormat=format

Specify cached, node, stream, or bytes for format .

For example, suppose that the configured Default xmlFormat property value is node. If
you want to invoke the sales:orderInfo service on the server rubicon:5555 and override the
configured Default xmlFormat value so that Integration Server passes the XML document
directly to the sales:orderInfo service as an XML stream, use the following URL:

hp://rubicon:5555/invoke/sales/orderInfo?xmlFormat=stream

Note: The client request should specify the xmlFormat argument only when it is
recommended in the documentation for the service. Furthermore, a client
should specify the xmlFormat argument only when knowing how the service
will respond.

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 894

Submitting and Receiving XML via $xmldata without Parsing
When submiing an XML document in $xmldata, you might not want Integration
Server to automatically parse the XML and pass it to the target service as a node, as
described in "Submiing and Receiving XML in $xmldata" on page 888. If parsing is
not needed, it can unnecessarily slow down the execution of a service. For example, an
application might handle the XML as a simple String. In this case, the automatic parsing
is unnecessary and should be avoided.

Using pub.clilent:http to Submit $xmldata via HTTP
If the client is a service running in an Integration Server, the client can invoke the
pub.client:http service to submit an XML document in $xmldata via HTTP.

The following table describes how to set the input variables for the pub.client:http service
use $xmldata to submit an XML document and to include the xmlFormat argument in
the URL to override the wa.server.hp.xmlFormat seing. For a full description of the
pub.client:http service, see webMethods Integration Server Built-In Services Reference.

pub.client:http
input variable

Description

url Specify the URL of the target service that is to receive the XML
document.

Note: Rather than specifying the query string portion of the URL
with the xmlFormat argument in the url variable, specify the
xmlFormat argument in the data/args variable, as described
below.

method Specify post.

data Use the args key of the data input variable to specify key/value pairs
that the service places in the query string of the URL.

 Key Value

 args A Document containing the arguments you want the service
to add to the URL in the query string. Specify the following
arguments:

 Argument Value

 $xmldata A String that contains the XML document that
the client wants to submit via HTTP.

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 895

pub.client:http
input variable

Description

Note: Using $xmldata for the XML document
indicates the data is XML. As a result, you
do not need to use the headers input variable
to specify the Content-Type field of the
HTTP request header.

 xmlFormat A String that indicates how you want
Integration Server to pass the XML document
to the target service. Specify stream or bytes.

Use stream if you want Integration Server to
pass the XML document as an XML stream
without parsing the XML.

When passing the XML document as an XML
stream, Integration Server places the XML in
the input pipeline of the target service as an
InputStream named xmlStream .

Use bytes if you want Integration Server
to pass the XML document as a byte array
without parsing the XML.

When passing the XML document as a byte
array, Integration Server places the XML in
the input pipeline of the target service as a
byte array named xmlBytes .

 The query string that the service appends to the URL will use
the following format:

?$xmldata=string &xmlFormat=format

where:

string is the value you specify for the $xmldata argument
(that is, the XML document).

format is the value you specify for the xmlFormat argument.

For information about how to set other input variables when using the pub.client:http
service to submit an XML document, see "Submiing and Receiving XML via HTTP" on
page 890.

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 896

Submitting and Receiving XML via FTP
A client can FTP an XML document to the Integration Server FTP listening port.

To FTP the XML document, the client sends the XML document in a file to the target
directory. The target directory is the Integration Server namespace (ns) directory that
contains the target service that is to receive the XML document. When the Integration
Server receives the file on the FTP listening port, the server automatically parses the
XML document and passes it as a node to the target service.

Naming the File that the Client is to Submit via FTP
When specifying the file name of the file that contains the XML document, use a file
extension that Integration Server recognizes as containing XML content. The FTP listener
chooses a content handler based on the file extension. You can use one of the following
for the file extension:

A file extension of “xml”.

An arbitrary file extension that you have registered with the text/xml content type.

To register a file extension with a content type, edit the Integration Server lib
\mime.types file, which contains the mappings of file extensions to content types.
You can edit the mappings in the lib/mime.types file from Integration Server
Administrator by selecting Settings > Resources > Mime Types.

For example, if you want to submit an XML document in a file that has the file
extension xml2, add the following to the lib/mime.types file to register xml2 and
assign it the text/xml content type:
text/xml xml2

No file extension

If you want to submit an XML document in a file that has no file extension,
edit the lib/mime.types file and add the following to associate the special key,
ftp_no_extension with the text/xml content type. Using ftp_no_extension
indicate a null extension.

text/xml ftp_no_extension

Actions a Client Takes to Submit an XML Document via FTP
To submit an XML document to a target service via FTP, code the client to:

1. Initiate an FTP session on theIntegration Server FTP listening port.

By default the FTP port is assigned to port 8021. However, this assignment is
configurable, so check with the Integration Server administrator to determine the
port number to use for FTP communications with Integration Server.

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 897

2. Point to the target directory where the client is to copy the file containing the XML
document.

The target directory is the Integration Server namespace (ns) directory where the
target service resides. Use the following format:
cd \ns\folder \subfolder \serviceName

For example, if the target directory is the namespace directory containing the
purchasing:submitOrder service, use the following:
cd \ns\purchasing\submitOrder

Important: Note that the root directory for this operation is your Integration Server’s
namespace directory (ns), not the root directory of the target machine.

3. Copy the XML document to the target directory using the following command,
where filename is the name of the file that contains the XML document:
put filename

For example, to copy the PurchaseOrder.xml2 file, use the following:
put PurchaseOrder.xml2

The file that the client sends to Integration Server via FTP is never actually wrien to
the server’s file system. The XML document you send and the output file it produces
are wrien to a virtual directory system maintained in the client’s Integration Server
session. When the client ends the FTP session, Integration Server automatically
deletes the original file and any results from the session.

Important: Software AG recommends that you use a unique name for each XML
document that you FTP to Integration Server (perhaps by aaching a
timestamp to the name) so that you do not inadvertently overwrite other
FTPed XML documents or their results during an FTP session.

If your client is a service running in an Integration Server, instead of coding each of the
actions described above, the client can invoke services in the pub.client folder to FTP a
file. For information about these services, see the webMethods Integration Server Built-In
Services Reference.

Actions a Client Takes to Retrieve Output from the Target Service
If the target service returns output, Integration Server writes the results to the same
virtual directory where the XML document was initially sent via FTP. The results are in
an output file with a name that uses the following format where filename is the name of
the XML file originally sent to the target service via FTP:

filename .out

For example, if the name of the XML file was PurchaseOrder.xml2, Integration Server
writes the results to the following file:

PurchaseOrder.xml2.out

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 898

Code the client to retrieve the output file using the FTP “get” command. For example,
to retrieve the output in PurchaseOrder.xml2.out, the client can use the following FTP
command:
get PurchaseOrder.xml.out

If your client is a service running in an Integration Server, it can invoke services in the
pub.client folder to perform FTP commands to get a file. For information about these
services, see the webMethods Integration Server Built-In Services Reference.

Considerations When Coding the Target Service to Receive the XML
Document
Because Integration Server passes the parsed XML document in the node variable, the
target service that receives the XML document must take a node variable as input.

The target service can then manipulate the data in the XML node. The target service can
pass the node to another service that takes node as input, for example:

pub.xml:queryXMLNode to query the node

pub.xml:xmlNodeToDocument to convert the node to an IData object

For more information about the pub.xml:queryXMLNode and pub.xml:xmlNodeToDocument
services, see webMethods Integration Server Built-In Services Reference.

If the target service returns output, the format of the returned output depends on
whether you assign an output template to the target service:

If the service does not have an output template assigned to it, the results from the
service (that is, the contents of the pipeline) are XML-encoded and returned as an
XML document.

If the service has an XML output template assigned to it, that template is applied to
the results. (If the template is not an XML-based template, it is not applied.)

Integration Server writes the output to the same virtual directory where the XML
document was initially sent via FTP. The results are in a file named filename .out, where
filename is the name of the XML file originally sent to the target service via FTP.

Submitting and Receiving XML via E-mail
A client can email an XML document to an email mailbox that Integration Server
monitors. When the email message arrives, Integration Server automatically retrieves the
message and processes the XML document contained in the message.

To use this method to submit an XML document, Integration Server must be configured
with an email port that monitors the mailbox to which the XML document will be
submied. Consult your Integration Server administrator to determine whether
Integration Server has a defined email port.

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 899

When Integration Server receives an XML document via email, the server automatically
parses the XML document and passes it as a node to a service for processing.

Actions a Client Must Take to Submit an XML Document via Email
To submit an XML document to Integration Server via email, the client must:

Place the XML document in an email aachment.

Set the aachment’s Content-Type header to text/xml or application/xml.

Identify the name of the target service that is to process the XML document in the
subject line of the email message.

Note: If you leave the subject line empty, Integration Server first aempts to
pass the XML document to the global service. If the global service is
not defined, the server then aempts to pass the XML document to the
default service assigned to the email port (if one has been assigned). You
assign the global service and the port’s default service when defining
the email port. For more information, see webMethods Integration Server
Administrator’s Guide.

Using pub.client:smtp to Submit an XML Document via Email
If the client is a service running in an Integration Server, the client can invoke
pub.client:smtp to submit an XML document via email.

The following describes the input values to supply when invoking pub.client:smtp to
submit an XML document as an aachment of an email message. For more information
about using this service, see the webMethods Integration Server Built-In Services Reference.

pub.client:smtp
input variable

Description

to A String containing the email address that the Integration Server
email port monitors.

subject A String containing the fully qualified name of the target service
that is to process the XML document. For example:
orders:ProcessPO

Note: If subject is not specified, Integration Server passes the XML
document to the global service if it is defined. If the global
service is not defined, Integration Server passes the XML
document to the default service assigned to the email port, if
one is assigned.

M
Even Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 900

pub.client:smtp
input variable

Description

from A String containing the email address where the client expects
results. The target service should send its output to this email
address.

body A String containing input variables for the target service in URL
query string format. For example:
one=1&two=2&three=3&$user=Administrator&$pass=manage

This example sets five input variables: one , two , and three are set
to the values 1, 2 and 3, respectively. The input variables $user and
$pass have special meaning to the email port. Use these variables to
specify the user name and password for the email port. You must
specify $user and $pass if authentication is enabled on the email
port.

aachments A document list containing a single document that specifies the
XML document to submit via email.

 Key Value

 contenype A String containing the content-type of the
aachment. Set contenype to text/xml.

 content
or filename

The XML document.

Specify content to provide a byte array containing
the XML document.

Specify filename to specify the fully qualified name
of the file containing the XML document.

Considerations When Coding the Target Service to Receive the XML
Document
BecauseIntegration Server passes the parsed XML document in the node variable, the
target service that receives the XML document must take a node variable as input.

The target service can then manipulate the data in the XML node. The target service can
pass the node to another service that takes node as input, for example:

pub.xml:queryXMLNode to query the node

pub.xml:xmlNodeToDocument to convert the node to an IData object

M
Odd Header

Submitting and Receiving XML Documents

webMethods Service Development Help Version 9.10 901

For more information about the pub.xml:queryXMLNode and pub.xml:xmlNodeToDocument
services, see webMethods Integration Server Built-In Services Reference.

If the you want the target service to return output to the client:

Configure the email port to return results from requests that it receives.

By default, the email port does not return results. For information about configuring
the email port to return results, see webMethods Integration Server Administrator’s
Guide.

If your email port is configured to return results, Integration Server emails the
output from target service back to the sender of the original message, in an
aachment file called xml.out.

Define how you want the target service to return its output.

If the service does not have an output template assigned to it, the results from the
service (that is, the contents of the pipeline) are XML-encoded and returned as an
XML document.

If the service has an XML output template assigned to it, that template is applied
to the results. (If the template is not an XML-based template, it is not applied.)

M
Even Header

webMethods Service Development Help Version 9.10 902

M
Odd Header

Working with Load and Query Services

webMethods Service Development Help Version 9.10 903

40 Working with Load and Query Services

■ What Are the Load and Query Services? .. 904

■ Basic Concepts .. 904

■ About the pub.xml:loadXMLNode Service ... 905

■ About the pub.xml:loadEnhancedXMLNode Service ... 905

■ About the pub.xml:queryXMLNode Service ... 906

M
Even Header

Working with Load and Query Services

webMethods Service Development Help Version 9.10 904

You can use the load and query services to fetch HTML or XML documents from the
Internet and extract data for use in other services.

What Are the Load and Query Services?
Integration Server is equipped with a set of “load and query” services that allow you to
fetch HTML or XML documents via HTTP or HTTPS and selectively extract information
for use in other services. Using these services, you can connect a service to virtually
any document on the Internet. Fetching an XML document from the Internet with
Integration Server is a two-step process.

First, you use the pub.xml:loadXMLNode service or the pub.xml:loadEnhancedXMLNode
service to retrieve the document that contains the information you need.

Next, you extract the pieces of information you need and assign them to Integration
Server variables. For this step, you can use the pub.xml:queryXMLNode service (to select
specific elements from the document) or the pub.xml:xmlNodeToDocument service (to
convert all elements in the document to variables).

Note: If you want to retrieve documents from a local file system, use the
pub.file:getFile service. For more information about pub.file:getFile, see the
webMethods Integration Server Built-In Services Reference.

Basic Concepts
To successfully use Integration Server’s load and query services, you should understand
the following terms and concepts.

Term Concept

Parsing Parsing is the operation that the server performs to convert an
XML document (a string) into an XML node whose elements
can be addressed and extracted by services. Integration Server
automatically parses XML documents that you fetch with the
pub.xml:loadXMLNode service.

Node A node is the result of a parsing operation. It is an element-
based representation of an XML document. The node expresses a
document in a tree-like structure that allows the data within it to
be efficiently addressed and linked into services.

Query A query is an expression, wrien in either the XML Query
Language (XQL) or the webMethods Query Language (WQL) that
you use to extract (filter) information from XML nodes.

M
Odd Header

Working with Load and Query Services

webMethods Service Development Help Version 9.10 905

Term Concept

WQL WQL (webMethods Query Language) is a language that is used to
retrieve information from an HTML or XML document. For more
information about WQL, see " webMethods Query Language" on
page 1169.

XQL XQL (XML Query Language) is a language that is used to retrieve
information from an XML document.

About the pub.xml:loadXMLNode Service
You use the pub.xml:loadXMLNode service to retrieve and parse an XML or HTML
document from the Internet. This service does the following:

First, it submits a HTTP or HTTPS request for a specified XML or HTML document.

Then, it parses the returned document using the legacy XML parser.

The output from pub.xml:loadXMLNode is an XML node that can be used with any service
that takes a document or a node as input.

Note: If you want to fetch a document from a local file system, do not use
pub.xml:loadXMLNode. Instead, use the pub.file:getFile service. For more
information, see the webMethods Integration Server Built-In Services Reference.

About the pub.xml:loadEnhancedXMLNode Service
You use the pub.xml:loadEnhancedXMLNode service to retrieve and parse an XML document
from the Internet. This service does the following:

First, the service submits a HTTP or HTTPS request for a specified XML document.

Then, the service parses the returned document using the enhanced XML parser.

The output from pub.xml:loadEnhancedXMLNode is an org.w3c.dom.Node object. A DOM
node is a special representation of an XML document that can be consumed by any
program that uses standard DOM APIs. The pub.xml:xmlNodeToDocument service can accept
a DOM object as input.

Note: If you want to fetch a document from a local file system, do not use
pub.xml:loadEnhancedXMLNode. Instead, use the pub.file:getFile service. For more
information, see the webMethods Integration Server Built-In Services Reference.

M
Even Header

Working with Load and Query Services

webMethods Service Development Help Version 9.10 906

About the pub.xml:queryXMLNode Service
You use the pub.xml:queryXMLNode service to selectively extract information from a parsed
HTML or XML document and assign that information to variables that can be linked to
other services.

When you use pub.xml:queryXMLNode, you extract information using either the XML Query
Language (XQL) or the webMethods Query Language (WQL). Both languages allow you
to address and select information from a node based on criteria that you specify in a
query statement. For more information about WQL, see " webMethods Query Language"
on page 1169 .

Note: When you use pub.xml:queryXMLNode to query an enhanced XML node (a node
produced by the enhanced XML parser), you must use XQL as the query
language.

M
Odd Header

Building Services that Retry

webMethods Service Development Help Version 9.10 907

41 Building Services that Retry

■ Requirements for Retrying a Service ... 908

■ Example Service that Throws an Exception for Retry ... 909

M
Even Header

Building Services that Retry

webMethods Service Development Help Version 9.10 908

When creating a service, you can construct and configure the service to retry
automatically if a transient error occurs during service execution. A transient error is an
error that arises from a temporary condition that might be resolved or restored, such as
the unavailability of a resource due to network issues or failure to connect to a database.
The service might execute successfully if Integration Server waits a short interval of time
and then retries the service.

To build a service that retries, you create it so that it catches errors and determines
whether an error is transient. When the service determines that an error is transient,
have it re-throw the error as an ISRuntimeException. The ISRuntimeException is the
signal to Integration Server to retry the service. For more information about how to
construct the service, see "Requirements for Retrying a Service" on page 908 and
"Example Service that Throws an Exception for Retry" on page 909.

In addition to constructing the service for retry, you also must set retry properties for
the service (or the trigger calling the service) so that Integration Server knows that it is to
retry a service when an ISRuntimeException is thrown. When Integration Server retries
the service it re-executes it using the original input. For more information about how
to configure a service for retry, see "About Automatic Service Retry" on page 182 and
"Configuring Service Retry" on page 184.

Requirements for Retrying a Service
If you want a service to catch a transient error, re-throw it as an ISRuntimeException,
and then re-execute, the following criteria must be met:

You must configure the Transient error handling properties for the top-level service. For
more information about configuring service retry and how Integration Server retries
services, see "Configuring Service Retry" on page 184.

If the service functions as a trigger service (the service is invoked by a trigger),
you must configure the Transient error handling properties for the trigger. In
this situation, Integration Server uses the trigger retry properties instead of
the service retry properties. For more information about configuring retry for
webMethods messaging triggers, see the "Configuring Transient Error Handling for
a webMethods Messaging Trigger " on page 724. For information about configuring
retry for JMS triggers, see the "Configuring Transient Error Handling for a Non-
Transacted JMS Trigger" on page 663.

If the service is a flow service, the service must invoke pub.flow:throwExceptionForRetry
to throw the ISRuntimeException. For more information about the
pub.flow:throwExceptionForRetry service, see the webMethods Integration Server Built-In
Services Reference.

If the service is wrien in Java, the service can use
com.wm.app.b2b.server.ISRuntimeException() to throw the ISRuntimeException.
For more information about constructing ISRuntimeExceptions in Java
services, see webMethods Integration Server Java API Reference for the
com.wm.app.b2b.server.ISRuntimeException class.

M
Odd Header

Building Services that Retry

webMethods Service Development Help Version 9.10 909

If the service invokes an adapter service, ensure that the service catches transient
errors that the adapter service detects.

When an adapter service built on Integration Server 6.0 or later, and based on the
ART framework, detects a transient error, for example, if their back-end server
is down or the network connection is broken, the adapter service propagates an
exception that is based on ISRuntimeException. When creating a service that invokes
an adapter service, ensure that the logic that catches errors and determines whether
they are transient errors can interpret the adapter service exception that signals a
retry.

For more information about adapter services, see the relevant adapter guides.

Example Service that Throws an Exception for Retry
This example shows one possible way to build a service that catches errors, checks
errors to determine whether they are transient, and re-throws an error as an
ISRuntimeException if it is transient. It includes the following basic sections of logic:

An outer sequence that contains a try sequence and a catch sequence:

The try sequence executes the work that you want the service to perform.

The catch sequence examines any exception that occurs in the try sequence,
determines whether the exception is a transient error, and indicates whether
Integration Server should retry the service.

The outer sequence is used so that the catch sequence is skipped when the try
sequence is successful.

A throw exception step that executes only when the catch sequence indicates that a
transient error occurred. It throws the ISRuntimeException to signal Integration
Server that the service should be re-executed.

Example logic for a service that throws an exception for retry

M
Even Header

Building Services that Retry

webMethods Service Development Help Version 9.10 910

STEP 1 - Outer SEQUENCE exits on SUCCESS

The outer sequence wraps the try sequence and the catch sequence. This sequence
is set to exit on success so that it exits when either of its child steps (the try sequence
or the catch sequence) execute successfully. If the try sequence executes successfully,
Integration Server skips the catch sequence.

STEP 1.1 - Try SEQUENCE exits on FAILURE

The try sequence contains the logic you want the service to execute. This sequence is
set to exit on failure. As a result, if a step in this try sequence fails, Integration Server
executes the next step, which is the catch sequence that checks for transient errors.

STEP 1.1.1 - Insert service logic

This step contains the logic that you want the service to perform. The service logic
might consist of multiple services or flow steps.

When the service logic executes successfully, that means the try sequence is
successful. Because the outer sequence exits on success, Integration Server exits the
outer sequence, skipping the catch sequence. Integration Server executes the next
step, which is the BRANCH on ‘/isTransientError’ step.

If an error occurs in the service logic, Integration Server exits the try sequence
because it is set to exit on failure. As a result, Integration Server executes the catch
sequence.

STEP 1.2 - Catch SEQUENCE exits on DONE

Integration Server only executes the catch sequence if the try sequence failed. The
catch sequence contains logic that evaluates the error to determine whether the error
is transient.

Because the catch sequence exits on DONE, the sequence is successful after
Integration Server executes all the steps in the sequence. After the catch sequence is
successful, the outer sequence, which is set to exit on success, also exits. Integration
Server executes the next step, which is the BRANCH on ‘/isTransientError’ step.

STEP 1.2.1 - Catch the last error

To determine whether a transient error occurred, the catch sequence first invokes the
pub.flow:getLastError service to catch the error that caused the try sequence to fail.

Important: The pub.flow:getLastError service must be the first service invoked within
the catch sequence. If it is not first and a preceding service in the catch
sequence fails, the error thrown in the try sequence is overwrien with
the new error.

STEP 1.2.2 - Determine whether the error is a transient error

This step evaluates the contents of the lastError document that the pub.flow:getLastError
service returns to determine whether the try sequence failed because of a transient
error. You might use multiple services or flow steps to determine whether a transient
error occurred.

M
Odd Header

Building Services that Retry

webMethods Service Development Help Version 9.10 911

Note: If the service logic in the try sequence includes an adapter service and a
transient error occurs during adapter service execution, the adapter service
throws an exception that extends the ISRuntimeException. Ensure that
your catch sequence interprets the adapter service exception that signals
retry. For more information, see "Requirements for Retrying a Service" on
page 908.

STEP 1.2.3 - Set flag to indicate whether the service should retry

This step sets the transient error flag based on whether the try sequence failed
because of a transient error. In this example if a transient error occurred, the variable
isTransientError) is set to “true”.

After this step executes, Integration Server exits the catch sequence, exits the outer
sequence, and then executes the BRANCH on ‘/isTransientError’ step.

STEP 2 - Check transient error flag

This step uses the value of isTransientError to determine whether the service should
throw an ISRuntimeException.

If the try sequence executed successfully, isTransientError is null. As a result,
Integration Server falls through to the end of the service because the value of the
switch variable does not match any of the target steps. Integration Server will not
aempt to retry the service.

If the try sequence failed, but the catch sequence determined that the error was not
transient, the catch sequence does not set isTransientError to “true”. It might be
null or the catch sequence might set isTransientError to another value, for example,
“false”. Either way, Integration Server falls through to the end of the service because
the value of the switch variable does not match any of the target steps. Integration
Server will not aempt to retry the service.

If the try sequence failed and the catch sequence determined that the error was
transient, isTransientError is “true”, and as a result, Integration Server executes the
next step.

STEP 2.1 - Throws ISRuntimeException

Integration Server executes this step to invoke pub.flow:throwExceptionForRetry service
when the value of isTransientError is “true”. This service wraps the exception
generated by the transient error in the try sequence and re-throws it as an
ISRuntimeException.

If the service is configured for retry, Integration Server retries the service if the
maximum number of retries has not been reached. For more information, see
"Configuring Service Retry" on page 184.

M
Even Header

webMethods Service Development Help Version 9.10 912

M
Odd Header

Creating Client Code

webMethods Service Development Help Version 9.10 913

42 Creating Client Code

■ Building a Java Client .. 914

■ Building a C/C++ Client ... 916

■ Building a Browser-Based Client ... 918

■ Building a REST Client .. 924

M
Even Header

Creating Client Code

webMethods Service Development Help Version 9.10 914

Client code is application code that invokes a service on Integration Server. It typically
performs the following basic tasks:

Prompts the user for input values for the service that the client invokes (if the service
takes input)

Places the input values into an input document

Opens a session on Integration Server

Invokes the service

Receives output from the service

Closes the session on Integration Server

Displays the service’s output to the user

Using Designer you can automatically generate client code in Java and C/C++. The
generated client code can serve as a good starting point for your own development.

You can also build client code on your own for browser-based clients and REST clients.

Note: By default, Integration Server writes a response message to an HTTP client
using the same content type that was included in the request message.
However, you can specify that your service send the response message using
a different format. For example, if your service receives a request that specifies
text/xml as the content type, you can send a response message that specifies
text/html for the content type. To change the content-type of the response
message, code your service to call the pub.flow:setResponseHeader service before it
writes output to the pipeline.

Building a Java Client
You can have Designer generate Java client code that invokes a service. The generated
code includes a rudimentary user interface that uses the classes in the IS folder in which
the Java service resides. It is not intended for use “as is” in custom applications. After
generating the code, modify it as necessary. You can update the client code to:

Invoke built-in services. For information about the services that are available, see the
webMethods Integration Server Built-In Services Reference.

Use the webMethods Integration Server Java API. For more information, see the
webMethods Integration Server Java API Reference.

Limitations when Generating Java Client Code
When Designer generates Java client code, it ignores input or output variables that
are of type Object or Object list. Designer does not generate client code for these
variables.

M
Odd Header

Creating Client Code

webMethods Service Development Help Version 9.10 915

When Designer generates Java client code, Designer replaces any space in a variable
name with an underscore.

The Java client code that Designer generates does not support multiple input or
output variables with the same name.

If you want to override these limitations, you will need to modify the client code that
Designer generates.

Files that Designer Generates for a Java Client
Designer generates the following files for a Java client application.

Readme.txt A file that contains information and instructions for the Java
client code. Read this file for information about compiling and
running the Java client application.

ServiceName .java An example file, encoded in ISO8859_1, that contains the
application code for the Java client.

Generating Java Client Code
To generate Java client code that invokes a service

1. Open the service for which you want to generate client code by double clicking it in
the Package Navigator view.

2. Right click in the editor to view the context menu, and select Generate Code.

3. In the Code Generation window, select For calling this service from a client and click
Next.

4. In the Language field, select Java, and then click Next.

5. Specify the directory where you want Designer to place the generated client code.

Either select an existing directory or type the path for a new directory. If you type
the path for a new directory, Designer creates the directory.

6. Click Finish.

Designer generates the file that contains the Java client code (ServiceName .java) and
a Readme.txt file. To complete your client application, see the Readme.txt file located
in the same directory as your client code.

Note: If the client will connect to Integration Server using the Secure Socket
Layer (SSL), in addition to following the instructions in the Readme.txt
file, you must ensure that the unlimited strength jurisdiction policy files
(local_policy.jar and US_export_policy.jar) are installed as part of your
JVM. If you are using the JVM that was installed with Integration Server,

M
Even Header

Creating Client Code

webMethods Service Development Help Version 9.10 916

no further action is needed. If you are using a different JVM, obtain the
files from the JDK provider.

Building a C/C++ Client
You can use Designer to generate C/C++ client code that invokes a service.

Prerequisites for Generating C/C++ Client Code
Before you can generate code for a C/C++ client, ensure:

Integration Server is running and connected to Designer.

A platform that has the C/C++ compiler (for example, GCC) is installed. Integration
Server generates code for the following platforms: Windows, Solaris, HP-UX, Linux,
AIX.

The wm-isclient.jar file is in the classpath for Designer. The client.jar file is a
webMethods file that is located in the Software AG_directory\common\lib directory.

The Make facility is installed.

JDK 1.1.x is installed (if you intend to use the C libraries provided with Integration
Server and Designer).

Important: The provided C libraries are built using JDK 1.1.7. If you want to use
a different version of the JDK to compile C/C++ services, you need to
rebuild the C/C++ libraries with that JDK and then replace the old library
files with the rebuilt ones. For more information about rebuilding the C
libraries, see the README installed with the C/C++ SDK. To rebuild the
C libraries, you need use the C/C++ SDK. The C/C++ SDK is not installed
by default. To install the C/C++ SDK, select it from the list of installable
components during installation.

Limitations when Generating C/C++ Client Code
When Designer generates C/C++ client code, it ignores input or output variables
that are of type Object or Object list. Designer does not generate client code for these
variables.

When Designer generates C/C++ client code, it replaces any space in a variable name
with an underscore.

The generated C/C++ client code does not support multiple input or output variables
with the same name.

If you want to override these limitations, you will need to modify the client code that
Designer generates.

M
Odd Header

Creating Client Code

webMethods Service Development Help Version 9.10 917

Files that Designer Generates for a C/C++ Client
Designer generates the following files for a C/C++ client application.

CReadme.txt A file that contains information and instructions for the C client
code. Refer to this file for information about compiling, running,
and deploying your C/C++ client application.

ServiceName .mak A file that contains compiler seings for the C/C++ client.
Be sure to update this file with the correct seings for your
environment.

ServiceName .c An example file that contains the C/C++ client code. It is not
intended for use “as is” in custom applications.

Generating C/C++ Client Code
To generate C/C++ client code that invokes a service

1. In the Package Navigator view, open the service for which you want to generate
client code.

2. In the editor, right click the service to view the context menu, and select Generate
Code.

3. In the Code Generation window, select For calling this service from a client and click
Next.

4. In the Language field, select the C/C++ platform for which you are creating client code and
then click Next.

5. Specify the directory where you want Designer to place the generated client code.

Either select an existing directory or type the path for a new directory. If you type
the path for a new directory, Designer creates the directory.

6. Click Finish.

Designer generates the file that contains the C client code (ServiceName .c), a file that
contains compiling seings (ServiceName .mak), and a CReadme.txt file.

Modify the generated client code to meet your site’s needs. You can update the client
code to invoke built-in services and to use the webMethods C API. For information
about the built-in services that are available, see the webMethods Integration Server
Built-In Services Reference. For documentation about the C API, see webMethods
Integration Server C/C++ API Reference.

To complete your client application, refer to the CReadme.txt file located in the same
directory as your client code.

M
Even Header

Creating Client Code

webMethods Service Development Help Version 9.10 918

Building a Browser-Based Client
Build a browser-based client by creating one or more web pages with embedded URLs
that invoke services. You can use any tool you want to build the web pages.

When Integration Server receives the first URL to invoke a service from the browser-
based client, it creates a session for the client on Integration Server. The session
information is stored in a cookie in the browser. As the user of the browser-based client
clicks on links to URLs that invoke services, Integration Server uses the cookies to find
session information for the client. Integration Server keeps the session information for
the client until the session expires. Sessions expire based on the configured session
time-out value. For more information about seing the session time-out limit, refer to
webMethods Integration Server Administrator’s Guide

Note: You cannot use Designer to generate browser-based clients.

Prerequisites for Building Browser-Based Client Code
Before you can build browser-based client code, ensure:

Integration Server is running.

The input values for each service you want the browser-based client to invoke are
defined. You will need to include the input values in the URL that you use to invoke
a service.

URL Client Uses to Invoke Services
When embedding an URL that invokes a service into a web page of a browser-based
client, you can use either HTTP GET or HTTP POST. The URL for either method is
similar to the following:

Item Description

1 Identifies the Integration Server where the service to invoke resides.

2 Specifies the required keyword “invoke”, which tells Integration Server
that the URL identifies a service that is to be executed.

M
Odd Header

Creating Client Code

webMethods Service Development Help Version 9.10 919

Item Description

3 Identifies the folder in which the service to invoke resides. Separate
subfolders with periods. This folder name is case sensitive. Be sure to use
the same combination of upper and lower case leers as specified in the
folder name on Integration Server.

4 Identifies the service that you want to invoke. The service name is case
sensitive. Be sure to use the same combination of upper and lower case
leers as specified in the service name on Integration Server.

5 Specifies the input values for the service. Specify a question mark (?)
before the input values. The question mark signals the beginning of the
query string that contains the input values. Each input value is represented
as variable =value . The variable portion is case sensitive. Be sure to use the
same combination of upper and lower case leers as specified in your
service. If your service requires more than one input value, separate each
variable =value with an ampersand (&).

Note: Only specify the query string portion of the URL when using the
HTTP GET method.

Note: If you are serving the web pages that invoke services from an Integration
Server, you can use a relative URL to invoke the service. By doing so, you can
serve the exact web page from several servers without having to update the
URLs.

HTTP GET Method

To use the GET method, embed a URL that includes all the input values for the service
in the query string portion of the URL. When the server receives the URL, it translates
the input values into an IData object. For more information about how the server creates
the IData object that it sends to the service, see "How Input Values are Passed to the
Service the Browser-Based Client Invokes" on page 920.

HTTP POST Method

To use the POST method, create an HTML form in your web page. Create fields in the
HTML form in which a user will supply the input information. The values you specify
for the NAME aributes of the HTML form fields should match the names of input
values that the service expects. Be sure to use the exact combination of upper and lower
case leers as specified in your service. For example, if your service requires the input
values sku and quantity , you might create an HTML form with the following fields:
<SELECT NAME="sku">
<OPTION VALUE="A1">A1</OPTION>
<OPTION VALUE="B2">B2</OPTION>
<OPTION VALUE="C3">C3</OPTION>
</SELECT>

M
Even Header

Creating Client Code

webMethods Service Development Help Version 9.10 920

<INPUT TYPE="TEXT" NAME="quantity" VALUE="1">

Specify the URL for the service in the ACTION aribute and “POST” in the METHOD
aribute. For example:
<FORM ACTION="/invoke/sample.webPageDemo/getProductCost" METHOD="POST">

After the user fills in the form and submits it, the web browser creates a document
that contains the information the user supplied in the HTML form (performs an HTTP
POST). The browser invokes the URL identified in the ACTION aribute, which invokes
the service on Integration Server, and the browser posts the document that contains
the user’s input information to Integration Server. For more information about how the
server creates the IData object that it sends to the service, see "How Input Values are
Passed to the Service the Browser-Based Client Invokes" on page 920.

How Input Values are Passed to the Service the Browser-Based
Client Invokes
Regardless of whether a browser-based client uses a URL that uses HTTP GET or HTTP
POST, when Integration Server receives the URL, it creates an IData object from the
input information that the browser-based client supplies. Integration Server then passes
the IData object to the specified service. This becomes the pipeline upon which the
service operates.

To create the IData object, Integration Server creates two key/value pairs for each input
value: one of type String and one of type String list. For example, the following URL
specifies input values that contain the variable sku with value A1 and quantity with
value 1, and the resulting IData object that Integration Server creates:
/invoke/sample.webPageDemo/order?sku=A1&quantity=1

Key Value Data Type

sku A1 String

skuList A1 String list

quantity 1 String

quantityList 1 String list

Note: Avoid using input variable names that end in “List.” Although Integration
Server accepts variable names ending in “List,” the resulting IData might
not be structured in the way you need. For example, if you pass in a variable
called skuList , the resulting IData contains a String called skuList and a String
list called skuListList . Additionally, if you pass in variables named sku and
skuList , subsequent sku and skuList variables in the query string might not be
placed in the IData fields as expected.

M
Odd Header

Creating Client Code

webMethods Service Development Help Version 9.10 921

If you must use “List” at the end of your variable name, consider using
“list” (lowercase) or appending one or more characters at the end of the name
(for example, abcListXX).

When Browser-Based Clients Pass Multiple Values for the Same Input Variable
When Integration Server receives multiple input values that are associated with the
same variable name, the String variable in the IData object will contain only the value
of the first variable. The String list variable will contain all the values. For example, the
following shows a URL that contains two values for the variable year and the resulting
IData object that Integration Server creates:
/invoke/sample.webPageDemo/checkYears?year=1998&year=1999

Key Value Data Type

year 1998 String

1998yearList

1999

String list

Similarly, if the HTML form contains two fields with the same name and a user supplies
values for more than one, the String variable in the IData object contains only the value
of the first variable; the String list variable contains all values. For example, the following
shows sample HTML code that renders check boxes:
<INPUT TYPE="checkbox" NAME="Color" VALUE="blue">Blue

<INPUT TYPE="checkbox" NAME="Color" VALUE="green">Green

<INPUT TYPE="checkbox" NAME="Color" VALUE="red">Red

If the browser user selects all check boxes, the document that is posted to Integration
Server will contain three values for the variable named Color . The following shows the
IData object that the server passes to the service:

Key Value Data Type

Color blue String

blue

green

ColorList

red

String list

M
Even Header

Creating Client Code

webMethods Service Development Help Version 9.10 922

When Browser-Based Clients Pass Multiple Input Variables with the Same
Name
If the URL that a browser-based client passes to Integration Server contains multiple
variables that have the same name, Integration Server determines how to handle the
duplicate variables based on the seing of the wa.server.hp.listRequestVars server
configuration parameter.

To have Integration Server:

Create list variables for only duplicate variables, set wa.server.hp.listRequestVars server
to asNeeded. This is the default.

With this seing, Integration Server creates an IData object that contains:

String variable that contains the first occurrence of each input variable

String list variable that contains all occurrences of each duplicated variable

For example, this request:
/invoke/sample.webPageDemo/checkYears?year=1998&year=1999&month=June

Integration Server creates the following IData object:

Key Value Data Type

year 1998 String

yearList 1998

1999

String list

month June String

Create list variables for all variables, set wa.server.hp.listRequestVars server to
always.

With this seing, Integration Server creates an IData object that contains:

String variable that contains the first occurrence of each input variable

String list variable that contains all occurrences of each input variable

For example, for this request:
/invoke/sample.webPageDemo/checkYears?year=1998&year=1999&month=June

Integration Server creates the following IData object:

Key Value Data Type

year 1998 String

M
Odd Header

Creating Client Code

webMethods Service Development Help Version 9.10 923

Key Value Data Type

yearList 1998

1999

String list

month June String

monthList June String list

Create no list variables, set wa.server.hp.listRequestVars server to never.

With this seing, Integration Server ignores duplicates of the same variable and
creates an IData object that contains only a String variable that contains the first
occurrence of each input variable.

For example, for this request:
/invoke/sample.webPageDemo/checkYears?year=1998&year=1999&month=June

Key Value Data Type

year 1998 String

month June String

Throw a ServiceException, set wa.server.hp.listRequestVars server to error.

With this seing, Integration Server throws a ServiceException if duplicates of the
same variable are found.

For more information about this configuration parameter, see webMethods Integration
Server Administrator’s Guide.

How Integration Server Returns Output from the Service the Client
Invoked
By default, when a service is invoked by a browser-based client, Integration Server
displays the output from the service in an HTML web page, using a table to render the
output values.

Alternatively, you can assign an output template to the service that the browser-based
client invokes. In this case, Integration Server formats the output using the assigned
output template. Using an output template gives you the opportunity to design how
you want the output to display. With a template you can embed URLs that link to other
resources or that invoke another service to perform the next step of the task that the
browser-based client performs. You can use the results from one service to dynamically
construct how the output is displayed and/or as input into a subsequent service that

M
Even Header

Creating Client Code

webMethods Service Development Help Version 9.10 924

is invoked. For more information about output templates, see "About Service Output
Templates" on page 196.

Building a REST Client
To interact with a REST application, a customer or partner must create a REST client that
can send properly formed requests to the REST server and handle responses sent by the
server.

For information about creating a REST resource, see "Working with REST" on page
473. For more information about how Integration Server uses REST and REST client
requirements, see the REST Developer’s Guide.

M
Odd Header

Comparing Integration Server Packages and Elements

webMethods Service Development Help Version 9.10 925

43 Comparing Integration Server Packages and
Elements

■ Working with the Compare Editor .. 926

■ Comparing Packages and Elements ... 929

M
Even Header

Comparing Integration Server Packages and Elements

webMethods Service Development Help Version 9.10 926

Designer provides you with the ability to compare packages and elements in Integration
Server. The compare tool is useful to compare packages and elements on the same
server or on different servers, and to track changes to a package or element during
the development process. For example, you can use the compare tool to identify the
differences between the development, staging, and production versions of a package or
element. You can use the tool to compare:

Packages

Folders

Flow Services

Integration Server Document Types

The differences between the items that you compare are presented in a compare editor
along with annotations to indicate the changes.

You can also use the compare tool to compare two revisions of an element in a local
service development project. For information, see "Comparing Revisions of an Element"
on page 121.

The ability to compare packages and elements is available only with Integration Server
9.9 and later.

Note: To compare packages and folders, the Integration Server on which they
are located must have the pub.assets:getChecksums service in the WmPublic
package. For additional details on the pub.assets:getChecksums service, see
webMethods Integration Server Built-In Services Reference.

Working with the Compare Editor
You can open the compare editor using the Compare Element(s) With command available
when you right click on an element in the Package Navigator view. If you select one
element in the tree, you can compare it with another similar element on a different
Integration Server. You can also select two elements of the same type anywhere in the
Package Navigator or on different servers and compare them with each other. Designer
shows the differences between the two items that you compare in a compare editor as
shown in the following example:

M
Odd Header

Comparing Integration Server Packages and Elements

webMethods Service Development Help Version 9.10 927

The compare editor, which is different from the element editor, consists of the following
panels:

Change List Panel: Shows, in the top panel, the list of differences between the packages
or elements being compared.

Content Panel: For flow services and IS document types, this panel, which appears
below the Change List panel, provides a drill-down, visual view of the differences
which are listed in summary form in the Change List panel. In the case of packages
and folders, you can right click on a changed item in the Change List panel and select
Compare Contents to open the element-level view. Designer opens a compare editor
that shows the element level view of the changed item that you selected in a new tab.

Change List Panel

The Change List panel is the top panel in the compare editor. The Change List panel
lists out the differences between the packages or elements that you compare in a tree
structure. The header text in the panel shows the names of the two packages or elements
that are being compared and the total number of changes. The changes are annotated

M
Even Header

Comparing Integration Server Packages and Elements

webMethods Service Development Help Version 9.10 928

with respect to the first element that you selected. The following annotations are used to
indicate the differences:

Changed- An item is present in both packages or elements being compared but has
changed.

Added- An item is present only in the first package or element being compared, and
is not present in the second package or element.

Removed- An item is present only in the second package or element being compared,
and is not present in the first package or element.

Repositioned (x to y) - An item has the position x in the second element being
compared and the position y in the first element.

Content Panel

The Content panel is located below the Change List panel. An element-level visual view of
the differences between the elements being compared is shown in the Content panel as
described below:

For a flow service or an IS document type, the difference that you select in the
Change List panel is displayed in detail in the Content panel.

Note: When you select a specific difference in a package or folder, Designer
opens a new compare editor next to the original compare editor.

Designer displays the first element on the left side of the Content panel and the
second element on the right side. The path of the elements compared are displayed
at the top of the panels respectively.

Each change is indicated by highlighting an existing item in a package or element on
one side with a box and using a line to link the item to the corresponding item in the
other package or element on the other side, at the position where the item is present
or should have been.

Designer allows you to edit an element that you have locked from the Content panel.
Right-click on the element and select Open in Editor to open the element in an editor.

After you have made changes in the element, save the changes. Designer displays
the Reload Compare Editor dialog box, prompting you to confirm a refresh in the
compare editor. Click OK to refresh the compare editor with the changes to the
element.

M
Odd Header

Comparing Integration Server Packages and Elements

webMethods Service Development Help Version 9.10 929

Use the toolbar icons or their equivalent keyboard shortcuts listed below to navigate
between the changed items:

Previous difference: CTRL + , or

Next difference: CTRL + . or

Use the toolbar icons listed below to merge the changes:

Merge changes from left to right:

Merge changes from right to left:

A check mark appears after the changes are merged successfully.

Merging IS Elements
Before you perform the merge operation, you must ensure that you have write access to
the element. The merge icons are enabled only if there are any changes. If the elements
are read-only, the corresponding icons are disabled. For example, if the elements on
the right side are read-only, the left to right merge icon is disabled. Changes cannot be
merged if:

IS element is not locked for edit

IS element is retrieved from VCS repository

IS element does not have Write ACL privilege

Changes depend on some other conditions. For example in IS document type
element, you cannot merge Time to live property if the Discard property is set to false.
For more information on IS element properties, see "Properties" on page 949.

Comparing Packages and Elements
Keep the following points in mind when you use the compare tool:

The results of the compare tool are useful only when you compare elements that are
of the same type.

When you compare two packages or elements, Designer opens the compare editor
only if there are one or more differences between the items compared. If there are no
differences to show, Designer displays a message to indicate this.

You can only view differences, if any, using the compare editor. For details, see
Working with the Compare Editor. If you want to modify a package, folder or any
other element, use the navigator or editor provided for this purpose.

You can only compare packages and assets from the same version of Integration
Server. Comparison of assets across different versions of Integration Server is not
supported. Internal changes in assets from one release to another might result in
functionally identical assets being reported as different.

M
Even Header

Comparing Integration Server Packages and Elements

webMethods Service Development Help Version 9.10 930

Comparing Flow Services or Document Types
To compare two flow services or IS document types

1. In Package Navigator view, select a flow service or an IS document type and hold
down the CTRL key while you select another package or folder with which you want
to compare it.

2. Right-click either selected item and select Compare Element(s) With > Each Other.

3. Alternatively, select a flow service or an IS document type, right-click, select Compare
Element(s) With and then Other Server. Select the element that you want to compare this
one with from the servers listed in the context menu.

4. In the compare editor that Designer opens, double-click on a difference displayed in
the Change List panel to open up the element-level view in the Content panel below.

Comparing Integration Server Packages or Folders
To compare two Integration Server packages or folders

1. In Package Navigator view, select a package or a folder and hold down the CTRL
key while you select another package or folder with which you want to compare it.

2. Right-click either selected item and select Compare Element(s) With > Each Other.

3. Alternatively, select a package or folder, right-click and select Compare Element(s) With
> Other Server. Select the package or folder that you want to compare this one with
from the servers listed in the context menu.

4. In the compare editor that Designer opens, select a difference in the Change List
panel, right-click and:

a. Select Show Left Element in Package Navigator with the following results, depending
on whether the item is shown as Changed, Added, or Removed:

Changed: The corresponding item in the first package or folder is shown in the
Package Navigator view.

Added: This indicates that an item is present only in the first package or
folder being compared, and selecting the Show Left Element in Package Navigator
option will jump to the item in the Package Navigator view for the first
package or folder.

Removed This indicates that an item is present only in the second package or
folder, and selecting the Show Left Element in Package Navigator option will take
you to the first package or folder in the Package Navigator view from which
the item was removed or under which it was expected to be present.

b. Select Show Right Element in Package Navigator with the following results,
depending on whether the item is shown as Changed, Added, or Removed:

M
Odd Header

Comparing Integration Server Packages and Elements

webMethods Service Development Help Version 9.10 931

Changed: The corresponding item in the second package or folder is shown in
the Package Navigator view.

Added: This indicates that an item is present only in the first package or folder
being compared, and selecting the Show Right Element in Package Navigator
option will take you to the second package or folder in the Package Navigator
view from which the item was removed or under which it was expected to be
present.

Removed: This indicates that an item is present only in the second package
or folder, and selecting the Show Right Element in Package Navigator option will
jump to the item in the Package Navigator view for the second package or
folder.

c. Select Open in Compare Editor to open the element-level view of the difference in
another instance of the compare editor.

Note: The Open in Compare Editor option in only available for Changed items.

M
Even Header

webMethods Service Development Help Version 9.10 932

M
Odd Header

Document Expansion Preferences

webMethods Service Development Help Version 9.10 933

44 Document Expansion Preferences

On the Document Expansion preferences page, you can specify how Designer displays
and expands the content of document variables.

Field Description

Document expansion level Specifies the depth to which Designer expands a
nested document automatically. Designer does not
expand the contents of document variables nested
deeper than the specified level.

The minimum is 1 level. The maximum is 100 levels.
The default is 10 levels.

Recursive document
expansion level

For a recursive document (one that contains a
reference to itself), specifies the number of instances
of that recursion that Designer expands automatically.

The minimum is 1 level. The maximum is 100 levels.
The default is 5 levels. The specified level must be less
than or equal to the level for Document expansion level.

Variables to expand per
document

Specifies the number of child variables that Designer
displays automatically for each document variable.

The minimum is 1 level. The maximum is 100 levels.
The default is 25 variables.

This preference applies when entering values for a
document variable only.

M
Even Header

webMethods Service Development Help Version 9.10 934

M
Odd Header

Integration Server Preferences

webMethods Service Development Help Version 9.10 935

45 Integration Server Preferences

Field Description

Name Name to use for this Integration Server.

Host Name or
IP Address

Host name (e.g., workstation5.webmethods.com)
or IP address (e.g. 132.906.19.22 or
2001:db8:85a3:8d3:1319:8a2e:370:7348) of the Integration
Server to which Designer is to connect.

Port Port number on which Integration Server listens for requests.

Default By default, a new Designer installation includes a server
definition named Default. This server is marked as the default
server and is configured to use localhost:5555 . If a user creates or
edits a process and no server definitions are connected, Designer
automatically connects to the default server definition.

Refer to the webMethods BPM Process Development Help for more
information.

Status Indicates whether or not Designer is connected to the Integration
Server specified in this definition.

Possible statuses are Connected, Not connected, No userid and
password.

To connect to an Integration Server that has the No userid or
password status, click select the associated definition, click Edit,
and enter the user ID and password information.

Offline Specifies whether Designer is to aempt to connect to this
Integration Server.

By default, if a Process Development user creates or edits a
process when no server definitions are connected, Designer will
automatically try to connect to a server. Often, when connecting
to a server, Designer will prompt the user to enter credentials. To
prevent Designer from repeatedly prompting for credentials, you
can place the server definition offline.

Refer to the webMethods BPM Process Development Help for more
information.

M
Even Header

webMethods Service Development Help Version 9.10 936

M
Odd Header

Service Development Preferences

webMethods Service Development Help Version 9.10 937

46 Service Development Preferences

■ Adapter Service/Notification Editor Preferences .. 938

■ Compare Editor Preferences ... 939

■ Element Property Templates Preferences ... 939

■ Flow Service Editor Preferences ... 940

■ HTML Generation Preferences .. 941

■ Java/C Service Editors Preferences .. 942

■ Launching Preferences .. 942

■ Local Service Development Preferences ... 943

■ Package Navigator Preferences .. 943

■ Publishable Document Type Preferences .. 945

■ REST API Descriptor Preferences ... 946

■ Results View Preferences .. 946

■ Run/Debug Preferences ... 947

■ Schema Editor Preferences ... 947

■ Web Service Descriptor Editor Preferences .. 948

M
Even Header

Service Development Preferences

webMethods Service Development Help Version 9.10 938

On the Service Development Preferences page, you can specify the behavior of editors
and views in the Service Development perspective. You can also use the Service
Development Preferences page to define property values and launching preferences for
elements.

You can open the Service Development Preferences page by selecting Window >
Preferences and then selecting Software AG>Service Development from the navigation tree.

Preference Description

Show variables with fixed
values

When selected, Designer displays the variables
with fixed default values, which are hidden by
default. You cannot override the default values
assigned to these variables by mapping it to
another variable or by assigning any input values
to this variable during service execution. When the
Show variables with fixed values property is selected,
Designer displays these variables in the content
and structure of service signatures, document and
pipeline contents, and in the Run Configurations,
Enter Input for serviceName , and Enter Input for
variableName dialog boxes.

Adapter Service/Notification Editor Preferences
On the Adapter Service/Notification Error preferences page, you can specify whether
data is automatically validated upon entry and whether metadata is automatically
reloaded.

Preference Description

Automatic data validation When selected, value checking is performed on all
user input. This safeguard makes sure that all user
data are valid against current resource data.

Automatic polling of adapter
metadata

When selected, Designer will reload metadata from
the adapter every time it creates a new adapter
service/notification. This option can be useful for
adapter developers that are working on designing
the metadata.

Use grouping in tree browser Indicates whether tree structures for adapters
will group items together. This may improve

M
Odd Header

Service Development Preferences

webMethods Service Development Help Version 9.10 939

Preference Description
performance and may make it easier to locate items
in tree browsers.

If you selected the Use grouping in tree browser
check box, in the Limit visible items per group to
field, specify the maximum number of items that
Designer groups together.

Compare Editor Preferences
Use the Compare Editor preferences page to customize seings for the compare editor.

Preference Description

Do not include internal
properties of elements

Select this option to exclude internal properties and
supporting files associated with the elements being
compared.

Element Property Templates Preferences
Use the Element Property Template preferences page to define sets of property values
for elements. You can create a template for a particular element and apply the template
when creating new instances of the element. You can create multiple templates for an
element type.

Note: You can create property templates for flow, C/C++, and Java services.

Preference Description

Templates list Displays all the available property templates.

Use this list to define new property templates and
to view, edit, and remove the available property
templates. You can also share the property
templates across different instances of Designer,
through the import and export operations.

Template properties Displays the property names and values as defined
in the template.

M
Even Header

Service Development Preferences

webMethods Service Development Help Version 9.10 940

Note: You will not be able to specify values for properties that must be unique
for each element such as Universal name and Output template when defining
templates.

Flow Service Editor Preferences
Use the Flow Service Editor preferences page to customize seings for working in the
Flow service editor.

Preference Description

Services List Use this list to specify the list of services that appear
under Insert on the flow service editor Palee view.
Each row in the list represents a single command on
the menu. Commands will appear on the menu in
the order you specify them. You may add as many
services as you need.

The Name column specifies a label for the service.

The Service column specifies the services associated
with the labels on the menu.

Number of recently
used services to list

Indicates the maximum number of recently-accessed
services that you want to appear in the Palee view.

Validate flow service When Validate service references while saving is cleared,
upon saving a flow service, Designer does not verify
the existence of the services referenced by the flow
service. By default, this check box is not selected.

When Validate service references while saving is selected,
upon saving a flow service, Designer verifies the
existence of all the services referenced by the flow
service.

Note: Clearing this preference improves the
performance of Designer while saving a flow
service.

Grid Properties When Enable Grid is selected, Designer displays a grid
on the Layout tab of the flow service editor. Use Grid
Width and Grid Height to specify the size of the grid.

M
Odd Header

Service Development Preferences

webMethods Service Development Help Version 9.10 941

Preference Description

Label Properties In the Layout tab, specifies the height and width used
for displaying the name of the service for an INVOKE
step.

Specifies the tooltip that appears for pipeline
variables. Select one of the following:

Select... To...

Show variable path Display the variable path as the
tooltip

Show variable
comment

Display the comment saved
with the variable as the tooltip

Default Pipeline Tree
Tooltip

Show all variable
properties

Display all the variable
properties as the tooltip

Document references in
Pipeline view

When Show referenced document type name in Pipeline
view is selected, Designer displays the full namespace
path of the referenced document types in Pipeline
view.

Note: You can also set this property by right-clicking
anywhere inside the Pipeline view and selecting
Show Referenced Document Type Name.

Scrolling in Pipeline
view

When Enable independent scrolling is selected, Designer
enables the Pipeline In, Pipeline Out, Service In,
Service Out, and Transformers columns to be scrolled
horizontally and vertically independent of each
other. This makes it easy to scroll through data when
mapping a large amount of data in the Pipeline view.

To hide the horizontal and vertical scroll bars, clear
the Enable independent scrolling check box.

HTML Generation Preferences
Use the HTML Generation preferences page to customize the contents of the HTML
generated for an IS element.

M
Even Header

Service Development Preferences

webMethods Service Development Help Version 9.10 942

Preference Description

Display Properties When selected, Designer includes the properties
for the document type and the variables in the
document type in the HTML generated for the
document type.

Java/C Service Editors Preferences
Use the Java /C Service Editors preferences page to customize seings for working in the
Java and C service editors.

Preference Description

Protected line background
color

Indicates the color to shade the protected sections
of the Java service and the C/C++ service on the
Source tab of the Java or C/C++ service editor. The
Preferences window displays the current color on a
buon. To change the color:

1. Click the buon to display the Color window.

2. Select a new color.

3. Click OK.

Default Java service signature Indicates whether you want to use an IData
signature or a Values signature for new Java
services. Select:

Use new Java service signature to use an IData
signature.

Use old Java service signature to use a Values
signature. This type of signature was used for
Integration Server version 3.5 and earlier.

Launching Preferences
Use the Launching preferences page to indicate whether Designer should save any open
elements with unsaved changes before starting a launch configuration.

M
Odd Header

Service Development Preferences

webMethods Service Development Help Version 9.10 943

Preference Description

Save required dirty editors
before launching

Indicates whether Designer prompts you to save
any elements with unsaved changes before starting
a launch configuration.

Specify one of the following:

Always. Designer saves any elements with
unsaved changes automatically and does not
prompt you to save any elements.

Never. Designer does not save any elements with
unsaved change nor does Designer prompt you to
save any elements.

Prompt. Designer prompts you to save any
elements with unsaved changes.

Local Service Development Preferences
Use the Local Service Development Preferences to specify preferences related to local
service development.

Preference Description

Automatically
reload IS
assets
after VCS
operations

When this option is selected, Designer automatically reloads a
package after you perform any VCS operations on the package.
Designer reloads the package on the Integration Server assigned
as the local development server.

This option is selected by default.

Package Navigator Preferences
Use the Package Navigator preferences page to specify safeguards when moving,
renaming, and deleting elements in the Package Navigator view and to indicate the
number of elements Designer caches for each session.

Preference Description

Confirm before deleting When selected, instructs Designer to notify
you before deleting an element used by other
elements, such as flow services, IS document

M
Even Header

Service Development Preferences

webMethods Service Development Help Version 9.10 944

Preference Description
types, specifications, or triggers. If Designer
finds elements that depend on the element being
deleted, Designer lists those dependents and
prompts you to delete the element anyway or
cancel the action. If you clear this check box,
Designer deletes the element without prompting
you.

Prompt before updating
dependents when renaming/
moving

When selected, instructs Designer to alert you
when dependents exist. Dependents are elements
that use the selected element, such as flow services,
IS document types, specifications, or triggers.

If dependents exist, Designer lists those
dependents before renaming or moving the
selected element and prompts you to:

Rename/move the selected element and update
dependent elements with the new name and
location.

Rename/move the selected element only.

Cancel the action.

If you clear this check box, Designer automatically
updates dependents without prompting you.

Update local references when
pasting multiple elements

When selected, Designer updates local references
when copying and pasting a group of elements.
When two elements within a group refer to each
other, it is called a local reference. If you clear this
check box, Designer retains the original references
in the copied elements.

Automatically unlock upon
save (non-VCS servers only)

When selected, Designer automatically unlocks
elements after you save changes to them. This
prevents you from forgeing to unlock elements;
however, it may not be the best option if you
save periodically while editing an element. (Not
applicable for Java/C services.)

Note: Do not select this option if the VCS Integration
feature is enabled; it will cause synchronization
problems with the VCS repository.

M
Odd Header

Service Development Preferences

webMethods Service Development Help Version 9.10 945

Preference Description

Note: This option does not apply to local
development servers.

Hide generated flow services When selected, Designer does not display flow
services automatically generated by a process in
the Package Navigator view.

Number of elements to cache Specifies the number of elements that you want
to cache per Designer session. The higher the
number of elements, the more likely an element
will be in the cache, which reduces network traffic
and speeds up Designer by caching elements that
are frequently used. The total number of cached
elements includes elements on all the servers to
which you are connected.

Click Clear Cache to remove all cached elements
from memory. Clearing the cache does not
remove flow services with breakpoints, flow
services that are currently being debugged, and
unsaved elements. Keep in mind that the cache is
automatically cleared when you close Designer or
when you refresh the session.

Reset Tip Dialogs Re-enables message boxes and reminders that have
been disabled with the Don't Show This Again check
box.

Publishable Document Type Preferences

Preference Description

Display timeout message When selected, Designer displays a message if the
timeout limit for deliver and wait or publish and
wait request elapses before Designer receives a
response.

M
Even Header

Service Development Preferences

webMethods Service Development Help Version 9.10 946

REST API Descriptor Preferences
Use the REST API Descriptor preferences to change the list of available MIME types for
REST API descriptors and REST resources in REST API descriptors.

Preference Description

MIME types The available MIME types for a REST API
descriptor. The MIME types specified in the
preference determine the contents of the Consumes
and Produces fields in the REST API Descriptor
wizard, on the General tab in the REST API
descriptor editor, and for an operation on the REST
Resources tab. You can add, edit, or remove MIME
types. You can also restore the list of available
MIME types to the default list.

For information about seing the available MIME
types, see "Changing the Available MIME Types
for a REST API Descriptor" on page 483.

Results View Preferences
Use the Results view preferences page to specify the number of results to be displayed in
Results view.

Preference Description

Number of results to display Specifies the number of results that you want
Designer to display in the Results view. Set this
preference to an integer smaller than 100. The
default is 5.

Note: If you are executing large documents multiple
times, Software AG recommends that you
set the Number of results to display option
in the Results View preferences page to a
smaller value, preferably 1, to ensure that the
performance is not affected.

M
Odd Header

Service Development Preferences

webMethods Service Development Help Version 9.10 947

Run/Debug Preferences
Use the Run/Debug preferences page to customize the seings while running or
debugging a service.

Preference Description

Always show
the No input
dialog

When selected, Designer displays the No input dialog box, every
time Designer runs a service with no input parameters.

When this check box is cleared, Designer no longer displays the
No input dialog box when executing a service with no input
parameters.

This option is selected by default.

Note: You can clear the Always show the No input dialog preference
by selecting the Do not show this dialog again check box in the
No input dialog box.

Flow
Annotation
Types

Indicates how the selected annotation, Debug Current Instruction
Pointer or Debug Call Stack, appear in flow steps. You can choose to
highlight the annotations or enclose the annotations in a box or
dashed box in colors of your choice.

Schema Editor Preferences
Use the Schema Editor Preferences to control how deeplyDesigner expands the contents
of an IS schema automatically.

Preference Description

Schema
expansion
level

Specifies the depth to which Designer expands the contents of
an IS schema automatically when you right-click a component
and select Expand. For complex types and element declarations
that are recursive, this preference can prevent Designer from
expanding the same set of data infinitely.

Set this preference to an integer greater than or equal to 1 but less
than or equal to 9999. The default is 10 levels.

M
Even Header

Service Development Preferences

webMethods Service Development Help Version 9.10 948

Web Service Descriptor Editor Preferences
Use the Web Service Descriptor Editor Preferences to specify the encoding Designer
uses when creating a web service descriptor from a WSDL with a URL that contains
characters that do not comply with the URL Specification.

Preference Description

Encoding for
WSDL URL

Specifies the encoding that Designer uses when creating a
consumer web service descriptor or a WSDL first provider web
services descriptor from a WSDL whose URL contains special
characters.

If you select the Encoding for WSDL URL check box, do one of the
following:

To use the default platform encoding, select Default.

To specify an encoding other than the platform default, select
Other. Then select the encoding from the list next to Other.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 949

47 Properties

■ Integration Server Properties ... 950

■ Package Properties .. 953

■ Element Properties ... 959

■ Document Type Properties .. 961

■ Flat File Dictionary Properties .. 967

■ Flat File Element Properties .. 967

■ Flat File Schema Properties .. 984

■ JMS Trigger Properties .. 987

■ Link Properties ... 998

■ OData Service Properties .. 1000

■ REST API Descriptor Properties .. 1005

■ Schema Properties ... 1008

■ Schema Component Properties ... 1010

■ Service Properties .. 1026

■ Specification Properties .. 1038

■ Transformer Properties .. 1039

■ Variable Properties ... 1040

■ Web Service Connector Properties .. 1045

■ Web Service Descriptor Properties .. 1051

■ webMethods Messaging Trigger Properties ... 1066

M
Even Header

Properties

webMethods Service Development Help Version 9.10 950

Integration Server property information is available from the Service Development >
Package Navigator view of Designer.

Use the Properties dialog box to view and edit properties for Integration Servers and
packages. You can also use the Properties dialog box to view general information and
permissions for Integration Server elements such as document types, services, flow
steps, JMS triggers, web service connectors, and web service descriptors.

You can open the Properties dialog box by selecting the server, package, or element in
Package Navigator view and selecting File > Properties. You can also open the Properties
dialog box by right-clicking the server, package, or element and selecting Properties.

Integration Server Properties
You can view information about an Integration Server and assign event subscribers,
permissions, and unlock elements on the server in the Properties dialog box.

To open the Properties dialog box, click the Integration Server in the Package Navigator
of Designer and select File > Properties.

Event Manager Properties
Use the Event Manager page to subscribe to an event and to view, edit, suspend and/or
delete an existing event subscription on the current server.

To open this page, select File > Properties > Event Manager.

Property Description

View event
subscribers for

Specifies the type of event whose subscriptions are displayed in
this page. Select the event type for which you want to add, edit, or
delete a subscription.

The table in this page displays subscribers to the selected event
type as follows:

 Property Description

 Service The fully qualified name of the subscriber (the event
handler that executes when the event occurs).

When you add a subscription, you can use the browse
buon to select the service.

 Filter A paern string to further specify the events this event
handler subscribes to. The information for which

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 951

Property Description
you create a filter depends on the event type you are
subscribing to.

The asterisk (*) character represents any string of
characters and is the only wild-card character allowed
in the paern string. All other characters are treated
literally. Paern strings are case sensitive.

 Comment An optional comment describing this subscription.

 Enabled Whether this subscription is currently active or
inactive. Set this parameter to true to activate the
subscription. Set this parameter to false to deactivate a
subscription.

You use the buons in this page to add, edit, and delete a subscription

Use this button... To...

Add a subscription.

Insert a blank row for a subscription.

Delete the selected subscription.

Edit the selected subscription.

My Locked Elements
Use the My Locked Elements page to unlock elements for the selected server.

To open this page, in Designer select File > Properties > My Locked Elements.

Property Description

Select the
Elements to
Unlock

Select the elements that you want to unlock. CTRL+click to select
more than one or click Unlock All to unlock all of the elements in the
list.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 952

Server ACL Information
Use the ACL Information page to list the Access Control Lists (ACLs) contained on the
Integration Server to which you are connected.

To open this page, select File > Properties > Permissions. This information is read only; to
edit ACLs, users, and groups, use the Integration Server Administrator.

Property Description

ACLs The ACLs defined on the Integration Server to which you are
connected. These include the default ACLs that were installed
with the server. To edit an ACL, use the Integration Server
Administrator.

User Group
Association for
'[ACL name]'

Allowed. The user group(s) that have been explicitly allowed
to access the packages, folders, services, or other elements
associated with this ACL. To edit a user group, use the
Integration Server Administrator.

Denied. The user group(s) that have been explicitly denied access
to the packages, folders, services, or other elements associated
with this ACL.

Resulting
Users for '[ACL
name]'

Displays the names of users that the ACL authorizes, given the
current seings in the Allowed and Denied lists. The server builds
this list by looking at the groups to which each user belongs
and comparing that to the groups to which the ACL allows or
denies access. For details on how the server determines access, see
webMethods Integration Server Administrator’s Guide.

Server Information
View general information about a server from the Server Information page. To open this
page, select File > Properties > Server Information.

Property Description

Type Type of server. This will be Integration Server.

Name Name assigned to the Integration Server.

Location Host name and port address of the Integration Server

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 953

Property Description

User Name The user name you use to connect to this Integration Server.

Connected Indicates whether or not you are currently connected to this
Integration Server.

VCS Enabled Indicates whether this Integration Server is configured to use a
version control system (VCS).

Proxy Specifies the proxy server as set on Window > Preferences > General >
Network Connections.

Package Properties
Use the Properties dialog box to view information about packages on the Integration
Server and to assign package dependencies, permissions, replication services, startup
and shutdown services.

To open the Properties dialog box, click the package in the Package Navigator of
Designer and select File > Properties.

Package Information
The Element Information page displays the type and name of the Integration Server
package.

To open this page, click the package in the Package Navigator of Designer and select File
> Properties > Element.

Package Dependencies
The Package Dependencies page displays the packages on which this package is
dependent. For example, if a package needs the services in another package to load
before it can load, you need to set up package dependencies. You might also want
to identify package dependencies if a startup service for a package invokes a service
in another package. The startup service cannot execute if the package containing the
invoked service has not yet loaded.

To open this page, click the package in the Package Navigator of Designer and select File
> Properties > Package Dependencies.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 954

Property Description

Package The name of the package you want webMethods Integration Server
to load before the package selected in Package Navigator.

Version The version number of the package you want loaded. More than
one version of the same package might contain the services and
elements that a dependent package needs Integration Server to
load first. A dependency declared on a version is satisfied by a
package with a version that is equal to or greater than the specified
version. For example, to specify versions 3.0 or later of a package,
type 3.0 for the version number. To specify versions 3.1 or later,
type 3.1.0 for the version number.

You can also use an asterisk (*) as a wildcard in the version number
to indicate that any version number equal to or greater than the
specified version will satisfy the package dependency. If any
version of the package satisfies the package dependency, type *.*
as the version number.

You use the buons in this page to add, edit, and delete a package dependency.

Use this button... To...

Add a package dependency.

Insert a blank row for a package dependency.

Delete the selected package dependency.

Edit the selected package dependency.

Package Settings
The Package Seings page displays general information about a package including
package and JVM versions, build and patch numbers, publishers, and patch history.

To open this page, click the package in the Package Navigator of Designer and select File
> Properties > Package Settings.

Property Description

Package
version

Specifies the version number for the package. Version numbers
need to be in one of the following formats: X .x or X .x .x (for

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 955

Property Description
example, 1.0, 2.1, 2.1.3, or 3.1.2). By default, Designer assigns the
version number 1.0 to a new package.

Build Displays the build number of the package. The build number is
a generation number that a user assigns to a package each time
the package is regenerated. For example, a user might generate
version 1.0 of the “Finance” package ten times and assign build
numbers 1,2,3…10 to the different generations or builds of the
package.

The build number is not the same as the package version number.
One version of a package might have multiple builds.

Description Displays a brief description of the package wrien by the user who
created the package release.

JVM version Displays the version of the JVM (Java virtual machine) required to
run the package.

Publisher Displays the name of the publishing server that created the
package release.

Patch number Displays the patch numbers included in this release of the package.

Patch history Displays a list of all the patches installed for this package release.
When the server administrator installs a full release of the package
(a release that includes all previous patches for the package),
Integration Server removes the existing patch history. This helps
the server administrator avoid potential confusion about version
numbers and re-establish a baseline for package version numbers.

 Property Description

 Name The name of the package.

 Version The version number assigned to the package.

 Build The build number of the package. The build
number is a generation number that a user assigns
to a package each time the package (either full
release or a patch) is regenerated.

 Description A brief description of the package or patch wrien
by the user who created the package release.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 956

Property Description

 Time The time at which the package release (patch) was
created.

 JVM Version The version of the JVM (Java virtual machine)
required to run the package.

Publisher The name of the publishing server that created the package release.

Patch Number The patch numbers included in this release of the package.

Package Permissions
You assign an ACL to an element in the Permissions page of the Properties dialog box.
Depending on the element you select, certain access levels are displayed. For example,
for a package, you can only set List access. For details about the different levels of access
available for elements, see webMethods Integration Server Administrator’s Guide.

To open this page, click the package in the Package Navigator of Designer and select File
> Properties > Permissions.

Property Description

List ACL Users in the Allowed list of this assigned ACL can see that the
element exists and view the element’s metadata (input, output,
etc.).

Package Replication Services
The Replication Services page of the Properties dialog box specifies the services assigned
as replication services for the package. A replication service is one that the webMethods
Integration Server automatically executes when you create a release of a package (full
or partial) or when you create an archive for a package. Replication services provide a
way for a package to persist state or configuration information so that these are available
when the published package is activated on the remote server.

To open this page, click the package in the Package Navigator of Designer and select File
> Properties > Replication Services.

You use the following buons in the Replication Services page to add, edit, and remove
replication services.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 957

Use this button... To...

Add a replication service.

Insert a blank row for a replication service.

Delete the selected replication service.

Edit the selected replication service.

Package Startup/Shutdown Services
You use the Startup/Shutdown Services page of the Properties dialog box to add or
remove the services that you want webMethods Integration Server to automatically
execute when it loads or unloads a package into or from memory.

To open this page, click the package in the Package Navigator of Designer and select File
> Properties > Startup/Shutdown Services.

Property Description

Startup
services

Displays the list of services that can be used as startup services
and the list of assigned startup services in the package. A
startup service is one that the webMethods Integration Server
automatically executes when it loads a package into memory.
Startup services are useful for generating initialization files or
assessing and preparing (e.g., seing up or cleaning up) the
environment before the server loads a package. However, you
can use a startup service for any purpose. For example, you might
want to execute a time-consuming service at startup so that its
cached result is immediately available to client applications.

Tip: If a startup service invokes a service in another package,
make sure to identify the other package as a package
dependency for the package containing the startup service.

Available
services

Displays a list of the services that can be used as startup services
for the package. Any service in the package can be a startup
service. After you select a service as a startup service, the service
does not appear in the Available services list.

Selected
services

Displays the startup services for the package.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 958

Property Description

You use the following buons under Startup services to add and
remove startup services.

 Use this button... To...

 Add the service selected in Available services as a
startup service for the package.

 Remove the service selected in Selected services
as a start up service for the package.

Shutdown
services

Displays the list of services that can be used as shutdown services
and the list of assigned shutdown services in the package. A
shutdown service is one that the webMethods Integration Server
automatically executes when it unloads a package from memory.
Shutdown services are useful for executing clean-up tasks such as
closing files and purging temporary data. You could also use them
to capture work-in-progress or state information before a package
unloads.

Available
services

Displays a list of the services that can be used as shutdown
services for the package. Any service in the package can be a
shutdown service. After you designate a service as a shutdown
service, the service does not appear in the Available services list.

Selected
services

Displays the shutdown services for the package.

You use the following buons under Shutdown services to add and
remove startup services.

 Use this button... To...

 Add the service selected in Available services as a
shutdown service for the package.

 Remove the service selected in Selected services
as a shutdown service for the package.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 959

Element Properties
Use the Properties dialog box to view information about any Integration Server element
listed in the Package Navigator. Integration Server elements include folders, subfolders,
document types and services.

To open the Properties dialog box, click any Integration Server element in the Package
Navigator of Designer and select File > Properties.

Element Information
The Element Information page displays the type and name of the Integration Server
element.

To open this page, click the element in the Package Navigator of Designer and select File
> Properties > Element Information.

Element Permissions
You assign an ACL to an element in the Permissions page of the Properties dialog box.
Depending on the element you select, certain access levels are displayed. For example,
for a package, you can only set List access. For details about the different levels of access
available for elements, see webMethods Integration Server Administrator’s Guide.

The ACLs assigned to an element are mutually exclusive; that is, an element can have
different ACLs assigned for each level of access.

To open this page, click the element in the Package Navigator of Designer and select File
> Properties > Permissions.

Property Description

List ACL Users in the Allowed list of this assigned ACL can see that the
element exists and view the element’s metadata (input, output,
etc.).

Read ACL Users in the Allowed list of this assigned ACL can view the source
code and metadata of the element.

Write ACL Users in the Allowed list of this assigned ACL can lock, edit,
rename, and delete the element.

Execute ACL Users in the Allowed list of this assigned ACL can execute the
service. This level of access only applies to services and web
service descriptors.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 960

Property Description

Enforce
execute ACL

When top-level service only. The Integration Server performs
ACL checking against the service when it is directly invoked
from a client or DSP. For example, suppose a client invokes the
OrderParts service on server A. After checking port access, server
A checks the Execute ACL assigned to OrderParts to make sure the
requesting user is allowed to run the service. It does not check the
Execute ACL when other services invoke OrderParts.

Always. The Integration Server performs ACL checking against
the service when it is directly invoked from a client as well as
when it is invoked from other services. For example, suppose
the OrderParts service is invoked from a browser, as well as by
the ProcessOrder and AddToDatabase services. If Always is set on
OrderParts, the server performs ACL checking on OrderParts three
times (once when it is invoked from the browser and twice when
it is invoked by ProcessOrder and AddToDatabase).

Note: This property applies to services only. While you can set
an execute ACL for web service descriptors, Integration
Server always performs ACL checking when a web service
descriptor is called.

Element General Properties
General properties for the element you select in the Package Navigator appear in the
Properties view. From the Properties view you can also view and set permissions for the
element.

Property Description

Name Local name of the element.

Server Server definition name for the Integration Server on which the
element resides.

UTL URL to the Integration Server on which the element resides.

Full name Fully qualified name of the element.

Package Package in which the element is located.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 961

Document Type Properties
Use the Properties view to view information about IS document types on the Integration
Server and to assign permissions, publication properties, and universal names.

To view properties for a document type, double-click the document type in the Package
Navigator of Designer.

General Properties for IS Document Types
In the Properties view, under General, you can assign an ACL to a document type and
view information about the association between IS document type and its source file.

Property Description

Model type Specifies the content model for this document type. The content
model provides a formal description of the structure and allowed
content for a document type which can then be used to validate an
instance document.

The Model type property is display-only. To change the model type
for a document type, modify the XML schema definition, and
recreate the document type.

The contents of an IS document type with a Model type property
value other than “Unordered” cannot be modified.

The Model type property can have one of the following values:

 Value... Description...

 All All of the fields in the document type must appear
once or not at all, and in any order, in the instance
document.

The all model type corresponds to an complex type
definition that contains an all compositor in the model
group.

 Choice One and only one of the fields in the document type
can appear in the instance document.

The choice model type corresponds to an complex
type definition that contains a choice compositor in the
model group.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 962

Property Description

 Sequence Fields in the instance document must appear in
the same order in which they are declared in the
document type.

The sequence model type corresponds to an complex
type definition that contains a sequence compositor in
the model group.

 Simple A single field that contains simple content and
carries an aribute. The document type contains an
@aributeName field for the aribute value and a *body
field for the simple content.

 Unordered Fields in the instance document can appear in any
order and any number of times.

A document type has a model type of Unordered if
any of the following are true:

The document type was created using Developer.

The document type was created using a version of
Integration Server prior to version 8.2.

The document type was built manually or created
from a source file besides an XML schema definition.

If the document type was created from an XML
schema definition, the Compliance option was not set
to “strict” at the time the document type was created.

If the document type was created from an XML
schema definition that contained repeated or nesting
model groups, the any element, or the any aribute
and the Compliance option was set to “lax” at the
time the document type was created.

Note: An unordered data structure is sometimes
referred to as a “bag” data structure.

Permissions Click to assign or view ACL permissions to a document type.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 963

Property Description

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Source URI Displays the location or URI of the source used to create this
document type. If this document type was not based on a source
and was instead created from scratch, the Source URI property is
empty.

Linked to
source

Indicates whether the document type reflects the content and
structure of the source from which it was created. When set to
true, the contents of the document type cannot be edited. When
set to false, the document type can be edited but may no longer
accurately reflect the content and structure of the source.

Schema
domain

Displays the name of the schema domain to which IS schemas
generated for this document type belong.

This property applies to IS document types created from XML
Schema definitions only.

Note: When Integration Server consumes a WSDL document to
create a web service descriptor, Integration Server places any
generated IS schemas in a unique schema domain for that
web service descriptor. Integration Server uses a combination
of alphanumeric characters as the schema domain name.

Registered Indicates whether Integration Server registered an association
between the document type and the complex type definition from
which it was created. This is used for derived type support.

This property applies to IS document types created from XML
Schema definitions only.

Schema type
name

Displays the name of the complex type definition with which the
IS document type is registered. This is the complex type definition
from which the IS document type was created.

This property applies to IS document types created from XML
Schema definitions only.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 964

webMethods Messaging Properties
In the Properties view, under webMethodsMessaging, you specify whether a document
type can be part of a publish/subscribe solution and the properties of published
instances of the document type.

Property Description

Publishable Specifies whether the document type can be published and
subscribed to.

Connection
alias name

Name of the messaging connection alias to use with this
publishable document type. The messaging connection alias
specifies which provider will receive and route instances of the
publishable document type. A value of DEFAULT indicates that
default messaging connection alias will be used. A blank value
indicates that instances of this document type can be published
locally only.

Connection
alias type

Displays Broker or Universal Messaging to indicate which messaging
provider is used by the selected alias. This property will be blank if
the document type cannot be published to a messaging provider.

Provider
definition

Displays the name of the object that corresponds to the publishable
document type on the messaging provider. This property displays
Not Publishable if the document type cannot be published. This
property displays Publishable Locally Only if instances of the
document type can be published and subscribed to within this
Integration Server only.

Encoding type Specifies the format used to encode and decode instances of this
publishable document type.

 Select... To encode and decode a published document as...

 IData A serialized IData object. An IData object is the
universal container that Integration Server uses to
receive input and deliver output. An IData object
contains an ordered collection of key/value pairs.
This is the default.

When a document is encoded as IData, triggers
that subscribe to the document type can specify
provider filters for the _properties header only.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 965

Property Description

 Protocol
buffers

A protocol buffer. Protocol buffers is approach to
encoding and decoding structured data developed
by Google.

When a document is encoded as a protocol buffer,
triggers that subscribe to the document type can
specify provider filters for the body of the message
only. Note that the body of the message includes
the headers as well.

Discard Indicates whether the messaging provider discards instances of
this publishable document type after the time specified in the Time
to live property elapses.

 Select... To...

 False Instructs the messaging provider to never discard
instances of this publishable document type.

 True Instructs the messaging provider to discard the
document after the period specified in Time to live
elapses.

Time to live Specifies how long the messaging provider keeps instances of this
publishable document type. If the time to live elapses before a
subscriber retrieves the document and sends an acknowledgement,
the messaging provider discards the document.

Storage type Specifies whether instances of this document type are stored in
memory or on disk.

 Select... To...

 Volatile Volatile documents are stored in memory
and provide at most once processing. Volatile
documents are never acknowledged and will be
lost if the resource on which they reside shuts
down.

 Guaranteed Guaranteed documents are saved to disk and
provide at least once processing or exactly-
once processing. Guaranteed documents will
be recovered upon restart if the resource on
which they reside shuts down. Resources return

M
Even Header

Properties

webMethods Service Development Help Version 9.10 966

Property Description
acknowledgements for guaranteed documents after
successfully storing or processing the document.
The acknowledgment allows the sending resource
to remove its copy of the document from disk
storage.

Validate when
published

Specifies whether Integration Server validates published instances
of this document type.

 Select... To...

 True Perform validation for published instances of this
document type.

This is the default.

 False Disable validation for published instances of this
document type.

 Note: Integration Server ignores the value of the Validate when
published property if the wa.server.publish.validateOnIS
property is set to always or never.

Universal Name Properties
You can specify a unique public identifier that external protocols (such as SOAP) use
to reference a document type on an Integration Server. Every document type on an
Integration Server has an explicit universal name in addition to its regular implicit
webMethods name. If you omit or delete a document type's explicit universal name, it
still retains its implicit universal name.

In the Properties view, under Universal Name, you assign a universal name to a document
type.

A universal name has two parts: a namespace name and a local name .

Property Description

Namespace
name

The URI that will be used to qualify the name of this document
type. You must specify a valid absolute URI.

Local name A name that uniquely identifies the document type within the
collection encompassed by Namespace name. The name can be
composed of any combination of leers, digits, or the period (.),

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 967

Property Description
dash (]) and underscore (_) characters. Additionally, it must begin
with a leer or the underscore character.

Flat File Dictionary Properties
To view properties for a flat file dictionary, double click the dictionary in the Package
Navigator view of Designer. In the Properties view, you can assign list and write access
permissions to the flat file dictionary.

To edit the properties for a flat file dictionary, you must have Write access to it and own
the lock.

General Properties for a Flat File Dictionary
In the Properties view, under General, you can assign an ACL to a flat file dictionary.

Property Description

Permissions Click to assign or view ACL permissions for a flat file
dictionary.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Flat File Element Properties
You use flat file elements to define the structure of a flat file schema and to create the
contents of a flat file dictionary. The properties you specify for flat file elements are

M
Even Header

Properties

webMethods Service Development Help Version 9.10 968

almost the same. Property descriptions indicate the circumstances in which properties
do not apply.

Record Definition Properties
In the Properties view, you can specify properties for a selected record definition in a flat
file schema or dictionary.

Property Description

Ordered Specifies whether child records must appear in the flat file in the
same order in which they appear in the record definition.

 Note: This property applies only to records that are children of
this record definition.

 Select... To...

 True Default. Specify that records in the flat file must
appear in the order which they appear in the
record definition.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the
records do not appear in the defined order.

 False Specify that records in the flat file can appear in
any order.

 Note: This property does not apply to records in flat file
dictionaries.

Mandatory Specifies whether or not an instance of this record definition is
required to exist in the flat file.

 Select... To...

 True Indicate the record is required.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the
record does not exist in a flat file.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 969

Property Description

 False Default. Indicate the record is optional.

 Note: This property does not apply to records in flat file
dictionaries.

Max repeat Maximum number of that instances of this record definition can
repeat in the flat file. Set to Unlimited if instances of this record
definition can repeat any number of times in the flat file. Set to 0
if the record can appear once but cannot repeat. The default is 1,
meaning the record can appear once and repeat once.

If you set the Max repeat value to an integer and the validate
parameter in the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the record repeats more
than the number of times allowed by the Max repeat value.

Note: This property does not apply to records in flat file
dictionaries.

Validator Specifies the type of validator to use to perform validation for
instances of this record definition.

Click to open the Validators dialog box and select a validator.

 Select... To...

 None Default. Indicate that no validator is used.

 Conditional
Validator

Specify a conditional validator.

Area The area assigned to this record definition. The Areas property for
the flat file definition determines the possible values that can be
assigned to a record.

Note: This property does not apply to records in flat file
dictionaries.

Position Integer indicating the position of the of the record in the flat file.
Select Not Used if you do not want to specify a position for the
record.

Note: This property does not apply to records in flat file
dictionaries.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 970

Property Description

Allow undefined
data

Specifies whether an instance of the record definition can contain
undefined data and not be considered invalid. A record definition
can only allow undefined data if the flat file schema is configured
to allow undefined data. (When the Flat File Definition tab is
active, in the Properties view, the Allow undefined data property is
set to True.)

 Select... To...

 True Default. Allow instances of this record definition to
contain undefined data. When a record definition
allows undefined data, Integration Server does not
generate validation errors when instances of this
record reference in a flat file contain undefined
data.

 False Prohibit instances of this record definition from
containing undefined data.

If the validate variable of the pub.flatFile.convertToValue
service is set to true, the pub.flatFile.convertToValue
service will generate errors when undefined data is
encountered.

 Note: This property does not apply to records in flat file
dictionaries.

Check fields Specifies whether extra fields in the record instance are considered
errors.

 Select... To...

 True Report errors if, at run-time, the record instances
contains more fields than those specified in the
record definition.

 False Default. Allow extra fields at the end of the record
instance.

Alternate name Another name for the record definition. When an IS document
type is generated from a flat file schema, the alternate name is
used as the name of the document field that corresponds to this
record definition.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 971

Property Description

Local
description

This property does not apply to a record definition.

Description Description of the record definition.

Record Reference Properties
In the Properties view, you an specify properties for a a selected record reference in a flat
file schema or dictionary.

Property Description

Ordered Specifies whether child records must appear in the flat file in the
same order in which they appear in the record reference.

Note: This property applies only to records that are children of
this record reference.

 Select... To...

 True Default. Specify that child records in the flat file
must appear in the order which they appear in the
record reference.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the
records do not appear in the defined order.

 False Specify that child records in the flat file can appear
in any order.

Mandatory Specifies whether or not an instance of this record reference is
required to exist in the flat file.

 Select... To...

 True Indicate the record is required.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the
record does not exist in a flat file.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 972

Property Description

 False Default. Indicate the record is optional.

Max repeat Maximum number of that instances of this record reference can
repeat in the flat file. Set to Unlimited if instances of this record
reference can repeat any number of times in the flat file. Set to 0
if the record can appear once but cannot repeat. The default is 1,
meaning the record can appear once and repeat once.

If you set the Max repeat value to an integer and the validate
parameter in the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the record repeats more
than the number of times allowed by the Max repeat value.

Validator Specifies the type of validator used to perform validation for
instances of this record reference as determined by the referenced
record definition.

 Value... Description...

 None Indicates that no validator is used.

 Conditional
Validator

A conditional validator and the criteria specified
by the condition.

Area The area assigned to this record reference. The Areas property for
the flat file definition determines the possible values that can be
assigned to a record reference.

Position Integer indicating the position of the of the record in the flat file.
Select Not Used if you do not want to specify a position for the
record.

Allow undefined
data

Specifies whether an instance of the record reference can contain
undefined data and not be considered invalid. A record reference
can only allow undefined data if the flat file schema is configured
to allow undefined data. (When the Flat File Definition tab is
active, in the Properties view, the Allow undefined data property is
set to True.)

 Select... To...

 True Default. Allow instances of this record reference to
contain undefined data. When a record reference
allows undefined data, Integration Server does not

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 973

Property Description
generate validation errors when instances of this
record reference in a flat file contain undefined
data.

 False Prohibit instances of this record reference from
containing undefined data.

If the validate variable of the pub.flatFile.convertToValue
service is set to true, the pub.flatFile.convertToValue
service will generate errors when undefined data is
encountered.

Check fields Specifies whether extra fields in the record instance are considered
errors. This value is determined by the referenced record
definition.

 Value... Description...

 True Report errors if, at run-time, the record instance
contains more fields than those specified in the
record definition.

 False Allow extra fields at the end of the composite
instance.

Alternate name Another name for the record definition. This value is determined
by the referenced record definition.

When an IS document type is generated from a flat file schema,
the alternate name of the record definition is used as the name of
the document field that corresponds to this record reference.

Local
description

Description of the record reference. Use a local description to
describe the purpose of the record reference in this particular flat
file schema.

Description Description of the referenced record definition.

Composite Definition Properties
In the Properties view, you can specify properties for a selected composite definition in a
flat file schema or dictionary.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 974

Property Description

Mandatory Specifies whether or not an instance of this composite is required
to exist in the flat file.

 Select... To...

 True Indicate the composite is required.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the
composite does not exist in a flat file.

 False Default. Indicate the composite is optional.

 Note: For a composite definition in a record reference, the
Mandatory value is determined by the composite definition in
the referenced record definition.

Note: This property does not apply to composite definitions in flat
file dictionaries.

Extractor Field number in the record that contains the composite you want
to extract. This pulls the field or composite data from the record,
or pulls the subfield data from the composite. If you leave this
property empty, the composite will not be extracted.

Click to open the Extractors dialog box and specify the
extractor.

For a composite definition in a record reference, the Extractor value
is determined by the composite definition in the referenced record
definition.

Note: The extractor works for a composite only if field delimiters
and subfield delimiters have been defined for this flat file
schema.

Note: This property does not apply to composite definitions in flat
file dictionaries.

Validator Specifies the type of validator to use to perform validation for
instances of this composite definition.

Click to open the Validators dialog box and specify the
validator.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 975

Property Description

 Select... To...

 None Default. Indicate that no validator is used.

 Conditional
Validator

Specify a conditional validator.

 Note: For a composite definition in a record reference, the Validator
value is determined by the composite definition in the
referenced record definition.

Check fields Specifies whether extra fields in the composite instance are
considered errors.

 Select... To...

 True Report errors if, at run-time, the composite instance
contains more fields than those specified in the
composite definition.

 False Default. Allow extra fields at the end of the
composite instance.

 Note: For a composite definition in a record reference, the Check
fields value is determined by the composite definition in the
referenced record definition.

Local
description

For a composite definition in a record reference, specifies a
description of the purpose for the composite definition at this
particular location in the flat file schema.

Note: This property does not apply to a composite definition in a
record definition.

Note: This property does not apply to composite definitions in flat
file dictionaries.

Alternate name Another name for the composite definition. When an IS document
type is generated from a flat file schema, the alternate name is
used as the name of the document field that corresponds to this
composite definition.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 976

Property Description

Note: For a composite definition in a record reference, the Alternate
name value is determined by the composite definition in the
referenced record definition.

Description A description for the composite definition.

Note: For a composite definition in a record reference, the
Description value is determined by the composite definition
in the referenced record definition.

ID Code IDCode for the composite definition. This information is provided
in a SEF file and is used by the WmEDI package.

Note: For a composite definition in a record reference, the ID
Code value is determined by the composite definition in the
referenced record definition.

Composite Reference Properties
In the Properties view, you can specify properties for a selected composite reference in a
flat file schema or dictionary.

Property Description

Mandatory Specifies whether or not an instance of this composite is required
to exist in the flat file.

 Select... To...

 True Indicate the composite is required.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the
composite does not exist in a flat file.

 False Default. Indicate the composite is optional.

 Note: This property does not apply to a composite reference in a
record reference.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 977

Property Description

Note: For a composite reference in a record reference, the
Mandatory value is determined by the composite reference in
the referenced record definition.

Extractor Field number in the record that contains the composite you want
to extract. This pulls the field or composite data from the record,
or pulls the subfield data from the composite. If you leave this
property empty, the composite will not be extracted.

Click to open the Extractors dialog box and select an extractor.

Note: The extractor works for a composite only if field delimiters
and subfield delimiters have been defined for this flat file
schema.

Note: For a composite reference in a record reference, the Extractor
value is determined by the composite reference in the
referenced record definition.

Validator Specifies the type of validator to use to perform validation for
instances of this composite reference as determined by the
referenced composite definition.

 Value... Description...

 None Indicates that no validator is used.

 Conditional
Validator

A conditional validator and the criteria specified by
the condition.

 Note: For a composite reference in a record reference, the Validator
value is determined by the composite reference in the
referenced record definition.

Check fields Specifies whether extra fields in the composite instance are
considered errors. This value is determined by the referenced
composite definition.

 Value... Description...

 True Report errors if, at run-time, the composite instance
contains more fields than those specified in the
composite definition.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 978

Property Description

 False Allow extra fields at the end of the composite
instance.

 Note: For a composite reference in a record reference, the Check
fields value is determined by the composite reference in the
referenced record definition.

Local
description

Description of the composite reference. Use a local description to
describe the purpose of the referenced composite definition in this
particular flat file schema.

Alternate name Another name for the composite definition. This value is
determined by the referenced composite definition.

When an IS document type is generated from a flat file schema,
the alternate name is used as the name of the document field that
corresponds to this composite definition

Note: For a composite reference in a record reference, the Alternate
name value is determined by the composite reference in the
referenced record definition.

Description Description for the referenced composite definition.

Note: For a composite reference in a record reference, the
Description value is determined by the composite reference in
the referenced record definition.

ID Code IDCode for the composite definition. The IDCode is provided in a
SEF file and is used by the WmEDI package.

Note: For a composite reference in a record reference, the ID
Code value is determined by the composite reference in the
referenced record definition.

Field Definition Properties
In the Properties view, specify properties for the selected field definition in a flat files
schema or dictionary.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 979

Property Description

Mandatory Specifies whether or not an instance of this field definition is
required to exist in the flat file.

 Select... To...

 True Indicate the field is required.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the field
does not exist in a flat file.

 False Default. Indicate the field is optional.

 Note: This property does not apply to field definitions in flat file
dictionaries.

Extractor Location of the data to extract for this field. Click to open the
Extractors dialog box and specify an extractor.

The extractor works for a field only if field delimiters have been
defined for this flat file schema.

 Select... To...

 Nth Field Specify the position of the field to extract.

Note: Software AG recommends that you use this
extractor instead of ID node.

 ID Node Specify the position of the field to extract. The
ID Node extractor is a variation of the Nth
Field extractor and is available for backward
compatibility for users of the webMethods Module
for EDI.

 Fixed
Position

Specify the start and end positions of the bytes to
extract.

 Note: This property does not apply to field definitions in flat file
dictionaries.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 980

Property Description

Validator Specifies the type of validator to use to perform validation for the
field.

Click to open the Validators dialog box and select a validator.

 Select... To...

 None Default. Indicate that no validator is used.

 Length
Validator

Specify the maximum and minimum number of
characters this field can contain to be considered
valid.

 Byte Length
Validator

You specify the maximum and minimum number
of bytes this field can contain to be considered
valid.

Note: Use the byte length validator for multi-byte
encoded records.

 Code List
Validator

Specify a comma–separated list of the allowed
values for this field. If the value of the field is not
contained in the code list, errors will be generated.

Format service Enter the fully-qualified name of the service to use to format
data from this field. You can click to navigate to and select a
service.

Alternate name Another name for the field definition. When an IS document
type is generated from a flat file schema, the alternate name is
used as the name of the String field that corresponds to this field
definition.

Description Description of the field definition.

Note: This property does not apply to a field definition in a
composite reference or a record reference.

ID Code IDCode for the field definition. The IDCode is provided in a SEF
file and is used by the WmEDI package.

Data type Data type for the field as specified in the SEF file. This information
is used by the WmEDI package.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 981

Property Description

Local
description

For a field definition in a composite reference or a record
reference, specifies a description for the field definition at this
particular location in the flat file schema.

Note: This property does not apply to field definitions in flat file
dictionaries.

Field Reference Properties
In the Properties view, specify properties for the selected field definition in a flat files
schema or dictionary.

Property Description

Mandatory Specifies whether or not an instance of this field reference is
required to exist in the flat file.

 Select... To...

 True Indicate the field is required.

If you select True and the validate parameter in
the pub.flatFile:convertToValues service is set to true,
Integration Server generates errors when the field
does not exist in a flat file.

 False Default. Indicate the field is optional.

 Note: For a field reference in a record reference or composite
reference, the Mandatory value is determined by the field
reference in the referenced record or referenced composite
definition.

Extractor Location of the data to extract for this field. Click to open the
Extractors dialog box and specify an extractor.

The extractor works for a field only if field delimiters have been
defined for this flat file schema.

 Select... To...

 Nth Field Specify the position of the field to extract.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 982

Property Description

Note: Software AG recommends that you use this
extractor instead of ID node.

 ID Node Specify the position of the field to extract. The
ID Node extractor is a variation of the Nth
Field extractor and is available for backward
compatibility for users of the webMethods Module
for EDI.

 Fixed
Position

Specify the start and end positions of the bytes to
extract.

 Note: For a field reference in a record reference or composite
reference, the Extractor value is determined by the field
reference in the referenced record or referenced composite
definition.

Validator Specifies the type of validator to use to perform validation for the
field as determined by the referenced field definition.

 Value... Description...

 None Default. Indicate that no validator is used.

 Length
Validator

The maximum and minimum number of
characters this field can contain to be considered
valid.

 Byte Length
Validator

The maximum and minimum number of bytes this
field can contain to be considered valid.

Note: Use the byte length validator for multi-byte
encoded records.

 Code List
Validator

A comma–separated list of the allowed values for
this field. If the value of the field is not contained
in the code list, errors will be generated.

 Note: For a field reference in a record reference or composite
reference, the Validator value is determined by the field
reference in the referenced record or referenced composite
definition.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 983

Property Description

Format service Enter the fully-qualified name of the service to use to format data
from this file as determined by the referenced field definition.

Note: For a field reference in a record reference or composite
reference, the Format service value is determined by the field
reference in the referenced record or referenced composite
definition.

Alternate name Another name for the field definition as determined by the
referenced field definition. When an IS document type is
generated from a flat file schema, the alternate name is used as the
name of the String field that corresponds to this field definition.

Note: For a field reference in a record reference or composite
reference, the Alternate name value is determined by the field
reference in the referenced record or referenced composite
definition.

Description Description of the referenced field definition.

Note: This property does not apply to a field definition in a
composite reference or a record reference.

ID Code IDCode for the field as determined by the referenced field
definition. The IDCode is provided in a SEF file and is used by the
WmEDI package.

Note: For a field reference in a record reference or composite
reference, the ID Code value is determined by the field
reference in the referenced record or referenced composite
definition.

Data type Data type for the field as specified in the SEF file. This information
is used by the WmEDI package.

Note: For a field reference in a record reference or composite
reference, the Data type value is determined by the field
reference in the referenced record or referenced composite
definition.

Local
description

Description of the field reference. Use a local description to
describe the purpose of the referenced field definition in this
particular flat file schema.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 984

Flat File Schema Properties
To view properties for a flat file schema, double-click the flat file schema in the Package
Navigator of Designer. In the Properties view, you can configure the General, Default
Record, and Settings properties for the service.

To edit the properties for a flat file schema, you must have Write access to it and own the
lock.

General Properties for a Flat File Schema
In the Properties view, under General, you can assign an ACL to a flat file schema.

Property Description

Permissions Click to assign or view ACL permissions to a flat file schema.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Default Record Properties
In the Properties view, under Default Record, you can specify basic information bout the
default record for a flat file schema.

Property Description

Set Click to browse to and select the default record for this flat file
schema from a flat file dictionary. This record is used to parse an
undefined data record when thepub.flatFile.convertToValues service
fails to find a match between the flat file and the flat file schema.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 985

Property Description

If a default record is specified when creating the flat file schema,
any record that cannot be recognized will be parsed using this
default record. If a default record is not selected, the record will be
treated as undefined data.

If the Undefined data property is set to False and the validate
variable of the pub.flatFile.convertToValues service is set to true, the
pub.flatFile.convertToValues service will generate errors when it
encounters undefined data.

Note: If the flat file you are parsing does not contain record
identifiers, you must select a default record. By selecting a
default record, a CSV (comma separated values) file can be
parsed as a special case of record with no record identifier,
but with fixed field and record delimiters.

Delete Click delete the default record for this flat file schema.
The actual record definition still exists, but is no longer assigned to
this flat file schema.

Settings Properties
In the Properties view, under Settings, you can specify whether undefined data is
allowed, assign names to particular sections of the flat file schema, and designate a
floating record.

Property Description

Allow
undefined data

Specifies whether record definitions and record references in the
flat file schema can be configured to allow undefined data. When
records allow undefined data, Integration Server does not generate
errors when flat files contain undefined data at run time.

 Select... To...

 True Allow specific records in the flat file schema to be
configured to allow undefined data at run time.

 False Prohibit undefined data at any location in the flat file
schema

If the validate variable of the pub.flatFile.convertToValue
service is set to true, the pub.flatFile.convertToValue

M
Even Header

Properties

webMethods Service Development Help Version 9.10 986

Property Description
service will generate errors when undefined data is
encountered.

Areas Click to create a list of names that can be assigned to records or
record references in the flat file schema.

Note: Areas are used primarily for EDI document parsing.

Floating record Identifies the record in the flat file schema that will act as the
floating record. By designating a floating record, you enable that
record to appear in any position within a flat file without causing a
parsing validation error.

You can specify the record name or the alternate name that is
assigned to the record.

If you do not use this property, validation errors will occur if the
record structure of an inbound document does not match the
record structure defined in its flat file schema. For information
on avoiding this type of error, see the Flat File Schema Developer’s
Guide.

Schema Definition Properties
The following table identifies the properties for the schema element that functions as the
root of the flat file schema.

Property Description

Ordered Specifies whether records must appear in the flat file in the same
order in which they appear in a flat file schema.

Note: This property applies only to records that appear at the root
of the flat file schema, not records that are child elements of
records.

 Select... To...

 True Default. Specify that records in the flat file
must appear in the order which they appear in
the flat file schema.

If you select True and the validate parameter
in the pub.flatFile:convertToValues service is set to

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 987

Property Description
true, Integration Server generates errors when
the records do not appear in the defined order.

 False Specify that records in the flat file can appear
in any order.

JMS Trigger Properties
Use the following categories of the Properties view to determine the run-time behavior
of a JMS trigger.

To view properties for a JMS trigger, double-click the trigger in the Package Navigator of
Designer.

General Properties for Non-Transacted JMS Triggers
In the Properties view, under General, you specify whether a JMS trigger is enabled, set
the transaction type, specify the acknowledgement mode, expiration, and execution user
credentials.

Property Description

Name Name of the JMS trigger.

Enabled Specifies whether the JMS trigger is enabled or disabled.

 Select... To...

 True Enable the JMS trigger

 False Disable the JMS trigger

 Note: If you disable a SOAP-JMS trigger that acts as a listener for
one or more provider web service descriptors, Designer
will not retrieve any messages for those web service
descriptors.

Transaction type Indicates whether or not the JMS trigger receives and processes
messages as part of a transaction.

 Value Description

M
Even Header

Properties

webMethods Service Development Help Version 9.10 988

Property Description

 NO TRANSACTION The JMS trigger does not receive
and process message as part of a
transaction.

 XA TRANSACTION The JMS trigger receives and
processes messages as part of an XA
transaction.

 LOCAL TRANSACTION The JMS trigger receives and
processes messages as part of a local
transaction.

 Note: Designer sets the transaction type value based on the
transaction type specified for the JMS connection alias
associated with the JMS trigger.

Acknowledgement
mode

Indicates how the JMS trigger acknowledges messages it
receives to the JMS provider.

 Select... To...

 AUTO_ACKNOWLEDGE Automatically acknowledge the
message when it is received by the
JMS trigger. The Integration Server
will acknowledge the message
before the trigger completes
processing. The JMS provider cannot
redeliver the message if Integration
Server becomes unavailable before
message processing completes.

 CLIENT_ACKNOWLEDGE Acknowledge or recover the
message only after the JMS trigger
processes the message completely.

This is the default.

 DUPS_OK_ACKNOWLEDGE Lazily acknowledge the delivery
of messages. This may result in the
delivery of duplicate messages.

 Note: Designer displays the Acknowledgement mode property
only if the value of the Transaction type property is NO
TRANSACTION.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 989

Property Description

Join expires Indicates whether the join expires after the time period specified
in Expire after.

 Select... To...

 True Indicates that Integration Server
stops waiting for messages from
the remaining destination in a join
after the time specified in Expire after
elapses.

 False Indicates that the join does not
expire. That is, Integration Server
waits indefinitely for messages from
the remaining destinations in the
join.

 Note: SOAP-JMS triggers do not use joins. Designer does not
display the Join expires property for SOAP-JMS triggers.

Expire after Specifies how long Integration Server waits for the remaining
documents in the join. The default join time-out is 1 day.

Note: SOAP-JMS triggers do not use joins. Designer does not
display the Expire after property for SOAP-JMS triggers.

Reuse Specifies whether this element can be dragged from the
CentraSite Registry Explorer view to a BPM process or CAF
project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot
drag the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM
process or CAF project, the element's status in CentraSite will
not change until the next publication of assets to CentraSite.

Execution user Specifies the name of the user account whose credentials
Integration Server uses to execute a service associated with the

M
Even Header

Properties

webMethods Service Development Help Version 9.10 990

Property Description
JMS trigger. You can specify a locally defined user account or a
user account defined in a central or external directory.

General Properties for Transacted JMS Triggers
In the Properties view, under General, you specify whether a JMS trigger is enabled, set
the transaction type, specify the acknowledgement mode, expiration, and execution user
credentials.

Property Description

Name Name of the JMS trigger.

Enabled Specifies whether the JMS trigger is enabled or disabled.

 Select... To...

 True Enable the JMS trigger

 False Disable the JMS trigger

 Note: If you disable a SOAP-JMS trigger that acts as a listener for
one or more provider web service descriptors, Designer
will not retrieve any messages for those web service
descriptors.

Transaction type Indicates whether or not the JMS trigger receives and processes
messages as part of a transaction.

 Value Description

 NO TRANSACTION The JMS trigger does not receive
and process message as part of a
transaction.

 XA TRANSACTION The JMS trigger receives and
processes messages as part of an XA
transaction.

 LOCAL TRANSACTION The JMS trigger receives and
processes messages as part of a local
transaction.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 991

Property Description

 Note: Designer sets the transaction type value based on the
transaction type specified for the JMS connection alias
associated with the JMS trigger.

Execution User Specifies the name of the user account whose credentials
Integration Server uses to execute a service associated with the
JMS trigger. You can specify a locally defined user account or a
user account defined in a central or external directory.

Reuse Specifies whether this element can be dragged from the
CentraSite Registry Explorer view to a BPM process or CAF
project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot
drag the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM
process or CAF project, the element's status in CentraSite will
not change until the next publication of assets to CentraSite.

Message Processing Properties
In the Properties view, under Message processing, you enable or disable a JMS trigger, set
the transaction type, specify the acknowledgement mode, expiration, and execution user
credentials.

Property Description

Processing
mode

Specifies how Integration Server processes messages received
by the JMS trigger. You can specify serial or concurrent message
processing.

 Select... To...

 Serial Specify that Integration Server should process
messages received by the trigger one after the
other.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 992

Property Description

 Concurrent Specify that Integration Server should process
multiple messages for this trigger at one time.

Max execution
threads

Specify the maximum number of messages that Integration Server
can process concurrently. Integration Server uses one thread to
process each message. The default is 1 server thread.

Max batch
messages

Specify the maximum number of messages that the trigger service
can receive at one time. If you do not want the trigger to perform
batch processing, leave this property set to 1. The default is 1.

Note: A transacted JMS trigger can be used for batch processing
if the JMS connection alias used by the trigger connects to a
JMS provider that supports reuse of transacted JMS sessions.
If the JMS provider does not support reuse of transacted
JMS sessions, set Max batch processing to 1. Consult the
documentation for your JMS provider to determine whether
or not the JMS provider supports the reuse of transacted
JMS sessions. Note that webMethods Broker version 8.2 and
higher, and webMethods Universal Messaging version 9.5
SP1and higher, and webMethods Nirvana version 7 and
higher support the reuse of transacted JMS sessions.

Note: Designer does not display this property for a SOAP-JMS
trigger because SOAP-JMS triggers cannot process batches of
messages

Connection
count

Specifies the number of connections this trigger makes to the JMS
provider. Multiple connections can improve trigger throughput,
but keep in mind that each connection requires a dedicated
Integration Server thread, regardless of the current throughput.
The default is 1.

Note: If you specify a connection count greater than one, the alias
associated with this trigger must be configured to create a
new connection for each trigger. For more information about
JMS connection aliases, refer to webMethods Integration Server
Administrator’s Guide.

Fatal Error Handling Properties
In the Properties view, under Fatal error handling, you specify whether the Integration
Server should suspend the JMS trigger when an exception occurs during trigger service.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 993

Property Description

Suspend on
Error

Specifies that the Integration Server suspends the JMS trigger
when an exception occurs during trigger service execution. This
property is available for serial triggers only.

 Select... To...

 True Instruct Integration Server to suspend the trigger
when a trigger service ends with a fatal error.

 False Indicate that Integration Server should not suspend
the JMS trigger when a trigger service ends with a
fatal error

This is the default.

Transient Error Handling with a Non-Transacted JMS Trigger
When building a trigger, you can specify what action Integration Server takes when the
trigger service fails because of a transient error caused by a run-time exception. That is,
you can specify whether or not Integration Server should retry the trigger.

In the Properties view, under Transient error handling, you specify whether or not
Integration Server should retry the trigger.

Property Description

Max retry
attempts

Specifies the maximum number of times Integration Server
should re-execute the trigger service when the trigger service ends
because of a transient error that causes an ISRuntimeException.
The default is 0 aempts (indicating the trigger service does not
retry).

Retry interval Specifies the length of time Integration Server waits between retry
aempts. The default is 10 seconds.

On retry failure Indicates how Integration Server handles a retry failure for a JMS
trigger. A retry failure occurs when Integration Server reaches the
maximum number of retry aempts and the trigger service still
fails because of an ISRuntimeException.

This property also determines how Integration Server handles a
transient error that occurs during trigger preprocessing.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 994

Property Description

 Select... To...

 Throw exception Indicate that Integration Server throws
a service exception when the last
allowed retry aempt ends because of an
ISRuntimeException.

This is the default.

 Suspend and retry
later

Indicate that Integration Server suspends the
trigger when the last allowed retry aempt
ends because of an ISRuntimeException.
Integration Server retries the trigger service at
a later time when the resources needed by the
trigger service become available.

When On Retry failure is set to Suspend and
retry later, a transient error that occurs during
trigger preprocessing causes Integration
Server to suspend the trigger and resume it
when the resources, specifically the document
history database, are available.

On transaction
rollback

Indicates how Integration Server handles a transient error that
occurs during service execution, resulting in the entire transaction
being rolled back.

 Select... To...

 Recover only Indicate Integration Server recovers the
message back to the JMS provider. Integration
Server receives the message again almost
immediately.

This is the default.

 Suspend and
recover

Indicate that Integration Server suspends the
JMS trigger and then recovers the message
back to the JMS provider. Integration Server
executes the trigger service at a later time
when the resources needed by the trigger
service become available.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 995

Property Description

Resource
monitoring
service

Specifies the service that Integration Server executes to determine
whether the resources needed by the JMS trigger are available
and if the trigger can be resumed. Integration Server schedules a
system task to execute the resource monitoring service when one
of the following occurs:

The trigger service ends because of a retry failure and the On retry
failure property is set to Suspend and retry later.

The trigger service is part of a transacted JMS trigger and the On
transaction rollback property is set to Suspend and recover.

The document resolver service used for exactly-once
processing ends because of a run-time exception and the
wa.server.trigger.preprocess.suspendAndRetryOnError is set to
true.

Note: A resource monitoring service must use the
pub.trigger:resourceMonitoringSpec as the service signature.

Transient Error Handling with a Transacted JMS Trigger
When building a trigger, you can specify what action Integration Server takes when the
trigger service fails because of a transient error caused by a run-time exception. That is,
you can specify whether or not Integration Server should retry the trigger.

In the Properties view, under Transient error handling, you specify whether or not
Integration Server should retry the trigger.

Property Description

On transaction
rollback

Indicates how Integration Server handles a transient error
that occurs during service execution, resulting in the entire
transaction being rolled back.

 Select... To...

 Recover
only

Indicate Integration Server recovers the message
back to the JMS provider. Integration Server
receives the message again almost immediately.

This is the default.

 Suspend
and recover

Indicate that Integration Server suspends the JMS
trigger and then recovers the message back to
the JMS provider. Integration Server executes the

M
Even Header

Properties

webMethods Service Development Help Version 9.10 996

Property Description
trigger service at a later time when the resources
needed by the trigger service become available.

Resource
monitoring service

Specifies the service that Integration Server executes to
determine whether the resources needed by the JMS trigger are
available and if the trigger can be resumed. Integration Server
schedules a system task to execute the resource monitoring
service when one of the following occurs:

The trigger service ends because of a retry failure and the On
retry failure property is set to Suspend and retry later.

The trigger service is part of a transacted JMS trigger and the
On transaction rollback property is set to Suspend and recover.

The document resolver service used for exactly-once
processing ends because of a run-time exception and the
wa.server.trigger.preprocess.suspendAndRetryOnError is set
to true.

Note: A resource monitoring service must use the
pub.trigger:resourceMonitoringSpec as the service signature.

Exactly Once Processing Properties
You can configure exactly-once processing for a JMS trigger. Exactly-once processing
ensures that a trigger processes a persistent message once and only once.

Integration Server provides exactly-once processing by determining whether a message
is a copy of one previously processed by the trigger. Designer provides three duplicate
detection methods: redelivery count, document history, and a document resolver
service.

In the Properties view, under Exactly once, you configure exactly-once processing for a
JMS trigger.

Property Description

Detect
duplicate

Enables exactly-once processing for the JMS trigger and instructs
the server to check a message’s redelivery count to determine
whether the trigger has received the message before.

 Select... To...

 True Specifies that exactly-once processing is provided
for messages received by this trigger and instructs

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 997

Property Description
the server to check a document’s redelivery count to
determine whether the trigger received the document
previously.

The redelivery count indicates the number of times the
routing resource has redelivered a document to the
trigger.

 False Specifies that exactly-once processing is not provided
for messages received by this trigger.

 Note: Integration Server provides exactly-once processing for
guaranteed messages only.

Use history Indicates whether a document history database will be maintained
and used to determine whether a message is a duplicate.

 Select... To...

 True Indicates that Integration Server maintains a history
of messages processed by the trigger. When the
trigger receives a message, the Integration Server
compares the message’s universally unique identifier
(UUID) to the UUIDs of messages processed by the
trigger. If there is a match, the Integration Server
either determines the second message is a duplicate
and discards it or, if the first message has not finished
processing, marks the second message’s status as In
Doubt.

 False Indicates Integration Server does not maintain a
document history database. The Integration Server
will not use document history to determine whether a
message is a duplicate of one already processed by the
trigger.

 Note: To perform duplicate detection using a document history
database, the audit subsystem must be stored in a relational
database and the Integration Server Administrator must
define a JDBC connection pool for the Integration Server to
use to connect to the document history database.

History time to
live

Specifies the length of time the document history database
maintains an entry for a message processed by the JMS trigger.
During this time period, the Integration Server discards any

M
Even Header

Properties

webMethods Service Development Help Version 9.10 998

Property Description
messages with the same universally unique identifier (UUID) as an
existing document history entry for the trigger. When a document
history entry expires, the Integration Server removes it from the
document history database. If the trigger subsequently receives
a message with same UUID as the expired and removed entry,
the server considers the copy to be new because the entry for the
previous message has been removed from the database.

Document
resolver service

Specifies the service that you created to determine whether
message’s status is New, Duplicate, or In Doubt. Click to select a
service from a list.

The document resolver service must use the
pub.publish:documentResolverSpec to define the service signature.

webMethods Broker Properties
In the Properties view, under webMethods Broker, you can configure properties specific to
webMethods Broker when the Broker is used as the JMS provider.

Property Description

Max prefetch
size

Specifies the maximum number of messages that the
webMethods Broker API for JMS will retrieve and cache per
request for this trigger. Using pre-fetch cache can speed up the
retrieval of messages from webMethods Broker.

Because messages will be placed in Integration Server memory,
you may want to decrease this seing if this trigger receives
very large messages. Otherwise, memory issues can occur. This
seing applies only if this trigger connects to webMethods
Broker.

The default is 10 messages.

If you specify a value of -1 for this seing,
Integration Server uses the value specified on the
wa.server.jms.trigger.maxPrefetchSize parameter for this
seing.

Link Properties
Use the Properties view to apply conditions to the link you have drawn between two
variables or specify which element of an array you want to link to or from.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 999

To view properties for a link, double-click the link in the Pipeline editor.

General Properties for Links

Property Description

Evaluate copy condition Specifies whether Integration Server evaluates a condition
applied to a link before executing the link.

 Select... To...

 True Instruct Integration Server to execute the
link only if the condition specified in Copy
Condition evaluates to true.

 False Instruct Integration Server to execute the
link without evaluating it against a copy
condition.

Copy condition Specifies the expression that must evaluate to true before
the Integration Server will execute the link between fields.
The server evaluates the condition at run time only if
the Evaluate copy condition property is set to True. Click

 to specify a condition. Use the syntax provided by
webMethods to write the condition. For details on the
syntax, see "Conditional Expressions" on page 1125.

Indices To specify which element in an array variable you want to
link to or from, click . See ct one of the following from
the Link Indices page:

 Select... To...

 Source Display the variables for which you need
to specify an array index. You only need to
specify indexes for Source variables if the
source variable (the variable you are linking
from) is an array or is a child of an array.

Index

Specifies the array index for the element
whose value you want to link to the target
variable

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1000

Property Description

 Destination Displays the variables for which you need
to specify an array index. You only need to
specify indexes for Destination variables if
the target variable is an array or is the child
of an array.

Index

Specifies the array index for the element to
which you want to link the source variable.

OData Service Properties
To view the properties for an OData service and its elements, properties, and
associations, double-click the service in the Package Navigator of Designer. You can
configure the properties for the service in the Properties view.

To edit the properties for a service, you must have Write access to it and own the lock.

General Properties for OData Services

Property Description

Permissions Click to assign or view ACL permissions to an OData service.

Alias Specifies an alternate name for the namespace name of the OData
service.

Namespace Displays the namespace name, which is the fully qualified name of
the OData service on the Integration Server.

Use custom
filter

Indicates whether or not to use custom filters instead of the built-
in filters that Integration Server provides while using the $filter
system query option.

 Select... To...

 True Use your custom filters in the $filter system
query option. You can then specify custom filter
queries as the value for the $filter parameter
of the _retrieve and _update OData service
implementations.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1001

Property Description

 False Use the built-in filters that Integration Server
provides in the $filter system query option.
This is the default.

OData Element Properties
In the Properties view, under General, you can specify the name for the Entity Type and
Complex Type OData elements.

Entity Type Properties

Property Description

Name Specifies the name of the OData entity type.

Name of an entity type must be unique among all the entity types
in the OData service.

Complex Type Properties

Property Description

Name Specifies the name of the OData complex type.

Name of a complex type element must be unique across all
complex types in the OData service.

External Entity Type Properties

Property Description

Name Specifies the name of the OData external entity type.

Connection
Alias

Specifies the connection used with the external source type.

Source
Reference
Name

Specifies the name of the source external entity.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1002

Note: You cannot edit the properties of an External Entity Type.

Simple Property Properties
In the Properties view, you can specify the general properties for a selected Simple
property in an OData service.

General Properties for Simple Property

Property Description

Name Specifies the name of the Simple property. The name of the
property must be unique within the set of Simple properties for the
entity type or complex type.

Key Indicates whether or not the OData element is a key. This property
is available only for the Simple property of OData entity types.

Each OData entity type must have a Key property that uniquely
identifies the entity type within the OData service at run time.

 Select... To...

 True Indicate that the property is a key. When selected, the
icon representing the OData Simple property in the
OData service editor changes to .

 False Indicate that the property is not a key property. This is
the default.

Nullable Indicates whether or not the property can have a null value.

Note: If you selected True for the Key property, the property cannot
have a null value.

 Select... To...

 True Indicate that property can have a null value. This is the
default.

 False Indicate that the property cannot have a null value.

Type Specifies the OData-specific primitive data type of the property.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1003

Facets Properties for Simple Property
In the Properties view, you can specify the constraining facets to be applied to the
specified primitive type of the selected Simple property in an OData service.

Property Description

Default Determines the default value of the property. Enter the default
value or select NULL if the default value is null.

Note: If the OData element is a key, that is, if you selected True
for the Key property, the Default property cannot have a null
value.

Fixed Length Specifies whether the length of the value of the property must be
fixed or whether it can vary.

 Select... To...

 True Indicate that the length of the value of the property
consists of a fixed number of bytes.

 False Indicate that the value of the property can be of
varying length.

Max Length Specifies the maximum length of the value of the property. Enter a
positive integer if you want to restrict the value to a specific length.
Select Max if the value can be of any length.

Unicode Specifies whether or not the value of the property is encoded using
Unicode (UTF-8) or ASCII. .

 Select... To...

 True Indicate that value of the property encoded using
Unicode (UTF-8). This is the default.

 False Indicate that the value of the property is encoded
using ASCII.

Collation Specifies a sorting sequence that can be used for comparison and
ordering operations on values of the property.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1004

Complex Property Properties
In the Properties view, you can specify the general properties for a selected Complex
property in an OData service.

Property Description

Name Specifies the name of the Complex property of the OData
service. The name of the property must be unique within the set
of Complex properties for the entity type or complex type.

Type Specifies the primitive data type of the property.

Association Properties
In the Properties view, you can specify the properties for the OData associations.

General Properties for Association

Property Description

Name Specifies the name of the OData Association. The value of this
property is derived from the two entity types that are part of this
entity association and the multiplicity in this association.

OData Association End Properties
In the Properties view, you can specify the properties for the OData association ends.

Property Description

Entity Type Specifies the Entity Type on the specific association end.

Multiplicity Specifies the number of entity types that can be at the specific end
of the association.

 Select... To...

 * Indicate that zero, one, or more entity type
instances exist at the association end.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1005

Property Description

 0..1 Indicate that zero or one entity type instance
exist at the association end.

 1 Indicate that exactly one entity type instance
exists at the association end.

Role Specifies the name of the role played by the entity type at an
association end.

OData Association Navigation Properties
When an association is defined between entity types, Designercreates and displays the
OData navigation elements under the corresponding entity types. In case of single or
unidirectional association, a navigation element is added only to one association end. In
case of bidirectional association, navigation elements are added to both the association
ends. You can view the properties for the OData navigation elements in the Properties
view.

Property Description

Name Specifies the name of the navigation property. The value is
automatically derived when an association is formed between
two entity types.

Relationship Specifies the association related to this navigation property.

From Role Specifies the name of the role played by this entity type in the
association.

To Role Specifies the name of the role played by this entity type in the
association.

REST API Descriptor Properties
To view properties for a REST API descriptor, double-click the REST API descriptor in
Package Navigator view of Designer.

General Properties for REST API Descriptors
In the Properties view, under General, you can view and assign properties to a REST API
descriptor.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1006

Property Description

Name Displays the name of the REST API descriptor.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Note: A REST API descriptor cannot be published to CentraSite.

REST Resource Properties
When you select a REST resource on the REST Resources tab, the Properties view
displays path and suffix information for the REST resource.

Property Description

Path The path for the REST resource. By default, each REST resource
in a REST API descriptor derives its path from the namespace of
the REST resource. For example, if the REST resource is named
myREST.myRESTResource, the path is “/myREST.myRESTResource”.

However, you might not want to expose the namespace of the
REST resource in the Swagger document. You can override the
default path with one of your choosing. For example, you could
use /customers/premium or /myPath.

Change the path of the REST resource to be the path of your
choosing. If you do not include “/” as the first character in the Path
property, Integration Server adds it in the Swagger document.

Make sure that Integration Server can resolve the path that you
specify. The path must be invokable by Integration Server.

Suffix The suffix for the REST resource. By default, there is no suffix for
a REST resource in a REST API descriptor. However, if you want
users who invoke the REST resource to include query parameters,
you can specify that information in the suffix. Integration Server
appends the suffix to the Path property value.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1007

Property Description

For example, if you want the exposed path in the Swagger
document to be /customers /{id}, specify /customers as the
Path property value and /{id} as the Suffix property value.

Make sure that Integration Server can resolve the resource path
when it includes the suffix that you specify. The path must be
invokable by Integration Server.

Operation Properties
When you select an operation in a REST resource on the REST Resources tab, the
Properties view displays the operation name and description.

Property Description

Operation name Fully qualified name of the service that corresponds to
the operation.

Operation description Description of the operation obtained from the
Comments tab for the service that corresponds to the
operation.

REST Definition Properties
The REST Definitions tab contains information about multiple REST Definitions
contained in a Swagger Document. Each REST Definition is a root-level document on the
REST Definitions tab and can have multiple parameters.

Property Description

Name Fully qualified name of the REST definition.

Description This property is not used.

Namespace Name If a service signature for a service in a REST resource
includes a reference to an IS document type, Integration
Server creates a REST definition that corresponds to the IS
document type. For these REST definitions, the Namespace
Name is the fully qualified name of the referenced IS
document type.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1008

Property Description

The Namespace Name property applies to a REST definition
created for an IS document type only.

REST Definition Parameter Properties
When you select a parameter on the REST Definitions tab, the Properties view displays
information about the parameter, such as the name, description, and whether or not it is
required.

Property Description

Name Parameter name. The parameter name corresponds to the
name of a variable in the signature of the service used as
an operation in the REST API descriptor.

Description Parameter description. Integration Server obtains the
description from the Comments property value for the
variable in the signature of the service used an operation
in the REST API descriptor.

Reference definition If the parameter is a reference to a REST definition,
displays the name of the referenced REST definition.

Required Whether or not the parameter is required. A value of
True indicates the parameter is squired. A value of False
indicates the parameter is optional.

Schema Properties
In the Properties view, you can view and set the properties for an IS schema. To view the
properties for an IS schema, double-click the schema in Package Navigator view.

To edit the properties for a specification, you must have Write access to it and own the
lock.

General Properties for IS Schemas
In the Properties view, under General, you can assign list or write ACL privileges to an IS
schema or indicate how it can be used in CentraSite.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1009

Property Description

Permissions Click to assign or view ACL permissions to a schema.

Schema
domain

Displays the name of the schema domain to which the IS schema
belongs.

This property applies to schemas created from XML Schema
definitions only.

Note: When Integration Server consumes a WSDL document to
create a web service descriptor, Integration Server places any
generated IS schemas in a unique schema domain for that
web service descriptor. Integration Server uses a combination
of alphanumeric characters as the schema domain name.

Reuse Specifies whether this schema can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Source URI Displays the location or URI of the source used to create this
schema.

Linked to
source

Indicates whether the schema reflects the content and structure
of the source from which it was created. When set to true, the
contents of the schema, specifically simple type definitions, cannot
be edited. When set to false, the simple type definitions in the
schema can be edited but may no longer accurately reflect the
simple type definitions from the source.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1010

Schema Component Properties
In the schema editor, you can view the contents of an IS schema and details about each
component in the schema. When you select a component in the Schema Browser (the left
side of the schema editor), Designer displays detailed information in the Component
Details (the right side of the schema editor). The information contained in Component
Details varies with the selected component.

All Content Model

An all content model specifies that child elements can appear once, or not at all, and in
any order in the instance document. This symbol corresponds to the <all> compositor
in an XML Schema definition.

This field... Specifies...

Min Occurs The minimum number of occurrences of the content model for an
element in the instance document. The value of Min Occurs is equal
to the value of the minOccurs aribute in the <all> content model

Max Occurs The maximum number of occurrences of the content model for
an element in the instance document. The value of Max Occurs is
equal to the value of the maxOccurs aribute in the <all> content
model.

Summary of
Children

The name and occurrence constraints for the child elements in the
content model.

Name. The name of the child element.

Min,Max. The minimum and maximum occurrence constraints
for the child element. The Min and Max values correspond to the
minOccurs and maxOccurs aributes (respectively) in the local
element declaration.

Any Attribute Declaration

An any aribute declaration is a wildcard declaration used as a placeholder for
undeclared aributes in an instance document. This symbol corresponds to the

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1011

<anyAttribute> declaration in an XML Schema. The aribute that corresponds to the
wildcard declaration in the instance document is called the matching aribute.

Because an <anyAttribute> declaration does not specify an aribute name, the schema
uses 'Any' as the name of the aribute.

This field... Specifies...

Process
Contents

The validation constraints placed on the matching aribute in the
instance document. The value of Process Contents equals the value of
the processContents aribute in the <anyAttribute> declaration.
This field can have one of the following values:

strict specifies that Integration Server must validate the matching
aribute against a global declaration in a schema belonging to one of
the allowed namespaces. If Integration Server cannot find one of the
XML components, it generates a validation error. The Process Contents
value is strict when the processContents aribute is absent or is
set to "strict" in the <anyAttribute> declaration. This is the default
value.

skip specifies that the matching aribute must be well-formed XML.
Integration Server does not need to make sure the matching element
or aribute is schema-valid. The Process Contents value is skip when
processContents="skip" in the <anyAttribute> declaration.

lax specifies that when Integration Server encounters the matching
aribute in the instance document, it should (if possible) validate
the matching aribute against the corresponding global declaration
in a schema from an allowed namespace. However, if Integration
Server cannot find the schema in the namespace, no error occurs. The
Process Contents value is lax when processContents="lax" in the
<anyAttribute> declaration.

Qualifier Whether the matching aribute can or cannot be from one of the
namespaces listed in the URIs field.

The namespace aribute value in the <anyAttribute> declaration
determines the value of Qualifier. See the following.

 Namespace value Qualifier
value

Description

 ##any any Specifies that the matching
aribute can be from any
namespace.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1012

This field... Specifies...

 ##local specific Specifies that the matching
aribute must belong to a
namespace

 ##targetNamespace specific Specifies that the matching
aribute must be from the
namespace listed in the URIs
field.

 ##other not Specifies that the matching
aribute must be from a
namespace other than the
namespaces listed in the URIs
field.

 "URI1 URI2 " specific Specifies that the matching
aribute must be from one of
the namespaces listed in the
URIs field.

URIs The namespaces to which the matching aribute can or cannot belong.
The namespace aribute value in the <anyAttribute> declaration
determines the value of URIs. See the following.

 Namespace value URIs

 any blank. If the namespace aribute does not
appear in the aribute declaration, ##any is
used.

 ##local "unqualified"

 ##other target namespace and "unqualified"

 ##targetNamespace target namespace

 "URI1 URI2 " Specified by the namespace aribute in the
<anyAttribute> declaration.

Any Element Declaration

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1013

An any element declaration in XML Schema is a wildcard declaration used as a
placeholder for one or more undeclared elements in an instance document. The element
that corresponds to the wildcard declaration in the instance document is called the
matching element. In a DTD, an element declared to be of type ANY can contain any
well-formed XML. This symbol corresponds to an <any> element declaration in an XML
Schema and an element declared to be of type ANY in a DTD.

Because an <any> element declaration does not have a name, the schema uses 'Any' as
the name of the element.

This field... Specifies...

Min Occurs The minimum number of occurrences for the matching element in the
instance document.

Max
Occurs

The maximum number of occurrences for the matching element in the
instance document.

Process
Contents

The validation constraints placed on the matching element in the
instance document. The value of Process Contents equals the value of
the processContents aribute in the <any> declaration. This field can
have one of the following values:

strict specifies that Integration Server must validate the matching
element against a global declaration in a schema belonging to one of
the allowed namespaces. If Integration Server cannot find one of the
XML components, it generates a validation error. The Process Contents
value is strict when the processContents aribute is absent or is set
to "strict" in the <any> declaration. This is the default value.

skip specifies that the matching element must be well-formed XML.
Integration Server does not need to make sure the matching element
is schema-valid. The Process Contents value equals skip when
processContents="skip" in the <any> declaration.

lax specifies that when Integration Server encounters the matching
element in the instance document, it should (if possible) validate
the matching element against the corresponding global declaration
in a schema from an allowed namespace. However, if Integration
Server cannot find the schema in the namespace, no error occurs. The
Process Contents value equals lax when processContents="lax" in
the <any> declaration.

Qualifier Whether the matching element can or cannot be from one of the
namespaces listed in the URIs field.

The namespace aribute value in the <any> declaration determines the
value of Qualifier. See the following.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1014

This field... Specifies...

 Namespace value Qualifier value Description

 ##any any Specifies that the matching
element can be from any
namespace.

 ##local specific Specifies that the matching
element must belong to a
namespace.

 ##other not Specifies that the matching
element must be from a
namespace other than the
namespaces listed in the
URIs field.

 ##targetNamespace specific Specifies that the matching
element must be from the
namespace listed in the
URIs field

 "URI1 URI2 " specific Specifies that the matching
element must be from one
of the namespaces listed in
the URIs field.

URIs The namespaces to which the matching element can or cannot belong.
The namespace aribute value in the <any> declaration determines the
value of URIs. See the following.

 Namespace value URIs

 any blank. If the namespace aribute does not
appear in the <any> declaration, ##any is
used.

 ##local "unqualified"

 ##other target namespace and "unqualified"

 ##targetNamespace target namespace

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1015

This field... Specifies...

 "URI1 URI2 " Specified by the namespace aribute in the
<any> declaration.

Attribute Declaration

An aribute declaration associates an aribute name with a simple type definition. This
symbol corresponds to the XML Schema <attribute> declaration or the aribute in a
DTD ATTLIST declaration.

An aribute declaration can specify a default value, a fixed value, and whether
the appearance of the aribute in the instance document is required. Like element
declarations, aribute declarations can be global or local.

This field... Specifies...

Name The local name and target namespace of the aribute declaration.
The Name value is equal to the expanded value (prefix plus local
name) of the name aribute in the aribute declaration.

Default The default value for the aribute in an instance document. The
Default value is equal to the value of the default aribute in the
aribute declaration. During data validation, Integration Server
supplies the instance document with an aribute whose value
equals that of Default if:

The element to which the aribute is assigned appears in the
instance document, and

The aribute itself does not appear.

If the element to which the aribute declaration is assigned does
not appear in the instance document, Integration Server does not
augment the instance document.

Note: During data validation, Integration Server applies the Default
value for an aribute declaration differently than the Default
value for an element declaration. For aributes, Integration
Server supplies the instance document with an aribute
with the Default value when the aribute does not appear
in the instance document. For elements, Integration Server
supplies the instance document with an element equal to
the Default value only if the element appears in the instance
document, but has no content.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1016

This field... Specifies...

Fixed Value The fixed value for the aribute. The Fixed Value is equal to the
value of the fixed aribute in the aribute declaration. If this
aribute appears in an instance document, the aribute value
must equal the Fixed Value. During data validation, Integration
Server supplies the instance document with an aribute whose
value equals Fixed Value if:

The element to which the aribute is assigned appears in the
instance document, and

The aribute itself does not appear in the instance document.

Is Required Whether or not the aribute must appear in an instance
document. Is Required is determined by the value of the use
aribute in the aribute declaration. This field only appears when
you select a local aribute declaration or an aribute reference.
The Is Required field can have one of the following values:

True specifies that the aribute is required and must appear in
the instance document. When the value of Is Required is True, the
aribute declaration contains use="required".

False specifies that the appearance of the aribute in the instance
document is optional; that is, the aribute is not required.
When the value of Is Required is False, the aribute declaration
or use=“optional” or the use aribute is absent from the
declaration.

If an aribute declaration in an XML Schema contains
use=”prohibited”, the aribute declaration does not appear in
the schema browser. Integration Server does not retain aribute
declarations whose use is prohibited.

Simple Type The name and namespace of the simple type definition associated
with the aribute. See "Simple Type Definition" on page 1025.

Attribute Reference

An aribute reference is a reference from a complex type definition to a globally
declared aribute. This symbol corresponds to the ref=”globalAttributeName”
aribute in an aribute declaration. DTDs do not have aribute references.
Consequently, aribute references do not appear in schemas generated from DTDs.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1017

This field... Specifies...

Name The local name and target namespace of the aribute declaration
for this aribute reference. The Name value is equal to the
expanded value (prefix plus local name) of the name aribute in
the aribute declaration.

Default The default value for the referenced aribute in an instance
document. The Default value is equal to the value of the default
aribute in the aribute declaration. During data validation,
Integration Server supplies the instance document with an
aribute whose value equals that of Default if:

The element to which the aribute is assigned appears in the
instance document, and

The aribute itself does not appear.

If the element to which the aribute declaration is assigned does
not appear in the instance document, Integration Server does not
augment the instance document.

Note: During data validation, Integration Server applies the Default
value for an aribute declaration differently than the Default
value for an element declaration. For aributes, Integration
Server supplies the instance document with an aribute
with the Default value when the aribute does not appear
in the instance document. For elements, Integration Server
supplies the instance document with an element equal to
the Default value only if the element appears in the instance
document, but has no content.

Fixed Value The fixed value for the referenced aribute. The Fixed Value is
equal to the value of the fixed aribute in the aribute declaration.
If this aribute appears in an instance document, the aribute
value must equal the Fixed Value. During data validation,
Integration Server supplies the instance document with an
aribute whose value equals Fixed Value if:

The element to which the aribute is assigned appears in the
instance document, and

The aribute itself does not appear in the instance document.

Is Required Whether or not the referenced aribute must appear in an
instance document. Is Required is determined by the value of the
use aribute in the aribute declaration. This field only appears
when you select a local aribute declaration or an aribute

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1018

This field... Specifies...
reference. The Is Required field can have one of the following
values:

True specifies that the aribute is required and must appear in
the instance document. When the value of Is Required is True, the
aribute declaration contains use="required".

False specifies that the appearance of the aribute in the instance
document is optional; that is, the aribute is not required.
When the value of Is Required is False, the aribute declaration
or use=“optional” or the use aribute is absent from the
declaration.

If an aribute declaration in an XML Schema contains
use=”prohibited”, the aribute declaration does not appear in
the schema browser. Integration Server does not retain aribute
declarations whose use is prohibited.

Simple Type The name and namespace of the simple type definition associated
with the referenced aribute. See "Simple Type Definition" on
page 1025.

Choice Content Model

A choice content model specifies that only one of the child elements in the content
model can appear in the instance document. This symbol corresponds to the <choice>
compositor in an XML Schema definition or a choice list in a DTD element type
declaration.

If one of the child elements does not appear or more than one child element appears,
the instance document is not schema-valid. (An exception to this is when the minOccurs
aribute for the <choice> element is set to 0. If minOccurs=0, Integration Server does
not generate a validation error if no child element appears.)

This field... Specifies...

Min Occurs The minimum number of occurrences of the content model for an
element in the instance document. The value of Min Occurs is equal
to the value of the minOccurs aribute in the <choice> content
model

Max Occurs The maximum number of occurrences of the content model for
an element in the instance document. The value of Max Occurs is

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1019

This field... Specifies...
equal to the value of the maxOccurs aribute in the <choice>
content model.

Summary of
Children

The name and occurrence constraints for the child elements in the
content model.

Name. The name of the child element.

Min,Max. The minimum and maximum occurrence constraints
for the child element. The Min and Max values correspond to the
minOccurs and maxOccurs aributes (respectively) in the local
element declaration.

Complex Type Definition

A complex type definition defines the structure and content for elements of complex
type. (Elements of complex type can contain child elements and carry aributes.) This
symbol corresponds to the <complexType> element in an XML Schema definition.

If the complex type definition is unnamed (an anonymous type), the Schema Browser
displays 'Anonymous' as the name of the complex type definition.

This field... Specifies...

Name The local name and target namespace of the complex type. The
Name value is equal to the expanded value (prefix plus local name)
of the name aribute in the type definition.

If the Schema Browser displays 'Anonymous' as the name of the
simple type, the complex type is an anonymous (unnamed) type
defined in an element declaration.

Is Abstract Whether the complex type definition is abstract. The value of Is
Abstract corresponds to the abstract aribute in the complex
type definition. The Is Abstract field can have one of the following
values:

True indicates the complex type is abstract. When an element
corresponds to an abstract complex type definition, the element
in the instance document must contain xsi:type to refer to a
complex type derived from the abstract type. When the value
of Is Abstract is True, the complex type definition contains
abstract="true".

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1020

This field... Specifies...

False indicates the complex type definition is not abstract. When
the value of Is Abstract is False, the abstract aribute is absent
from the complex type definition or abstract="false".

Note: If the complex type was created from a simple type, then the Schema Browser
also displays the fields for the simple type. For details, see "Simple Type
Definition" on page 1025.

Element Declaration

An element declaration associates an element name with a type definition. This symbol
corresponds to the <element> declaration in an XML Schema and the ELEMENT
declaration in a DTD.

An element declaration can contain aributes to specify a default value, a fixed value,
and whether the element is abstract or nillable. If an element declaration is part of a
content specification, the element declaration can contain aributes to specify occurrence
constraints.

This field... Specifies...

Name The local name of the element followed by the namespace to
which the element belongs. The Name value is equal to the
expanded value (prefix plus local name) of the name aribute in
the element declaration.

Default The default value for the element. The Default value is equal to the
value of the default aribute in the element declaration.

During data validation, if the element appears in an instance
document but contains no content, Integration Server supplies the
element with the Default value. If the element does not appear in
the instance document, Integration Server does not augment the
instance document.

Fixed Value The fixed value for the element. The Fixed Value is equal to the
value of the fixed aribute in the element declaration. When
Integration Server validates an instance document against the
schema, if the element appears, its value must be equal to the
Fixed Value.

During data validation, if the element appears in an instance
document but contains no content, Integration Server supplies

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1021

This field... Specifies...
the element with the Fixed Value. If the element does not appear in
the instance document, Integration Server does not augment the
instance document.

Is Nillable Whether the element can have no content in the instance
document. The Is Nillable value is equal to the value of the
nillable aribute in the element declaration. The Is Nillable field
can have the following values:

True indicates that the nil aribute for this element in the
instance document can be set to true. (When nil="true",
the element has a null value.) When the value of Is Nillable is
True, the element declaration in the XML Schema contains
nillable="true".

False indicates that the nil aribute for the element in an
instance document cannot be set to true; that is, the element must
contain content. When the value of Is Nillable is False, the element
declaration contains nillable="false" or the nillable aribute
is absent. This is the default value.

Is Abstract Whether the element is abstract. The Is Abstract value is equal to
the value of the abstract aribute in the element declaration. The
Is Abstract field can have the following values:

True indicates the element is abstract. Abstract element
declarations cannot appear in instance documents. Instead, an
element in the abstract element’s substitution group must appear
in the instance document. When Is Abstract is True, the element
declaration contains abstract="true".

False indicates the element is not abstract. When the value
of Is Abstract is False, the element declaration contains
abstract="false" or the abstract aribute is absent. This is
the default value.

Complex Type The name and namespace of the complex type assigned to the
element. This field appears only if the element is defined to be
of complex type. If the element is defined to be of anonymous
complex type, this field displays 'Anonymous' as the name of the
complex type.

In the Schema Browser, the complex type definition assigned to an
element appears as an immediate child of the element.

Simple Type The name and namespace of the simple type assigned to the
element. This field appears only if the element is defined to be of
simple type. If the element is defined to be of anonymous simple

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1022

This field... Specifies...
type, this field displays 'Anonymous' as the name of the simple
type.

In the Schema Browser, the simple type definition assigned to an
element appears as an immediate child of the element.

Min Occurs The minimum number of times this element must appear. The Min
Occurs value is equal to the value of the minOccurs aribute in the
local element declaration. If the local element declaration does not
specify minOccurs, Designer uses a default value of 1.

This field appears only when you select a local element
declaration; that is, an element declaration in a complex type
definition.

Max Occurs The maximum number of times this element may appear. The Max
Occurs value is equal to the value of the maxOccurs aribute in the
local element declaration. If the local element declaration does not
specify maxOccurs, Designer uses a default value of 1.

This field appears only when you select a local element
declaration; that is, an element declaration in a complex type
definition.

Element Reference

An element reference is a reference from an element declaration in a content
specification to a globally declared element. In a schema generated from an XML
Schema, this symbol corresponds to the ref=”globalElementName” aribute in an
<element> declaration. In a schema generated from a DTD, this symbol appears next
to an element that is a child of another element; that is, the parent element has only
element content

This field... Specifies...

Name The local name of the referenced element followed by the
namespace to which the referenced element belongs. The Name
value is equal to the expanded value (prefix plus local name) of
the name aribute in the element declaration.

Default The default value for the referenced element. The Default value
is equal to the value of the default aribute in the referenced
element declaration.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1023

This field... Specifies...

During data validation, if the element appears in an instance
document but contains no content, Integration Server supplies the
element with the Default value. If the element does not appear in
the instance document, Integration Server does not augment the
instance document.

Fixed Value The fixed value for the referenced element. The Fixed Value is equal
to the value of the fixed aribute in the element declaration.
When Integration Server validates an instance document against
the schema, if the element appears, its value must be equal to the
Fixed Value.

During data validation, if the element appears in an instance
document but contains no content, Integration Server supplies
the element with the Fixed Value. If the element does not appear in
the instance document, Integration Server does not augment the
instance document.

Is Nillable Whether the referenced element can have no content in the
instance document. The Is Nillable value is equal to the value of the
nillable aribute in the element declaration. The Is Nillable field
can have the following values:

True indicates that the nil aribute for this element in the
instance document can be set to true. (When nil="true",
the element has a null value.) When the value of Is Nillable is
True, the element declaration in the XML Schema contains
nillable="true".

False indicates that the nil aribute for the element in an
instance document cannot be set to true; that is, the element must
contain content. When the value of Is Nillable is False, the element
declaration contains nillable="false" or the nillable aribute
is absent. This is the default value.

Is Abstract Whether the referenced element is abstract. The Is Abstract value
is equal to the value of the abstract aribute in the element
declaration. The Is Abstract field can have the following values:

True indicates the referenced element is abstract. Abstract
element declarations cannot appear in instance documents.
Instead, an element in the abstract element’s substitution group
must appear in the instance document. When Is Abstract is True,
the element declaration contains abstract="true".

False indicates the referenced element is not abstract. When the
value of Is Abstract is False, the element declaration contains

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1024

This field... Specifies...
abstract="false" or the abstract aribute is absent. This is
the default value.

Complex Type The name and namespace of the complex type assigned to the
referenced element. This field appears only if the element is
defined to be of complex type. If the element is defined to be of
anonymous complex type, this field displays 'Anonymous' as the
name of the complex type.

In the Schema Browser, the complex type definition assigned to an
element appears as an immediate child of the element.

Simple Type The name and namespace of the simple type assigned to the
referenced element. This field appears only if the element is
defined to be of simple type. If the element is defined to be of
anonymous simple type, this field displays 'Anonymous' as the
name of the simple type.

In the Schema Browser, the simple type definition assigned to an
element appears as an immediate child of the element.

Min Occurs The minimum number of times this element must appear. The Min
Occurs value is equal to the value of the minOccurs aribute in the
local element declaration. If the local element declaration does not
specify minOccurs, Designer uses a default value of 1.

This field appears only when you select a local element
declaration; that is, an element declaration in a complex type
definition.

Max Occurs The maximum number of times this element may appear. The Max
Occurs value is equal to the value of the maxOccurs aribute in the
local element declaration. If the local element declaration does not
specify maxOccurs, Designer uses a default value of 1.

This field appears only when you select a local element
declaration; that is, an element declaration in a complex type
definition.

Empty Content

Empty content occurs in XML Schema definition when an element's associated complex
type definition does not contain any element declarations. An element with empty

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1025

content may still carry aributes. In a DTD, an element has empty content when it is
declared to be of type EMPTY.

Mixed Content Model

A mixed content model allows character data to be interspersed with child elements.
This symbol corresponds to the mixed=”true” aribute in a complex type definition in
an XML Schema definition or a DTD element list in which the first item is #PCDATA.

Sequence Content Model

A sequence content model specifies that the child elements in the instance document
must appear in the same order in which they are declared in the content model. This
symbol corresponds to the <sequence> compositor in an XML Schema definition or a
sequence list in an element type declaration in a DTD.

This field... Specifies...

Min Occurs The minimum number of occurrences of the content model for an
element in the instance document. The value of Min Occurs is equal
to the value of the minOccurs aribute in the <sequence> content
model

Max Occurs The maximum number of occurrences of the content model for
an element in the instance document. The value of Max Occurs is
equal to the value of the maxOccurs aribute in the <sequence>
content model.

Summary of
Children

The name and occurrence constraints for the child elements in the
content model.

Name. The name of the child element.

Min,Max. The minimum and maximum occurrence constraints
for the child element. The Min and Max values correspond to the
minOccurs and maxOccurs aributes (respectively) in the local
element declaration.

Simple Type Definition

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1026

A simple type definition specifies the data type for an element that contains only
character data or for an aribute. Unlike complex type definitions, simple type
definitions cannot carry aributes. This symbol corresponds to the <simpleType>
element in an XML Schema definition.

If the simple type definition is unnamed (an anonymous type), the Schema Browser
displays 'Anonymous' as the name of the complex type definition.

This field... Specifies...

Base
Constraints

The constraining facet values set in the type definitions from
which a simple type was derived. Base constraints are the
constraining facet values from the primitive type to the immediate
parent type. These constraint values represent the cumulative
facet values for the simple type.

Simple
Type:Name

The local name and target namespace of the simple type. The
Name value is equal to the expanded value (prefix plus local name)
of the name aribute in the type definition. If the Schema Browser
displays 'Anonymous' as the name of the simple type, the simple
type is an anonymous (unnamed) type defined in an element or
aribute declaration.

Primitive Type The primitive datatype from which the simple type is derived.

constraining
facet fields

The constraining facets applied to a simple type definition. This
includes fields for values such as enumeration, length, minlength,
maxlength, whitespace, and paern. Which constraining facets
are displayed depends on the primitive type of the simple type
definition. A constraining facet field contains a value only if
the simple type definition specified a value for the facet. The
constraining facets fields do not display facet values set in the type
definition from which the simple type was derived.

For more information about constraining facets, see the W3C
specification XML Schema Part 2: Datatypes.

Service Properties
To view properties for a service, double-click the service in the Package Navigator of
Designer. In the Properties view, you can configure the Runtime, Transient Error Handling,
Universal Name, Audit, and Output Template properties for the service.

Note: A web service connector also uses the Universal Name, Audit, and Output
Template categories of the Properties view, but does not use the Retry on

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1027

ISRuntimeException properties. A web service connector uses all the properties
in the Run time category with the exception of the Default xmlFormat property.

To edit the properties for a service, you must have Write access to it and own the lock.

General Properties for Services
In the Properties view, under General, you can assign an ACL to a service.

Note: General properties for services do not apply to OData services. For more
information about the general properties for OData services, see "General
Properties for OData Services" on page 1000.

Property Description

Permissions Click to assign or view ACL permissions to a service.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Source URI Displays the location or URI of the source used to create this flow
service. A flow service can be created from sources such as XML
documents, XML Schema definitions, and WSDL documents. If
this flow service was created as an empty flow service and was not
based on a source, the Source URI property is empty.

Run Time Properties for Services
In the Properties view, under Run time, you can specify the following service properties:

State of a service. You can indicate whether or not you want the server to treat it as a
“stateless” service at run time

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1028

Caching of service results. You can cache elements to reduce memory usage in
Integration Server.

Execution locale of a service. You can set the type of locale in which the Integration
Server executes at run time.

Creating a URL alias for a service. You can create an alias for the path portion of the URL
used to invoke a service.

Saving and restoring of the pipeline. You can save the pipeline or restore a previously
saved pipeline at run time.

XML format for the service input. If the service receives an XML document, you can
specify the format that Integration Server uses for the document when it passes the
document to the service.

Important: The Run time properties in the Properties view should only be set by someone
who is thoroughly familiar with the structure and operation of the selected
service. Improper use of these options can lead to a service failure at run
time and/or the return of invalid data to the client program.

Property Description

Stateless Specifies whether or not Integration Server is required to maintain
state information for this service for the duration of the client
session. Select True if the service is a self-contained, atomic unit of
work and does not need access to state information. This reduces
the number of server resources it consumes at run time. Select
False if the service is part of a multi-service transaction or if you
are unsure of its state requirements.

The default is False.

Cache results Indicates whether Integration Server stores the service results
in a local cache for the time period specified in the Cache expire
property. After the service executes, the server places the entire
pipeline contents into a local cache. When subsequent requests for
the service provide the same set of input values, the server returns
the cached results instead of invoking the service again. Select True
to cache the service results. Select False if you do not want to cache
service results. Cache results for stateless services only.

The default is False.

Note: Caching is only available for data that can be wrien to the
repository. Because XML nodes cannot be wrien to the
repository, they cannot be cached.

Note: This property relates specifically to the caching of service
results described in "About Service Caching" on page 171.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1029

Property Description
This property does not affect caching that is performed by
the services in the pub.cache folder.

Cache expire Specifies the amount of time that the pipeline contents stay in
memory after they are cached. If you enable the Cache results
property, type an integer in this field representing the number of
minutes you want a result to remain cached. The expiration timer
begins when the server initially caches the results. The server does
not restart the expiration timer each time it retrieves the results
from cache. The minimum cache expiration time is one minute.

Note: This property relates specifically to the caching of service
results described in "About Service Caching" on page 171.
This property does not affect caching that is performed by
the services in the pub.cache folder.

Reset cache Click Reset to clear the cached results for this service.

Note: This property relates specifically to the caching of service
results described in "About Service Caching" on page 171.
This property does not affect caching that is performed by
the services in the pub.cache folder.

Prefetch Determines whether Integration Server automatically refreshes a
cached result when it expires by re-executing the service using the
same inputs. To automatically refresh this service's cached results,
set Prefetch to True. (Prefetch can consume a substantial amount of
server memory; consult your Server Administrator before using
this option.)

The cache may not be refreshed at the exact time specified in Cache
expire. It may vary from 0 to 15 seconds, according to the cache
sweeper thread. For details, see the wa.server.cache.flushMins
seing in Integration Server.

Note: This property relates specifically to the caching of service
results described in "About Service Caching" on page 171.
This property does not affect caching that is performed by
the services in the pub.cache folder.

Prefetch
activation

Specifies the minimum number of times that a cached result must
be accessed (hit) with the same inputs in order for the server to
prefetch results when it expires. If you enable Prefetch, you must
specify an integer representing the minimum number of hits a
cached result must receive to be eligible for prefetch. (Entries

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1030

Property Description
that do not receive the minimum number hits are released from
memory.)

Note: The cache may not be refreshed at the exact time the last
hit fulfills the Prefetch Activation requirement. It may vary
from 0 to 15 seconds, according to the cache sweeper thread.
For details, see the wa.server.cache.flushMins seing in
Integration Server.

Note: This property relates specifically to the caching of service
results described in "About Service Caching" on page 171.
This property does not affect caching that is performed by
the services in the pub.cache folder.

Execution
locale

Specifies the locale in which this service will be executed.

HTTP URL
Alias

Specifies an alias for the path portion of the URL used to invoke
a service. The path portion of the URL consists of the invoke
directive and the fully qualified service name.

Pipeline debug Determines whether Integration Server automatically saves or
restores the pipeline after the service executes. This option is useful
for testing and debugging the service.

 Select... To...

 None Run the service without saving or restoring the
pipeline. This is the default.

 Save Save the entire pipeline contents to a file when the
service executes.

 Restore
(Override)

To restore the pipeline from a file when the service
executes.

 Restore
(Merge)

To merge the pipeline with one from a file when the
service executes.

When this option is selected and the input parameters
in the file match the input parameters in the pipeline,
the values defined in the file are used in the pipeline.
If there are input parameters in the pipeline that are
not matched in the file, the input parameters in the
pipeline remain in the pipeline.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1031

Property Description

 Note: The options you select can be overwrien at run time by the
value of the wa.server.pipeline.processor property, set in
the server configuration file. This property specifies whether
to globally enable or disable the Pipeline debug feature. The
default enables the Pipeline debug feature on a service-by-
service basis. For more information on seing properties in
the server configuration file, see webMethods Integration Server
Administrator’s Guide.

 Note: When using MTOM streaming for SOAP aachments,
messageContext variables and/or XOPObject fields will not be
available in the saved pipeline. A messageContext variable is
used by many pub.soap services to hold the SOAP message
on which the service acts. XOPObject fields are Objects that
use the com.wm.util.XOPObject Java wrapper type. For more
information about MTOM Streaming, see the Web Services
Developer’s Guide.

Default
xmlFormat

The default XML format for XML documents received by the
service.

Note: You can specify the default XML format for flow services
and Java services only. The Default xmlFormat property is not
available for C/C++ services, .NET services, or web service
connectors.

 Select... To...

 <blank> Specify that Integration Server obtains the default
XML format from the wa.server.hp.xmlFormat
server configuration parameter. This is the default.

For more information about the
wa.server.hp.xmlFormat server configuration
parameter, see webMethods Integration Server
Administrator’s Guide.

 bytes Specify that Integration Server uses a byte array as
the default XML format. Integration Server passes
the XML document directly to the service as a byte
array without parsing the XML. Integration Server
places the byte array in the input pipeline of the target
service in a variable named xmlBytes .

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1032

Property Description

 enhanced Specify that Integration Server uses a node parsed by
the enhanced XML parser as the default XML format.
Integration Server parses the XML automatically
using the enhanced XML parser. Integration Server
uses the default options specified for enhanced XML
parsing on the Settings > Enhanced XML Parsing page in
Integration Server Administrator. Integration Server
passes the XML document to the target service as a
node that implements the w3c.com.Node interface.
Integration Server places the node in the input
pipeline of the target service in a variable named node .

Note: Integration Server writes the XML document
to a cache during parsing only if caching is
configured for enhanced XML parsing. Integration
Server uses BigMemory while parsing only
if caching is configured and BigMemory is
enabled for use with enhanced XML parsing.
For more information about configuring a cache
andBigMemory for XML parsing, see webMethods
Integration Server Administrator’s Guide.

 node Specify that Integration Server uses a node parsed by
the legacy XML parser as the default XML format.
Integration Server parses the XML automatically using
the legacy parser and passes it to the target service as
a node. Integration Server places the node in the input
pipeline of the target service in a variable named node

 stream Specify that Integration Server uses an InputStream
as the default XML format. Integration Server passes
the XML document directly to the service as an XML
stream without parsing the XML. Integration Server
places the XML stream in the input pipeline of the
target service as an InputStream named xmlStream .

Transient Error Handling Properties
When building a service, you can specify what action Integration Server takes when the
service fails because of a transient error caused by a run-time exception. That is, you can
specify whether or not Integration Server should retry the service.

In the Properties view, under Transient error handling, you specify whether or not
Integration Server should retry the service.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1033

Property Description

Max retry
attempts

Specifies the number of times Integration Server should aempt
to re-execute the service when the service fails because of an
ISRuntimeException. An ISRuntimeException occurs when the
service catches a transient error, wraps the error, and re-throws
it as an exception. (A transient error is an error that arises from a
condition that might be resolved quickly, such as the unavailability
of a resource due to network issues or failure to connect to a
database.)

The default is 0, which indicates that Integration Server does not
aempt to re-execute the service.

Retry interval Specifies the number of milliseconds that Integration Server
should wait between retry aempts. The default is 0 milliseconds,
which indicates that Integration Server re-executes the service
immediately

Note: Integration Server enforces a maximum retry period when
you configure service retry properties. The maximum retry
period indicates the total amount of time that can elapse if
the Integration Server makes the maximum retry aempts.
By default, the maximum retry period is 15,000 milliseconds
(15 seconds). When you configure service retry, Integration
Server verifies that the retry period for that service will
not exceed the maximum retry period. Integration Server
determines the retry period for the service by multiplying the
maximum retry aempts by the retry interval. If this value
exceeds the maximum retry period, Designer displays an
error indicating that either the maximum aempts or the
retry interval needs to be modified.

Audit Properties
In the Properties view, under Audit, you enable auditing and specify when a service
should generate audit data.

Property Description

Enable auditing Specifies when the service generates audit data

 Select... To...

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1034

Property Description

 Never Indicate that the service should never generate
audit data. Select this option if you do not want
to be able to audit this service.

 When top-level
service only

Indicate that the service should generate audit
data only when it is invoked by a client request
or a trigger. The service does not generate audit
data when it is invoked by another service (that
is, when it is a nested service).

 Always Indicate that the service should generate audit
data every time it executes. Select this option if
the service is a critical service that you want to be
able to audit every time it executes.

Log on Specifies the execution points at which the service generates audit
data.

 Select... To...

 Error only Indicate that the service should generate audit
data only when the service fails. If the service
executes successfully, it will not generate audit
data.

Performance Impact: This option impacts
performance only when the service fails. When
a service executes successfully, this option does
not impact performance. This option offers the
smallest performance impact of all the options
under Log on.

 Error and
success

Indicate that the service should generate audit
data when the service finishes executing. The
service will generate audit data regardless of
whether it ends because of success or failure. The
service log will contain an entry for every time
the service finishes processing.

Performance Impact: This option impacts
performance every time the service executes,
whether it ends because of error or success. If
you are concerned only with services that fail,
consider using the Error only option instead.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1035

Property Description

 Error, success,
and start

Indicate that the service should generate audit
data when it begins executing and when it
finishes executing. The service will generate audit
data twice every time it executes (once when
it begins processing and once when it finishes
processing).

Generally, most services execute fairly quickly.
By the time an administrator views the service
log using webMethods Monitor, the service log
would probably contain entries for the start and
end of service execution. Situations where you
might want the service to generate audit data at
the start and end of service execution include:

To check for the start of long-running services

To detect service hangs.

In both situations, if service execution began but
did not complete, the service log contains an
entry for the start of the service, but no entry for
the end of the service.

Performance Impact: Of all the options under Log
on, this option provides the most verbose and
expensive type of audit logging. Every time it
executes, the service generates audit data at two
points: the beginning and the end. Integration
Server must write the audit data to the service
log twice per service execution. This requires
significantly more disk utilization than the Error
only and Error and success options. At most, the
Error only and Error and success options require
Integration Server to write audit data once per
service execution.

Include pipeline Specifies when Integration Server should include a copy of the
input pipeline in the service log.

 Select... To...

 Never Indicate that the input pipeline should never be
included in the service log. Select this option if
you are using a flat file for the service log or if
you do not want to be able to resubmit the service
to Integration Server.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1036

Property Description

Performance Impact: This option requires minimal
network bandwidth because Integration Server
needs to send only the audit data generated by
the service to the service log.

 On errors only Indicate that the input pipeline should be
included in the service log only when the
service ends because of errors. Select this
option if you want to use the resubmission
capabilities of webMethods Monitor to reinvoke
a failed service. For more information about
webMethods Monitor, see the webMethods
Monitor documentation.

Performance Impact: For successful service
invocations, the On errors only option requires
minimal network bandwidth. Service invocations
that end in failure require more network
bandwidth because the Integration Server must
save the audit data and the input pipeline. The
actual network bandwidth needed depends
on the size of the initial input pipeline. A large
pipeline can degrade performance because it may
negatively impact the rate at which the data is
saved to the service log.

 Always Indicate that Integration Server saves a copy of
the input pipeline to the service log every time
the service generates audit data. If the service
generates data at the start and end of execution
(Log on is set to Error, success, and start), the input
pipeline is saved with the service log entry for
the start of service execution. If a service does not
generate audit data, Integration Server does not
include a copy of the input pipeline.

Select the Always option if you want to be able
to use the resubmission capabilities of the
webMethods Monitor to reinvoke the service,
regardless of whether the original service
invocation succeeded or failed. Including the
pipeline can be useful if a resource experiences a
fatal failure (such as hard disk failure). To restore
the resource to its pre-failure state, you could
resubmit all the service invocations that occurred

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1037

Property Description
since the last time the resource was backed up.
This is sometimes called a full audit for recovery.

Performance Impact: The Always option is the most
expensive option under Include pipeline. This
option places the greatest demand on network
bandwidth because Integration Server must write
a copy of the input pipeline to the service log
every time a service executes. The actual network
bandwidth needed depends on the size of the
initial input pipeline. A large input pipeline can
negatively impact the rate at which the data is
saved to the service log.

 Note: If you want audit events generated by this service to pass a
copy of the input pipeline to any subscribed event handlers,
select On errors only or Always.

Important: The options you select can be overwrien at run time by the value of the
wa.server.auditLog server property, set in the server configuration file. This
property specifies whether to globally enable or disable service logging. The
default enables customized logging on a service-by-service basis.

Universal Name Properties for Services
You can specify a unique public identifier that external protocols (such as SOAP) use
to reference a service on an Integration Server. Every service on an Integration Server
has an explicit universal name in addition to its regular implicit webMethods name. If
you omit or delete a service's explicit universal name, it still retains its implicit universal
name.

In the Properties view, under Universal Name, you assign a universal name to a service.

A universal name has two parts: a namespace name and a local name.

Property Description

Namespace
name

Specifies the name used to qualify the local name of this service.
The namespace name you specify must be a valid absolute URI
(relative URIs are not supported).

Local name Specifies a name that uniquely identifies this service within the
collection encompassed by Namespace name. The name can be
composed of any combination of leers, digits, or the period (.),

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1038

Property Description
dash (-), or underscore (_) characters. The name must begin with a
leer or the underscore character.

Note: Most webMethods users use the unqualified portion of the
service name as the local name.

Output Template Properties for Services
In the Properties view, under Output template, you can assign an output template to a
service.

Property Description

Name Specifies the name of the file that contains the output template for
the selected service. To assign an existing template to this service,
type the name of the template file in this field. To create a new
template file for this service, type a name for the template in this
field.

Template
source

Opens the Template source page so that you can edit the existing
output template.

Note: Changes you make to an output template are wrien to the
template file when you click Save in the Template source
page. Changes that you make to a template file affect all the
services in the package that use the template, not just the
service that is currently open in the editor.

Specification Properties
In the Properties view, you can set the properties for a specification. To view the
properties for a specification, double-click the specification in Package Navigator view.

To edit the properties for a specification, you must have Write access to it and own the
lock.

General Properties for Specifications
In the Properties view, under General, you can assign list or write ACL privileges to a
specification.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1039

Property Description

Permissions Click to assign or view ACL permissions to a specification.

Reuse Specifies whether this specification can be dragged from the
CentraSite Registry Explorer view to a BPM process or CAF
project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Transformer Properties
In the Properties view, you can set the properties for a transformer inserted into a MAP
step.

To view properties for a transformer, double-click the transformer in the Pipeline view
of Designer.

General Properties for Transformers
In the Properties view, under General, you can view and configure the service and
validations properties for a transformer.

Property Description

Service Specifies the fully qualified name of the service that is invoked at
run time. When you insert a transformer, Designer automatically
assigns the name of that service to the Service property.

If the service that a transformer invokes is moved, renamed,
or deleted, you must change the Service property. Specify the
service’s fully qualified name in the folderName :serviceName format
or click to select a service from a list.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1040

Property Description

Validate input Specifies whether or not Integration Server validates the input to
the transformer against the input signature of the service. Select
True if you want to validate the input of the service. Select False if
you do not want to validate the input of the service.

Validate output Specifies whether or not Integration Server validates the output of
the transformer against the output signature of the service. Select
True if you want to validate the output of the service. Select False if
you do not want to validate the output of the service.

Variable Properties
You can specify the data type and input values for a variable. You can also apply content
constraints and structural constraints to a variable for validation purposes. A variable
can be a String, String list, String table, document, document list, document reference,
document reference list, Object, or Object list.

In the Properties view, select a variable in the editor to set general properties and
constraints for the variable.

Note: Specific properties in the Properties view are enabled or disabled, depending
on the type of variable you have selected.

General Properties for Variables
In the Properties view, under General, you can change the data type for a variable. You
can also associate the variable with an XML namespace and specify input values and an
input method.

Property Description

Name Specifies the name of the variable. To change the name of a
variable, rename it in the editor.

Type Specifies the data type of the variable.

XML
namespace

Specifies the XML namespace to which the variable belongs.

Comments Specifies a comment about the variable.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1041

Property Description

Model type Specifies the content model for a document or document list
variable. The content model provides a formal description of the
structure and allowed content for a document.

The Model type property is display-only. To change the model
type for a document or document list, modify the corresponding
complex type definition in the XML schema definition, and
recreate the document type that contains this document or
document list.

The contents of a document or document list variable with a Model
type property value other than “Unordered” cannot be modified.

The Model type property can have one of the following values:

 Value... Description...

 All At run time, all of the fields in the document must
appear once or not at all, and in any order.

The all model type corresponds to an complex type
definition that contains an all compositor in the model
group.

 Choice One and only one of the fields in the document can
appear.

The choice model type corresponds to an complex
type definition that contains a choice compositor in the
model group.

 Sequence Fields in the instance document must appear in
the same order in which they are declared in the
document type.

The sequence model type corresponds to an complex
type definition that contains a sequence compositor in
the model group.

 Simple At run time, the document contains a single field that
contains simple content and carries an aribute. The
document field contains a @aributeName field for the
aribute value and a *body field for the simple content.

 Unordered At run time, fields in the document can appear in any
order and any number of times.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1042

Property Description

Note: An unordered data structure is sometimes
referred to as a “bag” data structure.

String display
type

Specifies how you want to enter input data for this variable. You
can only select a display type if the variable is a String. Select one
of the following:

 Select... To...

 Text
Field

Enter the input in a text field.

 Password Enter the input as a password, where asterisks
indicate the input instead of characters.

 Large
Editor

Enter the input in a large text area instead of a text
field. This is useful if you expect a large amount of text
as input for the variable, or if you need to have TAB or
new line characters in the input.

 Pick List Limit the input to a predefined list of values. These
values appear as choices when Designer prompts for
input at run time. Click the Pick list choices property’s
Edit buon to specify the list of values you want users
to select from.

Pick list
choices

Allows you to enter the list of values that users can select for this
variable.

Document
reference

For a document reference or document reference list, this property
specifies the fully qualified name of the document type in the
Package Navigator view that the variable references.

Substitution
group

If the variable represents an element that is a member of a
substitution group, identifies the head element for which this
element can be substituted.

Constraints Properties for a Variable
Use these properties to apply structural and content constraints to the variable. You only
need to specify constraints if you plan to use this variable with validation.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1043

Property Description

Min occurs Specifies the minimum number of occurrences of the variable at
run time.

This property is display-only.

Note: The Min occurs property appears only for a variable in
a document type with a Model type property value of
Sequence, Choice, or All.

Max occurs Specifies the maximum number of occurrences of the variable
at run time. A value of “unbounded” indicates that the variable
can appear an unlimited number of times.

This property is display-only.

Note: The Max occurs property appears only for a variable in
a document type with a Model type property value of
Sequence, Choice, or All.

Required Specifies whether or not the variable needs to exist at run time.

The Required property appears for variables in document types if
one or more of the following are true:

The document type was created using a version of Integration
Server prior to version 8.2.

The document type was created using Developer.

The Model type property of the document type is Unordered.

 Select... To...

 True The default value. Specifies that the variable must
exist in the pipeline at run time.

 False Specifies that the existence of the variable is
optional at run time.

Allow null Specifies whether null is a valid value for this variable.

 Select... To...

 True The default value. Specifies that a null value will
not result in a validation error at run time.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1044

Property Description

 False Specifies that a null value will cause a validation
error at run time.

Allow unspecified
fields

Specifies whether the document is open or closed. This property
is enabled only if the variable is a document or document list.

 Select... To...

 True The default value. The document is considered
open. At run time, fields that exist in the
document but are not declared in the document
field will not cause errors.

 False The document or document list is considered
closed. At run time, fields that exist in the
document but are not declared in the document
field will be treated as errors.

Content type Specifies the XML schema simple type that constrains the value
of the String field. This property is enabled if the variable is a
String, String list, or String table.

To view and edit the content constraint for a variable, click
and select one of the following:

 Select... To...

 Content
type

Select a content constraint from the drop-down
menu that corresponds to a simple type built-in
to XML Schema.

 Browse Use a simple type from an IS schema as the
content constraint.

 Customize Customize a simple type by modifying the
constraining facets.

 Base
constraints

View the constraining facet values set in the
type definitions from which a simple type was
derived.

Java wrapper type Specifies the Java class of an Object field. This property is
enabled if the variable is an Object or Object list.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1045

Constraints Applied to Variables
Designer displays small symbols next to a variable icon to indicate the constraints
applied to the variable. Designer displays variables in the following ways:

Variable Constraint status Variable Properties

Required field. The Required property is set to True.

Optional field. The Required property is set to False.

Required field
with content type
constraint

The Content type property specifies
an IS schema or XML schema.

Optional field
with content type
constraint

The Required property is set to
False and the Content type property
specifies an IS schema or XML
schema.

Note: Designer displays the ‡ symbol next to String, String list, and String table
variables with a content type constraint only. Designer does not display the
‡ symbol next to Object and Object list variables with a specified Java class
constraint. Object and Object lists with an applied Java class constraint have
a unique icon. For more information about icons for constrained Objects, see
"Java Classes for Objects" on page 1094.

Web Service Connector Properties
To view properties for a web service connector, double-click the web service connector
in the Package Navigator of Designer. In the Properties view, under Web Service
Properties, you can configure the Runtime, Universal Name, Audit, and Output Template
properties for the service.

To edit the properties for a web service connector, you must have Write access to it and
own the lock.

General Properties for Web Service Connectors
In the Properties view, under General, you can assign an ACL to a web service connector.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1046

Property Description

Permissions Click to assign ACL permissions to a service.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Source URI Displays the location of the source WSDL used to create the web
service connector.

Run Time Properties
In the Properties view, under Run time, you can specify the following web service
connector parameters:

State of a service. You can maintain whether or not you want the server to treat it as a
“stateless” service at run time.

Caching of service results. You can cache elements to reduce memory usage in
Integration Server.

Execution locale of a service. You can set the type of locale in which the Integration
Server executes at run time

Saving and restoring of the pipeline. You can save the pipeline or restore a previously
saved pipeline at run time.

Important: The Run time properties in the Properties view should only be set by
someone who is thoroughly familiar with the structure and operation of the
selected service. Improper use of these options can lead to a service failure at
run time and/or the return of invalid data to the client program.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1047

Property Description

Stateless Specifies whether or not Integration Server is required to maintain
state information for this service for the duration of the client
session. Select True if the service is a self-contained, atomic unit of
work and does not need access to state information. This reduces
the number of server resources it consumes at run time. Select
False if the service is part of a multi-service transaction or if you
are unsure of its state requirements.

The default is False.

Cache results Indicates whether Integration Server stores the service results
in a local cache for the time period specified in the Cache expire
property. After the service executes, the server places the entire
pipeline contents into a local cache. When subsequent requests for
the service provide the same set of input values, the server returns
the cached results instead of invoking the service again. Select True
to cache the service results. Select False if you do not want to cache
service results. Cache results for stateless services only.

The default is False.

Note: Caching is only available for data that can be wrien to the
repository server. Because XML nodes cannot be wrien to
the repository, they cannot be cached.

Cache expire Specifies the amount of time that the pipeline contents stay in
memory after they are cached. If you enable the Cache results
property, type an integer in this field representing the number of
minutes you want a result to remain cached. The expiration timer
begins when the server initially caches the results. The server does
not restart the expiration timer each time it retrieves the results
from cache. The minimum cache expiration time is one minute.

Reset cache Click Reset to clear the cached results for this service

Prefetch Determines whether Integration Server automatically refreshes a
cached result when it expires by re-executing the service using the
same inputs. To automatically refresh this service's cached results,
set Prefetch to True. (Prefetch can consume a substantial amount of
server memory; consult your Server Administrator before using
this option.)

The cache may not be refreshed at the exact time specified in Cache
expire. It may vary from 0 to 15 seconds, according to the cache

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1048

Property Description
sweeper thread. For details, see the wa.server.cache.flushMins
seing in Integration Server.

Prefetch
activation

Specifies the minimum number of times that a cached result must
be accessed (hit) with the same inputs in order for the server to
prefetch results when it expires. If you enable Prefetch, you must
specify an integer representing the minimum number of hits a
cached result must receive to be eligible for prefetch. (Entries
that do not receive the minimum number hits are released from
memory.)

The cache may not be refreshed at the exact time the last hit
fulfills the Prefetch Activation requirement. It may vary from 0 to 15
seconds, according to the cache sweeper thread. For details, see the
wa.server.cache.flushMins seing in Integration Server.

Execution
locale

Specifies the locale in which this service will be executed.

Pipeline debug Determines whether Integration Server automatically saves or
restores the pipeline after the service executes. This option is useful
for testing and debugging the service.

Select None to run the service without saving or restoring the
pipeline. This is the default.

Select Save if you want to save the entire pipeline contents to a file
when the service executes.

To restore the pipeline from a file when the service executes,
choose Restore (Override). If you want the server to merge the
pipeline with one from a file when the service executes, choose
Restore (Merge). When this option is selected and the input
parameters in the file match the input parameters in the pipeline,
the values defined in the file are used in the pipeline. If there are
input parameters in the pipeline that are not matched in the file,
the input parameters in the pipeline remain in the pipeline.

Note: The options you select can be overwrien at run time by the
value of the wa.server.pipeline.processor property, set in
the server configuration file. This property specifies whether
to globally enable or disable the Pipeline debug feature. The
default enables the Pipeline debug feature on a service-by-
service basis. For more information on seing properties in
the server configuration file, see webMethods Integration Server
Administrator’s Guide.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1049

Property Description

 Note: When using MTOM streaming for SOAP aachments,
messageContext variables and/or XOPObject fields will not be
available in the saved pipeline. A messageContext variable is
used by many pub.soap services to hold the SOAP message
on which the service acts. XOPObject fields are Objects that
use the com.wm.util.XOPObject Java wrapper type. For more
information about MTOM Streaming, see the Web Services
Developer’s Guide.

Audit Properties
In the Properties view, under Audit, you enable auditing and specify when a service
should generate audit data.

Property Description

Enable auditing Specifies when the service generates audit data

 Select... To...

 Never Indicate that the service should never generate
audit data.

 When top-level
service only

Indicate that the service should generate audit
data only when it is invoked by a client request
or a trigger.

 Always Indicate that the service should generate audit
data every time it executes.

Log on Specifies the execution points at which the service generates audit
data.

 Select... To...

 Error only Indicate that the service should generate audit
data only when the service fails.

 Error and
success

Indicate that the service should generate audit
data when the service finishes executing. The
service will generate audit data regardless of
whether it ends because of success or failure.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1050

Property Description

 Error, success,
and start

Indicate that the service should generate audit
data when it begins executing and when it
finishes executing. The service will generate
audit data twice every time it executes (once
when it begins processing and once when it
finishes processing).

Include pipeline Specifies when Integration Server should include a copy of the
input pipeline in the service log.

 Select... To...

 Never Indicate that the input pipeline should never be
included in the service log.

 On errors only Indicate that the input pipeline should be
included in the service log only when the
service ends because of errors.

 Always Indicate that the input pipeline should always
be included in the service log.

 Note: If you want audit events generated by this service to pass a
copy of the input pipeline to any subscribed event handlers,
select On errors only or Always.

Important: The options you select can be overwrien at run time by the value of the
wa.server.auditLog server property, set in the server configuration file. This
property specifies whether to globally enable or disable service logging. The
default enables customized logging on a service-by-service basis.

Universal Name Properties
Specifies a unique public identifier that external protocols (such as SOAP) use to
reference a service on an Integration Server. Every service on an Integration Server has
an explicit universal name in addition to its regular implicit webMethods name. If you
omit or delete a service's explicit universal name, it still retains its implicit universal
name.

A universal name has two parts: a namespace name and a local name.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1051

Property Description

Namespace
name

Specifies the name used to qualify the local name of this service.
The namespace name you specify must be a valid absolute URI
(relative URIs are not supported).

Local name Specifies a name that uniquely identifies this service within the
collection encompassed by Namespace name. The name can be
composed of any combination of leers, digits, or the period (.),
dash (-), or underscore (_) characters. The name must begin with a
leer or the underscore character.

Note: Most webMethods users use the unqualified portion of the
service name as the local name.

Output Template Properties
In the Properties view, under Output template, you can assign an output template to a web
service connector.

Property Description

Name Specifies the name of the file that contains the output template for
the selected service. To assign an existing template to this service,
type the name of the template file in this field. To create a new
template file for this service, type a name for the template in this
field.

Template
source

Opens the Template source page so that you can edit the existing
output template.

Note: Changes you make to an output template are wrien to the
template file when you click Save in the Template source
page. Changes that you make to a template file affect all the
services in the package that use the template, not just the
service that is currently open in the editor.

Web Service Descriptor Properties
To view properties for a provider or consumer web service descriptor, double-click the
web service descriptor in Package Navigator view of Designer.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1052

General Properties for Web Service Descriptors
In the Properties view, under General, you can view and assign properties to a web
service descriptor.

Property Description

Name Displays the name of the web service descriptor.

Direction Displays whether the web service descriptor is for a provider
web service (that can be invoked by an external user) or for a
consumer web service (that requests the use of a provider entity's
web service).

WS-I
compliance

Specifies whether the web service descriptor enforces compliance
with the WS-I Basic Profile 1.1 standards.

Note: WS-I Basic Profile 1.0 supports only HTTP or HTTPS
bindings. Consequently, WS-I compliance cannot be enforced
if the WSDL contains a SOAP over JMS binding. The WS-
I compliance property cannot be set to true if a web service
descriptor has a JMS binder.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Source URI Displays the location of the source used to create the web service
descriptor. For a consumer web service descriptor or a WSDL first
provider web service descriptor, the Source URI is the location of
the WSDL document. For a service first web service descriptor, the
Source URI is empty.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1053

Property Description

Target
namespace

Displays the XML Target Namespace of the web service. By default
this is set to the fully qualified URL of the host server.

WSDL URL URL used to retrieve the WSDL for the web service.

Namespaces Displays a list of the XML namespaces and the associated
namespace prefixes used within the web service descriptor when it
was initially created.

Attachment
enabled

Specifies whether any aachment should be enabled. The default is
False.

Pipeline
headers
enabled

Specifies whether the contents of the SOAP header are placed in
the pipeline as a document named soapHeaders.

When this property is set to true for a provider web service
descriptor and an IS service that corresponds to an operation in
the WSD is invoked, Integration Server places the contents of the
SOAP request header in the input pipeline for the IS service.

When this property is set to true for a consumer web service
descriptor and one of the web service connectors is invoked,
Integration Server places the contents of the SOAP response
header in the output pipeline for the web service connector.

The default is False.

Note: For web service descriptors contained in packages created
in earlier versions of Integration Server, the Pipeline headers
enabled property is set to true.

Validate SOAP
response

For a consumer web service descriptor, specifies whether
Integration Server validates a SOAP response received by any web
service connectors within the consumer WSD. The default is True.

Note: This property applies to consumer web service descriptors
only.

Created on
version

Identifies the version of Integration Server on which the web
service descriptor was created.

Pre-8.2
compatibility
mode

Indicates whether or not the web service descriptor runs in pre-8.2
compatibility mode. Web service descriptors that run in pre-8.2
compatibility mode are compatible with versions of Integration
Server prior to version 8.2. web service descriptors that do not

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1054

Property Description
run in pre-8.2 compatibility mode are compatible with versions of
Integration Server 8.2 and later.

For web service descriptors created using Designer on Integration
Server 8.2 and later, the default is False. For web service
descriptors created using Developer, the default is True.

Validate
schemas using
Xerces

Indicates whether Integration Server validates the schemas
associated with the web service descriptor in the following
situations:

You change the IS schemas, document types, or signatures of the
services associated with a web service descriptor.

You refresh the web service connectors for a consumer web
service descriptor.

The default is True.

If you migrated a web service descriptor from a previous version
of Integration Server, the migration utility set the value based
on the version of Integration Server from which the web service
descriptor was migrated.

If the web service descriptor was migrated from Integration
Server version 7.1.x, the migration utility sets the Validate Schema
using Xerces property to true.

If the web service descriptor was migrated from Integration
Server version 8.x, the migration utility used the value of the
wa.server.wsdl.validateWSDLSchemaUsingXerces parameter to
determine the value of the Validate Schema using Xerces property. If
the parameter is set to true, the migration utility set the property
to true. It the parameter is set to false, the migration utility set the
property to false.

Note: The wa.server.wsdl.validateWSDLSchemaUsingXerces
parameter was removed in Integration Server version 9.0.

Outbound
callback
service

Fully qualified name of the IS service that Integration Server
must invoke for an outbound SOAP message if you want to insert
custom processing logic into a SOAP request message in case of a
consumer web service descriptor and a SOAP response message
in case of a provider web service descriptor. For more information
about outbound callback services, see Web Services Developer’s
Guide.

Filter login
credentials

Indicates whether or not Integration Server filters the login
credentials in incoming SOAP requests based on the credentials

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1055

Property Description
that are provided in the WS-Security policy aached to the web
service descriptor.

When this property is set to true, Integration Server filters the login
credentials in incoming SOAP requests and processes only those
credentials that are provided in the WS-Security policy aached to
the web service descriptor.

When this property is set to false, Integration Server processes all
the credentials that are available in the incoming SOAP request
without verifying whether the credentials are also provided in the
WS-Security policy aached to the web service descriptor.

The default is True.

Integration Server applies this property to process incoming
requests in case of provider web service descriptors and to
process asynchronous responses in case of consumer web service
descriptors.

Web Service Descriptor Operation Properties
The Properties view displays basic information about the web service operation
(or about the header, body, and fault documents) when the operation or one of its
documents is selected in the web service descriptor editor.

Note: Selecting the Response or Request element in an operation simply displays
the properties for the operation as a whole. You must select the individual
Header, Body, or Fault to display its properties.

Operation Properties
In the Properties view, under General, you can view basic information about an
operation in the web service descriptor.

Property Description

Operation
Name

Displays the name of the operation. For a provider web service
descriptor, this will be the local portion of the Universal Name of
the IS service. For a consumer web service descriptor, this will be
the operation Name from the WSDL that was used to create the
web service descriptor.

IS Service Displays the fully qualified name of the IS service representing this
operation.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1056

Body Element Properties
In the Properties view, under General, you can view basic information about the Body
element in an operation’s request or response. None of the properties of a Body element
can be modified.

Property Description

Name Name of the Body element.

Document type Fully qualified name of the IS Document type that defines the
body.

Namespace
owner

Namespace owner of the Body element.

Signature type Signature type of the Body element.

Schema URL URL to the XML schema definition if the signature source is an
element declaration from an XML schema definition.

Schema
element

Element declaration used as the signature if the signature source is
from an XML schema definition.

Signature The source for the input/output signature for the operation. Click
Modify Signature to change the signature source.

You can only change the operation signature source for a provider
web service descriptor created from an existing IS service. You can
use an element declaration in an external XML schema definition
or an IS document type.

Addressing
action

URI identifying the addressing action.

The value for Addressing action cannot contain spaces or new line
characters.

When a WSDL is consumed for creating a consumer web service
descriptor or a WSDL first provider web service descriptor and
if the WSDL contains the addressing action aribute, Addressing
action property will take the value of the addressing action
aribute in WSDL.

In case of a provider web service descriptor, the action specified
in the binder for output or fault will be the addressing action in
the SOAP response or fault respectively. If no action is specified in
the binder, addressing action for the SOAP response is generated

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1057

Property Description
at runtime based on the Default Action Paern for WSDL 1.1. For
more information about the structure of the default generated
action, see the WSDL 1.1 specification.

You cannot edit the addressing action in a consumer web service
descriptor. You can edit the addressing action property for service
first and WSDL first provider web service descriptors only if WS-
Addressing is enabled by aaching an addressing policy to the
web service descriptor.

Note: If both addressing action property and SOAP Action
aribute are provided, the URI of the SOAP Action must
be the same as the one specified by the addressing action
property. If the values for the SOAP Action and the
addressing action property are different, Integration Server
uses the SOAP Action value while generating the addressing
action in the SOAP request.

Header Element Properties
In the Properties view, under General, you can view basic information about a header
element in an operation’s request or response.

Property Description

Name Displays the name of the Header element.

Document type Displays the fully qualified name of the IS Document type that
defines the Header element.

Must
understand

Indicates whether the Header element must be understood by the
SOAP node in order for the message to be processed.

“must Understand” is a SOAPHeader aribute. If mustUnderstand
is set and the SOAP Node Receives a Header that it does not
understand, it must not process the SOAP Request and the SOAP
Node must return a “Not Understood” Fault.

If this aribute is set to True for a consumer web service descriptor,
the Must Understand aribute of the Header is set to true in the
request.

Note: The Must understand property can be edited for a header in
a consumer web service descriptor or WSDL first provider
web service descriptor only.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1058

Property Description

Role URI naming the Actor (for SOAP 1.1) or Role (for SOAP 1.2) at
which this header element is targeted. A Header is “targeted” at
a SOAP Node if the node is acting in the role specified on that
Header. The possible values are defined by the SOAP Specification.

Note: The Role property can be edited for a header in a consumer
web service descriptor or WSDL first provider web service
descriptor only.

Fault Element Properties
In the Properties view, under General, you can view basic information about a fault
element in an operation’s response.

Property Description

Name Displays the name of the Fault element.

Document type Displays the fully qualified name of the IS Document type defining
the Fault element.

Addressing
action

URI identifying the addressing action.

The value for Addressing action cannot contain spaces or new line
characters.

When a WSDL is consumed for creating a consumer web service
descriptor or a WSDL first provider web service descriptor and
if the WSDL contains the addressing action aribute, Addressing
action property will take the value of the addressing action
aribute in WSDL.

In case of a provider web service descriptor, the action specified
in the binder for output or fault will be the addressing action in
the SOAP response or fault respectively. If no action is specified
in the binder, addressing action for the SOAP response is
generated at runtime based on the Default Action Paern for
WSDL 1.1. For more information about the structure of the default
generated action, see hp://www.w3.org/TR/ws-addr-metadata/
#defactionwsdl11.

You cannot edit the addressing action in a consumer web service
descriptor. You can edit the addressing action property for service
first and WSDL first provider web service descriptors only if WS-
Addressing is enabled by aaching an addressing policy to the
web service descriptor.

http://www.w3.org/TR/ws-addr-metadata/#defactionwsdl11
http://www.w3.org/TR/ws-addr-metadata/#defactionwsdl11

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1059

Property Description

Note: If both addressing action property and SOAP Action
aribute are provided, the URI of the SOAP Action must
be the same as the one specified by the addressing action
property. If the values for the SOAP Action and the
addressing action property are different, Integration Server
uses the SOAP Action value while generating the addressing
action in the SOAP request.

Web Service Descriptor Binder Properties
In Properties view, you can view and set basic information about the binder for a
web service descriptor when you select a binder in Binders tab in the web services
descriptor editor. If the binder specifies SOAP over JMS as the binding style, you can
view information included in the JMS binding and view an set information for the JMS
message.

General Properties for Binders
When a binder is selected on the Binders tab, the Properties view displays general
properties for the binder.

Property Description

Binder name Name of the binder.

Port address Endpoint address associated with this web service, that is, the
network address at which the web service can be invoked.

For a consumer web service descriptor, this value is determined
by the location aribute in the soap:address element (which is
contained within the soap:port element of the service element).

For a WSDL first provider web service descriptor, the Port
address is empty.

For a service first web service descriptor, you can edit the Port
address for a binder that uses HTTP or HTTPS as the Transport.

For a web service descriptor that uses the JMS transport, the
Port address displays the initial part of the JMS URI, specifically
“jms”:<lookup var>:<dest>?targetService. Integration Server
displays additional information that is part of the JMS URI in
the JMS Seings and JMS Message Details properties.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1060

Property Description

The Port address value is display-only when Transport is JMS, the
binder is in a consumer web service descriptor, or the binder is
in a WSDL first provider web service descriptor.

Note: The contents of Port address might be used or overwrien
when building the consumer and provider endpoint
URLs for more information about how Integration Server
constructs endpoint URLs, see the Web Services Developer’s
Guide.

Port alias Endpoint alias name associated with this web service. The
endpoint alias name will be used for this binder when
generating a WSDL for a provider or when executing a web
service connector for a consumer. The actual endpoint value is
looked up at run time in both cases. New aliases can be defined
from the Integration Server, using Settings > Web Services.

Port name Name of the port associated with the web service, as defined by
the WSDL; an aggregate of a binding and a network address.

Directive The SOAP processor for which the web service will be a target.
The drop-down menu lists all registered SOAP processors on
the Integration Server to which you are currently connected.

Binding name Name of the WSDL binding element.

Porttype name Name of the portType associated with the WSDL binding
element.

Binding type Type of binding. This will be one of the following:

SOAP over HTTP

SOAP over JMS

Binding type is display-only. The Transport value determines the
Binding type value.

Transport Transport mechanism used to invoke the web service, specify:

HTTP

HTTPS

JMS

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1061

Property Description

The transport you select must match the type of requests
accepted by the port you selected.

SOAP version Version of the SOAP message protocol to be used; either SOAP
1.1 or SOAP 1.2.

SOAP binding
style

The style of the SOAP binding and its operations; either
Document or RPC (Remote Procedure Call).

SOAP binding use The usage aribute of the SOAP binding and its operations;
either literal or encoded

SOAP binding
transport

The transport protocol used by this SOAP Binding.

SOAP action SOAP action associated with the operations in the binder.

Click in the Value column to display the SOAP action string
associated with each operation in the binder.

For a service first provider web service descriptor, you can
modify the SOAP action for an operation in a binder. The SOAP
action value must be unique within the web service descriptor.

The SOAP action cannot be edited for a WSDL first provider
web service descriptor or a consumer web service descriptor.

Response
endpoint address
template

The address template that you can use as ReplyTo or FaultTo
address to make the consumer web service descriptor process
responses asynchronously. This property displays the following
address format:

HTTP binder: http://<server>:<port>/ws/wsdName/portName

HTTPS binder: https://<server>:<port>/ws/wsdName/portName

JMS binder: jms:<topic/queue/jndi>:<destinationName>?
targetService=soapjms/wsdName/portName

Where, wsdName is the web service descriptor name and
portName is the name of the port associated with the web service,
as defined by the WSDL; an aggregate of a binding and a
network address.

You must specify this address as the value for ReplyTo and/or
FaultTo address in the messageAddressingProperties parameter of
the corresponding web service connector to use this consumer
web service descriptor to process responses asynchronously

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1062

Property Description
by invoking the callback response services. You must replace
the placeholders <server> and <port> or <topic/queue/jndi> and
<destinationName> with appropriate values depending on the
transport mechanism used to invoke the web service.

Use CSQ Indicates whether Integration Server places the request message
in the client side queue if the JMS provider is not available at the
time the message is sent.

 Set to... To...

 True Specify that Integration Server writes messages
to the client side queue if the JMS provider is not
available at the time the request message is sent by
the web service connector.

 False Specify that Integration Server throws an
ISRuntimeException if the JMS provider is not
available at the time the web service connector
executes. This is the default.

 Note: This property applies to consumer web service descriptors
only.

For more information about using the client side queue
when sending web service requests using SOAP over JMS,
see"Configuring Use of the Client Side Queue" on page 797.

JMS Settings Properties for a Binder
If a binder specifies SOAP over JMS as the binding type, Designer displays JMS Seings
properties for the binder. These properties specifies how to connect to the JMS provider
and specify the destination to which messages are sent.

For a provider web service descriptor, the web service endpoint alias assigned to the
binder determines the values of the JMS Seings properties.

For a consumer web service descriptor, the web service endpoint alias assigned to the
binder and the WSDL used to create the web service descriptor determine the values
of the JMS Seings properties. If the web service endpoint alias and the WSDL specify
a value for the same JMS Seings property, the value in the web service endpoint alias
takes precedence.

The properties displayed under JMS Seings vary depending on the value of the Variant
identifier property.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1063

Property Description

Variant identifier Specifies how a destination name is looked up. The Variant
identifier corresponds to the jms-variant syntax in the JMS URI
Schema. The Variant identifier will be one of the following:

 Value Description

 jndi Indicates that JNDI is used to lookup the
administered objects (connection factory and
destination) needed to send the JMS message.

 queue Indicates that destination is a queue and
indicates that the client uses the native
webMethods API to connect directly to
webMethods Broker.

 topic Indicates that destination is a topic and
indicates that the client uses the native
webMethods API to connect directly to
webMethods Broker.

Destination If the Variant identifier is jndi, specifies the JNDI provider lookup
name for the destination to which messages are sent on the JMS
provider.

If the Variant identifier is queue or topic, specifies the name of the
destination to which messages are sent.

JMS connection
alias

Name of the JMS connection alias used to connect to the JMS
provider.

Designer displays this property only when the Variant identifier is
“queue” or “topic”.

JNDI
connection
factory name

JNDI provider lookup name for the connection factory used to
create a connection to the JMS provider.

Designer displays this property only when the Variant identifier is
“jndi”.

JNDI initial
context factory

Java class name of the InitialContextFactory for the JNDI
provider.

Designer displays this property only when the Variant identifier is
“jndi”.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1064

Property Description

JNDI URL Location of the registry when the registry is being used as the
initial context.

Designer displays this property only when the Variant identifier is
“jndi”.

Other properties Any additional properties the JNDI provider requires for
configuration.

Designer displays this property only when the Variant identifier is
“jndi”.

JMS Message Details Properties for a Binder
If a binder specifies SOAP over JMS as the binding type, Designer displays JMS Message
Details properties for the binder. These properties display the JMS message header
information for the request message, such as delivery mode, time to live, and the
destination for replies. The JMS Message Details properties are read-only.

For a provider web service descriptor, the web service endpoint alias assigned to the
binder’s port alias determines the values of the properties under JMS Message Details. A
blank property indicates that the web service endpoint alias does not specify a value for
the property. For example, if the web service endpoint alias does not specify a delivery
mode, the Delivery mode property under JMS Message Details will be blank too.

For a consumer web services descriptor, the binding information in the WSDL
document used to create the consumer web service descriptor determines the values
of the JMS Message Details properties. If the WSDL document does not contain
information that Integration Server uses to populate a property for the corresponding
binding, the property will be blank. For example, if the WSDL does not contain the
soapjms:timetolive element, the Time to live property will be blank in the binder.

Property Description

Delivery mode The message delivery mode for the request message. This is the
delivery mode that web service clients must specify in the JMS
message that serves as the request message for the web service.

 Value Description

 PERSISTENT Indicate the request message should be
persistent. The message will not be lost if
the JMS provider fails.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1065

Property Description

 NON_PERSISTENT Indicate the request message is not
persistent. The message might be lost if
the JMS provider fails.

Time to live The number of milliseconds that can elapse before the request
message expires on the JMS provider. A value of 0 indicates that
the message does not expire.

Priority Specifies the message priority. The JMS standard defines priority
levels from 0 to 9, with 0 as the lowest priority and 9 as the
highest.

Reply to name Name or lookup name of the destination to which the web service
sends a response (reply) message.

Reply to type Type of destination to which the web service sends the response
(reply) message.

 Value Description

 QUEUE Indicates that the web service sends the
response message to a particular queue.

 TOPIC Indicates that the web service sends the
request message to a particular topic.

 Note: The Reply to type property is only applicable when the Variant
identifier is “queue” or “topic”.

Web Service Descriptor Header Handler Properties
You can view basic information about the header handlers for the web service descriptor
in the Properties view.

Property Description

Handler name Name of the header handler.

Class name The Java class name of the web service handler based on JAX-RPC
that acts as the header handler.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1066

Property Description

Policy type The policy type associated with the header handler. Policy files
used with this header handler must be of this type.

Policy name Specifies the name of the policy assigned to this header handler.
The policy name is obtained from the ID aribute in the policy file.
At run time, the assigned policy can be overridden by the value of
the Effective policy name property.

Effective policy
name

Specifies the name of the policy used with this header handler at
run time. The effective policy overrides the policy assigned in the
Policy name property.

webMethods Messaging Trigger Properties
Use the Properties view to display information about webMethods messaging triggers,
specify error handling, specify message processing, configure exactly-once processing,
and assign permissions.

To view properties for a webMethods messaging trigger, double-click the webMethods
messaging trigger in the Package Navigator view of Designer.

General Properties for webMethods Messaging Triggers
In the Properties view, under General, you can enable/disable the webMethods
messaging trigger, configure join expiration, enable priority message handling, and
assign permissions to the trigger.

Property Description

Enabled Specifies whether the webMethods messaging trigger is enabled or
disabled.

 Select... To...

 True Enable the webMethods messaging trigger. An
enabled webMethods messaging trigger contains one
or more valid conditions.

 False Disable the webMethods messaging trigger. A
disabled webMethods messaging trigger can contain
valid or invalid conditions. A disabled webMethods
messaging trigger does not have any subscriptions

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1067

Property Description
registered on the Integration Server or the messaging
provider.

Join expires Indicates whether the join expires after the time period specified in
Expire after.

 Select... To...

 True Indicate Integration Server should stop waiting for the
remaining documents in a join condition after the time
specified in Expire after elapses.

 False Indicate that the join should not expire. That is,
Integration Server should wait indefinitely for the
remaining documents in a join condition.

 Note: webMethods messaging triggers that receive documents
from Universal Messaging do not use joins. Designer ignores
the value of the Join expires property if the trigger subscribes
to publishable document types that can be published to
Universal Messaging.

Expire after Specifies how long Integration Server waits for the remaining
documents in the join condition. The default join time-out period is
1 day.

Note: webMethods messaging triggers that receive documents
from Universal Messaging do not use joins. Designer ignores
the value of the Expire after property if the trigger subscribes
to publishable document types that can be published to
Universal Messaging.

Priority enabled Specifies whether priority messaging is enabled or disabled for the
webMethods messaging trigger.

This property applies to webMethods messaging triggers that
receive documents from Broker only. webMethods messaging
triggers that receive documents from Universal Messaging always
receive higher priority documents in an expedited fashion.

Additionally, priority messaging does not apply to locally
published documents received by the webMethods messaging
trigger. At run time, Integration Server ignores the value of the
Priority enabled property if the trigger receives a locally published
document.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1068

Property Description

 Select... To...

 True Enable priority messaging for the webMethods
messaging trigger.

Note: If priority messaging is enabled on an existing
trigger, the Broker connection is dropped and the
client is deleted. The client gets recreated when
the Broker connection is re-established. This may
result in loss of documents for that trigger.

 False Disable priority messaging for the trigger.

Execution user Specifies the name of the user account whose credentials
Integration Server uses to execute a service associated with the
webMethods messaging trigger. You can specify a locally defined
user account or a user account defined in a central or external
directory.

Note: The Execution user property only applies to webMethods
messaging triggers that receive documents from Universal
Messaging. The publishable document type to which a
trigger subscribes determine the messaging provider from
which the trigger receives messages. At run time, Integration
Server ignores the value of the Execution user property if a
webMethods messaging trigger receives locally published
documents or documents from Broker

Permissions Click to assign or view ACL permissions to a webMethods
messaging trigger.

Reuse Specifies whether this element can be dragged from the CentraSite
Registry Explorer view to a BPM process or CAF project.

When this property is set to public, you can drag the asset to a
BPM process or CAF project.

When this property is set to private (the default), you cannot drag
the asset to a BPM process or CAF project.

All published assets are available for Impact Analysis, whether
they are public or private.

Although changing the public/private status will immediately
change whether or not you can drag an element to a BPM process

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1069

Property Description
or CAF project, the element's status in CentraSite will not change
until the next publication of assets to CentraSite.

Trigger Queue Properties
In the Properties view, under Trigger queue, you can specify the capacity and refill levels
of the trigger queue on Integration Server. You can also specify how many messages
Integration Server should acknowledge at one time.

Property Description

Capacity Specifies the maximum number of unprocessed documents that
can exist for this trigger in the trigger document store. (Each
trigger has its own queue in the trigger document store on
Integration Server.) The default is 10 documents.

Refill level Specifies the number of unprocessed documents that must
remain in this trigger queue before the Integration Server
retrieves more documents for the trigger. The default is 4
documents.

Note: The Refill level does not apply to webMethods messaging
triggers that receive documents from Universal Messaging.
At run time, Integration Server ignores the value of the
Refill level property if a webMethods messaging trigger
receives documents from Universal Messaging.

Acknowledgement
queue size

Specifies the maximum number of pending document
acknowledgements for this trigger. A server thread places
acknowledgements in the acknowledgement queue after it
finishes executing the trigger service. Acknowledgements
collect in the queue until the server returns them as a group
to the sending resource. If the acknowledgement queue fills to
capacity, the server blocks any server threads that aempt to
add an acknowledgement to the queue. The blocked threads
resume execution only after Integration Server empties the
queue by returning the acknowledgements. The default is 1
acknowledgement.

Message Processing Properties
In the Properties view, under Message processing, you can specify whether the trigger
processes messages serially or concurrently.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1070

Property Description

Processing
mode

Specifies how Integration Server processes the documents in the
trigger queue.

 Select... To...

 Serial Specify that Integration Server should process
documents in the trigger queue one after the other, in
the same order that they were received.

 Concurrent Specifies that Integration Server should process as
many documents in the trigger queue as it can at one
time. The maximum number of documents the server
can process at one time is determined by the Max
execution threads property.

Max execution
threads

Specifies the maximum number of server threads that can process
documents for this trigger concurrently. Integration Server uses
one server thread to process each document in the trigger queue.
The default is 1 server thread.

Fatal Error Handling Properties
In the Properties view, under Fatal error handling, you can specify how Integration Server
responds when a trigger service ends because of a fatal error.

Property Description

Suspend on
error

Specifies that Integration Server suspends document retrieval and
document processing when an exception occurs during trigger
service execution. This property is only available for serial triggers.

 Select... To...

 True Suspend document processing and document retrieval
for the trigger when a trigger service ends with an
error.

 False Indicate that document processing and document
retrieval should not be suspended if a trigger service
ends with an error.

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1071

Transient Error Handling Properties
In the Properties view, under Transient error handling, you can specify how Integration
Server responds when a trigger service ends because of a transient error.

Property Description

Retry until Specifies the maximum number of times that Integration
Server will aempt to execute the trigger service if an
ISRuntimeException occurs during the trigger service execution.
An ISRuntimeException occurs when the trigger service catches a
transient error, wraps the error, and re-throws it as an exception.
(A transient error is an error that arises from a condition that might
be resolved quickly, such as the unavailability of a resource due to
network issues or failure to connect to a database.)

 Select... To...

 Max
attempts
reached

Indicate that Integration Server re-executes the
trigger service up to the number of times specified
in the Max attempts property. The server stops re-
executing the trigger service when the service
succeeds or when the server reaches the maximum
number of retries.

 Successful Indicate that Integration Server re-executes
the trigger service until the service executes to
completion.

Max retry
attempts

Specifies the maximum number of times the Integration Server
should re-execute the trigger service if an ISRuntimeException
occurs during service execution. The default is 0 aempts, which
indicates that Integration Server does not retry the trigger service.

Retry interval Specifies the length of time Integration Server waits between
aempts to execute the trigger service. The default is 10 seconds.

On retry failure Indicates how Integration Server handles a retry failure for a
trigger. A retry failure occurs when Integration Server reaches the
maximum number of retry aempts and the trigger service still
fails because of an ISRuntimeException.

This property also determines how Integration Server handles a
transient error that occurs during trigger preprocessing.

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1072

Property Description

 Select... To...

 Throw
exception

Indicate that Integration Server throws a service
exception when the last allowed retry aempt ends
because of an ISRuntimeException.

This is the default.

 Suspend
and retry
later

Indicate that Integration Server suspends the
trigger when the last allowed retry aempt ends
because of a run-time exception. Integration Server
retries the trigger service at a later time when the
resources needed by the trigger service become
available.

When On Retry failure is set to Suspend and retry
later, a transient error that occurs during trigger
preprocessing causes Integration Server to suspend
the trigger and resume it when the resources,
specifically the document history database, are
available.

Resource
monitoring
service

Specifies the service that Integration Server executes to determine
whether the resources needed by the trigger are available and if
the trigger can be resumed. Integration Server schedules a system
task to execute the resource monitoring service when one of the
following occurs:

The trigger service ends because of a retry failure and the On retry
failure property is set to Suspend and retry later.

The document resolver service used for exactly-once
processing ends because of a run-time exception and the
wa.server.trigger.preprocess.suspendAndRetryOnError is set to
true.

Note: A resource monitoring service must use the
pub.trigger:resourceMonitoringSpec as the service signature.

Exactly Once Properties
In the Properties view, under Exactly once, configure exactly-once processing for a
trigger. Exactly-once processing ensures that a trigger processes a guaranteed document
once and only once. Integration Server provides exactly-once processing by determining
whether a document is a copy of one previously processed by the trigger. Designer

M
Odd Header

Properties

webMethods Service Development Help Version 9.10 1073

provides three duplicate detection methods: redelivery count, document history, and a
document resolver service.

Property Description

Detect
duplicates

Enables exactly-once processing for the trigger and instructs
the server to check a document’s redelivery count to determine
whether the trigger has received the document before.

 Select... To...

 True Specify that exactly-once processing is provided for
documents received by this trigger and instructs the
server to check a document’s redelivery count to
determine whether the trigger received the document
previously. The redelivery count indicates the number
of times the routing resource has redelivered a
document to the trigger.

 False Specify that exactly-once processing is not provided
for documents received by this trigger.

Use history Indicates whether a document history database will be maintained
and used to determine whether a document is a duplicate.

 Select... To...

 True Indicate that Integration Server maintains a history of
documents processed by the trigger. When the trigger
receives a document, Integration Server compares the
document’s universally unique identifier (UUID) to
the UUIDs of documents processed by the trigger.
If there is a match, the Integration Server either
determines the second document is a duplicate and
discards it or, if the first document has not finished
processing, marks the second document’s status as In
Doubt.

 False Indicate that Integration Server does not maintain a
document history database. The Integration Server
will not use document history to determine whether a
document is a duplicate of one already processed by
the trigger.

 Note: To perform duplicate detection using a document history
database, the audit subsystem must be stored in a relational

M
Even Header

Properties

webMethods Service Development Help Version 9.10 1074

Property Description
database and Integration Server Administrator must define
a JDBC connection pool for the Integration Server to use to
connect to the document history database.

History time to
live

Specifies the length of time the document history database
maintains an entry for a document processed by the trigger.
During this time period, Integration Server discards any
documents with the same universally unique identifier (UUID)
as an existing document history entry for the trigger. When a
document history entry expires, Integration Server removes it from
the document history database. If the trigger subsequently receives
a document with same UUID as the expired and removed entry,
the server considers the copy to be new because the entry for the
previous document has been removed from the database.

Document
resolver service

Specifies the service that you created to determine whether
message’s status is New, Duplicate, or In Doubt. Click to select
a service from a list.

The document resolver service must use the
pub.publish:documentResolverSpec to define the service signature.

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1075

48 webMethods Flow Steps

■ BRANCH .. 1076

■ EXIT .. 1079

■ INVOKE .. 1081

■ LOOP .. 1082

■ MAP .. 1084

■ REPEAT .. 1085

■ SEQUENCE ... 1088

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1076

A flow step is a basic unit of work (expressed in the webMethods flow language) that
webMethods Integration Server interprets and executes at run time. The webMethods
flow language provides the following flow steps that invoke services and flow steps that
let you edit data in the pipeline:

BRANCH

EXIT

INVOKE

LOOP

MAP

REPEAT

SEQUENCE

BRANCH
The BRANCH step selects and executes a child step based on the value of one or more
variables in the pipeline. You indicate the variables you want to branch on by specifying
a switch value or by writing an expression that includes the variables.

Branching on a Switch Value
When you branch on a switch value, you specify the switch variable in the Switch
property of the BRANCH step. In the Label property for each child step, you specify the
value of the switch variable that will cause that child step to execute. At run time, the
BRANCH flow step executes the child step that has the same label as the value of the
Switch property.

If you want to execute a child step when the value of the Switch property is an empty
string, leave the Label property of the child step blank. If you want to execute a child step
when the Switch property is a null or unmatched string, set the Label of the child step to
$null or $default.

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1077

BRANCH flow step using a switch

Branching on Expressions
When you branch on expressions, you set the Evaluate labels property of the BRANCH
step to true. In the Label property for each child step, you write an expression that
includes one or more variables. At run time, the BRANCH step executes the first child
step with an expression that evaluates to true.

If you want to specify a child step to execute when none of the expressions are true, set
the label of the child step to $default.

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1078

BRANCH step using expressions

BRANCH Properties
The BRANCH step has the following properties.

Property Description

Comments Optional. Specifies a descriptive comment for the step.

Scope Optional. Specifies the name of a document (IData object) in the
pipeline to which you want to restrict this step. If you want this step
to have access to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that this step
should run. If this time elapses before the step completes, Integration
Server issues a FlowTimeoutException and execution continues with
the next step in the service.

If you want to use the value of a pipeline variable for this property,
type the variable name between % symbols. For example,
%expiration%. The variable you specify must be a String.

If you do not need to specify a time-out period, leave Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of the
wa.server.threadKill.timeout.enabled configuration parameter in
webMethods Integration Server Administrator’s Guide.

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1079

Property Description

Label Optional. (Required if you are using this BRANCH step as a target
for another BRANCH or EXIT step.) Specifies a name for this instance
of the BRANCH step, or a null, unmatched, or empty string ($null,
$default, blank).

Switch Specifies the String field that the BRANCH step uses to determine
which child flow step to execute. The BRANCH step executes the
child flow step whose label matches the value of the field specified in
the Switch property. Do not specify a value if you set the Evaluate labels
property to True.

Evaluate
labels

Specifies whether or not you want the server to evaluate labels
of child steps as conditional expressions. When you branch on
expressions, you enter expressions in the Label property for the
children of the BRANCH step. At run time, the server executes
the first child step whose label evaluates to True. To branch on
expressions, select True. To branch on the Switch value, select False.

Conditions that Will Cause a BRANCH Step to Fail
The switch field is not in the pipeline and the BRANCH step does not contain a
default child step or a child step to handle null values.

The matching child step fails.

The BRANCH step does not complete before the time-out period expires.

EXIT
The EXIT step exits the entire flow service or a single flow step. Specifically, it may exit
from the nearest ancestor loop step, a specified ancestor step, the parent step, or the
entire flow service.

The EXIT step can throw an exception if the exit is considered a failure. When an
exception is thrown, user-specified error message text is displayed by typing it directly
or by assigning it to a variable in the pipeline.

EXIT Properties
The EXIT step has the following properties.

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1080

Property Description

Comments Optional. Specifies a descriptive comment for the step.

Label Optional. (Required if you are using this EXIT step as a target for
a BRANCH step.) Specifies a name for this specific step, or a null,
unmatched, or empty string ($null, $default, blank).

Exit from Required. Specifies the flow step or service from which you want to
exit.

 Specify this
value…

To exit the…

 $parent Parent flow step, regardless of the type of step.

 $loop Nearest parent LOOP or REPEAT step.

 $flow Entire flow.

 label Nearest ancestor step that has a label that matches
this value.

Note: If the label you specify does not match the
label of an ancestor flow step, the flow will exit
with an exception.

Signal Required. Specifies whether the exit is considered a success or a
failure. A SUCCESS condition exits the flow service or step. A FAILURE
condition exits the flow service or step and throws an exception.
The text of the exception message is contained in the Failure message
property.

Failure
message

Optional. Specifies the text of the exception message that is displayed
when Signal is set to FAILURE. If you want to use the value of a pipeline
variable for this property, type the variable name between % symbols.
For example, %mymessage%. The variable you specify must be a String.

Examples of When to Use an EXIT Step
Exit an entire flow service from within a series of deeply nested steps.

Throw an exception when you exit a flow service or a flow step without having to
write a Java service to call Service.throwError().

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1081

Exit a LOOP or REPEAT flow step without throwing an exception.

INVOKE
The INVOKE flow step invokes another service. You can use it to invoke any type of
service, including another flow service.

INVOKE Properties
The INVOKE step has the following properties.

Property Description

Comments Optional. Specifies a descriptive comment for the step.

Label Optional. Specifies the name of a document (IData object) in the
pipeline to which you want to restrict this step. If you want this step
to have access to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that this step
should run. If this time elapses before the step completes, Integration
Server issues a FlowTimeoutException and execution continues with
the next step in the service.

If you want to use the value of a pipeline variable for this property,
type the variable name between % symbols. For example,
%expiration%. The variable you specify must be a String.

If you do not need to specify a time-out period, leave Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of the
wa.server.threadKill.timeout.enabled configuration parameter in
webMethods Integration Server Administrator’s Guide.

Service Required. Specifies the fully qualified name of the service to invoke.

Validate input Optional. Specifies whether the server validates the input to the
service against the service input signature. If you want the input to
be validated, select True. If you do not want the input to be validated,
select False.

Validate
output

Optional. Specifies whether the server validates the output of the
service against the service output signature. If you want the output

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1082

Property Description
to be validated, select True. If you do not want the output to be
validated, select False.

Conditions that Will Cause an INVOKE Step to Fail
The service that is invoked fails.

The specified service does not exist.

The specified service is disabled.

LOOP
The LOOP step takes as input an array variable that is in the pipeline. It loops over the
members of an input array, executing its child steps each time through the loop. For
example, if you have a service that takes a string as input and a string list in the pipeline,
use the LOOP step to invoke the service one time for each string in the string list.

You identify a single array variable to use as input when you set the properties for the
LOOP step. You can also designate a single variable for output. The LOOP step collects
an output value each time it runs through the loop and creates an output array that
contains the collected output values. If you want to collect more than one variable,
specify a document that contains the fields you want to collect for the output variable.

The LOOP step

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1083

LOOP Properties
The LOOP step has the following properties.

Property Description

Comments Optional. Specifies a descriptive comment for the step.

Scope Optional. Specifies the name of a document (IData object) in the
pipeline to which you want to restrict this step. If you want this step
to have access to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that this step
should run. If this time elapses before the step completes, Integration
Server issues a FlowTimeoutException and execution continues with
the next step in the service.

If you want to use the value of a pipeline variable for this property,
type the variable name between % symbols. For example,
%expiration%. The variable you specify must be a String.

If you do not need to specify a time-out period, leave Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of the
wa.server.threadKill.timeout.enabled configuration parameter in
webMethods Integration Server Administrator’s Guide.

Label Optional. (Required if you are using this step as a target for a
BRANCH or EXIT step.) Specifies a name for this specific step, or a
null, unmatched, or empty string ($null, $default, blank).

Input array Required. Specifies the input array over which to loop. You must
specify a variable in the pipeline that is an array data type (that is,
String list, String table, document list, or Object list).

Output
array

Optional. Specifies the name of the field in which the server places
output data for an iteration of the loop. The server collects the output
from the iterations into an array field with the same name. You do
not need to specify this property if the loop does not produce output
values.

Conditions that Will Cause a LOOP Step to Fail
The pipeline does not contain the input array.

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1084

The input field is not an array field.

A child step of the LOOP step fails during any iteration of the loop.

The LOOP step does not complete before the time-out period expires.

MAP
The MAP step adjusts the pipeline at any point in a flow. It makes pipeline
modifications that are independent of an INVOKE step.

Within the MAP step, you can:

Link (copy) the value of a pipeline input field to a new or existing pipeline output
field.

Drop an existing pipeline input field. (Keep in mind that once you drop a field from
the pipeline, it is no longer available to subsequent services in the flow.)

Assign a value to a pipeline output field.

Perform document-to-document mapping in a single view by inserting transformers.

MAP Properties
The MAP step has the following properties.

Property Description

Comments Optional. Specifies a descriptive comment for this step.

Scope Optional. Specifies the name of a document (IData) in the pipeline to
which you want to restrict this step. If you want this step to have access
to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that this step
should run. If this time elapses before the step completes, Integration
Server issues a FlowTimeoutException and execution continues with
the next step in the service.

If you want to use the value of a pipeline variable for this property, type
the variable name between % symbols. For example, %expiration%.
The variable you specify must be a String.

If you do not need to specify a time-out period, leave Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of the

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1085

Property Description
wa.server.threadKill.timeout.enabled configuration parameter in
webMethods Integration Server Administrator’s Guide.

Label Optional. (Required if you are using this step as a target for a BRANCH
or EXIT step.) Specifies a name for this specific step, or a null,
unmatched, or empty string ($null, $default, blank).

Example of When to Use a MAP Step
You want to assign an initial set of input values in a flow service (that is, to initialize
variables). You insert the MAP step at the beginning of the flow, and then use the Set
Value modifier to assign values to the appropriate variables in Pipeline Out.

You want to map a document from one format to another (for example, cXML
to XML). Insert transformers into the MAP step to perform the needed data
transformations.

REPEAT
The REPEAT step repeatedly executes its child steps up to a maximum number of times
that you specify. It determines whether to re-execute the child steps based on a Repeat on
condition. You can set the repeat condition to one of the following:

Repeat if any one of the child steps fails.

Repeat if all of the elements succeed.

You can also specify a time period that you want the REPEAT flow step to wait before it
re-executes its child steps.

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1086

The REPEAT step

REPEAT Properties
The REPEAT step has the following properties.

Property Description

Comments Optional. Specifies a descriptive comment for this step.

Scope Optional. Specifies the name of a document (IData object) in the
pipeline to which you want to restrict this step. If you want this step to
have access to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that this step
should run. If this time elapses before the step completes, Integration
Server issues a FlowTimeoutException and execution continues with
the next step in the service.

If you want to use the value of a pipeline variable for this property, type
the variable name between % symbols. For example, %expiration%.
The variable you specify must be a String.

If you do not need to specify a time-out period, leave Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of the
wa.server.threadKill.timeout.enabled configuration parameter in
webMethods Integration Server Administrator’s Guide.

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1087

Property Description

Label Optional. (Required if you are using this step as a target for a BRANCH
or EXIT step.) Specifies a name for this specific step, or a null,
unmatched, or empty string ($null, $default, blank).

Count Required. Specifies the maximum number of times the server re-
executes the child steps in the REPEAT step. Set Count to 0 (zero) to
instruct the server that the child steps should not be re-executed. Set
Count to a value greater than zero to instruct the server to re-execute the
child steps up to a specified number of times. Set Count to -1 to instruct
the server to re-execute the child steps as long as the specified Repeat on
condition is true.

If you want to use the value of a pipeline variable for this property, type
the variable name between % symbols. For example, %servicecount%.
The variable you specify must be a String.

Repeat
interval

Optional. Specifies the number of seconds the server waits before re-
executing the child steps. Specify 0 (zero) to re-execute the child steps
without a delay.

If you want to use the value of a pipeline variable for this property, type
the variable name between % symbols. For example, %waittime%. The
variable you specify must be a String.

Repeat on Required. Specifies when the server re-executes the REPEAT child steps.
Select SUCCESS to re-execute the child steps when the all the child steps
complete successfully. Select FAILURE to re-execute the child steps when
any one of the child steps fails.

When Does REPEAT Fail?
The following conditions cause the REPEAT step to fail:

If “Repeat on” is set
to…

The REPEAT step fails if…

SUCCESS A child within the REPEAT block fails.

FAILURE The Count limit is reached before its children execute
successfully.

If the REPEAT step is a child of another step, the failure is propagated to its parent.

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1088

Examples of When to Use a REPEAT Step
“Repeat on” property is set to FAILURE. Use when a service accesses a remote server
and you want the service to retry if the server is busy. Make the service that accesses
the remote server a child element of a REPEAT flow step, and then set the Repeat
on property to FAILURE. If the service aempts to access the website and it fails, the
REPEAT flow step aempts to retry the service again. You also set a Repeat interval
that causes the REPEAT flow condition to wait a period of time before invoking the
service again.

“Repeat on” property is set to SUCCESS. Use in a web-automation service when you
want to repeat a load and query step and a “Next Page” buon exists in the current
document, indicating that there are additional pages to be processed. End the
REPEAT flow step when the query step fails to retrieve a “Next Page” buon in the
current document.

SEQUENCE
The SEQUENCE step forms a collection of child steps that execute sequentially. This is
useful when you want to group a set of steps as a target for a BRANCH step.

You can set an exit condition that indicates whether the SEQUENCE should exit
prematurely and, if so, under what condition. Specify one of the following exit
conditions:

Exit the SEQUENCE when a child step fails.Use this condition when you want to ensure
that all child steps are completed successfully. If any child step fails, the SEQUENCE
ends prematurely and the sequence fails.

Exit the SEQUENCE when a child step succeeds. Use this condition when you want to
define a set of alternative services, so that if one fails, another is aempted. If a child
step succeeds, the SEQUENCE ends prematurely and the sequence succeeds.

Exit the SEQUENCE after executing all child steps. Use this condition when you want to
execute all of the child steps regardless of their outcome. The SEQUENCE does not
end prematurely.

The SEQUENCE step

M
Odd Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1089

SEQUENCE Properties
The SEQUENCE step has the following properties.

Property Description

Comments Optional. Specifies a descriptive comment for this step.

Scope Optional. Specifies the name of a document (IData object) in the
pipeline to which you want to restrict this step. If you want this step to
have access to the entire pipeline, leave this property blank.

Timeout Optional. Specifies the maximum number of seconds that this step
should run. If this time elapses before the step completes, Integration
Server issues a FlowTimeoutException and execution continues with
the next step in the service.

If you want to use the value of a pipeline variable for this property, type
the variable name between % symbols. For example, %expiration%.
The variable you specify must be a String.

If you do not need to specify a time-out period, leave Timeout blank.

For more information about how Integration Server
handles flow step timeouts, refer to the description of the
wa.server.threadKill.timeout.enabled configuration parameter in
webMethods Integration Server Administrator’s Guide.

Label Optional. (Required if you are using this step as a target for a BRANCH
or EXIT step.) Specifies a name for this specific step, or a null,
unmatched, or empty string ($null, $default, blank).

Exit on Required. Specifies when to exit the SEQUENCE step.

 Specify this value… To...

 FAILURE Exit the SEQEUNCE when a child step fails.
Execution continues with the next flow step in the
flow service.

The SEQUENCE step executes its child steps until
either one fails or until it executes all its child
steps. This is the default.

Note: When a SEQUENCE step exits on failure,
the Integration Server rolls back the pipeline
contents. Integration Server returns the

M
Even Header

webMethods Flow Steps

webMethods Service Development Help Version 9.10 1090

Property Description
pipeline to the state it was in before the
SEQUENCE step executed.

 SUCCESS Exit the SEQUENCE when a child step executes
successfully or after all child steps fail. Execution
continues with the next flow step in the flow
service.

The SEQUENCE step executes its child steps until
either one succeeds or until it executes all its child
steps and all of the child steps fail.

Note: Successful execution of a MAP step within
a SEQUENCE step, including successful
execution of any transformers, does not cause
the containing SEQUENCE to exit when Exit
on is set to SUCCESS.

 DONE Exit the sequence after all child steps execute.

The SEQUENCE step executes all of its child steps
regardless of whether they succeed or fail.

Conditions that Will Cause the SEQUENCE Step to Fail
This section describes the conditions that cause failure based on the exit condition for the
sequence.

If Exit on is set to FAILURE, conditions that will cause a failure include:

One of the child steps fails.

The SEQUENCE step does not complete before the time-out period expires.

If Exit on is set to SUCCESS, conditions that will cause a failure include:

All the child steps fail.

The SEQUENCE step does not complete before the time-out period expires.

If Exit on is set to DONE, conditions that will cause a failure include:

The SEQUENCE step does not complete before the time-out period expires.

M
Odd Header
Data Types

webMethods Service Development Help Version 9.10 1091

49 Data Types

■ Data Types in IData Objects .. 1092

■ Java Classes for Objects ... 1094

■ How Designer Supports Tables ... 1096

M
Even Header

Data Types

webMethods Service Development Help Version 9.10 1092

Designer supports several data types for use in services. Each data type supported by
Designer corresponds to a Java data type and has an associated icon. Designer applies
different Java classes and displays different icons depending on whether the data type is
associated with:

An element in an IData object

An Object or Object list to which you have applied a Java class

Note: Designer does not provide a separate data type for tables.

Data Types in IData Objects
Data is passed in and out of a service through an IData object. An IData object is the
collection of name/value pairs on which a service operates. An IData object can contain
any number of elements of any valid Java objects, including additional IData objects and
IDataCodable objects.

Each element stored in an IData object corresponds to a data type. The following table
identifies the data types supported by Designer.

Data Type Icon Description Java Class

String String of characters. java.lang.String

String list A one-dimensional String
array.

java.lang.String[]

String table A two-dimensional String
array.

java.lang.String[][]

Document A data structure that is a
container for other variables.
Documents can contain
variables of any other data
type. The contents of a
document (IData object) are
stored as key/value pairs
where the variable name is
the key.

com.wm.data.IData

com.wm.util.Values

For more information,
see the webMethods
Integration Server Java
API Reference.

Document
list

A one-dimensional array of
IS document types (IData
[]or Values []).

com.wm.data.IData []

com.wm.util.Values []

com.wm.util.Table

M
Odd Header
Data Types

webMethods Service Development Help Version 9.10 1093

Data Type Icon Description Java Class

Document
reference

A document whose structure
is defined by an IS document
type.

Reference to an
existing object which
implements the
com.wm.data.IData
interface or a reference
to an existing
com.wm.util.Values
object.

Document
reference
list

A document list whose
structure is defined by an IS
document type.

Reference to an
existing object which
implements the
com.wm.data.IData
interface or a reference
to an existing
com.wm.util.Values
object.

Object A data type that does not
fall into any of the data
types described in the above
rows, and is not declared
to be one of the basic Java
classes supported natively
by Integration Server. This
icon is used for Objects of
unknown type.

Any subclass of
java.lang.Object.

Example:

java.io.InputStream

Object list An array of Objects of
unknown type.

An array of any subclass
of java.lang.Object.

Example:

java.io.InputStream[]

Note: Designer displays small symbols next to variable icons to indicate validation
constraints. Designer uses to indicate an optional variable and the ‡ symbol
to denote a variable with a content constraint. Designer also uses to
indicate that the variable has a default value that can be overridden assigned
to it and to indicate that the variable has a null value that cannot be
overridden assigned to it. A combination of the and symbols next to a
variable icon indicates that the variable has a fixed default value that is not
null and cannot be overridden.

M
Even Header

Data Types

webMethods Service Development Help Version 9.10 1094

Java Classes for Objects
You can further describe the contents of an Object or Object list variable by applying a
Java class to the variable. When you apply a supported Java class to an Object or Object
list variable, Designer changes the icon for the variable. Applying Java classes to Objects
and Object lists can provide the following benefits:

Other developers can easily see the types your service expects as inputs and
produces as output.

Other developers can easily see the types contained in an IS document type.

You can input values for the variable when running and debugging.

You can assign values to variables in the pipeline using on the Pipeline view
toolbar.

Note: When you input values for a constrained Object during debugging or when
assigning a value in the pipeline, Designer validates the data to make sure it is
of the correct type.

The following table identifies the Java classes you can apply to Objects and Object list
variables in Designer.

Data Type Icon Description Java Class

boolean True or false. java.lang.Boolean

boolean list A one-dimensional boolean
array.

java.lang.Boolean[]

byte Signed integer. The value must
be greater than or equal to –128
but less than or equal to 127.

java.lang.Byte

byte [] A one-dimensional byte array. primitive type

byte list A one-dimensional byte array. java.lang.Byte[]

character A single unicode character. java.lang.Character

character
list

A one-dimensional character
array.

java.lang.Character[]

M
Odd Header
Data Types

webMethods Service Development Help Version 9.10 1095

Data Type Icon Description Java Class

date Date and time. java.util.Date

date list A one-dimensional date array. java.util.Date[]

double Double-precision floating point
number.

java.lang.Double

double list A one-dimensional double
array.

java.lang.Double[]

float Standard-precision floating
point number.

java.lang.Float

float list A one-dimensional float array. java.lang.Float[]

integer Signed integer. The value must
be greater than or equal to
-2147483648 but less than or
equal to 2147483647.

java.lang.Integer

integer list A one-dimensional integer
array.

java.lang.Integer[]

long Signed integer. The value
must be greater than or equal
to –9223372036854775808
but less than or equal to
9223372036854775807.

java.lang.Long

long list A one-dimensional long array. java.lang.Long[]

short Signed integer. The value must
be greater than or equal to
-32768 but less than or equal to
32767.

java.lang.Short

short list A one-dimensional short array. java.lang.Short[]

XOPObject A field in a SOAP message
that is to be sent/received as a
streamed MTOM aachment.

com.wm.util.XOPObject

M
Even Header

Data Types

webMethods Service Development Help Version 9.10 1096

Data Type Icon Description Java Class

Note: Integration Server only
supports this Java wrapper
type for web services.

How Designer Supports Tables
With the exception of String table, Designer does not provide a separate data type for
tables. However, tables can appear as document lists or Objects. Tables that are instances
of com.wm.util.Table appear as document lists in Designer. These tables can be used
as document lists in flow services. Services in the WmDB package use tables that are
instances of wm.com.util.Table.

Tables can also be declared as Objects. Objects or user-defined table-like objects that do
not implement the com.wm.util.pluggable.WMIDataList interface appear as Objects of
unknown type in Designer.

M
Odd Header

Icons

webMethods Service Development Help Version 9.10 1097

50 Icons

■ Package Navigator View Icons .. 1098

■ UDDI Registry View Icons ... 1102

■ Flat File Element Icons .. 1102

■ Flow Step Icons ... 1103

■ OData Service Icons .. 1104

■ REST API Descriptor Icons ... 1105

■ Schema Component Icons ... 1106

M
Even Header

Icons

webMethods Service Development Help Version 9.10 1098

This topic describes the icons used to identify elements in the Service Development
perspective.

Package Navigator View Icons
The following icons are used to represent elements in the Package Navigator view.

This
icon...

Represents a...

Server. You can have multiple server contexts displayed in Designer.
The active server context is the one that is highlighted in Package
Navigator view. To display the contents of the server, click the
symbol next to its name.

Server. The Integration Server instance that is currently used as the as
the (local development server.

Server. The Integration Server instance that is currently not used as a
local development server.

Package. A package contains a set of services and related files, such as
specifications, IS document types, and output templates. To display
the contents of a package, click next to its name.

Note: Designer places Trading Networks document types in a package
named “Trading Networks Documents”.

Folder.A folder contains related services and optional folders (called
subfolders). To display the contents of a folder, click next to its
name.

REST resource folder. A folder that contains the services that act as REST
resources. To display the services for a REST resource, click next to
its name. Services can be named _get, _put, _post, _delete, or _default.

Flow service. A flow service is a service wrien in the webMethods flow
language.

Java service. A Java service is a service wrien in Java.

C service. A C service is a service wrien in C/C++.

M
Odd Header

Icons

webMethods Service Development Help Version 9.10 1099

This
icon...

Represents a...

Cloud connector service. A cloud connector service works with
webMethods CloudStreams to integrate an on-premise application
with a SaaS application.

.NET service. A .NET service is a service that calls methods imported
from .NET assemblies (using the webMethods Package for
Microsoft .NET).

OData service. An OData service is a service that exposes and allows
clients to access the data in an OData data model.

IS document type. An IS document type contains a set of fields used to
define the structure and type of data in a document.

Publishable document type. A publishable document type is an IS
document type with specific publishing properties. Instances of
publishable document types can be published and subscribed to.
Publishable document types can be used anywhere an IS document
type is needed.

REST API descriptor. A REST API descriptor is a collection of REST
resources and meta data, including how to access the resources and
what parameters are expected and returned, that describe a REST API.

XML document type. An XML document type corresponds to a global
element declaration, global aribute declaration, or global complex
type definition in an XML schema definition.

XML field. An XML field corresponds to a global element declaration
with simple content as defined in an XML schema definition.

Specification. A specification is a formal description of a service’s inputs
and outputs.

IS schema. An IS schema is the blueprint or model document against
which you validate an XML document. The schema defines what can
and cannot be contained in the XML documents it validates.

webMethods messaging trigger. A webMethods messaging trigger
is trigger that subscribes to and processes documents published/
delivered locally or to the Broker.

M
Even Header

Icons

webMethods Service Development Help Version 9.10 1100

This
icon...

Represents a...

JMS trigger. A JMS trigger is a trigger that receives messages from a
destination (queue or topic) on a JMS provider and then processes
those messages.

Provider web service descriptor (WSD). A web service descriptor that
contains the definition of a provider IS web service. A provider web
service allows an external user to invoke an existing IS service as an
“operation” of the web service.

Consumer web service descriptor (WSD). A web service descriptor that
contains the definition of a consumer web service. Consumer web
services are external web services that can be invoked from within the
local Integration Server.

Web service connector. A web service connector is a flow service
that invokes a web service located on a remote server. Designer
automatically generates a web service connector when it creates a web
service descriptor for a consumer web service. Designer can also create
a web service connector from an existing WSDL.

Adapter service. An adapter service connects to an adapter’s resource
and initiates an operation on the resource. Adapter services
are created using service templates included with the adapter.
For information about creating adapter services, refer to the
documentation provided with the adapter.

Adapter notification. An adapter notification enables an adapter to
receive event data from the adapter’s resource. There are two types of
adapter notifications:

Polling notifications, which poll the resource for events that occur on
the resource.

Listener notifications, which work with listeners to detect and
process events that occur on the adapter resource.

For information about creating an adapter notification, refer to the
documentation provided with the adapter.

Publishable document type for an adapter notification. An adapter
notification can have an associated publishable document type that the
adapter uses to send the notification data to an Integration Server or a
Broker.

M
Odd Header

Icons

webMethods Service Development Help Version 9.10 1101

This
icon...

Represents a...

Listener.A listener is an object that connects to an adapter resource
and waits for the resource to deliver data when an event occurs on
the resource. Listeners work with listener notifications to detect and
process event data on the adapter resource. For information about
creating a listener, refer to the documentation provided with the
adapter.

Connection. A connection is an object that contains parameters that
adapter notifications and listeners use to connect to a resource. For
information about creating a connection, refer to the documentation
provided with the adapter.

Flat file dictionary. A flat file dictionary contains record definitions, field
definitions, and composite definitions that can be used in multiple flat
file schemas.

Flat file schema. A flat file schema is the blueprint that contains the
instructions for parsing or creating the records in a flat file, as well as
the constraints to which an inbound flat file document should conform
to be considered valid. Using flat file schemas, you can translate
documents into and from flat file formats.

XSLT service. An XSLT service converts XML data into other XML
formats or into HTML, using rules defined in an associated XSLT
stylesheet.

Blaze rule service. A rule deployed to Integration Server by Blaze
Advisor. Integration Server generates them as rule services and
executes them at run time.

Trading Networks document type. You can drag and drop a Trading
Networks (TN) document type into a process model. The “drop”
creates a Receive step in the process, with the subscription set to the
TN document type name.

Unknown Node. The webMethods component used to create/develop the
element is not installed on the client machine.

Unknown Service. The webMethods component used to create this
service is not installed on the client machine.

M
Even Header

Icons

webMethods Service Development Help Version 9.10 1102

UDDI Registry View Icons
The UDDI Registry view contains icons to represent the UDDI Registry, the registered
business entities, and the web services that have been published to the UDDI Registry.
The following table identifies these icons.

This
icon...

Represents a...

UDDI Registry Node.Designer displays the URL of the UDDI Registry to
which you are connected next to the registry icon. Below the UDDI
Registry name, Designer displays all of the business entities registered
in that UDDI Registry.

Business Entity. A business entity is a publisher of web services to the
UDDI Registry. Below the business entity name, Designer displays the
web services published by that entity.

Web service. A web service is a software application that can be
accessed remotely, using XML-based languages to communicate.
From a web service or a WSDL, you can create a consumer web service
descriptor and connector. Designer can invoke the connector to run
the remote web service. From an existing IS service or WSDL, you
can create a provider web service descriptor. You can then publish
the web service descriptor to a UDDI Registry so that the IS service it
describes can be invoked by an external user as an “operation” of the
web service.

Flat File Element Icons
A flat file schema or dictionary contains elements used to define the structure and
content of the flat file. Flat file schemas or dictionaries can contain elements that are
defined inline or contain references to elements defined in a flat file dictionary.

The following table identifies the icon used for each flat file element

Icon Element Description

Schema Definition The flat file schema. The schema definition is
the root element in the flat file schema. The
schema definition cannot be moved or deleted
from a flat file schema.

M
Odd Header

Icons

webMethods Service Development Help Version 9.10 1103

Icon Element Description

Record Definition A collection of fields, composites, and records.

Record Reference A reference to a record definition in a flat file
dictionary.

Note: If “Reference not found” appears after the
element name, the referenced record no
longer exists.

Composite
Definition

A collection of fields. Fields within a composite
are referred to as subfields.

Composite
Reference

A reference to a composite definition in a flat
file dictionary.

Note: If “Reference not found” appears after the
element name, the referenced composite no
longer exists.

Field Definition An atomic piece of data.

Field Reference A reference to a field definition in a flat file
dictionary.

Note: If “Reference not found” appears after
the element name, the referenced field no
longer exists.

Flow Step Icons
A flow step is a basic unit of work (expressed in the webMethods flow language) that
Integration Server interprets and executes at run time. The webMethods flow language
provides flow steps that invoke services and flow steps that let you edit data in the
pipeline.

The following table identifies the icon used for each flow step.

Icon Step Description

INVOKE Executes a specified service.

M
Even Header

Icons

webMethods Service Development Help Version 9.10 1104

Icon Step Description

MAP Performs specified editing operations on the pipeline
(such as mapping variables in the pipeline, adding
variables to the pipeline, and dropping variables from
the pipeline).

BRANCH Executes a specified flow step based on the value of a
specified variable in the pipeline.

LOOP Executes a set of flow steps once for each element in a
specified array.

REPEAT Re-executes a set of flow steps up to a specified number
of times based on the successful or non-successful
completion of the set.

SEQUENCE Groups a set of flow steps into a series. The SEQUENCE
step is implicit in most flow services (that is, the steps in
a flow service are treated as a series). However, at times
it is necessary to explicitly group a subset of flow steps
using SEQUENCE so that they can be treated as a unit.

EXIT Controls the execution of a flow step (for example,
abort an entire flow service from within a series of
deeply nested steps, throw an exception without
writing a Java service, or exit a LOOP or REPEAT
without throwing an exception).

OData Service Icons
An OData service contains OData elements, properties, and associations used to define
the signature of the service.

The following table identifies these icons.

Icon Description

Entity Type OData element. A uniquely identifiable OData
element that is used to describe the structure of data in the Entity
Data Model and can include a key that consists of one or more
references to structural properties.

M
Odd Header

Icons

webMethods Service Development Help Version 9.10 1105

Icon Description

Complex Type OData element. A structural type OData element
consisting of a list of properties but with no key, used to
represent entities in the OData service.

External Entity Type OData element. External entity types are
entity types available through an external source provider. For
example, if you choose to use webMethods Adapter for JDBC
as your external source provider or source type, you can use
Database Tables as entity types to create your entities.

Simple OData property. An OData element property that can
contain primitive data (such as a string, an integer, or a Boolean
value) that is declared as part of the definition of an OData
element.

Complex OData property. An OData element property that can
contain structured data such as a Complex Type.

Key OData property. Each Entity Type should have at least one
Key property.

Single OData association. An OData association that represents a
unidirectional relationship between two entity types.

Bidirectional OData association. An OData association that
represents a bidirectional relationship between two entity types.

Navigation property. An OData element that defines the
relationship between two Entity Types.

Sync OData property. An OData property that allows you to edit
the external entities in an OData service.

REST API Descriptor Icons
A REST API descriptor contains REST resources that identify the operations available
in a REST API. The following table identifies the icons used for REST resources and
operations.

M
Even Header

Icons

webMethods Service Development Help Version 9.10 1106

Icon Name Description

Rest resource A folder that contains the services that act
as REST resources.

Operation An operation that corresponds to a service
that acts as a rest resource. Operations can
be named GET, PUT, POST, or DELETE.

Parameters Input parameters for the operation in a
REST resource.

Responses Responses returned by the operation.

Schema Component Icons
A schema is a free-standing element in the Integration Server namespace that is used
to validate XML documents. Within Integration Server and Designer, a schema is often
referred to as an IS schema to differentiate it from XML schema and flat file schema.

When you select a schema in the Package Navigator view, the Schema Browser lists all
of the components of the schema. The following table identifies the icons used for each
schema component.

Symbol Description

ELEMENTS. Used to group together the global element
declarations in an IS schema. This symbol and category name do
not correspond to a component in an XML Schema definition or
a DTD.

Element declaration. An element declaration associates an element
name with a type definition. This symbol corresponds to the
<element> declaration in an XML schema definition and the
ELEMENT declaration in a DTD.

Element reference. An element reference is a reference from an
element declaration in a content specification to a globally
declared element.

In an IS schema generated from an XML schema, this symbol
corresponds to the ref="globalElementName" aribute in an
<element> declaration.

M
Odd Header

Icons

webMethods Service Development Help Version 9.10 1107

Symbol Description

In an IS schema generated from DTD, this symbol appears next
to an element that is a child of another element. The parent
element has only element content.

Any element declaration. In XML schema definition, an <any>
element declaration is a wildcard declaration used as a
placeholder for one or more undeclared elements in an instance
document.

In a DTD, an element declared to be of type ANY can contain
any well-formed XML. This symbol corresponds to an element
declared to be of type ANY.

Because an <any> element declaration does not have a name, the
Schema Browser uses 'Any' as the name of the element.

ATTRIBUTES. At the top level of the Schema browser, used to
group together the global aribute declarations in an IS schema.
Under a complex type definition, used to group together the
aribute declarations or aribute references in a complex type
definition. This symbol and category name do not correspond to
a component in an XML Schema definition or a DTD.

Attribute declaration. An aribute declaration associates an
aribute name with a simple type definition. This symbol
corresponds to the XML schema <attribute> declaration or the
aribute in a DTD ATTLIST declaration.

Attribute reference. An aribute reference is a reference from a
complex type definition to a globally declared aribute. This
symbol corresponds to the ref="globalAributeName" aribute in
an aribute declaration.

DTDs do not have aribute references. Consequently, aribute
references do not appear in IS schemas generated from DTDs.

Any attribute declaration. An any aribute declaration is a wildcard
declaration used as a placeholder for undeclared aributes
in an instance document. This symbol corresponds to the
<anyAttribute> declaration in an XML schema definition.

Because an <anyAttribute> declaration does not specify an
aribute name, the Schema Browser uses 'Any' as the name of
the aribute.

M
Even Header

Icons

webMethods Service Development Help Version 9.10 1108

Symbol Description

SIMPLE TYPES. Used to group together the global simple type
definitions in an IS schema. This symbol and category name do
not correspond to a component in an XML Schema definition or
a DTD.

Simple type definition. A simple type definition specifies the data
type for a text-only element or an aribute. Unlike complex type
definitions, simple type definitions cannot carry aributes. This
symbol corresponds to the <simpleType> element in an XML
schema definition.

If the simple type definition is unnamed (an anonymous type),
the Schema Browser displays 'Anonymous' as the name of the
simple type definition.

COMPLEX TYPES. Used to group together the global complex type
definitions in an IS schema. This symbol and category name do
not correspond to a component in an XML Schema definition or
a DTD.

Complex type definition. A complex type definition defines the
structure and content for elements of complex type. (Elements
of complex type can contain child elements and carry aributes.)
This symbol corresponds to the <complexType> element in an
XML schema definition.

If the complex type definition is unnamed (an anonymous type),
the Schema Browser displays 'Anonymous' as the name of the
complex type definition.

Sequence content model. A sequence content model specifies that
the child elements in the instance document must appear in the
same order in which they are declared in the content model. This
symbol corresponds to the <sequence> compositor in an XML
schema or a sequence list in an element type declaration in a
DTD.

Choice content model. A choice content model specifies that only
one of the child elements in the content model can appear in the
instance document. This symbol corresponds to the <choice>
compositor in an XML schema definition or a choice list in a DTD
element type declaration.

All content model. An all content model specifies that child
elements can appear once, or not at all, and in any order in

M
Odd Header

Icons

webMethods Service Development Help Version 9.10 1109

Symbol Description
the instance document. This symbol corresponds to the <all>
compositor in an XML schema definition.

Mixed content. Elements that contain mixed content allow
character data to be interspersed with child elements. This
symbol corresponds to the mixed="true" aribute in an XML
schema complex type definition or a DTD element list in which
the first item is �PCDATA.

Empty content. In an XML schema, an element has empty
content when its associated complex type definition does not
contain any element declarations. An element with empty
content may still carry aributes.

In a DTD, an element has empty content when it is declared to be
of type EMPTY.

M
Even Header

webMethods Service Development Help Version 9.10 1110

M
Odd Header

Toolbars

webMethods Service Development Help Version 9.10 1111

51 Toolbars

■ Compare Editor Toolbar ... 1112

■ Document Type Editor Toolbar .. 1112

■ Flat File Schema and Dictionary Editors Toolbars ... 1113

■ Package Navigator View Toolbar ... 1114

■ Pipeline View Toolbar ... 1114

■ REST API Descriptor Toolbar .. 1116

■ Service Editor Toolbar .. 1116

■ Results View Toolbar ... 1117

■ Specification Editor Toolbar ... 1118

■ UDDI Registry View Toolbar .. 1119

■ Variables View Toolbar ... 1120

■ Web Service Descriptor Editor Toolbar .. 1120

M
Even Header

Toolbars

webMethods Service Development Help Version 9.10 1112

This topic describes the various toolbar buons available in the Service Development
perspective.

Compare Editor Toolbar
The following buons and message appear on the compare editor toolbar.

Button Description

Takes you to the previous different in the change list.

Takes you to the next difference in the change list.

Merges changes from left to right.

Merges changes from right to left.

Toolbar message which indicates name(s) of the element(s)
being compared and the total number of leaf node differences.

Document Type Editor Toolbar
The following buons appear on the document type editor toolbar.

Button Description

Deletes the selected variable. If you select a variable that has children,
the children are deleted as well. Equivalent to Edit > Delete.

Moves the selected variable up one position. If the selected variable
cannot be moved up from its current position, this buon is not
available. (Try promoting or demoting it first.)

Moves the selected variable down one position. If the selected variable
cannot be moved down from its current position, this buon is not
available. (Try promoting or demoting it first.)

Promotes the selected variable one position to the left. You use this
buon to move a variable out of a document or document list. If the

M
Odd Header

Toolbars

webMethods Service Development Help Version 9.10 1113

Button Description
variable cannot be shifted left from its current position, this buon is
not available.

Demotes the selected variable one position to the right. You use this
buon to make a variable a member of a document or document list.
If the variable cannot be shifted right from its current position, this
buon is not available.

Displays a list of data types that you can use to create variables for the
document type. To create a variable for the document type, select the
appropriate data type from this list, and then give the new variable a
name.

Flat File Schema and Dictionary Editors Toolbars
The following buons appear on the flat file schema editor toolbar and on the flat file
dictionary editor toolbar.

Button Description

Adds a new element.

Deletes the selected element.

Moves the selected element up.

Moves the selected element down.

Promotes the selected element in a parent/child hierarchy.

Demotes the selected element in the parent/child hierarchy.

Creates a document type from the flat file schema.

Note: This toolbar buon appears on the flat file schema editor
toolbar only.

M
Even Header

Toolbars

webMethods Service Development Help Version 9.10 1114

Package Navigator View Toolbar
The following buons appear on the Package Navigator view toolbar.

Button Description

Collapses all of the expanded Integration Servers in Package Navigator
view.

Opens the editor for the selected element in Package Navigator view.

Filters the contents of Package Navigator view by displaying elements
of a specified type only.

Opens Integration Servers preferences where you can add, edit, or
remove Integration Server definitions.

Sorts the contents of Package Navigator view alphabetically by name
or alphabetically by element type.

Runs a service or an element.

Pipeline View Toolbar
The following buons appear on the Pipeline view toolbar.

Button Description

Creates a link between the variables in the pipeline. Links can be
created between variables in Pipeline In and Service In, or between
Service Out and Pipeline Out. In a MAP step, links can be created
between variables in Pipeline In and Transformers, or between
Transformers and Pipeline Out. To link a variable from one stage to
another, select the two variables, and then click the link buon. This
buon is not available unless you select two variables that can be
linked successfully.

Assigns a value to the selected variable in the Service In or Pipeline Out
stage.

M
Odd Header

Toolbars

webMethods Service Development Help Version 9.10 1115

Button Description

Drops the selected variable from the pipeline. You may remove a
variable from the Pipeline In or Pipeline Out stage. When you drop a
variable, that variable is removed permanently from the pipeline and
is not available to subsequent services in the flow.

Creates a link to or from the value at a specific position in an array
variable. This buon is available only when at least one of the variables
connected by a link is an array variable.

Adds a new variable to the selected stage in the pipeline. This is a
useful way to create a variable that is used by a service in a flow (that
is, taken as input or produced as output), but was omied from the
input/output signature.

Moves the selected variable up one position. If the selected variable
cannot be moved up from its current position, this buon is not
available. (Try promoting or demoting it first.)

Moves the selected variable down one position. If the selected variable
cannot be moved down from its current position, this buon is not
available. (Try promoting or demoting it first.)

Promotes the selected variable one position to the left. If the variable
cannot be shifted left from its current position, this buon is not
available.

Demotes the selected variable one position to the right. If the variable
cannot be shifted right from its current position, this buon is not
available.

Inserts a service for use as a transformer in a MAP step. This feature is
only available when a MAP step is selected in the editor.

Enables the Pipeline In, Pipeline Out, Service In, Service Out, and
Transformers columns to be scrolled horizontally and vertically
independent each other. Independent scrolling is especially useful
when mapping a large amount of data in the Pipeline view.

M
Even Header

Toolbars

webMethods Service Development Help Version 9.10 1116

REST API Descriptor Toolbar
The following buons that are unique to Designer appear on the REST API descriptor
editor toolbar.

Button Description

Deletes the selected REST resource from the REST API
descriptor.

Adds a REST resource to a REST API descriptor.

Service Editor Toolbar
The following buons that are unique to Designer appear on the flow service and Java
service editor toolbar.

Button Description

Deletes the selected flow step. If you select a step that has children, the
children are deleted as well. Equivalent to Edit > Delete.

Moves the selected flow step up in the list. If the selected step cannot
be moved up from its current position, this buon is not available. (Try
promoting or demoting it first.)

Moves the selected flow step down in the list. If the selected step
cannot be moved down from its current position, this buon is not
available. (Try promoting or demoting it first.)

Promotes a flow step in the parent/child hierarchy. This action moves
the step up one level in the hierarchy.

Demotes a flow step in the parent/child hierarchy. This action makes
the selected step a child of the preceding parent step. (This buon is
only available when you select a step that can become a child.)

Inserts the previously inserted flow step.

Click the buon next to to view the list of flow steps and a
list of commonly used services that can be inserted into the flow

M
Odd Header

Toolbars

webMethods Service Development Help Version 9.10 1117

Button Description
service as an INVOKE step. You can edit the Window > Preferences
>Software AG>Service Development> Flow Service Editor preferences to
customize this list of services to suit your needs.

Inserts a MAP step into the flow service. A MAP step performs
specified editing operations on the pipeline (for example, adding or
dropping variables to or from the pipeline).

Inserts a BRANCH step into the flow service. A BRANCH step
executes a specified step based on the value of a specified variable in
the pipeline.

Inserts a LOOP step into the flow service. A LOOP step executes a set
of steps once for each element in a specified array.

Inserts a REPEAT step into the flow service. A REPEAT step re-
executes a set of steps up to a specified number of times based on the
successful or non-successful completion of the set.

Inserts a SEQUENCE step into the flow service. A SEQUENCE step
groups a set of steps into a series. The SEQUENCE step is implicit in
most cases where a group of flow steps are listed one after another.
However, it is often useful to explicitly insert the SEQUENCE step to
override default operating parameters. It is also useful for seing up
the branches of a BRANCH step.

Inserts an EXIT step into the flow service. An EXIT step controls
the execution of a flow steps; for example, halt an entire flow from
within a series of deeply nested steps, throw an exception without
writing a Java service, or exit a LOOP or REPEAT without throwing an
exception.

Inserts an INVOKE step into the flow service. Select from the
displayed list of services or browse to select a service.

Results View Toolbar
The following buons appear on the Results view toolbar.

M
Even Header

Toolbars

webMethods Service Development Help Version 9.10 1118

Button Description

Reruns launch configurations using same input data.

Removes the selected result from Results view.

Removes all results displayed in Results view.

Goes to the flow step at which an error occurred while running or
debugging a flow service.

Saves the service results pipeline to a file in your local file system.

Saves the service results pipeline to the
IntegrationServer_directory instances\instance_name \pipeline directory
on the machine that hosts Integration Server.

Restores the pipeline contents from a file on your local file system.

Restores the pipeline contents from the
IntegrationServer_directory \instances\instance_name \pipeline directory
on the machine that hosts Integration Server.

Pins a result to Results view so that the result is not removed from
Results view.

Sorts the results in the history pane of Results view alphabetically by
element names.

Specification Editor Toolbar
The following buons that are unique to Designer appear on the specification editor
toolbar.

Button Description

Deletes the selected variable. If you select a variable that has children,
the children are deleted as well. Equivalent to Edit > Delete.

M
Odd Header

Toolbars

webMethods Service Development Help Version 9.10 1119

Button Description

Moves the selected variable up one position. If the selected variable
cannot be moved up from its current position, this buon is not
available. (Try promoting or demoting it first.)

Moves the selected variable down one position. If the selected variable
cannot be moved down from its current position, this buon is not
available. (Try promoting or demoting it first.)

Promotes the selected variable one position to the left. You use this
buon to move a variable out of a document or document list. If the
variable cannot be shifted left from its current position, this buon is
not available.

Demotes the selected variable one position to the right. You use this
buon to make a variable a member of a document or document list.
If the variable cannot be shifted right from its current position, this
buon is not available.

Displays a list of data types that you can use to create variables for
the specification. To create a variable for the specification, select the
appropriate data type from this list, and then give the new variable a
name.

UDDI Registry View Toolbar
The following buons appear on the UDDI Registry view toolbar.

Button Description

Connect to a UDDI Registry while working in Designer.

Disconnect from a UDDI Registry while working in Designer.

Refresh the display of web services.

Copy a web service.

Publish a copied web service to the selected business entity in the
UDDI Registry view.

M
Even Header

Toolbars

webMethods Service Development Help Version 9.10 1120

Button Description

Create an expression that filters the contents of the UDDI Registry
view based on the value of a web service property.

Remove the filter from the contents of the UDDI Registry view and
display all the published web services.

Create a web service descriptor (WSD) from the web service selected in
the UDDI Registry view.

Variables View Toolbar
The following buons that are unique to Designer appear on the Variables view toolbar.

Button Description

Drop a selected variable from the pipeline passed to the next step in a
debugging session.

Deletes a row in a table for the selected variable.

Saves the pipeline as an XML document to your local file system.

Loads a pipeline from a local file. The pipeline you load completely
replaces the current debugging pipeline.

Saves the pipeline as an XML file on in the
IntegrationServer_directory instances\instance_name \pipeline directory
on the machine that hosts the Integration Server.

Loads a pipeline from a file in the IntegrationServer_directory instances
\instance_name \pipeline directory on the machine that hosts the
Integration Server.

Web Service Descriptor Editor Toolbar
The following buons appear on the web service descriptor (WSD) editor toolbar.

M
Odd Header

Toolbars

webMethods Service Development Help Version 9.10 1121

Button Description

Adds one or more operations to a web service descriptor.

Enabled only for provider web service descriptors created from
an Integration Server service (in other words, you cannot add an
operation to a consumer web service descriptor or a provider web
service descriptor created from a WSDL URL or a UDDI Registry). The
operation is added to the Operations tab as well as the Binders tab.

Adds a binder definition (SOAP/Transport/Use-Style) to a web service
descriptor.

Enabled only for provider web service descriptors created from an
Integration Server service (in other words, you cannot add a binder
definition to a consumer web service descriptor or a provider web
service descriptor created from a WSDL URL or a UDDI Registry). All
existing operations are duplicated within the new binder.

Adds a header or fault element to a Request or Response.

If a fault element is selected when you click this buon, the default
Designer document selector dialog enables you to add a document for
the fault.

If a header element is selected when you click this buon, a special
document selector displays only those document types supported by
the header handlers listed in the Handler tab.

Add a header handler to a web service descriptor.

Opens a drop-down list of the existing header handlers. The selected
handler is added to the top of the list.

Aach a policy to a web service descriptor.

Analyze web service descriptor for WS I conformance.

Regenerate the specified web service connectors.

Enabled only for consumer web service descriptors. When no
operations are selected, this buon refreshes (regenerates) all web
service connectors in the web service descriptor. When one or more
operations are selected, only the web service connectors for the
selected operations are refreshed. This process overwrites existing web
service connectors.

M
Even Header

webMethods Service Development Help Version 9.10 1122

M
Odd Header

Keyboard Shortcuts

webMethods Service Development Help Version 9.10 1123

52 Keyboard Shortcuts

You can use the following keyboard shortcuts to navigate and perform actions in the
Service Development perspective.

Command Windows and Linux Mac

Collapse CTRL+Minus sign (-) ALT+Left

Debug flow service CTRL+D COMMAND+D

Drop CTRL+SHIFT+O COMMAND+SHIFT+O

Expand CTRL+Plus sign (+) ALT+Right

Locate element ALT+SHIFT+L ALT+SHIFT+L

Move Up CTRL+SHIFT+ Up Arrow COMMAND+SHIFT+UP

Move Down CTRL+SHIFT+ Down
Arrow

COMMAND+SHIFT
+DOWN

Move Left CTRL+SHIFT+ Left Arrow COMMAND+SHIFT
+LEFT

Move Right CTRL+SHIFT+ Right
Arrow

COMMAND+SHIFT
+RIGHT

Open element in
editor

CTRL+SHIFT+A COMMAND+SHIFT+A

Rename F2 FUNCTION (fn)+F2

Run service CTRL+R COMMAND+R

Run in browser CTRL+B COMMAND+B

Set Value CTRL+SHIFT+V COMMAND+SHIFT+V

M
Even Header

webMethods Service Development Help Version 9.10 1124

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1125

53 Conditional Expressions

■ Guidelines for Writing Expressions and Filters .. 1126

■ Syntax ... 1127

■ Operators for Use in Conditional Expressions ... 1130

■ Operator Precedence in Conditional Expressions ... 1137

■ Addressing Variables .. 1138

■ Rules for Use of Expression Syntax with the Broker ... 1141

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1126

Integration Server provides syntax and operators that you can use to create expressions
for use with the BRANCH step, pipeline mapping, and in trigger conditions.

In a BRANCH step, you can use an expression to determine the child step that
webMethods Integration Server executes. At run time, the first child step whose
conditional expression evaluates to “true” is the one that will be executed. For more
information about the BRANCH step, see "BRANCH" on page 1076.

In pipeline mapping, you can place a condition on the link between variables. At
run time, webMethods Integration Server only executes the link if the assigned
condition evaluates to “true.” For more information about applying conditions to
links between variables, see "Linking Variables Conditionally" on page 279.

For webMethods messaging triggers, you can further specify the documents that a
trigger receives and processes by creating filters for the publishable document types.
A filter specifies criteria for the contents of a document.

Note: The conditional expressions syntax is for filters created for documents
received from Broker or locally and for the local filter for a document
received from Universal Messaging. For information about the syntax
for creating a provider filter on Universal Messaging, see the Universal
Messaging documentation.

For JMS triggers, you can create local filters to further limit the messages a JMS
trigger processes. A local filter specifies criteria for the contents of the message
body. Integration Server applies a local filter to the message after the JMS trigger
receives the message from the JMS provider. If the message meets the filter criteria,
Integration Server executes the trigger service specified in the routing rule.

Guidelines for Writing Expressions and Filters
When you write expressions and filters, keep the following points in mind:

Operators, variable names, and strings are case sensitive.

White space between the tokens of an expression is ignored.

Some syntax that is valid on the Integration Server is not valid on the Broker. Broker
saves the filter with the document type subscription on the Broker only if the syntax
is valid. Filters are always saved on the Integration Server. For more information
about using trigger filters when Broker is the messaging provider, see "Creating
Filters for Use with Broker " on page 693.

For a list and an example of syntax that prevents syntax from being saved on the
Broker, see "Rules for Use of Expression Syntax with the Broker" on page 1141.

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1127

Syntax
When you create an expression, you need to determine which values to include in
the expression. Values can be represented as variable names, regular expressions,
numbers, and Strings. The following table identifies the types of values you can use in
an expression and the syntax for each value type.

Value Type Syntax Description

Regular
Expression

/
regularExpression/

Paern-matching string. Use the following
syntax for paern matching of variable
values:

variableName = /regularExpression/

 Example Explanation

 sku = /
^WM[0-9]+/

Evaluates to true if the
sku variable has a value
that starts with “WM”
and is followed by one
or more digits (WM001,
WM95157)

Variable variableName–
OR–%variableName
%

Variable name. For information about how to
use this syntax to address children of other
variables or elements of array variables, see
"Addressing Variables" on page 1138.

 Example Explanation

 price Value of the price
variable

 %address/
postalCode%

Value of the postalCode
variable in the address
document

 %poItems[0]% Value of the first element
in the poItems list.

String "string" –
OR–'string'

Literal string. Use this value type to compare
the value of a variable to a string.

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1128

Value Type Syntax Description

 Example Explanation

 “Favorite
Customer”

Value is the literal string
“Favorite Customer”

 ‘Favorite
Customer’

Value is the literal string
“Favorite Customer”

 Note: Strings not enclosed in quotes (' or ") are
interpreted as variable names.

Number number Number. The following examples indicate
the accepted number formats:

 Example Explanation

 -10, 5, 100 Integers

 5.0, 6.02 Floating point number
(java.lang.Double)

 6.345e+4 Scientific notation

Null $null Variable is null or missing. Typically
compared with a variable name to determine
if the variable is null or missing from the
input data.

 Example Explanation

 %quantity% =
$null

Evaluates to true if
the quantity variable is
missing from the input
data or is null

Comparing Java Objects to Constants
If you want to create a conditional expression that compares a constrained Java Object to
a constant value, you must use the following syntax to represent the constant value:

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1129

If the object is
constrained as
type...

Use this syntax...

Boolean "true" or "false"

Example:%myBoolean%=="true"

The string constant in the expression is case insensitive.
For example, the expressions %myBoolean%=="true" and
%myBoolean%=="tRUe" are equivalent.

Byte "xx"

Example: "10" (for 0X0A)

Character "a"

Example: "C"

Double xxxxxx.x or xxxxxx or -xxxxxx

Example: 123456.0, 123456, -123456

Float xxxx.xor -xxxx.x

Example: 1234.1, -1234.1

Integer xxxxx or -xxxxx

Example: 12345, -12345

Long xxxxxx or -xxxxxx

Example: 123456 or -123456

Short xxx or -xxx

Example: 123 or -123

Date "yyyy-MM-dd HH:mm:ss timezone"

Example: "2002-06-25 00:00:00 EDT"

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1130

Verifying Variable Existence
Sometimes you might want to create an expression that checks only for the existence of
a variable in the pipeline or checks to see whether a variable is null. The following table
describes the syntax used to check the pipeline for variable existence.

To check if... Use this syntax... Description

Variable exists variableName Evaluates to true if the specified variable
exists in the pipeline and has a non-null
value.

Variable does
not exist

!variableName Evaluates to true if the specified variable
does not exist in the pipeline or is null.

Operators for Use in Conditional Expressions
Expressions can include relational and logical operators.

Relational Operators are used to compare values to each other.

Logical Operators are used to combine multiple expressions into a single condition.

Relational Operators
You can use relational operators to compare the value of two fields or you can compare
the value of a field with a constant. Integration Server provides two types of relational
operators: standard and lexical.

Standard Relational Operators can be used in expressions and filters to compare the
contents of fields (variables) with other variables or constants.

Lexical Relational Operators can be used to compare the contents of fields (variables)
with string values in trigger filters.

Note: You can also use standard relational operators to compare string values.
However, filters that use standard relational operators to compare string
values will not be saved with the trigger subscription on Broker. If the
subscription filter resides only on Integration Server, Broker automatically
places the document in the subscriber’s queue. Broker does not evaluate the
filter for the document. Broker routes all of documents to the subscriber,
creating greater network traffic between Broker and Integration Server and
requiring more processing by Integration Server.

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1131

Standard Relational Operators
You can use the standard relational operators to compare the contents of a variable
with any type of value (numerical, string, Boolean, dates, etc.) or another variable.
When comparing strings using the standard operators, Integration Server uses a binary
code point comparison algorithm. In this algorithm, Integration Server compares each
byte in the first string with each byte in the second string to determine which string is
numerically greater. For example, “A” has a value of 65 and “a” has a value of 97, so “a”
is greater than “A”. Keep the following points in mind when using standard relational
operators to compare strings:

Integration Server considers A to be the lowest leer and Z to be the highest (for
example, A < B, A < Z, B > A, Z > A).

Integration Server considers lowercase leers to be greater than the matching
uppercase leer (for example, a > A, A < a, a < B, c > A).

If you use a standard relational operator to compare numbers in fields of type String,
Integration Server treats the contents in the field as numbers. To stop Integration
Server from treating the value as a number, you can put quotes (' or '') around the
variable name in the expression. For example %'var1'%=%'var2'%.

The following table identifies the standard relational operators you can use in
expressions and filters.

Operator Syntax Description

= a = b Equal to.

 This example... Evaluates to true if...

 customerID =
"webMethods"

The value of the customerId
variable is “webMethods.”

== a == b Equal to.

 This example... Evaluates to true if...

 sku == "WM001" The value of the sku variable
is “WM001.”

!= a != b Not equal to.

 This example... Evaluates to true if...

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1132

Operator Syntax Description

 quantity != 0 The value of the quantity
variable does not equal 0
(zero).

<> a <> b Not equal to.

 This example... Evaluates to true if...

 state <> 'ME' The value of the state
variable does not equal ME
(Maine).

> a > b Greater than.

 This example... Evaluates to true if...

 price > 100 The value of the price variable
is greater than 100.

 %companyID% >
"Acme"

The value of the companyID
variable is greater than
Acme.

>= a >= b Greater than or equal to.

 This example... Evaluates to true if...

 %totalPrice% >= 100 The value of the totalPrice
variable is greater than or
equal to 100.

 companyID >=
"Acme"

The value of the companyID
variable is greater than or
equal to Acme.

< a < b Less than.

 This example... Evaluates to true if...

 quantity < 5 The value of the quantity
variable is less than 5.

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1133

Operator Syntax Description

 companyID <
"Acme"

The value of the companyID
variable is less than Acme.

<= a <= b Less than or equal to.

 This example... Evaluates to true if...

 unitPrice <= 100 The value of the unitPrice
variable is less than or equal
to 100.

 companyID <=
"Acme"

The value of the companyID
variable is less than or equal
to Acme.

Lexical Relational Operators
You can use the lexical relational operators to create filters that compare string values.
Keep the following points in mind when using the lexical operators:

When evaluating filters that contain lexical operators, Integration Server uses the
locale collating sequence specified on the Broker to compare the values of the strings.
The behavior of lexical operators depends on whether a locale is set for the Broker.
If no locale is specified, the lexical relational operators behave like the standard
relational operators.

Note: To set the filter collation locale, use My webMethods to change the locale
on the Broker Server. You might need to restart the Broker Server for the
change to take effect. For more information about administering the Broker
Server, see Administering webMethods Broker.

If you use a lexical operator to compare strings in an expression (such as in a
BRANCH step or in a pipeline link), Integration Server treats the lexical operators as
if they were standard relational operators.

If you use a lexical operator to compare a value that is not a string with another
string value, Integration Server treats the non-string value as an empty string (that
is, ""). For example, in the expression (%myInt% L_EQUALS ""), the %myInt%variable
is declared to be of type integer. This expression always evaluates to true because
%myInt% contains an integer value that Integration Server treats as an empty string
("") when it evaluates the expression.

If you use a lexical operator to compare numbers in fields of type String, Integration
Server treats the numbers as strings.

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1134

Filters that use lexical relational operators to compare string values will be saved
with the trigger subscription on the Broker. Filters that use standard relational
operators to compare string values will not be saved on the Broker.

When you view filters on My webMethods, a lexical operator appears as its
equivalent standard operator. For example, the expression %myString% L_EQUALS
"abc" appears as myString=="abc".

The following table describes the lexical operators that you can use in filters.

Operator Description

L_EQUALS Lexical equal to.

 This example... Evaluates to true if...

 %myString% L_EQUALS
"abc"

The value of the myString
variable is abc.

L_NOT_EQUALS Lexical not equal to.

 This example... Evaluates to true if...

 %myString% L_NOT_EQUALS
"abc"

The value of the myString
variable is not abc.

L_LESS_THAN Lexical less than.

 This example... Evaluates to true if...

 %myString% L_LESS_THAN
"abc"

The value of the myString
variable is less than abc.

L_LESS_OR_EQUAL Lexical less than or equal to.

 This example... Evaluates to true if...

 %myString%
L_LESS_OR_EQUAL "abc"

The value of the myString
variable is less than or
equal to abc.

L_GREATER_THAN Lexical greater than.

 This example... Evaluates to true if...

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1135

Operator Description

 %myString%
L_GREATER_THAN "abc"

The value of the myString
variable is greater than
abc.

L_GREATER_OR_EQUALLexical greater than or equal to.

 This example... Evaluates to true if...

 %myString%
L_GREATER_OR_EQUAL "abc"

The value of the myString
variable is greater than or
equal to abc.

Logical Operators
You can use the following logical operators in expressions to create conditions consisting
of more than one expression:

Operator Syntax Description

! ! expr Negates the next expression.

 This example... Evaluates to true if...

 ! (%sku% =
"WM001")

The value of the sku
variable is not equal to
WM001.

not not expr Negates the next expression.

 This example... Evaluates to true if...

 not (color =
"blue")

The color variable is not
equal to blue.

| expr | expr Logical *OR. True if either of the expressions is true.

 This example... Evaluates to true if...

 %color% = "blue" |
%color% = "red"

The value of the color
variable is blue or red.

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1136

Operator Syntax Description

|| expr ||
expr

Logical OR. True if either of the expressions is true.

 This example... Evaluates to true if...

 totalPrice > 1000
|| customerID
= 'Favorite
Customer'

The value of the totalPrice
variable is greater than
1000 or the value of the
customerID variable
equals Favorite Customer.

or expr or expr Logical OR. True if either of the expressions is true.

 This example... Evaluates to true if...

 creditCardNum
= $null or
cardExpireDate
= $null or
cardExpireDate <=
orderDate

The value of the
creditCardNum variable
is null or missing or
if the value of the
cardExpireDate variable
is null or missing or
if the value of the
cardExpireDate variable
is less than or equal
to the value of the
orderDatevariable.

& expr & expr Logical AND. Both expressions must evaluate to true
for the entire condition to be true.

 This example... Evaluates to true if...

 %customerID
% = 'Favorite
Customer' & %sku%
= 'WM001'

The value of the
customerID variable
is Favorite Customer
and the value of the sku
variable is WM001.

&& expr &&
expr

Logical AND. Both expressions must evaluate to true
for the entire condition to be true.

 This example... Evaluates to true if...

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1137

Operator Syntax Description

 quantity >= 20 &&
totalPrice >= 100

The value of the quantity
variable is greater than or
equal to 20 and the value
of the totalPrice variable
is greater than or equal to
100.

and expr and
expr

Logical AND. Both expressions must evaluate to true
for the entire condition to be true.

 This example... Evaluates to true if...

 !color and !size The color variable does not
exist in the input or is null
and the size variable does
not exist in the input or is
null.

Operator Precedence in Conditional Expressions
Integration Server evaluates expressions in a condition according to the precedence level
of the operators in the expressions. The following table identifies the precedence level of
each operator you can use in an expression.

Precedence Level Operators

1 ()

2 not,!

3 =,==, !=, <>, >, >=, <, <=

4 and, &, &&

5 or, |, ||

Tips

To override the order in which expressions in a condition are evaluated, enclose
the steps you want evaluated first in parentheses. Integration Server evaluates
expressions contained in parentheses first.

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1138

When using relational operators to compare strings, Integration Server considers
A to be the lowest leer and Z to be the highest (for example, A < B, A < Z, B > A, Z
> A). Integration Server considers lowercase leers to be greater than the matching
uppercase leer (for example, a > A, A < a, a < B, c > A).

Addressing Variables
In an expression, you can refer to the values of variables that are children of other
variables and refer to the values of elements in an array variable. To address children of
variables or an element in an array, you need to use a directory-like notation to describe
the position of the value.

Use this notation… To…

variableName Address a variable.

Example:state

Variable state.

variableName/childVariableName Address the child variable of
a variable (such as a field in a
document).

Example:%buyerInfo/state%

Variable state within IS document
type state.

arrayVariableName[index] Address an element in an array.

Example:orderItems[0]

Value of the first element in the
orderItems array.

arrayVariableName[rowIndex]
[columnIndex]

Address an element in a two-
dimensional array (String table).

Example:dictionary[1][2]

Value of the element located in the
third column of the second row in
the dictionary array.

duplicateVariableName(index) Address an occurrence of a
variable where there are multiple
variables with the same name in the

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1139

Use this notation… To…
document or pipeline. The index is
zero-based.

Example:address(1)

Value of the second variable named
address.

%"variableWithSpecialCharacters"% Address a variable whose name
contains special characters.
Variables that contain special
characters must be enclosed in
quotation marks.

Example:%"address(work)"%

Value of the variable named
address(work). For more
information, see "Addressing
Variables that Contain Special
Characters" on page 1139.

Notes:

To view the path to a variable in the pipeline, rest the mouse pointer over the
variable name. Designer displays the variable path in a tool tip.

To copy the path to a variable in a pipeline, select the variable, right-click, and select
Copy.

You can enclose variable names in %, for example %buyerInfo/state%. If the
variable name includes special characters, you must enclose the path to the variable
in % (percent) symbols and enclose the variable name in " " (quotation marks). For
more information about using variables as values in expressions, see "Syntax" on
page 1127.

Addressing Variables that Contain Special Characters
If a variable name contains any special characters, you need to use the following
notation to address the variable:

Enclose the path to the variable and the variable name in % (percent symbols).

Enclose the variable name that contains special characters in " " (quotation marks).

Following are some examples of how to address variables that contain special characters.

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1140

Type... To...

%"Date/Time"% Address a variable named Date/Time .

%purchaseOrder/"Date/Time"% Address a variable named Date/Time in
the document variable purchaseOrder .If
you did not enclose Date/Time in
quotation marks, and instead had
%purchaseOrder/Date/Time% or
%"purchaseOrder/Date/Time"% , the
expression would address a variable
named Time in a document named Date
that was contained in a document named
purchaseOrder .

%"address(work)"/"phone(cell)"% Address a variable named phone(cell) in
the document variable address(work) .

%"Date\\Time"% Address a variable named Date\Time .

Typing Special Characters in Expressions
You enter most of the special characters in an expression just as you would enter
them when creating the variable name. However, for four of the special characters
(the backslash, slash mark, percent symbol, and quotation marks), you need to use a
combination of keys. The following table identifies the special characters for variable
names and any key sequences that you need to use to enter a variable name with that
character in an expression.

Character Character Name Special Sequence

\ backslash \\

[opening bracket

] closing bracket

(opening parenthesis

) closing parenthesis

% percent \%

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1141

Character Character Name Special Sequence

" quotation marks \"

/ slash mark (forward) /\

Note: When you use variable names with special characters in expressions or filters,
you must enclose the variable name in " " (quotation marks).

Rules for Use of Expression Syntax with the Broker
When you create filters for webMethods messaging triggers that receive documents
from Broker, keep in mind that some syntax that is valid on Integration Server is not
valid on Broker. When you save a webMethods messaging trigger, Integration Server
and Broker evaluate the filter to make sure that it uses proper syntax. If the syntax is
valid on Broker, Broker saves the subscription and the filter. If the syntax is invalid on
Broker, Integration Server automatically removes the filter before the Broker saves the
subscription. The filter will only be saved on Integration Server.

Broker saves as much of a filter as possible with the subscription. For example, suppose
that a filter consists of more than one expression, and only one of the expressions
contains syntax Broker considers invalid. Broker saves the expressions it considers valid
but does not save the expression containing invalid syntax. (Integration Server saves all
the expressions.)

Keep the following points in mind when writing filters for webMethods messaging
triggers:

Expressions that specify field names that contain syntax, characters, symbols, or
words the Broker considers restricted or reserved will not be saved on the Broker.

All expressions must contain a relational (comparison) operator.

Use lexical relational operators (such as L_EQUALS, L_LESS_THAN) to compare
fields of type String.

Use standard relational operators (such as =, ==, !=, <, >, <= and >=) to compare fields
that are not of type String.

Use the =, ==, <>, or != operators to compare a value with an Object constrained as a
Boolean.

You can use My webMethods to view the filters (expressions) saved with a
subscription. If the expression does not appear with the subscription on the Broker,
then the expression contains invalid syntax.

The following table identifies syntax that the Broker considers invalid. Expressions with
this syntax will be saved on Integration Server but not on the Broker.

M
Even Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1142

Broker considers expressions invalid
when they contain....

Examples

Field names with syntax,
characters, symbols, or words
the Broker considers restricted or
reserved

eventtype L_EQUALS “addEmployee”tax
% < 5

Although Broker considers a field name
that contains the % symbol to be invalid,
you can use the % symbol to enclose field
names in the expression.

No comparison operators "fieldName""!fieldName"

A standard relational operator to
compare fields of type String

%myString% < "yourString"

A lexical relational operator to
compare fields that are not of type
String

%price% L_LESS_THAN 50

A field of type String compared
with a numeric value

"stringName" > 12

Operators other than =, ==, !=, or <>
to compare an Object constrained
as a Boolean with a value

myBoolean <= "true"

An Object constrained as a Boolean
compared with a field of type
String

myBoolean = "stringFieldName"

Note: Expressions that check an Object
constrained as a Boolean for a true or
false value should include “true” or
“false” as part of the filter. The string
constant in the expression (“true” or
“false”) is case insensitive.

A $null token %fieldName% = $null

Regular expressions that contain
back references

fieldName = /^(a|b)\1$/

Regular expressions that use
quantifiers other than +, ?, and *

/a{1}/ /a{1,5}/

M
Odd Header

Conditional Expressions

webMethods Service Development Help Version 9.10 1143

Broker considers expressions invalid
when they contain....

Examples

Regular expressions that use
extended metacharacters

fieldName = /\w/

M
Even Header

webMethods Service Development Help Version 9.10 1144

M
Odd Header

Regular Expressions

webMethods Service Development Help Version 9.10 1145

54 Regular Expressions

■ Using a Regular Expression in a Mask ... 1146

■ Regular Expression Operators ... 1146

M
Even Header

Regular Expressions

webMethods Service Development Help Version 9.10 1146

A regular expression is a paern-matching technique used extensively in UNIX
environments. You use regular expressions in Designer to specify paern-matching
strings for some of its functions. For example, you can use a regular expression to
specify an index, a property, or a mask in a webMethods Query Language (WQL)
statement. You can also use a regular expression to specify the switch value for a
BRANCH step.

Note: Integration Server and Designer use PERL regular expressions by default.

To specify a regular expression, you must enclose the expression between / symbols.
When the server encounters this symbol, it knows to interpret the characters between
these symbols as a paern-matching string (that is, a regular expression).

A simple paern-matching string such as /string/ matches any element that contains
string. So, for example, the regular expression /webMethods/ would match all of the
following strings:
"webMethods"
"You use webMethods Integration Server to execute services"
"Exchanging data with XML is easy using webMethods"
"webMethods Integration Server"

Important: Characters in regular expressions are case sensitive.

Using a Regular Expression in a Mask
When you use a regular expression as a mask, you use parentheses to specify which
characters you want to collect. For example, the object reference:
doc.p[].text[/(.{30}).*/]

retains the first 30 characters in each matching element and discards the rest.

Regular Expression Operators
Following are the operators supported in the webMethods implementation of regular
expressions.

Use this
symbol…

To…

. Match any single character except a new line.

Example doc.p[/web.ethods/].text

This example would return any paragraph containing the string ‘web’
followed by any single character and the string ‘ethods’. It would
match both ‘webMethods’ and ‘webmethods’.

M
Odd Header

Regular Expressions

webMethods Service Development Help Version 9.10 1147

Use this
symbol…

To…

^ Match the beginning of the string or line.

Example doc.p[/^webMethods/].text

This example would return any paragraph containing the string
‘webMethods’ at the beginning of the element or at the beginning of
any line within that element.

$ Match the end of the string or line.

Example doc.p[/webMethods$/].text

This example would return any paragraph containing the string
‘webMethods’ at the end of the paragraph element or at the end of any
line within that element.

* Match the preceding item zero or more times.

Example doc.p[/part *555-A/].text

This example would return any paragraph containing the string ‘part’
followed by zero or more spaces and then the characters ‘555-A’.

+ Match the preceding item 1 or more times.

Example doc.p[/part +555-A/].text

This example would return any paragraph containing the string ‘part’
followed by one or more spaces and then the characters ‘555-A’.

? Match the preceding item 0 or 1 times.

Example doc.p[/part ?555-A/].text

This example would return any paragraph containing the string ‘part’
followed by zero or one space and then the characters ‘555-A’.

() When used in an index, these characters group an item within the
regular expression.

Example doc.p[/part(,0)+May/].text

This example would return any paragraph containing the string ‘part’
followed by one or more occurrences of the characters ‘,0’ and then the
characters ‘May’.

When used in a mask, they specify characters that you want to retain.

Example doc.p[].text[(^.{25}).*]

M
Even Header

Regular Expressions

webMethods Service Development Help Version 9.10 1148

Use this
symbol…

To…

This example would keep the first 25 characters within each paragraph
and discard the rest.

{n } Match the preceding item exactly n times.

Example doc.p[/^.{24}webmethods/].text

This example would return any paragraph in which the word
‘webmethods’ started in the 25th character position of the paragraph.

{n ,} Match the preceding item n or more times.

Example doc.p[/^.{10,}webmethods/].text

This example would return any paragraph in which the word
‘webmethods’ appeared anywhere after the 10th character position
of the paragraph. That is, this example would return a paragraph in
which the word ‘webmethods’ started in the 11th or later character
position of the paragraph.

{0,m } Match the preceding item none or at most m times.

Example doc.p[/^.{1,4}webmethods/].text

This example would return any paragraph in which the word
‘webmethods’ started in character position 2 through 5 of the
paragraph.

| Match the expression that precedes or follows this character.

Example doc.p[/webmethods|webMethods/].text

This example would return any paragraph that contained either
‘webmethods’ or ‘webMethods’.

\b Match a word boundary.

Example doc.p[/\bport\b/].text

This example would return any paragraph that contained the word
‘port’, but not paragraphs that contained these characters as part of a
larger word, such as ‘import’, ‘support’, ‘ports’ or ‘ported’.

\B Match a boundary that is not a word boundary.

Example doc.p[/\B555-A/].text

M
Odd Header

Regular Expressions

webMethods Service Development Help Version 9.10 1149

Use this
symbol…

To…

This example would return any paragraph that contained the
characters ‘555-A’ as part of a larger word such as AZ555-A, or
Dept555-A, but not ‘555-A’ alone.

\A Match only at the beginning of a string.

Example doc.p[/\AwebMethods/].text

This example would return any paragraph containing the string
‘webMethods’ at the beginning of the element or at the beginning of
any line within that element.

\Z Match only at the end of a string (or before a new line at the end).

Example doc.p[/webMethods\Z/].text

This example would return any paragraph containing the string
‘webMethods’ at the end of the paragraph element or at the end of any
line within that element.

\n Match a new line.

Example doc.p[/webMethods\n/].text

This example would return any paragraph containing the string
‘webMethods’ followed by the new line character.

\r Match a carriage return.

Example doc.p[/webMethods\r/].text

This example would return any paragraph containing the string
‘webMethods’ followed by a carriage return.

\t Match a tab character.

Example doc.p[/\twebMethods/].text

This example would return any paragraph containing the string
‘webMethods’ preceded by a tab character.

\f Match a form feed character.

Example doc.p[/webMethods\f/].text

This example would return any paragraph containing the string
‘webMethods’ followed by a form feed character.

M
Even Header

Regular Expressions

webMethods Service Development Help Version 9.10 1150

Use this
symbol…

To…

\d Match any digit. Same as [0-9].

Example doc.p[/part \d555-A/].text

This example would return any paragraph containing a part number
that starts with any digit 0 through 9, and is followed by the characters
555-A. Therefore, it would match ‘part 1555-A’ but not ‘part A555-A’
or ‘part #555-A’.

\D Match any non-digit. Same as [^0-9].

Example doc.p[/part \D555-A/].text

This example would return any paragraph containing a part number
that starts with any character other than 0 through 9, and is followed
by the characters 555-A. Therefore, it would match ‘part A555-A’ and
‘part #555-A’, but not ‘part 1555-A’.

\w Match any word character. Same as [0-9a-z_A-Z].

Example doc.p[/part \w4555-A/].text

This example would return any paragraph containing a part number
that starts with a leer or digit and is followed by the characters 555-
A. Therefore, it would match ‘part A555-A’ and ‘part 1555-A’, but not
‘part #555-A’.

\W Match any nonword character. Same as [^0-9a-z_A-Z].

Example doc.p[/part \W4555-A/].text

This example would return any paragraph containing a part number
that starts with a character other than a leer or digit, and is followed
by the characters 555-A. Therefore, it would match ‘part #555-A’ and
‘part -555-A’, but not ‘part 1555-A’ or ‘part A555-A’.

\s Match any white-space character. Same as [\t\n\r\f].

Example doc.p[/\swebMethods/].text

This example would return any paragraph containing the string
‘webMethods’ if it is preceded by a tab character, a new line character,
a carriage return, or a form-feed character.

\S Match any nonwhite-space character. Same as [^\t\n\r\f].

Example doc.p[/\SwebMethods/].text

M
Odd Header

Regular Expressions

webMethods Service Development Help Version 9.10 1151

Use this
symbol…

To…

This example would return any paragraph containing the string
‘webMethods’, if that string is not preceded by a tab character, a new
line character, a carriage return, or a form-feed character.

\0 Match a null string.

Example doc.p[/[^\0]/].text

This example would return any paragraph that is not empty (null).

\xnn Match any character with the hexadecimal value nn .

Example doc.p[/\x1FwebMethods/].text

This example would return any paragraph containing the ASCII unit-
separator character (1F) followed by the characters ‘webMethods’.

This example would return any paragraph containing the ASCII unit-
separator character (1F) followed by the characters ‘webMethods’.

[] Match any character within the brackets.

Example doc.p[/part [023]555-A/].text

This example would return any paragraph containing a part number
that starts with the numbers 0, 2, or 3 and is followed by the characters
555-A. Therefore, it would match ‘part 0555-A’ and ‘part 2555-A’, but
not ‘part 4555-A’.

The following characters have special meaning when used within
brackets:

number that starts with the numbers 0, 2, or 3 and is followed by the
characters 555-A. Therefore, it would match ‘part 0555-A’ and ‘part
2555-A’, but not ‘part 4555-A’.

The following characters have special meaning when used within
brackets:

 Use this
char…

To…

 ^ Exclude characters from the paern.

Example doc.p[/part [^023]555-A/].text

This example would return any paragraph
containing a part number that does not start with the
numbers 0, 2, or 3, but is followed by the characters

M
Even Header

Regular Expressions

webMethods Service Development Help Version 9.10 1152

Use this
symbol…

To…

555-A. Therefore, it would match ‘part 4555-A’ and
‘part A555-A’, but not ‘part 0555-A’.

 - Specify a range of allowed characters.

Example doc.p[/part [A-M]555-A/].text

This example would return any paragraph
containing a part number that starts with any leer
A through M and is followed by the characters 555-
A. Therefore, it would match ‘part A555-A’ and ‘part
J555-A’, but not ‘part N555-A’.

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1153

55 Validation Content Constraints

■ Content Types .. 1154

■ Constraining Facets ... 1164

M
Even Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1154

You can apply content constraints to variables in the IS document types, specifications,
or service signatures that you want to use as blueprints in data validation. Content
constraints describe the data a variable can contain. At validation time, if the variable
value does not conform to the content constraints applied to the variable, the validation
engine considers the value to be invalid. For more information about validation, see
"Performing Data Validation" on page 297.

When applying content constraints to variables, you can do the following:

Select a content type. A content type specifies the type of data for the variable value,
such as string, integer, boolean, or date. A content type corresponds to a simple type
definition in a schema.

Set constraining facets. Constraining facets restrict the content type, which in turn,
restrict the value of the variable to which the content type is applied. Each content
type has a set of constraining facets. For example, you can set a length restriction for
a string content type, or a maximum value restriction for an integer content type.

For example, for a String variable named itemQuantity , you might specify a content type
that requires the variable value to be an integer. You could then set constraining facets
that limit the content of itemQuantity to a value between 1 and 100.

The content types and constraining facets described in this appendix correspond
to the built-in data types and constraining facets in XML Schema. The World Wide
Web Consortium (W3C) defines the built-in data types and constraining facets in the
specification XML Schema Part 2: Datatypes (hp://www.w3c.org/TR/xmlschema-2).

Content Types
The following table identifies the content types you can apply to String, String list, or
String table variables. Each of these content types corresponds to a built-in simple type
defined in the specification XML Schema Part 2: Datatypes.

Note: For details about constraints for Objects and Object lists, see "Data Types" on
page 1091.

Content Types Description

anyURI A Uniform Resource Identifier Reference. The value of anyURI
may be absolute or relative.

Constraining Facets

enumeration, length, maxLength, minLength, paern

Note: The anyURI type indicates that the variable value plays
the role of a URI and is defined like a URI. webMethods
Integration Server does not validate URI references

http://www.w3c.org/TR/xmlschema-2

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1155

Content Types Description
because it is impractical for applications to check the
validity of a URI reference.

base64Binary Base64-encoded binary data.

Constraining Facets

enumeration, length, maxLength, minLength, paern

boolean True or false.

Constraining Facets

paern

Example
true, 1, false, 0

byte A whole number whose value is greater than or equal to –128
but less than or equal to 127.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
-128, -26, 0, 15, 125

date A calendar date from the Gregorian calendar. Values need to
match the following paern:

CCYY-MM-DD

Where CC represents the century, YY the year, MM the month,
DD the day. The paern can include a Z at the end to indicate
Coordinated Universal Time or to indicate the difference
between the time zone and coordinated universal time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example

1997-08-09 (August 9, 1997)

dateTime A specific instant of time (a date and time of day). Values need
to match the following paern:

CCYY-MM-DDThh:mm:ss.sss

M
Even Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1156

Content Types Description

Where CC represents the century, YY the year, MM the month,
DD the day, T the date/time separator, hh the hour, mm the
minutes, and ss the seconds. The paern can include a Z at the
end to indicate Coordinated Universal Time or to indicate the
difference between the time zone and coordinated universal
time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example

2000-06-29T17:30:00-05:00 represents 5:30 pm Eastern
Standard time on June 29, 2000. (Eastern Standard Time is 5
hours behind Coordinated Universal Time.)

decimal A number with an optional decimal point.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
8.01, 290, -47.24

double Double-precision 64-bit floating point type.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example
6.02E23, 3.14, -26, 1.25e-2

duration A length of time. Values need to match the following paern:

Pn Yn Mn DTn Hn MnS

Where n Y represents the number of years, n M the number of
months, n D the number of days, T separates the date and time,
n H the number of hours, n M the number of minutes and nS
the number of seconds. Precede the duration with a minus (-)
sign to indicate a negative duration.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1157

Content Types Description

Example

P2Y10M20DT5H50M represents a duration of 2 years, 10 months,
20 days, 5 hours, and 50 minutes

ENTITIES Sequence of whitespace-separated ENTITY values declared
in the DTD. Represents the ENTITIES aribute type from the
XML 1.0 Recommendation.

Constraining Facets

enumeration, length, maxLength, minLength

ENTITY Name associated with an unparsed entity of the DTD.
Represents the ENTITY aribute type from the XML 1.0
Recommendation.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

float A number with a fractional part.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example
8.01, 25, 6.02E23, -5.5

gDay A specific day that recurs every month. Values must match the
following paern:

---DD

Where DD represents the day. The paern can include a
Z at the end to indicate Coordinated Universal Time or to
indicate the difference between the time zone and coordinated
universal time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example

---24 indicates the 24th of each month

M
Even Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1158

Content Types Description

gMonth A Gregorian month that occurs every year. Values must match
the following paern:

--MM

Where MM represents the month. The paern can include
a Z at the end to indicate Coordinated Universal Time or to
indicate the difference between the time zone and coordinated
universal time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example

--11 represents November

gMonthDay A specific day and month that recurs every year in the
Gregorian calendar. Values must match the following paern:

--MM-DD

Where MM represents the month and DD represents the day.
The paern can include a Z at the end to indicate Coordinated
Universal Time or to indicate the difference between the time
zone and coordinated universal time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example

--09-24 represents September 24th

gYear A specific year in the Gregorian calendar. Values must match
the following paern:

CCYY

Where CC represents the century, and YY the year. The paern
can include a Z at the end to indicate Coordinated Universal
Time or to indicate the difference between the time zone and
coordinated universal time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1159

Content Types Description

Example

2001 indicates 2001

gYearMonth A specific month and year in the Gregorian calendar. Values
must match the following paern:

CCYY-MM

Where CC represents the century, YY the year, and MM the
month. The paern can include a Z at the end to indicate
Coordinated Universal Time or to indicate the difference
between the time zone and coordinated universal time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example

2001-04 indicates April 2001

hexBinary Hex-encoded binary data.

Constraining Facets

enumeration, length, maxLength, minLength, paern

ID A name that uniquely identifies an individual element in an
instance document. The value for ID needs to be a valid XML
name. The ID datatype represents the ID aribute type from
the XML 1.0 Recommendation.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

IDREF A reference to an element with a unique ID. The value of
IDREF is the same as the ID value. The IDREF datatype
represents the IDREF aribute type from the XML 1.0
Recommendation.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

M
Even Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1160

Content Types Description

IDREFS Sequence of white space separated IDREFs used in an XML
document. The IDREFS datatype represents the IDREFS
aribute type from the XML 1.0 Recommendation.

Constraining Facets

enumeration, length, maxLength, minLength

int A whole number with a value greater than or equal to
-2147483647 but less than or equal to 2147483647.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
-21474836, -55500, 0, 33123, 4271974

integer A positive or negative whole number.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
-2500, -5, 0, 15, 365

language Language identifiers used to indicate the language in which the
content is wrien. Natural language identifiers are defined in
IETF RFC 1766.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

long A whole number with a value greater than or equal
to -9223372036854775808 but less than or equal to
9223372036854775807.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
-55600, -23, 0, 256, 3211569432

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1161

Content Types Description

Name XML names that match the Name production of XML 1.0
(Second Edition).

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

NCName Non-colonized XML names. Set of all strings that match the
NCName production of Namespaces in XML.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

negativeInteger An integer with a value less than or equal to –1.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
-255556, -354, -3, -1

NMTOKEN Any mixture of name characters. Represents the NMTOKEN
aribute type from the XML 1.0 Recommendation.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

NMTOKENS Sequences of NMTOKENS. Represents the NMTOKENS
aribute type from the XML 1.0 Recommendation.

Constraining Facets

enumeration, length, maxLength, minLength

nonNegativeInteger An integer with a value greater than or equal to 0.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
0, 15, 32123

M
Even Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1162

Content Types Description

nonPositiveInteger An integer with a value less than or equal to 0.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits, whiteSpace

Example
-256453, -357, -1, 0

normalizedString Represents white space normalized strings. Set of strings
(sequence of UCS characters) that do not contain the carriage
return (#xD), line feed (#xA), or tab (#x9) characters.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

Example
MAB-0907

positiveInteger An integer with a value greater than or equal to 1.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
1, 1500, 23000

short A whole number with a value greater than or equal to -32768
but less than or equal to 32767.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
-32000, -543, 0, 456, 3265

string Character strings in XML. A sequence of UCS characters (ISO
10646 and Unicode). By default, all white space is preserved for
variables with a string content constraint.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1163

Content Types Description

Example
MAB-0907

time An instant of time that occurs every day. Values must match
the following paern:

hh:mm:ss.sss

Where hh indicates the hour, mm the minutes, and ss the
seconds. The paern can include a Z at the end to indicate
Coordinated Universal Time or to indicate the difference
between the time zone and coordinated universal time.

Constraining Facets

enumeration, maxExclusive, maxInclusive, minExclusive,
minInclusive, paern

Example

18:10:00-05:00 (6:10 pm, Eastern Standard Time) Eastern
Standard Time is 5 hours behind Coordinated Universal Time.

token Represents tokenized strings. Set of strings that do not
contain the carriage return (#xD), line feed (#xA), or tab (#x9)
characters, leading or trailing spaces (#x20), or sequences of
two or more spaces.

Constraining Facets

enumeration, length, maxLength, minLength, paern,
whiteSpace

unsignedByte A whole number greater than or equal to 0, but less than or
equal to 255.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
0, 112, 200

unsignedInt A whole number greater than or equal to 0, but less than or
equal to 4294967295.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

M
Even Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1164

Content Types Description

Example
0, 22335, 123223333

unsignedLong A whole number greater than or equal to 0, but less than or
equal to 18446744073709551615.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
0, 2001, 3363124

unsignedShort A whole number greater then or equal to 0, but less than or
equal to 65535.

Constraining Facets

enumeration, fractionDigits, maxExclusive, maxInclusive,
minExclusive, minInclusive, paern, totalDigits

Example
0, 1000, 65000

Constraining Facets
When you apply a content type to a variable, you can also set constraining facets for the
content type. Constraining facets are properties that further define the content type. For
example, you can set a minimum value or precision value for a decimal content type.
Each content type has a set of constraining facets. The constraining facets described in
the following table correspond to constraining facets defined in the specification XML
Schema Part 2: Datatypes.

Constraining
Facet

Description Usage Notes

enumeration The possible values for the
variable at run time.

If you also entered
possible values using the
Pick list choices property
in the General category of
the Properties view, those
values will be displayed
at run time. However, the
enumeration values will be
used for validation.

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1165

Constraining
Facet

Description Usage Notes

fractionDigits The maximum number of digits
to the right of the decimal point.
For example, the fractionDigits of
the value 999.99 is 2.

fractionDigits must be less
than or equal to totalDigits.

length The precise units of length
required for the variable value.

If you specify length, you
cannot specify either
minLength or maxLength.

maxExclusive The upper bound of a range
of possible values. The range
excludes the value you specify.
The variable can have a value
less than but not equal to
maxExclusive.

maxExclusive must be
greater than or equal to
minExclusive.

You cannot specify
maxInclusive and
maxExclusive for the same
content type.

maxInclusive The upper bound of a range
of possible values. The range
includes the value you specify.
The variable can have a
value less than or equal to
maxInclusive.

maxInclusive must be
greater than or equal to
minInclusive.

You cannot specify
maxInclusive and
maxExclusive for the same
content type.

maxLength The maximum units of length
permied for the variable value.

maxLength must be greater
than or equal to minLength.

minExclusive The lower bound of a range
of possible values. The range
does not include the value you
specify. The variable can have a
value greater than but not equal
to minExclusive.

minExclusive must be
less than or equal to
maxExclusive.

You cannot specify
minInclusive and
minExclusive for the same
content type.

minInclusive The lower bound of a range
of possible values. The range
includes the value you specify.
The variable can have a value

minInclusive must be
less than or equal to
maxInclusive.

You cannot specify
minInclusive and

M
Even Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1166

Constraining
Facet

Description Usage Notes

greater than or equal to
minInclusive.

minExclusive for the same
content type.

minLength The minimum units of length
permied for the variable value.

minLength must be less
than or equal to maxLength.

pattern A paern (regular expression)
that the value of the variable
must match. For example, you
can use a regular expression
to specify that a variable that
is a string content constraint
match a Social Security number
format.

totalDigits The maximum number of
decimal digits allowed in
a value. For example, the
totalDigits of the value 999.99 is
5.

totalDigits must be
greater than or equal to
fractionDigits.

whiteSpace The white space normalization
performed on the variable
value. The value of whiteSpace
can be one of the following:

preserve: No white space
normalization is performed.

replace: Carriage returns
(#xD), line feeds (#xA), and tabs
(#x9) are replaced with a single
space (#x20).

collapse: After the white
space normalization specified
by replace is performed,
sequences of spaces (#x20) and
leading and trailing spaces
(#x20) are removed.

Note: Previous versions of XML Schema contained the constraining facets duration,
encoding, period, precision, and scale. However, these constraining facets are
not included in the recommendation of XML Schema Part 2: Datatypes. The
constraining facets duration, encoding, and period were removed. precision was

M
Odd Header

Validation Content Constraints

webMethods Service Development Help Version 9.10 1167

renamed totalDigits. scale was renamed fractionDigits. If you view a content
type from an IS schema created from an XML Schema Definition that used
pre-Recommendation version of XML Schema (before May 2001) the Content
Type dialog box will display the constraining facets that were available in the
pre-Recommendation version of XML Schema.

Note: The word “fixed” appears next to the name of a constraining facet whose
value is fixed and cannot be changed. When a facet has a fixed value, the facet
is called a fixed facet.

M
Even Header

webMethods Service Development Help Version 9.10 1168

M
Odd Header

webMethods Query Language

webMethods Service Development Help Version 9.10 1169

56 webMethods Query Language

■ Overview ... 1170

■ Object References .. 1170

■ Sibling Operators .. 1171

■ Object Properties .. 1173

■ Property Masking ... 1174

M
Even Header

webMethods Query Language

webMethods Service Development Help Version 9.10 1170

The webMethods Query Language (WQL) to map data from web documents. This topic
describes the WQL and the references, operators, and properties available for use while
parsing the contents of web documents.

Overview
The webMethods Query Language (WQL) provides the primary mechanism for
mapping data from web documents. When a web document is read by webMethods,
the XML or HTML markup within the document is used to parse the contents of the
document into the object model.

XML and HTML markup both consist of tag elements enclosed in angle brackets: < >. In
the process of parsing, tag elements are transformed into arrays of objects; the aributes
of tag elements become object properties. XML and HTML markup both implement
containing elements and empty elements. Containing elements have open and close tags.
Empty elements are single tags.

When a web document is parsed, the text contained within containing elements becomes
the text property of the corresponding XML node.

Data parsed from web documents is accessed with WQL queries, which consist of one or
more indexed element arrays and an object property.

Note: When you use pub.xml:queryXMLNode to query an enhanced XML node (a node
produced by the enhanced XML parser), you must use XQL as the query
language. WQL cannot be used to query an enhanced XML node.

Object References
For the following object references, x and y represent numerical indexes.

doc.element [x].property
An absolute reference uses a numerical index into an element array.

doc.element [x].element[x].property
Nested element arrays scope the object reference to children elements.

doc.element [x].line [x].property
An array of lines is fabricated when the text property of a node contains line breaks.

doc.element [x].^.property
The parent of an element is referenced with ^.

doc.element [x].?[x].property
A ? matches any type of element array.

doc.element [].property
Empty brackets signify that all members of an element array are to be returned.

M
Odd Header

webMethods Query Language

webMethods Service Development Help Version 9.10 1171

doc.element |element [].property
The | is used to signify a logical 'OR'. The contents of two or more element arrays can be
returned.

doc.element [x-y].property
Returns a range of elements from an array.

doc.element [x-end].property
end is a reserved word that returns the final element of an array.

doc.element [x,y,z].property
Returns items x, y, and z where x, y, and z represent numerical indexes into an element
array.

doc.element [x+y].property
Returns element x and every y element thereafter.

doc.element ['match'].property
Returns an array of elements whose text property matches the match string, which can
contain the following wildcard characters:

Use this
character...

To...

* Match any sequence of zero or more characters.

? Match any single character.

% Matches a single word, where word is defined to be any
sequence of non-whitespace characters.

\ Escape any of the above wildcard characters.

Match strings are compared with the .text property of the indexed object. The .text
property contains the text of all child objects.

doc.element [/RegularExpression/].property
Returns an array of elements whose text property matches the specified regular
expression. For information about how to construct a regular expression, see "Regular
Expressions" on page 1145.

doc.element (property ='match').property
Matches the value of a specific element property.

Sibling Operators
WQL provides the following set of operators to refer to siblings of a specified element.
The examples shown in these descriptions refer to the following HTML structure:

M
Even Header

webMethods Query Language

webMethods Service Development Help Version 9.10 1172

The sibling operators are constrained by the current parent. If an operator exceeds the
boundaries of the current parent, a null value is produced for that reference.

doc.element [x].@n.property
References the nth sibling after element[x], regardless of type. Compare with
doc.element [x].+n.property , below.

Example Result

doc.td[0].b[0].@1.text Italic 0

doc.td[0].i[0].@1.text Bold 1

doc.td[0].b[0].@4.text Null

doc.element [x].@-n.property
References the nth sibling prior to element[x], regardless of type. Compare with
doc.element [x].-n.property , below.

Example Result

doc.td[1].b[end].@-2.text Bold 3

doc.td[1].i[end].@-1.text Bold 4

doc.td[1].b[end].@-3.text Null

M
Odd Header

webMethods Query Language

webMethods Service Development Help Version 9.10 1173

doc.element [x].+n.property
References the nth sibling after element[x] that is of the same type as element[x].
Compare with doc.element [x].@n.property , above.

Example Result

doc.td[0].b[0].+1.text Bold 1

doc.td[0].i[0].+1.text Null

doc.td[0].b[0].+3.text Null

doc.element [x].-n.property
References the nth sibling before element[x] that is of the same type as element[x].
Compare with doc.element [x].@-n.property , above.

Example Result

doc.td[1].b[end].-2.text Null

doc.td[1].i[end].-1.text Italic 1

doc.td[1].b[end].-3.text Null

Object Properties
In addition to the properties derived from the aributes of a parsed XML or HTML tag
element, the following properties are available for all objects:

text/.txt
Returns the text of an object.

.value/.val
Returns the value of an object. (Equivalent to the text of the object if the element has no
VALUE aribute.)

.source/.src
Returns the XML or HTML source of an object.

.csource/.csrc
Returns the XML or HTML of the source generated from the parse tree of the document.

.index/.idx
Returns the numerical index of an object.

M
Even Header

webMethods Query Language

webMethods Service Development Help Version 9.10 1174

.reference/.ref
Returns a complete object reference.

Property Masking
Property masking allows for the stripping away of unwanted text from the value of an
object property.

doc.element [x].property [x-y]
Returns a range of characters from position x to y .

doc.element [x].property ['mask']
Uses wildcard matching and token collecting to extract desired data from the value of an
object property.

doc.element [x].property [/RegularExpression/]
Uses a regular expression to extract desired data from the value of an object property.
For information about how to construct a regular expression, see "Regular Expressions"
on page 1145.

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	About webMethods Service Development
	Before You Use Designer for Service Development
	Opening the Service Development Perspective

	Working with webMethods Integration Server
	Working with Server Definitions
	Creating Server Definitions
	Fetching Server Definitions from an Integration Server
	Importing Server Definitions
	Exporting Server Definitions
	Removing Server Definitions
	Editing Server Definitions
	Considerations for Process Development
	Setting a Default Server Definition
	Placing a Server Definition Offline
	Bringing a Server Definition Online

	Connecting to an Integration Server
	Connecting to an Integration Server via Preferences

	Disconnecting from an Integration Server
	Disconnecting from an Integration Server via Preferences

	Refreshing an Integration Server
	Notification of Server Shutdown
	Opening Integration Server Administrator
	Viewing Integration Server Properties
	Changing Passwords
	Password Requirements
	Changing Your Password
	Synchronizing Passwords

	Working with Elements
	About Element Names
	Package Names and Element Names

	Creating New Elements
	Guidelines for Naming Elements

	Guidelines for Working with Elements
	Opening Elements
	Closing Elements
	Editing and Saving Elements
	Adding Comments for an Element
	Configuring Dependency Checking for Elements
	Controlling the Reuse of Elements Published to CentraSite
	Allowing Editing of Derived Elements
	Moving and Copying Elements
	Guidelines for Moving and Copying All Types of Elements
	Guidelines for Moving and Copying Services
	Guidelines for Copying Elements Between Servers
	Notes for Moving and Copying Adapter Notifications and Related Elements

	Renaming Elements
	Deleting Elements
	Finding Dependents and References
	What Is a Dependent?
	Finding Dependents
	What Is a Reference?
	Finding References

	Inspecting Pipeline References
	Inspecting Pipeline References

	Finding Elements
	Searching for Elements in Package Navigator
	Performing a Quick Search of Elements in Package Navigator
	Locating Invoked Services
	Locating Referenced Document Types
	Linking Open Editors

	Filtering Displayed Elements
	Hiding or Displaying Automatically Generated Flow Services
	Creating Working Sets
	Caching Elements
	Clearing the Designer Cache

	Exporting Elements
	Viewing Server Files for an Element
	Using Property Templates with Elements
	Creating Property Templates
	Applying Property Templates to Elements
	Editing Property Templates
	Deleting Property Templates
	Importing Property Templates
	Exporting Property Templates

	Assigning and Managing Permissions for Elements
	What Is an ACL?
	What Happens When a Client Runs a Service with ACLs?
	Is ACL Usage Required?
	Creating ACLs
	ACLs and Inheritance
	Default ACLs and Inheritance

	Assigning ACLs
	Viewing ACL Information for a Server
	ACLs and Locking
	ACLs and Running/Debugging Services
	ACLs and Creating, Viewing, and Deleting Elements
	Troubleshooting ACL Usage

	Locking and Unlocking Elements
	What Is a Lock?
	About Locking Elements
	Locking Elements in Designer
	Guidelines for Locking Java and C/C++ Services
	Guidelines for Locking Templates
	System Locking Elements

	Viewing the Status of Locked Elements
	Viewing Lock Status of Elements
	Listing All of Your Locked Elements

	Copying, Moving, or Deleting Locked Elements
	Unlocking Elements
	Unlocking Elements in Designer
	Automatically Unlocking an Element Upon Saving

	Troubleshooting
	Lock and Unlock Problems
	Package Management Problems
	Save Problems
	Other Problems
	Frequently Asked Questions

	Using the Local Service Development Feature
	About the Local Service Development Workflow
	How Does Local Service Development Differ from the VCS Integration Feature?
	Supported Platforms and Eclipse Plug-ins
	Supported Elements
	Supported and Unsupported Actions
	Prerequisites
	Permissions and Locking
	Permissions
	System Locking and Local Service Development

	Setting an Integration Server as the Local Development Server
	Creating a Local Service Development Project
	Adding Folders and Elements to the VCS
	Modifying Packages, Folders, or Elements in the VCS
	Checking Out an Element from the VCS
	Checking In Packages and Element to the VCS
	Getting the Latest Version from the VCS
	Getting a Specific Version from the VCS
	Copying Packages from the VCS to Integration Server
	Reloading a Package
	Comparing Revisions of an Element
	Building Java and C Services
	Deleting a Package Associated with a Local Service Development Project
	Deleting a Local Service Development Project

	Using the VCS Integration Feature to Check Elements In and Out of a VCS
	VCS Integration Supported Features
	VCS Integration Unsupported Features
	Locking Locally vs VCS Locking
	System Locking and VCS Integration Feature
	About Unlocking Elements with Integration Server Administrator
	Adding New Packages and Elements to a VCS
	Adding Existing Packages and Elements to a VCS
	Modifying Elements that are in the VCS
	Checking Out Packages and Elements
	Checking In Packages and Elements
	Reverting Changes to a Checked Out Package or Element
	Getting the Latest Version from the VCS
	Getting an Earlier Version from the VCS
	Deleting Packages and Elements from the VCS
	Restoring Deleted Items
	Restoring a Deleted Package
	Restoring a Deleted Folder or Element

	Copying and Moving Folders or Elements
	Renaming Packages, Folders, and Elements
	Viewing the History of a Folder or Element
	Version History Details

	Working with Blaze Rules Services
	Working with Web Service Descriptors
	Working with webMethods Adapter Connections
	Working with Java Services
	Copying Java Services
	Moving Java Services
	Labeling Java Services in the VCS

	Managing Packages
	Creating a Package
	Guidelines for Naming Packages

	Documenting a Package
	Accessing Package Documentation

	Viewing Package Settings, Version Number, and Patch History
	Assigning a Version Number to a Package
	About Copying Packages Between Servers
	Copying Packages

	Reloading a Package
	Comparing Packages
	Deleting a Package
	Exporting a Package
	About Package Dependencies
	Identifying Package Dependencies
	Removing Package Dependencies

	Assigning Startup, Shutdown, and Replication Services to a Package
	What Is a Startup Service?
	Assigning a Startup Service
	Removing a Startup Service

	What Is a Shut Down Service?
	Assigning a Shutdown Service
	Removing a Shutdown Service

	What Is a Replication Service?
	Assigning a Replication Service
	Removing a Replication Service

	Building Services
	A Process Overview
	Package and Folder Requirements
	About the Service Signature
	Guidelines for Specifying Input Parameters
	Guidelines for Specifying Output Parameters
	Declaring Input and Output Parameters
	Using a Specification as a Service Signature
	Using an IS Document Type to Specify Service Input or Output Parameters
	Inserting Input and Output Parameters

	About Service Run-Time Parameters
	Maintaining the State of Service
	Specifying the Run-Time State for a Service

	About Service Caching
	When Are Cached Results Returned?
	Types of Services to Cache
	Controlling a Service’s Use of Cache
	Specifying the Duration of Cached Results
	Refreshing Service Cache by Using the Prefetch Option
	Configuring Caching of Service Results

	Specifying the Execution Locale
	About URL Aliases for Services
	Creating a Path Alias for a Service

	Automatically Saving or Restoring the Pipeline at Run Time
	Configuring Saving or Restoring of the Service Pipeline at Run Time

	Specifying the Default Format for an XML Document Received by the Service
	About Automatic Service Retry
	About the Maximum Retry Period
	Configuring Service Retry

	About Service Auditing
	Service Auditing Use Cases
	Error Auditing
	Service Auditing
	Auditing for Recovery
	Auditing Long-Running Services

	Configuring Service Auditing
	Logging Input and Output Fields
	Selecting Input or Output Fields for Logging
	Logged Field Data Types in JDBC

	Assigning a Custom Value to an Auditing Context

	About Universal Names for Services or Document Types
	Implicit and Explicit Universal Names
	Assigning, Editing, or Viewing an Explicit Universal Name
	Deleting an Explicit Universal Name
	The Universal Name Registry
	Services You Use to Interact with the Universal Name Registry

	About Service Output Templates
	Creating an Output Template
	Assigning an Output Template to a Service

	Printing a Flow Service
	Comparing Flow Services

	Building Flow Services
	What Is a Flow Service?
	What Is a Flow Step?
	What Is the Pipeline?

	Building Services Using the Tree Tab or Layout Tab
	Creating a New Flow Service
	Creating an Empty Flow Service
	Creating a Flow Service from an XML Document, DTD, or XML Schema
	Creating a Flow Service from an XML Document
	Creating a Flow Service from a DTD
	Creating a Flow Service from an XML Schema Definition
	Inserting Flow Steps
	Changing the Position of a Flow Step
	Changing the Level of a Flow Step

	Setting Properties for a Flow Step
	The INVOKE Step
	Specifying the Service Property
	Invoking a Built-In Service
	Invoking a Service on Another Integration Server
	Building an Invoke Step

	The BRANCH Step
	Branching on a Switch Value
	Specifying the Switch Value
	Specifying the Label Value

	Branching on an Expression
	Branching on Null and Empty Values
	Specifying a Default Step
	Using a SEQUENCE as the Target of a BRANCH
	Building a BRANCH Step

	The REPEAT Step
	Specifying the REPEAT Condition
	Setting the REPEAT Counter
	When Does REPEAT Fail?
	Using REPEAT to Retry a Failed Step
	Using REPEAT to Retry a Successful Step

	The SEQUENCE Step
	Using SEQUENCE to Specify an Exit Condition

	The LOOP Step
	Specifying the Input Array
	Collecting Output from a LOOP Step
	About the Pipeline for a LOOP Step
	Building a LOOP Step

	The EXIT Step
	Building an EXIT Step

	The MAP Step

	Working in the Layout Tab
	What Is the Layout Tab
	When Should You Use Layout Tab?

	What Does a Flow Service Look Like in the Layout Tab?
	Viewing Flow Steps in the Layout Tab
	Viewing Steps that Contain Child Steps in the Layout Tab

	Show or Hide the Grid Lines in the Flow Service Editor
	Building a Flow Service in the Layout Tab
	Inserting a Flow Step
	Inserting a Flow Step Using the Palette View
	Inserting a Flow Step Using the Context Menu

	Notes for Inserting a Child Step into a BRANCH Step
	Changing the Order of Steps in a Flow Service

	Mapping Data in Flow Services
	What Does the Pipeline View Contain?
	Pipeline View for an INVOKE Step
	Pipeline View for a MAP Step
	Scrolling in Pipeline View
	Viewing Full Namespace Path of Referenced Document Types
	Printing the Pipeline

	Basic Mapping Tasks
	About Linking Variables
	Creating a Link Between Variables
	What Happens When Integration Server Executes a Link?
	Example of Copying By Reference
	Preventing Pipeline Values from Being Overwritten

	Linking to Document and Document List Variables
	Linking Variables of Different Data Types
	Converting a String List to a Document List in the Pipeline
	Converting Two String Lists to a Document List in the Pipeline

	Linking to and from Array Variables in the Pipeline
	Creating a Link to or from an Array Variable
	Default Pipeline Rules for Linking to and from Array Variables

	Deleting a Link Between Variables
	Linking Variables Conditionally
	Linking Multiple Source Variables to a Target Variable
	Applying a Condition to a Link

	About Assigning Values to Pipeline Variables
	Assigning a Value to a Pipeline Variable
	Assigning Global Variables to Pipeline Variables
	Copying Assigned Values Between Pipeline Variables

	Dropping Variables from the Pipeline
	Adding Variables to the Pipeline
	Working with Transformers
	Using Built-In Services as Transformers
	Inserting a Transformer
	Linking Variables to a Transformer
	Transformers and Array Variables
	Example of Dimensionality Mismatch

	Validating Input and Output for Transformers
	Copying Transformers
	Renaming Transformers
	Debugging Transformers

	Performing Data Validation
	Blueprints or Models Against which Data is Validated
	Performing Input/Output Validation
	Specifying Input/Output Validation via the Input/Output Tab
	Specifying Input/Output Validation via the INVOKE Step

	Performing Pipeline Validation
	Performing Document Validation
	Performing XML Validation in Integration Server
	Performing Validation from within a Java Service
	Validation Errors
	Validation Exceptions
	Preventing Running Out of Memory Error During Validation

	Building Java Services
	Overview of Building Java Services
	Java Service Editor
	Source Tab
	Protected Sections of a Java Service
	Editable Sections of a Java Service

	Service Development Projects in the Local Workspace
	About the Service Development Project Name
	Format of a Service Development Project

	How Java Services Are Organized on Integration Server
	Creating a Java Service
	Notes about Creating and Editing Java Services in Designer

	Using an IData Object for the Java Service Input and Output
	Generating Java Code from Service Input and Output Parameters
	Example of Java Code Generated from Service Signature

	Editing an Existing Java Service
	Adding Classes to the Service Development Project
	Compiling a Java Service
	Performance When Compiling a Java Service

	Generating Code a Java Service Can Use to Invoke a Specified Service
	Generating Java Code to Invoke a Service
	Example of Java Code Generated for Invoking a Service

	Deleting a Java Service

	Building Java Services in Your Own IDE
	How Java Services are Organized on Integration Server
	Requirements for the Java Service Source Code
	IData Object for Java Service Input and Output
	Adding Comments to Your Java Code for the jcode Utility
	Example of Code Commented for the jcode Utility

	Using the jcode Utility
	Using jcode make/makeall to Compile Java Source
	Using jcode frag/fragall to Split Java Source for Designer
	Using jcode comp to Create Java Source from Fragments
	Using jcode Shortcut Commands

	Building C/C++ Services
	The Java Code for a C/C++ Service
	Overview of Building C/C++ Services
	Prerequisites for Building C/C++ Services
	C/C++ Service Editor
	Source Tab
	Protected Sections of a C/C++ Service
	Editable Sections of a C/C++ Service

	Service Development Projects in the Local Workspace
	About the Service Development Project Name
	Format of a Service Development Project

	How C/C++ Services Are Organized on Integration Server
	Creating a C/C++ Service
	Editing an Existing C/C++ Service

	Generating C/C++ Code from Service Input and Output Parameters
	Adding Classes to the Service Development Project
	Building the C/C++ Source Code
	Compiling the C/C++ Source Code
	Performance When Compiling a C/C++ Service

	Generating Code a C/C++ Service Can Use to Invoke a Specified Service
	Debugging C/C++ Services

	Building Services from .NET Methods
	Environment Setup for Creating .NET Services
	.NET Service Editor
	.NET Properties Tab

	Creating a .NET Service
	Modifying the .NET Assembly Information
	Modifying the Class Lifetime for a .NET Service
	Running a .NET Service in Designer

	Building XSLT Services
	What Is XSLT?
	What Is an XSLT Service?
	How Does an XSLT Service Work?
	What Is a Translet?
	About the XSLT Service Editor
	Overview of Building XSLT Services
	Creating an XSLT Service
	XSLT Service Signature
	Running an XSLT Service
	Debugging an XSLT Service
	Creating a Launch Configuration for an XSLT Service
	Debugging an XSLT Service

	Guidelines for the XSLT Style Sheet
	Using Name/Value Pairs with an XSLT Service
	Passing Name/Value Pairs from the Pipeline to the Style Sheet
	Specifying New Values for Name/Value Pair
	Defining Name/Value Pair as an XSLT Parameter

	Passing Name/Value Pairs from the Style Sheet to the Pipeline
	Sample Style Sheet: Adding Name/Value Pairs to the Pipeline

	Configuring XSLT Transformer Factory Settings

	Managing Cloud Connector Services
	Creating a Cloud Connector Service
	Editing a Cloud Connector Service for a SOAP-Based Provider
	Editing a Cloud Connector Service for a REST-Based Provider
	Viewing the Constraints Applied to Variables

	Running Services
	Using Launch Configurations to Run Services
	Creating a Launch Configuration for Running a Service

	Supplying Input Values to a Service
	Entering Input for a Service
	Specifying a Value for a String Variable
	Specifying Values for a String List Variable
	Specifying Values for a String Table Variable
	Specifying Values for a Document Variable that Has Defined Content
	Specifying Values for a Document Variable with No Defined Content
	Specifying Values for a Document List Variable
	Specifying a Value for an Object Variable
	Specifying Values for an Object List Variable

	Saving Input Values
	Loading Input Values

	Running a Service
	Viewing Results from Running a Service
	Messages Tab
	Call Stack Tab
	Pipeline Tab
	Saving the Results
	Restoring the Results
	Running Services from Results view
	Removing the Results from Results View
	Pinning a Result to Results View
	Sorting Results by Element Names in Results View

	Running Services from a Browser

	Debugging Flow Services
	About Debugging Flow Services
	About Debug Sessions
	About the Debug Perspective
	About Debug View

	Creating Launch Configurations for Debugging Flow Services
	Debugging a Flow Service
	Stepping Through Flow Services
	Stepping Through a Flow Service
	Stepping Into and Out of a Child Service
	Stepping Into and Out of a MAP Step

	Using Breakpoints When Debugging Flow Services
	Breakpoint States
	Setting and Removing Breakpoints on Flow Step
	Setting and Removing Breakpoints on a Transformer
	Enabling and Disabling Breakpoints in a Flow Service
	Skipping Breakpoints in a Flow Service

	Disabling and Enabling Flow Steps and Transformers
	Disabling and Enabling Conditions
	Modifying the Flow Service Pipeline while Debugging
	Changing Variable Values
	Dropping Variables

	Saving and Restoring the Flow Service Pipeline while Debugging
	Saving the Flow Service Pipeline while Debugging
	Saving the Pipeline to a File while Debugging

	Restoring the Flow Service Pipeline while Debugging
	Loading a Saved Pipeline while Debugging

	Viewing Service Results from a Flow Service Debug Session
	Using the Server Log for Debugging
	Writing Information to the Server Log
	Writing an Arbitrary Message to the Log
	Dumping the Pipeline to the Log

	Debugging Java Services
	About Debugging a Java Service while its Class Runs in Designer
	About Test Harnesses
	Creating a Test Harness

	About Java Application Launch Configuration
	Creating a Java Application Launch Configuration
	Updating a Java Application Launch Configuration

	How to Suspend Execution of a Java Class while Debugging
	Debugging a Java Service while its Class Runs in Designer
	Viewing Service Results from Debugging a Java Service

	About Debugging a Java Service while it Runs in Integration Server
	Benefits of Debugging Java Services Running in Integration Server
	Drawbacks of Debugging Java Services Running in Integration Server
	Setting Up Integration Server Version 9.7 or Later for Remotely Debugging a Java Service
	Setting Up Integration Server Version 9.0, 9.5.x, or 9.6 for Remotely Debugging a Java Service
	Creating a Java Project for an IS Package in Designer
	Creating a Remote Java Application Launch Configuration
	Debugging a Java Service while it Runs in Integration Server

	Working with REST
	Creating a REST Resource
	About the REST Resource Folder

	Working with REST API Descriptors
	Overview of Creating a REST API Descriptor
	Creating a REST API Descriptor
	Editing General Information for a REST API Descriptor
	Changing the Available MIME Types for a REST API Descriptor
	Working with REST Resources in a REST API Descriptor
	Adding REST Resources to a REST API Descriptor
	Removing REST Resources from a REST API Descriptor
	Setting the Path or Suffix for a REST Resource
	Working with Operations
	Changing the MIME Types for an Operation in a REST Resource
	About the Operation Parameters
	Reviewing and Changing the Assigned Source for an Operation Parameter

	About Operation Responses
	Adding an Operation Response
	Removing an Operation Response

	About REST Definitions
	Viewing the Swagger Document for a REST API Descriptor
	Mapping Integration Server Data Types to Swagger Data Types

	Working with OData Services
	Understanding OData Service Terminology
	Supported and Unsupported OData Features
	Overview of Creating an OData Service
	Creating an OData Service
	Creating an OData Service Using an External Source Type

	Adding OData Elements to the OData Service
	Adding Properties to the OData Elements
	Adding Associations to OData Elements
	Editing the OData Service
	Synchronizing the External Entity Type
	How Integration Server Processes an OData Service Request
	Querying Data Using $filter

	Working with Document Types
	Creating an IS Document Type
	Creating an Empty IS Document Type
	Adding Fields to an IS Document Type

	Creating an IS Document Type from an XML Document, DTD, or XML Schema
	Creating an IS Document Type from an XML Document
	Creating an IS Document Type from a DTD
	Creating an IS Document Type from an XML Schema Definition

	Creating IS Document Types from JSON Objects
	Mapping JSON Data Types
	Generating Fields from Unquoted Fields in a JSON Object
	Creating an IS Document Type from a JSON Object

	Creating an IS Document Type from a Broker Document Type
	Creating an IS Document Type from an E-form Template
	Notes About IS Document Types Created from E-form Templates

	Creating a Document Type from a File in webMethods Content Service Platform
	Creating a Document Type from a Flat File Schema
	Determining How to Represent Complex Types in Document Types
	Derived Types and IS Document Types
	*doctype Fields in IS Document Types and Document Fields
	*doctype Fields in IS Document Types
	*doctype Fields in Document Fields

	Registering Document Types with Their Schema Types
	Generating Fields for Substitution Groups
	*Any Fields in Document Types and Document Fields
	About Run-time Processing for an IS Document Type that Complies with the Content Model

	Editing Document Types
	Important Considerations When Modifying Publishable Document Types

	About Universal Names and Document Types
	Printing an IS Document Type
	Working with Publishable Document Types
	Making a Document Type Publishable
	About the Associated Provider Definition
	About the Envelope Field
	About the Properties Field
	About Adapter Notifications and Publishable Document Types

	Making a Document Type Unpublishable
	About the Encoding Type for a Publishable Document Type
	Using Protocol Buffers as the Encoding Type
	Encoding Documents as Protocol Buffers during Document Publishing
	Decoding Protocol Buffers
	Setting the Encoding Type for a Publishable Document Type

	About the Type of Document Storage
	Document Storage Versus Broker Client Queue Storage
	Setting the Document Storage Type for a Publishable Document Type

	About the Time-to-Live for a Publishable Document Type
	Setting the Time to Live for a Publishable Document Type

	About Run-Time Validation for a Published Document
	Specifying Document Validation for Instances of a Publishable Document Type

	Deleting Publishable Document Types
	About Testing Publishable Document Types
	Creating a Launch Configuration for a Publishable Document Type
	Testing a Publishable Document Type

	About Synchronizing Publishable Document Types
	Synchronization Status
	Synchronization Actions
	Combining Synchronization Action with Synchronization Status
	Synchronizing a Single Publishable Document Type
	Synchronizing Multiple Document Types Simultaneously
	Synchronizing Document Types in a Cluster
	Synchronizing Document Types Across a Gateway
	Importing and Overwriting References During Synchronization
	What Happens When You Overwrite Elements on the Integration Server?
	What Happens If You Do Not Overwrite Elements on the Integration Server?

	Publishing Documents as JMS Messages
	Creating a Launch Configuration to Publish a Document as a JMS Message
	Publishing a Document as a JMS Message

	Working with XML Document Types
	What Is an XML Document Type?
	What Is XMLData?

	Why Use XML Document Types Instead of IS Document Types?
	Differences Between XML Document Types and IS Document Types
	Limitations of XML Document Type Usage

	Creating an XML Document Type

	Working with Specifications
	Creating a Specification

	Working with Variables
	Creating a Document Reference or a Document Reference List Variable
	Using XML Namespaces and Namespace Prefixes with Variables
	Guidelines for Using XML Namespaces and Prefixes with Web Service Descriptors
	Assigning XML Namespaces and Prefixes to Variables

	Assigning Display Types to String Variables
	About Variable Constraints
	Considerations for Object Constraints
	Applying Constraints to a Variable
	Customizing a String Content Type
	Viewing the Constraints Applied to Variables

	Working with Schemas
	What Does an IS Schema Look Like?
	Schema Browser
	Component Details

	Creating an IS Schema
	Creating an IS Schema from XML Schemas that Reference Other Schemas

	About Editing Simple Type Definitions
	Editing a Simple Type Definition

	About Schema Domains

	Working with JMS Triggers
	About SOAP-JMS Triggers
	Overview of Building a Non-Transacted JMS Trigger
	Standard JMS Trigger Service Requirements
	Creating a JMS Trigger
	Adding JMS Destinations and Message Selectors to a JMS Trigger
	Creating a Destination on the JMS Provider
	About Durable and Non-Durable Subscribers
	Creating a Message Selector

	Adding Routing Rules to a Standard JMS Trigger
	Creating a Local Filter

	Managing Destinations and Durable Subscribers on the JMS Provider through Designer
	Modifying Destinations or Durable Subscribers via a JMS Trigger in Designer

	Building Standard JMS Triggers with Multiple Routing Rules
	Guidelines for Building a JMS Trigger that Performs Ordered Service Execution

	Enabling or Disabling a JMS Trigger
	JMS Trigger States

	Setting an Acknowledgement Mode
	About Join Time-Outs
	Join Time-Outs for All (AND) Joins
	Join Time-Outs for Only One (XOR) Joins
	Setting a Join Time-Out

	About Execution Users for JMS Triggers
	Assigning an Execution User to a JMS Trigger

	About Message Processing
	Serial Processing
	Concurrent Processing
	Message Processing and Message Consumers
	Message Processing and Load Balancing

	About Batch Processing for Standard JMS Triggers
	Guidelines for Configuring Batch Processing

	Using Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger
	Retrieving Multiple Messages for a JMS Trigger with Each Request
	Configuring Message Processing

	Fatal Error Handling for Non-Transacted JMS Triggers
	Configuring Fatal Error Handling for Non-Transacted JMS Triggers

	Transient Error Handling for Non-Transacted JMS Triggers
	About Retry Behavior for Trigger Services
	Service Requirements for Retrying a Trigger Service
	Handling Retry Failure
	Overview of Throw Exception for Retry Failure
	Overview of Suspend and Retry Later for Retry Failure

	Configuring Transient Error Handling for a Non-Transacted JMS Trigger

	Exactly-Once Processing for JMS Triggers
	Duplicate Detection Methods for JMS Triggers
	Configuring Exactly-Once Processing for a JMS Trigger
	Disabling Exactly-Once Processing for a JMS Trigger

	Debugging a JMS Trigger
	Enabling Trace Logging for All JMS Triggers
	Enabling Trace Logging for a Specific JMS Trigger

	Building a Transacted JMS Trigger
	Prerequisites for a Transacted JMS Trigger
	Properties for Transacted JMS Triggers
	Steps for Building a Transacted JMS Trigger
	Fatal Error Handling for Transacted JMS Triggers
	Configuring Fatal Error Handling for Transacted JMS Triggers

	Transient Error Handling for Transacted JMS Triggers
	Overview of Recover Only for Transaction Rollback
	Overview of Suspend and Recover for Transaction Rollback
	Configuring Transient Error Handling for Transacted JMS Triggers

	Working with webMethods Messaging Triggers
	Overview of Building a webMethods Messaging Trigger
	webMethods Messaging Trigger Requirements
	Trigger Service Requirements

	Creating a webMethods Messaging Trigger
	Creating Conditions
	Using Filters with a Subscription
	Creating Filters for Use with Universal Messaging
	Universal Messaging Provider Filters and Encoding Type
	Examples of Universal Messaging Provider Filters for Use with Protocol Buffers

	Creating Filters for Use with Broker
	Using Hints in Filters
	Detecting Deadletters with Hints

	Using Multiple Conditions in a webMethods Messaging Trigger
	Using Multiple Conditions for Ordered Service Execution
	Ordering Conditions in a webMethods Messaging Trigger

	Disabling and Enabling a webMethods Messaging Trigger
	Disabling and Enabling a webMethods Messaging Trigger in a Cluster or Non-Clustered Group

	About Join Time-Outs
	Join Time-Outs for All (AND) Join Conditions
	Join Time-Outs for Only One (XOR) Join Conditions
	Setting a Join Time-Out

	About Priority Message Processing
	Enabling and Disabling Priority Message Processing for a webMethods Messaging Trigger

	About Execution Users for webMethods Messaging Triggers
	Assigning an Execution User to a webMethods Messaging Trigger

	About Capacity and Refill Level for the webMethods Messaging Trigger Queue
	Guidelines for Setting Capacity and Refill Levels for webMethods Messaging Triggers
	Setting Capacity and Refill Level for a webMethods Messaging Trigger

	About Document Acknowledgements for a webMethods Messaging Trigger
	Setting the Size of the Acknowledgement Queue

	About Message Processing
	Serial Processing
	Serial Processing in a Cluster or Non-Clustered Group of Integration Servers
	Serial Processing with the Broker in a Clustered or a Non-Clustered Group of Integration Servers
	Serial Processing with Universal Messaging in a Clustered or a Non-Clustered Group of Integration Servers

	Serial Triggers Migrated to Integration Server 9.9 or Later from 9.8 or Earlier

	Concurrent Processing
	Selecting Message Processing
	Changing Message Processing When Broker Is the Messaging Provider
	Changing Message Processing When Universal Messaging Is the Messaging Provider
	Synchronizing the webMethods Messaging Trigger and Named Object on Universal Messaging

	Fatal Error Handling for a webMethods Messaging Trigger
	Configuring Fatal Error Handling for a webMethods Messaging Trigger

	About Transient Error Handling for a webMethods Messaging Trigger
	Service Requirements for Retrying a Trigger Service for a webMethods Messaging Trigger
	Handling Retry Failure
	Overview of Throw Exception for Retry Failure
	Overview of Suspend and Retry Later for Retry Failure

	Configuring Transient Error Handling for a webMethods Messaging Trigger
	About Retrying Trigger Services and Shutdown Requests

	Exactly-Once Processing for webMethods Messaging Triggers
	Duplicate Detection Methods for a webMethods Messaging Trigger
	Configuring Exactly-Once Processing for a webMethods Messaging Trigger
	Disabling Exactly-Once Processing for a webMethods Messaging Trigger

	Modifying a webMethods Messaging Trigger
	Modifying a webMethods Messaging Trigger in a Cluster or Non-Clustered Group

	Deleting webMethods Messaging Triggers
	Deleting webMethods Messaging Triggers in a Cluster or Non-Clustered Group

	Running a webMethods Messaging Trigger with a Launch Configuration
	Creating a Launch Configuration for a webMethods Messaging Trigger
	Running a webMethods Messaging Trigger
	Testing Join Conditions

	Transient Error Handling During Trigger Preprocessing
	Server and Trigger Properties that Affect Transient Error Handling During Trigger Preprocessing
	Overview of Transient Error Handling During Trigger Preprocessing

	Working with Web Services
	What Are Web Service Descriptors?
	About Provider Web Service Descriptors
	Service Signature Requirements for Service First Provider Web Service Descriptors
	Using XML Namespaces with Prefixes with Fields in Service Signatures
	Handling Incomplete Service Signatures Using Wrapper Services

	Creating a Service First Provider Web Service Descriptor
	Protocol Mismatch Between Transport and Primary Port

	Creating a WSDL First Provider Web Service Descriptor

	About Consumer Web Service Descriptors
	Creating a Consumer Web Service Descriptor
	Supporting Elements for a Consumer Web Service Descriptor

	About Web Service Connectors
	Refreshing a Web Service Connector
	Invoking a Web Service Using a Web Service Connector
	About Response Services

	About Refreshing a Web Service Descriptor
	How Refresh Affects a Web Service Descriptor
	Considerations for Refreshing a Web Service Descriptor
	Refreshing a Web Service Descriptor

	Viewing the WSDL Document for a Web Service Descriptor
	WS-I Compliance for Web Service Descriptors
	Modifying WS-I Compliance for a Web Service Descriptor
	Reporting the WS-I Profile Conformance for a Web Service Descriptor

	Changing the Target Namespace for a Web Service Descriptor
	Viewing the Namespaces Used within a WSDL Document
	Enabling MTOM/XOP Support for a Web Service Descriptor
	Enabling SOAP Attachments for a Web Service Descriptor
	Using pub.string:base64Encode with MTOM Implementations

	Adding SOAP Headers to the Pipeline
	Validating SOAP Response
	Validating Schemas Associated with a Web Service Descriptor
	Enabling Xerces Schema Validation for a Web Service Descriptor

	Working with Binders
	Binders and Mixed Use
	Existing Web Service Descriptors with Mixed Use Binders

	Binders and Mixed Style
	Adding a Binder to Web Service Descriptor
	Copying Binders Across Provider Web Service Descriptors
	Changing the Binder Transport
	Deleting a Binder from a Web Service Descriptor
	Deleting an Operation from a Binder
	Modifying the SOAP Action for an Operation in a Binder
	Assigning a Web Service Endpoint Alias to a Binder
	Configuring Use of the Client Side Queue

	Working with Operations
	Adding Operations
	Adding an IS Service as an Operation
	Adding an Operation from another Provider Web Service Descriptor
	Using a 6.5 SOAP-MSG Style Service as an Operation
	Modifying the Signature of a 6.5 SOAP-MSG Style Operation

	Deleting Operations
	Viewing the Operation Input and Output

	Adding Headers to an Operation
	Adding a Header to an Operation

	About SOAP Fault Processing
	About SOAP Fault Elements
	Adding a Fault Element to an Operation

	The $fault Variable
	Modifying a Returned SOAP Fault

	Viewing Document Types for a Header or Fault Element
	Working with Handlers
	Setting Up a Header Handler
	Registering a Header Handler
	Adding a Handler to a Web Service Descriptor
	Deleting a Handler from a Web Service Descriptor

	Working with Policies
	Attaching a Policy to a Web Service Descriptor
	Removing a Policy from a Web Service Descriptor

	About Pre-8.2 Compatibility Mode
	Setting Compatibility Mode
	Features Impacted by Compatibility Mode

	Working with UDDI Registry
	Opening UDDI Registry View
	Connecting to a UDDI Registry
	Disconnecting from a UDDI Registry
	Refreshing a UDDI Registry Session
	Browsing for Web Services in a UDDI Registry
	Applying a Filter to UDDI Registry
	Clearing an Applied Filter

	Creating a Web Service Descriptor from a UDDI Registry
	Publishing a Service to UDDI Registry
	Deleting a Service from UDDI Registry

	Working with Flat Files
	Concepts
	What Is a Flat File Schema?
	What Is a Flat File Dictionary?
	When Should I Create a Flat File Dictionary?

	Creating Flat File Schemas
	Creating the Flat File Schema
	Specifying a Record Parser
	Specifying a Delimited Record Parser for the Schema
	Specifying a Fixed Length Record Parser for the Schema
	Specifying a Variable Length Record Parser for the Schema

	Specifying a Record Identifier
	Defining the Schema Structure
	Setting a Default Record
	Allowing Undefined Data
	Creating an Area
	Specifying a Floating Record
	Editing a Flat File Schema

	Testing Flat File Schemas
	Creating a Launch Configuration for a Flat File Schema
	Testing a Flat File Schema

	Creating Flat File Dictionaries
	Creating a Flat File Dictionary
	Adding Elements to the Flat File Dictionary
	Setting Properties for the Flat File Dictionary
	Editing a Flat File Dictionary

	Defining Flat File Elements
	Adding a Record Definition
	Adding a Record Reference
	Adding a Composite Definition
	Adding a Composite Reference
	Adding a Field Definition
	Adding a Field Reference

	Working with Adapters
	About Adapter Connections
	About Adapter Services
	About Adapter Listeners
	About Adapter Notifications

	Subscribing to Events
	What Happens When an Event Occurs?
	Subscribing to Events
	Creating Event Filters
	Creating Event Filters for Services

	Viewing and Editing Event Subscriptions
	Suspending Event Subscriptions
	Deleting an Event Subscription
	Building an Event Handler
	Invoking Event Handlers Synchronously or Asynchronously
	About Alarm Events
	About Audit Events
	About Audit Error Events
	About Exception Events
	About Guaranteed Delivery Events
	Guaranteed Delivery Events and Transaction Events

	About JMS Delivery Failure Events
	About JMS Retrieval Failure Events
	About Port Status Events
	About Replication Events
	About Security Events
	About Session Events
	About Stat Events
	About Transaction Events

	Submitting and Receiving XML Documents
	Submitting and Receiving XML in a String Variable
	Sample Client Code to Submit an XML Document in a String Variable
	Considerations When Coding the Target Service to Receive the XML Document that is Passed in a String Variable

	Submitting and Receiving XML in $xmldata
	Sample Client Code to Submit an XML Document in $xmldata
	Considerations When Coding the Target Service to Receive the XML Document that is Passed in $xmldata

	Submitting and Receiving XML via HTTP
	Creating a Client that Submits an XML Document via HTTP
	Using pub.client:http to Submit an XML Document via HTTP
	About the xmlFormat Value
	Submitting and Receiving XML via $xmldata without Parsing
	Using pub.clilent:http to Submit $xmldata via HTTP

	Submitting and Receiving XML via FTP
	Naming the File that the Client is to Submit via FTP
	Actions a Client Takes to Submit an XML Document via FTP
	Actions a Client Takes to Retrieve Output from the Target Service
	Considerations When Coding the Target Service to Receive the XML Document

	Submitting and Receiving XML via E-mail
	Actions a Client Must Take to Submit an XML Document via Email
	Using pub.client:smtp to Submit an XML Document via Email
	Considerations When Coding the Target Service to Receive the XML Document

	Working with Load and Query Services
	What Are the Load and Query Services?
	Basic Concepts
	About the pub.xml:loadXMLNode Service
	About the pub.xml:loadEnhancedXMLNode Service
	About the pub.xml:queryXMLNode Service

	Building Services that Retry
	Requirements for Retrying a Service
	Example Service that Throws an Exception for Retry

	Creating Client Code
	Building a Java Client
	Limitations when Generating Java Client Code
	Files that Designer Generates for a Java Client
	Generating Java Client Code

	Building a C/C++ Client
	Prerequisites for Generating C/C++ Client Code
	Limitations when Generating C/C++ Client Code
	Files that Designer Generates for a C/C++ Client
	Generating C/C++ Client Code

	Building a Browser-Based Client
	Prerequisites for Building Browser-Based Client Code
	URL Client Uses to Invoke Services
	How Input Values are Passed to the Service the Browser-Based Client Invokes
	When Browser-Based Clients Pass Multiple Values for the Same Input Variable
	When Browser-Based Clients Pass Multiple Input Variables with the Same Name

	How Integration Server Returns Output from the Service the Client Invoked

	Building a REST Client

	Comparing Integration Server Packages and Elements
	Working with the Compare Editor
	Change List Panel
	Content Panel
	Merging IS Elements

	Comparing Packages and Elements
	Comparing Flow Services or Document Types
	Comparing Integration Server Packages or Folders

	Document Expansion Preferences
	Integration Server Preferences
	Service Development Preferences
	Adapter Service/Notification Editor Preferences
	Compare Editor Preferences
	Element Property Templates Preferences
	Flow Service Editor Preferences
	HTML Generation Preferences
	Java/C Service Editors Preferences
	Launching Preferences
	Local Service Development Preferences
	Package Navigator Preferences
	Publishable Document Type Preferences
	REST API Descriptor Preferences
	Results View Preferences
	Run/Debug Preferences
	Schema Editor Preferences
	Web Service Descriptor Editor Preferences

	Properties
	Integration Server Properties
	Event Manager Properties
	My Locked Elements
	Server ACL Information
	Server Information

	Package Properties
	Package Information
	Package Dependencies
	Package Settings
	Package Permissions
	Package Replication Services
	Package Startup/Shutdown Services

	Element Properties
	Element Information
	Element Permissions
	Element General Properties

	Document Type Properties
	General Properties for IS Document Types
	webMethods Messaging Properties
	Universal Name Properties

	Flat File Dictionary Properties
	General Properties for a Flat File Dictionary

	Flat File Element Properties
	Record Definition Properties
	Record Reference Properties
	Composite Definition Properties
	Composite Reference Properties
	Field Definition Properties
	Field Reference Properties

	Flat File Schema Properties
	General Properties for a Flat File Schema
	Default Record Properties
	Settings Properties
	Schema Definition Properties

	JMS Trigger Properties
	General Properties for Non-Transacted JMS Triggers
	General Properties for Transacted JMS Triggers
	Message Processing Properties
	Fatal Error Handling Properties
	Transient Error Handling with a Non-Transacted JMS Trigger
	Transient Error Handling with a Transacted JMS Trigger
	Exactly Once Processing Properties
	webMethods Broker Properties

	Link Properties
	General Properties for Links

	OData Service Properties
	General Properties for OData Services
	OData Element Properties
	Entity Type Properties
	Complex Type Properties

	External Entity Type Properties
	Simple Property Properties
	General Properties for Simple Property
	Facets Properties for Simple Property

	Complex Property Properties
	Association Properties
	General Properties for Association
	OData Association End Properties
	OData Association Navigation Properties

	REST API Descriptor Properties
	General Properties for REST API Descriptors
	REST Resource Properties
	Operation Properties
	REST Definition Properties
	REST Definition Parameter Properties

	Schema Properties
	General Properties for IS Schemas

	Schema Component Properties
	All Content Model
	Any Attribute Declaration
	Any Element Declaration
	Attribute Declaration
	Attribute Reference
	Choice Content Model
	Complex Type Definition
	Element Declaration
	Element Reference
	Empty Content
	Mixed Content Model
	Sequence Content Model
	Simple Type Definition

	Service Properties
	General Properties for Services
	Run Time Properties for Services
	Transient Error Handling Properties
	Audit Properties
	Universal Name Properties for Services
	Output Template Properties for Services

	Specification Properties
	General Properties for Specifications

	Transformer Properties
	General Properties for Transformers

	Variable Properties
	General Properties for Variables
	Constraints Properties for a Variable
	Constraints Applied to Variables

	Web Service Connector Properties
	General Properties for Web Service Connectors
	Run Time Properties
	Audit Properties
	Universal Name Properties
	Output Template Properties

	Web Service Descriptor Properties
	General Properties for Web Service Descriptors
	Web Service Descriptor Operation Properties
	Operation Properties
	Body Element Properties
	Header Element Properties
	Fault Element Properties

	Web Service Descriptor Binder Properties
	General Properties for Binders
	JMS Settings Properties for a Binder
	JMS Message Details Properties for a Binder

	Web Service Descriptor Header Handler Properties

	webMethods Messaging Trigger Properties
	General Properties for webMethods Messaging Triggers
	Trigger Queue Properties
	Message Processing Properties
	Fatal Error Handling Properties
	Transient Error Handling Properties
	Exactly Once Properties

	webMethods Flow Steps
	BRANCH
	Branching on a Switch Value
	Branching on Expressions
	BRANCH Properties
	Conditions that Will Cause a BRANCH Step to Fail

	EXIT
	EXIT Properties
	Examples of When to Use an EXIT Step

	INVOKE
	INVOKE Properties
	Conditions that Will Cause an INVOKE Step to Fail

	LOOP
	LOOP Properties
	Conditions that Will Cause a LOOP Step to Fail

	MAP
	MAP Properties
	Example of When to Use a MAP Step

	REPEAT
	REPEAT Properties
	When Does REPEAT Fail?
	Examples of When to Use a REPEAT Step

	SEQUENCE
	SEQUENCE Properties
	Conditions that Will Cause the SEQUENCE Step to Fail

	Data Types
	Data Types in IData Objects
	Java Classes for Objects
	How Designer Supports Tables

	Icons
	Package Navigator View Icons
	UDDI Registry View Icons
	Flat File Element Icons
	Flow Step Icons
	OData Service Icons
	REST API Descriptor Icons
	Schema Component Icons

	Toolbars
	Compare Editor Toolbar
	Document Type Editor Toolbar
	Flat File Schema and Dictionary Editors Toolbars
	Package Navigator View Toolbar
	Pipeline View Toolbar
	REST API Descriptor Toolbar
	Service Editor Toolbar
	Results View Toolbar
	Specification Editor Toolbar
	UDDI Registry View Toolbar
	Variables View Toolbar
	Web Service Descriptor Editor Toolbar

	Keyboard Shortcuts
	Conditional Expressions
	Guidelines for Writing Expressions and Filters
	Syntax
	Comparing Java Objects to Constants
	Verifying Variable Existence

	Operators for Use in Conditional Expressions
	Relational Operators
	Standard Relational Operators
	Lexical Relational Operators

	Logical Operators

	Operator Precedence in Conditional Expressions
	Addressing Variables
	Addressing Variables that Contain Special Characters
	Typing Special Characters in Expressions

	Rules for Use of Expression Syntax with the Broker

	Regular Expressions
	Using a Regular Expression in a Mask
	Regular Expression Operators

	Validation Content Constraints
	Content Types
	Constraining Facets

	webMethods Query Language
	Overview
	Object References
	Sibling Operators
	Object Properties
	Property Masking

